Gigi Sayfan

Vlastering
Kubernetes

Automating container deployment and management

L1 Packt

Mastering Kubernetes

Automating container deployment and management

Gigi Sayfan

Packh

BIRMINGHAM - MUMBAI

Mastering Kubernetes

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2017

Production reference: 1180517

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78646-100-1

www . packtpub.com

www.packtpub.com

Credits

Author
Gigi Sayfan

Reviewer
Jakub Pavlik

Acquisition Editor
Rahul Nair

Content Development Editor
Trusha Shriyan

Technical Editor
Varsha Shivhare

Copy Editor
Safis Editing

Project Coordinator
Kinjal Bari

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Kirk D'Penha

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Gigi Sayfan is a principal software architect at Helix — a bioinformatics and
genomics start-up. Gigi has been developing software professionally for more than
20 years in domains as diverse as instant messaging, morphing, chip fabrication
process control, embedded multimedia applications for game consoles, brain-
inspired machine learning, custom browser development, web services for 3D
distributed game platforms, and most recently IoT sensors and virtual reality.

He has written production code in many programming languages such as

Go, Python, C, C++, C#, Python, Java, Delphi, JavaScript, and even Cobol and
PowerBuilder for operating systems such as Windows (3.11 through 7), Linux, Mac
OSX, Lynx (embedded), and Sony PlayStation. His technical expertise includes
databases, low-level networking, distributed systems, unorthodox user interfaces,
and general software development life cycle.

About the Reviewer

Jakub Pavlik is a co-founder, former CTO, and chief architect of TCP Cloud
(acquired by Mirantis in 2016). Jakub and his team worked for several years on the
IaaS Cloud platform based on the OpenStack-salt and OpenContrail projects, which
they deployed and operated for global service providers. Leveraging his skills from
architecture implementation and operation, his TCP Cloud team was acquired by
the no. 1 pure play OpenStack company, Mirantis.

Currently, as director of product engineering, together with other skilled professional
teams, he collaborates on a new Mirantis Cloud platform for NFV/SDN, IoT, and big
data use cases based on Kubernetes, containerized OpenStack, and OpenContrail. He
is also a member of the OpenContrail advisory board.

He is also an enthusiast of Linux OS, ice hockey and films, and loves his wife Hanulka.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this book's
Amazon page at https://www.amazon.com/dp/1786461005.

If you'd like to join our team of regular reviewer, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewer with free
eBooks and videos in exchange for their valuable feedback. Help us be relentless
in improving our products!

https://www.amazon.com/dp/1786461005

Table of Contents

Preface

b
<

Chapter 1: Understanding Kubernetes Architecture

Understanding container orchestration

Physical machines, virtual machines, and containers

Containers in the cloud

Cattle versus pets
Kubernetes concepts

Cluster

Node

Master

Pod

Label

Annotation

Label selector

Replication controller and replica set

Service

Volume

StatefulSet

Secret

Name

Namespace

Diving into Kubernetes architecture in depth

Distributed systems design patterns
Sidecar pattern
Ambassador pattern
Adapter pattern
Multi-node patterns

OO OWOWOONNOOOODOTOAPRWWNDNN =

[il

Table of Contents

The Kubernetes APls 12
Kubernetes API 12
Autoscaling API 13

Batch API 13

Kubernetes components 13

Master components 13
API server 13
Etcd 14
Controller manager 14
Scheduler 14
DNS 14

Node components 14
Proxy 15
Kubelet 15

Kubernetes runtimes 15
The runtime interface 16
Docker 17
Rkt 19

App container 19
Rktnetes 19
Is rkt ready for production usage? 19

Hyper containers 19
Hypernetes 20

Continuous integration and deployment 20
What is a CI/CD pipeline? 21
Designing a CI/CD pipeline for Kubernetes 22

Summary 22

Chapter 2: Creating Kubernetes Clusters 23

Quick single-node cluster with Minikube 24
Getting ready 24
Creating the cluster 25
Troubleshooting 27
Checking out the cluster 28
Doing work 29
Examining the cluster with the dashboard 30

Creating a multi-node cluster using kubeadm 30
Getting ready 30
Preparing a cluster of vagrant VMs 30
Installing the required software 31

The hosts file 32
The vars.yml file 32
The playbook.yml file 32

Lii]

Table of Contents

Creating the cluster 33
Initializing the master 33
Setting up the pod network 34
Adding the worker nodes 35
Creating clusters in the cloud (GCP, AWS, Azure) 36
The cloud-provider interface 36
GCP 37
AWS 37
Azure 38
Creating a bare-metal cluster from scratch 38
Use cases for bare-metal 39
When should you consider creating a bare-metal cluster? 39
The process 39
Using virtual private cloud infrastructure 40
Summary 40
Chapter 3: Monitoring, Logging, and Troubleshooting 41
Monitoring Kubernetes with Heapster 42
cAdvisor 43
InfluxDB backend 44
The storage schema 44
CPU 44
Filesystem 45
Memory 45
Network 46
Uptime 46
Grafana visualization 47
Performance analysis with the dashboard 48
Top-level view 48
Admin view 49
Workloads 52
Services and discovery 55
Adding central logging 55
Planning central logging 55
Fluentd 56
Elasticsearch 57
Kibana 57
Detecting node problems 58
Node problem detector 59
DaemonSet 59
Problem Daemons 59
Troubleshooting scenarios 60

[iii]

Table of Contents

Designing robust systems 60
Hardware failure 60
Quotas, shares, and limits 61
Bad configuration 63
Cost versus performance 63

Managing cost on the cloud 64
Managing cost on bare metal 64
Managing cost on hybrid clusters 64
Summary 64
Chapter 4: High Availability and Reliability 65

High-availability concepts 66
Redundancy 66
Hot swapping 66
Leader election 67
Smart load balancing 67
Idempotency 67
Self-healing 67

High-availability best practices 68
Creating highly available clusters 68
Making your nodes reliable 69
Protecting your cluster state 69

Clustering etcd 69
The etcd.yaml file 71
Verifying the etcd cluster 74
etcd 2 versus etcd 3 74
Protecting your data 75
Running redundant API servers 75
Running leader election with Kubernetes 75
Leader election for your application 76
Making your staging environment highly available 78
Testing high-availability 79

Live cluster upgrades 80

Rolling upgrades 80

Complex deployments 82
Blue-green upgrades 82
Managing data-contract changes 83
Migrating data 83
Deprecating APIs 84

Large-cluster performance, cost, and design trade-offs 85
Availability requirements 85

Best effort

85

[iv]

Table of Contents

Maintenance windows 86
Quick recovery 87
Zero-downtime 87
Performance and data consistency 89
Summary 90
Chapter 5: Configuring Kubernetes Security, Limits,
and Accounts 91
Understanding Kubernetes security challenges 92
Node challenges 92
Network challenges 93
Image challenges 95
Configuration and deployment challenges 96
Pod and container challenges 96
Organisational, cultural, and process challenges 97
Hardening Kubernetes 98
Understanding service accounts in Kubernetes 98
How does Kubernetes manage service accounts? 100
Accessing the API server 101
Authenticating users 101
Authorizing requests 103
Using admission control plugins 104
Securing pods 105
Using a private image repository 105
ImagePullSecrets 105
Specifying a security context 106
Protecting your cluster with AppArmor 107
Pod security policies 110
Managing network policies 111
Choosing a supported networking solution 111
Defining a network policy 112
Using secrets 113
Storing secrets in Kubernetes 113
Creating secrets 113
Decoding secrets 114
Using secrets in a container 115
Running a multi-user cluster 116
The case for a multi-user cluster 116
Using namespaces for safe multi-tenancy 117
Avoiding namespace pitfalls 118

Summary 119

[v]

Table of Contents

Chapter 6: Using Critical Kubernetes Resources 121
Designing the Hue platform 121
Defining the scope of Hue 121
Hue components 123

Hue microservices 124
Planning workflows 126
Automatic workflows 126
Human workflows 126
Budget-aware workflows 126
Using Kubernetes to build the Hue platform 127
Using Kubectl effectively 127
Understanding Kubectl resource configuration files 128
ApiVersion 128
Kind 129
Metadata 129
Spec 129
Deploying long-running microservices in pods 130
Creating pods 130
Decorating pods with labels 132
Deploying long- running processes with deployments 133
Updating a deployment 134
Separating internal and external services 134
Deploying an internal service 135
Creating the Hue-reminders service 136
Exposing a service externally 137
Ingress 138
Using namespace to limit access 140
Launching jobs 142
Running jobs in parallel 143
Cleaning up completed jobs 144
Scheduling cron jobs 144
Kubectl get pods 145
Mixing non-cluster components 147
Outside-the-cluster-network components 147
Inside-the-cluster-network components 147
Managing the Hue platform with Kubernetes 147
Using liveness probes to ensure your containers are alive 148
Using readiness probes to manage dependencies 149
Employing init containers for orderly pod bring-up 150
Sharing with DaemonSet pods 151
Evolving the Hue platform with Kubernetes 152

Utilizing Hue in the enterprise 152

[vil

Table of Contents

Advancing science with Hue 152
Educating the kids of the future with hue 153
Summary 153
Chapter 7: Handling Kubernetes Storage 155
Persistent volumes walkthrough 155
Volumes 156
Using emptyDir for intra-pod communication 156
Using HostPath for intra-node communication 157
Provisioning persistent volumes 159
Creating persistent volumes 160
Capacity 161
Access modes 161
Reclaim policy 161
Volume type 162
Making persistent volume claims 162
Mounting claims as volumes 163
Storage classes 164
Default storage class 165
Demonstrating persistent volume storage end to end 166
Public storage volume types - GCE, AWS, and Azure 170
AWS Elastic Block Store (EBS) 170
AWS Elastic File System (EFS) 171
GCE persistent disk 172
Azure data disk 173
Azure file storage 174
GlusterFS and Ceph volumes in Kubernetes 175
Using GlusterFS 176
Creating endpoints 176
Adding a GlusterFS Kubernetes service 177
Creating pods 178
Using Ceph 178
Connecting to Ceph using RBD 179
Connecting to Ceph using CephFS 181
Flocker as a clustered container data volume manager 182
Integrating enterprise storage into Kubernetes 183
Torus — the new kid on the block 184
Summary 185
Chapter 8: Running Stateful Applications with Kubernetes 187
Stateful versus stateless applications in Kubernetes 187
Understanding the nature of distributed data-intensive apps 188
Why manage states in Kubernetes? 188

Why manage states outside of Kubernetes? 188

[vii]

Table of Contents

Shared environment variables versus DNS records for discovery 189
Accessing external data stores via DNS 189
Accessing external data stores via environment variables 189

Creating a ConfigMap 190
Consuming a ConfigMap as an environment variable 191
Using a redundant in-memory state 192
Using DaemonSet for redundant persistent storage 192
Applying persistent volume claims 192
Utilizing StatefulSet 193
When to use StatefulSet 193
The components of StatefulSet 193

Running a Cassandra cluster in Kubernetes 195
Quick introduction to Cassandra 195
The Cassandra Docker image 196

Exploring the run.sh script 197
Hooking up Kubernetes and Cassandra 202
Digging into the Cassandra configuration 202
The custom seed provider 203
Creating a Cassandra headless service 204
Using statefulSet to create the Cassandra cluster 205
Dissecting the stateful set configuration file 205
Using a replication controller to distribute Cassandra 209
Dissecting the replication controller configuration file 209
Assigning pods to nodes 212
Using DaemonSet to distribute Cassandra 213
Summary 214
Chapter 9: Rolling Updates, Scalability, and Quotas 215

Horizontal pod autoscaling 215
Declaring horizontal pod autoscaler 216
Custom metrics 218
Autoscaling with Kubectl 219

Performing rolling updates with autoscaling 222

Handling scarce resources with limits and quotas 224
Enabling resource quotas 225
Resource quota types 225

Compute resource quota 225
Storage resource quota 225
Object count quota 226
Quota scopes 227

Requests and limits 228

[viii]

Table of Contents

Working with quotas 228
Using namespace-specific context 228
Creating quotas 228
Using limit ranges for default compute quotas 232

Choosing and managing the cluster capacity 233

Choosing your node types 234

Choosing your storage solutions 234

Trading off cost and response time 235

Using effectively multiple node configurations 235

Benefiting from elastic cloud resources 236
Autoscaling instances 236
Mind your cloud quotas 236
Manage regions carefully 237

Considering Hyper.sh 237

Pushing the envelope with Kubernetes 237

Improving the performance and scalability of Kubernetes 238
Caching reads in the API server 238
The pod lifecycle event generator 238
Serializing API objects with protocol buffers 239

Measuring the performance and scalability of Kubernetes 240
The Kubernetes SLOs 240
Measuring API responsiveness 240
Measuring end to end pod startup time 242

Testing Kubernetes at scale 242
Introducing the Kubemark tool 243
Setting up a Kubemark cluster 243
Comparing a Kubemark cluster to a real-world cluster 243

Summary 244
Chapter 10: Advanced Kubernetes Networking 245
Understanding the Kubernetes networking model 246

Intra-pod communication (container to container) 246

Inter-pod communication (pod to pod) 246

Pod to service communication 247

External access 247

Kubernetes networking versus Docker networking 248

Lookup and discovery 249
Self-registration 249
Services and endpoints 250
Loosely coupled connectivity with queues 250
Loosely coupled connectivity with data stores 251
Kubernetes ingress 251

[ix]

Table of Contents

Kubernetes network plugins
Basic Linux networking
IP addresses and ports
Network namespaces
Virtual Ethernet devices
Bridges
Routing
Maximum transmission unit
Pod networking
Kubenet
Container networking interface

Kubernetes networking solutions
Bridging on bare metal clusters
Contiv
Open vSwitch
Nuage networks VCS
Canal
Flannel
Calico project
Romana
Weave net

Using network policies effectively

Understanding the Kubernetes network policy design
Network policies and CNI plugins

Configuring network policies

Implementing network policies

Load balancing options

External load balancer

Configuring an external load balancer

Finding the load balancer IP addresses

Identifying client IP addresses

Understanding potential in even external load balancing
Service load balancer

Ingress
HAProxy
Utilizing the NodePort
Custom load balancer provider using HAProxy
Running HAProxy Inside the Kubernetes cluster
Keepalived VIP

Writing your own CNI plugin

First look at the loopback plugin
Building on the CNI plugin skeleton
Reviewing the bridge plugin

Summary

251
252
252
252
252
252
252
253
253
253
254

258

258

258

259

260

260

261

263

263

264

265
265
265
265
266

267

267
268
269
270
271

271

272
273
273
273
274
274

275

275
277
279

281

[x]

Table of Contents

Chapter 11: Running Kubernetes on Multiple Clouds and

Cluster Federation 283
Understanding cluster federation 283
Important use cases for cluster federation 284
Capacity overflow 284
Sensitive workloads 285
Avoiding vendor lock-in 285
Geo-distributing high availability 286
The federation control plane 286
Federation API server 286
Federation controller manager 287
Federated resources 288
Federated ConfigMap 288
Federated DaemonSet 289
Federated deployment 290
Federated events 290
Federated ingress 290
Federated namespace 292
Federated ReplicaSet 292
Federated secrets 293
The hard parts 293
Federated unit of work 293
Location affinity 294
Cross-cluster scheduling 295
Federated data access 296
Federated auto-scaling 296
Managing a Kubernetes cluster federation 297
Setting up cluster federation from the ground up 297
Initial setup 297
Using the official Hyperkube image 298
Running the federation control plane 298
Registering Kubernetes clusters with federation 299
Updating KubeDNS 300
Shutting down the federation 300
Setting up cluster federation with Kubefed 300
Getting Kubefed 300
Choosing a host cluster 301
Deploying a federation control plane 301
Adding a cluster to a federation 302
Cascading delete of resources 304
Load balancing across multiple clusters 304
Failing over across multiple clusters 305
Federated service discovery 306
Federated migration 306

[xi]

Table of Contents

Running federated workloads 307
Creating a federated service 307
Adding backend pods 308
Verifying public DNS records 309
Discovering a federated service 310
DNS expansion 310
Handling failures of backend pods and whole clusters 312
Troubleshooting 312
Unable to connect to federation API server 312
Summary 313
Chapter 12: Customizing Kubernetes - APl and Plugins 315
Working with the Kubernetes API 315
Understanding OpenAPI 316
Setting up a proxy 316
Exploring the Kubernetes API directly 316
Using Postman to explore the Kubernetes API 318
Filtering the output with httpie and jq 319
Creating a pod via the Kubernetes API 320
Accessing the Kubernetes API via the Python client 321
Dissecting the CoreV1API group 322
Listing objects 324
Creating objects 324
Watching objects 325
Invoking Kubectl programmatically 326

Using Python subprocess to run Kubectl 326

Extending the Kubernetes API 328
Understanding the structure of a third-party-resource 329
Developing third-party-resources 329
Integrating third party resources 330

Writing Kubernetes plugins 332
Writing a custom scheduler plugin 332

Understanding the design of the Kubernetes scheduler 332

Packaging the scheduler 334

Deploying the custom scheduler 335

Running another custom scheduler in the cluster 336

Assigning pods to the custom scheduler 337

Verifying that the pods were scheduled using custom scheduler 338

Writing an authorization plugin 338

Writing an admission control plugin 339
Implementing an admission control plugin 339
Registering an admission control plugin 341
Linking your custom admission control plugin 341

[xii]

Table of Contents

Writing a custom metrics plugin 343
Configuring the pod for custom metrics 343
Specifying a target metric value 343

Writing a volume plugin 344
Implementing a volume plugin 344
Registering a volume plugin 345
Linking a volume plugin 346

Summary 347
Chapter 13: Handling the Kubernetes Package Manager 349
Understanding Helm 349

The motivation for Helm 350

The Helm architecture 350

Helm components 350
The Tiller server 350
The Helm client 351

Helm versus. Helm-classic 351

Using Helm 351

Installing Helm 351
Installing the Helm client 351
Installing the Tiller server 352

Finding charts 353

Installing packages 355
Checking installation status 357
Customizing a chart 357
Additional installation options 359
Upgrading and rolling back a release 359
Deleting a release 360

Working with repositories 361

Managing charts with Helm 362
Taking advantage of starter packs 363

Creating your own charts 363

The Chart.yaml file 363
Versioning charts 364
The appVersion field 364
Deprecating charts 364

Chart metadata files 365

Managing chart dependencies 365
Managing dependencies with requirements.yami 365
Utilizing special fields in requirements.yaml 366

Using templates and values 368
Writing template files 368
Embedding predefined values 370
Feeding values from a file 371
Scope, dependencies, and values 371

Summary 373

[xiii]

Table of Contents

Chapter 14: The Future of Kubernetes 375
The road ahead 375
Kubernetes releases and milestones 376
Kubernetes special interest and working groups 376
Competition 377
The value of bundling 377
Docker Swarm 377
Mesos/Mesosphere 378
Cloud platforms 378
AWS 378
Azure 379
Alibaba Cloud 379
The Kubernetes momentum 379
Community 379
GitHub 379
Conferences and meetups 380
Mindshare 380
Ecosystem 381
Public Cloud providers 381
OpenShift 381
OpenStack 381
Other players 382
Education and training 382
Dynamic plugins 383
Summary 384
Index 385

[xiv]

Preface

Mastering Kubernetes is focused on the design and management of Kubernetes
clusters. It covers in detail all the capabilities and services provided by Kubernetes for
developers and DevOps engineers and developers who need to collaborate to build
and evolve complex distributed systems using container orchestration. The book takes
the reader through the steps of creating large-scale systems and deploying them on
Kubernetes, considering various environments and use cases. Over the course of this
journey, you will gain in-depth knowledge of how Kubernetes is organized, when it
is appropriate to use certain resources, and how to implement and configure clusters
in the most effective way. Via hands-on tasks and exercises, you will develop a deep
understanding of Kubernetes architecture, how to install clusters, operate them,
upgrade them, and how to deploy software using best practices.

What this book covers

Chapter 1, Understanding Kubernetes Architecture, briefly introduces the main
objectives of this book and container orchestration in distributed systems. It takes
the reader through the fundamental guiding principles used to build Kubernetes,
and covers the design in detail.

Chapter 2, Creating Kubernetes Clusters, is a hands-on chapter in which the user will
create several Kubernetes clusters using different tools that vary from quick test
clusters to full-fledged industrial strength clusters.

Chapter 3, Monitoring, Logging, and Troubleshooting, explains approaches to event
monitoring, logging events, and metric collection from Kubernetes clusters. This
will let the reader identify and analyze patterns in cluster behavior.

Chapter 4, High Availability and Reliability, introduces best practices for highly
available architectures. Kubernetes can be configured in a variety of ways for
high availability and considers cost/performance tradeoffs, live upgrades, and
performance bottlenecks.

[xv]

Preface

Chapter 5, Configuring Kubernetes Security, Limits, and Accounts, gives the reader
insight into how to secure Kubernetes for production via SSL API, add-ons, Docker
authentication, and so on. It explores various security topics, digging deeper into
admission control, interfaces to external authorization systems, and namespaces.

Chapter 6, Using Critical Kubernetes Resources, in this chapter, you will participate in
the design of a complex microservice-based system. It will consist of a walkthrough
deployment of Kubernetes resources, where each resource will be mapped to its
counterpart in the application structure or configuration.

Chapter 7, Handling Kubernetes Storage, in this chapter, the reader will be given an
explanation of persistent volumes in Kubernetes. The reader will be taken through
different storage types in Kubernetes, mapped to specific use cases.

Chapter 8, Running Stateful Applications with Kubernetes, explains problems users
will face when running legacy monolithic stateful applications and services such as
databases, message queues, and so on. This chapter also introduces environmental
shared variables and DNS records for clustering stateful applications.

Chapter 9, Rolling Updates, Scalability, and Quotas, explains advanced Kubernetes
features such as horizontal pod auto scaling, cluster size, and rolling updates. It
also covers Kubernetes scaling testing and tooling for stress testing.

Chapter 10, Advanced Kubernetes Networking, explains container network interfaces
for third-party SDN plugins. It covers in detail CNI plugins, load balancing, and
network security policies.

Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation, explains
how to deploy Kubernetes clusters in production on several specific platforms
(bare metal, AWS, GCE). It also explains the need for cluster federation in real world.

Chapter 12, Customizing Kubernetes - APIs and Plugins, explains how to work
with Kubernetes at the API level, as well as use cases and motivation to develop
third-party resources. The reader will also be introduced to the types of plugins
that Kubernetes supports and how to develop custom plugins.

Chapter 13, Handling the Kubernetes Package Manager, explains how to handle
Kubernetes applications as packages. It discusses how to find and install existing
Helm packages, as well as how to write your own Helm charts.

Chapter 14, The Future of Kubernetes, peers into the future and presents a roadmap
and trends for Kubernetes, as well as its position in the orchestration scene and a
comparison with its competitors.

[xvi]

Preface

What you need for this book

To follow along with the examples in each chapter, you need a recent version of
Docker and Kubernetes installed on your machine, ideally Kubernetes 1.6. If your
operating system is Windows 10 Professional, you can enable the hypervisor mode,
otherwise you will need to install VirtualBox and use a Linux guest OS.

Who this book is for

The book is for system administrators and developers who have intermediate level
knowledge with Kubernetes and are now waiting to master its advanced features.
You should also have basic networking knowledge. This advanced-level book
provides a pathway to mastering Kubernetes.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The naming convention is <category>/<metrics name> (except for uptime, which
has a single metric)."

A block of code is set as follows:

type Runtime interface {
Type () string

Version() (Version, error)
APIVersion() (Version, error)
Status() error

GetPods (all bool) ([]*Pod, error)

Any command-line input or output is written as follows:

GET /api/vl/pods

[xvii]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The
Username and Password are root and root by default:"

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as
it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http: //www.packtpub.com/
sites/default/files/downloads/MasteringKubernetes ColorImages.pdf.

[xviii]

www.packtpub.com/authors
http://www.packtpub.com/sites/default/files/downloads/MasteringKubernetes_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/MasteringKubernetes_ColorImages.pdf

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or

added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our author and our ability to bring
you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xix]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Understanding Kubernetes
Architecture

Kubernetes is a big open source project with a lot of code and a lot of functionality.
You have probably read about Kubernetes, and maybe even dipped your toes in and
used it in a side project or maybe even at work. But to understand what Kubernetes
is all about, how to use it effectively, and what the best practices are, requires much
more. In this chapter, we will build together the foundation necessary to utilize
Kubernetes to its full potential. We will start by understanding what container
orchestration means. Then we will cover important Kubernetes concepts that will
form the vocabulary we will use throughout the book. After that, we will dive into
the architecture of Kubernetes proper and look at how it enables all the capabilities
Kubernetes provides to its users. Then, we will discuss the various runtimes and
container engines that Kubernetes supports (Docker is just one option), and finally,
we will discuss the role of Kubernetes in the full continuous integration and
deployment pipeline.

At the end of this chapter, you will have a solid understanding of container
orchestration, what problems Kubernetes addresses, the rationale for Kubernetes
design and architecture, and the different runtime it supports. You'll also be familiar
with the overall structure of the open source repository and be ready to jump in and
find answers to any question.

[11]

Understanding Kubernetes Architecture

Understanding container orchestration

The primary responsibility of Kubernetes is container orchestration. That means
making sure that all the containers that execute various workloads are scheduled to
run physical or virtual machines. The containers must be packed efficiently following
the constraints of the deployment environment and the cluster configuration. In
addition, Kubernetes must keep an eye on all running containers and replace dead,
unresponsive, or otherwise unhealthy containers. Kubernetes provides many more
capabilities that you will learn about in the following chapters. In this section, the
focus is on containers and their orchestration.

Physical machines, virtual machines,
and containers

It all starts and ends with hardware. In order to run your workloads, you need some
real hardware provisioned. That includes actual physical machines, with certain
compute capabilities (CPUs or cores), memory, and some local persistent storage
(spinning disks or SSDs). In addition, you will need some shared persistent storage
and to hook up all these machines using networking so they can find and talk to each
other. At this point, you run multiple virtual machines on the physical machines or
stay at the bare-metal level (no virtual machines). Kubernetes can be deployed on a
bare-metal cluster (real hardware) or on a cluster of virtual machines. Kubernetes in
turn can orchestrate the containers it manages directly on bare-metal or on virtual
machines. In theory, a Kubernetes cluster can be composed of a mix of bare-metal
and virtual machines, but this is not very common.

Containers in the cloud

Containers are ideal to package microservices because, while providing isolation
to the microservice, they are very lightweight and you don't incur a lot of overhead
when deploying many microservices as you do with virtual machines. That makes
containers ideal for cloud deployment, where allocating a whole virtual machine
for each microservice would be cost prohibitive.

All major cloud providers, such as AWS, GCE, and Azure, provide container hosting
services these days. Some of them, such as Google's GKE, are based on Kubernetes.
Others, such as Microsoft Azure's container service, are based on other solutions
(Apache Mesos). By the way, AWS has the ECS (the containers service over EC2),
which uses their own orchestration solution. The great thing about Kubernetes is that
it can be deployed on all those clouds. Kubernetes has a cloud provider interface that
allows any cloud provider to implement it and integrate Kubernetes seamlessly.

[2]

Chapter 1

Cattle versus pets

In the olden days, when systems were small, each server had a name. Developers
and users knew exactly what software was running on each machine. I remember
that, in many of the companies I worked for, we had multi-day discussions to decide
on a naming theme for our servers. For example, composers and Greek mythology
characters were popular choices. Everything was very cozy. You treated your servers
like beloved pets. When a server died it was a major crisis. Everybody scrambled

to try to figure out where to get another server, what was even running on the

dead server, and how to get it working on the new server. If the server stored some
important data, then hopefully you had an up-to-date backup and maybe you'd even
be able to recover it.

Obviously, that approach doesn't scale. When you have a few tens or hundreds of
servers, you must start treating them like cattle. You think about the collective and
not individuals. You may still have some pets (that is, your build machines), but
your web servers are just cattle.

Kubernetes takes the cattle approach to the extreme and takes full responsibility for
allocating containers to specific machines. You don't need to interact with individual
machines (nodes) most of the time. This works best for stateless workloads. For
stateful applications, the situation is a little different, but Kubernetes provides a
solution called StatefulSet, which we'll discuss soon.

In this section, we covered the idea of container orchestration and discussed the
relationships between hosts (physical or virtual) and containers, as well as the
benefits of running containers in the cloud, and finished with a discussion about
cattle versus pets. In the following section, we will get to know the world of
Kubernetes and learn its concepts and terminology.

Kubernetes concepts

In this section, I'll briefly introduce many important Kubernetes concepts and give
you some context as to why they are needed and how they interact with other
concepts. The goal is to get familiar with these terms and concepts. Later, we will see
how these concepts are woven together to achieve awesomeness. You can consider
many of these concepts as building blocks. Some of the concepts, such as node and
master, are implemented as a set of Kubernetes components. These components are
at a different abstraction level, and I discuss them in detail in a dedicated section,
Kubernetes components.

[31]

Understanding Kubernetes Architecture

Here is the famous Kubernetes architecture diagram:

Intemet _
v
Firewall
kubect! (user commands|
T Node v
v Hubelet Proxy
docker
L 4 - A
Pod Pod Pod
L
APts cAdvisor | } container | container | |}
Scheduler
L]
Master components Distributed Node
across machines, Watchable A kubelet Proy
as dictated by cluster size 5 —
(implemented via etcd)
docker
-4 - =S
Pod Pod Pod
=3 A
cAdvisor | | container container |

Cluster

A cluster is a collection of hosts storage and networking resources that Kubernetes
uses to run the various workloads that comprise your system. Note that your entire
system may consist of multiple clusters. We will discuss this advanced use case of

federation in detail later.

[4]

Chapter 1

Node

A node is a single host. It may be a physical or virtual machine. Its job is to run
pods. Each Kubernetes node runs several Kubernetes components, such as a kubelet
and a kube proxy. Nodes are managed by a Kubernetes master. The nodes are
worker bees of Kubernetes and shoulder all the heavy lifting. In the past they were
called minions. If you read some old documentation or articles, don't get confused.
Minions are nodes.

Master

The master is the control plane of Kubernetes. It consists of several components, such
as an API server, a scheduler, and a controller manager. The master is responsible for
the global, cluster-level scheduling of pods and handling of events. Usually, all the
master components are set up on a single host. When considering high-availability
scenarios or very large clusters, you will want to have master redundancy. I will
discuss highly available clusters in detail in Chapter 4, High Availability and Scaling.

Pod

A pod is the unit of work in Kubernetes. Each pod contains one or more containers.
Pods are always scheduled together (always run on the same machine). All the
containers in a pod have the same IP address and port space; they can communicate
using localhost or standard inter-process communication. In addition, all the
containers in a pod can have access to shared local storage on the node hosting the
pod. The shared storage will be mounted on each container. Pods are important
feature of Kubernetes. It is possible to run multiple applications inside a single
Docker container by having something like supervisor as the main Docker
application that runs multiple processes, but this practice is often frowned upon,
for the following reasons:

* Transparency: Making the containers within the pod visible to the
infrastructure enables the infrastructure to provide services to those
containers, such as process management and resource monitoring. This
facilitates a number of conveniences for users.

* Decoupling software dependencies: The individual containers may be
versioned, rebuilt, and redeployed independently. Kubernetes may even
support live updates of individual containers someday.

[51]

Understanding Kubernetes Architecture

* Ease of use: Users don't need to run their own process managers, worry
about signal and exit-code propagation, and so on.

* Efficiency: Because the infrastructure takes on more responsibility,
containers can be more lightweight.

Pods provide a great solution for managing groups of closely related containers that
depend on each other and need to co-operate on the same host to accomplish their
purpose. It's important to remember that pods are considered ephemeral, throwaway
entities that can be discarded and replaced at will. Any pod storage is destroyed with
its pod. Each pod gets a unique ID (UID), so you can still distinguish between them
if necessary.

Label

Labels are key-value pairs that are used to group together sets of objects, very often
pods. This is important for several other concepts, such as replication controller,
replica sets, and services that operate on dynamic groups of objects and need to
identify the members of the group. There is a NxN relationship between objects
and labels. Each object may have multiple labels, and each label may be applied to
different objects. There are certain restrictions by design on labels. Each label on an
object must have a unique key. The label key must adhere to a strict syntax. It has
two parts: prefix and name. The prefix is optional. If it exists then it is separated
from the name by a forward slash (/) and it must be a valid DNS sub-domain.

The prefix must be 253 characters long at most. The name is mandatory and must
be 63 characters long at most. Names must start and end with an alphanumeric
character (a-z, A-Z, 0-9) and contain only alphanumeric characters, dots, dashes,
and underscores. Values follow the same restrictions as names. Note that labels are
dedicated for identifying objects and not for attaching arbitrary metadata to objects.
This is what annotations are for (see the following section).

Annotation

Annotations let you associate arbitrary metadata with Kubernetes objects.
Kubernetes just stores the annotations and makes their metadata available. Unlike
labels, they don't have strict restrictions about allowed characters and size limits.
In my experience, you always need such metadata for complicated systems, and it
is nice that Kubernetes recognizes this need and provides it out of the box so you
don't have to come up with your own separate metadata store and mapping object
to their metadata.

[6]

Chapter 1

We've covered most, if not all, of Kubernetes' concepts; there are a few more I
mentioned briefly. In the next section, we will continue our journey into Kubernetes
architecture by looking into its design motivations, the internals and implementation,
and even pick at the source code.

Label selector

Label selectors are used to select objects based on their labels. Equality-based
selectors specify a key name and a value. There are two operators, = (or ==) and ! =,
for equality or inequality based on the value. For example:

role = webserver
This will select all objects that have that label key and value.

Label selectors can have multiple requirements separated by a comma. For example:

role = webserver, application != foo

Set-based selectors extend the capabilities and allow selection based on multiple
values:

role in (webserver, backend)

Replication controller and replica set

Replication controllers and replica sets both manage a group of pods identified by a
label selector and ensure that a certain number is always up and running. The main
difference between them is that replication controllers test for membership by name
equality and replica sets can use set-based selection. Replica sets are newer and
designated as the next-generation replication controllers. They are still in beta and
are not fully supported by all the tools at the time of writing. Hopefully, by the time
you read this, they will be full-fledged members.

Kubernetes guarantees that you will always have the same number of pods running
as you specified in a replication controller or a replica set. Whenever the number
drops due to a problem with the hosting node or the pod itself, Kubernetes will fire
up new instances. Note that, if you manually start pods and exceed the specified
number, the replication controller will kill some extra pods.

Replication controllers used to be central to many workflows, such as rolling updates
and running one-off jobs. As Kubernetes evolved, it introduced direct support for
many of these workflows, with dedicated objects such as Deployment, Job, and
DaemonSet. We will meet them all later.

[71

Understanding Kubernetes Architecture

Service

Services are used to expose some functionality to users or other services. They
usually encompass a group of pods, usually identified by - you guessed it - a

label. You can have services that provide access to external resources, or to pods
you control directly at the virtual IP level. Native Kubernetes services are exposed
through convenient endpoints. Note that services operate at layer 3 (TCP/UDP).
Kubernetes 1.2 added the Ingress object, which provides access to HTTP objects.
More on that later. Services are published or discovered via one of two mechanisms:
DNS, or environment variables. Services can be load-balanced by Kubernetes. But,
developers can choose to manage load balancing themselves in case of services that
use external resources or require special treatment.

There are many gory details associated with IP addresses, virtual IP addresses, and
port spaces. We will discuss them in depth in a future chapter.

Volume

Local storage on the pod is ephemeral and goes away with the pod. Sometimes that's
all you need, if the goal is just to exchange data between containers of the node, but
sometimes it's important for the data to outlive the pod, or it's necessary to share
data between pods. The volume concept supports that need. Note that, while Docker
has a volume concept too, it is quite limited (although getting more powerful).
Kubernetes uses its own separate volumes. Kubernetes also supports additional
container types such as rkt, so it couldn't rely on Docker volumes even in principle.

There are many volume types. Kubernetes currently directly supports each volume
type. In the future, another layer of indirection may be added and an abstract
volume plugin may be developed. The emptyDir volume type mounts a volume

on each container that is backed by default by whatever is available on the hosting
machine. You can request a memory medium if you want. This storage is deleted
when the pod is terminated for any reason. There are many volume types for specific
cloud environments, various networked filesystems, and even Git repositories. An
interesting volume type is the persistentDiskClaim, which abstracts the details a
little bit and uses the default persistent storage in your environment (typically in a
cloud provider).

[8]

Chapter 1

StatefulSet

Pods come and go, and if you care about their data then you can use persistent
storage. That's all good. But sometimes you want Kubernetes to manage a
distributed data store such as Kubernetes or MySQL Galera. These clustered stores
keep the data distributed across uniquely identified nodes. You can't model that with
regular pods and services. Enter Statefulset. If you remember earlier, I discussed
pets versus cattle and how cattle is the way to go. Well, StatefulsSet sits somewhere
in the middle. statefulSet ensures (similar to a replication controller) that a given
number of pets with unique identities are running at any given time. Pets have the
following properties:

e A stable hostname, available in DNS
e An ordinal index

* Stable storage linked to the ordinal and hostname

StatefulSet can help with peer discovery as well as adding or removing pets.

Secret

Secrets are small objects that contain sensitive info such as credentials and tokens.
They are stored as plaintext in etcd, accessible by the Kubernetes API server, and

can be mounted as files into pods (using dedicated secret volumes that piggyback

on regular data volumes) that need access to them. The same secret can be mounted
into multiple pods. Kubernetes itself creates secrets for its components, and you can
create your own secrets. Another approach is to use secrets as environment variables.
Note that secrets in a pod are always stored in memory (tmpfs in the case of mounted
secrets) for better security.

Name

Each object in Kubernetes is identified by a UID and a name. The name is used to
refer to the object in API calls. Names should be up to 253 characters long and use
lowercase alphanumeric characters, dash (-) and dot (.). If you delete an object, you
can create another object with the same name as the deleted object, but the UIDs must
be unique across the lifetime of the cluster. The UIDs are generated by Kubernetes,

so you don't have to worry about it.

[o]

Understanding Kubernetes Architecture

Namespace

A namespace is a virtual cluster. You can have a single physical cluster that contains
multiple virtual clusters segregated by namespaces. Each virtual cluster is totally
isolated from other virtual clusters, and they can only communicate through public
interfaces. Note that Node objects and persistent volumes don't live in a namespace.
Kubernetes may schedule pods from different namespaces to run on the same node.
Likewise, pods from different namespaces can use the same persistent storage.

When using namespaces, you have to consider network policies and resource quotas
to ensure proper access and distribution of the physical cluster resources.

Diving into Kubernetes architecture
in depth

Kubernetes has very ambitious goals. It aims to manage and simplify the
orchestration, deployment, and management of distributed systems across a wide
range of environments and cloud providers. It provides many capabilities and
services that should work across all that diversity, while evolving and remaining
simple enough for mere mortals to use. This is a tall order. Kubernetes achieves this
by following a crystal-clear, high-level design and well-thought-out architecture that
promotes extensibility and pluggability. Many parts of Kubernetes are still hard-
coded or environment-aware, but the trend is to refactor them into plugins and keep
the core generic and abstract. In this section, we will peel Kubernetes like an onion,
starting with the various distributed systems design patterns and how Kubernetes
supports them, then go over the surface of Kubernetes, which is its set of APIs, and
then take a look at the actual components that comprise Kubernetes. Finally, we will
take a quick tour of the source-code tree to gain even better insight into the structure
of Kubernetes itself.

At the end of this section, you will have a solid understanding of Kubernetes
architecture and implementation, and why certain design decisions were made.

Distributed systems design patterns

All happy (working) distributed systems are alike, to paraphrase Tolstoy in Anna
Karenina. That means that, to function properly, all well-designed distributed
systems must follow some best practices and principles. Kubernetes doesn't want to
be just a management system. It wants to support and enable these best practices and
provide high-level services to developers and administrators. Let's look at some of
those described as design patterns.

[10]

Chapter 1

Sidecar pattern

The sidecar pattern is about co-locating another container in a pod in addition to

the main application container. The application container is unaware of the sidecar
container and just goes about its business. A great example is a central logging agent.
Your main container can just log to stdout, but the sidecar container will send all
logs to a central logging service where they will be aggregated with the logs from the
entire system. The benefits of using a sidecar container versus adding central logging
to the main application container are enormous. First, applications are not burdened
anymore with central logging, which could be a nuisance. If you want to upgrade or
change your central logging policy or switch to a totally new provider, you just need
to update the sidecar container and deploy it. None of your application containers
change, so you can't break them by accident.

Ambassador pattern

The ambassador pattern is about representing a remote service as if it were local and
possibly enforcing some policy. A good example of the ambassador pattern is if you
have a Redis cluster with one master for writes and many replicas for reads. A local
ambassador container can serve as a proxy and expose Redis to the main application
container on the localhost. The main application container simply connects to Redis
on localhost:6379 (Redis default port), but it connects to the ambassador running
in the same pod, which filters the requests, and sends write requests to the real
Redis master and read requests randomly to one of the read replicas. Just like with
the sidecar pattern, the main application has no idea what's going on. That can help
a lot when testing against a real local Redis. Also, if the Redis cluster configuration
changes, only the ambassador needs to be modified; the main application remains
blissfully unaware.

Adapter pattern

The adapter pattern is about standardizing output from the main application
container. Consider the case of a service that is being rolled out incrementally: it
may generate reports in a format that doesn't conform to the previous version. Other
services and applications that consume that output haven't been upgraded yet.

An adapter container can be deployed in the same pod with the new application
container and massage their output to match the old version until all consumers
have been upgraded. The adapter container shares the filesystem with the main
application container, so it can watch the local filesystem, and whenever the new
application writes something, it immediately adapts it.

[11]

Understanding Kubernetes Architecture

Multi-node patterns

The single-node patterns are all supported directly by Kubernetes via pods.
Multi-node patterns such as leader election, work queues, and scatter-gather
are not supported directly, but composing pods with standard interfaces to
accomplish them is a viable approach with Kubernetes.

The Kubernetes APIs

If you want to understand the capabilities of a system and what it provides, you must
pay a lot of attention to its APIL. The API provides a comprehensive view of what you
can do with the system as a user. Kubernetes exposes several sets of REST APIs for
different purposes and audiences. Some of the APIs are used primarily by tools and
some can be used directly by developers. An important aspect of the APIs is that they
are under constant development. The Kubernetes developers keep it manageable by
trying to extend (adding new objects and new fields to existing objects) and avoid
renaming or dropping existing objects and fields. In addition, all API endpoints are
versioned, and often have an alpha or beta notation too. For example:

/api/vl

/api/v2alphal

You can access the API through the kubectl c1i, via client libraries, or directly
through REST API calls. There are elaborate authentication and authorization

mechanism we will explore in a later chapter. At this point, let's get a glimpse
into the surface area of the APIs.

Kubernetes API

This is the main API of Kubernetes. It is huge. All the concepts we discussed before,
and many auxiliary concepts, have corresponding API objects and operations. If
you have the right permissions you can list, get, create, and update objects. Here

is a detailed documentation of one of the most common operations, get a list of all
the pods:

GET /api/vl1l/pods
It accepts various query parameters (all optional):

* pretty: If true, the output is pretty printed
* labelSelector: A selector expression to limit the result

* watch: If true, watch for changes and return a stream of events

[12]

Chapter 1

* resourceVersion: With watch, returns only events that occurred after
that version

* timeoutSeconds: Timeout for the list or watch operation

Autoscaling API

The autoscaling API is very focused and lets you control the horizontal pod
autoscaler, which manages a group of pods based on CPU utilization and even
application-specific metrics. You can list, query, create, update, and destroy
autoscaler objects using the /apis/autoscaling/v1 endpoint.

Batch API

The batch API lets you manage jobs. Jobs are pods that perform some activity
and terminate. Unlike regular pods managed by a replication controller, they are
supposed to terminate when the job is done. The batch API uses the pod template
to specify jobs and then allows you, as usual, to list, query, create, and delete jobs
through the /apis/batch/v1 endpoint.

Kubernetes components

A Kubernetes cluster has several master components used to control the cluster, as
well as node components that run on each cluster node. Let's get to know all these
components and how they work together.

Master components

The master components typically run on one node, but in a highly available or very
large cluster, they may be spread across multiple nodes.

API server

The kube API server exposes the Kubernetes REST API. It can easily scale
horizontally as it is stateless and stores all the data in the etcd cluster. The API
server is the embodiment of the Kubernetes control plane.

[13]

Understanding Kubernetes Architecture

Etcd

Etcd is a highly reliable distributed data store. Kubernetes uses it to store the entire
cluster state. In small, transient cluster a single instance of etcd can run on the
same node with all the other master components. But, for more substantial clusters
it is typical to have a 3-node or even 5-node etcd cluster for redundancy and

high availability.

Controller manager

The controller manager is a collection of various managers rolled up into one binary.
It contains the replication controller, the pod controller, the services controller, the
endpoints controller, and others. All these managers watch over the state of the
cluster via the API and their job is to steer the cluster into the desired state.

Scheduler

The kube-scheduler is responsible for scheduling pods into nodes. This is a very
complicated task as it needs to consider multiple interacting factors, such as
the following:

* Resource requirements

* Service requirements

* Hardware/software policy constraints

* Affinity and anti-affinity specifications

* Data locality

¢ Deadlines

DNS

Starting with Kubernetes 1.3, a DNS service is part of the standard Kubernetes
cluster. It is scheduled as a regular pod. Every service (except headless services)
receives a DNS name. Pods can receive a DNS name too. This is very useful for
automatic discovery.

Node components

Nodes in the cluster need a couple of components to interact with the cluster master
components, receive workloads to execute, and update the cluster on their status.

[14]

Chapter 1

Proxy

The kube proxy does low-level network housekeeping on each node. It reflects the
Kubernetes services locally and can do TCP and UDP forwarding. It finds cluster IPs
via environment variables or DNS.

Kubelet

The kubelet is the Kubernetes representative on the node. It oversees communicating
with the master components and manage the running pods. That includes the
following;:

* Download pod secrets from the API server
* Mount volumes

* Run the pod's container (Docker or Rkt)

* Report the status of the node and each pod

* Run container liveness probes

In this section, we dug into the guts of Kubernetes and explored its architecture from
a very high level of vision and supported design patterns, through its APIs and the
components used to control and manage the cluster. In the next section, we will take
a quick look at the various runtimes that Kubernetes supports.

Kubernetes runtimes

Kubernetes originally only supported Docker as a container runtime engine. But
that is no longer the case. Rkt is another supported runtime engine and there are
interesting attempts to work with Hyper. sh containers via Hypernetes. A major
design policy is that Kubernetes itself should be completely decoupled from
specific runtimes. The interaction between Kubernetes and the runtime is through
a relatively generic interface that runtime engines must implement. Most of the
communication is using the pod and container concepts and the operations that can
be performed on a container. Each runtime engine is responsible for implementing
the Kubernetes runtime interface to be compatible.

In this section, you'll get a closer look at the runtime interface and get to know

the individual runtime engines. At the end of this section, you'll be able to make a
well-informed decision about which runtime engine is appropriate for your use case
and under what circumstances you may switch or even combine multiple runtimes
in the same system.

[15]

Understanding Kubernetes Architecture

The runtime interface

The runtime interface for containers is specified in the Kubernetes project on GitHub.
Kubernetes is open source, so we can look at it at the following URL:

https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/
container/runtime.go.

I'll present here snippets from this file without the elaborate comments. Even if
you're not a full-fledged programmer and know nothing about the Go language, you
should be able to grasp the scope and responsibilities of a runtime engine from the
viewpoint of Kubernetes:

A quick note about Go to help you parse the code: The method name
. comes first, followed by the method's parameters in parentheses. Each
% parameter is a pair, consisting of a name followed by its type. Finally,
< the return values are specified. Go allows multiple return types. It is very
common to return an error object in addition to the actual result. If
everything is OK, the error object will be nil.

type Runtime interface {
Type () string

Version() (Version, error)
APIVersion() (Version, error)
Status() error

GetPods (all bool) ([]*Pod, error)

}

The fact that it is an interface means that Kubernetes doesn't provide an
implementation. The first group of methods provides general information about the
runtime: Type, Version, APIVersion, and Status. You can also get all the pods:

SyncPod (pod *api.Pod, apiPodStatus api.PodStatus, podStatus
*PodStatus, pullSecrets []Japi.Secret, backOff
*flowcontrol .Backoff) PodSyncResult

KillPod (pod *api.Pod, runningPod Pod, gracePeriodOverride *inté64)
error

[16]

https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/container/runtime.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/container/runtime.go

Chapter 1

GetPodStatus (uid types.UID, name, namespace string) (*PodStatus,
error)
GetNetNS (containerID ContainerID) (string, error)

GetPodContainerID (*Pod) (ContainerID, error)

GetContainerLogs (pod *api.Pod, containerID ContainerID, logOptions
*api.PodLogOptions, stdout, stderr io.Writer) (err error)

DeleteContainer (containerID ContainerID) error

The next group of methods deal mostly with pods appropriately as this is

the main abstraction in the Kubernetes conceptual model. Then there is the
GetPodContainerID (), which gets you from a container to a pod, and a few more
container-related methods:

® ContainerCommandRunner
® ContainerAttacher

® ImageService

The last three items, ContainerCommandRunner, ContainerAttacher, and
ImageService, are interfaces that the runtime interface inherits. This means that
whoever implements the runtime interface also needs to implement the methods of
these interfaces. The interfaces are defined in the same file. Just the interface names
provide a lot of information about what they do. Kubernetes obviously needs to
run commands in containers, and it needs to attach containers to its pods and pull
container images. I encourage you to pursue this file and get familiar with the code.

Now that you are familiar at the code level with what Kubernetes considers as a
runtime engine, let's look at the individual runtime engines briefly.

Docker

Docker is, of course, the 800 pound gorilla of containers. Kubernetes was originally
designed to manage only Docker containers. The multi-runtime capability was first
introduced in Kubernetes 1.3. Until then, Kubernetes could only manage Docker
containers.

[17]

Understanding Kubernetes Architecture

I assume you're very familiar with Docker and what it brings to the table if you are
reading this book. Docker enjoys tremendous popularity and growth, but there is
also a lot of criticism toward it. Critics often mention the following concerns:

* Security
* Difficulty setting up multi-container applications (in particular, networking)
* Development, monitoring, and logging
* Limitations of Docker containers running one command
* Releasing half-based features too fast
Docker is aware of the criticisms and has addressed some of these concerns. In
particular, Docker invested in its Docker swarm product. Docker swarm is a Docker-

native orchestration solution that competes with Kubernetes. It is simpler to use than
Kubernetes, but it's not as powerful or mature.

Starting with Docker 1.12, swarm mode is included in the Docker Daemon

natively, which upset some people due to bloat and scope creep. That in
g turn made more people turn to CoreOS rkt as an alternative solution.

Starting with Docker 1.11, released on April 2016, Docker has changed the way
it runs containers. The runtime now uses containerd and runc to run Open
Container Initiative (OCI) images in containers:

N 1 Same Docker Ul and commands
[Docker Engine] User interacts with the Docker Engine

containerd I Engine communicates with containerd

((runc] [runc) =

] containerd spins up runc or other OCI
compliant runtime to run containers

[18]

Chapter 1

Rkt

Rkt is a new container manager from CoreOS (developers of the CoreOS Linux
distro, etcd, flannel, and more). The rkt runtime prides itself on its simplicity

and strong emphasis on security and isolation. It doesn't have a Daemon like the
Docker engine and relies on the OS init system, such as systemd, to launch the rkt
executable. Rkt can download images (both App Container (appc) images and OCI
images), verify them, and run them in containers. Its architecture is much simpler.

App container

CoreOS started a standardization effort in December 2014 called appc. This includes
standard image format (ACI), runtime, signing, and discovery. A few months later,
Docker started its own standardization effort with OCI. At this point it seems these
efforts will converge. This is a great thing as tools, images, and runtime will be able
to interoperate freely. We're not there yet.

Rktnetes

Rktnetes is Kubernetes plus rkt as the runtime engine. Kubernetes is still in the
process of abstracting away the runtime engine. Rktnetes is not really a separate
product. From the outside, all it takes is running the kubelet on each node with
a couple of command-line switches. But, since there are fundamental differences
between Docker and rkt, you may run into a variety of issues.

Is rkt ready for production usage?

The integration between rkt and Kubernetes is not totally seamless; there are still
some rough spots. My recommendation at this stage (late 2016) is to prefer Docker
unless you have a very specific reason to use rkt. If you decide that it's important
for your use case to use rkt then you should base your cluster on CoreOS. It is most
likely that you will find the best integration with the CoreOS cluster, as well as the
best documentation and online support.

Hyper containers

Hyper containers are another option. A Hyper container has a lightweight VM (its
own guest kernel) and it runs on bare metal. Instead of relying on Linux cgroups
for isolation, it relies on a hypervisor. This approach presents an interesting mix
compared to standard bare-metal clusters that are difficult to set up and public
clouds where containers are deployed on heavyweight VMs.

[19]

Understanding Kubernetes Architecture

Hypernetes

Hypernetes is a multi-tenant Kubernetes distribution that uses Hyper containers
as well as some OpenStack components for authentication, persistent storage, and
networking. Since containers don't share the host kernel, it is safe to run containers
of different tenants on the same physical host:

hypect! (user commands)

hype-apiserver |

Tenant Manager

KeyStone

Region Manager
Cinder

Kubestack Neutron L2 Agent Kube-proxy

L 2 V. e

Cinder Plugin '«

Neutron Plugin e

In this section, we've covered the various runtime engines that Kubernetes supports
as well as the trend toward standardization and convergence. In the next section,
we'll take a step back and look at the big picture, and how Kubernetes fits into the
CI/CD pipeline.

Continuous integration and deployment

Kubernetes is a great platform for running your microservice-based applications. But,
at the end of the day, it is an implementation detail. Users, and often most developers,
may not be aware that the system is deployed on Kubernetes. But Kubernetes can
change the game and make things that were too difficult before possible.

[20]

Chapter 1

In this section, we'll explore the CI/CD pipeline and what Kubernetes brings to
the table. At the end of this section you'll be able to design CI/CD pipelines that
take advantage of Kubernetes properties such as easy-scaling and development-
production parity to improve the productivity and robustness of day-to-day
development and deployment.

What is a CI/CD pipeline?

A CI/CD pipeline is a set of steps that a set of changes by developers or operators that
modify the code, data or configuration of a system, test them and deploys them to
production. Some pipelines are fully automated and some are semi-automated with
human checks. In large organizations, there may be test and staging environments
where changes are deployed to automatically, but release to production requires
manual intervention. The following diagram describes a typical pipeline.

It may be worth mentioning that developers can be completely isolated from
production infrastructure. Their interface is just a Git workflow, where a good
example is Deis Workflow (PaaS on Kubernetes, similar to Heroku):

Delivery team Version control Build & unit Automated User acceptance Release
tests acceptance tests tests

: Check in : :
I I

Feedback

el
-<

- Check in ' 1
D—):] Trigger '

Feedback Trigger

[
e

Feedback

[
-

: Check in :
Trigger

Feedback

o]

Approval

| Feedback

Feedbac,(Approval

AA

[21]

Understanding Kubernetes Architecture

Designing a CI/CD pipeline for Kubernetes

When your deployment target is a Kubernetes cluster, you should rethink some
traditional practices. For starters, packaging is different. You need to bake images
for your containers. Reverting code changes is super easy and instantaneous by
using smart labeling. It gives you a lot of confidence that, if a bad change slips
through the testing net, somehow you'll be able to revert to the previous version
immediately. But you want to be careful there. Schema changes and data migrations
can't be automatically rolled back. Another unique capability of Kubernetes is that
developers can run a whole cluster locally. That takes some work when you design
your cluster, but since the microservices that comprise your system run in containers,
and those containers interact via APIs, it is possible and practical to do. As always, if
your system is very data-driven, you will need to accommodate for that and provide
data snapshots and synthetic data that your developers can use.

Summary

In this chapter, we covered a lot of ground, and you got to understand the design
and architecture of Kubernetes. Kubernetes is an orchestration platform for
microservice-based applications running as containers. Kubernetes clusters have
master and worker nodes. Containers run within pods. Each pod runs on a single
physical or virtual machine. Kubernetes directly supports many concepts, such

as services, labels, and persistent storage. You can implement various distributed
systems design patterns on Kubernetes. The containers themselves may be Docker,
rkt, or Hyper containers.

In Chapter 2, Creating Kubernetes Clusters, we will explore the various ways
to create Kubernetes clusters, discuss when to use different options, and build
a multi-node cluster.

[22]

Creating Kubernetes Clusters

In the previous chapter, we learned what Kubernetes is all about, how it is designed,
what concepts it supports, its runtime engines, and how it fits within the CI/CD
pipeline.

Creating a Kubernetes cluster is a non-trivial task. There are many options and tools
to select from. There are many factors to consider. In this chapter, we'll roll up our
sleeves and build Kubernetes clusters. We will also discuss and evaluate tools such
as Minikube and kubeadm, and deployment environments such as local, cloud, and
bare metal. The topics we will cover are as follows:

* Creating a single-node cluster with Minikube

* Creating multi-node cluster using kubeadm

* Creating clusters in the cloud

* Creating bare-metal clusters from scratch
At the end of this chapter, you will have a solid understanding of the various options
to create Kubernetes clusters and knowledge of the best-of-breed tools to support

the creation of Kubernetes clusters, and you will also build a couple of clusters,
both single-node and multi-node.

[23]

Creating Kubernetes Clusters

Quick single-node cluster with Minikube

In this section, we will create a single-node cluster on Windows. The reason we will
target Windows is that Minikube and single-node clusters are most useful for local
developer machines. While Kubernetes is typically deployed on Linux in production,
many developers work on Windows PCs or Macs. That said, there aren't too many
differences if you do want to install Minikube on Linux:

minikube

Getting ready

There are some pre-requisites to install before you can create the cluster itself. These
include VirtualBox, the kubectl command-line interface to Kubernetes, and of course,
Minikube itself. Here is a list of the latest versions at the time of writing:

e VirtualBox: http://download.virtualbox.org/virtualbox/5.1.8/
VirtualBox-5.1.8-111374-Win.exe

* Kubectl: http://storage.googleapis.com/kubernetes-release/
release/v1.4.0/bin/windows/amd64/kubectl.exe

* Minikube: https://storage.googleapis.com/minikube/releases/
v0.12.2/minikube-windows-amdé4 .exe

With Windows 10 Pro you have the option to use the Hyper-V
hypervisor. This is technically a better solution than VirtualBox, but
it requires the Pro version of Windows and is completely Windows-
% specific. By using VirtualBox, these instructions are universal and will be
T easy to adapt to other versions of Windows, or other operating systems
altogether. If you have Hyper-V enabled, you must disable it because
VirtualBox can't co-exist with Hyper-V.

Install VirtualBox and make sure kubectl and Minikube are on your path. I personally
just throw all command-line programs I use into c: \windows. You may prefer
another approach. On Windows, I use the excellent ConEMU to manage multiple
consoles, terminals, and SSH sessions. It works with cmd . exe, PowerShell, PuTTY,
Cygwin, msys, and Git-Bash. It doesn't get much better than that on Windows.

[24]

http://download.virtualbox.org/virtualbox/5.1.8/VirtualBox-5.1.8-111374-Win.exe
http://download.virtualbox.org/virtualbox/5.1.8/VirtualBox-5.1.8-111374-Win.exe
http://storage.googleapis.com/kubernetes-release/release/v1.4.0/bin/windows/amd64/kubectl.exe
http://storage.googleapis.com/kubernetes-release/release/v1.4.0/bin/windows/amd64/kubectl.exe
https://storage.googleapis.com/minikube/releases/v0.12.2/minikube-windows-amd64.exe
https://storage.googleapis.com/minikube/releases/v0.12.2/minikube-windows-amd64.exe

Chapter 2

We'll use PowerShell in administrator mode for the rest of this chapter. I added the
following alias and function to my PowerShell profile:

Set-Alias -Name k -Value kubectl
function mk

{

minikube-windows-amdé4

--show-libmachine-logs

--alsologtostderr
@args

}

Now I can use k and mk and type less. The flags to Minikube in the mk function
provide better logging that way and direct it to the console in addition to files
(similar to tee).

Type mk version to verify Minikube is correctly installed and functioning;:

> mk version

minikube version: v0.12.2

Type k version to verify kubectl is correctly installed and functioning:

> k version

Client Version: version.Info{Major:“l“, Minor:"4",
GitVersion:"v1l.4.0", GitCommit:"al6c0a7£f71a6£93c7e0£222d961£4675¢c
d97a46b", GitTreeState:"clean", BuildDate:"2016-09-26T18:16:57z",
GoVersion:"gol.6.3", Compiler:"gc", Platform:"windows/amd64"}

Unable to connect to the server: dial tcp [::1]:8080: connectex: No
connection could be made because the target machine actively refused it.

Don't worry about the error on the last line. There is no cluster running, so kubectl
can't connect to anything. That's expected.

You can explore the available commands and flags for both Minikube and kubectl.
I will not go over each and every one, only the commands I use.

Creating the cluster

The Minikube tool supports multiple versions of Kubernetes. At the time of writing,
this is the list of supported versions:

> mk get-k8s-versions

[25]

Creating Kubernetes Clusters

The following Kubernetes versions are available:

- vl.5.0-alpha.0
- vl.4.3
- vl.4.2
- vli.4.1
- vl.4.0
- v1.3.7
- vl.3.6
- vl1l.3.5
- vl.3.4
- v1l.3.3
- v1l.3.0

I will go with 1.4.3, the latest stable release. Let's create the cluster by using the start
command and specifying v1.4.3 as the version:

> mk start --kubernetes-version="vl1l.4.3"

This can take a while as Minikube may need to download an image and then set up
the local cluster. Here is the expected output:

I1030 01:46:23.841589 12948 notify.go:111] Checking for updates...
Starting local Kubernetes cluster...

Running pre-create checks...

Creating machine...

(minikube) Downloading C:\Users\the g\.minikube\cache\boot2docker.iso
from file://C:/Users/the g/.minikube/cache/iso/minikube-0.7.iso...

(minikube) Creating VirtualBox VM...

(minikube) Creating SSH key...

(minikube) Starting the VM...

(minikube) Check network to re-create if needed...

(minikube) Windows might ask for the permission to configure a dhcp
server. Sometimes, such confirmation window is minimized in the taskbar.

(minikube) Waiting for an IP...

Waiting for machine to be running, this may take a few minutes...
Detecting operating system of created instance...

Waiting for SSH to be available...

Detecting the provisioner...

Provisioning with boot2docker...

Copying certs to the local machine directory...

[26]

Chapter 2

Copying certs to the remote machine...

Setting Docker configuration on the remote daemon...
Checking connection to Docker...

Docker is up and running!

I1030 01:47:32.517217 12948 cluster.go:273] Setting up certificates for
IP: %s 192.168.99.100

I1030 01:47:33.284815 12948 cluster.go:210] sudo killall localkube | |
true

I1030 01:47:33.394690 12948 cluster.go:212] killall: localkube: no
process killed

T1030 01:47:33.394690 12948 cluster.go:210]
Run with nohup so it stays up. Redirect logs to useful places.
sudo sh -c 'PATH=/usr/local/sbin:$PATH nohup /usr/local/bin/localkube \

--generate-certs=false --logtostderr=true --enable-dns=false --node-
ip=192.168.99.100 > /var/lib/localkube/localkube.out 2> /var/lib/
localkube/localkube.err < /dev/null & echo $! > /var/run/localkube.pid &'

I1030 01:47:33.475866 12948 cluster.go:212]

I1030 01:47:33.608029 12948 start.go:166] Using kubeconfig: C:\Users)\
the g/.kube/config

Kubectl is now configured to use the cluster.

Let's review what Minikube did by following the output. You'll need to do a lot of it
when creating a cluster from scratch:

* CreateaVvirtualBOx VM

* Set up boot2docker

* Create certificates for the local machine and the VM

* Set up networking between the local machine and the VM

¢ Run the local Kubernetes cluster on the VM

Troubleshooting

If something goes wrong during the process, try to follow the error messages. I ran
into several issues (remember this is still experimental on Windows). I initially used
Minikube 0.12, which had a bug. I upgraded to 0.12.1, but the failed attempt to create
a cluster using 0.12 created a bad VM. You can find all the VMs under ~/.minikube/
machines. I couldn't delete the bad machine due to another process locking it. To
keep going, I had to restart my laptop and delete the bad machine. Now, I'm on
v0.12.2, which works well.

[27]

Creating Kubernetes Clusters

Checking out the cluster

Now that we have a cluster up and running, let's peek inside.

First, let's ssh into the VM:

> mk ssh
##
==
H## ===
AL L L T LT TN
e {om mmen mmm mmmn e o~ [zZEEe- e
\ o _/
\ \ _/
___\ /
1 U U O U N SO) I
["N/ _N/7 _NI _|)Y/ _ >/ _N/ _| 1/ 7 _\N"'"_|
[1D QO QO /7 _7 Cl O | | < _/]
[/ N/ N/ Nl N INC N INN

Boot2Docker version 1.11.1, build master : 901340f - Fri Jul 1 22:52:

UTC 2016
Docker version 1.11.1, build 5604cbe
docker@minikube:~$ uname -a

Linux minikube 4.4.14-boot2docker #1 SMP Fri Jul 1 21:46:36 UTC 2016
x86_ 64 GNU/Linux

docker@minikube:~$

19

Great. That works. Now, let's start using kubectl, because it is the Swiss Army Knife

of Kubernetes and will be useful for all clusters (including federated clusters).

We will cover many of the kubectl commands in our journey. First, let's check the

cluster status using cluster-info:

> k cluster-info
Kubernetes master is running at https://192.168.99.100:8443

KubeDNS is running at https://192.168.99.100:8443/api/v1/proxy/
namespaces/kube-system/services/kube-dns

kubernetes-dashboard is running at https://192.168.99.100:8443/api/v1l/

proxy/namespaces/kube-system/services/kubernetes-dashboard

[28]

Chapter 2

You can see that the master is running properly and that Minikube was nice enough
to provision a DNS service for us, and a dashboard too.

Next, let's check out the nodes in the cluster using get nodes:

> k get nodes
NAME STATUS AGE
minikube Ready 7h

So, we have one node called minikube. To get a lot of information about it, type k
describe node minikube. The output is verbose; I'll let you try it yourself.

Doing work

We have a nice empty cluster up and running (well, not completely empty as the
DNS service and dashboard run as pods in the kube-system namespace). It's time to
run some pods. Let's use echo server from the Minikube getting started guide:

K run echo --image=gcr.io/google containers/echoserver:1.4 --port=8080

deployment "echo" created

Kubernetes created a deployment and we have a pod running. Note the echo prefix:

k get pods
NAME READY STATUS RESTARTS AGE
echo-3580479493-cnfnl 1/1 Running 0 1m

To expose our pod as a service, type the following:

k expose deployment echo --type=NodePort

Exposing the service as type NodePort means that it is exposed to the host on some
port. But it is not the 8080 port we ran the pod on. Ports get mapped in the cluster.
To access the service, we need the cluster IP and exposed port:

> mk ip
192.168.99.100
> k get service echo --output='jsonpath="{.spec.ports[0].NodePort}""

32041

Now we can access the echo service, which returns a lot of information:

> curl http://192.168.99.100:32041/hi

Congratulations! You just created a local Kubernetes cluster and deployed a service.

[29]

Creating Kubernetes Clusters

Examining the cluster with the dashboard

Kubernetes has a very nice web interface, which is deployed, of course, as a service
in a pod. The dashboard is well designed and provides a high-level overview of
your cluster as well as drilling down into individual resources, viewing logs, editing
resource files, and more. It is the perfect weapon when you want to check out your
cluster manually. To launch it, type minikube dashboard.

Minikube will open a browser window with the dashboard UI. Note that Microsoft
Edge can't display the dashboard. I had to run it myself on a different browser.

Here is the workloads view, which displays deployments, replica sets, replication
controllers, and pods. It can also display DaemonSets, pet sets, and jobs, but we
don't have any in this cluster.

In this section, we created a local single-node Kubernetes cluster on Windows,
explored it a little bit using kubectl, deployed a service, and played with the
web UL In the next section, we'll move to a multi-node cluster.

Creating a multi-node cluster using
kubeadm

In this section, I'll introduce you to kubeadm, the recommended tool for creating
Kubernetes clusters on all environments. It is still relatively new and has some
limitations, but it is the way to go. We will also deploy a custom service with a
backing store in two separate pods.

Getting ready

Kubeadm operates on pre-provisioned hardware (physical or virtual). Before we create
the Kubernetes cluster, we need to prepare a few VMs and install basic software such
as docker, kubelet, kubeadm and kubectl (needed only on the master).

Preparing a cluster of vagrant VMs

The following vagrant file will create a cluster of four VMs called n1, n2, n3, and
n4. It is based on Bento/Ubuntu-16.04 and not Ubuntu/xenial, which suffers from
various issues:

-*- mode: ruby -*-
vi: set ft=ruby :
hosts = {

[30]

Chapter 2

"nl" => "192.168.77.10",
"n2" => "192.168.77.11",
"n3" => "192.168.77.12",
"n4" => "192.168.77.13"
}
Vagrant.configure ("2") do |config]|
always use Vagrants insecure key
config.ssh.insert key = false
forward ssh agent to easily ssh into the different machines

config.ssh.forward agent = true

check guest additions = false

functional vboxsf = false

config.vm.box = "bento/ubuntu-16.04"
hosts.each do |name, ip|
config.vm.define name do |machine|
machine.vm.network :private network, ip: ip
machine.vm.provider "virtualbox" do |v|
v.name = name
end
end
end

end

Installing the required software

I'like Ansible a lot for configuration management. I installed it on the n4a VM
(running Ubuntu 16.04) because Ansible doesn't run on Windows (although it can
manage Windows servers). From now on I'll use n4 as my control machine, which
means we're operating in a Linux environment now:

> vagrant ssh v4
Welcome to Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-38-generic x86 64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com

* Support: https://ubuntu.com/advantage

0 packages can be updated.

0 updates are security updates.

[31]

Creating Kubernetes Clusters

I had to install pip first, and then Ansible itself via pip:

vagrant@vagrant:~$ sudo apt-get install python-pip

vagrant@vagrant:~$ sudo pip install ansible

Tuse version2.1.2.0:

vagrant@vagrant:~/ansible$ ansible --version

ansible 2.1.2.0

I created a directory called ansible and put three files in it: hosts, vars.yml, and
playbook.yml.

The hosts file

This is the inventory file that tells the ansible directory what hosts to operate on.
The hosts must be SSH-accessible from the controller machine. I put here the three
VMs that the cluster will be installed on:

[all]
192.168.77.10
192.168.77.11
192.1680.77.12

The vars.yml file

The vars.yml file just keeps a list of the packages I want to install on each node.
vim, htop, and tmux are my favorite packages to install on each machine I need to
manage. The others are required by Kubernetes:

PACKAGES:
- vim
- htop
- tmux
- docker.io
- kubelet
- kubeadm
- kubectl
- kubernetes-cni

The playbook.yml file
The playbook.yml file is the file you run to install the packages on all hosts:

- hosts: all

become: true

[32]

Chapter 2

vars files:
- vars.yml

strategy: free

tasks:
- name: Add the Google signing key

apt key: url=https://packages.cloud.google.com/apt/doc/apt-key.gpg
state=present

- name: Add the k8s APT repo

apt repository: repo='deb http://apt.kubernetes.io/ kubernetes-
xenial main' state=present

- name: Install packages
apt: name={{ item }} state=installed update cache=true force=yes
with items: "{{ PACKAGES }}"

Since some of the packages are from the Kubernetes APT repo, I need to add it along
with the Google signing key.

