

What You Need to Know
about Docker

The absolute essentials you need to get Docker up
and running

Scott Gallagher

BIRMINGHAM - MUMBAI

What You Need to Know about Docker

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First Published: May 2016

Production reference: 1190516

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

www.packtpub.com

About the Author

Scott Gallagher has been fascinated with technology since he was in elementary
school, when he used to play Oregon Trail. His love continued through middle
school, working on more Apple IIe computers. In high school, he learned how to
build computers and program in BASIC!. His college years were all about server
technologies such as Novell, Microsoft, and Red Hat. After college, he continued to
work on Novell, all while keeping an interest in technologies. He then moved on to
managing Microsoft environments and eventually into what he is the most passionate
about: Linux environments. Now, his focus is on Docker and cloud environments.

About the Reviewer

Harald Albers works as a Java developer and security engineer in Hamburg,
Germany. In addition to developing distributed web applications, he also sets
up and maintains the build infrastructure and the staging and production
environments for these applications.

Most of his work is only possible because of Docker's simple and elegant solutions
for the challenges of provisioning, deployment, and orchestration. He started using
Docker and contributing to the Docker project in mid 2014. He is a member of
2015/2016 Docker Governance Advisory Board.

www.PacktPub.com

Support files, eBooks, discount offers,
and more
At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books, eBooks, and videos.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

[i]

Table of Contents
Meet Docker	 1

A history of Docker	 1
What is containerization?	 2
Docker differences	 2

Docker benefits	 3
Overall benefits	 3

Working with Containers	 5
Using Docker images	 6

Searching Docker images	 7
Manipulating Docker images	 9

Stopping containers	 11
Other Docker Feature Sets	 13

Storing images on Docker registries	 13
Docker Machine	 14
Docker Compose	 17
Docker Swarm	 22
Docker UCP	 23

Creating Your Own Containers	 24
Creating containers using Dockerfile	 24

Short Dockerfile review	 24
Dockerfile in depth	 25

LABEL	 25
ADD or COPY	 25
ENTRYPOINT	 26
USER	 26
WORKDIR	 26
ONBUILD	 26

Dockerfile best practices	 27

Table of Contents

[ii]

Docker build	 28
The docker build command	 28
The .dockerignore file	 29
Modifying and committing an existing image	 31
Building your own containers 	 32

Building using tar	 32
Building using scratch	 33

Command Cheat Sheet	 34
Running containers	 34
Building containers	 35
Docker Hub commands	 36
Docker Swarm commands	 36
Docker Machine commands	 37
Docker Compose commands	 37
Summary	 38

What to do next?	 39
Broaden your horizons with Packt	 39

[iii]

What you need to know
about Docker

This eGuide is designed to act as a brief, practical introduction to Docker. It is full
of practical examples which will get you up and running quickly with the core tasks
of Docker.

We assume that you know a bit about what Docker is, what it does, and why you
want to use it, so this eGuide won't give you a history lesson in the background of
Docker. What this eGuide will give you, however, is a greater understanding of the
key basics of Docker so that you have a good idea of how to advance after you've
read the guide. We can then point you in the right direction of what to learn next
after giving you the basic knowledge to do so.

What You Need to Know about Docker will do the following:

•	 Cover the fundamentals and the things you really need to know, rather than
niche or specialized areas

•	 Assume that you come from a fairly technical background and so understand
what the technology is and what it broadly does

•	 Focus on what things are and how they work
•	 Include practical examples to get you up, running, and productive quickly

[iv]

Overview

Docker is the hottest topic in technology these days and everybody is scrambling to
learn about it; but where do you start? This small guide will help you get a better
understanding of Docker and some of the common components surrounding Docker
and give you insight on how to get caught up to speed.

Docker is being used by almost everybody these days, from developers and high
education institutions to large corporations, and everybody is trying to get a handle
on how to best utilize it. This guide will help you get a firm understanding of
Docker, Docker Machine, Docker Compose, and Docker Swarm. It will also guide
you on how to use containers, use the trusted images, create your own, manipulate
images, and remove the ones you aren't using anymore. Learn what benefits you
will gain by using Docker and how it compares to the typical virtual machine
environments you are currently accustomed to.

The various registries to store your Docker images are also covered so you can make
the right educated decision when the time comes. There is also a short command
cheat sheet you can reference when you are learning commands or need to reference
them quickly. You won't have to dig through documentation to find a particular
command. These commands are focused on running and building containers, Docker
registry commands, Docker Swarm, Compost, and Machine commands as well.

What You Need to Know about Docker

[1]

Meet Docker
In the first chapter of this book, we will give you some background information
about Docker and how it became such a huge success in such a short amount of time.
We will also cover how it can benefit you as a developer and how Docker containers
are different to the environments that you may currently use. How does Docker
relate to containers anyway? We will cover this as well in this chapter. Lastly, we'll
cover the benefits of Docker to you—the reader, and how it will help accelerate your
development.

The emergence of Docker
How did Docker come about and how did it become the latest buzzword in such
a short amount of time? We all know that technology moves fast, but Docker has
been moving and gathering interest at breakneck speed.

Docker began as an internal project for the dotCloud organization. It was developed
in-house and then later open sourced in 2013. dotCloud was a platform as a service
(PaaS) that allowed users to run applications without having to worry about the
underlying infrastructure. They were spinning up servers or virtual machines more
and more quickly, and they needed a way to spin up these environments faster.
In order to further increase startup times, they began using containers, and Docker
was born out of this need.

Its growth has been massive! Shortly after launching, Docker was being evaluated
by over 10,000 developers. It had over 2.75 million users after their 1.0 launch out
of beta in June of 2014, and this number has now grown to well over 100 million
downloads. Docker has companies, such as RedHat and Amazon, adding support
so that you can "link" into their environments to use Docker to manage your existing
infrastructure there.

What You Need to Know about Docker

[2]

What is containerization?
Docker utilizes Linux containers. So, what are Linux containers? Linux containers,
commonly referred to as LXC, originated in August of 2008, and they rely on the
Linux kernel cgroups functionality that originated in Linux kernel version 2.6.24.
Linux containers themselves are an operating system virtualization method that you
can utilize to run multiple isolated Linux systems on a single host. They all utilize the
kernel version that is running on the host on which the containers are running. In the
next section, we will take a look at the differences between a Linux container versus
a typical virtual machine environment, such as Microsoft Hyper-V or VMware ESXi,
which should help clarify what you may typically use and let you compare it to what
a Linux container setup may look like.

Docker differences
First, we must know what exactly Docker is and what it does. Docker is a container
management system that helps manage containers in an easier and universal fashion.
This lets you create containers in virtual environments (on Mac and Windows) on your
laptop and run commands or operations against them. The actions you perform on the
containers that you run in these environments locally on your own machine will be
the same commands or operations that you run against them when they are running
in your production environment. This helps with not having to do things differently
when you go from a development environment, such as the one on your local machine,
to a production environment on your server.

