

Monitoring Docker

Monitor your Docker containers and their apps using
various native and third-party tools with the help of
this exclusive guide!

Russ McKendrick

BIRMINGHAM - MUMBAI

Monitoring Docker

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2015

Production reference: 1041215

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-275-3

www.packtpub.com

www.packtpub.com

Credits

Author
Russ McKendrick

Reviewer
Marcelo Correia Pinheiro

Commissioning Editor
Veena Pagare

Acquisition Editor
Rahul Nair

Content Development Editor
Anish Sukumaran

Technical Editor
Saurabh Malhotra

Copy Editor
Trishya Hajare

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexers
Mariammal Chettiyar

Priya Sane

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Russ McKendrick is an experienced solutions architect who has been working
in IT and IT-related industries for the better part of 23 years. During his career, he
has had varied responsibilities in a number of industries, ranging from looking after
entire IT infrastructures to providing first line, second line, and senior support in
client facing, and internal teams for corporate organizations.

He works almost exclusively with Linux, using open source systems and tools
on various platforms ranging from dedicated hardware and virtual machines to
public clouds.

About the Reviewer

Marcelo Correia Pinheiro is a Brazilian software engineer from Porto Alegre.
He started to work as a web designer and programmer in 2000 with ASP and PHP,
naturally getting in touch with the Microsoft .NET framework and Java running
respective databases of choice for web applications. Since 2003, he has used Linux
and UNIX-related operational systems, from Slackware to Gobo Linux, Archlinux,
CentOS, Debian, and today OSX, having some contact with BSD distributions too. He
has lost some nights compiling and applying patches to the Linux kernel to make its
desktop work. Since the beginning, he has been acting as a problem solver, no matter
what the programming language, database, or platform is—open source enthusiast.

After a few years, he decided to live in São Paulo to work with newer technologies
such as NoSQL, cloud computing, and Ruby, where he started to conduct tech talks
with this language in Locaweb. He created some tools to standardize development
using tools such as vagrant and Ruby gems—some of these in their GitHub—in
Locaweb to ensure fast application packaging and reduced deployment rollbacks.
In 2013, he changed his career to be a full-stack developer following the DevOps
movement. Since 2012, he has attended, as a speaker, some of the biggest software
conferences in Brazil—RS on Rails, QConSP, The Developer's Conference, and
RubyConf Brazil—talking not only about Ruby, but also about some of the
well-known DevOps tools such as Terraform, Packer, Ansible, and Docker.
Today, he works as a DevOps consultant in their company.

In his free time, he loves playing the guitar, having some fun with cats, traveling,
and drinking beer. He can be found on his blog (http://salizzar.net), Twitter
(https://twitter.com/salizzar), GitHub (https://github.com/salizzar)
and Linkedin (https://www.linkedin.com/in/salizzar).

He has worked as a reviewer for Vagrant Virtual Development Environment Cookbook,
a Packt Publishing book with useful recipes using vagrant with configuration
management tools such as Puppet, Chef, Ansible, and SaltStack.

I want to thank all my friends, who believed in my potential since
the beginning and who still follow me despite the distance. I would
also like to thank my mentors, Gleicon Moraes, Roberto Gaiser, and
Rodrigo Campos, who gave me the incentive and tips to be a better
software engineer and person.

http://salizzar.net
https://twitter.com/salizzar
https://github.com/salizzar
https://www.linkedin.com/in/salizzar

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com

[i]

Table of Contents
Preface	 v
Chapter 1: Introduction to Docker Monitoring	 1

Pets, Cattle, Chickens, and Snowflakes	 2
Pets	 3
Cattle	 3
Chickens	 3
Snowflakes	 4
So what does this all mean?	 4

Docker	 5
Launching a local environment	 6
Cloning the environment	 8
Running a virtual server	 8
Halting the virtual server	 12
Summary	 13

Chapter 2: Using the Built-in Tools	 15
Docker stats	 15

Running Docker stats	 16
What just happened?	 20
What about processes?	 21

Docker top	 22
Docker exec	 23

Summary	 24
Chapter 3: Advanced Container Resource Analysis	 25

What is cAdvisor?	 25
Running cAdvisor using a container	 26
Compiling cAdvisor from source	 28
Collecting metrics	 30
The Web interface	 30

Table of Contents

[ii]

Overview	 31
Processes	 31
CPU	 33
Memory	 34
Network	 35
Filesystem	 35

Viewing container stats	 36
Subcontainers	 36
Driver status	 36
Images	 37

This is all great, what's the catch?	 37
Prometheus	 37

Launching Prometheus	 39
Querying Prometheus	 40
Dashboard	 41
The next steps	 43

Alternatives?	 44
Summary	 44

Chapter 4: A Traditional Approach to Monitoring Containers	 45
Zabbix	 45
Installing Zabbix	 46

Using containers	 46
Using vagrant	 51
Preparing our host machine	 52
The Zabbix web interface	 54

Docker metrics	 57
Create custom graphs	 58
Compare containers to your host machine	 59
Triggers	 60

Summary	 61
Chapter 5: Querying with Sysdig	 63

What is Sysdig?	 63
Installing Sysdig	 64
Using Sysdig	 65

The basics	 66
Capturing data	 67
Containers	 67
Further reading	 69

Using Csysdig	 69
Summary	 72

Table of Contents

[iii]

Chapter 6: Exploring Third Party Options	 73
A word about externally hosted services	 73

Deploying Docker in the cloud	 74
Why use a SaaS service?	 75
Sysdig Cloud	 76

Installing the agent	 77
Exploring your containers	 80
Summary and further reading	 84

Datadog	 84
Installing the agent	 85
Exploring the web interface	 86
Summary and further reading	 90

New Relic	 90
Installing the agent	 91
Exploring the web interface	 92
Summary and further reading	 95

Summary	 96
Chapter 7: Collecting Application Logs from within the Container	 99

Viewing container logs	 100
ELK Stack	 101

Starting the stack	 102
Logspout	 103
Reviewing the logs	 104
What about production?	 106

Looking at third party options	 107
Summary	 110

Chapter 8: What Are the Next Steps?	 111
Some scenarios	 111

Pets, Cattle, Chickens, and Snowflakes	 111
Pets	 112
Cattle	 112
Chickens	 113
Snowflakes	 113

Scenario one	 114
Scenario two	 115
Scenario three	 116

A little more about alerting	 117
Chickens	 118
Cattle and Pets	 118
Sending alerts	 119

Table of Contents

[iv]

Keeping up	 120
Summary	 121

Index	 123

[v]

Preface
With the increase in the adoption of Docker containers, the need to monitor which
containers are running, what resources they are consuming, and how it affects the
overall performance of the system, has become a time-related need. Monitoring
Docker will teach you how monitoring containers and keeping a keen eye on the
working of applications help to improve the overall performance of the applications
that run on Docker.

This book will cover monitoring containers using Docker's native monitoring
functions, various plugins, and also third-party tools that help in monitoring. The
book will first cover how to obtain detailed stats for the active containers, resources
consumed, and container behavior. This book will also show the readers how to use
these stats to improve the overall performance of the system.

What this book covers
Chapter 1, Introduction to Docker Monitoring, discusses how different it is to monitor
containers compared to more traditional servers such as virtual machines, bare metal
machines, and cloud instances (Pets versus Cattle and Chickens versus Snowflakes).
This chapter also details the operating systems covered in the examples later in this
book and also gives a little information on how to get a local test environment up
and running using vagrant, so that installation instructions and practical examples
can be easily followed.

Chapter 2, Using the Built-in Tools, helps you learn about the basic metrics you can
get out of the vanilla Docker installation and how you can use them. Also, we will
understand how to get real-time statistics on our running containers, how to use
commands that are familiar to us, and how to get information on the processes that
are launched as part of each container.

Preface

[vi]

Chapter 3, Advanced Container Resource Analysis, introduces cAdvisor from Google,
which adds a lot more precision to the basic tools provided by Docker. You will
also learn how to install cAdvisor and start collecting metrics.

Chapter 4, A Traditional Approach to Monitoring Containers, looks at a traditional tool
for monitoring services. By the end of this chapter, you should know your way
around Zabbix and the various ways you can monitor your containers.

Chapter 5, Querying with Sysdig, describes Sysdig as "an open source, system-level
exploration tool to capture system state and activity from a running Linux instance,
then save, filter, and analyze it." In this chapter, you will learn how to use Sysdig to
both view your containers' performance metrics in real time and also record sessions
to query later.

Chapter 6, Exploring Third Party Options, walks you through a few of the Software as
a Service (SaaS) options that are available, why you would use them, and how to
install their clients on the host server.

Chapter 7, Collecting Application Logs from within the Container, looks at how we can
get the content of the log files for the applications running within our containers to
a central location so that they are available even if you have to destroy and replace
a container.

Chapter 8, What Are the Next Steps?, looks at the next steps you can take in monitoring
your containers by talking about the benefits of adding alerting to your monitoring.
Also, we will cover some different scenarios and look at which type of monitoring
is appropriate for each of them.

What you need for this book
To ensure the experience is as consistent as possible, we will be installing vagrant
and VirtualBox to run the virtual machine that will act as a host to run our
containers. Vagrant is available for Linux, OS X, and Windows; for details on how to
install this, see the vagrant website at https://www.vagrantup.com/. The details of
how to download and install VirtualBox can be found at https://www.virtualbox.
org/; again, VirtualBox can be installed on Linux, OS X, and Windows.

Who this book is for
This book is for DevOps engineers and system administrators who want to manage
Docker containers, better manage these containers using expert techniques and
methods, and better maintain applications built on Docker.

https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.virtualbox.org/

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

{
 "fields": {
 "@timestamp": [
 1444567706641
]
 },
 "sort": [
 1444567706641
]
}

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

{
 "fields": {
 "@timestamp": [
 1444567706641
]
 },
 "sort": [
 1444567706641
]
}

Any command-line input or output is written as follows:

cd ~/Documents/Projects/monitoring-docker/vagrant-ubuntu

vagrant up

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Clicking the Next button moves you to the next screen."

Preface

[viii]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from: http://www.packtpub.
com/sites/default/files/downloads/Monitoring_Docker_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/Monitoring_Docker_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Monitoring_Docker_ColorImages.pdf

Preface

[ix]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introduction to Docker
Monitoring

Docker has been a recent but very important addition to a SysAdmins toolbox.

Docker describes itself as an open platform for building, shipping, and running
distributed applications. This means that developers can bundle their code and pass
it to their operations team. From here, they can deploy safe in the knowledge that it
will be done so in a way that introduces consistency with the environment in which
the code is running.

When this process is followed, it should make the age-old developers versus
operations argument of "it worked on my local development server"—a thing of
the past. Since before its "production ready" 1.0 release back in June 2014, there had
been over 10,000 Dockerized applications available. By the end of 2014, that number
had risen to over 71,000. You can see how Docker grew in 2014 by looking at the
infographic that was published by Docker in early 2015, which can be found at
https://blog.docker.com/2015/01/docker-project-2014-a-whirlwind-year-
in-review/.

While the debate is still raging about how production ready the technology is,
Docker has gained an impressive list of technology partners, including RedHat,
Canonical, HP, and even Microsoft.

Companies such as Google, Spotify, Soundcloud, and CenturyLink, have all open
sourced tools that support Docker in some way, shape, or form and there has also
been numerous independent developers who have released apps that provide
additional functionality to the core Docker product set. Also, all the companies
have sprung up around the Docker ecosystem.

https://blog.docker.com/2015/01/docker-project-2014-a-whirlwind-year-in-review/
https://blog.docker.com/2015/01/docker-project-2014-a-whirlwind-year-in-review/

Introduction to Docker Monitoring

[2]

This book assumes that you have had some level of experience building, running,
and managing Docker containers, and that you would now like to start to metrics
from your running applications to further tune them, or that you would like to know
when a problem occurs with a container so that you can debug any ongoing issues.

If you have never used Docker before, you may want to try one of the excellent
books that serve and introduce you to all the things that Docker provides, books
such as Learning Docker, Packt Publishing, or Docker's own introduction to containers,
which can be found at their documentation pages, as follows:

•	 Learning Docker: https://www.packtpub.com/virtualization-and-
cloud/learning-docker

•	 Official Docker docs: https://docs.docker.com/

Now, we have a brought ourselves up to speed with what Docker is; the rest of this
chapter will cover the following topics:

•	 How different is it to monitor containers versus more traditional servers such
as virtual machines, bare metal machine, and cloud instances (Pets, Cattle,
Chickens, and Snowflakes).

•	 What are the minimum versions of Docker you should be running?
•	 How to follow instructions on bringing up an environment locally using

Vagrant in order to follow the practical exercises in this book

Pets, Cattle, Chickens, and Snowflakes
Before we start discussing the various ways in which you can monitor your
containers, we should get an understanding of what a SysAdmins world looks
like these days and also where containers fit into it.

A typical SysAdmin will probably be looking after an estate of servers that are
hosted in either an on-site or third-party data center, some may even manage
instances hosted in a public cloud such as Amazon Web Services or Microsoft
Azure, and some SysAdmins may juggle all their server estates across multiple
hosting environments.

Each of these different environments has its own way of doing things, as well
as performing best practices. Back in February 2012, Randy Bias gave a talk at
Cloudscaling that discussed architectures for open and scalable clouds. Towards the
end of the slide deck, Randy introduced the concept of Pets versus Cattle (which he
attributes to Bill Baker, who was then an engineer at Microsoft).

https://www.packtpub.com/virtualization-and-cloud/learning-docker
https://www.packtpub.com/virtualization-and-cloud/learning-docker
https://docs.docker.com/

Chapter 1

[3]

You can view the original slide deck at http://www.slideshare.net/randybias/
architectures-for-open-and-scalable-clouds.

Pets versus Cattle is now widely accepted as a good analogy to describe modern
hosting practices.

Pets
Pets are akin to traditional physical servers or virtual machines, as follows:

•	 Each pet has a name; for example, myserver.domain.com.
•	 When they're not well, you take them to the vet to help them get better.

You employ SysAdmins to look after them.
•	 You pay close attention to them, sometimes for years. You take backups,

patch them, and ensure that they are fully documented.

Cattle
Cattle, on the other hand, represent more modern cloud computing instances,
as follows:

•	 You've got too many to name, so you give them numbers; for example, the
URL could look something like ip123123123123.eu.public-cloud.com.

•	 When they get sick, you shoot them and if your herd requires it, you replace
anything you've killed: A server crashes or shows signs that it is having
problems, you terminate it and your configuration automatically replaces it
with an exact replica.

•	 You put them in a field and watch them from far and you don't expect them
to live long. Rather than monitoring the individual instances, you monitor
the cluster. When more resources are needed, you add more instances and
once the resource is no longer required, you terminate the instances to get
you back to your base configuration.

Chickens
Next up is a term that is a good way of describing how containers fit into the Pets
versus Cattle world; in a blog post title "Cloud Computing: Pets, Cattle and ...
Chickens?" on ActiveState, Bernard Golden describes containers as Chickens:

•	 They're more efficient than cattle when it comes to resource use. A container
can boot in seconds where a instance or server can take minutes; it also uses
less CPU power than a typical virtual machine or cloud instance.

http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds
http://www.slideshare.net/randybias/architectures-for-open-and-scalable-clouds

Introduction to Docker Monitoring

[4]

•	 There are many more chickens than cattle. You can quite densely pack
containers onto your instances or servers.

•	 Chickens tend to have a shorter lifespan than cattle and pets. Containers lend
themselves to running micros-services; these containers may only be active
for a few minutes.

The original blog post can be found at http://www.activestate.com/
blog/2015/02/cloud-computing-pets-cattle-and-chickens.

Snowflakes
The final term is not animal-related and it describes a type of server that you
defiantly don't want to have in your server estate, a Snowflake. This term was
penned by Martin Fowler in a blog post titled "SnowflakeServer". Snowflakes is a
term applied to "legacy" or "inherited" servers:

•	 Snowflakes are delicate and are treated with kid gloves. Typically, the server
has been in the data center since you started. No one knows who originally
configured it and there is no documentation of it; all you know is that it
is important.

•	 Each one is unique and is impossible to exactly reproduce. Even the most
hardened SysAdmin fears to reboot the machine incase it doesn't boot
afterwards, as it is running end-of-life software that can not easily
be reinstalled.

Martin's post can be found at http://martinfowler.com/bliki/
SnowflakeServer.html.

So what does this all mean?
Depending on your requirements and the application you want to deploy, your
containers can be launched onto either pet or cattle style servers. You can also
create a clutch of chickens and have your containers run micro-services.

Also, in theory, you can replace your feared snowflake servers with a container-
based application that meets all the end-of-life software requirements while
remaining deployable on a modern supportable platform.

Each of the different styles of server has different monitoring requirements, in the
final chapter we will look at Pets, Cattle, Chickens, and Snowflakes again and discuss
the tools we have covered in the coming chapters. We will also cover best practices
you should take into consideration when planning your monitoring.

http://www.activestate.com/blog/2015/02/cloud-computing-pets-cattle-and-chickens
http://www.activestate.com/blog/2015/02/cloud-computing-pets-cattle-and-chickens
http://martinfowler.com/bliki/SnowflakeServer.html
http://martinfowler.com/bliki/SnowflakeServer.html

Chapter 1

[5]

Docker
While Docker hit its version 1.0 milestone over a year ago, it is still in it's infancy;
with each new release comes new features, bug fixes, and even support for some
early functionality that is being depreciated.

Docker itself is now a collection of several smaller projects; these include
the following:

•	 Docker Engine
•	 Docker Machine
•	 Docker Compose
•	 Docker Swarm
•	 Docker Hub
•	 Docker Registry
•	 Kitmatic

In this book, we will be using Docker Engine, Docker Compose, and the Docker Hub.

Docker Engine is the core component of the Docker project and it provides the main
bulk of the Docker functionality. Whenever Docker or the docker command is
mentioned in this book, I will be referring to Docker Engine.

The book assumes you have Docker Engine version 1.71 or later installed; older
versions of Docker Engine may not contain the necessary functionality required
to run the commands and software covered in the upcoming chapters.

Docker Compose started its life as a third-party orchestration tool called Fig
before being purchased by Docker in 2014. It is described as a way of defining a
multi-container application using YAML (http://yaml.org). Simply put, this
means that you quickly deploy complex applications using a single command
that calls a human readable configuration file.

