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Chapter	0:	Introduction
The	Z	File	System,	or	ZFS,	is	a	complicated	beast,	but	it	is	also	the	most	powerful	tool	in
a	sysadmin’s	Batman-esque	utility	belt.	This	book	tries	to	demystify	some	of	the	magic
that	makes	ZFS	such	a	powerhouse,	and	give	you	solid,	actionable	intel	as	you	battle	your
storage	dragons.

ZFS	contains	over	100	“engineering	years”	of	effort	from	some	of	the	best	minds	in	the
industry.	While	it	has	competitors,	such	as	B-Tree	File	System	(BTRFS),	those
competitors	have	a	lot	of	catching	up	to	do.	And	ZFS	races	further	ahead	every	day.

This	book	takes	you	into	some	of	the	more	complicated	and	esoteric	parts	of	managing
ZFS.	If	you	want	to	know	why	a	single	gigabyte	of	data	fills	your	2	GB	drive,	if	you	want
to	automatically	update	your	disaster	recovery	facility,	or	if	you	just	want	to	use	boot
environments	on	your	laptop,	FreeBSD	Mastery:	Advanced	ZFS	is	for	you.

Just	about	everything	in	this	book	applies	in	general	to	OpenZFS.	We	use	FreeBSD	as
the	reference	platform,	but	the	mechanics	of	using	OpenZFS	don’t	change	much	among
platforms.



Prerequisites

The	title	of	the	book	includes	the	word	“Advanced.”	We	expect	you	to	know	a	couple
things	before	you	can	use	this.	The	easy	answer	would	be	that	you	should	read	and
assimilate	two	earlier	FreeBSD	Mastery	titles:	Storage	Essentials	and	ZFS.	But	you	might
already	know	what’s	in	those	books,	so	here	are	some	details	on	what	you	need	to	bring
with	you.

You’ll	need	familiarity	with	FreeBSD’s	storage	management	layer,	GEOM.	On	non-
FreeBSD	platforms	you	can	use	disks	and	partition	devices	for	ZFS.	Always	use	ZFS	on
disk	or	partition	devices,	not	on	RAID	or	other	software	devices.

We	assume	you’re	familiar	with	ZFS	pools	and	datasets.	You	know	how	to	add	VDEVs
to	a	pool,	and	understand	why	you	can’t	add	a	lone	disk	to	your	RAID-Z.	You	can	take
snapshots	and	create	clones.

If	you	want	to	use	FreeBSD’s	encrypted	ZFS	support,	you	must	understand	FreeBSD’s
GELI	encryption.	(You	could	use	GBDE	if	you’re	relying	on	the	encryption	to	preserve
human	life,	but	the	built-in	GELI	support	suffices	for	most	of	us.	Also,	GELI	takes
advantage	of	the	AES-NI	hardware	crypto	acceleration	in	modern	CPUs.)



ZFS	Best	Practices

While	you	can	acquire	all	the	needed	ZFS	knowledge	from	publicly	available
documentation,	that	won’t	give	you	the	ZFS	best	practices	we’ve	discussed	in	earlier
books.	As	with	so	many	other	things	in	technology,	the	nice	thing	about	best	practices	is
that	there	are	so	many	of	them	to	choose	from.

We’re	discussing	some	of	our	best	practices	here.	Perhaps	these	practices	are	better
than	yours	and	you’ll	gleefully	adopt	them.	Maybe	they’ll	spark	some	improvements	in
your	existing	best	practices.	Even	if	your	best	practices	blow	ours	away,	these	at	least
display	our	biases	so	you	know	how	we’re	approaching	the	issues	of	storage	management.

Space	Management

With	copy-on-write	filesystems,	deleting	files	uses	space.	Sysadmins	accustomed	to
traditional	filesystems	might	hear	this	when	they	start	with	ZFS,	but	don’t	really
internalize	it	until	the	first	time	they	run	out	of	disk	and	suffer	a	nasty	shock.	As	the	pool
approaches	capacity,	ZFS	needs	more	and	more	time	to	store	additional	data	blocks.
Performance	degrades.	While	the	ZFS	developers	keep	reducing	the	performance	impact
of	fragmentation,	it	becomes	more	and	more	of	an	issue	as	the	pool	approaches	100%
utilization.

Recovering	from	a	completely	full	pool	is	terribly	hard.	To	prevent	all	of	the	space
from	being	used,	or	to	at	least	provide	a	warning	ahead	of	time,	create	a	reservation.

Ideally,	you	should	create	a	reservation	for	20%	of	the	capacity	of	your	pool.	You	can
always	lower	the	reservation	to	buy	time	while	you	work	on	adding	more	capacity	or
removing	old	data.	The	last	thing	you	want	is	to	unexpectedly	run	out	of	space.	This	can
give	you	the	soft	landing	that	the	Unix	File	System	(UFS)	offers,	where	only	root	can	use

up	the	last	few	percent	of	available	disk	space.

On	this	1	TB	pool,	we	create	a	new	dataset	with	200	GB	refreservation.

#	zfs	create	-o	refreservation=200G	mypool/reserved

Any	time	you’re	exploring	space	issues	on	a	ZFS	dataset,	remember	the	zfs	get	space

command.	You’ll	see	all	of	the	space-related	properties	in	a	single	convenient	display.

#	zfs	get	space	zstore/usr

NAME								PROPERTY														VALUE						SOURCE

zstore/usr		name																		zstore/usr	-

zstore/usr		available													5.00T						-

zstore/usr		used																		367M							-

zstore/usr		usedbysnapshots							0										-



zstore/usr		usedbydataset									140K							-

zstore/usr		usedbyrefreservation		0										-

zstore/usr		usedbychildren								367M							-

While	zfs	get	space	won’t	free	up	space	for	you,	it’s	the	quickest	path	to	finding	out

where	all	your	space	went.

Picking	a	VDEV	Type

As	discussed	at	length	in	FreeBSD	Mastery:	ZFS,	selecting	the	correct	VDEV	type	when
creating	your	pool	is	the	most	important	decision	you	make.	It	affects	the	performance	of
your	pool,	as	well	as	the	expansion	possibilities.

A	study	by	Pâris,	Amer,	Long,	and	Schwarz
(http://arxiv.org/ftp/arxiv/papers/1501/1501.00513.pdf)	found	that	to	build	a	disk	array
that	could	survive	for	four	years	with	no	human	interaction,	required	triple	parity	RAID.
Double	parity,	even	with	an	unlimited	number	of	spares,	cannot	maintain	99.999%	(five
nines)	reliability	over	a	four-year	period.

Combine	this	consideration	with	the	hardware	you	have	and	your	expected	future
storage	needs.

The	Importance	of	Labels

By	labeling	drives,	you	save	your	future	self	a	lot	of	headache.	Label	your	disks	and
partitions	before	adding	them	to	a	ZFS	pool—or,	indeed,	using	them	in	any	way,	for
reasons	we’ll	discuss	through	this	section.

Take	the	case	of	an	unfortunate	friend	of	Jude’s,	who	created	a	pool	with	raw	device
names.	When	a	device	failed,	he	rebooted	before	replacing	the	disk.	His	pool	looked	a
little	different	than	he	expected.

#	zpool	status

pool:	data

state:	DEGRADED

status:	One	or	more	devices	is	currently	being	resilvered.		The	pool	will

								continue	to	function,	possibly	in	a	degraded	state.

action:	Wait	for	the	resilver	to	complete.

	scan:		resilver	in	progress	since	Sat	Apr	11	17:49:38	2015

								62.0M	scanned	out	of	1.55T	at	5.16M/s,	87h40m	to	go

								9.81M	resilvered,	0.00%	done

config:

NAME																			STATE					READ	WRITE	CKSUM

data																			DEGRADED					0					0					0

	mirror-0														DEGRADED					0					0					0

		spare-0														UNAVAIL						0					0					0

			5694975301095445325	FAULTED						0					0					0		was	/dev/da1



		da7																		ONLINE							0					0			856		(resilvering)

		da14																	ONLINE							0					0					0

	mirror-1														ONLINE							0					0					0

		da1																		ONLINE							0					0					0

		da13																	ONLINE							0					0					0

Originally,	the	pool	had	consisted	of	two	mirrors:	mirror-0	of	da1	and	da15,	and
mirror-1	of	da2	and	da14.	Disk	da1	failed.

FreeBSD	dynamically	assigns	disk	device	nodes	at	boot.	With	da1	missing,	FreeBSD
numbered	the	remaining	disk	devices	to	shift	one	number	lower.	Disk	da15	became	da14,
da14	became	da13,	and	worst	of	all,	da2	became	da1.

So	then	mirror-1	contained	da1—which	was	not	the	same	da1	as	the	faulted	disk.
Mirror-0	was	using	its	spare	(da7)	in	place	of	what	used	to	be	called	da1.	Once	Jude’s
unfortunate	friend	put	a	disk	back	in	place	for	the	failed	da1,	though,	that	da7	became	da8.

ZFS	doesn’t	use	FreeBSD	disk	names	to	find	the	members	of	each	VDEV,	instead
relying	on	its	own	on-disk	label	with	a	Globally	Unique	Identifier	(GUID).	ZFS	can
identify	the	disk	no	matter	where	the	operating	system	puts	its	device	node.	And	the
operating	system	doesn’t	care	either—it	found	the	disk	for	you	and	mounted	the
filesystem;	what	more	do	you	want?

This	can	easily	confuse	the	human	operator,	though.	Suddenly	da1	is	not	the	failed
device,	but	a	perfectly	good	device	in	another	VDEV	entirely!	After	the	operator	replaces
the	device	and	reboots	the	machine,	the	replaced	drive	will	almost	certainly	become	da1
again.	All	the	device	nodes	will	shift	back	to	their	original	values.	By	the	end	of	all	of	this,
the	sysadmin	has	no	idea	which	disk	is	which.	The	only	idea	he’ll	have	in	mind	is	the	need
for	a	stiff	drink.



Labeling	Disks

FreeBSD	provides	several	ways	to	label	a	disk	or	partition.	Some	are	automatic,	and	some
are	managed	by	the	user.	Each	has	advantages	and	disadvantages.	One	device	can	have
multiple	labels.

Once	a	label	is	accessed,	other	label	pointing	at	the	same	device	wither	and	become
inaccessible.	This	prevents	accessing	a	single	device	by	multiple	names.

All	of	the	automatically	generated	labels	are	activated	by	default.	If	you	desire	to	use	a
manual	label,	it’s	best	to	disable	the	manual	methods.

GPT	Label	(Manual)

If	the	disk	is	partitioned	with	a	GUID	Partition	Table	(GPT),	each	partition	can	contain	a
text	label	of	your	choosing.	This	is	both	authors’	preferred	method	of	labeling	disks.

Use	gpart(8)	to	create	and	label	a	new	partition.

#	gpart	add	-t	freebsd-zfs	-l	zfs-mirror-1	da2

Here	we	change	the	label	on	the	existing	2nd	partition.

#	gpart	modify	-i	2	-l	f01-serialnum	da2

Manual	labels	let	you	identify	disks	by	characteristics	such	as	physical	placement	or
serial	number.

If	you	use	GPT	labels,	we	recommend	disabling	GPTID	and	disk	ID	labels.

GPTID	Label	(Automatic)

With	the	GPT	partitioning	scheme,	each	partition	has	a	unique	GUID.	The	GPT	ID
labeling	system	uses	the	GUID	to	identify	partitions.	The	problem	is	that	GUIDs	mean
little	to	a	human.	By	looking	at	a	few	examples,	you	can	see	that	it	can	be	hard	to	spot	the
differences.

ada0p1:		/dev/gptid/b305e4ff-b889-11e5-bace-002590db872e

ada1p1:		/dev/gptid/b329ff70-b889-11e5-bace-002590db872e

ada1p2:		/dev/gptid/b33db4ac-b889-11e5-bace-002590db872e

If	only	the	last	few	characters	of	the	first	segment	are	actually	different,	it’s	easy	to
confuse	yourself.

If	ZFS	sees	a	piece	of	a	pool	under	a	GPTID	labels	before	seeing	that	same	pool	under
a	different	label,	it	uses	the	GPTID	label.	This	hides	your	carefully	hand-crafted	labels.
Disable	GPTID	labels	at	boot	by	adding	the	following	to	/boot/loader.conf.



kern.geom.label.gptid.enable=0

FreeBSD	enables	GPT	ID	labels	by	default.

Disk	Ident	Label	(Automatic)

While	GPT	and	GPTID	labels	identify	a	partition,	the	Disk	Ident	(or	diskid)	labels	identify
an	entire	disk.	The	device	name	is	based	on	the	disk’s	serial	number,	which	is	convenient.
Unfortunately,	any	special	characters	in	the	serial	number—notably,	spaces—get	encoded.
This	creates	very	ugly	device	names.	In	addition,	since	the	label	identifies	the	disk,	not	a
partition,	the	partition	part	of	the	device	name	(p3)	is	appended,	and	can	be	hard	to	pick
out	of	the	device	name.

/dev/diskid/DISK-07013121E6B2FA14

/dev/diskid/DISK-%20%20%20%20%20WD-WCC131365642

/dev/diskid/DISK-%20%20%20%20%20%20%20%20%20%20%20%20Z300HTCE

These	autogenerated	labels	can	be	disabled	to	block	ZFS	from	using	them	instead	of
your	GPT	label.	Adding	the	following	to	/boot/loader.conf:

kern.geom.label.disk_ident.enable=0

Many	people	have	strong	arguments	in	favor	of	diskid	labels.	The	authors	won’t	say
those	arguments	are	incorrect.	We	will	say	that	diskid	labels	give	both	of	us	a	headache.

FreeBSD	enables	diskid	labels	by	default.

Glabel	(Manual)

In	addition	to	all	the	other	types	of	labels,	you	can	also	create	a	GEOM	label	stored	in	the
last	sector	of	a	disk	or	partition.	These	labels	are	in	a	GEOM-specific	format,	called
glabel.	The	advantage	to	these	custom	glabels	is	that	the	do	not	require	using	the	GPT
format,	so	they	can	work	with	both	MBR	formatted	disks	and	raw	disks	with	no	partitions.
A	glabel	uses	the	provider’s	last	sector.

Create	and	view	glabels	with	glabel(8).

#	glabel	label	-v	mylabel	/dev/ada0p2

Metadata	value	stored	on	/dev/ada0p2.

Done.

#	glabel	status

									Name		Status		Components

	gpt/gptboot0					N/A		ada0p1

label/mylabel					N/A		ada0p2

					gpt/zfs0					N/A		ada0p3

There	is	now	a	/dev/label/mylabel	device.



All	labels	must	be	unique.	While	you	can	apply	the	same	label	to	multiple	disks,	only
one	shows	up.



DTrace

Higher-level	tuning	of	some	ZFS	features	requires	using	DTrace,	a	program	for	tracing
software	behavior	and	performance.

Knowledgeably	using	DTrace	with	ZFS	requires	an	understanding	of	the	kernel
internals.	This	is	not	a	book	on	either	DTrace	or	kernel	internals.	Grabbing	an	existing
script	and	running	it	requires	neither.

We	would	encourage	you	to	use	the	output	of	these	DTrace	scripts	both	to	solve	your
ZFS	problems,	and	as	entry	points	for	choosing	to	learn	about	kernel	internals.	You	might
not	need	to	be	a	programmer,	but	a	professional	sysadmin	should	develop	understanding
of	how	the	system	works.

Blindly	running	scripts	is	exactly	the	sort	of	“occult	IT”	that	Lucas	rants	and	rails
against.	That	said,	here’s	exactly	how	you	blindly	run	a	DTrace	script.

DTrace	uses	kernel	modules	for	the	software	probes	that	watch	how	software	behaves:
dtrace.ko	and	dtraceall.ko.	You	can	load	these	automatically	at	boot	in	loader.conf.	If	the

kernel	modules	aren’t	found,	the	dtrace(1)	program	automatically	loads	them	the	first	time
you	run	it.

You	must	run	dtrace	as	root.

Copy	your	script	to	a	file.	Then	run	dtrace	-s,	giving	the	script	as	an	argument.

Hit	CTRL-C	to	interrupt	the	script.

You	can	download	all	of	the	DTrace	scripts	given	in	this	book	from	Lucas’	GitHub
repo,	linked	from	zfsbook.com.

A	FreeBSD	sysadmin	with	an	understanding	of	how	the	kernel	works	can	solve
problems	more	quickly	and	correctly.	For	an	overview	of	ZFS’	internals,	grab	the	latest
edition	of	The	Design	and	Implementation	of	the	FreeBSD	Operating	System	(Addison-

Wesley	Professional,	2014).1	Similarly,	DTrace	is	a	powerful	tool	well	worth	learning	and
understanding.	We	recommend	Gregg’s	and	Mauro’s	book	DTrace:	Dynamic	Tracing	in
Oracle	Solaris,	Mac	OS	X,	and	FreeBSD	(Prentice	Hall,	2011).





Book	Overview

Chapter	0	is	this	introduction.

Chapter	1,	“Boot	Environments,”	takes	you	through	using	ZFS	snapshots	to	create
Solaris-style	boot	environments.	Boot	environments	let	you	painlessly	revert	changes	such
as	upgrades.	You	can	even	have	multiple	versions	of	FreeBSD	installed	simultaneously.
Once	you’ve	used	boot	environments,	you’ll	wonder	how	you	ever	lived	without	them.

Chapter	2,	“Delegation	and	Jails,”	covers	ZFS’	internal	permissions	scheme.	ZFS	can
let	the	sysadmin	give	select	users	and	groups	privileges	to	perform	operations	that
normally	require	root	access,	such	as	snapshots	and	cloning.

Chapter	3,	“Sharing	Datasets,”	covers	ZFS’	network	file	sharing	features.	FreeBSD’s
ZFS	is	integrated	with	the	Network	File	System,	and	is	terribly	useful	for	iSCSI	devices.

Chapter	4,	“Replication,”	teaches	you	how	to	replicate	ZFS	datasets	to	other	machines.
Replication	can	let	you	pick	up	a	massive	amount	of	data	and	ship	it	across	the	country	or
around	the	planet,	and	keep	it	up	to	date,	without	your	users	even	noticing.

Chapter	5,	“ZFS	Volumes,”	discusses	some	fine	details	of	creating	and	using	block
devices	on	top	of	a	ZFS	pool.

Chapter	6,	“Advanced	Hardware,”	is	for	the	people	who	have	really	large	storage
arrays.	If	the	words	“SCSI	multipathing”	throw	fear	into	your	heart,	or	if	you	have	no	idea
what	NVMe	is,	this	chapter	is	for	you.

Chapter	7,	“Caches,”	covers	all	of	the	various	caching	mechanisms.	You’ll	learn	about
the	Advanced	Replacement	Cache	and	all	its	variants,	reading	and	writing	caches,	and	the
on-disk	pool	cache.

Chapter	8,	“Performance,”	delves	deep	into	how	ZFS	performs	in	different
environments	and	how	to	determineif	system	changes	might	improve	performance.

Chapter	9,	“Tuning,”	discusses	how	to	adjust	ZFS	to	work	best	in	your	environment,
hopefully	without	buying	additional	and	more	expensive	hardware.

Finally,	Chapter	10,	“ZFS	Potpourri,”	includes	a	bunch	of	short	tips	on	using	ZFS.

To	those	of	you	who	read	the	introductions	to	books:	congratulations.	We	hope	you
learned	something,	or	were	at	least	reminded	of	some	important	details.	Let’s	go	on	to
boot	environments!



1	Some	of	the	authors	of	TD&IotFOS	use	our	ZFS	books	to	learn	how	to	deploy	the	code	they	write,	so	it	all	evens	out.





Chapter	1:	Boot	Environments
One	of	the	most	tediously	terrifying	system	administration	tasks	is	a	system	upgrade.	We
all	know	that	the	new	kernel	might	not	boot	the	system,	but	that’s	the	least	of	your
problems.	What	if	a	critical	program	requires	an	old	version	of	a	shared	library?	Maybe
that	new	terminal	mode	is	subtly	incompatible	with	your	software.	Or	perhaps	your
mission-critical	software	chokes	on	the	new	linker.

Things	go	wrong.	Sometimes	problems	aren’t	apparent	at	first	but	only	snarl	at	you
after	a	week	or	two,	when	falling	back	becomes	even	more	difficult.	No	matter	what
precautions	you	take	or	how	much	testing	you	perform,	any	upgrade	can	go	bad.

We’ve	developed	all	sorts	of	tools	to	work	around	bad	upgrades.	Boot	loaders	help	you
quickly	recover	from	bad	kernels.	Backups	help	you	slowly	recover	from	bad	userlands.
But	none	of	these	help	you	understand	exactly	what	went	wrong	and	duplicate	the
problem.

Unless	you’re	running	ZFS,	that	is.

By	combining	snapshots	and	clones,	you	can	create	bootable	backups	of	your	operating
system’s	kernel	and	userland.	You	want	to	upgrade?	Clone	your	operating	system	datasets
and	go	ahead.	If	the	upgrade	goes	badly,	boot	the	clone	instead.	This	restores	service	while
you	use	zfs	diff	to	determine	which	files	changed	and	which	of	them	went	wrong.

You	can	do	all	that	by	hand,	but	FreeBSD	bundles	this	functionality	into	boot
environments.	With	boot	environment	management	tools,	you	can	easily	create,	destroy,
and	deploy	boot	environments.	Every	time	you’re	about	to	upgrade,	create	a	new	boot
environment.	If	the	upgrade	goes	bad,	either	immediately	or	even	weeks	later,	you	can
revert	to	the	old	operating	system	version.	The	failed	version	stays	around,	so	you	can
deploy	it	to	another	machine	and	study	exactly	what	went	wrong.

Using	boot	environments	well	requires	that	you	understand	how	you’ve	installed
FreeBSD,	however.



Installation	Datasets

On	FreeBSD	10.1	and	newer,	ZFS-based	install	creates	datasets	designed	specifically	for
boot	environments.	These	might	seem	counterintuitive	at	first	glance.	Take	a	look	at	a	few
of	the	datasets	on	a	default	install.

#	zfs	list

NAME													USED		AVAIL		REFER		MOUNTPOINT

…

zroot/var								703K		188G				128K		/var

zroot/var/crash		128K		188G				128K		/var/crash

zroot/var/log				192K		188G				192K		/var/log

zroot/var/mail			128K		188G				128K		/var/mail

zroot/var/tmp				128K		188G				128K		/var/tmp

We	have	datasets	for	certain	subdirectories	of	/var:	/var/crash,	/var/log,	/var/mail,	and

/var/tmp.	But	what	about	all	of	the	other	directories	under	/var?	The	/var/db	directory

contains	critical	system	information,	like	the	package	database.	Surely	that’s	at	least	as
important	as	/var/tmp?

The	default	install	doesn’t	create	datasets	based	on	the	importance	of	the	data	in	the
directory.	It	creates	datasets	to	separate	data.

Now	check	zfs	mount	and	see	how	these	datasets	are	mounted.

#	zfs	mount

zroot/ROOT/default				/

…

zroot/var/crash							/var/crash

zroot/var/log									/var/log

zroot/var/mail								/var/mail

zroot/var/tmp									/var/tmp

Notice	the	missing	dataset:	/var.	That	dataset	exists,	but	isn’t	mounted	(the	canmount

property	is	set	to	no).	Files	directly	in	/var	actually	go	in	the	dataset	mounted	as	root,

zroot/ROOT/default.	Files	under	/var	that	have	their	own	dataset,	such	as	/var/log/messages,	go

in	a	separate	dataset.	Files	that	go	under	/var	but	don’t	have	their	own	dataset,	such	as

/var/db,	go	into	the	root	dataset.

The	location	of	data	is	critical	to	boot	environments.	Data	likely	to	be	affected	by	a
boot	environment	goes	on	the	root	dataset.	Data	that	you	won’t	want	to	manage	as	part	of
the	boot	environment	gets	its	own	dataset.

Consider	/var/db.	This	contains	critical	information	like	the	package	database,	the	locate

database,	freebsd-update(8)	records,	and	so	on.	All	of	this	is	tightly	tied	to	the	operating



system	version.	Upgrading	your	host	to	a	new	operating	system	version	requires	using
freebsd-update,	and	probably	means	updating	your	add-on	software	while	you’re	at	it.	If	you

must	revert	an	upgrade,	you	want	these	files	reverted	as	well.

Compare	that	to	/var/log.	If	I	must	revert	an	upgrade,	I	specifically	don’t	want	my	log

files	rolled	back	as	well.	Logs	cover	more	than	just	the	operating	system.	Similarly,	home
directories	and	the	mail	spool	in	/var/mail	had	better	not	get	rolled	back	with	the	operating

system.1

FreeBSD	upgrades	affect	specific	directories.	The	core	programs	lurk	in	/bin,	/sbin,

/usr/bin,	and	/usr/sbin,	with	libraries	in	/lib	and	/usr/lib.	Thanks	to	the	non-mounting	/usr

dataset,	these	directories	are	now	on	your	root	dataset.	Packages	install	under	/usr/local,

but	it’s	also	part	of	the	root	dataset.	Similarly,	thanks	to	the	non-mounting	/var,	the	/var/db

directory	with	all	that	critical	system	information	is	also	part	of	the	root	dataset.

Files	that	are	not	part	of	the	core	system,	such	as	logs,	user	home	directories,	and	so	on,
have	their	own	datasets.

This	segregates	the	core	system	and	official	packages	from	the	rest	of	the	host,	letting
you	manage	them	as	a	single	entity.	The	FreeBSD	developers	are	working	on	packaging
the	base	system	as	well	as	add-on	packages,	which	might	necessitate	revisiting	the	system
discussed	here.



Using	Boot	Environments

ZFS’	snapshot	and	clone	functions	let	you	save,	copy,	and	duplicate	filesystems.	(We
discussed	snapshots	and	clones	at	length	in	FreeBSD	Mastery:	ZFS).

With	ZFS,	it’s	a	good	idea	to	snapshot	datasets	before	performing	system	maintenance
such	as	an	upgrade.	If	the	upgrade	or	change	fails,	you	can	roll	back	to	the	last	known
working	version.	To	debug	that	failed	upgrade,	copy	the	snapshot	onto	a	test	system	and
debug	it	there,	while	your	production	system	keeps	chugging	along	on	the	slightly	older
operating	system	version.

A	“boot	environment”	packages	up	pre-maintenance	snapshots	into	a	neat	bundle,
generally	with	a	boot	environment	management	program.	You	don’t	need	a	boot
environment	manager	to	use	snapshots	in	system	administration,	but	managers	make
maintaining	all	those	snapshots	much	easier.	FreeBSD	has	a	boot	environment	manager,
beadm(8),	deliberately	designed	to	resemble	Solaris’	beadm(8).

Install	beadm	with	pkg(8).

#	pkg	install	-y	beadm

You’re	now	ready	to	use	boot	environments.

Viewing	Boot	Environments

Each	boot	environment	is	a	dataset	under	zroot/ROOT.	A	system	where	you’ve	just	installed

beadm	should	have	only	one	boot	environment.	Use	beadm	list	to	view	all	boot	environments.

#	beadm	list

BE							Active		Mountpoint			Space		Created

default		NR						/											649.9M		2016-02-15	14:47

We	have	one	environment,	named	default,	after	zroot/ROOT/default.	This	is	a	freshly

installed	system,	so	that’s	what	you’d	expect.

The	Active	column	shows	if	this	boot	environment	is	in	use.	An	N	means	that	the
environment	is	now	running.	An	R	means	that	the	boot	environment	will	be	activated	on
reboot.	The	boot	environment	used	at	reboot	comes	from	the	pool’s	bootfs	property.

The	Mountpoint	column	shows	the	location	of	this	boot	environment’s	mount	point.	All
live	boot	environments	are	normally	mounted	at	/.	If	a	boot	environment	is	not	in	use,	it

normally	isn’t	mounted	and	has	the	canmount	property	set	to	off	or	noauto.	You	could	choose

to	mount	an	otherwise	unused	boot	environment	elsewhere.



The	Space	column	shows	the	amount	of	disk	space	this	dataset	refers	to.

The	Created	column	shows	the	date	this	boot	environment	was	created.	In	this	case,	it’s
the	date	the	machine	was	installed.

Before	changing	the	system,	let’s	create	a	boot	environment.

Creating	Boot	Environments

Name	each	boot	environment	after	the	existing	install	or	environment.	If	you’re	creating	a
boot	environment	to	prepare	for	upgrading	packages,	append	the	current	date	or	some
other	identifying	information.	Use	freebsd-version	to	check	the	FreeBSD	version	you’re

running.

#	freebsd-version

10.3-RELEASE

Use	beadm	create	to	make	a	boot	environment.	Lucas	is	too	lazy	to	hit	caps	lock,	so	the

boot	environment	name	is	in	all	lower	case.

#	beadm	create	10.3-release

Created	successfully

We	should	now	have	two	identical	boot	environments.

#	beadm	list

BE												Active		Mountpoint			Space		Created

default							NR						/											650.1M		2016-02-15	14:47

10.3-release		-							-											140.0K		2016-02-16	09:07

We’re	currently	using	the	default	boot	environment,	and	this	same	boot	environment
will	start	on	our	next	boot.	The	10.3-release	environment	is	available,	however.	At	any
time,	you	can	tell	FreeBSD	to	boot	the	10.3-release	environment	and	get	the	system	as	it
was	exactly	when	you	created	the	environment.

The	10.3-release	environment	is	very	similar	to	the	default	environment.	Note	that	it
uses	only	140	KB	of	space.	That’s	enough	to	label	a	snapshot,	but	as	we	haven’t	made	any
changes	to	the	filesystem	yet,	it	takes	up	hardly	any	space.

Here	I’ve	run	freebsd-update	to	update	the	environment	to	the	latest	patch	level.	The

default	boot	environment	gets	the	patches.	The	10.3-release	environment	remains
unchanged.

As	you	might	expect,	applying	patches	changes	the	boot	environment’s	disk	usage.

#	beadm	list

BE												Active		Mountpoint			Space	Created



default							NR						/										650.1M		2016-02-15	14:47

10.3-release		-							-											69.7M		2016-02-16	09:07

The	10.3-release	boot	environment	suddenly	uses	69.7	MB	of	space.	That’s	the	space
used	by	patches	that	have	been	applied	between	the	10.3-release	boot	environment	and	the
current	boot	environment,	10.3-release-p13.

Activating	Boot	Environments

Suppose	you	apply	the	latest	patches	and	the	machine	goes	bonkers.	Your	server	software
fails,	or	the	kernel	panics,	or	tiny	gremlins	hop	out	of	the	USB	ports	and	start	stealing	your
spoons.	Fall	back	to	an	earlier	version	by	activating	the	boot	environment	and	rebooting.
Activate	a	boot	environment	with	beadm	activate.

#	beadm	activate	10.3-release

Activated	successfully

#	beadm	list

BE												Active	Mountpoint			Space		Created

default							N						/											308.1M		2015-06-19	10:04

10.3-release		R						-											457.1M		2015-06-19	14:13

The	default	boot	environment	has	the	Active	flag	set	to	N,	meaning	it’s	now	running.
The	10.3-release	environment	has	the	Active	flag	set	to	R,	so	after	a	reboot	it	will	be	live.

Reboot	the	system	and	suddenly	you’re	back	to	running	the	10.3-release	boot
environment,	without	any	security	updates	and	with	whatever	packages	you	originally
installed	on	the	system.	You’ve	fallen	back	to	an	older	version	of	the	operating	system,
with	much	less	risk	than	restoring	from	backup.

Renaming	Boot	Environments

Sometimes	you	want	to	change	the	name	of	a	boot	environment.	Maybe	the	name	you
picked	wasn’t	as	distinctive	as	you	thought,	or	one	of	your	minions	thought	to	create	a
boot	environment	but	named	it	FeliciaGoesViking.	The	beadm	rename	command	lets	you

rename	boot	environments.	Give	two	arguments:	the	original	name	and	the	new	name.

This	host	has	a	boot	environment	called	install.	I’m	changing	that	to	be	10.3-release,
just	like	my	other	hosts.

#	beadm	rename	install	10.3-release

Renamed	successfully

This	name	is	now	consistent	with	the	rest	of	my	hosts.

Removing	Boot	Environments

If	you	create	a	whole	bunch	of	boot	environments,	you’ll	start	using	more	and	more	disk



space.	Some	of	these	boot	environments	you’ll	never	use	again.

#	beadm	list

BE														Active	Mountpoint		Space		Created

default									NR					/												3.6G		2015-04-28	11:53

install									-						-										126.0M		2015-04-28	12:19

10.3-p9									-						-										209.0M		2015-05-14	08:01

10.3-p10								-						-										169.0M		2015-05-24	11:02

10.3-p10-10Jun		-						-										150.0M		2015-06-10	14:24

10.3-p10-13Jun		-						-											47.3M		2015-06-13	06:19

10.3-p12								-						-												7.7M		2015-06-19	07:06

Using	freebsd-version	tells	me	this	particular	system	is	running	FreeBSD	10.3-

RELEASE-p13.	It’s	conceivable	that	I	might	want	to	fall	back	to	10.3-p12.	But	I’m	not
going	back	to	p10,	or	p9,	or	especially	the	install	version.	Eliminating	these	boot
environments	will	save	disk	space	and	make	my	existing	boot	environments	easier	to	read
and	understand.

Use	beadm	destroy	and	the	boot	environment	name	to	remove	unwanted	boot

environments.

#	beadm	destroy	10.3-release

Are	you	sure	you	want	to	destroy	'10.3-release'?

This	action	cannot	be	undone	(y/[n]):	y

Destroyed	successfully

My	raw	install	of	FreeBSD	10.3	is	now	gone	from	this	system.	Everything	that	remains
is	patched	in	one	way	or	another.	This	will	probably	free	up	some	space	on	the	root	pool—
not	all	the	space	used	by	the	boot	environment,	as	snapshots	and	clones	don’t	free	space
until	the	last	snapshot	that	needs	a	block	is	destroyed.	But	you’ll	get	some	back.



Boot	Environments	and	ZFS

Boot	environments	leverage	ZFS	snapshots	and	clones.	But	what	exactly	do	they	do?
Look	at	the	snapshots	on	the	host	we	first	installed.

#	zfs	list	-t	snapshot

NAME																																						USED		AVAIL		REFER		MOUNTPOINT

zroot/ROOT/default@2016-02-16-08:35:22			25.9M						-			479M		-

This	host	has	one	snapshot,	named	after	the	boot	environment	I	created.	The	default
boot	environment	is	what’s	currently	running,	so	it	doesn’t	need	a	snapshot.	Now	look	at
the	datasets	under	zroot/ROOT.

#	zfs	list	-r	zroot/ROOT

NAME																					USED		AVAIL		REFER		MOUNTPOINT

zroot/ROOT															765M			283G				96K		none

zroot/ROOT/10.3-release		457M			283G			457M		/

Each	boot	environment	is	a	dataset	under	zroot/ROOT,	cloned	from	the	source	snapshot.

The	boot	environment	default	is	zroot/ROOT/default,	while	the	10.3-release	boot	environment

is	at	zroot/ROOT/10.3-release.

While	all	of	the	boot	environment	datasets	have	a	mountpoint	property	of	/,	every	boot

environment	dataset	except	the	active	one	has	canmount	set	to	off.	You	can	mount	these

datasets	if	you	wish,	but	you’ll	want	to	specify	a	new	mount	point.

Destroying	a	boot	environment	destroys	the	associated	snapshot	and	clone.

Accessing	Unused	Boot	Environments

One	way	to	access	the	contents	of	unused	boot	environments	is	to	check	the	snapshots	the
boot	environments	were	created	from.	The	boot	environments	are	accessible	in	the	hidden
/.zfs	directory.	This	is	convenient	for	quick	checks.

If	you	want	to	mount	those	boot	environments	read-write,	use	the	beadm	mount	command

and	the	boot	environment	name.	The	boot	environment	will	be	read-write	mounted	in	a
location	under	/tmp.

#	beadm	mount	10.3-p19

Mounted	successfully	on	‘/tmp/BE-10.3-p19.DmtRWZGf’

When	you	finish	with	the	environment,	unmount	it	with	beadm	umount.

#	beadm	umount	10.3-p19

Unmounted	successfully.



It	is	possible	to	mount	and	unmount	boot	environment	snapshots	with	the	canmount	and

mountpoint	properties.	If	you	do	it	incorrectly,	however,	you’ll	mount	the	old	boot

environment	over	the	top	of	your	running	boot	environment.	While	FreeBSD	filesystems
are	stackable,	changing	all	the	system	binaries	on	a	running	system	can	put	you	in	a
difficult	situation.	Imagine	being	unable	to	run	reboot(8)	because	the	binary	can’t	talk	to
the	running	kernel!

Be	safe.	Use	snapshot	mounting	and	unmounting	functions	built	into	beadm(8).



Boot	Environments	at	Boot

So	you’ve	truly	hosed	your	operating	system.	Forget	getting	to	multi-user	mode—even
single	user	mode	has	dissolved	into	a	stream	of	error	messages	so	obscure	that	even
FreeBSD’s	most	experienced	kernel	hackers	think	your	hardware	has	been	hitting	the
radiator	booze.	FreeBSD	10.3	and	above	lets	you	change	your	boot	environment	right	at
the	loader	prompt.	This	requires	console	access,	but	so	would	any	other	method	of	getting
yourself	out	of	this	hole.

Boot	the	host.	You’ll	get	a	loader	menu	much	like	this,	plus	some	graphics.

	+============Welcome	to	FreeBSD===========+	

	|																																								|

	|		1.	Boot	Multi	User	[Enter]												|

	|		2.	Boot	[S]ingle	User																	|

	|		3.	[Esc]ape	to	loader	prompt										|

	|		4.	Reboot																													|

	|																																								|

	|		Options:																														|

	|		5.	[K]ernel:	kernel	(1	of	2)										|

	|		6.	Configure	Boot	[O]ptions…								|

	|		7.	Select	Boot	[E]nvironment…							|

	|																																								|

	|																																								|

	+=========================================+

Note	item	7.	Select	it	and	you’ll	get	a	new	menu.

	+============Welcome	to	FreeBSD===========+

	|																																								|

	|		1.	Active:																												|

	|		2.	bootfs:	zfs:zroot/ROOT/default					|

	|		3.	[P]age:	1	of	1																					|

	|																																								|

	|		Boot	Environments:																				|

	|		4.	10.3-release																							|

	|		5.	default																												|

	|																																								|

	+=========================================+

Choose	your	preferred	boot	environment.	The	menu	will	update,	displaying	your
chosen	environment	in	space	1	(labeled	Active).	Press	1	to	go	back	to	the	main	menu,	or

hit	ENTER	to	boot.	Your	system	will	revert	to	a	known	working	boot	environment,	giving

you	a	chance	to	find	out	why	everything	went	sideways.



Boot	Environments	and	Applications

FreeBSD	developed	many	traditional	practices	over	the	last	decades,	especially	with	add-
on	packages.	Some	of	these	are	based	on	FreeBSD	sensibilities:	MySQL	stashes	data	in
/var/db/mysql.	Some	are	based	on	the	software’s	preferences:	PostgreSQL	keeps	its	records

in	/usr/local/pgsql.	All	of	these	pose	possible	problems	when	using	boot	environments.

Let’s	consider	MySQL	as	an	example.	The	directory	/var/db/mysql	is	part	of	the	root

dataset.	It’s	included	in	boot	environments.	If	you	store	your	database	data	in	a	boot
environment,	falling	back	to	an	older	boot	environment	will	also	revert	your	database	data
to	an	earlier	version.	This	probably	isn’t	what	you	want.

Other	server	software	has	exactly	the	same	problem.

Dealing	with	this	isn’t	hard,	but	it	requires	that	you	know	your	software.	You	have	two
choices:	changing	the	application	data	location,	or	creating	datasets	in	the	old	application
directory.	Both	work	fine	once	you	understand	your	needs.

Moving	Application	Data

Moving	application	data	requires	creating	a	dataset	for	application	data,	and	telling	the
application	to	use	that	location.	Here,	I	decide	to	put	my	MySQL	data	in	/var/mysql.

#	zfs	create	zroot/var/mysql

I	now	have	to	tell	MySQL	to	use	this	data	directory.	Checking	the	variables	in
/usr/local/etc/rc.d/mysql-server	tells	me	I	want	the	mysql_dbdir	option	in	/etc/rc.conf.

mysql_dbdir=”/var/mysql”

I	must	move	any	existing	data	and	configuration	files	from	/var/db/mysql	to	/var/mysql,

then	restart	the	server.

Creating	New	Datasets

A	boot	environment	affects	only	the	root	filesystem	dataset.	If	you	want	to	leave
application	data	in	the	usual	locations,	you	must	create	a	new	dataset	for	that	data.	Let’s
consider	PostgreSQL	as	an	example.	PostgreSQL	stores	its	data	in	/usr/local/pgsql,	so	you

could	just	create	that	dataset.

#	zfs	create	zroot/usr/local/pgsql

cannot	create	‘zroot/usr/local/pgsql’:	parent	does	not	exist

Without	a	/usr/local	dataset,	you	cannot	create	zroot/usr/local/pgsql.	But	if	you	create	a

standard	/usr/local	dataset,	you’ll	either	pull	the	files	in	/usr/local	out	of	the	boot



environment,	or	overlay	an	empty	filesystem	on	top	of	the	populated	/usr/local	directory.

As	with	/usr,	the	solution	is	to	create	a	filesystem	with	the	canmount	property	set	to	off,	and

then	create	the	child	dataset.
#	zfs	create	-o	canmount=off	zroot/usr/local

#	zfs	create	zroot/usr/local/pgsql

You	now	have	/usr/local/pgsql	as	its	own	dataset,	and	can	safely	run	PostgreSQL	with

boot	environments.

Neither	solution	addresses	messy	software	packages	like	Apache.	Apache	2.4,	for
example,	sticks	lots	of	stuff	in	/usr/local/www	and	/usr/local/etc/apache24.	The	sysadmin	is

supposed	to	edit	some,	but	not	all,	of	those	files.	This	complicates	separation	by	ZFS
datasets.	For	Apache	and	programs	like	it,	I	normally	create	an	entirely	new	dataset,	such
as	/var/www,	and	put	the	active	web	site	files	there.

Disk	Encryption	and	Boot	Environments

The	standard	beadm	boot	environment	manager	only	works	with	a	single	root	filesystem

dataset.	A	FreeBSD	installation	to	a	GELI-encrypted	disk	is	incompatible	with	beadm.

Installing	default	FreeBSD	with	ZFS	onto	an	encrypted	disk	device	requires	a	small,
unencrypted	partition	to	store	the	boot	kernel.	The	default	installer	creates	the	pool	bootpool

for	this,	and	puts	the	/boot	in	bootpool/boot.	On	a	running	system,	/boot	is	a	symlink	to	this

other	pool.	The	rest	of	the	system	goes	in	the	zroot	pool.

You	can	use	boot	environments	on	encrypted	disks.	You	just	don’t	get	the	convenience
of	a	boot	environment	manager.	Take	a	snapshot	before	you	upgrade	your	system.	Clone
that	snapshot	to	create	the	old	environment.	Keep	a	copy	of	your	kernel	for	each	boot
environment.	Change	which	environment	FreeBSD	uses	as	the	root	filesystem	with	the
zroot	pool’s	bootfs	property.

Booting	the	kernel	requires	a	whole	different	process,	however.	Before	patching	your
kernel	you	must	create	a	copy	of	that	kernel	named	after	your	boot	environment.	Before
upgrading	from,	say,	10.3-RELEASE	to	10.3-p5,	you’ll	want	to	copy	the	10.3-RELEASE
kernel	from	/boot/kernel	to	/boot/kernel.10.3R.	If	you	have	to	revert	the	boot	environment,

choose	the	old	kernel	at	the	loader	menu.

PC-BSD	10	does	support	using	boot	environments	on	GELI-encrypted	disks,	but	they
use	the	GRUB	boot	loader	and	some	special	trickery.



FreeBSD	11.0	is	expected	to	support	booting	from	GELI	encrypted	ZFS	without	the
separate	bootpool,	allowing	boot	environments	to	work	the	same	as	they	do	on	unencrypted

disks.	That	feature	has	not	landed	as	of	this	book’s	publication	date.

For	most	FreeBSD	ZFS	users,	boot	environments	save	a	lot	of	trouble.	Let’s	go	on	and
talk	about	other	ways	to	save	you	trouble.

1	We’re	told	that	the	World	Trade	Organization	considers	tampering	with	a	sysadmin’s	email	to	be	grounds	for
execution.	We	haven’t	experimentally	verified	this,	because	it	conforms	to	our	prejudices.





Chapter	2:	Delegation	and	Jails
The	ZFS	designers	did	their	best	to	ease	storage	management	for	system	administrators.
One	of	the	best	ways	to	reduce	the	amount	of	work	you	do	is	to	make	someone	else	do	the
work	for	you.	ZFS	has	a	fully	featured	delegation	system	that	lets	you	dictate	what
commands	and	features	a	user	or	group	of	users	can	use	on	each	dataset.	You	can	allow
users	to	create	and	destroy	their	own	snapshots,	create	child	datasets,	generate	space
consumption	reports,	or	control	the	properties	of	a	dataset.	ZFS	builds	on	the	delegation
feature	to	provide	special	support	to	jails.



ZFS	Delegation

ZFS	lets	you	delegate	administrative	tasks	to	users	on	a	per-property	and	per-command
basis	for	each	dataset.	You	could	give	the	database	administrator	complete	control	over	the
database	pool,	or	the	web	server	admin	control	over	snapshots	on	the	web	site	dataset.	Use
the	zfs	allow	command	to	delegate	permissions.

Giving	zfs	allow	a	pool	or	dataset	as	an	argument	shows	the	permissions	on	that	device.

Here	I	get	the	permissions	on	the	pool	remotepool.

#	zfs	allow	remotepool

----	Permissions	on	remotepool	---------------------------------------

Local+Descendent	permissions:

					user	replicator	compression,create,destroy,mount,mountpoint,receive

This	pool	has	a	single	permission	entry,	for	the	user	replicator.	This	user	has	rights	to

the	compression	and	mountpoint	properties,	as	well	as	the	create,	destroy,	mount,	and	receive

subcommands	of	zfs.	(Chapter	4	discusses	the	importance	of	these	particular	permissions.)

Applications	and	users	can	define	their	own	properties.	Programs	like	zfstools	create

properties	to	manage	snapshots.	There	is	also	a	special	permission,	userprop,	to	allow	users

to	create	user-defined	properties.	User-defined	properties	are	assigned	as	a	single
permission:	you	cannot	separately	assign	different	user-defined	properties.

While	root	is	not	listed	as	having	any	permissions	here,	root	can	do	whatever	it	dang

well	pleases.	Because	that’s	how	Unix	rolls.

Adding	Permissions

Delegate	permissions	on	a	pool	or	a	dataset	to	a	user	or	group.	The	-u	flag	lets	you	specify

a	username	to	zfs	allow,	and	-g	specifies	a	group.

#	zfs	allow	-u	username	permissions	pool/dataset

Suppose	we	have	a	troublesome	user—call	him	Lucas1.	He	keeps	trying	stupid	Unix
tricks	that	fry	his	home	directory.	Let’s	allow	Lucas	to	create	his	own	snapshots	so	he
doesn’t	have	to	bother	the	sysadmin	every	time	he	breaks	his	environment.

#	zfs	allow	-u	lucas	snapshot,rollback	mypool/usr/home/lucas

When	you	view	the	dataset	permissions,	the	two	permissions	you’ve	assigned	show	up.

#	zfs	allow	mypool/usr/home/lucas

----	Permissions	on	mypool/usr/home/lucas	----------------------------

Local+Descendent	permissions:

					user	lucas	rollback,snapshot



Delegations	are	automatically	inherited.	When	Lucas	gained	the	ability	to	snapshot	his
home	directory	dataset,	he	also	gained	that	permission	on	all	of	the	child	datasets	of	his
home	directory.	For	some	reason	he	has	a	dataset	called	blackmail.	It’s	probably	where	he

stashes	all	of	the	photos	and	recordings	he	uses	to	get	BSD	developers	to	help	him	with

research	and	technical	reviews.2

#	zfs	allow	mypool/usr/home/lucas/blackmail

----	Permissions	on	mypool/usr/home/lucas	----------------------------

Local+Descendent	permissions:

					user	lucas	rollback,snapshot

Lucas	should	have	the	access	to	create	a	snapshot.	Before	telling	him	it	works,	though,
impersonate	Lucas	and	create	a	snapshot.