Now, let's take a look at the differences between Docker containers and the typical
virtual machine environments. In the following illustration, we can see the typical
Docker setup on the right-hand side versus the typical VM setup on the left-hand side:

What You Need to Know about Docker

[3]

This illustration gives us an insight into the biggest key benefit of Docker. This is that
there is no need for a full operating system every time we need to bring up a new
container, which cuts down on the overall size and resource footprint of containers.
Docker relies on using the host OS's Linux kernel (as almost all the versions of Linux
use the standard kernel models) for the OS it was built on, such as RedHat, CentOS,
Ubuntu, and so on. For this reason, you can have almost any Linux OS as your host
operating system and be able to layer other OSes on top of the host. For example, in the
earlier illustration, the host OS could be Ubuntu, and we could have RedHat running
for one app (the one on the left) and Debian running for the other app (the one on the
right), but there would never be a need to actually install RedHat or Debian on the
host. Thus, another benefit of Docker is the size of images when they are born. They
do not contain the largest piece: the kernel or the operating system. This makes them
incredibly small, compact, and easy to ship.

Docker benefits
Docker provides a lot of benefits, though it may take some time to get used to
switching over from using a typical virtual machine environment for development
to reap the rewards of using Docker.

Overall benefits
The easiest way to understand the benefits of Docker and all its pieces is to use bullet
points, so let's jump right into them:

•	 Portability: If you have experienced having to move servers or environments
from one type of infrastructure to another, then you know what a pain that
can be. With Docker, you can easily ship your environments to all different
kinds of infrastructure without having to worry about building up new
virtual machines and tearing down the old ones.

•	 Quick deployment/teardown: With a single command, you can spin up
new containers or tear down existing ones. Typically, if you try to clone a
virtual machine or spin up a new one, you are looking at waiting for close
to or over a few hours. With Docker, it will take a few minutes to achieve
what you need.

•	 Managing infrastructure-like code: When it comes to upgrades, you can
simply update your Dockerfile, which we will explain in the Creating Your
Own Containers chapter, and then tear down the old one. This helps not only
with updates, but it can also help with rollbacks as well.

What You Need to Know about Docker

[4]

•	 Open source: As all the code is open source, you can customize it to your
heart's content. This allows not only for customization but to be able to
submit pull requests, which are code additions that the Docker core team
can approve. In turn, they make these pull requests available to anyone
who downloads and installs Docker.

•	 Consistency: No more of the "well it works on my machine!" excuse. As
everyone uses the same images to work, consistency is always guaranteed.
You know that if they start up a container using the Dockerfile, the container
will act the same in your environment as it will on others.

There are also many other benefits that Docker provides not only in a developer
environment but also in an system administration environment, where you can use
Docker to control things, such as clustered machine environments, or refer back to
the rolling updates or rollbacks as well.

What You Need to Know about Docker

[5]

Working with Containers
We will start with some common commands. Then, we'll take a peek at commands
that are used for Docker images. We will then take a dive into commands that are
used for containers.

The first command we will look at is one of the most useful commands in Docker
and in any command-line utility you may use. This is the help command. This is
run simply by executing the command, as follows:

$ docker --help

The preceding command will give you a full list of all the Docker commands at your
disposal and a brief description of what each command does. For further help with a
particular command, you can run the following command:

$ docker COMMAND --help

You will then receive additional information about using the command, such as
options, arguments, and descriptions for the arguments.

You can also use the Docker version command to gather information about what
version of Docker you are running:

$ docker version

Client:

 Version: 1.10.3

 API version: 1.22

 Go version: go1.5.3

 Git commit: 20f81dd

 Built: Thu Mar 10 21:49:11 2016

 OS/Arch: darwin/amd64

What You Need to Know about Docker

[6]

Server:

 Version: 1.10.3

 API version: 1.22

 Go version: go1.5.3

 Git commit: 20f81dd

 Built: Thu Mar 10 21:49:11 2016

 OS/Arch: linux/amd64

This is helpful when you want to see what version of the Docker daemon you may
be running to see whether you need or want to upgrade.

Using Docker images
Next, let's take a dive into images. Let's learn how to view which images you currently
have that you can run, and let's also search for images on the Docker Hub. Finally,
let's pull these images down to your environment so that you can run them. Let's first
take a look at the docker images command. On running the command, we will get an
output similar to the following output:
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

ubuntu 14.04 ab57dbafeeea 11 days ago 194.5 MB

ubuntu trusty 6d4946999d4f 11 days ago 188.3 MB

ubuntu latest 6d4946999d4f 11 days ago 188.3 MB

Your output will differ based upon whether you have any images already in your
Docker environment or what images you do have. There are a few important pieces
to understand from the output that you see. Let's go over the columns and what is
contained in each of them. The first column that you see is the repository column.
This column contains the name of the repository, as it exists on the Docker Hub.
If you were to have a repository that was from some other user's account, it may
show up, as follows:
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

scottpgallagher/mysql latest 57df9c7989a1 9 weeks ago 321.7 MB

What You Need to Know about Docker

[7]

The next column is the tag column. This will show you what tag the image has.
As you can see in the preceding example, with the Ubuntu repository, there are
tag names for the different images. These images contain different versions of the
Ubuntu operating system. So if you wanted to specify a particular version of a
repository in your Dockerfile, you could do this. This is useful because you are
not always reliant on having to use the latest version of an operating system,
and you can use the one that your application supports the best. This can also
help backwards compatibility testing for your application.

The next column is labeled image ID, and it is based off a unique 64 hexadecimal
digit string of characters. The image ID simplifies this down to the first twelve digits
for easier viewing. Imagine if you had to view all 64 bits on one line! You will later
learn when to use this unique image ID for later tasks.

The last two columns are pretty straightforward, the first being the creation date
for the image, followed by the virtual size of the image. The size is very important
because you want to keep or use images that are very small in size if you plan to
move them around a lot. The smaller the image the faster the load times; and who
doesn't like things faster?!

Searching Docker images
Okay, so let's take a look at how we can search for images that are on the Docker Hub
(a place to store your Docker images) using the Docker commands. The command that
we will be looking at is docker search. With the docker search command, you can
search based on the different criteria that you are looking for. For example, we can
search for all images with the term, Ubuntu, in their name and see what is available.
The command would go something like the following:

$ docker search ubuntu

Here is what we would get back in our results:
NAME DESCRIPTION STARS OFFICIAL AUTOMATED

ubuntu Ubuntu is a Debian-based Linux operating s... 1835 [OK]

ubuntu-upstart Upstart is an event-based replacement for ... 26 [OK]

tutum/ubuntu Ubuntu image with SSH access. For the root... 25 [OK]

torusware/speedus-ubuntu Always updated official Ubuntu docker imag... 25 [OK]

What You Need to Know about Docker

[8]

ubuntu-debootstrap debootstrap --variant=minbase --components... 10 [OK]

rastasheep/ubuntu-sshd Dockerized SSH service, built on top of of... 4 [OK]

maxexcloo/ubuntu Docker base image built on Ubuntu with Sup... 2 [OK]

nuagebec/ubuntu Simple always updated Ubuntu docker images... 2 [OK]

nimmis/ubuntu This is a docker images different LTS vers... 1 [OK]

alsanium/ubuntu Ubuntu Core image for Docker 1 [OK]

Based off these results, we can now decipher some information. We can see the
name of the repository, a reduced description, how many people have starred it as
being something they think is a good repository, whether it's an official repository
(which means that it's been approved by the Docker team), as well as whether it's
an automated build. An automated build is a Docker image that builds automatically
when a Git repository that it is linked to is updated. The code gets updated, a web
hook gets called, and a new Docker image is built in the Docker Hub. If we find an
image that we want to use, we can simply pull it using its repository name with the
docker pull command, as follows:

$ docker pull tutum/ubuntu

The image will be downloaded and show up in our list when we now run the docker
images command that we ran earlier.