We assume that you have Docker Compose 1.3.3 or later installed; the
docker-compose.yml files mentioned in this book have been written with
this version in mind.

http://yaml.org

Introduction to Docker Monitoring

[6]

Finally, the majority of the images we will be deploying during this book will be
sourced from the Docker Hub (https://hub.docker.com/), which not only houses
a public registry containing over 40,000 public images but also 100 official images.
The following screenshot shows the official repositories listing on the Docker
Hub website:

You can also sign up and use the Docker Hub to host your own public and
private images.

Launching a local environment
Wherever possible, I will try to ensure that the practical exercises in this book will be
able to be run on a local machine such as your desktop or laptop. For the purposes of
this book, I will assume that your local machine is running either a recent version OS
X or an up-to-date Linux distribution and has a high enough specification to run the
software mentioned in this chapter.

https://hub.docker.com/

Chapter 1

[7]

The two tools we will be using to launch our Docker instances will also run on
Windows; therefore, it should be possible to follow the instructions within this,
although you may have to refer the usage guides for any changes to the syntax.

Due to the way in which Docker is architected, a lot of the content of this book will
have you running commands and interacting with the command line on the virtual
server that is acting as the host machine, rather than the containers themselves.
Because of this, we will not be using either Docker Machine or Kitematic.

Both of these are tools provided by Docker to quickly bootstrap a Docker-enabled
virtual server on your local machine, as unfortunately the host machines deployed
by these tools contain a stripped down operating system that is optimized for
running Docker with the smallest footprint as possible.

As we will be installing additional packages on the host machines, a stripped
down "Docker only" operating system may not have the components available to
meet the prerequisites of the software that we will be running in the later chapters;
therefore, to ensure that there are no problems further on, we be running a full
operating system.

Personally, I prefer a RPM-based operating system such as RedHat Enterprise Linux,
Fedora, or CentOS, as I have been using them pretty much since the day I first logged
into a Linux server.

However, as a lot of readers will be familiar with the Debian-based Ubuntu, I will be
providing practical examples for both operating systems.

To ensure the experience is as consistent as possible, we will be installing
Vagrant and VirtualBox to run the virtual machine that will act as a host to
run our containers.

Vagrant, written by Mitchell Hashimoto, is a command line tool for creating and
configuring reproducible and portable virtual machine environments. There have
been numerous blog posts and articles that actually pitch Docker against Vagrant;
however, in our case, the two technologies work quite well together in providing a
repeatable and consistent environment.

Vagrant is available for Linux, OS X, and Windows. For details on how to install,
go to the Vagrant website at https://www.vagrantup.com/.

VirtualBox is a great all round open source virtualization platform originally
developed by Sun and now maintained by Oracle. It allows you to run both 32-
bit and 64-bit guest operating systems on your local machine. Details on how to
download and install VirtualBox can be found at https://www.virtualbox.org/;
again, VirtualBox can be installed on Linux, OS X, and Windows.

https://www.vagrantup.com/
https://www.virtualbox.org/

Introduction to Docker Monitoring

[8]

Cloning the environment
The source for the environment along with the practical examples can be found
on GitHub in the Monitoring Docker repository at https://github.com/
russmckendrick/monitoring-docker.

To clone the repository on a terminal on your local machine, run the following
commands (replacing the file path as needed):

mkdir ~/Documents/Projects

cd ~/Documents/Projects/

git clone https://github.com/russmckendrick/monitoring-docker.git

Once cloned, you should see a directory called monitoring-docker and then enter
that directory, as follows:

cd ~/Documents/Projects/monitoring-docker

Running a virtual server
In the repository, you will find two folders containing the necessary Vagrant file to
launch either a CentOS 7 or a Ubuntu 14.04 virtual server.

If you would like to use the CentOS 7 vagrant box, change the directory to
vagrant-centos:

cd vagrant-centos

Once you are in the vagrant-centos directory, you will see that there is a Vagrant file;
this file is all you need to launch a CentOS 7 virtual server. After the virtual server
has been booted, the latest version of docker and docker-compose will be installed
and the monitoring-docker directory will also be mounted inside the virtual
machine using the mount point /monitoring-docker.

To launch the virtual server, simply type the following command:

vagrant up

This will download the latest version of the vagrant box from https://atlas.
hashicorp.com/russmckendrick/boxes/centos71 and then boot the virtual
server; it's a 450 MB download so it may take several minutes to download; it only
has to do this once.

https://github.com/russmckendrick/monitoring-docker
https://github.com/russmckendrick/monitoring-docker
https://atlas.hashicorp.com/russmckendrick/boxes/centos71
https://atlas.hashicorp.com/russmckendrick/boxes/centos71

Chapter 1

[9]

If all goes well, you should see something similar to the following output:

Now that you have booted the virtual server, you can connect to it using the
following command:

vagrant ssh

Once logged in, you should verify that docker and docker-compose are
both available:

Finally, you can try running the hello-world container using the following command:

docker run hello-world

Introduction to Docker Monitoring

[10]

If everything goes as expected, you should see the following output:

To try something more ambitious, you can run an Ubuntu container with the
following command:

docker run -it ubuntu bash

Before we launch and enter the Ubuntu container, lets confirm that we are running
the CentOS host machine by checking the release file that can be found in /etc:

Chapter 1

[11]

Now, we can launch the Ubuntu container. Using the same command, we can
confirm that we are inside the Ubuntu container by viewing its release file:

To exit the container just type in exit. This will stop the container from running,
as it has terminated the only running process within the container, which was bash,
and returned you to the host CentOS machine.

As you can see here from our CentOS 7 host, we have launched and removed an
Ubuntu container.

Both the CentOS 7 and Ubuntu Vagrant files will configure a static IP address on
your virtual machine. It is 192.168.33.10; also, there is a DNS record for this IP
address available at docker.media-glass.es. These will allow you to access any
containers that expose themselves to a browser at either http://192.168.33.10/
or http://docker.media-glass.es/.

The URL http://docker.media-glass.es/ will only work
while the vagrant box is up, and you have a container running
which serves Web pages.

You can see this in action by running the following command:

docker run -d -p 80:80russmckendrick/nginx-php

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

docker.media-glass.es
http://docker.media-glass.es/
http://docker.media-glass.es/
http://www.packtpub.com
http://www.packtpub.com/support

Introduction to Docker Monitoring

[12]

This will download and launch a container running NGINX. You can then go to
http://192.168.33.10/ or http://docker.media-glass.es/ in your browser;
you should see a forbidden page. This is because we have not yet given NGINX any
content to serve (more on this will be covered later in the book):

For more examples and ideas, go to the website at http://docs.docker.com/
userguide/.

Halting the virtual server
To log out of the virtual server and return to your local machine, you type exit.

You should now see your local machine's terminal prompt; however, the virtual
server you booted will still be running in the background happily, using resources,
until you either power it down using the following command:

vagrant halt

Terminate the virtual server altogether using vagrant destroy:

vagrant destroy

http://docker.media-glass.es/
http://docs.docker.com/userguide/
http://docs.docker.com/userguide/

Chapter 1

[13]

To check the current status of the virtual server, you can run the following command:

vagrant status

The result of the preceding command is given in the following output:

Either powering the virtual server back on or creating it from scratch again, can be
achieved by issuing the vagrant up command again.

The preceding details show how to use the CentOS 7 vagrant box. If you would
prefer to launch an Ubuntu 14.04 virtual server, you can download and install
the vagrant box by going into the vagrant-ubuntu directory using the following
command:

cd ~/Documents/Projects/monitoring-docker/vagrant-ubuntu

vagrant up

From here, you will be able run vagrant up and follow the same instructions used to
boot and interact with the CentOS 7 virtual server.

Summary
In this chapter, we talked about different types of server and also discussed how
your containerized applications can fit into each of the categories. We have also
installed VirtualBox and used Vagrant to launch either a CentOS 7 or Ubuntu 14.04
virtual server, with docker and docker-compose installed.

Our new virtual server environment will be used throughout the upcoming
chapters to test the various different types of monitoring. In the next chapter,
we will start our journey by using Docker's in-built functionality to explore
metrics about our running containers.

[15]

Using the Built-in Tools
In the later chapters of this book, we will explore the monitoring parts of the large
eco-system that has started to flourish around Docker over the last 24 months.
However, before we press ahead with that, we should take a look at what is
possible with a vanilla installation of Docker. In this chapter, we will cover the
following topics:

•	 Using the tools built into Docker to get real-time metrics on
container performance

•	 Using standard operating system commands to get metrics on what
Docker is doing

•	 Generating a test load so you can view the metrics changing

Docker stats
Since version 1.5, there has been a basic statistic command built into Docker:

docker stats --help

Usage: docker stats [OPTIONS] CONTAINER [CONTAINER...]

Display a live stream of one or more containers' resource usage
statistics

 --help=false Print usage

 --no-stream=false Disable streaming stats and only pull the first
result

Using the Built-in Tools

[16]

This command will stream details of the resource utilization of your containers in
real time. The best way to find out about the command is to see it in action.

Running Docker stats
Let's launch a container using the vagrant environment, which we covered in the
last chapter:

[russ@mac ~]$ cd ~/Documents/Projects/monitoring-docker/vagrant-centos/

[russ@mac ~]$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

==> default: Importing base box 'russmckendrick/centos71'...

==> default: Matching MAC address for NAT networking...

==> default: Checking if box 'russmckendrick/centos71' is up to date...

.....

==> default: => Installing docker-engine ...

==> default: => Configuring vagrant user ...

==> default: => Starting docker-engine ...

==> default: => Installing docker-compose ...

==> default: => Finished installation of Docker

[russ@mac ~]$ vagrant ssh

Now that you are connected to the vagrant server, launch the container using the
Docker compose file in /monitoring_docker/Chapter01/01-basic/:

[vagrant@centos7 ~]$ cd /monitoring_docker/Chapter01/01-basic/

[vagrant@centos7 01-basic]$ docker-compose up -d

Creating 01basic_web_1...

You have now pulled down and launched a container in the background. The
container is called 01basic_web_1 and it runs NGINX and PHP serving a single
PHP information page (http://php.net/manual/en/function.phpinfo.php).

To check whether everything has been launched as expected, run docker-compose
ps. You should see your single container with State of Up:

[vagrant@centos7 01-basic]$ docker-compose ps

 Name Command State Ports

01basic_web_1 /usr/local/bin/run Up 0.0.0.0:80->80/tcp

http://php.net/manual/en/function.phpinfo.php

Chapter 2

[17]

Finally, you should be able to see the page containing the output of the PHP
information at http://192.168.33.10/ (this IP address is hardcoded into the
vagrant configuration), if you put it in your local browser:

Now, you have a container up and running; let's look at some of the basic stats.
We know from the output of docker-compose that our container is called
01basic_web_1, so enter the following command to start streaming statistics
in your terminal:

docker stats 01basic_web_1

Using the Built-in Tools

[18]

It will take a second to initiate; after this is done, you should see your container listed
along with the statistics for the following:

•	 CPU %: This shows you how much of the available CPU resource the
container is currently using.

•	 MEM USEAGE/LIMIT: This tells you how much RAM the container is
utilizing; it also displays how much allowance the container has. If you
haven't explicitly set a limit, it will show the total amount of RAM on the
host machine.

•	 MEM %: This shows you what percentage of the RAM allowance the container
is using.

•	 NET I/O: This gives a running total of how much bandwidth has been
transferred in and out of the container.

If you go back to your browser window and start to refresh http://192.168.33.10/,
you will see that the values in each of the columns start to change. To stop streaming
the statistics, press Ctrl + c.

Rather than keeping on hitting refresh over and over again, let's generate a lot of
traffic to 01basic_web_1, which should put the container under a heavy load.

Here, we will launch a container that will send 10,000 requests to 01basic_web_1
using ApacheBench (https://httpd.apache.org/docs/2.2/programs/ab.html).
Although it will take a minute or two to execute, we should run docker stats as
soon as possible:

docker run -d --name=01basic_load --link=01basic_web_1 russmckendrick/ab
ab -k -n 10000 -c 5 http://01basic_web_1/ && docker stats 01basic_web_1
01basic_load

After the ApacheBench image has been downloaded and the container that will be
called 01basic_load starts, you should see the statistics for both 01basic_web_1
and 01basic_load begin to stream in your terminal:

CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O

01basic_load 18.11% 12.71 MB/1.905 GB 0.67% 335.2 MB/5.27 MB

01basic_web_1 139.62% 96.49 MB/1.905 GB 5.07% 5.27 MB/335.2 MB

After a while, you will notice that most of the statistics for 01basic_load will drop
off to zero; this means that the test has completed and that the container running
the test has exited. The docker stats command can only stream statistics for the
running containers; ones that have exited are no longer running and, therefore,
do not produce output when running docker stats.

https://httpd.apache.org/docs/2.2/programs/ab.html

Chapter 2

[19]

Exit from docker stats using Ctrl + c; to see the results of the ApacheBench
command, you can type docker logs 01basic_load; you should see something
like the following screenshot:

You shouldn't worry if you see any failures like in the preceding output. This
exercise was purely to demonstrate how to view the statistics of the running
containers and not to tune a web server to handle the amount of traffic we sent
to it using ApacheBench.

To remove the containers that we launched, run the following commands:

[vagrant@centos7 01-basic]$ docker-compose stop

Stopping 01basic_web_1...

[vagrant@centos7 01-basic]$ docker-compose rm

Going to remove 01basic_web_1

Are you sure? [yN] y

Removing 01basic_web_1...

[vagrant@centos7 01-basic]$ docker rm 01basic_load

01basic_load

Using the Built-in Tools

[20]

To check whether everything has been removed successfully, run docker ps -a and
you should not be able to see any running or exited containers that have 01basic_ in
their names.

What just happened?
While running the ApacheBench test, you may have noticed that the CPU utilization
on the container running NGINX and PHP was high; in the example in the previous
section, it was using 139.62 percent of the available CPU resource.

As we did not attach any resource limits to the containers we launched, it was easy
for our test to use all of the available resources on the host Virtual Machine (VM).
If this VM was being used by several users, all running their own containers, they
may have started to notice that their applications had started to slow down or,
even worse, the applications had started showing errors.

If you ever find yourself in this situation, you can use docker stats to help track
down the culprit.

Running docker stats $(docker ps -q) will stream the statistics for all the
currently running containers:

CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O

361040b7b33e 0.07% 86.98 MB/1.905 GB 4.57% 2.514 kB/738 B

56b459ae9092 120.06% 87.05 MB/1.905 GB 4.57% 2.772 kB/738 B

a3de616f84ba 0.04% 87.03 MB/1.905 GB 4.57% 2.244 kB/828 B

abdbee7b5207 0.08% 86.61 MB/1.905 GB 4.55% 3.69 kB/738 B

b85c49cf740c 0.07% 86.15 MB/1.905 GB 4.52% 2.952 kB/738 B

As you may have noticed, this displays the container ID rather than the name; this
information should, however, be enough to spot the resource hog so that you can
quickly stop it:

[vagrant@centos7 01-basic]$ docker stop 56b459ae9092

56b459ae9092

Chapter 2

[21]

Once stopped, you can then get the name of the rogue container by running the
following command:

[vagrant@centos7 01-basic]$ docker ps -a | grep 56b459ae9092

56b459ae9092 russmckendrick/nginx-php "/usr/local/bin/run" 9
minutes ago Exited (0) 26 seconds ago my_bad_container

Alternatively, for more detailed information, you can run docker inspect
56b459ae9092, which will give you all the information you need on the container.

What about processes?
One of the great things about Docker is that it isn't really virtualization; as mentioned
in the previous chapter, it is a great way of isolating processes rather than running an
entire operating system.

This can get confusing when running tools such as top or ps. To get an idea just how
confusing this can get, lets launch several containers using docker-compose and see
for ourselves:

[vagrant@centos7 ~]$ cd /monitoring_docker/Chapter01/02-multiple

[vagrant@centos7 02-multiple]$ docker-compose up -d

Creating 02multiple_web_1...

[vagrant@centos7 02-multiple]$ docker-compose scale web=5

Creating 02multiple_web_2...

Creating 02multiple_web_3...

Creating 02multiple_web_4...

Creating 02multiple_web_5...

Starting 02multiple_web_2...

Starting 02multiple_web_3...

Starting 02multiple_web_4...

Starting 02multiple_web_5...

Using the Built-in Tools

[22]

Now, we have five web servers that have all been launched from the same image
using the same configuration. One of the first things I do when logging into a server
to troubleshoot a problem is run ps -aux; this will show all the running processes.
As you can see, when running the command, there are a lot processes listed.

Even just trying to look at the processes for NGINX is confusing, as there is nothing
to differentiate the processes from one container to another, as shown in the
following output:

So, how can you know which container owns which processes?

Docker top
This command lists all the processes that are running within a container; think of it
as a way of filtering the output of the ps aux command we ran on the host machine:

Chapter 2

[23]

As docker top is an implementation of the standard ps command, any flags you
would normally pass to ps should work as follows:

[vagrant@centos7 02-multiple]$ docker top 02multiple_web_3 –aux

[vagrant@centos7 02-multiple]$ docker top 02multiple_web_3 -faux

Docker exec
Another way to view what is going on within a container is to enter it. To enable
you to do this, Docker introduced the docker exec command. This allows you
to spawn an additional process within an already running container and then
attach to the process; so, if we wanted to look at what is currently running on
02multiple_web_3, we should use the following command spawn a bash shell
within an already running container:

docker exec -t -i 02multiple_web_3 bash

Once you have an active shell on the container, you will notice that your prompt
has changed to the container's ID. Your session is now isolated to the container's
environment, meaning that you will only be able to interact with the processes
belonging to the container you entered.

Using the Built-in Tools

[24]

From here, you can run the ps aux or top command as you would do on the
host machine, and only see the processes associated with the container you are
interested in:

To leave the container, type in exit, you should see your prompt change back in
your host machine.

Finally, you can stop and remove the containers by running docker-compose stop
and docker-compose kill.

Summary
In this chapter, we saw how we can get real-time statistics on our running containers
and how we can use commands that are familiar to us, to get information on the
processes that are launched as part of each container.

On the face of it, docker stats seems like a really basic piece of functionality that
isn't really anything more than a tool to help you identify which container is using
all the resources while a problem is occurring. However, the Docker command is
actually pulling the information from a quite powerful API.

This API forms the basis for a lot of the monitoring tools we will be looking at in the
next few chapters.