Run the playbook as follows:

ansible-playbook -i hosts playbook.yml

If you run into connection failures, try again. The Kubernetes APT repo
e— is sometimes slow to respond. You need to do this just once (per node).

Creating the cluster

It's time to create the cluster itself. We'll initialize the master on the first VM,
then set up networking and add the rest of the VMs as nodes.

Initializing the master

Let's initialize the master onnl (192.168.77.10). It is critical to use the -api-
advertise-addresses flag in case of a vagrant VM-based cloud:
vagrant@vagrant:~$ sudo kubeadm init --api-advertise-addresses
192.168.77.10

<master/tokens> generated token: "ccalfé6.e87ed55d46d400d491"

<master/pki> created keys and certificates in "/etc/kubernetes/pki"

[33]

Creating Kubernetes Clusters

<util/kubeconfig> created "/etc/kubernetes/kubelet.conf"
<util/kubeconfig> created "/etc/kubernetes/admin.conf"
<master/apiclient> created API client configuration

<master/apiclient> created API client, waiting for the control plane to
become ready

<master/apiclient> all control plane components are healthy after
34.066056 seconds

<master/apiclient> waiting for at least one node to register and become
ready

<master/apiclient> first node is ready after 6.838296 seconds

<master/discovery> created essential addon: kube-discovery, waiting for
it to become ready

<master/discovery> kube-discovery is ready after 14.503696 seconds

<master/addons> created essential addon: kube-proxy

<master/addons> created essential addon: kube-dns

Kubernetes master initialised successfully!
You can now join any number of machines by running the following on each node:
kubeadm join --token ccalf6.e87ed55d46d00d91 192.168.77.10

That was easy. Note the last line; we'll need it later to add nodes to the cluster.

Setting up the pod network

This is the big-ticket item. The pods need to be able to talk to each other. That
requires a pod network add-on. There are several options. Clusters generated by
kubeadm require a CNI-based add-on. I chose to use the Weave Net add-on, which
supports the Network Policy resource. Your mileage may vary.

Run the following command on the master VM:

vagrant@vagrant:~$ kubectl create -f https://git.io/weave-kube
You should see the following:

vagrant@vagrant:~$ daemonset "weave-net" created

To verify:

vagrant@vagrant:~$ kubectl get po --all-namespaces

NAMESPACE NAME READY STATUS
RESTARTS AGE

[34]

Chapter 2

kube-system etcd-vagrant 1/1 Running 0
40m
kube-system kube-apiserver-vagrant 1/1 Running 0
41m
kube-system kube-controller-manager-vagrant 1/1 Running 0
41m
kube-system kube-discovery-982812725-wfieb 1/1 Running 0
41m
kube-system kube-dns-2247936740-mwpyo 3/3 Running 0
40m
kube-system kube-proxy-amd64-tungf 1/1 Running 0
40m
kube-system kube-scheduler-vagrant 1/1 Running 0
40m
kube-system weave-net-vi25g 2/2 Running 0
3m

The last pod is our weave-net-vi25g, which is what we're looking for as well as the
kube-dns pod. Both are running. All is well.

Adding the worker nodes

Now we can add worker nodes to the cluster using the token we got earlier. On each
node, run the following command (don't forget sudo):

sudo kubeadm join --token ccalf6.e87ed55d46d400d4d91 192.168.77.10

You should see the following:

<util/tokens> validating provided token

<node/discovery> created cluster info discovery client, requesting info
from "http://192.168.77.10:9898/cluster-info/vl/?token-id=ccalfé"

<node/discovery> cluster info object received, verifying signature using
given token

<node/discovery> cluster info signature and contents are valid, will use
API endpoints [https://192.168.77.10:443]

<node/csr> created API client to obtain unique certificate for this node,
generating keys and certificate signing request

<node/csr> received signed certificate from the API server, generating
kubelet configuration

<util/kubeconfig> created "/etc/kubernetes/kubelet.conf"

Node join complete:

* Certificate signing request sent to master and response
received.

* Kubelet informed of new secure connection details.

Run 'kubectl get nodes' on the master to see this machine join.

[35]

Creating Kubernetes Clusters

Creating clusters in the cloud
(GCP, AWS, Azure)

Creating clusters locally is fun, and important during development and when trying
to troubleshoot problems locally. But, in the end, Kubernetes is designed for cloud-
native applications (applications that run in the cloud). Kubernetes doesn't want

to be aware of individual cloud environments because that doesn't scale. Instead,
Kubernetes has the concept of a cloud-provider interface. Every cloud provider

can implement this interface and then host Kubernetes. Note that, as of version 1.5,
Kubernetes still maintains implementations for many cloud providers in its tree, but
in the future, they will be refactored out.

The cloud-provider interface

The cloud-provider interface is a collection of Go data types and interfaces. It is
defined in a file called cloud.go, available at http://bit.1ly/2fg4NbwW. Here is
the main interface:

type Interface interface ({

LoadBalancer () (LoadBalancer, bool)
Instances () (Instances, bool)
Zones () (Zones, bool)

Clusters () (Clusters, bool)
Routes () (Routes, bool)
ProviderName () string

ScrubDNS (nameservers, searches []string) (nsOut, srchOut []string)

}

This is very clear. Kubernetes operates in terms of instances, Zones, Clusters,
and Routes, and also requires access to a load balancer and provider name. The
ScrubDNS () is the only low-level method. All the main methods return yet other
interfaces.

For example, the Clusters interface is very simple:

type Clusters interface ({
ListClusters() ([]lstring, error)
Master (clusterName string) (string, error)

}

The ListClusters () method returns cluster names. The Master () method returns
the IP address or DNS name of the master node.

[36]

http://bit.ly/2fq4NbW

Chapter 2

The other interfaces are not much more complicated. The entire file is 167 lines long
including lots of comments. The take-home point is that it is not too complicated to
implement a Kubernetes provider if your cloud utilizes those basic concepts.

GCP

The Google Cloud Platform (GCP) is the only cloud provider that supports
Kubernetes out of the box. The so-called Google Kubernetes Engine (GKE) is

a container management solution built on Kubernetes. You don't need to install
Kubernetes on GCP, and you can use the Google cloud API to create Kubernetes
clusters and provision them. The fact that Kubernetes is a built-in part of the GCP
means it will always be well integrated and well tested, and you don't have to worry
about changes in the underlying platform breaking the cloud-provider interface.

All in all, if you plan to base your system on Kubernetes and you don't have any
existing code on other cloud platforms, then GCP is a solid choice.

AWS

AWS has its own container management service called ECS, but it is not based on
Kubernetes. You can run Kubernetes on AWS very well. It is a supported provider
and there is a lot of documentation on how to set it up. While you could provision
some VMs yourself and use kubeadm, I recommend using the kops (Kubernetes
Operations) project. Kops is a Kubernetes project available on GitHub (http://bit.
ly/2£t5Kas). It is not part of Kubernetes itself, but it is developed and maintained
by the Kubernetes developers.

It supports the following features:

* Automated Kubernetes cluster CRUD for the cloud (AWS)

* Highly Available (HA) Kubernetes clusters

* Uses a state-sync model for dry-run and automatic idempotency
* Custom support for kubectl add-ons

* Kops can generate Terraform configuration

* Based on a simple meta-model defined in a directory tree

* Easy command-line syntax

* Community support

[37]

http://bit.ly/2ft5KA5
http://bit.ly/2ft5KA5

Creating Kubernetes Clusters

To create a cluster, you need to do some minimal DNS configuration via route53, set
up a S3 bucket to store the cluster configuration, and then run a single command:

kops create cluster --cloud=aws --zones=us-east-lc ${NAME}

The complete instructions are here: http://bit.ly/2f7r6EK.

Azure

Azure also has its own container management service. You can use the Mesos-based
DC/OS or Docker Swarm to manage them. But you can also use Kubernetes, of
course. You can provision the cluster yourself (for example, using Azure's desired
state configuration) then create the Kubernetes cluster using kubeadm. But, the
recommended approach is to use yet another non-core Kubernetes project, called
kubernetes-anywhere (http://bit.ly/2eCcs7ps). The goal of kubernetes-anywhere
is to provide a cross-platform way to create clusters in a cloud environment (at least
GCP, AWS, and Azure).

The process is pretty painless. You need to have Docker, make, and kubectl installed,
and of course, your Azure subscription ID. Then, you clone the kubernetes-anywhere
repository, run a couple of make commands, and your cluster is good to go.

The complete instructions to create an Azure cluster are at http://bit.ly/2d56WdA.

In this section, we covered the cloud-provider interface and looked at the various
recommended ways to create Kubernetes clusters on various cloud providers. The
scene is still young and the tools evolve quickly. I believe convergence will happen
soon. Tools and projects such as kubeadm, kops, Kargo, and kubernetes-anywhere
will eventually merge and provide a uniform and easy way to bootstrap Kubernetes
clusters.

Creating a bare-metal cluster from
scratch

In the previous section, we looked at running Kubernetes on cloud providers. This
is the dominant deployment story for Kubernetes. But there are strong uses cases for
running Kubernetes on bare metal. I don't focus here on hosted versus on-premises.
This is yet another dimension. If you already manage a lot of servers on-premises,
you are in the best position to decide.

[38]

http://bit.ly/2f7r6EK
http://bit.ly/2eCS7Ps
http://bit.ly/2d56WdA

Chapter 2

Use cases for bare-metal

Bare-metal clusters are a bear, especially if you manage them yourself. There are
companies that provide commercial support for bare-metal Kubernetes clusters, such
as Platform 9, but the offerings are not mature yet. A solid open-source option is
Kargo from Kubespray, which can deploy industrial-strength Kubernetes clusters on
bare metal, AWS, GCE, and OpenStack.

Here are some use cases where it makes sense:

* Price: If you already manage large-scale bare clusters, it may be much
cheaper to run Kubernetes clusters on your physical infrastructure

* Low network latency: If you must have low latency between your nodes,
then the VM overhead might be too much

* Regulatory requirements: If you must comply with regulations, you may not
be allowed to use cloud providers

* You want total control over hardware: Cloud providers give you many
options, but you may have special needs

When should you consider creating a bare-
metal cluster?

The complexities of creating a cluster from scratch are significant. A Kubernetes
cluster is not a trivial beast. There is a lot of documentation on the Web on how to set
up bare-metal clusters, but as the whole ecosystem moves forward, many of these
guides get out of date quickly.

You should consider going down this route if you have the operational capability

to trouble to debug problems at every level of the stack. Most of the problems will
probably be networking-related, but filesystems and storage drivers can bite you too,
as well as general incompatibilities and version mismatches between components
such as Kubernetes itself, Docker (or Rkt, if you brave it), Docker images, your OS,
your OS kernel, and the various add-ons and tools you use.

The process

There is a lot to do. Here is a list of some of the concerns you'll have to address:

* Implementing your own cloud-provider interface or sidestepping it

* Choosing a networking model and how to implement it (CNI plugin,
direct compile)

[39]

Creating Kubernetes Clusters

* Whether or not to use network policy
* Select images for system components
* Security model and SSL certificates

* Admin credentials

* Templates for components such as API Server, replication controller,
and scheduler

* (luster services: DNS, logging, monitoring, and GUI

I recommend the following guide from the Kubernetes site to get a deeper
understanding of what it takes to create a cluster from scratch: http://bit.
ly/1ToR9EC.

Using virtual private cloud infrastructure

If your use case falls under the bare-metal use cases but you don't have the necessary
skilled manpower or the inclination to deal with the infrastructure challenges of bare
metal, you have the option to use a private cloud such as OpenStack. If you want

to aim a little higher in the abstraction ladder, then Mirantis offers a cloud platform
built on top of OpenStack and Kubernetes.

In this section, we considered the option to build a bare-metal cluster Kubernetes
cluster. We looked into the use cases that require it and highlighted the challenges
and difficulties.

Summary

In this chapter, we got into some hands-on cluster creation. We created a single-node
cluster using Minikube and a multi-node cluster using kubeadm. Then we looked

at the many options to create Kubernetes clusters on cloud providers. Finally, we
touched on the complexities of creating Kubernetes clusters on bare metal. The
current state of affairs is very dynamic. The basic components are changing rapidly,
the tooling is still young, and there are different options for each environment. It's
not completely trivial to stand up a Kubernetes cluster, but with some effort and
attention to detail you can get it done quickly.

In Chapter 3, we will explore the important topics of Monitoring, Logging, and
Troubleshooting. Once your cluster is up and running and you start deploying
workloads, you need you make sure it runs properly and satisfies requirements.
This requires ongoing attention and responding to various failures that happen
in the real world.

[40]

http://bit.ly/1ToR9EC
http://bit.ly/1ToR9EC

Monitoring, Logging, and
Troubleshooting

In Chapter 2, Creating Kubernetes Clusters, we learned how to create Kubernetes
clusters in different environments, experimented with different tools, and created
a couple of clusters.

Creating a Kubernetes cluster is just the beginning of the story. Once the cluster is up
and running, you need to make it sure it is operational, all the necessary components
are in place and properly configured, and that enough resources are deployed to
satisfy the requirements. Responding to failures, debugging, and troubleshooting is a
major part of managing any complicated system, and Kubernetes is no exception.

The topics we will cover include the following:

* Monitoring with Heapster

* Performance analytics with Kubernetes dashboard

* Central logging

* Detecting problems at the node level

* Troubleshooting scenarios
At the end of this chapter you will have a solid understanding of the various options
to monitor Kubernetes clusters, how to access logs, and how to analyze them. You
will be able to look at a healthy Kubernetes cluster and verify everything is OK.

You will also be able to look at an unhealthy Kubernetes cluster and methodically
diagnose it, locate the problems, and address them.

[41]

Monitoring, Logging, and Troubleshooting

Monitoring Kubernetes with Heapster

Heapster is a Kubernetes project that provides a robust monitoring solution for
Kubernetes clusters. It runs as a pod (of course), so it can be managed by Kubernetes
itself. Heapster supports Kubernetes and CoreOS clusters. It has a very modular and
flexible design. Heapster collects both operational metrics and events from every
node in the cluster, stores them in a persistent backend (with a well-defined schema)
and allows visualization and programmatic access. Heapster can be configured to
use different backends (or sinks, in Heapster's parlance) and their corresponding
visualization frontends. The most common combination is InfluxDB as backend
and Grafana as frontend. The Google Cloud Platform integrates Heapster with the
Google monitoring service. There are many other less common backends, such as
the following;:

* Log

* InfluxDB

* Google Cloud monitoring

* Google Cloud logging

* Hawkular-Metics (metrics only)

* OpenTSDB

* Monasca (metrics only)

» Kafka (metrics only)

* Riemann (metrics only)

¢ FElasticsearch

You can use multiple backends by specifying sinks on the commandline:

--sink=log --sink=influxdb:http://monitoring-influxdb:80/

Master
= 4
|
A A Storage
[Kubelet > Backend
m
Node = Kubelet
Node

[42]

Chapter 3

cAdvisor

cAdvisor is part of the kubelet, which runs on every node. It collects information
about the CPU/ cores usage, memory, network, and filesystems of each container. It
provides a basic UI on port 4194, but, most importantly for Heapster, it provides all
this information through the kubelet. Heapster records the information collected by
cAdvisor on each node and stores it in its backend for analysis and visualization.

The cAdvisor Ul is useful if you want to quickly verify that a particular node is
set up correctly, for example, while creating a new cluster when Heapster is not
hooked up yet.

Here is what it looks like:

Usage

No processes found

CPU

Total Usage

11:39:25 AM 11:39:30 AM 11:39:35AM 11:35:40 AW 11:39:45 AW 11:39:50 AM

——Core0 —Coret

11:39:25 AM 11:39:30 AM 11:39:35AM 11:38:40 A0 11:38:45 A0 11:39:50 AM
~——User ——Kemel

[43]

Monitoring, Logging, and Troubleshooting

InfluxDB backend

InfluxDB is a modern and robust distributed time-series database. It is very well-
suited and used broadly for centralized metrics and logging. It is also the preferred
Heapster backend (outside the Google Cloud Platform). The only thing is InfluxDB
clustering; high availability is part of enterprise offering.

The storage schema

The InfluxDB storage schema defines the information that Heapster stores in
InfluxDB and is available for querying and graphing later. The metrics are divided
into multiple categories, called measurements. You can treat and query each metric
separately, or you can query a whole category as one measurement and receive
the individual metrics as fields. The naming convention is <category>/<metrics
name> (except for uptime, which has a single metric). If you have a SQL background
you can think of measurements as tables. Each metrics are stored per container. Each
metric is labeled with the following information:

* pod_id: Unique ID of a pod

* pod_name: User-provided name of a pod

* pod_namespace: The namespace of a pod

* container_base_image: Base image for the container

* container name: User-provided name of the container or full cgroup name
for system containers

* host_id: Cloud-provider-specified or user-specified identifier of a node

* hostname: Hostname where the container ran

* labels: Comma-separated list of user-provided labels; format is key:value
* namespace_id: UID of the namespace of a pod

* resource_id: A unique identifier used to differentiate multiple metrics of

the same type, for example, FS partitions under filesystem/usage

Here are all the metrics grouped by category. As you can see, it is quite extensive.

CPU
* cpu/limit: CPU hard limit in millicores

* cpu/node_capacity: CPU capacity of a node

* cpu/node_allocatable: CPU allocatable of a node

[44]

Chapter 3

Files

Mem

cpu/node_reservation: Share of CPU that is reserved on the node
allocatable

cpu/node_utilization: CPU utilization as a share of node allocatable

cpu/request: CPU request (the guaranteed amount of resources) in
millicores

cpu/usage: Cumulative CPU usage on all cores

cpu/usage_rate: CPU usage on all cores in millicores

ystem

filesystem/usage: Total number of bytes consumed on a filesystem
filesystem/limit: The total size of the filesystem in bytes

filesystem/available: The number of available bytes remaining in
the filesystem

ory

memory/limit: Memory hard limit in bytes

memory/major_ page_faults: Number of major page faults
memory/major_page_faults_rate: Number of major page faults per second
memory/node_capacity: Memory capacity of a node
memory/node_allocatable: Memory allocatable of a node

memory/node_reservation: Share of memory that is reserved on the
node allocatable

memory/node_utilization: Memory utilization as a share of memory
allocatable

memory/page_faults: Number of page faults
memory/page_faults_rate: Number of page faults per second

memory/request: Memory request (the guaranteed amount of resources)
in bytes

memory/usage: Total memory usage

memory/working_set: Total working set usage; working set is the memory
being used and is not easily dropped by the kernel

[45]

Monitoring, Logging, and Troubleshooting

Network

* network/rx: Cumulative number of bytes received over the network

* network/rx_errors: Cumulative number of errors while receiving over
the network

* network/rx_errors_rate: Number of errors per second while receiving
over the network

* network/rx_rate: Number of bytes received over the network per second
* network/tx: Cumulative number of bytes sent over the network

* network/tx_errors: Cumulative number of errors while sending over
the network

* network/tx_errors_rate: Number of errors while sending over the network

* network/tx rate: Number of bytes sent over the network per second

Uptime
¢ uptime: Number of milliseconds since the container was started
You can work with InfluxDB directly if you're familiar with it. You can either connect

to it using its own API or use its web interface. Type the following command to find
its port:

k describe service monitoring-influxdb --namespace=kube-system | grep
NodePort

Type: NodePort
NodePort: http 32699/ TCP
NodePort: api 30020/ TCP

Now you can browse to the InfluxDB web interface using the HTTP port. You'll need
to configure it to point to the API port. The Username and Password are root and
root by default:

Host 1 Port Username Passwors

[46]

Chapter 3

Once you're set up you can select what database to use (see the top-right corner). The
Kubernetes database is called k8s. You can now query the metrics using the InfluxDB
query language.

Grafana visualization

Grafana runs in its own container and serves a sophisticated dashboard that works
well with InfluxDB as a data source. To locate the port, type the following command:

k describe service monitoring-influxdb --namespace=kube-system | grep
NodePort

Type: NodePort
NodePort: <unset> 30763/TCP

Now you can access the Grafana web interface on that port. The first thing you need
to do is set up the data source to point to the InfluxDB backend:

« C A [} 192.168.99.100:30763/d

73 Grafana - Feature Ga

i Apps

)4

< £ Datasources > Overview Addnew Edit
EE)
sm Dashboards
- Edit data source
= Data Sources
Name influxdb-datasource Default [«
Type InfluxDB 0.9.x v
Gigi
@& Main Org - Http settings
£ Grafana admin url http://192.168.99.100:30020 Access @ direct v
% Sign out Hitp Auth Basic Auth [_] With Credentials [_]

InfluxDB Details
Database k8s

User root Password *e**

==

[47]

Monitoring, Logging, and Troubleshooting

Make sure to test the connection and then go explore the various options in the
dashboards. There are several default dashboards, but you should be able to
customize it to your preferences. Grafana is designed to let adapt it to your needs.

Performance analysis with the dashboard

My favorite tool by far when I just want to know what's going on in the cluster is the
Kubernetes dashboard. There are a couple of reasons for this, as follows:

* Itis built-in (always in sync and tested with Kubernetes)
e It's fast

* It provides an intuitive drill-down interface from the cluster level all the way
down to individual container

* It doesn't require any customization or configuration

While Heapster, InfluxDB, and Grafana are better for customized and heavy-duty
views and queries, the Kubernetes dashboard's pre-defined views can probably
answer all your questions 80-90% of the time.

You can also deploy applications and create any Kubernetes resource using the
dashboard by uploading the proper YAML or JSON file, but I will not cover this
because it is an anti-pattern for manageable infrastructure. It may be useful when
playing around with a test cluster, but for actually modifying the state of the cluster,
I prefer the commandline. Your mileage may vary.

Let's find the port first:
k describe service kubernetes-dashboard --namespace=kube-system | grep

NodePort

Type: NodePort
NodePort: <unset> 30000/TCP

Top-level view

The dashboard is organized with a hierarchical view on the left (can be hidden by
clicking the hamburger menu) and dynamic, context-based content on the right. You
can drill down the hierarchical view to get deeper into the information that's relevant.

[48]

Chapter 3

There are several top-level categories:
* Admin
* Workloads
* Services and discovery
* Storage
* Config

You can also filter everything by a particular namespace or choose all namespaces.

Admin view

The Admin view has three sections: Namespaces, Nodes, and Persistent Volumes. It
is all about observing the physical resources of the cluster:

€ > C A | [)192.168.99.100:30000/#/admin?namespace=_all "RRHLHEOLED L 0O 5
i Apps 73 Grafana - Feature Ga (] Other bookmarks|
= kubernetes Admin
Admin
Namespaces
Namespaces
Name abels Status Age
Nodes ame Label ati g
Persistent Volumes @ default = Aetive 8 days
° kube-system - Active 8 days
All namespaces ¥
Nodes
Workloads
Name Labels Ready Age
Depl it
SEENEES beta kubernetes.io/arch: amd64
Replica Sets ° minikube beta kubemetes.io/os: linux True 8 days
Replication Controllers kubernetes.io/hostname: minikube

Daemon Sets
Pet Sets
Jobs

Pods
Services and discovery.

Services

Ingress
Storage

Persistent Volume Claims
Config

Secrets

Config Maps

[49]

Monitoring, Logging, and Troubleshooting

You get, in a glance, a LOT of information: what namespaces are available, their
Status, and Age. For each node, you can see its Age, Labels, and if it's Ready or not.

The cool part is that you can click on Nodes under Admin and you then get a view
with the CPU and memory history of all the nodes in aggregate:

€ - C A [} 192.168.99.100:30000/#/node?namespace=_all "RROLEOED L 0O E’ E
i1 Apps Y3 Grafana - Feature Ga (] Other bookmark|
= kubernetes Nodes + CREATE

Admin

CPU usage history Memory usage history
Namespaces
Nodes 0.202 136 Gi

0.260 - 121G

Persistent Volumes 5 o

2 0195 é 930 Mi

3 =2

8 = ;

5 0130 S 620 Mi

@ £

© 0.065 2 310Mi
All namespaces ~ i 0

11:02 11:06 11:10 1113 11:16 11:02 11:06 11:10 1:13 11:16
Workloads L, e,
Deployments
Name Labels Ready Age
Replica Sets
beta kubernetes.io/arch: amd64

Beplicafiontontolicss ° minikube beta kubernetes.io/os: linux True 8 days
Daemon Sets kubernetes.io/hostname: minikube
Das

That's not the end, though. Let's click on the minikube node itself. We get a detailed
screen of information about that node:

[50]

Chapter 3

= kubernetes

Nodes > minikube

Admin

Namespaces
Nodes

Persistent Volumes

Allnamespaces ~

Workloads
Deployments.
Replica Sets
Replication Controllers
Daemon Sets
Pet Sets
Jobs
Pods
Services and discovery.
Services
Ingress
Storage
Persistent Volume Claims
Config
Secrets

Config Maps

CPU usage history Memory usage history

0202 13661
0250 = 1216
g]
2 0195 = 9s0m
2
3 0130 £ 620m
a E
S 0,065 £ 3o0m
(] 0
1107 1mne m3 nie 1ma 107 110 m3 16
Tame Time
Details

Name: minikube

Labels; bota kubernetes io/arch; amd64 beta kubernetes io/os linux kubernetes io/hostname: minikube

volumes kuk 5., k0/ 0 ! ged-attach-detach: true

Creation time: Nov 4, 2016 9.35.48 PM
External ID: minkube

Unschedulable: false

System Info

System UUID: 7307700D-DA35-41C0-85EF-CFr97C8792669

Boot ID: 38354a1¢c-2004-4c91. 908 c60126e51e83

Kernel Version: 4 4 14-boot2dacker

0S Image: Boot2Docker 1,11.1 (TCL 7.1); master : 901340f - Fri Jul 1 22:52:19 UTC 2016
Container Runtime Version: docker /1111

Kubelet Version: v1.4.3

Kube-Proxy Version: v1 4 3

Operating system: lnux

Architecture: amdbd

1ma

If you scroll down, you'll see even more interesting information. The allocated
resources are very important when you deal with performance issues. If a node
doesn't have enough resources, then it might not be able to satisfy the needs of its
pods. The Conditions pane is where it's at.

[51]

Monitoring, Logging, and Troubleshooting

You get a great, concise view of memory and disk pressure at the individual
node level:

€ C A | [} 192.168.99.100:30000/#/node/minikube?namespace=_all R ROLHOED L 0O %
3% Apps YA Grafana - Feature Ga (33 Other bookma
= kubernetes Nodes > minikube
Admin
Allocated resources
Namespaces
CPU A
Nodes " Pod
Persistent Volumes {bytes)
170 Mi / 220 Mi /
/ K 7
N 0.115/2 575 0/2 0.00 1.055Gi 8.49 1.055Gi 10.99 /110 6.36
All namespaces ~
Conditions
Workloads
- - Last heartbeat Last transition
Deployments Type Status 7 P
time me
Replica Sets kubelet has sufficient disk space
OutOfDisk False 8 seconds 8 days KubeletHasSufficientDisk
Replication Controllers available
kubelet has sufficient memory
Daemon Sets MemoryPressure False 8 seconds 8 days KubeletHasSufficientMemory avibibie
Pet Sets
DiskPressure False 8 seconds 8 days KubeletHasNoDiskPressure kubelet has no disk pressure
Jobs
o Ready True 8 seconds 8 days KubeletReady kubelet is posting ready status

There is also a Pods pane, but we'll talk about pods in the next section.

Workloads

The Workloads category is the main one. It organizes many types of Kubernetes
resources, such as Deployments, Replica Sets, Replication Controllers, Daemon
Sets, Pet Sets, Jobs, and of course, Pods. You can drill down along any of these
dimensions. Here is the top-level Workloads view for the default namespace that
currently has only the echo service deployed. You can see the Deployments,
Replica sets, and Pods:

[52]

Chapter 3

« Ccn

2 Apps ™% Grafana - Feature Ga

= kubernetes

Admin

Namespaces
Nodes

Persistent Volumes

default ~

Workloads
Deployments
Replica Sets
Replication Controllers
Daemon Sets
Pet Sets
Jobs
Pods
Services and discovery.
Services
Ingress
Storage
Persistent Volume Claims

Config

192.168.99.100:20000/# /workload?nam:

HBQLOED LOME

) Crher bookmadks

Workloads <+ CREATE
CPU usage history Memory usage history
0.001 ns IHI
0.001 = 105
%‘ 00008 ;i 787 M
2 0.0005 F525m
S 0.0003 £ 262m
“i:?l 130 "3 136 1140 11:42 12:7! 130 "33 1136 140 11:42
Time Time
Deployments
Q «ho run: echo 11 8days gerio/google_containers/e.
Replica sets
pod-template-hash: 3580,
1 8 days ger.lo/google_containers/e.
run: echo
Pods
@ cho358047_ Running 6 8doys 17217.03 0 T o o2 =

Let's switch to all namespaces and dive into the Pods sub-category. This is a very

useful view. In each row, you can tell if the pod is running or not, how many times
it restarted, its IP, and the CPU and memory usage histories are even embedded as
nice little graphs right there:

kubernetes

CPU usage history

0.068
0.060

0 n-lsl
0,030

CPU (cares)

0.015

0
1n:33

@ (wbemaetes-dashboar
@ monitoringgrafana-d
@ monitoringinfluxdb-3

Pods

nse 1140

Time
default Running
kube-system Running
kube-system Running
kube-system Running
kube-system Running
kube-system Running
kube-system Running

143

+ CREATE
Memory usage history
306 M
- 3IIMI|
3
£arm
g 1m7zm
¢
3 ss.85m
1"nar mns 13 1n.40 n4 147
Time
days 1721703 0 I o o =
6days 1721705 \ A Joom I 7 250 =
Sdays 19216899100l Ak A 0.034 I : 022 M =
8 days 1721708 dimasmnd 0 004 I 7 043 M =
8days 1721707 A 0 | I =
6days 1721706 0 | RO =
6days 1721704] © 003 I 72 <65 0 =

[53]

Monitoring, Logging, and Troubleshooting

You can also view the Logs for any pod right by clicking the text symbol (second
from the right). Let's check the Logs of the InfluxDB pod. Looks like everything is in
order and Heapster is successfully writing to it:

kubernetes + CREATE
Logs from influxdb ~ in monitoring-influxdb-3276295126-1b95s Tr
s O T R TR T e Sy T S A U P I AR R R A AV A TP TR
consistency=adb=k8skprecision=arp=default HTTP/1.1 204 @ - heapster/1.2.0 832790d0-a9da-11e6-8441-000000000000 4.037329ms

1425612272 [wal) 2016/11/13 19:51:18 Flush due to idle. Flushing 356 series with 356 points and 6052 bytes from partition 1
2016-11-13719: .1884174637 [wal] 2016/11/13 19:51:10 write to 1ndex of partition 1 took 37.728884ms

2016-11-13T19:51:10.9913452562 [wal] 2016/11/13 19:51:18 Flush due to idle. Flushing 15 series with 15 points and 786 bytes from partition 1
2016-11-13719:51:10.9959389892 [wal] 2016/11/13 19:51:10 write to index of partition 1 took 4.648372ms I
2016-11-13T1 :21.019857208Z (wal] 2816/11/13 19:51:21 Flush due to idle. Flushing 15 series with 15 pointe and 786 bytes from partition 1
2016-11-13T1 .0198540262 [wal] 2616/11/13 19:51:21 write to index of partition 1 took 4.340793ms

2016-11-13719:51:31,024556993Z (wal] 2016/11/13 19:51:31 Flush due to idle. Flushing 15 series with 15 points and 786 bytes from partition 1
2816-11-13719:51:31.027005527Z [wal]l 2616/11/13 19:51:31 write to index of partition 1 took 2.43851ms

2016-11-13T19:51:41,033272360Z [wal] 2016/11/13 19:51:41 Flush due to idle. Flushing 15 serie¢ with 15 points and 786 bytes from partition 1

2016-11-13T1

Logs from 11/13/16 11:48 AM t0 11/13/16 11:54 AM I< < > >l

There is one more level of detail we haven't explored yet. We can go down to the
container level. Let's click on the kube-dns pod. We get the following screen, which
shows the individual containers and their run command; we can also view their logs:

kubernetes Pod kube-dns-v20-lyfr7 /7 oI DELETE + CREATE

CPU usage history Memory usage history

o)

358M)

8
L1
e

1148 150 15 M ms e e 18 1% N ns

CPU fcones)

Pod

Name: kube-dos.

Namespace: kube-sys
Labels! kfs-app kube-dns version v20

Annotations: Created by Rephcats scheduler afpha kubemnetes lo/criticalpod: scheduler.alpha kubemetes jo/tolerations: [("key""CriticalAddonsOnly”, ‘operator”Exists'l]

Creation time: Nov 4, 2016 93622 PM

Status: Rumning

View logs
Containers

kubedns dnsmasq healthz

Image: gorio/googhe contamer s/ kubedns-amdéd 1.8 Image: gir 1o/ google_containers/kube-dnamasgamddd 1 4 Image: gcr 10/gocgle_containers/exechealth-amded 1.2
Environment variables. - Environment variables - Environment variables -

Commands: Commands

Args: ~domainzelustes local
~dne-port=10053

View logs

[54]

Chapter 3

Services and discovery

The Services and discovery category is often where you start from. Services are
the public interface to your Kubernetes cluster. Serious problems will affect your
services, which will affect your users:

Services and discovery

Services

ocho:0080 TCP
(] defauly run echo 0.0.0.120 wloaise0Tee

When you drill down by clicking on a service, you get some information about the
service (most important is the label selector) and a pods view.

Adding central logging

Central logging or cluster-level logging is a fundamental requirement for any cluster
with more than a couple of nodes, pods, or containers. First, it is impractical to view
the logs of each pod or container independently. You can't get a global picture of the
system and there will be just too many messages to sift through. You need a solution
that aggregates the log messages and lets you slice and dice them easily. The second
reason is that containers are ephemeral. Problematic pods will often just die and
their replication controller or replica set will just start a new instance, losing all the
important log info. By logging to a central logging service, you preserve this critical
troubleshooting information.

Planning central logging

Conceptually, central logging is very simple. On each node you run a dedicated
agent that intercepts all log messages from all the pods and containers on the node,
and sends them, along with enough metadata, to a central repository where they are
stored safely.

[55]

Monitoring, Logging, and Troubleshooting

As usual, if you run on the Google platform, then GKE's got you covered and there
is a Google central-logging service integrated nicely. For other platforms, a popular
solution is fluentd, Elasticsearch, and Kibana. There is an official add-on to set up
the proper services for each component. The fluentd-elasticsearch add-on is here:
http://bit.ly/2£6MF5b

It is installed as a set of services for Elasticsearch and Kibana, and the fluentd agent
is installed on each node.

Fluentd

Fluentd is a unified logging layer that sits between arbitrary data sources and
arbitrary data sinks and makes sure that log messages can stream from A to B.
Kubernetes comes with an add-on that has a Docker image that deploys the fluentd
agent, which knows how to read various logs that are relevant to Kubernetes, such as
Docker logs, etcd logs, and kube logs. It also adds labels to each log message to make
it easy for users to filter later by label. Here is a snippet from the td-agent . conf file:

Example:

2016/02/04 06:52:38 filePurge: successfully removed file
/var/etcd/data/member/wal/0000000000000640-00000000010a23dl.wal

<source>
type tail

Not parsing this, because it doesn't have anything particularly
useful to

parse out of it (like severities).
format none

path /var/log/etcd.log

pos_file /var/log/es-etcd.log.pos
tag etcd

</source>
The full configuration file is here:

http://bit.ly/2fwS6eG

[56]

http://bit.ly/2f6MF5b
http://bit.ly/2fwS6eG

Chapter 3

Elasticsearch

Elasticsearch is a great document store and full-text search engine. It is a favorite

in the enterprise because it is very fast, reliable, and scalable. It is used in the
Kubernetes central logging add-on as a Docker image and is deployed as a service.
Note that a full-fledged production cluster of Elasticsearch (which will be deployed
on a Kubernetes cluster) requires its own master, client, and data nodes. For large-
scale and highly available Kubernetes clusters, the central logging itself will be
clustered. Elasticsearch can use self-discovery.

Here is the 1ogging.yml config file

you can override this using by setting a system property, for
example -Des.logger.level=DEBUG

es.logger.level: INFO

rootLogger: ${es.logger.level}, console

logger:
log action execution errors for easier debugging
action: DEBUG

reduce the logging for aws, too much is logged under the default
INFO

com.amazonaws: WARN

appender:
console:
type: console
layout:
type: consolePattern
conversionPattern: "[%d{IS08601}] [%-5p] [%-25¢c] %m%n"

Kibana

Kibana is Elasticsearch's partner in crime. It is used to visualize and interact with the
data stored and indexed by Elasticsearch. It is also installed as a service by the add-
on. Here is the Kibana Dockerfile:

FROM gcr.io/google containers/ubuntu-slim:0.4
MAINTAINER Mik Vyatskov "vmik@google.com"

ENV DEBIAN FRONTEND noninteractive
ENV KIBANA VERSION 4.6.1

[57]

Monitoring, Logging, and Troubleshooting

RUN apt-get update \
&& apt-get install -y curl \
&& apt-get clean

RUN set -x \
&& cd / \
&& mkdir /kibana \

&& curl -O https://download.elastic.co/kibana/kibana/kibana-
$KIBANA VERSION-linux-x86 64.tar.gz \

&& tar xf kibana-$KIBANA VERSION-linux-x86 64.tar.gz -C /kibana -
-strip-components=1 \

&& rm kibana-$KIBANA VERSION-linux-x86 64.tar.gz
COPY run.sh /run.sh
EXPOSE 5601

CMD ["/run.sh"]

Detecting node problems

In Kubernetes' conceptual model the unit of work is the pod. But, pods are
scheduled on nodes. When it comes to monitoring and reliability, the nodes are what
require the most attention because Kubernetes itself (the scheduler and replication
controllers) takes care of the pods. Nodes can suffer from a variety of problems that
Kubernetes is unaware of. As a result, it will keep scheduling pods to the bad nodes
and the pods might fail to function properly. Here are some of the problems that
nodes may suffer while still appearing functional:

e Bad CPU
* Bad memory
* Bad disk

* Kernel deadlock
* Corrupt filesystem

¢ Problems with the Docker Daemon

The kubelet and cAdvisor don't detect these issues. Another solution is needed. Enter
the node problem detector.

[58]

Chapter 3

Node problem detector

The node problem detector is a pod that runs on every node. It needs to solve a
difficult problem. It needs to detect various problems across different environments,
different hardware, and different OSes. It needs to be reliable enough not to be
affected itself (otherwise it can't report the problem), and it needs to have relatively
low overhead to avoid spamming the master. In addition, it needs to run on

every node. Kubernetes recently received a new capability called DaemonSet

that addresses that last concern.

DaemonSet

DaemonSet is a pod for every node. Once you define DaemonSet, every node that's
added to the cluster automatically gets a pod. If that pod dies, Kubernetes will
start another instance of that pod on that node. Think about it as a fancy replication
controller with 1:1 node-pod affinity. Node problem detector is defined as a
DaemonSet, which is a perfect match for its requirements.

Problem Daemons

The problem with node problem detector (pun intended) is that there are too

many problems it needs to handle. Trying to cram all of them into a single codebase
can lead to a complex, bloated, and never-stabilizing codebase. The design of the
node problem detector calls for separation of the core functionality of reporting node
problems to the master from the specific problem detection. The reporting API is
based on generic conditions and events. The problem detection should be done by
separate problem Daemons (each in its own container). This way, it is possible to

add and evolve new problem detectors without impacting the code node problem
detector. In addition, the control plane may have a remedy controller that can resolve
some node problems automatically, therefore implementing self-healing;:

Remedy
Controller

Node Problem
Detector

S
S .

Problem
Daemon B

Problem

Kernel
Daemon A

Monitor

[59]

Monitoring, Logging, and Troubleshooting

At this stage (Kubernetes 1.4), problem Daemons are baked into the node
% problem detector binary and execute as Goroutines, so you don't get the
benefits of the loosely coupled design just yet.

In this section, we covered the important topic of node problems, which can get in
the way to successful scheduling of workloads and how the node problem detector
can help. In the next section, we'll talk about various failure scenarios and how to
troubleshoot them using Heapster, central logging, the Kubernetes dashboard, and
node problem detector.

Troubleshooting scenarios

There are so many things that can go wrong in a large Kubernetes cluster - and

they will. This is expected. You can employ best practices and minimize some of
them (mostly human errors), by using stricter processes. But, some issues such as
hardware failures and networking issues can't be totally avoided. Even human errors
should not always be minimized if it means slower development time. In this section,
we'll discuss various categories of failures, how to detect them, how to evaluate their
impact, and consider the proper response.

Designing robust systems

When you want to design a robust system you first need to understand the possible
failure modes, the risk/probability of each failure, and the impact/cost of each
failure. Then, you can consider various prevention and mitigation measures, loss-
cutting strategies, incident-management strategies, and recovery procedures. Finally,
you can come up with a plan that matches risks to mitigation profiles, including cost.
A comprehensive design is not trivial and needs to be updated as the system evolves.
The higher the stakes the more thorough your plan should be. This process has to be
tailored for each organization. A corner of error recovery and robustness is detecting
failures and being able to troubleshoot. The following sub-sections describe common
failure categories, how to detect them, and where to collect additional information.

Hardware failure

Hardware failures in Kubernetes can be divided into two groups:

* The node is unresponsive

* The node is responsive

[60]

Chapter 3

When the node is not responsive it can be difficult sometimes to determine if it's a
networking issue, a configuration issue or actual hardware failure. You obviously
can't utilize any information like logs or run diagnostics on the node itself. What can
you do? First, consider if the node was ever responsive. If it's a node that was just
added to the cluster it is more likely a configuration issue. If it's a node that was part
of the cluster you can look at historical data from the node on Heapster or central
logging and see if you detect any errors in the logs or degradation in performance
that may indicate failing hardware.

When the node is responsive, it may still suffer from the failure of redundant
hardware, such as non-OS disk or some cores. You can detect the hardware failure
if the node problem detector is running on the node and raises some event or node
condition to the attention of master. Alternatively, you may notice that pods keep
getting restarted or jobs take longer to complete. All these may be signs of hardware
failure. Another strong hint for hardware failure is if the problems are isolated

to a single node and standard maintenance operations such as reboot don't alleviate
the symptoms.

If your cluster is deployed in the cloud, replacing a node you suspect as having
hardware problems is trivial. It is simple to just manually provision a new VM and
remove the bad VM. In some cases, you may want to employ a more automated
process and employ a remedy controller as suggested by the node problem detector
design. Your remedy controller will listen to problems (or missing health checks)
and can automatically replace bad nodes. This approach can work even for private
hosting or bare metal if you keep a pool of extra nodes ready to kick in. Large-scale
clusters can function just fine, even with reduced capacity most of the time. Either
you can tolerate slightly reduced capacity when a small number of nodes are down,
or you can over-provision a little bit. This way you have some headway when a
node goes down.

Quotas, shares, and limits

Kubernetes is a multi-tenant system. It is designed to utilize resources efficiently, but
it schedules pods and allocates resources based on a system of checks and balances
between available quotas and limits per namespace, and requests for guaranteed
resources from pods and containers. We will dive into the details later in the book.
Here, we'll just consider what can go wrong and how to detect it. There are several
bad outcomes you can run into:

* Insufficient resources: If a pod requires a certain amount of CPU or memory
and there is no node with available capacity then the pod can't be scheduled.

[61]

Monitoring, Logging, and Troubleshooting

* Under-utilization: A pod may declare that it requires a certain amount of
CPU or memory, and Kubernetes will oblige, but then the pod may only use
a small percentage of its requested resources. This is just wasteful.

* Mismatched node configuration: A pod that requires a lot of CPU but very
little memory may be scheduled to a high-memory node and use all its CPU
resources, thereby hogging the node, so no other pod can be scheduled but
the unused memory is wasted.

Checking out the dashboard is a great way to look for suspects visually. Nodes and
pods that are either over-subscribed or underutilized are candidates for quota and
resource request mismatches:

= kubernetes Pods + CREATE
CPU usage history Memory usage history
0.076 322mi
0.068 . 286 M e
@ H |
g 0.051 §ZT5MH
L*] |
S 0034 = HBMV:
a £ |
S 0017 £ 71.5Mi
0 0!
21:45 2146 2150 2153 2156 21:59 21:45 2146 2150 2153 2156 21:59
Time Time
Na space Restarts T uster IP CPU (cores Memory (bytes)
@ echo3580479. defautt Running 10 9 days 172.17.0.3 0 I osocn =
@ heapster2193. kube-system Running 8 7 days 17217.08 A AA 0 o =
@ iubeaddonm. kube-system Running 10 9days 192168.99.1C pummmet Mg 0.042 T v =
@ Fkubednsv20-. kube-system Running 30 9 days 1721705 (g 0 004 T o055 v =
@ lubernetesda. kube-system Running 10 9 days 1721706 AA 0 | SRRV
@ nmonitoring-gra. kube-system Running 10 7 days 17217.0.7 0 I s :on =
@ nmonitoringiinfl. kube-system Running 10 7 days 1721704 | 0.004 oy =

Once you detect a candidate you can dive in using the describe command at the
node or pod level. In a large-scale cluster, you should have automated checks that
compare the utilization against capacity planning. This is not trivial, because most
large systems have some level of fluctuation and a uniform load is not expected.
Make sure you understand the demands on your system and that your cluster's
capacity is within the normal range or can adjust elastically, as needed.

[62]

Chapter 3

Bad configuration

Bad configuration is an umbrella term. Your Kubernetes cluster state is
configuration; your containers' command-line arguments are configuration; all the
environment variables used by Kubernetes, your application services, and any third-
party services are configuration; all the configuration files are configuration. In some
data-driven systems, configuration is stored in various data stores. Configuration
issues are very common because usually, there aren't any established good practices
to test them. They often have various fallbacks (for example, search path for
configuration files) and defaults, and the production-environment configuration is
different than the development or staging environment.

At the Kubernetes cluster level, there are many possible configuration problems,
such as the following:

* Incorrect labeling of nodes, pods, or containers

* Scheduling pods without a replication controller

* Incorrect specification of ports for services

* Incorrect ConfigMap
Most of these problems can be addressed by having a proper automated deployment

process. But you must have a deep understanding of your cluster architecture and
how Kubernetes resources fit together.

Configuration problems typically occur after you change something. It is critical,
after each deployment or manual change to the cluster, to verify its state.

Heapster and the dashboard are great options here. I suggest starting from the
services and verifying that they are available, responsive, and functional. Then,
you can dive deeper and verify that the system also operates within the expected
performance parameters.

The logs also provide helpful hints and can pinpoint specific configuration options.

Cost versus performance

Large clusters are not cheap. This is especially true if you run in the cloud. A major
part of operating massive-scale systems is keeping track of the expense.

[63]

Monitoring, Logging, and Troubleshooting

Managing cost on the cloud

One of the greatest benefits of the cloud is that it can satisfy elastic demand that caters
for systems that expand and contract automatically by allocating and deallocating
resources as needed. Kubernetes fits this model very well and can be extended to
provision more nodes as necessary. The risk here is that, if not constrained properly,
a denial of service attack (malicious, accidental, or self-inflicted) can lead to arbitrary
provisioning of expensive resources. This needs to be monitored carefully so it can be
caught early on. Quotas on namespaces can avoid it, but you still need to be able to
dive in and pinpoint the core issue. The root cause can be external (a botnet attack),
misconfiguration, an internal test gone awry, or a bug in the code that detects or
allocate resources.

Managing cost on bare metal

On bare metal, you typically don't have to worry about runaway allocation, but

you can easily run into a wall if you need extra capacity and can't provision more
resources fast enough. Capacity planning and monitoring your system's performance
to detect the need early are primary concerns for ops. Heapster can show historical
trends and help identify both peak times and overall growth in demand.

Managing cost on hybrid clusters

Hybrid clusters run on both bare metal and the cloud (and possibly on private
hosting services too). The considerations are similar, but you may need to aggregate
your analysis. We will discuss hybrid clusters in more detail later.

Summary

In this chapter, we looked at monitoring, logging, and troubleshooting. This is a crucial
aspect of operating any system, and in particular a platform such as Kubernetes with
so many moving pieces. My greatest worry whenever I'm responsible for something is
that something will go wrong and I will have no systematic way to figure out what's
wrong and how to fix it. Kubernetes has ample tools and facilities built in, such as
Heapster, logging, DaemonSets, and node problem detector. You can also deploy

any kind of monitoring solution you prefer.

In the Chapter 4, High Availability and Reliability, we will look at highly available
and scalable Kubernetes clusters. This is arguably the most important use case for
Kubernetes, where it shines compared to other orchestration solutions.

[64]

High Availability and
Reliability

In the previous chapter, we looked at monitoring your Kubernetes cluster, detecting
problems at the node level, identifying and rectifying performance problems, and
general troubleshooting.

In this chapter, we will dive into the topic of highly available clusters. This is a
complicated topic. The Kubernetes project and the community haven't settled on

one true way to achieve high availability nirvana. There are many aspects to highly
available Kubernetes clusters, such as ensuring that the control plane can keep
functioning in the face of failures, protecting the cluster state in etcd, protecting the
system's data, and recovering capacity and/or performance quickly. Different systems
will have different reliability and availability requirements. How to design and
implement a highly available Kubernetes cluster will depend on those requirements.

At the end of this chapter, you will understand the various concepts associated with
high availability and be familiar with Kubernetes high availability best practices
and when to employ them. You will be able to upgrade live clusters using different
strategies and techniques, and you will be able to choose between multiple possible
solutions based on trade-offs between performance, cost, and availability.

[65]

High Availability and Reliability

High-availability concepts

In this section, we will start our journey into high availability by exploring the
concepts and building blocks of reliable and highly available systems. The million
(trillion?) dollar question is, how do we build reliable and highly available systems
from unreliable components? Components will fail; you can take that to the bank.
Hardware will fail. Networks will fail; configuration will be wrong; software will have
bugs; people will make mistakes. Accepting that, we need to design a system that can
be reliable and highly available even when components fail. The idea is to start with
redundancy, detect component failure, and replace bad components quickly.

Redundancy

Redundancy is the foundation of reliable and highly available systems at the
hardware and data levels. If a critical component fails and you want the system to
keep running, you must have another identical component ready to go. Kubernetes
itself takes care of your stateless pods via replication controllers and replica sets. But,
your cluster state in etcd and the master components themselves need redundancy
to function when some components fail. In addition, if your system's tasteful
components are not backed up by redundant storage (for example, on a cloud
platform) then you need to add redundancy to prevent data loss.

Hot swapping

Hot swapping is the concept of replacing a failed component on the fly without
taking the system down, with minimal (ideally, zero) interruption to users. If the
component is stateless (or its state is stored in separate redundant storage), then hot
swapping a new component to replace it is easy and just involves redirecting all
clients to the new component. But, if it stores local state, including in memory,

then hot swapping is not trivial. There are two main options:

* Give up on in-flight transactions
* Keep a hot replica in sync
The first solution is much simpler. Most systems are resilient enough to cope with

failures. Clients can retry failed requests and the hot-swapped component will
service them.

The second solution is more complicated and fragile, and will incur a performance
overhead because every interaction must be replicated to both copies (and
acknowledged). It may be necessary for some parts of the system.

[66]

Chapter 4

Leader election

Leader or master election is a common pattern in distributed systems. You often have
multiple identical components that collaborate and share the load, but one component
is elected as the leader and certain operations are serialized through the leader. You
can think of distributed systems with leader election as a combination of redundancy
and hot swapping. The components are all redundant and, when the current leader
fails or becomes unavailable, a new leader is elected and hot-swapped in.

Smart load balancing

Load balancing is about distributing the workload across multiple components that
service incoming requests. When some components the load balancer must first stop
sending requests to failed or unreachable components. The second step is to provision
new components to restore capacity and update the load balancer. Kubernetes
provides great facilities to support this via services, endpoints, and labels.

Idempotency

Many types of failure can be temporary. This is most common with networking
issues or with too-stringent timeouts. A component that doesn't respond to a health
check will be considered unreachable and another component will take its place.
Work that was scheduled to the presumably failed component may be sent for
another component. But the original component may still be working and complete
the same work. The end result is that the same work may be performed twice. It is
very difficult to avoid this situation. To support exactly once semantics, you need to
pay a heavy price in overhead, performance, latency, and complexity. Thus, most
systems opt to support at -least -once semantics, which means it is OK for the
same work to be performed multiple times. This property is called idempotency.
Idempotent systems maintain their state if an operation is performed multiple times.

Self-healing

When component failures occur in dynamic systems, you usually want the system

to be able to heal itself. Kubernetes replication controllers and replica sets are great
examples of self-healing systems. But failure can extend well beyond pods. In the
previous chapter, we discussed resource monitoring and node problem detection. The
remedy controller is a great example of the concept of self-healing. Self-healing starts
with automated detection of problems followed by automated resolution. Quotas and
limits help create checks and balances to ensure an automated self-healing doesn't run
amok due to unpredictable circumstances such as DDOS attacks.

[67]

High Availability and Reliability

In this section, we considered various concepts involved in creating reliable and
highly available systems. In the next section, we will apply them and demonstrate
best practices for systems deployed on Kubernetes clusters.

High-availability best practices

Building reliable and highly available distributed systems is a non-trivial endeavor.
In this section, we will check some of the best practices that enable a Kubernetes-
based system to function reliably and be available in the face of various failure
categories.

Creating highly available clusters

To create a highly available Kubernetes cluster, the master components must

be redundant. That means et cd must be deployed as a cluster (typically across
three or five nodes) and the Kubernetes API server must be redundant. Auxiliary
cluster-management services such as Heapster's storage may be deployed
redundantly too, if necessary. The following diagram depicts a typical reliable and
highly available Kubernetes cluster. There are several load-balanced master nodes,
each one containing whole master components as well as an etcd component:

kubectl, clients, etc.

vV

Worker Node #1

Load Balancer ’§

N
N e
Master Node #1
apiserver @

f—
E etcd @ scheduler @
t AN

odmaster @ controller @
p manager
kubelet

monit

[68]

Chapter 4

This is not the only way to configure highly available clusters. You may prefer,
for example, to deploy a standalone etcd cluster to optimize the machines to their
workload or if you require more redundancy for your etcd cluster than the rest of
the master nodes.

Making your nodes reliable

Nodes will fail, or some components will fail, but many failures are transient.
The basic guarantee is to make sure that the Docker Daemon and kubelet restart
automatically in case of a failure.

If you run CoreOS, a modern Debian-based OS (including Ubuntu >= 16.04), or any
other OS that uses systemd as its init mechanism, then it's easy to deploy Docker and
the kubelet as self-starting Daemons:

systemctl enable docker
systemctl enable kublet

For other operating systems, the Kubernetes project selected monit for their high-
availability example, but you can use any process monitor you prefer.

Protecting your cluster state

The Kubernetes cluster state is stored in etcd. The etcd cluster was designed to be
super reliable and distributed across multiple nodes. It's important to take advantage
of these capabilities for a reliable and highly available Kubernetes cluster.

Clustering etcd

You should have at least three nodes in your etcd cluster. If you need more
reliability and redundancy, you can go five, seven, or any other odd number of
nodes. The number of nodes must be odd to have a clear majority in case of a
network split.

In order to create a cluster, the et cd nodes should be able to discover each other.
There are several methods to accomplish that.

Static discovery

With static discovery, you manage the IP addresses/host names of each etcd
directly. This doesn't mean that you manage the etcd cluster outside the Kubernetes
cluster or that you're responsible for keeping the etcd cluster healthy. The etcd
nodes will run as pods and get restarted automatically if needed.

[69]

High Availability and Reliability

For example, let's say our etcd cluster contains three nodes, as follows:

etcd-1 10.0.0.1
etcd-2 10.0.0.2

etcd-2 10.0.0.3

Each node will receive this initial cluster information as command-line information:

--initial-cluster etcd-1=http://10.0.0.1:2380,etcd-
2=http://10.0.0.2:2380,etcd-3=http://10.0.0.3:2380
--initial-cluster-state new

Or, it will receive it as an environment variable:

ETCD_INITIAL CLUSTER="etcd-1l=http://10.0.0.1:2380,etcd-
2=http://10.0.0.2:2380,etcd-3=http://10.0.0.3:2380"

ETCD_ INITIAL CLUSTER_ STATE=new

Etcd discovery

With etcd discovery, you use an existing cluster to let the nodes of the new
cluster discover each other. This requires, of course, that the new cluster nodes
have access to the existing cluster. If you're not worried about the dependency
and security implications, you may also use the public etcd discovery service
at https://discovery.etcd.io.

You need to create a discovery token. You can specify the cluster size if you want;
the default is 3. Here is the command:

$ curl https://discovery.etcd.io/new?size=3

https://discovery.etcd.io/3e86b59982e49066c5d813aflc2e2579cbf573de

When working with a discovery service, you need to pass the token as a command-
line argument:

--discovery https://discovery.etcd.io/3e86b59982e49066c5d813aflc2e2579¢cbf
573de

You can also pass it as an environment variable:

ETCD DISCOVERY=https://discovery.etcd.io/3e86b59982e49066c5d813aflc2e2579
cbf573de

Note that discovery is relevant for the initial bootstrapping of the initial cluster only.
Once the cluster is up and running with the initial nodes, adding and removing
nodes from the running cluster is done using a separate protocol, so you don't
maintain permanent dependency on the public etcd discovery service.

[70]

https://discovery.etcd.io
https://discovery.etcd.io
https://discovery.etcd.io

Chapter 4

DNS discovery

It is possible to set up discovery using DNS too via SRV records, with and without
TLS. The details are outside the scope of this book. You can pursue this route by
searching for etcd DNS discovery.

The etcd.yaml file

Depending on the discovery method, the command to start etcd instances on each
node will be slightly different in the etcd.yaml pod manifest. The manifest should
be copied to each ectd node at /etc/kubernetes/manifests.

Let's look at the different parts of the etcd.yaml manifest file:

apiVersion: vl
kind: Pod
metadata:
name: etcd-server
spec:
hostNetwork: true
containers:
- image: gcr.io/google containers/etcd:2.0.9

name: etcd-container

The initial section contains the name of the pod, specifies that it uses the host
network, and defines a container called etcd-container. Then, the most critical part
is the Docker image to use. In this example it is etcd:2.0.9, as in Eted V2:

command :

- /usr/local/bin/etcd

- --name

- <name>

- --initial-advertise-peer-urls
- http://<node ip>:2380

- --listen-peer-urls

- http://<node ip>:2380

- --advertise-client-urls
- http://<node ip>:4001

- --listen-client-urls

- http://127.0.0.1:4001

[71]

High Availability and Reliability

- --data-dir
- /var/etcd/data
- --discovery

- <discovery token>

The command section lists the command-line arguments etcd requires to operate
properly. In this example, the etcd discovery mechanism is used, hence the
--discovery flag. The <name>, <node IP>,and <discovery tokens should be
replaced, for each node, with a unique name (hostname is a good option), the IP
address of the node, and the discovery token received earlier (the same token for
all nodes):

ports:

- containerPort: 2380
hostPort: 2380
name: serverport

- containerPort: 4001
hostPort: 4001

name: clientport

The ports section lists the server (2380) and client (4001) ports, which are mapped to
the same ports on the host in this case:
volumeMounts:
- mountPath: /var/etcd
name: varetcd
- mountPath: /etc/ssl
name: etcssl
readOnly: true
- mountPath: /usr/share/ssl
name: usrsharessl
readOnly: true
- mountPath: /var/ssl
name: varssl
readOnly: true
- mountPath: /usr/ssl
name: usrssl
readOnly: true

- mountPath: /usr/lib/ssl

[72]

Chapter 4

name: usrlibssl
readOnly: true
- mountPath: /usr/local/openssl
name: usrlocalopenssl
readOnly: true
- mountPath: /etc/openssl
name: etcopenssl
readOnly: true
- mountPath: /etc/pki/tls
name: etcpkitls

readOnly: true

The mounts section lists the varetcd mount at /var/etcd, where etcd writes all its
data, and a bunch of SSL and TLS read-only mounts that etcd doesn't modify:
volumes:
- hostPath:
path: /var/etcd/data
name: varetcd
- hostPath:
path: /etc/ssl
name: etcssl
- hostPath:
path: /usr/share/ssl
name: usrsharessl
- hostPath:
path: /var/ssl
name: varssl
- hostPath:
path: /usr/ssl
name: usrssl
- hostPath:
path: /usr/lib/ssl
name: usrlibssl
- hostPath:
path: /usr/local/openssl

name: usrlocalopenssl

[73]

High Availability and Reliability

- hostPath:
path: /etc/openssl
name: etcopenssl
- hostPath:
path: /etc/pki/tls
name: etcpkitls
The volumes section provides a volume for each mount mapped to the
corresponding host path. While the read-only mounts are probably fine as is, you

may want to map the varetcd volume to a more robust network storage rather
than just depend on the redundancy of the etcd nodes themselves.

Verifying the etcd cluster

Once the etcd cluster is up and running you can access the etcdctl tool to check on
the cluster status and health. Kubernetes lets you execute commands directly inside
pods or container via the exec command (similar to docker exec).

Recommended commands are as follows:

® etcdectl member list

® etcdctl cluster-health
* etcdectl set test ("yeah, it works!")

* etcdectl get test (should return "yeah, it works!")

etcd 2 versus etcd 3

At the time of writing, Kubernetes 1.4 officially supports etcd v2. etcd v3 is a
significant improvement and has many desirable properties, such as the following;

* Double the performance for native clients due to the switch from JSON over
REST to protobufs over gRPC

* Improved performance due to support for leases versus verbose key TTLs

* Multiple watches are multiplexed on a single connection using gRPC instead
of keeping an open connection for each watch

etcd v3 has been demonstrated to work in Kubernetes, but has not officially become
the supported version yet. This is a non-trivial change and work is ongoing.
Hopefully, by the time you read this v3 will be the official version. If not, it is
possible to migrate etcd v2 to etcd v3.

[74]

Chapter 4

Protecting your data

Protecting the cluster state and configuration is great, but even more important

is protecting your own data. If somehow the cluster state gets corrupted, you can
always rebuild the cluster from scratch (although the cluster will not be available
during the rebuild). But if your own data is corrupted or lost, you're in deep trouble.
The same rules apply; redundancy is king. But while the Kubernetes cluster state

is very dynamic, much of your data is maybe less dynamic. For example, a lot of
historic data is often important and can be backed up and restored. Live data might
be lost, but the overall system may be restored to an earlier snapshot and suffer only
temporary damage.

Running redundant API servers

The API servers are stateless, fetching all the necessary data on the fly from etcd
cluster. This means that you can easily run multiple API servers without needing to
coordinate between them. Once you have multiple API servers running you can
put a load balancer in front of them to make it transparent to clients.

Running leader election with Kubernetes

Some master components, such as the scheduler and the controller manager, can't
have multiple instances active at the same time. This will be chaos, as multiple
schedulers try to schedule the same pod into multiple nodes or multiple times
into the same node. The correct way to have a highly scalable Kubernetes cluster
is to have these components run in leader election mode. This mean that multiple
instances are running, but only one is active at a time and if it fails, another one is
elected as leader and takes its place.

Kubernetes supports this mode via the --1leader-elect flag. The scheduler and the
controller manager can be deployed as pods by copying their respective manifests to
/etc/kubernetes/manifests.

Here is a snippet from a scheduler manifest that shows the use of the flag:

command :
- /bin/sh
- -c

- /usr/local/bin/kube-scheduler --master=127.0.0.1:8080 --v=2
--leader-elect=true 1>>/var/log/kube-scheduler.log

2>&1

[75]

High Availability and Reliability

Here is a snippet from a controller manager manifest that shows the use of the flag;:

- command:
- /bin/sh
- -c

- /usr/local/bin/kube-controller-manager --master=127.0.0.1:8080
--cluster-name=e2e-test-bburns

--cluster-cidr=10.245.0.0/16 --allocate-node-cidrs=true --cloud-

provider=gce --service-account-private-key-file=/srv/kubernetes/server.
key

--v=2 --leader-elect=true 1l>>/var/log/kube-controller-manager.log
2>&1

image: gcr.io/google containers/kube-controller-manager:fda24638d5la4
8baal3c35337£cd4793

Note that it is not possible to have these components restarted automatically by
Kubernetes like other pods because these are exactly the Kubernetes components
responsible for restarting failed pods, so they can't restart themselves if they fail.
There must be a ready-to-go replacement already running.

Leader election for your application

Leader election can be very useful for your application too, but it is notoriously
difficult to implement. Luckily, Kubernetes comes to the rescue. There is a
documented procedure for supporting leader election for your application via the
leader-elector container from Google. The basic concept is to use the Kubernetes
endpoints combined with ResourceVersion and Annotations. When you couple this
container as a sidecar in your application pod, you get leader-election capabilities in
a very streamlined fashion.

Let's run the 1eader-elector container with three pods and an election
called election:

> kubectl run leader-elector --image=gcr.io/google containers/leader-
elector:0.4 --replicas=3 -- --election=election -http=0.0.0.0:4040

After a while, you'll see three new pods in your cluster, called 1eader-elector-xxx:

> kubectl get pods

NAME READY STATUS RESTARTS AGE
echo-3580479493-n66n4 1/1 Running 12 224
leader-elector-916043122-10wjj 1/1 Running 0 8m
leader-elector-916043122-6tmn4 1/1 Running 0 8m
leader-elector-916043122-vui6£f 1/1 Running 0 8m

[76]

Chapter 4

OK. But who is the master? Let's query the election endpoints:

> kubectl get endpoints election -o json
{
"kind": "Endpoints",
"apiVersion": "v1",
"metadata": {
"name": "election",
"namespace": "default",
"selfLink": "/api/vl/namespaces/default/endpoints/election",
"uid": "48ffc442-b451-11e6-9dbl-c2777b74ca9od",
"resourceVersion": "892261",
"creationTimestamp": "2016-11-27T03:26:29Z",
"annotations": {

"control-plane.alpha.kubernetes.io/leader":
"{\"holderIdentity\":\"leader-elector-916043122-10wjj\", \"leaseDura
tionSeconds\":10,\"acquireTime\":\"2016-11-27T03:26:29Z\", \"renewT1
me\":\"2016-11-27T03:38:02Z\",\"leaderTransitions\":0}"

}
b

"subsets": []

}

If you look really hard, you can see it buried in the metadata.annotations. To
make it easy to detect, I recommend the fantastic jg program for slicing and dicing
JSON (https://stedolan.github.io/jq/). Itis very useful to parse the output of
the Kubernetes API or kubectl:

kubectl get endpoints election -o json | jg -r .metadata.annotations(]
| jg .holderIdentity

"leader-elector-916043122-10wjj"

To prove that leader election works, let's kill the leader and see if a new leader
is elected:

kubectl delete pod leader-elector-916043122-10wjj
pod "leader-elector-916043122-10wjj" deleted

And we have a new leader:

kubectl get endpoints election -o json | jg -r .metadata.annotations(]
| jg .holderIdentity
"leader-elector-916043122-6tmn4"

[77]

https://stedolan.github.io/jq/

High Availability and Reliability

You can also find the leader through HTTP because each leader-elector container
exposes the leader through a local web server (running on port 4040):

Kubectl proxy

http http://localhost:8001/api/vl/proxy/namespaces/default/pods/
leader-elector-916043122-vui6f:4040/ | jg .name

"leader-elector-916043122-6tmn4"

The local web server allows the 1eader-elector container to function as a sidecar
container to your main application container within the same pod. Your application
container shares the same local network as the leader-elector container, so it

can access http://localhost:4040 and get the name of the current leader. Only
the application container that shares the pod with the elected leader will run the
application; the other application containers in the other pods will be dormant.

If they receive requests, they'll forward them to the leader, or some clever load-
balancing tricks can be done to automatically send all requests to the current leader.

Making your staging environment highly

available

High availability is not trivial to set up. If you go to the trouble of setting up high
availability, it means there is a business case for a highly available system. It follows
that you want to test your reliable and highly available cluster beforeyou deploy it to
production (unless you're Netflix, where you test in production). Also, any change
to the cluster may, in theory, break your high availability without disrupting other
cluster functions. The essential point is that, just like anything else, if you don't test
it, assume it doesn't work.

We've established that you need to test reliability and high availability. The best
way to do it is to create a staging environment that replicates your production
environment as closely as possible. This can get expensive. There are several
ways to manage the cost:

* Ad hoc HA staging environment: Create a large HA cluster only for the
duration of HA testing

* Compress time: Create interesting event streams and scenarios ahead of
time, feed the input, and simulate the situations in rapid succession

* Combine HA testing with performance and stress testing: At the end of
your performance and stress tests, overload the system and see how the
reliability and high availability configuration handles the load

[78]

Chapter 4

Testing high-availability

Testing high-availability takes planning and a deep understanding of your
system. The goal of every test is to reveal flaws in the system's design and/or
implementation, and to provide good enough coverage that, if the tests pass,
you'll be confident that the system behaves as expected.

In the realm of reliability and high-availability, it means you need to figure out ways
to break the system and watch it put itself back together.

That requires several pieces, as follows:

* Comprehensive list of possible failures (including reasonable combinations)
* For each possible failure, it should be clear how the system should respond
* A way to induce the failure

* A way to observe how the system reacts

None of the pieces are trivial. The best approach in my experience is to do it
incrementally and try to come up with a relatively small number of generic failure
categories and generic responses, rather than an exhaustive, ever-changing list of
low-level failures.

For example, a generic failure category is node-unresponsive; the generic response
could be rebooting the node, the way to induce the failure can be stopping the VM of
the node (if it's a VM), and the observation should be that, while the node is down,
the system still functions properly based on standard acceptance tests, the node is
eventually up, and the system gets back to normal. There may be many other things
you want to test, such as whether the problem was logged, whether relevant alerts
went out to the right people, and whether various stats and reports were updated.

Note that sometimes, a failure can't be resolved in a single response. For example,
in our unresponsive node case, if it's a hardware failure then reboot will not help. In
this case, a second line of response gets into play and maybe a new VM is started,
configured, and hooked up to the node. In this case, you can't be too generic and
you may need to create tests for specific types of pod/role that were on the node
(etcd, master, worker, database, monitoring).

If you have high quality requirements, be prepared to spend much more time
setting up the proper testing environments and the tests than even the production
environment.

[79]

High Availability and Reliability

One last, important point is to try to be as non-intrusive as possible. That means

that, ideally, your production system will not have testing features that allow
shutting down parts of it or cause it to be configured to run in reduced capacity for
testing. The reason is that it increases the attack surface of your system and it can

be triggered by accident by mistakes in configuration. Ideally, you can control your
testing environment without resorting to modifying the code or configuration that
will be deployed in production. With Kubernetes, it is usually easy to inject pods and
containers with custom test functionality that can interact with system components
in the staging environment, but will never be deployed in production.

In this section, we looked at what it takes to actually have a reliable and highly
available cluster, including etcd, the API server, the scheduler, and the controller
manager. We considered best practices for protecting the cluster itself as well as your
data, and paid special attention to the issue of starting environments and testing.

Live cluster upgrades

One of the most complicated and risky tasks involved in running a Kubernetes
cluster is a live upgrade. The interactions between different parts of the system of
different versions are often difficult to predict, but in many situations, it is required.
Large clusters with many users can't afford to be offline for maintenance. The best
way to attack complexity is to divide and conquer. Microservice architecture helps a
lot here. You never upgrade your entire system. You just constantly upgrade several
sets of related microservices, and if APIs have changed then you upgrade their
clients, too. A properly designed upgrade will preserve backward-compatibility

at least until all clients have been upgraded, and then deprecate old APIs across
several releases.