Now that we know how to search for Docker images and pull them down to our
machine, what if we want to get rid of them? That's where the docker rmi command
comes into play. With the docker rmi command, you can remove unwanted images
from your machine. So, let's take a look at the images that we currently have on our
machine with the docker images command. We will get the following output:
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

ubuntu 14.10 ab57dbafeeea 11 days ago 194.5 MB

ubuntu trusty 6d4946999d4f 11 days ago 188.3 MB

ubuntu latest 6d4946999d4f 11 days ago 188.3 MB

What You Need to Know about Docker

[9]

We can perform this removal with the docker rmi command, as follows:

$ docker rmi ubuntu:trusty

Now if you issue the docker images command, you will see that ubuntu:trusty no
longer shows up in your images list and has been removed. Now, you can remove
machines based on their image ID as well. However, be careful when doing this
because in this scenario, not only will you remove ubuntu:trusty but you will also
remove ubuntu:latest as they have the same image ID. You may need to add the –f
option if the image is referenced in one or more repositories. The –f option performs a
force removal of the image.

Manipulating Docker images
We just went over images and how to obtain them and manage them. Next, we are
going to take a look at what it takes to fire them up and manipulate them. This is
the part where images become containers! Let's first go over the basics of the docker
run command and how to run containers. We will cover some basic docker run
items in this section, and we will cover more advanced docker run items in later
sections, so let's just look at how to get images up and running and turned into
containers. The most basic way to run a container is as follows:

$ docker run -i -t <image_name>:<tag> /bin/bash

$ docker run –i –t nginx:latest /bin/bash

This will override the default command that is run when a container is envoked.

Upon closer inspection of the preceding command, we start off with the docker
run command, followed by two options, -i and -t. The first -i option, gives us
an interactive shell into the running container. The second -t option will allocate
a pseudo tty, which when using interactive processes, must be used together with
the -I switch. You can also use switches together; for example, -it is commonly
used for these two switches. This will help you test out the container to see how
it operates before running it as a daemon. Once you are comfortable with your
container, you can test how it operates in daemon mode:

$ docker run -d <image_name>:<tag>

What You Need to Know about Docker

[10]

If the container is set up correctly and has an entry point setup, you should be able
to see the running container by issuing the docker ps command, seeing something
similar to the following:
$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

cc1fefcfa098 ubuntu:14.10 "/bin/bash" 3 seconds ago Up 3 seconds boring_mccarthy

There is also the docker ps –a command, which will show you all containers,
even the ones that aren't running.

Running the preceding command, we get a lot of other important information
beyond that the container is running. We can see the container ID, the image name
on which the container is based, the command that is running to keep the image
alive, when the container started up, its current status, a listing of any exposed
network ports, as well as the name given to the container. Now, these names are
random unless otherwise specified by the --name= switch. You can also expose
ports on your containers using the -p switch, just like this:

$ docker run -d -p <host_port>:<container_port> <image>:<tag>

$ docker run -d -p 8080:80 ubuntu:14.10

This will run the Ubuntu 14.10 container in the daemonized mode, exposing port
8080 on the Docker host to port 80 on the running container:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

55cfdcb6beb6 ubuntu:14.10 "/bin/bash" 2 seconds ago Up 2 seconds 0.0.0.0:8080->80/tcp babbage_washington

Now, there will come a time when containers don't want to behave, and for this, you
can see what issues you have using the docker logs command. This command is
very straightforward. You specify the container for which you want to see the logs,
which is just a redirect from stdout. For this command, you use the container ID or
the name of the container from the docker ps output:

$ docker logs 55cfdcb6beb6

Or, you use the following:

$ docker logs babbage

What You Need to Know about Docker

[11]

You can also get this ID when you first initiate the docker run -d command,
as follows:

$ docker run -d ubuntu:14.10 /bin/bash

da92261485db98c7463fffadb43e3f684ea9f47949f287f92408fd0f3e4f2bad

Stopping containers
Now, let's take a look at how we can stop these containers. There can be various
reasons that we want to do this. There are a few commands that we can use to do
this. They are docker kill and docker stop. Let's cover them briefly as they are
fairly straightforward, but let's look at the difference between docker kill and
docker stop. The docker kill command will kill the container immediately. For a
graceful shutdown of the container, you use the docker stop command. When you
are testing, you will usually use docker kill, and when you are in your production
environments, you will want to use docker stop to ensure that you don't corrupt
any data. The commands are used exactly like the docker logs command, where
you can use the container ID, the random name given to the container, or the one
that you specify with the --name= option.

Now, let's take a dive into how we can execute some commands, view information
about our running containers, and manipulate them in a small sense. We will discuss
container manipulation in later chapters as well. The first thing that we want to
take a look at that will make things a little easier with the upcoming commands is
the docker rename command. With the docker rename command, we can change
the name that has been randomly generated for the container. When we used the
docker run command, a random name was assigned to our container. Most of the
time, these names are fine. However, if you are looking for an easy way to manage
containers, sometimes a name can be easier to remember. For this, you can use the
docker rename command, as follows:

$ docker rename <current_container_name> <new_container_name>

Now that we have a recognizable and easy-to-remember name, let's take a peek
inside our containers with the docker stats and docker top commands. Taking
them in order, this is what we get:

$ docker stats <container_name>

CONTAINER CPU % MEM USAGE/LIMIT MEM % NET I/O

web1 0.00% 1.016 MB/2.099 GB 0.05% 0 B/0 B

What You Need to Know about Docker

[12]

The other docker top command gives us a list of all running processes inside the
container. Again, we can use the name of the container to pull the information:

$ docker top <container_name>

We will receive an output similar to the following, based on what processes are
running inside the container:

UID PID PPID C
STIME TTY TIME CMD

root 8057 1380 0
13:02 pts/0 00:00:00 /bin/bash

We can see who is running the process (in this case, the root user), the command
being run (which is /bin/bash in this instance), as well as other information that
might be useful.

Lastly, let's cover how we can remove containers. In the same way that we looked at
removing images earlier with the docker rmi command, we can use the docker rm
command to remove unwanted containers. This is useful if you want to reuse a name
you assigned to a container:

$ docker rm <container_name>

What You Need to Know about Docker

[13]

Other Docker Feature Sets
In this chapter, we will take a look at the following feature sets beyond the Docker CLI:

•	 Docker registries
•	 Docker Machine
•	 Docker Compose
•	 Docker Swarm
•	 Docker UCP

Storing images on Docker registries
The Docker Hub comes in a variety of flavors—three to be exact. They are used to
store the images that you can then serve out to users, whether this is done internally
only or if the images are also available publicly:

•	 Docker Hub: This is the hub that almost all users use, or at the very
least, they start out using this. This is a free service that is hosted by
Docker; however, there is a price involved when you start to utilize
more than one private image repository. You can access the Docker
Hub from https://hub.docker.com.

