4" 'llll_lull LI |

‘m= gEEEannt _m? =

.-r!- WHRRREL G o

m.mmm ARREEEas llﬂ Mm ‘-
| SmmE BEEEEICE - i
= uafm,_
anm BEEEEmE = oA

.._. o
i_nnn EEENERER l,,

; e e - =
‘... } ‘

14 S22 mmmpz=o- !'L w ")
=, w._.l-lls' ._ mﬂ i

SEER wwmwmwe— -

| - - EEEECCTT O

| - - e

——— | ([[[]] l_
11

=== IEEEEEEm l_! T
— R
“““ apanEss— l.ﬁ
 amme IENEENSE e
Huuu L L ™ T
. mm DNNENEE
mm DEEEEEEC

......................
..........

Securing Docker

Learn how to secure your Docker environment and keep your
environments secure irrespective of the threats out there

PACKT

Securing Docker

Learn how to secure your Docker environment and
keep your environments secure irrespective of the
threats out there

Scott Gallagher

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Securing Docker

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book

is sold without warranty, either express or implied. Neither the author nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016
Production reference: 1230316

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78588-885-4

www . packtpub.com

www.packtpub.com

Credits

Author
Scott Gallagher

Reviewer
Harald Albers

Commissioning Editor
Priya Singh

Acquisition Editor
Prachi Bisht

Content Development Editor
Arshiya Ayaz Umer

Technical Editor
Suwarna Patil

Copy Editor
Vibha Shukla

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

About the Author

Scott Gallagher has been fascinated with technology since he was in elementary
school, when he used to play Oregon Trail. His love continued through middle

school, working on more Apple Ile computers. In high school, he learned how build
computers and program in BASIC! His college years were all about server technologies
such as Novell, Microsoft, and Red Hat. After college, he continued to work on Novell,
all while keeping an interest in all the technologies. He then moved into managing
Microsoft environments and eventually into what he is the most passionate about,
Linux environments, and now his focus is on Docker and cloud environments.

I would like to thank my family for the support they have given me,
not only throughout the work on this book, but throughout my life
and career. I would like to thank my wife, who is my soulmate, the
love of my life, and the most important person in my life and the
reason I push myself to be the best I can be each day. I would also
like to thank my kids, who are the most amazing kids in this world,
for being able to watch them grow each day; I truly am blessed.
Finally, I would like to thank my parents, who have helped me
become the person I am today.

About the Reviewer

Harald Albers works as a Java developer and security engineer in Hamburg,
Germany.

In addition to developing distributed web applications, he also sets up and
maintains the build infrastructure, staging, and production environments for
these applications.

Most of his work is only possible because of Docker's simple and elegant solutions
for the challenges of provisioning, deployment, and orchestration.

He started using Docker and contributing to the Docker project in mid-2014. He is a
member of the Docker Governance Advisory Board, 2015-2016.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents

Preface \'
Chapter 1: Securing Docker Hosts 1
Docker host overview 1
Discussing Docker host 2
Virtualization and isolation 2
Attack surface of Docker daemon 4
Protecting the Docker daemon 5
Securing Docker hosts 8
Docker Machine 8
SELinux and AppArmor 11
Auto-patching hosts 1"
Summary 12
Chapter 2: Securing Docker Components 13
Docker Content Trust 13
Docker Content Trust components 14
Signing images 16
Hardware signing 18
Docker Subscription 18
Docker Trusted Registry 20
Installation 20
Securing Docker Trusted Registry 22
Administering 28
Workflow 28
Docker Registry 30
Installation 30
Configuration and security 32
Summary 35

[il

Table of Contents

Chapter 3: Securing and Hardening Linux Kernels 37
Linux kernel hardening guides 37
SANS hardening guide deep dive 38
Access controls 40
Distribution focused 42
Linux kernel hardening tools 42
Grsecurity 43
Lynis 44
Summary 45
Chapter 4: Docker Bench for Security 47
Docker security — best practices 48
Docker — best practices 48
CIS guide 48
Host configuration 49
Docker daemon configuration 49
Docker daemon configuration files 49
Container images/runtime 49
Docker security operations 50
The Docker Bench Security application 50
Running the tool 50
Running the tool — host configuration 51
Running the tool — Docker daemon configuration 52
Running the tool — Docker daemon configuration files 53
Running the tool — container images and build files 55
Running the tool — container runtime 55
Running the tool — Docker security operations 55
Understanding the output 56
Understanding the output — host configuration 56
Understanding the output — the Docker daemon configuration 57
Understanding the output — the Docker daemon configuration files 57
Understanding the output — container images and build files 57
Understanding the output — container runtime 58
Understanding the output — Docker security operations 60
Summary 60
Chapter 5: Monitoring and Reporting Docker Security Incidents 61
Docker security monitoring 62
Docker CVE 62
Mailing lists 62
Docker security reporting 63
Responsible disclosure 63
Security reporting 64

Lii]

Table of Contents

Additional Docker security resources 64
Docker Notary 64
Hardware signing 65
Reading materials 66
Awesome Docker 67

Summary 67

Chapter 6: Using Docker's Built-in Security Features 69

Docker tools 70
Using TLS 70
Read-only containers 74

Docker security fundamentals 76
Kernel namespaces 76
Control groups 76
Linux kernel capabilities 79

Containers versus virtual machines 80

Summary 80

Chapter 7: Securing Docker with Third-party Tools 81

Third-party tools 82
Traffic Authorization 82
Summon 83
sVirt and SELinux 84

Other third-party tools 86
dockersh 86
DockerUl 86
Shipyard 88
Logspout 90

Summary 91

Chapter 8: Keeping up Security 93

Keeping up with security 94

E-mail list options 94

The two e-mail lists are as follows: 94
GitHub issues 95
IRC rooms 102
CVE websites 103
Other areas of interest 104
Summary 105
Index 107

[iii]

Preface

Docker is the hottest buzzword in technology these days! This book helps you to
ensure that you are securing all the pieces in the Docker ecosystems of tools. Keeping
your data and systems safe is of utmost importance these days, and with Docker, it's
the same exception. Learn how Docker is inherently secure and how to secure the
pieces around it even more and be on the lookout for potential vulnerabilities as they
take place.

What this book covers

Chapter 1, Securing Docker Hosts, starts off the book by discussing how to secure

the first part of getting your Docker environment up and running, and that is

by focusing on your Docker hosts. The Docker hosts are the platform that your
containers will run on. Without securing these first, it's like leaving the front door to
your house wide open.

Chapter 2, Securing Docker Components, focuses on securing the components of
Docker, such as the registry you can use, the containers that run on your hosts, and
how to sign your images.

Chapter 3, Securing and Hardening Linux Kernels, explains hardening guides that are
out there as well as different security measures/methods you can use to help secure
the kernel that is being used to run your containers as it's important to secure it.

Chapter 4, Docker Bench for Security, informs how well you have set up your Docker
environment with the Docker Bench Security application, get recommendations for
where you should focus your efforts to fix right away, and what you don't really
have to fix right now, but should keep yourself aware of.

[v]

Preface

Chapter 5, Monitoring and Reporting Docker Security Incidents, covers how to stay on
top of the items that Docker has released regarding the security findings to help keep
you aware of your environments. Also, we will take a look at how to safely report
any security findings you come across to ensure that Docker has a chance to alleviate
the concern before it becomes public and widespread.

Chapter 6, Using Docker's Built-in Security Features, introduces the use of Docker tools
to help secure your environment. We will go over all of them to give you a baseline
of what you can use that is provided by Docker itself. You can learn what command-
line and GUI tools you can use for your security needs.

Chapter 7, Securing Docker with Third-party Tools, covers the third-party tools that are
out there to help you keep your Docker environment secure. You will learn about
command line, but we'll focus on third-party tools. We will take a look at traffic
authorization, summon, and sVirt with SELinux.

Chapter 8, Keeping up on Security, explains the means that you can use to keep up
to date with Docker-related security issues that are out there for the version of the
Docker tools you might be running now, how to stay ahead of any security issues,
and keep your environments secure even with threats out there.

What you need for this book

The book will walk you through the installation of any tools that you will need. You
will need a system with Windows, Mac OS, or Linux installed; preferably, the latter
one, as well as an Internet connection.

Who this book is for

This book is intended for those developers who will be using Docker as their testing
platform as well as security professionals who are interested in securing Docker
containers. Readers must be familiar with the basics of Docker.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"You will need pass phrase you entered earlier for ca-key.pem."

[vil

Preface

Any command-line input or output is written as follows:

$ docker run -it scottpgallagher/chef-server /bin/bash
New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The next
section, Security settings, is probably one of the most important ones."

& Warnings or important notes appear in a box like this.
i

Al

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and
mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub. com/
authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text
or the code —we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions of
this book. If you find any errata, please report them by visiting http: //www.
packtpub.com/submit-errata, selecting your book, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

[vii]

http://www.packtpub.com/authors
www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

To view the previously submitted errata, go to https://www.packtpub. com/
books/content /support and enter the name of the book in the search field. The
required information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the
problem.

[viii]

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Securing Docker Hosts

Welcome to the Securing Docker book! We are glad you decided to pick up the book
and we want to make sure that the resources you are using are being secured in
proper ways to ensure system integrity and data loss prevention. It is also important
to understand why you should care about the security. If data loss prevention
doesn't scare you already, thinking about the worst possible scenario —a full system
compromise and the possibility of your secret designs being leaked or stolen by
others —might help to reinforce security. Throughout this book, we will be covering
a lot of topics to help get your environment set up securely so that you can begin to
start deploying containers with peace of mind knowing that you took the right steps
in the beginning to fortify your environment. In this chapter, we will be taking a look
at securing Docker hosts and will be covering the following topics:

* Docker host overview

* Discussing Docker host

e Virtualization and isolation

* Attack surface of Docker daemon
* Securing Docker hosts

* Docker Machine

* SELinux and AppArmor

* Auto-patching hosts

Docker host overview

Before we get in depth and dive in, let's first take a step back and review exactly
what the Docker host is. In this section, we will look at the Docker host itself to get
an understanding of what we are referring to when we are talking about the Docker
host. We will also be looking at the virtualization and isolation techniques that
Docker uses to ensure security.

[11]

Securing Docker Hosts

Discussing Docker host

When we think of a Docker host, what comes to our mind? If you put it in terms

of virtual machines that almost all of us are familiar with, let's take a look at how a
typical VM host differs from a Docker host. A VM host is what the virtual machines
actually run on top of. Typically, this is something like VMware ESXi if you are
using VMware or Windows Server if you are using Hyper-V. Let's take a look at
how they are as compared so that you can get a visual representation of the two, as
shown in the following diagram:

VM Host Docker Host
VM Container
VM Container
VM Container

The preceding image depicts the similarities between a VM host and Docker host.
As stated previously, the host of any service is simply the system that the underlying
virtual machines or containers in Docker run on top of. Therefore, a host is the
operating system or service that contains and operates the underlying systems that
you install and set up a service on, such as web servers, databases, and more.

Virtualization and isolation

To understand how Docker hosts can be secured, we must first understand how the
Docker host is set up and what items are contained in the Docker host. Again, like
VM hosts, they contain the operating system that the underlying service operates
on. With VMs, you are creating a whole new operating system on top of this VM
host operating system. However, on Docker, you are not doing that and are sharing
the Linux Kernel that the Docker host is using. Let's take a look at the following
diagram to help us represent this:

[2]

Chapter 1

VM Host Docker Host
Hypervisor Hypervisor
Host OS Linux Kernel

/N

App A App B

VM1 + Libs + OS

VM1 + Libs + OS

Bin/Libs Bin/Libs

VM1 + Libs + OS

As we can see from the preceding image, there is a distinct difference between how
items are set up on a VM host and on a Docker host. On a VM host, each virtual
machine has all of its own items inclusive to itself. Each containerized application
brings its own set of libraries, whether it is Windows or Linux. Now, on the Docker
host, we don't see that. We see that they share the Linux Kernel version that is being
used on the Docker host. That being said, there are some security aspects that need
to be addressed on the Docker host side of things. Now, on the VM host side, if
someone does compromise a virtual machine, the operating system is isolated to
just that one virtual machine. Back on the Docker host side of things, if the kernel is
compromised on the Docker host, then all the containers running on that host are
now at high risk as well.

So, now you should see how important it is that we focus on security when it comes
to Docker hosts. Docker hosts do use some isolation techniques that will help protect
against kernel or container compromises in a few ways. Two of these ways are by
implementing namespaces and cgroups. Before we can discuss how they help, let's
first give a definition for each of them.

Kernel namespaces, as they are commonly known as, provide a form of isolation for
the containers that will be running on your hosts. What does this mean? This means
that each container that you run on top of your Docker hosts will be given its own
network stack so that it doesn't get privileged access to another container's socket
or interfaces. However, by default, all Docker containers are sitting on the bridged
interface so that they can communicate with each other easily. Think of the bridged
interface as a network switch that all the containers are connected to.

[31]

Securing Docker Hosts

Namespaces also provide isolation for processes and mount isolation. Processes
running in one container can't affect or even see processes running in another Docker
container. Isolation for mount points is also on a container by container basis. This
means that mount points on one container can't see or interact with mount points on
another container.

On the other hand, control groups are what control and limit resources for containers
that will be running on top of your Docker hosts. What does this boil down to,
meaning how will it benefit you? It means that cgroups, as they will be called

going forward, help each container get its fair share of memory disk I/O, CPU,

and much more. So, a container cannot bring down an entire host by exhausting all
the resources available on it. This will help to ensure that even if an application is
misbehaving that the other containers won't be affected by this application and your
other applications can be assured uptime.

Attack surface of Docker daemon

While Docker does ease some of the complicated work in the virtualization world,
it is easy to forget to think about the security implications of running containers

on your Docker hosts. The largest concern you need to be aware of is that Docker
requires root privileges to operate. For this reason, you need to be aware of who
has access to your Docker hosts and the Docker daemon as they will have full
administrative access to all your Docker containers and images on your Docker host.
They can start new containers, stop existing ones, remove images, pull new images,
and even reconfigure running containers as well by injecting commands into them.
They can also extract sensitive information like passwords and certificates from

the containers. For this reason, make sure to also separate important containers if
you do need to keep separate controls on who has access to your Docker daemon.
This is for containers where people have a need for access to the Docker host where
the containers are running. If a user needs API access then that is different and
separation might not be necessary. For example, keep containers that are sensitive
on one Docker host, while keeping normal operation containers running on another
Docker host and grant permissions for other staff access to the Docker daemon

on the unprivileged host. If possible, it is also recommended to drop the setuid

and setgid capabilities from containers that will be running on your hosts. If you
are going to run Docker, it's recommended to only use Docker on this server and
not other applications. Docker also starts containers with a very restricted set of
capabilities, which works in your favor to address security concerns.

[4]

Chapter 1

To drop the setuid or setgid capabilities when you start a Docker
container, you will need to do something similar to the following:
% $ docker run -d --cap-drop SETGID --cap-drop SETUID nginx

This would start the nginx container and would drop the SETGID and
SETUID capabilities for the container.

Docker's end goal is to map the root user to a non-root user that exists on the Docker
host. They also are working towards allowing the Docker daemon to run without
requiring root privileges. These future improvements will only help facilitate how
much focus Docker does take when they are implementing their feature sets.

Protecting the Docker daemon

To protect the Docker daemon even more, we can secure the communications

that our Docker daemon is using. We can do this by generating certificates and

keys. There are are few terms to understand before we dive into the creation of the
certificates and keys. A Certificate Authority (CA) is an entity that issues certificates.
This certificate certifies the ownership of the public key by the subject that is
specified in the certificate. By doing this, we can ensure that your Docker daemon
will only accept communication from other daemons that have a certificate that was
also signed by the same CA.

Now, we will be looking at how to ensure that the containers you will be running on
top of your Docker hosts will be secure in a few pages; however, first and foremost,
you want to make sure the Docker daemon is running securely. To do this, there are
some parameters you will need to enable for when the daemon starts. Some of the
things you will need beforehand will be as follows:

1. Create a CA.
$ openssl genrsa -aes256 -out ca-key.pem 4096
Generating RSA private key, 4096 bit long modulus

e is 65537 (0x10001)
Enter pass phrase for ca-key.pem:

Verifying - Enter pass phrase for ca-key.pem:

[51]

Securing Docker Hosts

You will need to specify two values, pass phrase and pass phrase. This
needs to be between 4 and 1023 characters. Anything less than 4 or more
than 1023 won't be accepted.

$ openssl req -new -x509 -days <number of days> -key ca-key.pem
-sha256 -out ca.pem

Enter pass phrase for ca-key.pem:

You are about to be asked to enter information that will be
incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name
or a DN.

There are quite a few fields but you can leave some blank
For some fields there will be a default wvalue,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State] :Pennsylvania
Locality Name (eg, city) I[]:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

There are a couple of items you will need. You will need pass phrase you
entered earlier for ca-key.pem. You will also need the country, State, city,
Organization Name, Organizational Unit Name, fully qualified domain
name (FQDN), and Email Address to be able to finalize the certificate.

2. Create a client key and signing certificate.
$ openssl genrsa -out key.pem 4096
$ openssl req -subj '/CN=<client DNS name>' -new -key key.pem -out
client.csr

3. Sign the public key.

$ openssl x509 -req -days <number of days> -sha256 -in client.csr
-CA ca.pem -CAkey ca-key.pem -CAcreateserial -out cert.em

[6]

Chapter 1

4. Change permissions.
$ chmod -v 0400 ca-key.pem key.pem server-key.em

$ chmod -v 0444 ca.pem server-cert.pem cert.em

Now, you can make sure that your Docker daemon only accepts connections from
the other Docker hosts that you provide the signed certificates to:

$ docker daemon --tlsverify --tlscacert=ca.pem --tlscert=server-
certificate.pem --tlskey=server-key.pem -H=0.0.0.0:2376

Make sure that the certificate files are in the directory you are running the command
from or you will need to specify the full path to the certificate file.

On each client, you will need to run the following:

$ docker --tlsverify --tlscacert=ca.pem --tlscert=cert.pem
--tlskey=key.pem -H=<$DOCKER HOST>:2376 version

Again, the location of the certificates is important. Make sure to either have them in
a directory where you plan to run the preceding command or specify the full path to
the certificate and key file locations.

You can read more about using Transport Layer Security (TLS) by default with your
Docker daemon by going to the following link:

http://docs.docker.com/engine/articles/https/

For more reading on Docker Secure Deployment Guidelines, the following link
provides a table that can be used to gain insight into some other items you can utilize
as well:

https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines
Some of the highlights from that website are:

* Collecting security and audit logs

» Utilizing the privileged switch when running Docker containers
* Device control groups

* Mount points

* Security audits

[71

http://docs.docker.com/engine/articles/https/
https://github.com/GDSSecurity/Docker-Secure-Deployment-Guidelines

Securing Docker Hosts

Securing Docker hosts

Where do we start to secure our hosts? What tools do we need to start with? We
will take a look at using Docker Machine in this section and how to ensure the hosts
that we are creating are being created in a secure manner. Docker hosts are like the
front door of your house, if you don't secure them properly, then anybody can just
walk right in. We will also take a look at Security-Enhanced Linux (SELinux) and
AppArmor to ensure that you have an extra layer of security on top of the hosts
that you are creating. Lastly, we will take a look at some of the operating systems
that support and do auto patching of their operating systems when a security
vulnerability is discovered.

Docker Machine

Docker Machine is the tool that allows you to install the Docker daemon onto your
virtual hosts. You can then manage these Docker hosts with Docker Machine. Docker
Machine can be installed either through the Docker Toolbox on Windows and

Mac. If you are using Linux, you will install Docker Machine through a simple curl
command:

$ curl -L https://github.com/docker/machine/releases/download/v0.6.0/
docker-machine-"uname -s”-"uname -m~ > /usr/local/bin/docker-machine && \

$ chmod +x /usr/local/bin/docker-machine

The first command installs Docker Machine into the /usr/local/bin directory and
the second command changes the permissions on the file and sets it to executable.

We will be using Docker Machine in the following walkthrough to set up a new
Docker host.

Docker Machine is what you should be or will be using to set up your hosts. For this
reason, we will start with it to ensure your hosts are set up in a secure manner. We
will take a look at how you can tell if your hosts are secure when you create them
using the Docker Machine tool. Let's take a look at what it looks like when you create
a Docker host using Docker Machine, as follows:

$ docker-machine create --driver virtualbox hostl

Running pre-create checks...
Creating machine...
Waiting for machine to be running, this may take a few minutes...