[25]

Advanced Container
Resource Analysis

In the last chapter, we looked at how you can use the API built into Docker to gain
an insight to what resources your containers are running. Now, we are to see how
we can take it to the next level by using cAdvisor from Google. In this chapter,
you will cover the following topics:

•	 How to install cAdvisor and start collecting metrics
•	 Learn all about the web interface and real-time monitoring
•	 What your options are for shipping metrics to a remote Prometheus database

for long-term storage and trend analysis

What is cAdvisor?
Google describes cAdvisor as follows:

"cAdvisor (Container Advisor) provides container users an understanding of the
resource usage and performance characteristics of their running containers. It is a
running daemon that collects, aggregates, processes, and exports information about
running containers. Specifically, for each container, it keeps resource isolation
parameters, historical resource usage, histograms of complete historical resource
usage, and network statistics. This data is exported by a container and is
machine-wide."

The project started off life as an internal tool at Google for gaining an insight into
containers that had been launched using their own container stack.

Advanced Container Resource Analysis

[26]

Google's own container stack was called "Let Me Contain That For You"
or lmctfy for short. The work on lmctfy has been installed as a Google
port functionality over to libcontainer that is part of the Open Container
Initiative. Further details on lmctfy can be found at https://github.
com/google/lmctfy/.

cAdvisor is written in Go (https://golang.org); you can either compile your
own binary or you can use the pre-compiled binary that are supplied via a container,
which is available from Google's own Docker Hub account. You can find this at
http://hub.docker.com/u/google/.

Once installed, cAdvisor will sit in the background and capture metrics that are
similar to that of the docker stats command. We will go through these stats
and understand what they mean later in this chapter.

cAdvisor takes these metrics along with those for the host machine and exposes them
via a simple and easy-to-use built-in web interface.

Running cAdvisor using a container
There are a number of ways to install cAdvisor; the easiest way to get started is
to download and run the container image that contains a copy of a precompiled
cAdvisor binary.

Before running cAdvisor, let's launch a fresh vagrant host:

[russ@mac ~]$ cd ~/Documents/Projects/monitoring-docker/vagrant-centos/

[russ@mac ~]$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

==>default: Importing base box 'russmckendrick/centos71'...

==>default: Matching MAC address for NAT networking...

==>default: Checking if box 'russmckendrick/centos71' is up to date...

.....

==>default: => Installing docker-engine ...

==>default: => Configuring vagrant user ...

==>default: => Starting docker-engine ...

==>default: => Installing docker-compose ...

==>default: => Finished installation of Docker

[russ@mac ~]$ vagrantssh

https://github.com/google/lmctfy/
https://github.com/google/lmctfy/
https://golang.org
http://hub.docker.com/u/google/

Chapter 3

[27]

Using a backslash
As we have a lot options to pass to the docker run command, we
are using \ to split the command over multiple lines so it's easier to
follow what is going on.

Once you have access to the host machine, run the following command:

docker run \

 --detach=true \

 --volume=/:/rootfs:ro \

 --volume=/var/run:/var/run:rw \

 --volume=/sys:/sys:ro \

 --volume=/var/lib/docker/:/var/lib/docker:ro \

 --publish=8080:8080 \

 --privileged=true \

 --name=cadvisor \

google/cadvisor:latest

You should now have a cAdvisor container up and running on your host machine.
Before we start, let's look at cAdvisor in more detail by discussing why we have
passed all the options to the container.

The cAdvisor binary is designed to run on the host machine alongside the Docker
binary, so by launching cAdvisor in a container, we are actually isolating the binary
in its down environment. To give cAdvisor access to the resources it requires on
the host machine, we have to mount several partitions and also give the container
privileged access to let the cAdvisor binary think it is being executed on the
host machine.

When a container is launched with --privileged, Docker will enable
full access to devices on the host machine; also, Docker will configure
both AppArmor or SELinux to allow your container the same access to
the host machine as a process running outside the container will have. For
information on the --privileged flag, see this post on the Docker blog
at http://blog.docker.com/2013/09/docker-can-now-run-
within-docker/.

http://blog.docker.com/2013/09/docker-can-now-run-within-docker/
http://blog.docker.com/2013/09/docker-can-now-run-within-docker/

Advanced Container Resource Analysis

[28]

Compiling cAdvisor from source
As mentioned in the previous section, cAdvisor really ought to be executed on the
host machine; this means, you may have to use a case to compile your own cAdvisor
binary and run it directly on the host.

To compile cAdvisor, you will need to perform the following steps:

1.	 Install Go and Mercurial on the host machine—version 1.3 or higher of Go is
needed to compile cAdvisor.

2.	 Set the path for Go to work from.
3.	 Grab the source code for cAdvisor and godep.
4.	 Set the path for your Go binaries.
5.	 Build the cAdvisor binary using godep to source the dependencies for us.
6.	 Copy the binary to /usr/local/bin/.
7.	 Download either an Upstart or Systemd script and launch the process.

If you followed the instructions in the previous section, you will already have a
cAdvisor process running. Before compiling from source, you should start with a
clean host; let's log out of the host and launch a fresh copy:

[vagrant@centos7 ~]$ exit

logout

Connection to 127.0.0.1 closed.

[russ@mac ~]$ vagrant destroy

default: Are you sure you want to destroy the 'default' VM? [y/N] y

==>default: Forcing shutdown of VM...

==>default: Destroying VM and associated drives...

==>default: Running cleanup tasks for 'shell' provisioner...

[russ@mac ~]$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

==>default: Importing base box 'russmckendrick/centos71'...

==>default: Matching MAC address for NAT networking...

==>default: Checking if box 'russmckendrick/centos71' is up to date...

.....

==>default: => Installing docker-engine ...

==>default: => Configuring vagrant user ...

Chapter 3

[29]

==>default: => Starting docker-engine ...

==>default: => Installing docker-compose ...

==>default: => Finished installation of Docker

[russ@mac ~]$ vagrantssh

To build cAdvisor on the CentOS 7 host, run the following command:

sudo yum install -y golanggit mercurial

export GOPATH=$HOME/go

go get -d github.com/google/cadvisor

go get github.com/tools/godep

export PATH=$PATH:$GOPATH/bin

cd $GOPATH/src/github.com/google/cadvisor

godep go build .

sudocpcadvisor /usr/local/bin/

sudowgethttps://gist.githubusercontent.com/russmckendrick/
f647b2faad5d92c96771/raw/86b01a044006f85eebbe395d3857de1185ce4701/
cadvisor.service -O /lib/systemd/system/cadvisor.service

sudosystemctl enable cadvisor.service

sudosystemctl start cadvisor

On the Ubuntu 14.04 LTS host, run the following command:

sudo apt-get -y install software-properties-common

sudo add-apt-repository ppa:evarlast/golang1.4

sudo apt-get update

sudo apt-get -y install golang mercurial

export GOPATH=$HOME/go

go get -d github.com/google/cadvisor

go get github.com/tools/godep

export PATH=$PATH:$GOPATH/bin

cd $GOPATH/src/github.com/google/cadvisor

godep go build .

sudocpcadvisor /usr/local/bin/

sudowgethttps://gist.githubusercontent.com/russmckendrick/
f647b2faad5d92c96771/raw/e12c100d220d30c1637bedd0ce1c18fb84beff77/
cadvisor.conf -O /etc/init/cadvisor.conf

sudo start cadvisor

Advanced Container Resource Analysis

[30]

You should now have a running cAdvisor process. You can check this by running
ps aux | grep cadvisor and you should see a process with a path of /usr/local/
bin/cadvisor running.

Collecting metrics
Now, you have cAdvisor running; what do you need to do to configure the service
in order to start collecting metrics? The short answer is, nothing at all. When you
started the cAdvisor process, it instantly started polling your host machine to find
out what containers are running and gathered information on both the running
containers and your host machine.

The Web interface
cAdvisor should be running on the 8080 port; if you open
http://192.168.33.10:8080/, you should be greeted with the cAdvisor
logo and an overview of your host machine:

Chapter 3

[31]

This initial page streams live stats about the host machine, though each section
is repeated when you start to drill down and view the containers. To start with,
let's look at each section using the host information.

Overview
This overview section gives you a bird's-eye view of your system; it uses gauges
so you can quickly get an idea of which resources are reaching their limits. In the
following screenshot, there is very little in the way of CPU utilization and the file
system usage is relatively low; however, we are using 64% of the available RAM:

Processes
The following screenshot displays a combined view of the output of the ps aux,
dockerps and top commands we used in the previous chapter:

Advanced Container Resource Analysis

[32]

Here is what each column heading means:

•	 User: This shows which user is running the process
•	 PID: This is the unique process ID
•	 PPID: This is the PID of the parent process
•	 Start Time: This shows what time the process started
•	 CPU %: This is the percentage of the CPU the process is currently consuming
•	 MEM %: This is the percentage of the RAM the process is

currently consuming
•	 RSS: This shows how much of the main memory the process is using
•	 Virtual Size: This shows how much of the virtual memory the process

is using
•	 Status: This shows the current status of the process; this are the standard

Linux process state codes
•	 Running Time: This shows how long the process has been running
•	 Command: This shows which command the process is running
•	 Container: This shows which container the process is attached to;

the container listed as / is the host machine

As there could be several hundred processes active, this section is split into pages;
you can navigate to these with the buttons on the bottom-left. Also, you can sort the
processes by clicking on any of the headings.

Chapter 3

[33]

CPU
The following graph shows the CPU utilization over the last minute:

Advanced Container Resource Analysis

[34]

Here is what each term means:

•	 Total Usage: This shows an aggregate usage across all cores
•	 Usage per Core: This graph breaks down the usage per core
•	 Usage Breakdown (not shown in the preceding screenshot): This shows

aggregate usage across all cores, but breaks it down to what is being used
by the kernel and what is being used by the user-owned processes

Memory
The Memory section is split into two parts. The graph tells you the total amount of
memory used by all the processes for the host or container; this is the total of the
hot and cold memory. The Hot memory is the current working set: pages that have
been touched by the kernel recently. The Cold memory is the page that hasn't been
touched for a while and could be reclaimed if needed.

The Usage Breakdown gives a visual representation of the total memory in the host
machine, or allowance in the container, alongside the total and hot usage:

Chapter 3

[35]

Network
This section shows the incoming and outgoing traffic over the last minute. You can
change the interface using the drop-down box on the top-left. There is also a graph
that shows any networking errors. Typically, this graph should be flat. If it isn't,
then you will be seeing performance issues with your host machine or container:

Filesystem
The final section gives a break down of the filesystem usage. In the following
screenshot, /dev/sda1 is the boot partition, /dev/sda3 is the main filesystem,
and /dev/mapper/docker-8… is an aggregate of the write file systems of your
running containers:

Advanced Container Resource Analysis

[36]

Viewing container stats
At the top of the page, there is a link of your running containers; you can either
click on the link or go directly to http://192.168.33.10:8080/docker/. Once
the page loads, you should see a list of all your running containers, and also a
detailed overview of your Docker process, and finally a list of the images you have
downloaded.

Subcontainers
Subcontainers shows a list of your containers; each entry is a clickable link that will
take you to a page that will give you the following details:

•	 Isolation:
°° CPU: This shows you the CPU allowances of the container;

if you have not set any resource limits, you will see the host's
CPU information

°° Memory: This shows you the memory allowances of the container;
if you have not set any resource limits, your container will show an
unlimited allowance

•	 Usage:

°° Overview: This shows gauges so you can quickly see how close to
any resource limits you are

°° Processes: This shows the processes for just your selected container
°° CPU: This shows the CPU utilization graphs isolated to just

your container
°° Memory: This shows the memory utilization of your container

Driver status
The driver gives the basic stats on your main Docker process, along with the
information on the host machine's kernel, host name, and also the underlying
operating system.

It also gives information on the total number of containers and images. You may
notice that the total number of images is a much larger figure than you expected to
see; this is because it is counting each file system as an individual image.

Chapter 3

[37]

For more details on Docker images, see the Docker user guide at
https://docs.docker.com/userguide/dockerimages/.

It also gives you a detailed breakdown of your storage configuration.

Images
Finally, you get a list of the Docker images which are available on the host
machine. It lists the Repository, Tag, Size, and when the image was created, along
with the images' unique ID. This lets you know where the image originated from
(Repository), which version of the image you have downloaded (Tag) and how big
the image is (Size).

This is all great, what's the catch?
So you are maybe thinking to yourself that all of this information available in your
browser is really useful; being able to see real-time performance metrics in an easily
readable format is a really plus.

The biggest drawback of using the web interface for cAdvisor, as you may have
noticed, is that it only shows you one minute's worth of metrics; you can quite
literally see the information disappearing in real time.

As a pane of glass gives a real-time view into your containers, cAdvisor is a brilliant
tool; if you want to review any metrics that are older than one minute, you are out
of luck.

That is, unless you configure somewhere to store all of your data; this is where
Prometheus comes in.

Prometheus
So what's Prometheus? Its developers describe it as follows:

Prometheus is an open-source system's monitoring and alerting toolkit built
at SoundCloud. Since its inception in 2012, it has become the standard for
instrumenting new services at SoundCloud and is seeing growing external usage
and contributions.

OK, but what does that have to do with cAdvisor? Well, Prometheus has quite a
powerful database backend that stores the data it imports as a time series of events.

https://docs.docker.com/userguide/dockerimages/

Advanced Container Resource Analysis

[38]

Wikipedia describes a time series as follows:

"A time series is a sequence of data points, typically consisting of successive
measurements made over a time interval. Examples of time series are ocean
tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial
Average. Time series are very frequently plotted via line charts."

https://en.wikipedia.org/wiki/Time_series

One of the things cAdvisor does, by default, is expose all the metrics it is capturing
on a single page at /metrics; you can see this at http://192.168.33.10:8080/
metrics on our cAdvisor installation. The metrics are updated each time the page
is loaded:

As you can see in the preceding screenshot, this is just a single long page of raw
text. The way Prometheus works is that you configure it to scrape the /metrics
URL at a user-defined interval, let's say every five seconds; the text is in a format
that Prometheus understands and it is ingested into the Prometheus's time series
database.

What this means is that, using Prometheus's powerful built-in query language,
you can start to drill down into your data. Let's look at getting Prometheus up
and running.

https://en.wikipedia.org/wiki/Time_series

Chapter 3

[39]

Launching Prometheus
Like cAdvisor there are several ways you can launch Prometheus. To start with,
we will launch a container and inject our own configuration file so that Prometheus
knows where our cAdvisor endpoint is:

docker run \

 --detach=true \

 --volume=/monitoring_docker/Chapter03/prometheus.yml:/etc/prometheus/
prometheus.yml \

 --publish=9090:9090 \

 --name=prometheus \

prom/prometheus:latest

Once you have launched the container, Prometheus will be accessible on the
following URL: http://192.168.33.10:9090. When you first load the URL, you
will be taken to a status page; this gives some basic information on the Prometheus
installation. The important part of this page is the list of targets. This lists the URL
that Prometheus will be scrapping to capture metrics; you should see your cAdvisor
URL listed with a state of HEALTHY, as shown in the following screenshot:

Another information page contains the following:

•	 Runtime information: This displays how long Prometheus has been up and
polling data, if you have configured an endpoint

•	 Build information: This contains the details of the version of Prometheus
that you have been running

•	 Configuration: This is a copy of the configuration file we injected into the
container when it was launched

•	 Rules: This is a copy of any rules we injected; these will be used for alerting
•	 Startup flags: This shows all the runtime variables and their values

Advanced Container Resource Analysis

[40]

Querying Prometheus
As we only have a few containers up and running at the moment, let's launch one
that runs Redis so we can start to look at the query language built into Prometheus.

We will use the official Redis image for this and as we are only going to use this as
an example we won't need to pass it any user variables:

docker run --name my-redis-server -d redis

We now have a container called my-redis-server running. cAdvisor should
already be exposing metrics about the container to Prometheus; let's go ahead and
see. In the Prometheus web interface, go to the Graph link in the menu at the top of
the page. Here, you will be presented with a text box into which you can enter your
query. To start with, let's look at the CPU usage of the Redis container.

In the box, enter the following:

container_cpu_usage_seconds_total{job="cadvisor",name="my-redis-
server"}

Then, after clicking on Execute, you should have two results returned, listed in the
Console tab of the page. If you remember, cAdvisor records the CPU usage of each
of the CPU cores that the container has access to, which is why we have two values
returned, one for "cpu00" and one for "cpu01". Clicking on the Graph link will show
you results over a period of time:

Chapter 3

[41]

As you can see in the preceding screenshot, we now have access to the usage graphs
for the last 25 minutes, which is about how long ago I launched the Redis instance
before generating the graph.

Dashboard
Also, when creating one of the graphs using the query tool in the main application,
you can install a separate Dashboard application. This runs in a second container
that connects to your main Prometheus container using the API as a data source.

Before we start the Dashboard container, we should initialize a SQLite3 database to
store our configuration. To ensure that the database is persistent, we will store this
on the host machine in /tmp/prom/file.sqlite3:

docker run \

 --volume=/tmp/prom:/tmp/prom \

 -e DATABASE_URL=sqlite3:/tmp/prom/file.sqlite3 \

prom/promdash ./bin/rake db:migrate

Once we have initialized the database, we can launch the Dashboard
application properly:

docker run \

 --detach=true \

 --volume=/tmp/prom:/tmp/prom \

 -e DATABASE_URL=sqlite3:/tmp/prom/file.sqlite3 \

 --publish=3000:3000 \

 --name=promdash \

prom/promdash

The application should now be accessible at http://192.168.33.10:3000/. The
first thing we need to do is set up the data source. To do this, click on the Servers
link at the top of the screen and then click on New Server. Here, you will be asked
to provide the details of your Prometheus server. Name the server and enter the
following URL:

•	 Name: cAdvisor
•	 URL: http://192.168.33.10:9090
•	 Server Type: Prometheus

Advanced Container Resource Analysis

[42]

Once you click on Create Server, you should receive a message saying Server was
successfully created. Next up, you need to create a directory; this is where your
dashboards will be stored.

Click on the Dashboards link in the top menu and then click on New directory and
create one called Test directory. Now, you are ready to start creating Dashboards.
Click on New Dashboard, call it My Dashboard, place it in Test directory. Once
you click on Create Dashboard, you will be taken to the preview screen.

From here, you can build up dashboards using the control in the top right-hand side
of each section. To add data, you simply enter the query you would like to see in the
dashboard section:

For detailed information on how to create Dashboards, see the
PROMDASH section of the Prometheus documentation at
http://prometheus.io/docs/visualization/promdash/.

http://prometheus.io/docs/visualization/promdash/

Chapter 3

[43]

The next steps
At the moment, we are running Prometheus in a single container and its data is
being stored within that same container. This means, if for any reason the container
is terminated, our data is lost; it also means that we can't upgrade without loosing
out data. To get around this problem, we can create a data volume container.