•	 Docker Trusted Registry: This is a solution that is hosted or can be used
on premise, and the backend infrastructure is maintained by Docker. This
provides you with the management piece as well as commercial support.
More information can be found at https://www.docker.com/products/
docker-trusted-registry.

What You Need to Know about Docker

[14]

•	 Docker Registry: This gives you the ability to run your own Docker registry
on your own hardware or in a cloud environment to store images and make
them public or private. It also allows for a simple solution that doesn't offer
user management needs out of the box. More information about Docker
Registry can be found at https://docs.docker.com/registry/.

Docker Machine
Docker Machine is the tool that you can utilize to set up and manage your Docker
hosts. You can use Docker Machine to provision Docker hosts on Mac or Windows
machines and provision and/or manage remote Docker hosts. To install Docker
Machine, visit https://docs.docker.com/machine/install-machine/.

The installation directions are dependent on your operating system. After you have
installed it, you can run through the commands that Docker Machine can perform,
as follows:

$ docker-machine

Usage: docker-machine [OPTIONS] COMMAND [arg...]

Create and manage machines running Docker.

Version: 0.6.0, build e27fb87

Author:

 Docker Machine Contributors - <https://github.com/docker/machine>

Options:

 --debug, -D Enable debug mode

 -s, --storage-path "/Users/spg14/.docker/machine" Configures storage
path [$MACHINE_STORAGE_PATH]

 --tls-ca-cert CA to verify remotes against [$MACHINE_TLS_CA_
CERT]

 --tls-ca-key Private key to generate certificates
[$MACHINE_TLS_CA_KEY]

 --tls-client-cert Client cert to use for TLS [$MACHINE_TLS_
CLIENT_CERT]

 --tls-client-key Private key used in client TLS auth
[$MACHINE_TLS_CLIENT_KEY]

What You Need to Know about Docker

[15]

 --github-api-token Token to use for requests to the Github
API [$MACHINE_GITHUB_API_TOKEN]

 --native-ssh Use the native (Go-based) SSH implementation.
[$MACHINE_NATIVE_SSH]

 --bugsnag-api-token BugSnag API token for crash reporting
[$MACHINE_BUGSNAG_API_TOKEN]

 --help, -h show help

 --version, -v print the version

Commands:

 active Print which machine is active

 config Print the connection config for machine

 create Create a machine

 env Display the commands to set up the environment for the Docker
client

 inspect Inspect information about a machine

 ip Get the IP address of a machine

 kill Kill a machine

 ls List machines

 provision Re-provision existing machines

 regenerate-certs Regenerate TLS Certificates for a machine

 restart Restart a machine

 rm Remove a machine

 ssh Log into or run a command on a machine with SSH.

 scp Copy files between machines

 start Start a machine

 status Get the status of a machine

 stop Stop a machine

 upgrade Upgrade a machine to the latest version of Docker

 url Get the URL of a machine

 version Show the Docker Machine version or a machine docker version

 help Shows a list of commands or help for one command

Run 'docker-machine COMMAND --help' for more information on a command.

The main subcommands that you will initially want to focus on are as follows:

$ docker-machine create

What You Need to Know about Docker

[16]

The one command that you will probably use the most is this one. This is the
command that will allow you to create the Docker hosts that your containers
will run on. Let's take a look at an example:

$ docker-machine create -d virtualbox node1

This will create a new Docker host on a locally installed Virtualbox that will be
named node1. If you plan to use items, such as a cloud provider or something
other than Virtualbox, you will want to look at what drivers can be used with
Docker Machine. You can find that list of supported drivers at https://docs.
docker.com/machine/drivers/.

Have a look at the following command:

$ docker-machine ls

The ls subcommand will give you a list of the Docker hosts that you currently
have running and some basic information about them. Let's take a look at some
sample output:
NAME ACTIVE DRIVER STATE URL SWARM DOCKER ERRORS

chefclient - virtualbox Running tcp://192.168.99.100:2376 v1.10.3

default - virtualbox Running tcp://192.168.99.101:2376 v1.10.3

We can see from this output that we get information, such as the node name,
whether it's the active host of not (that is, if you issue Docker commands what host
will the commands run against), the driver that is being used, the state the host is
in, and the URL that is used. If this were part of a Docker Swarm cluster, we would
see information about what swarm cluster it was joined to. Information such as the
Docker version the host is running is now part of the ls subcommand information
as well. Lastly, if there were any errors, we would see them here as well. This
information is very useful when you want to know what host your commands
will be running against or the IP address of a particular Docker host.

Consider the following command:

$ docker-machine restart

What You Need to Know about Docker

[17]

One of the other commands you might use frequently at first is the restart
subcommand. This is very straightforward and will restart the Docker host
that you specify. Using our preceding output as an example, let's assume that
we want to restart the chefclient host because it's been acting up, as follows:

$ docker-machine restart chefclient

Restarting "chefclient"...

Waiting for SSH to be available...

Detecting the provisioner...

Restarted machines may have new IP addresses. You may need to re-run the
`docker-machine env` command.

More information about Docker Machine can be found at https://www.docker.
com/products/docker-machine.

Docker Compose
Docker Compose is another tool in the Docker ecosystem that can be used to create
multiple containers with a single command. This allows you to spin up application
stacks that may include some web servers, a database server, and/or file servers as
well. Docker Compose utilizes a docker-compose.yml file to start up and configure
all the containers that you have specified. Similar to the last section on Docker
Machine, let's cover Docker Compose in the same way. To start out, you can install
Docker Compose by following the instructions at https://docs.docker.com/
compose/install/.

You will want to follow the instructions at the links if you do not use Linux, as the
installers are different based on the operating system that you use.

After you install it, you can run it and get the help output with the following
command:

$ docker-compose

Define and run multi-container applications with Docker.

Usage:

 docker-compose [-f=<arg>...] [options] [COMMAND] [ARGS...]

 docker-compose -h|--help

What You Need to Know about Docker

[18]

Options:

 -f, --file FILE Specify an alternate compose file (default:
docker-compose.yml)

 -p, --project-name NAME Specify an alternate project name (default:
directory name)

 --verbose Show more output

 -v, --version Print version and exit

Commands:

 build Build or rebuild services

 config Validate and view the compose file

 create Create services

 down Stop and remove containers, networks, images, and
volumes

 events Receive real time events from containers

 help Get help on a command

 kill Kill containers

 logs View output from containers

 pause Pause services

 port Print the public port for a port binding

 ps List containers

 pull Pulls service images

 restart Restart services

 rm Remove stopped containers

 run Run a one-off command

 scale Set number of containers for a service

 start Start services

 stop Stop services

 unpause Unpause services

 up Create and start containers

 version Show the Docker-Compose version information

What You Need to Know about Docker

[19]

An example docker-compose.yml file is as follows:

master:
 image:
 scottpgallagher/galeramaster
 hostname:
 master
 node1:
 image:
 scottpgallagher/galeranode
 hostname:
 node1
 links:
 - master
 node2:
 image:
 scottpgallagher/galeranode
 hostname:
 node2
 links:
 - master

The main subcommands that you will initially want to focus on are as follows:

$ docker-compose ps

Remember that you should run docker-compose commands in the directory where
your docker-compose.yml file is located.