Machine is running, waiting for SSH to be available...

[8]

Chapter 1

Detecting operating system of created instance...
Provisioning created instance...
Copying certs to the local machine directory...

Copying certs to the remote machine...

Setting Docker configuration on the remote daemon...

From the preceding output, as the create is running, Docker Machine is doing things
such as creating the machine, waiting for SSH to become available, performing
actions, copying the certificates to the correct location, and setting up the Docker
configuration, we will see how to connect Docker to this machine as follows:

$ docker-machine env hostl

export DOCKER_TLS_VERIFY:“I“
export DOCKER HOST="tcp://192.168.99.100:2376"

export DOCKER CERT PATH="/Users/scottpgallagher/.docker/machine/machines/
hostl"

export DOCKER MACHINE NAME="hostl"
Run this command to configure your shell:

eval "$(docker-machine env hostl)"

The preceding command output shows the commands that were run to set this
machine up as the one that Docker commands will now run against:

eval "$(docker-machine env hostl)"

We can now run the regular Docker commands, such as docker info, and it will
return information from host1, now that we have set it as our environment.

We can see from the preceding highlighted output that the host is being set up
securely from the start from two of the export lines. Here is the first highlighted line
by itself:

export DOCKER TLS VERIFY="1"

From the other highlighted output, DOCKER_TLS_VERIFY is being set to 1 or true.
Here is the second highlighted line by itself:

export DOCKER HOST="tcp://192.168.99.100:2376"

We are setting the host to operate on the secure port of 2376 as opposed to the
insecure port of 2375.

[o]

Securing Docker Hosts

We can also gain this information by running the following command:

$ docker-machine 1ls

NAME ACTIVE DRIVER STATE URL
SWARM
hostl * virtualbox Running

tcp://192.168.99.100:2376

Make sure to check the TLS switch options that can be used with Docker Machine
if you have used the previous instructions to set up your Docker hosts and Docker
containers to use TLS. These switches would be helpful if you have existing
certificates that you want to use as well. These switches can be found in the
highlighted section by running the following command:

$ docker-machine --help

Options:
--debug, -D Enable debug mode

-8, --storage-path "/Users/scottpgallagher/.docker/machine"
Configures storage path [$MACHINE STORAGE PATH]

--tls-ca-cert CA to verify remotes against [$MACHINE TLS_CA CERT]

--tls-ca-key Private key to generate certificates [$MACHINE TLS
CA KEY]

--tls-client-cert Client cert to use for TLS [$MACHINE TLS CLIENT
CERT]

--tls-client-key Private key used in client TLS auth [$MACHINE

TLS CLIENT KEY]

--github-api-token Token to use for requests to the Github API
[$MACHINE GITHUB API TOKEN]

--native-ssh Use the native (Go-based) SSH implementation.
[$MACHINE_NATIVE_SSH]

--help, -h show help

--version, -v print the version

You can also regenerate TLS certificates for a machine using the regenerate-certs
subcommand in the event that you want that peace of mind or that your keys do get
compromised. An example command would look similar to the following command:

$ docker-machine regenerate-certs hostl

Regenerate TLS machine certs? Warning: this is irreversible. (y/n): y

[10]

Chapter 1

Regenerating TLS certificates
Copying certs to the local machine directory...
Copying certs to the remote machine...

Setting Docker configuration on the remote daemon...

SELinux and AppArmor

Most Linux operating systems are based on the fact that they can leverage SELinux
or AppArmor for more advanced access controls to files or locations on the operating
system. With these components, you can limit a container's ability to execute a
program as the root user with root privileges.

Docker does ship a security model template that comes with AppArmor and Red
Hat comes with SELinux policies as well for Docker. You can utilize these provided
templates to add an additional layer of security on top of your environments.

For more information about SELinux and Docker, I would recommend visiting the
following website:

https://www.mankier.com/8/docker selinux

While, on the other hand, if you are in the market for some more reading on
AppArmor and Docker, I would recommend visiting the following website:

https://github.com/docker/docker/tree/master/contrib/apparmor

Here you will find a template.go file, which is the template that Docker ships with
its application that is the AppArmor template.

Auto-patching hosts

If you really want to get into advanced Docker hosts, then you could use CoreOS
and Amazon Linux AMI, which perform auto-patching, both in a different way.
While CoreOS will patch your operating system when a security update comes

out and will reboot your operating system, the Amazon Linux AMI will complete
the updates when you reboot. So, when choosing which operating system to use
when you are setting up your Docker hosts, make sure to take into account the fact
that both of these operating systems implement some form of auto-patching, but
in a different way. You will want to make sure you are implementing some type of
scaling or failover to address the needs of something that is running on CoreOS so
that there is no downtime when a reboot occurs to patch the operating system.

[11]

https://www.mankier.com/8/docker_selinux
https://github.com/docker/docker/tree/master/contrib/apparmor

Securing Docker Hosts

Summary

In this chapter, we looked at how to secure our Docker hosts. The Docker hosts

are the first line of defense as they are the starting point where your containers

will be running and communicating with each other and end users. If these aren't
secure, then there is no purpose of moving forward with anything else. You learned
how to set up the Docker daemon to run securely running TLS by generating the
appropriate certificates for both the host and the clients. We also looked at the
virtualization and isolation benefits of using Docker containers, but make sure to
remember the attack surface of the Docker daemon too.

Other items included how to use Docker Machine to easily create Docker hosts on
secure operating systems with secure communication and ensure that they are being
set up using secure methods when you use it to set up your containers. Using items
such as SELinux and AppArmor also help to improve your security footprint as well.
Lastly, we covered some Docker host operating systems that you can use for auto-
patching as well, such as CoreOS and Amazon Linux AML

In the next chapter, we will be looking at securing the components of Docker. We
will focus on securing the components of Docker such as the registry you can use,
containers that run on your hosts, and how to sign your images.

[12]

Securing Docker
Components

In this chapter, we will be taking a look at securing some Docker components

using things such as image signing tools. There are tools that will help secure the
environments where we are storing our images, whether they are signed or not. We
will also look at using tools that come with commercial level support. Some of the
tools (image signing and commercial level support tools) we will be looking at are:

* Docker Content Trust: Software that can be used to sign your images.
We will look at all the components and go through an example of signing
an image.

* Docker Subscription: Subscription is an all inclusive package that includes
a location to store your images, and Docker Engine to run your containers,
all while providing commercial level support for all those pieces, plus for the
applications and their life cycle that you plan to use.

* Docker Trusted Registry (DTR): Trusted Registry gives you a secure
location to store and manage your images either on premises or in the cloud.
It also has a lot of integration into your current infrastructure as well. We will
take a look at all the pieces available.

Docker Content Trust

Docker Content Trust is a means by which you can securely sign your Docker images
that you have created to ensure that they are from who they say they are from, that
being you! In this section, we will take a look at the components of Notary as well as
an example of signing images. Lastly, we will take a peek at the latest means of using
Notary with regards to hardware signing capabilities that are now available. It is a
very exciting topic, so let's dive in head first!

[13]

Securing Docker Components

Docker Content Trust components

To understand how Docker Content Trust works it is beneficial to be familiar with all
the components that make up its ecosystem.

The first part of that ecosystem is The Update Framework (TUF) piece. TUF, as we
will refer to it from now on, is the framework that Notary is built upon. TUF solves
the problem with software update systems in that they can often be hard to manage.
It enables users to ensure that all applications are secure and can survive any key
compromises. However, if an application is insecure by default, it won't help to
secure that application until it has been brought up to a secure compliance. It also
enables trusted updates over untrusted sources and much more. To learn more about
TUF, please visit the website:

http://theupdateframework.com/

The next piece of the Content Trust ecosystem is that of Notary. Notary is the key
underlying piece that does the actual signing using your keys. Notary is open source
software, and can be found here:

https://github.com/docker/notary

This has been produced by those at Docker for the use of publishing and verifying
content. Notary consists of a server piece as well as a client piece. The client piece
resides on your local machine and handles the storing of the keys locally as well as
the communication back with the Notary server to match up timestamps as well.

Basically, there are three steps to the Notary server.

1. Compile the server
2. Configure the server
3. Run the server
Since the steps may change in the future, the best location for that information would

be on the GitHub page for Docker Notary. For more information about compiling
and setting up the server side of Notary, please visit:

https://github.com/docker/notaryf#compiling-notary-server

[14]

http://theupdateframework.com/
https://github.com/docker/notary
https://github.com/docker/notary#compiling-notary-server

Chapter 2

Docker Content Trust utilizes two distinct keys. The first is that of a tagging key. The
tagging key is generated for every new repository that you publish. These are keys
that can be shared with others and exported to those who need the ability to sign
content on behalf of the registry. The other key, the offline key, is the important key.
This is the key that you want to lock away in a vault and never share with anyone...
ever! Like the name implies, this key should be kept offline and not stored on your
machine or anything on a network or cloud storage. The only times you need the
offline key are if you are rotating it out for a new one or if you are creating a new
repository.

So, what does all this mean and how does it truly benefit you? This helps in
protecting against three key, no pun intended, scenarios.

* Protects against image forgery, for instance if someone decides to pretend
one of your images is from you. Without that person being able to sign that
image with the repository specific key, remember the one you are to keep
offline!, they won't be able to pass it off as actually coming from you.

* Protects against replay attacks; replay attacks are ones in which a malicious
user tries to pass off an older version of an application, which has been
compromised, as the latest legitimate version. Due to the way timestamps are
utilized with Docker Content Trust, this will ultimately fail and keep you and
your users safe.

* Protects against key compromise. If a key is compromised, you can utilize
that offline key to do a key rotation. That key rotation can only be done by
the one with the offline key. In this scenario, you will need to create a new
key and sign it with your offline key.

The major take away from all of this is that the offline key is meant to be kept offline.
Never store it on your cloud storage, on GitHub, or even a system that is always
connected to the Internet such as that of your local machine. It would be best practice
to store it on a thumb drive that is encrypted and keep that thumb drive stored in a a
secure location.

To learn more about Docker Content Trust, please visit the following blog post:

http://blog.docker.com/2015/08/content-trust-docker-1-8/

[15]

http://blog.docker.com/2015/08/content-trust-docker-1-8/

Securing Docker Components

Signing images

Now that we have covered all the components of Docker Content Trust, let's take a
look at how we can sign an image and what all steps are involved. These instructions
are just for development purposes. If you are going to want to run a Notary server

in production, you will want to use your own database and compile Notary yourself
using the instructions at their website:

https://github.com/docker/notary#compiling-notary-server

This will allow you to use your own keys for your situation to your own backend
registry. If you are using the Docker Hub, it is very simple to use Docker Content
Trust.

$ export DOCKER CONTENT TRUST=1

The most important piece is that you need to put a tag on all images you push, which
we see in the next command:

$ docker push scottpgallagher/ubuntu:latest

The push refers to a repository [docker.io/scottpgallagher/ubuntu]l (len:
1)

f50e4a66df18: Image already exists
a6785352b25¢c: Image already exists
0998bf8fb9e9: Image already exists
0a85502c06c9: Image already exists

latest: digest: sha256:98002698c8d868b03708880ad2e1d36034c79a6698044b495a
c34c4cl6eacd57 size: 8008

Signing and pushing trust metadata

You are about to create a new root signing key passphrase. This
passphrase

will be used to protect the most sensitive key in your signing system.
Please

choose a long, complex passphrase and be careful to keep the password and
the

key file itself secure and backed up. It is highly recommended that you
use a

password manager to generate the passphrase and keep it safe. There will
be no

way to recover this key. You can find the key in your config directory.
Enter passphrase for new root key with id d792b7a:

Repeat passphrase for new root key with id d792b7a:

[16]

https://github.com/docker/notary#compiling-notary-server

Chapter 2

Enter passphrase for new repository key with id docker.io/
scottpgallagher/ubuntu (46a967e) :

Repeat passphrase for new repository key with id docker.io/
scottpgallagher/ubuntu (46a967e) :

Finished initializing "docker.io/scottpgallagher/ubuntu"

The most important line from the code above is:

latest: digest: sha256:98002698c8d868b03708880ad2e1d36034c79a6698044b495a
c34c4cleeacd57 size: 8008

This gives you the SHA hash that is used to verify the image is what it says it is and
not created by someone else, as well as its size. This will be used later when someone
goes to run that image/container.

If you were to do a docker pull from a machine that doesn't have this image, you
can see it has been signed with that hash.

$ docker pull scottpgallagher/ubuntu

Using default tag: latest
latest: Pulling from scottpgallagher/ubuntu

Digest: sha256:98002698c8d868b03708880ad2el1d36034c79a6698044b495ac34c4cle
eacd57

Status: Downloaded newer image for scottpgallagher/ubuntu:latest
Again, we see the SHA value being presented when we do the pull command.

So, what this means is when you go to run this container, it won't run locally without
first comparing the local hash to that on the registry server to ensure it hasn't
changed. If they match, it will run, if they don't match, it won't run and will give you
an error message about the hashes not matching.

With the Docker Hub you aren't essentially signing images with your own key,
unless you manipulate the keys that are in your ~/.docker/trust/trusted-
certificates/ directory. Remember that, by default, when you install Docker you
are given a set of certificates that you can use.

[17]

Securing Docker Components

Hardware signing

Now that we have looked at being able to sign images, which other security measure
have been put in place to help make that process even more secure? Enter YubiKeys!
YubiKeys is a form of two factor authentication that you can utilize. The way
YubiKey works is that it has the root key on it, built into the hardware. You enable
Docker Content Trust, then push your image. Upon using your image, Docker

notes that you have enabled Content Trust and asks you to touch the YubiKey, yes,
physically touch it. This is to ensure that you are a person and not a robot or just a
script. You then need to provide a passphase to use and then, once again, touch the
YubiKey. Once you have done this, you won't need the YubiKey anymore, but you
will need that passphrase that you assigned earlier.

My description of this really doesn't do it justice. At DockerCon Europe 2015
(http://europe-2015.dockercon.com), there was a great play-by-play of this in
operation between two Docker employees, Aanand Prasad and Diogo Ménica.

To view the video, please visit the following URL:

https://youtu.be/fLEfFFtOHRZQ?t=1h21m33s

Docker Subscription

Docker Subscription is a service for your distributed applications that will help you
support those applications as well as deploy them. The Docker Subscription package
includes two critical software pieces and a support piece:

* Docker Registry — where you store and manage your images (locally hosted
or hosted in the cloud)

* The Docker Engine — to run those images
* Docker Universal Control Plane (UCP)

* Commercial support — pick up the phone or shoot off an email for some
assistance

If you are a developer, sometimes the operations side of things are either a little
difficult to get set up and manage or they require some training to get going.

With Docker Subscription you can off load some of those worries by utilizing the
expertise that is out there with commercial level support. With this support you will
get responsive turn around on your issues. You will receive any hot fixes that are
available or have been made available to patch your solution. Assistance with future
upgrades is also part of the added benefit of choosing the Docker Subscription plan.
You will get assistance with upgrading your environments to the latest and most
secure Docker environments.

[18]

http://europe-2015.dockercon.com
https://youtu.be/fLfFFtOHRZQ?t=1h21m33s

Chapter 2

Pricing is broken down based on where you want to run your environment whether
it is on a server of your choosing or if it's in a cloud environment. It is also based
upon how many Docker Trusted Registries and/or how many commercially
supported Docker Engines you wish to have as well. All of these solutions provide
you with integration into your existing LDAP or Active Directory environments.
With this added benefit, you can use items such as group policies to manage access
to such resources. The last thing that you will have to decide is how quick a response
time you want from the support end. All of those will result in the price you pay for
the subscription service. No matter what you do pay though the money spent will be
well worth it, not only in respect of the peace of mind you will get but the knowledge
you will gain is priceless.

You can also change your plans on a monthly or annual basis as well as upgrade,
in increments of ten, your Docker Engine instances. You can also upgrade in packs
of ten the number of Docker Hub Enterprise instances. Switching between an on
premises server to the cloud, or vice-versa, is also possible.

To break some things down so as to not be confused, the Docker Engine is the core
of the Docker ecosystem. It is the command line tools that you use to run, build, and
manage your containers or images. The Docker Hub Enterprise is the location where
you store and manage your images. These images can be public or made private. We
will learn more about DTR in the next section of this chapter.

For more information about Docker Subscription, please visit the link below. You
can sign up for a free 30 day trial, view subscription plans, and contact sales for
additional assistance or questions. The subscription plans are flexible enough to
conform to your operating environment whether it is something you want support
for 24/7 or maybe just half of that:

https://www.docker.com/docker-subscription
You can also view the breakdown for commercial support here:
https://www.docker.com/support

Bringing this all back to the main topic of the book, Securing Docker, this is by far
the most secure you can get with your Docker environment that you will be using
to manage your images and containers, as well as managing the location they are all
stored and run from. A little extra help never hurts and with this option, a little help
will defiantly go a long way.

[19]

https://www.docker.com/docker-subscription
https://www.docker.com/support

Securing Docker Components

The latest part to be added is the Docker Universal Control Plane. The Docker
UCP provides a solution for management of applications and infrastructure that is
Dockerized regardless of where they might be running. This could be running on
premises or in the cloud. You can find out more information about Docker UCP at
the following link:

https://www.docker.com/products/docker-universal-control-plane

You can also get a demo of the product using the above URL. Docker UCP is
scalable, easy to set up, and you can manage users and access control through
integrations into your existing LDAP or Active Directory environments.

Docker Trusted Registry

The DTR is a solution that provides a secure location where you can store and
manage your Docker images either on premises or in the cloud. It also provides
some monitoring to let you get insight into usage so you can tell what kind of load

is being passed to it. DTR, unlike Docker Registry, is not free and does come with a
pricing model. As we saw earlier with Docker Subscription, the pricing plan for DTR
is the same. Don't fret as we will go over Docker Registry in the next section of the
book so you can understand it as well and have all the options available to you for
image storage.

The reason we separate it out into its own section is that there are a lot of moving
pieces involved and it's critical to understand how they all function not only as a
whole to the Docker Subscription piece, but as it stands by itself, the DTR piece
where all your images are being maintained and stored.

Installation

There are two ways you can install DTR, or rather there are two locations where you
can install DTR. The first is that you can deploy it in house on a server you manage.
The other is deploying it to a cloud provider environment like that of Digital Ocean,
Amazon Web Services (AWS), or Microsoft Azure.

[20]

https://www.docker.com/products/docker-universal-control-plane

Chapter 2

The first part you will need is a license for the DTR. Currently, they do offer a trial
license that you can use, which I highly recommend you do. This will allow you to
evaluate the software on your selected environment without having to fully commit
to that environment. If there is something that you find doesn't work in a particular
environment or you feel another location may suit you better, you can then switch
without having to be tied to a particular location or having to move your existing
environment around to a different provider or location. If you do choose to use AWS,
they do have a pre-baked Amazon Machine Image (AMI) that you can utilize to get
your Trusted Registry set up much quicker. This avoids having to do it all manually
by hand.

Before you can install the Trusted Registry, you first need to have Docker Engine
installed. If you don't already have it installed, please see the documentation located
with the link below for more information on doing so.

https://docs.docker.com/docker-trusted-registry/install/install-
csengine/

You will notice there is a difference in installing the normal Docker Engine from
the Docker CS Engine. The Docker CS Engine stands for commercially supported
Docker Engine. Be sure to check the documentation as the list of recommended or
supported Linux versions are shorter than the regular list for Docker Engine.

If you are installing using the AMI, then please follow the instructions here:

https://docs.docker.com/docker-trusted-registry/install/dtr-ami-byol-
launch/

If you are installing on Microsoft Azure, then please follow the instructions here:

https://docs.docker.com/docker-trusted-registry/install/dtr-vhd-
azure/

Once you do have Docker Engine installed, it's time to install the DTR piece. If you
are reading to this point we will be assuming that you aren't installing to AWS or
Microsoft Azure. If you are using either of those two methods, please see the links
from above. The installation is very straightforward:

$ sudo bash -c '$(sudo docker run docker/trusted-registry install)'

Note: You may have to remove the sudo options from the above
s command when running on Mac OS.

[21]

https://docs.docker.com/docker-trusted-registry/install/install-csengine/
https://docs.docker.com/docker-trusted-registry/install/install-csengine/
https://docs.docker.com/docker-trusted-registry/install/dtr-ami-byol-launch/
https://docs.docker.com/docker-trusted-registry/install/dtr-ami-byol-launch/
https://docs.docker.com/docker-trusted-registry/install/dtr-vhd-azure/
https://docs.docker.com/docker-trusted-registry/install/dtr-vhd-azure/

Securing Docker Components

Once this has been run, you can navigate in your browser to the IP address of your
Docker host. You will then be setting the domain name for your Trusted Registry as
well applying the license. The web portal will guide you through the rest of the setup
process.