In this section, we will discuss how to go about upgrading your cluster using various
strategies, such as rolling upgrades and blue-green upgrades. We will also discuss
when it's appropriate to introduce breaking upgrades versus backward-compatible
upgrades. Then we will get into the critical topic of schema and data migration.

Rolling upgrades

Rolling upgrades are upgrades where you gradually upgrade components from the
current version to the next. This means that your cluster will run current and new
components at the same time. There are two cases to consider here:

* New components are backward-compatible

* New components are not backward-compatible

[80]

Chapter 4

If the new components are backward-compatible, then the upgrade should be very
easy. In earlier versions of Kubernetes, you had to manage rolling upgrades very
carefully with labels and change the number of replicas gradually for both the old
and new version (although kubectl rolling-update is a convenient shortcut

for replication controllers). But, the deployment resource introduced in Kubernetes
1.2 makes it much easier and supports replica sets. It has the following capabilities
built-in:

* Running server-side (it keeps going if your machine disconnects)
* Versioning

* Multiple concurrent rollouts

* Updating deployments

* Aggregating status across all pods

* Rollbacks

* Canary deployments

* Multiple upgrade strategies (rolling upgrade is the default)

Here is a sample manifest for a deployment that deploys three nginx pods:

apivVersion: extensions/vlbetal
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 3
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80

The resource kind is deployment and it's got the name nginx-deployment, which
you can use to refer to this deployment later (for example, for updates or rollbacks).
The most important part is, of course, the spec, which contains a pod template. The
replicas determine how many pods will be in the cluster, and the template spec
has the configuration for each container. In this case, just a single container.

[81]

High Availability and Reliability

To start the rolling update, you create the deployment resource:

$ kubectl create -f nginx-deployment.yaml --record

You can view the status of the deployment later:

$ kubectl rollout status deployment/nginx-deployment

Complex deployments

The deployment resource is great when you just want to upgrade one pod, but you
may often need to upgrade multiple pods, and those pods sometimes have version
inter-dependencies. In those situations, you sometimes must forego a rolling update
or introduce a temporary compatibility layer. For example, suppose service A
depends on service B. Service B now has a breaking change. The v1 pods of service
A can't interoperate with the pods from service B v2. It is also undesirable from a
reliability and change-management point of view to make the v2 pods of service

B support the old and new APIs. In this case, the solution may be to introduce an
adapter service that implements the v1 API of the B service. This service will sit
between A and B, and will translate requests and responses across versions. This
adds complexity to the deployment process and require several steps, but the benefit
is the A and B services themselves are simple. You can do rolling updates across
incompatible versions and all indirection can go away once everybody upgrades to
v2 (all A pods and all B pods).

Blue-green upgrades

Rolling updates are great for availability, but sometimes the complexity involved
in managing a proper rolling update is considered too high, or it adds a significant
amount of work that pushes back more important projects. In these cases, blue-
green upgrades provide a great alternative. With a blue-green release, you prepare
a full copy of your production environment with the new version. Now you have
two copies, old (blue) and new (green). It doesn't matter which one is blue and
which one is green. The important thing is that you have two fully independent
production environments. Currently, blue is active and services all requests. You
can run all your tests on green. Once you're happy, you flip the switch and green
becomes active. If something goes wrong, rolling back is just as easy; just switch
back from green to blue. I elegantly ignored the storage and in-memory state here.
This immediate switch assumes that blue and green are composed of stateless
components only and share a common persistence layer.

[82]

Chapter 4

If there were storage changes or breaking changes to the API accessible to external
clients, then additional steps need to be taken. For example, if blue and green have
their own storage, then all incoming requests may need to be sent to both blue
and green, and green may need to ingest historical data from blue to get in sync
before switching:

8

Managing data-contract changes

Data contracts describe how the data is organized. It's an umbrella term for structure
metadata. A database schema is the most typical example. The most common
example is a relational database schema. Other examples include network payloads,
file formats, and even the content of string arguments or responses. If you have a
configuration file, then this configuration file has both a file format (JSON, YAML,
TOML, XML, INI, custom format) and some internal structure that describes what
kind of hierarchy, keys, values, and data types are valid. Sometimes the data contract
is explicit and sometimes it's implicit. Either way, you need to manage it carefully,

or else you'll get runtime errors when code that's reading, parsing, or validating
encounters data with an unfamiliar structure.

Web Servers App Servers Data base

Router

Migrating data

Data migration is a big deal. Many systems these days manage measured terabytes,
petabytes, or more. The amount of collected and managed data will continue to
increase for the foreseeable future. The pace of data collection exceeds the pace of
hardware innovation. The essential point is that if you have a lot of data and you
need to migrate it, it can take a while. In a previous company, I oversaw a project to
migrate close to 100 terabytes of data from one Cassandra cluster of a legacy system
to another Cassandra cluster.

[83]

High Availability and Reliability

The second Cassandra cluster had different schema and was accessed by a
Kubernetes cluster 24/7. The project was very complicated, and thus it kept getting
pushed back when urgent issues popped up. The legacy system was still in place
side-by-side with the next-gen system long after the original estimate.

There were a lot of mechanisms in place to split the data and send it to both clusters,
but then we ran into scalability issues with the new system and we had to address
those before we could continue. The historical data was important, but it didn't have
to be accessed with the same service level as recent hot data. So, we embarked on yet
another project to send historical data to cheaper storage. That meant, of course, that
client libraries or frontend services had to know how to query both stores and merge
the results. When you deal with a lot of data you can't take anything for granted.
You run into scalability issues with your tools, your infrastructure, your third-party
dependencies, and your processes. Large scale is not just quantity change; it is often
qualitative change as well. Don't expect it to go smoothly. It is much more than
copying some files from A to B.

Deprecating APls

API deprecation comes in two flavors: internal and external. Internal APIs are APIs
used by components that are fully controlled by you and your team or organization.
You can be sure that all API users will upgrade to the new API within a short time.
External APIs are used by users or services outside your direct sphere of influence.
There are a few gray-area situations where you work for a huge organization (think
Google), and even internal APIs may need to be treated as external APIs. If you're
lucky, all your external APIs are used by self-updating applications or through a web
interface you control. In those cases, the APl is practically hidden and you don't even
need to publish it.

If you have a lot of users (or a few very important users) using your API, you should
consider deprecation very carefully. Deprecating an API means you force your users
to change their application to work with you or stay locked to an earlier version.

There are a few ways you can mitigate the pain:

* Don't deprecate. Extend the existing API or keep the previous API active. It is
sometimes pretty simple, although it adds testing burden.

* Provide client libraries in all relevant programming languages to your
target audience. This is always a good practice. It allows you to make many
changes to the underlying API without disrupting users (as long as you keep
the programming language interface stable).

[84]

Chapter 4

* If you have to deprecate, explain why, allow ample time for users to
upgrade, and provide as much support as possible (for example, an upgrade
guide with examples). Your users will appreciate it.

Large-cluster performance, cost, and
design trade-offs

In the previous section, we looked at live cluster upgrades. We explored various
techniques and how Kubernetes supports them. We also discussed difficult
problems such as breaking changes, data contract changes, data migration, and API
deprecation. In this section, we will consider the various options and configurations
of large clusters with different reliability and high-availability properties. When you
design your cluster, you need to understand your options and choose wisely based
on the needs of your organization.

In this section, we will cover various availability requirements, from best effort all
the way to the holy grail of zero downtime, and for each category of availability,
we will consider what it means from the perspectives of performance and cost.

Availability requirements

Different systems have very different requirements for reliability and availability.
Moreover, different sub-systems have very different requirements. For example,
billing systems are always a high priority because if the billing system is down,
you can't make money. But, even within the billing system, if the ability to dispute
charges is sometimes unavailable, it may be OK from the business point of view.

Best effort

Best effort means, counterintuitively, no guarantee whatsoever. If it works, great!
If it doesn't work-oh well. What are you going to do?. This level of reliability and
availability may be appropriate for internal components that change often and the
effort to make them robust is not worth it. It may also be appropriate for services
released in the wild as beta.

[85]

High Availability and Reliability

Best effort is great for developers. Developers can move fast and break things. They
are not worried about the consequences and they don't have to go through a gauntlet
of rigorous tests and approvals. The performance of best effort services may be better
than more robust services because it can often skip expensive steps such as verifying
requests, persisting intermediate results, and replicating data. But, on the other hand,
more robust services are often heavily optimized and their supporting hardware is
fine-tuned to their workload. The cost of best effort services is usually lower because
they don't need to employ redundancy, unless the operators neglect to do basic
capacity planning and just over-provision needlessly.

In the context of Kubernetes, the big question is whether all the services provided by
the cluster are best effort. If this is the case, then the cluster itself doesn't have to be
highly available. You can probably have a single master node with a single instance
of etcd, and Heapster or another monitoring solution may not need to be deployed.

Maintenance windows

In a system with maintenance windows, special times are dedicated for performing
various maintenance activities, such as applying security patches, upgrading
software, pruning log files, and database cleanups. With a maintenance window,

the system (or a sub-system) becomes unavailable. This is planned off-time and
often, users are notified. The benefit of maintenance windows is that you don't have
to worry how your maintenance actions are going to interact with live requests
coming into the system. It can drastically simplify operations. System administrators
love maintenance windows just as much as developers love best effort systems.

The downside, of course, is that the system is down during maintenance. It may only
be acceptable for systems where user activity is limited to certain times (US office
hours or week days only).

With Kubernetes, you can do maintenance windows by redirecting all incoming
requests via the load balancer to a web page (or JSON response) that notifies users
about the maintenance window.

But in most cases, the flexibility of Kubernetes should allow you to do live
maintenance. In extreme cases, such as upgrading the Kubernetes version, or the
switch from etcd v2 to etcd v3, you may want to resort to a maintenance window.
Blue-green deployment is another alternative. But the larger the cluster, the more
expansive the blue-green alternative because you must duplicate your entire
production cluster, which is both costly and can cause you to run into insufficient
quota issues.

[86]

Chapter 4

Quick recovery

Quick recovery is another important aspect of highly available clusters. Something
will go wrong at some point. Your unavailability clock starts running. How quickly
can you get back to normal?

Sometimes it's not up to you. For example, if your cloud provider has an outage (and
you didn't implement a federated cluster, as we will discuss later) then you just have
to sit and wait until they sort it out. But the most likely culprit is a problem with

a recent deployment. There are, of course, time-related issues, and even calendar-
related issues. Do you remember the leap-year bug that took down Microsoft Azure
on February 29, 2012?

The poster boy of quick recovery is, of course, the blue-green deployment-if you
keep the previous version running when the problem is discovered.

On the other hand, rolling updates mean that if the problem is discovered early then
most of your pods still run the previous version.

Data-related problems can take a long time to reverse, even if your backups are up to
date and your restore procedure actually works (definitely test this regularly).

Zero-downtime

Finally, we arrive at the zero-downtime system. There is no such thing as a
zero-downtime system. All systems fail and all software systems definitely fail.
Sometimes the failure is serious enough that the system or some of its services will
be down. Think about zero-downtime as a best effort distributed system design.
You design for zero-downtime in the sense that you provide a lot of redundancy
and mechanisms to address expected failures without bringing the system down. As
always, remember that, even if there is a business case for zero-downtime, it doesn't
mean that every component must be.

The plan for zero-downtime is as follows:

* Redundancy at every level: This is a required condition. You can't have a single
point of failure in your design because when it fails, your system is down.

* Automated hot swapping of failed components: Redundancy is only as
good as the ability of the redundant components to kick into action as soon
as the original component has failed. Some components can share the load
(for example, stateless web servers), so there is no need for explicit action. In
other cases, such as the Kubernetes scheduler and controller manager, you
need leader election in place to make sure the cluster keeps humming along.

[87]

High Availability and Reliability

Tons of monitoring and alerts to detect problems early: Even with careful
design, you may miss something or some implicit assumption might
invalidate your design. Often such subtle issues creep up on you and with
enough attention, you may discover it before it becomes an all-out system
failure. For example, suppose there is a mechanism in place to clean up old
log files when disk space is over 90% full, but for some reason, it doesn't
work. If you set an alert for when disk space is over 95% full, then you'll
catch it and be able

to prevent the system failure.

Tenacious testing before deployment to production: Comprehensive tests
have proven themselves as a reliable way to improve quality. It is hard
work to have comprehensive tests for something as complicated as a large
Kubernetes cluster running a massive distributed system, but you need it.
What should you test? Everything. That's right. For zero-downtime, you
need to test both the application and the infrastructure together. Your 100%
passing unit tests are a good start, but they don't provide much confidence
that when you deploy your application on your production Kubernetes
cluster it will still run as expected. The best tests are, of course, on your
production cluster after a blue-green deployment or identical cluster. In lieu
of a full-fledged identical cluster, consider a staging environment with as
much fidelity as possible to your production environment. Here is a list of
tests you should run. Each of these tests should be comprehensive because
if you leave something untested it might be broken:

° Unit tests

o

Acceptance tests
° Performance tests
Stress tests

° Rollback tests
Data restore tests

Penetration tests

Does that sound crazy? Good. Zero-downtime large-scale systems are hard.
There is a reason why Microsoft, Google, Amazon, Facebook, and other big
companies have tens of thousands of software engineers (combined) just
working on infrastructure, operations, and making sure things are up

and running.

[88]

Chapter 4

* Keep the raw data: For many systems, the data is the most critical asset.
If you keep the raw data, you can recover from any data corruption and
processed data loss that happens later. This will not really help you with
zero-downtime because it can take a while to re-process the raw data, but it
will help with zero-data loss, which is often more important. The downside
to this approach is that the raw data is often huge compared to the processed
data. A good option may be to store the raw data in cheaper storage
compared to the processed data.

* Perceived uptime as a last resort: OK. Some part of the system is down. You
may still be able to maintain some level of service. In many situations, you
may have access to a slightly stale version of the data or can let the user
access some other part of the system. It is not a great user experience, but
technically the system is still available.

Performance and data consistency

When you develop or operate distributed systems, the CAP theorem should always
be in the back of your mind. In this section, we will focus on highly available systems,
which means AP. To achieve high availability, we must sacrifice consistency. But

that doesn't mean that our system will have corrupt or arbitrary data. The keyword

is eventual consistency. Our system may be a little bit behind and provide access

to somewhat stale data, but eventually you'll get what you expect. When you start
thinking in terms of eventual consistency, it opens the door to potentially significant
performance improvements.

For example, if some important value is updated frequently (for example, every
second), but you send its value only every minute, you have reduced your network
traffic by a factor of 60 and you're on average only 30 seconds behind real-time
updates. This is very significant. This is huge. You have just scaled your system to
handle 60 times more users or requests.

[89]

High Availability and Reliability

Summary

In this chapter, we looked at reliable and highly available large-scale Kubernetes
clusters. This is arguably the sweet spot for Kubernetes. While it is useful to be able
to orchestrate a small cluster running a few containers, it is not necessary, but at
scale, you must have an orchestration solution in place you can trust to scale with
your system, and provide the tools and the best practices to do that.

You now have a solid understanding of the concepts of reliability and high
availability in distributed systems. You delved into the best practices for running
reliable and highly available Kubernetes clusters. You explored the nuances of live
Kubernetes cluster upgrades and you can make wise design choices regarding levels
of reliability and availability, as well as their performance and cost.

In Chapter 5, Running Kubernetes on Multiple Clouds and Cluster Federation, we will
address the important topic of security in Kubernetes. We will also discuss the
challenges of securing Kubernetes and the risks involved. We will learn all about
namespaces, service accounts, admission control, authentication, authorization,
and encryption.

[90]

Configuring Kubernetes
Security, Limits, and
Accounts

In Chapter 4, High Availability and Reliability, we looked at reliable and highly
available Kubernetes clusters, the basic concepts, the best practices, how to do live
cluster upgrades, and the many design trade-offs regarding performance and cost.

In this chapter, we will explore the important topic of security. Kubernetes clusters
are complicated systems composed of multiple layers of interacting components.
Isolation and compartmentalization of different layers is very important when
running critical applications. To secure the system and ensure proper access to
resources, capabilities, and data, we must first understand the unique challenges
facing Kubernetes as a general-purpose orchestration platform that runs unknown
workloads. Then we can take advantage of various security, isolation, and access
control mechanisms to make sure the cluster, the applications running on it, and the
data are all safe. We will discuss various best practices and when it is appropriate to
use each mechanism.

At the end of this chapter, you will have a good understanding of Kubernetes
security challenges. You will gain practical knowledge of how to harden Kubernetes
against various potential attacks, establishing defense in depth, and will even be able
to safely run a multi-tenant cluster while providing different users full isolation as
well as full control over their part of the cluster.

[91]

Confiquring Kubernetes Security, Limits, and Accounts

Understanding Kubernetes security
challenges

Kubernetes is a very flexible system that manages very low-level resources in a
generic way. Kubernetes itself can be deployed on many operating systems and
hardware or virtual-machine solutions on-premises or in the cloud. Kubernetes
runs workloads implemented by runtimes it interacts with through a well-
defined runtime interface, but without understanding how they are implemented.
Kubernetes manipulates critical resources such as networking, DNS, and resource
allocation on behalf or in service of applications it knows nothing about. This
means that Kubernetes is faced with the difficult task of providing good security
mechanisms and capabilities in a way that application administrators can utilize,
while protecting itself and the application administrators from common mistakes.

In this section, we will discuss security challenges in several layers or components of
a Kubernetes cluster: nodes, network, images, pods, and containers. Defense in depth
is an important security concept that requires systems to protect themselves at each
level, both to mitigate attacks that penetrated other layers and to limit the scope and
damage of a breach. Recognizing the challenges in each layer is the first step toward
defense in depth.

Node challenges

The nodes are the hosts of the runtime engines. If an attacker gets access to a node,
this is a serious threat. It can control at least the host itself and all the workloads
running on it. But it gets worse. The node has a kubelet running that talks to the API
server. A sophisticated attacker can replace the kubelet with a modified version and
effectively evade detection by communicating normally with the Kubernetes API
server, yet running its own workloads instead of the scheduled workloads. The node
will have access to shared resources and to secrets that may allow it to infiltrate even
deeper. A node breach is very serious, both because of the possible damage and the
difficulty of detecting it after the fact.

Nodes can be compromised at the physical level too. This is more relevant on
bare-metal machines where you can tell which hardware is assigned to the
Kubernetes cluster.

Another attack vector is resource drain. Imagine that your nodes become part of a
bot network that, unrelated to your Kubernetes cluster, just runs its own workloads
and drains CPU and memory. The danger here is that Kubernetes and your
infrastructure may scale automatically and allocate more resources.

[92]

Chapter 5

Another problem is installation of debugging and troubleshooting tools or modifying
configuration outside of automated deployment. Those are typically untested and, if
left behind and active, can lead to at least degraded performance, but can also cause
more sinister problems.

Where security is concerned, it's a numbers game. You want to understand the attack
surface of the system and where you're vulnerable. Let's list all the node challenges:

* Attacker takes control of the host

* Attacker replaces the kubelet

* Attacker takes control over a node that runs master components (API server,
scheduler, controller manager)

* Attacker gets physical access to a node
e Attacker drains resources unrelated to the Kubernetes cluster

* Self-inflicted damage through installation of debugging and troubleshooting
tools or configuration change

Network challenges

Any non-trivial Kubernetes cluster spans at least one network. There are many
challenges related to networking. You need to understand how your system
components are connected at a very fine level. Which components are supposed to
talk to each other? What network protocols do they use? What ports? What data do
they exchange?

There is a complex chain of exposing ports and capabilities or services:

e Container to host
¢ Host to host within the internal network

e Host to the world

Using overlay networks (which will be discussed more in Chapter 10, Advanced
Kubernetes Networking) can help with defense in depth where, even if an attacker
gains access to a Docker container, they are sandboxed and can't escape to the
underlay network infrastructure.

Discovering components is a big challenge too. There are several options here, such
as DNS, dedicated discovery services, and load balancers. Each comes with a set of
pros and cons that take careful planning and insight to get right for your situation.

[93]

Confiquring Kubernetes Security, Limits, and Accounts

Making sure two containers can find each other and exchange information is
not trivial.

You need to decide which resources and endpoints should be publicly accessible.
Then you need to come up with a proper way to authenticate users and services,
and authorize them to operate on resources.

Sensitive data must be encrypted on the way in and out of the cluster and sometimes
at rest, too. That means key management and safe key exchange, which is one of the
most difficult problems to solve in security.

If your cluster shares networking infrastructure with other Kubernetes clusters
or non-Kubernetes processes then you have to be diligent about isolation and
separation.

The ingredients are network policies, firewall rules, and software-defined
networking (SDN). The recipe is often customized. This is especially challenging
with on-premises and bare-metal clusters. Let's recap:

* Come up with a connectivity plan

* Choose components, protocols, and ports

* Figure out dynamic discovery

* Public versus private access

* Authentication and authorization

* Design firewall rules

* Decide on a network policy

* Key management and exchange
There is a constant tension between making it easy for containers, users, and services

to find and talk to each other at the network level versus locking down access and
preventing attacks through the network or attacks on the network itself.

Many of these challenges are not Kubernetes-specific. However, the fact that
Kubernetes is a generic platform that manages key infrastructure and deals with
low-level networking makes it necessary to think about dynamic and flexible
solutions that can integrate system-specific requirements into Kubernetes.

[94]

Chapter 5

Image challenges

Kubernetes runs containers that comply with one of its runtime engines. It has no
idea what these containers are doing. You can put certain limits on containers via
quotas. You can also limit their access to other parts of the network via network
policies. But, in the end, containers do need access to host resources, other hosts in
the network, distributed storage, and external services. The image determines the
behavior of a container. There are two categories of problems with images:

* Malicious images

* Vulnerable images

Malicious images are images that contain code or configuration that was designed by
an attacker to do some harm or collect information. Malicious images can be injected
into your image preparation pipeline, including any image repositories you use.

Vulnerable images are images you designed that just happen to contain some
vulnerability that allows an attacker to take control of the running container or
cause some other harm, including injecting their own code later.

It's hard to tell which category is worse. At the extreme, they are equivalent
because they allow seizing total control of the container. The other defenses are in
place (remember defense in depth?), and the restrictions put on the container will
determine how much damage it can do. Minimizing the danger of bad images is very
challenging. Fast-moving companies utilizing microservices may generate many
images daily. Verifying an image is not an easy task either. Consider, for example,
how Docker images are made of layers. The base images that contain the operating
system may become vulnerable any time a new variability is discovered. Moreover,
if you rely on base images prepared by someone else (very common) then malicious
code may find its way into those base images, which you have no control over and
you trust implicitly.

To summarize image challenges:

* Kubernetes doesn't know what images are doing

* Kubernetes must provide access to sensitive resources for the designated
function

* It's difficult to protect the image preparation and delivery pipeline (including
image repositories)

* Speed of development and deployment of new images conflict with careful
review changes

[95]

Confiquring Kubernetes Security, Limits, and Accounts

* Base images that contain the OS can easily get out of date and become
vulnerable

* Base images are often not under your control and might be more prone to
injection of malicious code

Configuration and deployment challenges

Kubernetes clusters are administered remotely. Various manifests and policies
determine the state of the cluster at each point in time. If an attacker gets access to a
machine with administrative control over the cluster, they can wreak havoc, such as
collecting information, injecting bad images, weakening security, and tempering with
logs. As usual, bugs and mistakes can be just as harmful, by neglecting important
security measures and leaving the cluster open for an attack. It is very common these
days for employees with administrative access to the cluster work remotely from
home or a coffee shop and have their laptops with them, where you are one kubect1
command from opening the flood gates.

Let's reiterate the challenges:

* Kubernetes is administered remotely

* An attacker with remote administrative access can gain complete control
over the cluster

* Configuration and deployment is typically more difficult to test than code

* Remote or out-of-office employees risk extended exposure, allowing an
attacker to gain access to their laptops or phones with administrative access

Pod and container challenges

In Kubernetes, pods are the unit of work and contain one or more containers. The
pod is just a grouping and deployment construct, but in practice containers that are
deployed together in the same pod usually interact through direct mechanisms. The
containers all share the same localhost network and often share mounted volumes
from the host. This easy integration between containers in the same pod can result in
exposing parts of the host to all the containers. This might allow one bad container
(either malicious or just vulnerable) to open the way for escalated attack on other
containers in the pod and later taking over the node itself. Master add-ons are often
collocated with master components and present that kind of danger, especially
because many of them are experimental. The same goes for DaemonSets that run
pods on every node.

[96]

Chapter 5

Multi-container pod challenges include the following:

* Same pod containers share the localhost network

* Same pod containers often share a mounted volume on the host filesystem
* Bad containers might easily poison other containers in the pod

* Bad containers have an easier time attacking the node

* Experimental add-ons that are collocated with master components might be
experimental and less secure

Organisational, cultural, and process
challenges

Security is often at loggerheads with productivity. This is a normal trade-off and
nothing to worry about. Traditionally, when developer and operations were
separate, this conflict was managed at an organizational level. Developers pushed for
more productivity and treated security requirements as the cost of doing business.
Operations controlled the production environment and were responsible for access
and security procedures. The DevOps movement brought down the wall between
developers and operations. Now, speed of development often takes a front seat.
Concepts such as continuous deployment deploying multiple times a day without
human intervention were unheard of in most organizations. Kubernetes was
designed for this new world of DevOps and clouds. But, it was developed based
on Google's experience. Google had a lot of time and skilled experts to develop

the proper processes and tooling to balance rapid deployments with security. For
smaller organizations, this balancing act might be very challenging and security
could be compromised.

The challenges facing organizations that adopt Kubernetes are as follows:
* Developers that control operation of Kubernetes might be less
security-oriented
* Speed of development might be considered more important

* Continuous deployment might make it difficult to detect certain security
problems before they reach production

* Smaller organizations might not have the knowledge and expertise to manage
security properly in Kubernetes clusters

[97]

Confiquring Kubernetes Security, Limits, and Accounts

In this section, we reviewed the many challenges you face when you try to build a
secure Kubernetes cluster. Most of these challenges are not specific to Kubernetes,
but using Kubernetes means there is a large part of your system that is generic and
is unaware of what the system is doing. This can pose problems when trying to lock
down a system. The challenges are spread across different levels:

* Node challenges

* Network challenges

* Image challenges

* Configuration and deployment challenges
* Pod and container challenges

* Organizational and process challenges

In the next section, we will look at the facilities Kubernetes provides to address some
of those challenges. Many of the challenges require solutions at the larger system
scope. It is important to realize that just utilizing all of Kubernetes security features
is not enough.

Hardening Kubernetes

The previous section cataloged and listed the variety of security challenges facing
developers and administrators deploying and maintaining Kubernetes clusters. In
this section, we will hone in on the design aspects, mechanisms, and features offered
by Kubernetes to address some of the challenges. You can get to a pretty good state
of security by judicious use of capabilities such as service accounts, network policies,
authentication, authorization, AppArmor, and secrets.

Remember that a Kubernetes cluster is one part of a bigger system that includes
other software systems, people, and processes. Kubernetes can't solve all problems.
You should always keep in mind general security principles, such as defense

in depth, need-to-know basis, and principle of least privilege. In addition, log
everything you think may be useful in the event of an attack and have alerts for early
detection when the system deviates from its state. It may be just a bug or it may be
an attack. Either way, you want to know about it and respond.

Understanding service accounts in Kubernetes

Kubernetes has regular users managed outside the cluster for humans connecting to
the cluster (for example, via the kubect1 command), and it has service accounts.

[98]

Chapter 5

Regular users are global and can access multiple namespaces in the cluster. Service
accounts are constrained to one namespace. This is important. It ensures namespace
isolation, because whenever the API server receives a request from a pod, its
credentials will apply only to its own namespace.

Kubernetes manages service accounts on behalf of the pods. Whenever Kubernetes
instantiates a pod it assigns the pod a service account. The service account identifies
all the pod processes when they interact with the API server. Each service account
has a set of credentials mounted in a secret volume. Each namespace has a default
service account called default. When you create a pod, it is automatically assigned
the default service account unless you specify a different service account.

You can create additional service accounts. Create a file called custom-service-
account . yaml with the following content:

apivVersion: vl
kind: ServiceAccount
metadata:

name: custom-service-account
Now type the following:
kubectl create -f custom-service-account.yaml
That will result in the following output:
serviceaccount "custom-service-account" created
Here is the service account listed alongside the default service account:

> kubectl get serviceAccounts

NAME SECRETS AGE
custom-service-account 1 3m
default 1 29d

Note that a secret was created automatically for your new service account.

To get more detail, type the following;:
kubectl get serviceAccounts/custom-service-account
apivVersion: vl

kind: ServiceAccount

[99]

Confiquring Kubernetes Security, Limits, and Accounts

metadata:
creationTimestamp: 2016-12-04T19:27:59Z
name: custom-service-account
namespace: default
resourceVersion: "1243113"

selflLink: /api/vl/namespaces/default/serviceaccounts/custom-service-
account

uid: c3cbec89-bab7-11e6-87e3-428251643d3a
secrets:

- name: custom-service-account-token-pn3lt

You can see the secret itself, which includes a ca. crt file and a token, by typing
the following:

kubectl get secrets/custom-service-account-token-pn3lt -o yaml

How does Kubernetes manage service accounts?

The API server has a dedicated component called service account admission
controller. It is responsible for checking, at pod creation time, if it has a custom
service account and, if it does, that the custom service account exists. If there is no
service account specified, then it assigns the default service account.

It also ensures the pod has ImagePullsecrets, which are necessary when images
need to be pulled from a remote image registry. If the pod spec doesn't have any
secrets, it uses the service account's ImagePullSecrets.

Finally, it adds a volume with an API token for API access and a volumeSource
mounted at /var/run/secrets/kubernetes.io/serviceaccount.

The API token is created and added to the secret by another component called the
Token Controller whenever a service account is created. The Token Controller also
monitors secrets and adds or removes tokens wherever secrets are added or removed
to/from a service account.

The service account controller ensures the default service account exists for every
namespace.

[100]

Chapter 5

Accessing the API server

Accessing the API requires a chain of steps that include authentication,
authorization, and admission control. At each stage the request may be rejected.
Each stage consists of multiple plugins that are chained together. The following
diagram illustrates this:

> >
o]
4
>
Authentication Authorization Admission
Control

Kubernetes

Authenticating users

When you first create the cluster, a client certificate and key are created for you.
Kubectl uses them to authenticate itself to the API server and vice versa over TLS
on port 443 (an encrypted HTTPS connection). You can find your client key and
certificate by checking your .kube/config file:

> cat C:\Users\the g\.kube\config | grep client

client-certificate: C:\Users\the g\.minikube\apiserver.crt

client-key: C:\Users\the g\.minikubelapiserver.key

* Note that if multiple users need to access the cluster, the creator
“ should provide the client certificate and key to the other users in
a secure manner.

[101]

Confiquring Kubernetes Security, Limits, and Accounts

This is just establishing basic trust with the Kubernetes API server itself. You're

not authenticated yet. Various authentication modules may look at the request and
check for various additional client certificates, password, tokens, and JWT tokens (for
service accounts). Most requests require an authenticated user (either a regular user
or a service account), although there are some anonymous requests too. If a request
fails to authenticate with all the authenticators it will be rejected with a 401 HTTP
status code (unauthorized, which is a bit of a misnomer).

The cluster administrator determines what authentication strategies to use by
providing various command-line arguments to the API server:

* --client-ca-file=<filename> (for x509 client certificates specified
in a file)

* --token-auth-file=<filename> (for bearer tokens specified in a file)

* --basic-auth-file=<filename> (for user/password pairs specified
in a file)

Service accounts use an automatically loaded authentication plugin. The
administrator may provide two optional flags:

* --service-account-key-file=<filename> (PEM encoded key for signing
bearer tokens. If unspecified, the API server's TLS private key will be used.)

* --service-account-lookup (If enabled, tokens that are deleted from the
API will be revoked.)

There are several other methods, such as open ID connect, web hook, keystone (the
OpenStack identity service), and authenticating proxy. The main theme is that the
authentication stage is extensible and can support any authentication mechanism.

The various authentication plugins will examine the request and, based on the
provided credentials, will associate the following attributes: username (user-friendly
name), UID (unique identifier and more consistent than the username), and groups
(a set of group names the user belongs to). There may also be extra fields, which are
just maps of string keys to string values.

The authenticator has no knowledge whatsoever of what a particular user is allowed
to do. They just map a set of credentials to a set of identities. It is the job of the
authorizers to figure out if the request is valid for the authenticated user.

[102]

Chapter 5

Authorizing requests

Once a user is authenticated, authorization commences. Kubernetes has generic
authorization semantics. A set of authorization plugins receives the request, which
includes information such as the authenticated username and the request's verb
(1ist, get, watch, create, and so on). If any authorization plugin authorizes the
request, it may continue. If all authorizers rejected the request, it will be rejected
with a 403 HTTP status code (forbidden).

The cluster administrator determines what authorization plugins to use by
specifying the - - -authorization-mode command-line flag, which is a comma-
separated list of plugin names. The following modes are supported:

--authorization-mode=AlwaysDeny blocks all requests (used in tests).

--authorization-mode=AlwaysAllow allows all requests; use if you don't
need authorization.

--authorization-mode=ABAC allows for a simple local-file-based,
user-configured authorization policy. ABAC stands for Attribute-Based
Access Control.

--authorization-mode=RBAC is an experimental implementation that
allows for authorization to be driven by the Kubernetes API. RBAC stands
for Roles-Based Access Control.

--authorization-mode=Webhook allows for authorization to be driven by a
remote service using REST.

You can add your own custom authorization plugin by implementing the following
straightforward Go interface:

type Authorizer interface {

Authorize(a Attributes) (authorized bool, reason string, err error)

}

The Attributes input argument is also an interface that provides all the information
you need to make an authorization decision:

type Attributes interface {

GetUser () user.Info

GetVerb () string

IsReadOnly () bool

GetNamespace() string

GetResource() string

GetSubresource() string

[103]

Confiquring Kubernetes Security, Limits, and Accounts

GetName () string
GetAPIGroup () string
GetAPIVersion() string
IsResourceRequest () bool

GetPath() string

Using admission control plugins

OK. The request was authorized, but there is one more step before it can be executed.
The request must go through a gauntlet of admission-control plugins. Unlike the
authenticators and the authorizers, if a single admission controller rejects a request,
it is denied.

Admission controllers are a neat concept. The idea is that there may be global
cluster concerns that could be grounds for rejecting a request. Without admission
controllers, all authorizers would have to be aware of these concerns and reject
the request. But, with admission controllers, this logic can be performed once. In
addition, an admission controller may modify the request. As usual, the cluster
administrator decides which admission control plugins run by providing a
command-line argument called admission-control. The value is a comma-separated
and ordered list of plugins.

Let's look at what plugins are available:

* AlwaysAdmit: Passthrough (I'm not sure why it's needed)
* AlwaysDeny: Reject everything (useful for testing)

* ImagePolicyWebhook: This complicated plugin connects to an external
backend to decide whether a request should be rejected based on the image

* ServiceAccount: Automation for service accounts
* ResourceQuota: Reject requests that violate the namespace's resource quota
* LimitRanger: Reject requests that violate resource limits

* InitialResources (experimental): Assigns compute resources and limit based
on historical usage, if not specified

* NamespaceLifecycle: Reject requests for creating objects in terminating or
non-existing namespaces

* DefaultStorageClass: Adds a default storage class to requests for the creation
of a PersistentVolumeClaim that doesn't specify a storage class

[104]

Chapter 5

As you can see, the admission control plugins have very diverse functionality. They
support namespace-wide policies and enforce validity of requests mostly from a
resource management point of view. This frees the authorization plugins to focus on
valid operations. The ImagePolicyWebHook is the gateway to validating images,
which is a big challenge.

The division of responsibility for validating an incoming request through the
separate stages of authentication, authorization, and admission, each with its own
plugins, makes a complicated process much more manageable to understand

and use.

Securing pods

Pod security is a major concern, since Kubernetes schedules the pods and lets them
run. There are several independent mechanisms for securing pods and containers.
Together these mechanisms support defense in depth, where, even if an attacker
(or a mistake) bypasses one mechanism, it will get blocked by another.

Using a private image repository

This approach gives you a lot of confidence that your cluster will only pull images
that you have previously vetted, and you can manage upgrades better. You can
Conﬁgureyour$HOME/.dockercfgor$HOME/.docker/config.json(Mleach
node. But, on many cloud providers, you can't do it because nodes are provisioned
automatically for you.

ImagePullSecrets

This approach is recommended for clusters on cloud providers. The idea is that the
credentials for the registry will be provided by the pod, so it doesn't matter what
node it is scheduled to run on. This circumvents the problem with .dockercfg

at the node level.

First, you need to create a secret object for the credentials:

> kubectl create secret the-registry-secret
- -docker-server=<docker registry server>
--docker-username=<username>
- -docker-password=<password>
--docker-email=<email>

secret "docker-registry-secret" created.

[105]

Confiquring Kubernetes Security, Limits, and Accounts

You can create secrets for multiple registries (or multiple users for the same registry)
if needed. The kubelet will combine all the ImagePullSecrets.

But, since pods can access secrets only in their own namespace, you must create a
secret on each namespace where you want the pod to run.

Once the secret is defined, you can add it to the pod spec and run some pods on
your cluster. The pod will use the credentials from the secret to pull images from
the target image registry:
apivVersion: vl
kind: Pod
metadata:

name: cool-pod

namespace: the-namespace
spec:

containers:

- name: cool-container
image: cool/app:vl
imagePullSecrets:

- name: the-registry-secret

Specifying a security context

A security context is a set of operating-system-level security settings such as UID,
gid, capabilities, and SELinux role. These settings are applied at the container level
as a container security content. You can specify a pod security context that will apply
to all the containers in the pod. The pod security context can also apply its security
settings (in particular, fsGroup and seLinuxOptions) to volumes.

Here is a sample pod security context:

apivVersion: vl
kind: Pod
metadata:

name: hello-world
spec:

containers:

securityContext:

fsGroup: 1234

[106]

Chapter 5

supplementalGroups: [5678]
seLinuxOptions:

level: "s0:cl23,c456"

The container security context is applied to each container and it overrides the

pod security context. It is embedded in the containers section of the pod manifest.
Container context settings can't be applied to volumes, which remain at the pod level.

Here is a sample container security content:

apiVersion: vl
kind: Pod
metadata:
name: hello-world
spec:
containers:
- name: hello-world-container
The container definition
...
securityContext:
privileged: true
seLinuxOptions:

level: "s0:cl23,c456"

Protecting your cluster with AppArmor

AppArmor is a Linux kernel security module. With AppArmor, you can restrict a
process running in a container to a limited set of resources such as network access,
Linux capabilities, and file permissions. You configure AppArmor though profiles.

Requirements

AppArmor support was added as Beta in Kubernetes 1.4. It is not available for

every operating system, so you must choose a supported OS distribution in order to
take advantage of it. Ubuntu and SUSE Linux support AppArmor and enable it by
default. Other distributions have optional support. To check if AppArmor is enabled,

type the following:

cat /sys/module/apparmor/parameters/enabled

Y

[107]

Confiquring Kubernetes Security, Limits, and Accounts

If the result is Y then it's enabled.
The profile must be loaded into the kernel. Check the following file:
/sys/kernel/security/apparmor/profiles

Also, only the Docker runtime supports AppArmor at this time.

Securing a pod with AppArmor

Since AppArmor is still in Beta, you specify the metadata as annotations and not as
bonafide fields. When it gets out of Beta that will change.

To apply a profile to a container, add the following annotation:

container.apparmor.security.beta.kubernetes.io/<container-name>:
<profile-ref>

The profile reference can be either the default profile, runtime/default, or a profile
file on the host 1ocalhost/<profile-names.

Here is a sample profile that prevents writing to files:

#include <tunables/globals>

profile k8s-apparmor-example-deny-write flags=(attach disconnected)
#include <abstractions/bases>

file,

Deny all file writes.
deny /** w,

}

AppArmor is not a Kubernetes resource, so the format is not the YAML or JSON
you're familiar with.

To verify the profile was attached correctly, check the attributes of process 1:
kubectl exec <pod-name> cat /proc/l/attr/current

Pods can be scheduled on any node in the cluster by default. This means the profile
should be loaded into every node. This is a classic use case for DaemonSet.

[108]

Chapter 5

Writing AppArmor profiles

Writing profiles for AppArmor by hand is not trivial. There are some tools that
can help: aa-genprof and aa-logprof can generate a profile for you and assist in
fine-tuning it by running your application with AppArmor in complain mode. The
tools keep track of your application's activity and AppArmor warnings, and create
a corresponding profile. This approach works, but it feels clunky.

My favorite tool is bane (https://github.com/jessfraz/bane), which generates
AppArmor profiles from a simpler profile language based on TOML syntax. Bane
profiles are very readable and easy to grasp. Here is a snippet from a bane profile:
Name = "nginx-sample"
[Filesystem]
read only paths for the container
ReadOnlyPaths = [

n"/bin/**n,

"/boot/**",

"/dev/**",

paths where you want to log on write

LogOnWritePaths = [

ll/**ll

allowed capabilities
[Capabilities]
Allow = [

"chown",

"setuid",

[Network]
Raw = false
Packet = false

Protocols = [

[109]

https://github.com/jessfraz/bane

Confiquring Kubernetes Security, Limits, and Accounts

"tcp",
||udp ",
n icmp]

1

The generated AppArmor profile is pretty gnarly.

Pod security policies

Pod security policy (PSP) is available as Beta in Kubernetes 1.4. It must be enabled,
and you must also enable the PSP admission control to use them. A PSP is defined
at the cluster-level and defines the security context for pods. There are a couple

of differences between using a PSP and directly specifying a security content in

the pod manifest as we did earlier:

* Apply the same policy to multiple pods or containers

* Let the administrator control pod creation so users don't create pods with
inappropriate security contexts

* Dynamically generate different security content for a pod via the admission
controller

PSPs really scale the concept of security contexts. Typically, you'll have a relatively
small number of security policies compared to the number of pods (or rather,

pod templates). This means that many pod templates and containers will have the
same security policy. Without PSP, you have to manage it individually for each
pod manifest.

Here is a sample PSP that allows everything:
{

"kind": "PodSecurityPolicy",
"apiVersion":"extensions/vlbetal",
"metadata": {
"name": "permissive"
"spec": {
"seLinux": {
"rule": "RunAsAny"
"supplementalGroups": {

"rule": "RunAsAny"

[110]

Chapter 5

}l
"runAsUser": {

"rule": "RunAsAny"
}l
"fsGroup": {

"rule": "RunAsAny"
}l
llvolmnesll . [ll*ll]

Managing network policies

Node, pod, and container security is imperative, but it's not enough. Network
segmentation is critical to design a secure Kubernetes clusters that allows multi-
tenancy, as well as to minimize the impact of security breaches. Defense in depth
mandates that you compartmentalize parts of the system that don't need to talk to
each other, as well as carefully managing the direction, protocols, and ports of traffic.

Network policy allows you fine-grained control and proper network segmentation
of your cluster. At the core, a network policy is a set of firewall rules applied to a set
of namespaces and pods selected by labels. This a very flexible because labels can
define virtual network segments and be managed as a Kubernetes resource.

Choosing a supported networking solution

Some networking backends don't support network policies. For example, the popular
Flannel can't be used to apply policies.

Here is a list of supported network backends:

e (Calico
e WeaveNet
e (Canal

e Romana

[111]

Confiquring Kubernetes Security, Limits, and Accounts

Defining a network policy

You define a network policy using a standard YAML manifest.
Here is a sample policy:

apiVersion: extensions/vlbetal
kind: NetworkPolicy
metadata:
name: the-network-policy
namespace: default
spec:
podSelector:
matchLabels:
role: db
ingress:
- from:
- namespaceSelector:
matchLabels:
project: cool-project
- podSelector:
matchLabels:
role: frontend
ports:
- protocol: tcp
port: 6379

The spec part has two important parts, the podselector and the ingress. The
podSelector governs which pods this network policy applies to. The ingress
governs which namespaces and pods can access these pods and which protocols
and ports they can use.

In the sample network policy, the pod selector specified the target for the network
policy to be all the pods that are labeled role: db. The ingress section has a from
sub-section with a namespace selector and a pod selector. All the namespaces in the
cluster that are labeled project: cool-project, and within these namespaces,

all the pods that are labeled role: frontend, can access the target pods labeled
role: db. The ports section defines a list of pairs (protocol and port) that further
restrict what protocols and ports are allowed. In this case, the protocol is tcp and
the port is 6379 (Redis standard port).

[112]

Chapter 5

_ Note that the network policy is cluster-wide, so pods from multiple
namespaces in the cluster can access the target namespace. The current
e namespace is always included, so even if it doesn't have the project:
cool label, pods with role: frontend can still have access.

It's important to realize that the network policy operates in whitelist fashion. By
default, all access is forbidden, and the network policy can open certain protocols
and ports to certain pods that match the labels. This means that, if your networking
solution doesn't support network policies, all access will be denied.

Another implication of the whitelist nature is that, if multiple network policies exist,
the union of all the rules apply. If one policy gives access to port 1234 and another
gives access to port 5678 for the same set of pods, then a pod may access through
either 1234 or 5678.

Using secrets

Secrets are paramount in secure systems. They can be credentials such as username
and password, access tokens, API keys, or crypto keys. Secrets are typically small. If
you have large amounts of data you want to protect, you should encrypt it and keep
the encryption/decryption key as secrets.

Storing secrets in Kubernetes

Kubernetes stores secrets in etcd as plaintext. This means that direct access to etcd
should be limited and carefully guarded. Secrets are managed at the namespace
level. Pods can mount secrets either as files via secret volumes or as environment
variables. From a security standpoint, this means that any user or service that

can create a pod in a namespace can have access to any secret managed for that
namespace. If you want to limit access to a secret, put it in a namespace accessible
to a limited set of users or services.

When a secret is mounted to a pod it is never written to disk. It is stored in tmpfs.
When the kubelet communicates with the API server it is uses TLS normally, so the
secret is protected in transit.

Creating secrets

Secrets must be created before you try to create a pod that requires them. The secret
must exist, otherwise the pod creation will fail.

[113]

Confiquring Kubernetes Security, Limits, and Accounts

You can create secrets with the following command:

kubectl create secret.

Here I create a generic secret called hush-hash, which contains two keys, username
and password:

kubectl create secret generic hush-hush --from-literal=username=tobias
--from-literal=password=cutoffs

The resulting secret is opaque:

> kubectl describe secrets/hush-hush

Name: hush-hush
Namespace: default
Labels: <none>
Annotations: <none>
Type: Opaque

Data

password: 7 bytes
username: 6 bytes

You can create secrets from files using - - from-file instead of - -from-literal, and
you can also create secrets manually if you encode the secret value as base64.

Key names inside a secret must follow the rules for DNS sub-domains (without the
leading dor).

Decoding secrets

To get the content of a secret you can use kubectl get secret:

> kubectl get secrets/hush-hush -o yaml
apivVersion: vl
data:
password: Y3VO0b2Zmcw==
username: dG9iaWFz
kind: Secret

metadata:

[114]

Chapter 5

creationTimestamp: 2016-12-06T22:42:54Z
name: hush-hush
namespace: default
resourceVersion: "1450109"
selflLink: /api/vl/namespaces/default/secrets/hush-hush
uid: 537bd4d6-bc05-11e6-927a-26£559225611
type: Opaque

The values are base64-encoded. You need to decode them yourself:

> echo "Y3V0b2Zmcw==" | base64 -decode

cutoofs

Using secrets in a container

Containers can access secrets as files by mounting volumes from the pod. Another
approach is to access the secrets as environment variables. Finally, a container can
access the Kubernetes API directly or use kubectl get secret.

To use a secret mounted as a volume, the pod manifest should declare the volume
and it should be mounted in the container's spec:

{
"apiVersion": "v1",
"kind": "Pod",
"metadata": {
"name": "pod-with-secret",
"namespace": "default"
3
"spec": {
"containers": [{
"name": "the-container",
"image": "redis",
"volumeMounts": [{
"name": "secret-volume",
"mountPath": "/mnt/secret-volume",
"readOnly": true
H
1.

[115]

Confiquring Kubernetes Security, Limits, and Accounts

"volumes": [{
"name": "secret-volume",
"secret": {
"secretName": "hush-hush"
}

}

The volume name (secret-volume) binds the pod volume to the mount in the
container. Multiple containers can mount the same volume.

When this pod is running, the username and password are available as files under /
etc/secret-volume:

> kubectl exec pod-with-secret cat /mnt/secret-volume/username
tobias

> kubectl exec pod-with-secret cat /mnt/secret-volume/password
cutoffs

Running a multi-user cluster

In this section, we will look briefly at the option to use a single cluster to host
systems for multiple users or multiple user communities. The idea is that those
users are totally isolated and may not even be aware that they share the cluster with
other users. Each user community will have its own resources, and there will be

no communication between them (except maybe through public endpoints). The
Kubernetes namespace concept is the ultimate expression of this idea.

The case for a multi-user cluster

Why should you run a single cluster for multiple isolated users or deployments? Isn't
it simpler to just have a dedicated cluster for each user? There are two main reasons:
cost and operational complexity. If you have many relatively small deployments
and you want to create a dedicated cluster to each one, then you'll have a separate
master node and possibly a three-node etcd cluster for each one. That can add

up. Operational complexity is very important too. Managing tens or hundreds or
thousands of independent clusters is no picnic. Every upgrade and every patch
needs to be applied to each cluster. Operations might fail and you'll have to manage
a fleet of clusters where some of them are in slightly different state than the others.
Meta-operations across all clusters may be more difficult. You'll have to aggregate
and write your tools to perform operations and collect data from all clusters.

[116]

Chapter 5

Let's look at some use cases and requirements for multiple isolated communities
or deployments:

* A platform or service provider for <Blank>-as-a-service

* Managing separate testing, staging, and production environments

* Delegating responsibility to community/deployment admins

* Enforcing resource quotas and limits on each community

* Users see only resources in their community

Using namespaces for safe multi-tenancy

Kubernetes namespaces are the perfect answer to safe multi-tenant clusters. This is
not a surprise as this was one of the design goals of namespaces.

You can easily create namespaces in addition to the built-in kube-system and default.
Here is a YAML file that will create a new namespace called custom-namespace. All
it has is a metadata item called name. It doesn't get any simpler:

apivVersion: vl
kind: Namespace
metadata:

name: custom-namespace

Let's create the namespace:

> Kubectl create -f custom-namespace.yaml

namespace "custom-namespace" created

> kubectl get namesapces

NAME STATUS AGE
custom-namespace Active 39s
default Active 324
kube-system Active 324

The status field can be active or terminating. When you delete a namespace, it will get
into the terminating state. When the namespace is in this state you will not be able
to create new resources in this namespace. This simplifies the clean-up of namespace
resources and ensures the namespace is really deleted. Without it, the replication
controller might create new pods when existing pods are deleted.

[117]

Confiquring Kubernetes Security, Limits, and Accounts

To work with a namespace, you add the - -namespace argument to kubect1
commands:

> kubectl create -f some-pod.yaml --namespace=custom-namespace

pod "some-pod" created

Listing pods in the custom-namespace returns only the pod we just created:

> kubectl get pods --namespace=custom-namespace
NAME READY STATUS RESTARTS AGE

some-pod 1/1 Running 0 6m

Listing pods without the namespace returns the pods in the default namespace:

> Kubectl get pods

NAME READY STATUS RESTARTS AGE
echo-3580479493-n66n4 1/1 Running 16 324
leader-elector-191609294-1t95t 1/1 Running 4 9d
leader-elector-191609294-m6£fb6 1/1 Running 4 9d
leader-elector-191609294-piu8p 1/1 Running 4 9d
pod-with-secret 1/1 Running 1 1h

Avoiding namespace pitfalls

Namespaces are great, but they can add some friction. When you use just the

default namespace, you can simply omit the namespace. When using multiple
namespaces, you must qualify everything with the namespace. This can add some
burden, but doesn't present any danger. However, if some users (for example, cluster
administrators) can access multiple namespaces, then you're open to accidentally
modifying or querying the wrong namespace. The best way to avoid this situation

is to hermetically seal the namespace and require different users and credentials

for each namespace.

Also, tools that help make clear what namespace you're operating on (for example,
shell prompt if working from commandline or listing the namespace prominently
in a web interface).

Make sure that users that can operate on a dedicated namespace don't have access
to the default namespace. Otherwise, every time they forget to specify a namespace,
they'll operate quietly on the default namespace.

[118]

Chapter 5

Summary

In this chapter, we covered the many security challenges facing developers and
administrators building systems and deploying applications on Kubernetes clusters.
But we also explored the many security features and the flexible plugin-based security
model that provides many ways to limit, control, and manage containers, pods, and
nodes. Kubernetes already provides versatile solutions to most security challenges,
and it will only get better as capabilities such as AppArmor and PodSecurityPolicy
move from Beta status to general availability. Finally, we considered how to use
namespaces to support multiple user communities or deployments in the same
Kubernetes cluster.

In Chapter 6, Using Critical Kubernetes Resources, we will look in detail into many
Kubernetes resources and concepts, and how to use them and combine them
effectively. The Kubernetes object model is built on top of a solid foundation of a
small number of generic concepts such as resources, manifests, and metadata. This
empowers an extensible, yet surprisingly consistent, object model to expose a very
diverse set of capabilities for developers and administrators.

[119]

Using Critical Kubernetes
Resources

In this chapter, we will design a massive-scale platform that will challenge
Kubernetes' capabilities and scalability. The Hue platform is all about creating an
omniscient and omnipotent digital assistant. Hue is a digital extension of you. Hue
will help you do anything, find anything, and, in many cases will do a lot on your
behalf. It will obviously need to store a lot information, integrate with many external
services, respond to notifications and events, and be smart about interacting with you.

We will take the opportunity in this chapter to get to know kubectl and related
tools a little better and explore in detail familiar resources we've seen before, such
as pods, as well as new resources such as Jobs. At the end of this chapter, you will
have a clear picture of how impressive Kubernetes is and how it can be used as the
foundation for hugely complex systems.

Designing the Hue platform

In this section, we will set the stage and define the scope of the amazing Hue platform.
Hue is not Big Brother, Hue is Little Brother! Hue will do whatever you allow it to do.
Hue will be able to do a lot, but some people might be concerned, so you get to pick
how much or how little Hue can help you with. Get ready for a wild ride!

Defining the scope of Hue

Hue will be manage your digital persona. It will know you better than you know
yourself. Here is a list of some of the services Hue can manage and help you with:

* Search and content aggregation
e Medical

[121]

Using Critical Kubernetes Resources

¢ Smart home

* Finance - bank, savings, retirement, investing

* Office

* Social

* Travel

* Wellbeing
* Family

¢ Smart reminders and notifications

Let's think of the possibilities. Hue will know you, but also know your
friends, the aggregate of other users across all domains. Hue will update
its models in real-time. It will not be confused by stale data. It will act

on your behalf, present relevant information, and learn your preferences
continuously. It can recommend new shows or books that you may like,
make restaurant reservations based on your schedule and your family or
friends, and control your house automation.

* Security, identity, and privacy

Hue is your proxy online. The ramifications of someone stealing your

Hue identity, or even just eavesdropping on your Hue interaction, are
devastating. Potential users may even be reluctant to trust the Hue
organization with their identity. Let's devise a non-trust system where users
have the power to pull the plug on Hue at any time. Here are a few ideas in
the right direction.

* Strong identity via a dedicated device with multi-factor authorization,
including multiple biometric reasons:

o

Frequently rotating credentials

° Quick service pause and identity reverification of all external services

(will require original proof of identity to each provider)

The Hue backend will interact with all external services via
short-lived tokens

Architecting Hue as a collection of loosely-coupled microservices

Hue's architecture will need to support enormous variation and flexibility. It
will also need to be very extensible where existing capabilities and external
services are constantly upgraded, and new capabilities and external services
are integrated into the platform. That level of scale calls for microservices,
where each capability or service is totally independent of other services
except for well-defined interfaces via standard and/or discoverable APIs.

[122]

Chapter 6

Hue components

Before embarking on our microservice journey, let's review the types of component
we need to construct for Hue.

User profile

The user profile is a major component, with lots of sub-components. It is the essence
of the user, their preferences, history across every area, and everything that Hue
knows about them.

User graph

The user graph component models networks of interactions between users across
multiple domains. Each user participates in multiple networks: social networks such
as Facebook and Twitter, professional networks, hobby networks, and volunteering
communities. Some of these networks are ad-hoc and Hue will be able to structure
them to benefit users. Hue can take advantage of the rich profiles it has of user
connections to improve interactions even without exposing private information.

Identity

Identity management is critical, as mentioned previously, so it deserves a separate
component. A user may prefer to manage multiple mutually exclusive profiles with
separate identities. For example, maybe users are not comfortable with mixing their
health profile with their social profile at the risk of inadvertently exposing personal
health information to their friends.

Authorizer

The authorizer is a critical component where the user explicitly authorizes Hue to
perform certain actions or collect various data on its behalf. This includes access
to physical devices, accounts of external services, and level of initiative.

External service

Hue is an aggregator of external services. It is not designed to replace your bank,
your health provider, or your social network. It will keep a lot of metadata about
your activities, but the content will remain with your external services. Each external
service will require a dedicated component to interact with the external service API
and policies. When no APl is available, Hue emulates the user by automating the
browser or native apps.

[123]

Using Critical Kubernetes Resources

Generic sensor

A big part of Hue's value proposition is to act on the user's behalf. In order to do

that effectively, Hue needs to be aware of various events. For example, if Hue
reserved a vacation for you but it senses that a cheaper flight is available, it can either
automatically change your flight or ask you for confirmation. There is an infinite
number of things to sense. To reign in sensing, a generic sensor is needed. The
generic sensor will be extensible, but exposes a generic interface that the other

parts of Hue can utilize uniformly even as more and more sensors are added.

Generic actuator

This is the counterpart of the generic sensor. Hue needs to perform actions on your
behalf. For example, reserving a flight. To do that, Hue needs a generic actuator
that can be extended to support particular functions but can interact with other
components, such as the identity manager and the authorizer, in a uniform fashion.

User learner

This is the brain of Hue. It will constantly monitor all your interactions (that you
authorize) and update its model of you. This will allow Hue to become more and
more useful over time, predict what you need and what will interest you, provide
better choices, surface more relevant information at the right time, and avoid being
annoying and overbearing.

Hue microservices

The complexity of each of the components is enormous. Some of the components,
such as the external service, the generic sensor, and generic actuator, will need to
operate across hundreds, thousands, or more external services that constantly change
outside the control of Hue. Even the user learner needs to learn the user's preferences
across many areas and domains. Microservices address this need by allowing Hue

to evolve gradually and grow more isolated capabilities without collapsing under

its own complexity. Each microservice interacts with generic Hue infrastructure
services through standard interfaces and, optionally, with a few other services
through well-defined and versioned interfaces. The surface area of each microservice
is manageable and the orchestration between microservices is based on standard
best practices.

[124]

Chapter 6

Plugins

Plugins are the key to extending Hue without a proliferation of interfaces. The thing
about plugins is that often, you need plugin chains that cross multiple abstraction
layers. For example, if we want to add a new integration for Hue with YouTube,
then you can collect a lot of YouTube-specific information - your channels, favorite
videos, recommendation, and videos you watched. To display this information to
users and allow them to act on it, you need plugins across multiple components
and eventually in the user interface as well. Smart design will help by aggregating
categories of actions such as recommendations, selections, and delayed notifications
to many different services.

The great thing about plugins is that they can be developed by anyone. Initially, the
Hue development team will have to develop the plugins, but as Hue becomes more
popular, external services will want to integrate with Hue and build Hue plugins to
enable their service.

That will lead, of course, to a whole eco system of plugin registration, approval,
and curation.

Data stores
Hue will need several types of data store, and multiple instances of each type, to

manage its data and metadata:
* Relational database
* Graph database
* Time-series database
* In-memory caching

Due to the scope of Hue, each one of these databases will have to be clustered and
distributed.

Stateless microservices

The microservices should be mostly stateless. This will allow specific instances to be
started and killed quickly, and migrated across the infrastructure as necessary.

The state will be managed by the stores and accessed by the microservices with
short-lived access tokens.

[125]

Using Critical Kubernetes Resources

Queue-based interactions

All these microservices need to talk to each other. Users will ask Hue to perform
tasks on their behalf. External services will notify Hue of various events. Queues
coupled with stateless microservices provide the perfect solution. Multiple instances
of each microservice will listen to various queues and respond when relevant
events or requests are popped from the queue. This arrangement is very robust and
easy to scale. Every component can be redundant and highly available. While each
component is fallible, the system is very fault-tolerant.

A queue can be used for asynchronous RPC or request-response style interactions
too, where the calling instance provides a private queue name and the collie posts
the response to the private queue.

Planning workflows

Hue often needs to support workflows. A typical workflow will get a high-level
task, such as make a dentist appointment; it will extract the user's dentist details
and schedule, match it with the user's schedule, choose between multiple options,
potentially confirm with the user, make the appointment, and set up a reminder. We
can classify workflows into fully automatic and human workflows where humans
are involved. Then there are workflows that involve spending money.

Automatic workflows

Automatic workflows don't require human intervention. Hue has full authority
to execute all the steps from start to finish. The more autonomy the user allocates
to Hue the more effective it will be. The user should be able to view and audit all
workflows, past and present.

Human workflows

Human workflows require interaction with a human. Most often it will be the user
itself that needs to make a choice from multiple options or approve an action. But it
may involve a person on another service. For example, to make an appointment with
a dentist, you may have to get a list of available times from the secretary.

Budget-aware workflows

Some workflows, such as paying bills or purchasing a gift, require spending money.
While, in theory, Hue can be granted unlimited access to the user's bank account,
most users will probably be more comfortable with setting budgets for different
workflows or just making spending a human-approved activity.

[126]

Chapter 6

Using Kubernetes to build the Hue
platform

In this section, we will look at various Kubernetes resources and how they can help
us build Hue. First, we'll get to know the versatile kubectl a little better, then we
will look at how to run long-running processes in Kubernetes, exposing services
internally and externally, using namespaces to limit access, launching ad-hoc jobs,
and mixing in non-cluster components. Obviously, Hue is a huge project, so we will
demonstrate the ideas on a local Minikube cluster and not actually build a real Hue
Kubernetes cluster.

Using Kubectl effectively

Kubectl is your Swiss Army Knife. It can do pretty much anything around the
cluster. Under the hood, kubectl connects to your cluster via the APL It reads your
.kube/config file, which contains information necessary to connect to your cluster
or clusters. The commands are divided into multiple categories:

* Generic commands - Deal with resources in a generic way: create, get,
delete, run, apply, patch, replace, and so on

* Cluster management commands - Deal with nodes and the cluster at large:
cluster-info, certificate, drain, and so on

* Troubleshooting commands - Describe, logs, attach, exec, and so on

* Deployment commands - Deal with deployment and scaling: rollout, scale,
auto-scale, and so on

* Settings commands - Deal with labels and annotations: label, annotate,
and so on

* Misc commands - Help, config, and version
You can view the configuration with Kubernetes config view.

Here is the configuration for a Minikube cluster:

apivVersion: vl
clusters:
- cluster:
certificate-authority: C:\Users\the g\.minikube\ca.crt
server: https://192.168.99.100:8443
name: minikube

contexts:

[127]

Using Critical Kubernetes Resources

- context:
cluster: minikube
user: minikube
name: minikube
current-context: minikube
kind: Config
preferences: {}
users:
- name: minikube
user:
client-certificate: C:\Users\the g\.minikube\apiserver.crt

client-key: C:\Users\the g\.minikubelapiserver.key

Understanding Kubectl resource
configuration files

Many kubectl operations such as create require complicated hierarchical output
(since the API requires this output). Kubectl uses YAML or JSON configuration files.
Here is a JSON configuration file for creating a pod:

apivVersion: vl
kind: Pod
metadata:
name: ""
labels:
name: ""
namespace: ""
annotations: []
generateName: ""

spec:

ApiVersion
This very important Kubernetes API keeps evolving and can support different
versions of the same resource via different versions of the APL

[128]

Chapter 6

Kind
Kind tells Kubernetes what type of resource it is dealing with. In this case, Pod. This
is always required.

Metadata

A lot of information that describes the pod and where it operates:

* Name - Identifies the pod uniquely within its namespace
* Labels - Multiple labels can be applied
* Namespace - The namespace the pod belongs to

* Annotations - A list of annotations available for query

Spec
Spec is a pod template that contains all the information necessary to launch a pod. It
can be quite elaborate, so we'll explore it in multiple parts:

"spec": {
"containers": [
1,
"restartPolicy": "",
"volumes": [
1

}

Container spec

The pod spec's container is a list of container specs. Each container spec has the
following structure:

{
"name": "",
"image": "",
"command": [
1,
"args": [

]I

[129]

Using Critical Kubernetes Resources

n envll . [
"name": "",
nvalue®: v

] I

"imagePullPolicy": "",

"ports": [
"containerPort": 0,
n name n : nn ’
llprotocol n : nn

] I

"resources": {

n cpu n s nn

n memory n, umn

}

Each container has an image, a command that, if specified, replaces the Docker
image command. It also has arguments and environment variables. Then, there
are of course the image pull policy, ports, and resource limits. We covered those
in earlier chapters.

Deploying long-running microservices in
pods

Long-running microservices should run in pods and be stateless. Let's look at
how to create pods for one of Hue's microservices. Later, we will raise the level
of abstraction and use a deployment.

Creating pods

Let's start with a regular pod configuration file for creating a Hue learner internal
service. This service doesn't need to be exposed as a public service and it will listen
to a queue for notifications and store its insights in some persistent storage.

[130]

Chapter 6

We need a simple container that the pod will run in. Here is possibly the simplest
Docker file ever, which will simulate the Hue learner:
FROM busybox

CMD ash -c "echo 'Started...'; while true ; do sleep 10 ; done"

It uses the busybox base image, which prints to standard output started.. and then
goes into an infinite loop, which is, by all accounts, long-running;:

I have built two Docker images tagged as "glgl/hue-learn:v3.0" and "glgl/
hue-learn:v4.0" and pushed them to the DockerHub registry ("glgl" is my
user name) .

docker build -t . glgl/hue-learn:v3.0
docker build -t . glgl/hue-learn:v4.0
docker push glgl/hue-learn:v3.0
docker push glgl/hue-learn:v4.0

Now these images are available to be pulled into containers inside of Hue's pods.

We'll use YAML here because it's more concise and human-readable. Here are the
boilerplate and metadata labels:
apivVersion: vl
kind: Pod
metadata:
name: hue-learner
labels:
app: hue
runtime-environment: production
tier: internal-service
annotations:

version: "3.0"

The reason I use an annotation for the version and not a label is that labels are used
to identify the set of pods in the deployment. Modifying labels is not allowed.

Next comes the important containers spec, which defines for each container the
mandatory name and image:
spec:

containers:

- name: hue-learner

image: glgl/hue-learn:v3.0

[131]

Using Critical Kubernetes Resources

The resources section tells Kubernetes the resource requirements of the container,
which allows for more efficient and compact scheduling and allocations. Here, the
container requests 200 milli-cpu units (0.2 core) and 300 MiB (228 bytes):

resources:
requests:
cpu: 200m

memory: 256Mi

The environment section allows the cluster administrator to provide environment
variables that will be available to the container. Here it tells it to discover the queue
and the store from dns. In a testing environment, it may use a different discovery
method:

env:

- name: DISCOVER QUEUE
value: dns

- name: DISCOVER STORE

value: dns

Decorating pods with labels

Labeling pods wisely is key for flexible operations. It lets you evolve your cluster
live, organize your microservices into groups you can operate on uniformly, and
drill down ad-hoc to observe different subsets.

For example, our Hue learner pod has the following labels:

* runtime-environment: production

e tier: internal-service

The version label can be used to support running multiple versions at the same
time. If both version 2 and version 3 need to run at the same time, either to provide
backward compatibility or just temporarily during the migration from v2 to v3, then
having a version label allows both scaling pods of different versions independently,
as well as exposing services independently. The runtime-environment label allows
performing global operations on all pods that belong to a certain environment. The
"tier" label can be used to query all pods that belong to a particular tier. These are
just an example; your imagination is the limit here.

[132]

Chapter 6

Deploying long- running processes with
deployments

In a large-scale system, pods should never be just created and let loose. If a pod dies
unexpectedly for whatever reason, you want another one to replace it to maintain
overall capacity. You can create replication controllers or replica sets yourself, but
that leaves the door open to mistakes, as well as the possibility of partial failure. It
makes much more sense to specify how many replicas you want when you launch
your pods.

Let's deploy three instances of our Hue learner microservice with a Kubernetes
deployment resource. Note that deployment objects are considered Beta at this
point. This should not discourage you from using them. It just means they are
newer and haven't been tested in the field as much as objects such as pods. But,
since your cluster should have multiple monitoring and alerting systems, then even
if something goes horribly wrong with deployments, you should be able to detect
it. The benefits of using them outweigh the slight risk that, due to their Beta status,
they'll break your system:

apiVersion: extensions/vlbetal
kind: Deployment
metadata:
name: hue-learn
spec:
replicas: 3
template:

<pod spec goes here>
The pod spec is identical to the spec section from the pod configuration file previously.

Let's create the deployment and check its status:

> kubectl create -f .\deployment.yaml

deployment "hue-learn" created

> kubectl get deployment hue-learn

NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
hue-learn 3 3 3 3 4m

You can get a lot more information about the deployment using the kubectl describe
command.

[133]

Using Critical Kubernetes Resources

Updating a deployment
The Hue platform is a large and ever-evolving system. You need to upgrade

constantly. Deployments can be updated to roll out updates in a painless manner. You
change the pod template to trigger a rolling update fully managed by Kubernetes.

Currently, all the pods are running with version 3.0:

Kubectl get pods -o json | jqg .items[0] .metadata.annotations.version

n3 _Qon

NAME READY STATUS RESTARTS AGE
hue-learn-237202748-d770r 1/1 Running 0 2m
hue-learn-237202748-fwv2t 1/1 Running 0 2m
hue-learn-237202748-tpr4s 1/1 Running 0 2m

Let's update the deployment to upgrade to version 4.0. Modify the version in the
deployment.yaml file. Don't modify labels; it will cause an error. Typically, you
modify the image and some related metadata in annotations. Then we can use the
apply command to upgrade the version:

kubectl apply -f deployment.yaml
deployment "hue-learn" updated
Kubectl get pods -o json | jqg .items[0] .metadata.annotations.version

ng . on

Separating internal and external services

Internal services are services that are accessed directly only by other services or jobs
in the cluster (or administrators that log in and run ad-hoc tools). In some cases,
internal services are not accessed at all, and just perform their function and store
their results in a persistent store that other services access in a decoupled way.

But some services need to be exposed to users or external programs. Let's look at a
fake Hue service that manages a list of reminders for a user. It doesn't do anything,
but we'll use it to illustrate how to expose services.