The docker-compose ps subcommand can be used to display information on the
containers running within a particular Docker Compose folder. This command will
help us get this information:

Name Command State

Ports

galeracompose_master_1 /entrypoint.sh Up

What You Need to Know about Docker

[20]

0.0.0.0:3306->3306/tcp,

4444/tcp, 4567/tcp,

4568/tcp, 53/tcp,

We can gain a lot of information from this output. We can get the name of the
containers that are running. These names are assigned based upon folder_name +
service + _<instance number of the service>.

For example, the naming patter for galeracompose_master_1 is as follows:

•	 The galeracompose part is our folder name
•	 The master part is the service name that is being used in the

docker-compose.yml file
•	 The 1 part is the index of the first service instance

We also see the command that is running inside the container as well as the state of
each container. In our earlier example, we see that one container is up and two are
in an exit status, which means that they are off. From the one that is up, we can see
all the ports that are being utilized in the container, including the protocol. Then, we
can see the ports that are exposed to the outside and also the container port they are
connected to:

$ docker-compose restart

The restart command does exactly what it says it does. As with the pull
subcommand, it can be used in two ways. You can run it as follows:

$ docker-compose restart

It will restart all the containers that are being used in the docker-compose.yml file.
You can also specify which service to restart, as follows:

$ docker-compose restart <service>

$ docker-compose restart node1

The restart command will only restart the containers that are currently running.
If a container is in an exit state, then it won't start this container up to a running state:

$ docker-compose up

What You Need to Know about Docker

[21]

The up subcommand is used to start all the containers that are specified in a
docker-compose.yml file. It can also be used to start up a single service from a
compose file. By default, when you issue the up subcommand, it will keep everything
in the foreground and you will be able to see the output of the container as it runs.
However, you can use the -d switch to push all this information into a daemon and
just get information on the container names on the screen.

We will take a look at docker-compose up -d and docker-compose up:

$ docker-compose up -d

Starting wordpresstest_db_1...

Starting wordpresstest_web_1...

$ docker-compose up

Starting wordpresstest_db_1...

Starting wordpresstest_web_1...

Attaching to wordpresstest_db_1, wordpresstest_web_1

db_1 | 150905 14:39:02 [Warning] Using unique option prefix key_buffer

instead of key_buffer_size is deprecated and will be removed in a future

release. Please use the full name instead.

db_1 | 150905 14:39:02 [Warning] Using unique option prefix key_buffer

instead of key_buffer_size is deprecated and will be removed in a future

release. Please use the full name instead.

db_1 | 150905 14:39:03 [Warning] Using unique option prefix key_buffer

instead of key_buffer_size is deprecated and will be removed in a future

release. Please use the full name instead.

db_1 | 150905 14:39:03 [Warning] Using unique option prefix myisamrecover

instead of myisam-recover-options is deprecated and will be

removed in a future release. Please use the full name instead.

........

db_1 | 150905 14:41:36 [Note] Plugin 'FEDERATED' is disabled.

db_1 | 150905 14:41:36 InnoDB: The InnoDB memory heap is disabled

Docker Compose

[16]

db_1 | 150905 14:41:36 InnoDB: Mutexes and rw_locks use GCC atomic

builtins

What You Need to Know about Docker

[22]

db_1 | 150905 14:41:36 InnoDB: Compressed tables use zlib 1.2.3.4

db_1 | 150905 14:41:36 InnoDB: Initializing buffer pool, size = 128.0M

db_1 | 150905 14:41:36 InnoDB: Completed initialization of buffer pool

db_1 | 150905 14:41:36 InnoDB: highest supported file format is

Barracuda.

db_1 | 150905 14:41:36 InnoDB: Waiting for the background threads to

start

db_1 | 150905 14:41:37 InnoDB: 5.5.38 started; log sequence number

1595675

db_1 | 150905 14:41:37 [Note] Server hostname (bind-address): '0.0.0.0';

port: 3306

db_1 | 150905 14:41:37 [Note] - '0.0.0.0' resolves to '0.0.0.0';

db_1 | 150905 14:41:37 [Note] Server socket created on IP: '0.0.0.0'.

db_1 | 150905 14:41:37 [Note] Event Scheduler: Loaded 0 events

db_1 | 150905 14:41:37 [Note] /usr/sbin/mysqld: ready for connections.

db_1 | Version: '5.5.38-0ubuntu0.12.04.1-log' socket: '/var/run/mysqld/

mysqld.sock' port: 3306 (Ubuntu)

You can see a huge difference. Remember that if you don't use the -d switch
and hit Ctrl + C in the terminal window, it will start shutting down the running
containers. While this is good for testing purposes, if you are going into a
production environment, we recommend that you use the -d switch.

More information about Docker Compose can be found at https://www.docker.
com/products/docker-compose.

Docker Swarm
Docker Swarm allows you to create and manage clustered Docker servers. Swarm
can be used to disperse containers across multiple hosts. It also has the ability to
scale containers as well.

The installation for Docker Swarm actually launches a container that is used as
the Swarm Manager master to communicate to all the nodes in a Swarm cluster.
For information on how to get Docker Swarm up and running, visit https://docs.
docker.com/swarm/get-swarm/.

Docker Swarm also has some subcommands that can be used to manage the cluster
of nodes as well as the other aspects that relate to Docker Swarm.

What You Need to Know about Docker

[23]

More general and detailed information about Docker Swarm can be found at
https://docs.docker.com/swarm/.

Docker UCP
Docker UCP (Universal Control Plane) is a solution for Docker that enables you
to control various aspects of your Docker environment through a web interface.
This can be extremely helpful if you want to steer clear of the command line.
You can use Docker UCP to deploy to various cloud solutions, tie into your
existing authentication infrastructure, and in turn control user access.

More information about Docker UCP can be found at https://docs.docker.com/
ucp/.

Creating Your Own
Containers

In the first chapter, we looked at how we could use containers that were already
built by others. In this chapter, you will learn how to create your own containers
from scratch.

Creating containers using Dockerfile
In this chapter, we will cover the Dockerfile from a more in-depth perspective than the
previous chapter and look at the best practices to use. By the end of this section, you
will be structuring your Dockerfile using the most practical and efficient method. You
will also be able to read and troubleshoot both yours and other people's Dockerfiles.

Short Dockerfile review
The following is an example Dockerfile that we can then use to create a Docker
image and later run as a container:

FROM ubuntu:latest
MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

ADD 000-default.conf /etc/apache2/sites-available/
RUN chown root:root /etc/apache2/sites-available/000-default.conf

EXPOSE 80
CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

What You Need to Know about Docker

[25]

These are the basic items that are inside the Dockerfile. The FROM and MAINTAINER
fields have information about what image has to be used and the information about
who is the maintainer of this image. The RUN instruction can be used to fetch and
install packages, along with various other commands. The ADD instruction allows
you to add files or folders into the Docker image. The EXPOSE instruction allows
us to expose ports from the image to the outside world. Lastly, the CMD instruction
executes the given commands and keeps the container alive. Now that we've done a
really short review, let's jump in and study more in-depth items with our Dockerfile.