In accessing the portal you can set up authentication through your existing LDAP or
Active Directory environments as well, but this can be done at anytime.

Once that is done, it is time for Securing Docker Trusted Registry, which we will cover
in the next section.

Securing Docker Trusted Registry
Now that we have our Trusted Registry set up, we need to make it secure. Before
making it secure you will need to create an administrator account to be able to
perform actions. Once you have your Trusted Registry up and running, and are
logged into it, you will be able to see six areas under Settings. These are:

* General settings

* Security settings

* Storage settings

* License

* Auth settings

* Updates
The General settings are mainly focused around settings such as HTTP port or

HTTPS port, the Domain name to be used for your Trusted Registry, and proxy
settings, if applicable.

[22]

Chapter 2

&p" | TRUSTEDREGISTRY Dashboard Settings

Settings

General Security Storage License Auth Garbage collection

General setings to configure domains and pors. Note that the domain name is the only required fisld.

Domain name

Required, The fully gualified domain name assigned to the Trusted
Registry host. Defaults to an empty string.

HTTP port
Used as the entry point for the Image storage service. Defult: B0 B0

HTTPS port

Used as the secure entry point for the Image storage service, A43
Default: 443

HTTP proxy

Proxy server for ecernal HTTP requests,

HTTPS proxy

Proxy server for external HTTPS requests.

No proxy

Proxy bypass for HTTP/S requests.

Notary Server (experimental feature)

Notary server url. Note that for Notary signatures to showup Inthe
Trusted Registry Ul you must use the same domain name when
pushing as the domain name configured In Trusted Registry. Ex.
hitps /1 7217.42.1:4443

& anonymaous_admin

Updates

Notary Verify TLS (experimental feature)

Whether or not to verify that the TLS certficate is vabd for the
MNotary server. This is y for produc

MNotary TLS Root CA (experimental feature)

The TLS certificate of the Certificate Authority used to verify Notary's
certificate (If not aiready in eperating systemy's CA store).

Update checking

Disable outbound connections far update chedks. If disabled you
will not be notified whan important updates are available, Upgrades enanled

[23]

Securing Docker Components

The next section, Security settings, is probably one of the most important ones.
Within this Dashboard pane you are able to utilize your SSL Certificate and

SSL Private Key. These are what make the communication between your Docker
clients and the Trusted Registry secure. Now, there are a few options for those
certificates. You can use the self signed ones that are created when installing the
Trusted Registry. You can also do self signed ones of your own, using a command
line tool such as OpenSSL. If you are in an enterprise organization, they more than
likely have a location where you can request certificates such as the one that can
be used with the registry. You will need to make sure that the certificates on your
Trusted Registry are the same ones being used on your clients to ensure secure
communications when doing docker pull or docker push commands:

-"=- | TRUSTED REGISTRY Dashboard Settings Logs search & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

You can generate your own certificates for Trusted Registry using a public service or your enterprise's infrastructure.

SSL Certificate

The certificate that was issued by a Certificate Authority. If there are
any intermediate certificates they should be included here in the
correct order.

™

SSL Private Key

This is the key that you used to generate your request for a SSL
Certificate.

N

Save and restart

[24]

Chapter 2

The next section deals with image storage settings. Within this Dashboard pane, you
can set where your images are stored on the backend storage. Options for this might
include an NFS share you are using, local disk storage of the Trusted Registry server,
an S3 bucket from AWS, or another cloud storage solution. Once you have selected
your Storage Backend option, you can then set the path from within that Storage to
store your images:

%" | TRUSTED REGISTRY Dashboard Settings Logs search & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

Configure your storage to use the local filesystem, S3, Azure, or Swift

Fill out settings via a form

Storage Backend

Choose your storage backend
Filesystem -

Snap.

We were unable to load sterage configuration options from your instance.

‘ Upload a YAML file ‘

Upload YAML file

If you have a YAML file to configure registry storage select it chosserile| NO file selected
here :

‘ Download YAML file ‘

[25]

Securing Docker Components

The License section is very straightforward as this is where you update your license
when it's time to renew a new one or when you upgrade a license that might include
more options:

sl :
@9 | TRUSTED REGISTRY Dashboard Settings Logs search & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

In order to run Trusted Registry, you will need to get a license, either by purchasing Trusted Registry or acquiring a trial license. To get your
license, visit the Docker Subscription page and select the edition you would like acquire.

License ID
License information

Tier:

Apply a new license

no file selected

Choose File

Save and restart

Authentication settings allow you to tie the login to the Trusted Registry into your
existing authentication environment. Your options here are: None or a Managed
option. None is not recommended except for testing purposes. The Managed option
is where you would set up usernames and passwords and manage them from there.
The other option would be to use an LDAP service, one that you might already be
running as well, so that users have the same login credentials for their other work
appliances such as email or web logins.

[26]

Chapter 2

-“ | TRUSTED REGISTRY ~ Dashboard Settings Logs searc & anonymous_admin

Settings

General Security Storage License Auth Garbage collecti Upd

Authentication Method

Add users to the Trusted Registry and set their global roles manually None
or via LDAP.

No authentication means that everyone that can access your Trusted Registry admin site. This is not recommended for any use other than
testing.

Save

The last section, Updates, deals with how you manage updates for the DTR. These
settings would be totally up to you how you handle updates, but be sure if you are
doing an automated form of updates that you are also utilizing backups for restoring
purposes in the event that something goes wrong during the update process.

| TRUSTED REGISTRY Dashboard Settings Logs f & anonymous_admin

Settings

General Security Storage License Auth Garbage collection Updates

Docker issues system updates as the Trusted Registry is continually improved. Ensure update checking is enabled on the General page and
check here for updates. Also, view the release notes to see relevant changes.

System Update Available
Current version: 1.4.2
Your current Trusted Registry version is out of date

Update to version 1.4.3

Update to version 1.4.3
I just want the bugfixes for now, simply path my version.

[27]

Securing Docker Components

Administering

Now that we have covered the items that help you secure your Trusted Registry,

we might as well take a few minutes to cover the other items that are within the
console to help you administer it. Beyond the Settings tab within the registry, there
are four other tabs that you can navigate and gather information about your registry.
Those are:

* Dashboard
* Repositories
* Organizations

* Logs

The Dashboard is the main landing page you are taken to when you log in via

your browser to the console. This will display information about your registry in
one central location. The information you will be seeing is more hardware related
information about the registry server itself as well as the Docker host that the
registry server is running on. The Repositories section will allow you to control
which repositories, either Public or Private, your users are able to pull images from.
The Organizations section allows you to control access, that is, who on the system
can push, pull, or do other Docker related commands against the repositories that
you have elected to configure. The last section, the Logs section, will allow you to
view logs based upon your containers that are being used from your registry. The
logs are rotated every two weeks with a maximum size of 64 mb. You are able to filter
through the logs as well based on a container as well as being able to search for a
date and/or time.

Workflow

In this section, let's pull an image, manipulate it, and then place it on our DTR for
access by others within our organization.

First, we need to pull an image from the Docker Hub. Now, you could start from
scratch with a Dockerfile and then do a Docker build and then push, but let's, for
this demonstration, say we have the mysgl image and we want to customize it in
some way.

$ docker pull mysql

Using default tag: latest

[28]

Chapter 2

latest: Pulling from library/mysql

1565e86129b8: Pull complete
a604b236bcde: Pull complete
2alfefc8d587: Pull complete
£9519f46a2bf: Pull complete
b03£fa53728a0: Pull complete
ac2f3cdeblc6: Pull complete
b61ef27b0115: Pull complete
9f£f29f750be3: Pull complete
ece4ebeael79: Pull complete
95255626£143: Pull complete
0c7947afc43f: Pull complete
b3a598670425: Pull complete
e287£fa347325: Pull complete
40£595e5339f: Pull complete
0abl2a4dd3c8: Pull complete
89fa423a616b: Pull complete

Digest: sha256:72e383e001789562e943beel4728e3a93£2c3823182d14e3e01b3
£d4877976265

Status: Downloaded newer image for mysql:latest
$ docker images

REPOSITORY TAG IMAGE ID CREATED
VIRTUAL SIZE

mysql latest 89fa423a616b 20 hours ago
359.9 MB

Now, let's assume we made a customization to the image. Let's say that we set up the
container to ship its logs off to a log stash server that we are using to collect our logs
from all our containers that we are running. We now need to save those changes.

$ docker commit be4ea9a7734e <dns.name>/mysql

[29]

Securing Docker Components

When we go to do the commit, we need a few tidbits of information. The first is the
container ID, which we can get from running a docker ps command. We also need
the DNS name of our registry server that we set up earlier, and lastly a unique image
name to give it. In our case, we will keep it as mysql.

We are now ready to push the updated image to our registry server. The only
information we need is the image name that we want to push, which will be the
<dns.name>/mysqgl.

$ docker push <dns.name>/mysql

The image is now ready to be used by the other users in our organization. Since
the image is in our Trusted Registry, we can control access to that image from
our clients. This could mean that our clients would need our certificate and keys
to be able to push and pull this image, as well as permissions set up within the
organization settings we previously went over in the last section.

$ docker pull <dns.name>/mysql

We can then make run the image, make changes if needed, and push the newly
created image back to the Trusted Registry server as necessary.

Docker Registry

The Docker Registry is an open source option if you want to totally go at it on your
own. If you totally want hands off, you can always use the Docker Hub and rely on
public and private repositories, which will run you a fee on the Docker Hub though.
This can be hosted locally on a server of your choosing or on a cloud service.

Installation

The installation of the Docker Registry is extremely simply as it runs in a Docker
container. This allows you to run it virtually anywhere, on a virtual machine in your
own server environment or in a cloud environment. The typical port that is used is
port 5000, but you can change it to suit your needs:

$ docker run -d -p 5000:5000 --restart=always --name registry
registry:2.2

[30]

Chapter 2

One of the other items you will notice from above is that we are specifying a version
to use instead of leaving it blank and pulling the latest version. That is because

as of writing this book, the latest version for that registry tag is still at version

0.9.1. Now, while this might be suitable for some, version 2 is stable enough to be
considered and to run your production environment on. We are also introducing
the - -restart=always flag for that as in the event of something happening to the
container, it will restart and be available to serve out or accept images.

Once you have run the command above, you will have a running container registry
on the IP address of the Docker host you ran the command on along with the port
selection that you used in your docker run command above.

Now it is time to put some images up on your new registry. The first thing we need
is an image to push to the registry and we can do that in two ways. We can build
images based on Docker files that we have created or we can pull down an image
from another registry, in our case we will be using the Docker Hub, and then push
that image to our new registry server. First, we need an image to choose and again,
we will default back to the mysql image since it's a more popular image that most
people might be using in their environments at some point along the way.

$ docker pull mysql

Using default tag: latest
latest: Pulling from library/mysql

1565e86129b8: Pull complete
a604b236bcde: Pull complete
2alfefc8d587: Pull complete
£9519f46a2bf: Pull complete
b03fa53728a0: Pull complete
ac2f3cdeblc6: Pull complete
b61ef27b0115: Pull complete
9f£f29f750be3: Pull complete
eced4ebeael79: Pull complete
95255626£143: Pull complete
0c7947afc43f: Pull complete
b3a598670425: Pull complete
e287£fa347325: Pull complete
40£595e5339f: Pull complete
0abl2a4dd3c8: Pull complete
89fa423a61l6b: Pull complete

[31]

Securing Docker Components

Digest: sha256:72e383e001789562e943beel4728e3a93£f2¢c3823182d14e3e01b3
£d877976265

Status: Downloaded newer image for mysql:latest

Next, you need to tag the image so it will now be pointing to your new registry so
you can do push it to the new location:

$ docker tag mysql <IP address>:5000/mysql

Let's break down that command above. What we are doing is applying the tag of
<IP_address>:5000/mysql to the mysqgl image that we pulled from the Docker
Hub. Now that <1P_address> piece will be replaced by the IP address from the
Docker host that is running the registry container. This could also be a DNS name as
well, as long as the DNS points to the correct IP that is running on the Docker host.
We also need to specify the port number for our registry server, and in our case we
left it with port 5000, so we include: 5000 in the tag. Then, we are going to give it
the same same of mysql at the end of the command. We are now ready to push this
image to our new registry.

$ docker push <IP address>:5000/mysql

After it has been pushed, you can now pull it down from another machine that is
configured with Docker and has access to the registry server.

$ docker pull <IP address>:5000/mysql

What we have looked at here are the defaults and while it could work if you want
to use firewalls and such to secure the environment or even internal IP address, you
still might want to take security to the next level and that is what we will look at in
the next section. How can we make this even more secure?

Configuration and security

It's time to tighten up our running registry with some additional features. The first
method would be to run your registry using TLS. Using TLS allows you to apply
certificates to the system so that people who are pulling from it know that it is who
you say it is by knowing that someone hasn't comprised the server or is doing a man
in the middle attack by supplying you with compromised images.

To do that, we will need to rework the Docker run command we were running in
the last section. This is going to assume you have gone through some of the process
of obtaining a certificate and key from your enterprise environment or you have self
signed one using another piece of software.

[32]

Chapter 2

Our new command will look like this:

$ docker run -d -p 5000:5000 --restart=always --name registry \
-e REGISTRY HTTP TLS CERTIFICATE=server.crt \
-e REGISTRY HTTP TLS KEY=server.key \
-v <certificate folder>/<path on container> \

registry:2.2.0

You will need to be in the directory where the certificates are or specify the full path
to them in the above command. Again, we are keeping the standard port of 5000,
along with the name of registry. You could alter that too to something that might
suit you better. For the sake of this book we will keep it close to that in the official
documentation in the event that you look there for more reference. Next, we add two
additional lines to the run command:

-e REGISTRY HTTP_TLS CERTIFICATE=server.crt \
-e REGISTRY HTTP TLS KEY=server.key \

This will allow you to specify the certificate and key file that you will be using. These
two files will need to be in the same directory that you are running the run command
from as the environmental variables will be looking for them upon run. Now you
could also add a volume switch to the run command to make it a little cleaner if you
like and put the certificate and key in that folder and run the registry server that way.

The other way you can help with security is by putting a username and password on
the registry server. This will help when users want to push or pull an item as they
will need the username and password information. The catch with this is that you
have to be using TLS in conjunction with this method. This method of username and
password is not a standalone option.

First, you need to create a password file that you will be using in your run command:

$ docker run --entrypoint htpasswd registry:2.2.0 -bn <username>
<password> > htpasswd

Now, it can be a little confusing to understand what is happening here, so let's clear
that up before we jump to the run command. First, we are issuing a run command.
This command is going to run the registry:2.2.0 container and its entry point
specified means to run the htpasswd command along with the -bn switches, which
will inject the username and password in an encrypted fashion into a file called
htpasswd that you will be using for authentication purposes on the registry server.
The -b means to run in batch mode while the -n means to display the results, and
the > means to put those items into a file instead of to the actual output screen.

[33]

Securing Docker Components

Now, onto our newly enhanced and totally secure Docker run command for our
registry:
$ docker run -d -p 5000:5000 --restart=always --name registry \

-e "REGISTRY AUTH=htpasswd" \

-e "REGISTRY AUTH_ HTPASSWD_REALM=Registry Name" \

-e REGISTRY AUTH HTPASSWD_PATH=htpasswd \

-e REGISTRY HTTP_ TLS_CERTIFICATE=server.crt \

-e REGISTRY_HTTP_TLS_KEY:server.key \

registry:2.20

Again, it's a lot to digest but let's walk through it. We have seen some of these lines
before in:

-e REGISTRY HTTP TLS CERTIFICATE=server.crt \

-e REGISTRY_HTTP_TLS_KEY:server.key \
The new ones are:

-e "REGISTRY AUTH=htpasswd" \
-e "REGISTRY AUTH HTPASSWD REALM=Registry Name" \
-e REGISTRY AUTH HTPASSWD PATH=htpasswd \

The first one tells the registry server to use htpasswd as its authentication method
to verify clients. The second gives your registry a name and can be changed at your
own discretion. The last one tells the registry server the location of the file that is to
be used for the htpasswd authentication. Again, you will need to use volumes and
put the htpasswd file in its own volume inside the container so it allows for easier
updating down the road. You also need to remember the htpasswd file needs to

be placed in the same directory as the certificate and key file when you execute the
Docker run command.

[34]

Chapter 2

Summary

In this chapter, we have looked at being able to sign your images using the
components of Docker Content Trust as well as hardware signing using Docker
Content Trust along with the third party utilities in the form of YubiKeys. We also
took a look at Docker Subscription that you can utilize to your advantage to help

set up not only secure Docker environments but also ones that are supported by
those at Docker itself. We then looked at DTR as a solution that you can use to store
your Docker images. Lastly, we looked at the Docker Registry, which is a self hosted
registry that you can use to store and manage your images. This chapter should help
give you enough configuration items to chew on to help you make the right decision
as to where to store your images.

In the next chapter we will be looking at securing/hardening Linux kernels. As the
kernel is what is used to run all your containers, it is important that it is secured

in the proper way to help alleviate any security related issues. We will be covering
some hardening guides that you can use to accomplish this goal.

[35]

Securing and Hardening
Linux Kernels

In this chapter, we will turn our attention to securing and hardening the one key
piece that every container running on your Docker host relies on: the Linux kernel.
We will focus on two topics: guides that you can follow to harden the Linux kernel
and tools that you can add to your arsenal to help harden the Linux kernel. Let's take
a brief look at what we will be covering in this chapter before diving in:

* Linux kernel hardening guides

* Linux kernel hardening tools

° Grsecurity

° Lynis

Linux kernel hardening guides

In this section, we will be looking at the SANS Institute hardening guide for the
Linux kernel. While a lot of this information is outdated, I believe that it is important
for you to understand how the Linux kernel has evolved and become a secure entity.
If you were to step into a time machine and go back to the year 2003 and attempt to
do the things you want to do today, this is everything you would have to do.

First, some background information about the SANS Institute. It is a private US-
based company that specializes in cybersecurity and information technology-related
training and education. These trainings prepare professionals to defend their
environments against attackers. SANS also offers a variety of free security-related
content via their SANS Technology Institute Leadership Lab. More information
about this can be found at http://www.sans.edu/research/leadership-
laboratory.

[37]

http://www.sans.edu/research/leadership-laboratory
http://www.sans.edu/research/leadership-laboratory

Securing and Hardening Linux Kernels

To help alleviate against this widespread attack base, there needs to be security focus
on every aspect of your IT infrastructure and software. Based upon this, the first
place to start would be at the Linux kernel.

SANS hardening guide deep dive

As we have already covered the background of the SANS Institute, let's go ahead
and jump into the guide that we will be following to secure our Linux kernel(s).

For reference, we will be using the following URL and highlighting the sticking
points that you should be focusing on and implementing in your environments to
secure the Linux kernel:

https://www.sans.org/reading-room/whitepapers/linux/linux-kernel-
hardening-1294

The Linux kernel is an always-developing and maturing piece of the Linux
ecosystem and for this reason, it's important to get a firm grasp on the Linux kernel
as it stands currently, which will help when looking to lockdown the new feature
sets that might come in future releases.

The Linux kernel allows loading modules without having to recompile or reboot,
which is great when you are looking to eliminate downtime. Some various operating
systems require reboots when trying to apply updates to a certain operating system/
application criteria. This can also be a bad thing with regards to the Linux kernel as
the attackers can inject harmful material into the kernel and wouldn't need to reboot
the machine, which might be caught by someone noticing the reboot of the system.
For this reason, it is suggested that a statically compiled kernel with the load option
be disabled to help prevent against attack vectors.

Buffer overflows are another way attackers can compromise a kernel and gain entry.
Applications have a limit, or buffer, on how much a user can store in memory.

An attacker overflows this buffer with specially crafted code, which could let the
attacker gain control of the system that, in turn, will empower them to do whatever
they want at that point. They could add backdoors to the system, send logs off to

a nefarious place, add additional users to the system, or even lock you out of the
system. To prevent these type of attacks, there are three areas of focus that the guide
hones in on.