A data volume container is a special type of container that only
exists as storage for other containers. For more details, see the
Docker user guide at https://docs.docker.com/userguide/
dockervolumes/#creating-and-mounting-a-data-volume-
container.

First of all, let's make sure we have removed all the running Prometheus containers:

docker stop prometheus&&dockerrm Prometheus

Next up, let's create a data container called promdata:

docker create \

 --volume=/promdata \

 --name=promdata \

prom/prometheus /bin/true

Finally, launch Prometheus again, this time, using the data container:

docker run \

 --detach=true \

 --volumes-from promdata \

 --volume=/monitoring_docker/Chapter03/prometheus.yml:/etc/prometheus/
prometheus.yml \

 --publish=9090:9090 \

 --name=prometheus \

prom/prometheus

This will ensure that, if you have to upgrade or relaunch your container, the metrics
you have been capturing are safe and sound.

https://docs.docker.com/userguide/dockervolumes/#creating-and-mounting-a-data-volume-container
https://docs.docker.com/userguide/dockervolumes/#creating-and-mounting-a-data-volume-container
https://docs.docker.com/userguide/dockervolumes/#creating-and-mounting-a-data-volume-container

Advanced Container Resource Analysis

[44]

We have only touched on the basics of using Prometheus in this section of the book;
for further information on the application, I recommend the following links as a
good starting point:

•	 Documentation: http://prometheus.io/docs/introduction/overview/
•	 Twitter: https://twitter.com/PrometheusIO
•	 Project page: https://github.com/prometheus/prometheus
•	 Google groups: https://groups.google.com/forum/#!forum/

prometheus-developers

Alternatives?
There are some alternatives to Prometheus. One such alternative is InfluxDB that
describes itself as follows:

An open-source distributed time series database with no external dependencies.

However, at the time of writing, cAdvisor is not currently compatible with the latest
version of InfluxDB. There are patches in the codebase for cAdvisor; however, these
are yet to make it through to the Google-maintained Docker Image.

For more details on InfluxDB and it's new visualization complain application
Chronograf, see the project website at https://influxdb.com/ and for more details
on how to export cAdvisor statistics to InfluxDB, see the supporting documentation
for cAdvisor at https://github.com/google/cadvisor/tree/master/docs.

Summary
In this chapter, we learned how to take the viewing real-time statistics of our
containers off the command line and into the web browser. We explored some
different methods to install Google's cAdvisor application and also how to use its
web interface to keep an eye on our running containers. We also learned how to
capture metrics from cAdvisor and store them using Prometheus, a modern time
series database.

The two main technologies we have covered in this chapter have only been
publically available for less than twelve months. In the next chapter, we will
look at using a monitoring tool that has been in a SysAdmins toolbox for over
10 years—Zabbix.

http://prometheus.io/docs/introduction/overview/
https://twitter.com/PrometheusIO
https://github.com/prometheus/prometheus
https://groups.google.com/forum/#!forum/prometheus-developers
https://groups.google.com/forum/#!forum/prometheus-developers
https://influxdb.com/
https://github.com/google/cadvisor/tree/master/docs

[45]

A Traditional Approach to
Monitoring Containers

So far, we have looked at only a few technologies to monitor our containers, so in
this chapter, we will be looking more at a traditional tool for monitoring services.
By the end of this chapter, you should know your way around Zabbix and the
various ways you can monitor your containers. We will cover the following
topics in this chapter:

•	 How to run a Zabbix Server using containers
•	 How to launch a Zabbix Server on a vagrant machine
•	 How to prepare our host system for monitoring containers using the

Zabbix agent
•	 How to find your way around the Zabbix web interface

Zabbix
First things first, what is Zabbix and why use it?

I have personally been using it since version 1.2; the Zabbix site describes it
as follows:

"With Zabbix, it is possible to gather virtually limitless types of data from the
network. High-performance real-time monitoring means that tens of thousands of
servers, virtual machines, and network devices can be monitored simultaneously.
Along with storing the data, visualization features are available (overviews, maps,
graphs, screens, and so on), as well as very flexible ways of analyzing the data for
the purpose of alerting.

A Traditional Approach to Monitoring Containers

[46]

Zabbix offers great performance for data gathering and can be scaled to very large
environments. Distributed monitoring options are available with the use of Zabbix
proxies. Zabbix comes with a web-based interface, secure user authentication, and
a flexible user permission schema. Polling and trapping is supported, with native
high-performance agents gathering data from virtually any popular operating
system; agent-less monitoring methods are available as well."

At the time I started using Zabbix, the only real viable options were as follows:

•	 Nagios: https://www.nagios.org/
•	 Zabbix: http://www.zabbix.com/
•	 Zenoss: http://www.zenoss.org/

Out of the these three options, Zabbix seemed to be the most straightforward one
at the time. It was doing enough work to manage the several hundred servers I was
going to monitor without having to have the extra work of learning the complexities
of setting up Nagios or Zenoss; after all, given the task the software had, I needed to
be able to trust that I had set it up correctly.

In this chapter, while I am going to go into some detail about the setup and the basics
of using Zabbix, we will only be touching on some of the functionalities, which can
do a lot more than just monitor your containers. For more information, I would
recommend the following as a good starting point:

•	 Zabbix blog: http://blog.zabbix.com
•	 Zabbix 2.4 manual: https://www.zabbix.com/documentation/2.4/manual
•	 Further reading: https://www.packtpub.com/all/?search=zabbix

Installing Zabbix
As you may have noticed from the links in the previous section, there are a lot
of moving parts in Zabbix. It leverages several open source technologies, and a
production-ready installation needs a little more planning than we can go into in
this chapter. Because of this we are going to look at two ways of installing Zabbix
quickly rather go into too much detail.

Using containers
At the time of writing, there are over a hundred Docker images available on the
Docker Hub (https://hub.docker.com) that mentions Zabbix. These range
from full server installations to just the various parts, such as the Zabbix agent
or proxy services.

https://www.nagios.org/
http://www.zabbix.com/
http://www.zenoss.org/
http://blog.zabbix.com
https://www.zabbix.com/documentation/2.4/manual
https://www.packtpub.com/all/?search=zabbix
https://hub.docker.com

Chapter 4

[47]

Out of the ones listed, there is one that is recommend by Zabbix itself. So, we will
look at this one; it can be found at the following URLs:

•	 Docker Hub: https://hub.docker.com/u/zabbix/
•	 Project page: https://github.com/zabbix/zabbix-community-docker

To get the ZabbixServer container up and running, we must first launch a
database container. Let's start afresh with our vagrant instance by running the
following command:

[russ@mac ~]$ cd ~/Documents/Projects/monitoring-docker/vagrant-centos/

[russ@mac ~]$ vagrant destroy

default: Are you sure you want to destroy the 'default' VM? [y/N] y

==>default: Forcing shutdown of VM...

==>default: Destroying VM and associated drives...

==>default: Running cleanup tasks for 'shell' provisioner...

[russ@mac ~]$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

==>default: Importing base box 'russmckendrick/centos71'...

==>default: Matching MAC address for NAT networking...

==>default: Checking if box 'russmckendrick/centos71' is up to date...

.....

==>default: => Installing docker-engine ...

==>default: => Configuring vagrant user ...

==>default: => Starting docker-engine ...

==>default: => Installing docker-compose ...

==>default: => Finished installation of Docker

[russ@mac ~]$ vagrantssh

Now, we have a clean environment and it's time to launch our database container,
as follows:

docker run \

 --detach=true \

 --publish=3306 \

 --env="MARIADB_USER=zabbix" \

 --env="MARIADB_PASS=zabbix_password" \

 --name=zabbix-db \

million12/mariadb

https://hub.docker.com/u/zabbix/
https://github.com/zabbix/zabbix-community-docker

A Traditional Approach to Monitoring Containers

[48]

This will download the million12/mariadb image from https://hub.docker.
com/r/million12/mariadb/ and launch a container called zabbix-db, running
MariaDB 10 (https://mariadb.org) with a user called zabbix who has a password
zabbix_password. We have also opened the MariaDB port 3306 up on the container,
but as we will be connecting to it from a linked container, there is no need to expose
that port on the host machine.

Now, we have the database container up and running, we now need to launch our
Zabbix Server container:

docker run \

 --detach=true \

 --publish=80:80 \

 --publish=10051:10051 \

 --link=zabbix-db:db \

 --env="DB_ADDRESS=db" \

 --env="DB_USER=zabbix" \

 --env="DB_PASS=zabbix_password" \

 --name=zabbix \

zabbix/zabbix-server-2.4

This downloads the image, which at the time of writing is over 1 GB so this process
could take several minutes depending on your connection, and launches a container
called zabbix. It maps the web server (port 80) and the Zabbix Server process (port
10051) on the host to the container, creates a link to our database container, sets up
the alias db, and injects the database credentials as environment variables so that the
scripts that launch when the container boots can populate the database.

You can verify that everything worked as expected by checking the logs on the
container. To do this, enter docker logs zabbix. This will print details of what
happened when the container launched on screen:

https://hub.docker.com/r/million12/mariadb/
https://hub.docker.com/r/million12/mariadb/
https://mariadb.org

Chapter 4

[49]

Now, once we have the container up and running, it is time to move to the browser
for our first taste of the web interface. Go to http://192.168.33.10/ in your
browser and you will be greeted by a welcome page; before we can start using
Zabbix, we need to complete the installation.

On the welcome page, click on Next to be taken to the first step. This will verify that
everything we need to run a Zabbix Server is installed. As we have launched it in a
container, you should see OK next to all of the prerequisites. Click on Next to move
onto the next step.

A Traditional Approach to Monitoring Containers

[50]

Now, we need to configure the database connection for the web interface. Here,
you should have the same details as you did when you launched the container,
as illustrated in the following screenshot:

Once you have entered the details, click on Test connection and you should receive
an OK message; you will not be able to proceed until this test completes successfully.
Once you have entered the details and have an OK message, click on Next.

Next up, are the details on the Zabbix Server that the web interface needs to connect
to; click on Next here. Next up, you will receive a summary of the installation. To
proceed, click on Next and you will be get confirmation that the /usr/local/src/
zabbix/frontends/php/conf/zabbix.conf.php file has been created. Click on
Finish to be taken to the login page.

Chapter 4

[51]

Using vagrant
While writing this chapter, I thought a lot about providing another set of installation
instructions for the Zabbix Server service. While the book is all about Monitoring
Docker containers, having a service as resource intensive as Zabbix running inside
a container feels a little counter intuitive. Because of this, there is a vagrant machine
that uses Puppet to bootstrap a working installation of Zabbix Server:

[russ@mac ~]$ cd ~/Documents/Projects/monitoring-docker/vagrant-zabbix/

[russ@mac ~]$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

==>default: Importing base box 'russmckendrick/centos71'...

==>default: Matching MAC address for NAT networking...

==>default: Checking if box 'russmckendrick/centos71' is up to date...

.....

==>default: Debug: Received report to process from zabbix.media-glass.es

==>default: Debug: Evicting cache entry for environment 'production'

==>default: Debug: Caching environment 'production' (ttl = 0 sec)

==>default: Debug: Processing report from zabbix.media-glass.es with
processor Puppet::Reports::Store

As you may have noticed, there is a lot of output streamed to the terminal, so what
just happened? First of all, a CentOS 7 vagrant instance was launched and then
a Puppet agent was installed. Once installed, the installation was handed off to
Puppet. Using the Zabbix Puppet module by Werner Dijkerman, Zabbix Server
was installed; for more details on the module, see its Puppet Forge page at
https://forge.puppetlabs.com/wdijkerman/zabbix.

Unlike the containerized version of Zabbix Server, there is no additional
configuration required, so you should be able to access the Zabbix login page at
http://zabbix.media-glass.es/ (an IP address of 192.168.33.11 is hardcoded
into the configuration).

https://forge.puppetlabs.com/wdijkerman/zabbix
http://zabbix.media-glass.es/

A Traditional Approach to Monitoring Containers

[52]

Preparing our host machine
For the remainder of this chapter, I will assume that you are using the Zabbix
Server that is running on its own vagrant instance. This helps to ensure that your
environment is consistent with the configuration of the Zabbix agent we will be
looking at.

To pass the statistics from our containers to the Zabbix agent, which will then in turn
expose them to the Zabbix Server, we will be installing using the Zabbix-Docker-
Monitoring Zabbix agent module that has been developed by Jan Garaj. For more
information on the project, see the following URLs:

•	 The Project page: https://github.com/monitoringartist/Zabbix-
Docker-Monitoring/

•	 The Zabbix share page: https://share.zabbix.com/virtualization/
docker-containers-monitoring

To get the agent and module installed, configured, and running, we need to execute
the following steps:

1.	 Install the Zabbix package repository.
2.	 Install the Zabbix agent.
3.	 Install the prerequisites for the module.
4.	 Add the Zabbix agent user to the Docker group.
5.	 Download the auto-discovery bash script.
6.	 Download the precompiled zabbix_module_docker binary.
7.	 Configure the Zabbix agent with the details of our Zabbix Server and also the

Docker module.
8.	 Set the correct permissions on all the files we have downloaded and created.
9.	 Start the Zabbix agent.

While the steps remain the same for both CentOS and Ubuntu, the actions taken
to do the initial package installation differ slightly. Rather than going through the
process of showing the commands to install and configure the agent, there is a script
for each of the host operating systems in the /monitoring_docker/chapter04/
folder. To view the scripts, run the following command from your terminal:

cat /monitoring_docker/chapter04/install-agent-centos.sh

cat /monitoring_docker/chapter04/install-agent-ubuntu.sh

https://github.com/monitoringartist/Zabbix-Docker-Monitoring/
https://github.com/monitoringartist/Zabbix-Docker-Monitoring/
https://share.zabbix.com/virtualization/docker-containers-monitoring
https://share.zabbix.com/virtualization/docker-containers-monitoring

Chapter 4

[53]

Now, you have taken a look at the scripts its time to run them, to do this type one of
the following commands. If you are running CentOS, run this command:

bash /monitoring_docker/chapter04/install-agent-centos.sh

For Ubuntu, run the following command:

bash /monitoring_docker/chapter04/install-agent-ubuntu.sh

To verify that everything ran as expected, check the Zabbix agent log file by running
the following command:

cat /var/log/zabbix/zabbix_agentd.log

You should see that the end of the file confirms that the agent has started and that
the zabbix_module_docker.so module has been loaded:

A Traditional Approach to Monitoring Containers

[54]

Before we move onto the Zabbix web interface, let's launch a few containers using
the docker-compose file from Chapter 2, Using the Built-in Tools:

[vagrant@docker ~]$ cd /monitoring_docker/chapter02/02-multiple/

[vagrant@docker 02-multiple]$ docker-compose up -d

[vagrant@docker 02-multiple]$ docker-compose scale web=3

[vagrant@docker 02-multiple]$ docker-compose ps

We should now have three web server containers running and a running Zabbix
agent on the host.

The Zabbix web interface
Once you have Zabbix installed you can open the Zabbix web interface by going to
http://zabbix.media-glass.es/ in your browser, this link will only work when
you have the Zabbix vagrant box up and running, if you don't have it running the
page will time out. You should be presented with a login screen. Enter the default
username and password here, which is Admin and zabbix (note that the username
has a capital A), to login.

Once logged in, you will need to add the host templates. These are preconfigured
environment settings and will add some context around the statistics that the Zabbix
agent is sending to the server, along with the auto-discovery of containers.

To add the templates, go to the Configuration tab in the top menu and select
Template; this will bring up a list of all the templates that are currently installed.
Click on the Import button in the header and upload a copy of the two template
files you can find in the ~/Documents/Projects/monitoring-docker/chapter04/
template folder on your main machine; there is no need to change the rules when
uploading the templates.

Once both templates have been successfully imported, it is time to add our Docker
host. Again, go to the Configuration tab, but this time select Hosts. Here, you need
to click on Create host. Then, enter the following information in the Host tab:

http://zabbix.media-glass.es/

Chapter 4

[55]

Here are the details of the preceding information:

•	 Host name: This is the host name of our Docker host
•	 Visible name: Here, the name server will appear as in Zabbix
•	 Groups: Which group within Zabbix the server you would like the Docker

host to be part of
•	 Agent Interfaces: This is the IP address or the DNS name of our Docker host
•	 Enabled: This should be ticked

A Traditional Approach to Monitoring Containers

[56]

Before clicking on Add, you should click on the Templates tab and link the following
two templates to the host:

•	 Template App Docker
•	 Template OS Linux

Here is the screenshot of the host:

Once you have added the two templates, click on Add to configure and enable
the host. To verify that the host has been added correctly, you should go to the
Monitoring tab and then Latest data. From here, click on Show filter and enter
the host machine in the Hosts box. You should then start to see items appearing:

Chapter 4

[57]

Don't worry if you don't see the Docker section immediately, by default, Zabbix will
attempt to auto-discover new containers every five minutes.

Docker metrics
For each container, Zabbix discovers the following metrics that will be recorded:

•	 Container (your Containers name) is running
•	 CPU system time
•	 CPU user time
•	 Used cache memory
•	 Used RSS memory
•	 Used swap

Apart from "Used swap", these are the same metrics recorded by cAdvisor.

A Traditional Approach to Monitoring Containers

[58]

Create custom graphs
You can access a time-based graph for any of the metrics collected by Zabbix; you
can also create your own custom graphs. In the following graph, I have created a
graph that plots all the CPU System stats from the three web containers we launched
earlier in the chapter:

As you can see, I performed a few tests using ApacheBench to make the graph a little
more interesting.

For more information on how to create custom graphs, see the graphs section of the
documentation site at https://www.zabbix.com/documentation/2.4/manual/
config/visualisation/graphs.

https://www.zabbix.com/documentation/2.4/manual/config/visualisation/graphs
https://www.zabbix.com/documentation/2.4/manual/config/visualisation/graphs

Chapter 4

[59]

Compare containers to your host machine
As we added the Linux OS template and the Docker template to the host and we are
also recording quite a lot of information about the system, here we can tell the effect
the testing with ApacheBench had on the overall processor load:

We can drill down further to get information on the overall utilization:

A Traditional Approach to Monitoring Containers

[60]

Triggers
Another feature of Zabbix is triggers: you can define actions to happen when a metric
meets a certain set of criteria. In the following example, Zabbix has been configured
with a trigger called Container Down; this changes the status of the monitored item
to Problem with a severity of Disaster:

This change in status then triggers an e-mail to inform that, for some reason the
container is no longer up and running:

Chapter 4

[61]

This could have also triggered other tasks, such as running a custom script, sending
an instant message via Jabber, or even triggering a third-party service such as
PagerDuty (https://www.pagerduty.com) or Slack (https://slack.com).