Dockerfile in depth
Let's take a look at the following commands in depth:

•	 LABEL

•	 COPY or ADD
•	 ENTRYPOINT

°° ENTRYPOINT with CMD

•	 USER

•	 WORKDIR

°° ONBUILD

LABEL
The LABEL command can be used to add additional information to the image. This
information can be anything from a version number to a description. You will want to
combine labels into a single line whenever possible. We also recommend that you limit
how many labels you use. Every time you use a label, it adds a layer to the image, thus
increasing the size of the image. Using too many labels can also cause the image to
become inefficient. You can view container labels with the docker inspect command:

$ docker inspect <IMAGE_ID>

ADD or COPY
Now, in the previous chapter and in the preceding Dockerfile example, we used the
ADD instruction to add a file to a folder location. There is also another instruction that
you can use in your Dockerfile and this is the COPY instruction. You can use the ADD
instruction and specify a URL straight to a file, and it will be downloaded when the
container is built. The ADD instruction will also unpack or untar a compressed file
when added. The COPY instruction is the same as the ADD instruction but without the
URL handling or the unpacking or untarring of files.

What You Need to Know about Docker

[26]

ENTRYPOINT
In the Dockerfile example, we used the CMD instruction to make the container
executable and to ensure that it stays alive and running. You can also use the
ENTRYPOINT instruction instead. The benefit of using ENTRYPOINT over CMD is
that you can use them in conjunction with each other.

For example, let's assume that you want to have a default command that you want
to execute inside a container but then also set additional switches that may change
over time. These switches are based on the command that you execute inside the
CMD command, such as the following:

CMD ["sh", "-c", "echo", "$HOME"]

FROM ubuntu:latest

ENTRYPOINT ["ps", "-au"]

CMD ["-x"]

USER
The USER instruction lets you specify what username to use when a command is run.
The USER instruction influences the following RUN instruction, the CMD instruction,
or the ENTRYPOINT instruction in the Dockerfile.

WORKDIR
The WORKDIR instruction sets the working directory for the same set of instructions
that the USER instruction can use (RUN, CMD, and ENTRYPOINT). This will also allow you
to use the CMD and ADD instructions. These commands, RUN and CMD, are instructions
that follow, such as executing the NGINX service to run.

ONBUILD
The ONBUILD instruction lets you stash a set of commands that will be used when the
image is used again as a base image in another Dockerfile. For example, if you want
to give an image to developers and they all have different code that they want to test,
you can use the ONBUILD instruction to lay the groundwork ahead of needing the actual
code. Then, the developers simply add their code in the directory that you tell them,
and when they do, a new Docker build will add their code to the build-time image.
The ONBUILD instructions will be executed as the first statement after the FROM directive.
ONBUILD can be used in conjunction with the ADD instruction and RUN instruction:

ONBUILD ADD

ONBUILD RUN

What You Need to Know about Docker

[27]

Dockerfile best practices
Now that we have covered in depth Dockerfile instructions, let's take a look at the
best practices to write these Dockerfiles:

•	 You should try to get in the habit of using a .dockerignore file. We will
cover the .dockerignore file in the next section, but the .dockerignore
file will seem very familiar if you are used to using a .gitignore file. It
will essentially ignore the items that you specify in the file during the build
process.

•	 Minimize the number of packages you need per image. One of the biggest
goals that you want to achieve when building your images is to keep them
as small as possible. By not installing packages that aren't necessary, it will
greatly help you achieve this goal.

•	 Limit the number of layers in your Dockerfile.
Every time you utilize the RUN command in the Dockerfile, it creates a new
layer; with every layer comes added space. You will want to chain your
commands together in the RUN command. The following is an example of
how to do this:

RUN yum update; yum install –y nginx

•	 Execute only one application process per container. Every time you need
a new application, it is best practice to use a new container to run this
application in. While you can couple commands into a single container,
it's best to separate them out.

•	 Sorting commands can be done in the following ways:
°° You can sort them based upon the actual command itself:

RUN apt-get update && apt-get install -y

°° You can sort them alphabetically so that it's easier to change later:
RUN apt-get update && apt-get install -y \
 apache2 \

 git \

 memcached \

 mysql

What You Need to Know about Docker

[28]

Docker build
In this section, we will cover the docker build command. It's time for us to build
the base that all our future images will start out being built on. We will be looking
at different ways to accomplish this goal. Consider this as a template that you may
have created earlier with virtual machines. This will help you save time by having
the hard work already completed. Then, just the application that needs to run has
to be added to the new images that you will create.

The docker build command
Now that we have learned how to create and properly write a Dockerfile, it's now
time to learn how to take it from just a file to an actual image. Now, there are a lot of
switches that you can use when using the docker build command, so let's use the
always handy --help switch on the docker build command to view all we can do,
as follows:

$ docker build --help

Usage: docker build [OPTIONS] PATH | URL | -

Build an image from a Dockerfile

 --build-arg=[] Set build-time variables

 --cpu-shares CPU shares (relative weight)

 --cgroup-parent Optional parent cgroup for the
container

 --cpu-period Limit the CPU CFS (Completely Fair
Scheduler) period

 --cpu-quota Limit the CPU CFS (Completely Fair
Scheduler) quota

 --cpuset-cpus CPUs in which to allow execution (0-3,
0,1)

 --cpuset-mems MEMs in which to allow execution (0-3,
0,1)

 --disable-content-trust=true Skip image verification

 -f, --file Name of the Dockerfile (Default is
'PATH/Dockerfile')

 --force-rm Always remove intermediate containers

 --help Print usage

What You Need to Know about Docker

[29]

 --isolation Container isolation level

 -m, --memory Memory limit

 --memory-swap Swap limit equal to memory plus swap:
'-1' to enable unlimited swap

 --no-cache Do not use cache when building the
image

 --pull Always attempt to pull a newer version
of the image

 -q, --quiet Suppress the build output and print
image ID on success

 --rm=true Remove intermediate containers after a
successful build

 --shm-size Size of /dev/shm, default value is 64MB

 -t, --tag=[] Name and optionally a tag in the
'name:tag' format

 --ulimit=[] Ulimit options

Now, it looks like a lot to digest but the most important ones will be the -f and the
-t switches. You can use the other switches to limit how much CPU and memory the
build process uses. In some cases, you may not want the build command to take as
much CPU or memory as it can use. The process may run a little slower. However,
if you are running this on your local machine or a production server and it's a long
build process, you may want to set a limit. Typically, you don't use the -f switch as
you run the docker build command from the same folder that the Dockerfile is in.
By keeping the Dockerfiles in separate folders, it helps sort the files and keeps the
naming convention of the files the same:

$ docker build –t <Docker Hub username> / <repository name> <directory

You can use the . (period) character to specify the current directory:

$ docker build –t scottpgallagher/apache-web .