[38]

https://www.sans.org/reading-room/whitepapers/linux/linux-kernel-hardening-1294
https://www.sans.org/reading-room/whitepapers/linux/linux-kernel-hardening-1294

Chapter 3

The first is the Openwall Linux kernel patch that was a patch created to address

this issue. This patch also includes some other security enhancements that might be
attributed to your running environments. Some of these items included restricted
links and file reads/writes in the /tmp folder location and restricted access to the
/proc locations on the filesystem. It also includes enhanced enforcement for a number
of user processes that you could control as well as the ability to destroy shared
memory segments, which were not in use, and lastly, some other enhancements for
those of you that are running kernel versions older than version 2.4.

If you are running an older version of the Linux kernel, you will want to check out
the Openwall hardened Linux at http://www.openwall.com/0Owl/ and Openwall
Linux at http://www.openwall.com/linux/.

The next piece of software is called Exec Shield and it takes a similar approach to the
Openwall Linux kernel patch, which implements a non-executable stack, but Exec
Shield extends this by attempting to protect any and all segments of virtual memory.
This patch is limited to the prevention of attacks against the Linux kernel address
space. These address spaces include stack, buffer, or function pointer overflow spaces.

More information about this patch can be found at https://en.wikipedia.org/
wiki/Exec_Shield.

The last one is PaX, which is a team that creates a patch for the Linux kernel to
prevent against a variety of software vulnerabilities. As this is something we will be
talking about in-depth in the next section, we will just discuss some of its features.
This patch focuses on the following three address spaces:

* PAGEEXEC: These are paging-based, non-executable pages

* SEGMEXEC: These are segmentation-based, non-executable pages

e MPROTECT: These are mmap () and mprotect () restrictions
To learn more about PaX, visit https://pax.grsecurity.net.

Now that you have seen how much efforts you had to put in, you should be glad that
security is now at the forefront for everyone, especially, the Linux kernel. In some of
the later chapters, we will be looking at some of the following new technologies that
are being used to help secure environments:

* Namespaces

* cgroups

e sVirt

e Summon

[39]

http://www.openwall.com/Owl/
http://www.openwall.com/linux/
https://en.wikipedia.org/wiki/Exec_Shield
https://en.wikipedia.org/wiki/Exec_Shield
https://pax.grsecurity.net

Securing and Hardening Linux Kernels

There are also a lot of capabilities that can be accomplished through the --cap-ad
and --cap-drop switches on your docker run command.

Even like the days before, you still need to be aware of the fact that the kernel is shared
throughout all your containers on a host, therefore, you need to protect this kernel and
watch out for vulnerabilities when necessary. The following link allows you to view
Common Vulnerabilities and Exposures (CVE) in the Linux kernel:

https://www.cvedetails.com/vulnerability-list/vendor id-33/product
id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html

Access controls

There are various levels of access controls that you can layer on top of Linux as

well as recommendations that you should follow with reference to certain users,

and these would be the superusers on your system. Just to give some definition to
superusers, they are the accounts on the system that have unfettered access to do
anything and everything. You should include the root user when you are layering on
these access controls.

These access control recommendations will be the following:

* Restricting usage of the root user
* Restricting its ability to SSH

By default, on some systems, root has the ability to SSH to machine if SSH is
enabled, which we can see from a portion of the /etc/ssh/sshd_config file
on some Linux systems, as follows:

Authentication:

#LoginGraceTime 2m
#PermitRootLogin no
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10

From what you can see here, the section for PermitRootLogin no is
commented out with the # symbol so that means this line won't be
interpreted. To change this, simply remove the # symbol and save the file
and restart the service. The section of this file should now be similar to the
following code:

Authentication:

#LoginGraceTime 2m

[40]

https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/cvssscoremin-7/cvssscoremax-7.99/Linux-Linux-Kernel.html

Chapter 3

PermitRootLogin no
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10

Now, you may want to restart the SSH service for these changes to take
affect, as follows:

$ sudo service sshd restart

Restrict its ability to log in beyond the console. On most Linux systems, there
isafilein /etc/default/login and in that file, there is a line that is similar
to the following:

#CONSOLE=/dev/console

Similar to the preceding example, we need to uncomment this line by
removing # for this to take affect. This will only allow the root user to log in
at console and not via SSH or other methods.

Restrict su command

The su commands allow you to login as the root user and be able to issue
root-level commands, which gives you full access to the entire system. To
restrict access to who can use this command, there is a file located at /etc/
pam.d/su, and in this file, you will see a line similar to the following;:

auth required /lib/security/pam wheel.so use uid

You can also choose the following line of code here, depending upon your
Linux flavor:

auth required pam wheel.so use_uid

The check for wheel membership will be done against the current user ID for
the ability to use the su command.

Requiring sudo to run commands
Some other access controls that are remanded are the use of the following
controls:
° Mandatory Access Controls (MAC): Restricting what users can do
on systems

° Role-Based Access Controls: Using groups to assign the roles that
these groups can perform

° Rule Set Based Access Controls (RSBAC): Rule sets that are grouped
in the request type and performs actions based on set rule(s)

[41]

Securing and Hardening Linux Kernels

° Domain and Type Enforcement (DTE): Allow or restrict certain
domains from performing set actions or preventing domains from
interacting with each other

You can also utilize the following:

* SELinux (RPM-based systems (such as Red Hat, CentOS, and Fedora)
* AppArmor (apt-get-based systems (such as Ubuntu and Debian)

These RSBAC, as we discussed earlier, allow you to choose methods of control that
are appropriate for what your system is running. You can also create your own
access control modules that can help enforce. By default, on most Linux systems,
these type of environments are enabled or in enforcing mode. Majority of people will
turn these off when they create a new system, but it comes with security drawbacks,
therefore, it's important to learn how these systems work and use them in the
enabled or enforcement mode to help mitigate further risks.

More information about each can be found at the following;:

* SELinux: https://en.wikipedia.org/wiki/Security-Enhanced Linux

* AppArmor: https://en.wikipedia.org/wiki/AppArmor

Distribution focused

There are many Linux distributions, or flavors as they call them, in the Linux
community that have been pre-baked to be already hardened. We referenced one
earlier, the Owlwall flavor of Linux, but there are others out there as well. Out of the
other two, one that is no longer around is Adamantix and the other is Gentoo Linux.
These Linux flavors feature some baked-in Linux kernel hardening as standards of
their operating system builds.

Linux kernel hardening tools

There are some Linux kernel hardening tools out there, but we will focus on only
two of them in this section. The first being Grsecurity and the second being Lynis.
These are tools that you can add to your arsenal to help in increasing the security of
the environments that you will be running your Docker containers on.

[42]

https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://en.wikipedia.org/wiki/AppArmor

Chapter 3

Grsecurity

So, what exactly is Grsecurity? According to their website, Grsecurity is an extensive
security enhancement for the Linux kernel. This enhancement contains a wide range
of items that help in defending against various threats. These threats might include
the following components:

Zero day exploits: This mitigates and keeps your environment protected
until a long-term solution can be made available through the vendor.

Shared host or container weaknesses: This protects you against kernel
compromises that various technologies, and very much so containers, use for
each container on the host.

It goes beyond basic access controls: Grsecurity works with the PaX team to
introduce complexity and unpredictability to the attacker, while responding
and denying the attacker any more chances.

Integrates with you existing Linux distribution: As Grsecurity is kernel-
based, it can be used with any Linux flavors such as Red Hat, Ubuntu,
Debian, and Gentoo. Whatever your Linux flavor is, it doesn't matter, as the
focus is on the underlying Linux kernel.

More information can be found at https://grsecurity.net/.

To directly get to the good stuff and see the feature set that is offered by utilizing a
tool like Grsecurity, you will want to go to the following link:

http://grsecurity.net/features.php

On this page, items will be grouped into the following five categories:

Memory Corruption Defenses
Filesystem Hardening
Miscellaneous Protections
RBAC

GCC Plugins

[43]

https://grsecurity.net/
http://grsecurity.net/features.php

Securing and Hardening Linux Kernels

Lynis

Lynis is an open source tool that is used to audit your systems for security. It runs
directly on the host so that it has access to the Linux kernel itself, as well as various
other items. Lynis runs on almost every Unix operating system including the
following;:

AIS
FreeBSD
Mac OS
Linux

Solaris

Lynis was written as a shell script, therefore, it's just as easy as copying and pasting
on your system and running a simple command:

./lynis audit system

While it is running, the following actions are being taken:

Determining the OS

Performing a search for available tools and utilities
Checking for any Lynis update

Running tests from enabled plugins

Running security tests per category

Reporting status of security scan

More information can be found at https://rootkit.nl/projects/lynis.html
and https://cisofy.com/lynis/.

[44]

https://rootkit.nl/projects/lynis.html
https://cisofy.com/lynis/

Chapter 3

Summary

In this chapter, we took a look at hardening and securing Linux kernels. We first
looked at some hardening guides followed by a deep dive of an overview of the
SANS Institute Hardening Guide. We also took a look at how to prevent buffer
overflows in our kernels and applications through various patches. We also looked
at various access controls, SELinux, and AppArmor. Lastly, we took a look at two
hardening tools that we can add to our toolbox of software in the form of Grsecurity
and Lynis.

In the next chapter, we will take a look at the Docker Bench application for security.
This is an application that can look at the various Docker items, such as host
configuration, Docker daemon configuration, daemon configuration files, container
images and build files, container runtime, and lastly, Docker security operations. It
will contain hands-on examples with a lot of code outputs.

[45]

Docker Bench for Security

In this chapter, we will be looking at the Docker Bench for Security. This is a tool
that can be utilized to scan your Docker environments, start the host level and
inspect all the aspects of this host, inspect the Docker daemon and its configuration,
inspect the containers running on the Docker host, and review the Docker security
operations and give you recommendations across the board of a threat or concern
that you might want to look at in order to address it. In this chapter, we will be
looking at the following items:

* Docker security - best practices
* Docker - best practices
* Center for Internet Security (CIS) guide

o

Host configuration

o

Docker daemon configuration

o

Docker daemon configuration files

° Container images/runtime

o

Docker security operations

* The Docker Bench Security application

o

Running the tool

o

Understanding the output

[47]

Docker Bench for Security

Docker security — best practices

In this section, we will take a look at the best practices when it comes to Docker as
well as the CIS guide to properly secure all the aspects of your Docker environment.
You will be referring to this guide when you actually run the scan (in the next section
of this chapter) and get results of what needs to or should be fixed. The guide is
broken down into the following sections:

* The host configuration

* The Docker daemon configuration

* The Docker daemon configuration files
* Container images/runtime

* Docker security operations

Docker — best practices

Before we dive into the CIS guide, let's go over some of the following best practices
when using Docker:

* One application per container: Spread your applications to one per
container. Docker was built for this and it makes everything easy at the end
of the day. The isolation that we talked about earlier is where this is the key.

* Review who has access to your Docker hosts: Remember that whoever has
the access to your Docker hosts has the access to manipulate all your images
and containers on the host.

* Use the latest version: Always use the latest version of Docker. This will
ensure that all the security holes have been patched and you have the latest
features as well.

* Use the resources: Use the resources available if you need help. The
community within Docker is huge and immensely helpful. Use their
website, documentation, and the Internet Relay Chat (IRC) chat rooms
to your advantage.

CIS guide

The CIS guide is a document (https://benchmarks.cisecurity.org/tools2/
docker/cis_docker_ 1.6_benchmark_vl.0.0.pdf) that goes over the aspects of
the Docker pieces to help you securely configure the various pieces of your Docker
environment. We will cover these in the following sections.

[48]

https://benchmarks.cisecurity.org/tools2/docker/cis_docker_1.6_benchmark_v1.0.0.pdf
https://benchmarks.cisecurity.org/tools2/docker/cis_docker_1.6_benchmark_v1.0.0.pdf

Chapter 4

Host configuration

This part of the guide is about the configuration of your Docker hosts. This is that
part of the Docker environment where all your containers run. Thus, keeping

it secure is of the utmost importance. This is the first line of defense against the
attackers.

Docker daemon configuration

This part of the guide recommends securing the running Docker daemon. Everything
you do to the Docker daemon configuration affects each and every container. These
are the switches you can attach to the Docker daemon that we saw previously and
items you will see in the following section when we run through the tool.

Docker daemon configuration files

This part of the guide deals with the files and directories that the Docker daemon
uses. This ranges from permissions to ownerships. Sometimes, these areas may
contain information you don't want others to know about, which could be in a plain
text format.

Container images/runtime

This part of the guide contains both the information for securing the container
images as well as the container runtime.

The first part contains images, cover base images, and build files that were used.
You need to be sure about the images you are using not only for your base images,
but also for any aspect of your Docker experience. This section of the guide covers
the items you should follow while creating your own base images to ensure they are
secure.

The second part, the container runtime, covers a lot of security-related items. You
have to take care of the runtime variables that you are providing. In some cases,
attackers can use them to their advantage, while you think you are using them to
your own advantage. Exposing too much in your container can compromise the
security of not only that container, but also the Docker host and other containers
running on this host.

[49]

Docker Bench for Security

Docker security operations

This part of the guide covers the security areas that involve deployment. These items

are more closely tied to the best practices and recommendations of items that are to
be followed.

The Docker Bench Security application

In this section, we will cover the Docker Benchmark Security application that you
can install and run. The tool will inspect the following components:

* The host configuration

* The Docker daemon configuration

* The Docker daemon configuration files

* Container images and build files

* Container runtime

* Docker security operations
Looks familiar? It should, as these are the same items that we reviewed in the
previous section, only built into an application that will do a lot of heavy lifting for
you. It will show you what warnings arise with your configurations and provide

information on other configuration items and even the items that have passed the
test.

We will look at how to run the tool, a live example, and what the output of the
process will mean.

Running the tool

Running the tool is simple. It's already been packaged for us inside a Docker
container. While you can get the source code and customize the output or
manipulate it in some way (say, e-mail the output), the default may be all that you
need.

The code is found here: https://github.com/docker/docker-bench-security

To run the tool, we will simply copy and paste the following into our Docker host:

$ docker run -it --net host --pid host --cap-add audit control \
-v /var/lib:/var/lib \
-v /var/run/docker.sock:/var/run/docker.sock \

-v /usr/lib/systemd:/usr/lib/systemd \

[50]

https://github.com/docker/docker-bench-security

Chapter 4

-v /etc:/etc --label docker bench security \

docker/docker-bench-security

If you don't already have the image, it will first download the image and then start
the process for you. Now that we've seen how easy it is to install and run it, let's take
a look at an example on a Docker host to see what it actually does. We will then take
a look at the output and take a dive into dissecting it.

There is also an option to clone the Git repository, enter the directory from the git
clone command, and run the provided shell script. So, we have multiple options!

Let's take a look at an example and break down each section, as shown in the
following command:

Docker Bench for Security v1.0.0
#

Docker, Inc. (c) 2015

#

Checks for dozens of common best-practices around deploying Docker
containers in production.

Inspired by the CIS Docker 1.6 Benchmark:

https://benchmarks.cisecurity.org/tools2/docker/CIS Docker 1.6
Benchmark v1.0.0.pdf

Initializing Sun Jan 17 19:18:56 UTC 2016

Running the tool — host configuration

Let's take a look at the output of the host configuration runtime:

[INFO] 1 - Host configuration

[WARN] 1.1 - Create a separate partition for containers

[PASS] 1.2 - Use an updated Linux Kernel

[PASS] 1.5 - Remove all non-essential services from the host - Network
[PASS] 1.6 - Keep Docker up to date

[INFO] * Using 1.9.1 which is current as of 2015-11-09

[INFO] * Check with your operating system vendor for support and

security maintenance for docker

[51]

Docker Bench for Security

[INFO] 1.7
[INFO]
[WARN] 1.8
[INFO] 1.9
[INFO]
[WARN] 1.10

[INFO] 1.11
service

[INFO]
[INFO] 1.12
[INFO]
[WARN] 1.13
[INFO] 1.14
[INFO]

[INFO] 1.15
network

[INFO]

[INFO] 1.16
registry

[INFO]

[INFO] 1.17
storage

[INFO]
[INFO] 1.18
[INFO]

*

Only allow trusted users to control Docker daemon

docker:x:100:docker

Failed to inspect:

Audit Docker files

Directory not found

Failed to inspect:

Audit Docker files

File not found
Audit Docker files
File not found
Failed to inspect:
Audit Docker files
File not found

Audit Docker files

File not found

Audit Docker files

File not found

Audit Docker files

File not found
Audit Docker files

File not found

auditctl command not found.

and directories

/var/lib/docker

auditctl command not found.

and directories - docker-registry.

and directories

docker.service

auditctl command not found.

and directories

and directories

and directories

and directories

and directories

/etc/sysconfig/docker

/etc/sysconfig/docker-

/etc/sysconfig/docker-

/etc/sysconfig/docker-

/etc/default/docker

Running the tool — Docker daemon configuration

Let's take a look at the output for the Docker daemon configuration runtime, as
shown in the following command:

[INFO] 2 - Docker Daemon Configuration

[PASS] 2.1
[WARN] 2.2
[PASS] 2.3
[PASS] 2.4
[PASS] 2.5
[INFO] 2.6

Do not use lxc execution driver

Restrict network traffic between containers

Set the logging level

Allow Docker to make changes to iptables

Do not use insecure registries

Setup a local registry mirror

[52]

Chapter 4

[INFO] *
[WARN] 2.7 -
[PASS] 2.8 -
[INFO] 2.9 -
[INFO] *
[INFO] 2.10 -
[INFO] *

No local registry currently configured

Do not use the aufs storage driver

Do not bind Docker to another IP/Port or a Unix socket
Configure TLS authentication for Docker daemon

Docker daemon not listening on TCP

Set default ulimit as appropriate

Default ulimit doesn't appear to be set

Running the tool — Docker daemon configuration

files

Let's take a look at the output for the Docker daemon configuration files runtime, as

follows:

[INFO] 3 - Docker Daemon Configuration Files

[INFO] 3.1 -
root:root

[INFO] *
[INFO] 3.2 -
[INFO] *

[INFO] 3.3 -
to root:root

[INFO] *

[INFO] 3.4 -
set to 644

[INFO] *

[INFO] 3.5 -
root:root

[INFO] *
[INFO] 3.6 -
[INFO] *

[INFO] 3.7 -
root:root

[INFO] *

[INFO] 3.8 -
644

[INFO] *
[INFO] 3.9 -

Verify that docker.service file ownership is set to

File not found
Verify that docker.service file permissions are set to 644
File not found

Verify that docker-registry.service file ownership is set

File not found

Verify that docker-registry.service file permissions are

File not found

Verify that docker.socket file ownership is set to

File not found
Verify that docker.socket file permissions are set to 644
File not found

Verify that Docker environment file ownership is set to

File not found

Verify that Docker environment file permissions are set to

File not found

Verify that docker-network environment file ownership is

set to root:root

[53]

Docker Bench for Security

[INFO] * File not found

[INFO] 3.10 - Verify that docker-network environment file permissions are
set to 644

[INFO] * File not found

[INFO] 3.11 - Verify that docker-registry environment file ownership is
set to root:root

[INFO] * File not found

[INFO] 3.12 - Verify that docker-registry environment file permissions
are set to 644

[INFO] * File not found

[INFO] 3.13 - Verify that docker-storage environment file ownership is
set to root:root

[INFO] * File not found

[INFO] 3.14 - Verify that docker-storage environment file permissions are
set to 644

[INFO] * File not found

[PASS] 3.15 - Verify that /etc/docker directory ownership is set to
root:root

[PASS] 3.16 - Verify that /etc/docker directory permissions are set to
755

[INFO] 3.17 - Verify that registry certificate file ownership is set to
root:root

[INFO] * Directory not found

[INFO] 3.18 - Verify that registry certificate file permissions are set
to 444

[INFO] * Directory not found

[INFO] 3.19 - Verify that TLS CA certificate file ownership is set to
root:root

[INFO] * No TLS CA certificate found

[INFO] 3.20 - Verify that TLS CA certificate file permissions are set to
444

[INFO] * No TLS CA certificate found

[INFO] 3.21 - Verify that Docker server certificate file ownership is set
to root:root

[INFO] * No TLS Server certificate found

[INFO] 3.22 - Verify that Docker server certificate file permissions are
set to 444

[INFO] * No TLS Server certificate found

[INFO] 3.23 - Verify that Docker server key file ownership is set to
root:root

[54]

Chapter 4

[INFO] * No TLS Key found

[INFO] 3.24 - Verify that Docker server key file permissions are set to
400

[INFO] * No TLS Key found

[PASS] 3.25 - Verify that Docker socket file ownership is set to
root:docker

[PASS] 3.26 - Verify that Docker socket file permissions are set to 660

Running the tool — container images and build files

Let's take a look at the output for the container images and build files runtime, as
shown in the following command:

[INFO] 4 - Container Images and Build Files
[INFO] 4.1 - Create a user for the container

[INFO] * No containers running

Running the tool — container runtime

Let's take a look at the output for the container runtime, as follows:

[INFO] 5 - Container Runtime

[INFO] * No containers running, skipping Section 5

Running the tool — Docker security operations

Let's take a look at the output for the Docker security operations runtime, as shown
in the following command:

[INFO] 6 - Docker Security Operations

[INFO] 6.5 - Use a centralized and remote log collection service
[INFO] * No containers running

[INFO] 6.6 - Avoid image sprawl

[INFO] * There are currently: 23 images

[WARN] 6.7 - Avoid container sprawl

[WARN] * There are currently a total of 51 containers, with only 1
of them currently running

Wow! A lot of output and tons to digest; but what does all this mean? Let's take a
look and break down each section.