For more information on Triggers, Events, and Notifications, see the following
sections of the documentation:

•	 https://www.zabbix.com/documentation/2.4/manual/config/triggers

•	 https://www.zabbix.com/documentation/2.4/manual/config/events

•	 https://www.zabbix.com/documentation/2.4/manual/config/
notifications

Summary
So, how does this traditional approach to monitoring fit into a container's lifecycle?

Going back to the Pets versus Cattle analogy, at first glance, Zabbix seems to be
geared more towards Pets: its feature set is best suited to monitoring services that are
static over a long period of time. This means that the same approach to monitoring a
pet can also be applied to long-running processes running within your containers.

Zabbix is also the perfect option for monitoring mixed environments. Maybe you
have several database servers that are not running as containers, but you have
several hosts running Docker, and have equipment such as switches and SANs
that you need to monitor. Zabbix can provide you with a single pane of glass
showing you metrics for all your environments, along with being able to alert
you to problems.

So far, we have looked at using APIs and metrics provided by Docker and LXC,
but what about other metrics can we use? In the next chapter, we will look at a
tool that hooks straight into the host machine's kernel to gather information on
your containers.

https://www.pagerduty.com
https://slack.com
https://www.zabbix.com/documentation/2.4/manual/config/triggers
https://www.zabbix.com/documentation/2.4/manual/config/events
https://www.zabbix.com/documentation/2.4/manual/config/notifications
https://www.zabbix.com/documentation/2.4/manual/config/notifications

[63]

Querying with Sysdig
The previous tools we have looked at have all relied on making API calls to Docker
or reading metrics from LXC. Sysdig works differently by hooking itself into the
hosts machine's kernel while this approach does go against Docker's philosophy
of each service being run in its own isolated container, the information you can get
by running Sysdig only for a few minutes far outweighs any arguments about not
using it.

In this chapter, we will look at the following topics:

•	 How to install Sysdig and Csysdig on the host machine
•	 Basic usage and how to query your containers in real time
•	 How to capture logs so they can be queried later

What is Sysdig?
Before we start to get into Sysdig, let's first understand what it is. When I first heard
about the tool, I thought to myself that it sounded too good to be true; the website
describes the tool as follows:

"Sysdig is open source, system-level exploration: capture system state and activity
from a running Linux instance, then save, filter and analyze. Sysdig is scriptable in
Lua and includes a command line interface and a powerful interactive UI, csysdig,
that runs in your terminal. Think of sysdig as strace + tcpdump + htop + iftop +
lsof + awesome sauce. With state of the art container visibility on top."

This is quite a claim as all the tools that it is claiming to be as powerful were all in a
set of goto commands to run when looking into problems, so I was a little skeptical
at first.

Querying with Sysdig

[64]

As any one who has had to try and track down a haywire process of try and track
down an issue that isn't being very verbose in its error logs on a Linux server will
know that using tools such as strace, lsof, and tcpdump can get complicated very
quickly and it normally involves capturing a whole lot of data and then using a
combination of several tools to slowly, and manually, trace the problem by reducing
the amount of data you captured.

Imagine my delight when Sysdig's claims turned out to be true. It made me wish
I had the tool back when I was a front line engineer; it would have made my life
a lot easier.

Sysdig comes in two different flavors, first is the Open Source version available at
http://www.sysdig.org/; this comes with an ncurses interface so that you can easily
access and query data from a terminal-based GUI.

Wikipedia describes ncurses (new curses) as a programming library that
provides an API that allows the programmer to write text-based user
interfaces in a terminal-independent manner. It is a toolkit for developing
"GUI-like" application software that runs under a terminal emulator. It
also optimizes screen changes in order to reduce the latency experienced
when using remote shells.

There is also a commercial service that allows you to stream your Sysdig to their
externally hosted service; this version has a web-based interface for viewing and
querying your data.

In this chapter, we will be concentrating on the open source version.

Installing Sysdig
Considering how powerful Sysdig is, it has one of the most straightforward
installation and configuration processes I have come across. To install Sysdig
on either a CentOS or Ubuntu server, type the following command:

curl -s https://s3.amazonaws.com/download.draios.com/stable/install-
sysdig | sudo bash

http://www.sysdig.org/

Chapter 5

[65]

After running the preceding command, you will get the following output:

That's it, you are ready to go. There is nothing more to configure or do. There is a
manual installation process and also a way of installing the tool using containers
to build the necessary kernel modules; for more details, see the installation guide
as follows:

http://www.sysdig.org/wiki/how-to-install-sysdig-for-linux/

Using Sysdig
Before we look at how to use Sysdig, let's launch a few containers using
docker-compose by running the following command:

cd /monitoring_docker/chapter05/wordpress/

docker-compose up –d

http://www.sysdig.org/wiki/how-to-install-sysdig-for-linux/

Querying with Sysdig

[66]

This will launch a WordPress installation running a database and two web server
containers that are load balanced using an HAProxy container. You will be able to
view the WordPress installation at http://docker.media-glass.es/ once the
containers have launched. You will need to enter some details to create the admin
user before the site is visible; follow the on-screen prompts to complete these steps.

The basics
At its core, Sysdig is a tool for producing a stream of data; you can view the stream
by typing sudo sysdig (to quit, press Ctrl+c).

There is a lot information there so let's start to filter the stream down and run the
following command:

sudosysdigevt.type=chdir

This will display only events in which a user changes directory; to see it in
action, open a second terminal and you will see that when you log in, you see some
activity in the first terminal. As you can see, it looks a lot like a traditional log file;
we can format output to give information such as the username, by running the
following command:

sudosysdig -p"user:%user.name dir:%evt.arg.path" evt.type=chdir

Then, in your second terminal, change the directory a few times:

As you can see, this is a lot easier to read than the original unformatted output.
Press Ctrl + c to stop filtering.

http://docker.media-glass.es/

Chapter 5

[67]

Capturing data
In the previous section, we looked at filtering data in real time; it is also possible to
stream Sysdig data to a file so that you can query the data at a later time. Exit from
your second terminal and run the following command on your first one:

sudosysdig -w ~/monitoring-docker.scap

While the command is running on the first terminal, log in to the host on the
second one and change the directory a few times. Also, while we are recording,
click around the WordPress site we started at the beginning of this section, the URL
is http://docker.media-glass.es/. Once you have done that, stop the recording
by pressing Crtl + c; you should have now dropped back to a prompt. You can check
the size of the file created by Sysdig by running the following:

ls -lha ~/monitoring-docker.scap

Now, we can use the data that we have captured to apply the same filter as we did
when looking at the real-time stream:

sudosysdig -r ~/monitoring-docker.scap -p"user:%user.name dir:%evt.arg.
path" evt.type=chdir

By running the preceding command, you will get the following output:

Notice how we get similar results to when we were viewing the data in real time.

Containers
One of the things that was recorded in ~/monitoring-docker.scap was details
on the system state; this includes information on the containers we launched at the
start of the chapter. Let's use this file to get some stats on the containers. To list the
containers that were active during the time, we captured the data file run:

sudo sysdig -r ~/monitoring-docker.scap -c lscontainers

http://docker.media-glass.es/

Querying with Sysdig

[68]

To see which of the containers utilized the CPU most of the time, we were clicking
around the WordPress site run:

sudo sysdig -r ~/monitoring-docker.scap -c topcontainers_cpu

To have a look at the top processes in each of the containers that have "wordpress"
in their names (which is all of them in our case), run the following command:

sudo sysdig -r ~/monitoring-docker.scap -c topprocs_cpu container.name
contains wordpress

Finally, which of our containers transferred the most amount of data?:

sudosysdig -r ~/monitoring-docker.scap -c topcontainers_net

By running the preceding command, you will get the following output:

As you can see, we have extracted quite a bit of information on our containers from
the data we captured. Also, using the file, you can remove the -r ~/monitoring-
docker.scap part of the command to view the container metrics in real time.

It's also worth pointing out that there are binaries for Sysdig that work on both OS
X and Windows; while these do not capture any data, they can be used to read data
that you have recorded on your Linux host.

Chapter 5

[69]

Further reading
From the few basic exercises covered in this section, you should start to get an idea
of just how powerful Sysdig can be. There are more examples on the Sysdig website
at http://www.sysdig.org/wiki/sysdig-examples/. Also, I recommend you to
read the blog post at https://sysdig.com/fishing-for-hackers/; it was my first
exposure to Sysdig and it really demonstrates its usefulness.

Using Csysdig
As easy as it is to view data captured by Sysdig using the command line and
manually filtering the results, it can get more complicated as you start to string
more and more commands together. To help make the data captured by Sysdig as
accessible as possible, Sysdig ships with a GUI called Csysdig.

Launching the Csysdig is done with a single command:

sudo csysdig

Once the process has launched, it should instantly look familiar to anyone who has
used top or cAdvisor (minus the graphs); its default view will show you real-time
information on the processes that are running:

http://www.sysdig.org/wiki/sysdig-examples/
https://sysdig.com/fishing-for-hackers/

Querying with Sysdig

[70]

To change this view, known as the Processes view, press F2 to open the Views
menu; from here, you can use the up and down arrows on your keyboard to select a
view. As you may have already guessed, we would like to see the Containers view:

However, before we drill down into our containers, let's quit Csysdig by pressing q
and load up the file we created in the previous section. To do this, type the
following command:

sudo csysdig -r ~/monitoring-docker.scap

Once Csysdig loads, you will notice that Source has changed from Live System
to the file path of our data file. From here, press F2 and use the up arrow to select
containers and then hit Enter. From here, you can use the up and down arrows to
select one of the two web servers, these would be either wordpress_wordpress1_1
or wordpress_wordpress2_1 as shown in the following screen:

Chapter 5

[71]

The remaining part of this chapter assumes that you have Csysdig
open in-front of you, it will talk you through how to navigate
around the tool. Please feel free to explore yourself as well.

Once you have selected a server, hit Enter and you will be presented with a list
of processes that the container was running. Again, you can use the arrow keys
to select a process to drill down further into.

I suggested looking at one of the Apache processes that has a value listed in the
File column. This time, rather than pressing Enter to select the process, let's "Echo"
what the process was up to at the time we captured the data; with the process
selected, press F5.

You can use the up and down arrows to scroll through the output:

To better format the data, press F2 and select Printable ASCII. As you can see from
the preceding screenshot, this Apache process performed the following tasks:

•	 Accepted an incoming connection
•	 Accessed the .htaccess file
•	 Read the mod_rewrite rules
•	 Got information from the hosts file
•	 Made a connection to the MySQL container
•	 Sent the MySQL password

Querying with Sysdig

[72]

By scrolling through the remainder of the data in the "Echo" results for the process,
you should be able to easily follow the interactions with the database all the way
through to the page being sent to the browser.

To leave the "Echo" screen, press Backspace; this will always take you a level back.

If you want a more detailed breakdown on what the process was doing, then press
F6 to enter the Dig view; this will list the files that the process was accessing at the
time, along with the network interaction and how it is accessing the RAM.

To view a full list of commands and for more help, you can press F1 at anytime.
Also, to get a breakdown on any columns that are on screen, press F7.

Summary
As I mentioned at the start of this chapter, Sysdig is probably one of the most
powerful tools I have come across in recent years.

Part of its power is the way that it exposes a lot of information and metrics in a way
that never feels overwhelming. It's clear that the developers have spent a lot of time
ensuring that both the UI and the way that commands are structured feel natural and
instantly understandable, even by the newest member of an operations team.

The only downside is that, unless you want to view the information in real time
or look into a problem in development storing the amount of data that is being
generated by Sysdig, it can be quite costly in terms of disc space being used.

This is something that Sysdig has recognized, and to help with this, the company
offers a cloud-based commercial service called Sysdig Cloud for you to stream your
Sysdig data into. In the next chapter, we will look at this service and also some
of its competitors.

[73]

Exploring Third Party Options
So far, we have been looking at the tools and services you host yourself.
Along with these self-hosted tools, a large amount of cloud-based software
has developed around Docker as a service ecosystem. In this chapter, we will
look at the following topics:

•	 Why use a SaaS service over self-hosted or real-time metrics?
•	 What services are available and what do they offer?
•	 Installation of agents for Sysdig Cloud, Datadog, and New Relic

on the host machines
•	 Configuration of the agents to ship metrics

A word about externally hosted services
So far, to work through the examples in this book, we have used locally hosted
virtual servers that are launched using vagrant. During this chapter, we are going to
use services that need to be able to communicate with your host machine, so rather
than trying to do this using your local machine, its about time you took your host
machine into the cloud.

As we are going to start and stop the remote hosts while we look at the services,
it pays to use a public cloud, as we only get charged for what we use.

There are several public cloud services that you can use to evaluate the tools covered
in this chapter, which one you choose to use is up to you, you could use:

•	 Digital Ocean: https://www.digitalocean.com/
•	 Amazon Web Services: https://aws.amazon.com/
•	 Microsoft Azure: https://azure.microsoft.com/
•	 VMware vCloud Air: http://vcloud.vmware.com/

https://www.digitalocean.com/
https://aws.amazon.com/
https://azure.microsoft.com/
http://vcloud.vmware.com/

Exploring Third Party Options

[74]

Or use your own preferred provider, the only pre-requisite is that your server is
publically accessible.

This chapter assumes that you are capable of launching either a CentOS 7 or Ubuntu
14.04 cloud instance and you understand that you will likely incur charges while the
cloud instance is up and running.

Deploying Docker in the cloud
Once you have launched your cloud instance, you can bootstrap Docker in the same
way that you installed using vagrant. In the chapter 6 folder of the Git repository,
there are two separate scripts to download and install the Docker engine and
compose it on your cloud instance.

To install Docker, ensure that your cloud instance is updated by running:

sudo yum update

For the CentOS instance of your Ubuntu, run the following command:

sudo apt-get update

Once updated, run the following command to install the software. Due to the
differences in the way different cloud environments are configured, it is best to
switch over to the root user to run the remainder of the commands, to do this, run:

sudo su -

Now you will be able to run the install script using the following command:

curl -fsS https://raw.githubusercontent.com/russmckendrick/monitoring-
docker/master/chapter06/install_docker/install_docker.sh | bash

To check that everything works as expected, run the following command:

docker run hello-world

You should see something similar to the terminal output, as shown in the
following screenshot:

Chapter 6

[75]

We can start to look at the SasS services once you have Docker up and running.

Why use a SaaS service?
You may have noticed while working with the examples in the previous chapters
that the tools we have used can potentially use many resources if we needed to
start collecting more metrics, especially if the applications we want to monitor
are in production.

To help shift this load from both storage and CPU, a number of cloud-based SaaS
options have started offering support to record metrics for your containers. Many of
these services were already offering services to monitor servers, so adding support
for containers seemed a natural progression for them.

These typically require you to install an agent on your host machine, once installed,
the agent will sit in the background and report to the services, normally cloud-based
and API services.

Exploring Third Party Options

[76]

A few of the services allow you to deploy the agents as Docker containers. They offer
containerized agents so that the service can run on stripped down operating systems,
such as:

•	 CoreOS: https://coreos.com/
•	 RancherOS: http://rancher.com/rancher-os/
•	 Atomic: http://www.projectatomic.io/
•	 Ubuntu Snappy Core: https://developer.ubuntu.com/en/snappy/

These operating systems differ from traditional ones, as you cannot install services
on them directly; their only purpose is to run a service, such as Docker, so that you
can launch the services or applications you need to be run as containers.

As we are running full operating systems as our host systems, we do not need this
option and will be deploying the agents directly to the hosts.

The SaaS options that we are going to look at in this chapter are as follows:

•	 Sysdig Cloud: https://sysdig.com/product/
•	 Datadog: https://www.datadoghq.com/
•	 New Relic: http://newrelic.com

They all offer free trials and two of them offer free cut-down versions of the main
service. On the face of it, they might all appear to offer similar services; however,
when you start to use them, you will immediately notice that they are in fact all
very different from each other.

Sysdig Cloud
In the previous chapter, we had a look at the open source version of Sysdig.
We saw that there is a great ncurses interface called cSysdig and it allows us
to navigate through all the data that Sysdig is collecting about our host.

The sheer amount of metrics and data collected by Sysdig means that you have to
try to stay on top of it either by shipping your files off the server, maybe to Amazon
Simple Storage Service (S3), or to some local shared storage. In addition, you can
query the data in the command line on the host itself or on your local machine using
an installation of the command-line tools.

This is where Sysdig Cloud comes into play; it offers a web-based interface to the
metrics that Sysdig captures along with the options to ship the Sysdig captures off
your host machine either to Sysdig's own storage or to your S3 bucket.

https://coreos.com/
http://rancher.com/rancher-os/
http://www.projectatomic.io/
https://developer.ubuntu.com/en/snappy/
https://sysdig.com/product/
https://www.datadoghq.com/
http://newrelic.com

Chapter 6

[77]

Sysdig cloud offers the following functionality:

•	 ContainerVision™
•	 Real-Time Dashboard
•	 Historical Replay
•	 Dynamic Topology
•	 Alerting

As well as, the option to trigger a capture on any of your hosts and at any time.

Sysdig describes ContainerVision as:

"Sysdig Cloud's patent-pending core technology, ContainerVision, is the only
monitoring technology on the market designed specifically to respect the unique
characteristics of containers. ContainerVision offers you deep and comprehensive
visibility into all aspects of your containerized environment - applications,
infrastructures, servers, and networks - all without the need to pollute your
containers with any extra instrumentation. In other words, ContainerVision gives
you 100% visibility into the activity inside your containers, from the outside."

Before we delve into Sysdig Cloud any further, I should point out that this is a
commercial server and at the time of writing, it costs $25 per host per month. There
is also a 14-day fully featured trial available. If you wish to work through the agent
installation and follow the example in this chapter, you will need an active account
that runs either on the 14-day trial or a paid subscription.

•	 Sign up for a 14-day free trial: https://sysdig.com/
•	 Details on pricing: https://sysdig.com/pricing/
•	 Introduction to the company: https://sysdig.com/company/

Installing the agent
The agent installation is similar to installing the open source version; you need to
ensure that your cloud host is running an up-to-date kernel and that you are also
booted into the kernel.