The .dockerignore file
The .dockerignore file, as we discussed earlier, is used to exclude files or folders
that we don't want to be included in the Docker build from being sent to the Docker
daemon before the build. We also discussed placing the Dockerfile in a separate
folder, and the same applies for the .dockerignore file. This should go in the folder
where the Dockerfile was placed. Keeping all the items that you want to use in an
image in the same folder helps you keep the items, if any, in the .dockerignore file
to a minimum.

What You Need to Know about Docker

[30]

Building containers using Dockerfile
The first way that we are going to look at to build your base Docker images is by
creating a Dockerfile, populating the Dockerfile with some instructions, and then
executing a docker build command against it to get ourselves a base container.
So, let's first start off by looking at a typical Dockerfile:

FROM ubuntu:latest

MAINTAINER Scott P. Gallagher <email@somewhere.com>

RUN apt-get update && apt-get install -y apache2

EXPOSE 80

CMD ["/usr/sbin/apache2ctl", "-D", "FOREGROUND"]

In this Dockerfile, this is very straightforward. We are going to use the latest
Ubuntu image, and then we are going to run the apt-get update command
as well as the apt-get install command of Apache web server. We will set
the container to expose port 80 when it is run and then start Apache in the
foreground of the container.

So, there are two ways we can go about building this image. The first way would be
by specifying the -f switch when we use the docker build command. We will also
utilize the -t switch to give the new image a unique name:

$ docker build -f <path_to_Dockerfile> -t <REPOSITORY>:<TAG>

Now, the <REPOSITORY> is typically the repository name that is prefixed by your
Docker Hub username:

$ docker build -f <path_to_Dockerfile> -t scottpgallagher/ubuntu_apache

Typically, the -f switch isn't used and can be a little tricky when you have other
files that need to be included with the new image. An easier way to do the build is to
place the Dockerfile in a separate folder by itself, along with any other files that you
will be placing in the image with the ADD or COPY instructions:

$ docker build -t scottpgallagher:ubuntu_apache .

The most important thing to remember is the . character—the period at the very end.
This is used to tell the docker build command to build in the current folder.

If you are using your own registry to push your images, then you can use any naming
convention that you like, but try to keep it simple and use something easy to identify
when looking at the name.

What You Need to Know about Docker

[31]

Modifying and committing an existing image
The easiest way to build a base image is to start off using one of the official builds
from the Docker Hub. Docker also keeps the Dockerfiles for these official builds
on their GitHub repositories. So, there are at least two choices that you have to use
existing images that others have already created. Using the Dockerfile, you can see
exactly what is included in the build and add what you need. You can then version
control this Dockerfile for it if you want to change it at a later time.

The other way is using an already existing image that requires a little bit more work,
though this is essentially the same method. We would first need to get the base image
that we want, as follows:

$ docker pull ubuntu:latest

Then, we would run the container in the foreground so that we can add packages to
it:

$ docker run -it ubuntu:latest /bin/bash

After the container is running, you can add the packages as necessary using the apt-
get command in this case or whatever the package manager commands are for your
Linux flavor. After you have installed the packages that you require, you then need
to save the container. To do so, you first need to get the container ID. We do this in
the following manner:

$ docker ps

Once you have the container ID, you can now save (or commit) the container. So, to
save this container, we would do something similar to the following:

$ docker commit <container_ID> <REPOSITORY>:<TAG>

Now if you are planning on using the Docker Hub (which we will be discussing here
shortly in the next section), you will want to structure your image names, as follows:

$ docker commit <container_ID> <Docker_Hub_Username>:<Unique_Name>

$ docker commit <container_ID> scottpgallagher:ubuntu_apache2

This will preserve any CMD or ENTRYPOINT instructions that are inherited from the
base image. You can change those with the --change option:

$ docker commit --change 'CMD ["/bin/bash"]' <container_ID> <image_name>"

What You Need to Know about Docker

[32]

Building your own containers
There are two ways to go about building your own containers:

•	 Using tar to import a filesystem
•	 Using a scratch image

Building using tar
So, you have a machine already running as a virtual machine or on a bare metal
box, and you want to convert this to a Docker image. How do you go about
doing this? The first thing that you will need to do is install something similar
to debootstrap. This will create your base Debian system. Later, we will add
the files to the following image:

$ sudo apt-get install -y debootstrap

Next, you need to get the release name of the distribution of Linux that you are
running. To do this, we can look at the contents of the /etc/lsb-release file:

$ cat /etc/lsb-release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION="Ubuntu 14.04.2 LTS"

We can tell from the preceding output that we are running the trusty release of
Ubuntu. Now, we can execute the next command (to build the new container) using
the newly installed debootstrap command, which will take some time to run:

$ sudo debootstrap trusty <directory_name> > /dev/null

Now, we can execute the next command after the preceding one has completed:

$ sudo tar -C <directory_name> -c . | sudo docker import - <image_name>

The preceding command will switch to the directory that you specify after the -C
option, and then it will create a new archive from this directory based off the -c
switch and specifying the . (for current directory). This will then import the archive
into a new Docker image with the docker import command.

What You Need to Know about Docker

[33]

You can see this image by issuing the docker images command, as follows:

$ docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

ubuntu_trusty latest 376bfebd75c 17 minutes ago 228.3 MB

You can then use this image for base images and share on the Docker Hub or on
your own Docker registry. We will be covering how to push these images to various
locations in the next section. However, we first need to look at the other method of
creating images, and that is building from scratch.

If you use something other than Ubuntu (or Debian), Docker has also created
scripts that you can utilize to create images from, which you can check out at
https://github.com/docker/docker/tree/master/contrib.

You will want to look at the mkimage- files, based on what distribution you use.

Building using scratch
You also have the option to build from scratch. Now, when you usually hear the
term scratch, it literally means you start from nothing. That's what we have here.
You get absolutely nothing and have to build upon it. Now, this can be a benefit
because it will keep the image size very small, but it can also not be a benefit if
you are fairly new to the Docker game because this may be a little complicated.

Docker has done the hard work for us already and created an empty tar file that
is on the Docker Hub named scratch that you can use in the FROM section of your
Dockerfile. You can base your entire Docker build off of this and then add parts as
needed. So, your Dockerfile might look something like the following:

FROM scratch
ADD <script_to_add> /<path_to_add_to_on_container>
CMD ["/<path_to_add_to_on_container>"]

What You Need to Know about Docker

[34]

Command Cheat Sheet
This chapter was written specifically for reference purposes. This is a place to give
you a list of useful Docker commands that you should be familiar with before
proceeding on to more advanced Docker items or commands. This sheet is great to
print off and hang somewhere handy in the event that you get stuck on a command.

Always reference the help switch on any Docker command
to get additional help as well.

Running containers
The following command can be run to start a container, but by utilizing the -it
switch, you are asking for the container to provide you with interactive shell as
well as allocate a pseudo tty or a terminal:

$ docker run -it nginx:latest /bin/bash

This command is great to use when you want to try to troubleshoot a container
or test out a new container before utilizing the next command, which utilizes the
daemon mode:

$ docker run -d nginx:latest

This command will allow you to run the container in the background. This is great
when you don't want to interact with the container. You can do this through other
Docker commands. However, this will start the container up, and it will continue
to run in the background until stopped or interrupted.