[55]

Docker Bench for Security

Understanding the output

There are three types of output that we will see, as follows:

* [pAsS]: These items are solid and good to go. They don't need any attention,
but they are good to read to make you feel warm inside. The more of these,
the better!

* [INFO]: These are items that you should review and fix if you feel that they
are pertinent to your setup and security needs.

e [WARN]: These are items that need to be fixed. These are the items we don't
want to be seeing.

Remember, we had the six main topics that were covered in the scan, as shown in the
following;:

* The host configuration

* The Docker daemon configuration

* The Docker daemon configuration files

* Container images and build files

* Container runtime

* The Docker security operations
Let's take a look at what we are seeing in each section of the scan. These scan results
are from a default Ubuntu Docker host, with no tweaks made to the system at this
point. We want to again focus on the [WARN] items in each section. Other warnings

may come up when you run yours, but these will be the ones that come up the most,
if not for everyone at first.

Understanding the output — host configuration

Let's take a look at the following output for the host configuration runtime output:

[WARN] 1.1 - Create a separate partition for containers

For this one, you will want to map /var/1lib/docker to a separate partition.

[WARN] .8 - Failed to inspect: auditctl command not found.

[WARN] .9 - Failed to inspect: auditctl command not found.

[WARN]

1
1

[WARN] 1.10 - Failed to inspect: auditctl command not found.
1.13 - Failed to inspect: auditctl command not found.
1

[WARN] .18 - Failed to inspect: auditctl command not found.

[56]

Chapter 4

Understanding the output — the Docker daemon
configuration

Let's take a look at the following output for the Docker daemon configuration
output:

[WARN] 2.2 - Restrict network traffic between containers

By default, all the containers running on the same Docker host have access to each
other's network traffic. To prevent this, you would need to add the --icc=false flag
to the Docker daemon's start up process:

[WARN] 2.7 - Do not use the aufs storage driver

Again, you can add a flag to your Docker daemon start up process that will prevent
Docker from using the aufs storage driver. Using -s <storage_drivers> on

your Docker daemon startup, you can tell Docker not to use aufs for storage. It is
recommended that you use the best storage driver for the OS on the Docker host that
you are using.

Understanding the output — the Docker daemon
configuration files

If you are using the stock Docker daemon, you should not see any warnings. If you
have customized the code in some way, you may get a few warnings here. This is
one area where you should hope to never see any warnings.

Understanding the output — container images and
build files

Let's take a look at the following output for the container images and build files
runtime output:

[WARN] 4.1 - Create a user for the container

[WARN] * Running as root: suspicious mccarthy

This states that the suspicious_mccarthy container is running as the root user and
it is recommended to create another user to run your containers.

[57]

Docker Bench for Security

Understanding the output — container runtime

Let's take a look at the output for the container runtime output, as follows:

[WARN] 5.1: - Verify AppArmor Profile, if applicable

[WARN] * No AppArmorProfile Found: suspicious mccarthy

This states that the suspicious mccarthy container does not have
AppArmorProfile, which is the additional security provided in Ubuntu in this case.

[WARN] 5.3 - Verify that containers are running only a single main
process

[WARN] * Too many processes running: suspicious mccarthy

This error is pretty straightforward. You will want to make sure that you are only
running one process per container. If you are running more than one process, you
will want to spread them out across multiple containers and use container linking, as
shown in the following command:

[WARN] 5.4 - Restrict Linux Kernel Capabilities within containers

[WARN] * Capabilities added: CapAdd=[audit control] to suspicious
mccarthy

This states that the audit_control capability has been added to this running
container. You can use --cap-drop={} from your docker run command to remove
the additional capabilities from a container, as follows:

[WARN] 5.6 - Do not mount sensitive host system directories on containers
[WARN] * Sensitive directory /etc mounted in: suspicious mccarthy

[WARN] * Sensitive directory /lib mounted in: suspicious mccarthy

[WARN] 5.7 - Do not run ssh within containers

[WARN] * Container running sshd: suspicious mccarthy

This is straight to the point. No need to run SSH inside your containers. You can do
everything you want to with your containers using the tools provided by Docker.
Ensure that SSH is not running in any container. You can utilize the docker exec
command to execute the items against your containers (see more information here:
https://docs.docker.com/engine/reference/commandline/exec/),asShovvnin
the following command:

[WARN] 5.10 - Do not use host network mode on container
[WARN] * Container running with networking mode 'host’':

suspicious mccarthy

[58]

https://docs.docker.com/engine/reference/commandline/exec/

Chapter 4

The issue with this one is that, when the container was started, the - -net=host
switch was passed along. It is not recommended to use this as it allows the container
to modify the network configuration and open low port numbers as well as access
networking services on the Docker host, as follows:

[WARN] 5.11 - Limit memory usage for the container
[WARN] * Container running without memory restrictions:

suspicious mccarthy

By default, the containers don't have memory restrictions. This can be dangerous
if you are running multiple containers per Docker host. You can use the -m switch
while issuing your docker run commands to limit the containers to a certain
amount of memory. Values are set in megabytes (that is, 512 MB or 1024 MB), as
shown in the following command:

[WARN] 5.12 - Set container CPU priority appropriately
[WARN] * The container running without CPU restrictions:

suspicious mccarthy

Like the memory option, you can also set the CPU priority on a per-container basis.
This can be done using the - - cpu-shares switch while issuing your docker run
command. The CPU share is based off of the number 1,024. Therefore, half would
be 512 and 25% would be 256. Use 1,024 as the base number to determine the CPU
share, as follows:

[WARN] 5.13 - Mount container's root filesystem as readonly
[WARN] * Container running with root FS mounted R/W:

suspicious_mccarthy

You really want to be using your containers as immutable environments, meaning
that they don't write any data inside them. Data should be written out to volumes.
Again, you can use the - -read-only switch, as follows:

[WARN] 5.16 - Do not share the host's process namespace

[WARN] * Host PID namespace being shared with: suspicious mccarthy

This error arises when you use the --pid=host switch. It is not recommended to use
this switch as it breaks the isolation of processes between the container and Docker
host.

[59]

Docker Bench for Security

Understanding the output — Docker security
operations

Again, another section you should hope to never see are the warnings if you are
using stock Docker. Mostly, here you will see the information and should review this
to make sure it's all kosher.

Summary

In this chapter, we took a look at the CIS guidelines for Docker. This guide will assist
you in setting up multiple aspects of your Docker environment. Lastly, we looked at
the Docker Bench for Security. We looked at how to get it up and running and went
through an example of what the output would look like once it has been run. We
then took a look at the output to see what all it meant. Remember the six items that
the application covered: host configuration, Docker daemon configuration, Docker
daemon configuration files, container images and build files, container runtime, and
Docker security operations.

In the next chapter, we will be taking a look at how to monitor as well as report any
Docker security issues that you come across. This will help you know where to look
for anything related to the security that may pertain to your existing environment. If
you are to come across security-related issues that you find yourself, there are best
practices for reporting these issues to give time to Docker to fix them before allowing
the public community time to know about the issue, which will allow the hackers to
use these vulnerabilities to their advantage.

[60]

Monitoring and Reporting
Docker Security Incidents

In this chapter, we will take a look at how to stay on top of the items that Docker has
released, regarding the security findings in order to be aware of your environments.
Also, we will take a look at how to safely report any security findings that you come
across in order to ensure that Docker has a chance to alleviate the concern before it
becomes public and widespread. In this chapter, we will be covering the following
topics:

* Docker security monitoring
* Docker Common Vulnerabilities and Exposures (CVE)
* Mailing lists

* Docker security reporting

o

Responsible disclosure

Security reporting

e Additional Docker resources

o

Docker Notary

o

Hardware signing

o

Reading materials

[61]

Monitoring and Reporting Docker Security Incidents

Docker security monitoring

In this section, we will take a look at some ways of monitoring security issues that
relate to any Docker products you may be using. While you are using the various
products, you need to be able to be aware of, if any, security issues that arise so that
you can mitigate these risks to keep your environments and data safe.

Docker CVE

To understand what a Docker CVE is, you need to first know what is CVE. CVEs
are actually a system that is maintained by the MITRE Corporation. These are used
as a public way of providing information based on a CVE number that is dedicated
to each vulnerability for easy reference. This allows a national database of all the
vulnerabilities that are given a CVE number from the MITRE Corporation. To learn
more about CVEs, you can find it on the Wikipedia article here:

https://en.wikipedia.org/wiki/Common Vulnerabilities and Exposures

The Wikipedia article explains things such as how they go about giving CVE
numbers and the format that they all follow.

Now that you know what CVEs are, you probably have already pieced together
what Docker CVEs are. They are CVEs that are directly related to Docker security
incidents or issues. To learn more about Docker CVEs or see a list of current Docker
CVEs, visit https://www.docker.com/docker-cve-database.

This listing will be updated anytime a CVE is created for a Docker product. As you
can see, the list is very small, therefore, this is probably a list that will not grow on a
day-to-day, or even a month-to-month, basis frequency.

Mailing lists
Another method for following or discussing security-related issues of any Docker

products in the ecosystem is to join their mailing lists. Currently, they have two
mailing lists that you can either join or follow along with.

[62]

https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://www.docker.com/docker-cve-database

Chapter 5

The first is a developer list that you can join or follow along with. This is a list for
those who are either helping in assisting with contributing the code to the Docker
products or developing products using the Docker code base provided in the
following;:

https://groups.google.com/forum/#! forum/docker-dev

The second list is a user list. This list is for those who, you guessed it, are the users
of the various Docker products that might have security-related questions. You can
search from the already submitted discussions, join existing conversations, or ask
new questions that will be answered by those who are also on the mailing lists at the
following forum:

https://groups.google.com/forum/#! forum/docker-user

Before asking some security-related questions, you will want to read the following
section to ensure that you are not exposing any existing security issues that might
tempt an attacker out there.

Docker security reporting

Reporting Docker security issues is just as important as monitoring security issues
with regards to Docker. While it is important to report these issues, there are certain
standards that you should follow when you find security issues and are going to,
hopefully, report them.

Responsible disclosure

When disclosing security-related issues, not only for Docker, but for any product
out there, there is a term called responsible disclosure that everyone should follow.
Responsible disclosure is an agreement that allows the developer or maintainer of
the product ample time to provide a fix for the security issue before disclosing the
issue to the general public.

To learn more about responsible disclosure, you can visit https://en.wikipedia.
org/wiki/Responsible disclosure.

Remember to put yourself in the shoes of the group that is responsible for the code. If
it were your code, wouldn't you want someone to give you a notice of a vulnerability
so that you had ample time to fix the issue before it was disclosed, causing
widespread panic and flooding the inbox with e-mails from the masses.

[63]

https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-user
https://en.wikipedia.org/wiki/Responsible_disclosure
https://en.wikipedia.org/wiki/Responsible_disclosure

Monitoring and Reporting Docker Security Incidents

Security reporting

Currently, the method for reporting security issues is to e-mail the Docker security
team and give them as much information as you can provide about the security
issue. While these are not the exact items that Docker might recommend, there are
general guidelines that most other security professionals like to see when reporting
security issues, such as the following;:

* Product and version, where the security issue was discovered
* Method to reproduce the issue
* Operating system that was being used at the time, plus the version

* Any additional information you can provide

Remember, the more information you provide from the beginning, the quicker the
team has to react from their end by being on top of the issue and attack it more
aggressively from the start.

To report a security issue for any Docker-related product, make sure to e-mail any
information to securityedocker.com

Additional Docker security resources

If you are looking for some other items to look into, there are some additional items
that we have covered in Chapter 1, Securing Docker Hosts that are worthwhile to
conduct a quick review. Make sure to look back at Chapter 1, Securing Docker Hosts
to get more details on the next couple of items or links that will be provided in each
section.

Docker Notary

Let's take a quick look at Docker Notary, but for more information about Docker
Notary, you can look back at the information in Chapter 2, Securing Docker Components
or the following URL:

https://github.com/docker/notary

Docker Notary allows you to publish your content by signing it with private keys
that you are recommended to keep offline. Using these keys to sign your content
helps in ensuring others to know that the content they are using is, in fact, from who
it says it is—you—and that the content can be trusted, assuming the users trust you.

[64]

https://github.com/docker/notary

Chapter 5

Docker Notary has a few key goals that I believe are important to point out in the
following;:

* Survivable key compromise

* Freshness guarantee

* Configurable trust thresholds

* Signing delegation

* Use of existing distribution

* Untrusted mirrors and transport
It is important to know that Docker Notary has a server and client component
as well. To use Notary, you will have to be familiar with the command-line

environment. The preceding link will break it down for you and give you
walkthroughs on setting up and using each component.

Hardware signing

Similar to the previous Docker Notary section, let's take a quick look at the hardware
signing as it's a very important feature that must be understood fully.

Docker also allows hardware signing. What does this mean? From the previous
section, we saw that you can use highly secure keys to sign your content, allowing
others to verify that the information is from who it says it is, which ultimately
provides everyone great peace of mind.

Hardware signing takes this to a whole new level by allowing you to add yet
another layer of code signing. By introducing a hardware device, Yubikey —a USB
piece of hardware — you can use your private keys (remember to keep them secure
and offline somewhere) as well as a piece of hardware that requires you to tap it
when you sign your code. This proves that you are a human by the fact of having to
physically touch the YubiKey when you are signing your code.

For more information about the hardware signing part of Notary, it is worthwhile to
read their announcement when they released this feature from the following URL:

https://blog.docker.com/2015/11/docker-content-trust-yubikey/

For a video demonstration of using YubiKeys and Docker Notary, please visit the
following YouTube URL:

https://youtu.be/fLEFFtOHRZQ?t=1h21m23s

[65]

https://blog.docker.com/2015/11/docker-content-trust-yubikey/
https://youtu.be/fLfFFtOHRZQ?t=1h21m23s

Monitoring and Reporting Docker Security Incidents

To find out more information about YubiKeys, visit their website at the following
URL:

https://www.yubico.com

Reading materials

There are also some additional reading materials that can assist with ensuring your
focus is on monitoring the security aspect of the entire Docker ecosystem.

Looking back at Chapter 4, Docker Bench for Security, we covered the Docker Bench,
which is a scanning application for your entire Docker environment. This is highly
useful to help in pointing out any security risks that you might have.

There is also a great free Docker security eBook that I found. This book will cover
potential security issues along with tools and techniques that you can utilize to
secure your container environments. Not bad for free, right?! You can find this book
at the following URL:

https://www.openshift.com/promotions/docker-security.html

You can refer to the following Introduction to Container Security whitepaper for more
information:

https://d3oypxn00j2al0.cloudfront.net/assets/img/Docker%20Security/
WP_Intro to_container security 03.20.2015.pdf

You can also refer to The Definitive Guide To Docker Containers whitepaper, as follows:

https://www.docker.com/sites/default/files/WP-%20Definitive%20
Guide%20To%20Containers.pdf

The last two items — Introduction to Container Security whitepaper and The Definitive
Guide To Docker Containers — are directly created from Docker, therefore, they contain
information that is directly related to understanding how containers are structured
and they breakdown a lot of the Docker information into a central location, which
you can download or print out and have at hand at any point of time. They also help
you to understand the various layers of containers and how they help keep your
environment and applications secure from each other.

[66]

https://www.yubico.com
https://www.openshift.com/promotions/docker-security.html
https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf
https://d3oypxn00j2a10.cloudfront.net/assets/img/Docker%20Security/WP_Intro_to_container_security_03.20.2015.pdf
https://www.docker.com/sites/default/files/WP-%20Definitive%20Guide%20To%20Containers.pdf
https://www.docker.com/sites/default/files/WP-%20Definitive%20Guide%20To%20Containers.pdf

Chapter 5

Awesome Docker

While this is not a security-related tool, it is a Docker tool that is very useful and is
updated quite frequently. Awesome Docker is a curated list of any and all Docker
projects. It allows others to contribute with pull requests to the curated list. The list
includes topics for those who are looking to get started with Docker; useful articles;
deep-dive articles; networking articles; and articles on using multi-server Docker
environments, cloud infrastructure, tips, and newsletters, the list just keeps going on.
To view the project as well as the awesomeness of everything that it includes, visit the
following URL:

https://github.com/veggiemonk/awesome-docker

Summary

In this chapter, we looked at a number of ways to monitor and report Docker
security issues. We looked at some mailing lists that you can join monitoring the
Docker CVE list. We also reviewed using both Docker Notary to sign your images
as well as hardware signing to utilize hardware items such as YubiKeys. We also
looked at using responsible disclosure, which is giving Docker a chance to fix any
security-related issue prior to releasing them to the public.

In the next chapter, we will be looking at working with some Docker tools. These
tools can be used to secure the Docker environment. We will look at both command-
line tools as well as GUI tools that you can use to your advantage. We will be looking
at utilizing TLS in your environments using read-only containers, utilizing kernel
namespaces and control groups, and mitigating against the risk, while being aware
of the Docker daemon attack surface.

[67]

https://github.com/veggiemonk/awesome-docker

Using Docker's Built-in
Security Features

In this chapter, we will take a look at working with Docker tools that can be used to
secure your environment. We will be taking a look at both command-line tools as
well as GUI tools that you can utilize to your advantage. We will cover the following
items in this chapter:

e Docker tools

° Using TLS in your environments to help ensure that pieces are
communicating securely

° Using read-only containers to help protect the data in a container
from being manipulated in some form

* Docker security fundamentals

° Kernel namespaces
° Control groups

° Linux kernel capabilities

[69]

Using Docker's Built-in Security Features

Docker tools

In this section, we will cover the tools that can help you secure your Docker
environment. These are options that are built into the Docker software, which you
are already using. It's time to learn how to enable or utilize these such features to
help give you the peace of mind in order to be sure that the communication is secure;
this is where we will cover enabling TLS, which is a protocol that ensures privacy
between applications. It ensures that nobody is listening in on the communication.
Think of it as when you are watching a movie and people on the phone say, is this
line secure? It's the same kind of idea when it comes to network communication.
Then, we will look at how you can utilize the read-only containers to ensure that the
data you are serving up can't be manipulated by anyone.

Using TLS

It is highly recommended to use the Docker Machine to create and manage your
Docker hosts. It will automatically set up the communication to use TLS. Here's how
you can verify that the default host that was created by docker-machine indeed uses
TLS.