#	su	lucas

$	zfs	snapshot	mypool/usr/home/lucas/blackmail@bsdcan_drunken_escapades

$	zfs	list	-t	all	-r	-o	name	mypool/usr/home/lucas

NAME

mypool/usr/home/lucas

mypool/usr/home/lucas/blackmail

mypool/usr/home/lucas/blackmail@bsdcan_drunken_escapades

We	know	this	works.	Let’s	get	rid	of	the	snapshot	before	Lucas	gets	any	ideas	he
doesn’t	already	have.

$	zfs	destroy	mypool/usr/home/lucas/blackmail@bsdcan_drunken_escapades

cannot	destroy	snapshots:	permission	denied

Creating	new	datasets	involves	mounting	them,	and	destroying	a	dataset	obviously
should	include	unmounting	that.	To	be	useful	the	clone,	create,	and	destroy	commands	all

require	the	mount	permission.	To	grant	lucas	permissions,	run	zfs	allow	-u	lucas	and	list	the

desired	permissions	and	dataset.

#	zfs	allow	-u	lucas	destroy,mount	mypool/usr/home/lucas

Checking	your	work	now	shows	every	privilege	you’ve	assigned	in	both	runs	of	zfs

allow.

#	zfs	allow	mypool/usr/home/lucas

----	Permissions	on	mypool/usr/home/lucas	----------------------------

Local+Descendent	permissions:

					user	lucas	destroy,mount,rollback,snapshot

Lucas	can	now	shoot	himself	in	the	foot	by	destroying	the	dataset	his	home	directory
resides	on.	And	he’ll	certainly	call	to	whinge	about	it.

You	can	give	a	user	permission	to	create	and	mount	a	dataset,	but	the	operating	system



also	has	its	say	here.	FreeBSD	uses	the	sysctl	vfs.usermount	to	determine	if	users	can
mount	partitions.	Set	this	sysctl	to	1	to	allow	a	user	to	mount	partitions.

Even	with	that	sysctl,	allowing	a	regular	user	to	mount	filesystems	comes	with	a	safety
belt	that	blocks	users	from	doing	evil	things.	A	user	must	own	the	directory	where	he
wants	to	mount	anything.	This	prevents	users	from	mounting	their	new	dataset	as	/etc	and

hijacking	your	system.	The	dataset	might	have	restrictive	permissions	on	it,	but	a	user	who
owns	the	mount	point	and	has	the	mount	privilege	can	mount	it.

To	allow	the	regular	user	lucas	to	create,	clone,	and	mount	datasets	under	his	home

directory,	set	the	sysctl	and	make	sure	he	owns	the	directory	you’re	letting	him	control.

#	sysctl	vfs.usermount=1

#	zfs	allow	-u	lucas	create,clone,mount	mypool/usr/home/lucas

Log	in	as	lucas	again	to	verify	it	works.

#	su	lucas

$	zfs	create	mypool/usr/home/lucas/evil_plot

$	zfs	mount

mypool/ROOT/default														/

…

mypool/usr/home																		/usr/home

mypool/usr/home/lucas												/usr/home/lucas

mypool/usr/home/lucas/blackmail		/usr/home/lucas/blackmail

mypool/usr/home/lucas/evil_plot		/usr/home/lucas/evil_plot

Remember	to	add	vfs.usermount=1	to	your	/etc/sysctl.conf	so	he	can	still	mount	datasets

after	a	reboot,	or	he’ll	come	whining	to	you.

Revoking	Permission

Giving	permissions	(and	work)	away	to	other	people	can	be	freeing,	but	nothing	matches
the	feeling	of	taking	permission	away.	Use	zfs	unallow	to	remove	permissions	from	a

dataset.	The	command	follows	the	exact	same	syntax	as	zfs	allow.

Here,	user	lucas	has	created	too	many	children	and	we	decide	he	should	not	longer	be

allowed	to	procreate.	Get	rid	of	his	create	permission.

#	zfs	unallow	-u	lucas	create	mypool/usr/home/lucas

#	zfs	allow	mypool/usr/home/lucas

----	Permissions	on	mypool/usr/home/lucas	----------------------------

Local+Descendent	permissions:

					user	lucas	clone,destroy,mount,rollback,snapshot

Permissions	can	also	be	removed	recursively,	with	the	-r	flag,	which	makes	sure	the



permission	is	removed	even	from	distant	child	datasets	where	you	might	have	manually
set	a	privilege.



Delegation	Inheritance

ZFS’	delegated	permissions	are	automatically	inherited.	If	you	give	a	user	privileges	over
zroot/db,	she	automatically	gets	those	same	privileges	over	all	children	of	zroot/db.	The	zfs

allow	subcommand	can	also	restrict	permission	inheritance.	Inherited	permissions	can	be

local,	or	apply	to	descendents.

Local	permissions	apply	only	to	the	specified	dataset.	We	might	allow	lucas

permissions	to	snapshot	zroot/usr/home/lucas,	but	not	snapshot	the	child	datasets.	He’ll	have

to	manage	his	blackmail	material	the	old-fashioned	way.	Set	privileges	to	be	local	only
with	the	-l	flag.

#	zfs	allow	-lu	lucas	clone,destroy,mount,rollback,snapshot	zroot/home/lucas

The	permissions	now	show	up	as	local	only,	rather	than	local	and	descendent.

#	zfs	allow	zroot/home/lucas

----	Permissions	on	zroot/home/lucas	--------------------------------

Local	permissions:

					user	lucas	clone,destroy,mount,rollback,snapshot

You	can	also	apply	permissions	only	to	child	datasets,	and	not	the	dataset	in	the
command.	The	-d	flag	tells	zfs	allow	that	the	permission	applies	only	to	the	descendent

datasets,	not	the	parent	on	which	the	permissions	were	created.	This	can	be	used	to	allow
users	to	destroy	child	datasets,	but	not	the	parent.

Here	I	want	to	allow	lucas	to	destroy	the	snapshots	he	created,	but	not	destroy	his	entire

home	directory.	I	use	-d	to	specify	that	these	permissions	apply	only	to	his	home

directory’s	child	datasets,	and	not	the	home	directory	itself.	I	leave	permissions	for	the
snapshot	and	rollback	commands	in	place	on	his	home	directory,	so	he	can	rescue	himself	if

he	doesn’t	screw	up	too	badly.

#	zfs	allow	-d	lucas	destroy,mount	mypool/usr/home/lucas

#	zfs	allow	mypool/usr/home/lucas

----	Permissions	on	mypool/usr/home/lucas	-------------------

Descendent	permissions:

					user	lucas	destroy,mount

Local+Descendent	permissions:

					user	lucas	rollback,snapshot

Once	again,	impersonate	Lucas	and	test	the	permissions.

$	zfs	destroy	-v	mypool/usr/home/lucas/desc

will	destroy	mypool/usr/home/lucas/desc

$	zfs	destroy	-v	mypool/usr/home/lucas

cannot	unmount	'/home/lucas':	Operation	not	permitted



Running	zfs	destroy	on	Lucas’	home	directory	is	now	a	pleasure	reserved	for	the

sysadmin.



Create	Time	Permissions

ZFS	allows	you	to	create	permissions	today,	for	datasets	that	won’t	exist	until	next
Tuesday,	or	some	other	future	time.	Create	time	permissions	apply	to	the	user	who	creates
a	dataset.	They’re	like	a	“sticky	bit”	for	delegation.	Define	create	time	permissions	with	-

c.

A	common	desire	for	these	kinds	of	permissions	is	to	give	the	permissions	to	everyone,
rather	than	specifying	every	user	on	the	system	or	defining	a	group	that	includes	all	users.
Rather	than	-u	or	-g	and	a	user	or	group	name,	use	the	-e	flag	to	indicate	everyone	(all

users).

Using	create	time	permissions	requires	careful	control	of	inheritance.	You	want	the
create	time	permissions	to	apply	to	child	datasets,	not	the	parent.	The	parent	dataset
should	have	its	own	privileges,	set	with	-l.

Suppose	we	have	a	scratch	dataset,	usable	by	everyone.	It’s	like	a	/tmp,	but	with	ZFS

features.	We	want	everyone	to	be	able	to	create	and	mount	datasets	in	this	space,	but	not
have	access	to	trash	the	dataset	as	a	whole.	Those	permissions	must	be	restricted	(via	the	-

l	flag)	to	that	dataset,	and	not	automatically	inherited	by	the	new	children.

#	zfs	allow	-l	-e	create,mount	mypool/scratch

Now	use	-c	to	specify	create	time	permissions	assigned	to	newly	created	datasets.

#	zfs	allow	-c	snapshot,rollback,destroy	mypool/scratch

Checking	your	work	will	show	the	create	time	permissions	as	permission	sets.

#	zfs	allow	mypool/scratch

----	Permissions	on	mypool/scratch	-----------------------------------

Permission	sets:

					destroy,rollback,snapshot

Local	permissions:

					everyone	create,mount

The	real	test	is	running	these	commands	as	a	normal	user,	of	course.	Let’s	get	lucas	to

create	some	datasets	under	mypool/scratch.

#	su	lucas

$	zfs	create	mypool/scratch/lucas

That	worked.	But	what	privileges	does	he	have?

$	zfs	allow	mypool/scratch/lucas

----	Permissions	on	mypool/scratch/lucas	-----------------------------

Local	permissions:



					user	lucas	destroy,rollback,snapshot

----	Permissions	on	mypool/scratch	-----------------------------------

Permission	sets:

					destroy,rollback,snapshot

Local	permissions:

					everyone	create,mount

Now	lucas,	and	only	lucas,	can	create	snapshots	of	and	destroy	his	dataset.	Other	users

can	create	their	own	datasets	that	only	they	have	access	to.



Permission	to	change	permissions

A	user	with	access	to	the	allow	command	can	delegate	any	other	permissions	that	he

already	has.	This	lets	you	give	a	team	leader	or	project	manager	the	ability	to	take	charge
of	permissions	for	his	crew.

Consider	the	previous	example	of	a	scratch	dataset.	Suppose	lucas	wants	to	allow	the

liz	user	to	create	snapshots	on	his	new	scratch	dataset.

First,	give	lucas	the	ability	to	delegate	permissions	by	allowing	him	the	zfs	allow

command.

#	zfs	allow	-u	lucas	allow	mypool/scratch/lucas

#	zfs	allow	mypool/scratch/lucas

----	Permissions	on	mypool/scratch/lucas	-----------------------------

Local	permissions:

					user	lucas	destroy,snapshot

Local+Descendent	permissions:

					user	lucas	allow

----	Permissions	on	mypool/scratch	-----------------------------------

Permission	sets:

					destroy,snapshot

Local	permissions:

					everyone	create,mount

Lucas	can	now	delegate	any	permission	he	has	to	the	liz	account.	Test	this	by	logging

in	as	him.

#	su	lucas

$	zfs	allow	-u	liz	snapshot	mypool/scratch/lucas

$	zfs	allow	mypool/scratch/lucas

----	Permissions	on	mypool/scratch/lucas	-----------------------------

Local	permissions:

					user	lucas	destroy,snapshot

Local+Descendent	permissions:

					user	lucas	allow

					user	liz	snapshot

----	Permissions	on	mypool/scratch	-----------------------------------

Permission	sets:

					destroy,snapshot

Local	permissions:

					everyone	create,mount

But	Lucas	can’t	give	away	permissions	he	does	not	have:

$	zfs	allow	-u	liz	clone	mypool/scratch/lucas

cannot	set	permissions	on	‘mypool/scratch/lucas’:	permission	denied

The	sysadmin	can	delegate	permissions	to	a	user,	and	make	the	user	responsible	for
further	delegation	of	his	own	dataset.



Permission	Sets

Running	zfs	allow	presents	a	list	of	over	60	permissions	you	can	grant	a	user.	We	won’t	list

them	all	here,	but	you	can	grant	access	to	each	zfs(8)	subcommand	and	each	pool	and
dataset	property	individually.

Rather	than	having	to	grant	a	long	list	of	permissions	to	each	user,	and	inevitably
forgetting	one,	ZFS	allows	you	to	define	sets	of	permissions.	Use	the	-s	flag	and	give	a

permission	set	name,	beginning	with	the	@	sign.	Then	list	the	permissions	in	that	set,	and

the	name	of	the	dataset	that	permission	set	is	valid	for.

#	zfs	allow	-s	@permissionset	permission,permission,permission…	dataset

Here	we	create	a	permission	set	called	@dataset	that	includes	the	permissions	needed
to	manage	datasets.	It	applies	to	the	mypool/teams	dataset.

#	zfs	allow	-s	@dataset	create,destroy,mount,rename,snapshot,rollback,clone,promote,hold,release	mypool/teams

Here’s	a	permission	set	called	@replication	that	offers	the	privileges	needed	for
replication	on	that	same	dataset.

#	zfs	allow	-s	@replication	send,receive	mypool/teams

The	@billing	permission	set	grants	access	to	the	normally	inaccessible	userused	and

groupused	properties	on	this	dataset.

#	zfs	allow	-s	@billing	userused,groupused	mypool/teams

Here’s	a	@quotas	permission	set	that	lets	someone	manage	dataset	space	quotas.

#	zfs	allow	-s	@quotas	userquota,groupquota,quota,refquota,reservation,refreservation	mypool/teams

Finally,	here’s	a	permissions	set	to	let	people	adjust	some	basic	dataset	properties.
Presumably	the	sysadmin	sets	these	to	reasonable	defaults,	but	users	might	have	specific
datasets	with	special	requirements.

#	zfs	allow	-s	@basic_properties	compression,copies,atime,primarycache,secondarycache	mypool/teams

Once	you	establish	permission	sets,	you	can	assign	them	to	users	and	groups.	Here,	the
managers	group	gets	access	to	privileges	in	the	@dataset	and	@basic_properties	sets	in
their	dataset.

#	zfs	allow	-g	managers	@dataset,@basic_properties	mypool/teams

And	here,	we	allow	the	billbot	user	that	runs	the	billing	system	access	to	the	billing

permissions	set	on	mypool/teams.

#	zfs	allow	-u	billbot	@billing	mypool/teams



Running	zfs	allow	shows	you	the	permission	sets	and	the	assigned	permissions	on	a

dataset.

#	zfs	allow	mypool/teams

----	Permissions	on	mypool/teams	-------------------------------------

Permission	sets:

					@basic_properties	atime,compression,copies,primarycache,secondarycache

					@billing	groupused,userused

					@dataset	clone,create,destroy,hold,mount,promote,release,rename,rollback,snapshot

					@quotas	groupquota,quota,refquota,refreservation,reservation,userquota

					@replication	receive,send

Local+Descendent	permissions:

					user	billbot	@billing

					group	managers	@basic_properties,@dataset

ZFS	delegation	can	quickly	become	complex.	As	with	many	other	permissions
schemes,	using	groups	can	help	simplify	management.	Assign	permissions	only	when
they’re	needed,	not	because	you	think	you	know	how	the	system	will	evolve.





Delegation	and	Jails

FreeBSD	supports	a	lightweight	virtualization	method	called	jails.	You’ll	find	many

tutorials	on	using	jails,	so	we	won’t	get	into	the	complexities	of	jails.3	FreeBSD’s	ZFS
implementation	has	special	support	for	jails.

A	dataset	can	be	marked	for	use	only	in	a	jail.	The	jail’s	root	user	has	full	control	of	the

dataset.	She	can	create	child	datasets	and	change	any	properties	she	wishes.

A	jailed	dataset	cannot	be	mounted	on	the	host	system.	The	jail	dataset	is	untrusted,
and	might	have	property	settings	that	are	incompatible	with—or	actively	hostile	to—the
host.	As	an	easy	example,	the	jail	might	have	a	dataset	with	a	mountpoint	of	/etc.	Remember,

BSD	filesystems	are	stackable.	If	the	host	mounts	that	jail	dataset,	the	jail’s	/etc	would

stack	over	the	host’s	/etc.	The	host	would	suddenly	have	the	jail’s	/etc/password,	rc.conf,

sshd_config,	and	other	vital	system	files.	Worst	case,	the	jail’s	sysadmin	could	claim	control

of	the	host.	Best	case,	the	host’s	sysadmin	would	have	a	really	unhappy	day.

As	far	as	the	jail’s	root	user	can	tell,	he	almost	completely	controls	the	dataset.	The

only	property	he	cannot	change	is	the	quota.	Editing	the	quota	might	give	him	more	access
than	the	sysadmin	allocated	to	him.

The	jailed	root	account	can	see	that	it	exists	within	a	jail,	however.	The	root	account	can

see	each	of	their	dataset’s	parent	datasets	up	to	the	root	of	the	pool.	If	you	have	a	jails

pool	and	a	jail	exists	in,	say,	jails/customers/lucas,	the	root	user	can	see	that	path.	They	can’t

see	any	other	datasets	outside	the	jail,	however.	Other	customer	datasets	are	invisible.

Jailing	a	Dataset

To	jail	a	dataset,	set	the	jailed	property	to	on.	The	host	will	no	longer	be	able	to	mount	the

dataset.

To	build	a	jail	for	Lucas,	create	a	new	dataset	to	serve	as	the	root	of	his	prison.	Here	we
use	the	zroot/jails/lucas/jail	dataset	for	the	jail.

#	zfs	create	-o	jailed=on	-o	mountpoint=/jail	zroot/jails/lucas/jail

Once	you	have	the	dataset,	start	a	temporary	jail	rooted	in	that	dataset.

#	jail	-c	path=/zroot/jails/lucas	mount.devfs	allow.mount	allow.mount.zfs	\

host.hostname=lucas	ip4.addr=”lo0|127.0.0.2”	exec.poststart	=	\

“/sbin/zfs	jail	lucas	zroot/jails/lucas/jail”	command=/bin/sh

Now	enter	the	jail.



#	jexec	lucas	sh

As	we’re	in	the	jail,	we	can	create	a	new	dataset.

jail#	zfs	create	zroot/jails/lucas/jail/foo

The	new	dataset,	and	the	jail’s	parent	datasets,	are	visible.

jail#	zfs	list	-o	name,mountpoint

NAME																								MOUNTPOINT

zroot																							/zroot

zroot/jails																	/zroot/jails

zroot/jails/lucas											/zroot/jails/lucas

zroot/jails/lucas/jail						/jail

zroot/jails/lucas/jail/foo		/jail/foo

Are	there	other	datasets	in	zroot/jails	or,	indeed,	in	the	host	underlying	this	jail?	Users

in	the	jail	will	never	know.

The	user	lucas	can	now	set	mount	points,	create	and	destroy	datasets,	delegate	datasets

to	regular	users	inside	the	jail,	and	so	on.	If	only	it	were	that	easy	to	keep	Lucas	users
from	breaking	things	in	the	real	world…

Building	a	ZFS	Delegation	Jail

Your	jail	users	probably	don’t	want	a	bare-bones	jail	as	demonstrated	above.	They
probably	want	an	actual	userland,	with	programs	and	the	ability	to	run	services.	That
means	installing	FreeBSD	on	your	jailed	dataset.	Jails	can	be	incredibly	complex,	so	we
won’t	completely	cover	them	here.	We’ll	do	a	basic	FreeBSD	install	on	a	jailed	dataset,	so
you	can	add	ZFS	to	your	existing	jail	processes.

First,	create	the	jail	dataset.

#	zfs	create	-p	mypool/jails/lucas/zroot

Now	install	the	operating	system	on	that	dataset.	You	can	install	directly	from	the	FTP
site,	as	we	do	here	with	the	amd64	version	of	FreeBSD	10.3.

#	fetch	-o	-	ftp://ftp.freebsd.org/pub/FreeBSD/releases/amd64/10.3-RELEASE/base.txz	|	tar	-xJf	-	-C
/mypool/jails/lucas/

If	you	intend	to	install	multiple	jails,	download	the	base.txz	for	your	version	and	extract

it	in	each	jail.

#	tar	-xf	base.txz	-C	/mypool/jails/lucas/

Once	you’ve	copied	the	operating	system	into	the	jail	dataset,	mark	that	dataset	as
untrusted.	That	makes	the	dataset	inaccessible	to	the	host.

#	zfs	set	mountpoint=/zroot	mypool/jails/lucas/zroot

#	zfs	set	jailed=on	mypool/jails/lucas/zroot



With	a	ready	dataset,	make	an	entry	for	this	jail	in	the	jail	config	file	/etc/jail.conf.

Here	we	define	the	jail	no.gelato.for.michaelwlucas.com.4

nogelatoforyou	{

	host.hostname	=	"no.gelato.for.michaelwlucas.com";

	ip4.addr	=	"em0|198.51.100.200";

	path	=	"/mypool/jails/lucas";

	persist	=	true;

	mount.devfs	=	true;

	allow.mount	=	true;

	allow.mount.zfs	=	true;

	enforce_statfs	=	1;

	exec.poststart	=	"/sbin/zfs	jail	nogelatoforyou	mypool/jails/lucas/zroot";

	exec.poststop	=	"/sbin/zfs	unjail	nogelatoforyou	mypool/jails/lucas/zroot";

}

With	the	jail.conf	entry	in	place,	we	can	start	the	jail	using	the	standard	FreeBSD	tools.

#	service	jail	onestart	nogelatoforyou

The	last	chunk	of	setup	needs	to	happen	within	the	jail.	Alternatively,	you	could	do
something	wild	and	crazy	like	plan	ahead	when	installing	the	operating	system,	but	that
would	take	the	fun	out	of	things.	Let’s	enter	the	jail	and	look	at	our	datasets.

#	jexec	nogelatoforyou	/bin/sh

jail#	zfs	list

NAME																						USED		AVAIL		REFER		MOUNTPOINT

mypool																			5.21G		13.1G				96K		none

mypool/jails														180M		13.1G				96K		/mypool/jails

mypool/jails/lucas								180M		13.1G			180M		/mypool/jails/lucas

mypool/jails/lucas/zroot			96K		13.1G				96K		/zroot

This	new	jail	doesn’t	have	ZFS	enabled	in	rc.conf,	so	the	new	dataset	is	not	mounted	by

default.	Enable	ZFS	and	restart	the	jail.

jail#	sysrc	zfs_enable=”YES”

Having	made	a	configuration	change,	restart	and	reenter	the	jail.

#	service	jail	onerestart	nogelatoforyou

#	jexec	nogelatoforyou	/bin/sh

You’ll	see	the	newly	created	datasets.

jail#	zfs	create	mypool/jails/lucas/zroot/test

jail#	zfs	list

NAME																										USED		AVAIL		REFER		MOUNTPOINT

mypool																							5.21G		13.1G				96K		none

mypool/jails																		180M		13.1G				96K		/mypool/jails

mypool/jails/lucas												180M		13.1G			180M		/mypool/jails/lucas

mypool/jails/lucas/zroot						192K		13.1G				96K		/zroot

mypool/jails/lucas/zroot/test		96K		13.1G				96K		/zroot/test



The	jail	administrator	must	use	the	full	path,	including	parts	that	are	outside	of	the	jail,
to	create	new	datasets.

Defining	Limits	and	Safety	Belts

But	what	if	Lucas	is	incompetent,	or	evil?	You	gave	him	access	to	take	his	own	snapshots,
and	he	tries	to	create	a	million	snapshots	“just	to	see	what	would	happen.”	You	know
people	like	that.

ZFS	has	your	back	when	dealing	with	these	difficult	users.	ZFS	provides	the
snapshot_limit	and	filesystem_limit	properties,	which	allow	you	to	restrict	the	number	of

snapshots	or	child	filesystems	that	can	be	created	under	a	specific	dataset.	Set	these
properties	to	one	greater	than	the	number	of	snapshots	or	datasets	you	want	the	user	to
create.	That	is,	if	you	set	snapshot_limit	to	10,	the	user	can	create	nine	snapshots.	The	tenth

generates	an	error.

To	contain	the	pure	evil	that	is	Lucas,	limit	the	number	of	snapshots	he	can	create	to
two.

#	zfs	set	snapshot_limit=3	zroot/usr/home/lucas

#	su	lucas

$	zfs	snapshot	zroot/usr/home/lucas@three

$	zfs	snapshot	zroot/usr/home/lucas@four

cannot	create	snapshot	‘zroot/usr/home/lucas’:	out	of	space

The	read-only	filesystem_count	and	snapshot_count	properties	allow	you	to	quickly	see	how

many	filesystems	or	snapshots	exist,	and	compare	that	number	to	the	limit.

Delegation	and	jails	are	powerful	tools	for	administrative	management	of	storage
space.	Now	let’s	discuss	sharing	with	ZFS.

1	I’m	certain	that	when	Jude	wrote	this	section,	he	was	thinking	of	some	Lucas	other	than	me.	==mwl

2	Not	all	of	that	material.	And	definitely	some	other	Lucas.	==mwl

3	Lucas	keeps	insisting	that	he’s	going	to	write	a	“jails	mastery”	book.	Sadly,	the	storage	books	are	somewhere	between
prequels	and	prerequisites.

4	Okay.	Now	Jude	is	just	being	mean.	==ml





Chapter	3:	Sharing	Datasets
OpenZFS	integrates	sharing	of	datasets	over	Server	Message	Block	(SMB),	Network	File
System	(NFS),	and	Internet	Small	Computer	System	Interface	(iSCSI).	FreeBSD	bundles
support	for	only	NFS	and	iSCSI,	however.	This	chapter	takes	you	through	FreeBSD’s
iSCSI	and	NFS	implementations	and	how	they	relate	to	ZFS,	plus	a	few	notes	on	using
SMB	with	ZFS.



SMB

You	can	share	ZFS	datasets	over	SMB	using	a	program	like	Samba
(https://www.samba.org).	It	works	exactly	like	Samba	on	any	other	filesystem.	ZFS
imposes	literally	zero	restrictions	or	requirements	on	Samba,	although	you	probably	want
to	set	casesensitivity	to	mixed	on	datasets	shared	with	Windows	clients	via	SMB.

ZFS	datasets	shared	via	Samba	can	seem	weird	to	SMB	clients,	however.	As	a	pool
fills	up,	clients	see	the	size	of	the	dataset	shrink.	We	discuss	this	in	detail	in	FreeBSD
Mastery:	ZFS,	but	it’s	worth	repeating	here:	if	you	monitor	free	space	via	SMB,	you’ll	get
terribly	odd	results.	FreeNAS	includes	special	support	to	show	space	utilization	to
Windows	users	correctly.

You	can	leverage	Samba	with	ZFS	to	replicate	many	features	found	on	Windows	file
servers.	For	example,	with	a	bit	of	work,	ZFS	snapshots	can	be	accessed	through
Windows	Volume	Shadow	Copy.	FreeNAS	uses	many	such	tricks	to	support	Windows
clients.

If	your	main	role	for	ZFS	is	to	support	Windows	clients	with	SMB,	the	authors
strongly	recommend	using	FreeNAS.



iSCSI

You	can	share	zvols	through	any	iSCSI	target	software	you	prefer.	FreeBSD	10	and	newer
includes	the	Cam	Target	Layer	daemon	ctld(8),	which	serves	as	an	iSCSI	target.	The
ctld(8)	software	generally	has	higher	performance	than	the	istgt	package	used	in	older
FreeBSD	versions.

The	ZFS	administration	tools	do	not	integrate	with	either	FreeBSD	iSCSI	target
software	yet,	however.	Manage	sharing	of	zvols	within	ctld,	not	with	zfs(8).	We’ll	cover

configuring	a	zvol-backed	iSCSI	target	and	some	performance	considerations	for	ZFS-
backed	iSCSI	devices.

For	much	more	detail	on	iSCSI	and	how	not	to	use	it,	check	out	Lucas’	FreeBSD
Mastery:	Specialty	Filesystems.

Target	Configuration

An	iSCSI	target	provides	SCSI-style	storage	services	over	the	network.	You	might	think
of	it	as	an	iSCSI	server,	but	a	target	is	subtly	different	from	a	server.	An	iSCSI	target	never
initiates	any	activity	on	its	own.	All	requests	must	come	from	a	client,	or	initiator.

Basic	iSCSI	services	require	a	portal	group,	a	target,	and	a	Logical	Unit	Number	or
LUN.	A	portal	group	is	a	name	given	to	a	specific	combination	of	IP	address	and	TCP
port.	(“All	IP	addresses	on	this	host”	is	a	valid	component	of	a	portal	group.)	A	target	is	a
specific	group	of	storage	devices	exported	via	iSCSI.	One	portal	group	can	have	any
number	of	targets.	A	LUN	is	a	single	storage	device	within	a	target.

Here’s	a	snippet	of	/etc/ctl.conf	that	defines	a	single	portal	group.

portal-group	group0	{

	discovery-auth-group	no-authentication

	listen	0.0.0.0

	listen	[::]

}

The	portal	group	is	named	group0.	While	we	can	(and	should)	configure	authentication
for	a	production	iSCSI	target,	we	don’t	need	authentication	to	get	started.	This	portal
group	is	available	on	all	IPv4	and	IPv6	IP	addresses	on	the	machine.

Next	we	define	a	target	for	this	portal	group.	This	target	contains	one	LUN.

target	iqn.2013-11.org.mwlucas:target0	{

	auth-group	no-authentication

	portal-group	group0

	lun	0	{



		path	/dev/zvol/vm/db1

		size	1T

	}

}

Names	for	an	iSCSI	target	are	based	on	the	domain	name	of	the	organization	providing
the	target.	Theoretically	you	can	name	your	iSCSI	targets	almost	any	way	you	please,	but
some	initiator	software	attempts	to	use	the	name	to	set	optimizations.	It’s	best	to	not	copy
target	names	from	your	commercial	SAN	provider.

The	naming	scheme	for	iSCSI	devices	always	starts	with	the	string	iqn.	You	then	have
the	year	and	month	the	domain	name	was	registered,	followed	by	the	domain	name	in
reverse.	Here,	mwlucas.org	was	registered	in	November	of	2013,	so	the	target	name	starts
with	iqn.2013-11.org.mwlucas.	We	then	have	a	colon	and	the	name	of	this	specific	target.

Like	our	portal	group,	this	target	does	not	require	authentication.	The	portal-group
keyword	ties	us	to	the	group0	portal	group	created	earlier.

This	target	has	a	single	LUN,	number	0.	We	give	the	path	to	the	file	or	device	node	and
the	size	of	the	target.	Note	the	device	node	we	use	here,	/dev/zvol/vm/db1.	While	a	zvol

might	have	multiple	device	nodes,	always	access	the	device	node	for	iSCSI	exported-zvols
under	/dev/zvol.	It’s	best	to	create	such	zvols	with	a	volmode	of	dev,	so	that	the	server’s

GEOM	layer	doesn’t	taste	and	preconfigure	the	zvol.

Once	/etc/ctl.conf	exists,	start	ctld(8).

#	service	ctld	start

Status	and	error	messages	appear	in	/var/log/messages.

If	ctld(8)	doesn’t	fit	your	needs,	use	any	target	software	you	prefer.	Use	the	zvol’s
device	node	to	offer	it	to	your	initiator.



Network	File	System

Entire	books	have	been	written	about	the	Network	File	System,	or	NFS.	Many	different
operating	systems	support	NFS,	either	as	a	server	or	a	client	or	both.	For	this	book,	we’ll
focus	on	offering	NFS	shares	through	the	ZFS-integrated	tools.

NFS	Configuration	Types

You	can	manage	ZFS-backed	NFS	exports	with	the	traditional	FreeBSD	/etc/exports	file,

and	nothing	horrific	will	happen	to	you.	If	you’re	an	old	FreeBSD	hand,	/etc/exports	might

even	feel	more	comfortable.	But	zfs(8)	handles	many	aspects	of	NFS	management	for
you,	and	works	identically	across	all	ZFS	platforms.

However	you	manage	NFS	on	your	host,	we	strongly	encourage	you	to	choose	a	single
method	and	stick	with	it.	Don’t	use	both	/etc/exports	and	ZFS	to	manage	your	NFS	shares.

FreeBSD	reads	share	information	from	both	locations,	making	troubleshooting	even	more
annoying.

A	FreeBSD	host	must	have	an	/etc/exports	file	to	serve	NFS	shares,	even	if	you	manage

NFS	entirely	within	ZFS.	The	simplest	way	to	get	this	is	touch	/etc/exports,	although	you

might	want	an	exports	file	that	contains	only	comments	directing	other	sysadmins	to
zfs(8).

As	with	iSCSI,	we’re	not	going	to	completely	cover	NFS.	We’ll	cover	managing	NFS
from	a	ZFS	perspective,	drawing	comparisons	to	traditional	NFS	configuration	where
useful.

Enabling	NFSv2/v3

Enabling	NFS	at	the	ZFS	level	does	nothing	if	the	host	isn’t	running	the	services	required
for	NFS.	Set	the	following	in	/etc/rc.conf	to	start	the	processes	needed	to	serve	NFS	at

boot.

nfs_server_enable=YES

rpcbind_enable=YES

mountd_enable=YES

rpc_lockd_enable=YES

rpc_statd_enable=YES

Not	all	environments	require	all	of	these	services,	but	turning	them	on	doesn’t	use
many	system	resources	and	offers	the	widest	range	of	compatibility	and	decent
performance.



You	also	must	allow	hosts	on	your	network	to	access	rpcbind(8),	with	an
/etc/hosts.allow	entry.	Here	I	let	the	network	203.0.113.0/24	access	my	NFS	services.

rpcbind:	203.0.113.0/255.255.255.0	:	allow

Without	this	hosts.allow	entry,	your	clients	will	drive	you	to	the	brink	of	madness	with

meaningless	NFS	errors.

Configuring	NFSv2/v3	via	ZFS

ZFS	configures	NFS	on	a	per-dataset	basis.	The	ZFS	property	sharenfs	dictates	how	a

dataset	is	shared.	This	property	can	be	set	to	on,	off,	or	to	NFS	share	options	for	the
dataset.

If	set	to	off,	ZFS	does	not	configure	sharing	for	this	dataset.	The	dataset	could	still	be
shared	via	/etc/exports,	however.

Setting	this	property	to	on	shares	the	dataset	via	NFS.	It’s	equivalent	to	listing	the

filesystem	by	itself	in	/etc/exports.	Setting	sharenfs	to	on	for	zroot/home	would	be	like	the

following	/etc/exports	entry.

/home

Any	host	anywhere	in	the	world	could	access	and	NFS	mount	this	host.

It	would	be	far	more	sensible	to	set	access	for	only	those	hosts	we	want	to	allow.

#	zfs	set	sharenfs=“203.0.113.208”	zroot/home

This	generates	an	/etc/zfs/exports	like	this.

/home	203.0.113.208

If	you	must	enter	more	complicated	values	in	the	properties,	enclose	them	in	quotes	or
otherwise	escape	them.

#	zfs	set	sharenfs=”-network	203.0.113.0	-mask	255.255.255.0”	zroot/home

Any	entries	that	make	valid	/etc/exports	entries	are	usable	as	values	for	sharenfs.

The	sharenfs	property	cannot	support	any	NFS	configuration	that	requires	multiple	lines

in	/etc/exports.	For	these	environments,	you	must	use	a	traditional	exports	file.

Enabling	NFSv4

NFSv4	is	a	whole	different	protocol	from	NFSv2	or	v3.	Don’t	enable	NFSv4	unless	you
understand	it.	This	section	gets	those	people	who	already	have	some	NFSv4	know-how	up
and	running.



To	enable	NFSv4,	set	the	following	in	/etc/rc.conf.

nfs_server_enable=YES

mountd_enable=YES

nfsv4_server_enable=YES

nfsuserd_enable=YES

You’ll	also	need	a	single	line	in	/etc/exports,	defining	the	root	of	your	NFS	tree.	This	is

normally	the	filesystem	root.

V4:	/

Enable	and	disable	NFS	sharing	with	the	sharenfs	property	on	individual	datasets.

Configuring	NFSv4	via	ZFS

As	with	older	NFS	versions,	use	the	sharenfs	property	to	configure	exports	for	a	single

dataset.	NFSv4	exports	everything	in	a	directory	tree,	however,	so	inheritance	plays	a
pretty	big	role.

Setting	sharenfs	to	on	tells	NFS	to	share	the	dataset	with	everyone,	without	restrictions.

You	rely	entirely	on	firewalls	or	packet	filters	to	prevent	unauthorized	access	to	this
dataset	and	its	descendent	datasets.	Like	other	ZFS	properties,	sharenfs	is	inherited.	If	you

share	zroot/home,	you’re	sharing	all	the	home	directories	beneath	it.

Setting	sharenfs	to	off	tells	NFS	to	not	share	this	dataset.	Use	this	to	deliberately

override	a	parent	dataset’s	sharenfs	setting.

Setting	this	to	an	IP	address,	or	a	mask	statement,	shares	the	dataset	exactly	as	it	does
for	NFSv2/3	exports.

Debugging	ZFS	NFS

FreeBSD	assembles	the	sharenfs	properties	into	an	exports	file,	/etc/zfs/exports.	If	you’re

familiar	with	NFS,	checking	this	file	might	give	you	insight	into	why	the	file	shares	are
working	as	they	do.

Check	/var/log/messages	on	the	client	and	server	for	hints	as	to	why	a	mount	fails.	The

most	common	errors	we	see,	after	hosts.allow	and	firewall	problems,	are	invalid	sharenfs

properties.	After	decades	of	practice,	Lucas	still	specifies	allowed	networks	as	CIDR
blocks	rather	than	in	the	NFS-friendly	format.





Chapter	4:	Replication
What	exactly	is	[/ˌrepləˈkāSH(ə)n/]	anyway?	In	ZFS,	it	means	making	an	exact	copy	of
your	filesystem	someplace	else.	That	other	place	can	be	another	dataset	in	your	pool,	a
second	pool	on	your	system,	an	external	drive,	a	remote	system,	a	tape,	or	just	a	file.	You
can	declare	“I	want	this	filesystem	in	that	place,”	and	make	it	happen.	ZFS	replication	has
a	few	design	features	that	make	it	especially	powerful.

Programs	like	dump(8)	and	rsync(1)	expect	the	receiver	to	somehow	acknowledge
receipt	of	the	data.	The	ZFS	replication	process	is	unidirectional—the	sender	does	not
need	any	feedback	from	the	receiving	side.	As	replication	doesn’t	expect	any
acknowledgement,	the	ZFS	recipient	doesn’t	need	any	intelligence;	it	only	needs	to	accept
a	stream	of	bytes	and	do	something	with	them.

The	replication	system	is	integrated	with	snapshots.	A	snapshot	is	a	static,	unchanging
entity,	which	means	that	the	transmitted	ZFS	dataset	is	fully	coherent,	unlike	dumping	or
rsyncing	a	live	filesystem.	Snapshot-based	replication	also	means	you	can	do	incremental
replication,	sending	only	the	blocks	that	have	changed	between	two	snapshots.	With
incremental	replication,	you	never	have	to	send	the	same	data	twice.

ZFS’s	replication	feature	is	designed	to	fully	utilize	all	of	your	disks.	The	only
limitation	to	how	fast	you	can	replicate	data	between	machines	is	the	speed	of	your
network	link.

ZFS	replication	consists	of	two	parts:	zfs	send,	which	serializes	a	snapshot	or	series	of

snapshots	into	a	single	data	stream,	and	zfs	receive,	which	turns	that	stream	back	into	a

ZFS	filesystem.



But	I	Have	Rsync!

For	decades	now,	rsync(1)	has	been	the	standard	tool	for	synchronizing	files	between
machines.	To	synchronize	files,	rsync	walks	the	directory	tree,	evaluates	the	timestamps

and	cryptographic	checksums	of	each	file,	and	compares	them	to	the	files	on	the	remote
side.	Many	organizations	have	deployed	extensive	rsync-based	infrastructure.

ZFS	is	designed	from	the	disk	up	for	maximum	performance.	It	beats	rsync	so	badly

that	rsync’s	mom	needs	urgent	medical	attention.	ZFS	maintains	a	list	of	blocks	on	disk

that	differ	between	each	snapshot.	The	replication	process	doesn’t	need	to	determine
which	files	have	changed—the	filesystem	itself	already	has	that	information.	The
replication	process	starts	sending	those	blocks,	as	quickly	as	possible,	immediately.	As	the
changed	blocks	contain	all	the	metadata	to	reassemble	the	files,	the	replication	process
doesn’t	even	need	to	know	which	files	those	blocks	belong	to.

While	rsync	is	walking	your	filesystem,	looking	at	each	file,	checking	its	timestamp,

calculating	a	checksum,	and	comparing	those	to	the	versions	on	the	other	side,	ZFS	has
already	finished.	If	you	have	10	TB	of	data,	and	only	1	GB	has	changed,	rsync	still	needs

to	check	every	file.	ZFS	just	grabs	the	1	GB	of	changed	blocks	and	sends	them.

A	sysadmin	who	needs	faster	rsync	synchronization	can	tell	rsync	to	cheat	and	assume

that	if	the	last	modified	time	on	both	the	local	and	remote	files	are	the	same,	the	file	has
not	changed.	(This	is	not	actually	always	true,	but	don’t	hold	that	against	rsync—the

sysadmin	should	know	better.)	When	a	file’s	timestamp	has	changed,	rsync	calculates

checksums	on	chunks	of	the	file	on	both	sides,	and	compares	the	checksums.	If	it	finds	a
difference,	it	then	calculates	a	delta	and	sends	that	across.	This	means	that	if	you	make	a
small	change	to	a	large	file,	rsync	must	read	and	checksum	the	entire	file	on	both	the	local

and	remote	side.	Using	rsync	to	maintain	a	copy	of	that	500	GB	VM	disk	image	on	a

backup	machine	eats	a	whole	bunch	of	disk	bandwidth	and	processor	time.

Each	block	in	ZFS	has	a	birthtime,	the	transaction	group	ID	of	when	the	block	was
created.	The	replication	process	sends	any	block	newer	than	the	last	time	replication	was
run.	It	doesn’t	matter	if	the	blocks	come	from	a	new	file,	or	the	middle	of	a	huge	file.

The	advantages	of	snapshot-based	replication	really	come	into	play	when	you	regularly
synchronize	filesystems.	Suppose	you	replicate	a	snapshot	on	a	remote	backup	server.	An
hour	later,	you	create	a	new	snapshot	and	incrementally	send	that	snapshot	to	the	backup
server.	ZFS	finishes	in	a	few	seconds,	while	rsync	is	still	walking	the	first	level	of



directories.

Rsync(1)	supports	a	snapshot	backup	mode.	Snapshots	in	rsync	are	completely	different

than	ZFS	snapshots,	however.	With	rsync	snapshots,	if	you	modify	1	byte	of	a	1	GB	file,

rsync	keeps	two	entire	copies	of	the	file.	ZFS,	on	the	other	hand,	keeps	the	two	different

copies	of	a	single	block.	The	two	versions	of	the	file	share	the	rest	of	the	blocks.

In	rsync’s	defense,	it	is	a	cross-platform,	cross-filesystem	tool.	You	can	use	rsync	to

synchronize	directory	trees	between	operating	systems	and	between	filesystems.	Lucas	has
used	rsync	to	synchronize	directory	trees	between	wildly	different	Unix-like	platforms,	like

FreeBSD	and	AIX	and	Linux.

But	if	you’re	using	ZFS,	replication	is	uniquely	suited	to	deal	with	ZFS.	Replication
understands	and	duplicates	ZFS	properties.	It	can	maintain	the	relationship	between	a
clone	and	its	parent,	whereas	rsync	would	lose	this	link	and	surrender	all	of	your	space

savings.	Rsync(1)	doesn’t	work	so	well	on	raw	block	devices,	but	ZFS	replication	works
with	zvols.	Replication	uses	the	filesystem’s	integrated	checksums	as	well,	so	there’s	no
risk	of	the	files	you	receive	somehow	differing	from	the	originals.

ZFS	replication	is	also	version	agnostic.	New	pool	features	are	enabled	only	if	you
deliberately	add	the	command-line	flags	to	request	them.	This	lets	ZFS	replication	easily
move	data	between	pools	of	different	versions.



Why	Replicate?

Replication	comes	into	play	many	ways:	most	obviously	in	backups,	but	also	in	testing,
virtualization,	and	data	migrations.

You	do	remember	that	RAID	is	not	a	backup,	right?	Even	RAID-Z3	is	not	a	proper
backup.	When	your	machine	catches	on	fire,	when	law	enforcement	confiscates	all
hardware	at	your	hosting	provider,	or	when	you	accidently	delete	that	vital	dataset,	RAID-
Z3	will	not	save	you.	Replicate	your	important	pools	to	an	external	drive,	a	backup
machine,	or	a	tape	library.	Now	you	can	get	it	back	even	after	complete	loss	of	the
hardware.	The	beauty	of	ZFS	is	that	after	the	initial	replication,	every	backup	can	be	an
incremental.

Let’s	take	it	a	step	further.	Maybe	just	being	able	to	recover	your	data	is	inadequate.
You	must	guarantee	that	your	data	is	always	accessible,	24x7x365.	You	need	High
Availability.	Replicate	your	data	to	a	second	and	third	server,	with	incremental	snapshots
every	few	minutes.	Now	you	always	have	your	data	ready	to	go	on	n+2	hot	spare	servers.
Put	one	of	those	backup	servers	at	a	remote	location,	and	you	are	protected	even	against

total	facility	destruction.1

So,	that	nice	dataset	of	customer	data	you	have	there.	You’d	like	to	test	the	new	version
of	your	billing	system	with	that.	Rather	than	cloning	the	data	on	the	same	machine,	you
need	a	completely	separate	copy	in	the	dev	environment.	Whether	the	target	is	a	remote
machine	or	a	new	dataset	on	the	same	pool,	ZFS	replication	is	the	fastest	and	most	reliable
way	to	copy	data.

Do	you	have	dozens	or	hundreds	of	identical	machines,	VMs,	or	containers?	Use	ZFS
replication	to	deploy	your	perfectly	crafted	image	everywhere.	If	you	design	your	systems
properly,	you	can	even	use	incremental	replication	to	deploy	updates.

Replication	also	greatly	simplifies	migrating	data,	even	huge	amounts	of	data	over
ridiculous	distances.	Maybe	you	have	to	migrate	a	massive	dataset	to	the	other	side	of	the
country,	or	across	the	planet.	With	enough	data,	even	10	Gb/s	Ethernet	in	the	same
datacenter	seems	too	slow!	Suppose	you	have	many	terabytes	of	data	that	are	always	in
use	and	undergoing	constant	minor	churn,	such	as	a	customer	database.	Copying	that	data
over	the	Internet	to	the	opposite	end	of	the	country,	or	the	world,	will	take	days—but	by
then,	the	data	will	have	changed.	An	rsync-based	replication	process	takes	so	long	that	it

will	probably	never	catch	up.	Your	database	administrators	are	smart	folks,	and	probably
can	come	up	with	a	clever	plan	for	moving	the	data	with	some	sort	of	complicated	data



segmentation.	These	plans	can	be	done	successfully,	but	increase	risk	and	always	impose	a
heavy	workload	and	frustration.

If	the	bandwidth	available	for	synchronization	exceeds	the	rate	of	change	in	the	data,
use	ZFS	instead.	Your	first	ZFS	replication,	which	includes	every	scrap	of	data	from	this
huge	dataset,	might	take	a	few	days	or	weeks.	You	might	even	find	it	more	practical	to
perform	the	first	synchronization	via	tape	and	overnight	shipping.	When	this
synchronization	finishes,	though,	a	second	replication	from	a	new	snapshot	won’t	take
nearly	as	long.	With	a	few	iterations,	so	long	as	your	rate	of	change	is	slower	than	the
bandwidth	available	for	backup,	ZFS	replication	catches	up	to	nearly	real	time.