Some cloud providers keep a tight control on the kernels you can boot into
(for example, Digital Ocean), and they do not allow you to manage your kernel
on the host itself. Instead, you need to choose the correct version through their
control panel.

https://sysdig.com/
https://sysdig.com/pricing/
https://sysdig.com/company/

Exploring Third Party Options

[78]

Once you have the correct kernel installed, you should be able to run the following
command to install the agent. Ensure that you replace the access key at the end of the
command with your own access key, which can be found on your User Profile page
or on the agent installation pages; you can find these at:

•	 User Profile: https://app.sysdigcloud.com/#/settings/user
•	 Agent Installation: https://app.sysdigcloud.com/#/settings/

agentInstallation

The command to run is:

curl -s https://s3.amazonaws.com/download.draios.com/stable/install-agent
| sudo bash -s -- --access_key wn5AYlhjRhgn3shcjW14y3yOT09WsF7d

The shell output should look like the following screen:

Once the agent has been installed, it will immediately start to report the data back
to Sysdig Cloud. If you click on Explore, you will see your host machine and the
running containers:

https://app.sysdigcloud.com/#/settings/user
https://app.sysdigcloud.com/#/settings/agentInstallation
https://app.sysdigcloud.com/#/settings/agentInstallation

Chapter 6

[79]

As you can see here, I have my host machine and four containers running a
WordPress installation similar to the one we used in the previous chapter.
From here, we can start to drill down into our metrics.

To launch the WordPress installation on your cloud-based machine, run the
following commands as the root user:

sudo su -

mkdir ~/wordpress

curl -L https://raw.githubusercontent.com/russmckendrick/monitoring-
docker/master/chapter05/wordpress/docker-compose.yml > ~/wordpress/
docker-compose.yml

cd ~/wordpress

docker-compose up -d

Exploring Third Party Options

[80]

Exploring your containers
The Sysdig Cloud web interface will feel instantly familiar, as it shares a similar
design and overall feeling with cSysdig:

Once you start to drill down, you can see that a bottom pane opens up and this is
where you can view the statistics. One of the things I liked about Sysdig Cloud is
that it opens up a wealth of metrics and there should be very little that you need to
configure from here.

For example, if you want to know what processes have been consuming the most
CPU time in the last 2 hours, click on 2H in the secondary menu and then from the
Views tab in the bottom-left click on System: Top Processes; this will give you a
table of the processes, ordered by the ones that have used the most time.

Chapter 6

[81]

To apply this view to a container, click on a container in the top-section and the
bottom-section will be instantly updated to reflect the top CPU utilization for just
that container; as most containers will only run one or two processes, this may not be
that interesting. So, let's have a deep look at the processes themselves. Let's say, we
clicked on our database container and we wanted information on what is happening
within MySQL.

Sysdig Cloud comes with application overlays, these when selected give you more
granular information on the processes within the container. Selecting the App:
MySQL/PostgreSQL view gives you an insight into what your MySQL processes
are currently doing:

Exploring Third Party Options

[82]

Here, you can see that view in the bottom section has instantly updated to give
a wealth of information on what has been happening in the last 5 minutes
within MySQL.

Sysdig Cloud supports a number of application views, including:

•	 Apache
•	 HAProxy
•	 NGINX
•	 RabbitMQ
•	 Redis
•	 Tomcat

Each one gives you immediate access to metrics, which even the most experienced
SysAdmins will find valuable.

You may have noticed that at the top of the second panel there are also a few icons,
these allow you to:

•	 Add Alert: Creates an alert based on the view you have open; it lets you
tweak the threshold and also choose how you are notified.

•	 Sysdig Capture: Pressing this brings up a dialog, which lets you record a
Sysdig session. Once recorded, the session is transferred to Sysdig Cloud
or your own S3 bucket. Once the session is available, you download it or
explore it within the web interface.

•	 SSH Connect: Gets a remote shell on the server from the Sysdig Cloud web
interface; it is useful if you do not have immediate access to your laptop or
desktop machine and you want to do some troubleshooting.

•	 Pin to dashboard: Adds the current view to a custom dashboard.

Out these options icons, the "Add Alert" and "Sysdig Capture" options are probably
the ones that you will end up using the most. One final view that I found interesting,
is the topology one. It gives you a bird's eye view of your host and containers,
this is useful too see the interaction between containers and hosts:

Chapter 6

[83]

Here, you can see me request a page from the WordPress site (it's in the box on the
left), this request hits my host machine (the box on the right). Once it's on the host
machine, it is routed to the HAProxy container, which then passes the page request
to the Wordpress2 container. From here, the Wordpress2 container interacts with the
database that is running on the MySQL container.

Exploring Third Party Options

[84]

Summary and further reading
Although Sysdig Cloud is quite a new service, it feels instantly familiar and fully
featured as it is built on top of an already established and respected open source
technology. If you like, the level of detail you get from the open source version of
Sysdig, then Sysdig Cloud is a natural progression for you to start storing your
metrics offsite and also to configure alerts. Some good starting points for learning
more about Sysdig Cloud are:

•	 Video Introduction: https://www.youtube.com/watch?v=p8UVbpw8n24
•	 Sysdig Cloud Best Practices: http://support.sysdigcloud.com/hc/en-

us/articles/204872795-Best-Practices

•	 Dashboards: http://support.sysdigcloud.com/hc/en-us/
articles/204863385-Dashboards

•	 Sysdig blog: https://sysdig.com/blog/

If you have launched a cloud instance and are no longer using it, now
would be a good time to power the instance down or terminate it
altogether. This will ensure that you do not get billed for services that
you are not using.

Datadog
Datadog is a full monitoring platform; it supports various servers, platforms,
and applications. Wikipedia describes the service as:

"Datadog is a SaaS-based monitoring and analytics platform for IT infrastructure,
operations and development teams. It brings together data from servers, databases,
applications, tools and services to present a unified view of the applications that
run at scale in the cloud."

It uses an agent that is installed on your host machine; this agent sends metrics back
to the Datadog service periodically. It also support multiple cloud platforms, such as
Amazon Web Services, Microsoft Azure, and OpenStack to name a few.

The aim is to bring all of your servers, applications, and host provider metrics into a
single pane of glass; from here, you can create custom dashboards and alerts so that
you can be notified of any problem at any level within your infrastructure.

https://www.youtube.com/watch?v=p8UVbpw8n24
http://support.sysdigcloud.com/hc/en-us/articles/204872795-Best-Practices
http://support.sysdigcloud.com/hc/en-us/articles/204872795-Best-Practices
http://support.sysdigcloud.com/hc/en-us/articles/204863385-Dashboards
http://support.sysdigcloud.com/hc/en-us/articles/204863385-Dashboards
https://sysdig.com/blog/

Chapter 6

[85]

You can sign up for a free trial of the full service at https://app.datadoghq.
com/signup. You will need at least a trial account to configure the altering, and if
your trial has already expired the lite account will do. For more detail on Datadog's
pricing structure, please see https://www.datadoghq.com/pricing/.

Installing the agent
The agent can be installed either directly on the host machine or as a container.
To install directly on the host machine, run the following command and make
sure that you use your own unique DD_API_KEY:

DD_API_KEY=wn5AYlhjRhgn3shcjW14y3yOT09WsF7d bash -c "$(curl -L https://
raw.githubusercontent.com/DataDog/dd-agent/master/packaging/datadog-
agent/source/install_agent.sh)"

To run the agent as a container, use the following command and again make sure
that you use your own DD_API_KEY:

sudo docker run -d --name dd-agent -h `hostname` -v /var/run/docker.
sock:/var/run/docker.sock -v /proc/mounts:/host/proc/mounts:ro -v /sys/
fs/cgroup/:/host/sys/fs/cgroup:ro -e API_KEY=wn5AYlhjRhgn3shcjW14y3yOT09W
sF7d datadog/docker-dd-agent

Once the agent has been installed, it will call back to Datadog and the host will
appear in your account.

If the agent has been installed directly on the host machine then we will need to
enable the Docker integration, if you installed the agent using the container then
this will have been done for you automatically.

To do this, you first need to allow the Datadog agent access to your Docker
installation by adding the dd-agent user to the Docker group by running the
following command:

usermod -a -G docker dd-agent

The next step is to create the docker.yaml configuration file, luckily the Datadog
agent ships with an example configuration file that we can use; copy this in place
and then restart the agent:

cp -pr /etc/dd-agent/conf.d/docker.yaml.example /etc/dd-agent/conf.d/
docker.yaml

sudo /etc/init.d/datadog-agent restart

https://app.datadoghq.com/signup
https://app.datadoghq.com/signup
https://www.datadoghq.com/pricing/

Exploring Third Party Options

[86]

Now the agent on our host machine has been configured and the final step is
to enable the integration through the website. To do this, go to https://app.
datadoghq.com/ and click on Integrations, scroll down and then click on install
on Docker:

Once you click install, you will be presented with an overview of the integration,
click on the Configuration tab, this gives instructions on how to configure the agent;
as we have already done this step, you can click on Install Integration.

You can find more information on installing the agent and the integrations at the
following URLs:

•	 https://app.datadoghq.com/account/settings#agent

•	 https://app.datadoghq.com/account/settings#integrations

Exploring the web interface
Now, you have installed the agent and enabled the Docker integration, you can start
to have a look around the web interface. To find your host, click on "Infrastructure"
in the left-hand side menu.

https://app.datadoghq.com/
https://app.datadoghq.com/
https://app.datadoghq.com/account/settings#agent
https://app.datadoghq.com/account/settings#integrations

Chapter 6

[87]

You should be taken to a screen that contains a map of your infrastructure. Like me,
you probably only have a single host machine listed, click on it and some basic stats
should appear at the bottom of the screen:

If you don't already have the containers launched, now would be a good time to do
so, lets launch the WordPress installation again using:

sudo su -

mkdir ~/wordpress

curl -L https://raw.githubusercontent.com/russmckendrick/monitoring-
docker/master/chapter05/wordpress/docker-compose.yml > ~/wordpress/
docker-compose.yml

cd ~/wordpress

docker-compose up -d

Exploring Third Party Options

[88]

Now, go back to the web interface, from there you can click on any of the services
listed on the hexagon. This will bring up some basic metrics for the service you have
selected. If you click on docker, you will see a link for a Docker Dashboard among
the various graphs and so on; clicking this will take you to a more detailed view of
your containers:

As you can see, this gives us our now familiar break down of the CPU and
memory metrics, along with in the top right of the dashboard a breakdown of
the container activity on the host machine; this logs events, such as stopping and
starting containers.

Datadog currently records the following metrics:

•	 docker.containers.running

•	 docker.containers.stopped

Chapter 6

[89]

•	 docker.cpu.system

•	 docker.cpu.user

•	 docker.images.available

•	 docker.images.intermediate

•	 docker.mem.cache

•	 docker.mem.rss

•	 docker.mem.swap

From the Metrics explorer option in the left-hand side menu, you can start to graph
these metrics and once you have the graphs, you can then start to add them to your
own custom dashboards or even annotate them. When you annotate a graph, a
snapshot is created and the graph shows up in the events queue along with the
other events, that have been recorded, such as container stopping and starting:

Exploring Third Party Options

[90]

Also, within the web interface you can configure monitors; these allow you to define
triggers, which alert you if your conditions are not met. Alerts can be sent as e-mails
or via third party services, such as Slack, Campfire, or PagerDuty.

Summary and further reading
While Datadog's Docker integration only gives you the basic metrics on your
containers, it does have a wealth of features and integration with other applications
and third parties. If you need to monitor a number of different services alongside
your Docker containers, then this service could be for you:

•	 Home page: https://www.datadoghq.com
•	 Overview: https://www.datadoghq.com/product/
•	 Monitoring Docker with Datadog:

https://www.datadoghq.com/blog/monitor-docker-datadog/

•	 Twitter: https://twitter.com/datadoghq

Please Remember
If you have launched a cloud instance and are no longer using it
then now would be a good time to power the instance down or
terminate it altogether. This will ensure that you do not get billed
for any services you are not using.

New Relic
New Relic could be considered the granddaddy of SaaS monitoring tools, chances
are that if you are a developer you will have heard of New Relic. It has been around
for a while and it is the standard to which other SaaS tools compare themselves.

New Relic has grown into several products over the year, currently, they offer:

•	 New Relic APM: The main application performance-monitoring tool. This is
what most people will know New Relic for; this toll gives you the code level
visibility of your application.

•	 New Relic Mobile: A set of libraries to embed into your native mobile apps,
giving APM levels of detail for your iOS and android application.

•	 New Relic Insights: A high-level view of all of the metrics collected by other
New Relic services.

https://www.datadoghq.com
https://www.datadoghq.com/product/
https://www.datadoghq.com/blog/monitor-docker-datadog/
https://twitter.com/datadoghq

Chapter 6

[91]

•	 New Relic Servers: Monitors your host servers, recording metrics around
CPU, RAM, and storage utilization.

•	 New Relic Browser: Gives you an insight into what happens with your
web-based applications once they leave your servers and enter your end
user's browser

•	 New Relic Synthetics: Monitors your applications responsiveness from
various locations around the world.

Rather than looking at all of these offerings that give us an insight into what is
happening with our Docker-based code, as that's probably a whole book on its
own, we are going to take a look at the server product.

The server monitoring service offered by New Relic is available free of charge,
you just need an active New Relic account, you can sign up for an account at
https://newrelic.com/signup/ details on New Relics pricing can be found
at their homepage at http://newrelic.com/.

Installing the agent
Like the other SaaS offerings we have looked at in this chapter, New Relic Servers
has a host-based client, which needs to be able to access the Docker binary. To install
this on a CentOS machine, run the following:

yum install http://download.newrelic.com/pub/newrelic/el5/i386/newrelic-
repo-5-3.noarch.rpm

yum install newrelic-sysmond

For Ubuntu, run the following command:

echo 'deb http://apt.newrelic.com/debian/ newrelic non-free' | sudo tee /
etc/apt/sources.list.d/newrelic.list

wget -O- https://download.newrelic.com/548C16BF.gpg | sudo apt-key add -

apt-get update

apt-get install newrelic-sysmond

Now that you have the agent installed, you need to configure the agent with your
license key. You can do this with the following command and make sure that you
add your license, which can be found in your settings page:

nrsysmond-config --set license_key= wn5AYlhjRhgn3shcjW14y3yOT09WsF7d

https://newrelic.com/signup/
http://newrelic.com/

Exploring Third Party Options

[92]

Now that the agent is configured, we need to add the newrelic user to the docker
group so that the agent has access to our container information:

usermod -a -G docker newrelic

Finally, we need to start the New Relic Server agent and restart Docker:

/etc/init.d/newrelic-sysmond restart

/etc/init.d/docker restart

Restarting Docker will stop the running containers that you have; make
sure that you make a note of these using docker ps and then start
them manually and back up once the Docker service restarts.

You should see your server appear on your New Relic control panel after a
few minutes.

Exploring the web interface
Once you have the New Relic server agent installed, configured, and running on
your host machine, you will see something similar to the following screenshot
when clicking on Servers in the top menu:

Chapter 6

[93]

Selecting the server will allow you to start exploring the various metrics that the
agent is recording:

From here, you have the option to drill down further:

•	 Overview: Gives a quick overview of your host machine
•	 Processes: Lists all of the processes that are running both on the host

machine and within your containers
•	 Network: Lets you see the network activity for your host machine
•	 Disks: Gives you details on how much space you are using
•	 Docker: Shows you the CPU and memory utilization for your containers

Exploring Third Party Options

[94]

As you may have guessed, we are going to be looking at the Docker item next, click
on it and you will see a list of your active images:

You may have noticed a difference between New Relic and the other services, as you
can see New Relic does not show you the running containers, instead it shows you
the utilization by Docker image.

In the preceding screenshot, I have four containers active and running the WordPress
installation we have used elsewhere in the book. If I wanted a breakdown per
container, then I would be out of luck, as demonstrated by the following screen:

Chapter 6

[95]

It's a pretty dull screen, but it gives you an idea about what you will see if you are
running multiple containers that have been launched using the same image. So how
is this useful? Well, coupled with the other services offered by New Relic, it can give
you an indication of what your containers were up to when a problem occurred
within your application. If you remember the Pets versus Cattle versus Chickens
analogy from Chapter 1, Introduction to Docker Monitoring, we don't necessarily care
which container did what; we just want to see the impact it had during the issue we
are looking into.

Summary and further reading
Due to the amount of products it offers, New Relic can be a little daunting at first,
but if you work with a development team that actively uses New Relic within their
day-to-day workflow, then having all of the information about your infrastructure
alongside this data can be both valuable and necessary, especially during an issue:

•	 New Relic Server monitoring: http://newrelic.com/server-monitoring
•	 New Relic and Docker: http://newrelic.com/docker/
•	 Twitter: https://twitter.com/NewRelic

http://newrelic.com/server-monitoring
http://newrelic.com/docker/
https://twitter.com/NewRelic

Exploring Third Party Options

[96]

If you have launched a cloud instance and are no longer using it
then, now is a good time to power the instance down or terminate it
altogether, this will ensure you do not get billed for any services you
are not using.

Summary
Which SaaS service you choose depends on your circumstances, there are a number
of questions you should ask yourself before you start evaluating the SaaS offerings:

•	 How many containers would you like to monitor?
•	 How many host machines do you have?
•	 Is there a non-containerized infrastructure you need to monitor?
•	 What metrics do you need from the monitoring service?
•	 How long should the data be retained for?
•	 Could other departments, such as development and utilize the service?

We covered just three of the available SaaS options in this chapter, there are other
options available, such as:

•	 Ruxit: https://ruxit.com/docker-monitoring/
•	 Scout: https://scoutapp.com/plugin_urls/19761-docker-monitor
•	 Logentries: https://logentries.com/insights/server-monitoring/
•	 Sematext: http://sematext.com/spm/integrations/docker-

monitoring.html

Monitoring servers and services are only as good as the metrics you collect, if
possible and if your budget allows, you should take full advantage of the services
offered by your chosen providers, as more data being recorded by a single provider
will only benefit you when it comes to analyzing problems with not only your
containerized applications, but also with your infrastructure, code and even your
cloud provider.

https://ruxit.com/docker-monitoring/
https://scoutapp.com/plugin_urls/19761-docker-monitor
https://logentries.com/insights/server-monitoring/
http://sematext.com/spm/integrations/docker-monitoring.html
http://sematext.com/spm/integrations/docker-monitoring.html

Chapter 6

[97]

For example, if you are monitoring your host machine using the same service as
you use to monitor your containers, then by using the custom graphing functions,
you should be able to create overlay graphs of CPU load spikes of both your host
machine and your container. This is a lot more useful than trying to compare two
different graphs from different systems side by side.

In the next chapter, we will look at an often-overlooked part of monitoring: shipping
your log files away from your containers/hosts to a single location so that they can
be monitored and reviewed.