One of the important factors is knowing if you are using TLS or not and then
adjusting to use TLS if you are, in fact, not using TLS. The important thing to
remember is that, nowadays, almost all the Docker tools ship with the TLS enabled,
or if they don't, they appear to be working towards this goal. One of the commands
that you can use to check in order to see if your Docker host is utilizing the TLS is
with the Docker Machine inspect command. In the following, we will take a look at
a host and see if it is running with the TLS enabled:

docker-machine inspect default

"ConfigVersion": 3,

"Driver": {
"IPAddress": "192.168.99.100",
"MachineName": "default",
"SSHUser": "docker",
"SSHPort": 50858,

"SSHKeyPath": "/Users/scottgallagher/.docker/
machine/machines/default/id rsa",

"StorePath": "/Users/scottgallagher/.docker/machine",

"SwarmMaster": false,

[70]

Chapter 6

I

"SwarmHost": "tcp://0.0.0.0:3376",
"SwarmDiscovery": "",
"VBoxManager": {},

"CPU": 1,

"Memory": 2048,

"DiskSize": 204800,
"Boot2DockerURL": "",
"Boot2DockerImportvVM": ",
"HostDNSResolver": false,
"HostOnlyCIDR": "192.168.99.1/24",
"HostOnlyNicType": "82540EM",
"HostOnlyPromiscMode": "deny",
"NoShare": false,

"DNSProxy": false,

"NoVTXCheck": false

"DriverName": "virtualbox",

"HostOptions": {

"Driver": "n,

"Memory": O,

"Disk": O,

"EngineOptions": {
"ArbitraryFlags": [1],
"Dns": null,
"GraphDir": "",
"Env": [],
"Ipvé": false,
"InsecureRegistry": [1,
"Labels": [],
"LogLevel": "",
"StorageDriver": "n,
"SelinuxEnabled": false,
"TlsVerify": true,

"RegistryMirror": [],

"InstallURL": "https://get.docker.com"

[71]

Using Docker's Built-in Security Features

"SwarmOptions": {

"IsSwarm": false,

"Address": "",

"Discovery": "",

"Master": false,

"Host": "tcp://0.0.0.0:3376",
"Image": "swarm:latest",
"Strategy": "spread",

"Heartbeat": 0,
"Overcommit": O,
"ArbitraryFlags": [1],
"Env": null

3

"AuthOptions": {

"CertDir": "/Users/scottgallagher/.docker/machine/certs",

"CaCertPath": "/Users/scottgallagher/.docker/
machine/certs/ca.pem",

"CaPrivateKeyPath": "/Users/scottgallagher/.docker/

machine/certs/ca-key.pem",

"CaCertRemotePath": "",

"ServerCertPath": "/Users/scottgallagher/.docker/
machine/machines/default/server.pem",

"ServerKeyPath": "/Users/scottgallagher/.docker/
machine/machines/default/server-key.pem",

"ClientKeyPath": "/Users/scottgallagher/.docker/
machine/certs/key.pem",

"ServerCertRemotePath": "",

"ServerKeyRemotePath": "",

"ClientCertPath": "/Users/scottgallagher/.docker/

machine/certs/cert.pem",
"ServerCertSANs": [],

"StorePath": "/Users/scottgallagher/.docker/
machine/machines/default"

}
H

"Name": "default™"

[72]

Chapter 6

From the preceding output, we can focus on the following line:

"SwarmHost": "tcp://0.0.0.0:3376",

This shows us that if we were running Swarm, this host would be utilizing the
secure 3376 port. Now, if you aren't using Docker Swarm, then you can disregard
this line. However, if you are using Docker Swarm, then this line is important.

Just to take a step back, let's identify what Docker Swarm is. Docker Swarm is native
clustering within Docker. It helps in turning multiple Docker hosts into an easy-to-
manage single virtual host:

"AuthOptions": {

"CertDir": "/Users/scottgallagher/.docker/machine/certs",

"CaCertPath": "/Users/scottgallagher/.docker/machine/certs/
ca.pem",

"CaPrivateKeyPath": "/Users/scottgallagher/.docker/machine/
certs/ca-key.pen",

"CaCertRemotePath": "n,

"ServerCertPath": "/Users/scottgallagher/.docker/machine/
machines/default/server.pem",

"ServerKeyPath": "/Users/scottgallagher/.docker/machine/
machines/default/server-key.pem",

"ClientKeyPath": "/Users/scottgallagher/.docker/machine/
certs/key.pem",

"ServerCertRemotePath": "n,

"ServerKeyRemotePath": "",

"ClientCertPath": "/Users/scottgallagher/.docker/machine/

certs/cert.pem",
"ServerCertSANs": [],

"StorePath": "/Users/scottgallagher/.docker/machine/machines/
default"

}

This shows us that this host is, in fact, using the certificates so we know that it is
using TLS, but how do we know from just that? In the following section, we will take
a look at how to tell that it is, in fact, using TLS for sure.

[73]

Using Docker's Built-in Security Features

Docker Machine also has the option to run everything over TLS. This is the most
secure way of using Docker Machine in order to manage your Docker hosts. This
setup can be tricky if you start using your own certificates. By default, Docker
Machine stores your certificates that it uses in /Users/<user_id>/.docker/
machine/certs/. You can see the location on your machine where the certificates are
stored at from the preceding output.

Let's take a look at how we can achieve the goal of viewing if our Docker host is
utilize TLS:

docker-machine 1s

NAME ACTIVE URL STATE URL SWARM DOCKER ERRORS
default * virtualbox Running tcp://192.168.99.100:2376
vl.9.1

This is where we can tell that it is using TLS. The insecure port of Docker Machine
hosts is the 2375 port and this host is using 2376, which is the secure TLS port for
Docker Machine. Therefore, this host is, in fact, using TLS to communicate, which
gives you the peace of mind in knowing that the communication is secure.

Read-only containers

With respect to the docker run command, we will mainly focus on the option that
allows us to set everything inside the container as read-only. Let's take a look at an
example and break down what it exactly does:

$ docker run --name mysql --read-only -v /var/lib/mysql v /tmp --e MYSQL
ROOT PASSWORD=password -d mysqgl

Here, we are running a mysqgl container and setting the entire container as read-only,
except for the /var/1ib/mysql directory. What this means is that the only location
the data can be written inside the container is the /var/1ib/mysql directory. Any
other location inside the container won't allow you to write anything in it. If you try
to run the following, it would fail:

$ docker exec mysql touch /opt/filename

This can be extremely helpful if you want to control where the containers can write
to or not write to. Make sure to use this wisely. Test thoroughly, as it can have
consequences when the applications can't write to certain locations.

[74]

Chapter 6

Remember the Docker volumes we looked at in the previous chapters, where we
were able to set the volumes to be read-only. Similar to the previous command with
docker run, where we set everything to read-only, except for a specified volume,
we can now do the opposite and set a single volume (or more, if you use more -v
switches) to read-only. The thing to remember about volumes is that when you use a
volume and mount it in a container, it will mount as an empty volume over the top
of that directory inside the container, unless you use the --volumes-fromswitch or
add data to the container in some other way after the fact:

$ docker run -d -v /opt/uploads:/opt/uploads:/opt/uploads:ro nginx

This will mount a volume in /opt /uploads and set it to read-only. This can be useful
if you don't want a running container to write to a volume in order to keep the data
or configuration files intact.

The last option that we want to look at, with regards to the docker run command is
the - -device= switch. This switch allows us to mount a device from the Docker host
into a specified location inside the container. For doing so, there are some security
risks that we need to be aware of. By default, when you do this, the container will
get full the access: read, write, and the mknod access to the device's location. Now,
you can control these permissions by manipulating rwm at the end of the switch
command.

Let's take a look at some of these and see how they work:

$ docker run --device=/dev/sdb:/dev/sdc2 -it ubuntu:latest /bin/bash

The previous command will run the latest Ubuntu image and mount the /dev/sdb
device inside the container at the /dev/sdc2 location:

$ docker run --device=/dev/sdb:/dev/sdc2:r -it ubuntu:latest /bin/bash

This command will run the latest Ubuntu image and mount the /dev/sdb1 device
inside the container at the /dev/sdc2 location. However, this one has the :r tag at
the end of it that specifies that it's read-only and can't be written.

[75]

Using Docker's Built-in Security Features

Docker security fundamentals

In the previous sections, we looked into some Docker tools that you can use, such

as TLS for communication, and using read-only containers to help ensure data isn't
changed or manipulated. In this section, we will focus on some more options that

are available from within the Docker ecosystem that can be used to help secure up
your environments to another level. We will take a look at the kernel namespaces
that provide another layer of abstraction by providing the running process to its own
resources that appear only to the process itself and not to other processes that might
be running. We will cover more about kernel namespaces in this section. We will
then take a look at the control groups. Control groups, more commonly known as
cgroups, give you the ability to limit the resources that a particular process has. We
will then cover the Linux kernel capabilities. By that, we will look at the restrictions
that are placed on containers, by default, when they are run using Docker. Lastly, we
will take a look at the Docker daemon attack surface, risks that exist with the Docker
daemon that you need to be aware of, and mitigation of these risks.

Kernel namespaces

Kernel namespaces provide a form of isolation for containers. Think of them as

a container wrapped inside another container. Processes that are running in one
container can't disrupt the processes running inside another container or let alone
run on the Docker host that the container is operating on. The way this works is
that each container gets its own network stacks to operate with. However, there are
ways to link these containers together in order to be able to interact with each other;
however, by default, they are isolated from each other. Kernel namespaces have
been around for quite a while too, so they are a tried and true method of isolation
protection. They were introduced in 2008 and at the time of writing this book, it's
2016. You can see that they will be eight years old, come this July. Therefore, when
you issue the docker run command, you are benefiting from a lot of heavy lifting
that is going on behind the scenes. This heavy lifting is creating its own network
stack to operate on. This is also shielding off the container from other containers
being able to manipulate the container's running processes or data.

Control groups

Control groups, or more commonly referred to as cgroups, are a Linux kernel feature
that allows you to limit the resources that a container can use. While they limit the
resources, they also ensure that each container gets the resources it needs as well as
that no single container can take down the entire Docker host.

[76]

Chapter 6

With control groups, you can limit the amount of CPU, memory, or disk I/O that

a particular container gets. If we look at the docker run command's help, let's
highlight the items that we can control. We will just be highlighting a few items that
are particularly useful for the majority of users, but please review them to see if any
others fit your environment, as follows:

$ docker run --help

Usage: docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

Run a command in a new container

-a, --attach=[] Attach to STDIN, STDOUT or STDERR

--add-host=[] Add a custom host-to-IP mapping
(host:ip)

--blkio-weight=0 Block IO (relative weight), between 10
and 1000

--cpu-shares=0 CPU shares (relative weight)

--cap-add=[] Add Linux capabilities

--cap-drop=1[] Drop Linux capabilities

--cgroup-parent= Optional parent cgroup for the
container

--cidfile= Write the container ID to the file

--cpu-period=0 Limit CPU CFS (Completely Fair
Scheduler) period

--cpu-quota=0 Limit CPU CFS (Completely Fair
Scheduler) gquota

--cpuset-cpus= CPUs in which to allow execution (0-3,
0,1)

--cpuset-mems= MEMs in which to allow execution (0-3,
0,1)

-d, --detach=false Run container in background and print

container ID

--device=[] Add a host device to the container
--disable-content-trust=true Skip image verification

--dns=1[] Set custom DNS servers
--dns-opt=1[] Set DNS options

--dns-search=[] Set custom DNS search domains

-e, --env=][] Set environment wvariables

[77]

Using Docker's Built-in Security Features

--entrypoint= Overwrite the default ENTRYPOINT of the
image

--env-file=[] Read in a file of environment variables

- -expose=[] Expose a port or a range of ports

--group-add=[] Add additional groups to join

-h, --hostname= Container host name

--help=false Print usage

-i, --interactive=false Keep STDIN open even if not attached

--ipec= IPC namespace to use

--kernel-memory= Kernel memory limit

-1, --label=[] Set meta data on a container

--label-file=[] Read in a line delimited file of labels

--link=[1 Add link to another container

--log-driver= Logging driver for container

--log-opt=1[] Log driver options

--1lxc-conf=[] Add custom lxc options

-m, --memory= Memory limit

--mac-address= Container MAC address (e.g.

92:d0:c6:0a:29:33)
--memory-reservation= Memory soft limit

- -memory-swap= Total memory (memory + swap), '-1' to
disable swap

- -memory-swappiness=-1 Tuning container memory swappiness (0
to 100)

- -name= Assign a name to the container

--net=default Set the Network for the container

--oom-kill-disable=false Disable OOM Killer

-P, --publish-all=false Publish all exposed ports to random
ports

-p, --publish=[] Publish a container's port(s) to the
host

--pid= PID namespace to use

--privileged=false Give extended privileges to this
container

--read-only=£false Mount the container's root filesystem

as read only

--restart=no Restart policy to apply when a
container exits

[78]

Chapter 6

--rm=false
it exits

--security-opt=1[]
--sig-proxy=true

--stop-signal=SIGTERM
default

-t, --tty=false

-u, --user=
<name |uid>[:<group|gid>])

--ulimit=1[]
--uts=
-v, --volume=][]

--volume-driver=
container

--volumes-from=[]

Automatically remove the container when

Security Options
Proxy received signals to the process

Signal to stop a container, SIGTERM by

Allocate a pseudo-TTY

Username or UID (format:

Ulimit options
UTS namespace to use
Bind mount a volume

Optional volume driver for the

Mount volumes from the specified

container (s)

-w, --workdir= Working directory inside the container

As you can see from the preceding highlighted portions, these are just a few items
that you can control on a per-container basis.

Linux kernel capabilities

Docker uses the kernel capabilities to place the restrictions that Docker places on the
containers when they are launched or started. Limiting the root access is the ultimate
agenda with these kernel capabilities. There are a few services that typically run as
root, but can now be run without these permissions. Some of these include ssH, cron,
and syslogd.

Overall, what this means is that you don't need root in the server sense you typically
think of. You can run with a reduced capacity set. This means that your root user
doesn't need the privilege it typically needs.

Some of the things that you might not need to enable anymore are shown in the
following;:

* Performing mount operations

* Using raw sockets, which will help to prevent spoofing of packets

* Creating new devices

* Changing the owner of files

* Altering attributes

[79]

Using Docker's Built-in Security Features

This helps due to the fact that if someone does compromise a container, then they
can't escalate any more than what you are providing them. It will be much harder,
if not impossible, to escalate their privileges from a running container to running
Docker host. Due to such complexity, the attackers will probably look elsewhere
than your Docker environments to try to attack. Docker also supports the addition
and removal of capabilities, therefore, it's recommend to remove all the capabilities,
except the ones that you intend to use. An example would be to use the -cap-add
net_bind_service switch on your docker run command.

Containers versus virtual machines

Hopefully, you trust your organization and all those who have access to these
systems. You will most likely be setting up virtual machines from scratch. It is
probably impossible to get the virtual machine from someone else due to its sheer
size. Therefore, you will be aware of what is inside the virtual machine and what
isn't. This being said, with the Docker containers, you will not be aware of what is
there inside the image that you may be using for your container(s).

Summary

In this chapter, we looked at deploying TLS to all the pieces of our Docker
environment so that we can ensure that everything is communicating securely and
the traffic can't be intercepted and then interpreted. We also understood how to
utilize the read-only containers to our advantage in order to ensure the data that

is being served up can't be manipulated. We then took a look at how to provide
processes with their own abstraction of items, such as networks, mounts, users,
and more. We then dove into control groups, or cgroups as their more commonly
referred to as, as a way to limit the resources that a process or container has. We also
took a look at the Linux kernel capabilities, that is, the restrictions that are placed
on a container when it is started or launched. Lastly, we dove into mitigating risks
against the Docker daemon attack surface.

In the next chapter, we will look at securing Docker with third-party tools and learn
which third-party tools, beyond those offered by Docker, are out there to help secure
your environments to help keep your application(s) secure when running on Docker.

[80]

Securing Docker with
Third-party Tools

In this chapter, let's take a look at securing Docker using third-party tools. These
would be tools that are not part of the Docker ecosystem, which you can use to help
secure your systems. We will be taking a look at the following three items:

* Traffic Authorization: This allows inbound and outbound traffic to be
verified by the token broker in order to ensure that traffic between services is
secure.

* Summon: Summon is a command-line tool that reads a file in the secrets.
yml format and injects secrets as environment variables into any process.
Once the process exits, the secrets are gone.

* sVirt and SELinux: sVirt is a community project that integrates Mandatory
Access Control (MAC) security and Linux-based virtualization (Kernel-base
Virtual Machine (KVM), Iguest, and so on).

We will then add bonus material with regards to some extra third-party tools that
are quite useful and powerful and deserve to get some recognition as useful third-
party tools. These tools include dockersh, DockerUI, Shipyard, and Logspout.
Without further ado, let's jump in and get started on our path to the most secure
environments that we can obtain.

[81]

Securing Docker with Third-party Tools

Third-party tools

So, what third-party tools will we focus on? Well from the preceding introduction,
you learned that we will be looking at three tools in particular. These would be
Traffic Authorization, Summon, and sVirt with SELinux. All the three tools help
in different aspects and can be used to perform different things. We will learn the
differences between them and help you to determine which ones to implement.
You can decide whether you want to implement them all, only one or two of them,
or maybe you feel that none of these would pertain to your current environment.
However, it is good to know what is out there, in case, your needs change and the
overall architecture of your Docker environments change over time.

Traffic Authorization

Traffic Authorization can be used to regulate HTTP/HTTPS traffic between services.
This involves a forwarder, gatekeeper, and token broker. This allows inbound

and outbound traffic to be verified by the token broker in order to ensure that

traffic between services is secure. Each container runs a gatekeeper that is used to
intercept all the HTTP/HTTPS inbound traffic and verifies its authenticity from a
token that is found in the authorization header. The forwarder also runs on each
container, and like the gatekeeper, this also intercepts traffic; however, instead of
intercepting inbound traffic, it intercepts outbound traffic and places the token on the
authorization header. These tokens are issues from the token broker. These tokens
can also be cached to save time and minimize the impact of latency. Let's break it
down into a series of steps, as shown in the following;:

Service A initiates a request to Service B.

The forwarder on Service A will authenticate itself with the token broker.

The token broker will issue a token that Service A will apply to the
authorization header and forward the request to Service B.

4. Service B's gatekeeper will intercept the request and verify the authorization
header against the token broker.

5. Once the authorization header has been verified, it is then forwarded to
Service B.

As you can see, this applies extra authorizations on both inbound and outbound
requests. As we will see in the next section, you can also use Summon along with
Traffic Authorization to use shared secrets that are available once they are used, but
go away once the application has completed its actions.

[82]

Chapter 7

For more information about Traffic Authorization and Docker, visit https://
blog.conjur.net/securing-docker-with-secrets-and-dynamic-traffic-
authorization.

Summon

Summon is a command-line tool and is used to help pass along secrets or things you
don't want exposed, such as passwords or environmental variables and then these
secrets are disposed upon exiting the process. This is great as once the secret is used
and the process exits, the secret no longer exists. This means the secret isn't lingering
around until it is either removed manually or discovered by an attacker for malicious
use. Let's take a look at how to utilize Summon.

Summon typically uses three files: a secrets.yml file, script used to perform the
action or task, and Dockerfile. As you have learned previously, or based on your
current Docker experience, the Dockerfile is the basis of what helps in building your
containers and has instructions on how to set up the container, what to install, what
to configure, and so on.

One great example have for the usage of Summon is to be able to deploy your
AWS credentials to a container. For utilizing AWS CLI, you need a few key pieces
of information that should be kept secret. These two pieces of information are
your AWS Access Key ID and AWS Secret Access Key. With these two pieces of
information, you can manipulate someone's AWS account and perform actions
within this account. Let's take a look at the contents of one of these files, the
secrets.yml file:

secrets.yml
AWS ACCESS_KEY ID: !var S$env/aws_access_key id
AWS SECRET_ACCESS KEY: !var $env/aws_secret access key

The -D option is used to substitute values while $env is an example of a substitution
variable, therefore, the options can be interchanged.

In the preceding content, we can see that we want to pass along these two values into
our application. With this file, the script file you want to deploy, and the Dockerfile,
you are now ready to build your application.

We simply utilize the docker build command inside the folder that has our three
files in it:

$ docker build -t scottpgallagher/aws-deploy .

[83]

https://blog.conjur.net/securing-docker-with-secrets-and-dynamic-traffic-authorization
https://blog.conjur.net/securing-docker-with-secrets-and-dynamic-traffic-authorization
https://blog.conjur.net/securing-docker-with-secrets-and-dynamic-traffic-authorization

Securing Docker with Third-party Tools

Next, we need to install Summon, which can be done with a simple curl command,
as follows:

$ curl -sSL https://raw.githubusercontent.com/conjurinc/summon/master/
install.sh | bash

Now that we have Summon installed, we need to run the container with Summon
and pass along our secret values (note that this will only work on OS X):

$ security add-generic-password -s "summon" -a "aws access key id" -w
"ACESS_KEY ID"
$ security add-generic-password -s "summon" -a "aws secret access key" -w

"SECRET ACCESS_KEY"

Now we are ready to run Docker with Summon in order to pass along these
credentials to the container:

$ summon -p ring.py docker run —env-file @ENVFILE aws-deploy

You can also view the values that you have passed along by using the following cat
command:

$ summon -p ring.py cat @SUMMONENVFILE
aws_access _key id=ACESS KEY ID

aws_secret access key=SECRET ACCESS KEY

The @SUMMONENVFILE is a memory-mapped file that contains the values from the
secrets.yml file.

For more information and to see other options to utilize Summon, visit https://
conjurinc.github.io/summon/#examples

sVirt and SELinux

sVirt is part of the SELinux implementation, but it is typically turned off as most
view it as a roadblock. The only roadblock should be learning sVirt and SELinux.

sVirt is an open source community project that implements MAC security for Linux-
based virtualization. A reason you would want to implement sVirt is to improve

the security as well as harden the system against any bugs that might exist in the
hypervisor. This will help in eliminating any attack vectors that might be aimed
towards the virtual machine or host.