I pushed the dummy Hue-reminders image to DockerHub:

docker push glgl/hue-reminders:v2.2

[134]

Chapter 6

Deploying an internal service

Here is the deployment, which is very similar to the Hue-learner deployment, except
that I dropped the annotations, env, and resources sections, kept just one label

to save space, and added a ports section to the container. That's crucial, because a
service must expose a port through which other services can access it:

apiVersion: extensions/vlbetal
kind: Deployment
metadata:
name: hue-reminders
spec:
replicas: 2
template:
metadata:
name: hue-reminders
labels:
app: hue-reminders
spec:
containers:
- name: hue-reminders
image: glgl/hue-reminders:v2.2
ports:

- containerPort: 80

When we run the deployment, two Hue reminders pods are added to the cluster:

> kubectl create -f hue-reminders-deployment.yaml

> kubectl get pods

NAME READY STATUS RESTARTS AGE
hue-learn-1348235373-4k355 1/1 Running 1 19h
hue-learn-1348235373-£5303 1/1 Running 1 19h
hue-learn-1348235373-r4x16 1/1 Running 1 195h
hue-reminders-972023352-nw0gt 1/1 Running 0 18s
hue-reminders-972023352-vjtmg 1/1 Running 0 18s

[135]

Using Critical Kubernetes Resources

OK. The pods are running. In theory, other services can look up or be configured
with their internal IP address and just access them directly because they are all in the
same network space. But this doesn't scale. Every time a reminders pod dies and is
replaced by a new one, or when we just scale up the number of pods, all the services
that access these pods must know about it. Services solve this issue by providing a
single access point to all the pods. The service is:

apivVersion: vl
kind: Service
metadata:
name: hue-reminders
labels:
app: hue-reminders
spec:
ports:
- port: 80
protocol: TCP
selector:

app: hue-reminders

The service has a selector that selects all the pods that have labels that match it. It
also exposes a port, which other services will use to access it (it doesn't have to be
the same port as the container's port).

Creating the Hue-reminders service

Let's create the service and explore it a little bit:

kubectl create -f .\hue-reminders-service.yaml
service "hue-reminders" created

kubectl describe svc hue-reminders

Name: hue-reminders

Namespace: default

Labels: app=hue-reminders

Selector: app=hue-reminders

Type: ClusterIP

IP: 10.0.0.238

Port: <unset> 80/TCP

Endpoints: 172.17.0.7:80,172.17.0.8:80
Session Affinity: None

[136]

Chapter 6

The service is up-and-running. Other pods can find it through environment variables
or DNS. The environment variables for all services are set at pod creation time. That
means that, if a pod is already running when you create your service, you'll have to
kill it and let Kubernetes recreate it with the environment variables (you always have
a replication controller or replica set, right?):

> kubectl exec hue-learn-3352346070-56cd5 -- printenv | grep HUE
REMINDERS SERVICE

HUE REMINDERS SERVICE PORT=80
HUE REMINDERS SERVICE HOST=10.0.0.238

But using DNS is much simpler. Your service DNS name is <service
names>.<namespace>.svc.cluster.local:

> kubectl exec hue-reminders-972023352-nwOgt -- nslookup hue-reminders
Server: 10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

Name: hue-reminders

Address 1: 10.0.0.238 hue-reminders.default.svc.cluster.local

Exposing a service externally
The service is accessible inside the cluster. If you want to expose it to the world,
Kubernetes provides two ways to do it:

* Configure nodePort for direct access

* Configure a Cloud load balancer if you run it in a Cloud environment
Before you configure a service for external access, you should make sure it is secure.

The Kubernetes documentation has a good example that covers all the gory
details here:

https://github.com/kubernetes/kubernetes/tree/master/examples/https-
nginx/.

We've already covered the principles in Chapter 5, Configuring Kubernetes Security,
Limits, and Accounts.

[137]

https://github.com/kubernetes/kubernetes/tree/master/examples/https-nginx/
https://github.com/kubernetes/kubernetes/tree/master/examples/https-nginx/

Using Critical Kubernetes Resources

Here is the spec section of the hue-reminders service when exposed to the world
through NodePort:
spec:

type: NodePort

ports:

- port: 8080
targetPort: 80
protocol: TCP
name: http

- port: 443
protocol: TCP
name: https

selector:

app: hue-reminders

Ingress

Ingress is a Kubernetes configuration object that lets you expose a service to the
outside world and take care of a lot of details. It can do the following;:

* Provide an externally visible URL to your service
* Load-balance traffic
* Terminate SSL

* Provide name-based virtual hosting

To use Ingress, you must have an Ingress controller running in your cluster. Note
that Ingress is still in Beta and has many limitations. If you're running your cluster
on GKE, you're probably OK. Otherwise, proceed with caution. One of the current
limitations of the Ingress controller is that it isn't built for scale. As such, it is not a
good option for the Hue platform yet. We'll cover the Ingress controller in greater
detail in Chapter 10, Advanced Kubernetes Networking.

Here is what an Ingress resource looks like:

apiVersion: extensions/vlbetal
kind: Ingress
metadata:

name: test

spec:

[138]

Chapter 6

rules:

- host: foo.bar.com

http:
paths:
- path: /foo
backend:

serviceName: fooSvc
servicePort: 80

- host: bar.baz.com

http:
paths:
- path: /bar
backend:

serviceName: barSvc

servicePort: 80

The nginx Ingress controller will interpret this Ingress request and create a
corresponding configuration file for the nginx web server:

http {
server {
listen 80;
server name foo.bar.com;

location /foo
proxy pass http://fooSvc;

}
}

server {
listen 80;
server_ name bar.baz.com;

location /bar
proxy pass http://barsSvc;

}
}

It is possible to create other controllers.

[139]

Using Critical Kubernetes Resources

Using namespace to limit access

The Hue project is moving along nicely, and we have a few hundred microservices
and about 100 developers and DevOps engineers working on it. Groups of related
microservices emerge, and you notice that many of these groups are pretty
autonomous. They are completely oblivious to the other groups. Also, there are some
sensitive areas such as health and finance that you want to control access to more
effectively. Enter namespaces.

Let's create a new service, Hue-finance, and put it in a new namespace called
restricted

Here is the YaML file for the new restricted namespace:

{
"kind": "Namespace",
"apiVersion": "v1",
"metadata": {
"name": "restricted",
"labels": {
"name": "restricted"
}
}
}

> kubectl create -f .\namespace.yaml

namespace "restricted" created

Once the namespace has been created, we need to configure a context for the
namespace. This will allow restricting access just to this namespace:

> kubectl config set-context restricted --namespace=restricted
--cluster=minikube --user=minikube

Context "restricted" set.

> kubectl config use-context restricted

Switched to context "restricted".

Let's check our cluster configuration:
> Kubectl config view
apivVersion: vl

clusters:

[140]

Chapter 6

- cluster:

certificate-authority: C:\Users\the g\.minikube\ca.crt

server: https://192.168.99.100:8443
name: minikube
contexts:
- context:
cluster: minikube
user: minikube
name: minikube
- context:
cluster: minikube
namespace: restricted
user: minikube
name: restricted
current-context: restricted
kind: Config
preferences: {}
users:
- name: minikube

user:

client-certificate: C:\Users\the g\.minikube\apiserver.crt

client-key: C:\Users\the g\.minikubelapiserver.key

As you can see, the current context is restricted.

Now, in this empty namespace, we can create our hue-finance service, and it will be

on its own:

> kubectl create -f .\hue-finance-deployment.yaml

deployment "hue-finance" created

>kubectl get pods

NAME READY
hue-finance-2518532322-0s8s2 1/1
hue-finance-2518532322-27sfm 1/1
hue-finance-2518532322-s4dtp 1/1

STATUS
Running
Running

Running

RESTARTS
0
0
0

AGE
6s
6s
6s

You don't have to switch contexts. You can also use the - -namespace=<namespace>
and --all-namespaces command-line switches.

[141]

Using Critical Kubernetes Resources

Launching jobs

Hue has a lot of long-running processes deployed as microservices, but it also has

a lot of tasks that run, accomplish some goal, and exit. Kubernetes supports this
functionality via the Job resource. A Kubernetes job manages one or more pods and
ensures that they run until success. If one of the pods managed by the job fails or is
deleted, then the job will run a new pod until it succeeds.

Here is a job that runs a Python process to compute the factorial of 5 (hint: it's 120):

apiVersion: batch/vl
kind: Job
metadata:
name: factorial5
spec:
template:
metadata:

name: factorial5

spec:

containers:

- name: factorialb
image: python:3.5
command: ["python",

n_gn,
"import math; print(math.factorial(5))"]

restartPolicy: Never

Note that the restartPolicy must be either Never or onFailure The default
Always value is invalid because a job shouldn't restart after a successful completion.

Let's start the job and check its status:

> kubectl create -f .\job.yaml

job "factorial5" created

> kubectl get jobs
NAME DESIRED SUCCESSFUL AGE
factorial5s 1 1 25s

[142]

Chapter 6

The pods of completed tasks are not displayed by default. You must use the
--show-all option:

kubectl get pods --show-all

NAME READY STATUS RESTARTS AGE
factorial5-v9£80 0/1 Completed 0 1m
hue-finance-25185-0s8s2 1/1 Running 0 4h
hue-finance-25185-27sfm 1/1 Running 0 4h
hue-finance-25185-s4dtp 1/1 Running 0 4h

The factorial5 pod has a status of "Completed." Let's check out its
output:

> kubectl logs factorial5-v9£80
120

Running jobs in parallel

You can also run a job with parallelism. There are two fields in the spec, called
completions and parallelism. The completions are set to 1 by default. If you
want more than one successful completion, then increase this value. Parallelism
determines how many pods to launch. A job will not launch more pods than needed
for successful completions, even if the parallelism number is greater.

Let's run another job that just sleeps for 20 seconds until it has three successful
completions. We'll use a parallelism factor of 6, but only three pods will be launched:
apiVersion: batch/vl
kind: Job
metadata:
name: sleep20
spec:
completions: 3
parallelism: 6
template:
metadata:
name: sleep20
spec:
containers:
- name: sleep20

image: python:3.5

[143]

Using Critical Kubernetes Resources

command: ["python",
ll_cll'
"import time; print('started...');
time.sleep(20); print('done.')"]

restartPolicy: Never

> Kubectl get pods

NAME READY STATUS RESTARTS AGE
sleep20-1t8sd 1/1 Running 0 10s
sleep20-sdjb4 1/1 Running 0 10s
sleep20-wvéijc 1/1 Running 0 10s

Cleaning up completed jobs

When a job completes, it sticks around - and its pods, too. This is by design, so

you can look at logs or connect to pods and explore. But normally, when a job has
completed successfully, it is not needed anymore. It's your responsibility to clean
up completed jobs and their pods. The easiest way is to simply delete the job object,
which will delete all the pods too:

> kubectl delete jobs/factroial5s
job "factorial5" deleted

> kubectl delete jobs/sleep20
job "sleep20" deleted

Scheduling cron jobs

Kubernetes cron jobs are jobs that run for a specified time, once or repeatedly. They
behave as regular Unix cron jobs specified in the /etc/crontab file.

In Kubernetes 1.4 they were known as a ScheduledJdob. But, in Kubernetes 1.5, the
name was changed to CronJdob You must enable cron jobs by starting the API server
with the following:

--runtime-config=batch/v2alphal

Here is the configuration to launch a cron job every minute to remind you to stretch.
In the schedule, you may replace the * with »:

apiVersion: batch/v2alphal

kind: CronJob

metadata:

[144]

Chapter 6

name: stretch
spec:
schedule: "*/1 * * % *n
jobTemplate:
spec:
template:
metadata:

labels:
name: stretch

spec:

containers:

- name: stretch
image: python
args:

- python

- -c

- from datetime import datetime; print('[{}] Stretch'.

format (datetime.now()))

restartPolicy: OnFailure

In the pod spec, under the job template, I added a label called name The reason is that
cron jobs and their pods are assigned names with a random prefix by Kubernetes.
The label allows you to easily discover all the pods of a particular cron job.

Kubectl get pods

See the following command lines:

NAME READY STATUS
stretch-1482165720-gm5bj 0/1 ImagePullBackOff
stretch-1482165780-bkgjd 0/1 ContainerCreating

RESTARTS
0
0

AGE
1m
6s

Note that each invocation of a cron job launches a new job object with a

new pod:

> kubectl get jobs

NAME DESIRED SUCCESSFUL AGE
stretch-1482165300 1 1 1lm
stretch-1482165360 1 1 10m
stretch-1482165420 1 1 9m
stretch-1482165480 1 1 8m

[145]

Using Critical Kubernetes Resources

When a cron job invocation completes, its pod gets into a Completed state and will
not be visible without the -show-all or -a flags:

> Kubectl get pods --show-all

NAME READY STATUS RESTARTS AGE
stretch-1482165300-g5ps6 0/1 Completed 0 15m
stretch-1482165360-c1ln08 0/1 Completed 0 14m
stretch-1482165420-n8nzd 0/1 Completed 0 13m
stretch-1482165480-0jg31 0/1 Completed 0 12m

As usual, you can check the output of the pod of a completed cron job using the
logs command:

> kubectl logs stretch-1482165300-g5ps6

[2016-12-19 16:35:15.325283] Stretch

You must also clean up all the individual jobs, otherwise they will stick around
forever. Just deleting the cron job is not enough; it will just stop scheduling more jobs.

You can use the designated label (name=stretch in this case) to locate all the job
objects launched by the cron job.

In summary, the cleanup of a cron job involves the following:

* Deleting the cron job
* Deleting all job objects that match the label
> kubectl delete cronjobs/stretch

cronjob "stretch" deleted

> kubectl delete jobs -1 name=stretch
job "stretch-1482165300" deleted
job "stretch-1482165360" deleted
job "stretch-1482165420" deleted
job "stretch-1482165480" deleted

You can also suspend a cron job so it doesn't create more jobs.

[146]

Chapter 6

Mixing non-cluster components

Most real-time system components in the Kubernetes cluster will communicate with
out-of-cluster components. Those could be completely external third-party services
accessible through some API, but can also be internal services running in the same
local network that, for various reasons, are not part of the Kubernetes cluster.

There are two categories here: inside the cluster network and outside the cluster
network. Why is the distinction important?

Outside-the-cluster-network components

These components have no direct access to the cluster. They can only access it
through APIs, externally visible URLs, and exposed services. These components are
treated just like any external user. Often, cluster components will just use external
services, which poses no security issue. For example, in my previous job we had

a Kubernetes cluster that reported exceptions to a third-party service (https://
sentry.io/welcome/). It was one-way communication from the Kubernetes cluster
to the third-party service.

Inside-the-cluster-network components

These are components that run inside the network but are not managed by
Kubernetes. There are many reasons to run such components. They could be legacy
applications that have not be kubernetized yet, or some distributed data store that
is not easy to run inside Kubernetes. The reason to run these components inside
the network is for performance, and to have isolation from the outside world so
traffic between these components and pods can be more secure. Being part of the
same network ensures low-latency, and the reduced need for authentication is both
convenient and can avoid authentication overhead.

Managing the Hue platform with Kubernetes

In this section, we will look at how Kubernetes can help operate a huge platform
such as Hue. Kubernetes itself provides a lot of capabilities to orchestrate pods and
manage quotas and limits, detecting and recovering from certain types of generic
failures (hardware malfunctions, process crashes, unreachable services). But, in a
complicated system such as Hue, pods and services may be up-and-running but in
an invalid state or waiting for other dependencies in order to perform their duties.
This is tricky because if a service or pod is not ready yet but is already receiving
requests, then you need to manage it somehow: fail (puts responsibility on the
caller), retry (how many, how long, how often?), and queue for later (who will
manage this queue?).

[147]

https://sentry.io/welcome/
https://sentry.io/welcome/

Using Critical Kubernetes Resources

It is often better if the system at large can be aware of the readiness state of different
components, or if components are visible only when they are truly ready. Kubernetes
doesn't know Hue, but it provides several mechanisms such as liveness probes,
readiness probes, and init containers to support application-specific management

of your cluster.

Using liveness probes to ensure your containers
are alive

kubelet watches over your containers. If a container process crashes, kubelet will
take care of it based on the restart policy. But this is not always enough. Your process
may not crash, but instead run into an infinite loop or a deadlock. The restart policy
might not be nuanced enough. With a liveness probe, you get to decide when a
container is considered alive. Here is a pod template for the Hue music service.

It has a 1ivenessProbe section, which uses the httpGet probe. An HTTP probe
requires a scheme (http or https, default to http, a host [default to PodlIp], a path,
and a port). The probe is considered successful if the HTTP status is between 200
and 399. Your container may need some time to initialize, so you can specify an
initialDelayInSeconds. The Kubelet will not hit the liveness check during

this period:

apivVersion: vl
kind: Pod
metadata:
labels:
app: hue-music
name: hue-music
spec:
containers:
image: the glgl/hue-music
livenessProbe:
httpGet:
path: /pulse
port: 8888
httpHeaders:
- name: X-Custom-Header
value: Awesome
initialDelaySeconds: 30
timeoutSeconds: 1

name: hue-music

[148]

Chapter 6

If a liveness probe fails for any container, then the pod's restart policy goes into
effect. Make sure your restart policy is not Never, because that will make the
probe useless.

There are two other types of probe:

* TcpSocket - Just check that a port is open

* Exec - Run a command that returns o for success

Using readiness probes to manage
dependencies

Readiness probes are used for different purpose. Your container may be up-and-
running, but it may depend on other services that are unavailable at the moment.
For example, Hue-music may depend on access to a data service that contains your
listening history. Without access, it is unable to perform its duties. In this case,
other services or external clients should not send requests to the Hue music service,
but there is no need to restart it. Readiness probes address this use case. When a
readiness probe fails for a container, the container's pod will be removed from any
service endpoint it is registered with. This ensures that requests don't flood services
that can't process them. Note that you can also use readiness probes to temporarily
remove pods that are overbooked until they drain some internal queue.

Here is a sample readiness probe. I use the exec probe here to execute a custom
command. If the command exits a non-zero exit code, the container will be torn down:

readinessProbe:
exec:
command :
- /usr/local/bin/checker
- --full-check
- --data-service=hue-multimedia-service
initialDelaySeconds: 60

timeoutSeconds: 5

It is fine to have both a readiness probe and a liveness probe on the same container
as they serve different purposes.

[149]

Using Critical Kubernetes Resources

Employing init containers for orderly pod
bring-up

Liveness and readiness probes are great. They recognize that, at startup, there may
be a period where the container is not ready yet, but shouldn't be considered failed.
To accommodate that there is the initialDelayInSeconds setting where containers
will not be considered failed. But, what if this initial delay is potentially very long?
Maybe, in most cases, a container is ready after a couple of seconds and ready to
process requests, but because the initial delay is set to five minutes just in case, we
waste a lot of time where the container is idle. If the container is part of a high-traffic
service, then many instances can all sit idle for five minutes after each upgrade and
pretty much make the service unavailable.

Init containers address this problem. A pod may have a set of init containers that
run to completion before other containers are started. An init container can take care
of all the non-deterministic initialization and let application containers with their
readiness probe have minimal delay.

Init containers are in Beta right now, so you specify them in an annotation. Once the
feature moves out of Beta they will be properly added to the pod spec:

apivVersion: vl
kind: Pod
metadata:

name: hue-fitness

annotations:
pod.beta.kubernetes.io/init-containers: 'I[
"name": "install",
"image": "busybox",
"command": ["/support/safe init"],
"volumeMounts": [
"name": "workdir",
"mountPath": "/work-dir"
]
] 1
spec:

[150]

Chapter 6

Sharing with DaemonSet pods

DaemonSet pods are pods that are deployed automatically, one per node (or a
designated subset of the nodes). They are typically used for keeping an eye on nodes
and ensuring they are operational. This is a very important function, which we
covered in Chapter 3, Monitoring, Logging, and Troubleshooting, when we discussed
the node problem detector. But they can be used for much more. The nature of the
default Kubernetes scheduler is that it schedules pods based on resource availability
and requests. If you have lots of pods that don't require a lot of resources, similarly
many pods will be scheduled on the same node. Let's consider a pod that performs
a small task and then, every second, sends a summary of all its activities to a remote
service. Now, imagine that, on average, 50 of these pods are scheduled on the same
node. This means that, every second, 50 pods make 50 network requests with very
little data. How about we cut it down by 50% to just a single network request? With
a DaemonSet pod, all the other 50 pods can communicate with it instead of talking
directly to the remote service. The DaemonSet pod will collect all the data from

the 50 pods and, once a second, will report it in aggregate to the remote service. Of
course, that requires the remote service API to support aggregate reporting. The
nice thing is that the pods themselves don't have to be modified; they will just be
configured to talk to the DaemonSet pod on localhost instead of the remote service.
The DaemonSet pod serves as an aggregating proxy.

The interesting part about this configuration file is that the hostNetwork, hostPID,
and hostIPC options are set to true. This enables the pods to communicate efficiently
with the proxy, utilizing the fact they are running on the same physical host:

apiVersion: extensions/vlbetal
kind: DaemonSet
metadata:
name: hue-collect-proxy
labels:
tier: stats
app: hue-collect-proxy
spec:
template:
metadata:
labels:
hue-collect-proxy
spec:
hostPID: true
hostIPC: true

[151]

Using Critical Kubernetes Resources

hostNetwork: true
containers:
image: the glgl/hue-collect-proxy

name: hue-collect-proxy

Evolving the Hue platform with
Kubernetes

In this section, we'll discuss other ways to extend the Hue platform and service
additional markets and communities. The question is always, what Kubernetes
features and capabilities can we use to address new challenges or requirements?

Utilizing Hue in the enterprise

The enterprise often can't run in the Cloud, either due to security and compliance
reasons, or for performance reasons because the system has work with data and
legacy systems that are not cost-effective to move to the Cloud. Either way, Hue
for enterprise must support on-premise clusters and/or bare-metal clusters.

While Kubernetes is most often deployed on the Cloud, and even has a special
Cloud-provider interface, it doesn't depend on the Cloud and can be deployed
anywhere. It does require more expertise, but enterprise organizations that already
run systems on their own datacenters have that expertise.

CoreOS provides a lot of material regarding deploying Kubernetes clusters on
bare-metal lusters.

Advancing science with Hue

Hue is so great at integrating information from multiple sources that it would be a
boon for the scientific community. Consider how Hue can help multi-disciplinary
collaborations between scientists from different areas.

A network of scientific communities might require deployment across multiple
geographically distributed clusters. Enter cluster federation. Kubernetes has this
use use case in mind and evolves its support. We will discuss it at length in a
later chapter.

[152]

Chapter 6

Educating the kids of the future with hue

Hue can be utilized for education and provide many services to online education
systems. But, privacy concerns may prevent deploying Hue for kids as a single,
centralized system. One possibility is to have a single cluster, with namespaces
for different schools. Another deployment option is that each school or county has
its own Hue Kubernetes cluster. In the second case, Hue for education must be
extremely easy to operate to cater for schools without a lot of technical expertise.
Kubernetes can help a lot by providing self-healing and auto-scaling features and
capabilities for Hue, to be as close to zero-administration as possible.

Summary

In this chapter, we designed and planned the development, deployment, and
management of the Hue platform - an imaginary omniscient and omnipotent
service - built on microservices architecture. We used Kubernetes as the underlying
orchestration platform, of course, and delved into many of its concepts and
resources. In particular, we focused on deploying pods for long-running services

as opposed to jobs for launching short-term or cron jobs, explored internal services
versus external services, and also used namespaces to segment a Kubernetes cluster.
Then we looked at the management of a large system such as Hue with liveness and
readiness probes, init containers, and DaemonSets.

You should now feel comfortable architecting web-scale systems composed
of microservices and understand how to deploy and manage them in a
Kubernetes cluster.

In Chapter 7, Handling Kubernetes Storage, we will look into the super-important area
of storage. Data is king, but often the least flexible element of the system. Kubernetes
provides a storage model, and many options for storing and accessing data.

[153]

Handling Kubernetes Storage

In this chapter, we'll look at how Kubernetes manages storage. Storage is very
different from compute, but at a high level they are both resources. Kubernetes as a
generic platform takes the approach of abstracting storage behind a programming
model and a set of plugins for storage providers. First, we'll go in to detail about the
storage conceptual model and how storage is made available to containers in the
cluster. Then, we'll cover the common case cloud platform storage providers, such as
AWS, GCE, and Azure. Then we'll look at a prominent open source storage provider
(GlusterFS from Red Hat), which provides a distributed filesystem. We'll also look
into an alternative solution - Flocker - that manages your data in containers as part
of the Kubernetes cluster. Finally, we'll see how Kubernetes supports integration of
existing enterprise storage solutions.

At the end of this chapter, you'll have a solid understanding of how storage

is represented in Kubernetes, the various storage options in each deployment
environment (local testing, public cloud, enterprise), and how to choose the best
option for your use case.

Persistent volumes walkthrough

In this section, we will understand the Kubernetes storage conceptual model and
see how to map persistent storage into containers so they can read and write. Let's
start by understanding the problem of storage. Containers and pods are ephemeral.
Anything a container writes to its own filesystem gets wiped out when the container
dies. Containers can also mount directories from their host node and read or write.
That will survive container restarts, but the nodes themselves are not immortal.

[155]

Handling Kubernetes Storage

There are other problems, such as ownership for mounted hosted directories when
the container dies. Just imagine a bunch of containers writing important data to
various data directories on their host and then go away leaving all that data all over
the nodes with no direct way to tell what container wrote what data. You can try to
record this information, but where would you record it? It's pretty clear that for a
large-scale system, you need persistent storage accessible from any node to reliably
manage the data.

Volumes

The basic Kubernetes storage abstraction is the volume. Containers mount volumes
that bind to their pod and they access the storage wherever it may be as if it's in their
local filesystem. This is nothing new, and it is great because, as a developer who
writes applications that need access to data, you don't have to worry about where
and how the data is stored.

Using emptyDir for intra-pod communication

It is very simple to share data between containers in the same pod using a shared
volume. Container 1 and container 2 simply mount the same volume and can
communicate by reading and writing to this shared space. The most basic volume
is the emptyDir. An emptyDir volume is an empty directory on the host. Note that
it is not persistent because when the pod is removed from the node, the contents
are erased. If a container just crashes, the pod will stick around and you can access
it later. Another very interesting option is to use a RAM disk, by specifying the
medium as Memory. Now, your containers communicate through shared memory,
which is much faster but more volatile of course. If the node is restarted, the
emptyDir's volume contents are lost.

Here is a pod configuration file that has two containers that mount the same volume
called shared-volume. The containers mount it in different paths, but when the
hue-global-listener container is writing a file to /notifications, the hue-job-
scheduler will see that file under /incoming:
apivVersion: vl
kind: Pod
metadata:

name: hue-scheduler
spec:

containers:

- image: the glgl/hue-global-listener

name: hue-global-listener

[156]

Chapter 7

volumeMounts:
- mountPath: /notifications
name: shared-volume
- image: the glgl/hue-job-scheduler
name: hue-job-scheduler
volumeMounts:
- mountPath: /incoming
name: shared-volume
volumes:
- name: shared-volume

emptyDir: {}

To use the shared memory option, we just need to add medium: Memory to the
emptyDir section:

volumes:
- name: shared-volume
emptyDir:

medium: Memory

Using HostPath for intra-node communication

Sometimes you want your pods to get access to some host information (for example,
the Docker Daemon) or you want pods on the same node to communicate with each
other. This is useful if the pods know they are on the same host. Since Kubernetes
schedules pods based on available resources, pods usually don't know what other
pods they share the node with. There are two cases where a pod can rely on other
pods being scheduled with it on the same node:

* Ina single-node cluster all pods obviously share the same node

* DaemonSet pods always share a node with any other pod that matches
their selector

For example, in Chapter 6, Using Critical Kubernetes Resources, we discussed a
DeamonSet pod that serves as an aggregating proxy to other pods. Another way
to implement this behavior is for the pods to simply write their data to a mounted
volume that is bound to a host directory and the DaemonSet pod can directly read
it and act on it.

[157]

Handling Kubernetes Storage

Before you decide to use HostPath volume, make sure you understand
the limitations:

* The behavior of pods with the same configuration might be different if they
are data-driven and the files on their host are different.

* It can violate resource-based scheduling (coming soon to Kubernetes)
because Kubernetes can't monitor HostPath resources.

* The containers that access host directories must have a security context
with privileged set to true or, on the host side, you need to change the
permissions to allow writing.

Here is a configuration file that mounts the /coupons directory into the hue-coupon-
hunter container, which is mapped to the host's /etc/hue/data/coupons directory:

apivVersion: vl
kind: Pod
metadata:

name: hue-coupon-hunter

spec:

containers:

- image: the glgl/hue-coupon-hunter
name: hue-coupon-hunter
volumeMounts:

- mountPath: /coupons
name: coupons-volume

volumes:

- name: coupons-volume
host-path:

path: /etc/hue/data/coupons

Since the pod doesn't have a privileged security context, it will not be able to
write to the host directory. Let's change the container spec to enable it by adding
a security context:

- image: the glgl/hue-coupon-hunter
name: hue-coupon-hunter
volumeMounts:

- mountPath: /coupons
name: coupons-volume
securityContext:

privileged: true

[158]

Chapter 7

In the following diagram, you can see that each container has its own local storage
area inaccessible to other containers or pods and the host's /data directory is
mounted as a volume into both container 1 and container 2:

Container 1

containerl Pl
container2 |- | [|
Local - j ! I
storage 1 [‘{

area —

volume

Docker host Container 2

Provisioning persistent volumes

While emptyDir volumes can be mounted and used by containers, they are not
persistent and don't require any special provisioning because they use existing
storage on the node. HostPath volumes persist on the original node, but if a

pod is restarted on a different node, it can't access the HostPath volume from its
previous node. Real persistent volumes use storage provisioned ahead of time by
administrators. In cloud environments, the provisioning may be very streamlined
but it is still required, and as a Kubernetes cluster administrator you have to at least
make sure your storage quota is adequate and monitor usage versus quota diligently.

Remember that persistent volumes are resources that the Kubernetes cluster is using
similar to nodes. As such they are not managed by the Kubernetes API server.

You can provision resources statically or dynamically.

Provisioning persistent volumes statically

Static provisioning is straightforward. The cluster administrator creates persistent
volumes backed up by some storage media ahead of time, and these persistent
volumes can be claimed by containers.

[159]

Handling Kubernetes Storage

Provisioning persistent volumes dynamically

Dynamic provisioning may happen when a persistent volume claim doesn't match
any of the statically provisioned persistent volumes. If the claim specified a storage
class and the administrator configured that class for dynamic provisioning, then a
persistent volume may be provisioned on the fly. We will see examples later when
we discuss persistent volume claims and storage classes.

Creating persistent volumes

Here is the configuration file for an NFS persistent volume:

apiVersion: vl
kind: PersistentVolume
metadata:
name: pv-1
annotations:
volume.beta.kubernetes.io/storage-class: "normal"
labels:
release: stable
capacity: 100Gi
spec:
capacity:
storage: 100Gi
accessModes:
- ReadWriteOnce
- ReadOnlyMany
persistentVolumeReclaimPolicy: Recycle
nfs:
path: /tmp
server: 172.17.0.8

A persistent volume has a spec and metadata that includes the name and possibly an
annotation of a storage class. The storage class annotation will become an attribute
when storage classes get out of beta. Note that persistent volumes are at v1, but
storage classes are still in beta. More on storage classes later. Let's focus on the spec
here. There are four sections: capacity, access mode, reclaim policy, and the volume
type (nfs in the example).

[160]

Chapter 7

Capacity

Each volume has a designated amount of storage. Storage claims may be satisfied
by persistent volumes that have at least that amount of storage. In the example, the
persistent volume has a capacity of 100 Gibibytes (2% bytes). It is important when
allocating static persistent volumes to understand the storage request patterns.

For example, if you provision 20 persistent volumes with 100 GiB capacity and

a container claims a persistent volume with 150 GiB, then this claim will not be
satisfied even though there is enough capacity overall:

capacity:

storage: 100Gi

Access modes

There are three access modes:

* ReadOnlyMany: Can be mounted read-only by many nodes
* ReadWriteOnce: Can be mounted as read-write by a single node
* ReadWriteMany: Can be mounted as read-write by many nodes

The storage is mounted to nodes, so even with ReadwriteOnce multiple containers
on the same node can mount the volume and write to it. If that causes a problem, you
need to handle it though some other mechanism (for example, claim the volume only
in DaemonSet pods that you know will have just one per node).

Different storage providers support some subset of these modes. When you
provision a persistent volume, you can specify which modes it will support. For
example, NFS supports all modes, but in the example, only these modes were
enabled:
accessModes:

- ReadWriteMany

- ReadOnlyMany

Reclaim policy
The reclaim policy determines what happens when a persistent volume claim is
deleted. There are three different policies:

* Retain - the volume will need to be reclaimed manually

* Delete - the associated storage asset such as AWS EBS, GCE PD, Azure disk,
or OpenStack Cinder volume is deleted

* Recycle - delete content only (rm -rf /volume/*)

[161]

Handling Kubernetes Storage

The Retain and Delete policies mean the persistent volume is not available anymore
for future claims. The recycle policy allows the volume to be claimed again.

Currently, only NFS and HostPath support recycling. AWS EBS, GCE PD, Azure
disk, and Cinder volumes support deletion. Dynamically provisioned volumes are
always deleted.

Volume type
The volume type is specified by name in the spec. There is no volumeType section.
In the preceding example, nfs is the volume type:
nfs:
path: /tmp
server: 172.17.0.8

Each volume type may have its own set of parameters. In this case, it's a path
and server.

We will go over various volume types later.

Making persistent volume claims

When containers want access to some persistent storage they make a claim (or rather,
the developer and cluster administrator coordinate on necessary storage resources

to claim). Here is a sample claim that matches the persistent volume from the
previous section:

kind: PersistentVolumeClaim
apivVersion: vl
metadata:
name: storage-claim
annotations:
volume.beta.kubernetes.io/storage-class: "normal"
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 80Gi

selector:

[162]

Chapter 7

matchLabels:
release: "stable"
matchExpressions:

- {key: capacity, operator: In, values: [80Gi, 100Gil}

In the metadata, you can see the storage class annotation. The name storage-claim
will be important later when mounting the claim into a container.

The access mode in the spec is ReadWriteonce, which means if the claim is satisfied
no other claim with the ReadWriteOnce access mode can be satisfied, but claims for
ReadOnlyMany can still be satisfied.

The resources section requests 80 GiB. This can be satisfied by our persistent volume,
which has a capacity of 100 Gi. But, this is a little bit of a waste because 20 Gi will
not be used by definition.

The selector section allows you to filter available volumes further. For example, here
the volume must match the label release: stable and also have a label with either
capacity: 80 Gi Or capacity: 100 Gi. Imagine that we have several other volumes
provisioned with capacities of 200 Gi and 500 Gi. We don't want to claim a 500 Gi
volume when we only need 80 Gi.

Kubernetes always tries to match the smallest volume that can satisfy a claim, but if
there are no 80 Gi or 100 Gi volumes then the labels will prevent assigning a 200 Gi
or 500 Gi volume and use dynamic provisioning instead.

It's important to realize that claims don't mention volumes by name. The matching is
done by Kubernetes based on storage class, capacity, and labels.

Finally, persistent volume claims belong to a namespace. Binding a persistent
volume to a claim is exclusive. That means that a persistent volume will be bound
to a namespace. Even if the access mode is ReadonlyMany or ReadWriteMany, all the
pods that mount the persistent volume claim must be from that claim's namespace.

Mounting claims as volumes

OK. We have provisioned a volume and claimed it. It's time to use the claimed storage
in a container. This turns out to be pretty simple. First, the persistent volume claim
must be used as a volume in the pod and then the containers in the pod can mount it,
just like any other volume. Here is a pod configuration file that specifies the persistent
volume claim we created earlier (bound to the NFS persistent volume we provisioned):

kind: Pod
apiVersion: vl

metadata:

[163]

Handling Kubernetes Storage

name: the-pod

spec:
containers:

- name: the-container
image: some-image
volumeMounts:

- mountPath: "/mnt/data"
name: persistent-volume
volumes:

- name: persistent-volume
persistentVolumeClaim:

claimName: storage-claim

The key is in the persistentVolumeClaim section under volumes. The claim name
(storage-claim here) uniquely identifies within the current namespace the specific
claim and makes it available as a volume named persistent-volume here. Then, the
container can refer to it by its name and mount it to /mnt /data.

Storage classes

Storage classes let an administrator configure your cluster with custom persistent
storage (as long as there is a proper plugin to support it). A storage class has a name
in the metadata (it must be specified in the annotation to claim), a provisioner,

and parameters.

The storage class is still in beta as of Kubernetes 1.5. Here is a sample storage class:

kind: StorageClass
apiVersion: storage.k8s.io/vlbetal
metadata:

name: standard
provisioner: kubernetes.io/aws-ebs
parameters:

type: gp2

You may create multiple storage classes for the same provisioner with different
parameters. Each provisioner has its own parameters.

[164]

Chapter 7

The currently supported volume types are as follows:

® emptyDir

®* hostPath

® gcePersistentDisk

®* awsElasticBlockStore

®* nfs

® iscsi

¢ flocker

® glusterfs

®* rbd

® cephfs

® gitRepo

¢ secret

® persistentVolumeClaim

® downwardAPI

® azureFileVolume

® azureDisk

® vsphereVolume

® Quobyte
This list contains both persistent volumes and other volume types, such as gitRepo
or secret, that are not backed by your typical network storage. This area of
Kubernetes is still in flux and, in the future, it will be decoupled further and the

design will be cleaner, where the plugins are not part of Kubernetes itself. Utilizing
volume types intelligently is a major part of architecting and managing your cluster.

Default storage class

The cluster administrator can also assign a default storage class. When a default
storage class is assigned and the DefaultStorageClass admission plugin is turned
on, then claims with no storage class will be dynamically provisioned using the
default storage class. If the default storage class is not defined or the admission
plugin is not turned on, then claims with no storage class can only match volumes
with no storage class.

[165]

Handling Kubernetes Storage

Demonstrating persistent volume storage end
to end

To illustrate all the concepts, let's do a mini demonstration where we create a
HostPath volume, claim it, mount it, and have containers write to it.

Let's start by creating a hostpPath volume. Save the following in persistent-
volume.yaml:
kind: PersistentVolume
apiVersion: vl
metadata:
name: persistent-volume-1
spec:
capacity:
storage: 1Gi
accessModes:
- ReadWriteMany
hostPath:
path: "/tmp/data"

> kubectl create -f persistent-volume.yaml

persistentvolume "persistent-volume-1" created

To check out the available volumes, you can use the resource type
persistentvolumes or pv for short:

> kubectl get pv

NAME CAPACITY ACCESSMODES RECLAIMPOLICY STATUS
CLAIM REASON AGE

persistent-volume-1 1Gi RWX Retain Available
6m

The capacity is 1 GiB as requested. The reclaim policy is Retain because host path
volumes are retained. The status is Available because the volume has not been
claimed yet. The access mode is specified a RwX, which means ReadWriteMany. All
access modes have a shorthand version:

* RWO - ReadWriteOnce

¢ ROX - ReadOnlyMany

* RWX - ReadWriteMany

[166]

Chapter 7

We have a persistent volume. Let's create a claim. Save the following to persistent-

volume-claim.yaml:

kind: PersistentVolumeClaim
apivVersion: vl
metadata:

name: persistent-volume-claim

spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi

Then, run the following command:

> kubectl create -f

.\persistent-volume-claim.yaml

persistentvolumeclaim "persistent-volume-claim" created

Let's check the claim and the volume:

k get pvec

NAME
ACCESSMODES

STATUS
AGE

persistent-volume-claim Bound

27s

> k get pv

NAME
CLAIM

CAPACITY

persistent-volume-1 1Gi
default/persistent-volume-claim

VOLUME CAPACITY
persistent-volume-1 1Gi RWX
ACCESSMODES RECLAIMPOLICY STATUS
REASON AGE
RWX Retain Bound
40m

As you can see, the claimand the volume are bound to each other. The final step is
to create a pod and assign the claim as a volume. Save the following to shell-pod.

yaml:

kind: Pod

apivVersion: vl

metadata:
name: just-a-shell

labels:

[167]

Handling Kubernetes Storage

name: just-a-shell
spec:
containers:
- name: a-shell
image: ubuntu
command: ["/bin/bash", "-c", "while true ; do sleep 10 ; done"]
volumeMounts:
- mountPath: "/data"
name: pv
- name: another-shell
image: ubuntu
command: ["/bin/bash", "-c", "while true ; do sleep 10 ; done"]
volumeMounts:
- mountPath: "/data"
name: pv
volumes:
- name: pv
persistentVolumeClaim:

claimName: persistent-volume-claim

This pod has two containers that use the Ubuntu image and both run a shell
command that just sleeps in an infinite loop. The idea is that the container will keep
running, so we can connect to it later and check its filesystem. The pod mounts our
persistent volume claim with a volume name of pv. Both containers mount it into
their /data directory.

Let's create the pod and verify that both containers are running:

> kubectl create -f shell-pod.yaml

pod "just-a-shell" created

> kubectl get pods
NAME READY STATUS RESTARTS AGE
just-a-shell 2/2 Running 0 1h

[168]

Chapter 7

Then, ssh to the node. This is the host whose /tmp/data is the pod's volume that
mounted as /data into each of the running containers:

> minikube ssh

##
==
B ORE BE BB HE ===
Jrunmmnmnwnnnnnnnn) /===
wmm {mm e i e o [mmme e
\ o _/
\ \ _/
_\ /
Pl N
["N/ _N/ _N| | DY/ NN/ 7N
[1) | Q) Q7 7O < 7
e/ N/ N/ N1 N S INC NN

Boot2Docker version 1.11.1, build master : 901340f - Fri Jul 1 22:52:19
UTC 2016

Docker version 1.11.1, build 5604cbe
docker@minikube: ~$

Inside the node, we can communicate with the containers using Docker commands.
Let's look at the last two running containers:

docker@minikube:~$ docker ps -n=2

CONTAINER ID IMAGE COMMAND CREATED
STATUS PORTS NAMES

3c9la46b834a ubuntu "/bin/bash -c 'while " About
an hour ago Up About an hour k8s another-

shell.b64b3aab just-a-shell default ebfl2a22-cee9-lle6-a2ae-
4ae3ce72fe94_ 8c7a8408

f1f9del0fdfd ubuntu "/bin/bash -c¢ 'while " About an
hour ago Up About an hour k8s a-shell.la38381b
just-a-shell default ebfl2a22-cee9-lle6-a2ae-4ae3ce72fe94 451fadec

Then, let's create a file in the /tmp/data directory on the host. It should be visible by
both containers via the mounted volume:

docker@minikube:~$ sudo touch /tmp/data/l.txt

[169]

Handling Kubernetes Storage

Let's execute a shell on one of the containers, verify that the file 1. txt is indeed
visible, and create another file, 2 . txt:

docker@minikube:~$ docker exec -it 3c91la46b834a /bin/bash
root@just-a-shell:/# 1ls /data

1.txt

root@just-a-shell:/# touch /data/2.txt
root@just-a-shell:/# exit

Finally, we can run a shell on the other container and verify that both
1l.txt and 2.txt are visible:

docker@minikube:~$ docker exec -it £f1£f9del0fdfd /bin/bash
root@just-a-shell:/# 1ls /data
1.txt 2.txt

Public storage volume types - GCE, AWS,
and Azure

In this section, we'll look at some of the common volume types available in the
leading public cloud platforms. Managing storage at scale is a difficult task that
eventually involves physical resources, similar to nodes. If you choose to run your
Kubernetes cluster on a public cloud platform, you can let your cloud provider deal
with all these challenges and focus on your system. But it's important to understand
the various options, constraints, and limitations of each volume type.

AWS Elastic Block Store (EBS)

AWS provides the elastic block store as persistent storage for EC2 instances.
An AWS Kubernetes cluster can use AWS EBS as persistent storage with the
following limitations:

* The pods must run on AWS EC2 instances as nodes
* Pods can only access EBS volumes provisioned in their availability zone

* An EBS volume can be mounted on a single EC2 instance.

Those are severe limitations. The restriction for a single availability zone, while
great for performance, eliminates the ability to share storage at scale or across a
geographically distributed system without custom replication and synchronization.
The limit of a single EBS volume to a single EC2 instance means even within the
same availability zone pods can't share storage (even for reading) unless you make
sure they run on the same node.

[170]

Chapter 7

With all the disclaimers out of the way, let's see how to mount an EBS volume:

apivVersion: vl
kind: Pod
metadata:

name: some-pod

spec:

containers:

- image: some-container
name: some-container
volumeMounts:

- mountPath: /ebs
name: some-volume
volumes:

- name: some-volume
awsElasticBlockStore:

volumeID: <volume-id>

fsType: ext4

You must create the EBS volume in AWS and then you just mount it into the pod.
There is no need for a claim or storage class because you mount the volume directly
by ID. The awsElasticBlockStore volume type is known to Kubernetes.

AWS Elastic File System (EFS)

AWS recently released a new service called the Elastic File System. This is really a
managed NFS service. It's using NFS 4.1 protocol and it has many benefits over EBS:

* Multiple EC2 instances can access the same files across multiple availability
zones (but within the same region)

* Capacity is automatically scaled up and down based on actual usage

* You pay only for what you use

* You can connect on-premise servers to EFS over VPN

* EFSruns off SSD drives that are automatically replicated across availability
zones

[171]

Handling Kubernetes Storage

That said, EFS is more expansive than EBS even when you consider the automatic
replication to multiple AZs (assuming you fully utilize your EBS volumes). From a
Kubernetes point of view, AWS EFS is just an NFS volume. You provision it as such:
apivVersion: vl
kind: PersistentVolume
metadata:
name: efs-share
spec:
capacity:
storage: 200Gi
accessModes:
- ReadWriteMany
nfs:
server: eu-west-1lb.fs-64HJku4i.efs.eu-west-1l.amazonaws.com

path: n / n

Once the persist volume exists, you can create a claim for it, attach the claim as a
volume to multiple pods (ReadWriteMany access mode), and mount it into containers.

GCE persistent disk

The gcePersistentDisk volume type is very similar to awsElasticBlockStore
You must provision the disk ahead of time. It can only be used by GCE instances

in the same project and zone. But the same volume can be used as read-only on
multiple instances. This means it supports ReadWriteOnce and ReadOnlyMany. You
can use a GCE persistent disk to share data as read-only between multiple pods in
the same zone.

The pod that's using a persistent disk in ReadWriteOnce mode must be controlled by
a replication controller, a replica set, or a deployment with a replica count of 0 or 1.
Trying to scale beyond 1 will fail for obvious reasons:
apivVersion: vl
kind: Pod
metadata:
name: some-pod
spec:
containers:

- image: some-container

[172]

Chapter 7

name: some-container
volumeMounts:
- mountPath: /pd
name: some-volume
volumes:
- name: some-volume
gcePersistentDisk:
pdName: <persistent disk name>

fsType: ext4

Azure data disk

The Azure data disk is a virtual hard disk stored in Azure storage. It's similar in
capabilities to AWS EBS. Here is a sample pod configuration file:

apiVersion: vl
kind: Pod
metadata:
name: some-pod
spec:
containers:

- image: some-container
name: some-container
volumeMounts:

- name: some-volume
mountPath: /azure
volumes:
- name: some-volume
azureDisk:
diskName: test.vhd
diskURI: https://someaccount.blob.microsoft.net/vhds/test.vhd

In addition to the mandatory diskName and diskURI parameters, it also has a few
optional parameters:

* cachingMode: The disk caching mode. This must be one of None, ReadOnly,
or ReadWrite. The default is None.

* fsType: The filesystem type set to mount. The default is ext4.

* readonly: Whether the filesystem is used as readonly. The default is false.

[173]

Handling Kubernetes Storage

Azure data disks are limited to 1,023 GB. Each Azure VM can have up to 16 data
disks. You can attach an Azure data disk to a single Azure VM.

Azure file storage

In addition to the data disk, Azure has also a shared filesystem similar to AWS EFS.
However, Azure file storage uses the SMB/ CIFS protocol (it supports SMB 2.1 and
SMB 3.0). It is based on the Azure storage platform and has the same availability,
durability, scalability, and geo-redundancy capabilities as Azure Blob, Table, or
Queue.

In order to use Azure file storage, you need to install on each client VM the
cifs-utils package. You also need to create a secret, which is a required parameter:
apivVersion: vl
kind: Secret
metadata:
name: azure-file-secret
type: Opaque
data:
azurestorageaccountname: <base64 encoded account name>

azurestorageaccountkey: <base64 encoded account key>

Here is a configuration file for Azure file storage:

apivVersion: vl
kind: Pod
metadata:
name: some-pod
spec:
containers:

- image: some-container
name: some-container
volumeMounts:

- name: some-volume
mountPath: /azure

volumes:
- name: some-volume

azureFile:

[174]

Chapter 7

secretName: azure-file-secret
shareName: azure-share

readOnly: false

Azure file storage supports sharing within the same region as well as connecting on-
premise clients. Here is a diagram that illustrates the workflow:

[Azure Data Center |
|| 1aas vv

_ \AccountName.file.core.windows.net\ShareName

\"i(/ WAccountName.file.core.windows.net\ShareName
)&/ ~F =~

I
|
I Front End
I Node 0
|
|
I

On-Premises Client

Software Load
Balancer

ffiC
pTrd
g SW

Front End Front End e Front End
Node | Node 2 Node N

Azure Table and Blob Store
J

GlusterFS and Ceph volumes in
Kubernetes

GlusterFS and Ceph are two distributed persistent storage systems. GlusterFS is at
its core a network filesystem. Ceph is at the core an object store. Both expose block,
object, and filesystem interfaces. Both use the xfs filesystem under the covers to
store the data and metadata as xattr attributes. There are several reasons why you
may want to use GlusterFs or Ceph as persistent volumes in your Kubernetes cluster:

* You may have a lot of data and applications that access the data in GlusterFS
or Ceph

* You have administrative and operational expertise managing GlusterFS
or Ceph

* You run in the cloud, but the limitations of the cloud platform persistent
storage are a non-starter

[175]

Handling Kubernetes Storage

Using GlusterFS

GlusterFS is intentionally simple, exposing the underlying directories as they are
and leaving it to clients (or middleware) to handle high availability, replication,
and distribution. Gluster organizes the data into logical volumes, which encompass
multiple nodes (machines) that contain bricks, which store files. Files are allocated
to bricks according to DHT (distributed hash table). If files are renamed or the
GlusterFS cluster is expanded or rebalanced, files may be moved between bricks.
The following diagram shows the GlusterFS building blocks:

- Gluster Volume

Brick Brick

Storage Node Storage Node Storage Node

To use a GlusterFS cluster as persistent storage for Kubernetes (assuming you have
an up and running GlusterFS cluster), you need to follow several steps. In particular,
the GlusterFS nodes are managed by the plugin as a Kubernetes service (although as
an application developer it doesn't concern you).

Creating endpoints

Here is an example of an endpoints resource that you can create as a normal
Kubernetes resource using kubectl create:

{
"kind": "Endpoints",
"apiVersion": "v1",

"metadata": {

"name": "glusterfs-cluster"
}I
"subsets": [
{
"addresses": [
{

"jip": "10.240.106.152"

[176]

Chapter 7

}
]l
"ports": [
{
"port": 1
}
1
}l
{
"addresses": [
{
"ip": "10.240.79.157"
}
]l
"ports": [
{
"port": 1
}
1
}

Adding a GlusterFS Kubernetes service

To make the endpoints persistent, you use a Kubernetes service with no selector to
indicate the endpoints are managed manually:

{

"kind": "Service",
"apiVersion": "v1",
"metadata": {

"name": "glusterfs-cluster"
3
"spec": {

"ports": [

{"portm": 1}

[177]

Handling Kubernetes Storage

Creating pods

Finally, in the pod spec's volumes section, provide the following information:

"volumes": [
{
"name": "glusterfsvol",
"glusterfs": {
"endpoints": "glusterfs-cluster",
"path": "kube vol",
"readOnly": true
}
}

1
The containers can then mount glusterfsvol by name.

The endpoints tell the GlusterFS volume plugin how to find the storage nodes of the
GlusterFS cluster.

Using Ceph

Ceph's object store can be accessed using multiple interfaces. Kubernetes supports
the RBD (block) and CEPHEFS (filesystem) interfaces. The following diagram shows
how RADOS - the underlying object store - can be accessed in multiple days. Unlike
GlusterFS, Ceph does a lot of work automatically. It does distribution, replication,
and self-healing all on its own:

[178]

Chapter 7

APP APP HOST/VM CLIENT

RADOSGW RBD CEPHFS
Abucket-basod REST Aroliablo and fully- A POSIX-compliant
gatoway, compatiblo with | gicributod block dovice, |distributod filo systom,
53 and Swift with a Linux kool cliont | with a Linux kemel cliont

and a QEMU/KVM drivor | and support for FUSE

Connecting to Ceph using RBD

Kubernetes supports Ceph via the Rados Block Device (RBD) interface. You must
install ceph-common on each node in the Kubernetes cluster. Once you have your
Ceph cluster up and running, you need to provide some information required by the
Ceph RBD volume plugin in the pod configuration file:

monitors: Ceph monitors.

pool: The name of the RADOS pool. If not provided, the default RBD pool
is used.

image: The image name that RBD has created.
user: The RADOS user name. If not provided, the default admin is used.

keyring: The path to the keyring file. If not provided, the default /etc/
ceph/keyring is used.

secretName: The name of the authentication secrets. If provided,
secretName overrides keyring. Note, see the following paragraph about
how to create a secret.

fsType: The filesystem type (ext4, xfs, and so on) that is formatted on
the device.

readOnly: Whether the filesystem is used as readonly.

[179]

Handling Kubernetes Storage

If the Ceph authentication secret is used, you need to create a secret object:

apivVersion: vl
kind: Secret
metadata:
name: ceph-secret
type: "kubernetes.io/rbd"
data:

key: QVFCMTZWMVZVRjVtRXhBQTVrQlFzN2JCajhWVUxSdzI2Qzg0SEE9PQ==

%‘ The secret type is kubernetes.io/rbd.

The pod spec's volumes section looks same as this:

"volumes": [
{
"name": "rbdpd",
"rbd": {
"monitors": [
"10.16.154.78:6789",
"10.16.154.82:6789",
"10.16.154.83:6789"
1,
"pool": "kube",
"image": "foo",
"user": "admin",
"secretRef": {
"name": "ceph-secret"
}
"fsType": "ext4",

"readOnly": true

1

Ceph RBD supports ReadWriteOnce and ReadOnlyMany access modes.

[180]

Chapter 7

Connecting to Ceph using CephFS

If your Ceph cluster is already configured with CephFS, then you can assign it very
easily to pods. Also CephFS supports ReadWriteMany access modes.

The configuration is similar to Ceph RBD, except you don't have a pool, image,
or filesystem type. The secret can be a reference to a Kubernetes secret object
(preferred) or a secret file:

apivVersion: vl
kind: Pod
metadata:
name: cephfs
spec:
containers:
- name: cephfs-rw
image: kubernetes/pause
volumeMounts:
- mountPath: "/mnt/cephfs"
name: cephfs
volumes:
- name: cephfs
cephfs:
monitors:
- 10.16.154.78:6789
- 10.16.154.82:6789
- 10.16.154.83:6789
user: admin
secretFile: "/etc/ceph/admin.secret"

readOnly: true

You can also provide a path as a parameter in the cephfs system. The default is /.

[181]

Handling Kubernetes Storage

Flocker as a clustered container data
volume manager

So far, we have discussed storage solutions that stored the data outside the
Kubernetes cluster (except for emptyDir and HostPath, which are not persistent).
Flocker is a little different. It is Docker-aware. It was designed to let Docker data
volumes transfer with their container when the container is moved between nodes.
You may want to use the Flocker volume plugin if you're migrating a Docker-based
system that use a different orchestration platform, such as Docker compose or Mesos,
to Kubernetes and you use Flocker for orchestrating storage. Personally, I feel that
there is a lot of duplication between what Flocker does and what Kubernetes does

to abstract storage.

Flocker has a control service and agents on each node. Its architecture is very similar
to Kubernetes with its API server and the Kubelet running on each node. The Flocker
control service exposes a REST API and manages the configuration of the state

across the cluster. The agents are responsible for ensuring that the state of their node
matches the current configuration. For example, if a dataset needs to be on node X,
then the Flocker agent on node X will create it.

The following diagram showcases the Flocker architecture:

FLOCKER CONTAINERS API OR CLI

FLOCKER -
CONTROL SERVICE |}
I

FLOCKER AGENT FLOCKER AGENT

——5
DOCKER DAEMON DOCKER DAEMON

C=
S = Shared

[182]

Chapter 7

In order to use Flocker as persistent volumes in Kubernetes, you first must have a
properly configured Flocker cluster. Flocker can work with many backing stores
(again, very similar to Kubernetes persistent volumes).

Then you need to create Flocker datasets and at that point you're ready to hook it up
as a persistent volume. After all your hard work, this part is easy and you just need
to specify the Flocker dataset name:

apivVersion: vl
kind: Pod
metadata:

name: some-pod

spec:
containers:
- name: some-container
image: kubernetes/pause
volumeMounts:
name must match the volume name below
- name: flocker-volume
mountPath: "/flocker"
volumes:

- name: flocker-volume
flocker:

datasetName: some-flocker-dataset

Integrating enterprise storage into
Kubernetes

If you have an existing Storage Area Network (SAN) exposed over the iSCSI
interface, Kubernetes has a volume plugin for you. It follows the same model as
other shared persistent storage plugins we've seen earlier. You must configure the
iSCSI initiator, but you don't have to provide any initiator information. All you
need to provide is the following:

* IP address of the iSCSI target and port (if not the default 3260)

* Target's ign (iSCSI qualified name) - typically reversed domain name

* LUN - logical unit number

* Filesystem type

* Readonly Boolean flag

[183]

Handling Kubernetes Storage

The iscs1 plugin supports ReadWriteOnce and ReadonlyMany. Note that you can't
partition your device at this time. Here is the volume spec:

volumes:
- name: iscsi-volume
iscsi:
targetPortal: 10.0.2.34:3260
ign: ign.2001-04.com.example:storage.kube.sysl.xyz
lun: 0
fsType: ext4

readOnly: true

Torus — the new kid on the block

CoreOS recently released Torus - a new network storage system designed for
Kubernetes. It takes advantage of the Kubernetes networking model and utilizes
ATA over Ethernet. It is optimized for distributing storage across a large number

of commodity hardware compared to the traditional approach of a relatively small
number of specialized hardware. Torus uses etcd to store the storage state and can
be connected to Kubernetes via the Flex volume plugin. It's still early days but Torus
can become the right storage solution for fresh Kubernetes deployments. It will be
very interesting to follow its progress.

Here is a diagram that shows how Torus is organized and deployed:

Kubernetes Pods

\ Mount Mount Mount

‘ Torus Storage Pool r “; eth

SS8888

Node Disks

[184]

Chapter 7

Summary

In this chapter, we took a deep look into storage in Kubernetes. We've looked at

the generic conceptual model based on volumes, claims, and storage classes, as
well as the implementation as volume plugins. Kubernetes eventually maps all
storage systems into mounted filesystems in containers. This straightforward model
allows administrators to configure and hook up any storage system from local host
directories through cloud-based shared storage all the way to enterprise storage
systems. You should now have a clear understanding of how storage is modeled
and implemented in Kubernetes and be able to make intelligent choices of how to
implement storage in your Kubernetes cluster.

In the Chapter 8, Running Stateful Application with Kubernetes, we'll see how Kubernetes
can raise the level of abstraction and on top of storage help in developing, deploying,
and operating stateful applications using concepts such as stateful sets.

[185]

Running Stateful Applications
with Kubernetes

In this chapter, we will look into what it takes to run stateful applications on
Kubernetes. Kubernetes is taking a lot of work off our hands by automatically
starting and restarting pods across the cluster nodes as needed, based on complex
requirements and configurations such as namespaces, limits, and quotas. But, when
pods run storage-aware software, such as databases and queues, relocating a pod
can cause the system to break. First, we'll understand the essence of stateful pods
and why they are much more complicated to manage in Kubernetes. We will look
at a few ways to manage the complexity such as shared environment variables

and DNS records. In some situations, a redundant in-memory state, a DaemonSet,
or persistent storage claims can do the trick. The main solution that Kubernetes
promotes for state-aware pods is the StatefulSet (previously called PetSet) resource
that allows managing an indexed collection of pods with stable properties. Finally,
we will dive deep into a full-fledged example of running a Cassandra cluster on top
of Kubernetes.

Stateful versus stateless applications in
Kubernetes

A stateless Kubernetes application is an application that doesn't manage its state in
the Kubernetes cluster. All of the state is stored outside the cluster and the cluster
containers access it in some manner. In this section, we'll understand why state
management is critical to the design of a distributed system and the benefits of
managing states within the Kubernetes cluster.

[187]

Running Stateful Applications with Kubernetes

Understanding the nature of distributed
data-intensive apps

Let's start from the basics here. Distributed applications are a collection of processes
that run on multiple machines, process inputs, manipulate data, expose APIs, and
possibly have other side effects. Each process is a combination of its program, its
runtime environment, and its inputs and outputs. The programs you write at school
get their input as command line arguments, maybe read a file or access a database,
and then write their results to the screen or a file or a database. Some programs
keep states in memory and can serve requests over the network. Simple programs
run on a single machine, can hold all their states in memory or read from a file.
Their runtime environment is their operating system. If they crash, the user has to
restart them manually. They are tied to their machine. A distributed application is

a different animal. A single machine is not enough to process all the data or serve
all the requests fast enough. A single machine can't hold all the data. The data that
needs to be processed is so large that it can't be downloaded cost-effectively into
each processing machine. Machines can fail and need to be replaced. Upgrades need
to be performed over all the processing machines. Users may be distributed across
the globe.

Taking all these issues into account, it becomes clear that the traditional approach
doesn't work. The limiting factor becomes the data. Users/client must receive only
summary or processed data. All massive data processing must be done close to the
data itself because transferring data is prohibitively slow and expensive. Instead, the
bulk of processing code must run in the same data center and network environment
of the data.

Why manage states in Kubernetes?

The main reason to manage states in Kubernetes itself as opposed to a separate
cluster is that a lot of the infrastructure needed to monitor, scale, allocate, secure
and operate a storage cluster is already provided by Kubernetes. Running a parallel
storage cluster will lead to a lot of duplicated effort.

Why manage states outside of Kubernetes?

Let's not rule out the other option. It may be better in some situations to manage
states in a separate non-Kubernetes cluster, as long as it shares the same internal
network (data proximity trumps everything).

[188]

Chapter 8

Some valid reasons are:
* You already have a separate storage cluster and you don't want to rock
the boat
* Your storage cluster is used by other non-Kubernetes applications
* Kubernetes support for your storage cluster is not stable or mature enough

You may want to approach stateful apps in Kubernetes incrementally, starting with
a separate storage cluster and integrating more tightly with Kubernetes later.

Shared environment variables versus
DNS records for discovery

Kubernetes provides several mechanisms for global discovery across the cluster. If
your storage cluster is not managed by Kubernetes, you still need to tell Kubernetes
pods how to find it and access it. There are two main methods:

* DNS

¢ Environment variables

In some cases, you may want to use both where environment variables can
override DNS.

Accessing external data stores via DNS

The DNS approach is simple and straightforward. Assuming your external storage
cluster is load balanced and can provide a stable endpoint, then pods can just hit
directly that endpoint and connect to the external cluster.

Accessing external data stores via
environment variables

Another simple approach is to use environment variables to pass connection
information to an external storage cluster. Kubernetes offers the configMap resource
as a way to keep configuration separate from the container image. The configuration
is a set of key-value pairs. The configuration information can be exposed as an
environment variable inside the container as well as volumes. You may prefer

to use secrets for sensitive connection information.

[189]

Running Stateful Applications with Kubernetes

Creating a ConfigMap
The following configuration file will create a configuration file that keeps a list
of addresses:
apiVersion: vl
kind: ConfigMap
metadata:
name: db-config
namespace: default
data:
db-ip-addresses: 1.2.3.4,5.6.7.8

> kubectl create -f .\configmap.yaml

configmap "db-config" created

The data section contains all the key value pairs. In this case, just a single pair with
a key name of db-ip-addresses. It will be important later when consuming the
configmap in a pod. You can check out the content to make sure it's OK:

> kubectl get configmap db-config -o yaml
apivVersion: vl
data:
db-ip-addresses: 1.2.3.4,5.6.7.8
kind: ConfigMap
metadata:
creationTimestamp: 2017-01-09T03:14:072Z
name: db-config
namespace: default
resourceVersion: "551258"
selfLink: /api/vl/namespaces/default/configmaps/db-config
uid: aebcc007-d619-11le6-91fl-3a7ae2a25c7d

There are other ways to create ConfigMap. You can directly create them using the
--from-value Or --from-file command line arguments.

[190]

Chapter 8

Consuming a ConfigMap as an environment variable

When you are creating a pod, you can specify a ConfigMap and consume its
values in several ways. Here is how to consume our configuration map as an
environment variable:

apivVersion: vl
kind: Pod
metadata:
name: some-pod
spec:
containers:
- name: some-container
image: busybox
command: ["/bin/sh", "-c", "env"]
env:
- name: DB_IP ADDRESSES
valueFrom:
configMapKeyRef:
name: db-config
key: db-ip-addresses

restartPolicy: Never

This pod runs the busybox minimal container and executes an env bash command and
immediately exists. The db-ip-addresses key from the db-config map is mapped
to the environment variable, DB_IP_ADDRESSES, and is reflected in the output:

> kubectl logs some-pod

HUE REMINDERS SERVICE PORT=80

HUE REMINDERS PORT=tcp://10.0.0.238:80
KUBERNETES PORT=tcp://10.0.0.1:443
KUBERNETES SERVICE PORT=443
HOSTNAME=some-pod

SHLVL=1

HOME=/root

HUE REMINDERS PORT 80 TCP ADDR=10.0.0.238
HUE REMINDERS PORT 80 TCP PORT=80

HUE REMINDERS PORT 80 TCP_ PROTO=tcp

DB IP ADDRESSES=1.2.3.4,5.6.7.8

[191]

Running Stateful Applications with Kubernetes

HUE REMINDERS PORT 80 TCP=tcp://10.0.0.238:80
KUBERNETES PORT 443 TCP ADDR=10.0.0.1
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
KUBERNETES PORT 443 TCP PORT=443
KUBERNETES PORT 443 TCP PROTO=tcp
KUBERNETES SERVICE PORT HTTPS=443

KUBERNETES PORT 443 TCP=tcp://10.0.0.1:443

HUE REMINDERS SERVICE HOST=10.0.0.238

PWD=/

KUBERNETES SERVICE HOST=10.0.0.1

Using a redundant in-memory state

In some cases, you may want to keep a transient state in memory. Distributed
caching is a common case. Time-sensitive information is another one. For these use
cases, there is no need for persistent storage and multiple pods accessed through a
service may be just the right solution. We can use standard Kubernetes techniques
such as labeling to identify pods that belong to the store redundant copies of the
same state and expose it through a service. If a pod dies, Kubernetes will create a
new one and until it catches up the other pods will serve the state. We can even use
the pod anti-affinity Alpha feature to ensure that pods who maintain redundant
copies of the same state are not scheduled to the same node.

Using DaemonSet for redundant persistent
storage

Some stateful applications such as distributed databases or queues manage their
state redundantly and sync their nodes automatically (we'll take a very deep look
into Cassandra later). In these cases, it is important that pods are scheduled to
separate nodes. It is also important that pods are scheduled to nodes with particular
hardware configuration or are even dedicated for the stateful application. The
DaemonSet feature is perfect for this use case. We can label a set of nodes and make
sure that the stateful pods are scheduled on a one-by-one basis to the selected group
of nodes.

Applying persistent volume claims

If the stateful application can use effectively shared persistent storage, then using a
persistent volume claim in each pod is the way to go, as we demonstrated in Chapter
7, Handling Kubernetes Storage. The stateful application will be presented with a
mounted volume that looks just like a local filesystem.

[192]

Chapter 8

Utilizing StatefulSet

The StatefulSet controller is a relatively new addition to Kubernetes (introduced

as StatefulSet in Kubernetes 1.3 and renamed to StatefulSet in Kubernetes 1.5). It is
especially designed to support distributed stateful applications where the identities
of the members is important and if a pod is restarted it must retain its identity in the
set. It provides ordered deployment and scaling. Unlike regular pods, the pods of a
stateful set are associated with persistent storage.

When to use StatefulSet

StatefulSet is great for applications that require one or more of the following:

* Stable, unique network identifiers
* Stable, persistent storage
* Ordered, graceful deployment, and scaling

* Ordered, graceful deletion, and termination

The components of StatefulSet

There are several pieces that need to be configured correctly in order to have a
working StatefulSet:

* A headless service responsible for managing the network identity of the
StatefulSet pods

* The StatefulSet itself with a number of replicas

* Persistent storage provision dynamically or by an administrator

Here is an example of a service called nginx that will be used for a StatefulSet:

apiVersion: vl
kind: Service
metadata:

name: nginx

labels:

app: nginx

spec:

ports:

- port: 80

name: web

[193]

Running Stateful Applications with Kubernetes

clusterIP: None
selector:

app: nginx
Now, the statefulset configuration file will reference the service:

apiVersion: apps/vlbetal
kind: StatefulSet
metadata:
name: web
spec:
serviceName: "nginx"
replicas: 3
template:
metadata:
labels:

app: nginx
The next part is the pod template that includes a mounted volume named www:

spec:
terminationGracePeriodSeconds: 10
containers:
- name: nginx
image: gcr.io/google containers/nginx-slim:0.8
ports:
- containerPort: 80
name: web
volumeMounts:
- name: www

mountPath: /usr/share/nginx/html

Last but not least, the volumeClaimTemplates use a claim named www matching the
mounted volume. The claim requests 1Gib of storage with ReadWriteOnce access:

volumeClaimTemplates:
- metadata:
name: www

spec:

[194]

Chapter 8

accessModes: ["ReadWriteOnce"]
resources:
requests:

storage: 1lGib

Running a Cassandra cluster in
Kubernetes

In this section, we will explore in detail a very large example of configuring
a Cassandra cluster to run on a Kubernetes cluster. The full example can be
accessed here:

https://github.com/kubernetes/kubernetes/tree/master/examples/
storage/cassandra.

First, we'll learn a little bit about Cassandra itself and its idiosyncrasies and then
follow a step-by-step procedure to get it running using several of the techniques
and strategies we've covered in the previous section.

Quick introduction to Cassandra

Cassandra is a distributed columnar data store. It was designed from the get go for
big data. Cassandra is fast, robust (no single point of failure), highly-available, and
linearly scalable. It also has multi-data center support. It achieves all this by having a
laser focus and carefully crafting the features it supports —and just as importantly —
the features it doesn't support. In a previous company, I ran a Kubernetes cluster that
used Cassandra as the main data store for a sensors data (about 100 TB). Cassandra
allocates the data to a set of nodes (node ring) based on a DHT algorithm. The cluster
nodes talk to each other via a gossip protocol and learn quickly about the overall
state of the cluster (what nodes joined and what nodes left or are unavailable).
Cassandra constantly compacts the data and balances the cluster. The data is
typically replicated multiple times for redundancy, robustness, and high-availability.
From a developer's point of view, Cassandra is very good for time-series data and
provides a flexible model where you can specify the consistency level in each query.
It is also idempotent (a very important feature for a distributed database), which
means repeated inserts or updates are allowed.

[195]

https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra
https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra

Running Stateful Applications with Kubernetes

Here is a diagram that shows how a Cassandra cluster is organized and how a client
can access any node and the request will be forwarded automatically to the nodes
that have the requested data:

The Cassandra Docker image

Deploying Cassandra on Kubernetes as opposed to a standalone Cassandra cluster
deployment requires a special Docker image. This is an important step because it
means we can use Kubernetes to keep track of our Cassandra pods. The image is
available here:

https://github.com/kubernetes/kubernetes/tree/master/examples/
storage/cassandra/image.