On	Big	Switch	Day,	freeze	the	dataset	for	a	few	moments	while	you	replicate	the	most
recent	set	of	changes.	You’ll	probably	have	a	few	moments	of	panic	over	load	balancers,
firewalls,	new	servers,	and	all	the	other	gadgets	needed	to	support	such	a	massive	dataset,
but	the	data	itself	won’t	be	the	problem.



Basic	Replication

ZFS	doesn’t	replicate	datasets.	It	replicates	snapshots.	Snapshots	don’t	change	during
replication	(or	any	other	time),	so	they’re	guaranteed	to	be	internally	consistent.	Start	by
creating	a	snapshot	of	your	data.

#	zfs	snapshot	mypool/somedata@snappycomeback

Now	let’s	replicate	this	snapshot	both	locally	and	on	a	remote	host.

Local	Replication

ZFS	replication	is	unidirectional,	meaning	that	it	doesn’t	need	any	feedback	from	the
receiver.	This	means	you	can	dump	the	snapshot	into	any	other	program,	using	standard
Unix	shell	redirections	and	pipes.	Here,	I	feed	the	output	of	zfs	send	into	a	regular	file.	(If

you	add	the	-v	flag,	zfs	send	prints	a	progress	summary	every	second.)

#	zfs	send	mypool/somedata@snappycomeback	>	backup_file

This	file	is	our	first	use	of	ZFS	replication,	so	it’s	not	incremental.	It	contains
everything	in	the	snapshot.	It’s	about	the	same	size	as	the	dataset.	It’s	not	exactly	useful
as-is,	however—very	few	people	can	read	a	streamed	filesystem	without	turning	it	back

into	a	filesystem.2	So	let’s	feed	this	dataset	back	into	ZFS	with	zfs	receive.

#	zfs	receive	mypool/copy	<	backup_file

Zfs(8)	reads	the	replication	stream	from	the	backup_file	and	create	a	new	dataset	from	it,

an	exact	duplicate	of	the	original	dataset.

You	don’t	need	a	file	in	the	middle	of	local	replication.	This	is	a	Unix-like	system.	We
have	the	miracle	of	pipes.	This	host	has	home	directories	on	the	root	pool,	but	I’m	moving
a	copy	to	a	new	pool.

#	zfs	send	zroot/home@weds	|	zfs	receive	mypool/home

I	can	now	shuffle	a	couple	dataset	mount	points	and	move	my	home	directories	to	the
new	pool.

ZFS’	unidirectional	nature	lets	you	replicate	to	anything	you	can	aim	a	command	at,
such	as	a	tape.	With	pipes	you	can	pour	zfs	send	through	SSH	and	into	zfs	receive,	letting

you	replicate	a	dataset	on	a	remote	machine.

Viewing	Replicas

Want	to	see	the	inside	of	a	stream	file?	The	zstreamdump(8)	utility	examines	streams	and
exposes	their	details.	You	can	examine	a	file,	or	read	directly	from	zfs	send.



#	zstreamdump	<	backup_file

The	zstreamdump	program	responds	with	one	section	like	this	for	each	and	every	snapshot

within	the	zfs	send	stream.

BEGIN	record

	hdrtype	=	1

	features	=	4

	magic	=	2f5bacbac

	creation_time	=	56a53713

	type	=	2

	flags	=	0x0

	toguid	=	424654598740125b

	fromguid	=	0

	toname	=	mypool/somedata@snappycomeback

END	checksum	=	14035a747cefd2/65f5a463eb5427f0/3e70de6ff7d7456/497949c053fadcb3

This	output	has	a	bunch	of	information	about	the	zfs	send	stream.	The	hard	part	is,	none

of	it	is	presented	in	a	human-friendly	manner.	Even	so,	we	can	extract	a	few	chunks	of
information	from	it.

The	creation_time	field	gives	the	time	zfs	send	was	run,	in	the	convenient	measure	of

seconds	from	the	Unix	epoch—in	hex,	of	course,	because	why	wouldn’t	you	use	hex	for
dates?	Convert	this	value	(56a53713)	to	a	human	readable	value	with	date(1).	Put	a	0x	in
front	of	the	value	to	identify	it	as	a	hex	value.

$	date	-r	0x56a53713

Sun	Jan	24	15:41:55	EST	2016

On	non-FreeBSD	hosts,	date	might	not	accept	hex	values.	While	there	are	many	ways

to	do	this	conversion,	you	might	try	something	like	this.

$	printf	“%d\n”	0x56a53713	|	xargs	date	-r

Each	snapshot	has	a	human-readable	name,	given	in	the	toname.	This	snapshot	is
called	mypool/somedata@snappycomeback,	and	illuminates	the	importance	of	using	meaningful

names	for	datasets	and	snapshots.

Each	snapshot	within	a	stream	also	has	a	globally	unique	identifier,	or	GUID.	This
snapshot’s	GUID	appears	in	the	toguid	field.

The	fromgid	field	is	used	for	incremental	ZFS	sends	(see	“Incremental	Replication”
later	in	this	chapter),	including	only	the	changes	between	two	snapshots.	It’s	zero	in	this
example,	meaning	that	this	zfs	send	stream	contains	a	complete	snapshot.	It’s	not	an

incremental.	As	it’s	a	complete	snapshot,	restoring	this	zfs	send	stream	to	a	live	dataset

would	make	sense.	(You	could	restore	an	incremental	ZFS	stream,	but	you’d	need	a	copy



of	the	snapshot	it’s	based	on.)

If	a	stream	has	multiple	snapshots	in	it—say,	from	an	incremental	or	recursive	zfs	send

—you	can	use	the	toguid	and	fromguid	values	to	piece	together	how	the	snapshots	fit
together.	It’s	probably	easier	to	restore	the	zfs	send	stream	to	a	dataset	and	look	at	it	that

way,	however.

Each	section	ends	with	a	checksum.	You	can’t	use	the	checksum	to	manually	verify	the
snapshot	in	this	section,	but	it’s	nice	to	know	that	ZFS	uses	checksums.

After	the	details	on	each	snapshot,	zstreamdump	prints	a	summary.

SUMMARY:

	Total	DRR_BEGIN	records	=	5

	Total	DRR_END	records	=	6

…

	Total	records	=	170

	Total	write	size	=	10523136	(0xa09200)

	Total	stream	length	=	10554216	(0xa10b68)

The	summary	includes	a	whole	bunch	of	ZFS	internal	metadata.	The	most	interesting
parts	here	are	the	number	of	DRR_BEGIN	records,	which	corresponds	to	the	number	of
snapshots	in	this	stream.	The	sizes	at	the	end	are	in	bytes.	The	write	size	is	the	size	of	the
data	included	in	the	stream,	while	the	stream	length	is	the	size	of	the	stream	itself.	(A	ZFS
send	stream	has	metadata	for	restoring	data	to	disk	that	doesn’t	need	to	get	written	to	the

disk.)



Remote	Replication

In	order	to	replicate	ZFS	to	a	remote	host,	the	remote	host	needs	a	user	that	can	accept	the
replication	and	a	secure	pipe	to	that	remote	host.	The	most	common	type	of	secure
replication	pipe	is	SSH,	so	we’ll	assume	that’s	your	tool.	In	the	long	term,	the	easiest	way
to	use	SSH	is	with	key-based	authentication.	If	you’re	not	familiar	with	key-based
authentication,	consult	any	number	of	online	tutorials	or	Lucas’	SSH	Mastery	(Tilted
Windmill	Press,	2012).

You	could	use	the	root	account	to	receive	replication	streams,	but	that	means	permitting

SSH	logins	as	root.	SSH	as	root	is	a	bad	idea.	Don’t	do	it.	And	do	you	really	want	some

shell	script	maintained	by	this	random	guy	somewhere	on	the	Internet	stomping	around
with	root	on	all	of	your	machines?	Instead,	create	an	unprivileged	user	and	assign	it

replication	rights,	as	discussed	in	Chapter	2.

Similarly,	while	you	can	send	ZFS	datasets	as	root,	you	might	want	an	operator	or

normal	user	to	have	the	ability	to	send	datasets.

Replication	Users	and	Datasets

On	both	the	sending	and	receiving	hosts,	we	create	a	user	dedicated	to	replication.	Our
sample	user	is	called	replicator.	It	needs	a	shell,	but	no	special	group	memberships.

local#	pw	user	add	replicator	-m	-s	/bin/sh

remote#	pw	user	add	replicator	-m	-s	/bin/sh

On	the	sending	host,	the	replication	user	needs	the	send	and	snapshot	privileges	on	the

dataset	to	be	sent.	Here	we	give	replicator	these	privileges	on	user	home	directories.

#	zfs	allow	-u	replicator	send,snapshot	zroot/usr/home

The	sending	user	needs	an	SSH	keypair.	A	user	who	is	using	his	own	account	on	both
the	sending	and	receiving	sides	can	use	their	own	SSH	keys	for	this.	For	dedicated
accounts,	generate	a	keypair	with	ssh-keygen(1).

#	su	replicator

$	ssh-keygen

The	ssh-keygen	program	prompts	you	for	a	passphrase.	If	a	human	being	will	use	this

account	to	send	ZFS	datasets,	use	a	passphrase.	If	this	is	for	an	automated	process,	use	an
empty	passphrase.

The	key	is	the	file	.ssh/id_rsa.pub	in	the	user’s	home	account.	We	also	recommend

restricting	which	hosts	can	use	this	key	to	log	in	to	the	remote	machine,	to	help	protect	the



remote	host	and	your	backups	in	the	event	this	key	is	stolen.

Now	have	this	unprivileged	user	install	the	public	key	in	their	account	on	the	remote
machine.	Here	we	send	the	new	key	to	an	account	with	the	same	username	on	the	host
hotspare.

$	ssh-copy-id	-i	.ssh/id_rsa.pub	hotspare

Verify	that	you	can	log	into	the	receiving	host	as	this	user.

On	the	receiving	host,	the	user	must	own	the	mount	point	of	the	recipient	dataset.	The
system	must	also	permit	unprivileged	users	to	mount	filesystems	on	directories	they	own,
using	the	vfs.usermount	sysctl.

#	zfs	create	-o	mountpoint=/backup	remotepool/backup

#	chown	replicator:replicator	/backup

#	sysctl	vfs.usermount=1

Our	unprivileged	user	needs	the	compression,	create,	mount,	mountpoint,	and	receive	ZFS

privileges	on	the	target	dataset.	Here	I	assign	the	replicator	user	privileges	on	the
remotepool/backup	dataset.	If	you	intend	to	automate	ZFS	replication,	including	destruction	of

outdated	snapshots,	you’ll	want	to	add	the	destroy	property.

#	zfs	allow	-u	replicator	compression,mountpoint,create,mount,receive	remotepool/backup

This	unprivileged	user	can	now	replicate	this	dataset.

If	you	want	to	replicate	all	of	the	dataset’s	properties,	you	must	allow	the	replicator
user	to	set	all	of	those	properties.	See	Chapter	2	for	details	on	how	to	create	a	permissions
set.

Dataset	Full	Remote	Replication

To	replicate	a	ZFS	dataset,	first	create	a	snapshot.	I	gave	my	unprivileged	user	permission
to	create	snapshots	exactly	for	this	purpose,	so	let	him	do	it.

$	zfs	snapshot	zroot/usr/home@monday

Now	use	zfs	send	to	transmit	this	snapshot,	pipe	that	into	SSH,	and	dump	it	into	zfs

receive.	Remember,	ssh(1)	lets	you	execute	commands	on	the	remote	host.	Since	this	is	the

first	time	we	have	replicated	this	dataset,	the	send	stream	includes	every	block	in	the
snapshot.

$	zfs	send	zroot/usr/home@monday	|	ssh	user@host	zfs	receive	remotepool/backup

In	addition	to	replicating	to	a	pool	on	another	machine,	you	can	replicate	to	the	same
pool	or	a	second	pool	on	the	same	machine,	to	a	file,	or	to	a	pipe.	Replicating	to	a	file	or



pipe	can	be	useful	for	backups,	such	as	to	tape,	or	to	a	different	filesystem.

You	can	have	a	host	log	into	another	host	to	trigger	the	zfs	send	if	you	prefer,	changing

ZFS	replication	from	a	push	model	to	a	pull	one.

$	ssh	user@host	zfs	send	zroot/usr/home@monday	|	zfs	receive	remotepool/backup

This	book	assumes	that	you’re	sending	from	a	local	dataset	for	consistency,	but
everything	works	in	the	other	direction.

Incremental	Replication

The	real	power	comes	from	incremental	replication.	Now	that	we	have	replicated	all	of	the
data	from	the	dataset	as	of	Monday,	Tuesday’s	replication	needs	to	send	only	the	blocks
that	have	changed.	The	receive	side	of	the	command	doesn’t	change	at	all,	but	on	the	send

side	we	use	the	-i	flag	to	indicate	the	most	recent	snapshot	sent.

$	zfs	snapshot	zroot/usr/home@tuesday

$	zfs	send	-i	@monday	zroot/usr/home@tuesday	|	ssh	user@host	zfs	receive	remotepool/backup/home

ZFS	sends	only	the	blocks	that	have	changed	between	the	@monday	and	@tuesday
snapshots,	saving	time	and	bandwidth.

Now	look	at	the	dataset	on	the	receiving	system.

#	zfs	list	-t	snap	-r	zroot/backup

NAME																									USED		AVAIL		REFER		MOUNTPOINT

zroot/backup/usrhome@monday				8K						-		49.0M		-

zroot/backup/usrhome@tuesday				0						-		49.0M		-

Two	snapshots	now	show	up.

One	common	mistake	with	incremental	backups	is	not	specifying	the	last	snapshot	that
exists	on	the	remote	system.	If	you	don’t	specify	the	most	recent	snapshot	that	was
transmitted,	you’ll	get	an	error.

#	zfs	send	zroot/usr/home@tuesday	|	ssh	hotspare	zfs	recv	remotepool/backup/usrhome

cannot	receive	new	filesystem	stream:	destination	remotepool/backup/usrhome’	exists

must	specify	-F	to	overwrite	it

The	danger	of	an	error	message	like	this	is	that	it	offers	ways	to	make	the	error
disappear,	rather	than	suggesting	ways	to	fix	the	underlying	problem.	Overwriting	the
remote	dataset	wipes	out	your	older	snapshots	and	resends	all	the	data.

When	using	-i,	you	can	skip	the	@	sign	in	front	of	the	snapshot	name.	The	-i	flag

means	“this	is	a	snapshot,”	so	it	can	safely	assume	that	you	meant	to	put	the	@	in	front	but
just	couldn’t	be	bothered.



Incremental	Replication	Assumptions

Incremental	backups	to	tape	are	pretty	much	fixed:	you	might	overwrite	them,	but	in	the
21st	century	you	wouldn’t	go	in	and	edit	a	file	directly	on	the	tape.	Incremental	backups
written	to	disk	are	very	easy	to	change,	though.

Incremental	replication	requires	that	the	receiver’s	copy	of	the	dataset	doesn’t	change
between	replication	runs.	Changes	in	the	copy	ruin	the	whole	process.	If	you	edit	the
backup	copy	of	the	dataset,	the	next	incremental	update	will	no	longer	plug	into	the
backup	copy.	If	you	want	to	edit	a	dataset	replica	on	the	backup	machine,	create	a	clone	of
the	received	dataset	and	edit	that.

If	someone	accidentally	or	ignorantly	edited	the	replica,	roll	the	changes	back	to	the
last	common	snapshot.	Have	the	receiver	force	a	rollback	to	the	matching	remote	snapshot
by	adding	the	-F	flag	to	the	zfs	receive	command.

#	zfs	send	-i	@monday	zroot/usr/home@tuesday	|	ssh	user@hotspare	zfs	receive	-F	remotepool/backup/home

Prevent	alterations	to	replica	datasets	by	setting	the	ZFS	property	readonly	to	on	for	the

replicated	datasets.	With	the	privileges	given	earlier,	users	can	add	snapshots	to	write-only
datasets.

#	zfs	set	readonly=on	remotepool/backup

You	can	still	add	snapshots	under	remotepool/backup.	You	can	examine	the	files	in	the

dataset.	But	nobody	can	edit	the	files	without	changing	the	ZFS	readonly	property.	And

anyone	with	that	access	should	either	know	better	or	have	a	desperately	urgent	need	to
make	that	dataset	live,	right	now.

Differential	Replication

ZFS	replication	can	be	done	on	any	two	snapshots	on	the	same	dataset,	so	you	can	also	do
differential	backups.	Using	the	-I	flag	(uppercase	i),	instead	of	-i	sends	all	snapshots	that

exist	between	the	two	snapshots.

Suppose	Tuesday’s	snapshot	replication	fails	because	of	a	random	network	issue.3	On
Wednesday,	you	want	to	send	both	Tuesday’s	and	Wednesday’s	snapshots.

#	zfs	send	-I	@monday	zroot/usr/home@wednesday	|	ssh	hotspare	zfs	recv	remotepool/backup/usrhome

The	recipient	now	has	Tuesday’s	snapshot,	even	though	you	never	explicitly	sent	it.

Folks	with	experience	running	backups	will	realize	that	we’re	using	the	words
“incremental”	and	“differential”	in	a	slightly	different	way	than	most	backup	software



does.	Backup	software	is	written	for	sending	blocks	to	tape,	and	minimizing	the	number	of
tapes	you	need	to	use	to	restore	files.	We	could	invent	a	new	language,	we	could	go

digging	for	precisely	suitable	but	unfamiliar	words,4	or	we	can	stretch	existing	language
just	a	little.

SSH	Bandwidth	Limitations

You	might	find	that	an	SSH	connection	is	not	fast	enough	for	your	needs.	Those	of	you
who	need	replication	faster	than	a	couple	hundred	megabytes	per	second	probably	should
consider	an	external	security	solution,	such	as	a	dedicated	VPN.	SSH	won’t	carry	data	that
quickly	without	very	specific	modifications,	so	consider	mbuffer(1).



The	Complexities	of	Incremental	Replication

ZFS	replication	is	unidirectional,	from	the	sender	to	the	receiver.	The	sender	gets	no
feedback	from	the	receiver,	permitting	dumping	the	stream	to	just	about	anything.	This
becomes	important	when	deciding	between	incremental	and	differential	replication.

Incremental	backups	(with	-i)	send	all	blocks	that	have	changed	between	the

birthtimes	of	the	first	snapshot	and	the	last	snapshot,	without	sending	any	snapshots	that
exist	in	between.	If	a	dataset	has	a	snapshot	for	each	day	of	the	week,	zfs	send	-i	monday

zroot/usr/home@thursday	generates	a	stream	that	depends	on	the	@monday	snapshot	existing

on	the	receiving	side,	and	results	in	the	@thursday	snapshot	being	created	there.	Any
intervening	snapshots	do	not	get	replicated.

Differential	backups	(with	-I)	work	exactly	like	incremental	backups,	but	they	create

any	intermediary	snapshots.	A	command	like	zfs	send	-I	@monday	zroot/usr/home@thursday

requires	that	the	@monday	snapshot	exist	on	the	remote	side,	and	it	creates	the	absent
@tuesday	and	@wednesday	snapshots	in	passing.

Assume	you’ve	automatically	taken	daily	snapshots	of	a	dataset,	and	you	want	to	ship
them	over	to	the	remote	server.	Replicate	the	@monday	snapshot	to	the	remote	pool:

#	zfs	send	zroot/usr/home@monday	|	zfs	receive	hotspare	remotepool/backup/usrhome

Check	on	your	remote	host	to	verify	the	presence	of	the	@monday	snapshot.

#	zfs	list	-t	all	-r	remotepool/backup/usrhome

NAME																														USED		AVAIL		REFER		MOUNTPOINT

remotepool/backup/usrhome								19.5K			472M		19.5K		/remotepool/weekday

remotepool/backup/usrhome@monday					0						-		19.5K		-

Now	incrementally	replicate	the	@tuesday	snapshot.

#	zfs	send	-i	monday	remotepool/backup/usrhome@tuesday	|	zfs	receive	remotepool/weekday

Checking	the	remote	host,	you’ll	find	both	snapshots.

#	zfs	list	-t	all	-r	remotepool/backup/usrhome

NAME																															USED		AVAIL		REFER		MOUNTPOINT

remotepool/backup/usrhome											29K			472M		19.5K		/remotepool/weekday

remotepool/backup/usrhome@monday		9.50K						-		19.5K		-

remotepool/backup/usrhome@tuesday					0						-		19.5K		-

On	Wednesday	you	were	off	gallivanting	about—uh,	I	mean,	“out	sick”—so	you	didn’t
do	the	replication.	Thursday,	you	want	to	catch	up,	so	you	do	a	differential	replication	of
the	@thursday	snapshot.

#	zfs	send	-I	tuesday	zroot/usr/home@thursday	|	zfs	receive	remotepool/backup/usrhome



Our	hot	spare	host	now	has	four	snapshots.

#	zfs	list	-t	all	-r	remotepool/backup/usrhome

NAME																																		USED		AVAIL		REFER		MOUNTPOINT

remotepool/backup/usrhome														48K			472M		19.5K		/remotepool/weekday

remotepool/backup/usrhome@monday					9.50K						-		19.5K		-

remotepool/backup/usrhome@tuesday				9.50K						-		19.5K		-

remotepool/backup/usrhome@wednesday		9.50K						-		19.5K		-

remotepool/backup/usrhome@thursday							0						-		19.5K		-

But	suppose	koala-related	mayhem	costs	you	sleep	Thursday	night.	You	stagger	in
Friday	morning	determined	to	get	through	the	day	without	breaking	anything.	Setting	up
the	day’s	replication,	you	accidentally	try	to	do	an	incremental	(-i)	zfs	send	from	@monday

to	@friday.

#	zfs	send	-i	monday	mypool/weekday@friday	|	zfs	receive	remotepool/weekday

cannot	receive	incremental	stream:	destination	remotepool/weekday	has	been	modified	since	most	recent	snapshot.

You	might	know	darn	well	you	haven’t	modified	those	snapshots.	Nobody’s	allowed	to
log	onto	that	machine.	But	it	has	been	modified—the	@tuesday,	@wednesday,	and
@thursday	snapshots	are	in	the	way.

If	you	are	not	sure	what	snapshots	might	exist	on	the	remote	end,	you	can	use	-I	to

send	all	intermediary	snapshots.	Alternatively,	you	could	specify	-F	in	the	zfs	receive

command	to	force	it	to	remove	anything	that	is	in	the	way.

#	zfs	send	-i	@monday	zroot/usr/home@friday	|	zfs	receive	-F	remotepool/backup/usrhome

The	unpleasant	side	effect	of	using	zfs	receive	-F	to	“remove	anything	that	is	in	the

way”	is	that	it	destroys	the	intermediate	snapshots.

#	zfs	list	-t	all	-r	remotepool/weekday

NAME																															USED		AVAIL		REFER		MOUNTPOINT

remotepool/backup/usrhome											29K			472M		19.5K		/remotepool/weekday

remotepool/backup/usrhome@monday		9.50K						-		19.5K		-

remotepool/backup/usrhome@friday						0						-		19.5K		-

We	want	those	snapshots	back,	so	let’s	try	that	again.	On	your	hot	spare	host,	eliminate
the	newest	snapshot.

#	zfs	destroy	remotepool/backup/usrhome@friday

Now	have	the	sender	retransmit	all	those	snapshots,	either	one	at	a	time	or	en	masse.
Here	we	send	one	snapshot,	just	to	be	sure	that	we	didn’t	break	anything	else	on	this
bleary-eyed	Friday.

#	zfs	send	-i	monday	mypool/weekday@tuesday	|	zfs	receive	-F	remotepool/weekday

The	fact	that	the	replication	is	unidirectional	means	that	in	differential	backups	you



could	send	overlaps,	transmitting	a	snapshot	that	already	exists	on	the	remote	side.	If	we
send	all	snapshots	between	@monday	and	@friday,	while	the	@tuesday	snapshot	already
exists	on	the	remote	pool,	the	source	sends	all	of	the	changed	data,	even	the	blocks	that	the
remote	side	already	has.	The	remote	side	fast	forwards	through	the	blocks	it	has,	and	then
creates	the	snapshots	that	it	doesn’t—in	this	case,	@wednesday	through	@friday.

Best	practice	here	is	to	avoid	koalas.	And	their	mayhem.



Recursive	Replication

ZFS	also	supports	recursive	replication,	which	replicates	a	dataset	and	all	of	its	children	in
one	command.	Here’s	a	sample	pool	with	three	datasets.

NAME												USED		AVAIL		REFER		MOUNTPOINT

mypool										401M		3.09T			192K		/mypool

mypool/family		50.2M		3.09T		50.2M		/mypool/family

mypool/home					150M		3.09T			150M		/mypool/home

mypool/work					200M		3.09T			200M		/mypool/work

Take	a	recursive	snapshot	of	the	dataset	and	its	children.

#	zfs	snapshot	-r	mypool@first

#	zfs	list	-t	all	-r	mypool

NAME																USED		AVAIL		REFER		MOUNTPOINT

mypool														401M		3.09T			192K		/mypool

mypool@first											0						-			192K		-

mypool/family						50.2M		3.09T		50.2M		/mypool/family

mypool/family@first				0						-		50.2M		-

mypool/home									150M		3.09T			150M		/mypool/home

mypool/home@first						0						-			150M		-

mypool/work									200M		3.09T			200M		/mypool/work

mypool/work@first						0						-			200M		-

Now	replicate	that	snapshot	and	all	its	children	simultaneously,	using	a	recursive	send.

#	zfs	send	-Rv	mypool@first	|	zfs	receive	remotepool/backup

send	from	@	to	mypool@first	estimated	size	is	9.50K

send	from	@	to	mypool/work@first	estimated	size	is	200M

send	from	@	to	mypool/family@first	estimated	size	is	50.1M

send	from	@	to	mypool/home@first	estimated	size	is	150M

total	estimated	size	is	401M

…

Recursive	send	also	works	with	incremental	(-i)	and	differential	(-I)	backups,	in

exactly	the	same	way.	Now	you	can	forcibly	destroy	a	dataset	and	its	children
simultaneously!



Advanced	Sending	Options

A	sender	can	alter	how	it	sends	datasets	in	several	ways.

Sending	Properties

To	send	dataset	properties	as	well	as	the	actual	data,	add	the	-p	flag.	When	the	properties

of	the	received	dataset	differ	from	those	already	on	the	dataset,	zfs	receive	attempts	to

change	the	properties	to	match	those	sent.	That	is,	if	you’re	replicating	properties	from	a
dataset	that	uses	lz4	compression	to	a	dataset	that	already	uses	lz4,	zfs	receive	does	nothing

with	that	property.	If	the	sender	uses	gzip-9	compression,	though,	the	receiver	changes	to
match	the	original.

The	user	receiving	the	dataset	must	have	the	permissions	to	set	the	properties	you	want
replicated.	If	the	user	has	permissions	to	replicate	some	but	not	all	of	the	properties,	the
permissible	properties	get	set	and	the	disallowed	properties	are	rejected.

Suppose	our	source	dataset	has	dedup	set	to	on	and	compression	set	to	gzip-9.	The	receiving

dataset	has	dedup	set	to	off	and	compression	set	to	lz4.	We	want	the	receiving	dataset	to	use	the

same	compression,	but	not	the	dedup	setting.	We	permit	our	replication	user	to	change

compression.

#	zfs	allow	-u	replicator	compress	zroot/backup

When	we	send	the	dataset,	we’ll	get	an	error.

cannot	receive	compression	dedup	on	remotepool/backup:	permission	denied

That’s	fine—we	don’t	want	the	dedup	property	set	on	the	replica.	The	compression

property	is	replicated	as	desired,	though.

Why	would	we	replicate	properties,	rather	than	just	set	them	on	the	destination?
Manual	configuration	might	be	fine	for	simple	properties	like	compression	and	dedup,	but

not	so	suitable	for	complicated	properties	like	sharenfs	or	any	of	the	quotas.

Deduplicated	Data	Stream

Is	your	data	deduplicated?	Is	it	suitable	for	deduplication?	ZFS	lets	you	deduplicate	the	zfs

send	data	stream.	With	-D,	each	unique	block	is	sent	only	once.	It	doesn’t	change	what	the

recipient	writes	to	disk,	but	only	affects	the	data	stream.

Deduplicated	data	streams	use	a	different	set	of	deduplication	memory	than	that	used
by	on-disk	deduplication.	If	your	data	can	be	effectively	deduplicated,	but	that



deduplication	uses	many	gigabytes	of	RAM,	both	the	sending	and	receiving	hosts	need	a
similar	amount	of	memory	to	deduplicate	the	data	stream.	Don’t	lightly	deduplicate	in	zfs

send!

Debugging	and	Testing

A	zfs	send	supports	a	couple	of	options	that	can	help	with	debugging,	testing,	and

monitoring.

The	-v	option	makes	zfs	send	verbose.	It	prints	information	about	the	data	to	be	sent	and

adds	regular	status	updates.

The	-P	flag	prints	information	about	the	send	stream	right	when	the	stream	starts

flowing.	The	manual	describes	this	information	as	“machine-readable.”	The	information	is
readable	by	humans,	but	it’s	not	nicely	tabulated.	It’s	perfect	for	feeding	to	your	scripts,
however.

The	-n	flag	prevents	zfs	send	from	actually	sending	any	data.	Instead,	when	combined

with	either	-v	or	-P,	it	gives	statistics	on	what	zfs	send	would	do	if	it	actually	ran.

Large	and	Small	Blocks

Newer	versions	of	ZFS	can	support	disk	blocks	larger	than	128	KB,	with	the	large_blocks

zpool(8)	feature.	The	-L	flag	lets	zfs	send	include	large	blocks	rather	than	breaking	them	up

into	small	blocks.	The	recipient	pool	must	also	support	large	blocks.

For	hosts	with	really	small	blocks,	-e	shrinks	the	size	of	the	data	stream	by	using	the

embedded_data	feature.	The	destination	pool	must	also	support	the	embedded_data	feature	flag.



Advanced	Receiving	Options

The	receiver	can	adjust	how	it	stores	the	incoming	ZFS	stream,	through	arguments	to	zfs

receive.

Path	and	Mount	Management

A	received	ZFS	stream	includes	the	pool	and	dataset	path	of	the	origin.	You	can	either
retain	this	path	or	strip	it	out.

By	adding	the	-d	flag,	you	tell	zfs	receive	to	use	the	source’s	full	path	(except	for	the

pool	name)	as	the	path	to	the	destination	dataset,	rather	than	requiring	the	sysadmin	to
specify	the	destination	dataset.	Earlier,	we	replicated	zroot/usr/home	to

remotepool/backup/usrhome.	By	using	-d	here,	we	tell	zfs	receive	to	use	the	source	path	on	the

destination.

$	zfs	send	zroot/usr/home@monday	|	ssh	hotspare	zfs	receive	-d	remotepool/backup

The	receiver	creates	remotepool/backup/usr/home	and	sticks	the	@monday	snapshot	there.

This	function	is	very	useful	when	replicating	many	layers	of	datasets.

Alternatively,	you	can	strip	out	most	of	the	path	information.	By	adding	the	-e	flag,	you

instruct	zfs	receive	to	use	the	last	part	of	the	path	to	name	this	dataset.	Here	we	run	the

same	backup,	but	strip	out	most	of	the	path.

$	zfs	send	zroot/usr/home@monday	|	ssh	zfs2	zfs	receive	-e	remotepool/backup

The	zfs	receive	command	looks	at	the	path	zroot/usr/home	and	discards	everything	but	the

last	chunk,	or	home.	The	received	data	stream	goes	into	remotepool/backup/home.

Finally,	the	-u	option	tells	zfs	receive	not	to	mount	received	snapshots.	The	data’s	there

for	mounting	if	the	sysadmin	desires,	but	mounting	the	dataset	might	lead	to	changing	the
data.

Roll	Back	Changes

If	someone	has	altered	a	received	dataset,	attempts	to	incrementally	add	a	new	snapshot	to
that	replica	will	fail.	Datasets	of	received	snapshots	must	be	pristine	for	zfs	receive	to

accept	incremental	or	differential	updates.

The	-F	flag	tells	zfs	receive	to	roll	back	any	changes	that	prevent	accepting	this

snapshot.

Debugging	and	Testing



Much	like	zfs	send,	zfs	receive	supports	verbosity	and	no-effect	options.

The	-v	option	makes	zfs	receive	verbose.	It	prints	information	about	the	data	received

and	adds	regular	status	updates.

The	-n	flag	prevents	zfs	receive	from	actually	writing	any	data	to	disk.	Instead,	when

combined	with	-v	it	offers	statistics	on	what	zfs	receive	would	do	if	actually	used.

While	verbosity	can	be	useful,	the	-n	option	has	limited	utility	in	receiving	data.	The

host	will	have	sent	data	across	the	network	to	this	host,	and	the	recipient	will	have	done
some	numerical	analysis	and	discarded	the	data.	To	write	the	data	to	disk,	you	must	re-
send	it.

Cloning	on	Receipt

You	might	need	to	send	a	dataset	that	you	know	you’re	going	to	want	to	muck	with.	As	of
FreeBSD	10.3,	you	can	tell	zfs	receive	to	store	an	incoming	incremental	replication	stream

as	a	clone	rather	than	as	a	snapshot.	Cloning	on	receipt	works	only	with	incremental
replication.

To	have	zfs	receive	create	a	clone,	add	the	-o	flag	and	define	the	origin	as	the	dataset

you	want	to	clone.	The	zfs	receive	command	takes	that	dataset,	adds	the	incoming	snapshot

to	it,	and	forks	the	clone	off	the	original.

Throughout	this	chapter	we’ve	been	backing	up	zroot/usr/home	to	a	remote	server.

Assume	we	want	a	read-write	clone	of	the	Wednesday	snapshot.	We’ll	start	by	cloning	the
Tuesday	snapshot.

$	zfs	send	-i	@tuesday	zroot/usr/home@wednesday	|	ssh	hotspare	zfs	receive	-o
origin=remotepool/usr/home@tuesday	remotepool/usr/wedshome

The	-o	origin	statement	tells	zfs	receive	that	we’re	starting	from	the	snapshot

remotepool/usr/home@tuesday	and	creating	a	clone.	The	final	argument	gives	the	name	of	our

clone,	remotepool/usr/wedshome.	We	can	now	go	into	/remotepool/usr/wedshome	and	make	whatever

changes	we	desire,	without	interfering	with	further	replications.

Remember	that	creating	this	clone	doesn’t	add	the	transmitted	snapshot	to	the
snapshots	in	the	original	destination,	however.	If	we	want	to	also	create
remotepool/usr/home@wednesday,	we	must	retransmit	it	without	the	-o	origin	option.



Bookmarks

Snapshots	can	take	up	a	lot	of	space,	especially	on	a	busy	filesystem.	If	you	have	users
building	new	software,	downloading	ISOs	and	then	discarding	them,	and	dumping	core
files	everywhere,	snapshots	can	get	quite	large.	Unfortunately,	incremental	replications
build	off	of	snapshots.	Bookmarks	are	a	way	to	get	around	the	need	to	retain	your	oldest
snapshots,	while	still	performing	incremental	replications.

An	incremental	replication	doesn’t	need	to	know	all	of	the	blocks	that	have	already
been	sent.	It	must	know	the	birthtime	of	the	youngest	block	already	sent,	so	that	it	can
send	all	younger	blocks.	A	bookmark	is	a	stripped-down	snapshot,	retaining	only	the
birthtime	of	the	newest	block	in	the	snapshot.	You	can	use	a	bookmark	as	the	starting
point	of	an	incremental	replication.

Create	a	bookmark	of	the	@friday	snapshot	of	the	weekday	dataset.	Bookmark	names
begin	with	a	hash	mark	(#).

#	zfs	bookmark	zroot/usr/home@friday	zroot/usr/home#bm-friday

View	your	bookmarks	with	zfs	list.

#	zfs	list	-t	all	-r	mypool/weekday

NAME																				USED		AVAIL		REFER		MOUNTPOINT

zroot/usr/home										360K		13.5G				96K		/mypool/weekday

zroot/usr/home@monday				64K						-				96K		-

zroot/usr/home@tuesday			64K						-				96K		-

zroot/usr/home@wednesday	64K						-				96K		-

zroot/usr/home@thursday		64K						-				96K		-

zroot/usr/home@friday					8K						-				96K		-

zroot/usr/home#bm-friday			-						-						-		-

Now	remove	all	of	the	snapshots	from	the	source	pool:

#	zfs	destroy	-v	zroot/usr/home@%

will	destroy	zroot/usr/home@monday

…

You	now	have	only	the	bookmark	left.

#	zfs	list	-t	all	-r	mypool/weekday

NAME																					USED		AVAIL		REFER		MOUNTPOINT

zroot/usr/home												96K		13.5G				96K		/mypool/weekday

zroot/usr/home#bm-friday				-						-						-		-

On	Saturday,	bake	a	fresh	snapshot.

#	zfs	snapshot	zroot/usr/home@saturday

#	zfs	list	-t	all	-r	zroot/usr/home

NAME																				USED		AVAIL		REFER		MOUNTPOINT



mypool/weekday											96K		13.5G				96K		/mypool/weekday

mypool/weekday@saturday				0						-				96K		-

mypool/weekday#bm-friday			-						-					-			-

Unhelpfully,	bookmarks	are	listed	after	snapshots,	even	when	they	are	older	than	the
snapshots.	The	ZFS	command	line	is	very	expressive,	however.	To	make	things	easier,
let’s	use	-t	to	tell	it	to	list	only	snapshots	and	bookmarks.	The	-s	flag	tells	zfs(8)	how	to

sort	the	output,	so	we’ll	sort	by	the	creation	(creation	date)	property.	Add	in	a	maximum

recursion	depth	of	1	to	ignore	the	snapshots	of	child	datasets.

#	zfs	list	-t	snapshot,bookmark	-s	creation	-d	1	zroot/usr/home

NAME																					USED		AVAIL		REFER		MOUNTPOINT

zroot/usr/home#bm-friday				-						-						-		-

zroot/usr/home@saturday			64K						-				96K		-

Now	replicate	the	@saturday	snapshot	to	the	remote	host,	using	the	bm-friday	bookmark

as	the	fromsnap.

#	zfs	send	-i	#bm-friday	zroot/usr/home@saturday	|	ssh	hotspare	zfs	receive	remotepool/backup/usrhome

The	remote	host	captured	the	@saturday	snapshot	as	an	incremental	snapshot,	even
though	the	source	host	no	longer	has	Friday’s	snapshot.

#	zfs	list	-t	all	-r	remotepool/usrhome

NAME																																	USED		AVAIL		REFER		MOUNTPOINT

remotepool/backup/usrhome											58.5K			472M		19.5K		/remotepool/weekday

remotepool/backup/usrhome@monday				9.50K						-		19.5K		-

remotepool/backup/usrhome@tuesday			9.50K						-		19.5K		-

remotepool/backup/usrhome@wednesday	9.50K						-		19.5K		-

remotepool/backup/usrhome@thursday		9.50K						-		19.5K		-

remotepool/backup/usrhome@friday							1K						-		19.5K		-

remotepool/backup/usrhome@saturday						0						-		19.5K		-

Bookmarks	let	us	remove	the	snapshots	from	our	source	pool,	saving	space,	but	retain
them	on	the	destination	pool	so	we	can	still	refer	back	to	old	versions	of	files.



Resumable	Send

Just	because	ZFS	makes	dataset	replication	simple,	doesn’t	mean	that	the	real	world
cooperates.	As	a	dataset	grows	in	size,	chances	increase	that	some	transient	network
problem	will	break	the	connection	and	interrupt	the	stream.	If	you’re	almost	done	with	a
40	GB	data	stream	over	the	Internet,	a	two-minute	outage	at	your	ISP	can	spark	some
well-deserved	rage.	Don’t	go	after	the	carrier	with	an	axe;	use	resumable	zfs	send	instead,

letting	you	resume	interrupted	replications.	Resumable	zfs	send	first	appeared	in	FreeBSD

10.3	in	early	2016.

To	make	a	ZFS	stream	resumable,	add	the	-s	flag	to	zfs	receive.

The	mypool/from	dataset	is	a	few	gigabytes	in	size.	By	adding	-s	to	the	zfs	receive

statement,	though,	we	make	the	stream	resumable.	Which	is	good,	because	we’re	going	to
interrupt	the	transmission	with	CTRL-C.

local#	zfs	snapshot	mypool/from@resumeme

local#	zfs	send	-v	mypool/from@resumeme	|	ssh	hotspare	zfs	receive	-s	remotepool/to

full	send	of	mypool/from@resumeme	estimated	size	is	2.00G

total	estimated	size	is	2.00G

TIME						SENT			SNAPSHOT

17:12:43		279M			mypool/from@resumeme

17:12:44		529M			mypool/from@resumeme

17:12:45		786M			mypool/from@resumeme

^C

Of	course,	because	ZFS	replication	is	unidirectional,	the	sender	has	no	idea	which
blocks	the	recipient	actually	captured	and	wrote	to	the	disk.	Without	resumable	send,
you’d	have	to	start	the	whole	transmission	over	again.

Over	on	the	receiving	host,	the	partially	received	dataset	has	a	new	property,
receive_resume_token.	The	sender	needs	the	value	of	this	property	to	pick	up	where	it	left	off.

remote#	zfs	get	-H	-o	value	receive_resume_token	remotepool/to

1-db9a171a3-c8-789c636064000310a500c4ec50360710e72765a5269740d80cd8e4d3d28a534b40320b4c61f26c48f2499525a9c540da20ecb02936fd25f9e9a599290c0cae0dba41478e981fb24092e704cbe725e6a6323014a5e6e697a416e4e7e7e8a715e5e73a14a51697e6a68264100000648b1d2c

Now	provide	that	token	to	the	sender	with	the	-t	flag.	You	do	not	need	to	include	the

source	dataset,	as	the	token	includes	everything	zfs	send	requires.	Adding	the	-v	spills	out

more	details	about	the	transmission,	though.

local#	zfs	send	-v	-t	1-db9a171a3-c8-789c636064000310a500c4ec50360710e72765a5269740d80cd8e4d3d28a534b40320b4c61f26c48f2499525a9c540da20ecb02936fd25f9e9a599290c0cae0dba41478e981fb24092e704cbe725e6a6323014a5e6e697a416e4e7e7e8a715e5e73a14a51697e6a68264100000648b1d2c	|	zfs	receive	-s	remotepool/to

resume	token	contents:

nvlist	version:	0

	object	=	0x8

	offset	=	0x35a00000

	bytes	=	0x35c35630



	toguid	=	0xc237c4c4522d8045

	toname	=	mypool/from@resumeme

full	send	of	mypool/from@resumeme	estimated	size	is	1.16G

TIME							SENT		SNAPSHOT

17:38:20			263M		mypool/from@resumeme

17:38:21			472M		mypool/from@resumeme

…

17:42:04		1.16G		mypool/from@resumeme

Once	the	zfs	receive	completes,	the	property	becomes	blank.

#	zfs	get	receive_resume_token	remotepool/to

NAME											PROPERTY														VALUE			SOURCE

remotepool/to		receive_resume_token		-							-

If	you	don’t	resume	that	send,	the	destination	pool	will	have	an	unusable,	incomplete
dataset	on	it,	taking	up	space	better	used	by,	well,	anything.	Delete	that	with	-A.

remote#	zfs	receive	-A	remotepool/to

This	removes	the	partially	received	stream	and	frees	that	space.



Automating	Replication

Everybody	wants	backups,	but	backups	that	must	be	manually	run	are	not	backups—
because	they	won’t	happen.	Sure,	you’ll	do	them	once	or	twice,	but	one	day	the	coffee	pot
will	break	and	you’ll	barely	be	able	to	remember	where	you	left	your	spleen.	Reliable
backups	demand	automation	and	testing.	Testing	is	always	your	problem,	but	for
automation	we	have	zxfer.

Zxfer(8)	examines	select	local	and	remote	datasets,	determines	which	snapshots	must
be	replicated	to	synchronize	the	two	sets	of	data,	and	sends	the	datasets.	It	can	also
remove	snapshots	on	the	remote	side	once	they’re	removed	from	the	local	pool.

FreeBSD	does	not	include	zxfer	by	default,	but	you	can	easily	install	it	with	pkg.	As

zxfer	can	work	in	both	push	and	pull	modes,	you	only	need	to	install	it	on	one	of	the

systems.	For	our	demonstration,	we’ll	install	it	on	both	nodes.

#	pkg	install	zxfer

The	zxfer	command	does	not	currently	support	either	bookmarks	or	resumable

replication.	It	also	doesn’t	set	up	replication	user	accounts.	You	must	configure	those
accounts,	create	SSH	keys,	and	set	permissions	exactly	as	you	would	for	normal
replication.

Using	zxfer

All	of	our	replication	examples	have	used	push	mode;	the	host	with	the	current	datasets
pushes	them	to	a	replication	target.	We’ll	start	with	using	zxfer	similarly.	Enable	push

mode	with	-T	and	the	login	for	the	remote	host.

Using	zxfer	requires	that	you	declare	if	you	want	to	replicate	a	single	dataset,	or	the

dataset	and	all	its	children.	The	-R	flag	enables	recursion,	while	-N	indicates	a	single

dataset	and	its	snapshots.	For	backups,	recursive	mode	is	almost	always	correct.

You	might	also	add	-v,	for	verbose	mode.

$	zxfer	-v	-T	user@host	-R	localpath	remotepath

If	the	user	account	is	the	same	on	both	sides,	you	can	skip	identifying	the	user.

One	thing	to	remember	is	that	arguments	that	take	an	argument	of	their	own	cannot	be
combined	with	arguments	that	don’t	require	that.	You	can	use	-v	-T	user@host,	but	-vT

user@host	makes	zxfer	complain	bitterly.	(As	zxfer	is	a	shell	script,	it	uses	getopt(1)	to	handle

command-line	arguments,	rather	than	the	fancy	option	handling	available	in	more	complex



languages.)

Here	we	replicate	the	zroot/somedata	dataset	to	the	pool	remotepool/backups	on	the	host

remote.

local$	zxfer	-T	replicator@remote	-R	mypool/somedata	remotepool/backups

If	you	add	the	-v	for	verbose	mode,	you’ll	see	zxfer	transferring	each	snapshot.

Sending	zroot/somedata@snappycomeback	to	remotepool/backups/somedata.

Sending	zroot/somedata@reply	to	remotepool/backups/somedata.

(incremental	to	zroot/somedata@snappycomeback.)

Sending	zroot/somedata@more	to	remotepool/backups/somedata.

(incremental	to	zroot/somedata@reply.)

Once	zxfer	exits,	the	host	remote	has	all	the	snapshots.

remote$	zfs	list	-t	all	-r	remotepool/backups/somedata

NAME																																						USED		AVAIL		REFER		MOUNTPOINT

remotepool/backups/somedata														10.1M		15.0G		10.1M		/remotepool/backups/somedata

remotepool/backups/somedata@snappycomeback		8K						-		10.1M		-

remotepool/backups/somedata@reply											8K						-		10.1M		-

remotepool/backups/somedata@more												8K						-		10.1M		-

Further	replication	on	top	of	these	snapshots	can	run	either	in	push	mode	or	in	pull
mode.	Let’s	try	pull	mode	next.

Zxfer	Pull	Mode

In	pull	mode,	zxfer	logs	into	the	remote	machine	via	SSH	and	runs	zfs	send	to	transfer

snapshots	back	to	the	host	running	zxfer.	Use	the	-O	flag	with	the	login	and	host	to	indicate

pull	mode.	Everything	else	is	the	same.

$	zxfer	-v	-O	user@host	-R	localpath	remotepath

Now	create	an	additional	snapshot	on	the	source	host.

local$	zfs	snapshot	mypool/somedata@new

On	the	destination	machine,	run	zxfer	to	pull	the	snapshots	over.	Here	we’re	adding	-v

to	show	more	detail	of	what	really	happens

remote#	zxfer	-v	-O	replicator@local	-R	zroot/somedata	remotepool/backups

Sending	mypool/somedata@new	to	zroot/backups/somedata.