[84]

https://conjurinc.github.io/summon/#examples
https://conjurinc.github.io/summon/#examples

Chapter 7

Remember that all containers on a Docker host share the usage of the Linux

kernel that is running on the Docker host. If there is an exploit to this Linux

kernel on the host, then all containers running on this Docker host have the potential
to be easily compromised. If you implement sVirt and a container is compromised,
there is no way for the compromise to reach your Docker host and then out to other

Docker containers.

sVirt utilizes labels in the same way as SELinux. The following table is a list of these
labels and their descriptions:

Type SELinux Context Description
Virtual machine system_u:system r:svirt t:MCS1 | MCS1 isarandomly
processes selected MCS
field. Currently,
approximately 500,000
labels are supported.
Virtual machine system_u:object_r:svirt_ Only processes labeled
image image t:MCS1 svirt t with the same
MCS fields are able to
read/write these image
files and devices.
Virtual machine system u:object r:svirt_ All processes labeled
shared read /write image t:s0 svirt t areallowed
content to write to the svirt
image t:so0 files and
devices.
Virtual machine system u:object r:virt_ This is the system
image content_t:sO default label used

when an image exits.
No svirt_t virtual
processes are allowed to
read files/devices with
this label.

[85

]

Securing Docker with Third-party Tools

Other third-party tools

There are some other third-party tools that do deserve a mention in this chapter
and are worth exploring to see the value that they can add for you. It seems that
these days, a lot of focus is on GUI applications to help with securing applications
and infrastructures. The following utilities will give you a few options that could be
pertinent to the environment you are running with the Docker tools.

Note that you should use caution when implementing some of the
% following items as there could be unwanted repercussions. Make
T sure to use testing environments prior to production implementation.

dockersh

The dockersh was designed to be used as a login shell replacement on machines that
support multiple interactive users. Why is this important? If you remember some of
the general security warnings that you have when dealing with Docker containers on
a Docker host, you will know that whoever has access to the Docker host has access
to all the running containers on this Docker host. With dockersh, you can isolate the
use on a per-container basis and only allow users access the containers that you want
them to, while maintaining administrative control over the Docker host and keeping
the security threshold minimum.

This is an ideal way to help isolate users on a per-container basis, while containers
help eliminate the need for SSH by utilizing dockersh, you can remove some of
these fears about providing everyone that needs container to access, the access to the
Docker host(s) as well. There is a lot of information required to set up and invoke
dockersh, therefore, if you are interested, it's recommended to visit the following
URL to find more about dockersh, including how to set it up and use it:

https://github.com/Yelp/dockersh

DockerUl

DockerUl is a simple way to view what is going on inside your Docker host. The
installation of DockerUl is very straightforward and is done by running a simple
docker runcommand in order to get started:

$ docker run -d -p 9000:9000 --privileged -v /var/run/docker.sock:/var/
run/docker.sock dockerui/dockerui

[86]

https://github.com/Yelp/dockersh

Chapter 7

To access the DockerUl, you simply open a browser and navigate to the following

link:

http://<docker host ip>:9000

This opens your DockerUI to the world on port 9000, as shown in the following

screenshot:

& GitHub, Inc.
DockerUl
Home Containers Images Settings
Containers:
1d Image Command Created Status
gcBa34d, 588699501d18 /binfsh - /usr/local/bin/sentry —config=/sentry.conf.py start 1370720983 [up 4 hours |
d60b36, 2608f45fc1d3 /binfsh - /usr/bin/redis-server /etc/redis/redis.conf 1370716229

DockerUl is a web interface for the Docker Remote API. The goal is to provide a pure client side
implementation so it is effortless to connect and manage docker. This project is not complete and is
still under heavy development.

Container: 9¢c8a34d00df172b317647d25529d3ba48560ea46c53247{7aa9214cb62d0537f

Created 2013-06-08T10:49:43.968798899-09:00

Path: /binsh

Args: [*-c*,*/ust/local/bin/sentry -onfig=/sentry.conf.py start’]

Syslnitpath: Just/local/bin/docker

Image 5886995bfd1827¢82172e0b18642b1b8b3a27 dfe7d40e3fde9ad81aadsb530ce
Running true

:Michael Crosby

Goals

« Minimal dependencies - | really want to keep this project a pure html/js app.
¢ Consistency - The web Ul should be consistent with the commands found on the docker GLI.

Container Quickstart

1. Run: docker run -d -p 908@0:9808 —-privileged -v
/var/run/docker.sock: /var/run/docker.sock dockerui/dockerui

You can get the general high-level view of your Docker host and its ecosystem and
can do things such as manipulate the containers on the Docker host by restarting,
stopping, or starting them from a stopped state. DockerUI takes some of the steep
learning curve of running command-line items and places them into actions that you
perform in a web browser using point and click.

For more information about DockerUl, visit https://github.com/crosbymichael/

dockerui.

[87]

https://github.com/crosbymichael/dockerui
https://github.com/crosbymichael/dockerui

Securing Docker with Third-party Tools

Shipyard

Shipyard, like DockerUl, allows you to use a GUI web interface to manage various
aspects —mainly in your containers —and manipulate them. Shipyard is build on top
of Docker Swarm so that you get to utilize the feature set of Docker Swarm, where
you can manage multiple hosts and containers instead of having to just focus on one
host and its containers at a time.

Using Shipyard is simple and the following curl command re-enters the picture:

$ curl -sSL https://shipyard-project.com/deploy | bash -s

To access the Shipyard once the set up is completed, you can simply open a browser
and navigate to the following link:

http://<docker host ip>:8080

As we can see in the following screenshot, we can view all the containers on our
Docker host:

= IMAGES o NODES F REGISTRIES ADMIN = (]

v Node Name Image Status Created Actions

L] 015824d73%b ship? shipyard-swanm-agent swanm:latest Up 15 seconds 2015-10-28 12:54:20 -D400 q *
@ 1e29ecdd75 ship? shipyard-swarm-manager mwanm|atast Up 16 seconds 2015-10-28 12:54:20 -0400 (=
® dcBER3dPasEl ship? shipyard-proxy ehazlett/docker proxy latest Up 19 seconds 201510-28 12:54:16 0400 Q| F
L] fBd1D&fbicab ship? shipyard-certs alpine Up 23 seconds 2015-10-28 12:54:13 0400 q *
[] adf1bef1602e shipl shipyard-contraller shipyard/shipyarciatest Up & minutes 2015-10-28 12:48:14 -0400 L=
[] £2535bd5431F shipl shipyard-swanm-agent swanm:latest Up & minutes 201510-28 12:48:09 -0400 Q| F
L] ddenf3{41a3b shipl shipyard-controller swanm:latest Up & minutes 2015-10-28 12:48:09 0400 a *
® dacd635Shelcd shipl shipyard-proxy ehazian/docker-proxylatest Up & minutes 2015-10-28 12:48:05 -0400 aQ &
L Bac4d7B0aBda shipl shipyard-cers alpine Up & minutes BN510-26 12:48:02 0400 Q F
® WEITdcicBd shipt shipyard-discovery progrium/consul-atest Up & minutes 2015-10-28 12-48:07 0400 q | £
L] 4clalldaad?0 shipl shipyard-controfier rethinkdh Up 6 minutes 201510-28 12:47:55 0400 (= +F

[88]

Chapter 7

We can also view all the images that are on our Docker host, as shown in the
following screenshot:

REFRLTREDY & ju]

& IMAGES

Names 1] Created Node Virtual Skze
rethinkdb:letest E94adsd 15edb 201510-23 19:21:38 0400 shigl 17277 ME B
wwarmclsnet 556c6018TERS 20151013 23:27:36 0400 shipl 972 M8 n
shipyardishipyasd:iutest b4 1dedaBAlch 2015-05-24 09:45:16 -0400 shipl 56,01 MB n
alpine:iatest fafddcaTecz 0150914 16:01:14 0400 shigl 501 ME B
shazieryidockee-proay lszes bbad{7546a71 201509-05 19:02:35 0400 shipl 743 MB n
shazletticur-jubest fadB5a51 0875 201509-05 17:20:40 -0400 shipl BI5SMB n
progriven/cansal latest ebbbbTa762E 2015-06-30 15:55:41 0400 shipl 65.21 MB B
swarmites 556060187608 2015-10-13 23:27:36 0400 ship2 5.72 MB n
alpine:istest fafddcsT1ec2 20150914 180714 0400 shig2 501 ME B
shazberdocker-proxy-ises béa2{7546a71 201509-05 19:02:35 0400 ship2 748 MB B

We can also control our containers, as seen in the following screenshot:

eae < 72169435
™ EVENTS
@ shipyard-swarm-agent Started today at 12:54 pm
swarm:latest
.~ EEE O o
Container Configuration Environment
Contalnes 1D Command Name Hoat SHARW_HOST=:2375
201582447350 1 -eaddr 173.16.9.136:3375 ship2 17216.9.1362375
consul :/ /172,16, 9.135:8500
CPls Memory
Hostname Domain Name 1 996 M8
201582407390 MNiA
Port Configuration
internal 2375/%cp
Processes
PID USER COMMAND
2308 oot fawarm | -ddr 172.16.9.136:2375 consulin 72.16.9.135:8500

[89]

Securing Docker with Third-party Tools

Shipyard, like DockerU]I, allows you to manipulate your Docker hosts and
containers, by restarting them, stopping them, starting them from a failed state, or
deploying new containers and having them join the Swarm cluster. Shipyard also
allows you to view information such as port mapping information that is what port
from the host maps to the container. This allows you to get a hold of important
information like that when you need it quickly to address any security related issues.
Shipyard also has user management where DockerUI lacks such capability.

For more information about Shipyard simply visit the following URLs:

® https://github.com/shipyard/shipyard
® http://shipyard-project.com

Logspout

Where do you go when there is an issue that needs to be addressed? Most people
will first look at the logs of that application to see if it is outputting any errors. With
Logspout, this becomes a much more manageable task with many multiple running
containers. With Logspout, you can route all the logs for each and every container
to a location of your choice. Then, you could parse these logs in one place. Instead of
having to pull the logs from each container and review them individually you can
instead have Logspout do that work for you.

Logspout is just as easy to set up as we have seen for other third-party solutions.
Simply run the following command on each Docker host to start collecting the logs:

$ docker run --name="logspout" \
--volume=/var/run/docker.sock:/tmp/docker.sock \
--publish=127.0.0.1:8000:8080 \
gliderlabs/logspout

Now that we have all the container logs collected in one area, we need to parse
through these logs, but how do we do it?

$ curl http://127.0.0.1:8000/logs

Here's the curl command to the rescue again! Logs get prefixed with the container
names and colorized in a manner in order to distinguish the logs. You can replace the
loopback (127.0.0.1) address in the docker run invocations with the IP address

of the Docker host so that it's easier to connect to in order to be able to get the logs

as well as change the port from 8000 to something of your choice. There are also
different modules that you can utilize to obtain and collect logs.

For more information about Logspout, visit https://github.com/gliderlabs/
logspout.

[90]

https://github.com/shipyard/shipyard
http://shipyard-project.com
https://github.com/gliderlabs/logspout
https://github.com/gliderlabs/logspout

Chapter 7

Summary

In this chapter, we looked at some third-party tools in order to be able to help secure
Docker environments. Mainly, we looked at three tools: Traffic Authorization,
Summon, and sVirt with SELinux. All the three can be utilized in different ways

to help secure your Docker environments to give you the peace of mind at end of
the day to run your applications in the Docker containers. We learned what third-
party tools, beyond those offered by Docker, are out there to help secure your
environments to keep your application(s) secure when running on Docker.

We then took a look at some other third-party tools. These are extra tools that are
worthwhile to some, given what your Docker environment setup looks like. Some of
these tools include dockersh, DockerUl, Shipyard, and Logsprout. These tools, when
carefully applied, layer on extra enhancements to help in the overall security of your
Docker configurations.

In the next chapter, we will be looking at keeping up on security. With so much
going on these days that surrounds the security, it's sometimes tough to know where
to look for updated information and be able to apply quick fixes.

You will be learning to help enforce the idea of keeping security in the forefront

of your mind and subscribing to things such as e-mail lists that not only include
Docker, but also include items that are related to the environments you are running
with Linux. Other items are keeping up on following what is going on with regards
to items such as GitHub issues that relate to Docker security, following along in the
IRC rooms, and watching websites such as the CVE.

[91]

Keeping up Security

In this chapter, we will be taking a look at keeping up with security as it relates

to Docker. By what means you can use to help keep up to date on Docker-related
security issues that are out there for the version of the Docker tools you might

be running now? How do you stay ahead of any security issues and keep your
environments secure even with threats? In this chapter, we will look at multiple
ways in which you can keep up on any security issues that arise and the best way to
obtain information as quickly as possible. You will cover learning to help enforce the
idea of keeping security in the forefront of your mind and subscribing to things such
as e-mail lists that not only include Docker, but also include items that are related

to the environments you are running with Linux. Other items are keeping up on
following what is going on with regards to items such as GitHub issues that relate
to Docker security, following along with the Internet Relay Chat (IRC) rooms, and
watching websites such as the CVE.

In this chapter, we will be covering the following topics:
* Keeping up with security
° E-mail list options
° GitHub issues

° JRC rooms

° CVE websites

e Other areas of interest

[93]

Keeping up Security

Keeping up with security

In this section, we will take a look at the multiple ways that you can obtain or keep
up to date about the information related to the security issues that may occur in
Docker products. While this isn't a complete list of tools that you can use to keep up
on issues, this is a great start and consists of the most commonly used items that are
used. These items include e-mail distribution lists, following the GitHub issues for
Docker, IRC chat rooms for the multiple Docker products that exist, CVE website(s),
and other areas of interest to follow on items that relate to Docker products, such as
the Linux kernel vulnerabilities and other items you can use to mitigate the risks.

E-mail list options

Docker operates two mailing lists that users can sign up to be a part of. These
mailing lists provide means to both gather information about the issues or projects
others are working on and spark your thoughts into doing the same for your
environment. You can also use them to help blanket the Docker community with
questions or issues that you are running into when using various Docker products or
even other products in relation to Docker products.

The two e-mail lists are as follows:
e Docker-dev

e Docker-user

What is the Docker-dev mailing list mostly geared towards? You guessed it, it is
geared towards the developers! These are the people who are either interested in
developer type roles and what others are developing or are themselves developing
code for something that might integrate into various Docker products. This could be
something such as creating a web interface around Docker Swarm. This list would be
the one you want to post your questions at. The list consists of other developers and
possibly even those that work at Docker itself that might be able to help you with
any questions or issues that you have.

The other list, the Docker-user list, is geared towards the users of the various Docker
products or services and have questions on either how to use the products/services
or how they might be able to integrate third-party products with Docker. This might
include how to integrate Heroku with Docker or use Docker in the cloud. If you are
a user of Docker, then this list is the right one for you. You can also contribute to the
list as well if you have advanced experience, or something comes across the list that
you have experience in, or have dealt with previously.

[94]

Chapter 8

There is no rule that says you can't be on both. If you want to get the best of both
worlds, you can sign up for both and gauge the amount of traffic that comes across
each one and then make the decision to only be on one, based on where your
interests lie. You also have the option of not joining the lists and just following them
on the Google Groups pages for each list.

The Google groups page for the Docker-dev list is https://groups.google.com/
forum/# ! forum/docker-dev and the Google groups page for the Docker-user list is
https://groups.google.com/forum/#! forum/docker-user.

Don't forget that you can also search through these lists to see if your issue or
questions might have already been answered. As this book is about security, don't
forget that you can use these two mailing lists to discuss items that are security
related — whether they be development or user related.

GitHub issues

Another method of keeping up with security-related issues is to follow the GitHub
issues. As all the code for the Docker core and other various piece of Docker such

as Machine, Swarm, Compose, and all others are stored on GitHub, it provides an
area. What exactly are GitHub issues and why should I care about them is what

you are probably asking yourself right now. GitHub Issues is a bug tracker system
that GitHub uses. By tracking these issues, you can view the issues that others are
experiencing and get ahead of them in your own environment, or it could solve the
problem in your environment, knowing that others are having the same issue and it's
not just on your end. You can stop pulling what is left of your hair.

As each GitHub repository has its own issues section, we don't need to look at each
and every issues section, but I believe it is worthwhile to view one of the repositories
issues section so that you know what exactly you are looking at in order to help
decipher it all.

[95]

https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-dev
https://groups.google.com/forum/#!forum/docker-user

Keeping up Security

The following screenshot (which can be found at https://github.com/docker/
docker/issues) shows all the current issues that exist with the Docker core

software code:

eoe &
GitHub This repeasory Explore Features Enterprise Pricing
docker / docker © Watch 2454
Code (D lssums 1,240 Pull requasts 82 Wik Pulse Graphs

Labals Milestones

(D 1,240 Open . 7.755 Ciosed Authcr = Labels -

I Option in deemon.json file for userland-proxy being ignored

od 21 hou mbenty
1 Improve error reporting with ~Insecure-registry if https registry connection falls
#2001 cpened & day 800 by viketrous
Mo such image - statusCode=404 groundistribution kindiquestion
#2001 apenad & day ago by e
I Exisling containers may altach to volumes from wrong driver if Initial driver is not responding
I Linking to a container running codenvy/che falls with error "argument list too long.”
1 Allow comments In &&\# ...

' Unable to from devicemapper running out of space ssaorgeedicemapper

i) Docker hangs forever If a container is linked to itsall Kndibig
#20271 oponad & day ago by kelamen

1 detault apparmor profile is not 2.8 compatible

1 Driver overlay failed to remove rool filesystem: layer not retained since 1.10.0
#202%8 opened a duy ago by gionn

1 Cannot start deeman - Failed to load layer - failed to get diff id - invalid checksum digest format

' login help should not output explicit domain names groupdsiribution

l Ll Sinin

* Star 2862 Y Fork 7941

From this screen, we can not only see how many issues are open, but also know

how many have been closed. These are issues that were once an issue and solutions
were derived for them and now they have been closed. The closed ones are here for
historic purposes in order to be able to go back in time and see what solution might

have been provided to solve an issue.

[96]

https://github.com/docker/docker/issues
https://github.com/docker/docker/issues

Chapter 8

In the following screenshot, we can filter the issue based on the author, that is, the

person who submitted the issue:

aee < >]
B
docker / docker
Code (D Issues 1245 Full requests 54 Wid
SEsUe Bopen Labels

(D 1,245 Open 7,757 Closed

F2030 opened 5 howrs ago by (akstah

7 [w1.10] max depth exceeded error jij aboch
#2020 opened 10 hours age by baatres

1 [1.10.1] docker daemon -b none creates &

#2096 opened 17 hours sgo by Sunter

! WORKDIR doesn't respect Ul

#2038 opened 19 hours ago by dmole:

* Option in daemon.json file for userland-p

' Cannolt import tar,gz files anymore | B
B o voveon

Im" q [tfirsh en Fiotman

Milestones

"' Re-implemant checkpoint/restore after cc FI'er By suthor

[eooren sexarce Bosic

#2037 opened 14 hours ago by ibuikdthecioud R i

B cotvern Dot Cama

#20289 oponod 21 houm ago by moentioy " 1.10.2 0 CoolI0TS Lo Jiarg
A

Improve error g with —i 'y fB3) Brian Gk

#2086 oponod & day aga by vistous. *° 1.10.2

. Ercabymichanl Mchas: Crosty

; i
No such image
20283 openad & Oary AQ0 by ez

20z,

i

i openod . o

» Linking to a running yiche fails with
#2074 opened @ Gay ago by gasehel

1 Allow comments in &&\ # ... [TTT00T] dndenhancement

#2027 opaned & B3y g0 by meandre

Graphs

Author = Labals

[v1.10] slice bounds out of range i
#2029 opaed 8 houss ago by Catrtieten 110 SN O

7 Existing containers may attach to volumes from wrong driver if initial driver is not responding

list too long.”