Here are the essential parts of the Docker file.

The image is based on Debian Jessie:
FROM google/debian:jessie

Add and copy the necessary files (Cassandra. jar, various configuration files, run
script, and read-probe script), create a data directory for Cassandra to store its
SSTables, and mount it:
ADD files /
RUN mv /java.list /etc/apt/sources.list.d/java.list \

&& mv /cassandra.list /etc/apt/sources.list.d/cassandra.list \

&& chmod a+rx /run.sh /sbin/dumb-init /ready-probe.sh \

[196]

https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra/image
https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra/image
https://github.com/kubernetes/kubernetes/tree/master/examples/storage/cassandra/image

Chapter 8

&& mkdir -p /cassandra data/data \

&& mv /logback.xml /cassandra.yaml /jvm.options /etc/cassandra/

VOLUME ["/cassandra data"]

Expose important ports for accessing Cassandra and to let Cassandra nodes gossip
with each other:

7000: intra-node communication

7001: TLS intra-node communication
7199: JMX

9042: CQL

EXPOSE 7000 7001 7199 9042

Finally, the command, which uses dumb-init, a simple container init system from
yelp, eventually runs the run. sh script:

CMD ["/sbin/dumb-init", "/bin/bash", "/run.sh"]

Exploring the run.sh script

The run. sh script requires some shell skills but it's worth the effort. Since Docker
allows running only one command, it is very common with non-trivial applications
to have a launcher script that sets up the environment and prepares for the actual
application. In this case, the image supports several deployment options (stateful
set, replication controller, DaemonSet) that we'll cover later and the run script
accommodates all by being very configurable via environment variables.

First, some local variables are set for the Cassandra configuration file at /etc/
cassandra/cassandra.yaml. The CASSANDRA CFG variable will be used in the
rest of the script:

set -e
CASSANDRA CONF DIR=/etc/cassandra
CASSANDRA CFG=$CASSANDRA CONF DIR/cassandra.yaml

If no cASSANDRA SEEDS were specified, then set the HOSTNAME, which is used in the
stateful set solution:

we are doing StatefulSet or just setting our seeds
if [-z "$CASSANDRA SEEDS"]; then

HOSTNAME=$ (hostname -f)
Fi

[197]

Running Stateful Applications with Kubernetes

Then comes a long list of environment variables with defaults. The syntax, ${VAR_
NAME: -<default }, uses the environment variable, VAR NAME, if it's defined, or the
default value.

A similar syntax: ${VAR_NAME:=<default}, does the same thing, but also assigns
the default value to the environment variable if not defined.

Both variations are used here:

CASSANDRA RPC_ADDRESS="${CASSANDRA RPC_ADDRESS:-0.0.0.0}"
CASSANDRA NUM TOKENS="${CASSANDRA NUM TOKENS:-32}"

CASSANDRA CLUSTER NAME="${CASSANDRA CLUSTER NAME:='Test Cluster'}"
CASSANDRA LISTEN ADDRESS=${POD_IP:-$HOSTNAME}

CASSANDRA BROADCAST ADDRESS=${POD IP:-$HOSTNAME}

CASSANDRA BROADCAST RPC ADDRESS=${POD IP:-$HOSTNAME}

CASSANDRA DISK_OPTIMIZATION STRATEGY="${CASSANDRA DISK OPTIMIZATION
STRATEGY:-ssd}"

CASSANDRA MIGRATION WAIT="${CASSANDRA MIGRATION WAIT:-1}"

CASSANDRA ENDPOINT SNITCH="${CASSANDRA ENDPOINT SNITCH:-SimpleSnitch}"
CASSANDRA DC="${CASSANDRA DC}"

CASSANDRA RACK="${CASSANDRA RACK}"

CASSANDRA RING DELAY="${CASSANDRA RING DELAY:-30000}"

CASSANDRA AUTO_ BOOTSTRAP="${CASSANDRA AUTO BOOTSTRAP:-true}"

CASSANDRA SEEDS="${CASSANDRA SEEDS:false}"

CASSANDRA SEED PROVIDER="${CASSANDRA SEED PROVIDER:-org.apache.cassandra.
locator.SimpleSeedProvider}"

CASSANDRA AUTO BOOTSTRAP="§ {CASSANDRA_AUTO_BOOTSTRAP :fal se} "

Turn off JMX auth

CASSANDRA OPEN JMX="${CASSANDRA OPEN JMX:-false}"

send GC to STDOUT

CASSANDRA GC_STDOUT="${CASSANDRA GC_STDOUT:-false}"

Then comes a section where all the variables are printed to the screen. Let's skip most
of it:

echo Starting Cassandra on ${CASSANDRA LISTEN ADDRESS}
echo CASSANDRA CONF DIR ${CASSANDRA CONF DIR}

[198]

Chapter 8

The next section is very important. By default, Cassandra uses a simple snitch, which
is unaware of racks and data centers. This is not optimal when the cluster spans
multiple data centers and racks. Cassandra is rack and data center aware and can
optimize both for redundancy and high-availability while limiting communication
across data centers appropriately:

if DC and RACK are set, use GossipingPropertyFileSnitch
if [[$CASSANDRA DC && $CASSANDRA RACK]]; then

echo "dc=$CASSANDRA DC" > $CASSANDRA CONF DIR/cassandra-rackdc.
properties

echo "rack=$CASSANDRA RACK" >> $CASSANDRA CONF DIR/cassandra-rackdc.
properties

CASSANDRA ENDPOINT SNITCH="GossipingPropertyFileSnitch"
fi
Memory management is important and you can control the maximum heap size to
ensure Cassandra doesn't start thrashing and swapping to disk:

if [-n "$CASSANDRA MAX HEAP"]; then

sed -ri "S/A(#)?-me[O-S]+.*/-me$CASSANDRA_MAX_HEAP/“ "S$SCASSANDRA
CONF_DIR/jvm.options™"

sed -ri "s/A(#)?-Xms[0-9]+.*/-Xms$CASSANDRA_MAX_HEAP/“ "S$SCASSANDRA
CONF_DIR/jvm.options™"

fi

if [-n "$CASSANDRA REPLACE NODE"]; then

echo "-Dcassandra.replace address=$CASSANDRA REPLACE NODE/" >>
"$CASSANDRA CONF DIR/jvm.options"

fi
The rack and data center information is stored in a simple Java properties file:

for rackdec in dc rack; do
var="CASSANDRA ${rackdc”"}"
val="${t!var}"
if ["$val"]; then

sed -ri 's/"('"$rackdc"'=).*/\1 '"$val"'/' "SCASSANDRA CONF DIR/
cassandra-rackdc.properties"

fi

done

[199]

Running Stateful Applications with Kubernetes

The next section loops over all the variables defined earlier, finds the corresponding
key in the cassandra.yaml configuration files, and overwrites them. That ensures
that each configuration file is customized on the fly just before it launches
Cassandra itself:

for yaml in \
broadcast address \
broadcast rpc_address \
cluster name \
disk optimization strategy \
endpoint_snitch \
listen_address \
num_tokens \
rpc_address \
start_rpc \
key cache size in mb \
concurrent reads \
concurrent writes \
memtable cleanup threshold \
memtable allocation type \
memtable flush writers \
concurrent compactors \
compaction throughput mb per sec \
counter cache size in mb \
internode compression \
endpoint_snitch \
gc_warn threshold in ms \
listen interface \
rpc_interface \
; do
var="CASSANDRA ${yaml”"*}»
val="${!var}"
if ["$val"]; then

sed -ri 's/*(#)?('"Syaml"':).*/\2 '"$val"'/' "$CASSANDRA CFG"

fi

done

echo "auto bootstrap: ${CASSANDRA AUTO BOOTSTRAP}" >> $CASSANDRA CFG

[200]

Chapter 8

The next section is all about setting the seeds or seed provider depending on the
deployment solution (stateful set or not). There is a little trick for the first pod to
bootstrap as its own seed:

set the seed to itself. This is only for the first pod, otherwise
it will be able to get seeds from the seed provider
if [[$CASSANDRA SEEDS == 'false']1]; then
sed -ri 's/- seeds:.*/- seeds: "'"$POD IP"'"/' $CASSANDRA CFG
else # if we have seeds set them. Probably StatefulSet
sed -ri 's/- seeds:.*/- seeds: "'"$CASSANDRA SEEDS"'"/' $CASSANDRA CFG
fi

sed -ri 's/- class name: SEED PROVIDER/- class name: '"$CASSANDRA SEED
PROVIDER"'/' $CASSANDRA CFG

The following section sets up various options for remote management and
JMX monitoring. It's critical in complicated distributed systems to have proper
administration tools. Cassandra has deep support for the ubiquitous Java
Management Extensions (JMX) standard:

send gc to stdout
if [[$CASSANDRA GC_STDOUT == 'true' 1]; then

sed -ri 's/ -Xloggc:\/var\/log\/cassandra\/gc\.log//' $CASSANDRA CONF
DIR/cassandra-env.sh

fi

enable RMI and JMX to work on one port

echo "JVM OPTS=\"\$JVM OPTS -Djava.rmi.server.hostname=$POD IP\"" >>
$CASSANDRA CONF_DIR/cassandra-env.sh

getting WARNING messages with Migration Service

echo "-Dcassandra.migration task wait in seconds=${CASSANDRA MIGRATION
WAIT}" >> $CASSANDRA CONF_DIR/jvm.options

echo "-Dcassandra.ring delay ms=${CASSANDRA RING DELAY}" >> $CASSANDRA
CONF_DIR/jvm.options

if [[$CASSANDRA OPEN JMX == 'true']]; then
export LOCAL JMX=no

sed -ri 's/ -Dcom)\.sun)\.management).jmxremote\.authenticate=true/
-Dcom\.sun\.management\.jmxremote\.authenticate=false/' $CASSANDRA CONF
DIR/cassandra-env.sh

[201]

Running Stateful Applications with Kubernetes

sed -ri 's/ -Dcom\.sun\.management).jmxremote\.password\.file=\/etc\/
cassandra\/jmxremote\.password//' $CASSANDRA CONF DIR/cassandra-env.sh

fi

Finally, the class path is set to the Cassandra JAR file and it launches Cassandra
itself in the foreground (not Daemonized):

export CLASSPATH=/kubernetes-cassandra.jar

cassandra -R -f

Hooking up Kubernetes and Cassandra

Connecting Kubernetes and Cassandra takes some work because Cassandra was
designed to be very self-sufficient, but we want to let it hook Kubernetes at the
right time to provide capabilities such as automatically restarting failed nodes,
monitoring, allocating Cassandra pods, and providing a unified view of the
Cassandra pods side by side of other pods. Cassandra is a complicated beast and
has many knobs to control it. It comes with a Cassandra.yaml configuration file
and you can override all the options with environment variables.

Digging into the Cassandra configuration

There are two settings that are particularly relevant: the seed provider and the snitch.
The seed provider is responsible for publishing a list of IP addresses (seeds) of nodes
in the cluster. Every node that starts running connects to the seeds (there are usually
at least three) and if it successfully reaches one of them they immediately exchange
information about all the nodes in the cluster. This information is updated constantly
for each node as the nodes gossip with each other.

The default seed provider configured in Cassandra.yanml is just a static list of IP
addresses, in this case just the loopback interface:

seed provider:
- class_name: SEED PROVIDER
parameters:
seeds is actually a comma-delimited list of addresses.
Ex: "<ipl>,<ip2>,<ip3>"
- seeds: "127.0.0.1"

[202]

Chapter 8

The other important setting is the snitch. It has two roles:

* It teaches Cassandra enough about your network topology to route requests
efficiently.

* Itallows Cassandra to spread replicas around your cluster to avoid
correlated failures. It does this by grouping machines into data centers and
racks. Cassandra will do its best not to have more than one replica on the
same rack (which may not actually be a physical location).

Cassandra comes pre-loaded with several snitch classes, but none of them are
Kubernetes aware. The default is SimpleSnitch, but can be overridden:

You can use a custom Snitch by setting this to the full class
name of the snitch, which will be assumed to be on your # classpath.

endpoint snitch: SimpleSnitch

The custom seed provider

When running Cassandra nodes as pods in Kubernetes, Kubernetes may move pods
around including seeds. To accommodate that, a Cassandra seed provider needs to
interact with the Kubernetes API server.

Here is a short snippet from the custom KubernetesSeedPRovider Java class that
implements the Cassandra seedProvider API:

public class KubernetesSeedProvider implements SeedProvider (

[**
* Call kubernetes API to collect a list of seed providers
* @return list of seed providers
*/

public List<InetAddress> getSeeds() {

String host = getEnvOrDefault("KUBERNETES_PORT_443_TCP_ADDR“,
"kubernetes.default.svc.cluster.local");

String port = getEnvOrDefault ("KUBERNETES PORT 443 TCP_PORT",
||443||) ;

String serviceName = getEnvOrDefault ("CASSANDRA SERVICE",
"cassandra") ;

String podNamespace = getEnvOrDefault ("POD NAMESPACE",
"default") ;

String path = String.format("/api/vl/namespaces/%s/endpoints/",
podNamespace) ;

[203]

Running Stateful Applications with Kubernetes

String seedSizeVar = getEnvOrDefault ("CASSANDRA SERVICE NUM
SEEDS" , "8 ll) ;

Integer seedSize = Integer.valueOf (seedSizeVar) ;

String accountToken = getEnvOrDefault ("K8S ACCOUNT TOKEN", "/var/
run/secrets/kubernetes.io/serviceaccount/token") ;

List<InetAddress> seeds = new ArraylList<InetAddress>();

try {

String token = getServiceAccountToken (accountToken) ;

SSLContext ctx = SSLContext.getInstance("SSL");

ctx.init (null, trustAll, new SecureRandom());

String PROTO = "https://";

URL url = new URL(PROTO + host + ":" + port + path +
serviceName) ;

logger.info("Getting endpoints from " + url);

HttpsURLConnection conn = (HttpsURLConnection)url.
openConnection() ;

conn.setSSLSocketFactory(ctx.getSocketFactory());
conn.addRequestProperty ("Authorization", "Bearer " + token);
ObjectMapper mapper = new ObjectMapper() ;

Endpoints endpoints = mapper.readValue(conn.getInputStream(),
Endpoints.class); }

return Collections.unmodifiableList (seeds);

Creating a Cassandra headless service

The role of the headless service is to allow clients in the Kubernetes cluster to connect
to the Cassandra cluster through a standard Kubernetes service instead of keeping
track of the network identities of the nodes or putting a dedicated load balancer in
front of all the nodes. Kubernetes provides all that out of the box through its services.

[204]

Chapter 8

Here is the configuration file:

apivVersion: vl
kind: Service
metadata:
labels:
app: cassandra
name: cassandra
spec:
clusterIP: None
ports:
- port: 9042
selector:

app: Cassandra

The app: Cassandra label will group all the pods to participate in the service.
Kubernetes will create endpoint records and the DNS will return a record for
discovery. The clusterIP is None, which means the service is headless and Kubernetes
will not do any load balancing or proxying. This is important because Cassandra nodes
do their own communication directly.

The 9042 port is used by Cassandra to serve CQL requests. Those can be queries,
inserts/updates (it's always an upsert with Cassandra), or deletes.

Using statefulSet to create the Cassandra
cluster

Declaring a stateful set is not trivial. It is arguably the most complex Kubernetes
resource. It has a lot of moving parts: standard metadata, the stateful set spec, the
pod template (which is often pretty complex itself), and volume claim templates.

Dissecting the stateful set configuration file

Let's go methodically over this example stateful set configuration file that declares a
three-node Cassandra cluster.

Here is the basic metadata. Note the apiversion string starting with apps/:

apiVersion: "apps/vlbetal"
kind: StatefulSet
metadata:

name: cassandra

[205]

Running Stateful Applications with Kubernetes

The stateful set spec defines the headless service name, how many pods there are in
the stateful set, and the pod template (explained later). The replicas field specifies
how many pods are in the stateful set:

spec:
serviceName: cassandra
replicas: 3

template: ..

The term replicas for the pods is an unfortunate choice because the pods are NOT
replicas of each other. They share the same pod template, but they have a unique
identity and they are responsible for different subsets of the state in general. This is
even more confusing in the case of Cassandra, which uses the same term replicas
to refer to groups of nodes that redundantly duplicate some subset of the state (but
are not identical, because each can manage additional states too). I opened a GitHub
issue with the Kubernetes project to change the term from replicas to members:

https://github.com/kubernetes/kubernetes.github.io/issues/2103.

The pod template contains a single container based on the custom Cassandra image.
Here is the pod template, with the app: cassandra label:

template:
metadata:
labels:
app: cassandra
spec:

containers: ..

The container spec has multiple important parts. It starts with a name and the image
we looked at earlier:
containers:
- name: cassandra
image: gcr.io/google-samples/cassandra:vll

imagePullPolicy: Always

Then it defines multiple container ports needed for external and internal
communication by Cassandra nodes:

ports:
- containerPort: 7000
name: intra-node

- containerPort: 7001

[206]

https://github.com/kubernetes/kubernetes.github.io/issues/2103

Chapter 8

name: tls-intra-node
- containerPort: 7199
name: jmx
- containerPort: 9042

name: cql

The resources section specifies the CPU and memory needed by the container. This
is critical because the storage management layer should never be a performance
bottleneck due to cpu or memory.

resources:
limits:
cpu: "500m"
memory: 1Gi
requests:
cpu: "500m"

memory: 1Gi

Cassandra needs access to 1pC, which the container requests through the security
content's capabilities:

securityContext:
capabilities:
add:
- IPC_LOCK

The env section specifies environment variables that will be available inside the
container. The following is a partial list of the necessary variables. The CASSANDRA
SEEDS variable is set to the headless service, so a Cassandra node can talk to seeds on
startup and discover the whole cluster. Note that in this configuration, we don't use
the special Kubernetes seed provider. The poD_1IP is interesting because it utilizes the
Downward API to populate its value via the field reference to status.podIp:

env:
- name: MAX HEAP SIZE
value: 512M
- name: CASSANDRA SEEDS
value: "cassandra-0.cassandra.default.svc.cluster.local"
- name: POD_ IP
valueFrom:
fieldRef:
fieldPath: status.podIP

[207]

Running Stateful Applications with Kubernetes

The container has a readiness probe too to ensure the Cassandra node doesn't receive
requests before it's fully online:

readinessProbe:
exec:
command :
- /bin/bash
- -c
- /ready-probe.sh
initialDelaySeconds: 15

timeoutSeconds: 5

Cassandra needs to read and write the data of course. The cassandra-data volume
mount is where it's at:

volumeMounts:
- name: cassandra-data

mountPath: /cassandra data

That's it for the container spec. The last part is the volume claim template. In this
case, dynamic provisioning is used. It's highly recommended to use SSD drives for
Cassandra storage and especially its journal. The requested storage in this example is
1 Gi. I discovered through experimentation that 1-2 TB is ideal for a single Cassandra
node. The reason is that Cassandra does a lot of data shuffling under the covers,
compacting and rebalancing the data. If a node leaves the cluster or a new one joins
the cluster, you have to wait until the data is properly rebalanced before the data
from the node that left is properly re-distributed or a new node is populated. Note
that Cassandra needs a lot of disk space to do all this shuffling. It is recommended

to have 50% free disk space. When you consider that you also need replication
(typically 3X) then the required storage space can be 6X your data size. You can get
by with 30% free space if you're adventurous and maybe use just 2X replication
depending on your use case. But, don't get below 10% free disk space even on a
single node. I learned the hard way that Cassandra will be simply stuck and unable
to compact and rebalance such nodes without extreme measures.

The access mode is of course ReadWriteOnce:

volumeClaimTemplates:
- metadata:
name: cassandra-data
annotations:

volume.alpha.kubernetes.io/storage-class: anything

[208]

Chapter 8

spec:

accessModes: ["ReadWriteOnce"]
resources:
requests:

storage: 1Gi

When deploying a stateful set, Kubernetes creates the pod in order per its index
number. When scaling up or down, it also does it in order. For Cassandra, this is not
important because it can handle nodes joining or leaving the cluster in any order.
When a Cassandra pod is destroyed, the persistent volume remains. If a pod with the
same index is created later, the original persistent volume will be mounted into it.
This stable connection between a particular pod and its storage enables Cassandra

to manage the state properly.

Using a replication controller to distribute
Cassandra

A stateful set is great, but as mentioned earlier, Cassandra is already a sophisticated
distributed database. It has a lot of mechanisms for automatically distributing and
balancing and replicating the data around the cluster. These mechanisms are not
optimized for working with network persistent storage. Cassandra was designed to
work with the data stored directly on the nodes. When a node dies, Cassandra can
recover having redundant data stored on other nodes. Let's look at a different way to
deploy Cassandra on a Kubernetes cluster, which is more aligned with Cassandra's
semantics. Another benefit of this approach is that if you have an existing Kubernetes
cluster; you don't have to upgrade it to the latest and greatest just to use a stateful set.

We will still use the headless service, but instead of a stateful set we'll use a regular
replication controller. There are some important differences:

* Replication controller instead of a stateful set
* Storage on the node the pod is scheduled to

* The custom Kubernetes seed provider class is used

Dissecting the replication controller configuration
file
The metadata is pretty minimal, with just a name (labels are not required):

apiVersion: vl

kind: ReplicationController

[209]

Running Stateful Applications with Kubernetes

metadata:
name: cassandra
The labels will be applied automatically
from the labels in the pod template, if not set
labels:

app: Cassandra

The spec specifies the number of replicas:

spec:
replicas: 3
The selector will be applied automatically
from the labels in the pod template, if not set.
selector:

app: Cassandra

The pod template's metadata is where the app: Cassandra label is specified. The
replication controller will keep track and make sure that there are exactly three pods
with that label:

template:
metadata:
labels:

app: Cassandra

The pod template's spec describes the list of containers. In this case, there is just one
container. It uses the same Cassandra Docker image named cassandra and runs the
run. sh script:

spec:

containers:

- command:
- /run.sh
image: gcr.io/google-samples/cassandra:vll

name: cassandra

[210]

Chapter 8

The resources section just requires 0.5 units of CPU in this example:

resources:
limits:

cpu: 0.5

The environment section is a little different. The CASSANDRA SEED PROVDIER
specifies the custom Kubernetes seed provider class we examined earlier. Another
new addition here is PoD_NAMESPACE, which uses the Downward API again to fetch
the value from the metadata:

env:
- name: MAX HEAP SIZE
value: 512M
- name: HEAP NEWSIZE
value: 100M
- name: CASSANDRA SEED PROVIDER
value: "io.k8s.cassandra.KubernetesSeedProvider"
- name: POD NAMESPACE
valueFrom:
fieldRef:
fieldPath: metadata.namespace
- name: POD IP
valueFrom:
fieldRef:
fieldPath: status.podIP

The ports section is identical, exposing the intra-node communication ports: 7000
and 7001, the 7199 JMX port used by external tools such as Cassandra OpsCenter to
communicate with the Cassandra cluster, and of course the 9042 CQL port through
which clients communicate with the cluster:

ports:

- containerPort: 7000
name: intra-node

- containerPort: 7001
name: tls-intra-node

- containerPort: 7199
name: jmx

- containerPort: 9042

name: cql

[211]

Running Stateful Applications with Kubernetes

Once again, the volume is mounted into /cassandra_data. This is important
because the same Cassandra image configured properly just expects its data
directory to be at a certain path. Cassandra doesn't care about the backing storage
(although you should care as the cluster administrator). Cassandra will just read
and write using filesystem calls:

volumeMounts:
- mountPath: /cassandra data

name: data

The volumes section is the biggest difference from the stateful set solution. A stateful
set uses persistent storage claims to connect a particular pod with stable identity

to a particular persistent volume. The replication controller solution just uses an
emptyDir on the hosting node:

volumes:
- name: data

emptyDir: {}

This has many ramifications. You have to provision enough storage on each node.
If a Cassandra pod dies, its storage goes away. Even if the pod is restarted on the
same physical (or virtual) machine the data on disk will be lost because emptyDir
is deleted once its pod is removed. Note that container restarts are OK, because
emptyDir survives container crashes. So, what happens when the pod dies? The
replication controller will start a new pod with empty data. Cassandra will detect
that a new node was added to the cluster, assign it some portion of the data, and
start rebalancing automatically by moving data from other nodes. This is where
Cassandra shines. It constantly compacts, rebalances, and distributes the data
evenly across the cluster. It will just figure out what to do on your behalf.

Assigning pods to nodes

The main problem with the replication controller approach is that multiple pods can
get scheduled on the same Kubernetes node. What if you have a replication factor of
three and all three pods that are responsible for some range of the keyspace are all
scheduled to the same Kubernetes node? First, all requests for read or writes of that
range of keys will go to the same node, creating more pressure. But, even worse, we
just lost our redundancy. We have a single point of failure (SPOF). If that node dies,
the replication controller will happily start three new pods on some other Kubernetes
node, but all of them will have no data and no other Cassandra node in the cluster
(the other pods) will have the data to copy from.

[212]

Chapter 8

This can be solved using a Kubernetes 1.4 Alpha concept called anti-affinity. When
assigning pods to nodes, a pod can be annotated such that the scheduler will not
schedule it to a node that already had a pod with a particular set of labels. Here is
how to ensure that at most a single Cassandra pod will be assigned to a node:

annotations:
scheduler.alpha.kubernetes.io/affinity: >
{
"nodeAffinity": {
"requiredDuringSchedulingIgnoredDuringExecution”: {
"nodeSelectorTerms": [

{

"matchExpressions": [
{
n key n s n app n ,
"operator": "NotIn",

"values": ["cassandra"]

Using DaemonSet to distribute Cassandra

A better solution to the problem of assigning Cassandra pods to different nodes is
to use a DaemonSet. A DaemonSet has a pod template like a replication controller.
But, a DaemonSet has a node selector that determines on which nodes to schedule
its pods. It doesn't have a certain number of replicas, it just schedules a pod on each
node that matches its selector. The simplest case is to schedule a pod on each node
in the Kubernetes cluster. But, the node selector can also use match expressions
against labels to deploy to a particular subset of nodes. Let's create a DaemonSet
for deploying our Cassandra cluster onto the Kubernetes cluster:

DaemonSet is still a beta resource:
apiVersion: extensions/vlbetal
kind: DaemonSet

metadata:

name: cassandra-daemonset

[213]

Running Stateful Applications with Kubernetes

The spec of the DaemonSet contains a regular pod template. The nodeselector
section is where the magic happens and ensures that one and exactly one pod will
always be scheduled to each node with a label of app: Cassandra:

spec:
template:
metadata:
labels:
app: cassandra
spec:
Filter only nodes with the label "app: cassandra":
nodeSelector:
app: cassandra

containers:

The rest is identical to the replication controller. Note that nodeSelector is expected
to be deprecated in favor of affinity. When that happens, it's not clear.

Summary

In this chapter, we covered the topic of stateful applications and how to integrate
them with Kubernetes. We discovered that stateful applications are complicated
and considered several mechanisms for discovery such as DNS and environment
variables. We also discussed several state management solutions such as in-memory
redundant storage and persistent storage. The bulk of the chapter revolved around
deploying a Cassandra cluster inside a Kubernetes cluster using several options
such as a stateful set, a replication controller, and a DaemonSet. Each approach has
its own pros and cons. At this point, you should have a thorough understanding
of stateful applications and how to apply them in your Kubernetes-based system.
You are armed with multiple methods for various use cases and maybe you've
even learned a little bit about Cassandra.

In Chapter 9, Rolling Updates, Scalability, and Quotas, we will continue our journey and
explore the important topic of scalability and in particularly auto-scalability and how
to deploy and do live upgrades and updates as the cluster dynamically grows. These
issues are very intricate, especially when the cluster has stateful apps running on it.

[214]

Rolling Updates, Scalability,
and Quotas

In this chapter, we will explore the automated pod scalability that Kubernetes
provides, how it affects rolling updates, and how it interacts with quotas. We will
touch on the important topic of provisioning and how to choose and manage the size
of the cluster. Finally, we will go over how the Kubernetes team tests the limits of
Kubernetes with a 2,000 node cluster. Here are the main points we will cover:

* Horizontal pod autoscaling
* Performing rolling updates with autoscaling
* Handling scarce resources with quotas and limits

* Pushing the envelope with Kubernetes performance

At the end of this chapter, you will have the ability to plan a large-scale cluster,
provision it economically, and make informed decisions about the various trade-offs
between performance, cost, and availability. You will also understand how to set up
horizontal pod auto-scaling and use resource quotas intelligently to let Kubernetes
automatically handle intermittent fluctuations in volume.

Horizontal pod autoscaling

Kubernetes can watch over your pods and scale them when the CPU utilization or
some other metric crosses a threshold. The autoscaling resource specifies the details
(percentage of CPU, how often to check) and the corresponding autoscale controller
adjusts the number of replicas, if needed.

[215]

Rolling Updates, Scalability, and Quotas

The following diagram illustrates the different players and their relationships:

RC / Deployment

Scale
A

Horizontal
Pod
Autoscaler

As you can see, the horizontal pod autoscaler doesn't create or destroy pods directly.
It relies instead on the replication controller or deployment resources. This is very
smart because you don't need to deal with situations where autoscaling conflicts
with the replication controller or deployments trying to scale the number of pods,
unaware of the autoscaler efforts.

The autoscaler automatically does what we had to do ourselves before. Without
the autoscaler, if we had a replication controller with replicas set to 3, but we
determined that based on average CPU utilization we actually needed 4, then we
would update the replication controller from 3 to 4 and keep monitoring the
CPU utilization manually in all pods. The autoscaler will do it for us.

Declaring horizontal pod autoscaler

To declare a horizontal pod autoscaler, we need a replication controller, or a
deployment, and an autoscaling resource. Here is a simple replication controller
configured to maintain 3 nginx pods:

apivVersion: vl
kind: ReplicationController
metadata:
name: nginx
spec:
replicas: 3

[216]

Chapter 9

template:
metadata:
labels:
run: nginx
spec:
containers:
- name: nginx
image: nginx
ports:

- containerPort: 80

The autoscaling resource references the Nginx replication controller in
scaleTargetRef:

apiVersion: autoscaling/vl
kind: HorizontalPodAutoscaler
metadata:
name: nginx
namespace: default
spec:
maxReplicas: 4
minReplicas: 2
targetCPUUtilizationPercentage: 90
scaleTargetRef:
apivVersion: vl
kind: ReplicationController

name: nginx

The minReplicas and maxReplicas specify the range of scaling. This is needed to
avoid runaway situations that could occur because of some problem. Imagine that,
due to some bug, every pod immediately uses 100% CPU regardless of the actual
load. Without the maxReplicas limit, Kubernetes will keep creating more and

more pods until all cluster resources are exhausted. If we are running in a cloud
environment with autoscaling of VMs then we will incur a significant cost. The other
side of this problem is that, if there is no minReplicas and there is a lull in activity,
then all pods could be terminated, and when new requests come in all the pods will
have to be created and scheduled again. If there are patterns of on and off activity,
then this cycle can repeat multiple times. Keeping the minimum of replicas running
can smooth this phenomenon. In the preceding example, minReplicas is set to 2 and
maxReplicas is set to 4. Kubernetes will ensure that there are always between 2 to 4
Nginx instances running.

[217]

Rolling Updates, Scalability, and Quotas

The target CPU utilization percentage is a mouthful. Let's abbreviate it to TCUP.

You specify a single number, but Kubernetes doesn't start scaling up and down
immediately when the threshold is crossed. This could lead to constant thrashing if
the average load hovers around the TCUP. Instead, Kubernetes has a tolerance, which
is currently (Kubernetes 1.5) hardcoded to 0.1. That means that, if TCUP is 90%, then
scaling up will occur only when average CPU utilization goes above 99% (90 + 0.1 * 90)
and scaling down will occur only if average CPU utilization goes below 81%.

Custom metrics

CPU utilization is an important metric to gauge if pods that are bombarded with
too many requests should be scaled up, or if they are mostly idle and can be scaled
down. But CPU is not the only and sometimes not even the best metric to keep track
of. Memory may be the limiting factor, or even more specialized metrics, such as
the depth of a pod's internal on-disk queue, the average latency on a request, or

the average number of service timeouts.

The horizontal pod custom metrics are an alpha extension added in version 1.2.
The ENABLE_CUSTOM METRICS environment variable must be set to true when the
cluster is started to enable custom metrics. Since it's an alpha feature, it is specified
as annotations in the autoscaler spec.

Kubernetes requires that the custom metrics have a cAdvisor endpoint configured.
This is a standard interface that Kubernetes understands. When you're exposing your
application metrics as a cAdvisor metrics endpoint, Kubernetes can work with your
metrics just like it works with its own built-in metrics. The mechanism to configure
the custom metrics endpoint is to create a ConfigMap with a definition.json file
that will be consumed as a volume mounted at /etc/custom-metrics.

Here is a sample ConfigMap:

apivVersion: vl
kind: ConfigMap
metadata:
name: cm-config
data:
definition.json: "{\"endpoint\" : \"http://localhost:8080/metrics\"}"

Since cAdvisor operates at the node level, the localhost endpoint is a node endpoint
that requires the containers inside the pod to request both a host port and a
container port:

ports:
- hostPort: 8080

containerPort: 8080

[218]

Chapter 9

The custom metrics are specified as annotations due to the beta status of the feature.
When custom metrics reach v1 status they will be added as regular fields.

The value in the annotation is interpreted as a target metric value averaged over all
running pods. For example, a queries per second (qps) custom metric can be added
as follows:

annotations:

alpha/target.custom-metrics.podautoscaler.kubernetes.io:
l{llitems":[{llnamell:llqpsll' nyalue®: Illoll}]}l

At this point, the custom metrics can be handled just like the built-in CPU utilization
percentage. If the average value across all pods exceeds the target value, then more
pods will be added up to the max limit. If the average value drops below the target
value, then pods will be destroyed up to the minimum.

When multiple metrics are present, the horizontal pod autoscaler will scale up to
satisfy the most demanding one. For example, if metric A can be satisfied by three
pods and metric B can be satisfied by four pods, then the pods will be scaled up to
four replicas.

By default, the target CPU percentage is 80. Sometimes, CPU can be all over the place,
and you may want to scale your pods based on some other metric. To make the CPU
irrelevant for autoscaling decisions, you can set it to a ludicrous value that will never
be reached, such as 999,999. Now, the autoscaler will only consider the other metrics
because CPU utilization will always be below the target CPU utilization.

Autoscaling with Kubectli

Kubectl can create an autoscale resource using the standard create command
accepting a configuration file. But Kubectl also has a special command, autoscale,
that lets you easily set an autoscaler in one command without a special
configuration file.

1. First, let's start a replication controller that makes sure there are three replicas
of a simple pod that just runs an infinite bash loop:

apivVersion: vl
kind: ReplicationController
metadata:
name: bash-loop-rc
spec:

replicas: 3

[219]

Rolling Updates, Scalability, and Quotas

template:
metadata:
labels:
name: bash-loop-rc
spec:
containers:
- name: bash-loop
image: ubuntu
command: ["/bin/bash", "-c", "while true; do sleep 10;

done"]

2. Let's create a replication controller:
> kubectl create -f bash-loop-rc.yaml

replicationcontroller "bash-loop-rc" created

3. Here is the resulting replication controller:
> kubectl get rc
NAME DESIRED CURRENT READY AGE
bash-loop-rc 3 3 3 1m

4. You can see that the desired and current count are both three, meaning three
pods are running. Let's make sure:

> kubectl get pods

NAME READY STATUS RESTARTS AGE
bash-loop-rc-61k87 1/1 Running 0 50s
bash-loop-rc-7bdtz 1/1 Running 0 50s
bash-loop-rc-smfrt 1/1 Running 0 50s

5. Now, let's create an autoscaler. To make it interesting, we'll set the minimum
number of replicas to 4 and the maximum number to 6:

> kubectl autoscale rc bash-loop-rc --min=4 --max=6 --cpu-
percent=50

replicationcontroller "bash-loop-rc" autoscaled

6. Here is the resulting horizontal pod autoscaler (you can use hpa). It shows the
referenced replication controller, the target and current CPU percentage, and
the min/max pods. The name matches the referenced replication controller:

> kubectl get hpa
NAME REFERENCE TARGET CURRENT MINPODS MAXPODS AGE
bash-loop-rc bash-loop-rc 50% 0% 4 6 7s

[220]

Chapter 9

7. Originally, the replication controller was set to have three replicas, but the
autoscaler has a minimum of four pods. What's the effect on the replication
controller? That's right. Now the desired number of replicas is four. If the
average CPU utilization goes above 50%, then it may climb to five or even six:

> kubectl get rc
NAME DESIRED CURRENT READY AGE

bash-loop-rc 4 4 4 Tm

8. Just to make sure everything works, here is another look at the pods. Note
the new pod (58 seconds old) that was created because of the autoscaling;:

> kubectl get pods

NAME READY STATUS RESTARTS AGE
bash-loop-rc-61k87 1/1 Running 0 8m
bash-loop-rc-7bdtz 1/1 Running 0 8m
bash-loop-rc-smfrt 1/1 Running 0 8m
bash-loop-rc-z0xrl 1/1 Running 0 58s

9. When we delete the horizontal pod autoscaler, the replication controller
retains the last desired number of replicas (four in this case). Nobody
remembers that the replication controller was created with three replicas:

> kubectl delete hpa bash-loop-rc

horizontalpodautoscaler "bash-loop-rc" deleted
10. As you can see, the replication controller wasn't reset and still maintains four
pods even when the autoscaler is gone:
> kubectl get rc
NAME DESIRED CURRENT READY AGE
bash-loop-rc 4 4 4 9m
Let's try something else. What happens if we create a new horizontal pod autoscaler
with a range of 2 to 6 and the same CPU target of 50%?
> kubectl autoscale rc bash-loop-rc --min=2 --max=6 --cpu-percent=50
replicationcontroller "bash-loop-rc" autoscaled

Well, the replication controller still maintains its four replicas, which is within
the range:

> kubectl get rc
NAME DESIRED CURRENT READY AGE
bash-loop-rc 4 4 4 9m

[221]

Rolling Updates, Scalability, and Quotas

However, the actual CPU utilization is zero, or close to zero. The replica count
should have been scaled down to two replicas. Let's check out the horizontal pod
autoscaler itself:

> kubectl get hpa
NAME REFERENCE TARGET CURRENT MINPODS MAXPODS AGE

bash-loop-rc bash-loop-rc 50% <waiting> 2 6 1m

The secret is in the current CPU metric, which is <waitings. That means that the
autoscaler hasn't received up-to-date information from Heapster yet, so it has no
reason to scale the number of replicas in the replication controller.

Performing rolling updates with
autoscaling

Rolling updates are the cornerstone of managing large clusters. Kubernetes support
rolling updates at the replication controller level and by using deployments. Rolling
updates using replication controllers are incompatible with the horizontal pod
autoscaler. The reason is that, during the rolling deployment, a new replication
controller is created and the horizontal pod autoscaler remains bound to the old
replication controller. Unfortunately, the intuitive Kubectl rolling-update command
triggers a replication controller rolling update.

Since rolling updates are such an important capability, I recommend that you always
bind horizontal pod autoscalers to a deployment object instead of a replication
controller or a replica set. When the horizontal pod autoscaler is bound to a
deployment, it can set the replicas in the deployment spec and let the deployment
take care of the necessary underlying rolling update and replication.

Here is a deployment configuration file we've used for deploying the hue-reminders
service:
apiVersion: extensions/vlbetal
kind: Deployment
metadata:

name: hue-reminders
spec:

replicas: 2

template:

metadata:

name: hue-reminders

[222]

Chapter 9

labels:
app: hue-reminders
spec:
containers:
- name: hue-reminders
image: glgl/hue-reminders:v2.2
ports:

- containerPort: 80

To support it with autoscaling and ensure we always have between 10 to 15
instances running, we can create an autoscaler configuration file:
apiVersion: autoscaling/vl
kind: HorizontalPodAutoscaler
metadata:
name: hue-reminders
namespace: default
spec:
maxReplicas: 15
minReplicas: 10
targetCPUUtilizationPercentage: 90
scaleTargetRef:
apivVersion: vl
kind: Deployment

name: hue-reminders

The kind of the scaleTargetRef field is now Deployment instead of

ReplicationController. This is important because we may have a replication
controller with the same name. To disambiguate and ensure that the horizontal pod

autoscaler is bound to the correct object, the kind and the name must match.

Alternatively, we can use the kubectl autoscale command:

> kubectl autoscale deployment hue-reminders --min=10--max=15

--cpu-percent=90

[223]

Rolling Updates, Scalability, and Quotas

Handling scarce resources with limits
and quotas

With the horizontal pod autoscaler creating pods on the fly, we need to think about
managing our resources. Scheduling can easily get out of control, and inefficient use
of resources is a real concern. There are several factors that can interact with each
other in subtle ways:

* Overall cluster capacity

* Resource granularity per node

* Division of workloads per namespace
* Daemon sets

» Stateful sets

First, let's understand the core issue. The Kubernetes scheduler has to take into
account all these factors when it schedules pods. If there are conflicts or a lot of
overlapping requirements, then Kubernetes may have a problem finding room

to schedule new pods. For example, a very extreme yet simple scenario is that a
DaemonSet runs on every node a pod that requires 50% of the available memory.
Now, Kubernetes can't schedule any pod that needs more than 50% memory because
the DaemonSet pod gets priority. Even if you provision new nodes, the DaemonSet
will immediately commandeer half of the memory.

Stateful sets are similar to DaemonSets in that they require new nodes to expand.
The trigger to adding new members to the stateful set is growth in data, but the
impact is taking resources from the pool available for Kubernetes to schedule
other members. In a multi-tenant situation, the noisy neighbor problem can raise
its head in a provisioning or resource allocation context. You may plan exact
rations meticulously in your namespace between different pods and their resource
requirements, but you share the actual nodes with your neighbors from other
namespaces that you may not even have visibility into.

Most of these problems can be mitigated by judiciously using namespace resource
quotas and careful management of the cluster capacity across multiple resource
types such as CPU, memory, and storage.

[224]

Chapter 9

Enabling resource quotas

Most Kubernetes distributions support Resource Quota out of the box. The API
servers' --admission-control flag musthave ResourceQuota as one of its
arguments. You will also have to create a ResourceQuota object to enforce it. Note
that there may be at most one ResourceQuota object per namespace to prevent
potential conflicts. This is enforced by Kubernetes.

Resource quota types

There are different types of quota we can manage and control. The categories are
compute, storage, and objects.

Compute resource quota

Compute resources are CPU and memory. For each one, you can specify a limit

or request a certain amount. Here is the list of compute related fields. Note that
requests.cpu can be specified as just cpu, and requests.memory can be specified
as just memory:

* limits.cpu: Across all pods in a non-terminal state, the sum of CPU limits
cannot exceed this value

* limits.memory: Across all pods in a non-terminal state, the sum of memory
limits cannot exceed this value

* requests.cpu: Across all pods in a non-terminal state, the sum of CPU
requests cannot exceed this value

* requests.memory: Across all pods in a non-terminal state, the sum of
memory requests cannot exceed this value

Storage resource quota

The storage resource quota type is a little more complicated. There are two entities
you can restrict per namespace: the amount of storage and the number of persistent
volume claims. However, in addition to just globally setting the quota on total
storage or total number of persistent volume claims, you can also do that per
storage class. The notation for storage class resource quota is a little verbose,

but it gets the job done:

* requests.storage: Across all persistent volume claims, the sum of storage
requests cannot exceed this value

* persistentvolumeclaims: The total number of persistent volume claims
that can exist in the namespace

[225]

Rolling Updates, Scalability, and Quotas

® <storage-class>.storageclass.storage.k8s.io/requests.storage:
Across all persistent volume claims associated with the storage-class-name,
the sum of storage requests cannot exceed this value

® <storage-class >.storageclass.storage.k8s.io/
persistentvolumeclaims: Across all persistent volume claims associated
with the storage-class-name, this is the total number of persistent volume
claims that can exist in the namespace

Object count quota

Kubernetes has another category of resource quotas, which is API objects. My guess
is that the goal is to protect the Kubernetes API server from having to manage too
many objects. Remember that Kubernetes does a lot of work under the hood. It often
has to query multiple objects to authenticate, authorize, and ensure that an operation
doesn't violate any of the many policies that may be in place. A simple example is
pod scheduling based on replication controllers. Imagine that you have 1,000,000,000
replication controller objects. Maybe you just have three pods and most of the
replication controllers have zero replicas. Still, Kubernetes will spend all its time just
verifying that indeed all those billion replication controllers have no replicas of their
pod template and that they don't need to kill any pods. This is an extreme example,
but the concept applies. Too many API objects means a lot of work for Kubernetes.

The overage of objects that can be restricted is a little spotty. For example, you can
limit the number of replication controller, but not replica sets, which are almost an
improved version of replication controller, but can do exactly the same damage if
too many of them are around.

The most glaring omission is namespaces. There is no limit to the number of
namespaces. Since all limits are per namespace, you can easily overwhelm
Kubernetes by creating too many namespaces, where each namespace has
only a small number of API objects.

Here are all the supported objects:

* ConfigMaps: The total number of config maps that can exist in the namespace

* PersistentVolumeClaims: The total number of persistent volume claims
that can exist in the namespace

* Pods: The total number of pods in a non-terminal state that can exist in
the namespace. A pod is in a terminal state if status.phase in (Failed,
Succeeded) is true

* ReplicationControllers: The total number of replication controllers that
can exist in the namespace

[226]

Chapter 9

ResourceQuotas: The total number of resource quotas that can exist in
the namespace

Services: The total number of services that can exist in the namespace

Services.LoadBalancers: The total number of load balancer services
that can exist in the namespace

Services.NodePorts: The total number of node port services that can exist
in the namespace

Secrets: The total number of secrets that can exist in the namespace

Quota scopes

Some resources, such as pods, may be in different states, and it is useful to have
different quotas for these different states. For example, if there are many pods that
are terminating (this happens a lot during rolling updates) then it is OK to create
more pods even if the total number exceeds the quota. This can be achieved by
only applying a pod object count quota to non-terminating pods. Here are the
existing scopes:

Terminating: Match pods where spec.activeDeadlineSeconds >= 0
NotTerminating: Match pods where spec.activeDeadlineSeconds is nil
BestEffort: Match pods that have best effort quality of service

NotBestEf fort: Match pods that do not have best effort quality of service

While the BestEffort scope applies only to pods, the Terminating,
NotTerminating, and NotBestEffort scopes apply to CPU and memory too. This is
interesting because a resource quota limit can prevent a pod from terminating. Here
are the supported objects:

cpu
limits.cpu
limits.memory
memory

pods
requests.cpu

requests.memory

[227]

Rolling Updates, Scalability, and Quotas

Requests and limits

The meaning of requests and limits in the context of resource quotas is that it
requires the containers to make it explicitly specify the target attribute. This way,
Kubernetes can manage the total quota because it knows exactly what range of
resources is allocated to each container.

Working with quotas

Let's create a namespace first:

> kubectl create namespace ns

namespace "ns" created

Using namespace-specific context

When working with namespaces other than default, I prefer to use a context, so I
don't have to keep typing - -namespace=ns for every command:

> kubctl config set-context ns -cluster=minikube -user=minikube -
namespace=ns

Context "ns" set.
> kubectl config use-context ns

Switched to context "mns".

Creating quotas
1. Then create a compute quota object:
apiVersion: vl
kind: ResourceQuota
metadata:
name: compute-quote
spec:
hard:
pods: "2"
requests.cpu: "1"
requests.memory: 20Mi
limits.cpu: "2"

limits.memory: 2Gi

> kubectl create -f compute-quota.

resourcequota "compute-quota" created

[228]

Chapter 9

Next, let's add count quota object:
apivVersion: vl
kind: ResourceQuota
metadata:

name: object-counts-quota
spec:

hard:

configmaps: "10"

persistentvolumeclaims: "4"
replicationcontrollers: "20"
secrets: "10"
services: "10"
services.loadbalancers: "2"

> kubectl create -f .\object-count-quota.yaml

resourcequota "object-counts" created

We can observe all the quotas:

> kubectl get quota

NAME AGE
compute-resources lém
object-counts 3m

And we can even get all the information using describe:

kubectl describe quota compute-resources

Name: compute-resources
Namespace: ns

Resource Used Hard
limits.cpu 0 2
limits.memory 0 2Gi

pods 0 2
requests.cpu 0 1
requests.memory 0 20Mi

[229]

Rolling Updates, Scalability, and Quotas

> kubectl describe quota object-counts

Name:

Namespace:

Resource

configmaps
persistentvolumeclaims
replicationcontrollers
secrets

services

services.loadbalancers

object-counts

ns

Used Hard
0 10

0 4

0 20

1 10

0 10

0 2

This view gives us an instant understanding of global resource usage of important
resources across the cluster without diving into too many separate objects.

1.

Let's add an Nginx server to our namespace:

> kubectl run nginx --image=nginx --replicas=1

deployment "nginx" created

> kubectl get pods

No resources found.

Uh-oh. No resources found. But, there was no error when the deployment
was created. Let's check out the deployment then:

> kubectl describe deployment nginx

Name:

Namespace:
CreationTimestamp:
Labels:

Selector:

Replicas:
unavailable

StrategyType:
MinReadySeconds:
RollingUpdateStrategy:

Conditions:

nginx

ns

Wed, 25 Jan 2017 20:34:25 +0800
run=nginx

run=nginx

0 updated | 1 total | 0 available | 1

RollingUpdate
0

1l max unavailable, 1 max surge

[230]

Chapter 9

Type Status Reason
Available True MinimumReplicasAvailable
ReplicaFailure True FailedCreate

OldReplicaSets: <none>

NewReplicaSet: nginx-1790024440 (0/1 replicas created)

There it is, all highlighted. The ReplicationFailure status is True and the reason
is FailedCreate. You can see that the deployment created a new replica set called
nginx-1790024440, but it couldn't create the pod it was supposed to create. We still
don't know why. Let's check out the replica set:

> kubectl describe replicaset nginx-1790024440

Name: nginx-1790024440
Namespace: ns
Image(s) : nginx
Selector: pod-template-hash=1790024440, run=nginx
Labels: pod-template-hash=1790024440
run=nginx
Replicas: 0 current / 1 desired
Pods Status: 0 Running / 0 Waiting / 0 Succeeded / 0 Failed

No volumes.

Events:
FirstSeen LastSeen Count From
SubObjectPath Type Reason Message
3m 1m 16 {replicaset-controller
} Warning FailedCreate Error creating:

pods "nginx-1790024440-" is forbidden: failed quota: compute-quote: must
specify limits.cpu,limits.memory,requests.cpu,requests.memory

The output is very wide, so it overlaps several lines, but the message is crystal clear.
Since there is a compute quota in the namespace, every container must specify its
CPU, memory requests, and limit. The quota controller must account for every
container compute resources usage to ensure the total namespace quota is respected.

[231]

Rolling Updates, Scalability, and Quotas

OK. We understand the problem, but how to resolve it? One way is to create a
dedicated deployment object for each pod type we want to use and carefully set the
CPU and memory requests and limit. But what if we're not sure? What if there are
many pod types and we don't want to manage a bunch of deployment configuration
files?

Another solution is to specify the limit on the command line when we run the
deployment:
kubectl run nginx \

--image=nginx \

--replicas=1 \

--requests=cpu=100m, memory=4Mi \

--limits=cpu=200m, memory=8Mi \

--namespace=ns

That works, but creating deployments on the fly with lots of arguments is a very
fragile way to manage your cluster:

> kubectl get pods

NAME READY STATUS RESTARTS AGE
nginx-2199160687-zkc2h 1/1 Running 0 2m

Using limit ranges for default compute quotas

1. A better way is to specify default compute limits. Enter limit ranges. Here is a
configuration file that sets some defaults for containers:

apivVersion: vl
kind: LimitRange
metadata:
name: limits
spec:
limits:
- default:
cpu: 200m
memory: 6Mi
defaultRequest:
cpu: 100m

[232]

Chapter 9

memory: 5Mi

type: Container

> kubectl create -f limits.yaml
limitrange "limits" created

2. Here are the current default 1imits:

kubectl describe limits limits

Name: limits
Namespace: quota-example
Type Resource Min Max

Max Limit/Request Ratio

Container memory - - 5Mi

Container cpu - -

Default Request

100m

Default Limit

6Mi -
200m

3. Now, let's run Nginx again without specifying any CPU or memory requests
and limits. But first, let's delete the current Nginx deployment:

> kubectl delete deployment nginx
deployment "nginx" deleted

> kubectl run nginx --image=nginx
deployment "nginx" created

Let's see if the pod was created.
> kubectl get pods
NAME
nginx-701339712-41856

READY
1/1

--replicas=1

Yes it was!

STATUS RESTARTS AGE

Running 0 1m

Choosing and managing the cluster

capacity

With Kubernetes' horizontal pod autoscaling, DaemonSets, stateful sets, and quotas,
we can scale and control our pods, storage, and other objects. However, in the end,
we're limited by the physical (virtual) resources available to our Kubernetes cluster.
If all your nodes are running at 100% capacity, you need to add more nodes to your
cluster. There is no way around it. Kubernetes will just fail to scale. On the other
hand, if you have very dynamic workloads then Kubernetes can scale down your
pods, but if you don't scale down your nodes correspondingly you will still pay for
the excess capacity. In the cloud you can stop and start instances.

[233]

Rolling Updates, Scalability, and Quotas

Choosing your node types

The simplest solution is to choose a single node type with a known quantity of
CPU, memory, and local storage. But that is typically not the most efficient and
cost-effective solution. It makes capacity planning simple because the only question
is how many nodes are needed. Whenever you add a node, you add a known
quantity of CPU and memory to your cluster, but most Kubernetes clusters and
components within the cluster handle different workloads. We may have a stream
processing pipeline where many pods receive some data and process it in one place.
This workload is CPU-heavy and may or may not need a lot of memory. Other
components, such as a distributed memory cache, need a lot of memory, but very
little CPU. Other components, such as a Cassandra cluster, need multiple SSD disks
attached to each node.

For each type of node you should consider proper labeling and making sure that
Kubernetes schedules the pods that are designed to run on that node type.

Choosing your storage solutions

Storage is a huge factor in scaling a cluster. There are three categories of scalable
storage solution:

* Roll your own
* Use your cloud platform storage solution

e Use an out-of-cluster solution

When you use roll your own, you install some type of storage solution in your
Kubernetes cluster. The benefits are flexibility and full control, but you have to
manage and scale it yourself.

When you use your cloud platform storage solution, you get a lot out of the box, but
you lose control, you typically pay more, and depending on the service you may be
locked in to that provider.

When you use an out-of-cluster solution, the performance and cost of data transfer
may be much greater. You typically use this option if you need to integrate with an
existing system.

Of course, large clusters may have multiple data stores from all categories. This is
one of the most critical decisions you have to make, and your storage needs may
change and evolve over time.

[234]

Chapter 9

Trading off cost and response time

If money is not an issue you can just over-provision your cluster. Every node will
have the best hardware configuration available, you'll have way more nodes than
are needed to process your workloads, and you'll have copious amounts of available
storage. Guess what? Money is always an issue!

You may get by with over-provisioning when you're just starting and your cluster
doesn't handle a lot of traffic. You may just run five nodes, even if two nodes are
enough most of the time. Multiply everything by 1,000 and someone will come asking
questions if you have thousands of idle machines and petabytes of empty storage.

OK. So, you measure and optimize carefully and you get 99.99999% utilization of
every resource. Congratulations, you just created a system that can't handle an iota
of extra load or the failure of a single node without dropping requests on the floor
or delaying responses.

You need to find the middle ground. Understand the typical fluctuations of your
workloads and consider the cost/benefit ratio of having excess capacity versus
having reduced response time or processing ability.

Sometimes, if you have strict availability and reliability requirements, you can build
redundancy into the system and then you over-provision by design. For example,
you want to be able to hot swap a failed component with no downtime and no
noticeable effects. Maybe you can't lose even a single transaction. In this case, you'll
have a live backup for all critical components, and that extra capacity can be used to
mitigate temporary fluctuations without any special actions.

Using effectively multiple node configurations

Effective capacity planning requires you to understand the usage patterns of your
system and the load each component can handle. That may include a lot of data
streams generated inside the system. When you have a solid understanding of the
typical workloads, you can look at workflows and which components handle which
parts of the load. Then you can compute the number of pods and their resource
requirements. In my experience, there are some relatively fixed workloads, some
workloads that vary predictively (such as office hours versus non-office hours), and
then you have your completely crazy workloads that behave erratically. You have
to plan according for each workload, and you can design several families of node
configurations that can be used to schedule pods that match a particular workload.

[235]

Rolling Updates, Scalability, and Quotas

Benefiting from elastic cloud resources

Most cloud providers let you scale instances automatically, which is a perfect
complement to Kubernetes' horizontal pod autoscaling. If you use cloud storage,
it also grows magically without you having to do anything. However, there are
some gotchas that you need to be aware of.

Autoscaling instances

All the big cloud providers have instance autoscaling in place. There are some
differences, but scaling up and down based on CPU utilization is always available,
and sometimes custom metrics are available too. Sometimes, load balancing is
offered as well. As you can see, there is some overlap with Kubernetes here. If your
cloud provider doesn't have adequate autoscaling with proper control, it is relatively
easy to roll your own, where you monitor your cluster resource usage and invoke
cloud APIs to add or remove instances. You can extract the metrics from Kubernetes.

Here is a diagram that shows how two new instances are added based on a CPU
load monitor:

1. CPU Load Average > 80%

ECS T I

. = = (] = Cloud
l} .\Jl l‘ " j’ IJ Mg;:ito
ECS ECS ECS ECS ECS

A

2. Add 2 ECS instances

Mind your cloud quotas

When working with cloud providers, some of the most annoying things are quotas.
I've worked with four different cloud providers (AWS, GCP, Azure, and Alibaba
cloud) and I was always bitten by quotas at some point. The quotas exist to let the
cloud providers do their own capacity planning, but from your point of view it is yet
one more thing that can trip you up. Imagine that you set up a beautiful autoscaling
system that works like magic, and suddenly the system doesn't scale when you hit
100 nodes. You quickly discover that you are limited to 100 nodes and you open a
quota to increase support. However, a human must approve quota requests, and that
can take a day or two. In the meantime, your system is unable to handle the load.

[236]

Chapter 9

Manage regions carefully

Cloud platforms are organized in regions and availability zones. Some services
and machine configurations are available only in some regions. Cloud quotas are
also managed at the regional level. Performance and cost of data transfers within
regions is much lower (often free) than across regions. When planning your cluster,
you should consider carefully your geo-distribution strategy. If you need to run
your cluster across multiple regions, you may have some tough decisions to make
regarding redundancy, availability, performance, and cost.

Considering Hyper.sh

Hyper . sh is a container-aware hosting service. You just start containers. The service
takes care of allocating the hardware. Containers start within seconds. You never
need to wait minutes for a new VM. Hypernetes is Kubernetes on Hyper . sh, and it
completely eliminates the need to scale the nodes because there are no nodes as far
as you're concerned. There are only containers (or pods).

In the following diagram, you can see on the right how Hyper Containers run
directly on a multi-tenant bare-metal container cloud:

= IRIINIE

VM VM

M W™

CaaS on laaS Native Container Cloud (COE)

Pushing the envelope with Kubernetes

In this section, we will see how the Kubernetes team pushes Kubernetes to its
limit. The numbers are quite telling, but some of the tools and techniques, such as
Kubemark, are ingenious, and you may even use them to test your clusters. In the
wild, there are some Kubernetes clusters with 3,000 nodes. Recently, at CERN, the
OpenStack team achieved 2 million requests per second:

http://superuser.openstack.org/articles/scaling-magnum-and-
kubernetes-2-million-requests-per-second/.

[237]

http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-million-requests-per-second/
http://superuser.openstack.org/articles/scaling-magnum-and-kubernetes-2-million-requests-per-second/

Rolling Updates, Scalability, and Quotas

Mirantis conducted a performance and scaling test in their scaling lab where they
deployed 5,000 Kubernetes nodes (in VMs) on 500 physical servers. More details
here: http://bit.1ly/201jqQY.

At the end of this section you'll appreciate the effort and creativeness that goes into
improving Kubernetes on a large scale, you will know how far you can push a single
Kubernetes cluster and what performance to expect, and you'll get an inside look at
some tools and techniques that can help you evaluate the performance of your own
Kubernetes clusters.

Improving the performance and scalability of
Kubernetes

The Kubernetes team focused heavily on performance in a large-scale of the API
server and its scalability during their work on Kubernetes 1.2 and 1.3. When
Kubernetes 1.2 was released, it supported clusters of up to 1,000 nodes within the
Kubernetes service level objectives. Kubernetes 1.3 doubled the number to 2,000
nodes. We will get into the numbers later, but first let's look under the hood and
see how Kubernetes achieved these impressive improvements.

Caching reads in the API server

Kubernetes keeps the state of the system in etcd, which is very reliable, though not
superfast. The various Kubernetes components operate on snapshots of that state
and don't rely on real-time updates. That fact allows the trading of some latency for
throughput. All the snapshots used to be updated by etcd watches. Now, the API
server has an in-memory read cache that is used for updating state snapshots. The
in-memory read cache is updated by etcd watches. These schemes significantly
reduces the load on etcd and increase the overall throughput of the API server.

The pod lifecycle event generator

Increasing the number of nodes in a cluster is key for horizontal scalability, but pod
density is crucial too. Pod density is the number of pods that the Kubelet can manage
efficiently on one node. If pod density is low, then you can't run too many pods on one
node. That means that you might not benefit from more powerful nodes (more CPU
and memory per node) because the Kubelet will not be able to manage more pods.
The other alternative is to force the developers to compromise their design and create
coarse-grained pods that do more work per pod. Ideally, Kubernetes should not force
your hand when it comes to pod granularity. The Kubernetes team understands this
very well and invested a lot of work in improving pod density.

[238]

http://bit.ly/2oijqQY

Chapter 9

In Kubernetes 1.1, the official (tested and advertised) number was 30 pods per node.
I actually ran 40 pods per node on Kubernetes 1.1, but I paid for it in excessive
Kubelet overhead that stole CPU from the worker pods. In Kubernetes 1.2, the
number jumped to 100 pods per node.

The Kubelet used to poll the container runtime constantly for each pod in its own
goroutine. That put a lot of pressure on the container runtime that during peaks to
performance has reliability issues, in particular CPU utilization. The solution was
the Pod Lifecycle Event Generator (PLEG). The way the PLEG works is that it lists
the state of all the pods and containers and compares it to the previous state. This
is done once for all the pods and containers. Then, by comparing the state to the
previous state, the PLEG knows which pods need to sync again and invokes only
those pods. That change resulted in a significant four times lower CPU usage by
the Kubelet and the container runtime. It also reduced the polling period, which
improves responsiveness.

The following diagram shows the CPU utilization for 120 pods on Kubernetes 1.1
versus Kubernetes 1.2. You can see the 4X factor very clearly:

Node Vertical Scaling: CPU Utilization for 120 Pods

500% I Avg CPU
[95% CPU

0,
400% Max CPU

300%

200%

% CPU Used

100%

0%
Kube 1.1 Kube 1.2

(lower is better)

Serializing API objects with protocol buffers

The API server has a REST APIL. REST APIs typically use JSON as their serialization
format, and the Kubernetes API server was no different. However, JSON
serialization implies marshaling and unmarshaling JSON to native data structures.
This is an expensive operation. In a large-scale Kubernetes cluster, a lot of
components need to query or update the API server frequently. The cost of all that
JSON parsing and composition adds up quickly. In Kubernetes 1.3, the Kubernetes
team added an efficient protocol buffers serialization format. The JSON format is
still there, but all internal communication between Kubernetes components uses the
protocol buffers serialization format. There are plans to migrate to etcd v3, which has
several Kubernetes-motivated changes (such as using grpc instead of HTTP+JSON for
etcd API). This change may provide an additional 30% improvement.

[239]

Rolling Updates, Scalability, and Quotas

Measuring the performance and scalability
of Kubernetes

In order to improve performance and scalability, you need a sound idea of what
you want to improve and how you're going to measure the improvements. You
must also make sure that you don't violate basic properties and guarantees in the
quest for improved performance and scalability. What I love about performance
improvements is that they often buy you scalability improvements for free. For
example, if a pod needs 50% of the CPU of a node to do its job and you improve
performance so that the pod can do the same work using 33% CPU, then you can
suddenly run three pods instead of two on that node, and you've improved the
scalability of your cluster by 50% overall (or reduced your cost by 33%).

The Kubernetes SLOs

Kubernetes has Service Level Objectives (SLOs). Those guarantees must be
respected when trying to improve performance and scalability. Kubernetes has
a one-second response time for API calls. That's 1,000 milliseconds. It actually
achieves an order of magnitude faster response times most of the time.

Measuring API responsiveness

The API has many different endpoints. There is no simple API responsiveness
number. Each call has to be measured separately. In addition, due to the complexity
and the distributed nature of the system, not to mention networking issues, there
can be a lot of volatility to the results. A solid methodology is to break the API
measurements into separate endpoints and then run a lot of tests over time and
look at percentiles (which is standard practice).

It's also important to use enough hardware to manage a large number of objects.
The Kubernetes team used a 32-core VM with 120 GB for the master in this test.

The following diagram describes the 50th, 90th, and 99th percentile of various
important API call latencies. You can see that the 90th percentile is very low,
below 20 milliseconds. Even the 99th percentile is less than 125 milliseconds for the
DELETE pods operation, and less than 100 milliseconds for all other operations:

[240]

Chapter 9

milliseconds

API call latencies - 2000 node cluster

40

v\>‘

s
o@

APl coll

I v1.3 50th
percentile
B V1.3 90th
percentile
B v1.3 99th
percentile

v°° «,‘“ ‘c@&”

Another category of API calls is LIST operations. Those calls are more expansive
because they need to collect a lot of information in a large cluster, compose

the response, and send a potential large response. This is where performance

improvements such as the in-memory read-cache and the protocol buffers
serialization really shine. The response time is understandably greater than the single

API calls, but it is still way below the SLO of one second (1,000 milliseconds):

milliseconds

API call latencies - 2000 node cluster

1000

750

250

LIST nodes
LIST pods

APi call

B 1.3 50th
percentile
I 1.3 90th
percentile
B v1.3 99th
percentile

LIST replicationControllers

[241]

Rolling Updates, Scalability, and Quotas

Measuring end to end pod startup time

One of the most important performance characteristics of a large dynamic cluster
is end-to-end pod startup time. Kubernetes creates, destroys, and shuffles pods
around all the time. You could say that the primary function of Kubernetes is to
schedule pods.

In the following diagram, you can see that pod startup time is less volatile than

API calls. This makes sense since there is a lot of work that needs to be done, such

as launching a new instance of a runtime, that doesn't depend on cluster size. With
Kubernetes 1.2 on a 1,000-node cluster, the 99th percentile end-to-end time to launch
a pod was less than 3 seconds. With Kubernetes 1.3, the 99th percentile end-to-end
time to launch a pod was a little over 2.5 seconds. It's remarkable that the time is
very close, but a little better with Kubernetes 1.3 on a 2,000-node cluster versus a
1,000-node cluster:

Pod startup latency
3 Bl 50th
percentile
, Il °0th
2.5 percentile
99th
§ percentile
8 .,’
b
25 P %
0“°6 0“06 0“00
N O O
AU A\ 2
NG q\’b q\’b

Testing Kubernetes at scale

Clusters with thousands of nodes are expensive. Even a project such as Kubernetes
that enjoys the support of Google and other industry giants still needs to come up
with reasonable ways to test without breaking the bank.

The Kubernetes team runs a full-fledged test on a real cluster at least once per release
to collect real-world performance and scalability data. However, there is also a need
for a lightweight and cheaper way to experiment with potential improvements and
to detect regressions. Enter the Kubemark.

[242]

Chapter 9

Introducing the Kubemark tool

The Kubemark is a Kubernetes cluster that runs mock nodes called hollow nodes
used for running lightweight benchmarks against large-scale (hollow) clusters.
Some of the Kubernetes components that are available on a real node such as the
Kubelet are replaced with a hollow Kubelet. The hollow Kubelet fakes a lot of

the functionality of a real Kubelet. A hollow Kubelet doesn't actually start any
containers, and it doesn't mount any volumes. But from the Kubernetes cluster point
of view - the state stored in etcd - all those objects exist and you can query the API
server. The hollow Kubelet is actually the real Kubelet with an injected mock Docker
client that doesn't do anything.

Another important hollow component is the hollow-proxy, which mocks the
Kubeproxy component. It again uses the real Kubeproxy code with a mock proxier
interface that does nothing and avoids touching iptables.

Setting up a Kubemark cluster

A Kubemark cluster uses the power of Kubernetes. To set up a Kubemark cluster,
perform the following steps:

1. Create a regular Kubernetes cluster where we can run N hollow-nodes.

2. Create a dedicated VM to start all master components for the Kubemark
cluster.

3. Schedule N hollow-node pods on the base Kubernetes cluster. Those
hollow-nodes are configured to talk to the Kubemark API server running
on the dedicated VM.

4. Create add-on pods by scheduling them on the base cluster and configuring
them to talk to the Kubemark API server.

A full-fledged guide on GCP is available at http://bit.ly/2nPMkwc.

Comparing a Kubemark cluster to a real-world
cluster

The performance of Kubemark clusters is mostly similar to the performance of real
clusters. For the pod startup end-to-end latency, the difference is negligible. For the
API-responsiveness, the differences are higher, though generally less than a factor
of two. However, trends are exactly the same: an improvement/regression in a real
cluster is visible as a similar percentage drop/increase in metrics in Kubemark.

[243]

http://bit.ly/2nPMkwc

Rolling Updates, Scalability, and Quotas

Summary

In this chapter, we've covered many topics relating to scaling Kubernetes clusters. We
discussed how the horizontal pod autoscaler can automatically manage the number
of running pods based CPU utilization or other metrics, how to perform rolling
updates correctly and safely in the context of auto-scaling, and how to handle scarce
resources via resource quotas. Then we moved on to overall capacity planning and
management of the cluster's physical or virtual resources. Finally, we delved into a
real-world example of scaling a single Kubernetes cluster to handle 2,000 nodes.

At this point, you have a good understanding of all the factors that come into play
when a Kubernetes cluster is facing dynamic and growing workloads. You have
multiple tools to choose from for planning and designing your own scaling strategy.

In Chapter 10, Advanced Kubernetes Networking, we will dive into advanced
Kubernetes networking. Kubernetes has a networking model based on the
Common Networking Interface (CNI) and supports multiple providers.

[244]

10

Advanced Kubernetes
Networking

In this chapter, we will examine the important topic of networking. Kubernetes as
an orchestration platform manages containers/pods running on different machines
(physical or virtual) and requires an explicit networking model. We will look at the
following topics:

Kubernetes networking model

Standard interfaces that Kubernetes supports, such as EXEC, Kubenet,
and in particular, CNI

Various networking solutions that satisfy the requirements of Kubernetes
networking

Network policies and load balancing options

Writing a custom CNI plugin

At the end of this chapter, you will understand the Kubernetes approach to
networking and be familiar with the solution space for aspects such as standard
interfaces, networking implementations, and load balancing. You will even be
able to write your very own CNI plugin if you wish.

[245]

Advanced Kubernetes Networking

Understanding the Kubernetes
networking model

The Kubernetes networking model is based on a flat address space. All pods in a
cluster can directly see each other. Each pod has its own IP address. There is no need
to configure any NAT. In addition, containers in the same pod share their pod's

IP address and can communicate with each other through localhost. This model is
pretty opinionated, but once set up, it simplifies life considerably both for developers
and administrators. It makes it particularly easy to migrate traditional network
applications to Kubernetes. A pod represents a traditional node and each container
represents a traditional process.