(incremental	to	zroot/somedata@more.)

The	mounted	dataset	is	updated	with	the	new	snapshot.

Rotating	Snapshots

If	you	keep	sending	snapshots,	eventually	your	remote	pool	will	fill	up.	You	probably



want	to	destroy	remote	snapshots	that	no	longer	exist	on	the	source	machine.	Use	-d	to

accomplish	this.	Start	by	removing	an	old	snapshot.

local#	zfs	destroy	zroot/somedata@reply

Use	the	-d	flag	to	prune	any	deleted	snapshots	from	the	destination:

local$	zxfer	-vd	-T	remote	-R	zroot/somedata	remotepool/backup

In	verbose	mode,	zxfer	displays	each	dataset	it	destroys	as	well	as	those	it	creates.

Destroying	destination	snapshot	remotepool/backup/somedata@reply.

You	can	watch	as	your	hastily-typed	incorrect	command	destroys	your	beloved	data.

Keeping	Old	Snapshots

A	common	snapshot	regimen	calls	for	making	snapshots	every	15	minutes,	and	then	every
hour,	day,	week,	and	month.	(We	discuss	such	a	rotation	scheme	in	FreeBSD	Mastery:
ZFS.)	The	host	discards	15-minute	snapshots	after	a	few	hours,	hourly	snapshots	after	a
couple	days,	and	so	on.	You	certainly	want	those	15-minute	snapshots	discarded	on	the
remote	host,	but	you	might	want	the	remote	host	to	retain	some	snapshots	even	after	the
source	destroys	them.	Many	of	us	want	to	keep	weekly	or	monthly	snapshots	as	long-term
backups.

The	-g	flag	lets	you	protect	the	oldest	backups	with	an	argument	of	a	number	of	days.

For	example,	-g	375	tells	zxfer	to	not	delete	snapshots	that	are	375	days	old	or	older.

Suppose	you	want	to	keep	all	the	monthly	snapshots,	but	automatically	remove	any
other	snapshots	that	get	removed	from	the	source.	The	source	deletes	monthly	snapshots
after	three	months,	but	weekly	snapshots	after	six	weeks.	Six	weeks	is	42	days.	Add	an
extra	week	for	system	anomalies,	giving	49	days.	Using	a	-g	of	50	would	tell	zxfer	to	not

delete	any	snapshot	50	days	old	or	older.

local$	zxfer	-vd	-g	50	-T	remote	-R	zroot/somedata	remotepool/backup

Eventually,	your	backup	pool	will	fill	up.	You	must	go	in	and	clean	out	the	snapshots
that	are	so	old	they’re	no	longer	useful.	It’s	no	different	than	cleaning	out	the	corporate
tape	closet.

Properties	and	Disaster	Recovery

You’ll	often	want	to	replicate	complex	properties,	like	sharenfs	and	any	of	the	quotas.	The	-

P	argument	tells	zxfer	to	set	the	properties	in	the	destination	to	match	the	source.

In	some	cases	you	want	to	know	what	the	properties	are,	but	you	don’t	want	to	restore



them	immediately	upon	replication.	The	zxfer	command	can	copy	dataset	properties	to	a

text	file,	letting	you	restore	from	that	file	later.

The	-k	flag	tells	zxfer	to	create	the	properties	text	file,	in	the	root	directory	of	the

replica.	The	file	is	named	.zxfer_backup_info,	followed	by	a	period	and	the	pool	name.	If

you’re	replicating	an	entire	host	web5’s	zroot	pool	to	the	remotepool/web5	on	the	backup	host,

the	properties	backup	file	will	be	in	remotepool/web5/.zxfer_backup_info.zroot.

Use	the	-e	flag	to	restore	the	dataset	and	pool	properties	from	this	text	file.

A	common	configuration	is	for	a	host	to	have	a	pool	set	aside	to	accept	backups,	and
then	a	pool	set	aside	for	disaster	recovery.	If	the	source	machine	dies,	you	can	use	zxfer

locally	to	copy	the	latest	backup	to	the	disaster-recovery	pool.	You’ll	find	examples	of
exactly	this	in	the	zxfer(8)	manual	page,	but	here’s	a	common	example,	including
restoring	properties.	I’m	restoring	our	backup	of	the	host	web5,	into	a	pool	also	called	web5.

#	zxfer	-deFPv	-R	remotepool/web5/	web5

Boot	from	the	new	web5	pool,	and	you	have	restored	service!

More	Zxfer	Options

The	zxfer	program	has	a	bunch	of	options	to	copy	with	annoying	situations.

If	you	have	a	complicated	SSH	setup,	you	might	need	to	set	some	client	options	in	the
zxfer	user’s	$HOME/.ssh/config.	Alternatively,	you	could	add	these	options	in	single	quotes	to

-O	and	-T.

The	-O	and	-T	flags	can	also	be	used	to	inject	SSH	options,	as	well	as	command-line

arguments.	The	additional	parameters	before	the	user	and	host	get	fed	to	SSH,	while	any
commands	after	the	user	and	host	prefix	the	zfs(8)	command.	(You’re	better	served
configuring	ZFS	dataset	permissions	than	using	sudo,	however.)

-O	‘-oPort=1022	-i	/path/to/key/file	replication@hotspare	sudo’

The	-F	flag	tells	zfs	receive	to	roll	back	any	datasets	that	block	replication.	If	you’ve

changed	the	replicated	dataset,	-F	blows	away	those	changes.

You	can	have	zxfer	take	a	snapshot	automatically	before	running.	It	won’t	remove	old

snapshots,	so	it’s	not	a	proper	snapshot	rotation	regimen.	It	works	for	immediate	backups,
however,	leaving	the	problem	of	cleaning	up	for	another	day.	Add	the	-s	to	have	the	zxfer

take	snapshots	of	every	replicated	dataset.



Finally,	the	-n	flag	triggers	no-op	mode.	The	zxfer	program	does	not	transfer	or	delete

any	snapshots.	Instead,	it	performs	its	analysis	and	prints	out	what	it	would	do	if	you
hadn’t	set	-n.

Now	that	you’ve	gone	through	replication,	the	issues	of	ZFS	volumes	should	seem
easy	in	comparison.	Or,	maybe	not…

1	Arranging	geographic	high	availability	on	your	IT	staff	is	a	separate	problem.	We	recommend	letting	everyone	work
from	home.	For	best	results,	buy	them	homes	in	places	like	Fiji	and	the	Seychelles.	Stick	the	unpopular	guy	in	Moose
Burp,	Alaska.

2	The	people	who	can	read	a	streamed	filesystem	without	turning	it	back	into	a	filesystem	have	far	better	uses	for	their
time.

3	Sysadmins	may	blame	any	problem	that	occurs	once	on	“random	network	issues.”	It’s	in	the	Code	of	Conduct.

4	Lucas	would	find	deep	joy	in	making	you	learn	some	obscure	word	that	fits	ZFS	backups	perfectly.	Probably	from	a
tonal	language,	but	adding	both	Bantu	and	Khoisan	clicks.	Jude	thinks	that	Lucas	has	no	manners.





Chapter	5:	ZFS	Volumes
A	ZFS	volume,	or	zvol,	is	a	chunk	of	space	backed	by	a	ZFS	pool	and	used	as	a	block
device.	A	zvol	is	normally	used	like	a	file-backed	filesystem	and	exported	to	some	other
device	by	iSCSI.	A	zvol	doesn’t	have	the	normal	dataset	files	and	directories	and
permissions,	instead	relying	on	whatever	uses	the	volume	to	provide	the	filesystem.	Zvols
are	commonly	used	as	iSCSI	targets	for	other	network	devices,	giving	you	access	to	ZFS-
backed	storage	on	operating	systems	with	less	flexible	filesystems.	You	can	also	use	zvols
as	storage	for	virtual	machines,	giving	any	guest	operating	systems	access	to	ZFS’
integrity	features	even	if	the	client	operating	system	can’t	use	ZFS.	Plus,	you	can	replicate
zvols	across	the	network.

We	touched	on	zvols	in	FreeBSD	Mastery:	ZFS.	This	chapter	exposes	some	common
zvol	pitfalls.	But	let’s	start	with	zvol	basics.



Creating,	Destroying,	and	Manipulating	ZFS	Volumes

The	-V	flag	tells	zfs	create	that	you’re	making	a	ZFS	volume.	Give	the	desired	size	and	the

full	path	to	the	volume.	Here	we	create	a	2	TB	zvol	on	the	pool	vm.	As	this	volume	will	be

exported	to	a	web	server,	we’ll	name	it	www1.

#	zfs	create	-V	2T	vm/www1

Zvols	must	be	the	children	of	a	dataset.	In	this	example,	the	zvol	is	a	child	of	the	pool’s
root	dataset.	You	cannot	create	a	zvol	as	a	child	of	a	zvol.	Our	volume	shows	up	in	the	list
of	datasets.

#	zfs	list	-r	vm

NAME					USED		AVAIL		REFER		MOUNTPOINT

vm						2.06T			563G		31.8K		/vm

vm/db1		2.06T		2.61T		15.9K		-

A	zvol	immediately	claims	all	of	the	space	you	assigned	for	it.	We	created	a	2	TB
volume	so	it	uses	2	TB	of	space	plus	some	extra	for	metadata.	A	brand-new	volume	hasn’t
used	this	much	space	yet—it	hasn’t	written	a	bunch	of	placeholder	data	to	the	pool	or
anything	like	that.	It’s	only	claimed	that	space	via	a	refreservation.

Remove	a	volume	with	zfs	destroy.

#	zfs	destroy	vm/www1

You	can	use	most	other	ZFS	commands	on	zvols,	such	as	renaming	and	moving.	This
volume	is	actually	being	used	for	data,	so	we	give	it	a	more	meaningful	name.

#	zfs	rename	vm/www1	vm/db1

A	zvol	has	many	properties	identical	to	other	ZFS	datasets,	but	not	all.	Zvols	have
unique	properties	such	as	volmode	and	volblocksize,	while	you	can’t	set	sharenfs	or	atime	on	a

zvol.

Access	a	zvol	through	its	device	node.	Most	zvols	have	device	nodes	in	/dev/zvol,	in	a

directory	named	after	their	pool.	The	device	node	for	our	sample	zvol,	vm/db1,	would	be

/dev/zvol/vm/db1.	A	zvol	might	have	other	device	nodes,	depending	on	its	mode.



Sparse	Volumes

ZFS	lets	you	create	a	ZFS	volume	larger	than	the	space	available	to	stick	it	in,	thus
overcommitting	on	space.	Reserving	some	space,	but	not	enough,	is	called	thin
provisioning.	Thin	provisioning	is	quite	risky	on	older	filesystems,	as	you	can	easily
provision	more	space	than	the	filesystem	contains.	You	can	easily	expand	a	ZFS	pool	by
adding	more	hard	drives,	so	it’s	not	as	much	of	a	risk	here.	The	refreservation	property

controls	how	much	space	a	volume	has	reserved	for	it.	Here	we	create	the	2	TB	zvol	db5,

but	tell	ZFS	to	reserve	only	100	MB	for	it.

#	zfs	create	-V	2T	-o	refreservation=100M	db/db5

Those	of	us	who	have	a	couple	of	empty	SAS	shelves	and	already	have	plans	for
adding	more	hard	drives	might	even	use	sparse	volumes.	Sparse	volumes	use	only	the
amount	of	space	used	on	the	volume.	Use	the	-s	flag	to	create	a	sparse	volume.

#	zfs	create	-V	2T	-s	db/db5

You	might	use	smaller	reservations	if	you’re	exporting	iSCSI	volumes	to	other	hosts
and	the	client’s	filesystem	is	less	flexible	than	ZFS.	Growing	an	NTFS	or	UFS	filesystem
when	the	underlying	disk	expands	can	cause	long-term	problems.	Using	a	sparse	volume
means	you	can	tell	the	Windows	host	that	an	iSCSI	device	is	a	specific	large	size,	even	if
the	underlying	pool	doesn’t	have	that	much	free	space.	The	zvol	supporting	it	consumes
the	amount	of	space	used	by	the	files	on	the	device,	plus	any	filesystem	metadata.

This	lets	you	create	truly	impressive	volumes,	if	you’re	prepared	to	support	them.	Here
we	create	a	two	exabyte	sparse	volume.	It	doesn’t	matter	that	the	pool	beneath	it	is	only
500	GB.

#	zfs	create	-V	2E	-s	db/db5

Use	gpart	show	/dev/zvol/db/db5,	and	you’ll	see	that	this	disk	device	really	is	two	exabytes.

If	you	truly	need	two	exabytes	of	space	on	a	single	iSCSI	volume,	you	can	probably	afford
a	flunky	to	unpack	and	mount	hard	drives	quickly	enough	to	keep	up	with	demand.

Overcommitting	gets	really	ugly	when	you	run	out	of	space.	Your	iSCSI	clients	might
completely	lose	their	cool	when	they’re	informed	that	these	volumes	are	out	of	space	even
though	the	operating	system	instances	insist	that	they’re	only	10	percent	full.	Many	iSCSI
stacks	cope	gracefully	with	such	problems.	Others…	do	not.

If	you	don’t	have	enough	physical	hardware	capacity	to	add	storage,	let	ZFS	volumes
take	up	an	amount	of	space	equal	to	their	size.	Don’t	overcommit	space.



Volume	Mode

Before	you	go	creating	a	volume	for	your	application,	consider	its	intended	use	and	what
hosts	are	going	to	access	it.	FreeBSD’s	default	ZFS	settings	assume	that	the	system
hosting	the	zvol	completely	controls	it.	If	you’re	using	a	zvol	as	a	store	for	a	virtual
machine,	however,	the	guest	operating	system	expects	to	have	complete	control	of	it.	This
matters	because	FreeBSD’s	GEOM	layer	autoconfigures	storage.	Storage	already
configured	by	the	host	causes	problems	for	virtualized	guests.

Control	which	system	configures	a	volume	using	the	volmode	property.

The	default	volmode,	geom,	means	that	the	system	where	the	volume	exists	controls	it.	If

we	create	a	zvol	on	host	A,	host	A	configures	and	manages	the	volume	through	GEOM.	In
addition	to	the	device	node	for	the	ZFS	volume,	it	gets	device	nodes	in	/dev/label	and	such.

Use	the	geom	volmode	when	you’re	using	a	zvol	locally.

The	volmode	dev	means	that	this	zvol	is	only	available	through	the	single	device	node	in

/dev/zvol.	GEOM	doesn’t	try	to	autoconfigure	this	volume.	You	can	assign	a	label	to	the

node,	but	FreeBSD	won’t	even	try	to	see	it.	Use	the	dev	volmode	for	virtual	machine

storage,	such	as	bhyve(8)	hosts.

The	volmode	none	means	that	this	zvol	doesn’t	even	get	a	device	node.	You	could	clone

this	volume,	snapshot	it,	or	replicate	it.	This	mode	is	only	useful	for	backups.

You	can’t	change	a	live	zvol’s	mode—while	you	can	change	the	value	of	the	volmode

property,	the	volume’s	actual	mode	doesn’t	change.	To	make	a	volmode	change	take	effect,

export	and	re-import	the	volume.	(You	could	also	rename	the	volume,	which	is	effectively
exporting	the	volume	and	importing	it	under	a	different	name.)

Create	volumes	with	the	desired	mode	by	specifying	a	mode	at	the	command	line	or	by
setting	a	global	default.

volmode	at	Command	Line

As	with	any	other	property,	use	the	-o	flag	to	set	the	volmode	when	creating	a	zvol.

#	zfs	create	-V	10G	-o	volmode=dev	vm/swap0

This	new	zvol	is	accessible	only	by	the	device	node	/dev/zvol/vm/swap0.

Default	volmode

If	a	host	most	commonly	needs	to	use	a	volmode	other	than	geom,	it	makes	sense	to	change



the	default	volmode.	The	sysctl	vfs.zfs.vol.mode	controls	the	default	volmode	for	new	zvols.

The	default	value,	1,	tells	ZFS	to	use	the	volmode	of	geom.	A	setting	of	2	indicates	the

dev	volmode,	while	3	means	a	volmode	of	none.	Change	the	default	with	sysctl(8),	or	make	the

change	permanently	effective	at	the	next	reboot	with	an	/etc/sysctl.conf	entry.	Here’s	an

/etc/sysctl.conf	entry	to	make	a	virtualization	server	create	new	zvols	with	a	volmode	of	dev.

vfs.zfs.vol.mode=2

There’s	no	need	to	explicitly	define	the	geom	volmode.



Accessing	zvols

You	can’t	zfs	mount	a	zvol	like	you	would	a	filesystem	dataset.	The	whole	point	of	a	zvol	is

that	it’s	a	block	device.	To	access	it,	you	must	access	the	device	node	or	its	GEOM
provider.	The	most	common	is	probably	the	device	node.

A	zvol	gets	a	device	node	in	/dev/zvol,	in	a	subdirectory	named	after	the	pool.	The

device	node	for	our	sample	zvol,	vm/db1,	would	be	/dev/zvol/vm/db1.

We	might	assign	this	zvol	as	storage	for	a	bhyve	virtual	machine,	in	which	case	we’d

probably	let	the	virtual	machine	partition	the	disk.

For	other	uses	we	might	want	to	partition	it	locally.	Here	we	create	a	GPT	partition
scheme	on	the	zvol	and	make	it	one	large	partition,	with	a	GEOM	label	of	db1.	We	also

assign	it	a	GEOM	label.

#	gpart	create	-s	gpt	/dev/zvol/vm/db1

zvol/vm/db1	created

#	gpart	add	-t	freebsd-ufs	-l	db1	/dev/zvol/vm/db1

zvol/vm/db1p1	added

#	glabel	create	db1	/dev/zvol/vm/db1

As	this	zvol	was	created	with	the	default	volmode,	geom,	it’s	now	also	accessible	through

the	device	node	/dev/label/db1.

Once	the	partition	exists	you	can	create	a	filesystem	on	it.

#	newfs	-j	/dev/zvol/vm/db1

/dev/zvol/vm/db1:	2097152.0MB	(4294967296	sectors)	block	size	32768,	fragment	size	4096

	using	3350	cylinder	groups	of	626.09MB,	20035	blks,	80256	inodes.

	with	soft	updates

…

Wait—why	would	we	possibly	want	to	use	UFS	on	a	zvol?

Perhaps	our	iSCSI	client	or	VM	guest	doesn’t	have	enough	resources	to	run	ZFS
effectively.	By	giving	the	client	a	ZFS-backed	volume	with	a	filesystem	it	can	support,	the
client	gets	the	additional	protections	of	ZFS	even	though	the	client	can’t	use	ZFS	directly.
I	enable	UFS	soft	updates	journaling	with	-j,	however,	because	ZFS	data	integrity	and

UFS	filesystem	journaling	protect	completely	different	things.	ZFS	integrity	checks	make
sure	that	the	writes	are	safe,	but	filesystem	journaling	verifies	that	all	the	writes	are

completed.1

Now	that	the	zvol	has	a	filesystem,	you	can	mount	it.



#	mount	/dev/gpt/db1	/media/

And	voilà!	I	have	a	UFS	filesystem	backed	by	ZFS,	ready	for	use.

The	most	common	use	for	zvols	is	as	backing	stores	for	virtual	machines.	A	serious
quantity	of	virtual	machines	requires	serious	hardware.	Let’s	take	a	look	at	that	next.

1	Lucas	has	used	a	local	USB	flash	drive	as	a	gjournal(8)	or	gcache(8)	cache	for	an	iSCSI	device.	It	worked.	If	you	find
yourself	in	a	situation	where	that	makes	sense,	however,	leave	the	situation.





Chapter	6:	Advanced	Hardware
A	typical	server	can	only	hold	so	many	hard	drives.	As	your	storage	needs	grow,	you’ll
eventually	encounter	more	advanced	hardware	than	you	find	on	your	typical	home
machine.	This	chapter	covers	enough	of	the	basics	to	ensure	that	you	know	what	your
storage	vendor	is	trying	to	sell	you,	and	how	to	make	use	of	these	additional	features.



SCSI	Enclosure	Services

The	most	common	way	to	add	storage	is	through	a	box	specifically	designed	to	hold	hard
drives.	The	most	common	is	the	SCSI	enclosure	(sometimes	called	a	backplane).	Attach	a
SCSI	enclosure	to	a	host	with	a	disk	controller	card.

SCSI	enclosures	have	all	sorts	of	hardware	and	features	in	them.	You’ll	often	see	SAS
or	SATA	port	multipliers,	allowing	you	to	connect	more	than	four	drives	to	each	port	on
the	disk	controller.	You’ll	probably	see	disk	bays	or	trays,	probably	hot-swappable.	An
enclosure	has	fans,	temperature	sensors,	power	supplies,	and	more.	An	enclosure	might
even	have	its	own	CPU,	running	a	custom	operating	system	specifically	designed	to	corral
all	of	these	features.	Failed	fans	and	power	supplies	can	bring	down	your	storage.

SCSI	enclosures	have	protocols	to	communicate	with	server	operating	systems.	SCSI
Enclosure	Services,	or	SES,	is	the	modern	protocol	for	monitoring	and	managing	the
storage	subsystem	of	your	server.	It’s	the	successor	to	the	SCSI	Accessed	Fault-Tolerant
Enclosure	(SAF-TE)	protocol	found	in	older	hardware.

SES	is	usually	integrated	into	the	backplane	of	the	hot-swap	bays	or	in	the	SAS
Expander.	SES	provides	a	standard	way	to	monitor	and	locate	your	disk	drives,	and	can
also	be	used	to	monitor	fans,	lights,	and	other	devices.

FreeBSD	supports	SES	with	the	ses(4)	driver.	FreeBSD	10.3	introduced	sesutil(8),
letting	you	examine	and	control	the	ses(4)	devices	on	your	system.

Examining	your	Enclosure

Sesutil(8)	has	many	sub-functions.	Start	with	sesutil	map,	which	displays	all	of	the	devices

in	all	of	your	enclosures.

#	sesutil	map

ses0:

	Enclosure	Name:	LSI	SAS2X36	0e12

	Enclosure	ID:	500304801786b87f

The	first	entry	for	an	enclosure	is	the	enclosure	device	name	(ses0).	If	you	have
multiple	controllers,	a	reboot	might	change	the	device	node,	so	don’t	rely	on	it	to	identify
a	specific	enclosure.	The	enclosure	name	is	based	on	the	hardware	model,	but	the
enclosure	ID	is	unique	to	this	particular	piece	of	hardware.

Each	piece	of	monitored	or	controlled	hardware	in	an	enclosure	is	an	element.	Each
element	is	assigned	a	number.	Element	numbers	do	not	change	at	reboot.	Here’s	the	first
element	of	one	of	Jude’s	arrays.



Element	0,	Type:	Array	Device	Slot

	Status:	Unsupported	(0x00	0x00	0x00	0x00)

	Description:	Drive	Slots

Element	0	has	the	type	Array	Device	Slot,	and	a	description	of	Drive	Slots.	This	is	a
parent	element	for	all	of	the	individual	drive	slots,	which	follow.

Element	1,	Type:	Array	Device	Slot

	Status:	OK	(0x01	0x00	0x00	0x00)

	Description:	Slot	01

	Device	Names:	da0,pass4

Element	2,	Type:	Array	Device	Slot

	Status:	OK	(0x01	0x00	0x00	0x00)

	Description:	Slot	02

	Device	Names:	da1,pass5

Here	are	a	couple	of	actual	hard	drives.	You’ll	see	the	FreeBSD	device	names	and	the
drive’s	physical	location.	Presumably,	your	enclosure	has	slot	numbers	indelibly	printed
on	it—preferably,	not	on	the	removable	drive	trays.	When	FreeBSD	whines	that	disk	da1
is	dead,	you	can	tell	the	on-site	tech	to	go	straight	to	Slot	02.

Other	hardware	appears	after	the	drive	bays.

Element	26,	Type:	Temperature	Sensors

	Status:	OK	(0x01	0x00	0x39	0x00)

	Description:	Temperature

	Extra	status:

	-	Temperature:	37	C

That’s	a	lot	of	words	to	say	that	the	first	thermometer	says	the	enclosure	is	at	textbook
body	temperature.

Element	28,	Type:	Cooling

	Status:	OK	(0x01	0x01	0xfe	0x21)

	Description:	Fan1

	Extra	status:

	-	Speed:	5100	rpm

A	cooling	element	is	probably	a	fan,	although	someone’s	probably	built	a	supercooled
SCSI	enclosure	by	now.	The	fan	speed	lets	you	know	the	fan	is	still	running.	You	might
have	to	check	the	manual	to	see	exactly	where	Fan1	is,	though.

Element	34,	Type:	Voltage	Sensor

	Status:	OK	(0x01	0x00	0x01	0xf6)

	Description:	5V

	Extra	status:

	-	Voltage:	5.02	V

The	voltage	sensors	list	each	sensor’s	expected	voltage	as	a	Description,	then	provide
the	actual	voltage	as	an	extra	status.



SAS	expanders	get	a	little	more	complex.	You’ll	see	entries	for	SAS	expanders,	and
then	all	the	components	within	the	expander.	There’s	very	little	to	go	wrong	with	a	SAS
expander,	but	some	of	the	components	do	offer	a	status.

Element	41,	Type:	SAS	Expander

	Status:	Unsupported	(0x00	0x00	0x00	0x00)

	Description:	SAS	Expanders

Element	42,	Type:	SAS	Expander

	Status:	OK	(0x01	0x00	0x00	0x00)

	Description:	Primary	Expander

Element	44,	Type:	SAS	Connector

	Status:	OK	(0x01	0x11	0xff	0x00)

	Description:	Upstream	Connector	(Primary)

Element	45,	Type:	SAS	Connector

	Status:	OK	(0x01	0x11	0xff	0x00)

	Description:	Downstream	Connector	1	(Primary)

Element	46,	Type:	SAS	Connector

	Status:	OK	(0x01	0x11	0xff	0x00)

	Description:	Downstream	Connector	2	(Primary)

Even	the	individual	connectors	show	up

Element	47,	Type:	SAS	Connector

	Status:	OK	(0x01	0x20	0x00	0x00)

	Description:	Drive	Connector	00

This	is	far	more	detail	than	most	of	us	need.	But	checking	the	status	of	your	SAS
expanders	and	controllers	before	you	start	replacing	hard	drives	en	masse	can	save	you	a
lot	of	suffering.

Enclosure	Path

You	can	describe	a	disk’s	location	in	an	enclosure	by	how	it’s	connected.	To	reach	a
particular	disk,	the	operating	system	must	go	to	a	certain	enclosure,	then	to	a	particular
bay	in	that	enclosure.	FreeBSD	automatically	generates	device	node	directories	based	on
this	path.	This	allows	the	sysadmin	to	identify	the	devices	underlying	a	particular	chunk	of
hardware.	This	device	path	is	a	series	of	key-value	pairs,	separated	by	@	symbols.	For

example,	enclosure	500304801786b87d	shows	up	as	enc@n500304801786b87d.	Each
path	has	four	components:	the	enclosure,	the	device	type,	the	slot,	and	then	the	element
description,	creating	paths	like	the	one	below.

/dev/enc@n500304801786b87d/type@0/slot@a/elmdesc@Slot_10/

This	device	node	represents	enclosure	500304801786b87d.	The	leading	N	before	the
enclosure	identifier	shows	that	this	is	a	Network	Addressing	Authority	(NAA)	identifier,
which	is	largely	vestigial	because	everything	here	is	an	NAA	identifier.	The	hexadecimal
number	is	the	SAS	address	of	the	Addressed	Logical	Unit.	How	this	number	is	determined



varies	by	vendors.

The	type	is	a	numeric	device	type.	Disks	are	the	only	devices	this	driver	currently
supports,	but	later	FreeBSD	versions	might	add	support	for	other	devices.

The	slot	is	the	drive	bay.	Slots	are	numbered	in	hexadecimal:	slot	a	is	10,	b	is	11,	and
so	on.	Slot	10	is	actually	16.

The	last	component	is	the	element	description	that	appears	when	you	run	sesutil	map.

This	directory	contains	symlinks	to	all	of	the	device	nodes	associated	with	this	slot.	It
even	has	label	subdirectories.	(You	are	managing	your	disks	with	labels,	right?)

#ls	-l	/dev/enc@n500304801786b87d/type@0/slot@a/elmdesc@Slot_10/

total	1

lrwxr-xr-x		1	root		wheel			15	Oct		5	23:27	da9@	->	../../../../da9

dr-xr-xr-x		2	root		wheel		512	Oct		5	23:27	gpt/

lrwxr-xr-x		1	root		wheel			18	Oct		5	23:27	pass13@	->	../../../../pass13

If	slot	15	on	your	enclosure	is	making	an	unusual	buzzing	noise,	you	can	go	into	the

enclosure-based	device	node	and	identify	which	providers	live	there.1

Keeping	the	lights	on

The	folks	working	on	your	hardware	need	all	the	help	they	can	get.	Those	slot	numbers
are	probably	printed	in	six-point	type,	and	only	visible	once	you	pull	the	drive	out	of	the
bay.	And	emergency	drive	replacements	always	happen	when	the	on-site	tech	is	barely
conscious.

Enclosure	bays	have	locate	lights	specifically	to	provide	your	remote	hands	an	extra
clue.	Activate	a	bay’s	locate	light	with	sesutil	locate.	Here,	we	activate	the	light	on	the	bay

housing	drive	da2.

#	sesutil	locate	da2	on

The	light	either	shines	or	blinks,	depending	on	the	manufacturer.

The	sesutil	map	command	shows	if	a	slot’s	locate	light	is	on.

#	sesutil	map

…

Element	3,	Type:	Array	Device	Slot

	Status:	OK	(0x01	0x00	0x02	0x00)

	Description:	Slot	03

	Device	Names:	da2,pass6

	Extra	status:

	-	LED=locate



You	might	need	to	activate	a	locate	light	in	a	bay	without	a	disk—say,	to	show	the	tech
where	to	install	a	new	hard	drive.	Use	the	SES	device	node	and	the	element	number	rather
than	the	device	node.	The	slot	number	is	often,	but	not	always,	the	same	as	the	element
number.	Be	careful.

Here	we	activate	the	locate	light	on	element	3	on	enclosure	/dev/ses0.

#	sesutil	locate	-u	/dev/ses0	3	on

To	turn	the	locate	light	off,	run	the	same	command	but	replace	on	with	…	wait	for	it	…
off.



Controlling	Host	Bus	Adapters

FreeBSD	includes	several	tools	for	managing	non-RAID	hard	drive	controllers,	normally
called	host	bus	adapters,	or	HBAs.	For	older	controllers	you	probably	would	rather	not	be
using	any	more,	you’ll	find	mfiutil(8)	and	mptutil(8).	FreeBSD	10.3	adds	the	mprutil(8)
and	mpsutil(8)	programs.	Mprutil(8)	is	for	the	LSI	Fusion-MPS	3	HBAs,	while	mpsutil(8)
is	for	LSI	Fusion-MPS	2	HBAs.	(As	Avago	purchased	LSI,	you	might	also	see	these	cards
with	Avago	branding.)

Both	programs	behave	identically,	so	we’ll	demonstrate	with	mpsutil(8).

Adapter	Details

First,	find	the	adapters	connected	to	your	system.

#	mpsutil	show	adapters

Device	Name		Chip	Name			Board	Name		Firmware

/dev/mps0				LSISAS2308														13000000

/dev/mps1				LSISAS2308														13000000

Now	look	at	all	of	the	devices	attached.	By	default	both	tools	access	the	first	device
node,	either	/dev/mps0	or	/dev/mpr0.	Access	other	HBA	devices	with	the	-u	flag	and	the	device

number.

#	mpsutil	show	devices

B____T									SAS	Address		Handle	Parent		Device						Speed	Enc		Slot		Wdt

										500304801786b87f		0009			0001				SMP	Target		6.0			0002	00				4

00			08			5000cca2325ddda9		000a			0009				SAS	Target		6.0			0002	00				1

00			09			5000cca23257419d		000b			0009				SAS	Target		6.0			0002	01				1

00			10			5000cca2325db3bd		000c			0009				SAS	Target		6.0			0002	02				1

00			11			5000cca2325e028d		000d			0009				SAS	Target		6.0			0002	03				1

…

Every	line	here	is	some	device	that	responds	to	SCSI	commands.	The	majority	of	them
are	hard	drives.	Anything	that’s	on	the	SCSI	bus	is	a	target,	including	a	hard	drive.	Really
digging	into	this	requires	understanding	of	SAS	and	SCSI,	but	we	can	glean	useful
information	without	deep	knowledge.

The	first	two	columns	show	the	device’s	SCSI-style	address.	The	third	gives	the
device’s	SAS	address.	Much	like	an	Ethernet	card,	every	SAS	device	has	a	unique
physical	address.

The	Handle	column	indicates	the	name	for	the	device,	while	the	Parent	column	shows
what	device	this	device	is	attached	to.	Look	at	our	first	line.	It	has	a	handle	of	0009.	The
second	column	has	a	handle	of	000a,	but	its	parent	is	0009.	The	device	on	line	two	is



attached	to	the	device	on	line	one.

The	Device	column	shows	what	kind	of	device	this	is.	A	“SAS	Target”	is	a	fancy	way
of	saying	“a	SAS	hard	drive.”	An	SMP	(Serial	Attached	Management	Protocol)	target	is	a
SAS	switch	or	expander.

The	Speed	column	shows	the	connection	speed	in	gigabytes	per	second.

The	Enc	column	shows	the	enclosure,	while	the	Slot	column	shows	the	slot	or	drive
bay.	Finally,	the	Wdt	column	shows	the	maximum	number	of	port	connections	on	this
device.

Display	Enclosures

Use	the	show	enclosures	command	to	view	the	enclosures	attached	to	an	HBA.	Here	we	list

the	enclosures	connected	to	/dev/mps1.

#	mpsutil	-u	1	show	enclosures

Slots	Logical	ID					SEPHandle		EncHandle	Type

		08		500605b009d018c0										0001						Direct	Attached	SGPIO

		25		500304801786b87f		0022				0002						External	SES-2

		13		5003048001f7ab3f		0030				0003						External	SES-2

You’ll	see	the	number	of	slots	in	the	enclosure,	the	device’s	handle	(if	any),	and	the
type	of	enclosure.

The	Logical	ID	is	a	SAS	address.	You	can	map	these	to	SAS	addresses	shown	in
sesutil(8)	or	other	commands.



sas2ircu

If	you	are	using	an	older	version	of	FreeBSD	that	doesn’t	have	mpsutil,	or	need

functionality	that	it	doesn’t	provide,	LSI/Avago	provides	their	own	proprietary	tool,
sas2ircu(8).	Most	of	the	features	mpsutil(8)	lacks	involve	the	controller’s	built-in	software

RAID.2	Sas2ircu(8)	also	lets	you	get	information	like	the	HBA’s	firmware	version.	It’s
available	as	a	FreeBSD	port,	sysutils/sas2ircu.

The	sas2ircu(8)	program	expects	at	least	two	arguments:	a	controller	(device	node)
number	and	a	command.	Even	if	you	have	only	one	controller,	you	must	specify	the
controller	number.

Viewing	Hardware

To	see	the	hardware	attached	to	an	HBA,	use	the	display	command.	Here	we	look	at	the
devices	attached	to	controller	0,	/dev/mps0	or	/dev/mpr0.

#	sas2ircu	0	display

You’ll	get	a	bunch	of	copyright	information,	as	well	as	helpful	notes	like	this:

Read	configuration	has	been	initiated	for	controller	0

Or,	“I’m	going	to	do	as	you	asked	now.”

----------------------------------

Controller	information

----------------------------------

		Controller	type						:	SAS2308_2

		BIOS	version									:	7.37.00.00

		Firmware	version					:	19.00.00.00

		Channel	description		:	1	Serial	Attached	SCSI

…

BIOS	and	firmware	versions	are	useful	if	you	have	to	troubleshoot	or	use	the
manufacturer’s	technical	support.	Once	all	this	is	past,	we	get	information	on	the	actual
hardware.	Each	hard	drive	gets	an	entry	like	this.

Physical	device	information

--------------------------------------------------

Initiator	at	ID	#0

Device	is	a	Hard	disk

		Enclosure	#																:	1

		Slot	#																					:	0

		SAS	Address																:	4433221-1-0300-0000

		State																						:	Ready	(RDY)

		Size	(in	MB)/(in	sectors)		:	4769307/9767541167

		Manufacturer															:	ATA

		Model	Number															:	TOSHIBA	MD04ACA5



		Firmware	Revision										:	FP2A

		Serial	No																		:	55FGK5SUFS9A

		GUID																							:	N/A

		Protocol																			:	SATA

		Drive	Type																	:	SATA_HDD

…

You	see	serial	numbers,	the	drive	type,	if	the	drive	is	ready	to	use	or	not,	the	size,	and
more.

Once	you	get	through	all	of	the	hard	drives,	it’ll	spill	out	details	about	the	enclosure
itself.

---------------------------------

Enclosure	information

---------------------------------

		Enclosure#		:	1

		Logical	ID		:	500605b0:09cfc820

		Numslots				:	8

		StartSlot			:	0

---------------------------------

It’s	not	quite	everything	about	your	enclosure—it	won’t	tell	you	which	drive	is
responsible	for	that	burning	smell—but	it	provides	guidance.

sas2ircu	Locate	Lights

To	turn	the	LED	on	a	specific	drive	bay	on	or	off,	you’ll	need	the	controller	number,	the
enclosure	number,	and	the	slot	number.	Get	all	that	from	the	display	command.

#	sas2ircu	<controller	#>	locate	<enclosure#:slot#>	on

Suppose	we	want	to	activate	the	LED	on	drive	8	on	the	enclosure	shown	in	the
previous	section.	We	were	using	controller	0,	or	/dev/mps0.	The	display	command	shows

each	device’s	enclosure	number	and	slot	number.	Drive	8	is	in	slot	7—remember,	slots
often	start	numbering	at	zero.	So	to	blink	the	LED	for	drive	8	(above)	on	/dev/mps0,	you

would	run.

#	sas2ircu	0	locate	1:7	on

Turn	it	off	again	when	you’re	done.



SAS	Multipath

Systems	with	high	availability	requirements	and	many	disks	might	need	SAS	Multipath.
The	goal	of	multipath	is	to	provide	more	than	a	single	path	from	the	CPU	to	each	disk.
The	other	paths	can	be	used	for	load	balancing	or	failover.	Generally,	multipath	means
connecting	two	or	more	controllers	to	the	backplane	or	storage	shelf	that	contains	the
disks.

Why	Multipath?

When	each	disk	can	be	reached	via	any	of	the	controllers,	the	failure	of	one	controller	or
cable	doesn’t	have	to	interrupt	service.	Additionally,	it	can	allow	you	to	use	the	combined
bandwidth	of	all	of	the	controllers.

This	concept	can	even	be	extended	to	provide	full	High	Availability.	If	you	have	a
JBOD	shelf	full	of	disks,	connect	one	of	the	two	SAS	ports	to	the	first	server,	and	the
other	to	the	second	server.	Now	both	machines	have	access	to	the	disks.	Use	something
like	CARP,	one	of	the	many	heartbeat	daemons,	or	some	quorum-based	high	availability
service	to	allow	these	two	servers	to	share	an	IP	address.

With	both	machines	having	access	to	all	the	data,	you	can	gracefully	fail	over	services
between	the	machines.	This	lets	you	do	that	OS	upgrade	you	have	been	putting	off,
without	taking	down	the	file	server.

Take	extra	care	to	ensure	that	both	systems	don’t	try	to	mount	the	disks	simultaneously.
This	is	why	the	zpool	import	command	checks	the	Host	ID,	and	refuses	to	import	pools	that

look	like	they’re	in	use	by	another	system.

Multipath	Modes

Multipath	poses	an	interesting	problem.	If	each	of	your	disks	has	two	or	more	paths	back
to	the	CPU,	the	operating	system	sees	each	individual	disk	multiple	times,	once	via	each
controller.	Now	my	36-disk	system	suddenly	appears	to	have	72	disks.

The	GEOM	multipath	module,	gmultipath(8),	takes	these	multiple	paths	and	provides	a
single	logical	storage	device	to	the	operating	system.	Gmultipath(8)	automatically	chooses
the	best	path	to	reach	the	disk,	so	the	upper	storage	layers	don’t	have	to	worry	about	it.

GEOM	multipath	currently	supports	three	modes	of	operation:	active/passive,
active/active,	and	active/read.

Active/passive	uses	only	one	path	at	a	time.	When	a	path	fails,	the	system	reissues	the



command	on	the	next	path.	Specify	active/passive	with	-P.

Active/active	mode	uses	all	paths	simultaneously	to	increase	the	available	bandwidth.
Using	all	the	paths	can	sometimes	actually	hurt	performance.	The	active/active	mode	has
no	idea	what’s	happening	at	the	filesystem	or	application	level;	it	just	sprays	the
instructions	across	the	different	controllers.	Commands	that	depend	on	each	other	might
have	to	wait	for	a	response	from	the	other	controller	before	they	are	able	to	proceed.
Specify	active/active	mode	with	-A.

Active/read	mode	uses	all	paths	for	reads,	but	does	all	writes	via	the	primary	path.	This
hybrid	approach	resolves	some	of	the	write	order	problems	that	can	be	introduced	by
using	active/active	mode.	This	mode	may	help	saturate	an	SSD	by	providing	more
controller	bandwidth.	On	a	regular	spinning	disk,	random	I/O	performance	may	actually
be	worse	than	active/passive.	Specify	active/read	with	-R.

A	fourth	mode,	logical	block,	is	being	investigated,	but	is	not	available	yet.	Logical
block	mode	breaks	the	disk	up	into	chunks	of	a	specified	size,	and	always	uses	the	same
path	to	access	that	region.	This	can	avoid	cache	duplication	on	the	controllers,	as	the	same
region	of	the	disk	will	not	be	accessed	by	both	controllers.	This	can	also	solve	the	write
ordering	issue	and	is	expected	to	provide	better	performance	than	active/active	mode.

Identifying	Disks

The	annoying	part	of	configuring	multipath	is	identifying	which	devices	nodes	(/dev/daX)

represent	different	views	of	the	same	hardware.	You	must	solve	this	before	you	add	any
labels	to	the	disks.	One	way	to	solve	this	is	to	use	camcontrol(8)	on	SAS	devices	to	get	the
serial	number.

#	camcontrol	inquiry	da7	-S

1EHNLWRC

#	camcontrol	inquiry	da43	-S

1EHNLWRC

Compile	a	list	of	devices	and	their	serial	numbers,	and	find	the	ones	that	match	up.

Alternatively,	you	can	use	sesutil(8)	to	match	up	slot	numbers.	We’ll	use	Jude’s
multipath	system	as	an	example.	It	has	two	enclosures:	the	front	one	has	24	slots,	and	the
rear	one	12.	The	server	has	two	disk	controllers.

The	first	controller’s	first	port	is	plugged	into	the	front	enclosure,	and	gets	called
/dev/ses0.	The	second	port	is	plugged	into	the	rear	enclosure,	and	becomes	/dev/ses1.



The	second	controller’s	first	port	is	plugged	into	the	front	enclosure,	and	gets	assigned
/dev/ses2.	The	second	controller’s	second	port	gets	attached	to	the	rear	enclosure’s	second

port,	and	becomes	/dev/ses3.

You	have	two	enclosures.	FreeBSD’s	/dev/ses0	and	/dev/ses2	both	point	to	the	front

enclosure,	while	/dev/ses1	and	/dev/ses3	both	point	to	the	rear.	Here	I	look	at	the	front

array’s	element	8	from	both	perspectives.

#	sesutil	map	-u	/dev/ses0

…

Element	8,	Type:	Array	Device	Slot

		Status:	OK	(0x01	0x00	0x00	0x00)

		Description:	Slot	08

		Device	Names:	da7,pass11

#	sesutil	map	-u	/dev/ses2

…				

Element	8,	Type:	Array	Device	Slot

		Status:	OK	(0x01	0x00	0x00	0x00)

		Description:	Slot	08

		Device	Names:	da43,pass49

This	is	the	same	disk.	It	has	multiple	device	nodes.	Disks	da7	and	da43	are	the	same
piece	of	hardware.

Any	time	you	configure	multipath,	take	notes	and	draw	pictures.	Future	You	will	thank

you	for	good	notes.3

Configuring	multipath

Gmultipath(8)	needs	a	kernel	module.	Enable	it	at	boot	with	a	/boot/loader.conf	entry.

geom_multipath_load=“YES”

The	FreeBSD	GEOM	multipath	modules	have	two	configuration	modes:	manual	and
automatic.	Automatic	mode	is	highly	recommended.	It	writes	a	label	to	the	last	sector	of
the	disk,	then	reads	that	label	via	each	path	to	determine	which	device	nodes	are	just
additional	paths	to	the	same	disk.	Use	the	gmultipath	label	to	automatically	configure
multipath.

We	advise	using	sesutil(8)	to	get	the	list	of	drive	device	nodes	attached	to	one	of	your
enclosures.	Then	use	camcontrol(8)	to	get	the	serial	number	of	each	of	those	drives.
Combine	the	enclosure	(f	for	front)	and	slot	number	with	the	disk	serial	number	to	create	a
label	on	the	disk.

#	gmultipath	label	f01-1EHNM9MC	/dev/da0

You’ll	run	this	once	for	each	drive	in	the	enclosure,	using	the	slot	number	and	serial



number	to	create	unique	labels	on	each	disk.

#	gmultipath	label	f08-1EHNLWRC	/dev/da7

Once	the	label	exists,	gmultipath(8)	finds	the	label	when	it	tastes	the	other	disks.	When
it	finds	the	disk	with	the	gmultipath	label	f01-1EHNM9MC,	it	says	“A-ha!	This	is	the
same	as	disk	/dev/da0”	and	takes	over.

Multipath	Device	Nodes

Now	that	you’ve	mapped	/dev/da0	and	/dev/da37	to	the	same	device,	don’t	use	those	device

nodes.	These	device	nodes	represent	accessing	the	disk	over	a	single	path.	Use	the
multipath	device	node	instead.	The	gmultipath(8)	kernel	module	actually	prevents	you
from	accessing	those	device	nodes	separately.

Multipath	device	nodes	appear	in	/dev/multipath.	Each	disk	is	named	after	the	label	you

assigned.	Build	your	ZFS	array	on	top	of	these	labels,	and	you’ll	get	access	to	the	disk
even	when	you	unplug	a	cable.

If	you	really,	really	want	to	access	the	multiple	device	nodes	of	a	multipath	device,	set

the	sysctl	kern.geom.multipath.exclusive	to	0.	But	we’re	telling	you	not	to.4

Manual	Multipath	Configuration

Maybe	you	like	doing	things	the	hard	way.	If	you	have	a	handy	chart	of	which	device
nodes	represent	the	same	physical	device,	you	can	use	that	chart	to	create	multipath	nodes
by	hand.	Use	gmultipath	create	to	manually	configure	multipath	devices.	Provide	a	label	and

the	two	disk	devices.	Here	we	create	the	multipath	device	multi1,	using	device	nodes

/dev/da7	and	/dev/da43.

#	gmultipath	create	multi1	/dev/da7	/dev/da43

To	destroy	a	manually	created	multipath	device,	use	gmultipath	destroy	and	the	label

name.

#	gmultipath	destroy	multi1

We	really	do	recommend	automatic	configuration,	though.	And	labeling	disks	after
their	location	and	serial	number.

Viewing	Multipath

After	a	reboot,	FreeBSD’s	GEOM	stack	tastes	the	disks,	recognizes	the	labels,	and	groups
the	disks	together.	See	what	it’s	discovered	with	gmultipath	status.

#	gmultipath	status



																Name			Status		Components

multipath/f00-1EHNM9MC		OPTIMAL		da0	(ACTIVE)

																																	da36	(PASSIVE)

multipath/f01-1EHJZMBC		OPTIMAL		da1	(ACTIVE)

																																	da37	(PASSIVE)

…

multipath/f07-1EHNLWRC		OPTIMAL		da7	(ACTIVE)

																																	da43	(PASSIVE)

After	each	path,	you’ll	see	a	note	indicating	whether	each	device	node	is	active	or
passive.