" Unable to recover from devicemapper running out of space |salorgetiicemaspe

e T

ESD ¥ Fork

T8

[97]

Keeping up Security

In the following screenshot, we can also filter the issue based on labels and these
might include api, kernel, apparmor, selinux, aufs, and many more:

*soe < > t =
S L]
docker / docker @Walch 2470 & Star 28661 Y Fork T3
Code (D bsses 1,245 Pull requasts 54 Wik Pulss Graphs
isissun isopen Labels Milestonss ==
(D) 1,245 Open .+ 7,757 Closad Author = Labals = Assignea= Sorle
e p aftar i Filter by bl ™
£20300 cpmnad 5 hours ago by aJezian
1 [v1.10] slice bounds out of range [Kindisug mp
20209 cpaned O hours ago by ColeHeben " 1,102 Unisbesed
©) [v1.10] max depth exceeded error W s =k
20296 cosned 10 hours aga by beatre
B arvatesdor
1 [1.10.1] docker daemon -b none creates a bridge nar gy o (k]
20T cosned 14 hours aga by inuldihecioud
srmataenel
. Cannot import tar.gz files anymare =]
F20206 cosned 17 hours aga by Tunter B anatogging

W searunime

7 WORKDIR doesn't res USER when creating dire Dz
F20205 coened 15 hours aga SUCH areasecurtylappamor
' Optien in deemon.json file for userland-proxy being atealecurtyiseccomp [~]]
F20289 openod 21 hours aga by mbentiey (AT
arvasecuntysel rux
1) Improve error ing with —i gistry il htl "
F20205 openod a day 890 by vkstrous 1102 >

saistorage/irs
) No such Image - 40 11
#20283 cpened a day ago by reiz

11 Existing containers may attach to volumes from wrong driver if initial driver is not responding . -
20276 cponed a day ago by cintorskitscn

Linking to a container running codenvy/che fails with error "argument list too long.” =i
#20274 oponod a day ago by gesohe!

O Allow comments in &8 \# ... [EESTTS sindenhancement

F20273 opened & day 890 by me

I Unable to recover from devicemapper running out of space |sracrgeissicemsppe

[98]

Chapter 8

In the following screenshot, we see that we can also filter by milestone:

a8e <>, @0 & G n & O |
T Ty S S e S i
docker / docker & Watch 2470 % Star 28852 VY Fork 784
Code (D) lssues 1,245 Pull requansts 54 Wik Pulse Graphs

is:issue isOpen Labels Milestones

Author= Labsls~ Miostoresw Assignoa v Sort =

indh Filter by milestone]

[v1.10] max depth exceeded error Lt wi]
20258 opanad 10 hours ago by beatres

11190
[1.10.1] docker daemon -b none creates a bridge named "NONE" o Wedows TR4 1
20257 opened 14 hours ago by Buldthecioud

Windows TPS
Cannet im tar.gz files anymore a wll
WORKDIR doesn't respect USER when creating directories 72

20208 apaned 18 hours aga by dmalesliC

Option in daemon.json file for userland-proxy being ignored [kindfg)
02

#20283 opened 21 hours ago by mbentiey (B

Improve error reporting with —insecure-registry if hitps registry connection fails
A oned a day strons 1.10.2

Mo such image - statusCode=404 groupdisiibution kindiguestion O

#0253 opanad a day ago by i

Existing containers may attach to volumes from wrong driver if initial driver is not responding 2
#20275 opened a day ago by

y Chnignskiteon

Linking to a container running codenvy/che fails with error "argument list too long.” wi]

20274 apened a duy ago by pissehe

Unabla to recover from devicemapper running out of space |smesorgeeicenipper

Milestones are essentially tags to help sort issues based on fixing an issue for a
particular purpose. They can also be used to plan upcoming releases. As we can see
here, some of these include Windows TP4 and Windows TP5.

[99]

Keeping up Security

Lastly, we can filter issues based on assignee, that is, the person to whom it is
assigned to fix or address the issue, as shown in the following screenshot:

a8 < > b 8 GRtb -
T =y S e Bk

docker / docker ©Waich 2470 deStar 652 Y Fork 784

Coda (D lssues 1245 Pull requasts 54 Wi Puisa Graghs

IsigsLe Isopen Labels Milestones e e ,i. I

(D) 1,245 Open ./ 7,757 Closed Author = Labals = Milostones = Assignos = Sorl =

" Re - i - Filter by wha's assigned 1

#20300 opened % hours ago by thieztsh

I [v1.10] shice bounds out of range [Hediig) oz

#20093 oponed 9 hours ago by Colnbabert

£ [v1.10] max depth exceeded error

#2025 oponad 10 hours ago by bootron

oA

] (]
!/ WORKDIR doesn't respect USER when crealing directories 12
#20255 oponod 19 hours ago by dmolosUCA
n BIEN e Fiowterar
7 Option in daemon.jsen file for userland-proxy being ignored |Mediug] (wh]
#20285 openad 21 hours aga by mbantiay 1102 & CRVINR D Cavrrs
)l rting with ~insecure-registry if hitps registry connection fails £ ooy
2008 0 by vistrous 1102
s
11 Mo such image - statusCodend(4 groupdistribution kindiquestion (=}
#0263 openad & day Ao by e
i1 Existing containers may attach to volumes from wrang driver if initial driver is not responding [}]
#20276 opanad & day ago by ciniorskison
£ Linking to a contal ning codenvy/che fails with error "argument list too long.” [w]]
#20274 opoenoed & d e
U Allow comments in &&\# ... [T kindlenhancement
nod 8 by meandro

© Unable to recover from devicemapper running out of space |saslargeisnicenappr

As we can see, there are lot of ways in which we can filter the issues, but what does
an issue actually look like and what does it contain? Let's take a look at that in the
following section.

[100]

Chapter 8

In the following screenshot, we can see what an actual issue looks like:

ore s
GitHub 7 reposnny Explors Feslures Enterprise Pricing L ssnin
docker / docker ©Waich 2470 deStr BE52 YFork 7943
Coti | DD | [Pl RN P |l
Option in daemon.json file for userland-proxy being ignored [Wewissue |

¥ mbentloy opened this issun 21 hours ago - 1 comment

mbentiey commanted 21 howrs agn Labels
neibug
Descripticn of problern:
Whien Lsing the optien in daemon jsen file for usedand-proxy, it is being ignored,
Mile
docker version : o
11032
5 dacker version
Client: Ansignes
Version: (W catzvern
AP1 vers %
Go version: gol.5.3
Git commit: 9eB3TES 3 purticipants
Built: Thu Feb 11 19:15:20 2016 i
05 /Arch: Limx/andbd [P]
Server:
Version: 1.10.1
APL versio .12
Go vers 1.5,
Git commit: Sed3765
Built: Thu Feb 11 19:15:29 2816
05/Arch: Linux/and6d

docker info:

s dacker info
Containers: 2
Aunning: @
Paused: @
Stopped: 2
Inages: 463
Server Vers
Storage Driv
Root Dir: fvar/lib/docker/sufs

Some of the information that we can see is the title of the issue and the unique issue
number. We can then see that this particular issue is open, the person who reported
the issue, and for how long it's opened. We can then see how many comments are
there on the issue and then a large explanation of the issue itself. On the right-hand
side, we can see what labels the issue has, what its milestone is, who it is assigned to,
and how many participants are involved in the issue. Those involved are people who
have commented on the issue in some way.

[101]

Keeping up Security

In the last image, which is at the bottom of the issue from the preceding image, we
can see the timeline of the issue, such as who it was assigned to and when, as well as
when it was assigned a label and any additional comments.

® ® < -

xy -proto tep -host-ip .9.0.9 -host-port 88 -container-ip 172 Labals

: master process nginx —¢ fetcfngimx/ngink,con

8522 ngirx: worker process Kindibug
Lgs23 ngirx: worker process

Expected Results:

No docker-proxy process running indicating that the usemame proxy is not being used 1102
Additional info:

daeson, |5on ;

“debug": false,
“hosts*: [“tdi/e],
"log-confi i
“log-griver": =json-file",
“log-opts": ["max-size=18a", “max-file=2"]

b
“starage-driver”: “aufs",
“graph®: */var/\ib/docker",
“userland-proxy”: false

5 [calavers was assigned by thadextsh 10 1
& thadeztah added the RGBEG) abel 19
T W thedeztah added this o the 1.10.2 mile

E thadeztah commantad 19 hown ag

ping @calavera - assigned this to you [

1 16 join this conversation on GitHub. Already have an account? Sign in 1o commernt
R~ S | :

IRC rooms

The first thing to understand is what exactly IRC is. If you think back to the older
days, we probably all had some form of IRC rooms when we had AOL and had chat
rooms that you could join based on your location or topic. IRC operates in the same
way where there is a server that clients, such as yourself, connect to. These rooms are
typically based on a topic, product, or service that people have in common that can
come together to discuss. You can chat as a group but also utilize private chats with
others in the same room or channel as you.

[102]

Chapter 8

Docker utilizes IRC for discussion about its products. This allows not only end users
of the products to engage in discussion, but also in the case of Docker, most of those
who actually work for Docker and on these products tend to be in these rooms on a
daily basis and will engage with you about issues you might be seeing or questions
you have.

With IRC, there are multiple servers that you can use to connect to the hosted channels.
Docker uses the http: //freenode.net server (it is the server you would use if you
were to use a third-party client to connect to IRC; however, you can also use http://
webchat . freenode .net) and then all their channels for their products are things such
as #docker, #docker-dev, #docker-swarm, #docker-compose, and #docker-machine.
All channels start with the pound sign (#), followed by the channel name. Within these
channels, there are discussion for each product. Beyond these channels, there are other
channels where you can discuss Docker-related topics. In the previous chapter, we
discussed the Shipyard project, which allows you to have a GUI interface that overlays
on top of your Docker Swarm environment. If you had questions about this particular
product, you could join the channel for that product, which is #shipyard. There are
other channels you can join as well and more created daily. To get a list of channels,
you will need to connect to your IRC client and issue a command. Follow the given
link to find out how to do this:

http://irc.netsplit.de/channels/?net=freenode

Chat archives are also kept for each channel, therefore, you can search through them
as well to find out whether discussions are happening around a question or issue
that you may be experiencing. For example, if you wanted to see the logs of the
#docker channel, you could find them here:

https://botbot.me/freenode/docker/
You can search for other channel archives on the following website:

https://botbot.me

CVE websites

In Chapter 5, Monitoring and Reporting Docker Security Incidents, we covered CVEs and
Docker CVEs. A few things to remember about them are listed in the following;:
e CVEscanbe found at https://cve.mitre.org/index.html

* Docker-related ones can be found at https://www.docker.com/docker-
cve-database

* To search for CVE's use the following URL: https://cve.mitre.org/
index.html

[103]

http://freenode.net
http://webchat.freenode.net
http://webchat.freenode.net
http://irc.netsplit.de/channels/?net=freenode
https://botbot.me/freenode/docker/
https://botbot.me
https://cve.mitre.org/index.html
https://www.docker.com/docker-cve-database
https://www.docker.com/docker-cve-database
https://cve.mitre.org/index.html
https://cve.mitre.org/index.html

Keeping up Security

* If you were to open this CVE from the preceding link, you will see that it
gathers some information as shown in the following;:

° CVEID

o

Description
o

References

Date entry created

° Phase

° Votes

¢ Comments
° Proposed

Other areas of interest

There are some areas of interest that you should keep in mind with regards to
security. The Linux kernel, as we have talked about a lot during this book, is the
key part of the Docker ecosystem. For this reason, it's very important to keep the
kernel as up to date as possible. With regards to updates, it is also important to keep
the Docker products you are using up to date too. Most updates include security
updates, and for this reason, they should be updated when new product updates
are released.

Twitter has become the social hotspot when you are looking to promote your
products and Docker does the same. There are a few accounts that Docker operates
for different purposes and they are listed in the following. Depending on what piece
of Docker you are using, it would be wise to follow one or all of them, as shown in
the following list:

* @docker
* @dockerstatus
* @dockerswarm
* @dockermachine
Twitter also utilizes hashtags that group the tweets together, based on their hashtags.

For Docker, it's the same and they use the #docker hashtag, which you can search for
on Twitter to gather tweets that all talk about Docker.

[104]

Chapter 8

The last thing we want to cover is Stack Overflow. Stack Overflow is a question and
answer website and uses votes to promote the answers that are provided to help you
get the best answer in the quickest manner. Stack Overflow utilizes a method similar
to Twitter with tagging questions so that you can search for all the questions on a
particular topic. The following is the link that you can use to gather all the Docker
questions into one search:

http://stackoverflow.com/questions/tagged/docker

When you visit the URL, you will see a list of questions as well as how many votes
each question has, number of answers, number of views, and a green check mark on
some of them. The checked answers are the answers that the person who asked them
mark as accepted, meaning that it's the best answer. Some of the people who monitor
Docker questions are those that work for Docker, doing the work behind the scenes
and providing the best answers, therefore, it's a great place to pose any questions
that you might have.

Summary

In this chapter, we looked at how to keep up with security-related issues that not
only pertain to Docker products that you may be running now or in the near future,
but they also pertain to security issues such as kernel issues. As Docker relies on the
kernel for all Docker containers on a Docker host, the kernel is very important. We
looked at multiple mailing lists that you can sign up for, getting notifications in this
manner. Joining IRC chat rooms and following GitHub issues for anything security-
related or anything that isn't currently working might affect your environments. It
is very important to always keep security in the front of your mind when deploying
anything and while the Docker is inherently secure, there are always people out
there that will take advantage of any given vulnerability, therefore, keep all of your
environments safe and as up to date as possible.

[105]

http://stackoverflow.com/questions/tagged/docker

A

Active Directory 19
Amazon Linux AMI 11
Amazon Machine Image (AMI) 21
AppArmor
about 8
and SELinux 11
URL 11, 42
auto-patching hosts 11
Awesome Docker
URL 67

Business Continuity Plan. See
Disaster Recovery Plan (DRP)

C

Certificate Authority (CA) 5
cgroups 3
channel archives 103
chat archives 103
CIS guide (Center for Internet Security)
about 48
container images/runtime 49
daemon configuration 49
daemon configuration files 49
host configuration 49
security operations 50
URL 48
Common Vulnerabilities and Exposures
(CVE)
about 40, 61, 62
Docker-related, URL 103
URL 62,103

Index

containers
versus virtual machines 80
control groups 76
CoreOS 11
CVE

D

Digital Ocean, Amazon Web Services
(AWS) 20

Docker Bench Security application
about 47, 50
tool, running 50

Docker Bench Security application, output
about 56
container images and build files 57
container runtime 58, 59
Docker daemon configuration 57
Docker daemon configuration, files 57
Docker security operations 60
host configuration 56

Docker Bench Security application, tool
container images and build files 55
container runtime 55
Docker daemon configuration 52
Docker daemon configuration, files 53
Docker security operations 55
host configuration 51

DockerCon Europe 2015
URL 18

Docker Content Trust
about 13
components 14, 15
hardware, signing 18
images, signing 16, 17

Docker CS Engine 21

[107]

Docker daemon
attack surface 4
protecting 5-7
Docker-dev
URL 95
docker exec command 58
Dockerfile 28
Docker host
about 1,2
securing 8
virtualization and isolation 2,3
Docker Hub 28
Docker Hub Enterprise 19
Docker Machine 8-10
Docker Notary
about 64
URL 64
Docker Registry
about 30
configuring 32, 33
installing 30-32
security 32,33
Docker Secure Deployment Guidelines
URL 7
dockersh
about 86
URL 86
Docker Subscription
about 18-20
Commercial support 18
Docker Engine 18
Docker Registry 18
Docker Universal Control Plane (UCP) 18
URL 19
Docker Toolbox 8
Docker Trusted Registry (DTR)
about 20
administering 28
installing 20-22
securing 22-27
workflow 28-30
DockerUI 86
Docker Universal Control Plane (UCP) 20
Docker-user
URL 95
Domain and Type Enforcement (DTE) 42

E

e-mail lists
Docker-dev 94
Docker-user 94
options 94

Exec Shield
URL 39

F

fully qualified domain name (FQDN) 6

G

GitHub
ISSUES 95
URL 96

Grsecurity 43

H

Heroku 94
Hyper-V 2

Internet Relay Chat (IRC) 93,102,103

K

Kernel namespaces 76

L

LDAP 19

Linux kernel
about 2,104
capabilities 79

Linux kernel hardening, guides
about 37, 38
access controls 40, 41
distributions 42
SANS hardening guide deep dive 38-40
URL 38

Linux kernel hardening, tools
about 42
Grsecurity 43
Lynis 44

[108]

Logspout 90
Lynis
about 44
URL 44

mailing lists
about 62
URL 63
Mandatory Access Controls (MAC)
about 41
security 81
Microsoft Azure 21

N

namespaces 3
Notary
about 13
URL 14, 16

O

OpenSSL 24

Openwall hardened Linux
URL 39

Openwall Linux
URL 39

Owlwall 42

P

PaX 39
URL 39

R

responsible disclosure 63
Role-Based Access Controls 41

Rule Set Based Access Controls (RSBAC) 41

S

SANS Technology Institute Leadership Lab

URL 37
security

about 48, 94

best practices 48

CVE websites 103
e-mail list, options 94
GitHub, issues 95-101
IRC rooms 102, 103
monitoring 62
reporting 63
Security-Enhanced Linux (SELinux) 8
security, fundamentals
about 76
control groups 76-79
Kernel namespaces 76
Linux kernel capabilities 79
security, reporting
about 64
responsible disclosure 63
security, resources
about 64
Awesome Docker 67
Docker Notary 64
hardware signing 65
materials, reading 66
SELinux
about 81, 85
and AppArmor 11
URL 11, 42
Shipyard
about 88, 89
URL 90
Summon 81-84
sVirt 81-85
Swarm 73

T

The Update Framework (TUF) 14
third-party tools
about 82
dockersh 86
DockerUI 86, 87
Logspout 90
other 86
SELinux 84, 85
Shipyard 88-90
Summon 83, 84
sVirt 84, 85
traffic authorization 82

[109]

tools
about 70
read-only containers 74, 75
TLS, using 70-74

traffic authorization
about 81, 82
URL 83

Transport Layer Security (TLS)
URL 7

\"

VM host 2
VMware ESXi 2

Y

YubiKeys
URL 66

[110]

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Securing Docker Hosts
	Docker host overview
	Discussing Docker host
	Virtualization and isolation
	Attack surface of Docker daemon
	Protecting the Docker daemon

	Securing Docker hosts
	Docker Machine
	SELinux and AppArmor
	Auto-patching hosts
	Summary

	Chapter 2
: Securing Docker Components
	Docker Content Trust
	Docker Content Trust components
	Signing images
	Hardware signing

	Docker Subscription
	Docker Trusted Registry
	Installation
	Securing Docker Trusted Registry
	Administering
	Workflow

	Docker Registry
	Installation
	Configuration and security

	Summary

	Chapter 3
: Securing and Hardening Linux Kernels
	Linux kernel hardening guides
	SANS hardening guide deep dive
	Access controls
	Distribution focused

	Linux kernel hardening tools
	Grsecurity
	Lynis

	Summary

	Chapter 4
: Docker Bench for Security
	Docker security – best practices
	Docker – best practices
	CIS guide
	Host configuration
	Docker daemon configuration
	Docker daemon configuration files
	Container images/runtime
	Docker security operations

	The Docker Bench Security application
	Running the tool
	Running the tool – host configuration
	Running the tool – Docker daemon configuration
	Running the tool – Docker daemon configuration files
	Running the tool – container images and build files
	Running the tool – container runtime
	Running the tool – Docker security operations

	Understanding the output
	Understanding the output – host configuration
	Understanding the output – the Docker daemon configuration
	Understanding the output – the Docker daemon configuration files
	Understanding the output – container images and build files
	Understanding the output – container runtime
	Understanding the output – Docker security operations

	Summary

	Chapter 5
: Monitoring and Reporting Docker Security Incidents
	Docker security monitoring
	Docker CVE
	Mailing lists
	Docker security reporting
	Responsible disclosure
	Security reporting

	Additional Docker security resources
	Docker Notary
	Hardware signing
	Reading materials
	Awesome Docker

	Summary

	Chapter 6
: Using Docker's Built-in Security Features
	Docker tools
	Using TLS
	Read-only containers

	Docker security fundamentals
	Kernel namespaces
	Control groups
	Linux kernel capabilities

	Containers versus virtual machines
	Summary

	Chapter 7
: Securing Docker with
Third-party Tools
	Third-party tools
	Traffic Authorization
	Summon
	sVirt and SELinux

	Other third-party tools
	dockersh
	DockerUI
	Shipyard
	Logspout

	Summary

	Chapter 8
: Keeping up Security
	Keeping up with security
	E-mail list options
	The two e-mail lists are as follows:

	GitHub issues
	IRC rooms
	CVE websites

	Other areas of interest
	Summary

	Index