Intra-pod communication (container to
container)

A running pod is always scheduled on one (physical or virtual) node. That means
that all the containers run on the same node and can talk to each other in various
ways, such as the local filesystem, any IPC mechanism, or using localhost and
well-known ports. There is no danger of port collision between different pods
because each pod has its own IP address and when a container in the pod uses
localhost, it applies to the pod's IP address only. So if container 1 in pod 1 connects
to port 1234 that container 2 listens to on pod 1, it will not conflict with another
container in pod 2 running on the same node that also listens on port 1234. The
only caveat is that if you're exposing ports to the host then you should be careful
about pod to node affinity. This can be handled using several mechanisms, such as
DaemonSet and pod anti-affinity.

Inter-pod communication (pod to pod)

Pods in Kubernetes are allocated a network-visible IP address (not private to

the node). Pods can communicate directly without the aid of network address
translation, tunnels, proxies, or any other obfuscating layer. Well-known port
numbers can be used for a configuration-free communication scheme. The pod's
internal IP address is the same as its external IP address that other pods see (within
the cluster network; not exposed to the outside world). That means that standard
naming and discovery mechanisms such as DNS work out of the box.

[246]

Chapter 10

Pod to service communication

Pods can talk to each other directly using their IP addresses and well-known ports, but
that requires the pods to know each other's IP addresses. In a Kubernetes cluster, pods
can be destroyed and created constantly. The service provides a layer of indirection
that is very useful because the service is stable even if the set of actual pods that
respond to requests is ever-changing. In addition, you get automatic, highly available
load balancing because the Kube-proxy on each node takes care of redirecting traffic

to the correct pod:

Node

Client apiserver

//

ServicelP D
(iptables) D

A
Backend Pod 1 Backend Pod 2 Backend Pod 3
labels: app=MyApp | | labels: app=MyApp | | labels: app=MyApp
port: 9376 port: 9376 port: 9376

External access

Eventually, some containers need be accessible from the outside world. The pod

IP addresses are not visible externally. The service is the right vehicle, but external
access typically requires two redirects. For example, cloud provider load balancers are
Kubernetes aware, so they can't direct traffic to a particular service directly to a node
that runs a pod that can process the request. Instead, the public load balancer just
directs traffic to any node in the cluster and the Kube-proxy on that node will redirect
again to an appropriate pod if the current node doesn't run the necessary pod.

[247]

Advanced Kubernetes Networking

The following diagram shows how all that the external load balancer on the right
side does is send traffic to all nodes that reach the proxy, which takes care of further
routing if needed:

22 443
? : :
I r
l NAT - public IP J Loadbalancer l LoadBalancers (dynamically added to service) u
/
______ o e e e e i e iy ey i P I S e i e i S
| rivate vnet 100.00/8 1 T / \
| Y \
Master-0 availability set /
| host addr: 10.240.255.5 7 \ "
| |podCiDR:10.244.00/24 Y Nodeo \. Node-1
0443 host addr: 10.240.0.4 / \ host addr: 10.240.0.5
| pod CIDR: 10.244.1.0/24 / \. pod CIDR: 10.244.2.0/24
| [scheduler | [apiserver l // \\\
| l etcd] [controller-managerl 5 ?
| Proxy Proxy ‘ Proxy]
| Implemants Service nerwork: 10.0.0.0/15 Implements Service network: 10.000/16 |implements Service netwerk: 100.00/16
| [kibelet }] Docker I] kubelet I [Docker | | kubelet I [Docker I
|

Kubernetes networking versus Docker
networking

Docker networking follows a different model, although over time, it starts to gravitate
towards the Kubernetes model. In Docker networking, each container has its own
private IP address from the 172 . xxx . xxx . xxx address space confined to its own
node. It can talk to other containers on the same node via their own 172 . xxx . xxx.
xxx different IP addresses. This makes sense for Docker because it doesn't have the
notion of a pod with multiple interacting containers, so it models every container as
lightweight VMs that have their own network identity. Note that with Kubernetes,
containers from different pods that run on the same node can't connect over localhost
(unless exposing host ports, which is discouraged). The whole idea is that, in general,
Kubernetes can kill and create pods anywhere, so different pods shouldn't rely, in
general, on other pods available on the node. DaemonSets are a notable exception, but
the Kubernetes networking model is designed to work for all use cases and doesn't add
special cases for direct communication between different pods on the same node.

How do Docker containers communicate across nodes? The container must publish
ports to the host. This obviously requires port coordination because if two containers
try to publish the same host port, they'll conflict with each other. Then containers

(or other processes) connect to the host's port that get channeled into the container. A
big downside is that containers can't self-register with external services because they
don't know what's their host's IP address. You could work around it by passing the
host's IP address as an environment variable when you run the container, but that
requires external coordination and complicates the process.

[248]

Chapter 10

The following diagram shows the networking setup with Docker. Each container has
its own IP address; Docker creates the docker0 bridge on every node:

Host running Docker

Container #1 Container #2

[etho:17217.02 || [[eth0:172.17.03 |
1 1
| [

[vethseosea7 | [veth220960a |

[docker0: 172.17.42.1 |

[etho: 192.168.1.22 |
|

Rest of the network +=========- | -------

Lookup and discovery

In order for pods and containers to communicate with each other, they need to
find each other. There are several ways for containers to locate other containers
or announce themselves. There are also some architectural patterns that allow
containers to interact indirectly. Each approach has its own pros and cons.

Self-registration

We've mentioned self-registration several times. Let's understand what it means
exactly. When a container runs, it knows its pod's IP address. Each container

that wants to be accessible to other containers in the cluster can connect to some
registration service and register its IP address and port. Other containers can query
the registration service for the IP addresses and port of all registered containers and
connect to them. When a container is destroyed (gracefully), it will unregister itself.
If a container dies ungracefully then some mechanism need to be established to
detect that. For example, the registration service can periodically ping all registered
containers, or the containers are required periodically to send a keepalive message
to the registration service.

[249]

Advanced Kubernetes Networking

The benefit of self-registration is that once the generic registration service is in place
(no need to customize it for different purposes), there is no need to worry about
keeping track of containers. Another huge benefit is that containers can employ
sophisticated policies and decide to unregister temporarily if they are unavailable
based on local conditions; for example, if a container is busy and doesn't want to
receive any more requests at the moment. This sort of smart and decentralized
dynamic load balancing can be very difficult to achieve globally. The downside is
that the registration service is yet another non-standard component that containers
need to know about in order to locate other containers.

Services and endpoints

Kubernetes services can be considered as a registration service. Pods that belong to
a service are registered automatically based on their labels. Other pods can look up
the endpoints to find all the service pods or take advantage of the service itself and
directly send a message to the service that will get routed to one of the backend pods.

Loosely coupled connectivity with queues

What if containers can talk to each other without knowing their IP addresses and
ports? What if most of the communication can be asynchronous and decoupled? In
many cases, systems can be composed of loosely coupled components that are not
only unaware of the identities of other components, but they are unaware that other
components even exist. Queues facilitate such loosely coupled systems. Components
(containers) listen to messages from the queue, respond to messages, perform their
jobs, and post messages to the queue, on progress, completion status, and error.
Queues have many benefits:

* Easy to add processing capacity without coordination, just add more
containers that listen to the queue
* Easy to keep track of overall load by queue depth

* Easy to have multiple versions of components running side by side by
versioning messages and/ or topics

* Easy to implement load balancing as well as redundancy by having multiple
consumers process requests in different modes

The downsides of queues are the following;:

* Need to make sure that the queue provides appropriate durability and
high-availability so it doesn't become a critical SPOF

[250]

Chapter 10

* Containers need to work with the async queue API (could be abstracted away)

* Implementing request-response requires a somewhat cumbersome listening
on response queues

Overall, queues are an excellent mechanism for large-scale systems and they can be
utilized in large Kubernetes clusters to ease coordination.

Loosely coupled connectivity with data stores

Another loosely coupled method is to use a data store (for example, Redis) to store
messages and then other containers can read them. While possible, this is not the
design objective of data stores and the result is often cumbersome, fragile, and
doesn't have the best performance. Data stores are optimized for data storage and
not for communication. That being said, data stores can be used in conjunction
with queues, where a component stores some data in a data store and then sends
a message to the queue that data is ready for processing. Multiple components
listen to the message and all start processing the data in parallel.

Kubernetes ingress

Kubernetes offers an ingress resource and controller that is designed to expose
Kubernetes services to the outside world. You can do it yourself, of course, but
many tasks involved in defining ingress are common across most applications for
a particular type of ingress such as a web application, CDN, or DDoS protector.
You can also write your own ingress objects.

The ingress object is often used for smart load balancing and TLS termination.
Instead of configuring and deploying your own Nginx server, you can benefit
from the built-in ingress. If you need a refresher, hop on to Chapter 6, Using Critical
Kubernetes Resources, where we discussed the ingress resource with examples.

Kubernetes network plugins

Kubernetes has a network plugin system since networking is so diverse and different
people would like to implement it in different ways. Kubernetes is flexible enough

to support any scenario. The primary network plugin is CNI, which we will discuss
in depth. But Kubernetes also comes with a simpler network plugin called Kubenet.
Before we go over the details, let's get on the same page with the basics of Linux
networking (just the tip of the iceberg).

[251]

Advanced Kubernetes Networking

Basic Linux networking

Linux, by default, has a single shared network space. The physical network interfaces
are all accessible in this namespace. But the physical namespace can be divided into
multiple logical namespaces, which is very relevant to container networking.

IP addresses and ports

Network entities are identified by their IP address. Servers can listen to incoming
connections on multiple ports. Clients can connect (TCP) or send data (UDP) to
servers within their network.

Network namespaces

Namespaces group a bunch of network devices such that they can reach other
servers in the same namespace, but not other servers even if they are physically on
the same network. Linking networks or network segments can be done via bridges,
switches, gateways, and routing.

Virtual Ethernet devices

Virtual Ethernet (veth) devices represent physical network devices. When you create
a veth that's linked to a physical device you can assign that veth (and by extension
the physical device) into a namespace where devices from other namespaces can't
reach it directly, even if physically they are on the same local network.

Bridges
Bridges connect multiple network segments to an aggregate network, so all the

nodes can communicate with each other. Bridging is done at the L1 (physical)
and L2 (data link) layers of the OSI network model.

Routing

Routing connects separate networks, typically based on routing tables that instruct
network devices how to forward packets to their destination. Routing is done
through various network devices, such as routers, bridges, gateways, switches,
and firewalls, including regular Linux boxes.

[252]

Chapter 10

Maximum transmission unit

The maximum transmission unit (MTU) determines how big packets can be. On
Ethernet networks, for example, the MTU is 1,500 bytes. The bigger the MTU, the
better the ration between payload and headers, which is a good thing. But the
downside is that minimum latency is reduced because you have to wait for the
entire packet to arrive and, furthermore, in case of failure, you have to retransmit
the entire big packet.

Pod networking
Here is a diagram that describes the relationship between pod, host, and the global
Internet at networking level via vetho:

Host

Internet

Kubenet

Back to Kubernetes. Kubenet is a network plugin. It's very rudimentary and just
creates a Linux bridge called cbr0 and a veth for each pod. Cloud providers
typically use it to set up routing rules for communication between nodes, or in
single-node environments. The veth pair connects each pod to its host node
using an IP address from the host's IP addresses range.

Requirements
The Kubenet plugin has the following requirements:

* The node must be assigned a subnet to allocate IP addresses for its pods

* The standard CNI bridge, lo, and host-local plugins are required at version
0.2.0 or greater
* The Kubelet must be run with the - -network-plugin=kubenet argument

e The Kubelet must be run with the - -non-masquerade-cidr=<clusterCidrs>
argument

[253]

Advanced Kubernetes Networking

Setting the MTU

The MTU is critical for network performance. Kubernetes network plugins such as
Kubenet make their best efforts to deduce optimal MTU, but sometimes they need
help. For example, if an existing network interface (for example, the Docker dockero
bridge) sets a small MTU then Kubenet will reuse it. Another example is IPSEC, that
requires lowering the MTU due to the extra overhead from IPSEC encapsulation
overhead, but the Kubenet network plugin doesn't take it into consideration. The
solution is to avoid relying on the automatic calculation of the MTU and just tell the
Kubelet what MTU should be used for network plugins via the --network-plugin-
mtu command-line switch that is provided to all network plugins. Although, at the
moment, only the Kubenet network plugin accounts for this command-line switch.

Container networking interface

Container Networking Interface (CNI) is a specification as well as a set of libraries
for writing network plugins to configure network interfaces in Linux containers
(not just Docker). The specification actually evolved from the rkt network proposal.
There is a lot of momentum behind CNI and it's on a fast track to become the
established industry standard. Some of the organizations that use CNI are:

* Rkt

®* Kubernetes

® Kurma

® Cloud foundry

® Mesos
The CNI team maintains some core plugins, but there are a lot of third-party plugins
too that contribute to the success of CNI:

* Project Calico: A layer 3 virtual network

* Weave: A multi-host Docker network

* Contiv networking: Policy-based networking

* Infoblox: Enterprise IP address management for containers

Container runtime

CNI defines a plugin spec for networking application containers, but the plugin
must be plugged into a container runtime that provides some services. In the context
of CNI, an application container is a network-addressable entity (has its own IP
address). For Docker, each container has its own IP address. For Kubernetes, each
pod has its own IP address and the pod is the CNI container and not the containers
within the pod.

[254]

Chapter 10

Likewise, rkt's app containers are similar to Kubernetes pods in that they may
contain multiple Linux containers. If in doubt, just remember that a CNI container
must have its own IP address. The runtime's job is to configure a network and
then execute one or more CNI plugins, passing them the network configuration
in JSON format.

The following diagram shows a container runtime using the CNI plugin interface to
communicate with multiple CNI plugins:

Container Runtime

\
|
|
|

Loopback Bridge PTP MACvlan IPvlan Third-party
Plugin Plugin Plugin Plugin Plugin Plugin

CNI plugin

The CNI plugin's job is to add a network interface into the container network
namespace and bridge the container to the host via a veth pair. It should then assign
an IP address via an IPAM (IP address management) plugin and setup routes.

The container runtime (rkt or Docker) invokes the CNI plugin as an executable. The
plugin needs to support the following operations:

e Add a container to the network

* Remove a container from the network

* Report version
The plugin uses a simple command-line interface, standard input/output, and
environment variables. The network configuration in JSON format is passed
to the plugin through standard input. The other arguments are defined as
environment variables:

* CNI_COMMAND: Indicates the desired operation; ADD, DEL, or VERSION.

* (NI _CONTAINERID: Container ID.

* CNI_NETNS: Path to network namespace file.

[255]

Advanced Kubernetes Networking

* CNI_IFNAME: Interface name to set up; plugin must honor this interface name
or return an error.

* CNI_ARGS: Extra arguments passed in by the user at invocation time.
Alphanumeric key-value pairs separated by semicolons, for example,
FOO=BAR ; ABC=123.

* CNI_PATH: List of paths to search for CNI plugin executables. Paths are
separated by an OS-specific list separator, for example : on Linux and ;
on Windows.

If the command succeeds, the plugin returns a zero exit code and the generated
interfaces (in the case of the ADD command) are streamed to standard output as
JSON. This low-tech interface is smart in the sense that it doesn't require any specific
programming language or component technology or binary API. CNI plugin writers
can use their favorite programming language too.

The result of invoking the CNI plugin with the ADD command looks as follows:

{

"cniVersion": "0.3.0",
"interfaces": [(this key omitted by IPAM plugins)
{
"name": "<name>",
"mac": "<MAC address>", (required if L2 addresses are
meaningful)
"sandbox": "<netns path or hypervisor identifier>" (required
for container/hypervisor interfaces, empty/omitted for host interfaces)
}
1,
"ip": [
{
"version": "<4-or-6>",
"address": "<ip-and-prefix-in-CIDR>",
"gateway": "<ip-address-of-the-gateway>", (optional)

"interface": <numeric index into 'interfaces' list>

"routes": [(optional)

{

[256]

Chapter 10

}

"dst": "<ip-and-prefix-in-cidr>",

"gw": "<ip-of-next-hop>"

I

1
"dns": {

"nameservers": <list-of-nameservers>

"domain": <name-of-local-domain>

"search": <list-of-additional-search-domains>

"options": <list-of-options>

(optional)

(optional)
(optional)
(optional)
(optional)

The input network configuration contains a lot of information: cniversion,
name, type, args (optional), ipMasq (optional), ipam, and dns. The ipam and dns
parameters are dictionaries with their own specified keys. Here is an example of
a network configuration:

{

"cniVersion": "0.3.0",

"name": "dbnet",

lltypell: "bridge“,

// type (plugin) specific

"bridge": "cniO",

llipa-tnll: {
"type": "host-local",
// ipam specific
"subnet": "10.1.0.0/16",
"gateway": "10.1.0.1"

}l

"dns": {

"nameservers": ["10.1.0.1"

1

[257]

Advanced Kubernetes Networking

Note that additional plugin-specific elements can be added. In this case, the bridge:
cnio element is a custom one that the specific bridge plugin understands.

The cNI spec also supports network configuration lists where multiple CNI plugins
can be invoked in order.

Later, we will dig into a fully-fledged implementation of a CNI plugin.

Kubernetes networking solutions

Networking is a vast topic. There are many ways to set up networks and connect
devices, pods, and containers. Kubernetes can't be opinionated about it. The
high-level networking model of a flat address space for Pods is all that Kubernetes
prescribes. Within that space, many valid solutions are possible, with various
capabilities and policies for different environments. In this section, we'll examine
some of the available solutions and understand how they map to the Kubernetes
networking model.

Bridging on bare metal clusters

The most basic environment is a raw bare metal cluster with just an L2 physical
network. You can connect your containers to the physical network with a Linux
bridge device. The procedure is quite involved and requires familiarity with
low-level Linux network commands such as brctl, ip addr, ip route, ip 1ink,
nsenter, and so on. If you plan to implement it, this guide can serve as a good
start (search for the With Linux Bridge devices section): http://blog.oddbit.
com/2014/08/11/four-ways-to-connect-a-docker/.

Contiv

Contiv is a general-purpose network plugin for container networking and it can
be used with Docker directly, Mesos, Docker Swarm, and of course Kubernetes via
a CNI plugin. Contiv is focused on network policies that overlap somewhat with
Kubernetes' own network policy object. Here are some of the capabilities of the
Contiv net plugin:

* Supports both libnetwork's CNM and the CNI specification

* A feature-rich policy model to provide secure, predictable application
deployment

* Best-in-class throughput for container workloads

* Multi-tenancy, isolation, and overlapping subnets

[258]

http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/
http://blog.oddbit.com/2014/08/11/four-ways-to-connect-a-docker/

Chapter 10

* Integrated IPAM and service discovery
* A variety of physical topologies:

° Layer2 (VLAN)

° Layer3 (BGP)

° Overlay (VXLAN)

° Cisco SDN solution (ACI)

* [Pv6 support

* Scalable policy and route distribution
Integration with application blueprints, including the following;:

* Docker compose

* Kubernetes deployment manager

* Service load balancing is built in east-west microservice load balancing

* Traffic isolation for storage, control (for example, etcd/consul), network,

and management traffic

Contiv has many features and capabilities. I'm not sure if it's the best choice for
Kubernetes due to its broad surface area.

Open vSwitch

Open vSwitch is a mature software-based virtual switch solution endorsed by many
big players. The Open Virtualization Network (OVN) solution lets you build
various virtual networking topologies. It has a dedicated Kubernetes plugin, but

it is not trivial to set up, as demonstrated by this guide: https://github.com/
openvswitch/ovn-kubernetes.

Open vSwitch can connect bare metal servers, VMs, and pods/containers using the
same logical network. It actually supports both overlay and underlay modes.

Here are some of its key features:

* Standard 802.1Q VLAN model with trunk and access ports
* NIC bonding with or without LACP on upstream switch

* NetFlow, sFlow(R), and mirroring for increased visibility

* QoS (Quality of Service) configuration, plus policing

* Geneve, GRE, VXLAN, STT, and LISP tunneling

[259]

https://github.com/openvswitch/ovn-kubernetes
https://github.com/openvswitch/ovn-kubernetes

Advanced Kubernetes Networking

* 802.1ag connectivity fault management
* OpenFlow 1.0 plus numerous extensions
* Transactional configuration database with C and Python bindings

* High-performance forwarding using a Linux kernel module

Nuage networks VCS

The Virtualized Cloud Services (VCS) product from Nuage networks provides a
highly scalable policy-based Software-Defined Networking (SDN) platform. It is an
enterprise-grade offering that builds on top of the open source open vSwitch for the
data plane along with a feature-rich SDN controller built on open standards.

The Nuage platform uses overlays to provide seamless policy-based networking
between Kubernetes Pods and non-Kubernetes environments (VMs and bare
metal servers). Nuage's policy abstraction model is designed with applications
in mind and makes it easy to declare fine-grained policies for applications. The
platform's real-time analytics engine enables visibility and security monitoring
for Kubernetes applications.

In addition, all of VCS components can be installed in containers. There are no
special hardware requirements.

Canal

Canal is a mix of two open source projects: Calico and Flannel. The name Canal

is a portmanteau of the project names. Flannel by CoreOS is focused on container
networking and Calico is focused on network policy. Originally, they were
developed independently, but users wanted to use them together. The open source
Canal project is currently a deployment pattern to install both projects as separate
CNI plugins. But a new company called Tigera formed by Calico's founders is
shepherding both projects now and has plans for tighter integration.

[260]

Chapter 10

The following diagram demonstrates the present status of Canal and how it relates to
container orchestrators such as Kubernetes or Mesos:

—

s

('—*/’/_\ny CNI enabled orchestrator R ﬁ)
SR
canal
Orchestrat NI :
e © flannel CNI plugin | B
Calico poli 2 : S e
il iy enrcamen et 1

] Vi

< Aoyneworkfabric %
I v e Sl 2

Note that when integrating with Kubernetes, Canal doesn't use etcd directly
anymore. Instead it relies on the Kubernetes API server.

Flannel

Flannel is a virtual network that gives a subnet to each host for use with container
runtimes. It runs a f1aneld agent on each host that allocates a subnet to the

node from a reserved address space stored in etcd. Forwarding packets between
containers and, ultimately, hosts is done by one of multiple backends. The most
common backend uses UDP over a TUN device that tunnels through port 8285
by default (make sure it's open in your firewall).

[261]

Advanced Kubernetes Networking

The following diagram describes in detail the various components of Flannel, the
virtual network devices it creates, and how they interact with the host and the pod
via the dockero bridge. It also shows the UDP encapsulation of packets and how
they are transmitted between hosts:

CoreOS Machine

Pod
Web App Frontend
i\ P MAC
cachel container 10.1.15.2/24 .ﬂ

Outer source; 192.168.0.100

P dest: 192.168.0.200
Web App Frontend2

flanneld ~ o—e = Inner = source: 10.115.2
P dest: 10.1.20.3
packet
ath

B
S
app2 container >
a

* 10.1.15.124
10.1.15.0/16
192.168.0.100

CoreOS Machine

F

Backend Servicel

backend1container [PENDY 101‘262/24 o

backupi container

flanneld eo—e 2

10.1.20.1/24
10.1.20.0/16

Backend Serviee

ath
backend2 container 10.1.20.3/24

— 192.168.0.200

Other backends include the following:

* wvxlan: Uses in-kernel VXLAN to encapsulate the packets.

* host-gw: Creates IP routes to subnets via remote machine IPs. Note that this
requires direct layer2 connectivity between hosts running Flannel.

* aws-vpc: Creates IP routes in an Amazon VPC route table.
* gce: Creates IP routes in a Google compute engine network.
* alloc: Only performs subnet allocation (no forwarding of data packets).

* ali-vpc: Creates IP routes in an alicloud VPC route table.

[262]

Chapter 10

Calico project

Calico is a versatile virtual networking and network security solution for containers.
Calico can integrate with all the primary container orchestration frameworks

and runtimes:

* Kubernetes (CNI plugin)

* Mesos (CNI plugin)

* Docker (libnework plugin)

* OpenStack (Neutron plugin)

Calico can also be deployed on-premises or on public clouds with its full feature

set. Calico's network policy enforcement can be specialized for each workload and
make sure that traffic is controlled precisely and packets always go from their source
to vetted destinations. Calico can map automatically network policy concepts from
orchestration platforms to its own network policy. The reference implementation

of Kubernetes' network policy is Calico.

Romana

Romana is a modern cloud-native container networking solution. It operates at layer
3, taking advantage of standard IP address management techniques. Whole networks
can become the unit of isolation as Romana uses Linux hosts to create gateways and
routes to the networks. Operating at layer 3 level means that no encapsulation is
needed. Network policy is enforced as a distributed firewall across all endpoints and
services. Hybrid deployments across cloud platforms and on-premises deployments
are easier as there is no need to configure virtual overlay networks.

[263]

Advanced Kubernetes Networking

Romana claims that their approach brings significant performance improvements.
The following diagram shows how Romana eliminates a lot of the overhead
associated with VXLAN encapsulation:

North/South Traffic
s =len
- Latency dramatically Bypassed
=
« No Network node /
- No encap p%gmk
« Identical path for
East/West traffic
® ® 2 -
Weave net

Weave net is all about ease of use and zero configuration. It uses VXLAN
encapsulation under the covers and micro DNS on each node. As a developer, you
operate at a higher abstraction level. You name your containers and Weave net lets
you connect to and use standard ports for services. That helps migrating existing
applications into containerized applications and microservices. Weave net has a CNI
plugin for interfacing with Kubernetes (and Mesos). On Kubernetes 1.4 and higher,
you can integrate Weave net with Kubernetes by running a single command that
deploys a DaemonSet:

kubectl apply -f https://git.io/weave-kube

The Weave net pods on every node will take care of attaching any new pod you
create to the Weave network. Weave net supports the network policy API as well
providing a complete yet easy to set up solution.

[264]

Chapter 10

Using network policies effectively

The Kubernetes network policy is about managing network traffic to selected pods
and namespaces. In a world of hundreds of microservices deployed and orchestrated,
as is often the case with Kubernetes, managing networking and connectivity between
pods is essential. It's important to understand that it is not primarily a security
mechanism. If an attacker can reach the internal network, they will probably be

able to create their own pods that comply with the network policy in place and
communicate freely with other pods. In the previous section, we looked at different
Kubernetes networking solutions and focused on the container networking interface.
In this section, the focus is on network policy, although there are strong connections
between the networking solution and how network policy is implemented on top.

Understanding the Kubernetes network policy
design

A network policy is a specification of how selections of pods can communicate
with each other and other network endpoints. NetworkPolicy resources use labels
to select pods and define whitelist rules that allow traffic to the selected pods in
addition to what is allowed by the isolation policy for a given namespace.

Network policies and CNI plugins

There is an intricate relationship between network policies and CNI plugins. Some
CNI plugins implement both network connectivity and network policy, while others
implement just one aspect, but they can collaborate with another CNI plugin that
implements the other aspect (for example, Calico and Flannel).

Configuring network policies

Network policies are configured via the NetworkpPolicy resource. Here is a sample
network policy:
apiVersion: extensions/vlbetal
kind: NetworkPolicy
metadata:
name: test-network-policy
namespace: default
spec:

podSelector:

[265]

Advanced Kubernetes Networking

matchLabels:
role: db
ingress:
- from:

- namespaceSelector:
matchLabels:
project: awesome-project
- podSelector:
matchLabels:
role: frontend
ports:
- protocol: tcp
port: 6379

Implementing network policies

While the network policy APl itself is generic and is part of the Kubernetes API, the
implementation is tightly coupled to the networking solution. That means that on
each node, there is a special agent or gatekeeper that does the following:

* Intercepts all traffic coming into the node
* Verifies that it adheres to the network policy

* Forwards or rejects each request

Kubernetes provides the facilities to define and store network policies through the
API. Enforcing the network policy is left to the networking solution or a dedicated
network policy solution that is tightly integrated with the specific networking
solution. Calico and Canal are good examples of this approach. Calico has its own
networking solution and a network policy solution that works together. But it can
also provide network policy enforcement on top of Flannel as part of Canal. In both
cases, there is tight integration between the two pieces. The following diagram shows
how the Kubernetes policy controller manages the network policies and how agents
on the nodes execute it:

[266]

Chapter 10

Policy Controller

Z 3
Host 1
Event streamed
: to listener
Policy pushed
HOSt n out to hosts Kubernetes
Master

/ \ N POST Policy to endpoint

Load balancing options

Load balancing is a critical capability in dynamic systems such as a Kubernetes
cluster. Nodes, VMs, and pods come and go, but the clients can't keep track of
which individual entities can service their requests. Even if they could, it would
require a complicated dance of managing a dynamic map of the cluster, refreshing

it frequently, and handling disconnected, unresponsive, or just slow nodes. Load
balancing is a battle-tested and well-understood mechanism that adds a layer of
indirection that hides the internal turmoil from the clients or consumers outside the
cluster. There are options for external as well as internal load balancers. You can also
mix and match and use both. The hybrid approach has its own particular pros and
cons, such as performance versus flexibility.

External load balancer

An external load balancer is a load balancer that runs outside the Kubernetes cluster,
but there must be an external load balancer provider that Kubernetes can interact
with to configure the external load balancer with health checks, firewall rules, and to
get the external IP address of the load balancer.

[267]

Advanced Kubernetes Networking

The following diagram shows the connection between the load balancer (in the
cloud), the Kubernetes API server, and the cluster nodes. The external load balancer
has an up-to-date picture of which pods run on which nodes and it can direct
external service traffic to the right pods:

kubectl, clients, etc.

Voo
v

Worker Node #1

EpsdBlians ‘§

[
Master Node #1
apiserver @

== /\
etcd @ scheduler @
E t X

- @ controller @
P manager
kubelet

monit

Configuring an external load balancer

The external load balancer is configured via the service configuration file or

directly through Kubectl. We use a service type of LoadBalancer instead of using

a service type of clusterIp, which directly exposes a Kubernetes node as a load
balancer. This depends on an external load balancer provider properly installed and
configured in the cluster. Google's GKE is the most well-tested provider, but other
cloud platforms provide their integrated solution on top of their cloud load balancer.

Via configuration file
Here is an example service configuration file that accomplishes this goal:

{

"kind": "Service",

"apiVersion": "v1",

[268]

Chapter 10

"metadata": {

"name": "example-service"
3
"spec": {
"ports": [{
"port": 8765,
"targetPort": 9376
1.
"selector": {
"app": "example"
3
"type": "LoadBalancer"
}

}
Via Kubectl

You may also accomplish the same result using a direct kubect1 command:

> kubectl expose rc example --port=8765 --target-port=9376 \

--name=example-service --type=LoadBalancer

The decision whether to use a service configuration file or kubectl command is
usually determined by the way you set up the rest of your infrastructure and deploy
your system. configuration files are more declarative and arguably more appropriate
for production usage where you want a versioned, auditable, and repeatable way to
manage your infrastructure.

Finding the load balancer IP addresses

The load balancer will have two IP addresses of interest. The internal IP address can
be used inside the cluster to access the service. The external IP address is the one
clients outside the cluster will use. It's a good practice to create a DNS entry for the
external IP address. To get both addresses, use the kubectl describe command.
The 1P will denote the internal IP address. The LoadBalancer ingress will denote
the eternal IP address:

> kubectl describe services example-service
Name: example-service

Selector: app=example

Type: LoadBalancer

[269]

Advanced Kubernetes Networking

IP: 10.67.252.103
LoadBalancer Ingress: 123.45.678.9

Port: <unnamed> 80/TCP
NodePort: <unnamed> 32445/TCP
Endpoints: 10.64.0.4:80,10.64.1.5:80,10.64.2.4:80

Session Affinity: None

No events.

Identifying client IP addresses

Sometimes, the service may be interested in the source IP address of the clients. Up
until Kubernetes 1.5, this information wasn't available. In Kubernetes 1.5, there is a
beta feature available only on GKE via an annotation to get the source IP address.
In future versions, the capability will be added to other cloud platforms.

Annotating the load balancer for client IP address
preservation

Here's how to annotate a service configuration file with the onlyLocal annotation
that triggers the preservation of the client source IP address:

{

"kind": "Service",
"apiVersion": "v1",
"metadata": {
"name": "example-service",
"annotations": {

"service.beta.kubernetes.io/external-traffic": "OnlyLocal™"

}
3
"spec": {
"ports": [{
"port": 8765,
"targetPort": 9376
1.
"selector": {
"app": "example"
3

"type": "LoadBalancer"

[270]

Chapter 10

Understanding potential in even external load
balancing

External load balancers operate at the node level; while they direct traffic to a
particular pod, the load distribution is done at the node level. That means that if
your service has four pods, and three of them are on node A and the last one is on
node B, then an external load balancer is likely to divide the load evenly between
node A and node B. This will have the three pods on node A handle half of the load
(1/6 each) and the single pod on node B handle the other half of the load on its own.
Weights may be added in the future to address this issue.

Service load balancer

Service load balancing is designed for funneling internal traffic within the
Kubernetes cluster and not for external load balancing. This is done by using a
service type of clusterIP. It is possible to expose a service load balancer directly
via a preallocated port by using service type of NodePort and use it as an external
load balancer, but it wasn't designed for that use case. For example, desirable
features such as SSL negotiation and HTTP caching will not be readily available.

The following diagram shows how the service load balancer (the yellow clouds) can
route traffic to one of the backend pods it manages (via labels of course):

apiserver
v
Client Kube-proxy
\\
/-\, -
ServicelP
(iptables)
) N Node
A/ v \\\\L
Backend Pod 1 Backend Pod 2 Backend Pod 3
labels: app=MyApp | | labels: app=MyApp | | labels: app=MyApp
port: 9376 port: 9376 port: 9376

[271]

Advanced Kubernetes Networking

Ingress

Ingress in Kubernetes is at its core a set of rules that allow inbound connections to
reach cluster services. In addition, some ingress controllers support the following;:

* Connection algorithms

* Request limits

* URL rewrites and redirects
* TCP/UDP load balancing

e Access control and authorization

Ingress is specified using an ingress resource and serviced by an ingress controller.
It's important to note that ingress is still in beta and it doesn't surface yet all the
necessary capabilities. Here is an example of an ingress resource that manages traffic
into two services. The rules map the externally visible http:// foo.bar.com/foo to
the s1 service and http://foo.bar.com/bar to the s2 service:

apiVersion: extensions/vlbetal
kind: Ingress
metadata:
name: test
spec:
rules:
- host: foo.bar.com
http:
paths:
- path: /foo
backend:
serviceName: sl
servicePort: 80
- path: /bar
backend:
serviceName: s2

servicePort: 80

There are two ingress controllers right now. One of them is an L7 ingress controller
for GCE only. The other is a more general-purpose Nginx ingress controller that

lets you configure Nginx via a ConfigMap. The Nginx ingress controller is very
sophisticated and brings to bear a lot of features that are not available yet via the
ingress resource directly. It uses the endpoints API to directly forward traffic to pods.
For a detailed review, check out https://github.com/kubernetes/ingress/tree/
master/controllers/nginx.

[272]

https://github.com/kubernetes/ingress/tree/master/controllers/nginx
https://github.com/kubernetes/ingress/tree/master/controllers/nginx

Chapter 10

HAProxy

We discussed using a cloud provider external load balancer using service type
LoadBalancer and using the internal service load balancer inside the cluster using
ClusterIP. If we want a custom external load balancer we can create a custom
external load balancer provider and use LoadBalancer or use the third service
type, Nodeport. High-Availability (HA) Proxy is a mature and battle-tested load
balancing solution. It is considered the best choice for implementing external load
balancing with on-premises clusters. This can be done in several ways:

» Utilize NodePort and carefully manage port allocations
* Implement custom load balancer provider interface

* Run HAProxy inside your cluster as the only target of your frontend servers
at the edge of the cluster (load balanced or not)

You can use all approaches with HAProxy. Regardless, it is still recommended to

use ingress objects. The service-1loadbalancer project is a community project that
implemented a load balancing solution on top of HAProxy. You can find it here:
https://github.com/kubernetes/contrib/tree/master/service-loadbalancer.

Utilizing the NodePort

Each service will be allocated a dedicated port from a predefined range. This usually
is a high range such as 30,000 and up to avoid clashing with other applications using
low known ports. HAProxy will run outside the cluster in this case and it will be
configured with the correct port for each service. Then it can just forward any traffic
to any nodes and Kubernetes via the internal service, and the load balancer will route
it to a proper pod (double load balancing). This is of course sub-optimal because

it introduces another hop. The way to circumvent it is to query the Endpoints API
and dynamically manage for each service the list of its backend pods and directly
forward traffic to the pods.

Custom load balancer provider using HAProxy

This approach is a little more complicated, but the benefit is that it is better
integrated with Kubernetes and can make the transition to/from on-premises
from/to the cloud easier.

[273]

https://github.com/kubernetes/contrib/tree/master/service-loadbalancer

Advanced Kubernetes Networking

Running HAProxy Inside the Kubernetes cluster

In this approach, we use the internal HAProxy load balancer inside the cluster. There
may be multiple nodes running HAProxy and they will share the same configuration
to map incoming requests and load balance them across the backend servers

(the Apache servers in the following diagram):

Test Instance
(External IP)

Apache
Server

nternal IP)

Apache
Server
(Internal IP)

Frontend
Server e

(External IP)

HAProxy
Load Balancer |&————%

(Internal IP)

Keepalived VIP

Keepalived virtual IP (VIP)is not necessarily a load balancing solution of its own.

It can be a complement to the Nginx ingress controller or the HAProxy-based service
LoadBalancer. The main motivation is that pods move around in Kubernetes
including your load balancer(s). That creates a problem for clients outside the
network that require a stable endpoint. DNS is often not good enough due to
performance issues. Keepalived provides a high-performance virtual IP address that
can serve as the address to the Nginx ingress controller or the HAProxy load balancer.
Keepalived utilizes core Linux networking facilities such as IPVS (IP virtual server)
and implements high availability via Virtual Redundancy Router Protocol (VRRP).
Everything runs at layer 4 (TCP/UDP). It takes some effort and attention to detail to
configure it. Luckily, there is a Kubernetes contrib project that can get you started:
https://github.com/kubernetes/contrib/tree/master/keepalived-vip.

[274]

https://github.com/kubernetes/contrib/tree/master/keepalived-vip

Chapter 10

Writing your own CNI plugin

In this section, we will look at what it takes to actually write your own CNI plugin.
First, we will look at the simplest plugin possible - the loopback plugin. Then, we
will examine the plugin skeleton that implements most of the boilerplate associated
with writing a CNI plugin. Finally, we will review the implementation of the bridge
plugin. Before we dive in, here is a quick reminder of what a CNI plugin is:

* A CNI plugin is an executable

* Itis responsible for connecting new containers to the network, assigning
unique IP addresses to CNI containers, and taking care of routing

* A container is a network namespace (in Kubernetes, a pod is a CNI container)
* Network definitions are managed as JSON files, but stream to the plugin via
standard input (no files are being read by the plugin)

* Auxiliary information can be provided via environment variables

First look at the loopback plugin

The loopback plugin simply adds the loopback interface. It is so simple that it doesn't
require any network configuration information. Most CNI plugins are implemented
in Golang and the loopback CNI plugin is no exception. Let's look at the imports
first. There are multiple packages from the container networking project on GitHub
that provide many of the building blocks necessary to implement CNI plugins and
the net1ink package for adding and removing interfaces, and setting IP addresses
and routes. We will look at the skel package soon:

package main

import (
"github.com/containernetworking/cni/pkg/ns"
"github.com/containernetworking/cni/pkg/skel™"
"github.com/containernetworking/cni/pkg/types/current"
"github.com/containernetworking/cni/pkg/version"

"github.com/vishvananda/netlink"

[275]

Advanced Kubernetes Networking

Then, the plugin implements two commands, cmdAdd and cmdDel, which are called
when a container is added to or removed from the network. Here is the add
command:

func cmdAdd(args *skel.CmdArgs) error {

args.IfName = "lo"

err := ns.WithNetNSPath(args.Netns, func(ns.NetNS) error {
link, err := netlink.LinkByName (args.IfName)
if err != nil {

return err // not tested

err = netlink.LinkSetUp (link)
if err != nil {

return err // not tested

return nil
hH
if err != nil {

return err // not tested

result := current.Result{}

return result.Print ()

}

The core of this function is setting the interface name to 1o (for loopback) and adding
the link to the container's network namespace.

The del command does the opposite:

func cmdDel (args *skel.CmdArgs) error {
args.IfName = "lo"
err := ns.WithNetNSPath(args.Netns, func(ns.NetNS) error {
link, err := netlink.LinkByName (args.IfName)
if err != nil {

return err // not tested

[276]

Chapter 10

err = netlink.LinkSetDown (link)
if err != nil {

return err // not tested

}

return nil
H
if err != nil {

return err // not tested
}

return nil

The main function simply calls the skel package, passing the command functions.
The skel package will take care of running the CNI plugin executable and will
invoke the addcmd and delcmd functions at the right time:

func main() {

skel.PluginMain (cmdAdd, cmdDel, version.All)

Building on the CNI plugin skeleton

Let's explore the skel package and see what it does under the covers. Starting with the
PluginMain () entry point, it is responsible for invoking PluginMainWithError (),
catching errors, printing them to standard output, and exiting:

func PluginMain(cmdAdd, cmdDel func(_ *CmdArgs) error, versionInfo
version.PluginInfo) {

if e := PluginMainWithError (cmdAdd, cmdDel, versionInfo); e != nil {
if err := e.Print(); err != nil {
log.Print ("Error writing error JSON to stdout: ", err)
}
os.Exit (1)
}
}

[277]

Advanced Kubernetes Networking

The PluginErrorWithMain () instantiates a dispatcher, sets it up with all the I/O
streams and the environment, and invokes its PluginMain () method:

func PluginMainWithError (cmdAdd, cmdDel func(_ *CmdArgs) error,
versionInfo version.PluginInfo) *types.Error {
return (&dispatcher({
Getenv: os.Getenv,
Stdin: os.Stdin,
Stdout: os.Stdout,
Stderr: os.Stderr,

}) .pluginMain (cmdAdd, cmdDel, versionInfo)

}

Here is, finally, the main logic of the skeleton. It gets the cmd arguments from the
environment (which includes the configuration from standard input), detects which
cmd is invoked, and calls the appropriate plugin function (cmdAdd or cmdDel). It can
also return version information:

func (t *dispatcher) pluginMain(cmdAdd, cmdDel func(*CmdArgs) error,
versionInfo version.PluginInfo) *types.Error {

cmd, cmdArgs, err := t.getCmdArgsFromEnv ()

if err != nil {

return createTypedError (err.Error())

switch cmd {
case "ADD":

err = t.checkVersionAndCall (cmdArgs, versionInfo, cmdAdd)
case "DEL":

err = t.checkVersionAndCall (cmdArgs, versionInfo, cmdDel)
case "VERSION":

err = versionInfo.Encode (t.Stdout)
default:

return createTypedError ("unknown CNI COMMAND: %v", cmd)

if err != nil {

if e, ok := err.(*types.Error); ok {

[278]

Chapter 10

// don't wrap Error in Error
return e

}

return createTypedError (err.Error())

}

return nil

Reviewing the bridge plugin

The bridge plugin is more substantial. Let's look at some of the key parts of its
implementation. The full source code is available here: https://github.com/
containernetworking/cni/blob/master/plugins/main/bridge/bridge.go.

It defines a network configuration struct with the following fields:

type NetConf struct {
types.NetConf
BrName string “json:"bridge""
IsGW bool “json:"isGateway""

IsDefaultGW bool “json:"isDefaultGateway" ™

ForceAddress bool “json:"forceAddress" "~
IPMasq bool “json:"ipMasq""

MTU int “json:"mtu" "
HairpinMode bool “json:"hairpinMode" ™

}

We will not cover what each parameter does and how it interacts with the other
parameters due to space limitations. The goal is to understand the flow and have a
starting point if you want to implement your own CNI plugin. The configuration is
loaded from JSON via the 1oadNetConf () function. It is called at the beginning of
the cmdadd () and emdpel () functions:

n, cniVersion, err := loadNetConf (args.StdinData)

Here is the core of the cmdadd () that use information from network configuration,
sets up a veth, interacts with the IPAM plugin to add a proper IP address, and
returns the results:

hostInterface, containerInterface, err := setupVeth(netns, br, args.
IfName, n.MTU, n.HairpinMode)

if err != nil {

[279]

https://github.com/containernetworking/cni/blob/master/plugins/main/bridge/bridge.go
https://github.com/containernetworking/cni/blob/master/plugins/main/bridge/bridge.go

Advanced Kubernetes Networking

return err

// run the IPAM plugin and get back the config to apply
r, err := ipam.ExecAdd(n.IPAM.Type, args.StdinData)
if err != nil {

return err

// Convert the IPAM result was into the current Result type
result, err := current.NewResultFromResult (r)
if err != nil {

return err

if len(result.IPs) == 0 {

return errors.New("IPAM returned missing IP config")

result.Interfaces = []*current.Interface{brInterface, hostInterface,
containerInterface}

This is just part of the full implementation. There is also route setting and hardware
IP allocation. I encourage you to pursue the full source code, which is quite
extensive, to get the full picture.

[280]

Chapter 10

Summary

In this chapter, we covered a lot of ground. Networking is such a vast topic and there
are so many combinations of hardware, software, operating environments, and user
skills that coming up with a comprehensive networking solution that is both robust,
secure, performs well, and is easy to maintain is a very complicated endeavor. For
Kubernetes clusters, the cloud providers mostly solve these issues. But if you run
on-premise clusters or need a tailor-made solution, you get a lot of options to choose
from. Kubernetes is a very flexible platform, designed for extension. Networking in
particular is totally pluggable. The main topics we discussed were the Kubernetes
networking model (flat address space where pods can reach other and shared localhost
between all containers inside a pod), how lookup and discovery work, the Kubernetes
network plugins, various networking solutions at different levels of abstraction (a lot
of interesting variations), using network policies effectively to control the traffic inside
the cluster, the spectrum of load balancing solutions, and finally we looked at how to
write a CNI plugin by dissecting a real-world implementation.

At this point, you are probably overwhelmed, especially if you're not a subject-matter
expert. You should have a good grasp of the internals of Kubernetes networking, be
aware of all the interlocking pieces required to implement a fully-fledged solution,
and can craft your own solution based on trade-offs that make sense for your system.

In Chapter 11, Running Kubernetes on Multiple Clouds and Cluster Federation, we will go
even bigger and look at running Kubernetes on multiple clusters, cloud providers,
and federation. This is an important part of the Kubernetes story for geo-distributed
deployments and ultimate scalability. Federated Kubernetes clusters can exceed local
limitations, but they bring a whole slew of challenges too.

[281]

11

Running Kubernetes
on Multiple Clouds and
Cluster Federation

In this chapter we'll take it to the next level, with running on multiple clouds

and cluster federation. A Kubernetes cluster is a closely-knit unit where all the
components run in relative proximity and are connected by a fast network

(a physical data center or cloud provider availability zone). This is great for many
use cases, but there are several important use cases where systems need to scale
beyond a single cluster. Kubernetes federation is a methodical way to combine
multiple Kubernetes clusters and interact with them as a single entity. The topics
we will cover include the following;:

* A deep dive into what cluster federation is all about

* How to prepare, configure, and manage a cluster federation

* How to run a federated workload across multiple clusters

Understanding cluster federation

Cluster federation is conceptually simple. You aggregate multiple Kubernetes
clusters and treat them as a single logical cluster. There is a federation control
plane that presents to clients a single unified view of the system.

[283]

Running Kubernetes on Multiple Clouds and Cluster Federation

The following diagram demonstrates the big picture of Kubernetes cluster federation:

=
l‘

@ —
—Q= (Cortaners

—
(Cortaners

The federation control plane consists of a federation API server and a federation
controller manager that collaborate. The federated API server forwards requests

to all the clusters in the federation. In addition, the federated controller manager
performs the duties of the controller manager across all clusters by routing requests
to the individual federation cluster members' changes. In practice, cluster federation
is not trivial and can't be totally abstracted away. Cross-pod communication and
data transfer may suddenly incur a massive latency and cost overhead. Let's look at
the use cases for cluster federation first, understand how the federated components
and resources work, and then examine the hard parts: location affinity, cross-cluster
scheduling, and federated data access.

Important use cases for cluster federation

There are four categories of use cases that benefit from cluster federation.

Capacity overflow

The public cloud platforms such as AWS, GCE, and Azure are great and provide
many benefits, but they are not cheap. Many large organizations have invested a lot
in their own data centers. Other organizations work with private service providers
such as OVS, Rackspace, or Digital Ocean. If you have the operational capacity to
manage and operate infrastructure on your own it makes a lot of economic sense to
run your Kubernetes cluster on your infrastructure rather than in the cloud. But what
if some of your workloads fluctuate and for a relatively short amount of time require
a lot more capacity?

[284]

Chapter 11

For example, your system maybe hit especially hard on the weekends or maybe
during holidays. The traditional approach is to just provision extra capacity. But in
many dynamic situations, it is not easy. With capacity overflow, you can run the
bulk of your work in a Kubernetes cluster running on an on-premise data center
or with a private service provider and have a secondary cloud-based Kubernetes
cluster running on one of the big platform providers. Most of the time, the cloud-
based cluster will be shut down (stopped instances), but when the need arises you
can elastically add capacity to your system by starting some stopped instances.
Kubernetes cluster federation can make this configuration relatively straightforward.
It eliminates a lot of headaches about capacity planning and paying for hardware
that's not used most of the time.

This approach is sometimes called Cloud bursting.

Sensitive workloads

This is almost the opposite of capacity overflow. Maybe you've embraced the

cloud native lifestyle and your entire system runs on the cloud, but some data

or workloads deal with sensitive information. Regulatory compliance or your
organization's security policies may dictate that those data and workloads must run
in an environment that's fully controlled by you. Your sensitive data and workloads
may be subject to external auditing. It may be critical to ensure no information ever
leaks from the private Kubernetes cluster to the cloud-based Kubernetes cluster. But
it may be desirable to have visibility into the public cluster and the ability to launch
non-sensitive workloads from the private cluster to the cloud-based cluster. If the
nature of a workload can change dynamically from non-sensitive to sensitive then it
needs to be addressed by coming up with a proper policy and implementation. For
example, you may prevent workloads from changing their nature. Alternatively, you
may migrate a workload that suddenly became sensitive and ensure that it doesn't
run on the cloud-based cluster anymore. Another important instance is national
compliance, where certain data is required by law to remain and be accessed only
from a designated geographical region (typically a country). In this case, a cluster
must be created in that geographical region.

Avoiding vendor lock-in

Large organizations often prefer to have options and not be tied to a single provider.
The risk is often too great, because the provider may shut down or be unable to
provide the same level of service. Having multiple providers is often good for
negotiating prices, too. Kubernetes is designed to be vendor-agnostic. You can run it
on different cloud platforms, private service providers, and on-premise data centers.

[285]

Running Kubernetes on Multiple Clouds and Cluster Federation

However, this is not trivial. If you want to be sure that you are able to switch
providers quickly or shift some workloads from one provider to the next, you
should already be running your system on multiple providers. You can do it
yourself or there are some companies that provide the service of running Kubernetes
transparently on multiple providers. Since different providers run different data
centers, you automatically get some redundancy and protection from vendor-wide
outages.

Geo-distributing high availability

High availability means that a service will remain available to users even when
some parts of the system fail. In the context of a federated Kubernetes cluster, the
scope of failure is an entire cluster, which is typically due to problems with the
physical data center hosting the cluster, or perhaps a wider issue with the platform
provider. The key to high-availability is redundancy. Geo-distributed redundancy
means having multiple clusters running in different locations. It may be different
availability zones of the same cloud provider, different regions of the same cloud
provider, or even different cloud providers altogether (see the Avowing vendor
lock-in section). There are many issues to address when it comes to running a cluster
federation with redundancy. We'll discuss some of these issues later. Assuming that
the technical and organizational issues have been resolved, high availability will
allow the switching of traffic from a failed cluster to another cluster. This should be
transparent to the users up to a point (delay during switchover and some in-flight
requests or tasks may disappear or fail). The system administrators may need to take
extra steps to support the switchover and to deal with the original cluster failure.

The federation control plane

The federation control plane consists of two components that together enable
a federation of Kubernetes clusters to appear and function as a single unified
Kubernetes cluster.

Federation API server

The federation API server is managing the Kubernetes clusters that together
comprise the federation. It manages the federation state (which clusters are part of
the federation) in an etcd database the same as a regular Kubernetes cluster, but
the state it keeps is just which clusters are members of the federation. The state of
each cluster is stored in the etcd database of that cluster. The main purpose of the
federation API server job is to interact with the federation controller manager and
route requests to the federation member clusters. The federation members don't
need to know they are part of a federation: they just work the same.

[286]

Chapter 11

The following diagram demonstrates the relationships between the federation
API server, the federation replication controllers, and the Kubernetes clusters

in the federation:

kubectl eted D)
S S
| N
[Ber
Y.V
Federation Controller Manager
Federation Control Plane
San Francisco New York Berlin
(eted) (_etcd) (Vetcdr
\ 4 v v
Controller F Controller Controller
API server Manager API server Manager API server Mariader
l Kubernetes Control Plane
o O ° o o ° O o o Distributed Workers

Federation controller manager

The federation controller manager makes sure the federation's desired state matches
the actual state. It forwards any necessary changes to the relevant cluster or clusters.
The federated controller manager binary contains multiple controllers for all the
different federated resources we'll cover later in the chapter. The control logic is
similar, though: observes changes and brings cluster state to the desired state

when they deviate. This is done for each member in the cluster federation.

[287]

Running Kubernetes on Multiple Clouds and Cluster Federation

The following diagram demonstrates this perpetual control loop:

observe

Federated resources

Kubernetes federation is still a work in progress. As of Kubernetes 1.5, only some of

the standard resources can be federated. We'll cover them here. To create a federated
resource, you use the - -context=federation-cluster command-line argument to
Kubectl. When you use --context=federation-cluster, the command goes to the
federation API server, which takes care of sending it to all the member clusters.

Federated ConfigMap

Federated ConfigMaps are very useful because they help centralize the configuration
of applications that may be spread across multiple clusters.

Creating a federated ConfigMap

Here is an example of creating a federated ConfigMap:

> kubectl --context=federation-cluster create -f configmap.yaml

As you can see, the only difference from creating a ConfigMap in a single Kubernetes
cluster is the context.

When a federated ConfigMap is created, it is stored in the control plane etcd
database, but a copy is also stored in each member cluster. This way, each cluster
can operate independently and doesn't need to access the control plane.

[288]

Chapter 11

Viewing a federated ConfigMap

You can view ConfigMap by accessing the control plane or by accessing a member
cluster. To access a ConfigMap in a member cluster, specify the federation cluster
member name in the context:

> kubectl --context=cluster-1 get configmap configmap.yaml

Updating a federated ConfigMap

It's important to note that, when created through the control plane, the ConfigMap
will be identical across all member clusters. However, since it is stored separately
in each cluster in addition to the control plane cluster, there is no single source of
true. It is possible (although not recommended) to later modify the ConfigMap

of each member cluster independently. That leads to non-uniform configuration
across the federation. There are valid use cases for different configurations for
different clusters in the federation, but in those cases I suggest just configuring each
cluster directly. When you create a federated ConfigMap you make a statement that
means whole clusters should share this configuration. However, you would usually
want to update the ConfigMap across all the federation clusters by specifying
--context=federation-cluster.

Deleting a federated ConfigMap

That's right, you guessed it. You delete as usual, but specify the context:

> kubectl --context=federation-cluster delete configmap

There is just one little twist. As of Kubernetes 1.5, when you delete a federated
ConfigMap, the individual ConfigMaps that were created automatically in each
cluster remain. You must delete them separately in each cluster. That is, if you have
three clusters in your federation called cluster-1, cluster-2, and cluster-3, you'll have
to run these extra three commands to get rid of the ConfigMap across the federation:

> kubectl --context=cluster-1 delete configmap
> kubectl --context=cluster-2 delete configmap
> kubectl --context=cluster-3 delete configmap

This will be rectified in the future.

Federated DaemonSet

A federated DaemonSet is pretty much the same as a regular Kubernetes DaemonSet.
You create it and interact with it via the control plane, and the control plane
propagates it to all the member clusters. At the end of the day, you can be sure

that your Daemons run on every node in every cluster of the federation.

[289]

Running Kubernetes on Multiple Clouds and Cluster Federation

Federated deployment

Federated deployments are a little smarter. When you create a federated deployment
with X replicas and you have N clusters, the replicas will be distributed evenly
between the clusters by default. If you have three clusters and the federated
deployment has 15 pods, then each cluster will run five replicas. As other federated
resources, the control plane will store the federated deployment with 15 replicas and
then create three deployments (one for each cluster) with five replicas each. You can
control the number of replicas per cluster by adding an annotation: federation.
kubernetes.io/deployment -preferences. Federated deployment is still in alpha
as of Kubernetes 1.5. In the future, the annotation will become a proper field in the
federated deployment configuration.

Federated events

Federated events are different than the other federated resources. They are only
stored in the control plane and are not propagated to the underlying Kubernetes
member clusters.

You can query the federation events with - -context=federation-cluster as usual:

> kubectl --context=federation-cluster get events

Federated ingress

The federated ingress does more than just create matching ingress objects in each
cluster. One of the main features of federated ingress is that if a whole cluster goes
down it can direct traffic to other clusters. As of Kubernetes 1.4, federated ingress is
supported on Google Cloud Platform, both on GKE and GCE. In the future, hybrid
cloud support for federated ingress will be added.

The federated ingress performs the following roles:

* Create Kubernetes ingress objects in each cluster member of the federation

* Provide a one stop logical L7 load balancer with a single IP address for all
the cluster ingress objects.

* Monitor the health and capacity of the service backend pods behind the
ingress object in each cluster

* Make sure to route client connections to a healthy service endpoint in the face
of various failures, such as pod, cluster, availability zone, or a whole region,
as long as there is one healthy cluster in the federation

[290]

Chapter 11

Creating a federated ingress
You create a federated ingress by addressing the federation control plane:

> kubectl --context=federation-cluster create -f ingress.yaml

The federation control plane will create the corresponding ingress in each cluster. All
the clusters will share the same namespace and name for the ingress object:

> kubectl --context=cluster-1 get ingress myingress
NAME HOSTS ADDRESS PORTS AGE
ingress * 157.231.15.33 80, 443 1lm

Request routing with a federated ingress

The federated ingress controller will route requests to the closest cluster. Ingress
objects expose one or more IP addresses (via the Status.Loadbalancer.Ingress
tield) that remain static for the lifetime of the ingress object. When an internal or
external client connects to an IP address of a cluster-specific ingress object, it will be
routed to one of the pods in that cluster. However, when a client connects to the IP
address of a federated ingress object it will be automatically routed, via the shortest
network path, to a healthy pod in the closest cluster to the origin of the request. So,
for example, HTTP(S) requests from Internet users in Europe will be routed directly
to the closest cluster in Europe that has available capacity. If there are no such clusters
in Europe, the request will be routed to the next closest cluster (often in the US).

Handling failures with federated ingress
There are two broad categories of failure:

e Pod failure

e (Cluster failure

Pods might fail for many reasons. In a properly configured Kubernetes cluster (a
cluster federation member or not), pods will be managed by services and ReplicaSets
that can automatically handle pod failures. It shouldn't impact cross-cluster routing
and load balancing done by the federated ingress. A whole cluster might fail due to
problems with the data center or global connectivity. In this, the federated services
and federated ReplicaSets will ensure that the other clusters in the federation run
enough pods to handle the workload, and the federated ingress will take care of
routing client requests away from the failed cluster. To benefit from this auto-healing
capability, clients must always connect to the federation ingress object and not to
individual cluster members.

[291]

Running Kubernetes on Multiple Clouds and Cluster Federation

Federated namespace

Kubernetes namespaces are used within a cluster to isolate independent areas

and support multi-tenant deployments. Federated namespaces provide the same
capabilities across a cluster federation. The API is identical. When a client is
accessing the federation control plane, they will only get access to the namespaces
they requested and are authorized to access across all the clusters in the federation.

You use the same commands and add --context=federation-cluster:

> kubectl --context=federation-cluster create -f namespace.yaml
> kubectl --context=cluster-1 get namespaces namespace
> kubectl --context=federation-cluster create -f namespace.yaml

Federated ReplicaSet

It is best to use deployments and federated deployments to manage the replicas in
your cluster or federation. However, if for some reason you prefer to work directly
with ReplicaSets, then Kubernetes supports a federated Replicaset. There is no
federated replication controller because ReplicaSets supersede replication controllers.

When you create a federated ReplicaSets, the job of the control plane is to ensure
that the number of replicas across the cluster matches your federated ReplicaSets
configuration. The control plane will create a regular ReplicaSet in each federation
member. Each cluster will get, by default, an equal (or as close as possible) number
of replicas so that the total will add up to the specified number of replicas.

You can control the number of replicas per cluster by specifying using the following
annotation: federation.kubernetes.io/replica-set-preferences.

The corresponding data structure is as follows:

type FederatedReplicaSetPreferences struct {
Rebalance bool

Clusters map[string] ClusterReplicaSetPreferences

}

If Rebalance is true, then running replicas may be moved between clusters as
necessary. The clusters map determines the ReplicaSets preferences per cluster. If *
is specified as the key, then all unspecified clusters will use that set of preferences. If
there is no * entry, then replicas will only run on clusters that show up in the map.
Clusters that belong to the federation but don't have an entry will not have pods
scheduled (for that pod template).

[292]

Chapter 11

The individual ReplicaSets preferences per cluster are specified using the following
data structure:

type ClusterReplicaSetPreferences struct {
MinReplicas int64
MaxReplicas *inté64

Weight inté64

}

MinReplicas is 0 by default. MaxReplicas is unbounded by default. Weight
expresses the preference to add an additional replica to this ReplicaSets and
defaults to o.

Federated secrets

Federated secrets are simple. When you create a federated secret as usual through
the control plane it gets propagated to the whole cluster. That's it.

The hard parts

So far, federation seems almost straightforward. You group a bunch of clusters
together, access them through the control plane, and everything just gets replicated

to all the clusters. But there are hard and difficult factors and basic concepts that
complicate this simplified view. Much of the power of Kubernetes is derived from its
ability to do a lot of work behind the scenes. Within a single cluster deployed fully in a
single physical data center or availability zone where all the components are connected
with a fast network, Kubernetes is very effective on its own. In a Kubernetes cluster
federation, the situation is different. Latency, data transfer costs, and moving pods
between clusters all have different trade-offs. Depending on the use case, making
federation work may require extra attention, planning, and maintenance on the part of
the system designers and operators. In addition, some of the federated resources are
not as mature as their local counterparts, and that adds more uncertainty.

Federated unit of work

The unit of work in a Kubernetes cluster is the pod. You can't break a pod in
Kubernetes. The entire pod will always be deployed together and be subject to

the same lifecycle treatment. Should the pod remain the unit of work for a cluster
federation? Maybe it makes more sense to be able to associate a bigger unit, such as
a whole ReplicaSet deployment, or service with a specific cluster. If the cluster fails,
the entire ReplicaSet deployment, or service is scheduled to a different cluster. How
about a collection of tightly coupled ReplicaSets? The answers to these questions are
not always easy and may even change dynamically as the system evolves.

[293]

Running Kubernetes on Multiple Clouds and Cluster Federation

Location affinity

Location affinity is a major concern. When can pods be distributed across clusters?
What are the relationships between those pods? Are there any requirements for
affinity between pods or pods and other resources, such as storage? There are
several major categories:

* Strictly-coupled

* Loosely-coupled

* Preferentially-coupled
* Strictly-decoupled

* Uniformly-spread

When designing the system and how to allocate and schedule services and pods
across the federation it's important to make sure the location affinity requirements
are always respected.

Strictly-coupled

The strictly-coupled requirement applies to applications where the pods must be in
the same cluster. If you partition the pods, the application will fail (perhaps due to
real-time requirements that can't be met networking across clusters) or the cost may
be too high (pods accessing a lot of local data). The only way to move such tightly
coupled applications to another cluster is to start a complete copy (including data)
on another cluster and then shut down the application on the current cluster. If the
data is too large, the application may practically be immovable and sensitive to
catastrophic failure. This is the most difficult situation to deal with, and if possible
you should architect your system to avoid the strictly-coupled requirement.

Loosely-coupled

Loosely-coupled applications are best when the workload is embarrassingly parallel
and each pod doesn't need to know about the other pods or access a lot of data.

In these situations, pods can be scheduled to clusters just based on capacity and
resource utilization across the federation. If necessary, pods can be moved from

one cluster to another without problems. For example, a stateless validation service
that performs some calculation and gets all its input in the request itself and doesn't
query or write any federation-wide data. It just validates its input and returns a
valid/invalid verdict to the caller.

[294]

Chapter 11

Preferentially-coupled

Preferentially-coupled applications perform better when all the pods are in the same
cluster or the pods and the data are co-located, but it is not a hard requirement. For
example, it could work with applications that require only eventual consistency,
where some federation-wide cluster periodically synchronizes the application state
across all clusters. In these cases, allocation is done explicitly to one cluster, but
leaves a safety hatch for running or migrating to other clusters under stress.

Strictly-decoupled

Some services have fault isolation or high availability requirements that force
partitioning across clusters. There is no point running three replicas of a critical
service if all replicas might end up scheduled to the same cluster, because that
cluster just becomes an ad hoc Single Point Of Failure (SPOF).

Uniformly-spread

Uniformly-spread is when an instance of a service, ReplicaSets, or pod must run on
each cluster. It is similar to DaemonSet, but instead of ensuring there is one instance
on each node, it's one per cluster. A good example is a Redis cache backed up by
some external persistent storage. The pods in each cluster should have their own
cluster-local Redis cache to avoid accessing the central storage that may be slower
or become a bottleneck. On the other hand, there is no need for more than one Redis
service per cluster (it could be distributed across several pods in the same cluster).

Cross-cluster scheduling

Cross-cluster scheduling goes hand-in-hand with location affinity. When a new pod
is created or an existing pod fails and a replacement needs to be scheduled, where
should it go? The current cluster federation doesn't handle all the scenarios and
options for location affinity we mentioned earlier. At this point, cluster federation
handles the loosely-coupled (including weighted distribution) and strictly-coupled
(by making sure the number of replicas matches the number of clusters) categories
well. Anything else will require that you don't use cluster federation. You'll have

to add your own custom federation layer that takes more specialized concerns into
account and can accommodate more intricate scheduling use cases.

[295]

Running Kubernetes on Multiple Clouds and Cluster Federation

Federated data access

This is a tough problem. If you have a lot of data and pods running in multiple
clusters (possibly on different continents) and need to access it quickly, then you
have several unpleasant options:

* Replicate your data to each cluster (slow to replicate, expensive to transfer,
expensive to store, and complicated to sync and deal with errors)

* Access the data remotely (slow to access, expensive on each access, can be
a SPOF)

* Sophisticated hybrid solution with per-cluster caching of some of the hottest
data (complicated, stale data, and you still need to transfer a lot of data)

Federated auto-scaling

There is currently no support for federated auto-calling. There are two dimensions of
scaling that can be utilized, as well as a combination:

* Per cluster scaling
* Adding/removing clusters from the federation

* Hybrid approach

Consider the relatively simple scenario of a loosely coupled application running on
three clusters with five pods in each cluster. At some point, 15 pods can't handle the
load anymore. We need to add more capacity. We can increase the number of pods
per cluster, but if we do it at the federation level than we will have six pods running
in each cluster. We've increased the federation capacity by three pods, when only
one pod is needed. Of course, if you have more clusters the problem gets worse.
Another option is to pick a cluster and just change its capacity. This is possible with
annotations, but now we're explicitly managing capacity across the federation. It can
get complicated very quickly if we have lots of clusters running hundreds of services
with dynamically changing requirements.

Adding a whole new cluster is even more complicated. Where should we add

the new cluster? There is no requirement for extra availability that can guide the
decision. It is just about extra capacity. Creating a new cluster also often requires
complicated first time setup that may take days to approve various quotas on public
cloud platforms. The hybrid approach increases the capacity of existing clusters in
the federation until reaching some threshold and then starts adding new clusters.
The benefit of this approach is that when you're getting closer to capacity limit per
cluster you start preparing new clusters that will be ready to go when necessary.
Other than that, it requires a lot effort and you pay in increased complexity for the
flexibility and scalability.

[296]

Chapter 11

Managing a Kubernetes cluster
federation

Managing a Kubernetes cluster federation involves many activities above and
beyond managing a single cluster. There are two ways to set up the federation.
Then, you need to consider cascading resource deletion, load balancing across
clusters, failover across clusters, federated service discovery, and federated
discovery. Let's go over each one in detail.

Setting up cluster federation from the
ground up

To set up a Kubernetes cluster federation we need to run the components of the
control plane, which are as follows:

etcd

federation-apiserver

federation-controller-manager
One of the easiest way to do that is to use the all-in-one hyperkube image:

https://github.com/kubernetes/kubernetes/tree/master/cluster/images/
hyperkube.

The federation API server and the federation controller manager can be run as pods
in an existing Kubernetes cluster, but as discussed earlier it is better from a fault
tolerance and high availability point of view to run them in their own cluster.

Initial setup

First, you must have Docker running and get a Kubernetes release that contains the
scripts we will use in this guide. The current release is 1.5.3. You can download the
latest available version instead:

> curl -L https://github.com/kubernetes/kubernetes/releases/download/
v1l.5.3/kubernetes.tar.gz | tar xvzf -

> cd kubernetes

[297]

https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube
https://github.com/kubernetes/kubernetes/tree/master/cluster/images/hyperkube

Running Kubernetes on Multiple Clouds and Cluster Federation

We need to create a directory for the federation config files and set the FEDERATION
OUTPUT_ROOT environment variable to that directory. For easy clean up, it's best to
create a new directory:

> export FEDERATION OUTPUT ROOT="$ { PWD} /output/federation"
> mkdir -p "${FEDERATION OUTPUT ROOT}"

Now, we can initialize the federation:

> federation/deploy/deploy.sh init

Using the official hyperkube image

As part of every Kubernetes release, official release images are pushed to gecr.io/
google_containers. To use the images in this repository, you can set the container
image fields in the config files in $ { FEDERATION OUTPUT ROOT} to point to the gcr.
io/google_containers/hyperkube image, which includes both the federation-
apiserver and federation-controller-manager binaries.

Running the federation control plane

We're ready to deploy the federation control plane by running the following
command:

> federation/deploy/deploy.sh deploy federation

The command will launch the control plane components as pods and create a service
of type LoadBalancer for the federation API server and a persistent volume claim
backed up by a dynamic persistent volume for etcd.

To verify everything was created correctly in the federation namespace, type
the following;:

> kubectl get deployments --namespace=federation

You should see this:

NAME DESIRED CURRENT UP-TO-DATE
federation-apiserver 1 1 1 federation-
controller-manager 1 1 1

You can also check your kubeconfig file for new entries via Kubectl config view.
Note that dynamic provisioning works only for AWS and GCE at the moment.