What You Need to Know about Docker

[35]

While you are running containers, they will start to take up space on your Docker
host. For this reason, you can add the --rm switch to your run command:

$ docker run -d --rm nginx:latest

This will remove the container from the Docker host it is running on when it exits.
Think of this like automatic cleanup.

If you wanted to execute a command against a running container, you would use
the Docker exec subcommand:

$ docker exec <container_name> <command>

$ docker exec nginx "yum –y update nginx"

Remember to always look at the help subcommands as well. You can do this by
attaching the --help switch onto any command:

$ docker run --help

Building containers
Now, let's move on to building containers. There is one basic command that you
always need to remember when building. This is the command that we will look
at next:

$ docker build -t scottpgallagher/nginx .

In the preceding command you can see we are performing a build subcommand and
utilizing the -t switch. This allows us to tag the instance that we are building. Based
on the Docker Hub, you typically name your containers based on the following:

•	 Your username
•	 Name for the container/image

In our example, our username is scottpgallagher and our image name is nginx.

The last part, which might be hard to see, but is extremely important is the . (period)
that specifies the docker build command to build based on the current directory,
that is, the directory in which the Dockerfile file is located.

Lastly, don't forget to check out the other switches that you can utilize with the
docker build subcommand using the --help switch.:

$ docker build --help

What You Need to Know about Docker

[36]

Docker Hub commands
There are a few Docker commands that relate to the Docker Hub that are very useful
to know.

The first is the following command, which allows you to log in to the Docker Hub:

$ docker login

This command will then prompt you for the following:

•	 Username
•	 Password
•	 E-mail address

What if you want an image from the Docker Hub? How do you get it onto your
Docker host? You use the following command:

$ docker pull nginx

This will pull the latest NGINX image from the Docker Hub to your Docker host.

After you have created images or updated another image, you need to push the
image using the following command:

$ docker push scottpgallagher/nginx

The format again is <Docker Hub username>/<Image Name>.

Docker Swarm commands
To get started with Docker Swarm, you first need to issue the following command,
which will generate a random token that you will use in later commands to join
nodes to:

$ docker run --rm swarm create

Based on the output from the previous command, you can then invoke a Docker
Machine command to create a new Docker container and join it to the existing
Swarm cluster:

$ docker-machine create \

-d virtualbox \

--swarm \

--swarm-discovery token://85b335f95e9a37b679e2ea9e6ad8d6361 \

swarm-node1

What You Need to Know about Docker

[37]

From the preceding command, note the --swarm switch that tells Docker that this
is a container to use with Swarm, followed by the --swarm-discovery switch into
which we can put the token that was generated from our previous command.

Lastly, if we want to look at all the Docker hosts that are currently joined to a Swarm
cluster, we can use the following command. Again, we use the --rm switch which
will remove the container once it has completed its work. In this case, it gives us a list
of the hosts joined using a particular token:

$ docker run --rm swarm list token://85b335f95e9a37b679e2ea9e6ad8d6361

Docker Machine commands
A few Docker Machine commands that are useful and that you will use a lot are
given here.

To create a new Docker host, use the following command:

$ docker-machine create -d virtualbox node1

The structure of this command is -d <driver_name> <Docker host name>.

What if you want to see all the Docker hosts you have?

$ docker-machine ls

The ls switch will provide you with information about the Docker hosts, such as
their IP addresses, name of host, which one is active (that is which one the Docker
commands will run against), and some other useful information.

Lastly, if you want to stop a Docker host, you can use the stop subcommand:

$ docker-machine stop node1

Docker Compose commands
Remember that Docker Compose is used to bring up a multicontainer environment
as opposed to the docker run command, which will start just one container at a
time. Docker Compose uses the Dockerfile, but it also relies on the docker-compose.
yml file that has all the information about the multicontainer environment and how
to set it all up.

To get started, you need to know how to start the multicontainer environment:

$ docker-compose up

What You Need to Know about Docker

[38]

Remember that this command needs to be run inside the folder where both the
Dockerfile and docker-compose.yml file are located.

Next, what if you want to scale a particular service or container that is running
inside your environment? You can use the scale subcommand to do this:

$ docker-compose scale web=3

You will specify the container name (in our case, this is web) that you are using inside
your docker-compose.yml file. In our example, this will create two additional web
containers and also run all the commands that are inside the docker-compose.yml
file for this container. If there is linking that needs to be done, it will do this; or if a
volume needs to be mounted from another container, it will do this as well.

Summary
In this short time, we have covered quite a lot of information. We first looked at
a short history of how Docker came about, how Docker differs from traditional
virtual machine environments, and some of the quick benefits of using Docker.

Then, we took a look at how to work with containers and images. Some useful
commands to start and stop containers were also covered. We took a look at the
other Docker feature sets, such as Docker registries and how many options there are
to store your images. Other items, such as Docker Machine to control your Docker
hosts, Docker Compose to make multitenant environments, and also Docker Swarm
to create clustered Docker server environments were also covered.

We followed this up by looking at how to create your own containers using both the
Dockerfile format and the existing environments and leveraging tools, such as tar
and debootstrap.

Finally, we performed a quick overview of the useful Docker commands throughout
the various Docker products. This will be a great section to look back on and be able
to quickly reference as needed.

What to do next?

Broaden your horizons with Packt
If you're interested in Docker, then you've come to the right place. We've got a
diverse range of products that should appeal to budding as well as proficient
specialists in the field of Docker.

https://www.packtpub.com/virtualization-and-cloud/learning-docker
https://www.packtpub.com/virtualization-and-cloud/docker-cookbook
https://www.packtpub.com/networking-and-servers/learning-docker-networking
https://www.packtpub.com/networking-and-servers/docker-high-performance

To learn more about Docker and find out what you want to learn next, visit the Docker
technology page at https://www.packtpub.com/tech/docker.

If you have any feedback on this eBook, or are struggling with something we haven't
covered, let us know at customercare@packtpub.com.

Get a 50% discount on your next eBook or video from www.packtpub.com using
the code:

	Cover

	Copyright

	About the Author

	About the Reviewer
	www.PacktPub.com
	Table of Contents
	What you need to knowabout Docker
	Overview
	
Meet Docker
	The emergence of Docker
	What is containerization?
	Docker differences

	Docker benefits
	Overall benefits

	Working with Containers
	Using Docker images
	Searching Docker images
	Manipulating Docker images

	Stopping containers

	Other Docker Feature Sets
	Storing images on Docker registries
	Docker Machine
	Docker Compose
	Docker Swarm
	Docker UCP

	Creating Your Own Containers
	Creating containers using Dockerfile
	Short Dockerfile review
	Dockerfile in depth
	LABEL
	ADD or COPY
	ENTRYPOINT
	USER
	WORKDIR
	ONBUILD

	Dockerfile best practices

	Docker build
	The docker build command
	The .dockerignore file
	Building containers using Dockerfile
	Modifying and committing an existing image
	Building your own containers
	Building using tar
	Building using scratch

	Command Cheat Sheet
	Running containers
	Building containers
	Docker Hub commands
	Docker Swarm commands
	Docker Machine commands
	Docker Compose commands
	Summary

	What to do next?
	Broaden your horizons with Packt