Changing	Multipath	Mode

We	discussed	the	different	multipath	modes	and	their	performance	impacts	earlier.
Gmultipath	defaults	to	active/passive	(-P)	when	you	label	a	disk.	You	can	add	the	-A	to

trigger	active/active,	or	-R	to	switch	to	active/read.

You	can	also	use	these	flags	to	change	the	mode	of	an	existing	multipath	device.	Use
gmultipath	configure,	the	flag	for	the	desired	mode,	and	the	drive’s	gmultipath	label.	Here	we

switch	the	disk	labeled	f07-1EHNLWRC	to	active/read	mode.

#	gmultipath	configure	-R	f07-1EHNLWRC

Did	it	work?

#	gmultipath	status

…

multipath/f07-1EHNLWRC		OPTIMAL		da7	(ACTIVE)

																															da43	(READ)

In	active/passive	and	active/read	configurations,	you	can	also	use	the	rotate	command

to	switch	which	of	the	devices	is	active.

#	gmultipath	rotate	f07-1EHNLWRC

#	gmultipath	status

…

multipath/f07-1EHNLWRC		OPTIMAL		da7	(READ)

																																	da43	(ACTIVE)

Now,	even	your	SSDs	can	rotate.	Enjoy!

Speaking	of	SSDs…



SSDs

Solid	state	disks,	or	SSDs,	are	significantly	different	than	regular	spinning	drives,	and
require	tuning	utterly	different	from	traditional	disks.	For	one	thing,	they’re	not	even
disks.

For	a	spinning	hard	drive	to	read	two	sectors	that	reside	at	different	locations	on	the
disk,	the	read	head	must	position	itself	in	the	right	location,	then	wait	for	the	spinning
platter	to	come	around	to	the	correct	location,	read	the	sector,	then	reposition	itself	to	the
second	sector,	again	wait	for	the	platter	to	come	around	to	the	correct	offset,	then	read	the
second	sector.	This	waiting	is	called	the	seek	time.

An	SSD	has	no	moving	parts.	When	you	read	data	from	two	different	parts	of	the
drive,	the	drive	has	a	seek	time	of	zero.	Most	SSDs	get	their	relatively	high	read	and	write
speeds	from	the	fact	that	they	read	and	write	to	multiple	cells	concurrently.	In	order	to
keep	multiple	memory	cells	busy,	the	operating	system	must	supply	the	drive	with	a	queue
of	work	to	complete.

For	a	normal	spinning	drive,	having	a	“deep”	queue	is	bad.	It	means	the	amount	of
time	between	when	data	is	requested	and	when	it	is	written	or	returned	is	higher,	because
it	must	wait	for	the	work	ahead	of	it	in	the	queue	to	complete.	By	having	a	lower	queue
depth,	more	important	work	items	can	get	to	the	front	of	the	queue	first,	cutting	in	front	of

less	important	work	that	has	been	patiently	waiting	in	line5.	To	get	the	most	out	of	an
SSD,	however,	the	queue	depth	must	be	high	enough	to	make	sure	each	cell	gets	assigned
work.	You	cannot	get	the	performance	numbers	boasted	on	the	box	without	a	nice	full
queue.

To	get	the	most	out	of	a	high	IOPS	device	like	an	SSD,	the	ZFS	VDEV	queue	depth
tunable	probably	needs	increasing.	This	helps	keep	enough	work	in	the	queue	to	prevent
the	device	from	being	idle.	See	the	“I/O	Queues”	section	of	Chapter	8.

Unlike	a	spinning	disk,	which	has	sectors	that	reside	at	fixed	locations	on	the	platter,

SSDs	are	an	array	of	immobile	flash	cells.	SSDs	use	an	FTL6	(Flash	Translation	Layer)	to
map	the	emulated	locations	on	disk	to	the	particular	flash	cell	containing	stored	data.
While	SSDs	claim	to	have	the	Logical	Block	Addresses	used	by	spinning	disks,	the	FTL
provides	these	LBAs.	LBAs	on	an	SSD	bear	even	less	relationship	to	reality	than	they	do
on	spinning	disks.

Since	flash	cells	wear	out,	almost	all	SSDs	contain	more	storage	than	they	claim	on	the



box.	The	drives	spread	data	around	the	cells	in	order	to	wear	them	more	evenly.	Once	all
of	the	space	is	occupied,	a	garbage	collector	runs.	The	garbage	collector	finds	cells	that
are	no	longer	referenced,	or	which	the	OS	has	used	the	TRIM	(SATA)	or	UNMAP	(SCSI)
command	to	mark	as	unused,	and	clears	them	for	further	use.

When	you	add	SSDs	or	other	devices	that	support	TRIM	to	a	ZFS	pool,	FreeBSD
TRIMs	the	entire	partition	or	device	by	default,	so	that	it	starts	in	a	known	state.	This	can
cause	a	delay	of	tens	of	minutes	or	even	hours	before	the	drive	is	usable.	If	your	devices
are	new,	or	you	do	not	want	to	TRIM	them	when	you	add	them	to	the	pool,	set	the	sysctl
vfs.zfs.vdev.trim_on_init	to	0	before	adding	the	device	to	the	pool.



NVMe

Non-Volatile	Memory	Express,	or	NVMe,	is	a	newer	technology	designed	to	further
increase	solid	state	storage	speed.	It’s	used	for	flash	drives,	as	well	as	other	non-volatile
memory	like	Intel’s	3D	Xpoint.	NVMe	itself	is	a	physical	interface	specification,	an
alternative	to	SATA	or	SCSI/SAS.	You’ll	find	NVMe	cables	and	adapters	that	attach	via
the	PCI-e	bus.

The	slowest,	most	complicated,	and	most	error-prone	part	of	an	SSD	is	the	FTL.
Pretending	to	be	as	stupid	as	a	1980s-era	spinning	disk	is	hard	labor.	NVMe	improves
performance	on	the	same	hardware	by	dropping	this	clumsy	pretense,	instead	adopting
protocols	better	suited	for	flash	memory.

One	of	the	biggest	differences	between	NVMe	devices	and	SSDs	is	that	NVMe	devices
have	multiple	queues,	usually	one	read	and	one	write	queue	per	CPU.	Rather	than	trying
to	try	to	keep	a	single	queue	full	of	enough	work	to	occupy	multiple	flash	cells,	NVMe
has	multiple	queues.	NVMe	queues	can	be	kept	relatively	shallow,	to	allow	high-priority
tasks	to	supersede	other	work.	Spreading	the	load	across	CPUs	helps	ensure	even	greater
performance.

While	most	HDDs	and	SSDs	interface	with	AHCI,	which	has	a	single	command	queue
of	up	to	64	commands	per	device,	the	NVMe	interface	allows	65,536	queues,	of	65,536
commands	each.	The	NVMe	interface	thus	requires	less	locking	while	offering	far	greater
parallelism	and	therefore	performance.

FreeBSD’s	nvme(4)	driver	first	appeared	in	FreeBSD	9.2.	Much	like	a	hard	drive
device	node,	you	can	expect	the	first	nvme(4)	device	to	be	/dev/nvme0,	/dev/nvme1,	and	so	on.

NVMe	devices	natively	support	namespaces,	allowing	them	to	be	divided	up	into
logical	units,	similar	but	different	to	partitioning.	Nvme(4)	uses	the	characters	ns	to
identify	namespaces	in	the	device	node.	Unlike	most	everything	else	in	computing,	the
NVM	Express	specification	starts	numbering	namespaces	at	1	rather	than	0.	You’ll	thus
get	device	nodes	like	/dev/nvme0ns1,	/dev/nvme0ns2,	and	so	on.

Only	some	newer	Enterprise	NVMe	devices	support	managing	the	namespaces.	Most
current	devices	have	a	single	namespace	that	covers	the	entire	device.

Viewing	NVMe	Devices

Use	nvmecontrol(8)	to	manage	NVMe	devices.	Start	by	identifying	all	of	the	NVMe
hardware	connected	to	the	system	with	nvmecontrol	devlist.



#	nvmecontrol	devlist

	nvme0:	INTEL	SSDPEDMD800G4

		nvme0ns1	(763097MB)

This	host	has	a	single	NVME,	with	a	single	namespace.

Use	the	nvmecontrol	identify	command	to	learn	specific	information	about	the	device.

#	nvmecontrol	identify	nvme0

Controller	Capabilities/Features

================================

Vendor	ID:																8086

Subsystem	Vendor	ID:						8086

Serial	Number:												CVFT4030004A800CGN

Model	Number:													INTEL	SSDPEDMD800G4

Firmware	Version:									8DV10151

…

This	goes	on	for	quite	a	bit,	identifying	all	of	the	features	this	NVMe	supports	(or
doesn’t).

The	identify	command	also	works	on	the	namespaces.

#	nvmecontrol	identify	nvme0ns1

Size	(in	LBAs):												1562824368	(1490M)

Capacity	(in	LBAs):								1562824368	(1490M)

Utilization	(in	LBAs):					1562824368	(1490M)

Thin	Provisioning:									Not	Supported

Number	of	LBA	Formats:					7

Current	LBA	Format:								LBA	Format	#00

LBA	Format	#00:	Data	Size:			512		Metadata	Size:			0

LBA	Format	#01:	Data	Size:			512		Metadata	Size:			8

LBA	Format	#02:	Data	Size:			512		Metadata	Size:		16

LBA	Format	#03:	Data	Size:		4096		Metadata	Size:			0

LBA	Format	#04:	Data	Size:		4096		Metadata	Size:			8

LBA	Format	#05:	Data	Size:		4096		Metadata	Size:		64

LBA	Format	#06:	Data	Size:		4096		Metadata	Size:			128

The	LBA	format	allows	you	to	specify	the	sector	size,	including	optional	extra	space
for	encryption	or	metadata.	FreeBSD	does	not	yet	let	you	reformat	the	drive	with	different
sector	sizes,	however.

NVMe	Performance

The	nvmecontrol(8)	utility	also	includes	a	performance	testing	tool,	nvmecontrol	perftest.

While	you	might	want	to	test	the	performance	of	a	drive,	it	can	demonstrate	the
advantages	of	multiple	work	queues.

Here	we	use	the	performance	test	to	measure	reading	speed	with	an	increasing	number
of	threads,	each	for	30	seconds.	Each	test	uses	an	increasingly	large	block	sizes.	The	last



column	shows	the	actual	throughput	for	each	number	of	threads,	in	megabytes	per	second.

Start	with	512-byte	blocks.

#	for	threads	in	1	2	4	8	16	32	64;	do	nvmecontrol	perftest	-n	$threads	-o	read	-s	512	-t	30	nvme0ns1;done

Threads:		1	Size:		512		READ	Time:		30	IO/s:		215377	MB/s:		105

Threads:		2	Size:		512		READ	Time:		30	IO/s:		309203	MB/s:		150

Threads:		4	Size:		512		READ	Time:		30	IO/s:		509559	MB/s:		248

Threads:		8	Size:		512		READ	Time:		30	IO/s:		534976	MB/s:		261

Threads:	16	Size:		512		READ	Time:		30	IO/s:		535131	MB/s:		261

Threads:	32	Size:		512		READ	Time:		30	IO/s:		534682	MB/s:		261

Threads:	64	Size:		512		READ	Time:		30	IO/s:		533701	MB/s:		260

With	one	thread,	we	can	read	105	MB/s.	With	eight	or	more,	we	hit	260	MB/s.	That’s
probably	the	maximum	throughput	with	this	block	size	on	this	device.

Here’s	the	same	test	using	4096-byte	(4	KB)	reads.

#	for	threads	in	1	2	4	8	16	32	64;	do	nvmecontrol	perftest	-n	$threads	-o	read	-s	4096	-t	30	nvme0ns1;done

Threads:		1	Size:			4096		READ	Time:		30	IO/s:		171261	MB/s:		668

Threads:		2	Size:			4096		READ	Time:		30	IO/s:		308112	MB/s:	1203

Threads:		4	Size:			4096		READ	Time:		30	IO/s:		424894	MB/s:	1659

Threads:		8	Size:			4096		READ	Time:		30	IO/s:		521704	MB/s:	2037

Threads:	16	Size:			4096		READ	Time:		30	IO/s:		543984	MB/s:	2124

Threads:	32	Size:			4096		READ	Time:		30	IO/s:		543376	MB/s:	2122

Threads:	64	Size:			4096		READ	Time:		30	IO/s:		542464	MB/s:	2119

Even	at	one	thread,	we	blow	away	the	performance	possible	with	512-byte	blocks.
Eight	threads	can	do	about	2,000	MB/s,	while	at	16	and	more	we	get	about	2120	MB/s.
With	a	bit	more	testing,	you	could	figure	out	that	somewhere	around	nine	or	ten	threads
maximizes	performance	with	this	block	size.

Now	forget	these	puny	mortal	block	sizes,	and	jump	up	to	128	KB	blocks.

Threads:		1	Size:	131072		READ	Time:		30	IO/s:			21770	MB/s:	2721

Threads:		2	Size:	131072		READ	Time:		30	IO/s:			25780	MB/s:	3222

Threads:		4	Size:	131072		READ	Time:		30	IO/s:			25780	MB/s:	3222

Threads:		8	Size:	131072		READ	Time:		30	IO/s:			25758	MB/s:	3219

Threads:	16	Size:	131072		READ	Time:		30	IO/s:			25706	MB/s:	3213

Threads:	32	Size:	131072		READ	Time:		30	IO/s:			25718	MB/s:	3214

Threads:	64	Size:	131072		READ	Time:		30	IO/s:			25710	MB/s:	3213

Two	threads	maximizes	throughput	with	these	large	blocks.

A	mere	3200	MB/s	might	not	sound	fast—it’s	3.2	GB/s.	But	SATA	measures
performance	in	bits,	not	bytes.	Once	you	get	rid	of	the	overhead,	SATA	3’s	6	GB/s	maxes
out	at	about	550	MB/s.

NVMe	GEOM	Providers	and	Booting



Once	an	NVMe	device	has	a	namespace,	the	nvd(4)	driver	comes	into	play.	This	is	the
device	that	is	actually	a	GEOM	provider,	and	can	be	used	for	storing	data	with	ZFS.
You’ll	see	device	nodes	like	/dev/nvd0,	/dev/nvd1,	and	so	on.

If	you	plan	to	use	the	NVMe	device	as	a	boot	drive	you	must	partition	the	boot	/dev/nvd

device,	probably	with	GPT.	If	you’re	not	booting	from	the	device,	you	could	skip	the
partition	table	and	write	the	filesystem	directly	on	the	device	node.

Traditional	BIOS	and	CSM	modules	only	understand	traditional	disks	and	things	that
lie	to	look	like	them.	The	whole	point	of	NVMe	devices	is	that	they	refuse	to	lie,	and	do
not	emulate	a	traditional	hard	drive.

Booting	from	an	NVMe	device	requires	booting	with	UEFI.	FreeBSD	gained	the
ability	to	boot	root-on-ZFS	via	EFI	in	FreeBSD	10.3.



zfsd

FreeBSD	11.0,	expected	to	be	released	in	July	2016,	will	include	the	first	version	of
zfsd(8).	This	daemon,	specific	to	FreeBSD,	offers	some	of	the	functionality	provided	by
Solaris’	Service	Management	Facility	(SMF).	Zfsd(8)	receives	notifications	about	faults
that	the	kernel	cannot	handle	itself,	and	resolves	them.

The	daemon	listens	for	devctl(4)	events	such	as	I/O	errors	or	disk	attach	and	removal
events,	then	responds	to	them	by	activating	and	deactivating	hot	spares,	or	onlining	and
offlining	individual	devices	in	the	pool.

Zfsd(8)	does	not	require	any	configuration.	It	makes	all	of	its	decisions	based	on	your
pool	configuration.	In	the	first	version	of	zfsd,	only	the	autoreplace	pool	property	has	any

effect.

If	a	device	removal	notification	is	received	for	a	disk	that	is	a	member	of	a	VDEV,	zfsd

immediately	activates	a	hot	spare	in	the	pool	and	starts	resilvering.

When	a	new	GEOM	device	appears,	zfsd	first	checks	for	a	ZFS	label.	If	the	disk	has	a

label	that	indicates	it	was	previously	a	member	of	a	pool,	it	is	reattached.	Once	it	finishes
resilvering,	any	hot	spares	that	were	temporarily	replacing	that	device	are	deactivated	and
returned	to	the	list	of	available	spares.

If	the	newly	arrived	device	has	no	ZFS	label,	but	its	physical	path	matches	that	of	a
missing	member	of	a	VDEV,	and	the	pool	has	the	autoreplace	pool	property	set,	then	the

new	device	is	used	to	replace	the	missing	one.	In	newer	FreeBSD	versions	the	physical
path	might	be	blank,	or	it	might	be	the	SES	path,	like
/dev/enc@n500304801786b87d/type@0/slot@1/elmdesc@Slot_01/gpt/f01-1EHJZMBC.

Once	resilvering	completes,	zfsd	deactivates	any	hot	spares	that	were	temporarily

replacing	that	device.	Deactivated	devices	get	returned	to	the	list	of	available	spares.

If	a	VDEV	becomes	degraded	or	faulted,	zfsd	attempts	to	resolve	the	issue	by	activating

a	hot	spare.

If	an	individual	device	generates	more	than	50	I/O	or	checksum	errors	in	a	60-second
period,	zfsd	marks	the	device	as	degraded	and	activates	a	hot	spare.	ZFS	continues	to	use

the	degraded	device	while	the	pool	resilvers.	Once	the	pool	finishes	resilvering,	zfsd

removes	the	failing	device	from	the	pool.

If	a	new	hot	spare	is	added,	or	returned,	to	the	pool,	zfsd	activates	the	spare	if	it	is



needed	to	replace	another	device.

When	a	resilver	operation	completes,	zfsd	attempts	to	deactivate	any	hot	spares	that	are

no	longer	needed,	so	that	they	are	available	to	replace	further	failures	should	they	occur.

Zfsd(8)	also	listens	for	“physical	path	change”	events,	to	be	notified	when	the	path	to	a
newly	arriving	disk	is	set.	This	can	happen	slightly	later	than	when	the	disk	insert	event
itself	arrives.	When	the	physical	path	is	updated,	and	the	pool’s	autoreplace	property	is	set,

zfsd	attempts	to	replace	any	missing	disk	with	the	same	physical	path.

When	you	swap	out	a	failed	disk,	and	the	CAM	subsystem	notes	that	the	new	disk	is	in
the	same	slot,	with	the	same	path,	zfsd	automatically	initiates	the	replace	operation	and

restores	the	pool	back	to	a	healthy	state.

Moving	a	disk	from	one	slot	to	another	works	exactly	like	removing	a	disk	and
plugging	a	disk	back	in.	The	kernel	marks	an	absent	disk	as	removed.	When	you	put	the
disk	back	in,	the	kernel	sees	the	ZFS	label	on	the	disk,	identifies	which	pool	it	belongs	to,
and	automatically	reactivates	it	with	zpool	online.	The	pool	metadata	gets	updated	with	the

physical	path.

Now	that	we’ve	talked	some	about	how	to	use	advanced	hardware,	let’s	look	at
advanced	uses	of	the	various	ZFS	caches.

1	All	sysadmins	appreciate	knowing	exactly	how	much	panic	is	appropriate	at	any	given	occasion.

2	You’re	not	trying	to	use	software	RAID	underneath	ZFS,	are	you?	Don’t	make	Jude	come	down	there!

3	If	your	notes	are	poor	or	nonexistent,	Future	You	will	curse	you,	the	day	you	were	born,	and	your	pets.	Don’t	enough
people	hate	you	already?

4	We’re	telling	you	not	to	for	your	own	good,	and	not	just	so	we	can	say	“we	told	you	so”	later.

5	Almost	as	skillfully	as	Lucas	cuts	in	line	at	the	gelato	stand.

6	Sadly,	not	a	Faster	Than	Light	engine.





Chapter	7:	Caches
Like	any	other	filesystem,	ZFS	uses	in-memory	caches	to	enhance	performance.	Unlike
most	other	filesystems,	though,	the	sysadmin	can	tweak	these	caches	to	adjust	system
behavior.	ZFS	caches	a	list	of	system	pools	in	the	zpool.cache	file.	It	can	use	cache	devices

for	reading	and	writing.	The	most	visible	cache,	though,	is	ZFS’s	Adaptive	Replacement
Cache.



Adaptive	Replacement	Cache

Calling	data	from	memory	is	much	faster	than	accessing	files	from	disk.	Unix-like
operating	systems	normally	retain	copies	of	the	most	recently	accessed	files	in	an	in-
memory	buffer	cache.	ZFS	uses	a	more	sophisticated	and	more	effective	type	of	cache,	the
Adaptive	Replacement	Cache,	or	ARC.	Understanding	the	ARC	starts	with	understanding
the	buffer	cache.

Traditional	Buffer	Cache

The	buffer	cache	chooses	data	to	cache	based	on	the	Least	Recently	Used,	or	LRU,
algorithm.	The	LRU	is	a	list,	stored	by	the	last	time	a	chunk	of	data	was	accessed.
Whenever	an	object	is	used,	it	moves	to	the	top	of	the	list.	When	the	cache	fills	up,	the
system	drops	items	from	the	bottom	of	the	list	until	there’s	enough	room	to	insert	new
items	at	the	top	of	the	list.

Buffer	caches	work	well	enough	to	provide	performance	gains,	but	in	certain	situations
the	LRU	method	causes	undesirable	behavior.	Consider	a	nightly	backup.	The	backup
program	scans	the	entire	hard	drive,	looking	for	files	modified	since	the	last	backup.
Running	this	scan	adds	each	file	on	the	system	to	the	top	of	the	list,	letting	files	that	were
just	scanned	fall	off	the	bottom.	By	the	end	of	the	backup,	the	buffer	cache	is	full	of	data
that	nobody	cares	about.	Meanwhile,	the	mission-critical	database	has	been	shoved
entirely	to	disk.	This	is	called	cache	thrashing.

The	ARC	avoids	these	problems.

ARC	Design

The	ARC	also	caches	files	that	have	been	recently	read	from	disk.	Instead	of	a	single	list,
the	ARC	has	two	pairs	of	lists.	One	is	the	Most	Recently	Used,	or	MRU,	list,	tracking
accessed	filesystem	blocks	much	like	the	buffer	cache.	The	second	is	the	Most	Frequently
Used	(MFU)	list,	tracking	filesystem	blocks	that	get	used	regularly.

The	addition	of	the	MFU	list	reduces	the	impact	of	cache-thrashing	processes	like	the
hypothetical	backup	job.	While	scanning	every	file	on	the	system	purges	the	MRU	list,	it
won’t	affect	the	MFU	list.	Scanning	a	block	once,	for	backup	purposes,	is	not	“frequent.”
The	most	frequently	used	files	remain	cached	in	memory.	Running	your	backup	still
impacts	disk	I/O,	reducing	write	performance,	but	the	system	serves	the	most	popular	files
from	the	copy	cached	in	memory.

Each	list	is	paired	with	a	ghost	list,	which	contains	the	information	about	blocks	that



have	been	evicted	from	the	list.	When	the	MRU	or	MFU	lists	fill	up,	the	blocks	at	the
bottom	of	the	list	fall	off.	By	tracking	these	blocks	dropped	from	the	caches,	the	ARC	can
prevent	a	block	from	constantly	cycling	in	and	out	of	the	cache.	The	ARC	can	also	decide
if	a	block	is	now	being	used	frequently	enough	to	warrant	entry	onto	the	MFU	list.

In	almost	all	cases,	the	ARC	is	self-adjusting	and	a	sysadmin’s	manual	tuning	can	only
impair	performance.	It’s	possible	that	your	particular	application	might	need	special
handling.	Understand	how	the	ARC	behaves	before	you	start	fiddling	with	it,	however.

ARC	Memory	Use

The	ARC	is	designed	to	be	both	greedy	and	generous.	If	the	system	has	free	memory,	and
the	ARC	thinks	it	might	possibly	benefit	from	it,	the	ARC	claims	the	memory.	Every	time
the	system	reads	something	from	disk,	the	ARC	caches	the	file	in	memory.	The	ARC
continues	caching	files	until	the	system	is	using	all	of	its	memory.

FreeBSD	reserves	1	GB	of	RAM	for	the	kernel	and	application	programs.	All	the	rest
of	the	system	memory	is	fair	game	for	the	ARC.	On	a	long-running	system	with	a	lot	of
storage	and	not	a	lot	of	memory,	it’s	not	surprising	to	see	the	ARC	consume	a	majority	of
the	system	memory.

The	ARC	has	a	very	low	priority	for	memory	requests,	however.	If	an	application
requests	memory,	but	the	system	doesn’t	have	free	memory,	the	kernel	shrinks	the	ARC	to
give	the	application	its	requested	memory.	The	process	of	returning	memory	from	the
ARC	to	the	system	as	free	member	is	not	instantaneous;	it	can	take	a	few	seconds.

So:	if	the	memory	is	free,	the	ARC	will	use	it.	If	something	needs	that	memory,	the
ARC	gives	it	back.	Modern	servers	have	a	lot	of	memory.	They	might	as	well	use	it	for
something.	The	old	saying	“Free	RAM	is	wasted	RAM”	still	holds	true.

The	easiest	way	to	check	the	size	of	the	ARC	is	through	top(1).	Here’s	a	slice	of	top

output	from	a	fileserver	with	32	GB	of	RAM	and	20	TB	of	disk.

…

Mem:	168M	Active,	116M	Inact,	24G	Wired,	1168K	Cache,	449M	Buf,	7052M	Free

ARC:	23G	Total,	15G	MFU,	7398M	MRU,	18K	Anon,	412M	Header,	88M	Other

…

The	Mem	line	appears	in	top	output	on	almost	all	Unix-like	systems,	and	offers	details
into	how	much	memory	the	system	is	using	for	various	types	of	tasks.	While	the	ARC	is	a
subset	of	wired	memory,	the	ARC	appears	separately	so	it	can	offer	more	detail.

The	first	entry,	Total,	shows	how	much	RAM	the	ARC	is	using.	This	ARC	on	this



system	has	claimed	a	total	of	23	GB.

Files	that	ZFS	accesses	often	appear	in	the	MFU	space.	This	shows	15	GB	of	MFU
data	in	the	ARC.

The	MRU	entry	shows	7,398	MB	used	to	store	the	most	recently	accessed	files.

Data	moving	from	one	queue	to	another,	or	async	writes	waiting	to	be	flushed	to	disk,
appear	in	the	Anon	space.	Memory	listed	as	Header	is	used	for	metadata	about	the	ARC
itself.	This	23	GB	of	ARC	needs	412	MB	of	metadata.	Other	includes	things	like	runtime-
only	metadata	used	to	help	the	ARC	find	stuff	in	its	cache.	Strictly	speaking,	it’s	not	part
of	the	cache	itself,	but	supporting	infrastructure.

While	the	ARC	is	greedy	for	RAM,	note	that	this	long-running	system	still	has	several
gigabytes	of	free	memory.	The	disks	are	overwhelmingly	full,	but	the	amount	of	data
demanded	by	real	users	is	comparatively	small.	Anyone	who’s	managed	a	file	server
recognizes	this	pattern—every	business’	accounting	department	has	one	master
spreadsheet,	plus	15	bajillion	slightly	different	copies	of	that	spreadsheet	from	various
dates,	all	of	which	are	vital	and	must	be	retained	for	posterity	eternally.	If	the	ARC	is
using	most	of	the	system’s	memory,	it’s	because	a	process	accessed	a	file.	The	ARC
doesn’t	go	hunting	for	excuses	to	suck	up	RAM.

Zfs-stats

FreeBSD	exposes	ZFS	performance,	settings,	and	metrics	through	a	variety	of	sysctls	in
vfs.zfs	and	kstat.zfs.	These	values	usually	mean	very	little	by	themselves,	but	are
illuminating	when	compared	to	each	other.	Rather	than	parsing	those	values	directly,	we
highly	recommend	using	the	zfs-stats	package	to	examine	the	ARC.

Use	zfs-stats	-A	to	get	basic	information	about	the	ARC,	such	as	its	current	size	and	the

size	of	each	queue	within	the	ARC.	Here	are	interesting	snippets	from	a	zfs-stats	report

from	one	of	Lucas’	systems.

#	zfs-stats	-A

…

ARC	Summary:	(HEALTHY)

				Memory	Throttle	Count:				0

…

The	Memory	Throttle	Count	tells	how	many	times	the	ARC	has	been	shrunk	to	return
memory	to	the	kernel	for	use	by	another	process.	If	the	memory	throttle	count	is	high,	you
might	consider	lowering	the	limit	on	the	ARC	size	to	ensure	there	is	enough	free	memory



for	your	other	processes.	ARC	memory	throttling	does	not	mean	that	a	system	must	have
more	memory,	though,	merely	that	it	would	make	use	of	additional	memory.

…

ARC	Size:																						36.22%		10.89		GiB

		Target	Size:	(Adaptive)					100.00%		30.07		GiB

		Min	Size	(Hard	Limit):							12.50%			3.76		GiB

		Max	Size	(High	Water):										8:1		30.07		GiB

…

This	particular	ARC	is	at	36.22%	of	its	maximum	size,	or	10.89	GB.	It’s	configured	for
a	maximum	size	is	30.07	GB.	The	minimum	is	3.76	GB.

…

ARC	Size	Breakdown:

		Recently	Used	Cache	Size:				50.00%		15.03			GiB

		Frequently	Used	Cache	Size:		50.00%		15.03			GiB

…

The	ARC	has	evenly	divided	memory	allocated	for	the	MRU	and	MFU	caches.

The	ARC	efficiency	report,	given	by	zfs-stats	-E,	is	more	interesting	than	the	general

report.	Here	are	the	most	interesting	snippets	of	that	output	from	a	different	server.

#	zfs-stats	-E

…

ARC	Efficiency:														78.40m

	Cache	Hit	Ratio:				97.76%		76.65m

	Cache	Miss	Ratio:				2.24%			1.75m

	Actual	Hit	Ratio:			97.76%		76.65m

ZFS	dedicates	gobs	of	memory	to	filesystem	caching.	The	top	of	this	report	shows	us
how	much	benefit	we	get	out	of	this.	The	Cache	Hit	Ratio	says	what	percent	of	disk	read
requests	were	served	from	the	ARC	rather	than	by	going	to	disk.	In	this	case,	97.76%	of
all	read	requests	on	this	machine	were	served	out	of	memory.	The	number	after	the
percentage	is	the	raw	number	of	requests.	This	host	served	76.65	million	disk	requests	out
of	the	ARC.

Next,	zfs-stats	shows	which	cache	a	cached	file	came	from.

CACHE	HITS	BY	CACHE	LIST:

	Most	Recently	Used:											3.35%			2.57m

	Most	Frequently	Used:								96.65%		74.08m

	Most	Recently	Used	Ghost:					0.04%		28.81k

	Most	Frequently	Used	Ghost:			0.08%		63.26k

The	MRU	cache,	which	resembles	the	traditional	buffer	cache,	served	3.35%	of	all	the
files	served	from	the	ARC.	96.65%	of	all	files	came	from	the	MFU	cache.	There’s



certainly	some	overlap	between	these	queues—in	the	absence	of	an	MFU	cache,	some	of
the	frequently	accessed	files	would	appear	in	the	MRU	cache.	But	it’s	a	nice	illustration	of
why	the	ARC	uses	an	MFU	cache.

Ghosts	hold	the	lists	of	data	that	was	recently	cached,	but	was	discarded	due	to
memory	pressure	or	other	limits.	Would	adding	more	memory	and	increasing	the	ARC
size	improve	our	cache	hit	rates?	With	0.04%	and	0.08%	hits	on	the	ghost	lists,	adding
more	memory	wouldn’t	really	improve	caching.	This	host’s	ARC	is	only	36%	full,	so
items	are	not	being	evicted.	Those	tiny	percentages	might	be	tens	of	thousands	of	requests,
but	compared	to	the	millions	of	requests	it’s	served,	that’s	almost	nothing.	Additional
memory	might	improve	other	processes,	but	not	the	ARC.

Next	we	see	the	type	of	data	pulled	from	the	ARC.

CACHE	HITS	BY	DATA	TYPE:

	Demand	Data:							97.15%		74.46m

	Prefetch	Data:						0.00%							0

	Demand	Metadata:				2.85%			2.19m

	Prefetch	Metadata:		0.00%							0

Data	is	the	content	of	files,	while	metadata	is	everything	about	the	files.	We	discuss
prefetching	in	Chapter	8,	but	whatever	prefetching	is,	it	clearly	doesn’t	come	into	play
here.

On	the	flip	side	of	the	coin,	we	see	which	sorts	of	data	weren’t	cached.

CACHE	MISSES	BY	DATA	TYPE:

	Demand	Data:								31.72%		556.25k

	Prefetch	Data:							0.00%								0

	Demand	Metadata:				68.28%				1.20m

	Prefetch	Metadata:			0.00%							19

How	many	of	a	system’s	requests	should	get	served	out	of	the	ARC?	That	depends
entirely	on	the	workload.	A	web	server	that	serves	the	same	data	over	and	over	again
could	expect	high	cache	hit	rates.	Expect	lower	cache	hit	rates	on	servers	where	clients
access	many	different	files.	If	your	pool	has	terabytes	of	data	in	millions	of	files,	but
clients	never	access	the	same	data	file	twice,	caching	files	in	memory	will	not	boost
performance.



Modifying	the	ARC

The	ZFS	ARC	manages	itself	in	the	overwhelming	majority	of	cases.	In	most	cases	where
the	ARC	cannot	auto-tune	itself,	performance	problems	are	best	solved	by	adding
hardware.	Sometimes,	though,	adjusting	ZFS’	memory	or	performance	can	buy	you	time
until	you	can	receive	and	install	new	hardware.	On	rare	occasion,	adjusting	the	ARC	is	the
proper	response	for	a	specific	application.

You	can	tweak	the	ARC	by	setting	upper	and	lower	boundaries	on	how	much	memory
it	can	use,	as	well	as	controlling	what,	when,	and	why	the	ARC	caches	data.

Restricting	ARC	Size

A	default	FreeBSD	install	sets	aside	1	GB	of	RAM	for	the	kernel	and	operating	programs,
permitting	ZFS	to	absorb	the	rest	in	the	ARC	if	that’s	what	the	system	performance
demands.	You	can	change	this	by	reserving	a	minimum	amount	of	memory	for	the	ARC
and/or	setting	a	hard	limit	on	how	much	memory	the	ARC	can	take.

The	ARC	settings	are	all	given	in	bytes.	Today,	we	manage	memory	in	gigabytes.	To

set	a	value	for	ZFS,	multiply	the	desired	number	of	gigabytes	by	10243.

The	ARC	surrenders	memory	readily	upon	request,	but	freeing	memory	doesn’t	happen
instantaneously.	Releasing	memory	from	the	ARC	and	allocating	it	to	another	process
unquestionably	takes	longer	than	allocating	free	memory	to	that	same	process.	On	a	host
with	a	very	large	ARC,	dumping	gigabytes	of	objects	from	the	cache	might	take	a
measurable	fraction	of	a	second.

You	might	decide	to	limit	the	amount	of	memory	the	ARC	can	use,	freeing	system
memory	for	applications.	Use	the	boot-time	tunable	vfs.zfs.arc_max	to	set	this.	By	default,
FreeBSD	sets	this	to	the	total	memory	minus	1	GB.	Here	we	set	an	upper	limit	of	20	GB
in	/boot/loader.conf.

vfs.zfs.arc_max=”21474836480”

The	maximum	ARC	size	is	not	a	hard	limit,	but	rather	more	of	a	high-water	mark.
When	the	ARC	hits	this	size,	ZFS	begins	hurriedly	reducing	the	cache	size.	The	least
important	items	get	added	to	the	ghost	queues	and	dumped.	If	you’re	monitoring	the	ARC
size,	you	might	see	memory	usage	wobble	around	vfs.zfs.arc_max	when	the	system
experiences	memory	pressure.

It’s	also	possible	that	an	application	could	use	the	ARC’s	generosity	against	it,	and
squeeze	it	out	of	existence.	The	default	minimum	size	of	the	ARC	is	one-eighth	of	the



maximum	size.	(Strictly	speaking,	the	minimum	ARC	size	is	half	of	the	maximum	amount
of	memory	usable	for	metadata	in	the	ARC,	which	is	one	quarter	of	the	maximum	ARC
size.)	Use	the	boot-time	tunable	vfs.zfs.arc_min	to	set	a	minimum	ARC	size.	Like	the
maximum	size,	the	minimum	size	is	expressed	in	bytes.	Here	I	set	the	minimum	ARC	size
to	4	GB	in	/boot/loader.conf.

vfs.zfs.arc_min=”4294967296”

Lucas	normally	sets	upper	and	lower	limits	on	ARC	size	only	when	he’s	gotten	sick	of
explaining	how	the	ARC	works	to	non-technical	managers.	“Yes,	PostgreSQL	can	use	a
lot	of	memory.	The	ARC	uses	memory.	But	the	ARC	only	caches	stuff	that	PostgreSQL

calls	for,	and	PostgreSQL	must	be	up	and	running	to	do	that,	so	it’s	not	a	problem.”1

FreeBSD	10.2	and	later	can	specify	how	much	memory	the	ARC	should	try	to	leave
free	for	the	use	of	other	processes,	with	the	sysctl	vfs.zfs.arc_free_target.	The	value	is
different	than	the	others	in	this	section	because	it	is	specified	in	pages,	not	bytes.	A	page	is

4096	bytes	of	memory,	so	a	value	of	2	GB	would	be	expressed	as	524288	(2	*	10243	/
4096).	When	the	amount	of	free	memory	drops	below	this	value,	the	kernel	memory
reaper	runs.	The	reaper	performs	two	functions:	it	adjusts	the	size	of	the	ARC	to	ensure
there	is	enough	free	memory,	and	it	defragments	the	KMEM	Arena.	While	ZFS	has	been
rapidly	allocating	and	freeing	bits	of	memory	as	files	move	in	and	out	of	the	ARC,	it	has
littered	bits	all	over	the	different	segments	of	kernel	memory.	That	memory	is	not	returned
to	free	until	all	allocations	in	an	arena	are	freed.	This	manifests	itself	as	the	amount	of
wired	memory	being	significantly	higher	than	the	size	of	the	ARC	plus	the	expected	other
wired	pages	like	the	networking	stack.	Unlike	the	previous	tunables,
vfs.zfs.arc_free_target	can	be	adjusted	on	a	running	system	and	takes	immediate	effect.

Metadata	and	the	ARC

Filesystem	metadata	includes	all	the	stuff	about	files,	except	the	files	themselves:
directories,	permissions,	ownership,	size,	properties,	and	more.	The	ARC	caches	all	of	this
information	exactly	as	it	caches	file	contents.	Accessing	a	file’s	contents	requires
accessing	the	file’s	metadata,	after	all.

By	default,	the	ARC	uses	up	to	one-fourth	of	its	maximum	size	to	cache	this	metadata.
While	this	is	almost	always	sufficient,	if	a	filesystem	has	a	whole	bunch	of	tiny	files,	you
might	need	to	expand	this	limit.	The	boot-time	tunable	vfs.zfs.arc_meta_limit	lets	you
configure	a	specific	limit	for	metadata	that	can	be	either	above	or	below	the	default.	Here
we	hard-code	the	ARC’s	metadata	cache	to	8	GB	in	/boot/loader.conf.



vfs.zfs.arc_meta_limit=”8589934592”

If	zfs-stats	-E	shows	that	you’re	drawing	much	more	data	than	metadata	out	of	the

ARC,	you	might	consider	increasing	the	metadata	limit	and	see	if	performance	improves.
Remember	that	by	default,	the	minimum	size	of	the	ARC	is	half	of	the	amount	that	can	be
used	for	metadata.	Also,	cached	metadata	cannot	use	more	space	than	the	entire	ARC.

Datasets	and	the	ARC

Some	data	has	regular	access	patterns	that	make	the	ARC	irrelevant—by	the	time	any	file
is	accessed	a	second	time,	it	would	have	long	since	been	expired	from	the	MRU	and	MFU
list.	This	typically	only	happens	when	a	dataset	contains	millions	of	files	and	when	you
can	easily	predict	their	usage.	Telling	the	ARC	to	not	cache	these	files	frees	up	memory	to
cache	files	that	might	benefit.

The	ZFS	property	primarycache	defines	what	parts	of	a	dataset’s	information	should	go

into	the	ARC.	The	default,	all,	means	to	cache	file	data	and	metadata	alike.

Setting	primarycache	to	metadata	tells	the	ARC	to	only	cache	each	file’s	metadata,	not

the	contents.	You	might	find	this	useful	for	directories	that	contain	large	numbers	of	files.
Without	metadata	caching,	running	ls(1)	on	a	large	directory	might	take	several	minutes	as
ZFS	reads	the	disks	and	assembles	the	information.	Caching	only	metadata	disables	ZFS
prefetching,	which	might	hurt	performance	more	than	metadata-only	caching	helps.

Setting	primarycache	to	none	tells	the	ARC	to	not	cache	anything	from	this	dataset.	You

can’t	prefetch	without	a	cache,	but	if	a	dataset	isn’t	cached,	performance	clearly	isn’t	a
concern.

For	example,	one	of	Lucas’	servers	has	a	multi-terabyte	dataset	with	innumerable	files
created	over	the	last	15	years.	On	the	rare	occasions	that	these	files	are	accessed,	they’re
searched	in	order.	The	server	doesn’t	have	nearly	enough	memory	to	effectively	cache	the
contents	of	all	these	files.	Telling	the	ARC	to	cache	metadata	on	this	dataset	means	that
ls(1)	and	such	still	work	briskly,	but	we	won’t	uselessly	clutter	this	machine’s	ARC.

You	must	unmount	and	remount	a	dataset	before	changes	to	the	primarycache	property

take	effect.

#	zfs	set	primarycache=metadata	cdr/cdr

#	zfs	unmount	cdr/cdr

#	zfs	mount	cdr/cdr

The	ARC	is	now	free	for	useful	work,	such	as	caching	the	temporary	files	created	by



analyzing	these	records.

Unmounting	a	dataset	removes	all	of	the	cached	information	about	that	dataset	from
both	the	ARC	and	the	L2ARC.



Level	2	ARC

The	ARC	constantly	prunes	itself	to	keep	within	its	permitted	size.	Files	that	have	not
been	referenced	in	a	long	time	fall	off	the	MRU	list.	Normally,	items	dropped	off	the	ARC
evaporate—while	they’re	mentioned	on	the	ghost	lists,	so	the	MFU	queue	can	recognize
them	if	they	come	by	again,	the	system	relies	on	the	on-disk	copy	of	the	file.

The	Level	2	ARC,	or	L2ARC,	is	a	secondary	read	cache.	The	L2ARC	catches	items
that	fall	off	of	the	ARC.	By	using	a	small,	fast,	high-endurance	disk	to	cache	ARC	data
you	can	simultaneously	reduce	read	load	on	your	system’s	main	storage	and	improve	read
performance.	The	zpool(8)	command	calls	an	L2ARC	a	cache	device.

While	the	L2ARC	is	written	to	disk,	the	data	in	it	does	not	survive	a	reboot.	While
everything	is	safely	there,	the	indexes	to	that	data	are	destroyed.	Even	if	those	indexes
were	available,	the	pools	could	have	been	modified	on	a	different	machine	before
rebooting	the	system.	ZFS	cannot	trust	the	information	on	the	cache	device.

As	of	early	2016,	there’s	a	nearly	complete	implementation	of	a	persistent	L2ARC.
With	a	persistent	L2ARC,	the	system	would	reload	the	prior	L2ARC	and	load	everything
back	into	memory.	While	this	feature	might	never	reach	wide	distribution,	heavy	L2ARC
users	might	check	for	it	in	the	future.

Using	an	L2ARC	makes	sense	when	you	have	multiple	users,	virtual	machines,	or
applications	accessing	a	single	data	set.	If	your	working	set	is	larger	than	the	amount	of
RAM	you	can	afford,	your	second	choice	is	L2ARC	based	on	SSD	or	NVMe	devices.	For
most	applications,	such	as	the	typical	home	or	enterprise	NAS,	an	L2ARC	will	not
increase	performance.	An	L2ARC	can	even	hurt	performance	through	memory
consumption.

L2ARC	Memory	Use

While	the	L2ARC	contains	a	whole	bunch	of	cached	data	and	metadata,	the	index	to	that
data	resides	within	the	ARC.	As	a	general	rule	of	thumb,	each	gigabyte	of	L2ARC
requires	about	25	MB	of	ARC.	(This	varies	with	the	sector	size	of	the	disk,	the	recordsize

property,	and	other	dataset	characteristics,	which	makes	the	actual	size	notoriously
difficult	to	calculate.)	It’s	fairly	sane	to	assume	that	one	terabyte	of	L2ARC,	fully	utilized,
will	devour	about	25	GB	of	ARC.

Most	L2ARCs	are	not	nearly	a	terabyte—at	least,	not	yet.	SSDs	of	sufficiently	high
endurance	to	make	them	suitable	for	read	caches	are	still	expensive	enough	that	most	of	us



don’t	have	them	lying	around.	Those	of	you	planning	massive	storage	arrays	with	more
than,	say,	40	drives,	should	remember	this.

L2ARC	Caching

The	L2ARC	can	only	cache	data	that	falls	off	the	ARC.	Data	that	is	never	in	the	ARC
cannot	appear	in	the	L2ARC.

Suppose	you’ve	completely	disabled	ARC	caching	for	all	datasets	on	a	particular	pool
by	setting	the	primarycache	property	to	none.	Adding	an	L2ARC	to	this	pool	will	not

improve	ZFS	performance.	There	is	no	cached	data	to	fall	down	to	the	L2ARC.

You	might	think	it	makes	sense	to	have	a	dataset	where	the	ARC	contains	the	metadata,
while	the	L2ARC	caches	the	actual	file	data.	Lucas’	multi-terabyte	cdr/cdr	dataset	from	the

previous	section	might	seem	a	great	candidate	for	this.	And	once	he	sets	primarycache	to

metadata,	it	sure	looks	like	that’s	what	will	happen.

#	zfs	get	primarycache,secondarycache	zroot/cdr

NAME							PROPERTY								VALUE					SOURCE

zroot/cdr		primarycache				metadata		local

zroot/cdr		secondarycache		all							default

The	problem	is	that	the	ARC	only	caches	metadata,	so	the	only	stuff	it	can	push	to	the
L2ARC	is	metadata.	The	L2ARC	can	contain	only	what’s	in	the	ARC,	or	a	subset	thereof.

By	default	the	ARC	caches	everything	the	system	accesses,	so	the	L2ARC	does	the
same.

You	can	control	how	each	dataset	uses	the	L2ARC	with	the	secondarycache	property.	As

with	the	primarycache	property,	secondarycache	can	be	set	to	all,	metadata,	or	none.	The	default

is	all,	meaning	that	data	that’s	almost	important	enough	for	the	primary	ARC	gets	pushed
off	onto	the	L2ARC.

Streaming	Files

Most	of	the	time	needed	to	read	a	file	is	spent	moving	the	disk	heads	into	position	over	the
platter.	Once	positioned,	the	heads	read	data	pretty	quickly.	This	is	called	streaming.
While	serving	large	files	out	of	memory	would	be	faster	than	reading	them	from	disk,	on
most	systems	the	multiple	disks	of	the	main	pool	are	faster	than	the	one	or	two	disks	of	the
L2ARC.	In	this	case,	having	the	L2ARC	cache	streaming	files	doesn’t	make	sense,	so	it’s
disabled	by	default.

If	you	have	an	L2ARC	that’s	faster	than	your	main	pool,	you	might	want	to	enable



large	file	caching.	The	boot-time	tunable	vfs.zfs.l2arc_noprefetch	controls	caching	of
streaming	files.	The	default	setting,	1,	disables	caching	streaming	files.	Set	this	to	0	to
enable	caching,	as	in	this	example	from	/boot/loader.conf.

vfs.zfs.l2arc_noprefetch=0

This	tunable	only	takes	effect	when	importing	the	pool.	FreeBSD	imports	pools	before
looking	at	/etc/sysctl.conf,	so	this	must	be	set	in	the	boot	loader.