[298]

Chapter 11

Registering Kubernetes clusters with
federation

To register a cluster with the federation, we need a secret to talk to the cluster.
Let's create the secret in the host Kubernetes cluster. Suppose kubeconfig of the
target cluster is at |cluster-1|kubeconfig. You can run the following command
to create the secret:

> kubectl create secret generic cluster-1 --namespace=federation

--from-file=/cluster-1/kubeconfig

The configuration for the cluster looks the same as this:

apiVersion: federation/vlbetal
kind: Cluster
metadata:
name: clusterl
spec:
serverAddressByClientCIDRs:
- clientCIDR: <client-cidr>
serverAddress: <apiserver-address>
secretRef:

name: <secret-name>

We need to set <client-cidrs>, <apiserver-addresss, and <secret-

name>. <secret-name> here is name of the secret that you just created.
serverAddressByClientCIDRs contains the various server addresses that clients
can use as per their CIDR. We can set the server's public IP address with cIDr
0.0.0.0/0, which all clients will match. In addition, if you want internal clients to
use the server's clusterIP, you can set that as serveraddress. The client CIDR in
that case will be a CIDR that only matches IPs of pods running in that cluster.

Let's register the cluster:

> kubectl create -f /cluster-1l/cluster.yaml --context=federation-cluster

Let's see if the cluster has been registered properly:

> kubectl get clusters --context=federation-cluster
NAME STATUS VERSION AGE
cluster-1 Ready 1m

[299]

Running Kubernetes on Multiple Clouds and Cluster Federation

Updating KubeDNS

The cluster is registered with the federation. It's time to update kube -dns so that
your cluster can route federation service requests. As of Kubernetes 1.5 or later, it's
done by passing the - - federations flag to kube-dns via the kube-dns ConfigMap :

--federations=${FEDERATION NAME}=${DNS DOMAIN NAME}

Here is what the configMap looks:

apiVersion: vl
kind: ConfigMap
metadata:
name: kube-dns
namespace: kube-system
data:

federations: <federation-name>=<federation-domain-name>

Replace the federation-name and the federation-domain-name with the
correct values.

Shutting down the federation

If you want to shut down the federation, just run the following command:

federation/deploy/deploy.sh destroy federation

Setting up cluster federation with Kubefed

Kubernetes 1.5 has a new command-line tool (still in alpha) called Kubefed to help
you administrate your federated clusters. The job of Kubefed is to make it easy to
deploy a new Kubernetes cluster federation control plane, and to add or remove
clusters from an existing federation control plane.

Getting Kubefed

Kubefed is part of the Kubernetes client binaries. You can get them here:

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md

[300]

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md

Chapter 11

You'll get the latest Kubectl and Kubefed. Here are the instructions for downloading
and installing on Linux for the 1.5.3 version:

curl -O https://storage.googleapis.com/kubernetes-release/release/v1.5.3/
kubernetes-client-linux-amdé64.tar.gz

tar -xzvf kubernetes-client-linux-amdé64.tar.gz

sudo cp kubernetes/client/bin/kubefed /usr/local/bin

sudo chmod +x /usr/local/bin/kubefed

sudo cp kubernetes/client/bin/kubectl /usr/local/bin

sudo chmod +x /usr/local/bin/kubectl

Make the necessary adjustments if you're using a different OS or want to install a
different version.

Choosing a host cluster

The federation control plane can be its own dedicated cluster or hosted with

an existing cluster. You need to make this decision. The host cluster hosts the
components that make up your federation control plane. Ensure that you have a
kubeconfig entry in your local kubeconfig that corresponds to the host cluster.
To verify that you have the required kubeconfig entry, type the following:

> kubectl config get-contexts

You should see something like this:

CURRENT NAME CLUSTER AUTHINFO NAMESPACE

cluster-1 cluster-1 cluster-1

The content name cluster-1 will be provided later when deploying the federation
control plane.

Deploying a federation control plane
It's time to start using Kubefed. The kubefed init command requires three
arguments:

* The federation name

* Host cluster context

* A domain name suffix for your federated services

[301]

Running Kubernetes on Multiple Clouds and Cluster Federation

The following example command deploys a federation control plane with the
name federation; a host cluster context, cluster-1; and the domain suffix
kubernetes-ftw.com:

> kubefed init federation --host-cluster-context=cluster-1 --dns-zone-
name=" kubernetes-ftw.com"

The DNS suffix should be for a DNS domain you manage, of course.

kubefed init sets up the federation control plane in the host cluster and adds an
entry for the federation API server in your local kubeconfig. In the alpha release of
Kubernetes 1.5, it doesn't set the current context to the newly deployed federation.
You'll have to do it yourself. Type the following command:

kubectl config use-context federation

Adding a cluster to a federation

Once the control plane has been deployed successfully, we should add some
Kubernetes clusters to the federation. Kubefed provides the join command exactly
for this purpose. The kubefed join command requires the following arguments:

¢ The name of the cluster to add
e Host cluster context

For example, to add a new cluster called cluster-2 to the federation, type
the following:

kubefed join cluster-2 --host-cluster-context=cluster-1

Naming rules and customization

The cluster name you supply to kubefed join must be a valid RFC 1035 label. RFC
1035 allows only letters, digits, and hyphens, and the label must start with a letter.

Furthermore, the federation control plane requires credentials of the joined clusters
to operate on them. These credentials are obtained from the local kubeconfig. The
Kubefed joincommand uses the cluster name specified as the argument to look for
the cluster's context in the local kubeconfig. If it fails to find a matching context, it
exits with an error.

[302]

Chapter 11

This might cause issues in cases where context names for each cluster in the
federation don't follow RFC 1035 label naming rules. In such cases, you can specify
a cluster name that conforms to the RFC 1035 label naming rules and specify the
cluster context using the - -cluster-context flag. For example, if the context of
the cluster you are joining is cluster-3 (underscore is not allowed), you can join
the cluster by running this:

kubefed join cluster-3 --host-cluster-context=cluster-1 --cluster-
context=cluster-3

Secret name

Cluster credentials required by the federation control plane as described in the
previous section are stored as a secret in the host cluster. The name of the secret
is also derived from the cluster name.

However, the name of a secret object in Kubernetes should conform to the DNS
subdomain name specification described in RFC 1123. If this isn't the case, you can
pass the secret name to kubefed join using the --secret-name flag. For example,
if the cluster name is cluster-4 and the secret name is 4secret (starting with a
digit is not allowed), you can join the cluster by running this:

kubefed join cluster-4 --host-cluster-context=cluster-1 --secret-
name=4secret

The kubefed join command automatically creates the secret for you.

Removing a cluster from a federation
To remove a cluster from a federation, run the kubefed unjoin command with the
cluster name and the federation's host cluster context:

kubefed unjoin cluster-2 --host-cluster-context=cluster-1

Shutting down the federation

Proper cleanup of the federation control plane is not fully implemented in this alpha
release of Kubefed. However, for the time being, deleting the federation system
namespace should remove all the resources except the persistent storage volume
dynamically provisioned for the federation control plane's etcd. You can delete
the federation namespace by running the following command:

> kubectl delete ns federation-system

[303]

Running Kubernetes on Multiple Clouds and Cluster Federation

Cascading delete of resources

The Kubernetes cluster federation often manages a federated object in the control
plane, as well as corresponding objects in each member Kubernetes cluster. A
cascading delete of a federated object means that the corresponding objects in the
member Kubernetes clusters will also be deleted.

This doesn't happen automatically. By default, only the federation control plane
object is deleted. To activate cascading delete, you need to set the following option:

DeleteOptions.orphanDependents=false
The following federated objects support cascading delete:

* Deployment
* DaemonSets
* Ingress

* Namespaces
* ReplicaSets

* SecretsFor other objects, you'll have to go into each cluster and delete
them explicitly.

Load balancing across multiple clusters

Dynamic load balancing across clusters is not trivial. The simplest solution is to
just say that it is not Kubernetes' responsibility. Load balancing will be performed
outside the Kubernetes cluster federation. But given the dynamic nature of
Kubernetes, even an external load balancer will have to gather a lot of information
about which services and backend pods are running on each cluster. An alternative
solution is for the federation control plane to implement an L7 load balancer that
serves as traffic director for the entire federation. In one of the simpler use cases, each
service runs on a dedicated cluster and the load balancer simply routes all traffic to
that cluster. In case of cluster failure, the service is migrated to a different cluster
and the load balancer now routes all traffic to the new cluster. This provides a
coarse fail-over and high availability solution at the cluster level.

The optimal solution will be able to support federated services and take into account
additional factors, such as the following;:

* Geo-location of client

* Resource utilization of each cluster

* Resource quotas and auto-scaling

[304]

Chapter 11

The following diagram shows how an L7 load balancer on GCE distributes client
requests to the closest cluster:

Client

130.211.40.186

Global VIP

l l l

) nginx () nginx) nginx
oy " Loy " oy "

zone-a zone-b zone-c | Zone-a zone-b zone-c zone-a zone-b zone-c
us-centrall europe-westl asia-eastl

Failing over across multiple clusters

Federated failover is tricky. Suppose a cluster in the federation fails; one option
is to just have other clusters pick up the slack. Now, the question is, how do you
distribute the load across other clusters:

e Uniformly?

* Launch a new cluster?

* Pick an existing cluster as close as possible (maybe in the same region)?
Each of these solutions has subtle interactions with federated load balancing,

geo-distributed high availability, cost management across different clusters,
and security.

Now, the failed cluster comes back online. Should it gradually take over its original
workload again? What if it comes back but with reduced capacity or sketchy
networking? There are many combinations of failure modes that could make
recovery complicated.

[305]

Running Kubernetes on Multiple Clouds and Cluster Federation

Federated service discovery

Federated service discovery is tightly coupled with federated load balancing. A
pragmatic setup includes a global L7 load balancer that distributes requests to
federated ingress objects in the federation clusters.

The benefit of this approach is that the control stays with the Kubernetes federation,
which over time will able to work with more cluster types (currently just AWS and
GCE) and understand cluster utilization and other constraints.

The alternative of having a dedicated lookup service and let clients connect directly
to services on individual clusters loses all these benefits.

Federated migration

Federated migration is related to several topics we discussed, such as location
affinity, federated scheduling, and high availability. At the core, federated migration
means moving a whole application or some part of it from one cluster to another
(and more generally from M clusters to N clusters). Federation migration can happen
in response to various events, such as the following;:

* Alow capacity event in a cluster (or a cluster failure)
* A change of scheduling policy (we no longer use cloud provider X)

* A change of resource pricing (cloud provider Y dropped their prices - let's
migrate there)

* A new cluster was added to or removed from the federation (let's rebalance
the pods of the application)

Strictly-coupled applications can be trivially moved, in part or in whole, one pod
at a time, to one or more clusters (within applicable policy constraints, for example
PrivateCloudOnly).

For preferentially-coupled applications, the federation system must first locate a
single cluster with sufficient capacity to accommodate the entire application, then
reserve that capacity and incrementally move the application, one (or more) resource
at a time, over to the new cluster within some bounded time period (and possibly
within a predefined maintenance window).

Strictly-coupled applications (with the exception of those deemed completely
immovable) require the federation system to do the following:
* Start up an entire replica application in the destination cluster

* Copy persistent data to the new application instance (possibly before
starting pods)

[306]

Chapter 11

e Switch user traffic across

* Tear down the original application instance

Running federated workloads

Federated workloads are workloads that are processed on multiple Kubernetes
clusters at the same time. This is relatively easy to do for loosely-coupled and
embarrassingly-distributed applications. However, if most of the processing can be
done in parallel, often there is a join point at the end, or at least a central persistent
store that needs to be queried and updated. It gets more complicated if multiple pods
of the same service need to cooperate across clusters, or if a collection of services
(each one of them may be federated) must work together and be synchronized to
accomplish something.

Kubernetes federation supports federated services that provide a great foundation
for such federated workloads.

Some key points for federated services are service discovery, cross cluster
load-balancing, and availability zone fault tolerance.

Creating a federated service

A federated service creates a corresponding service in the federation's member
clusters.

For example, to create a federated Nginx service (assuming you have the service
configuration in nginx.yaml), type the following;:

> kubectl --context=federation-cluster create -f nginx.yaml

You can verify a service was created in each cluster (for example, in cluster-2):

> kubectl --context=cluster-2 get services nginx
NAME CLUSTER-IP EXTERNAL-IP PORT (S) AGE
nginx 10.63.250.98 104.199.136.89 80/TCP 9m

All the created services in all the clusters will share the same namespace and service
name, which makes sense since they are a single logical service.

[307]

Running Kubernetes on Multiple Clouds and Cluster Federation

The status of your federated service will automatically reflect the real-time status of
the underlying Kubernetes services:

> kubectl --context=federation-cluster describe services nginx
Name: nginx

Namespace: default

Labels: run=nginx

Selector: run=nginx

Type: LoadBalancer

IP:

LoadBalancer Ingress:

104.199.136.89,

104.197.246.190, 130.211.57.243, 104.196.14.231,

Port: http 80/TCP
Endpoints: <none>
Session Affinity: None

No events.

Adding backend pods

As of Kubernetes 1.5, we still need to add backend pods to each federation member
cluster. This can be done with the kubectl run command. In a future release, the
Kubernetes federation API server will be able to do it automatically. This will save
one more step. Note that when you use the kubect1 run command, Kubernetes
automatically adds the run label to the pod based on the image name. In the
following example that launches an Nginx backend pod on five Kubernetes clusters,
the image name is nginx (ignoring the version), so the following label is added:

run=nginx

This is necessary because the service uses that label to identify its pods. If you use
another label, you need to add it explicitly:
for C in cluster-1 \
cluster-2 \

cluster-3 \

cluster-4 \

cluster-5
do

kubectl --context=$C run nginx --image=nginx:1.l1l.l-alpine --port=80

done

[308]

Chapter 11

Verifying public DNS records

Once the preceding pods have successfully started and are listening for connections,
Kubernetes will report them as healthy endpoints of the service in that cluster (via
automatic health checks). The Kubernetes cluster federation will in turn consider
each of these service shards to be healthy, and place them in service by automatically
configuring corresponding public DNS records. You can use your preferred interface
to your configured DNS provider to verify this. For example, if your federation is
configured to use Google Cloud DNS and a managed DNS domain example.com:

> gcloud dns managed-zones describe example-dot-com

creationTime: '2017-03-08T18:18:39.229Z'

description: Example domain for Kubernetes Cluster Federation

dnsName: example.com.

id: '3229332181334243121"'

kind: dns#managedZone

name: example-dot-com

nameServers:

- ns-cloud-al.googledomains.com.

- ns-cloud-a2.googledomains.com.

- ns-cloud-a3.googledomains.com.

- ns-cloud-a4.googledomains.com.
Follow up with the following command to see the actual DNS records:
> gcloud dns record-sets list --zone example-dot-com

If your federation is configured to use aws routes53 DNS service use the following
commands:

> aws route53 list-hosted-zones
The use this command:
> aws route53 list-resource-record-sets --hosted-zone-id K9PBYO0X1QTOVBX

You can, of course, use standard DNS tools such as nslookup or dig to verify DNS
records were updated properly. You may have to wait a little for your changes to
propagate. Alternatively, you can point directly to your DNS provider:

> dig @ns-cloud-el.googledomains.com ...

However, I always prefer to observe DNS changes in the wild after they were
properly propagated, so I can inform users that everything is ready to go.

[309]

Running Kubernetes on Multiple Clouds and Cluster Federation

Discovering a federated service

Kubernetes provides KubeDNS as a built-in core component. KubeDNS uses a
cluster-local DNS server as well as naming conventions to compose well-qualified

(by namespace) DNS names conventions. For example, the-service is resolved to the
the-service service in the default namespace, while the-service.the-namespace
is resolved to the service called the-service in the the-namespace namespace,
which is separate from the default the-service. Pods can find and access internal
services easily with KubeDNS. Kubernetes cluster federation extends the mechanism
to multiple clusters. The basic concept is the same, but another level is added of a
federation. The DNS name of a service now consists of <service names.<namespace
name>.<federation names>. This way, internal service access is still usable using the
original <service names.<namepace name> naming convention. However, clients
that want to access a federated service use the federated name that will be forwarded
eventually to one of the federation member clusters to handle the request.

This federation-qualified naming convention also helps prevent internal cluster
traffic from reaching across to other clusters by mistake.

Using the preceding Nginx example service, and the federated service DNS name
form just described, let's consider an example: a pod in a cluster in the cluster-1
availability zone needs to access the Nginx service. Rather than use the service's
traditional cluster-local DNS name (nginx. the-namespace, which is automatically
expanded to nginx.the-namespace.svc.cluster.local), it can now use the
service's federated DNS name, which is nginx.the-namespace.the-federation.
This will be automatically expanded and resolved to the closest healthy shard of

the Nginx service, wherever in the world that may be. If a healthy shard exists in

the local cluster, that service's cluster-local (typically 10.x.y.z) IP address will be
returned (by the cluster-local KubeDNS). This is almost exactly equivalent to non-
federated service resolution (almost because KubeDNS actually returns both a cNAME
and an A record for local federated services, but applications will be oblivious to this
minor technical difference).

However, if the service doesn't exist in the local cluster (or doesn't have healthy
backend pods) the DNS query is expanded automatically.

DNS expansion

If the service does not exist in the local cluster (or it exists but has no healthy backend
pods), the DNS query is automatically expanded to find the external IP address
closest to the requestor's availability zone. KubeDNS performs this automatically
and returns the corresponding cNaME. That will get further resolved to the IP address
of one of the service's backing pods.

[310]

Chapter 11

You don't have to rely on automatic DNS expansion. You can also provide the cNAME
of a service in a particular cluster directly or in a particular region. For example, on
GCE/GKE you can specify nginx. the-namespace.svc.europe-westl.example.
com. That will get resolved to a backing pod of the service in one of the clusters in
Europe (assuming there are clusters and healthy backing pods there).

External clients can't utilize DNS expansion, but if they want to target some
restricted subset of the federation (such as a particular region) then they can provide
the service's fully qualified cNAME just as the example. Since those names tend

to be long and cumbersome, a good practice is to add some static convenience
CNAME records:

eu.nginx.example.com CNAME nginx.the-namespace.the-federation.svec.
europe-westl.example.com.

us.nginx.example.com CNAME nginx.the-namespace.the-federation.svec.
us-centrall.example.com.

nginx.example.com CNAME nginx.the-namespace.the-federation.svc.
example.com.

The following diagram shows how a federated lookup works across multiple clusters:

Federation DNS lookup table
mysql
redis A
: N
mysql sve redis svc
New York A San Francisco
Cluster DNS lookup table Cluster DNS lookup table
mysql mysql
redis redis

[311]

Running Kubernetes on Multiple Clouds and Cluster Federation

Handling failures of backend pods and
whole clusters

Standard Kubernetes service cluster-IPs already ensure that non-responsive
individual pod endpoints are automatically taken out of service with low latency
(a few seconds). In addition, as alluded to in the previous section, the Kubernetes
cluster federation system automatically monitors the health of clusters and the
endpoints behind all of the shards of your federated service, taking shards in and
out of service as required (for example, when all of the endpoints behind a service,
or perhaps the entire cluster or availability zone, go down, or conversely recover
from an outage). Due to the latency inherent in DNS caching (the cache timeout, or
TTL for Federated Service DNS records is configured to three minutes, by default,
but can be adjusted), it may take up to that long for all clients to completely fail
over to an alternative cluster in the case of catastrophic failure. However, given

the number of discrete IP addresses that can be returned for each regional service
endpoint (see, for example, us-centrall, which has three alternatives), many clients
will fail over automatically to one of the alternative IPs in less time than that, given
the appropriate configuration.

Troubleshooting

When things go south, you need to be able to figure out what's wrong and how to fix
it. Here are a few common problems and how to diagnose/fix them.

Unable to connect to federation API server

Refer to the following solution:

* Verify the federation API server is running
* Verify the client (Kubectl) is configured correctly with proper API endpoints
and credentials

Federated service is created successfully but no service is created in underlying clusters

* Verify the clusters are registered with federation

* Verify the federation API server was able to connect and authenticate against
all clusters

* Check quotas are sufficient

* Check the logs for other problems:

Kubectl logs federation-controller-manager --namespace federation

[312]

Chapter 11

Summary

In this chapter, we've covered the important topic of Kubernetes cluster federation.
Cluster federation is still in the early stages, but it is already usable. There aren't

a lot of deployments and the officially supported target platforms are currently
AWS and GCE/GKE, but there is a lot of momentum behind cloud federation. It

is a very important piece for building massively scalable systems on Kubernetes.
We've discussed the motivation and use cases for Kubernetes cluster federation,

the federation control plane components, and the federated Kubernetes objects. We
also looked into the less supported aspects of federation such as custom scheduling,
federated data access, and auto-scaling. We then looked at how to run multiple
Kubernetes clusters, which includes setting up and Kubernetes cluster federation,
adding and removing clusters to the federation along with load balancing, federated
failover when something goes wrong, service discovery, and migration. Then, we
dived into running federated workloads across multiple clusters with federated
services and the various challenges associated with this scenario.

At this point, you should have a clear understanding of the current state of
federation, what it takes to utilize the existing capabilities provided by Kubernetes,
and what pieces you'll have to implement yourself to augment incomplete or
immature features. Depending on your use case, you may decide that it's still too
early or that you want to take the plunge. The developers working on Kubernetes
federation are moving fast, so it's very likely that it will be much more mature and
battle-tested by the time you need to make your decision.

In Chapter 12, Customizing Kubernetes - API and Plugins, we'll dig into Kubernetes
internals and how to customize it. One of the best architectural principles of
Kubernetes is that it is accessible through a full-fledged REST API. The Kubectl
command-line tool is built on top the Kubernetes API and provides interactivity
to the full spectrum of Kubernetes. However, programmatic API access you can
leverage provides a lot of flexibility to enhance and extend Kubernetes. There are
client libraries in many languages that allow you to leverage Kubernetes from the
outside and integrate it into existing systems.

In addition to its REST API, Kubernetes is a very modular platform by design. Many
aspects of its core operation can be customized and/or extended. In particular, you
can add user-defined resources and integrate them with the Kubernetes object model
and benefit from the management services of Kubernetes, storage in etcd, exposure
through the API, and uniform access to built-in and custom objects.

We've already seen various aspects that are extremely extensible, such as networking
and access control via CNI plugins and custom storage classes. However, Kubernetes
goes even further and lets you customize the scheduler itself, which controls pod
assignment to nodes.

[313]

12

Customizing Kubernetes - API
and Plugins

In this chapter, we will dig deep into the guts of Kubernetes. We will start with
the Kubernetes API and learn how to work with Kubernetes programmatically via
direct access to the API, the Python client, and automating Kubectl. Then, we'll
look into extending the Kubernetes API with third-party-resources. The last part
is all about the various plugins Kubernetes supports. Many aspects of Kubernetes
operation are modular and designed for extension. We will examine several types
of plugin, such as custom schedulers, authorization, admission control, custom
metrics, and volumes.

The covered topics are as follows:

* Working with the Kubernetes API
* Extending the Kubernetes API
* Writing Kubernetes plugins

Working with the Kubernetes API

The Kubernetes API is comprehensive and encompasses the entire functionality
of Kubernetes. As you may expect, it is huge. But it is designed very well using
best practices, and it is consistent. If you understand the basic principles, you can
discover everything you need to know.

[315]

Customizing Kubernetes - API and Plugins

Understanding OpenAPI

OpenAPI allows API providers to define their operations and models, and enables
developers to automate their tools and generate their favorite language's client to
talk to that API server. Kubernetes has supported Swagger 1.2 (an older version of
the OpenAPI spec) for a while, but the spec was incomplete and invalid, making it
hard to generate tools/clients based on it.

In Kubernetes 1.4, alpha support was added for the OpenAPI spec (formerly known
as Swagger 2.0 before it was donated to the OpenAPI Initiative) by upgrading the
current models and operations. In Kubernetes 1.5, support for the OpenAPI spec has
been completed by auto-generating the spec directly from Kubernetes source, which
will keep the spec and documentation completely in sync with future changes in
operations/models.

The new spec enables better API documentation and and an auto-generated Python
client that we will explore later.

The spec is modular and divided by group version. This is future-proof. You can
run multiple API servers that support different versions. Applications can transition
gradually to newer versions.

The structure of spec is explained in detail in the OpenAPI spec definition. The
Kubernetes team used the operation's tags to separate each group version and fill in
as much information as possible about paths/operations and models. For a specific
operation, all parameters, methods of call, and responses are documented. The result
is impressive.

Setting up a proxy
To simplify access you can use Kubectl to set up a proxy:

kubectl proxy --port 8080

Now, you can access the API server on http://localhost:8080 and it will reach
the same Kubernetes API server that Kubectl is configured for.

Exploring the Kubernetes API directly

The Kubernetes API is highly discoverable. You can just browse to the URL of the
APl server at http://localhost:8080 and get a nice JSON document that describes
all the available operations under the paths key.

[316]

Chapter 12

Here is a partial list due to space constraints:

{
"paths": [
"/api",
"/api/v1i",
"/apis",
"/apis/apps",
"/apis/storage.k8s.io/vlbetal",

"/healthz",
"/healthz/ping",
"/logs",
"/metrics",
"/swaggerapi/",
"/ui/",

"/version"

}

You can drill down any one of the paths. For example, here is the response from /

api/vl/namespaces/defaultendpohﬁ:

{

"kind": "Namespace",

"apiVersion": "v1",

"metadata": {
"name": "default",

"selfLink": "/api/vl/namespaces/default",

"uid": "4eca8ced-0d90-11le7-b667-0242acl10023",

"resourceVersion": "6",
"creationTimestamp": "2017-03-20T17:11:50Z"
.
"spec": {
"finalizers": [

"kubernetes"

[317]

Customizing Kubernetes - API and Plugins

"status": {

"phase": "Active"

}

I discovered this endpoint by going first to /api, then discovered /api/v1,
which told me there is /api/v1/namespaces that pointed me to /api/v1/
namespaces/default.

Using Postman to explore the Kubernetes API

Postman (https://www.getpostman. com) is a very polished application for
working with RESTful APIs. If you lean more to the GUI side, you may find it
extremely useful.

The following screenshot shows the available endpoints under the batch vi1
API group:

® postman - m} X

File Edit View Collection History Help

(I Rumner import [} Builder (% @ A v
Fitos 713306 795315:6 No Environment
GET https://2886795313-8080-ollie02.environments katacoda.com/apis/batch/v1 Params Send v Save
Authorization
Type
Body 5) Stalus 2000K Time 209ms Size 3418
Pretty =

"name": "jobs/status",
"namespace
“kind": "~

[318]

https://www.getpostman.com

Chapter 12

Postman has a lot of options and it organizes the information in a very pleasing way.
Give it a try.

Filtering the output with httpie and jq

The output from the API can be too verbose sometimes. Often, you're interested just
in one value out of a huge chunk of JSON response. For example, if you want to get
the names of all running services you can hit the /api/v1/services endpoint. The
response, however, includes a lot of additional information that is irrelevant. Here is
a very partial subset of the output:

$ http http://localhost:8080/api/vl/services

{
"apiVersion": "v1",
"items": [
{
"metadata": {
"creationTimestamp": "2017-03-21T15:16:092",
"labels": {
"component": "apiserver",
"provider": "kubernetes"
.
"name": "kubernetes",
.
"spec": {
.
"status": {
"loadBalancer": {}
}
.
1,
"kind": "ServiceList",
"metadata": {
"resourceVersion": "1076",
"selfLink": "/api/vl/services"
}

[319]

Customizing Kubernetes - API and Plugins

The complete output is 121 lines long! Let's see how to use httpie and jq to gain full
control over the output and show only the names of the services. I prefer (https://
httpie.org/) over cURL for interacting with REST APIs on the command-line. The
jq (https://stedolan.github.io/jgq/) command-line JSON processor is great for
slicing and dicing JSON.

Examining the full output, you can see that the service names is in the metadata
sections of each item in the items array. The jgq expression that will select just the
name is as follows:

.items[] .metadata.name

Here is the full command and output:

$ http http://localhost:8080/api/vl/services | jq .items[].metadata.name
"kubernetes"

"kube-dns"

"kubernetes-dashboard"

Creating a pod via the Kubernetes API

The API can be used for creating, updating, and deleting resources too, given the
following pod configuration file:

{
Ilkindll . ||P°d|| ,
"apiVersion": "v1",
"metadata":{
"name" : Ilnginxll ,
"namespace": "default",
"labels": {
"name" : Ilnginxll
}
}I
"spec": {
"containers": [{
"name" : Ilnginxll ,
"image": "nginx",
"ports": [{"containerPort": 80}]
H
}
}

[320]

https://httpie.org/
https://httpie.org/
https://stedolan.github.io/jq/

Chapter 12

The following command will create the pod via the API:

http POST http://localhost:8080/api/vl/namespaces/default/pods @nginx-
pod.json

To verify it worked, let's extract the name and status of the current pods. The
endpoint is as follows:

/api/vl/namespaces/default/pods

The jq expression is as follows:

items[] .metadata.name, .items[] .status.phase

Here is the full command and output:

$ http http://localhost:8080/api/vl/namespaces/default/pods | jq
.items[] .metadata.name, .items[] .status.phase

"nginx"

"Running"

Accessing the Kubernetes API via the Python
client

Exploring the APl interactively using httpie and jq is great, but the real power
of APIs comes when you consume and integrate them with other software. The
Kubernetes incubator project provides a full-fledged and very well-documented
Python client library. It is available at https: //github.com/kubernetes-
incubator/client-python.

First, make sure you have Python installed (either 2.7 or 3.5+) work. Then install the
Kubernetes package:

pip install kubernetes

To start talking to a Kubernetes cluster, you need to connect to it. The Python client
can read your Kubectl config:

>>> from kubernetes import client,config

>>> config.load kube config()

>>> vl = client.CoreV1Api ()

Or it can connect directly to an already running proxy:
>>> from kubernetes import client,config

>>> client.Configuration() .host = 'http://localhost:8080>>> vl = client.
CoreV1Api ()

[321]

https://github.com/kubernetes-incubator/client-python
https://github.com/kubernetes-incubator/client-python

Customizing Kubernetes - API and Plugins

Note that the client module provides methods to get access to different group
versions, such as CoreV1API.

Dissecting the CoreV1API group

Let's dive in and understand the coreviapI group. The Python object has 459 public
attributes!

>>> attributes = [x for x in dir(vl) if not x.startswith('_")]
>>> len(attributes)

459

Ignore the attributes that start with double underscores because those are special
class/instance methods unrelated to Kubernetes.

Let's pick ten random methods and see what they look like:

>>> import random

>>> from pprint import pprint as pp

>>> pp(random.sample (attributes, 10))

['patch namespaced pod',
'connect options node proxy with path with http info',
'proxy delete namespaced pod with path',
'delete namespace',
'proxy post namespaced pod with path with http info',
'proxy post namespaced service',

'list namespaced pod with http info',

'list persistent volume claim for all namespaces',
'read namespaced pod log with http info',

'create node']

Very interesting. The attributes begin with a verb such as list, patch, or read. Many
of them have a notion of a namespace and many have awith_http_info suffix. To
understand better, let's count how many verbs exist and how many attributes use
each verb (where the verb is the first token before the underscore):

>>> from collections import Counter

>>> verbs = [x.split(' ') [0] for x in attributes]
>>> pp(dict (Counter (first tokens)))

{'connect': 84,

'create': 36,

[322]

Chapter 12

'delete': 58,
'get': 2,
'list': 56,
'patch': 48,
'proxy': 72,
'read': 52,

'replace': 50}

We can drill further and look at the interactive help for a specific attribute:

>>> help(vl.create node)

Help on method create node in module kubernetes.client.apis.core vl _api:
create node(self, body, **kwargs) method of kubernetes.client.apis.core
vl api.CoreVlApi instance

create a Node

This method makes a synchronous HTTP request by default.

To make an asynchronous HTTP request, please define a

“callback”™ function to be invoked when receiving the response.

>>> def callback function(response):

>>> pprint (response)

>>>

>>> thread = api.create node(body, callback=callback function)

:param callback function: The callback function
for asynchronous request. (optional)
:param V1Node body: (required)
:param str pretty: If 'true', the output is pretty printed.
:return: V1Node
If the method is called asynchronously,

returns the request thread.

You can poke around yourself and learn more about the API. Let's look at some
common operations, such as listing, creating, watching, and deleting objects.

[323]

Customizing Kubernetes - API and Plugins

Listing objects

You can list different kinds of object. The method names start with 1ist_. Here is an
example listing all namespaces:

>>> for ns in vl.list namespace() .items:

print ns.metadata.name

default

kube-system

Creating objects

To create an object, you need to pass a body parameter to the create method. The
body must be a Python dictionary that is equivalent to a YAML configuration file
you would use with Kubectl. The easiest way to do it is to actually use a YAML and
then use the Python YAML module (not part of the standard library and must be
installed separately) to read the YAML file and load it into a dictionary. For example,
to create an nginx-deployment with 3 replicas, we can use this YAML configuration

file:
apiVersion: extensions/vlbetal
kind: Deployment
metadata:
name: nginx-deployment
spec:
replicas: 3
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:

- containerPort: 80

To install the yaml Python module, type this command:

pip install yaml

[324]

Chapter 12

Then the following Python program will create the deployment:

from os import path
import yaml

from kubernetes import client, config

def main():
Configs can be set in Configuration class directly or using
helper utility. If no argument provided, the config will be
loaded from default location.

config.load kube config()

with open(path.join(path.dirname(file),
'nginx-deployment.yaml')) as f:
dep = yaml.load(f)
k8s beta = client.ExtensionsVlbetalApi ()
status = k8s beta.create namespaced deployment (
body=dep, namespace="default") .status

print ("Deployment created. status='{}'".format (status))

if name == ' main ':

main ()

Note that we used the ExtensionsViBetalApi group here because deployments are
still in beta.

Watching objects

Watching objects is an advanced capability. It is implemented using a separate watch
module. Here is an example to watch for 10 namespace events and print them to
the screen:

from kubernetes import client, config, watch

Configs can be set in Configuration class directly or using helper
utility

config.load kube config()

[325]

Customizing Kubernetes - API and Plugins

vl = client.CoreV1Api ()

count = 10

w = watch.Watch()

for event in w.stream(vl.list namespace, request timeout=60):

print ('Event: {} {}".format(event['type'l, event['object'].metadata.
name))

count -= 1
if cont = 0:
w.stop ()

print ('Done. ')

Invoking Kubectl programmatically

If you're not a Python developer and don't want to deal with the REST API directly,
you have another option. Kubectl is used mostly as an interactive command-line tool,
but nothing is stopping you from automating it and invoking it through scripts and
programs. There are some benefits for using Kubectl as your Kubernetes API layer:

* Easy to find examples for any usage

* Easy to experiment on the command line to find the right combination of
commands and arguments

* Kubectl supports output in JSON or YAML for quick parsing

* Authentication is built-in via Kubectl configuration

Using Python subprocess to run Kubectl

I'll use Python again, so you can compare using the official Python client versus
rolling your own. Python has a module called subprocess that can run external
processes such as Kubectl and capture the output. Here is a Python 3 example just
running Kubectl on its own and displaying the beginning of the usage output:

>>> import subprocess

>>> out = subprocess.check output ('kubectl').decode('utf-8"')

>>> print(out[:276])
Kubectl controls the Kubernetes cluster manager.

Find more information at https://github.com/kubernetes/kubernetes.

[326]

https://github.com/kubernetes/kubernetes

Chapter 12

Basic commands (beginner):

* create: Create a resource by filename or stdin

* expose: Take a replication controller, service, deployment or pod

The check_checkout () function captures the output as a bytes array that needs to
be decoded to ut£f-s8 to display it properly. We can generalize it a little bit and create
a convenience function called k that accepts parameters it feeds to Kubectl, and then
decodes the output and returns it:

from subprocess import check output

def k(*args):
out = check output(['kubectl'] + list(args))

return out.decode('utf-8')

Let's use it to list all the running pods in the default namespace:

>>> print(k('get', 'po'))

NAME READY STATUS RESTARTS AGE
nginx-deployment-4087004473-cc461 1/1 Running 0 21m
nginx-deployment-4087004473-hkd3w 1/1 Running 0 21m
nginx-deployment-4087004473-j3kfc 1/1 Running 0 21m

This is nice for display, but Kubectl already does that. The real power comes when
you use the structured output options with the -o flag. Then the result can be
converted automatically to a Python object. Here is a modified version of the k ()
function that accepts a boolean use_json keyword argument (default to False), and if
True adds -o json and then parses the JSON output to a Python object (dictionary):

from subprocess import check output

import json

def k(use json=False, *args):

cmd = ['kubectl']

cmd += list (args)
if use json:
cmd += ['-0', '"json']

out = check output (cmd)

[327]

Customizing Kubernetes - API and Plugins

if use json:

out = json.loads (out)
else:

out = out.decode('utf-8')

return out

That returns a full-fledged API object, which can be navigated and drilled down just
like when accessing the REST API directly or using the official Python client:

result = k(use json=True, 'get', 'po')
for r in result['items']:

print (r['metadata'] ['name'])

nginx-deployment-4087004473-cc461
nginx-deployment-4087004473-hkd3w
nginx-deployment-4087004473-j3kfc

Let's see how to delete the deployment and wait until all the pods are gone. The
Kubectl delete command doesn't accept the -o json option (although it has -o
name), so let's leave out use_json:

k('delete', 'deployment', 'nginx-deployment')

while len(k('get', 'po', use json=True) ['items']) > O0:

print('.")
print ('Done."')

Done.

Extending the Kubernetes API

Kubernetes is an extremely flexible and extensible platform. It even allows you to
extend its own API with new types of resources called third-party-resources. What
can you do with third-party-resources? Plenty. You can use them to manage through
the Kubernetes API resources that live outside the Kubernetes cluster, but your pods
communicate with. By adding those external resources as third-party-resources, you
get a full picture of your system and you benefit from many Kubernetes API features
such as the following:

* Custom CRUD REST endpoints

* Versioning

[328]

Chapter 12

e Watches

* Automatic integration with generic Kubernetes tooling

Other use cases for third-party-resources are metadata for custom controllers and
automation programs.

Let's dive in and see what third-party-resources are all about.

Understanding the structure of a
third-party-resource

In order to play nice with the Kubernetes API server, third-party-resources must
conform to some basic requirements. Similar to built-in API objects, they must have
the following fields:

* metadata: Standard Kubernetes object metadata
* kind: The kind of resources described by this third-party-resource
* description: A free text description of the resource

e versions: A list of the versions of the resource

The kind field requires some explanation. Kubernetes uses camelcCase for resource
types. The kind field must be of the form <kind names.<domain>. The kind name
should be all lowercase with hyphens between words. Kubernetes will transform
it to a camelcase resource kind. For example, awesome-resource will become
AwesomeResource.

Beyond these fields, you can add any fields you want and store arbitrary JSON to
create any structure you like.

Developing third-party-resources

It's important to distinguish between the third-party-resource that you define,
which is not bound to a namespace, and the actual object that you create,

which is always bound to a namespace. Currently, Kubernetes doesn't support
namespace-less custom objects based on third-party-resources. Here is an example
of a third-party-resource:

apiVersion: extensions/vlbetal
kind: ThirdPartyResource
metadata:

name: cron-tab.stable.example.com

[329]

Customizing Kubernetes - API and Plugins

description: A pod that runs on schedule
versions:

name: vl

It has all the required fields: kind, metadata, description, and versions. It also
has apiversion field to associate it with the extensions/vibetal API group.

Let's create it:

$ k create -f 3rd-party-resource.yaml

thirdpartyresource "cron-tab.stable.example.com" created

Now, let's verify we can access it:

$ kubectl get thirdpartyresources
NAME DESCRIPTION VERSION (S)

cron-tab.stable.example.com A pod that runs on schedule vl

There is also a new API endpoint for managing this new resource:

/apis/stable.example.com/vl/namespaces/<namespace>/crontabs/

Let's use our Python code to access it:

>>> config.load kube config()
>>> print(k('get', 'thirdpartyresources'))
NAME DESCRIPTION VERSION (S)

cron-tab.stable.example.com A pod that runs on schedule vl

Integrating third party resources

Once the ThirdpartyResource object has been created, you can create custom
objects of that resource kind, in particular, CronTab in this case (CronTab becomes
CamelCase CronTab). CronTab objects can contain arbitrary fields with arbitrary
JSON. In the following example, cronspec and image custom fields are set on the
CronTab object. Also, the stable.example.com API group is derived from the
metadata.name of the ThirdPartyResource

apiVersion: stable.example.com/vl
kind: CronTab

metadata:

name: new-cron-object

cronSpec: * * * * /5

image: my-awesome-cron-image

[330]

Chapter 12

Let's create it:

$ kubectl create -f crontab.yaml

crontab "new-cron-object" created

At this point, kubect1 can operate on CronTab objects just like it works on built-in
objects. Note that resource names are case-insensitive when using kubect1:

$ kubectl get crontab

NAME LABELS DATA

new-cron-object <none> {"apiVersion":"stable.example.com/

v1l","cronSpec":"...

We can also view the raw JSON data using the standard -o json flag.:

$ kubectl get crontab -o json
{
"kind": "List",
"apiVersion": "v1",
"metadata": {},
"items": [
{
"apiVersion": "stable.example.com/v1l",
"cronSpec": "* % * % /5w,
"image": "my-awesome-cron-image",
"kind": "CronTab",
"metadata": {
"creationTimestamp": "2016-09-29T04:59:00z",
"name": "new-cron-object",
"namespace": "default",
"resourceVersion": "12601503",

"selfLink": "/apis/stable.example.com/vl/namespaces/
default/crontabs/new-cron-object”,

"uid": "6f65e7a3-8601-11le6-a23e-42010af0000c"

[331]

Customizing Kubernetes - API and Plugins

Writing Kubernetes plugins

In this section, we will dive into the guts of Kubernetes and learn to take advantage
of its famous flexibility and extensibility. We will learn about different aspects that
can be customized via plugins and how to implement such plugins and integrate
them with Kubernetes.

Writing a custom scheduler plugin

Kubernetes defines itself as a container scheduling and management system. As
such, the scheduler is the most important component of Kubernetes. Kubernetes
comes with a default scheduler, but allows writing of additional schedulers. To write
your own custom scheduler you need to understand what the scheduler does, how
it is packaged, how to deploy your custom scheduler, and how to integrate your
scheduler. The scheduler source code is available here:

https://github.com/kubernetes/kubernetes/blob/master/plugin/pkg/
scheduler.

In the rest of this section, we will dive deep into the source and examine data types,
algorithms, and code.

Understanding the design of the Kubernetes
scheduler

The job of the scheduler is to find a node for newly created or restarted pods,
and create a binding in the API server and run it there. If the scheduler can't
find a suitable node for the pod it will remain in pending state.

The scheduler

Most of the work of the scheduler is pretty generic - figure out which pods need

to be scheduled, update their state, and run them on the selected node. The custom
part is how to map pods to nodes. The Kubernetes team recognized the need for
custom scheduling and the generic scheduler can be configured with different
scheduling algorithms.

The main data type is the scheduler struct that contains a Config struct with lots
of properties (this will soon be replaced by a configurator interface):

type Scheduler struct {

config *Config

[332]

https://github.com/kubernetes/kubernetes/blob/master/plugin/pkg/scheduler
https://github.com/kubernetes/kubernetes/blob/master/plugin/pkg/scheduler

Chapter 12

Here is the config struct:

type Config struct {

SchedulerCache schedulercache.Cache

NodeLister algorithm.NodeLister
Algorithm algorithm.ScheduleAlgorithm
Binder Binder

PodConditionUpdater PodConditionUpdater
NextPod func() *vl.Pod

Error func(*vl.Pod, error)

Recorder record.EventRecorder

StopEverything chan struct{}

}

Most of these are interfaces, so you can configure the scheduler with custom
functionality. In particular, the scheduler algorithm is relevant if you want to
customize pod scheduling.

Registering an algorithm provider

The scheduler has the concept of an algorithm provider and an algorithm. Together,
they let you use the substantial functionality of the built-in scheduler and just replace
the core scheduling algorithm.

The algorithm provider lets you register new algorithm providers with the factory.
There is already one custom provider registered called ClusterAutoScalerProvider.
We will see later how the scheduler knows which algorithm provider to use. The key
file is as follows:

/plugin/pkg/scheduler/algorithmprovider/defaults/defaults.go

Here is the relevant part of the init () function, which you should extend to include
your algorithm provider in addition to the default and autoscaler providers:

func init() {

// Registers algorithm providers. By default we use

// 'DefaultProvider', but user can specify one to be used by

//specifying flag.

factory.RegisterAlgorithmProvider (factory.DefaultProvider,
defaultPredicates(),

defaultPriorities())

[333]

Customizing Kubernetes - API and Plugins

// Cluster autoscaler friendly scheduling algorithm.
factory.RegisterAlgorithmProvider (
ClusterAutoscalerProvider,
defaultPredicates(),
copyAndReplace (defaultPriorities(),
"LeastRequestedPriority",

"MostRequestedPriority"))

In addition to registering the provider, you also need to register a fit predicate and a
priority function, which are used to actually perform the scheduling.

You can use the factory's RegisterFitPredicate () and
RegisterPriorityFunction2 () functions.

Configuring the scheduler

The scheduler algorithm is provided as part of the configuration. Custom schedulers
can implement the ScheduleAlgorithm interface:

type ScheduleAlgorithm interface {
Schedule(*vl.Pod, Nodelister) (selectedMachine string,

err error)

}

When you run the scheduler, you can provide the name of the custom scheduler or
a custom algorithm provider as a command-line argument. If none are provided,
the default algorithm provider will be used. The command-line arguments to the
scheduler are --algorithm-provider and --scheduler-name.

Packaging the scheduler

The custom scheduler runs as a pod inside the same Kubernetes cluster it oversees.
It needs to be packaged as a container image. Let's use a copy of the standard
Kubernetes scheduler for demonstration purposes. We can build Kubernetes

from source and build it to get a scheduler image:

git clone https://github.com/kubernetes/kubernetes.git
cd kubernetes

make

[334]

Chapter 12

Then find the following Docker file:

FROM busybox
ADD ./ output/dockerized/bin/linux/amdé64/kube-scheduler \
/usr/local/bin/kube-scheduler

Use it to build a Docker image type:

docker build -t custom-kube-scheduler:1.0

Finally, push the image to a container registry. I'll use DockerHub here:

docker push glgl/custom-kube-scheduler

You'll need to create an account on DockerHub and log in before pushing your
image:

docker login

Deploying the custom scheduler

Now that the scheduler image is built and available in the registry, we need to create
a Kubernetes deployment for it. The scheduler is of course critical, so we can use
Kubernetes itself to ensure it is always running. The following YAML file defines a
deployment with a single replica and a few other bells and whistles, such as liveness
and readiness probes:

apiVersion: extensions/vlbetal
kind: Deployment
metadata:
labels:
component: scheduler
tier: control-plane
name: custom-scheduler
namespace: kube-system
spec:
replicas: 1
template:
metadata:
labels:
component: scheduler

tier: control-plane

[335]

Customizing Kubernetes - API and Plugins

version: second
spec:
containers:
- command:
- /usr/local/bin/kube-scheduler
- --address=0.0.0.0
- --leader-elect=false
- --scheduler-name=custom-scheduler
image: glgl/custom-kube-scheduler:1.0
livenessProbe:
httpGet:
path: /healthz
port: 10251
initialDelaySeconds: 15
name: kube-second-scheduler
readinessProbe:
httpGet:
path: /healthz
port: 10251
resources:
requests:

cpu: '0.1"

The name of the scheduler (custom-scheduler here) is important and must be
unique. It will be used later to associate pods with the scheduler to schedule them.
Note that the custom scheduler belongs in the kube - system namespace.

Running another custom scheduler in the cluster

Running another custom scheduler is as simple as creating the deployment. This

is the beauty of this encapsulated approach. Kubernetes is going to run a second
scheduler, which is a big deal, but Kubernetes is unaware of what's going on. It just
deploys a pod like any other pod, except this pod happens to be a custom scheduler:

$ kubectl create -f custom-scheduler.yaml

[336]

Chapter 12

Let's verify that the scheduler pod is running;:

$ kubectl get pods --namespace=kube-system

NAME READY STATUS RESTARTS AGE

custom-scheduler-1nf4s-4744f 1/1 Running 0 2m

Our custom scheduler is running.

Assigning pods to the custom scheduler

OK. The custom scheduler is running alongside the default scheduler. But how
does Kubernetes choose which scheduler to use when a pod needs scheduling? The
answer is that the pod decides and not Kubernetes. The pod spec has an optional
scheduler name field. If it's missing, the default scheduler is used; otherwise the
specified scheduler is used. This is the reason custom scheduler names must be
unique. The name of the default scheduler is default-scheduler in case you want
to be explicit in your pod spec. Here is a pod definition that will be scheduled using
the default scheduler:

apivVersion: vl
kind: Pod
metadata:
name: some-pod
labels:
name: some-pod
spec:
containers:
- name: some-container

image: gecr.io/google containers/pause:2.0

To have the custom-scheduler schedule this pod, change the pod spec to the
following;:
apivVersion: vl
kind: Pod
metadata:
name: some-pod
labels:

name: some-pod

[337]

Customizing Kubernetes - API and Plugins

spec:
schedulername: custom-scheduler
containers:
- name: some-container

image: gcr.io/google containers/pause:2.0

Verifying that the pods were scheduled using
custom scheduler

There are two primary ways to verify pods get scheduled by the correct scheduler.
First, you can create pods that need to be scheduled by the custom scheduler
before deploying the custom scheduler. The pods will remain in the pending state.
Then, deploy the custom scheduler and the pending pods will be scheduled and
start running.

The other method is to check the event logs and look for scheduled events using
this command:

$ kubectl get events

Writing an authorization plugin
Other implementations can be developed fairly easily. The API server calls the
Authorizer interface:

type Authorizer interface {

Authorize(a Attributes) error

}

It does this to determine whether or not to allow each API action.

An authorization plugin is a module that implements this interface. The
authorization plugin code goes in pkg/auth/authorizer/$MODULENAME.

An authorization module can be completely implemented in go, or can call out to
a remote authorization service. Authorization modules can implement their own
caching to reduce the cost of repeated authorization calls with the same or similar
arguments. developers should then consider the interaction between caching and
revocation of permissions.

[338]

Chapter 12

Writing an admission control plugin

Admission control plugins have a major role in making Kubernetes a flexible and
adaptable platform. Every request to the API (after passing authentication and
authorization) goes through a chain of configured admission control plugins. If any
of the plugins reject it, then the entire request is rejected. But an admission control
plugin can do much more than just give a thumbs-up or down. An admission control
plugin can modify incoming requests, apply defaults, modify related resources,

and more.

Many of Kubernetes' advanced features rely on admission control plugins. If you
run an API server without any plugins you get a very diminished Kubernetes.
For Kubernetes 1.4 and up, the following list of admission control plugins is
recommended:

® NamespaceLifecycle

® LimitRanger

®* ServiceAccount

® DefaultStorageClass

® ResourceQuota

You can write your own admission control plugin and it must be compiled into the
API server process.

You tell the Kubernetes API server which admission control plugins to use via
the - -admission-control flag, which you can set to a comma-delimited list of
admission control plugin names:

--admission-control=NamespaceLifecycle, LimitRanger, CustomAdmission

To browse through the API server code, check out https://github.com/
kubernetes/apiserver

The admission support is in /pkg/admission.

Implementing an admission control plugin
An admission control plugin must implement the admission. Interface interface
(yes, it's a little confusing that the interface name is Interface):
type Interface interface {
Admit (a Attributes) (err error)

Handles (operation Operation) bool

[339]

https://github.com/kubernetes/apiserver
https://github.com/kubernetes/apiserver

Customizing Kubernetes - API and Plugins

The interface is pretty simple. The Admit () function accepts an Attributes interface
and, based on those Attributes, make a decision if the request should be admitted
or not. If it returns nil, the request id is admitted. Otherwise it is rejected.

The Handles () function returns the operations that the admission control plugin
handles. If an admission controller doesn't support an operation, it is considered
admitted (for this plugin).

The whole workflow of going through the chain of registered admission control

plugins and determining if an operation is admitted is just a few lines:

func (admissionHandler chainAdmissionHandler) Admit(a Attributes) error {
for _, handler := range admissionHandler {

if !thandler.Handles (a.GetOperation()) ({

continue
}
err := handler.Admit (a)
if err != nil {
return err
}

}

return nil

}

Let's look at the simplest example - the alwaysDeny admission control plugin. It is
designed for testing and will reject any request. You can find it here:

https://github.com/kubernetes/kubernetes/tree/master/plugin/pkg/
admission/deny.

The Admit () function always returns a non-nil result and Handles () always
returns true, so it handles every operation and Admit () rejects it:

type alwaysDeny struct{}

func (alwaysDeny) Admit(a admission.Attributes) (err error) ({

return admission.NewForbidden(a, errors.New("Admission control is
denying all modifications"))

}

func (alwaysDeny) Handles (operation admission.Operation) bool {

return true

[340]

https://github.com/kubernetes/kubernetes/tree/master/plugin/pkg/admission/deny
https://github.com/kubernetes/kubernetes/tree/master/plugin/pkg/admission/deny

Chapter 12

}

// NewAlwaysDeny creates an always deny admission handler
func NewAlwaysDeny () admission.Interface {

return new(alwaysDeny)

Registering an admission control plugin

Every admission control plugin has its own init () function, which is called when
the plugin is imported. In this method you should register your plugin, so it's
available. Here is the init () function of the AlwaysDeny admission control plugin:
func init() {
admission.RegisterPlugin (
"AlwaysDeny",
func (config io.Reader) (admission.Interface, error) {
return NewAlwaysDeny (), nil

)

}

It just calls the RegisterPlugin () function of the admission package, passing the
name of the plugin and a factory function that accepts a configuration reader
and returns a plugin instance.

Linking your custom admission control plugin

Go supports only static plugins. Every custom plugin must be linked into the API
server executable in order to be imported and registered. The key file is here:

https://github.com/kubernetes/kubernetes/tree/master/cmd/kube-
apiserver/app/plugins.go.

Here is part of the file. When you add your plugin, it will be imported later, which
will invoke its init () function to register the plugin:

package app

import (
// Cloud providers

_ "k8s.io/kubernetes/pkg/cloudprovider/providers™"

[341]

https://github.com/kubernetes/kubernetes/tree/master/cmd/kube-apiserver/app/plugins.go
https://github.com/kubernetes/kubernetes/tree/master/cmd/kube-apiserver/app/plugins.go

Customizing Kubernetes - API and Plugins

// Admission policies
_ "k8s.io/kubernetes/plugin/pkg/admission/admit"
_ "k8s.io/kubernetes/plugin/pkg/admission/alwayspullimages™"

_ "k8s.io/kubernetes/plugin/pkg/admission/serviceaccount"

)
Another critical file is the build file at:

https://github.com/kubernetes/kubernetes/blob/master/cmd/kube-api-
server/app/BUILD.

Here is a snippet that shows some admission plugins:

go_library(
name = "go default library",
srcs = [
"plugins.go",

"server.go",

tags

["automanaged"],

deps [

"//plugin/pkg/admission/admit:go default library",
"//plugin/pkg/admission/deny:go_default library",
"//plugin/pkg/admission/exec:go_default library",
"//plugin/pkg/admission/gc:go default library",

You must add a line for your admission control plugin.

[342]

https://github.com/kubernetes/kubernetes/blob/master/cmd/kube-api-server/app/BUILD
https://github.com/kubernetes/kubernetes/blob/master/cmd/kube-api-server/app/BUILD

Chapter 12

Writing a custom metrics plugin

Custom metrics are implemented as custom endpoints exposed by pods, and they
extend the metrics exposed by cAdvisor.

Kubernetes 1.2 adds alpha support for scaling based on application-specific metrics
such as Queries Per Second (QPS) or average request latency. The cluster must be
started with the ENABLE CUSTOM METRICS environment variable set to true

Further details are available here:

https://github.com/google/cadvisor/blob/master/docs/application
metrics.md

Configuring the pod for custom metrics

The pods to be scaled must have cAdvisor-specific custom (aka application) metrics
endpoint configured. The configuration format is described here. Kubernetes expects
the configuration to be placed in definition.json mounted via a config map in /
etc/custom-metrics. A sample ConfigMap may look like this:

apiVersion: vl
kind: ConfigMap
metadata:
name: cm-config
data:
definition.json: "{\"endpoint\" : \"http://localhost:8080/metrics\"}"

Due to the way cAdvisor currently works, localhost refers to the node itself, not
to the running pod. Thus, the appropriate container in the pod must ask for a
node port:

ports:
- hostPort: 8080

containerPort: 8080

Specifying a target metric value

Horizontal pod auto-scaling using custom metrics is configured via an annotation.
The value in the annotation is interpreted as a target metric value averaged over all
running pods:

annotations:

alpha/target.custom-metrics.podautoscaler.kubernetes.io:
l{llitemsll:[{llnamellgllqpsll' nvalue': ||10||}]}|

[343]

https://github.com/google/cadvisor/blob/master/docs/application_metrics.md
https://github.com/google/cadvisor/blob/master/docs/application_metrics.md

Customizing Kubernetes - API and Plugins

In this case, if there are four pods running and each of them reports the gps metric to
be equal to 15, HPA will start two additional pods, so there will be six pods in total. If
there are multiple metrics passed in the annotation or the CPU is configured as well,
then HPA will use the biggest number of replicas that come from the calculations.

Even if the target CPU utilization is not specified, a default of 80% will be used. To
calculate the number of desired replicas based only on custom metrics, the CPU
utilization target should be set to a very large value (for example, 100,000%). Then
CPU-related logic will want only one replica, leaving the decision about a higher
replica count to custom metrics (and min/max limits).

Writing a volume plugin

Volume plugins are yet another type of plugin. This time it's a Kubelet plugin. If you
want to support a new type of storage, you write your own volume plugin, link it
with the Kubelet, and register it. There are two flavors: persistent and non-persistent.
Persistent volumes require some extra work because you need to implement
additional interfaces for persistence.

Implementing a volume plugin

Volume plugins are complicated entities. If you need to implement a new volume
plugin you'll have to dig in deeper as there are many details to get right. We'll just
go over the pieces and interfaces here. The main interfaces are defined here:

https://github.com/kubernetes/kubernetes/blob/master/pkg/volume/
plugins.go.

Here is the bare-bones volumePlugin interface (represent non-persistent volume):

type VolumePlugin interface ({
Init (host VolumeHost) error
GetPluginName () string
GetVolumeName (spec *Spec) (string, error)
CanSupport (spec *Spec) bool
RequiresRemount () bool
NewMounter (spec *Spec,
podRef *vl1l.Pod,
opts VolumeOptions) (Mounter, error)
NewUnmounter (name string,

podUID types.UID) (Unmounter, error)

[344]

https://github.com/kubernetes/kubernetes/blob/master/pkg/volume/plugins.go
https://github.com/kubernetes/kubernetes/blob/master/pkg/volume/plugins.go

Chapter 12

ConstructVolumeSpec (volumeName,
mountPath string) (*Spec, error)
SupportsMountOption () bool

SupportsBulkVolumeVerification() bool
}

The various interface functions accept or return several other interfaces and data
types such as Spec, Mounter and Unmounter.

Here is the spec, which is an internal representation of an API volume:

type Spec struct {
Volume *v1l.Volume
PersistentVolume *vl.PersistentVolume

ReadOnly bool
}

There are several other interfaces that derive from the volumePlugin and bestow
some extra properties on the volumes they represent. Here is a list of the available
interfaces:

® PersistentVolumePlugin

® RecyclableVolumePlugin

® DeletableVolumePlugin

® ProvisionableVolumePlugin

® AttachableVolumePlugin

Registering a volume plugin

Registering a Kubelet volume plugin is a little different again. It is done by calling
ProbeVolumePlugins () on each plugin, which returns a list of plugins that are
appended together. Here is a snippet:

func ProbeVolumePlugins (pluginDir string) []volume.VolumePlugin {

allPlugins := []lvolume.VolumePlugin{}

allPlugins = append(allPlugins,

aws_ebs.ProbeVolumePlugins()...)

allPlugins = append(allPlugins,
empty dir.ProbeVolumePlugins()...)

allPlugins = append(allPlugins,

[345]

Customizing Kubernetes - API and Plugins

gce pd.ProbeVolumePlugins()...)

return allPlugins

}
Check out the complete source code here:

https://github.com/kubernetes/kubernetes/blob/master/cmd/kubelet/app/
plugins.go.

Here is an example of the probevVolumePlugins () function of the aws_elb
volume plugin:
func ProbeVolumePlugins() []volume.VolumePlugin {

return []volume.VolumePlugin{&awsElasticBlockStorePlugin{nil}}

}

In general, multiple plugins may be returned, and not just one.

Linking a volume plugin
A custom volume plugin must be linked into the Kubelet executable. You must add a

line for your custom volume plugin in the deps section to the build file at https://
github.com/kubernetes/kubernetes/blob/master/cmd/kubelet/app/BUILD.

Here is a snippet from the file that shows other volume plugins:

go library(

name = "go default library",

srcs = [
"auth.go",
"bootstrap.go",
"plugins.go",
"server.go",
"server linux.go",

1,

tags = ["automanaged"],

deps = [
"//cmd/kubelet/app/options:go default library",

[346]

https://github.com/kubernetes/kubernetes/blob/master/cmd/kubelet/app/plugins.go
https://github.com/kubernetes/kubernetes/blob/master/cmd/kubelet/app/plugins.go
https://github.com/kubernetes/kubernetes/blob/master/cmd/kubelet/app/BUILD
https://github.com/kubernetes/kubernetes/blob/master/cmd/kubelet/app/BUILD

Chapter 12

"//pkg/api:go_default library",

"//pkg/volume:go default library",
"//pkg/volume/aws ebs:go default library",
"//pkg/volume/azure dd:go default library",

Summary

In this chapter, we covered three major topics: working with the Kubernetes API,
extending the Kubernetes API, and writing Kubernetes plugins. The Kubernetes API
supports the OpenAPI spec and is a great example of REST API design that follows
all current best practices. It is very consistent, well organized, and well documented.
Yet it is a big API and not easy to understand. You can access the API directly via
REST over HTTP, using client libraries including the official Python client, and even
by invoking Kubectl.

Extending the Kubernetes API involves defining your own third-party-resources.
These are most effective when you combine them with additional custom plugins
or when you query and update them externally.

Plugins are a foundation of Kubernetes design, and it was always meant to be
extended by users to accommodate any needs. We looked at various plugins you
can write and how to register and integrate them seamlessly with Kubernetes.

At this point, you should be well aware of all the major mechanisms to extend,
customize, and control Kubernetes via API access, third-party-resources, and
custom plugins. You are in a great position to take advantage of these capabilities
to augment the existing functionality of Kubernetes and adapt it to your needs
and your systems.

In Chapter 13, Handling the Kubernetes Package Manager, we'll look at Helm, the
Kubernetes package manager, and its charts. As you may have realized, deploying
and configuring complex systems on Kubernetes is far from simple. Helm allows
grouping together a bunch of manifests into a chart, which can be installed as a
single unit.

[347]

15

Handling the Kubernetes
Package Manager

In this chapter, we are going to look into Helm, the Kubernetes package manager.
Every successful and non-trivial platform must have a good packaging system.
Helm was developed by Deis (acquired by Microsoft 04/2017) and later contributed
to the Kubernetes project directly. We will start by understanding the motivation
for Helm, its architecture, and its components. Then, we'll get hands-on and see
how to use Helm and its charts within Kubernetes. That includes finding, installing,
customizing, deleting, and managing charts. Last but not least, we'll cover how to
create your own charts and handle versioning, dependencies, and templating.

The topics we will cover are as follows:

* Understanding Helm
* Using Helm

* Creating your own charts

Understanding Helm

Kubernetes provides many ways to organize and orchestrate your containers at
runtime, but it lacks a higher-level organization of grouping sets of images together.
This is where Helm comes in. In this section, we'll go over the motivation for Helm,
its architecture and components, and discuss what has changed in the transition
from Helm Classic to Helm.

[349]

Handling the Kubernetes Package Manager

The motivation for Helm

Helm provides support for several important use cases:

* Managing complexity

* Easy upgrades

* Simple sharing

* Safe rollbacks
Charts can describe even the most complex apps, provide repeatable application
installation, and serve as a single point of authority. In-place upgrades and custom
hooks allow for easy updates. It's simple to share charts that can be versioned and

hosted on public or private servers. When you need to rollback recent upgrades, Helm
provides a single command to rollback a cohesive set of changes to your infrastructure.

The Helm architecture

Helm is designed to perform the following;:

* Create new charts from scratch

* Package charts into chart archive (tgz) files

* Interact with chart repositories where charts are stored

* Install and uninstall charts into an existing Kubernetes cluster

* Manage the release cycle of charts that have been installed with Helm

Helm uses a client-server architecture to achieve these goals

Helm components

Helm has a server component that runs on your Kubernetes cluster and a client
component that you run on a local machine.

The Tiller server

The server is responsible for managing releases. It interacts with the Helm clients
as well as the Kubernetes API server. Its main functions are as follows:

* Listening for incoming requests from the Helm client

* Combining a chart and configuration to build a release

* Installing charts into Kubernetes

[350]

Chapter 13

* Tracking the subsequent release

* Upgrading and uninstalling charts by interacting with Kubernetes

The Helm client

You install the Helm client on your machine. It is responsible for the following;

* Local chart development

* Managing repositories

* Interacting with the Tiller server

* Sending charts to be installed

* Asking for information about releases

* Requesting upgrades or uninstallation of existing releases

Helm versus. Helm-classic

Helm was originally developed by Deis until version 0.70. Since then, the original
Helm has been branded Helm-classic. The only reason to use Helm-classic is if
you already have existing charts and you're not ready to upgrade. Helm classic

is available here:

https://github.com/helm/helm-classic.git.

Using Helm

Helm is a rich package management system that lets you perform all the necessary
steps to manage the applications installed on your cluster. Let's roll up our sleeves
and get going.

Installing Helm

Installing Helm involves installing the client and the server. Helm is implemented in
Go, and the same binary executable can serve as either client or server.

Installing the Helm client

You must have Kubectl configured properly to talk to your Kubernetes cluster because
the Helm client uses the Kubectl configuration to talk to the Helm server (Tiller)

[351]

https://github.com/helm/helm-classic.git

Handling the Kubernetes Package Manager

Helm provides binary releases for all platforms here:
https://github.com/kubernetes/helm/releases/latest.
For Windows, it is your only option.

For Mac OSX and Linux, you can install the client from a script:

$ curl https://raw.githubusercontent.com/kubernetes/helm/master/scripts/
get > get helm.sh

$ chmod 700 get helm.sh

$./get_helm.sh

On Mac OSX, you can also use Homebrew:

brew install kubernetes-helm

Installing the Tiller server

Tiller typically runs inside your cluster. For development, it is sometimes easier
to run Tiller locally.

Installing Tiller in-cluster

The easiest way to install Tiller is from a machine where the Helm client is installed.
Run the following command: helm init.

This will initialize both the client as well as the Tiller server on the remote
Kubernetes cluster. When the installation is done, you will have a running
Tiller pod in the kube-system namespace of your cluster:

$ kubectl get po --namespace=kube-system -1 name=tiller

NAME READY STATUS RESTARTS AGE
tiller-deploy-3210613906-2j5sh 1/1 Running 0 1m

You can also run helm version to check out both the client's and the server's version:

$ helm version

Client: &version.Version{SemVer:"v2.2.3“, GitCommit:"1402a4d6ec9fb349el7b
912e32fe259ca2118le3", GitTreeState:"clean"}

Server: &version.Version{SemVer:"v2.2.3“, GitCommit:"1402a4d6ec9fb349el7b
912e32fe259ca2118le3", GitTreeState:"clean"}

[352]

https://github.com/kubernetes/helm/releases/latest

Chapter 13

Installing Tiller locally

If you want to run Tiller locally, you need to build it first. This is supported on Linux
and Mac OSX:

$ cd $GOPATH

$ mkdir -p src/k8s.io

$ cd src/k8s.io

$ git clone https://github.com/kubernetes/helm.git

$ cd helm

$ make bootstrap build

The bootstrap target will attempt to install dependencies, rebuild the vendor/ tree,
and validate configuration.

The build target will compile Helm and place it in bin/helm. Tiller is also compiled,
and is placed inbin/tiller.

Now you can just run bin/tiller. Tiller will connect to the Kubernetes cluster via
your Kubectl configuration.

You need to tell the Helm client to connect to the local Tiller server. You can do it by
setting an environment variable:

$ export HELM HOST=localhost:44134

Or you can pass it as a command-line argument, --host localhost:44134.

Finding charts

In order to install useful applications and software with Helm, you need to find their
charts first. This is where the helm search command comes in. Helm, by default,
searches the official Kubernetes chart repository, which is called stable:

$ helm search
NAME VERSION DESCRIPTION

stable/chaoskube 0.5.0 Chaoskube periodically kills
random pods in you...

stable/cockroachdb 0.2.2 CockroachDB is a scalable,
survivable, strongly...

stable/dokuwiki 0.1.3 DokuWiki is a standards-
compliant, simple to us...

stable/jenkins 0.3.1 Open source continuous
integration server. It s...

[353]

Handling the Kubernetes Package Manager

stable/kapacitor
engine. It ca...

stable/kube-lego

certificates from Let's

stable/kube-ops-view
read-only system ...

stable/kube2iam

0.2.2 InfluxDB's native data processing
0.1.8 Automatically requests

. 0.2.0 Kubernetes Operational View -
0.2.1 Provide IAM credentials to pods

based on annota...

The official repository has a rich library of charts that represent all modern open
source databases, monitoring systems, Kubernetes-specific helpers, and a slew of
other offerings, such as a Minecraft server. You can search for specific charts. For
example, let's search for charts that contain kube in their name or description:

$ helm search kube
NAME

stable/chaoskube
in you...

stable/kube-lego
Let's ...

stable/kube-ops-view
system ...

stable/kube2iam
annota...

stable/sumokube

stable/etcd-operator
Kubernetes
stable/nginx-lego
kube-lego

stable/openvpn
insid...

stable/spartakus
clusters t...

stable/traefik
controller w...

VERSION DESCRIPTION

0.5.0 Chaoskube periodically kills random pods
0.1.8 Automatically requests certificates from
0.2.0 Kubernetes Operational View - read-only
0.2.1 Provide IAM credentials to pods based on
0.1.1 Sumologic Log Collector

0.2.0 CoreOS etcd-operator Helm chart for

0.2.1 Chart for nginx-ingress-controller and
1.0.1 A Helm chart to install an openvpn server
1.1.1 Collect information about Kubernetes

1.1.2-h A Traefik based Kubernetes ingress

Let's try another search:

$ helm search mysql

NAME VERSION DESCRIPTION

stable/mysql

stable/mariadb

0.2.5

0.5.14

Fast, reliable, scalable, and easy to use open-

Fast, reliable, scalable, and easy to use open-

[354]

Chapter 13

What happened? Why does mariadb show up in the results? The reason is that
mariadb (which is a fork of MySQL) mentions MySQL in its description, even
though you can't see it in the truncated output. To get the full description, use the
helm inspect command:

$ helm inspect stable/mariadb

description: Fast, reliable, scalable, and easy to use open-source
relational database

system. MariaDB Server is intended for mission-critical, heavy-load
production systems

as well as for embedding into mass-deployed software.
engine: gotpl
home: https://mariadb.org

icon: https://bitnami.com/assets/stacks/mariadb/img/mariadb-stack-
220x234.png

keywords:

- mariadb

- mysql

- database

- sql

maintainers:

- email: containers@bitnami.com
name: Bitnami

name: mariadb

sources:

- https://github.com/bitnami/bitnami-docker-mariadb

version: 0.5.14

Installing packages

OK. You've found the package of your dreams. Now, you probably want to install

it on your Kubernetes cluster. When you install a package, Helm creates a release
that you can use to keep track of the installation progress. Let's install MariaDB using
the helm install command. Let's go over the output in detail. The first part of the
output lists the name of the release - alert-panda in this case (you can choose your
own with the - -name flag), the namespace, and the deployment status:

$ helm install stable/mariadb

NAME : alert-panda

LAST DEPLOYED: Sat Apr 1 18:39:47 2017
NAMESPACE: default

STATUS: DEPLOYED

[355]

Handling the Kubernetes Package Manager

The second part of the output lists all the resources created by this chart. Note that
the resource names are all derived from the release name.