[99]

Collecting Application Logs
from within the Container

One of the most overlooked parts of monitoring are log files generated by the
application or services such as NGINX, MySQL, Apache, and so on. So far we
have looked at various ways of recording the CPU and RAM utilization of the
processes within your containers are at a point in time, now its time to do the
same for the log files.

If you are running your containers as Cattle or Chickens, then the way you deal with
the issues to destroy and relaunch your container either manually or automatically
is important. While this should fix the immediate problem, it does not help with
tracking down the root cause of the issue and if you don't know that then how can
you attempt to resolve it so that it does not reoccur.

In this chapter, we will look at how we can get the content of the log files for the
applications running within our containers to the central location so that they are
available, even if you have to destroy and replace a container. We are going to cover
the following topics in this chapter:

•	 How to view container logs?
•	 Deploying an "ELK" stack using a Docker containers stack to ship the logs to
•	 Reviewing your logs
•	 What third party options are available?

Collecting Application Logs from within the Container

[100]

Viewing container logs
Like the docker top command, there is a very basic way of viewing logs. When you
use the docker logs command, you are actually viewing the STDOUT and STDERR of
the processes that are running within the container.

For more information on Standard Streams, please see
https://en.wikipedia.org/wiki/Standard_streams.

As you can see from the following screenshot, the simplest thing you have to do is
run docker logs followed by your container name:

To see this on your own host, let's launch the WordPress installation from chapter05
using the following commands:

cd /monitoring_docker/chapter05/wordpress/

docker-compose up –d

docker logs wordpress_wordpress1_1

You can extend the dockerlogs command by adding the following flags before your
container name:

•	 -f or --follow will stream the logs in real time
•	 -t or --timestamps will show a timestamp at the start of each line
•	 --tail="5" will show the last x number of lines
•	 --since="5m00s" will show only the entries for the last 5 minutes

https://en.wikipedia.org/wiki/Standard_streams

Chapter 7

[101]

Using the WordPress installation that we have just launched, try running the
following commands:

docker logs --tail="2" wordpress_wordpress1_1

This will show the last two lines of the logs, you can add timestamps using:

docker logs --tail="2" –timestamps wordpress_wordpress1_1

As you can see in the following terminal output, you can also string commands
together to form a very basic query language:

The downside of using docker logs is exactly the same as using docker top, in
that it is only available locally and the logs are only present for the time the container
is around, you can view the logs of a stopped container, but once the container is
removed, so are the logs.

ELK Stack
Similar to some of the technologies that we have covered in this book, an ELK stack
really deserves a book by itself; in fact, there are books for each of the elements that
make an ELK stack, these elements are:

•	 Elasticsearch is a powerful search server, which has been developed with
modern workloads in mind

•	 Logstash sits between your data source and Elasticsearch services; it
transforms your data in real time to a format, which Elasticsearch can
understand.

•	 Kibana is in front of your Elasticsearch services and allows you to query your
data in a feature-rich web-based dashboard.

Collecting Application Logs from within the Container

[102]

There are a lot of moving parts with an ELK stack, so to simplify things, we will use
a prebuilt stack for the purpose of testing; however, you probably don't want to use
this stack in production.

Starting the stack
Let's launch a fresh vagrant host on which to run the ELK stack:

[russ@mac ~]$ cd ~/Documents/Projects/monitoring-docker/vagrant-centos/

[russ@mac ~]$ vagrant up

Bringing machine 'default' up with 'virtualbox' provider...

==> default: Importing base box 'russmckendrick/centos71'...

==> default: Matching MAC address for NAT networking...

==> default: Checking if box 'russmckendrick/centos71' is up to date...

.....

==> default: => Installing docker-engine ...

==> default: => Configuring vagrant user ...

==> default: => Starting docker-engine ...

==> default: => Installing docker-compose ...

==> default: => Finished installation of Docker

[russ@mac ~]$ vagrant ssh

Now, we have a clean host that is up and running, we can start the stack by running
the following commands:

[vagrant@docker ~]$ cd /monitoring_docker/chapter07/elk/

[vagrant@docker elk]$ docker-compose up -d

As you may have noticed, it did more that just pull down some images;
what happened was:

•	 An Elasticsearch container was launched using the official image from
https://hub.docker.com/_/elasticsearch/.

•	 A Logstash container was launched using the official image from
https://hub.docker.com/_/logstash/, it was also launched with
our own configuration, which means that our installation listens for
logs sent from Logspout (more about that in a minute).

https://hub.docker.com/_/elasticsearch/
https://hub.docker.com/_/logstash/

Chapter 7

[103]

•	 A custom Kibana image was built using the official image from
https://hub.docker.com/_/kibana/. All it did was add a small script
to ensure that Kibana doesn't start until our Elasticsearch container is fully
up and running. It was then launched with a custom configuration file.

•	 A custom Logspout container was built using the official image from
https://hub.docker.com/r/gliderlabs/logspout/ and then we
added a custom module so that Logspout could talk to Logstash.

Once docker-compose has finished building and launching the stack you should be
able to see the following when running docker-compose ps:

We now have our ELK stack up and running, as you may have noticed, there is an
additional container running and giving us an ELK-L stack, so what is Logspout?

Logspout
If we were to launch Elasticsearch, Logstash, and Kibana containers, we should
have a functioning ELK stack but we will have a lot of configuration to do to get
our container logs into Elasticsearch.

Since Docker 1.6, you have been able to configure logging drivers, this meant that it
is possible to launch a container and have it send its STDOUT and STDERR to a Syslog
Server, which will be Logstash in our case; however, this means that you will have to
add something similar to the following options each time we launch a container:

--log-driver=syslog --log-opt syslog-address=tcp://elk_logstash_1:5000

https://hub.docker.com/_/kibana/
https://hub.docker.com/r/gliderlabs/logspout/

Collecting Application Logs from within the Container

[104]

This is where Logspout comes in, it has been designed to collect all of the STDOUT
and STDERR messages on a host machine by intercepting the messages that are being
collected by the Docker process and then it routes them to our Logstash instance in a
format that is understood by Elasticsearch.

Just as the log-driver, it supports Syslog out of the box; however, there is a third
party module that transforms the output to JSON, which Logstash understands.
As a part of our build we downloaded, compiled and configured the module.

You can find out more about Logspout and logging drivers at the following:

•	 Official Logspout image:
https://hub.docker.com/r/gliderlabs/logspout/

•	 Logspout Project page: https://github.com/gliderlabs/logspout
•	 Logspout Logstash module:

https://github.com/looplab/logspout-logstash

•	 Docker 1.6 release notes:
https://blog.docker.com/2015/04/docker-release-1-6/

•	 Docker Logging Drivers:
https://docs.docker.com/reference/logging/overview/

Reviewing the logs
So now, we have our ELK running and a mechanism in place to stream all of the
STDOUT and STDERR messages generated by our containers into Logstash, which in
turn routes the data into Elasticsearch. Now its time to view the logs in Kibana. To
access Kibana go to http://192.168.33.10:8080/ in your browser; when you
access the page, you will be asked to Configure an index pattern, the default index
pattern will be fine for our needs so just click the Create button.

Once you do, you will see a list of the index patterns, these are taken directly from
the Logspout output, and you should notice the following items in the index:

•	 docker.name: The name of container
•	 docker.id: The full container ID
•	 docker.image: The name of the image used to launch the image

https://hub.docker.com/r/gliderlabs/logspout/
https://github.com/gliderlabs/logspout
https://github.com/looplab/logspout-logstash
https://blog.docker.com/2015/04/docker-release-1-6/
https://docs.docker.com/reference/logging/overview/

Chapter 7

[105]

From here, if you were to click on Discover in the top menu you would see
something similar to the following page:

In the screenshot, you will see that I have recently launched the WordPress stack and
we have been using it throughout the book, using the following commands:

[vagrant@docker elk]$ cd /monitoring_docker/chapter05/wordpress/

[vagrant@docker wordpress]$ docker-compose up –d

Collecting Application Logs from within the Container

[106]

To give you an idea of what is being logged, here is the raw JSON taken from
Elasticseach for running the WordPress installation script:

{
 "_index": "logstash-2015.10.11",
 "_type": "logs",
 "_id": "AVBW8ewRnBVdqUV1XVOj",
 "_score": null,
 "_source": {
 "message": "172.17.0.11 - - [11/Oct/2015:12:48:26 +0000]
\"POST /wp-admin/install.php?step=1 HTTP/1.1\" 200 2472
\"http://192.168.33.10/wp-admin/install.php\" \"Mozilla/5.0
(Macintosh; Intel Mac OS X 10_11) AppleWebKit/601.1.56 (KHTML, like
Gecko) Version/9.0 Safari/601.1.56\"",
 "docker.name": "/wordpress_wordpress1_1",
 "docker.id":
"0ba42876867f738b9da0b9e3adbb1f0f8044b7385ce9b3a8a3b9ec60d9f5436c",
 "docker.image": "wordpress",
 "docker.hostname": "0ba42876867f",
 "@version": "1",
 "@timestamp": "2015-10-11T12:48:26.641Z",
 "host": "172.17.0.4"
 },
 "fields": {
 "@timestamp": [
 1444567706641
]
 },
 "sort": [
 1444567706641
]
}

From here, you can start to use the free text search box and build up some quite
complex queries to drill down into your container's STDOUT and STDERR logs.

What about production?
As mentioned at the top of this section, you probably don't want to run your
production ELK stack using the docker-compose file, which accompanies this
chapter. First of all, you will want your Elasticsearch data to be stored on a persistent
volume and you more than likely want your Logstash service to be highly available.

Chapter 7

[107]

There are numerous guides on how to configure a highly available ELK stack, as well
as, the hosted services from Elastic, which is the creator of Elasticsearch, and also
Amazon Web Services, which offers an Elasticsearch service:

•	 ELK tutorial: https://www.youtube.com/watch?v=ge8uHdmtb1M
•	 Found from Elastic: https://www.elastic.co/found
•	 Amazon Elasticsearch Service:

https://aws.amazon.com/elasticsearch-service/

Looking at third party options
There are a few options when it comes to hosting central logging for your containers
external to your own server instances. Some of these are:

•	 Log Entries: https://logentries.com/
•	 Loggly: https://www.loggly.com/

Both of these services offer a free tier. Log Entries also offers a "Logentries
DockerFree" account that you can find out more about at https://logentries.
com/docker/

As recommended in the Exploring Third Party Options chapter, it is
best to use a cloud service when evaluating third party services. The
remainder of this chapter assumes that you are running a cloud host.

Let's look at configuring the Log Entries on an external server, first of all you need to
have signed up for an account at https://logentries.com/. Once you have signed
up, you should be taken to a page in which your logs will eventually be displayed.

To start, click on the Add new log button in the top-right corner of the page and then
click the Docker logo in the Platforms section.

You have to name your set of logs in the Select set section, so give a name to your
log set. You now have the choice of building your own container locally using the
Docker file from https://github.com/logentries/docker-logentries:

git clone https://github.com/logentries/docker-logentries.git

cd docker-logentries

docker build -t docker-logentries .

https://www.youtube.com/watch?v=ge8uHdmtb1M
https://www.elastic.co/found
https://aws.amazon.com/elasticsearch-service/
https://logentries.com/
https://www.loggly.com/
https://logentries.com/docker/
https://logentries.com/docker/
https://logentries.com/
https://github.com/logentries/docker-logentries

Collecting Application Logs from within the Container

[108]

After running the preceding command, you will get the following output:

Before you start your container, you will need to generate an access token for your
log set by clicking on Generate Log Token. Once you have this, you can launch your
locally built containers using the following command (replace the token with the one
you have just generated):

docker run -d -v /var/run/docker.sock:/var/run/docker.sock docker-
logentries -t wn5AYlh-jRhgn3shc-jW14y3yO-T09WsF7d -j

You can download the image straight from the Docker hub by running:

docker run -d -v /var/run/docker.sock:/var/run/docker.sock logentries/
docker-logentries -t wn5AYlh-jRhgn3shc-jW14y3yO-T09WsF7d –j

Chapter 7

[109]

It's worth pointing out that the automatically generated instructions given by Log
Entries launches the container in the foreground, rather than detaching from the
container once it has been launched like the preceding instructions.

Once you have the docker-logentries container up and running, you should start
to see logs from your container streamed in real-time to your dashboard:

From here, you will be able to query your logs, create dashboards, and create alerts
depending on the account option you go for.

Collecting Application Logs from within the Container

[110]

Summary
In this chapter, we have covered how to query the STDOUT and STDERR output
from your containers using the tool built into Docker, how to ship the messages
to an external source, our ELK stack, and how to store the messages even after the
container has been terminated. Finally, we have looked at a few of the third-party
services who offer services to which you can stream your logs.

So why go to all of this effort? Monitoring isn't just about keeping and querying
CPU, RAM, HDD, and Network utilization metrics; there is no point in knowing if
there was a CPU spike an hour ago if you don't have access to the log files to see if
any errors were being generated at that time.

The services we have covered in this chapter offer the quickest and most efficient
insights into what can quickly become a complex dataset.

In the next chapter, we will look at all of the services and concepts we have covered
in the book and apply them to some real world scenarios.

[111]

What Are the Next Steps?
In this final chapter, we will look at the next steps you can take to monitor your
containers, by talking about the benefits of adding alerts to your monitoring.
Also, we will cover some different scenarios and also which type of monitoring
is appropriate for each of them:

•	 Common problems (performance, availability, and so on) and which type of
monitoring is best for your situation.

•	 What are the benefits of alerting on the metrics you are collecting and what
are the options?

Some scenarios
To look at which type of monitoring you might want to implement for your
container-based applications, we should work through a few different example
configurations that your container-based applications could be deploying into.
First, let's remind ourselves about Pets, Cattle, Chickens, and Snowflakes.

Pets, Cattle, Chickens, and Snowflakes
Back in the Chapter 1, Introduction to Docker Monitoring, we spoke about Pets, Cattle,
Chickens, and Snowflakes; in that chapter, we described what each term meant when
it was applied to modern cloud deployments. Here, we will go into a little more
detail about how the terms can be applied to your containers.

What Are the Next Steps?

[112]

Pets
For your containers to be considered a Pet, you will be more than likely to be
running either a single or a small number of fixed containers on a designated host.

Each one of these containers could be considered a single point of failure; if any
one of them goes down, it will more than likely result in errors for your application.
Worst still, if the host machine goes down for any reason, your entire application
will be offline.

This is a typical deployment method for most of our first steps with Docker, and in
no way should it be considered bad, frowned upon, or not recommend; as long as
you are aware of the limitations, you will be fine.

This pattern can also be used to describe most development environments, as you
are constantly reviewing its health and tuning as needed.

You will more than likely be hosting the machine on your local computer or on a
hosting service such as DigitalOcean (https://www.digitalocean.com/).

Cattle
For the bulk of production or business critical deployments, you should aim to
launch your containers in a configuration that allows them to automatically recover
themselves after a failure, or, when more capacity is needed, additional containers
are launched and then terminated when the scaling event is over.

You will more than likely be using a public cloud-based service as follows:

•	 Amazon EC2 Container Service: https://aws.amazon.com/ecs/
•	 Google Container Engine:

https://cloud.google.com/container-engine/

•	 Joyent Triton:
https://www.joyent.com/blog/understanding-triton-containers/

Alternatively, you will be hosting on your own servers using a Docker-friendly and
cluster-aware operating system as follows:

•	 CoreOS: https://coreos.com/
•	 RancherOS: http://rancher.com/rancher-os/

You won't care so much as to where a container is launched within your cluster of
hosts, as long as you can route traffic to it. To add more capacity to the cluster, you
will be bringing up additional hosts when needed and removing them from the
cluster when not needed in order to save on costs.

https://www.digitalocean.com/
https://aws.amazon.com/ecs/
https://cloud.google.com/container-engine/
https://www.joyent.com/blog/understanding-triton-containers/
https://coreos.com/
http://rancher.com/rancher-os/

Chapter 8

[113]

Chickens
Its more than likely you will be using containers to launch, process data, and then
terminate. This can happen anytime from once a day to several times a minute.
You will be using a distributed scheduler as follows:

•	 Kubernetes by Google: http://kubernetes.io/
•	 Apache Mesos: http://mesos.apache.org/

Because of this, you will have a large number of containers launching and
terminating within your cluster; you definitely won't care about where a container
is launched or even how traffic is routed to it, as long as your data is processed
correctly and passed back to your application.

Like the cluster described in the Cattle section's description, hosts will be added and
removed automatically, probably in response to scheduled peaks such as end of
month reporting or seasonal sales and so on.

Snowflakes
I hope one of the things you took away from the first chapter is that if you have
any servers or services that you consider being Snowflakes, then you should do
something to retire them as soon as possible.

Luckily, due to the way the containerizing of your applications works, you should
never be able to create a snowflake using Docker, as your containerized environment
should always be reproducible, either because you have the Docker file (everyone
makes backups right?) or you have a working copy of the container image because
you have exported the container as a whole using the built-in tools.

Sometimes it may not be possible to create a container using a Docker
file. Instead, you can backup or migrate your containers by using the
export command. For more information on exporting your containers,
see the following URL:
https://docs.docker.com/reference/commandline/export/

If you find yourself in this position, let me be the first to congratulate you on
mitigating a future disaster by promoting your Snowflake into a Pet or even
Cattle ahead of any problems.

http://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/reference/commandline/export/

What Are the Next Steps?

[114]

Still running a Snowflake?
If you find yourself still running a Snowflake server or service, I
cannot stress enough that you look at documenting, migrating, or
updating the Snowflake as soon as possible. There is no point in
monitoring a service that may be impossible for you to recover.
Remember that there are containers for old technologies, such as
PHP4, if you really need to run them.

Scenario one
You are running a personal WordPress website using the official containers from the
Docker Hub; the containers have been launched using a Docker Compose file like the
one we have used several times throughout this book.

You have the Docker Compose file stored in a GitHub repository and you can take
snapshots of the host machine as a backup. As it's your own blog, you are fine
running it on a single cloud-based host.

A suitable monitoring will be as follows:

•	 Docker stats
•	 Docker top
•	 Docker logs
•	 cAdvisor
•	 Sysdig

As you are running a single host machine that you are treating as a backup, there
is no real need for you to ship your log files to a central location as odds are your
host machines; like the containers, its hosting will be online for months or possibly
even years.

It is unlikely that you will need to dig too deeply into your containers' historical
performance stats, as most of the tuning and troubleshooting will be done in real
time as problems occur.

With the monitoring tools suggested, you will be able to get a good insight into
what is happening within your containers in real time, and to get more than enough
information on processes that are consuming too much RAM and CPU, along with
any error messages from within the containers.