L2ARC	Write	Speed

SSDs	are	not	as	robust	as	spinning	disks.	Even	if	you	contact	a	specialist	vendor	(such	as
iX	Systems)	who’s	very	familiar	with	ZFS	and	knows	precisely	the	best	disk	to	use	for	an
L2ARC,	you	can	hammer	on	an	SSD	only	so	much	before	it	dies.	While	ZFS	gracefully
manages	a	dying	or	dead	L2ARC,	constant	disk	death	is	expensive,	time	consuming,	and
annoying	to	the	sysadmin.	ZFS	implements	a	couple	of	write	throttles	on	the	L2ARC	to
extend	disk	life.

Like	the	main	ARC,	the	L2ARC	uses	bytes	in	its	configuration.	Most	L2ARC	settings

make	the	most	sense	in	megabytes.	Multiply	your	desired	values	by	10242.

During	normal	operating,	ZFS	only	writes	8	MB	per	second	to	each	L2ARC	device.
This	avoids	wearing	out	the	SSD	device,	and	also	helps	avoid	cache	thrashing.	(Cache
thrashing	is	writing	a	lot	of	data	to	the	cache	that	just	ends	up	getting	overwritten	with
newer	data	before	it’s	used.)	If	you	need	a	system’s	L2ARC	to	handle	more	data,	you	can
boost	this	with	the	sysctl	vfs.zfs.l2arc_write_max.	Don’t	turn	this	up	so	high	that	you
make	reads	slow.

When	a	system	first	boots,	the	L2ARC	is	empty.	An	empty	L2ARC	doesn’t	do	much
good.	ZFS	does	a	Turbo	Warmup	Phase	after	system	boot	where	it	writes	extra	data	to	the
L2ARC,	over	and	above	the	limit	set	by	vfs.zfs.l2arc_write_max.	Turbo	Warmup	Phase
continues	until	the	ARC	drops	the	first	item	from	the	L2ARC.	The	length	of	time	this
takes	depends	entirely	on	the	system.	By	default,	ZFS	can	write	an	extra	8	MB	to	each
L2ARC	device	during	Turbo	Warmup	Phase.	The	sysctl	vfs.zfs.l2arc_write_boost	controls
the	extra	bandwidth	allocated.

You	can	change	these	sysctls	at	any	time.	Here	we	set	both	to	16	MB.

#	sysctl	vfs.zfs.l2arc_write_max=16777216

vfs.zfs.l2arc_write_max:	8388608	->	16777216

#	sysctl	vfs.zfs.l2arc_write_boost=16777216

vfs.zfs.l2arc_write_boost:	8388608	->	16777216



Software	settings	will	not	let	you	exceed	the	hardware’s	limitations,	of	course.

SSDs	are	not	as	notoriously	fragile	as	they	once	were.	A	modern	data	center	class	SSD,
like	a	200	GB	Intel	DC	S3700,	has	an	Endurance	Rating	of	“10	drive	writes	per	day	for	5
years.”	This	translates	to	around	2,000	GB	per	day,	or	23	MB/second.	You	could
constantly	write	23	MB/s	to	this	drive,	and	according	to	Intel	it	would	endure	for	five
years.	On	a	high-performance	server,	tuning	the	throttle	sysctls	up	to	these	values	and
adding	a	note	to	order	a	new	cache	device	in	58	months	would	make	sense.	As	your	host
probably	won’t	write	to	the	L2ARC	at	full	throttle	all	of	the	time,	turning	these	parameters
even	higher	might	make	sense.



ZFS	Intent	Log

Caches	aren’t	just	for	reading	data.	ZFS	uses	caches	for	writes	as	well,	through	the	ZFS
Intent	Log	(ZIL).	ZFS	dumps	writes	to	the	ZIL,	and	then	processes	those	writes	to	add
them	properly	to	ZFS.	Every	pool	has	its	own	ZIL.	In	normal	use,	ZFS	uses	a	chunk	of
space	on	each	provider	for	the	ZIL.	If	you	desire,	you	can	add	an	external	device	for	use
as	a	ZIL.	Strictly	speaking,	the	ZIL	isn’t	exactly	a	write	cache.	But	it’s	sort	of	cachey,	so
we’ll	cover	it	in	this	chapter.

The	ZIL	doesn’t	work	the	way	most	people	think	it	does,	however.	To	understand	when
a	pool	needs	a	separate	logging	device	and	when	it	doesn’t,	you	must	understand	how	ZFS
writes	data.

Sync	and	Async	Transactions

ZFS	is	all	about	the	integrity	of	data	that	reaches	permanent	storage.	Data	on	the	disk
should	always	be	coherent.	A	system	might	lose	data	in	between	the	program	and	the	disk,
but	no	filesystem	can	protect	in-flight	data	residing	only	in	RAM.

To	ensure	on-disk	data	integrity,	ZFS	groups	write	requests	in	transaction	groups,	or
txgs.	A	transaction	group	is	a	bunch	of	data	and	the	associated	filesystem	metadata.	When
you	ask	the	system	to	write	to	disk,	ZFS	collects	those	writes	in	a	transaction	group.	One
transaction	group	can	include	writes	from	many	unrelated	processes.	Once	the	group	has
enough	data	or	a	timer	expires,	that	transaction	group	gets	written	to	the	disk.	That	timer
might	be	as	long	as	30	seconds	or	as	short	as	five,	depending	on	which	release	of
FreeBSD	you’re	running.

A	transaction	group	is	the	filesystem’s	to-do	list.	Exactly	like	your	to-do	list,	if

something	horrible	happens	the	list	gets	thrown	to	the	wolves2.	Data	is	vulnerable	to
system	failure	until	it	is	completely	written	to	the	disk.	If	the	system	crashes	or	dies	before
the	transaction	group	is	written	to	disk,	that	data	is	lost.	Reducing	the	transaction	group
timeout	might	reduce	the	amount	of	data	loss,	but	it	also	badly	impacts	performance.

As	the	sysadmin,	it’s	your	job	to	manage	the	risk	of	data	loss.	Let’s	walk	through
writing	data	to	disk.

A	program	hands	the	kernel	a	chunk	of	data	and	says,	“Please	write	this	to	the	disk.”
The	program	does	not	proceed	until	the	kernel	acknowledges	receipt	of	the	data.	Once	the
kernel	says,	“I	have	the	data,”	the	program	continues.	A	program	waiting	for	this	response
is	said	to	be	blocking	on	I/O.



The	important	question	is:	when	does	the	kernel	acknowledge	receipt	of	the	data?
When	the	data	is	added	to	a	transaction	group,	or	when	it’s	written	to	disk?

In	normal	operation,	the	kernel	acknowledges	the	data	when	the	data	is	in	memory	as
part	of	a	pending	transaction	group.	The	data	is	not	on	the	disk—the	kernel	has	merely
claimed	responsibility	for	the	data.	If	the	system	were	a	restaurant,	dinner	would	now	be
in	the	waiter’s	hands	on	the	way	to	the	customer,	but	the	waiter	could	still	trip.	Variants	on
asynchronous	operation	are	common	among	modern	filesystems,	such	as	the	various
versions	of	Linux’s	extfs	and	BSD	UFS.

A	filesystem	can	also	work	in	synchronous	mode,	where	the	kernel	acknowledges	data
only	when	the	bits	are	actually	written	to	the	physical	storage	medium.	Sync	mounts	are
extremely	safe,	but	also	extremely	slow.	The	program	that	wrote	the	data	will	block
waiting	for	the	physical	hardware	to	respond	to	the	kernel’s	write	request.	Certain
programs,	such	as	database	servers,	request	synchronous	acknowledgement	for	particular
files	by	using	the	fsync(2)	system	call.	The	sysadmin	might	mount	the	dataset
synchronously,	so	that	the	system	only	acknowledges	data	when	the	write	is	complete,	or
could	use	the	fsync(8)	program	to	tell	the	system	to	flush	everything	to	disk	right	now.

ZFS	Intent	Log

When	ZFS	writes	files	in	synchronous	mode,	it	doesn’t	immediately	push	a	transaction
group	to	the	disk.	Instead,	those	writes	get	dumped	on	the	ZIL.	They’re	not	neatly	ordered
as	ZFS	dataset	blocks;	instead,	they’re	just	a	heap	of	blocks	on	the	disk.	When	the
transaction	group	gets	written	to	disk,	the	blocks	on	the	ZIL	get	written	to	their	proper
location.

The	pool	import	process	checks	the	ZIL	for	data	that	hasn’t	yet	reached	its	final	home.
If	the	system	finds	in-flight	blocks	in	a	pool	it’s	importing,	it	completes	those	transactions.

Pools	normally	use	a	small	chunk	of	space	on	each	storage	provider	as	the	ZIL.	Yes,
this	means	each	synchronous	write	gets	written	to	physical	storage	twice.	But	the	pool
only	uses	the	ZIL	for	synchronously-written	data.	Normal,	asynchronous	writes	get	stored
in	RAM	and	committed	as	part	of	a	regular	transaction	group.

You	can	sometimes	improve	performance	by	putting	the	ZIL	on	a	dedicated,	fast
device,	called	a	Separate	Intent	LOG.

Separate	Intent	Log

You	can	separate	the	ZIL	from	the	pool	by	using	a	Separate	Intent	Log,	or	SLOG.	By



moving	the	ZIL	to	separate,	dedicated	hardware,	you	avoid	writing	the	same	data	twice	to
the	storage	providers.	If	the	SLOG	hardware	is	faster	than	the	pool,	the	kernel	can
acknowledge	the	data	more	quickly,	improving	the	performance	of	the	requesting
application.

Despite	common	usage,	a	SLOG	is	not	the	same	thing	as	a	ZIL.	The	SLOG	is	the
hardware.	A	ZIL	lives	on	either	the	SLOG	or	the	storage	providers.	You	can	launch	the
SLOG	through	a	window,	but	you	can	only	swear	at	the	ZIL.

The	fastest,	most	reliable,	and	most	expensive	SLOG	is	an	NVRAM	chip.	High-
endurance	SSDs	are	the	most	common	choice	for	SLOG.	You	can	even	use	very	fast	SAS
drives,	but	they’re	the	least	reliable.	Every	one	of	these	needs	a	private	power	source,	such
as	a	battery	or	a	supercapacitor,	to	let	them	complete	writes	in	case	of	a	system	power
failure.

A	SLOG	does	not	need	to	be	large.	The	sysctl	vfs.zfs.dirty_data_max	gives	the
maximum	possible	amount	of	in-flight	data.	FreeBSD	10’s	ZFS	defaults	to	using	a	ZIL
with	a	size	equal	to	one-tenth	of	the	system	RAM.	You	could	use	a	single	piece	of
hardware	to	support	SLOG	providers	for	more	than	one	pool,	but	that	also	splits	that
device’s	I/O	between	those	pools.	One	reason	for	using	a	SLOG	is	to	cope	with	I/O
shortages.

Not	all	SSDs	or	NVRAMs	are	created	equal.	Many	devices	marketed	as	“high
endurance”	aren’t	robust	enough	to	handle	all	the	writes	for	even	a	medium-sized	pool.
For	an	application	where	data	integrity	is	vital,	the	authors	strongly	encourage	you	to
consult	with	a	hardware	vendor	that	specializes	in	ZFS,	such	as	iX	Systems
(www.ixsystems.com).	A	properly	chosen	SLOG	can	vastly	accelerate	your	programs,
while	a	poor	choice	can	corrupt	your	pool.

Per-Dataset	ZIL	Tuning

You	can	control	how	(or	if)	a	dataset	uses	the	ZIL	with	the	sync	property.	Much	like

mounting	a	traditional	filesystem	sync	or	async,	the	sync	property	dictates	whether	the

dataset	honors	fsync(2)	requests.

The	default	setting,	standard,	tells	the	dataset	to	use	the	ZIL	for	synchronous	requests.
If	a	program	uses	fsync(2)	to	request	that	the	kernel	not	acknowledge	the	data	until	it’s
safely	on	disk,	the	data	gets	written	to	the	ZIL.	Other	data	is	written	asynchronously,	as
part	of	a	transaction	group.	This	is	the	default.



Setting	sync	to	always	sends	all	writes	to	the	ZIL.	No	writes	are	asynchronous.	This	is

the	safest	way	to	manage	data,	but	it	has	a	serious	performance	penalty.	You	might	choose
to	set	this	property	on	datasets	dedicated	to	critical	data.

Setting	sync	to	disabled	completely	disables	use	of	the	ZIL	on	this	dataset.	All	writes

are	asynchronous.	The	system	lies	to	every	program	that	uses	sync(2).	Never,	never
disable	the	ZIL	on	any	dataset	used	by	a	database	or	NFS.	Really,	the	only	reason	to
disable	the	ZIL	on	a	dataset	is	to	verify	that	the	ZIL	is	not	causing	your	particular
application	a	performance	problem.	If	disabling	the	ZIL	fixes	your	application,	definitely
file	a	bug	report	or	install	a	fast	SLOG	device.

In	almost	all	cases,	leave	sync	at	standard.	You	might	have	one	or	two	datasets	that	need

sync	to	be	set	at	always.

Synchronous	Writes	through	the	Stack

ZFS	winds	up	as	the	data	storage	backend	for	many	different	applications,	such	as	the
Network	File	System	(NFS)	and	iSCSI.	You	might	use	a	zvol	for	a	virtualized	system’s
drive.	All	of	these	different	layers	operate	independently.	While	they	can	talk	to	each	other
through	the	common	system	calls	and	APIs,	they	don’t	control	each	other.	Each	layer	of
an	application	stack	can	(and	routinely	does)	lie	to	the	other	layers.	And	nowhere	is	this
more	obvious,	and	more	dangerous,	than	the	fsync(2)	system	call.

Suppose	you	have	a	virtual	machine	that	runs	off	an	iSCSI	drive,	backed	by	a	zvol	on
your	server.	The	virtual	machine’s	operating	system	requests	a	synchronous	disk	write.
The	iSCSI	stack	takes	that	request	and	passes	it	to	ZFS.	If	you	set	sync	to	disabled	on	that

zvol	ZFS	sniggers,	says	“Synchronous?	Sure!	You	got	it,	buddy,”	and	waits	to	do	anything
until	the	next	txg.

You	might	set	sync	to	always	on	the	zvol,	accepting	the	performance	hit	in	the	name	of

data	integrity.	But	if	the	iSCSI	stack	disables	synchronous	writes,	you’ll	take	that	hit
without	any	benefit.	Any	layer	of	a	complex	application	stack	might	disable	synchronous
writes.

If	data	integrity	is	important,	verify	that	synchronous	writes	work	throughout	your
application	stack.



zpool.cache

Now	let’s	discuss	a	cache	that	you’ll	hear	about,	but	that	doesn’t	affect	day-to-day	system
administration:	the	file	/boot/zfs/zpool.cache.

The	zpool.cache	file	contains	a	description	of	the	pools	currently	active	on	the	system

and	their	providers.	When	you	boot	a	ZFS	system,	the	kernel	checks	the	zpool.cache	file	on

the	root	pool	to	discover	which	of	the	system’s	pools	it	should	import.

ZFS’	zdb(8)	uses	information	in	the	cache	file	for	debugging.	You	can’t	use	the
debugger	on	a	pool	without	a	cache.

You	can	control	the	cache	file’s	location	with	the	cachefile	property.	Here,	we	change

the	cache	file	for	the	pool	work.

#	zpool	set	cachefile=/work/zfs/work.zpool.cache	work

Despite	much	lingering,	obsolete	documentation	to	the	contrary,	there’s	almost	never	a
reason	to	change	the	cachefile	location	on	modern	versions	of	ZFS	or	FreeBSD.

Now	that	you	understand	the	cache,	we	can	talk	about	performance.

1	If	you	must	have	this	conversation	again,	do	try	to	not	add	“Aaargh,	how	did	you	possibly	earn	your	air	today?”	It
never	goes	over	well.

2	Wolves,	of	course,	don’t	care	about	paper	lists.	For	this	metaphor	to	work	well,	we	suggest	writing	your	to-do	lists	on
rump	roasts.





Chapter	8:	Performance
We	all	like	our	storage	to	be	fast,	featureful,	and	infinite.	We	haven’t	quite	hit	infinite
capacity	yet,	but	on	good	hardware	ZFS’	features	can	be	pretty	fast.	Even	the	best
hardware	can	turn	slow	for	no	apparent	reason,	however.	Knowing	how	to	use	the
diagnostic	tools	can	help	you	understand	a	system’s	performance.	Maybe	you	can’t	fix	it
with	the	equipment	on	hand,	but	at	least	you’ll	understand	what’s	going	wrong	and	maybe
shift	some	of	the	load	elsewhere.

FreeBSD	includes	tools	to	check	both	generic	disk	and	filesystem	performance	as	well
as	ZFS-specific	tools.	You	can	get	detailed	information	through	sysctl(8),	vmstat(8),	and
related	commands,	but	we	strongly	recommend	installing	the	add-on	package	zfs-stats	to

conveniently	parse	and	process	that	information.

Once	you	understand	how	to	assess	system	performance,	we’ll	discuss	several	ZFS
performance	features	and	when	they	might	be	useful.

Before	diving	into	assessing	ZFS	performance,	let’s	talk	a	bit	about	performance	in
general.



What	Is	Performance?

Performance	might	be	described	as	“how	well	a	system	manages	a	workload.”	Every
system	has	a	slightly	different	workload,	so	performance	varies	even	between	identical
hardware	performing	seemingly	identical	tasks.	Even	if	you	try	very	hard	to	replicate
hardware,	software	installations,	and	workload	on	another	system,	somebody	can	find	a
difference	between	them.	That’s	part	of	what	makes	benchmarking	so	annoying.

A	system	administrator	mostly	cares	about	improving	performance.	This	means
identifying	and	removing	bottlenecks.	The	average	computer	has	four	basic	resources:
storage	input/output,	network	bandwidth,	memory,	and	CPU.	If	you	pile	work	on	a	system
until	it	can’t	handle	any	more,	what	you’re	really	doing	is	discovering	which	of	these	four
resources	you	saturate	first.	That	resource	is	your	bottleneck.

Increasing	performance	requires	identifying	and	shifting	bottlenecks.	And	you’ll
always	hit	another	bottleneck.	If	your	CPU	is	the	current	bottleneck,	and	you	add	more
processing	power,	the	computer	speeds	up	until	it	saturates	disk	I/O	or	memory	or	the
network.	You’ve	improved	performance,	yes	…	up	to	the	limit	permitted	by	the	new
bottleneck.

And	a	different	workload	probably	has	a	completely	different	bottleneck.

A	lot	of	systems	administration	requires	exchanging	one	of	these	four	resources	for

another.	It’s	why	Lucas	always	refers	to	“system	tuning”	as	“rearranging	bottlenecks.”1

Consider	ZFS	compression	for	a	moment.	ZFS	compression	reduces	the	amount	of	data
the	system	writes	to,	and	pulls	from,	the	disk.	Compressing	and	decompressing	blocks
consumes	processor	time.	Compression	exchanges	storage	I/O	for	CPU	time.	Most
computers	have	far	more	processor	oomph	than	they	can	possibly	use,	however.	The
laptop	I’m	writing	this	on	has	a	four-core	processor,	but	a	single	middling-speed	disk	with
very	limited	I/O.	Enabling	compression	is	an	obvious	win	on	this	system.	On	a	system
with	more	disk	I/O	than	processor	power,	you	might	make	a	different	decision.

The	more	complicated	your	storage	is,	the	more	you	can	adjust	and	shift	storage
bottlenecks.	Your	server	has	six	disk	controllers,	but	all	the	I/O	is	going	to	one	of	them?
Rearrange	your	datasets	to	split	the	load	across	multiple	controllers.	Maybe	a	particular
disk	is	saturated?	Split	up	that	load.	Perhaps	your	pools	are	saturated	with	writes,	or	reads,
or	both.	Add	a	properly	configured	SLOG	and	an	L2ARC	to	help.

Before	you	make	any	changes,	though,	investigate	where	the	bottleneck	is.	Purchasing



a	faster	disk	system	won’t	help	if	your	system’s	particular	workload	is	limited	by	CPU	or
memory.	Adding	a	fast	SSD	for	a	ZIL	won’t	improve	performance	if	disk	reads	throttle	the
server’s	performance.

One	of	many	perennial	questions	in	systems	administration	is:	what’s	eating	up	my
disk	bandwidth?	A	ZFS	pool	scrub	can	impact	other	operations,	but	in	routine	use,	ZFS
doesn’t	create	any	new	answers	to	this	question.	Use	top	-m	io	to	identify	the	processes

using	the	disk	most	intensively.	Should	the	most	active	processes	be	that	busy?

If	your	performance	doesn’t	match	your	expectations,	remember	that	your	storage
system	performs	only	as	well	as	its	slowest	component.	You	can	have	a	really	fast	SAS
controller	and	top-of-the-line,	high-speed	hard	drives	but	get	terrible	performance	because
of	the	cruddy	drive	cables.	A	SATA	port	multiplier	slashes	performance	proportionally	to
the	number	of	drives	attached.	Just	because	you	can	plug	certain	hardware	components
together,	doesn’t	mean	you	should.



ZFS	and	Performance

Much	of	the	usual	storage	performance	tuning	advice	applies	to	ZFS	as	it	does	any	other
filesystem.	If	you	don’t	need	to	know	when	a	file	was	last	used,	disable	recording	access
time	with	the	atime	property.

ZFS	is	designed	to	work	with	lots	of	disk	space.	A	pool	that’s	more	than	80	percent	full
performs	badly.	That’s	inherent	in	how	ZFS	is	put	together.	If	you’re	trying	to	figure	out
why	an	almost	full	pool	is	running	slowly,	move	some	of	the	data	to	another	pool.
Releasing	space	on	a	nearly	full	pool	alleviates	most	ZFS	issues.

ZFS	is	also	designed	to	work	with	64-bit	systems.	With	some	persuasion,	luck,	and	a
little	traditional	Haitian	voodoo,	you	can	get	ZFS	to	work	on	32-bit	FreeBSD.	It	won’t
work	well,	and	it	won’t	be	efficient—but	the	system	will	boot.	Becoming	frustrated	with
ZFS	performance	on	32-bit	systems	is	like	getting	annoyed	at	the	dancing	bear	with	a	poor
sense	of	rhythm.	In	both	cases,	the	amazing	thing	is	that	it	works	at	all.

If	the	usual	sysadmin	advice	for	increasing	filesystem	performance	doesn’t	help	solve
your	problems,	you	must	dive	in	and	see	why	your	storage	system	is	behaving	poorly.
Every	operating	system	includes	tools	for	measuring	performance.	FreeBSD’s	vmstat(8)
can	quickly	identify	if	your	system	is	waiting	for	processor,	storage,	or	memory.

To	see	how	well	your	pools	perform,	use	zpool	iostat.



zpool	iostat

The	iostat	component	of	zpool	gives	a	snapshot	of	how	your	pools	are	performing	at	a

particular	instant	in	time.	To	see	average	activity	on	your	pools	since	the	system	booted,
run	zpool	iostat.

#	zpool	iostat

										capacity					operations	bandwidth

pool			alloc			free			read		write			read		write

-----		-----		-----		-----		-----		-----		-----

work			2.21G		1.81T						2				402		36.2K		24.0M

zroot		15.5G			905G				275						0		7.34M						0

We	have	the	name	of	each	pool,	with	the	amount	of	allocated	and	free	space	in	each.
The	last	four	columns	display	each	pool’s	read	and	write	activity,	in	units	of	both
operations	per	second	and	bytes	per	second.

This	example	shows	two	pools,	work	and	zroot.	The	zroot	pool	has	15.5	GB	allocated	and

905	GB	free.	The	pool	is	doing	275	read	operations	per	second,	or	7.34	MB	per	second,
and	no	write	operations.	This	means	each	read	operation	averages	around	27	KB	(7.34
MB	/	275	=	27	KB).

The	work	pool	is	more	interesting.	We	have	two	read	requests	per	second,	but	402	writes

per	second	for	a	total	of	24	MB/s.	The	reads	are	negligible,	but	each	write	averages	about
60	KB.	There’s	actual	work	happening	here.

What	does	this	mean	for	your	pool?	Taken	on	its	own,	not	much.	This	is	the	pool
activity	at	a	particular	instant.	This	instant	might	be	average,	or	it	might	be	a	high	or	low
period.	You	need	an	ongoing	view	of	pool	activity	to	make	any	sensible	decisions.

To	view	the	activity	for	a	single	pool,	give	the	pool	a	name.

#	zpool	iostat	work

This	eliminates	all	output	except	that	for	the	specified	pool.

Remember,	this	is	an	average	of	behavior	since	the	system	booted.	It	doesn’t	reflect
current	values.

Current	&	Ongoing	Pool	Activity

To	see	how	the	pool	is	behaving	at	this	particular	moment,	and	how	activity	changes	over
time,	have	zpool	iostat	print	new	statistics	every	few	seconds.	Specify	a	number	of	seconds

at	the	end	of	the	command	line.	Here	we	get	updates	every	two	seconds.	Hit	CTRL-C	to	exit.

#	zpool	iostat	2



										capacity					operations					bandwidth

pool			alloc			free			read		write			read		write

-----		-----		-----		-----		-----		-----		-----

work			3.37G		1.81T					14				107			146K			900K

zroot		15.5G			905G						3						2		32.9K		12.7K

-----		-----		-----		-----		-----		-----		-----

work			3.37G		1.81T						0						0						0						0

zroot		15.5G			905G						0						0						0						0

-----		-----		-----		-----		-----		-----		-----

The	first	entry	is	the	average	activity	since	the	system	booted,	exactly	as	if	you	had	run
zpool	iostat	without	an	interval.	The	second	and	later	entries	give	current	values.

After	the	headers,	the	first	two	entries	give	the	pool	activity	when	you	first	run	the
command	and	a	set	of	dotted	lines.	Two	seconds	later,	it	prints	a	new	set	of	data	below	the
separator.

If	you	specify	checking	a	single	pool,	zpool	iostat	loses	the	separators.	Here	we	look	at

the	work	pool.

#	zpool	iostat	work	2

											capacity					operations					bandwidth

pool				alloc			free			read		write			read		write

-----			-----		-----		-----		-----		-----		-----

work				3.35G		1.81T					15				104			148K			897K

work				3.35G		1.81T						0				616		2.25K		3.74M

work				3.35G		1.81T						1				553		5.74K		2.78M

work				3.36G		1.81T						1				607		21.0K		2.57M

…

This	pool	averages	104	write	operations	per	second,	but	at	this	moment	it’s	doing	over
600	write	operations	per	second.	It’s	doing	real	work!

Virtual	Device	Activity

While	each	pool	contains	one	or	more	identical	virtual	devices,	the	pool’s	usage	of	those
virtual	devices	might	not	be	identical.

One	common	situation	is	when	you	have	a	nearly	full	pool	and	add	a	new	virtual
device	to	it	to	gain	more	space.	The	pool’s	apparent	write	performance	might	then	drop	to
that	of	the	new	virtual	device,	rather	than	the	theoretical	throughput	of	the	entire	pool	with
all	its	virtual	devices.	The	new	virtual	device	has	all	of	the	free	space,	so	that’s	where	the
new	writes	go.	Over	time,	as	you	delete	old	files	and	remove	old	snapshots,	per-VDEV
utilization	might	average	out.	Depending	on	your	workload,	however,	VDEV	utilization
might	never	reach	equilibrium.

To	view	per-VDEV	activity	of	each	pool,	add	the	-v	flag	after	iostat.



Like	regular	non-verbose	zpool	iostat,	the	first	set	of	output	you	get	represents	the

average	since	the	system	booted.	In	verbose	mode,	these	numbers	look	kind	of	weird.

#	zpool	iostat	-v	work

															capacity					operations				bandwidth

pool								alloc			free			read		write			read		write

----------		-----		-----		-----		-----		-----		-----

work								2.13G		1.81T					10					87			100K			715K

	mirror					1.06G			927G						5					43		50.9K			359K

		gpt/zfs0						-						-						2						8		26.4K			360K

		gpt/zfs1						-						-						2						8		26.6K			360K

	mirror					1.07G			927G						4					43		49.6K			356K

		gpt/zfs2						-						-						2						8		25.0K			357K

		gpt/zfs3						-						-						2						8		26.4K			357K

----------		-----		-----		-----		-----		-----		-----

You’ll	get	a	total	for	the	pool,	totals	for	each	VDEV	in	the	pool,	and	a	number	for	each
provider	in	the	pool.	Look	at	the	write	operations	per	second	on	this	pool.	The	pool	as	a
whole	has	averaged	10	read	operations	per	second	since	system	boot.	The	first	mirror
device	is	responsible	for	five	of	these,	the	second	for	four	of	them.	Each	disk	within	each

virtual	device	handles	two	reads	per	second.2

The	write	activity	looks	downright	strange.	ZFS’	initial	data	shows	that	this	pool
averages	87	write	requests	per	second,	with	43	coming	from	each	pool.	That’s	not	bad—
but	the	per-disk	values	show	that	each	disk	averages	eight	write	requests	a	second.	No
matter	how	grotesquely	you	round	these	values,	they	aren’t	even	close.

The	short	answer	is,	ZFS’	per-disk	averages	are	not	very	reliable	as	raw	numbers.
They’re	proportionally	correct.	The	zpool	iostat	doesn’t	lock	in-kernel	data	structures	while

measuring	performance,	so	you’ll	get	slight	variations	as	the	command	runs.

Just	as	with	non-verbose	zpool	iostat,	to	see	current	values	you	must	provide	an	interval

at	the	end	of	your	command	line.	Here	we	show	the	per-device	activity	on	the	pool	work,
updating	every	two	seconds.

#	zpool	iostat	-v	work	2

…

															capacity				operations					bandwidth

pool								alloc			free			read		write			read		write

----------		-----		-----		-----		-----		-----		-----

work								2.31G		1.81T						0					69						0			147K

	mirror					1.15G			927G						0					40						0		93.6K

		gpt/zfs0						-						-						0					10						0		94.9K

		gpt/zfs1						-						-						0					10						0		94.9K

	mirror					1.16G			927G						0					28						0		53.3K

		gpt/zfs2						-						-						0						6						0		54.6K

		gpt/zfs3						-						-						0						6						0		54.6K



----------		-----		-----		-----		-----		-----		-----

The	first	mirror	VDEV	performs	more	I/O	operations	per	second	than	the	second
mirror.	Again,	the	individual	disk	numbers	don’t	add	up	to	the	total	number	of	operations
in	the	device,	but	they’re	proportionally	accurate.

Now	that	you	can	see	how	well	your	pools	are	working,	let’s	discuss	some	features	that
can	change	how	well	your	pool	performs.



ZFS	Prefetch

The	job	of	a	filesystem	is	to	provide	stored	data	on	request.	ZFS	takes	that	idea	further,	by
getting	ready	to	provide	data	you’re	about	to	ask	for.	This	takes	place	on	two	levels,	per-
VDEV	and	per-file.	FreeBSD	doesn’t	enable	per-VDEV	prefetch	by	default,	but	enables
per-file	prefetching.

Per-VDEV	Prefetch

The	most	time-consuming	part	of	retrieving	data	from	a	spinning	disk	is	positioning	the
heads	over	the	tracks	containing	the	data.	It’s	like	making	a	sandwich—slapping	peanut
butter	between	two	slices	of	bread	takes	two	minutes,	but	going	to	the	store	to	get	bread
and	peanut	butter	might	take	you	an	hour.	Once	the	hardware	is	physically	arranged,
reading	a	full	track	of	data	off	of	a	disk	spinning	at	5,000	or	10,000	RPM	takes
microseconds.

Per-VDEV	prefetch	is	an	attempt	to	make	moving	the	heads	worthwhile.	FreeBSD
does	not	use	per-VDEV	prefetching	by	default,	but	if	your	workload	involves	complicated
metadata,	complex	or	large	directory	trees,	or	many	small	files,	per-VDEV	prefetch	might
help	you.

Whenever	ZFS	reads	a	few	blocks	off	the	VDEV,	it	also	reads	the	few	blocks	after	the
target	blocks,	looking	for	metadata.	Any	metadata	found	gets	stuffed	into	a	special	per-
VDEV	prefetch	cache.	There’s	a	good	chance	that	the	requesting	program	will	return	and
ask	for	that	metadata.	Each	time	a	program	requests	that	prefetched	metadata,	ZFS
provides	it	from	the	cache,	returns	to	the	physical	VDEV,	and	prefetches	more	blocks.

Per-VDEV	prefetched	blocks	go	into	a	simple	rolling	Least	Recently	Used	cache,	not
the	ARC.	If	the	blocks	are	never	called,	they	quickly	get	discarded.	The	size	of	a	VDEV’s
cache	equals	the	number	of	storage	providers	in	the	VDEV	times	the	tunable
vfs.zfs.vdev.cache.size.	FreeBSD	sets	this	to	0	by	default,	so	the	cache	is	not	used.	Enable
the	cache	by	setting	this	tunable	to	the	desired	value	in	/boot/loader.conf.	A	common	value

is	10	MB.

vfs.zfs.vdev.cache.size=”10M”

After	a	reboot,	you’ll	have	a	per-VDEV	prefetch	cache	in	play.

The	sysctl	kstat.zfs.misc.vdev_cache_stats.misses	shows	how	many	times	ZFS	checked
the	per-VDEV	cache	for	metadata	and	didn’t	find	it.	Similarly,	the	sysctl
kstat.zfs.misc.vdev_cache_stats.hits	shows	how	often	ZFS	found	something	in	the	cache.



Test	your	workload	with	and	without	per-VDEV	prefetch	and	see	how	it	behaves.

How	much	does	per-VDEV	prefetching	preemptively	cache?	The	sysctl
vfs.zfs.vdev.cache.max	gives	the	minimal	size	of	a	read	from	a	VDEV.	This	defaults	to
16384,	or	16	KB.	If	a	program	requests	a	read	smaller	than	this	size,	per-VDEV
prefetching	kicks	in.

The	read	isn’t	just	expanded	to	16	KB,	however.	The	sysctl	vfs.zfs.vdev.cache.bshift
gives	the	amount	of	data	to	be	prefetched	and	searched	for	metadata.	This	is	a	bit	shift
value,	so	the	default	of	16	means	64	KB.

So,	if	a	program	requests	a	read	smaller	than	16	KB,	ZFS	reads	64	KB	instead.	If	a
program	requests	a	read	of,	say,	20	KB,	no	per-VDEV	prefetching	occurs.

While	changing	the	prefetch	values	helped	performance	with	some	older	versions	of
ZFS,	in	modern	ZFS	you	should	almost	always	leave	them	alone.	The	authors	are	not
aware	of	any	situations	in	which	changing	these	values	helps,	but	we	do	know	of	many
times	when	changing	these	values	causes	suffering.

Per-File	Prefetch

If	a	program	requests	the	start	of	a	file,	it’ll	probably	want	the	rest	of	the	file	before	long.
ZFS’	per-file	prefetching	tries	to	anticipate	such	requests,	caching	the	file	in	the	ARC
before	the	program	gets	around	to	asking	for	it.	This	makes	ZFS	feel	more	responsive.
This	is	often	called	ZFS’	intelligent	prefetch,	or	sometimes	just	prefetch.	While	file-level
prefetching	might	not	appear	terribly	sophisticated,	most	filesystems	don’t	manage	it.

File-level	prefetch	increases	the	size	of	the	ARC.	FreeBSD	automatically	disables
prefetching	on	hosts	with	less	than	4	GB	of	RAM,	and	automatically	enables	it	for	hosts
with	4	GB	or	more.	You	can	override	this	by	setting	the	tunable	vfs.zfs.prefetch_disable	to
1	in	/boot/loader.conf.

Prefetch	can	cause	problems	on	systems	that	host	hundreds	of	thousands	(or	more)	tiny
files,	such	as	64	KB	and	smaller.	You’ll	want	to	disable	file-level	prefetch	for	such	hosts.
Those	systems	are	fairly	rare,	however.

Normally,	file-level	prefetch	improves	performance	if	your	system	has	sufficient
memory	to	support	it.	You	can	enable	and	disable	prefetch	to	test	performance,	but	in
almost	all	cases	prefetch	is	helpful.



Transaction	Group	Tuning

You	can	tune	performance	by	adjusting	transaction	groups	and	the	I/O	scheduler.	We’re
specifically	covering	tuning	FreeBSD	10	and	later.	The	mechanisms	for	tuning	OpenZFS
writes	in	earlier	versions	were	considerably	more	baroque.

A	transaction	group,	or	txg,	is	a	single	lump	of	data	written	to	disk	in	an	ordered
manner.	A	transaction	group	can	contain	many	blocks	from	many	different	programs.	If
the	entire	transaction	group	is	not	successfully	written	to	the	disk,	the	entire	group	is
canceled.

You	can	control	how	often	the	system	writes	a	transaction	group	and	its	maximum	size.

txg	Timing

If	nothing	else	triggers	writing	a	txg	to	disk,	ZFS	write	every	few	seconds,	as	given	by	the
sysctl	vfs.zfs.txg.timeout.	While	the	value	of	this	setting	flailed	around	a	bit	in	earlier
releases	of	OpenZFS,	the	current	standard	is	five	seconds.	Worst	case,	any	pending	data
gets	written	to	disk	every	five	seconds.

For	most	systems,	writing	every	five	seconds	is	fine.	A	program	like	top(1)	might	show
a	burst	of	CPU	activity	every	five	seconds	as	the	pending	transaction	group	gets
compressed.	You	rarely	would	reduce	the	timeout	to	less	than	five	seconds.

Increasing	the	value	might	make	sense	for	some	systems,	however.	If	you’re	running
ZFS	on	a	low-load	virtual	machine,	you	might	crank	the	txg	timeout	up	to	15	or	so.	Lucas
often	runs	hosts	like	LDAP	mirrors	and	authoritative	DNS	servers	on	virtual	machines,
and	these	kinds	of	hosts	rarely	have	high	demand	for	disk	I/O.	Reducing	the	frequency	of
transaction	writes	wouldn’t	improve	performance	on	this	particular	virtual	machine,	but	it
would	improve	hardware	access	for	other	VMs	running	on	that	hypervisor.	Giving	all	the
virtual	machines	on	that	host	similarly	low	settings	would	improve	performance	for	virtual
machines	across	the	board,	but	a	single	selfish	or	high-load	VM	could	eat	up	many	of
those	gains.	(That	might	be	exactly	what	you’re	trying	to	achieve,	however.)

On	typical	hardware	that	shares	reading	and	writing	bandwidth,	increasing	the	timeout
might	improve	read	performance	most	of	the	time,	but	will	degrade	read	performance
during	writes.

If	the	timer	expires	and	the	system	has	no	transactions	waiting	to	be	written	to	disk,
ZFS	won’t	write	any	data.	ZFS	won’t	write	an	empty	transaction	just	for	the	sake	of
having	a	transaction	group.	It	still	increments	the	transaction	group	count,	however.



Setting	the	transaction	group	timeout	to	less	than	five	seconds	runs	up	against	the	I/O
scheduler	and	the	write	throttle.	For	most	of	us,	five	seconds	is	the	minimum	sensible
value.

txg	Size

A	txg	that	grows	sufficiently	large	gets	committed	to	disk	before	the	timeout.	FreeBSD
auto-tunes	the	maximum	size	of	a	transaction	group	at	boot	time	based	on	the	amount	of

memory	in	the	host	and	the	tunable	vfs.zfs.dirty_data_max_percent.	The	default	is	10,3	up
to	a	maximum	of	4	GB,	and	is	controlled	by	vfs.zfs.dirty_data_max_max.	Once	a
transaction	group	uses	10	percent	of	a	system’s	RAM,	it	gets	written	to	disk.

You	can	change	the	maximum	size	of	a	transaction	group	after	boot	with	the	sysctl
vfs.zfs.dirty_data_max.	This	value	is	in	bytes,	so	multiply	your	desired	number	of

gigabytes	by	10243	to	get	the	proper	sysctl	value.

The	hard	question	is:	should	you	change	the	size	of	the	transaction	group?	How	long
does	it	take	your	system	to	write	10	percent	of	RAM	to	disk,	and	how	often	does	that
happen?	Most	hosts	have	far	more	RAM	than	they	have	I/O	throughput.	Trying	to	write
one	tenth	of	RAM	to	disk	in	five	seconds	would	be	a	disaster.	Lucas’	test	host	has	several
hard	drives	in	a	single	pool	and	32	GB	of	RAM.	Writing	3.2	GB	to	disk	takes	over	20
seconds.	If	this	host	generated	3.2	GB	of	disk	activity	in	less	than	the	standard	five-second
txg	timeout,	the	machine	would	quickly	spiral	into	unusability.

If	your	system	has	a	high-performance	disk	array	with	great	big	gobs	of	throughput	and
an	economy-sized	pile	of	RAM,	though,	you	might	find	increasing	the	maximum	value
useful.

During	these	“write	cycles,”	most	reading	from	disk	is	suspended.	This	allows	the
write	to	complete	as	quickly	as	possible.	Reading	resumes	once	writing	is	complete.
“Interleaving”	the	workload	like	this	usually	increases	performance.	Using	knowledge	of
your	workload,	you	can	decide	if	flushing	larger	transaction	groups	less	often	or	smaller
ones	more	often	is	the	best	approach.	When	bulk	copying	data	inside	the	same	pool,	Jude
increased	the	txg	size	to	24	GB	and	the	timeout	to	30	seconds,	and	improved	performance
by	25	percent.

txg	Duration	and	Contents

If	you’re	trying	to	tune	the	size	and	period	of	transaction	groups,	it	makes	sense	to	ask
how	large	your	transaction	groups	are	and	how	long	they	take	to	commit	to	disk.	Adam



Leventhal	has	created	some	DTrace	scripts	useful	for	measuring	both,	available	at
http://dtrace.org/blogs/ahl/2014/08/31/openzfs-tuning/	or	at	http://zfsbook.com.	We’ll
discuss	both.

To	measure	the	amount	of	data	in	each	txg,	use	Leventhal’s	script	dirty.d.	(“Dirty	data”

is	in	memory,	waiting	to	be	written	to	disk.)

txg-syncing

{

		this->dp	=	(dsl_pool_t	*)arg0;

}

txg-syncing

/this->dp->dp_spa->spa_name	==	$$1/

{

	printf("%4dMB	of	%4dMB	used",	this->dp->dp_dirty_total	/	1024	/	1024,

		`zfs_dirty_data_max	/	1024	/	1024);

}

Run	this	script	giving	the	name	of	a	pool	as	an	argument.

#	dtrace	-s	dirty.d	zroot

dtrace:	script	'dirty.d'	matched	2	probes

CPU					ID		FUNCTION:NAME

		3		61042			:txg-syncing		2MB	of	6539MB	used

		1		61042			:txg-syncing		7MB	of	6539MB	used

		4		61042			:txg-syncing		5MB	of	6539MB	used

…

DTrace	prints	the	size	of	each	txg,	and	the	size	of	the	ARC,	every	time	ZFS	writes	the
txg	to	disk.	If	you	change	the	interval	between	transaction	groups	with	the
vfs.zfs.txg.timeout	sysctl,	you’ll	see	the	sizes	of	the	transaction	groups	change.

Leventhal’s	duration.d	shows	how	long	each	transaction	group	takes	to	complete.

<pre>txg-syncing

/((dsl_pool_t	*)arg0)->dp_spa->spa_name	==	$$1/

{

	start	=	timestamp;

}

txg-synced

/start	&&	((dsl_pool_t	*)arg0)->dp_spa->spa_name	==	$$1/

{

	this->d	=	timestamp	-	start;

	printf("sync	took	%d.%02d	seconds",	this->d	/	1000000000,

		this->d	/	10000000	%	100);

}</pre>

Use	it	exactly	like	the	first	script,	giving	the	pool	name	as	an	argument.



#	dtrace	-s	duration.d	zroot

dtrace:	script	'duration.d'	matched	2	probes

CPU					ID		FUNCTION:NAME

		1		61043					:txg-synced	sync	took	0.11	seconds

		2		61043					:txg-synced	sync	took	0.24	seconds

		4		61043					:txg-synced	sync	took	0.22	seconds

		2		61043					:txg-synced	sync	took	0.31	seconds

Despite	our	best	efforts,	ZFS	isn’t	working	very	hard	on	this	system.

If	you	see	that	your	transaction	groups	are	bouncing	up	against	the	maximum	txg	size,
you	might	want	to	either	increase	the	txg	size	or	decrease	the	time	between	transaction
groups.

Once	you	get	the	hang	of	these,	Jude	created	a	script	that	measures	both	of	these
simultaneously.

#!/usr/sbin/dtrace	-s

txg-syncing

/((dsl_pool_t	*)arg0)>dp_spa>spa_name	==	$$1/

{

	start	=	timestamp;

	this->dp	=	(dsl_pool_t	*)arg0;

	d_total	=	this->dp->dp_dirty_total;

	d_max	=	`zfs_dirty_data_max`;

}

txg-synced

/start	&&	((dsl_pool_t	*)arg0)>dp_spa>spa_name	==	$$1/

{

	this->d	=	timestamp	-	start;

	printf("%4dMB	of	%4dMB	synced	in	%d.%02d	seconds",

	d_total	/	1024	/	1024,

	d_max	/	1024	/	1024,	this->d	/	1000000000,

	this->d	/	10000000	%	100);

}

Simultaneously	viewing	txg	size	and	timing	can	provide	additional	insight	into	how
your	pool	really	behaves.

Write	Throttle

One	term	you’ll	hear	thrown	about	is	the	write	throttle.	The	write	throttle	comes	into	play
when	a	program	feeds	data	into	memory	faster	than	ZFS	can	write	it	to	disk.	As	the
system	RAM	gets	more	and	more	full,	ZFS	starts	inserting	a	small	delay	into	each	write
request.	Programs	wait	until	they	get	a	response	to	their	write	requests,	so	putting	a	delay
here	forces	them	to	slow	down.	The	goal	is	to	determine	how	much	load	the	disks	can
take,	and	slow	down	programs	so	that	they	run	at	exactly	that	speed.

In	older	versions	of	ZFS,	the	write	throttle	caused	very	irregular	performance.	The



write	throttle	algorithm	in	FreeBSD	10	and	newer	works	much	more	smoothly.	You	can
tune	it	through	the	I/O	scheduler,	discussed	next.



I/O	Scheduling

Not	all	hardware	is	created	equal.	Jude’s	top-of-the-line	laptop	has	a	lot	less	I/O	capacity
than	any	of	his	Content	Delivery	Network	servers.	FreeBSD’s	default	settings	are	fairly
generic.	While	you	don’t	really	need	to	tune	them	on	a	laptop,	if	you	have	dozens	or
hundreds	of	disks	with	very	specific	workloads	you	can	adjust	performance	through
tuning	the	scheduling.	Scheduling	I/O	lets	you	adjust	latency	and	throughput.

Throughput	is	the	amount	of	data	that	can	be	read	from	and	written	to	the	storage
device.	When	you	say	that	SATA-3	can	transfer	data	at	6.0	GB/s,	you’re	talking	about
throughput.

Latency	is	the	length	of	time	the	system	needs	to	service	those	requests.	A	complicated
storage	system,	with	Fiber	Channel	busses	and	multiple	shelves	in	multiple	parts	of	the
building,	might	induce	latency	as	requests	traverse	the	system.	Your	laptop	is	more	likely
to	have	storage	latency	when	you	overload	the	hard	drive	by	copying	too	many	files
simultaneously.

While	hard	drives	are	generally	marketed	with	a	description	of	how	many	I/O
operations	they	can	perform	per	second	(IOPS),	that	isn’t	as	useful	a	term	as	you	might
think.	Being	able	to	perform	250	IOPS	of	carefully	selected	data	says	nothing	about	the
drive’s	ability	to	perform	with	your	data.