RESOURCES:

==> vl/PersistentVolumeClaim

NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
alert-panda-mariadb Pending 1s

==> vl/Service
NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
alert-panda-mariadb 10.3.245.245 <none> 3306/TCP 1s

==> extensions/vlbetal/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
alert-panda-mariadb 1 1 1 0 1s

==> vl/Secret
NAME TYPE DATA AGE

alert-panda-mariadb Opaque 2 1s

==> v1/ConfigMap
NAME DATA AGE

alert-panda-mariadb 1 1s

The last part is notes that provide easy to understand instructions on how to use
MariaDB in the content of your Kubernetes cluster.

NOTES:

MariaDB can be accessed via port 3306 on the following DNS name from
within your cluster:

alert-panda-mariadb.default.svc.cluster.local
To connect to your database:

1. Runa pod that you can use as a client:
kubectl run alert-panda-mariadb-client --rm --tty -i --image
bitnami/mariadb --command -- bash
2. Connect using the mysqgl c1li, then provide your password:

$ mysqgl -h alert-panda-mariadb

[356]

Chapter 13

Checking installation status

Helm doesn't wait for the installation to complete because it may take a while. The
helm status command displays the latest information on a release in the same
format as the output of the initial helm install command. In the output of the
install command you can see that the persistent volume claim had a pending
status. Let's check it out now:

$ helm status alert-panda | grep Persist -A 3

==> vl/PersistentVolumeClaim

NAME STATUS VOLUME CAPACITY ACCESSMODES AGE
alert-panda-mariadb Bound pvc-41..0156 8Gi RWO 10m

Hooray! It is bound now, and there is a volume attached with 8 GB capacity.

Let's try to connect and verify mariadb is indeed accessible. Let's modify the
suggested commands a little bit from the notes to connect. Instead of running bash
and then running mysql, we can directly run the mysql command on the container:

$ kubectl run alert-panda-mariadb-client --rm --tty -i --image bitnami/
mariadb --command -- mysql -h al

ert-panda-mariadb

If you don't see a command prompt, try pressing enter.

MariaDB [(none)]> show databases;

| information schema |

| mysql |

| performance schema |

3 rows in set (0.00 sec)

Customizing a chart

Very often as a user, you want to customize or configure the charts you install. Helm
fully supports customization via config files. To learn about possible customizations
you can use the helm inspect command again, but this time focus on the values.
Here is a partial output:

$ helm inspect values stable/mariadb

Bitnami MariaDB image version

[357]

Handling the Kubernetes Package Manager

ref: https://hub.docker.com/r/bitnami/mariadb/tags/
##
Default: none

image: bitnami/mariadb:10.1.22-rl

Specify an imagePullPolicy (Required)

It's recommended to change this to 'Always' if the image tag is
'latest!'

ref: http://kubernetes.io/docs/user-guide/images/#updating-images
imagePullPolicy: IfNotPresent

Specify password for root user

ref: https://github.com/bitnami/bitnami-docker-mariadb/blob/master/
README .md#setting-the-root-password-on-first-run

##

mariadbRootPassword:

Create a database user

ref: https://github.com/bitnami/bitnami-docker-mariadb/blob/master/
README .md#creating-a-database-user-on-first-run

##
mariadbUser:

mariadbPassword:

Create a database

ref: https://github.com/bitnami/bitnami-docker-mariadb/blob/master/
README .md#creating-a-database-on-first-run

##

mariadbDatabase:

For example, if you want to set a root password and create a database when
installing mariadb, you can create the following YAML file and save it as
mariadb-config.yaml:

mariadbRootPassword: supersecret

mariadbDatabase: awesome stuff

[358]

Chapter 13

Then, run helm and pass it the yam1 file:

helm install -f config.yaml stable/mariadb

You can also set individual values on the command line with - -set. If both --f and
- -set try to set the same values, then - -set takes precedence. For example, in this
case the root password will be evenbettersecret:

helm install -f config.yaml --set mariadbRootPassword=evenbettersecret
stable/mariadb

You can specify multiple values using comma-separated lists: --set a=1,b=2.

Additional installation options

The helm install command can install from several sources:

* A chart repository (as we've seen)
* Alocal chart archive (helm install foo-0.1.1.tgz)
* Anunpacked chart directory (helm install path/to/foo)

* Afull URL (helm install https://example.com/charts/foo-
1.2.3.tgz)

Upgrading and rolling back a release

You may want to upgrade a package you installed to the latest and greatest
version. Helm provide the upgrade command, which operates intelligently and
only updates things that have changed. For example, let's check the current values
of our mariadb installation:

$ helm get values alert-panda
mariadbDatabase: awesome stuff

mariadbRootPassword: evenbettersecret

Now, let's run, upgrade, and change the name of the database:

$ helm upgrade alert-panda --set mariadbDatabase=awesome sauce stable/
mariadb

$ helm get values alert-panda

mariadbDatabase: awesome sauce

[359]

Handling the Kubernetes Package Manager

Note that we've lost our root password. All the existing values are replaced when
you upgrade. OK, let's roll back. The helm history command shows us all the
available revisions we can roll back to:

$ helm history alert-panda

REVISION STATUS CHART DESCRIPTION

1 SUPERSEDED mariadb-0.5.14 Install complete
2 SUPERSEDED mariadb-0.5.14 Upgrade complete
3 SUPERSEDED mariadb-0.5.14 Upgrade complete
4 DEPLOYED mariadb-0.5.14 Upgrade complete

Let's roll back to revision 3:

$ helm rollback alert-panda 3

Rollback was a success! Happy Helming!

$ helm history alert-panda

REVISION STATUS CHART DESCRIPTION

1 SUPERSEDED mariadb-0.5.14 1Install complete
2 SUPERSEDED mariadb-0.5.14 Upgrade complete
3 SUPERSEDED mariadb-0.5.14 Upgrade complete
4 SUPERSEDED mariadb-0.5.14 Upgrade complete
5 DEPLOYED mariadb-0.5.14 Rollback to 3

Let's verify our changes were rolled back:

$ helm get values alert-panda
mariadbDatabase: awesome stuff

mariadbRootPassword: evenbettersecret

Deleting a release

You can, of course, delete a release too using the helm delete command.

First, let's examine the list of releases. We have only alert-panda:

$ helm list

NAME REVISION STATUS CHART NAMESPACE
alert-panda 5 DEPLOYED mariadb-0.5.14 default
Now, let's delete it:

[360]

Chapter 13

$ helm delete alert-panda
So, no more releases:

$ helm list
But Helm keeps track of deleted releases too. You can see them using the --all flag:

$ helm list --all
NAME REVISION STATUS CHART NAMESPACE
alert-panda 5 DELETED mariadb-0.5.14 default

Working with repositories

Helm stores charts in repositories that are simple HTTP servers. Any standard HTTP
server can host a Helm repository. In the cloud, the Helm team verified that AWS S3
and Google Cloud storage can both serve as Helm repositories in web-enabled mode.
Helm also comes bundled with a local package server for developer testing. It runs
on the client machine, so it's inappropriate for sharing. In a small team, you may run
the Helm package server on a shared machine on the local network accessible to all
team members.

To use the local package server, type helm serve. Do it in a separate terminal
window because it is blocking. Helm will start serving charts from ~/.helm/
repository/local by default. You can put your charts there and generate an
index file with helm index.

The generated index.yaml file lists all the charts.

Note that Helm doesn't provide tools for uploading charts to remote repositories
because that would require the remote server to understand Helm, to know where
to put the chart, and how to update the index.yaml file.

On the client side the helm repo command lets you list, add, remove, index,
and update:

$ helm repo
This command consists of multiple subcommands to interact with chart repositories.
It can be used to add, remove, list, and index chart repositories:

* Example usage:
$ helm repo add [NAME] [REPO_URL]

* Usage:

helm repo [command]

[361]

Handling the Kubernetes Package Manager

Available commands:

add add a chart repository

index generate an index file for a given a directory
list list chart repositories

remove remove a chart repository

update update information on available charts

Managing charts with Helm

Helm provides several commands to manage charts.

It can create a new chart for you:

$ helm create cool-chart

Creating cool-chart

Helm will create the following files and directories under cool-chart:

-rw-r--r-- 1 Gigi 333 Apr 2 15:25 .helmignore
-rw-r--r-- 1 Gigi 88 Apr 2 15:25 Chart.yaml
drwxr-xr-x 1 Gigi 0 Apr 2 15:25 charts/
drwxr-xr-x 1 Gigi 0 Apr 2 15:25 templates/
-rw-r--r-- 1 Gigi 381 Apr 2 15:25 values.yaml

Once you have edited your chart, you can package it into a tar gzipped archive:

$ helm package cool-chart

Helm will create an archive called cool-chart-0.1.0.tgz and store both in the
local directory and in the local repository.

You can also use helm to help you find issues with your chart's formatting
or information:

$ helm lint cool-chart

$ helm lint cool-chart

==> Linting cool-chart

[INFO] Chart.yaml: icon is recommended

1l chart(s) linted, no failures

[362]

Chapter 13

Taking advantage of starter packs

The helm create command takes an optional --starter flag that lets you specify
a starter chart.

Starters are just regular charts located in $HELM HOME/starters. As a chart
developer, you may author charts that are specifically designed to be used as starters.
Such charts should be designed with the following considerations in mind:

* The Chart.yaml will be overwritten by the generator

* Users will expect to modify such a chart's contents, so documentation should
indicate how users can do so

Currently, the only way to add a chart to $HELM_HOME/starters is to manually copy
it there. In your chart's documentation, you may want to explain that process.

Creating your own charts

A chart is a collection of files that describe a related set of Kubernetes resources. A
single chart might be used to deploy something simple, such as a memcached pod,
or something complex, such as a full web app stack with HTTP servers, databases,
caches, and so on.

Charts are created as files laid out in a particular directory tree. Then they can be
packaged into versioned archives to be deployed. The key file is Chart . yaml.

The Chart.yaml file

The chart .yaml file is required for a chart. It requires a name and version fields:

* Name: The name of the chart (same as the directory name)

* Version: A SemVer 2 version
It may also contain various optional fields:

* description: A single sentence description of this project keywords:
A list of keywords about this project:

* home: The URL of this project's home page

* sources: A list of URLs to source code for this project

[363]

Handling the Kubernetes Package Manager

e Maintainers:

° name: The maintainer's name (required for each maintainer)

o

email: The maintainer's e-mail (optional for each maintainer)

* engine: The name of the template engine (defaults to gotpl)
* icon: A URL to an SVG or PNG image to be used as an icon
* appVersion: The version of the app that this contains

* deprecated: is this chart is deprecated? (boolean)

Versioning charts

The version field inside of the Chart.yaml is used by many of the Helm tools,
including the CLI and the Tiller server. When generating a package, the helm
package command will use the version that it finds in the Chart .yaml as a token
in the package name. The system assumes that the version number in the chart
package name matches the version number in the Chart . yaml. Failure to meet
this assumption will cause an error.

The appVersion field

The appversion field is not related to the version field. It is not used by Helm and
serves as metadata or documentation for users that want to understand what they
are deploying. Correctness is not enforced by Helm.

Deprecating charts

When managing charts in a chart repository, it is sometimes necessary to
deprecate a chart. The optional deprecated field in Chart .yaml can be used to mark
a chart as deprecated. If the latest version of a chart in the repository is marked as
deprecated, then the chart as a whole is considered deprecated. The chart name can
later be reused by publishing a newer version that is not marked as deprecated.

The workflow for deprecating charts, as followed by the kubernetes/ charts project,
is as follows:

Update the chart's Chart .yaml to mark the chart as deprecated, bumping the version

* Release the new chart version in the chart repository

* Remove the chart from the source repository (for example, Git)

[364]

Chapter 13

Chart metadata files

Charts contain various metadata files that describe the installation, configuration,
usage, and license of a chart. A README for a chart should be formatted in markdown
(README . md), and should generally contain the following:

* A description of the application or service the chart provides
* Any prerequisites or requirements to run the chart
* Descriptions of options in values.yaml and default values

* Any other information that may be relevant to the installation or
configuration of the chart

The chart can also contain a short plain text templates/NOTES. txt file that will be
printed out after installation, and when viewing the status of a release. This file is
evaluated as a template, and can be used to display usage notes, next steps, or any
other information relevant to a release of the chart. For example, instructions could
be provided for connecting to a database, or accessing a web UL. Since this file is
printed to STDOUT when running helm install or helm status, it is recommended
to keep the content brief and point to the README for greater detail.

Managing chart dependencies

In Helm, a chart may depend on any number of other charts. These dependencies are
expressed explicitly by copying the dependency charts into the charts/ sub-directory
during installation.

A dependency can be either a chart archive (foo-1.2.3.tgz) or an unpacked
chart directory. But its name cannot start with _ or .. Such files are ignored by
the chart loader.

Managing dependencies with requirements.yaml

Instead of manually placing charts in the charts/ sub-directory, it is better to
declare dependencies using a requirements.yanl file inside of your chart.

A requirements.yaml file is a simple file for listing the chart dependencies:

dependencies:
- name: foo
version: 1.2.3
repository: http://example.com/charts

- name: bar

[365]

Handling the Kubernetes Package Manager

version: 3.2.1

repository: http://another.example.com/charts
The name field is the name of the chart you want.
The version field is the version of the chart you want.

The repository field is the full URL to the chart repository. Note that you must
also use helm repo add to add that repository locally.

Once you have a dependencies file, you can run the Helm dependency update and it
will use your dependency file to download all of the specified charts into the charts
sub-directory for you:

$ helm dep up foo-chart

Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "local" chart repository
...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "example" chart repository
...Successfully got an update from the "another" chart repository

Update Complete. Happy Helming!

Saving 2 charts
Downloading Foo from repo http://example.com/charts
Downloading Bar from repo http://another.example.com/charts

When the Helm dependency update retrieves charts, it will store them as chart
archives in the charts/ directory. So for the preceding example, one would
expect to see the following files in the charts directory:
charts/

foo-1.2.3.tgz

bar-3.2.1.tgz

Managing charts with requirements.yaml is a good way to easily keep charts
updated, and also share requirements information throughout a team.

Utilizing special fields in requirements.yaml

In addition to the other fields, each requirements entry may contain the optional
tields tags and condition.

[366]

http://example.com/charts
http://another.example.com/charts

Chapter 13

All charts are loaded by default. If tags or condition fields are present, they will be
evaluated and used to control loading for the charts they are applied to:

Condition - The condition field holds one or more YAML paths (delimited by
commas). If this path exists in the top parent's values and resolves to a boolean
value, the chart will be enabled or disabled based on that boolean value. Only the
first valid path found in the list is evaluated, and if no paths exist then the condition
has no effect.

Tags - The tags field is a YAML list of labels to associate with this chart. In the top
parent's values, all charts with tags can be enabled or disabled by specifying the tag
and a boolean value.

Here is an example requirements.yaml and values.yaml that make good use
of conditions and tags to enable and disable the installation of dependencies. The
requirements.yaml file defines two conditions for installing its dependencies
based on the value of the global enabled field and the specific sub-charts
enabled field:

parentchart/requirements.yaml

dependencies:

- name: subchartl
repository: http://localhost:10191
version: 0.1.0
condition: subchartl.enabled, global.subchartl.enabled
tags:
- front-end
- subchartl
- name: subchart2
repository: http://localhost:10191
version: 0.1.0
condition: subchart2.enabled,global.subchart2.enabled
tags:
- back-end
- subchart2

[367]

Handling the Kubernetes Package Manager

The values.yaml file assigns values to some of the condition variables. The
subchart2 tag doesn't get a value, so it is considered enabled:

parentchart/values.yaml
subchartl:

enabled: true
tags:

front-end: false

back-end: true

You can set tag and conditions values from the command line too when installing
a chart, and they'll take precedence over the values.yaml file:

helm install --set subchart2.enabled=false
The resolution of tags and conditions is as follows:

* Conditions (when set in values) always override tags. The first condition
path that exists wins and subsequent ones for that chart are ignored.

* Tags are evaluated as if any of the chart's tags are true then enable the chart.
* Tags and condition values must be set in the top parent's values.

* The tags: key-in values must be a top-level key. Globals and nested tags
tables are not currently supported

Using templates and values

Any non-trivial application will require configuration and adaptation to the specific
use case. Helm charts are templates that use the Go template language to populate
placeholders. Helm supports additional functions from the sprig library and a

few other specialized functions. The template files are stored in the templates/
sub-directory of the chart. Helm will use the template engine to render all files

in this directory and apply the provided value files.

Writing template files

Template files are just text files that follow the Go template language rules. They can
generate Kubernetes configuration files. Here is the service template file from the
Gitlab CE chart:

apivVersion: vl
kind: Service

metadata:

[368]

Chapter 13

name: {{ template "fullname" . }}
labels:
app: {{ template "fullname" . }}
chart: "{{ .Chart.Name }}-{{ .Chart.Version }}"
release: "{{ .Release.Name }}"
heritage: "{{ .Release.Service }}"
spec:

type: {{ .Values.serviceType }}

ports:

- name: ssh
port: {{ .values.sshPort | int }}
targetPort: ssh

- name: http
port: {{ .values.httpPort | int }}
targetPort: http

- name: https
port: {{ .values.httpsPort | int }}
targetPort: https

selector:

app: {{ template "fullname" . }}

Using pipelines and functions

Helm allows rich and sophisticated syntax in the template files via the built-in Go
template functions, sprig functions, and pipelines. Here is an example template that
takes advantage of these capabilities. It uses the repeat, quote, and upper functions for
the food and drink keys, and it uses pipelines to chain multiple functions together:

apiVersion: vl
kind: ConfigMap
metadata:
name: {{ .Release.Name }}-configmap
data:
greeting: "Hello World"
drink: {{ .Values.favorite.drink | repeat 3 | quote }}
food: {{ .vValues.favorite.food | upper | quote }}

[369]

Handling the Kubernetes Package Manager

See if the values file has the following section:

favorite:
drink: coffee

food pizza

If it does, then the resulting chart would be as follows:

apivVersion: vl
kind: ConfigMap
metadata:
name: cool-app-configmap
data:
greeting: "Hello World"
drink: "coffeecoffeecoffee™"

food: "PIZZA"

Embedding predefined values

Helm provides some predefined values you can use in your templates. In the Gitlab
chart above the Release.Name, Release.Service, Chart .Name, and Chart .Version
are examples of Helm predefined values. Other predefined values are as follows:

® Release.Time

®* Release.Namespace
® Release.IsUpgrade
® Release.IsInstall
® Release.Revision
® Chart

®* Files

® Capabilities

The Chart is the content of Chart .yaml. The files and capabilities predefined values
are map-like objects that allow access via various functions. Note that unknown
fields in Chart .yaml are ignored by the template engine and cannot be used to pass

arbitrary structured data to templates.

[370]

Chapter 13

Feeding values from a file

Here is part of the Gitlab CE default values file. The values from this file are used
to populate multiple templates. For example, the serviceType, sshPort, httpPort,
and httpsPort values are used in the preceding service template:

image: gitlab/gitlab-ce:9.0.0-ce.0
serviceType: LoadBalancer

sshPort: 22

httpPort: 80

httpsPort: 443

resources:
requests:
memory: 1Gi
cpu: 500m
limits:
memory: 2Gi

cpu: 1

You can provide your own YAML values files to override the defaults during the
install command:

$ helm install --values=custom-values.yaml gitlab-ce

Scope, dependencies, and values

Value files can declare values for the top-level chart, as well as for any of the
charts that are included in that chart's charts/ directory. For example, the
gitlab-ce values.yaml file contains some default values for its dependency
charts, postgresqgl and redis

postgresqgl:
imageTag: "9.6"
cpu: 1000m
memory: 1Gi
postgresUser: gitlab
postgresPassword: gitlab
postgresDatabase: gitlab
persistence:

size: 10Gi

[371]

Handling the Kubernetes Package Manager

redis:
redisPassword: "gitlab"
resources:
requests:

memory: 1Gi

persistence:

size: 10Gi

The top-level chart has access to values of its dependent charts, but not vice versa.
There is also a global value that is accessible to all charts. For example, you could
add something like this:

global:

app: cool-app
When a global is present, it will be replicated to each dependent chart's values as
follows:

global:
app: cool-app

postgresql:
global:
app: cool-app

redis:
global:
app: cool-app

[372]

Chapter 13

Summary

In this chapter, we took a look at Helm, the Kubernetes package manager. Helm
gives Kubernetes the ability to manage complicated software composed of many
Kubernetes resources with inter-dependencies. It serves the same purpose as an
OS package manager. It organizes packages and lets you search charts, install and
upgrade charts, and share charts with collaborators. You can develop your charts
and store them in repositories.

At this point, you should understand the important role that Helm serves in the
Kubernetes ecosystem and community. You should be able to use it productively
and even develop and share your own charts.

In Chapter 14, The Future of Kubernetes, we will look ahead to the future of Kubernetes
and examine its roadmap and a few personal items from my wish list.

[373]

The Future of Kubernetes

In this chapter, we look at the future of Kubernetes from multiple angles. We'll start
with the roadmap and forth coming product features, including diving into the
design process of Kubernetes. Then we'll cover the momentum of Kubernetes since
its inception, including dimensions such as community, ecosystem, and mindshare.
A big part of Kubernetes' future will be determined by how it fares against its
competition. Education will play a major role too as container orchestration is new,
fast-moving, and not a well-understood domain. Then, we'll discuss a capability at
the top of my wish list - dynamic plugins.

The covered topics are as follows:

The road ahead
Competition

The Kubernetes momentum
Education and training

Dynamic plugins

The road ahead

Kubernetes is a large open source project. Let's look at some of the planned features
and upcoming releases, as well the various special interest groups that focus on
specific areas.

[375]

The Future of Kubernetes

Kubernetes releases and milestones

Kubernetes has fairly regular releases. The current release as of April 2017 is 1.6.1.
The next release 1.7 is about 22% done. Here are a couple of issues from the 1.7
releases to give you a taste of the work being done:

* WIP group the KubeletConfiguration parameters into substructures

* Mark Kubelet's master-service-namespace flag as deprecated

* Remove the deprecated --babysit-daemons kubelet flag

* Clean up the pre-ControllerRef compatibility logic

* Usewatch() for VerifyControllerAttachedvolume instead of a single poll
Minor releases are released every three months, and patch releases plug holes
and issues until the next minor release. Here the release dates of the three most
recent releases:

* 1.6.0released on March 29, 2017, and 1.6.1 released on April, 2 2017

e 1.5.0released on Dec 12, 2016, and 1.5.6 released on March, 29 2017

* 1.4.0released on Sep 26, 2016, and 1.4.9 released on Feb 15, 2017

Another good way to look at what is coming is to look at the work being done on the
alpha and beta releases. You can check the changelog here:

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md.
Here are some of the changes in the 1.7 alpha release:

* Juju: Enable GPU mode if GPU hardware detected
* Check the error before parsing the apiversion

* get-kube-local.sh checks pods with the - -namespace=kube-system
option
* Use http2 in kubeapi-load-balancer to fix kubectl exec uses

* Support status.hostIPin downward API

Kubernetes special interest and working
groups

As a large open source community project, most of the development work on
Kubernetes takes place in multiple working groups. The complete list is here:

https://github.com/kubernetes/community/blob/master/sig-1list.md.

[376]

https://github.com/kubernetes/kubernetes/blob/master/CHANGELOG.md
https://github.com/kubernetes/community/blob/master/sig-list.md

Chapter 14

The planning for future releases is done mostly within these SIG and working
groups because Kubernetes is too big to handle it all centrally. SIGs meet regularly
and discuss.

Competition

Kubernetes operates in one of the hottest technology areas of container orchestration.
The future of Kubernetes must be considered as part of the whole market. As you
will see, some of the possible competitors may also be partners that promote

both their own offering as well as Kubernetes (or at least, Kubernetes can run

on their platform).

The value of bundling

Container orchestration platforms such as Kubernetes compete directly and
indirectly with larger and smaller scopes. For example, Kubernetes may be available
on a particular Cloud platform, such as AWS, but may not be the default/go-to
solution. On the other hand, Kubernetes is at the core of GKE on the Google Cloud
platform. Developers who choose a higher level of abstraction, such as a Cloud
platform or even PaaS, will more often than not go with the default solution. But
some developers or organizations worry about vendor lock-in, or need to run on
multiple Cloud platforms or a hybrid public/private. Kubernetes has a strong
advantage here.

Docker Swarm

Docker is currently the de facto standard for containers (although CoreOS rkt is
gathering steam) and often people say Docker when they mean containers. Docker
wants to get a piece of the orchestration cake and released the Docker Swarm
product. The main benefit of Docker Swarm is that it comes as part of the Docker
installation and uses standard Docker APIs. So, the learning curve is not as steep
and it's easier to get started. However, Docker Swarm is way behind Kubernetes in
terms of capabilities and maturity. In addition, Docker's reputation is not great when
it comes to high-quality engineering and security. Organizations and developers
that are concerned with the stability of their systems may shy away from Docker
Swarm. Docker is aware of the problem and is taking steps to address it. It released
an Enterprise offering and also reworked Docker's internals as a set of independent
components via the Moby project.

[377]

The Future of Kubernetes

Mesos/Mesosphere

Mesosphere the company behind the open source Apache Mesos, and the DC/

OS product is the incumbent that runs containers and big data in the Cloud. The
technology is mature and Mesosphere evolves it, but they don't have the resources
and momentum that Kubernetes has. I believe that Mesosphere will do very well
because it is a big market, but it will not threaten Kubernetes as the number one
container orchestration solution.

Cloud platforms

A large contingent of organizations and developers flock to public Cloud platforms
to avoid the headaches of low-level management of their infrastructure. Those
companies' primary motivation is often to move fast and focus on their core
competency. As such, they'll often go with the default deployment solution

offered by their Cloud provider, because the integration is the most seamless

and streamlined.

AWS

Kubernetes runs very well on AWS via the official Kubernetes Kops project:
https://github.com/kubernetes/kops.
Some of Kops features are as follows:

* Automate the provisioning of Kubernetes clusters in AWS
* Deploy highly available Kubernetes masters

* The ability to generate Terraform configurations

However, Kops is not an official AWS solution. If you manage your infrastructure
through the AWS console and APIs, the path of least resistance is to use AWS Elastic
Container Service (ECS) - a built-in container orchestration solution that is not
based on Kubernetes.

I'm just speculating here, but in my opinion it's unlikely that AWS will switch

to Kubernetes as an underlying container orchestration platform because they
have their own solution, tightly-integrated with other AWS services, such as load
balancing, and they have the developers to maintain and evolve it. For companies
that have made an explicit decision to run their application only on AWS it will
probably make sense to use the built-in AWS container solution. However, as
usual, when hybrid Cloud or avoiding vendor lock-in become decision factors,
then Kubernetes shines again. Even Netflix, which used to be exclusively on AWS,
now runs some workloads on other Cloud platforms.

[378]

https://github.com/kubernetes/kops

Chapter 14

Azure

Azure provides the Azure container service, and they don't pick favorites. You can
choose if you want to use Kubernetes, Docker Swarm, or DC/OS. This is interesting
because, initially, Azure was based on Mesosphere DC/OS and they added
Kubernetes and Docker Swarm as orchestration options later. As Kubernetes pulls
forward in capabilities, maturity, and mindshare, I believe it will become the number
one orchestration option on Azure too.

Alibaba Cloud

The Alibaba Cloud is the Chinese AWS in more ways than one. Their APIs are
intentionally very much like AWS APIs. Alibaba Cloud provides a container
management service based on Docker Swarm. I've deployed some applications at a
small scale on Alibaba Cloud, and they seem to be able to keep up with the changes
in the field and quickly follow the big players. I'm not going to make any predictions
on whether or not they'll adopt Kubernetes officially.

The Kubernetes momentum

Kubernetes has tremendous momentum behind it. The community is super
strong. Users flock to Kubernetes as its mindshare increases, the technical press
acknowledges its number one leadership position, the eco-system is sizzling, and
a lot of big corporations and companies (in addition to Google) support it.

Community

The Kubernetes community is one of its greatest assets. Kubernetes recently joined
the CNCF.

GitHub

Kubernetes is developed on GitHub and is one of the top projects on GitHub. It is in
the top 0.01 percent in stars and number one in terms of activity.

More professionals list Kubernetes in their LinkedIn profile than any other
comparable offering by a wide margin.

[379]

The Future of Kubernetes

More than 1,000 contributors and 34,000 commits:

kubernetes / kubernetes @Watch~ 1711 eStar | 22217 YFork 7,684
<> Code ssues 4,990 Pull requests 640 Projects 8 Wiki Pulse Graphs

Production-Grade Container Scheduling and Management http://kubernetes.io

kubemnetes go encf containers

D 46,412 commits PP 31 branches © 232 releases 22 1,139 contributors s Apache-2.0

Conferences and meetups

Another indication of Kubernetes momentum is the number of conferences, meetups,
and attendees. KubeCon is growing quickly and new Kubernetes meetups open up
every day.

Mindshare

Kubernetes is getting a lot of attention and deployments. Large and small companies
that get into the containers/DevOps/microservices arena adopt Kubernetes and

the trend is clear. One interesting metric is the number of Stackoverflow questions
over time. The community steps in to answer questions and foster collaboration. The
growth dwarfs its rivals and the trend is very clear:

® Kubernetes @® Cloud Foundry =) @0

[380]

Chapter 14

Ecosystem

The Kubernetes ecosystem is very impressive, from Cloud providers to PaaS
platforms and startups that offer a streamlined environment.

Public Cloud providers

All the major Cloud providers support Kubernetes directly. Obviously, Google
is leading the pack with GKE, which is the native container engine on the Google
Cloud Platform. The Kops project, mentioned earlier, is a well supported,
maintained, and documented solution on AWS. Azure offers Kubernetes as

one of its backends to the Azure Container service.

OpenShift

OpenShift is RedHat's container application product that's built on top of the open
source OpenShift origin, which is based on Kubernetes. OpenShift adds application
lifecycle management and DevOps tooling on top of Kubernetes and contributes

a lot to Kubernetes (such as autoscaling). This type of interaction is very healthy
and encouraging.

OpenStack

OpenStack is the open source private Cloud platform and it is recently decided to
standardize on Kubernetes as the underlying orchestration platform. This is a big
deal because large enterprises that want to deploy across a mix of public and private
Clouds will have a much better integration with Kubernetes Cloudfederation on
one end and OpenStack as a private Cloud platform utilizing Kubernetes under

the hood.

[381]

The Future of Kubernetes

The latest OpenStack survey 2017 shows that Kubernetes is the most popular
solution for container orchestration:

0% 10% 20% 30% 40% 50%
Kubernetes 28% 14% 5% 47%
Built our own L 2% 2% 22%

openshift [4% 3% 17%
Docker Swarm 3% 4% 14%
CloudFoundry m3% 3% 12%

Mesos D %% 7%
other IR 4% 14%

Figure 5.4 n=19

Production Il
Dev/ QA

Proof of Concept

Other players

There are a number of other companies that use Kubernetes as a foundation, such as
Rancher and Apprenda. A large number of startups develop add-ons and services
that run inside the Kubernetes cluster. The future is bright.

Education and training

Education will be critical. As the early adopters of Kubernetes make way to the
majority, it is very important to have the right resources for organizations and
developers to pick up Kubernetes and be productive quickly. There are already some
pretty good resources and in the future, I predict that the number and quality will
just increase. Of course, the book you're reading right now is part of this drive.

The official Kubernetes documentation is getting better and better, but there is still
a long way to go. The online tutorials are great for getting started.

[382]

Chapter 14

Google has created a few Udacity courses on Kubernetes. Check them out here:

https://www.udacity.com/course/scalable-microservices-with-
kubernetes--ud615.

Another excellent resource is KataCoda, which provides a completely free
Kubernetes playground, where you can get a private cluster within seconds, in
addition to multiple hands-on tutorials on advanced topics:

https://www.katacoda.com/courses/kubernetes.

There are also a lot of paid training options for Kubernetes. As the popularity of
Kubernetes grows even further, more and more options will be available.

Dynamic plugins
This one is not listed on any official roadmap. I plan to discuss it with the
community, and if there is positive response, to start driving this effort forward.

Kubernetes is implemented using Go. Go is a great language that puts a lot

of emphasis on simplicity. As such, one of its prominent features is the single
executable binary. There is no separate runtime, and until Go 1.8 there were no
dynamically loaded libraries. That approach is great in many situations. However,

it is a hindrance for flexible and dynamically configured applications. Kubernetes is,
of course, all about flexibility and plugins. But those plugins (with the exceptions of
CNI plugins) must all be compiled into the Kubelet or the API server. CNI plugins
are a different story and are deployed as separate executables, but that limits the
interface for standard input and output. That works for CNI plugins because the API
surface area is limited, but is not a good option for many more interactive plugins.

If, for some reason, the Go 1.8 dynamic plugins are inappropriate, another possible
solution is to utilize the Go interface to C. By going through a C interface, it is
possible to dynamically load Go plugins and have the best of both worlds: a stable
Kubernetes platform where plugins that support well-defined interfaces can be
loaded from carefully controlled directories without requiring the building and
re-deployment of a whole Kubernetes API server or Kubelet. This is an important
enabler as the Kubernetes usage moves into the mainstream, and as developers just
want to deploy their applications and use third-party add-ons without building
Kubernetes itself.

[383]

https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615
https://www.udacity.com/course/scalable-microservices-with-kubernetes--ud615

The Future of Kubernetes

Summary

In this chapter, we looked at the future of Kubernetes, and it looks great! The
technical foundation, the community, the broad support, and the momentum
are all very impressive. Kubernetes is still young, but the pace of innovation
and stabilization is very encouraging.

At this point, you should have a clear idea of where Kubernetes is right now and
where it's going from here. You should be confident that Kubernetes is not just here
to stay, but that it's going to be the leading container orchestration platform for many
years to come and integrated with larger offering and environments.

Now it's up to you to use what you've learned and build amazing things
with Kubernetes!

[384]

A

access
limiting, namespace used 140, 141
adapter pattern 11
admission control plugins
AlwaysAdmit 104
AlwaysDeny 104
DefaultStorageClass 104
ImagePolicyWebhook 104
implementing 339
InitialResources 104
LimitRanger 104
NamespaceLifecycle 104
registering 341
ResourceQuota 104
ServiceAccount 104
using 104
writing 339
Alibaba Cloud 379
ambassador pattern 11
annotations 6
API server
accessing 101
AppArmor
cluster, protecting with 107
pod, securing with 108
AppArmor profiles
writing 109, 110
Attribute-Based Access Control (ABAC) 103
authorization plugin
admission control plugin 339
custom metrics plugin 343
volume plugin 344
writing 338

Index

authorizer component 123
automatic workflows 126
autoscaling
rolling updates, performing with 222,223
with Kubectl 219-222
autoscaling API
about 13
batch API 13
availability requirements 85
AWS
clusters, creating in 37, 38
AWS Elastic Block Store (EBS) 170
AWS Elastic Container Service (ECS) 378
AWS Elastic File System (EFS) 171
Azure
about 379
clusters, creating in 38
Azure cluster
reference 38
Azure data disk 173
Azure file storage 174,175

B

bad configuration 63
bane
reference 109
bare metal
cost, managing on 64
bare metal cluster
considerations 39
creating 38
use cases 39
batch API 13
best effort 86

[385]

binary releases, Helm
reference 352
blue-green upgrades 82
bridge plugin
reviewing 279
budget-aware workflows 126
bundling 377

C

cAdvisor 43
cAdvisor UI 43
Calico 260, 263
Canal 260
Cassandra
about 195
distributing, DaemonSet used 213
distributing, replication controller used 209
Kubernetes, connecting with 202
Cassandra cluster
creating, statefulSet used 205
running, in Kubernetes 195
stateful set configuration file,
dissecting 206-209
Cassandra configuration
about 202, 203
custom seed provider 203
Cassandra Docker Image
about 196, 197
run.sh script, exploring 197-202
Cassandra headless service
creating 204
central logging
about 55
planning 55
Ceph
about 175
connecting to 179-181
using, as persistent volumes 178
CephFS
used, for connecting to Ceph 181
chart dependencies, Helm
dependencies, managing with
requirements.yaml 365, 366
special fields, utilizing in requirements.
yaml 366-368

charts
managing, with Helm 362
CI/CD pipeline
about 20, 21
designing, for Kubernetes 22
claims
mounting, as volumes 163
client IP address preservation
load balancer, annotating for 270
cloud
clusters, creating in 36
containers 2
cost, managing on 64
Cloud bursting 285
cloud.go
reference 36
Cloud platforms 378
cloud-provider interface 36
cluster
about 4
creating 33, 39
creating, in cloud 36
customization 303
custom scheduler, running in 336
master, initializing 33
naming rules 302
preparing, of vagrant VMs 30
protecting, with AppArmor 107
secret name 303
cluster capacity
managing 233
multiple node configurations, using 235
node types, selecting 234
selecting 233
storage solutions, selecting 234
clustered container data volume manager
Flocker, using as 182, 183
cluster federation
about 283
use cases 284
cluster federation setup
about 297
federation control plane, running 298
federation, shutting down 300
initial setup 297
KubeDNS, updating 300

[386]

Kubernetes cluster, registering with Contiv

federation 299 about 258
official Hyperkube image, using 298 capabilities 258
cluster federation setup, with Kubefed controller manager 14
about 300 CoreV1API group
cascading delete of resources 304 dissecting 322, 323
cluster, adding to federation 302 cost
cluster, removing from federation 303 managing, on bare metal 64
failing, over multiple clusters 305 managing, on cloud 64
federation control plane, deploying 301 managing, on hybrid clusters 64
federation, shutting down 303 versus performance 63
host cluster, selecting 301 cron jobs
load balancing, across multiple scheduling 144, 145
clusters 304, 305 custom admission control plugin
cluster-level logging 55 linking 341, 342
cluster state custom load balancer provider
protecting 69 with HAProxy 273
CNI plugin custom metrics
about 255-257 pod, configuring for 343
writing 275 custom metrics plugin
competitors, Kubernetes writing 343
Alibaba Cloud 379 custom scheduler
AWS 378 deploying 335, 336
Azure 379 pods, assigning to 337
Cloud platforms 378 running, in cluster 336
Docker Swarm 377 custom scheduler plugin
Mesos/Mesosphere 378 writing 332
compute resource quota 225
ConfigMap D
consuming, as environment variable 191
creating 190 DaemonSet
configuration and deployment challenges, about 59
Kubernetes 96 used, for distributing Cassandra 213
configuration file using, for redundant persistent storage 192

external load balancer, configuring via 268 ~ DaemonSet pods 151
data stores 125

container
about 2 default compute quotas
secrets, using in 115, 116 limit ranges, using for 233
Container Networking Interface (CNI) default storage class 165
about 254 dependencies
container runtime 254 managing, readiness probes used 149
container orchestration 2 deployrpent
containers, in cloud 2 updating 134

distributed data-intensive apps 188

[387]

distributed systems design patterns,
Kubernetes

about 10

adapter pattern 11

ambassador pattern 11

multi-node patterns 12

sidecar pattern 11
DNS

about 14

external data stores, accessing via 189
Docker 17, 377
Docker networking

versus Kubernetes networking 248, 249
Docker Swarm 377
dynamic plugins 383

E

elastic cloud resources
benefitting from 236
cloud quotas 236
instances, autoscaling 236
regions, managing 237
Elasticsearch 57
emptyDir
using, for intra-pod
communication 156, 157
endpoints 250
enterprise
Hue, utilizing in 152
enterprise storage
integrating, into Kubernetes 183
envelope
pushing, with Kubernetes 237
environment variable
ConfigMap, consuming as 191
external data stores, accessing via 189
eted 14, 68, 261
eted 2
versus etcd 3 74
etcd cluster
verifying 74
etcd, clustering
about 69
DNS discovery 71
etcd discovery 70
static discovery 69

etcd discovery
reference 70
etcd.yaml file 71-74
External APIs 84
external data stores
accessing, via DNS 189
accessing, via environment variables 189
external load balancer
about 267
client IP addresses, identifying 270
configuring 268
configuring, via configuration file 268
configuring, via Kubectl 269
external service 123

F

failures

handling, with federated ingress 291
federated auto-calling 296
federated ConfigMap

about 288

creating 288

deleting 289

updating 289

viewing 289
federated DaemonSet 289
federated data access 296
federated deployment 290
federated events 290
federated ingress

about 290

creating 291

failures, handling with 291

request routing, performing with 291

roles 290
federated migration 306, 307
federated namespace 292
federated ReplicaSet 292, 293
federated resources 288
federated secrets 293
federated service

creating 307, 308

discovering 310

DNS expansion 310, 311
federated service discovery 306
federated unit of work 293

[388]

federated workloads
backend pods, adding 308
failures of backend pods, handling 312
public DNS records, verifying 309
running 307
whole clusters, handling 312
federation
cross-cluster scheduling 295
location affinity 294
federation API server
about 286, 287
unable to connect issue 312
federation controller manager 287
federation control plane 284, 286
Flannel 261
Flocker

using, as clustered container data volume

manager 182,183
Fluentd 56
fluentd-elasticsearch add-on

reference 56

G

GCE persistent disk 172
GCP
clusters, creating in 37
generic actuator 124
generic sensor 124
GlusterFS
about 175
endpoints, creating 176
pods, creating 178
using, as persistent volumes 176
GlusterFS Kubernetes service
adding 177
Google Kubernetes Engine (GKE) 37
Grafana visualization 47, 48

H

HAProxy

about 273

running, inside Kubernetes cluster 274
hardware failures, Kubernetes 61

Heapster
about 42
Kubernetes, monitoring with 42
Helm
about 349
additional installation options 359
chart customization 357, 359
chart dependencies, managing 365
chart metadata files 365
charts, creating 363
charts, deprecating 364
charts, finding 353, 355
charts, managing with 362
charts, versioning 364
Chart.yaml file 363
functions, using 369
installation status, checking 357
installing 351
packages, installing 355, 356
package, upgrading 359, 360
pipelines, using 369
predefined values, embedding 370
release, deleting 360
release, rolling back 359, 360
repositories, managing 361
scope 371
starter packs, for charts 363
template files, writing 368
templates, using 368
uses cases 350
using 351
value files, declaring 371
values, feeding from file 371
values, using 368
versus Helm-classic 351
Helm architecture 350
Helm-classic
reference 351
Helm client
installing 351, 352
Helm components 350
high-availability
testing 79
high-availability, best practices
about 68
cluster state, protecting 69
data, protecting 75

[389]

highly available clusters, creating 68, 69

leader election, running with
Kubernetes 75, 76
nodes, making reliable 69
redundant API servers, running 75
staging environment, making highly
available 78
high-availability, concepts
about 66
hot swapping 66
idempotency 67
leader election 67
redundancy 66
self-healing 67
smart load balancing 67
High-Availability (HA) Proxy 273
Highly Available (HA) Kubernetes
clusters 37
horizontal pod autoscaler
declaring 216-218
horizontal pod autoscaling
about 215, 216
custom metrics 218, 219
HostPath
using, for intra-node
communication 157, 158
hot swapping 66
httpie
output, filtering with 319, 320
reference 320
Hue
science, advancing with 152
scope, designing of 121, 122
utilizing, for education 153
utilizing, in enterprise 152
Hue components
about 123
authorizer 123
external service 123
generic actuator 124
generic sensor 124
identity management 123
user graph 123
user learner 124
user profile 123

Hue microservices
about 124
data stores 125
plugins 125
queue-based interactions 126
stateless microservices 125
Hue platform
building, Kubernetes used 127
designing 121
evolving, with Kubernetes 152
managing, with Kubernetes 147
Hue-reminders service
creating 136, 137
human workflows 126
hybrid clusters
cost, managing on 64
hyper containers 19
Hypernetes 20
Hyper.sh 237

idempotency 67
identity management 123
image challenges, Kubernetes 95
ImagePolicyWebHook 105
ImagePullSecrets

used, for securing pods 105
InfluxDB 44
InfluxDB storage schema

about 44

CPU 44, 45

filesystem 45

memory 45

network 46

uptime 46, 47
Ingress

about 138, 272

using 138
init containers

employing, for orderly pod bring-up 150
inside-the-cluster-network components 147
internal, and external services

separating 134
Internal APIs 84

[390]

internal service
deploying 135, 136
inter-pod communication (pod to pod) 246
intra-node communication
HostPath, using for 157, 158
intra-pod communication
emptyDir, using for 156, 157
intra-pod communication (container to
container) 246

J

Java Management Extensions (JMX) 201
jobs
completed jobs, cleaning up 144
cron jobs, scheduling 144, 145
launching 142, 143
running, in parallel 143
Jq
output, filtering with 319, 320
reference 320
jq program
reference 77
Juju 376

K

KataCoda
reference 383
Keepalived Virtual IP (VIP) 274
Kibana 57
kubeadm
used, for creating multi-node cluster 30
kube API server 13
Kubectl
autoscaling with 219-222
cluster management commands 127
deployment commands 127
external load balancer, configuring via 269
generic commands 127
invoking, programmatically 326
misc commands 127
proxy, setting up 316
reference 24
running, Python subprocess used 326-328
settings commands 127
troubleshooting commands 127
using, effectively 127

Kubectl get pods 145, 146

Kubectl resource configuration files
about 128
ApiVersion 128
container spec 129, 130
kind 129
metadata 129
spec 129

Kubefed
obtaining 300

kubelet 15

Kubemark 243

Kubemark cluster
comparing, to real-world cluster 243
setting up 243

Kubenet
about 253
MTU, setting 254
requisites 253

kube proxy 15

Kubernetes
about 1
Cassandra cluster, running in 195
cattle approach, versus pet approach 3
changes, in 1.7 release 376
CI/CD pipeline, designing for 22
competitors 377
configuration and deployment

challenges 96

connecting, with Cassandra 202
enterprise storage, integrating into 183
envelope, pushing with 237
future 375
hardware failures 60, 61
Hue platform, evolving with 152
Hue platform, managing with 147
image challenges 95
leader election, running with 75, 76
monitoring, with Heapster 42
multi-container pod challenges 97
network challenges 93, 94
node challenges 92, 93
node components 14
online tutorials 382
organizational challenges 97, 98
performance, improving 238
pod lifecycle event generator 238, 239

[391]

reads, caching in APl server 238

reasons, for managing states 188

releases 376

runtime interface 16, 17

scalability, improving 238

secrets, storing in 113

security challenges 92

stateful application, versus stateless

application 187

testing, at scale 242

used, for building hue platform 127

working groups 376
kubernetes-anywhere 38
Kubernetes API

about 12

accessing, via Python client 321, 322

exploring 316, 317

exploring, Postman used 318, 319

extending 328

OpenAPI 316

pod, creating via 320

query parameters 12

working with 315

autoscaling API 13
Kubernetes architecture

about 10

distributed systems design patterns 10
Kubernetes cluster

HAProxy, running inside 274
Kubernetes cluster federation

about 284

managing 297
Kubernetes cluster level

configuration problems 63
Kubernetes components

about 13

master components 13, 14
Kubernetes, concepts

about 3

annotation 6

cluster 4

label 6

label selector 7

master 5

name 9

namespace 10

node 5

pod 5

replica set 7
replication controller 7
secret 9

service 8

StatefulSet 9

volume 8

Kubernetes contrib project

reference 274

Kubernetes dashboard

features 48
top-level view 48

Kubernetes ingress 251
Kubernetes Kops project

reference 378

Kubernetes momentum

about 379

community 379
conferences 380
ecosystem 381

GitHub 379

meetups 380

mindshare 380

public Cloud providers 381

Kubernetes networking

versus Docker networking 248, 249

Kubernetes networking model

about 246

external access 247

inter-pod communication (pod to pod) 246

intra-pod communication (container to
container) 246

pod to service communication 247

Kubernetes networking solutions

about 258

bridging on bare metal clusters 258
Calico project 263

Canal 260

Contiv 258

Flannel 261, 262

Nuage networks VCS 260

Open vSwitch 259

Romana 263

Weave net 264

[392]

Kubernetes network plugins
about 251
basic Linux networking 252
bridges 252
IP addresses 252
Maximum Transmission Unit (MTU) 253
network namespaces 252
pod networking 253
ports 252
routing 252
Virtual Ethernet (veth) devices 252
Kubernetes network policy design
using 265
Kubernetes plugins
custom scheduler plugin 332
writing 332
Kubernetes runtimes
about 15
Docker 18
Hyper containers 19
Rkt 19
Kubernetes scheduler
about 332, 333
algorithm provider, registering 333, 334
configuring 334
design 332
packaging 334, 335
kube-scheduler 14

L

labels

about 6

pods, decorating with 132
label selectors 7
large-cluster

cost 85

design trade-offs 85

performance 85
leader election

about 67

for application 76-78

running, with Kubernetes 75, 76
limit

scarce resources, handling with 224
limit ranges

using, for default compute quotas 232

limits 61 228
live cluster upgrades

about 80

APIs, deprecating 84

blue-green upgrades 82
data-contract changes, managing 83
data migration 83

upgrades, rolling 80, 81

liveness probes

using 148

load balancer

annotating, for client IP address
preservation 270
IP addresses, finding 269

load balancing

about 267
options 267

location affinity, federation

loosely-coupled 294
preferentially-coupled 295
strictly-coupled 294
strictly-decoupled 295
uniformly-spread 295

long-running microservices

deploying, in pods 130

long- running processes

deploying 133

lookup and discovery

about 249
self-registration 249, 250

loopback plugin

about 275,277
building, on CNI plugin skeleton 277

loosely coupled connectivity

with data stores 251
with queues 250

maintenance windows 86
master 5
master components, Kubernetes

about 13
API server 13
DNS 14

eted 14
scheduler 14

[393]

Mesos 378
Mesosphere 378
Minikube
quick single-node cluster 24
reference 24
Minikube cluster
configuration 127
minions 5
multi-container pod challenges,
Kubernetes 97
multi-node cluster
creating, kubeadm used 30
pod network, setting up 34
required software, installing 31
worker nodes, adding 35
multi-node patterns 12
multi-user cluster
namespace pitfalls, avoiding 118
namespaces, using for safe
multi-tenancy 117
running 116
use cases 116

N

name 9
namespace

about 10

used, for limiting access 140, 141
namespace-specific context

using 228

network challenges, Kubernetes 93, 94

networking solution
selecting 111
network policies
and CNI plugins 265
configuring 265
defining 112,113
implementing 266
managing 111
using, effectively 265
node 5
node challenges, Kubernetes 92, 93
node components, Kubernetes
about 14
kubelet 15
proxy 15

NodePort
utilizing 273
node problem detector
about 59
problem Daemons 59, 60
node problems
detecting 58
nodes
pods, assigning to 212
non-cluster components
mixing 147
Nuage networks VCS 260

(0

object count quota 226
objects
creating 324, 325
listing 324
watching 325
OpenAPI 316
Open Container Initiative (OCI) 18
OpenShift 381
OpenStack 381
Open vSwitch
about 259
features 259
organizational challenges,
Kubernetes 97, 98
outside-the-cluster-network
components 147

P

performance
versus cost 63
performance analysis, with dashboard 48
persistent volume claims
applying 192
persistent volumes
about 155
access modes 161
capacity 161
creating 160
provisioning 159
provisioning, dynamically 160
provisioning, statically 159

[394]

reclaim policy 161
sample claim 162, 163
volume type 162
persistent volume storage end to end
demonstrating 166-169
physical machines 2
plugins 125
pod
about 5
configuring, for custom metrics 343
creating, via Kubernetes API 320
securing, with AppArmor 108
Pod Lifecycle Event Generator (PLEG) 239
pods
assigning, to custom scheduler 337
assigning, to nodes 212
creating 130-132
decorating, with labels 132
long-running microservices,
deploying in 130
securing 105
securing, ImagePullSecrets used 105
securing, private image repository used 105
verifying 338
Pod security policy (PSP) 110
pod to service communication 247
Postman
about 318
reference 318
used, for exploring Kubernetes
API 318, 319
private image repository
used, for securing pods 105
public Cloud providers
OpenShift 381
OpenStack 381
public storage volume types
about 170
AWS Elastic Block Store (EBS) 170
AWS Elastic File System (EFS) 171
Azure data disk 173
Azure file storage 174,175
GCE persistent disk 172
Python client
Kubernetes API, accessing via 321, 322

Python client library
reference 321
Python subprocess
used, for running Kubectl 326-328

Q

queries per second (qps) 219
Queries Per Second (QPS) 343
query parameters, Kubernetes API
labelSelector 12
pretty 12
resourceVersion 13
timeoutSeconds 13
watch 12
queue-based interactions 126
quick recovery 87
quick single-node cluster, Minikube
about 24
checking out 28
creating 25-27
examining, with dashboard 30
pre-requisites 24, 25
troubleshooting 27
working 29
quotas 61
creating 228-231
scarce resources, handling with 224
scopes 227
working with 228

R

Rados Block Device (RBD)
used, for connecting to Ceph 179
readiness probes
used, for managing dependencies 149
redundancy 66
redundant API servers
running 75
redundant in-memory state
using 192
redundant persistent storage
DaemonSet, using for 192
replica set 7
replication controller configuration file
dissecting 209, 211

[395]

replication controllers
about 7
used, for distributing Cassandra 209
request routing
with federated ingress 291
requests
about 228
authorizing 103
required files, multi-node cluster
hosts file 32
playbook.yml file 32, 33
vars.yml file 32
resource quotas
compute resource quota 225
enabling 225
object count quota 226
storage resource quota 225
types 225
rkt
about 19
app container 19
production usage 19
Rktnetes 19
robust systems
designing 60
Roles-Based Access Control (RBAC) 103
rolling updates
performing, with autoscaling 222, 223
Romana 263

S

scarce resources

handling, with limit 224

handling, with quotas 224
science

advancing, with Hue 152
scope

designing, of Hue 121, 122
secrets

creating 113, 114

decoding 114

storing, in Kubernetes 113

using 113

using, in container 115,116

security challenges, Kubernetes 92
security context
specifying 106
self-healing 67
self-registration
about 249
benefits 250
service
about 8
exposing, externally 137
service accounts
about 98, 100
managing 100
Service Level Objectives (SLOs) 240
service load balancer 271
service-loadbalancer project
reference 273
shared environment variables
versus DNS records for discovery 189
shares 61
sidecar pattern 11
Single Point Of Failure (SPOF) 295
smart load balancing 67
Software-Defined Networking (SDN) 260
spec 129
stateful application
versus stateless application 187
statefulSet
about 9
used, for creating Cassandra cluster 205
StatefulSet controller
components 193, 194
using, factors 193
utilizing 193
stateless microservices 125
states
managing, in Kubernetes 188
managing, outside of Kubernetes 188, 189
Storage Area Network (SAN) 183
storage classes
about 164, 165
default storage class 165
storage resource quota 225

[396]

T

third-party-resource
developing 329
integrating 330
structure 329
Tigera 260
Tiller
installing, locally 353
Tiller In-Cluster
installing 352
Tiller Server
installing 352
Token Controller 100
top-level view, Kubernetes dashboard
about 48
Admin view 49-52
Services and discovery category 55
Workloads category 52-54
Torus 184
troubleshooting scenarios 60

U

Udacity courses, on Kubernetes
reference 383
UDP 261
UID (unique identifier) 102
upgrades
complex deployments 82
rolling 80, 81
use cases, cluster federation
capacity overflow 284, 285
geo-distributing high availability 286
sensitive workloads 285
vendor lock-in, avoiding 285, 286
user graph component 123
user learner 124
user profile component 123
users
authenticating 101, 102

\'

vagrant VMs
clusters, preparing of 30
VirtualBox
reference 24
virtual Ethernet (veth) devices 252
Virtualized Cloud Services (VCS) 260
virtual machines 2
virtual private cloud infrastructure
using 40
Virtual Redundancy Router Protocol
(VRRP) 274
volume 8
volume plugin
implementing 344, 345
linking 346
registering 345
writing 344
volumes
about 156
claims, mounting as 163
emptyDir, using for intra-pod
communication 156, 157
HostPath, using for intra-node
communication 157, 158

w

Weave Net 264

workflows
automatic workflows 126
budget-aware workflows 126
human workflows 126
planning 126

y 4

zero-downtime
plan 87-89
zero-downtime system 87

[397]

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Understanding Kubernetes Architecture
	Understanding container orchestration
	Physical machines, virtual machines,
and containers
	Containers in the cloud
	Cattle versus pets

	Kubernetes concepts
	Cluster
	Node
	Master
	Pod
	Label
	Annotation
	Label selector
	Replication controller and replica set
	Service
	Volume
	PetSet
	Secret
	Name
	Namespace

	Diving into Kubernetes architecture
in depth
	Distributed systems design patterns
	Sidecar pattern
	Ambassador pattern
	Adapter pattern
	Multi-node patterns

	The Kubernetes APIs
	Kubernetes API
	Autoscaling API
	Batch API

	Kubernetes components
	Master components
	API server
	Etcd
	Controller manager
	Scheduler
	DNS

	Node components
	Proxy
	Kubelet

	Kubernetes runtimes
	The runtime interface
	Docker
	Rkt
	App container
	Rktnetes
	Is rkt ready for production usage?

	Hyper containers
	Hypernetes

	Continuous integration and deployment
	What is a CI/CD pipeline?
	Designing a CI/CD pipeline for Kubernetes

	Summary

	Chapter 2: Creating Kubernetes Clusters
	Quick single-node cluster with Minikube
	Getting ready
	Creating the cluster
	Troubleshooting
	Checking out the cluster
	Doing work
	Examining the cluster with the dashboard

	Creating a multi-node cluster using kubeadm
	Getting ready
	Preparing a cluster of vagrant VMs
	Installing the required software
	The hosts file
	The vars.yml file
	The playbook.yml file

	Creating the cluster
	Initializing the master

	Setting up the pod network
	Adding the worker nodes

	Creating clusters in the cloud
(GCP, AWS, Azure)
	The cloud-provider interface
	GCP
	AWS
	Azure

	Creating a bare-metal cluster from scratch
	Use cases for bare-metal
	When should you consider creating a bare-metal cluster?

	The process
	Using virtual private cloud infrastructure
	Summary

	Chapter 3: Monitoring, Logging, and Troubleshooting
	Monitoring Kubernetes with Heapster
	cAdvisor

	InfluxDB backend
	The storage schema
	CPU
	Filesystem
	Memory
	Network
	Uptime

	Grafana visualization

	Performance analysis with the dashboard
	Top-level view
	Admin view
	Workloads
	Services and Discovery

	Adding central logging
	Planning central logging
	Fluentd
	Elasticsearch
	Kibana

	Detecting node problems
	Node problem detector
	DaemonSet
	Problem daemons

	Troubleshooting scenarios
	Designing robust systems
	Hardware failure
	Quotas, shares, and limits
	Bad configuration
	Cost versus performance
	Managing cost on the cloud
	Managing cost on bare metal
	Managing cost on hybrid clusters

	Summary

	Chapter 4: High Availability and Reliability
	High-availability concepts
	Redundancy
	Hot swapping
	Leader election
	Smart load balancing
	Idempotency
	Self-healing

	High-availability best practices
	Creating highly available clusters
	Making your nodes reliable
	Protecting your cluster state
	Clustering etcd
	The etcd.yaml file
	Verifying the etcd cluster
	etcd 2 versus etcd 3

	Protecting your data
	Running redundant API servers
	Running leader election with Kubernetes
	Leader election for your application

	Making your staging environment highly available
	Testing high-availability

	Live cluster upgrades
	Rolling upgrades
	Complex deployments

	Blue-green upgrades
	Managing data-contract changes
	Migrating data
	Deprecating APIs

	Large-cluster performance, cost, and design trade-offs
	Availability requirements
	Best effort
	Maintenance windows
	Quick recovery
	Zero-downtime
	Performance and data consistency

	Summary

	Chapter 5: Configuring Kubernetes Security, Limits, and Accounts
	Understanding Kubernetes security challenges
	Node challenges
	Network challenges
	Image challenges
	Configuration and deployment challenges
	Pod and container challenges
	Organisational, cultural, and process challenges

	Hardening Kubernetes
	Understanding service accounts in Kubernetes
	How does Kubernetes manage service accounts?

	Accessing the API server
	Authenticating users
	Authorizing requests
	Using admission control plugins

	Securing pods
	Using a private image repository
	ImagePullSecrets
	Specifying a security context
	Protecting your cluster with AppArmor
	Pod security policies

	Managing network policies
	Choosing a supported networking solution
	Defining a network policy

	Using secrets
	Storing secrets in Kubernetes
	Creating secrets
	Decoding secrets
	Using secrets in a container

	Running a multi-user cluster
	The case for a multi-user cluster
	Using namespaces for safe multi-tenancy
	Avoiding namespace pitfalls

	Summary

	Chapter 6: Using Critical Kubernetes Resources
	Designing the Hue platform
	Defining the scope of Hue
	Hue components
	Hue microservices

	Planning workflows
	Automatic workflows
	Human workflows
	Budget-aware workflows

	Using Kubernetes to build the Hue platform
	Using Kubectl effectively
	Understanding Kubectl resource configuration files
	ApiVersion
	Kind
	Metadata
	Spec

	Deploying long-running microservices in pods
	Creating pods
	Decorating pods with labels
	Deploying long- running processes with deployments
	Updating a deployment

	Separating internal and external services
	Deploying an internal service
	Creating the Hue-reminders service
	Exposing a service externally
	Ingress

	Using namespace to limit access
	Launching jobs
	Running jobs in parallel
	Cleaning up completed jobs
	Scheduling cron jobs

	Kubectl get pods
	Mixing non-cluster components
	Outside-the-cluster-network components
	Inside-the-cluster-network components
	Managing the Hue platform with Kubernetes
	Using liveness probes to ensure your containers are alive

	Using readiness probes to manage dependencies

	Employing init containers for orderly pod bring-up
	Sharing with DaemonSet pods

	Evolving the Hue platform with Kubernetes
	Utilizing Hue in the enterprise
	Advancing science with Hue
	Educating the kids of the future with hue

	Summary

	Chapter 7: Handling Kubernetes Storage
	Persistent volumes walkthrough
	Volumes
	Using emptyDir for intra-pod communication
	Using HostPath for intra-node communication
	Provisioning persistent volumes

	Creating persistent volumes
	Capacity
	Access modes
	Reclaim policy
	Volume type

	Making persistent volume claims
	Mounting claims as volumes
	Storage classes
	Default storage class

	Demonstrating persistent volume storage end to end

	Public storage volume types - GCE, AWS, and Azure
	AWS Elastic Block Store (EBS)
	AWS Elastic File System (EFS)
	GCE persistent disk
	Azure data disk
	Azure file storage

	GlusterFS and Ceph volumes in Kubernetes
	Using GlusterFS
	Creating endpoints
	Adding a GlusterFS Kubernetes service
	Creating pods

	Using Ceph
	Connecting to Ceph using RBD
	Connecting to Ceph using CephFS

	Flocker as a clustered container data volume manager
	Integrating enterprise storage into Kubernetes
	Torus – the new kid on the block

	Summary

	Chapter 8: Running Stateful Applications with Kubernetes
	Stateful versus stateless applications in Kubernetes
	Understanding the nature of distributed
data-intensive apps
	Why manage states in Kubernetes?
	Why manage states outside of Kubernetes?

	Shared environment variables versus DNS records for discovery
	Accessing external data stores via DNS
	Accessing external data stores via environment variables
	Creating a ConfigMap
	Consuming a ConfigMap as an environment variable

	Using a redundant in-memory state
	Using daemonSet for redundant persistent storage
	Applying persistent volume claims
	Utilizing StatefulSet
	When to use StatefulSet
	The components of StatefulSet

	Running a Cassandra cluster in Kubernetes
	Quick introduction to Cassandra
	The Cassandra Docker image
	Exploring the run.sh script

	Hooking up Kubernetes and Cassandra
	Digging into the Cassandra configuration
	The custom seed provider

	Creating a Cassandra headless service
	Using statefulSet to create the Cassandra cluster
	Dissecting the stateful set configuration file

	Using a replication controller to distribute Cassandra
	Dissecting the replication controller configuration file
	Assigning pods to nodes

	Using DaemonSet to distribute Cassandra

	Summary

	Chapter 9: Rolling Updates, Scalability, and Quotas
	Horizontal pod autoscaling
	Declaring horizontal pod autoscaler
	Custom metrics
	Autoscaling with Kubectl

	Performing rolling updates with autoscaling
	Handling scarce resources with limits
and quotas
	Enabling resource quotas
	Resource quota types
	Compute resource quota
	Storage resource quota
	Object count quota

	Quota scopes
	Requests and limits
	Working with quotas
	Using namespace-specific context
	Creating quotas
	Using limit ranges for default compute quotas

	Choosing and managing the cluster capacity
	Choosing your node types
	Choosing your storage solutions
	Trading off cost and response time
	Using effectively multiple node configurations
	Benefiting from elastic cloud resources
	Autoscaling instances
	Mind your cloud quotas
	Manage regions carefully

	Considering Hyper.sh

	Pushing the envelope with Kubernetes
	Improving the performance and scalability of Kubernetes
	Caching reads in the API server
	The pod lifecycle event generator
	Serializing API objects with protocol buffers

	Measuring the performance and scalability
of Kubernetes
	The Kubernetes SLOs
	Measuring API responsiveness
	Measuring end to end pod startup time

	Testing Kubernetes at scale
	Introducing the Kubemark tool
	Setting up a Kubemark cluster
	Comparing a Kubemark cluster to a real-world cluster

	Summary

	Chapter 10: Advanced Kubernetes Networking
	Understanding the Kubernetes networking model
	Intra-pod communication (container to container)
	Inter-pod communication (pod to pod)
	Pod to service communication
	External access
	Kubernetes networking versus Docker networking
	Lookup and discovery
	Self-registration
	Services and endpoints
	Loosely coupled connectivity with queues
	Loosely coupled connectivity with data stores
	Kubernetes ingress

	Kubernetes network plugins
	Basic Linux networking
	IP addresses and ports
	Network namespaces
	Virtual Ethernet devices
	Bridges
	Routing
	Maximum transmission unit
	Pod networking
	Kubenet
	Container networking interface

	Kubernetes networking solutions
	Bridging on bare metal clusters
	Contiv
	Open vSwitch
	Nuage networks VCS
	Canal
	Flannel
	Calico project
	Romana
	Weave net

	Using network policies effectively
	Understanding the Kubernetes network policy design
	Network policies and CNI plugins
	Configuring network policies
	Implementing network policies

	Load balancing options
	External load balancer
	Configuring an external load balancer
	Finding the load balancer IP addresses
	Identifying client IP addresses
	Understanding potential in even external load balancing

	Service load balancer
	Ingress
	HAProxy
	Utilizing the NodePort
	Custom load balancer provider using HAProxy
	Running HAProxy Inside the Kubernetes cluster
	Keepalived VIP

	Writing your own CNI plugin
	First look at the loopback plugin
	Building on the CNI plugin skeleton
	Reviewing the bridge plugin

	Summary

	Chapter 11: Running Kubernetes
on Multiple Clouds and Cluster Federation
	Understanding cluster federation
	Important use cases for cluster federation
	Capacity overflow
	Sensitive workloads
	Avoiding vendor lock-in
	Geo-distributing high availability

	The federation control plane
	Federation API server
	Federation controller manager

	Federated resources
	Federated ConfigMap
	Federated DaemonSet
	Federated deployment
	Federated events
	Federated ingress
	Federated namespace
	Federated ReplicaSet
	Federated secrets

	The hard parts
	Federated unit of work
	Location affinity
	Cross-cluster scheduling
	Federated data access
	Federated auto-scaling

	Managing a Kubernetes cluster federation
	Setting up cluster federation from the ground up
	Initial setup
	Using the official Hyperkube image
	Running the federation control plane
	Registering Kubernetes clusters with federation
	Updating KubeDNS
	Shutting down the federation
	Setting up cluster federation with Kubefed
	Getting Kubefed
	Choosing a host cluster
	Deploying a federation control plane
	Adding a cluster to a federation
	Cascading delete of resources
	Load balancing across multiple clusters
	Failing over across multiple clusters
	Federated service discovery
	Federated migration

	Running federated workloads
	Creating a federated service
	Adding backend pods
	Verifying public DNS records
	Discovering a federated service
	DNS expansion

	Handling failures of backend pods and
whole clusters
	Troubleshooting
	Unable to connect to federation API server

	Summary

	Chapter 12: Customizing Kubernetes - API and Plugins
	Working with the Kubernetes API
	Understanding OpenAPI
	Setting up a proxy
	Exploring the Kubernetes API directly
	Using Postman to explore the Kubernetes API
	Filtering the output with httpie and jq

	Creating a pod via the Kubernetes API
	Accessing the Kubernetes API via the Python client
	Dissecting the CoreV1API group
	Listing objects
	Creating objects
	Watching objects
	Invoking Kubectl programmatically
	Using Python subprocess to run Kubectl

	Extending the Kubernetes API
	Understanding the structure of a
third-party-resource
	Developing third-party-resources
	Integrating third party resources

	Writing Kubernetes plugins
	Writing a custom scheduler plugin
	Understanding the design of the Kubernetes scheduler
	Packaging the scheduler
	Deploying the custom scheduler
	Running another custom scheduler in the cluster
	Assigning pods to the custom scheduler
	Verifying that the pods were scheduled using custom scheduler

	Writing an authorization plugin
	Writing an admission control plugin
	Implementing an admission control plugin
	Registering an admission control plugin
	Linking your custom admission control plugin

	Writing a custom metrics plugin
	Configuring the pod for custom metrics
	Specifying a target metric value

	Writing a volume plugin
	Implementing a volume plugin
	Registering a volume plugin
	Linking a volume plugin

	Summary

	Chapter 13: Handling the Kubernetes Package Manager
	Understanding Helm
	The motivation for Helm
	The Helm architecture
	Helm components
	The Tiller server
	The Helm client

	Helm versus. Helm-classic

	Using Helm
	Installing Helm
	Installing the Helm client
	Installing the Tiller server

	Finding charts
	Installing packages
	Checking installation status
	Customizing a chart
	Additional installation options
	Upgrading and rolling back a release
	Deleting a release

	Working with repositories
	Managing charts with Helm
	Taking advantage of starter packs

	Creating your own charts
	The Chart.yaml file
	Versioning charts
	The appVersion field
	Deprecating charts

	Chart metadata files
	Managing chart dependencies
	Managing dependencies with requirements.yaml
	Utilizing special fields in requirements.yaml

	Using templates and values
	Writing template files
	Embedding predefined values
	Feeding values from a file
	Scope, dependencies, and values

	Summary

	Chapter 14: The Future of Kubernetes
	The road ahead
	Kubernetes releases and milestones
	Kubernetes special interest and working groups

	Competition
	The value of bundling
	Docker Swarm
	Mesos/Mesosphere
	Cloud platforms
	AWS
	Azure
	Alibaba Cloud

	The Kubernetes momentum
	Community
	Github
	Conferences and meetups
	Mindshare
	Ecosystem
	Public Cloud providers
	OpenShift
	OpenStack
	Other players

	Education and training
	Dynamic plugins
	Summary

	Index

