

1

2

By

Ryan Hodson

Foreword by Daniel Jebaraj

3

Copyright © 2012 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration

form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal, educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

dited by

This publication was edited by Praveen Ramesh, director of development, Syncfusion, Inc.

I

E

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books ... 6

Introduction ... 8

Faster Commands ... 9

Stability .. 9

Isolated Environments ... 9

Efficient Merging .. 9

Chapter 1: Overview .. 10

The Working Directory ... 10

The Staging Area .. 10

Committed History ... 11

Development Branches ... 11

Chapter 2: Getting Started .. 13

Installation ... 13

Configuration ... 13

User Info .. 14

Editor ... 14

Aliases ... 14

Initializing Repositories .. 14

Cloning Repositories ... 15

Chapter 3: Recording Changes .. 16

The Staging Area .. 16

Inspecting the Stage .. 17

Generating Diffs ... 18

Commits .. 19

Inspecting Commits ... 20

Useful Configurations .. 21

Tagging Commits .. 22

Chapter 4: Undoing Changes ... 23

Undoing in the Working Directory .. 23

Individual Files ... 24

Undoing in the Staging Area ... 25

Undoing Commits .. 26

Resetting ... 26

Reverting ... 27

Amending .. 28

Chapter 5: Branches ... 29

Manipulating Branches .. 29

Listing Branches .. 30

Creating Branches ... 30

Deleting Branches ... 31

Checking Out Branches .. 31

Detached HEADs .. 33

Merging Branches ... 34

Fast-forward Merges .. 35

5

3-way Merges .. 36

Merge Conflicts .. 37

Branching Workflows ... 38

Types of Branches ... 38

Permanent Branches ... 39

Topic Branches .. 39

Rebasing ... 41

Interactive Rebasing .. 43

Rewriting History .. 45

Chapter 6: Remote Repositories .. 46

Manipulating Remotes ... 46

Listing Remotes ... 46

Creating Remotes .. 46

Deleting Remotes .. 47

Remote Branches .. 47

Fetching Remote Branches ... 48

Inspecting Remote Branches ... 49

Merging/Rebasing .. 49

Pulling .. 51

Pushing .. 51

Remote Workflows .. 53

Public (Bare) Repositories ... 53

The Centralized Workflow .. 53

The Integrator Workflow .. 56

Conclusion .. 59

6

The Story behind the Succinctly Series of
Books

Daniel Jebaraj, Vice President

Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components
for the Microsoft platform. This puts us in the exciting but challenging
position of always being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to
be about every other week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books
are being published, even on topics that are relatively new, one aspect that continues to
inhibit us is the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the Web
for relevant blog posts and other articles. Just as everyone else who has a job to do and
customers to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical
books that would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most
topics can be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t
everything wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision.
The book you now hold in your hands, and the others available in this series, are a result
of the authors’ tireless work. You will find original content that is guaranteed to get you
up and running in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be
free. Any updates we publish will also be free.

S

7

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and
broader frameworks than anyone else on the market. Developer education greatly helps
us market and sell against competing vendors who promise to “enable AJAX support
with one click,” or “turn the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to
us at succinctly@syncfusion.com.

We sincerely hope you enjoy this book and that it helps you better understand the topic
of study. Thank you for reading.

mailto:succinctly@syncfusion.com

8

Introduction
Git is an open-source version control system known for its speed, stability, and
distributed collaboration model. Originally created in 2006 to manage the entire
Linux kernel, Git now boasts a comprehensive feature set, an active
development team, and several free hosting communities.

Git was designed from the ground up, paying little attention to the existing
standards of centralized versioning systems. So, if you’re coming from an SVN or
CVS background, try to forget everything you know about version control before
reading this guide.

Distributed software development is fundamentally different from centralized
version control systems. Instead of storing file information in a single central
repository, Git gives every developer a full copy of the repository. To facilitate
collaboration, Git lets each of these repositories share changes with any other
repository.

Figure 1: Distributed software development

Having a complete repository on your local machine has a far-reaching impact on
the development cycle…

9

Faster Commands
First, a local copy of the repository means that almost all version control actions
are much faster. Instead of communicating with the central server over a network
connection, Git actions are performed on the local machine. This also means you
can work offline without changing your workflow.

Stability
Since each collaborator essentially has a backup of the whole project, the risk of
a server crash, a corrupted repository, or any other type of data loss is much
lower than that of centralized systems that rely on a single point-of-access.

Isolated Environments
Every copy of a Git repository, whether local or remote, retains the full history of
a project. Having a complete, isolated development environment gives each user
the freedom to experiment with new additions before polishing them up into
clean, publishable commits.