Think	of	hard	drives	like	automobiles.	Some	are	optimized	for	capacity,	others	for
mileage.	A	huge	tandem	tractor-trailer	rig	can	haul	far	more	stuff	than	a	Tesla	Roadster,
but	it	sure	isn’t	snappy	off	the	red	light.	Most	of	us	would	use	the	big	truck	to	move	a
hundred-person	call	center	across	town	over	the	weekend,	but	prefer	different
optimizations	to	get	a	child	to	the	hospital	before	her	appendix	finished	rupturing.

Unlike	a	car,	you	can	to	a	certain	extent	control	the	optimization	of	most	hard	drives.
(Some	specialty	storage	devices	are	specifically	designed	for	certain	optimizations.)	That’s
why	you	can	dump	huge	amounts	of	data	on	your	laptop’s	hard	drive	and	make	the	system
seem	unresponsive—you’ve	just	exchanged	throughput	for	latency.

ZFS	I/O	scheduling	is	designed	to	smooth	out	latency.	This	can	reduce	throughput,	but
makes	the	overall	experience	more	consistent.	Generally,	by	changing	the	scheduling,
you’re	trying	to	improve	performance	while	not	introducing	too	much	latency.

ZFS	scheduling	is	built	around	I/O	queues.

Measuring	Latency	and	Throughput



How	do	you	know	if	a	change	positively	affects	system	performance?	You	measure	it.
Adam	Leventhal	wrote	a	latency	and	throughput	DTrace	script	for	illumos,	but	here’s	a
version	modified	for	FreeBSD.

#pragma	D	option	quiet

inline	uint32_t	BIO_READ	=	1;

inline	uint32_t	BIO_WRITE	=	2;

this	uint64_t	delta;

BEGIN

{

	start	=	timestamp;

}

io:::start

/	args[0]	/

{

	ts[args[0]]	=	timestamp;

}

io:::done

/args[0]	&&	ts[args[0]]/

{

	this->delta	=	(timestamp	-	ts[args[0]])	/	1000;

	this->name	=	(args[0]->bio_cmd	&	(BIO_READ	|	BIO_WRITE))	==	BIO_READ	?

	"read	"	:	"write	";

	@q[this->name]	=	quantize(this->delta);

	@a[this->name]	=	avg(this->delta);

	@v[this->name]	=	stddev(this->delta);

	@i[this->name]	=	count();

	@b[this->name]	=	sum(args[0]->bio_bcount);

	ts[args[0]]	=	0;

}

END

{

	printa(@q);

	normalize(@i,	(timestamp	-	start)	/	1000000000);

	normalize(@b,	(timestamp	-	start)	/	1000000000	*	1024);

	printf("%-30s	%11s	%11s	%11s	%11s\n",	"",	"avg	latency",	"stddev",	"iops",	"throughput");

	printa("%-30s	%@9uus	%@9uus	%@9u/s	%@8uk/s\n",	@a,	@v,	@i,	@b);

}

Run	this	script	several	times	while	your	system	experiences	normal	load	to	get	accurate
baselines	for	latency	and	throughput.

#	dtrace	-s	rw.d	-c	‘sleep	30’

The	sleep(1)	command	tells	the	script	how	long	to	spend	gathering	data.	The	rw.d	script

watches	the	throughput	and	latency	for	this	many	seconds,	then	prints	out	two	graphs	of
read	and	write	performance.	At	the	end	you’ll	get	a	report	like	so:

…

						avg	latency		stddev		iops		throughput

write						1362us		8378us		68/s					4620k/s

read							6943us		5839us			2/s							46k/s



Generally	speaking,	the	goal	of	performance	tuning	is	to	improve	the	numbers	you	care
about	without	making	the	other	numbers	too	large.	Play	with	the	maximum	number	of
permitted	reads	and	writes	of	each	type,	increasing	them	by	20–100	percent	between	runs.
Make	sure	you	don’t	hoist	these	values	high	enough	that	your	VDEVs	go	over	the	per-
VDEV	limit—or,	alternatively,	play	with	the	minimums.

The	stddev	(standard	deviation)	column	is	especially	noteworthy.	You	might	achieve
excellent	throughput,	but	find	yourself	with	wildly	varying	latency.	Is	massive	throughput
okay	if	some	of	your	reads	and	writes	take	five	seconds	to	complete?	Only	you	know.

When	adjusting	read	performance,	beware	of	the	ARC.	If	you	keep	accessing	the	same
file,	the	kernel	uses	the	in-memory	copy	rather	than	re-reading	it	from	disk.	To	properly
test	read	performance,	you	must	flush	commonly	used	files	from	the	ARC.	Either
unmount	and	remount	your	read-intensive	datasets,	or	just	reboot	the	machine.

Yes,	performance	tuning	and	testing	is	intrusive.	There’s	a	reason	why	most	people
don’t	bother	doing	it.	The	good	news	is,	ZFS	performs	pretty	well	with	the	default
settings.



I/O	Queues

ZFS	breaks	I/O	traffic	up	into	five	queues:	sync	reads,	async	reads,	sync	writes,	async
writes,	and	scrubs.	Each	has	a	pair	of	related	sysctls	that	control	the	maximum	and
minimum	outstanding	requests	of	that	type	that	can	be	active	concurrently	on	each	storage
provider.

Synchronous	reads	are	when	the	application	is	asking	for	the	data	right	now.	The
application,	and	possibly	the	user,	is	sitting	there	waiting	for	that	data	before	it	can
continue	doing	its	work.	Synchronous	writes,	similarly,	request	that	the	data	get	written
immediately.	Databases—and	other	applications	that	want	to	be	sure	that	they	do	not	do
“the	next	thing”	until	this	data	is	safely	on	the	disk—request	synchronous	writes.	In	ZFS,
synchronous	writes	are	done	as	quickly	as	possible.	This	is	where	the	SLOG	comes	in,	a
fast	dedicated	device	that	synchronous	writes	can	be	stored	on	temporarily,	more	quickly
than	storing	them	normally.

Asynchronous	reads	are	less	important,	mostly	consisting	of	ZFS’s	prefetch	feature,
loading	data	from	the	disk	in	anticipation	of	your	needing	it.	The	application	will	be
notified	when	ZFS	gets	around	to	reading	this	data	in	and	making	it	available,	rather	than
explicitly	waiting	for	it.	Asynchronous	writes	work	in	a	similar	fashion.	The	application
gives	some	data	to	ZFS	and	says,	“write	this	down	at	some	point.”	ZFS	holds	the	data	for
asynchronous	writes	in	memory	until	the	next	txg	is	closing,	then	flush	it	to	the	disk.
Grouping	these	writes	together	and	writing	them	out	en	masse	improves	performance.

The	maximums	and	minimums	do	not	apply	simultaneously,	however.	The	maximums
apply	in	one	set	of	conditions,	while	the	minimums	apply	in	different	conditions.	Some	of
these	values	for	a	type	of	write	are	identical—both	the	maximum	and	minimum	for	sync
reads	are	set	to	10,	for	example.	This	isn’t	a	conflict,	only	different	settings	for	a	different
situation.

Sync	reads	include	data	requested	by	a	program.	Calling	up	a	file	in	your	text	editor	is
a	sync	read.	Control	these	with	the	sysctls	vfs.zfs.vdev.sync_read_max_active	and
vfs.zfs.vdev.sync_read_min_active.	Each	defaults	to	10.	The	user	is	most	likely	to	notice
latency	in	sync	reads.	If	a	user	tries	to	open	a	file	and	it	takes	five	seconds	instead	of
50ms,	the	user	will	say	the	system	is	slow.

Prefetch	requests	are	async	reads;	nobody	has	yet	requested	that	data,	but	ZFS	guesses
that	the	request	will	arrive	soon.	If	a	program	reads	the	first	chunk	of	a	file,	ZFS	has	a
pretty	good	idea	that	a	request	for	the	rest	of	the	file	is	coming	soon.	Control	the	number



of	outstanding	async	read	requests	with	the	sysctls	vfs.zfs.vdev.async_read_max_active
and	vfs.zfs.vdev.async_read_min_active.	These	default	to	a	maximum	of	3	and	a
minimum	of	1.	The	purpose	of	limiting	the	number	of	async	operations	is	to	ensure	that
new	sync	operations	do	not	end	up	at	the	back	of	the	line	behind	a	bunch	of	less	important
reads.	When	the	number	of	outstanding	operations	on	the	drive	drops	below	the	minimum,
ZFS	adds	more	work	to	the	queue,	with	the	most	important	operations	being	added	to	the
queue	first.	The	order	of	operations	in	the	queue	does	not	change.

Sync	writes	are	used	where	a	program	uses	the	fsync(2)	system	call.	These	requests	go
straight	to	the	ZIL,	either	on	the	data	storage	providers	or	on	a	separate	SLOG.	These
writes	are	the	most	important	operation,	as	the	calling	application	is	waiting	for	the
operation	to	finish	before	it	continues.	Tuning	this	value	too	low	decreases	throughput	and
increases	latency.	Writes	in	ZFS	are	usually	batched,	so	take	advantage	of	the	write	head
being	in	the	correct	position	to	write	as	much	data	as	possible	at	once.	However,	if	the
number	of	operations	to	queue	is	too	high,	sync	reads	must	wait	for	the	already	queued
writes	to	finish,	which	can	negatively	impact	system	responsiveness.	The	sysctls
vfs.zfs.vdev.sync_write_max_active	and	vfs.zfs.vdev.sync_write_min_active	control	how
many	of	these	requests	may	be	pending	per	provider	at	any	time.	Both	default	to	10.

Async	writes	are	normal	traffic	that	doesn’t	traverse	the	ZIL.	Async	writes	sit	in	a	txg,
then	get	committed	en	masse.	The	sysctls	vfs.zfs.vdev.async_write_max_active	and
vfs.zfs.vdev.async_write_min_active	control	how	many	outstanding	async	write	requests
can	be	simultaneously	active	on	a	single	storage	provider.	The	default	maximum	is	10	and
the	minimum	1.

Scrub	processes	have	their	own	queues,	controlling	how	many	outstanding	I/O	requests
can	be	active	on	a	pool	simultaneously.	The	sysctls	vfs.zfs.vdev.scrub_max_active,	with	a
default	of	2,	and	vfs.zfs.vdev.scrub_min_active,	with	a	default	of	1,	control	this	queue.
Tuning	these	knobs	adjusts	how	a	scrub	impacts	system	load.	A	higher	queue	depth	makes
the	scrub	complete	sooner,	but	queues	other	operations	behind	the	scrub	operations.

How	ZFS	uses	these	limits	depends	on	the	number	of	outstanding	requests	permitted.

Per-VDEV	Requests

To	know	how	ZFS	will	schedule	activity,	you	must	know	how	many	outstanding	requests
can	go	to	each	of	the	system’s	VDEVs.	Consider	the	maximum	number	of	requests	of
each	type	per	storage	provider	(usually	a	disk),	as	given	by	the	sysctls	from	the	previous
section.



sync	read	maximum:	10

async	reads	maximum:	3

sync	write	maximum:	10

async	writes	maximum:	10

scrub	maximum:	2

A	disk	with	the	maximum	number	of	simultaneous	requests	possible	would	have	35
outstanding	requests.	A	10-disk	VDEV	could	have	350	simultaneous	outstanding	requests,
where	a	29-disk	VDEV	could	have	1015	simultaneous	outstanding	requests.

Looking	at	the	requests	of	each	type,	you’ll	see	that	this	is	a	fairly	balanced	plan.
Synchronous	and	asynchronous	writes	get	their	own	queues,	so	your	writes	won’t
overload	the	ZIL.	You	get	as	many	reads	as	asynchronous	writes.	File-level	prefetch	is
turned	down	so	ZFS’	guesses	on	the	data	your	programs	will	want	won’t	overwhelm
traffic	programs	actively	request.

Changing	these	values	adjusts	how	ZFS	can	distribute	requests.	You	want	your	system
balanced	towards	writing	data?	Increase	the	maximum	number	of	async	writes.	You	want
fast	scrubs?	Lift	the	scrub	request	ceiling.

You	cannot	increase	your	hardware	speed	by	cranking	these	settings,	however.	The
existing	limits	can	more	than	saturate	a	5400	RPM	SATA	hard	drive.	High-end	storage
devices,	where	you	have	separate	hardware	for	reading	and	writing,	can	probably	handle
slightly	higher	values.	Even	then,	you’ll	hit	the	maximum	capacity	fairly	soon.

For	solid-state	storage,	like	SSDs,	where	the	number	of	IOPS	can	be	much	greater	than
with	spinning	disks,	performance	can	be	improved	by	increasing	all	of	these	tunables.	In
order	to	get	the	most	performance	out	of	your	device,	you	must	give	it	enough	work	to
keep	busy,	but	at	the	same	time,	not	so	much	work	that	it	takes	too	long	to	get	to	an
important	request	added	to	the	end	of	the	queue.	Use	the	DTrace	scripts	provided	earlier	in
this	chapter	to	measure	latency	under	loads	and	adjust	as	necessary.

If	you	have	super-duper	hardware	and	raise	the	limits	too	high,	though,	you’ll	hit	the
per-VDEV	limits,	changing	everything.

Scheduling	Large	VDEVs

ZFS	has	two	scheduling	systems:	one	for	use	when	the	system	permits	many	outstanding
I/O	requests,	and	another	for	when	the	system	doesn’t.	How	many	is	many?	That	depends



on	your	VDEVs	and	your	host.

The	sysctl	vfs.zfs.vdev.max_active	gives	a	flag	level	where	ZFS	changes	scheduling
algorithms.	FreeBSD’s	default	is	1000.	For	most	hosts,	in	the	default	configuration,	this
means	that	you	can	have	up	to	28	disks	in	a	VDEV	before	switching	algorithms.	If	you
alter	your	I/O	queues,	you	change	the	math.

Hitting	the	limit	means	that	ZFS	changes	how	it	schedules.	Rather	than	using	the
maximum	values	as	a	ceiling,	it	permits	each	disk	a	number	of	outstanding	requests	equal
to	the	minimum	values.

sync	read	minimum:	10

async	reads	minimum:	3

sync	write	minimum:	10

async	writes	minimum:	1

scrub	minimum:	1

This	means	that	each	disk	gets	at	least	25	outstanding	requests.	The	system	can	support
up	to	1000	outstanding	requests	by	default,	so	any	additional	requests	get	assigned	in
priority	order.

If	you	have	more	than	40	storage	providers	in	a	single	VDEV,	even	the	minimums
exceed	the	total	permitted	on	the	system.	Either	change	vfs.zfs.vdev.max_active	to	permit
more	requests	or,	preferably,	rearrange	your	VDEVs	to	contain	a	sane	number	of	storage
providers.



Asynchronous	Writes	and	Transaction	Group	Sizes

Asynchronous	writes	work	slightly	differently.	When	the	system	is	mostly	idle,	and
doesn’t	have	much	to	write,	the	system	creates	a	single	asynchronous	write	request.
(Technically,	the	minimum	number	is	the	sysctl	vfs.zfs.vdev.async_write_min_active,	but
there’s	really	no	reason	to	turn	this	above	1.)	Data	that’s	in	memory	and	waiting	to	be
written	to	disk	is	called	“dirty	data.”	As	transaction	groups	increase	in	size	and	frequency,
ZFS	schedules	more	and	more	concurrent	writes.	When	the	system	hits	the	maximum
number	of	write	requests,	as	defined	by	the	vfs.zfs.vdev.async_write_max_active	sysctl,	it
starts	artificially	slowing	responses	to	write	requests.

The	sysctls	vfs.zfs.vdev.async_write_active_min_dirty_percent	and
vfs.zfs.vdev.async_write_active_max_dirty_percent	control	how	ZFS	adds	write	requests.
These	are	percentages	of	the	allowed	dirty	data	on	the	system—the	maximum	size	of	a
txg,	or	the	value	of	the	sysctl	vfs.zfs.dirty_data_max.	At	the	minimum	percentage	and
below,	the	system	uses	the	minimum	number	of	write	requests,	leaving	more	bandwidth
for	reads.	At	the	maximum	percentage	and	above,	the	system	uses	the	maximum	number
of	write	requests	to	try	to	keep	up	with	the	amount	of	data	that	needs	to	be	written.	The
number	of	requests	scales	linearly	between	them.

By	default,	the	minimum	percentage	is	30	and	the	maximum	is	60.	The	minimum
number	of	async	write	requests	is	1,	and	the	maximum	is	10.	How	does	this	play	out?

Assume	a	host	has	vfs.zfs.dirty_data_max	set	to	1	GB,	because	it	makes	the	math	easy.
One	txg	can	be	only	1	GB	in	size.	If	a	host	has	up	to	300	MB	of	data	ready	to	write	(30
percent	of	1	GB),	it	uses	a	single	write	request.	Each	30	MB	of	dirty	data	over	300	adds
another	write	request.	If	the	host	has	600	MB	of	data	ready	to	write	(60	percent	of	1	GB),
it	queues	10	write	requests.

In	an	ideal	world,	where	the	system	is	cruising	along	at	normal	load,	the	size	of	a	txg
should	go	somewhere	between	the	minimum	and	maximum	size.	Our	host	with
vfs.zfs.dirty_data_max	should	have	an	amount	of	dirty	data	around	450	MB,	plus	or	minus
150.

Maybe	your	VDEVs	can	handle	more	than	10	commands	queued	to	the	disk,	so	you
want	to	increase	the	vfs.zfs.vdev.async_write_max_active	sysctl.	Increasing	this	sysctl
beyond	what	your	hardware	can	handle	causes	increased	latency,	so	be	sure	to	monitor	the
effects	of	any	changes	under	normal	load.	Changing	the	maximum	number	of	outstanding
write	requests	impacts	how	quickly	the	system	creates	write	requests,	but	it	doesn’t	affect



the	percentages.

The	percentages	given	are	suitable	for	most	loads,	but	if	your	system’s	latency
fluctuates,	you	might	investigate	the	number	of	operations	and	the	amount	of	latency.

#pragma	D	option	aggpack

#pragma	D	option	quiet

fbt::vdev_queue_max_async_writes:entry

{

	self->spa	=	args[0];

}

fbt::vdev_queue_max_async_writes:return

/self->spa	&&	self->spa->spa_name	==	$$1/

{

	@	=	lquantize(args[1],	0,	30,	1);

}

tick-1s

{

	printa(@);

	clear(@);

}

fbt::vdev_queue_max_async_writes:return

/self->spa/

{

	self->spa	=	0;

}

Run	this	script	with	dtrace,	giving	it	the	name	of	a	pool	as	an	argument.

#	dtrace	-s	q.d	zroot

You’ll	get	bar	graphs	every	second,	displaying	current	latency	and	the	number	of
operations.

If	you	have	varying	latency	and	number	of	operations,	you	might	decrease
vfs.zfs.vdev.async_write_active_min_dirty_percent	so	that	the	system	fires	up	additional
write	requests	more	quickly.	You	could	also	increase	the	maximum	percentage	in
vfs.zfs.vdev.async_write_active_min_dirty_percent,	or	increase	the	amount	of	dirty	data
permitted	on	the	system.

Hardware	is	all	unique.	If	you	dive	this	far	into	ZFS	tuning,	you	must	twiddle	these
dials	and	see	what	they	do	on	your	particular	hardware.



Throttling	Writes

Programs	that	ask	the	kernel	to	write	to	disk	won’t	proceed	until	the	kernel	acknowledges
the	write	request.	There	are	exceptions—in	a	multithreaded	program,	the	write	request
probably	blocks	only	a	single	thread.	Applications	that	run	in	multiple	simultaneous
processes,	like	Apache,	will	probably	only	have	a	single	process	block	on	I/O.	Still,	in
general,	every	program	or	some	part	of	the	program	blocks	on	I/O	until	the	kernel
acknowledges	the	write	request.

In	the	most	common	situation,	OpenZFS	acknowledges	receipt	of	data	as	soon	as	the
data	is	in	a	transaction	group	ready	to	write	to	disk.	This	works	well—until	the	underlying
hardware	can’t	keep	up	with	the	write	requests.	While	you	can’t	log	every	packet	on	a
saturated	gigabit	line	on	a	SATA-I	drive,	some	people	insist	on	trying.

When	the	storage	providers	start	lagging	behind	the	write	requests,	OpenZFS
artificially	delays	acknowledging	receipt	of	data.	The	requesting	program	won’t	continue
until	the	write	request	is	acknowledged.	It	hangs	for	a	few	milliseconds,	or	longer	if
needed.	Effectively,	when	a	program	pushes	the	kernel	too	hard,	the	kernel	shoves	back.

A	one-line	DTrace	script	can	identify	if	your	system	is	delaying	writes.

#	dtrace	-n	fbt::dsl_pool_need_dirty_delay:return’{	@[args[1]	==	0	?	“no	delay”	:	“delay”]	=	count();	}’

Run	this	script	during	a	performance	issue.	Let	it	gather	data	for	“a	while”—anything
from	several	seconds	to	a	couple	minutes.	Hit	CTRL-C	to	quit.	You’ll	get	the	number	of
artificially	delayed	writes	and	the	number	of	not-delayed	writes.	If	only	a	small	fraction	of
your	writes	are	delayed,	your	performance	problems	lie	elsewhere.

FreeBSD	includes	sysctls	to	tweak	the	delay	values,	or	adjust	latency	so	it’s	more
consistent,	but	if	your	hardware	is	backing	up,	you’re	clearly	trying	to	stuff	too	much	data
through	your	storage	I/O.	Split	your	writes	between	more	devices,	add	hardware,	or
improve	your	hardware.



Scrub	and	Resilver	Performance

Anyone	who	has	worked	in	a	large	enterprise	has	suffered	through	maintenance	window
policies	that	aren’t	quite	so	well	suited	to	modern	hardware.	Lucas	has	more	than	once
delayed	replacing	a	failed	hot-swappable	hard	drive	during	working	hours,	because	the
corporate	maintenance	policy	declared	that	Sunday	morning	was	the	only	time	such

maintenance	could	be	performed4.	If	you’re	stuck	with	this	sort	of	policy,	it’s	vital	that
resilvers	and	scrubs	finish	quickly	so	that	you	can	get	on	with	your	day.

Scrubs	and	resilvers	have	built-in	rate	limiting	so	that	these	operations	don’t	interfere
with	normal	operations.	If	any	other	process	wants	I/O,	these	maintenance	operations	are
delayed.	Accelerating	scrubs	and	resilvers	means	disabling	that	rate	limiting.

The	rate	limiting	is	a	sysctl	that	gives	an	amount	of	time	to	put	between	each	I/O
operation	for	that	process.	This	rate	limiting	only	kicks	in	while	the	disk	is	not	idle.

The	delay	is	measured	in	system	ticks.	The	number	of	ticks	in	a	second	is	controlled	by
the	kern.hz	sysctl.	This	defaults	to	1000,	although	many	virtual	machines	and	laptop
owners	might	set	this	to	100	in	the	hopes	of	improving	performance.

What	exactly	does	“not	idle”	mean?	The	disk	must	have	no	activity	for	a	number	of
ticks	equal	to	the	vfs.zfs.scan_idle	sysctl.

The	sysctl	vfs.zfs.resilver_delay	controls	this	artificial	lag	for	resilvers,	while
vfs.zfs.scrub_delay	handles	scrubs.	By	default	scrubs	wait	for	four	ticks	between
operations,	while	resilvers	lag	for	two.	If	ZFS	sleeps	for	four	ticks	between	each	I/O,	the
maximum	IOPS	generated	by	a	scrub	on	a	non-idle	pool	would	be	250	IOPS	(1000	ticks
per	second	divided	by	four	ticks	per	operation).	Other	processes	get	a	chance	to	perform
I/O	during	these	pauses.	Running	those	operations	further	delays	the	scrub	or	resilver.

Other	OpenZFS	consumers,	such	as	illumos,	often	use	100	ticks	per	second.	FreeBSD
thus	delays	only	one-tenth	as	long	as	most	other	operating	systems.	This	was	probably	an
oversight	rather	than	a	deliberate	design	decision.

To	eliminate	the	scrub	or	resilver	delay,	set	these	to	0,	giving	your	maintenance	the
same	priority	as	any	other	process.	Remember,	these	delays	only	trigger	if	there	is	other
activity	on	the	pool.

You	can	control	how	much	data	the	scrub	sends	to	the	I/O	scheduler.	Increasing	the
queue	depth	gives	the	ZFS	I/O	scheduler	an	opportunity	to	run	more	effectively.	The
sysctl	vfs.zfs.top_maxinflight	controls	the	scrub	I/O	queue	depth.	It	defaults	to	32,	but



some	people	raise	this	as	high	as	2048.	Increasing	this	too	far	will	exhaust	system	RAM,
so	monitor	your	system	closely	as	you	tune	scrubs.

Each	txg	sets	a	minimum	amount	of	time	it	spends	on	resilvering.	By	default,	a	txg
spends	a	minimum	of	3000	milliseconds	on	resilvering.	The	vfs.zfs.resilver_min_time_ms
controls	how	much	time	the	transaction	group	spends	on	resilvering	I/O.	This	value	is
ignored	when	there’s	no	resilvering	going	on.

No	matter	what	you	do,	eventually	you’ll	reach	your	hardware’s	limits	for	your
workload.	Rearranging	bottlenecks	is	like	rearranging	deck	chairs	on	a	cruise	ship.	On
some	ships,	you	make	space	for	a	nice	game	of	shuffleboard.	If	the	ship	is	the	Titanic,
though,	no	amount	of	shifting	resources	will	keep	you	afloat.

1	Lucas	calls	many	things	“rearranging	bottlenecks.”	He	solves	the	“dirty	clothing”	bottleneck	by	expending	the	time
and	detergent	resources.	At	the	precise	moment	you’re	reading	this,	he’s	almost	certainly	suffering	from	a	gelato
bottleneck.

2	These	are	averages,	so	don’t	let	the	fact	that	ZFS	thinks	2+2=5	worry	you.	ZFS’	checksum	functionality	does	math
more	properly.

3	You	can	change	vfs.zfs.dirty_data_max_percent	after	boot.	It	won’t	affect	system	performance	in	any	way,	but	you	can
change	it.

4	Not	that	Lucas	remembers	every	single	minute	lost	to	such	daftness.	Or	keeps	a	list	of	people	whose	policies	cost	him
weekends.	Or	is	waiting	for	Kneecappers	Inc.’s	formal	response	to	his	Request	For	Quote.





Chapter	9:	Tuning
A	sysadmin	learning	ZFS	usually	spends	time	scratching	her	head	over	ZFS’	space	use.
Combining	pooled	storage,	datasets,	snapshots,	and	clones,	makes	ZFS	space	utilization
very	complicated,	demanding	a	whole	chapter	in	FreeBSD	Mastery:	ZFS.	When	you	start
mucking	with	the	recordsize	and	volblocksize	properties	for	databases	and	zvols,	space

utilization	can	swerve	straight	into	the	Twilight	Zone.

The	volblocksize	property	gives	the	size	of	a	storage	block	on	a	zvol.	The	block	size

should	represent	the	block	size	of	the	filesystem	used	on	the	zvol.	The	default	volblocksize

is	8	KB,	which	would	hold	two	4	KB	or	16	512-byte	filesystem	sectors.

The	recordsize	property	gives	the	maximum	size	of	a	logical	block	in	a	ZFS	filesystem

dataset.	The	default	recordsize	is	128	KB,	which	comes	to	32	sectors	on	a	disk	with	4	KB

sectors,	or	256	sectors	on	a	disk	with	512	byte	sectors.	The	maximum	record	size	was
increased	to	1	MB	with	the	introduction	of	the	large_blocks	feature	flag	in	2015.	Many

database	engines	prefer	smaller	blocks,	such	as	4	KB	or	8	KB.	It	makes	sense	to	change
the	recordsize	on	datasets	dedicated	to	such	files.	Even	if	you	don’t	change	the	recordsize,

ZFS	automatically	sizes	records	as	needed.	Writing	a	16	KB	file	should	take	up	only	16
KB	of	space	(plus	metadata	and	redundancy	space),	not	waste	an	entire	128	KB	record.

Interactions	between	block	size	and	RAID-Z	mean	that	the	server’s	disks	can	suddenly
fill	up,	even	though	they	have	only	25	percent	of	the	data	you’d	expect	them	to	hold.

Understanding	why	requires	diving	deeper	into	how	ZFS	allocates	blocks.



ZFS	Stripe	Allocation

Stripes	are	made	up	of	sectors	on	the	physical	disk	(or	other	provider,	such	as	a	GELI).	If
your	disk	has	4	KB	sectors,	allocating	128	KB	requires	32	physical	sectors.

Zpools	store	all	parity	information	in	disk	sectors,	or	blocks.	Each	level	of	parity
requires	a	block	for	each	stripe.	A	RAID-Z3	pool	needs	three	blocks	for	parity	information
for	each	chunk	of	disk	allocated.

RAID-Z	pools	always	allocate	blocks	in	multiples	of	the	parity	level	plus	one.	That	is,
RAID-Z1	allocates	two	blocks	at	a	time,	RAID-Z2	three	blocks	at	a	time,	and	RAID-Z3
four	blocks	at	a	time.	This	helps	ZFS	prevent	fragmentation	and	reduces	the	risk	of
wasting	more	space.	If	a	stripe	doesn’t	need	that	much	space,	ZFS	pads	it	out	to	fill	the
entire	allocation.	For	usual	stripe	sizes,	an	extra	sector	or	two	per	file	doesn’t	matter.
RAID-Z	allocates	in	consistent-sized	blocks	so	that	when	a	block	is	freed,	it	can	be	easily
reused.

Consider	allocating	8	KB	of	space	on	a	RAID-Z2.	While	8	KB	requires	only	four
sectors,	RAID-Z2	allocates	only	in	multiples	of	three,	so	it	gets	six	blocks.	You	erase	that
file,	and	allocate	for	a	4	KB	file	in	the	same	sectors.	This	4	KB	file	needs	only	three
blocks.	If	RAID-Z	didn’t	pad	to	multiples	of	N+1,	you’d	get	a	single	unused	disk	block
between	the	4	KB	file	and	the	next	file.	This	lone	block,	an	orphaned	sector,	could	never
be	used.

Write	and	delete	and	write	a	bunch	of	files	of	different	sizes,	and	pretty	soon	your	disk
has	a	whole	bunch	of	free	space—but	it’s	all	in	unusable	one-block	chunks.	Your	disk
would	be	paralyzed.

Each	file	also	needs	other	metadata	to	attach	it	to	the	ZFS	tree,	giving	the	blocks
containing	the	file,	their	hashes,	and	such.	Each	such	metadata	block	contains	the
information	on	many	files,	and	can	be	ignored	for	this	discussion.

This	all	seems	straightforward	and	unworrisome,	but	let’s	see	how	these	facts	interact
with	filesystems	using	4	KB	and	512-byte	sectors.	In	all	of	these	examples,	we’re	writing
a	single	8	KB	block,	either	for	a	zvol	or	a	database.

Mirrors	and	Stripes

Mirrors	and	stripes	need	blocks	of	metadata	to	attach	them	to	the	ZFS	tree,	but	they	don’t
require	any	additional	redundancy	blocks.	Our	8	KB	file	uses	two	4	KB	or	16	512-byte
disk	sectors.



RAID-Z1

On	a	RAID-Z1	pool	with	4	KB	blocks,	our	8	KB	of	data	takes	two	blocks.	We	also	need	a
block	for	parity	data,	for	a	total	of	three	blocks.	A	RAID-Z1	pool	allocates	blocks	in
multiples	of	two	(the	parity	level	plus	one),	so	this	gets	rounded	up	to	four.	Assume	you
have	a	three-drive	RAID-Z1.	If	the	disks	have	4	KB	blocks,	this	means	you	can	only	fill
the	physical	disks	half	full	of	data,	rather	than	the	two-thirds	full	you’d	expect	from	a
three-disk	RAID-Z1.	Padding	eats	the	rest	of	that	space.

If	this	same	three-drive	RAID-Z1	pool	uses	disks	with	512	byte	blocks,	that	same	8	KB
takes	16	blocks.	We	need	one	parity	block,	for	a	total	of	17	blocks.	The	allocation	must	be
divisible	by	two,	so	the	pool	allocates	one	block	for	padding,	bringing	the	total	up	to	18
blocks.	You	can	fill	this	pool	up	to	88	percent	full	of	8	KB	blocks.

RAID-Z2

Our	8	KB	of	data	again	takes	two	blocks	on	a	RAID-Z2	pool	with	4	KB	blocks.	We’ll
need	two	blocks	for	parity	data,	for	a	total	of	four	blocks.	A	RAID-Z2	pool	allocates
blocks	in	multiples	of	three	(the	parity	level	plus	one),	so	this	gets	rounded	up	to	six
blocks.	On	a	four-drive	RAID-Z2,	you’d	expect	to	be	able	to	fill	your	disks	half	full	of
real	data.	If	you	fill	the	pool	with	8	KB	files,	though,	you	get	only	about	33	percent	full
before	padding	eats	up	your	space.

On	a	pool	with	512	byte	blocks,	8	KB	of	data	gets	16	blocks.	Two	blocks	of	parity	data
brings	us	to	18	blocks.	ZFS	reserves	three	blocks	at	a	time,	so	we	don’t	need	any	padding
at	all.	You	can	completely	fill	this	pool	with	8	KB	blocks.

RAID-Z3

On	a	ZFS	with	4	KB	filesystem	sectors,	the	data	itself	requires	two	sectors.	This	pool	uses
triple	parity,	so	you’ll	need	three	disk	sectors	for	parity	data.	This	is	a	total	of	five	sectors.
ZFS	allocates	sectors	only	in	chunks	of	parity	level	plus	one.	RAID-Z3	lets	you	allocate
sectors	in	multiples	of	four,	so	ZFS	allocates	eight	sectors	for	this	8	KB	of	data.	Eight
sectors	is	32	KB.	You	cannot	fill	this	zvol	more	than	25	percent	full.	You	could	completely
fill	a	200	GB	zvol,	so	long	as	the	pool	has	800	GB	of	physical	space	for	it.

On	a	ZFS	with	512	byte	filesystem	sectors,	the	data	itself	requires	16	sectors.	It	needs
another	three	sectors	for	parity	data,	for	a	total	of	19	sectors.	As	allocations	must	be	in
multiples	of	four,	this	write	gets	allocated	20	filesystem	sectors.	Twenty	sectors	is	10	KB,
giving	you	80	percent	efficiency.



Striped	Mirrors

Striped	mirrors	do	not	need	any	parity	data.	ZFS	copies	the	data	wholesale	to	multiple
storage	providers.	Striped	mirrors	don’t	pad	data	to	fit	allocation	sizes.	A	striped	mirror	is
the	most	efficient	place	to	store	data,	but	it	has	a	different	data	protection	model	than
RAID-Z.

Three-way	mirrors	give	similar	data	protection	to	RAID-Z2—you	can	lose	two	drives
from	each	VDEV	without	losing	any	data—but	you	get	only	33	percent	of	the	total	space.

Changing	the	allocation	size

Change	recordsize	or	volblocksize	to	4	KB	changes	the	calculations.	A	smaller	stripe	size

means	more	parity,	which	possibly	means	more	empty	padding.

Look	at	our	sample	8	KB	write	on	RAID-Z3.	It	gets	broken	up	into	two	stripes.	On	a
zvol	with	4	KB	blocks,	each	stripe	needs	four	sectors,	again	giving	you	25	percent	space
efficiency.	With	512-byte	blocks,	each	stripe	needs	11	blocks,	which	gets	rounded	up	to
12.	You’ll	get	about	66	percent	space	efficiency.

The	interaction	among	the	stripe	size	(volblocksize),	parity,	and	padding	is	why	you

don’t	have	to	perform	these	calculations	with	filesystem	datasets.	A	stripe	size	of	128	KB
reduces	allocation	padding	to	mere	noise.

Recommendations

Before	setting	up	a	system	for	databases	or	zvols,	carefully	consider	the	storage	beneath
the	data	storage	pool.	With	the	common	recordsize	setting	of	8	KB	we	strongly

recommend,	in	order:	a	mirrored	stripe	pool,	a	four-drive	RAID-Z2	pool,	or	a	three-drive
RAID-Z	pool.

If	you’re	using	zvols	with	a	volblocksize	of	4	KB	to	support	virtual	machines,	your

choices	are	more	limited.	Mirrored	stripe	pools	allow	you	maximum	space	efficiency,
while	all	other	sizes	cause	at	least	some	space	loss	due	to	padding.	Mirrors	also	have	a
great	IOPS	advantage	over	RAID-Z.



Databases	and	ZFS

Many	ZFS	features	are	highly	advantageous	for	databases.	Every	DBA	wants	fast,	easy,
and	efficient	replication,	snapshots,	clones,	tunable	caches,	and	pooled	storage.	While	ZFS
is	designed	as	a	general-purpose	filesystem,	you	can	tune	it	to	make	your	databases	fly.

Databases	usually	consist	of	more	than	one	type	of	file,	and	since	each	has	different
characteristics	and	usage	patterns,	each	requires	different	tuning.	We’ll	discuss	MySQL
and	PostgreSQL	in	particular,	but	the	principles	apply	to	any	database	software.

The	most	important	tuning	you	can	perform	for	a	database	is	the	dataset	block	size,
through	the	recordsize	property.	The	ZFS	recordsize	for	any	file	that	might	be	overwritten

needs	to	match	the	block	size	used	by	the	application.

Tuning	the	block	size	also	avoids	write	amplification.	Write	amplification	happens
when	changing	a	small	amount	of	data	requires	writing	a	large	amount	of	data.	Suppose
you	must	change	8	KB	in	the	middle	of	a	128	KB	block.	ZFS	must	read	the	128	KB,
modify	8	KB	somewhere	in	it,	calculate	a	new	checksum,	and	write	the	new	128	KB
block.	ZFS	is	a	copy-on-write	filesystem,	so	it	would	wind	up	writing	a	whole	new	128
KB	block	just	to	change	that	8	KB.	You	don’t	want	that.	Now	multiply	this	by	the	number
of	writes	your	database	makes.	Write	amplification	eviscerates	performance.

While	this	sort	of	optimization	isn’t	necessary	for	many	of	us,	for	a	high-performance
system	it	might	be	invaluable.	It	can	also	affect	the	life	of	SSDs	and	other	flash-based
storage	that	can	handle	a	limited	volume	of	writes	over	their	lifetime.	Of	course	the
different	database	engines	don’t	make	this	easy,	and	each	has	different	needs.	Journals,
binary	replication	logs,	error	and	query	logs,	and	other	miscellaneous	files	also	require
different	tuning.

Before	creating	a	dataset	with	a	small	recordsize,	be	sure	you	understand	the	interaction

between	VDEV	type	and	space	utilization.	In	some	situations,	disks	with	the	smaller	512-
byte	sector	size	can	provide	better	storage	efficiency.	It	is	entirely	possible	you	may	be
better	off	with	a	separate	pool	specifically	for	your	database,	with	the	main	pool	for	your
other	files.

For	high-performance	systems,	use	mirrors	rather	than	any	type	of	RAID-Z.	Yes,	for

resiliency	you	probably	want	RAID-Z.	Choose	your	pain.1

All	Databases

Enabling	lz4	compression	on	a	database	can,	unintuitively,	actually	decrease	latency.



Compressed	data	can	be	read	more	quickly	from	the	physical	media,	as	there	is	less	to
read,	which	can	result	in	shorter	transfer	times.	With	lz4’s	early	abort	feature,	the	worst
case	is	only	a	few	milliseconds	slower	than	opting	out	of	compression,	but	the	benefits	are
usually	quite	significant.	This	is	why	ZFS	uses	lz4	compression	for	all	of	its	own	metadata
and	for	the	L2ARC.	In	the	near	future	when	the	Compressed	ARC	feature	lands	in
OpenZFS,	enabling	compression	on	the	dataset	will	also	allow	more	data	to	be	kept	in	the
ARC,	the	fastest	cache	in	ZFS.

In	a	production	case	study	done	by	Delphix,	a	database	server	with	768	GB	of	RAM
went	from	using	more	than	90	percent	of	its	memory	to	cache	a	database	to	using	only	446
GB	to	cache	1.2	TB	of	compressed	data.	Compressing	the	in-memory	cache	resulted	in	a
significant	performance	improvement.	As	the	machine	could	not	support	any	more	RAM,
compression	was	the	only	way	to	improve.

ZFS	metadata	can	also	affect	databases.	When	a	database	is	rapidly	changing,	writing
out	two	or	three	copies	of	the	metadata	for	each	change	can	take	up	a	significant	number
of	the	available	IOPS	of	the	backing	storage.	Normally,	the	quantity	of	metadata	is
relatively	small	compared	to	the	default	128	KB	record	size.	Databases	work	better	with
small	record	sizes,	though.	Keeping	three	copies	of	the	metadata	can	cause	as	much	disk
activity,	or	more,	than	writing	actual	data	to	the	pool.

Newer	versions	of	OpenZFS	also	contain	a	redundant_metadata	property,	which	defaults	to

all.	This	is	the	original	behavior	from	previous	versions	of	ZFS.	However,	this	property
can	also	be	set	to	most,	which	causes	ZFS	to	reduce	the	number	of	copies	of	some	types	of
metadata	that	it	keeps.

Depending	on	your	needs	and	workload,	allowing	the	database	engine	to	manage
caching	might	be	better.	ZFS	defaults	to	caching	much	or	all	of	the	data	from	your
database	in	the	ARC,	while	the	database	engine	keeps	its	own	cache,	resulting	in	wasteful
double	caching.	Setting	the	primarycache	property	to	metadata	rather	than	the	default	all	tells

ZFS	to	avoid	caching	actual	data	in	the	ARC.	The	secondarycache	property	similarly	controls

the	L2ARC.

Depending	on	the	access	pattern	and	the	database	engine,	ZFS	may	already	be	more
efficient.	Use	a	tool	like	zfsmon	from	the	zfs-tools	package	to	monitor	the	ARC	cache	hit

ratio,	and	compare	it	to	that	of	the	database’s	internal	cache.

Once	the	Compressed	ARC	feature	is	available,	it	might	be	wise	to	consider	reducing
the	size	of	the	database’s	internal	cache,	and	instead	letting	ZFS	handle	the	caching.	The



ARC	might	be	able	to	fit	significantly	more	data	in	the	same	amount	of	RAM	than	your
database	can.

MySQL	–	InnoDB/XtraDB

InnoDB	became	the	default	storage	engine	in	MySQL	5.5	and	has	significantly	different
characteristics	than	the	previously	used	MyISAM	engine.	Percona’s	XtraDB,	also	used	by
MariaDB,	is	similar	to	InnoDB.	Both	InnoDB	and	XtraDB	use	a	16	KB	block	size,	so	the
ZFS	dataset	that	contains	the	actual	data	files	should	have	its	recordsize	property	set	to

match.	We	also	recommend	using	MySQL’s	innodb_one_file_per_table	setting	to	keep	the

InnoDB	data	for	each	table	in	a	separate	file,	rather	than	grouping	it	all	into	a	single	ibdata
file.	This	makes	snapshots	more	useful	and	allows	more	selective	restoration	or	rollback.

Store	different	types	of	files	on	different	datasets.	The	data	files	need	16	KB	block	size,
lz4	compression	and	reduced	metadata.	You	might	see	performance	gains	from	caching
only	metadata,	but	this	also	disables	prefetch.	Experiment	and	see	how	your	environment
behaves.

#	zfs	create	-o	recordsize=16k	-o	compress=lz4	-o	redundant_metadata=most	-o	primarycache=metadata
mypool/var/db/mysql

The	primary	MySQL	logs	compress	best	with	gzip,	and	don’t	need	caching	in	memory.

#	zfs	create	-o	compress=gzip1	-o	primarycache=none	mysql/var/log/mysql

The	replication	log	works	best	with	lz4	compression.

#	zfs	create	-o	compress=lz4	mypool/var/log/mysql/replication

Tell	MySQL	to	use	these	datasets	with	these	/usr/local/etc/my.cnf	settings.

data_path=/var/db/mysql

log_path=/var/log/mysql

binlog_path=/var/log/mysql/replication

You	can	now	initialize	your	database	and	start	loading	data.

MySQL	–	MyISAM

Many	MySQL	applications	still	use	the	older	MyISAM	storage	engine,	either	because	of
its	simplicity	or	just	because	they	have	not	been	converted	to	using	InnoDB.

MyISAM	uses	an	8	KB	block	size.	The	dataset	record	size	should	be	set	to	match.	The
dataset	layout	should	otherwise	be	the	same	as	for	InnoDB.

PostgreSQL

ZFS	can	support	very	large	and	fast	PostgreSQL	systems,	if	tuned	properly.	Don’t



initialize	your	database	until	you’ve	created	the	needed	datasets

PostgreSQL	defaults	to	using	8	KB	storage	blocks	for	everything.	If	you	change
PostgreSQL’s	block	size,	you	must	change	the	dataset	size	to	match.

On	a	default	FreeBSD	install,	PostgreSQL	goes	in	/usr/local/pgsql/data.	For	a	big	install,

you	probably	have	a	separate	pool	for	that	data.	Here	I’m	using	the	pool	pgsql	for

PostgreSQL.

#	zfs	set	mountpoint=/usr/local/pgsql	pgsql

#	zfs	create	pgsql/data

Now	we	have	a	chicken-and-egg	problem.	PostgreSQL’s	database	initialization	routine
expects	to	create	its	own	directory	tree,	but	we	want	particular	subdirectories	to	have	their
own	datasets.	The	easiest	way	to	do	this	is	to	let	PostgreSQL	initialize,	and	then	create
datasets	and	move	the	files.

#	/usr/local/etc/rc.d/postgresql	oneinitdb

The	initialization	routine	creates	databases,	views,	schemas,	configuration	files,	and	all
the	other	components	of	a	high-end	database.	Now	you	can	create	datasets	for	the	special
parts.

PostgreSQL	stores	databases	in	/usr/local/pgsql/data/base.	The	Write	Ahead	Log,	or

WAL,	lives	in	/usr/local/pgsql/data/pg_xlog.	Move	both	of	these	out	of	the	way.

#	cd	/usr/local/pgsql/data

#	mv	base	base-old

#	mv	pg_xlog	pg_xlog-old

Both	of	these	use	an	8	KB	block	size,	and	you	would	want	to	snapshot	them	separately,
so	create	a	dataset	for	each.	As	with	MySQL,	tell	the	ARC	to	cache	only	the	metadata.
Also	tell	these	datasets	to	bias	throughput	over	latency	with	the	logbias	property.

#	zfs	create	-o	recordsize=8k	-o	redundant_metadata=most	-o	primarycache=metadata	logbias=throughput
pgsql/data/pg_xlog

#	zfs	create	-o	recordsize=8k	-o	redundant_metadata=most	-o	primarycache=metadata	logbias=throughput
pgsql/data/base

Copy	the	contents	of	the	original	directories	into	the	new	datasets.

#	cp	-Rp	base-old/*	base

#	cp	-Rp	pg_xlog-old/*	pg_xlog

You	can	now	start	PostgreSQL.



Tuning	for	File	Size

ZFS	is	designed	to	be	a	good	general-purpose	filesystem.	If	you	have	a	ZFS	system
serving	as	file	server	for	a	typical	office,	you	don’t	really	have	to	tune	for	file	size.	If	you
know	what	size	of	files	you’re	going	to	have,	though,	you	can	make	changes	to	improve
performance.

Small	Files

When	creating	many	small	files	at	high	speed	in	a	system	without	a	SLOG,	ZFS	spends	a
significant	amount	of	time	waiting	for	the	files	and	metadata	to	finish	flushing	to	stable
storage.

If	you	are	willing	to	risk	the	loss	of	any	new	files	created	in	the	last	five	seconds	(or
more	if	your	vfs.zfs.txg.timeout	is	higher),	setting	the	sync	property	to	disabled	tells	ZFS	to

treat	all	writes	as	asynchronous.	Even	if	an	application	asks	that	it	not	be	told	that	the
write	is	complete	until	the	file	is	safe,	ZFS	returns	immediately	and	writes	the	file	along
with	the	next	regularly	scheduled	txg.