Chapter 8

[115]

You may want to enable a service such as Pingdom (https://www.pingdom.com/)
or Uptime Robot (http://uptimerobot.com/). These services poll your website
every few minutes to ensure that the URL you configure them to, check whether its
loading within a certain time or at all. If they detect any slowdown or failures with
the page loading, they can be configured to send an initial alert to notify you that
there is a potential issue, such as both the services mentioned have a free tier.

Scenario two
You are running a custom e-commerce application that needs to be highly available
and also scale during your peak times. You are using a public cloud service and the
toolset that comes with it to launch containers and route traffic to them.

A suitable monitoring will be as follows:

•	 cAdvisor + Prometheus
•	 Zabbix
•	 Sysdig Cloud
•	 New Relic Server Monitoring
•	 Datadog
•	 ELK + Logspout
•	 Log Entries
•	 Loggly

With this scenario, there is a business need to not only be notified about container
and host failures, but also to hold your monitoring data and logs away from your
host servers so that you can properly review historical information. You may also
need to keep logs for PCI compliance or internal auditing for a fixed period of time.

Depending on your budget, you can achieve this by hosting your own monitoring
(Zabbix and Prometheus) and central logging (ELK) stacks somewhere within
your infrastructure.

You can also choose to run a few different third-party tools such as combining tools
that monitor performance, for example, Sysdig Cloud or Datadog, with a central
logging service, such as Log Entries or Loggly.

If appropriate, you can also run a combination of self-hosted and third-party tools.

https://www.pingdom.com/
http://uptimerobot.com/

What Are the Next Steps?

[116]

While the self-hosted option may appear to be the most budget-friendly option, there
are some considerations to take into account, as follows:

•	 Your monitoring needs to be hosted away from your application. There
is no point in having your monitoring installed on the same host as your
application; what will alert you if the host fails?

•	 Your monitoring needs to be highly available; do you have the infrastructure
to do this? If your application needs to be highly available, then so does
your monitoring.

•	 You need to have enough capacity. Do you have the capacity to be able to
store log files and metrics going back a month, 6 months, or a year?

If you are going to have to invest in any of the preceding options, then it will
be worth weighing up the costs of investing in both the infrastructure and the
management of your own monitoring solution against using a third-party that
will offer the preceding options as a service.

If you are using a container-only operating system such as CoreOS or RancherOS,
then you will need to choose a service whose agent or collector can be executed
from within a container, as you will not be able to install the agent binaries directly
on the OS.

You will also need to ensure that your host machine is configured to start the agents/
collectors on boot. This will ensure that as soon as the host machine joins a cluster
(which is typically when containers will start to popup on the host), it is already
sending metrics to your chosen monitoring services.

Scenario three
Your application launches a container each time your API is called from your
frontend application; the container takes the user input from a database, processes
it, and then passes the results back to your front end application. Once the data has
been successfully processed, the container is terminated. You are using a distributed
scheduling system to launch the containers.

Chapter 8

[117]

A suitable monitoring will be as follows:

•	 Zabbix
•	 Sysdig Cloud
•	 Datadog
•	 ELK + Logspout
•	 Log Entries
•	 Loggly

In this scenario, you more than likely do not want to monitor things such as CPU and
RAM utilization. These containers after all should only be around for a few minutes,
and also your scheduler will launch the container on the host machine where there is
enough capacity for the task to execute.

Instead, you will probably want to keep a record to verify that the container
launched and terminated as expected. You will also want to make sure that you log
the STDOUT and STDERR from the container while it is active, as once the container has
been terminated, it will be impossible for you to get these messages back.

With the tools listed in the preceding points, you should be able to build some
quite useful queries to get a detailed insight into how your short run processes
are performing.

For example, you will be able to get the average lifetime of a container, as you know
the time the container was launched and when it was terminated; knowing this
will then allow you to set a trigger to alert you if any containers are around for any
longer than you would expect them to be.

A little more about alerting
A lot of the tools we have looked at in this book offer at least some sort of basic
alerting functionality; the million-dollar question is should you enable it?

A lot of this is dependent on the type of application you are running and how the
containers have been deployed. As we have already mentioned a few times in this
chapter, you should never really have a Snowflake container; this leaves us with
Pets, Cattle, and Chickens.

What Are the Next Steps?

[118]

Chickens
As already discussed in the previous section, you probably don't need to worry
about getting alerts for RAM, CPU, and hard drive performance on a cluster that is
configured to run Chickens.

Your containers should not be up long enough to experience any real problems;
however, should there be any unexpected spikes, your scheduler will probably
have enough intelligence to distribute your containers to hosts that have the most
available resources at that time.

You will need to know if any of your containers have been running longer than you
expect them to be up; for example, a process in a container that normally takes no
more than 60 seconds is still running after 5 minutes.

This not only means that there is a potential problem, it also means that you find
yourself running hosts that only contain stale containers.

Cattle and Pets
When it comes to setting up alerts on Cattle or Pets, you have a few options.

You will more than likely want to receive alerts based on CPU and RAM utilization
for both the host machine and the containers, as this could indicate a potential
problem that could cause slow down within the application and also loss of business.

As mentioned previously, you will probably also want to be alerted if your
application starts to serve the content that is unexpected. For example, a host
and a container will quite happily sit there serving an application error.

You can use a service such as Pingdom, Zabbix, or New Relic to load a page and
check for the content in the footer; if this content is missing, then an alert can be sent.

Depending on how fluid your infrastructure is, in a Cattle configuration, you will
probably want to be alerted when containers spin up and down, as this will indicate
periods of high traffic/transactions.

Chapter 8

[119]

Sending alerts
Sending alerts differs for each tool, for example, an alert could be as simple as
sending an email to inform you that there is an issue to the sounding of an audible
alert in a Network Operations Center (NOC) when the CPU load of a container goes
above five, or the load on the host goes above 10.

For those of you who require an on-call team to be alerted, most of the software
we have covered has some level of integration alert aggregation services such as
PagerDuty (https://www.pagerduty.com).

These aggregation services either intercept your alert emails or allow services to
make API calls to them. When triggered, they can be configured to place phone calls,
send SMS messages, and even escalate to secondary on-call technician if an alert has
not been flagged down within a definable time.

I can't think of any cases where you shouldn't look at enabling alerting, after all, it's
always best to know about anything that could effect your application before your
end users do.

How much alerting you enable is really down to what you are using your containers
for; however, I would recommend that you review all your alerts regularly and also
actively tune your configuration.

The last thing you want is a configuration that produces too many false positives
or one that is too twitchy, as you do not want the team who receives your alerts to
become desensitized to the alerts that you are generating.

For example, if a critical CPU alert is triggered every 30 minutes because of a
scheduled job, then you will probably need to review the sensitivity of the alert,
otherwise it is easy for the engineer to simply dismiss a critical alert without thinking
about it, as "this alert comes every half an hour and will be ok in a few minutes",
when your entire application could be unresponsive.

https://www.pagerduty.com

What Are the Next Steps?

[120]

Keeping up
While Docker has been built on top of well-established technologies such as Linux
Containers (LXC), these have traditionally been difficult to configure and manage,
especially for non-system administrators.

Docker removes almost all the barriers to entry, allowing everyone with a
small amount of command-line experience to launch and manage their own
container-based applications.

This has forced a lot of the supporting tools to also lower their barrier to entry.
Software that once required careful planning to deploy, such as some of the
monitoring tools we covered in this book, can now be deployed and configured
in minutes rather than hours.

Docker is also a very fast-moving technology; while it has been considered
production-ready for a while, new features are being added and existing
features are improved with regular updates.

So far, in 2015, there have been 11 releases of Docker Engine; of these, only six have
been minor updates that fix bugs, and the rest have all been major updates. Details
of each release can be found in the project's Changelog, which can be found at
https://github.com/docker/docker/blob/master/CHANGELOG.md.

Because of the pace of development of Docker, it is import that you also update any
monitoring tools you deploy. This is not only to keep up with new features, but also
to ensure that you don't loose any functionality due to changes in the way in which
Docker works.

This attitude of updating monitoring clients/tools can be a bit of a change for some
administrators who maybe in the past would have configured a monitoring agent on
a server and then not thought about it again.

https://github.com/docker/docker/blob/master/CHANGELOG.md

Chapter 8

[121]

Summary
As discussed in this chapter, Docker is a fast moving technology. While this book
has been in production, there have been three major versions released from 1.7 to 1.9;
with each release Docker has become more stable and more powerful.

In this chapter, we have looked at different ways to implement the technologies
that have been discussed in the previous chapters of this book. By now, you should
have an idea of which approach is appropriate to monitor your containers and
host machines, for both your application and for the way the application has
been deployed using Docker.

No matter which approach you chose to take, it is important that you stay up-to-
date with Docker's development and also the new monitoring technologies as they
emerge, the following links are good starting points to keep yourself informed:

•	 Docker Engineering Blog:
http://blog.docker.com/category/engineering/

•	 Docker on Twitter: https://twitter.com/docker
•	 Docker on Reddit: https://www.reddit.com/r/docker
•	 Docker on Stack Overflow:

http://stackoverflow.com/questions/tagged/docker

One of the reasons why the Docker project has been embraced by developers, system
administrators and even enterprise companies is because it is able to move at a quick
pace, while adding more features and very impressively maintaining its ease of use
and flexibility.

Over the next 12 months, the technology is set to be even more widespread; the
importance of ensuring that you are capturing useful performance metrics and logs
from your containers will become more critical and I hope that this book has helped
you start your journey into monitoring Docker.

http://blog.docker.com/category/engineering/
https://twitter.com/docker
https://www.reddit.com/r/docker
http://stackoverflow.com/questions/tagged/docker

[123]

Index
Symbol
--privileged flag

about 27
URL 27

A
alerts

enabling 117
sending 119
setting up, on Cattle 118
setting up, on Chickens 118
setting up, on Pets 118

Amazon EC2 Container Service
URL 112

Amazon Web Services
URL 73

Apache Mesos
URL 113

Atomic
URL 76

B
backslash

using 27

C
cAdvisor

about 25, 26
compiling, from source 28, 29
executing, container used 26, 27
reference link 44

Cattle
about 3
alerts, setting up 118
containers, deploying onto 112

Changelog, Docker
URL 120

Chickens
about 3
alerts, setting up 118
containers, deploying onto 113

cloud
Docker, deploying in 74, 75

Cloudscaling
reference link 3

container
used, for executing cAdvisor 26, 27

Container Down 60
container logs

viewing 100, 101
containers

comparing, to host machine 59
deploying, onto Cattle 112
deploying, onto Chickens 113
deploying, onto Pets 112
deploying, onto Snowflakes 113, 114
resource utilization, tracking 20

containers, monitoring
scenarios 114-117

container stats
driver status 36
images 37
subcontainers 36
viewing 36

CoreOS
URL 76

[124]

Csysdig
about 69
using 69-72

custom graphs
creating 58
reference link 58

D
Dashboard

launching 41, 42
Datadog

about 84
agent installation, URL 86
agent, installing 85, 86
references 90
URL 76
web interface, exploring 86-90

data volume container
creating 43

Digital Ocean
URL 73

Docker
about 5
advancements 120
deploying, in cloud 74, 75
reference link 1
URL, for user guide 12

Docker Compose 5
docker-compose file

used, for executing ELK stack 106
Docker Engine 5
Docker exec 23
docker export command

URL 113
Docker Hub

about 6
URL 6

Docker images
URL 37

Docker stats
about 15
executing 16-19

Docker top 22
driver status

obtaining 36

E
Elasticsearch

URL, for launching 102
ELK stack

about 101, 102
executing, docker-compose file used 106
Logspout 103, 104
logs, reviewing 104-106
references 107
starting 102, 103

environment
cloning 8

externally hosted services
about 73, 74
Docker, deploying in cloud 74, 75

F
Fig 5

G
Go

URL 26
Google Container Engine

URL 112

H
host machine

containers, comparing to 59

I
images

listing 37
InfluxDB

about 44
URL 44

J
Joyent Triton

URL 112

[125]

K
Kibana

URL, for launching 103
Kubernetes

URL 113

L
lmctfy

URL 26
local environment

launching 6, 7
Log Entries

configuring 107-109
URL 107

Loggly
URL 107

logs
reviewing 104-106

Logspout
about 103, 104
references 104
URL, for launching 103

Logstash
URL, for launching 102

M
MariaDB

about 10
URL 48

metrics
collecting 30
containers, comparing to host machine 59
custom graphs, creating 58
recording 57
triggers, defining 60, 61

Microsoft Azure
URL 73

Monitoring Docker repository
URL 8

N
Nagios

URL 46
ncurses 64

Network Operations Center (NOC) 119
New Relic

about 90, 91
agent, installing 91, 92
references 95, 96
URL 76
web interface, exploring 92-95

P
PagerDuty

URL 61
Pets

about 3
alerts, setting up 118
containers, deploying onto 112

phpinfo
URL 16

Pingdom
URL 115

processes
Docker exec 23
Docker top 22
isolating 21, 22

Prometheus
about 37, 38
Dashboard, launching 41, 42
data volume container, creating 43
launching 39
querying 40, 41
references 44
URL, for documentation 42

Puppet Forge
URL 51

R
RancherOS

URL 76

S
SaaS service

using 75, 76
server styles

selecting 4
Slack

URL 61

[126]

Snowflakes
about 4
containers, deploying onto 113, 114
reference link 4

Standard Streams
reference link 100

subcontainers 36
Sysdig

about 63, 64
basics 66
containers, listing 67, 68
data, capturing 67
installing 64, 65
references 69
URL 65
using 65, 66

Sysdig Cloud
about 76, 77
agent installation, URL 78
agent, installing 77-79
containers, exploring 80-83
functionality 77
references 77, 84

Sysdig Cloud
URL 76

T
time series

about 38
reference link 38

triggers
defining 60, 61

U
Ubuntu Snappy Core

URL 76
Uptime Robot

URL 115

V
Vagrant

URL 7
vagrant box

URL 8

virtual server
executing 8-11
halting 12, 13

VMware vCloud Air
URL 73

W
Web interface

about 30
CPU 33, 34
drawbacks 37
Filesystem 35
Memory 34
Network 35
overview 31
Processes 31, 32

WordPress
URL, for installation 66

Y
YAML

URL 5

Z
Zabbix

about 45
containers, using 46-50
host machine, preparing 52-54
host templates, adding 54-57
installing 46
references 46
URL 46
vagrant, using 51

Zenoss
URL 46

Thank you for buying
Monitoring Docker

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Learning Docker
ISBN: 978-1-78439-7937 Paperback: 240 pages

Optimize the power of Docker to run your
applications quickly and easily

1.	 Learn to compose, use, and publish the Docker
containers.

2.	 Leverage the features of Docker to deploy your
existing applications.

3.	 Explore real world examples of securing and
managing Docker containers.

Docker Cookbook
ISBN: 978-1-78398-486-2 Paperback: 248 pages

80 hands-on recipes to efficiently work with the
Docker 1.6 environment on Linux

1.	 Provides practical techniques and knowledge
of various emerging and developing APIs
to help you create scalable services.

2.	 Create, manage, and automate
production-quality services while dealing
with inherent issues.

3.	 Each recipe is carefully organized
with instructions to complete the
task efficiently.

Please check www.PacktPub.com for information on our titles

Docker for Web Developers
[Video]
ISBN: 978-1-78439-067-9 Duration: 01:31 hours

Accelerate your web development skills on real web
projects in record time with Docker

1.	 Supercharge your web development
process while ensuring that everything works
smoothly.

2.	 Win at 2048 using Docker's commit and restore
functionality.

3.	 Use the Docker Hub workflow to automate the
rebuilding of your web projects.

Orchestrating Docker
ISBN: 978-1-78398-478-7 Paperback: 154 pages

Manage and deploy Docker services to containerize
applications efficiently

1.	 Set up your own Heroku-like PaaS by getting
accustomed to the Docker ecosystem.

2.	 Run your applications on development
machines, private servers, or the cloud, with
minimal cost of a virtual machine.

3.	 A comprehensive guide to the smooth
management and development of Docker
containers and its services.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright

	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Docker Monitoring

	Pets, Cattle, Chickens, and Snowflakes
	Pets
	Cattle
	Chickens
	Snowflakes
	So what does this all mean?

	Docker
	Launching a local environment
	Cloning the environment
	Running a virtual server
	Halting the virtual server
	Summary

	Chapter 2
: Using the Built-in Tools
	Docker stats
	Running Docker stats

	What just happened?
	What about processes?
	Docker top
	Docker exec

	Summary

	Chapter 3
: Advanced Container Resource Analysis
	What is cAdvisor?
	Running cAdvisor using a container
	Compiling cAdvisor from source
	Collecting metrics
	The Web interface
	Overview
	Processes
	CPU
	Memory
	Network
	Filesystem

	Viewing container stats
	Subcontainers
	Driver status
	Images

	This is all great, what's the catch?
	Prometheus
	Launching Prometheus
	Querying Prometheus
	Dashboard
	The next steps

	Alternatives?
	Summary

	Chapter 4
: A Traditional Approach to Monitoring Containers
	Zabbix
	Installing Zabbix
	Using containers
	Using vagrant
	Preparing our host machine
	The Zabbix web interface

	Docker metrics
	Create custom graphs
	Compare containers to your host machine
	Triggers

	Summary

	Chapter 5
: Querying with Sysdig
	What is Sysdig?
	Installing Sysdig
	Using Sysdig
	The basics
	Capturing data
	Containers
	Further reading

	Using Csysdig
	Summary

	Chapter 6
: Exploring Third Party Options
	A word about externally hosted services
	Deploying Docker in the cloud

	Why use a SaaS service?
	Sysdig Cloud
	Installing the agent
	Exploring your containers
	Summary and further reading

	Datadog
	Installing the agent
	Exploring the web interface
	Summary and further reading

	New Relic
	Installing the agent
	Exploring the web interface
	Summary and further reading

	Summary

	Chapter 7
: Collecting Application Logs from within the Container
	Viewing container logs
	ELK Stack
	Starting the stack
	Logspout
	Reviewing the logs
	What about production?

	Looking at third party options
	Summary

	Chapter 8
: What Are the Next Steps?
	Some scenarios
	Pets, Cattle, Chickens, and Snowflakes
	Pets
	Cattle
	Chickens
	Snowflakes

	Scenario one
	Scenario two
	Scenario three

	A little more about alerting
	Chickens
	Cattle and Pets
	Sending alerts

	Keeping up
	Summary

	Index