A	high-speed	SLOG	lets	you	store	those	tiny	files	both	synchronously	and	quickly.

Big	Files

ZFS	recently	added	support	for	blocks	larger	than	128	KB	via	the	large_block	feature.	If

you’re	storing	many	large	files,	certainly	consider	this.	The	default	maximum	block	size	is
1	MB.

Theoretically,	you	can	use	block	sizes	larger	than	1	MB.	Very	few	systems	have
extensively	tested	this,	however,	and	the	interaction	with	the	kernel	memory	allocation
subsystem	has	not	been	tested	under	prolonged	use.	You	can	try	really	large	record	sizes,
but	be	sure	to	file	a	bug	report	when	everything	goes	sideways.	The	sysctl
vfs.zfs.max_recordsize	controls	the	maximum	block	size.

Once	you	activate	large_blocks	(or	any	other	feature),	the	pool	can	no	longer	be	used	by

hosts	that	do	not	support	the	feature.	Deactivate	the	feature	by	destroying	any	datasets	that
have	ever	had	their	recordsize	set	to	larger	than	128	KB.

Storage	systems	struggle	to	balance	latency	and	throughput.	ZFS	uses	the	logbias

property	to	decide	which	way	it	should	lean.	ZFS	uses	a	logbias	of	latency	by	default,	so

that	data	is	quickly	synched	to	disk,	allowing	databases	and	other	applications	to	continue
working.	When	dealing	with	large	files,	changing	the	logbias	property	to	throughput	might



result	in	better	performance.	You	must	do	your	own	testing	and	decide	which	setting	is
right	for	your	workload.



The	Worst	of	Both	Worlds:	Bittorrent

Bittorrent	combines	the	worst	parts	of	large	files	and	the	worst	parts	of	small	files	all	in
one	convenient	package.	Bittorrent’s	out-of-order	write	pattern	can	cause	a	great	deal	of
dataset	fragmentation.	Plus,	Bittorrent’s	16	KB	block	size	can	lead	to	write	amplification
if	the	recordsize	of	the	dataset	isn’t	also	16	KB.

The	best	solution	to	both	of	these	issues	is	to	actually	have	two	datasets.	The	dataset
where	the	files	are	stored	during	downloading	uses	the	smaller	record	size.

#	zfs	create	-o	recordsize=16k	-o	redundant_metadata=most	-o	compress=off	mypool/torrents/in-progress

The	dataset	where	you	store	completed	torrents	should	have	a	larger	block	size.
Moving	files	from	one	to	the	other	defragments	the	files,	resulting	in	improved	read
performance	and	avoiding	pool	fragmentation.	Most	torrent	clients	support	using	a
separate	directory	for	in-progress	downloads,	so	this	should	not	even	require	any	action	on
your	part	aside	from	creating	the	two	datasets.

If	you	download	large	files,	like	operating	system	ISOs,	you	might	also	consider	using
a	recordsize	of	1	MB	to	further	increase	performance	and	amortize	metadata	and

redundancy.

#	zfs	create	-o	recordsize=1m	mypool/torrents

Tell	your	torrent	client	about	these	directories	and	you’ll	be	ready	to	go.



Short	Stroking

Regular	spinning	disks	have	specific	characteristics	that	can	cause	uneven	performance.
Reads	and	writes	to	the	beginning	of	the	disk	can	be	significantly	faster	(higher
throughput)	than	writes	later	on	the	disk.	The	slowest	aspect	of	a	regular	spinning	disk	is
seek	time,	the	time	it	takes	for	the	drive	to	physically	reposition	the	read/write	head	over
the	sector	you	want	to	read	or	write.	When	data	is	scattered	all	over	the	disk,	this	can
significantly	decrease	performance.

Short	Stroking	is	the	process	of	using	only	a	small	subset	of	a	disk’s	capacity,	usually	a
partition	of	only	the	fastest	10–30%	of	a	disk.	Now	that	the	head	only	ever	has	to	travel
over	a	small	portion	of	the	disk’s	surface,	the	average	seek	time	will	be	significantly	less.
In	the	future,	if	more	storage	space	is	required,	the	partition	can	simply	be	resized	and
ZFS	will	grow	the	pool.	Remember	that	running	ZFS	low	on	disk	space	increases
fragmentation,	which	can	be	much	worse	for	performance	than	a	higher	average	seek	time.

You	now	have	the	tools	to	configure	your	datasets,	pools,	and	hardware	in	the	best
possible	manner.	Now	let’s	poke	at	some	more	obscure	corners	of	ZFS.

1	Sysadmins	don’t	get	to	choose	between	the	Lady	and	the	Tiger.	We	get	to	choose	between	Angry	Tiger	and	Hungry
Tiger.





Chapter	10:	ZFS	Potpourri
This	chapter	covers	small	topics	that	didn’t	quite	fit	anywhere	else.



Splitting	Mirrors

Combining	storage	into	pools	is	one	of	ZFS’	core	features.	But	ZFS	lets	you	perform	the
same	action	in	reverse—splitting	mirrored	pools	into	multiple	identical	pools.	If	you	want
to	more	literally	clone	a	machine,	or	pull	off	a	copy	of	a	mirror	to	run	a	backup,	or
perform	some	other	sort	of	mad	computer	science,	zpool	split	is	your	friend.

We’ll	demonstrate	adding	disks	to	a	mirrored	pool,	then	split	the	pool	into	duplicates.
You	could	perform	the	same	task	in	reverse:	pool	the	disks	off	a	mirror,	then	add	them
back	when	you’re	done	with	the	duplicate.	We	recommend	maintaining	at	least	two
providers	in	each	mirror	VDEV	at	all	times,	however.

Make	Mirrors	Deeper

A	mirror’s	depth	describes	how	many	copies	of	data	the	mirror	includes.	This	pool,	a
typical	striped	mirror,	contains	two	mirrors	of	two	disks	each.

#	zpool	status	db

…

NAME									STATE			READ	WRITE	CKSUM

	db										ONLINE					0			0			0

		mirror-0			ONLINE					0			0			0

			gpt/zfs0		ONLINE					0			0			0

			gpt/zfs1		ONLINE					0			0			0

		mirror-1			ONLINE					0			0			0

			gpt/zfs2		ONLINE					0			0			0

			gpt/zfs3		ONLINE					0			0			0

…

I	want	to	make	this	pool	deeper,	adding	an	additional	disk	to	each	VDEV.	Use	the	zpool

attach	command	with	the	pool	name,	a	device	already	in	the	target	VDEV,	and	the	new

device.

#	zpool	attach	db	gpt/zfs1	gpt/zfs4

#	zpool	attach	db	gpt/zfs3	gpt/zfs5

In	between	running	these	two	commands,	the	pool	has	one	mirror	of	three	devices	and
one	mirror	of	two	devices.	At	the	end,	the	mirror	looks	like	this.

NAME									STATE			READ	WRITE	CKSUM

	db										ONLINE					0			0			0

		mirror-0			ONLINE					0			0			0

			gpt/zfs0		ONLINE					0			0			0

			gpt/zfs1		ONLINE					0			0			0

			gpt/zfs4		ONLINE					0			0			0

		mirror-1			ONLINE					0			0			0

			gpt/zfs2		ONLINE					0			0			0

			gpt/zfs3		ONLINE					0			0			0



			gpt/zfs5		ONLINE					0			0			0

Once	the	pool	finishes	resilvering	the	drives,	you	can	split	the	pool.

Splitting	the	Pool

Use	the	zpool	split	command	to	pull	a	device	from	each	VDEV	to	create	the	new	pool.	The

command	has	two	mandatory	arguments:	the	name	of	the	pool	you	want	to	split	and	a
name	for	the	newly	created	pool.	Here	we	split	the	pool	db,	creating	an	identical	copy	in

the	pool	db2.

#	zpool	split	db	db2

ZFS	removes	the	device	most	recently	added	to	each	mirror	to	create	a	new	pool.
Splitting	a	pool	does	not	automatically	import	the	new	pool.	Once	you	import	it,	the	split
pool	looks	like	this.

#	zpool	status	db2

…

NAME								STATE			READ	WRITE	CKSUM

db2									ONLINE					0			0			0

		gpt/zfs4		ONLINE					0			0			0

		gpt/zfs5		ONLINE					0			0			0

This	pool	contains	two	striped	disks.

In	the	original	pool,	the	striped	pair	of	three-way	mirrors	has	become	a	striped	pair	of
two-disk	mirrors.

If	you’re	keeping	this	split-off	pool	around	for	any	length	of	time,	you	should	add	more
disks	to	create	proper	mirrors.	You	might	not	add	another	set	of	disks	if	you’re	pulling
backups	off	of	these	drives,	though.



SnapSpec

Snapshots	are	great—but	they	breed	like	tribbles™.	Once	you’re	accustomed	to	using
snapshots	to	deal	with	system	administration	issues,	you’ll	find	yourself	dealing	with	disk
space	shortages	because	of	all	the	snapshots	you	have.	Removing	a	single	snapshot	is
easy.

#	zfs	destroy	mypool/dataset@snapshotname

But	what	if	you	want	to	destroy	10	snapshots	at	once?	Identifying	each	snapshot	and
specifying	each	on	the	command	line	is	incredibly	tedious.

ZFS	lets	you	identify	multiple	neighboring	snapshots	with	a	snapspec.	You	can’t	use	a
snapspec	to	specify	multiple	disparate	snapshots,	but	if	you	want	to	blow	away	daily
snapshots	@monday	through	@saturday,	a	snapspec	is	your	friend.

Any	time	you	use	a	snapspec,	we	recommend	first	running	your	command	with	-n	and	-

v.	The	-v	flag	tells	zfs(1)	to	print	what	the	command	does	in	more	detail.	The	-n	tells	it	to

not	to	actually	do	anything.	Combined,	they	say	“give	me	more	detail	on	exactly	what	this
command	will	do.”	As	you	can	assign	arbitrary	snapshot	names,	it’s	best	to	verify	that	a
needed	but	forgotten	snapshot	won’t	be	caught	up	in	a	snapshot	massacre.	Once	you	know
exactly	which	snapshots	the	command	will	destroy,	rerun	the	command	without	the	–n.

Snapshot	Range

The	most	basic	snapspec	is	fromsnap%tosnap.	It	destroys	every	snapshot	between	the	two
indicated,	including	themselves:

#	zfs	destroy	-vn	mypool/dataset@one%three

would	destroy	mypool/dataset@one

would	destroy	mypool/dataset@two

would	destroy	mypool/dataset@three

Did	you	slip	a	@beforeUpgrade	snapshot	in	between	the	numbered	snaps?	This	is	why
you	use	-n	first.

Specify	by	Age

You	can	use	@%foo	to	destroy	snapshot	@foo	and	anything	older	than	it.

#	zfs	destroy	-vn	mypool/dataset@%four

would	destroy	mypool/dataset@one

would	destroy	mypool/dataset@two

would	destroy	mypool/dataset@three

would	destroy	mypool/dataset@four



Similarly,	use	@foo%	to	destroy	@foo	and	anything	newer	than	itself:

#	zfs	destroy	-vn	mypool/dataset@six%

would	destroy	mypool/dataset@six

would	destroy	mypool/dataset@seven

would	destroy	mypool/dataset@eight

would	destroy	mypool/dataset@nine

would	destroy	mypool/dataset@ten

That’s	much	easier	than	re-entering	each	snapshot	name.

Snapshot	Slaughter

Sometimes,	you	want	to	destroy	all	the	snapshots.	Use	@%	to	burn	it	all	down.

#	zfs	destroy	-vn	mypool/dataset@%

would	destroy	mypool/dataset@one

would	destroy	mypool/dataset@two

…

would	destroy	mypool/dataset@ten

Now	you	can	start	accumulating	snapshots	all	over	again.

If	you’ve	taken	recursive	snapshots,	you	probably	want	to	burn	the	whole	tree	down.
Add	-R	to	eradicate	snapshots	from	a	dataset	and	all	its	children.	Here,	we’ve	finished	the

upgrade	and	think	we’re	happy	with	the	results.

#	zfs	destroy	-nvR	pgsql/data@%

would	destroy	pgsql/data@beforeupgrade

would	destroy	pgsql/data/base@beforeupgrade

would	destroy	pgsql/data/pg_xlog@beforeupgrade

But,	you	know	…	we	think	we’ll	hold	on	to	those	backups	just	a	little	longer.



Recovering	Destroyed	Pools

There’s	nothing	quite	like	the	moment	when	you	realize,	“Wait,	that	command	is	a
horrible	mistake”	and	you	try	to	stop,	but	you	know	that	the	nerve	impulses	don’t	have
time	to	race	down	from	your	brain	to	your	hand	before	your	accursed	pinky	finishes
pressing	the	ENTER	key.

One	place	that	can	happen	is	when	you	destroy	a	ZFS	pool.	And	the	ZFS	designers
were	very	aware	of	exactly	this	syndrome.

The	zpool	destroy	command	doesn’t	actually	damage	any	data	on	the	underlying	disks.

Instead,	it	marks	the	pool	as	destroyed.	A	zpool	list	skips	pools	marked	as	destroyed.	If

you	haven’t	written	to	or	physically	removed	the	disks	underlying	the	destroyed	pool,	you
can	recover	the	pool.	Use	the	-D	flag	to	zpool	import	to	view	destroyed	pools.

#	zpool	import	-D

You’ll	get	two	kinds	of	responses,	for	recoverable	and	non-recoverable	pools.

Recoverable	Pools

Here’s	a	pool	that	you	can	easily	recover.

#	zpool	import	-D

			pool:	db2

			id:	5552158746006792385

		state:	ONLINE	(DESTROYED)

	action:	The	pool	can	be	imported	using	its	name	or	numeric	identifier.

	config:

						db2							ONLINE

								gpt/zfs4		ONLINE

								gpt/zfs5		ONLINE

This	destroyed	pool,	db2,	looks	like	a	normal,	healthy	pool.	The	state	says	it’s	DESTROYED,

but	the	output	shows	the	two	providers	in	the	pool’s	single	VDEV,	and	they’re	both	online.

To	import	a	destroyed	pool,	run	zpool	import	-D	and	give	the	pool	name.	Let’s	reactivate

pool	db2.

#	zpool	import	-D	db2

Other	pools	are	not	so	easy.

Non-Recoverable	Pools

Other	destroyed	pools	look	more	like	this.

#	zpool	import	-D

			pool:	db



			id:	13121127349626326109

		state:	UNAVAIL	(DESTROYED)

	status:	One	or	more	devices	are	missing	from	the	system.

	action:	The	pool	cannot	be	imported.	Attach	the	missing

						devices	and	try	again.

			see:	http://illumos.org/msg/ZFS-8000-6X

	config:

						db																					UNAVAIL		missing	device

								mirror-1													DEGRADED

										6883971156539624736		UNAVAIL		cannot	open

										gpt/zfs3											ONLINE

						Additional	devices	are	known	to	be	part	of	this	pool,	though	their

						exact	configuration	cannot	be	determined.

The	pool	state	here	is	UNAVAIL,	meaning	you	can’t	import	it.	The	configuration	shows

that	one	of	the	providers	is	also	UNAVAIL.	ZFS	cannot	find	a	storage	provider	with	the	ZFS-

specific	GUID	for	this	pool.	Perhaps	you’ve	reused	that	disk,	or	unplugged	it	from	the
chassis.

What’s	most	vexing	in	this	example?	This	pool	is	a	two-provider	mirror.	You	have	a
perfectly	good	copy	of	the	data	on	the	surviving	provider.	But	the	pool	is	incomplete,	so
no,	you	can’t	import	it.	Go	looking	for	that	disk	you	pulled	out.

Another	common	case	is	when	a	pool	no	longer	has	a	SLOG	device.	SLOG-suitable
hardware	normally	gets	put	straight	back	into	use	on	another	pool	or	discarded.	To	tell
zpool(8)	to	disregard	the	missing	SLOG	and	import	the	pool	anyway,	use	zpool	–m.

Rename	Pool	at	Recovery

Sometimes	you	want	to	rename	a	pool	when	you	un-destroy	it.	Perhaps	it	has	the	same
name	as	a	live	pool,	or	the	function	of	the	pool	has	changed.	To	rename	a	pool	when	you
import	it,	add	the	new	name	after	the	pool’s	old	name.	Here	we	import	the	destroyed	pool
db2,	and	rename	it	olddb2.

#	zpool	import	-D	db2	olddb2

It’s	otherwise	the	same	as	renaming	an	imported	pool.



Cloning	Machines

ZFS	is	a	perfectly	sensible	choice	for	virtual	machines.	While	losing	direct	access	to	the
disks	means	that	ZFS	can’t	handle	error	detection	for	you,	features	such	as	snapshots	and
replication	make	ZFS	worthwhile.

Most	virtualization	systems	offer	to	clone	systems	for	you,	sometimes	disguised	as	a
standard	template	you	can	deploy.	If	you	copy	a	disk	image	containing	a	ZFS	pool	to	a
new	virtual	machine,	though,	your	virtual	machine	is	a	copy	of	the	original.	This	means
that	some	items	that	should	be	globally	unique,	no	longer	are.	Will	this	cause	problems?
Not	on	a	stand-alone	virtual	machine.	If	you’re	going	to	move	disk	images	between	virtual
machines,	though,	you’ll	want	to	change	the	GUID	of	each	VM’s	pools.

The	guid	property	contains	a	pool’s	GUID.	Here	we	get	the	GUID	of	the	pool	db2.

#	zpool	get	guid	db2

NAME		PROPERTY		VALUE		SOURCE

db2			guid				5552158746006792385		default

To	generate	a	new	pool	GUID,	use	zpool	reguid.	Give	the	pool	name	as	an	argument.

#	zpool	reguid	db2

#	zpool	get	guid	db2

NAME		PROPERTY		VALUE		SOURCE

db2			guid				7662460469377566669		default

You	can	now	attach	the	disk	image	from	one	virtual	machine	to	another	without
making	ZFS	have	a	hissy	fit.

Giving	a	pool	a	new	GUID	can	also	help	if	for	some	reason	zdb(8)	cannot	find	your

pool.1	2	34



Case-Insensitive	Filesystem

Some	clients	(OS	X	in	particular)	expect	filesystems	to	be	case-insensitive.	You	can	tell	a
ZFS	dataset	to	be	case-insensitive	with	the	casesensitivity	property.

The	casesensitivity	property	defaults	to	sensitive,	which	is	traditional	Unix-style	case

sensitive.	If	you	set	it	to	mixed,	ZFS	can	support	both	case-sensitive	and	case-insensitive
requests.	Setting	casesensitivity	to	insensitive	means	that	ZFS	will	be	completely	case-

insensitive.

You	can	set	this	property	only	at	dataset	creation	time.

#	zfs	create	-o	casesensitivity=mixed	samba/share

To	change	casesensitivity	on	an	existing	dataset,	create	a	new	dataset	with	the	property

set	correctly,	and	then	copy	the	files	over.



ZFS	Deep	Dive:	zdb(8)

To	better	understand	what’s	happening	inside	ZFS,	it	helps	to	be	able	to	peek	behind	the
curtain.	Examining	the	internal	state	of	ZFS	can	help	you	understand	why	the	system	is
performing	or	behaving	the	way	it	is.	Even	if	you’re	not	terribly	interested	in	how	the
sausage	is	made,	this	section	might	contain	some	points	of	interest.

Many	people	read	the	ZFS	chapter	of	The	Design	and	Implementation	of	the	FreeBSD
Operating	System,	2nd	Edition	(Addison-Wesley	Professional,	2014),	to	learn	about	ZFS’s
internal	data	structures.	While	the	D&I	book	provides	a	great	deal	of	information,	the
ability	to	study	those	data	structures	for	actual	files	on	your	system	can	help	everything
make	sense.

The	suite	of	ZFS	tools	available	in	FreeBSD	includes	zdb(8),	the	ZFS	debugger.	The
zdb(8)	man	page	clearly	states	that	“The	output	of	this	command	in	general	reflects	the
on-disk	structure	of	a	ZFS	pool,	and	is	inherently	unstable.	The	precise	output	of	most
invocations	is	not	documented,	a	knowledge	of	ZFS	internals	is	assumed.”	The	output	is
based	on	what	is	on	the	disk	and	zdb(8)’s	simulation	of	what’s	in	memory	at	any	given
instant.	The	interpretation	is	largely	left	up	to	the	operator.	If	you	really	dig	into	zdb(8),

you	probably	need	a	copy	of	D&I	handy	for	reference.5

The	zdb(8)	command	has	a	large	number	of	flags.	Most	all	of	these	can	be	specified
multiple	times,	each	increasing	the	verbosity	of	the	information.

Block	Statistics

The	zdb(8)	utility	can	examine	the	breakdown	of	how	blocks	are	allocated	in	the	pool.
We’ll	start	by	examining	a	very	small	pool	from	a	virtual	machine,	and	then	increasingly
larger	pools.	Use	the	–b	flag	and	the	pool	name	to	get	block	statistics	for	that	pool.

Analyzing	block	statistics	takes	a	lot	of	memory,	as	zdb(8)	must	track	every	block	as	it
calculates	the	various	statistics.	A	very	large	pool	might	require	more	memory	than	the
host	has,	and	eventually	the	kernel’s	out-of-memory	killer	will	terminate	zdb	in	self-

defense.	Be	careful	running	this	on	a	production	system,	as	zdb(8)	can	grind	the	system	to
a	halt.

Let’s	start	with	a	small	one-disk	pool	from	a	virtual	machine.

#	zdb	-b	mypool

Traversing	all	blocks	to	verify	nothing	leaked…

	925M	completed	(	473MB/s)	estimated	time	remaining:	0hr	00min	00sec

		No	leaks	(block	sum	matches	space	maps	exactly)



		bp	count:											85010

		ganged	count:											0

		bp	logical:				2159973376				avg:		25408

		bp	physical:				897291776				avg:		10555			compression:				2.41

		bp	allocated:		1159446528				avg:		13638			compression:				1.86

		bp	deduped:													0		ref>1:						0			deduplication:		1.00

		SPA	allocated:	1159446528			used:		5.72%

		additional,	non-pointer	bps	of	type	0:		5873

		Dittoed	blocks	on	same	vdev:	9645

The	first	part	of	the	statistics	covers	block	pointers,	the	blocks	that	contain	metadata
and	indexing	details	for	data	blocks.	The	bp	count	field	shows	how	many	block	pointers
the	pool	has—here,	85,010.

The	bp	logical	field	shows	the	total	amount	of	logical	space,	or	the	actual	file	sizes,	of
those	blocks.	These	block	pointers	point	to	2,159,973,376	bytes,	or	about	2	GB.	The
average	block	pointer	handles	about	25,408	bytes.

The	bp	physical	amount	shows	how	much	space	these	blocks	consume	on	the	disk.
This	is	where	the	advantages	of	compression	show	up.	While	we	have	about	2	GB	of	files,
this	shows	we’re	using	about	800	MB	of	disk	space	for	files.	But	that’s	not	quite	the	whole
story.

The	bp	allocated	number	gives	the	actual	real-world	disk	space	consumption.	Sector
size,	padding,	and	parity	mean	that	we	don’t	actually	get	all	of	the	savings	that
compression	provided.	This	server	gets	a	real-world	compression	factor	of	1.86,	fitting
that	2	GB	in	roughly	1.1	GB—still	significant.

Here’s	a	slightly	larger	pool	from	an	active	server	with	only	a	single	disk	VDEV:

	bp	count:										1877355

	bp	logical:				40057641984				avg:		21337

	bp	physical:			36864202240				avg:		19636				compression:			1.09

	bp	allocated:		40843472896				avg:		21755				compression:			0.98

	bp	deduped:														0		ref>1:						0		deduplication:			1.00

	SPA	allocated:	40843472896			used:		8.34%

This	pool	contains	a	lot	of	non-compressible	data.	The	bp	physical	entry	says	that	we
eke	out	a	compression	factor	of	1.09.	Look	further	down	at	the	allocated	space,	though.
Once	you	add	in	metadata	and	padding	overhead,	we	actually	get	0.98	compression.	The
compression	almost	compensates	for	space	lost	due	to	metadata.

Let’s	examine	a	bigger	pool,	a	four-disk	RAID-Z1.

bp	count:											243197

ganged	count:												0



bp	logical:				15037198336				avg:		61831

bp	physical:			10384008704				avg:		42697				compression:			1.45

bp	allocated:		15081398272				avg:		62013				compression:			1.00

bp	deduped:														0		ref>1:						0		deduplication:			1.00

SPA	allocated:	15081398272			used:		0.19%

With	a	four-disk	RAID-Z1,	you’d	expect	to	lose	25	percent	of	your	physical	space	to
parity.	It	has	about	15	GB	of	data,	but	compression	squeezes	that	down	to	about	10	GB.
Once	you	look	at	the	allocated	space,	though,	compression	and	RAID-Z	metadata	even
each	other	out.

Here’s	another	four-disk	RAID-Z1,	but	with	more	data:

bp	count:												8782753

bp	logical:					845698973696				avg:		96290

bp	physical:				838824515072				avg:		95508				compression:			1.01

bp	allocated:		1173701099520				avg:	133637				compression:			0.72

bp	deduped:																0		ref>1:						0		deduplication:			1.00

SPA	allocated:	1173701099520			used:	29.70%

This	stores	about	845	GB	of	data.	Once	you	add	in	the	RAID-Z1	metadata,	though,	it
allocates	more	than	a	terabyte.

Detailed	Block	Statistics

If	those	numbers	didn’t	make	your	brain	climb	out	of	your	ear	canal	and	fling	itself	to	its
death,	add	a	second	–b	to	get	detailed	block	statistics.

#	zdb	–bb	mypool

You’ll	get	columns	for	the	number	of	blocks	(BLOCKS),	the	logical	size	(LSIZE),
physical	size	(PSIZE),	allocated	size	(ASIZE),	average	(avg),	compression	(comp),	and
percentage	of	total	(%Total),	for	each	different	type	of	block	pointer.	And	there	are	dozens
of	different	types	of	block	pointer.	The	output	below	presents	only	a	few.

Blocks		LSIZE		PSIZE		ASIZE				avg		comp		%Total		Type

					9		68.0K		68.0K		68.0K		7.55K		1.00				0.01		ZIL	intent	log

	70.3K		1.87G			844M		1.01G		14.7K		2.26			93.43		ZFS	plain	file

	7.12K			9.6M		2.53M		24.7M		3.47K		3.78				2.23		ZFS	directory

			272			174K		38.0K			608K		2.23K		4.58				0.05		ZFS	user/group	used

			244			315K		59.0K		1.38M		5.80K		5.34				0.13		DSL	deadlist	map

					6		60.0K		11.0K		72.0K		12.0K		5.45				0.01		deferred	free

					8		66.0K		10.0K		84.0K		10.5K		6.60				0.01		other

…

	83.0K		2.01G		856M			1.08G		13.3K		2.41		100.00		Total

What	do	each	of	these	block	pointer	types	mean?	That’s	where	we	point	you	to	D&I.
Here	are	a	few	that	might	interest	you,	though.

The	last	line	gives	the	totals.	This	pool	has	about	83,000	blocks	for	pointers,



representing	2.01	GB	of	data.	This	data	uses	856	MB	of	logical	space,	but	needs	1.08	GB
once	ZFS	adds	in	the	padding	and	metadata.

The	ZIL	gives	information	about	the	ZFS	intent	log’s	space	usage.	Remember,	even	if
you	don’t	have	a	separate	ZIL,	each	pool	dedicates	space	for	the	ZIL.	Our	ZIL	is	using
nine	blocks,	representing	68	KB	of	data.	This	information	can	help	you	size	a	separate
ZIL,	or	determine	if	one	is	needed.

The	ZFS	plain	file	and	ZFS	directory	lines	show	the	amount	of	disk	space	used	on	files
and	directory	entries.	Of	the	2.01	GB	stored	on	this	pool,	files	use	70,300	block	pointers
for	1.87	GB,	and	7,120	block	pointers	for	9.6	MB	of	directory	entries.

This	pool	uses	272	blocks,	or	174	KB,	just	to	keep	track	of	user	and	group	usage
information	in	ZFS	user/group	used.

At	DSL	deadlist	map,	we	see	the	dead	list	of	blocks	removed	after	the	last	snapshot	has
been	taken.	The	dead	list	uses	244	blocks,	or	315	KB.

The	deferred	free	line	shows	how	many	blocks	are	scheduled	to	be	released,	but
haven’t	been	yet.

Finally,	there’s	an	other	line.	Because	every	accounting	system	requires	an	“other”
bucket.

ZFS	Configuration

You	can	view	the	system’s	ZFS	configuration	with	zdb	–C.	If	you	add	the	name	of	a	pool,

zdb	pulls	the	information	from	the	pool.	If	you	skip	the	pool,	zdb(8)	displays	everything
from	zpool.cache.

#	zdb	-C	media

MOS	Configuration:

	version:	5000

	name:	'media'

	state:	0

	txg:	15612202

	pool_guid:	16862785426161824963

	hostid:	2655503804

	hostname:	''

	vdev_children:	1

	vdev_tree:

		type:	'root'

		id:	0

		guid:	16862785426161824963

		create_txg:	4

This	gives	basic	detail	for	the	pool	media.	Some	of	this	information	is	fairly	obvious,



such	as	the	pool’s	GUID	and	the	hostid	if	the	host	using	this	pool.	This	pool	has	had
15,612,202	transaction	groups	committed	to	it.	The	vdev_children	field	shows	how	many
VDEVs	are	part	of	this	pool.

Pool	VDEV	information	is	displayed	as	a	tree,	listing	each	VDEV	and	then	the	disks	in
that	VDEV.	Here’s	a	VDEV	in	the	media	pool.

		children[0]:

			type:	'raidz'

			id:	0

			guid:	8519167489302904218

			nparity:	2

			metaslab_array:	30

			metaslab_shift:	37

			ashift:	12

			asize:	17990635487232

			is_log:	0

			create_txg:	4

You	remember	specifying	an	ashift	when	creating	a	VDEV?	Here’s	where	you	find	out

what	that	was.	You’ll	also	see	the	VDEV’s	GUID	and	VDEV	type,	as	well	as	details	on
other	ZFS	internals.

Each	disk	in	the	VDEV	also	gets	an	entry.

			children[0]:

				type:	'disk'

				id:	0

				guid:	14921375587032757624

				path:	'/dev/ada1p3'

				phys_path:	'/dev/ada1p3'

				whole_disk:	1

				DTL:	8495

				create_txg:	4

This	tells	you	about	the	ZFS	GUID,	the	FreeBSD	device	node,	and	some	internals.

At	the	very	bottom,	you’ll	see	a	list	of	read-only	features	on	this	pool.

features_for_read:

		com.delphix:hole_birth

		com.delphix:embedded_data

If	you	use	a	second	-C	along	with	a	pool	name,	zdb	retrieves	both	the	on-disk	and	the

cached	data	so	you	can	compare	them.	Should	these	differ?	Not	really.



Dataset	Information

Examining	a	dataset	in	detail	can	also	provide	a	lot	of	information,	and	help	visualize	the
internals	of	the	filesystem.

Dataset	Basics

To	see	a	dataset’s	basic	internal	information,	use	–d	and	the	dataset	name.	Here	we

examine	a	dataset	on	the	media	pool	used	in	the	previous	section.

#	zdb	-d	media/svn/base

Dataset	media/svn/base	[ZPL],	ID	4778,	cr_txg	4820082,	3.82G,	259339	objects

That	did	not	provide	very	much	information.	The	cr_txg	field	shows	the	transaction
group	where	this	dataset	was	created,	number	4,820,082	of	15,612,202	on	this	pool.	It
holds	3.82	GB	worth	of	data,	and	has	259,339	objects	in	it.	Objects	include	files	and
directories,	but	also	metadata,	ACLs,	and	every	other	type	of	data	ZFS	can	hold.

Dataset	Detail

You	want	more	detail?	You	got	it.	Add	a	second	–d	and	hang	on	to	your	hat.	You	might

want	to	run	this	under	script(1)	or	another	terminal	recording	program.

#	zdb	-dd	media/svn/base

Dataset	media/svn/base	[ZPL],	ID	4778,	cr_txg	4820082,	3.82G,	259339	objects

		Object		lvl		iblk			dblk		dsize		lsize			%full		type

							0				7			16K				16K			417M			632M			20.04		DMU	dnode

						-1				1			16K					1K						0					1K		100.00		ZFS	user/group	used

						-2				1			16K					1K						0					1K		100.00		ZFS	user/group	used

							1				1			16K					1K				16K					1K		100.00		ZFS	master	node

							2				1			16K				512				16K				512		100.00		SA	master	node

…

							9				1			16K		16.5K				16K		16.5K		100.00		ZFS	directory

						11				3			16K			128K		43.3M			155M			82.49		ZFS	plain	file

						13				1			16K				512					8K				512		100.00		ZFS	plain	file

…

How	long	does	this	go	on?	Well…

	1294291				1			16K		3.50K					8K		3.50K		100.00		ZFS	plain	file

	1294324				1			16K					4K					8K					4K		100.00		ZFS	plain	file

	1294328				1			16K		4.50K					8K		4.50K		100.00		ZFS	plain	file

This	dataset	has	a	whole	bunch	of	files,	directories,	and	related	stuff	in	it.

A	few	of	the	columns	might	be	of	interest	to	sysadmins.	The	first	column	is	the	object
number.	The	dblk	column	is	the	record	size	used	for	this	object.	The	lsize	is	the	logical
size	of	the	object,	what	most	of	us	think	of	when	we	say	“file	size.”



The	first	line	gives	us	the	basic	information.	After	that,	though,	we	see	details	on	every
object	on	the	dataset.	While	the	first	few	objects	are	always	ZFS	metadata,	later	objects
are	mostly	files	and	directories.	You’ll	see	the	values	assigned	to	the	object’s	data
structures.

Examining	Specific	Objects

This	list	of	dataset	objects	might	have	its	interest,	but	what	is	each	of	those	objects?
Examine	an	object	by	specifying	its	object	number	after	the	dataset	name.	Here,	we	turn
zdb	all	the	way	up,	and	investigate	object	1,294,328	on	the	media/svn/base	dataset.

#	zdb	-ddddd	media/svn/base	1294328

Dataset	media/svn/base	[ZPL],	ID	4778,	cr_txg	4820082,	3.82G,	259339	objects,	rootbp	DVA[0]=<0:bc346503000:3000>	DVA[1]=<0:f005fc91000:3000>	[L0	DMU	objset]	fletcher4	uncompressed	LE	contiguous	unique	double	size=800L/800P	birth=15618812L/15618812P	fill=259339	cksum=1003e8933c:10304c47fe66:af75e77a47edd:5dcc1d2be9f01d9

We	start	with	details	about	the	dataset,	such	as	the	creation	txg	and	number	of	objects,
exactly	as	we	saw	on	less	intensive	zdb	queries.	We	also	get	a	bunch	more	details,	such	as

the	current	checksums	and	other	things	that	only	make	sense	if	you’re	studying	D&I.

Then	we	get	some	detail	on	the	file	itself.

		Object		lvl		iblk			dblk		dsize		lsize			%full		type

	1294328				1			16K		4.50K					8K		4.50K		100.00		ZFS	plain	file

																																					168			bonus		System	attributes

This	file	is	4.50	KB	in	size,	but	the	data	size	(dsize)	is	8	KB	because	the	on-disk	size	is
in	whole	sectors.

We’ll	then	get	into	the	guts	of	the	file.

						dnode	flags:	USED_BYTES	USERUSED_ACCOUNTED

						dnode	maxblkid:	0

						path		/head/sys/arm64/include/bus_dma_impl.h

						uid			1001

						gid			1001

						atime			Sat	May		9	12:40:22	2015

						mtime			Sat	May		9	12:40:22	2015

						ctime			Sat	May		9	12:40:22	2015

						crtime		Sat	May		9	12:40:22	2015

						gen			10832525

						mode		100644

						size		4139

						parent		1247454

						links			1

						pflags		40800000004

Indirect	blocks:

													0	L0	0:e1c09620000:3000	1200L/a00P	F=1	B=10832525/10832525

														segment	[0000000000000000,	0000000000001200)	size	4.50K

You’ll	see	a	bunch	of	traditional	Unix	information:	permissions,	file	name	and	path,



timing,	parent	object,	and	more.	If	you	look	at	this	file	with	ls(1)	the	file	appears	to	be
4,139	bytes,	but	that	doesn’t	include	any	of	the	ZFS	metadata	that	supports	it.

Now	let’s	consider	a	larger,	lz4-compressed	file.

#	zdb	-ddddd	zstore/tmp	3628

…

	Object		lvl		iblk		dblk		dsize		lsize			%full		type

			3628				2			16K		128K			244K			896K		100.00		ZFS	plain	file

																																			168			bonus		System	attributes

This	starts	with	basic	pool	information,	but	then	dives	into	the	file	itself.	While	this	file
takes	244	KB	of	disk	space,	its	true	size	is	896	KB.	Compression	reduces	the	amount	of
disk	space	needed.

After	the	Unix	information,	though,	we	get	a	list	of	indirect	blocks.

Indirect	blocks:

						0		L1	0:20edc2ec000:2000		4000L/1000P	F=7	B=15965896/15965896

						0		L0	0:188fc2c8000:c000	20000L/8000P	F=1	B=15965895/15965895

		20000		L0	0:188fc2f8000:c000	20000L/8000P	F=1	B=15965895/15965895

		40000		L0	0:188fc2ec000:c000	20000L/8000P	F=1	B=15965895/15965895

		60000		L0	0:188fc2e0000:c000	20000L/8000P	F=1	B=15965895/15965895

		80000		L0	0:188fc2d4000:c000	20000L/8000P	F=1	B=15965895/15965895

		a0000		L0	0:188fc324000:c000	20000L/8000P	F=1	B=15965895/15965895

		c0000		L0	0:20834cea000:8000	20000L/6000P	F=1	B=15965896/15965896

			segment	[0000000000000000,	00000000000e0000)	size		896K

When	a	file	is	larger	than	the	recordsize	(dblk),	ZFS	stores	it	as	multiple	separate
blocks.	The	first	column	is	the	offset	in	the	file,	in	hex.	The	number	20,000	in	hex	is	128
KB.	The	file	in	question	has	an	L1	indirect	block,	and	then	seven	128	KB	L0	blocks	that
actually	hold	the	data,	the	last	of	which	is	actually	slightly	smaller.

Examining	Specific	Files

Maybe	you	want	to	look	at	a	particular	file—say,	to	see	what	block	size	it	was	written
with.	You	can’t	easily	extract	that	from	zdb	–d,	but	you	can	get	a	serial	or	inode	number

from	ls(1)	by	using	the	–i	flag.	Here,	for	some	unspeakable	reason,	we’re	interested	in	a

MySQL	data	file.

#	ls	-i	/var/mysql/nyaargh/users.MYI

132	/var/mysql/nyaargh/users.MYI

This	is	file	132	on	the	zroot/var/mysql	dataset.

When	you’re	working	from	an	inode	number,	use	the	-v	flag	to	zdb(8).

#	zdb	-v	zroot/var/mysql	132



Dataset	zroot/var/mysql	[ZPL],	ID	128,	cr_txg	18594,	293M,	534	objects

				Object		lvl			iblk			dblk		dsize		lsize			%full		type

							132				1				16K		6.00K					8K		6.00K		100.00		ZFS	plain	file

Using	four	or	more	-v	flags	displays	the	traditional	Unix	information	and	the	indirect

blocks.	If	you	have	ls(1),	you	probably	have	the	traditional	Unix	information	already.

Metaslabs	and	Free	Space	Histograms

Each	top-level	virtual	device	is	broken	up	into	metaslabs.	ZFS	fills	space	on	a	metaslab-
by-metaslab	basis.

When	ZFS	allocates	space,	it	looks	for	chunks	of	disk	big	enough	to	hold	the	new
transaction.	When	your	pool	gets	full,	your	only	option	when	writing	data	is	to	break	it	up
into	these	small	chunks	of	space	that	are	left.	This	is	why	ZFS	performance	decreases	as
the	pool	fills—the	free	space	becomes	fragmented.	See	how	full	your	metaslabs	are	by
viewing	metaslab	histograms.

#	zdb	-mmm	media

Metaslabs:

						vdev									0

						metaslabs		130		offset									spacemap									free

						--------------		-------------		---------------		-----------

						metaslab					0		offset						0		spacemap			8317		free		4.72G

																						segments		806		maxsize			4.68G		freepct		3%

Each	metaslab	definition	starts	with	a	basic	description.	Here	we’re	looking	at	VDEV
0,	which	has	130	metaslabs.	We	then	proceed	to	metaslab	number	0.	It’s	right	at	the
beginning	of	the	pool,	with	an	offset	of	0.	This	pool	has	806	allocations,	or	segments.
Only	three	percent	of	them	are	free.

We	then	get	a	histogram	of	how	blocks	in	this	metaslab	are	allocated,	as	far	as	the
system	memory	is	concerned.

In-memory	histogram:

			13:		281	****************************************

			14:		197	*****************************

			15:		189	***************************

			16:		106	****************

			17:			27	****

			18:				5	*

			19:				0

			20:				0

…

			31:				0

			32:				1	*



The	numbers	in	the	first	column	are	block	sizes,	shown	as	kilobytes	in	powers	of	2.	213

=	8,192,	so	13	is	8	KB.	This	metaslab	has	281	8	KB	allocations.

Line	14	is	16	KB.	This	metaslab	has	197	16	KB	allocations.

Line	15	is	32	KB,	with	189	allocations,	and	so	on,	all	the	way	up	to	a	single	232	(or	4
GB)	allocation.

After	the	histogram	of	the	metaslab	in	memory,	we	get	to	see	how	the	version	of	the
metaslab	on	the	disk	looks.	On	a	busy	disk,	ZFS	is	always	allocating	and	de-allocating
blocks.

On-disk	histogram:												fragmentation	0

			13:		295	****************************************

			14:		198	***************************

			15:		189	**************************

			16:		107	***************

			17:			29	****

			18:				3	*

…

			32:				1	*

Scroll	down.	No,	further.	Eventually,	you’ll	come	to	a	later	metaslab	that	looks
considerably	different.	Metaslab	43,	in	this	case.

metaslab			43			offset		56000000000		spacemap		8280		free		59.1G

																segments						17893		maxsize			815M		freepct			46%

This	metaslab	has	17,893	allocations,	but	is	46	percent	free.	And	the	block	size
distribution	is	considerably	different.

In-memory	histogram:

			13:			891	*********

			14:			565	******

			15:			806	********

			16:			994	**********

			17:		3341	*******************************

			18:		1452	**************

			19:		1932	******************

			20:		4406	****************************************

			21:		1557	***************

			22:			934	*********

			23:			488	*****

			24:			272	***

			25:			103	*

			26:				80	*

			27:				47	*

			28:				19	*

			29:					6	*



Our	most	common	allocations	are	17	(128	KB)	and	20	(1	MB).

The	disk	gives	a	hint	why	this	metaslab	is	only	about	half	full,	though.

						On-disk	histogram:												fragmentation	11

				13:			7520	***********************

				14:			5702	******************

				15:			4096	*************

…

Note	the	fragmentation	level—11.	On	the	disk,	metaslab	43	is	fragmented.	This	means
that	many	of	the	chunks	of	free	space	are	relatively	small.	With	spinning	disks,	storing
chunks	of	a	file	contiguously	improves	performance.	If	ZFS	needs	to	write	a	large	block,
it’ll	probably	proceed	to	a	later	metaslab.

Descend	even	further	down	into	the	bowels	of	your	metaslabs.

metaslab		121		offset		f2000000000		spacemap				0		free			128G

															segments										1		maxsize		128G		freepct		100%

In-memory	histogram:

				37:				1	*

The	metaslabs	near	the	end	of	the	disk	are	made	up	of	contiguous	128	GB	chunks.	If
this	pool	had	previously	been	nearly	full,	the	higher-numbered	metaslabs	would	likely
contain	bits	of	data,	whereas	on	this	pool,	they	are	untouched.

ZFS	normally	divides	a	VDEV	up	into	200	metaslabs	of	equal	size.	You	can	tune	this
number	with	the	vfs.zfs.vdev.metaslabs_per_vdev	sysctl,	but	you	must	set	the	sysctl
before	creating	the	VDEV.	The	number	200	was	chosen	because	it	seemed	to	work	pretty
well,	but	there’s	lots	of	room	for	experimenting	with	metaslab	allocations.

When	you	expand	a	VDEV	by	replacing	its	disks	with	larger	ones,	ZFS	creates	new
metaslabs	to	support	the	increased	space.	You	can	get	a	pool	with	far	more	than	200
metaslabs	this	way.

ZFS	can	only	keep	so	many	metaslabs	in	memory	at	once.	Growing	a	VDEV	to	many
times	its	original	size	can	have	a	negative	performance	impact,	as	ZFS	shuffles	metaslabs
to	and	from	disk.

Uberblock

What	kind	of	ZFS	debugging	section	would	this	be	without	taking	a	look	at	pool’s
uberblock?

#	zdb	-u	media

Uberblock:

		magic	=	0000000000bab10c



		version	=	5000

		txg	=	15741196

		guid_sum	=	7884957152936881795

		timestamp	=	1456030423	UTC	=	Sat	Feb	20	23:53:43	2016

What	can	you	do	with	this?	Not	much.	But	at	this	point,	ZFS	pretty	much	lies	naked
and	exposed	before	you.

What	else	you	learn	is	up	to	you.

1	This	once	happened	to	Jude,	but	Lucas	is	certain	that	it	was	actually	operator	error.

2	Actually,	Jude	thinks	it	might	be	related	to	upgrading	a	pool	from	an	older	version,	as	it	happened	recently	on	two
more	machines	he	was	running	zdb	on	for	writing	this	chapter	of	the	book

3	Just	because	you	make	the	same	mistake	multiple	times,	Jude,	doesn’t	mean	it’s	not	an	error.

4	At	least	Jude	provided	the	solution,	so	when	Lucas	inevitably	runs	into	this	problem	he’ll	know	what	to	do:	curse	Jude.
For	the	record,	the	only	mistake	Jude	made	was	writing	this	book	with	such	a…	swell	guy.

5	Hey,	we	recommend	their	book,	they	recommend	ours.	Or	at	least	buy	a	round.	It	works	out.





Afterword
Allan	has	gone	off	to	AsiaBSDCon	2016,	leaving	me	to	write	the	afterword	on	my	own.

Many	tools	change	how	we	practice	systems	administration.	ZFS	is	practically	unique,
in	that	the	change	is	for	the	better.	Once	you’ve	used	ZFS	for	a	while,	other	filesystems
seem	positively	quaint.	I	administered	various	iterations	of	UFS	and	EXT	for	two	decades,
but	after	only	a	few	months	of	using	ZFS,	the	inability	to	do	a	ufs	send	or	ufs	clone	would

instantly	drive	me	to	a	red	rage.	Fortunately,	UFS	does	have	snapshots,	so	I	was	able	to
regain	my	composure	before	too	many	people	got	permanently	maimed.

What’s	more,	this	is	the	last	of	four	books	on	FreeBSD	storage.	I’d	like	to	note	that,	at
long	last,	I’ve	written	a	tetralogy.	Well,	most	of	a	tetralogy.	Yeah,	without	Allan’s	help
some	of	this	stuff	wouldn’t	have	been	in	here—Allan	knows	more	than	I	do,	and	he	gave
both	ZFS	books	a	depth	I	couldn’t	have	alone.	And	he	has	hardware	I	don’t,	like	multipath
SAS,	meaning	he	could	write	those	sections	when	I	simply	couldn’t.	And	he	knew	who	to
ask	to	get	access	to	hardware	neither	of	us	owned,	like	NVMe.	Yeah,	fine,	without	Allan
my	tetralogy	would	have	been	a	trilogy,	and	the	single	ZFS	volume	would	not	have	been
nearly	as	good—but	that’s	not	my	point.	What	is	my	point?	Oh,	look—over	there!	A	man-
eating	platypus!	Run	away!
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