Efficient Merging
A complete history for each developer also means a divergent history for each
developer. As soon as you make a single local commit, you’re out of sync with
everyone else on the project. To cope with this massive amount of branching, Git
became very good at merging divergent lines of development.

10

Chapter 1 Overview
Each Git repository contains 4 components:

 The working directory

 The staging area

 Committed history

 Development branches

Everything from recording commits to distributed collaboration revolves around
these core objects.

The Working Directory
The working directory is where you actually edit files, compile code, and
otherwise develop your project. For all intents and purposes, you can treat the
working directory as a normal folder. Except, you now have access to all sorts of
commands that can record, alter, and transfer the contents of that folder.

Figure 2: The working directory

The Staging Area
The staging area is an intermediary between the working directory and the
project history. Instead of forcing you to commit all of your changes at once, Git
lets you group them into related changesets. Staged changes are not yet part of
the project history.

11

Figure 3: The working directory and the staging area

Committed History
Once you’ve configured your changes in the staging area, you can commit it to
the project history where it will remain as a “safe” revision. Commits are “safe” in
the sense that Git will never change them on its own, although it is possible for
you to manually rewrite project history.

Figure 4: The working directory, staged snapshot, and committed history

Development Branches
So far, we’re still only able to create a linear project history, adding one commit
on top of another. Branches make it possible to develop multiple unrelated
features in parallel by forking the project history.

12

Figure 5: The complete Git workflow with a branched history

Git branches are not like the branches of centralized version control systems.
They are cheap to make, simple to merge, and easy to share, so Git-based
developers use branches for everything—from long-running features with several
contributors to 5-minute fixes. Many developers only work in dedicated topic
branches, leaving the main history branch for public releases.

13

Chapter 2 Getting Started

Installation
Git is available on all major platforms. The instructions below will walk you
through installation on Windows, but it’s always best to consult the official Git
Web site for the most up-to-date information.

Git for Windows is available through the MsysGit package.

1. Download and execute the most recent version of the installer.
2. In the setup screen entitled “Adjusting your PATH environment,” select the

option “Use Git Bash only.”
3. In the setup screen titled “Choosing the SSH executable,” select “Use

OpenSSH.”
4. Finally, select “Checkout Windows-style, commit Unix-style line endings”

and press “Next” to begin the installation.

This will install a new program called “Git Bash,” which is the command prompt
you should use whenever you’re working with Git.

Figure 6: Screenshot of Git Bash

Configuration
Git comes with a long list of configuration options covering everything from your
name to your favorite merge tool. You can set options with the git config

http://git-scm.com/
http://git-scm.com/
http://code.google.com/p/msysgit/downloads/list

14

command, or by manually editing a file called .gitconfig in your home

directory. Some of the most common options are presented below.

User Info

The first thing you’ll want to do with any new Git installation is introduce yourself.
Git records this information with your commits, and third-party services like
GitHub use it to identify you.

git config --global user.name "John Smith"

git config --global user.email john@example.com

The --global flag records options in ~/.gitconfig, making it the default for

all new repositories. Omitting it lets you specify options on a per-repository basis.

Editor

Git’s command-line implementation relies on a text editor for most of its input.
You can force Git to use your editor-of-choice with the core.editor option:

git config --global core. editor gvim

Aliases

By default, Git doesn’t come with any shortcuts, but you can add your own by
aliasing commands. If you’re coming from an SVN background, you’ll appreciate
the following bindings:

git config --global alias.st status

git config --global alias.ci commit

git config --global alias.co checkout

git config --global alias.br branch

Learn more by running the git help config in your Git Bash prompt.

Initializing Repositories
Git is designed to be as unobtrusive as possible. The only difference between a
Git repository and an ordinary project folder is an extra .git directory in the

project root (not in every subfolder like SVN). To turn an ordinary project folder
into a full-fledged Git repository, run the git init command:

git init <path>

The <path> argument should be a path to the repository (leaving it blank will

use the current working directory). Now, you can use all of Git’s wonderful
version control features.

15

Cloning Repositories
As an alternative to git init, you can clone an existing Git repository using the

following command:

git clone ssh://<user>@<host>/path/to/repo.git

This logs into the <host> machine using SSH and downloads the repo.git

project. This is a complete copy, not just a link to the server’s repository. You
have your own history, working directory, staging area, and branch structure, and
no one will see any changes you make until you push them back to a public
repository.

16

Chapter 3 Recording Changes
Maintaining a series of “safe” revisions of a project is the core function of any
version control system. Git accomplishes this by recording snapshots of a
project. After recording a snapshot, you can go back and view old versions,
restore them, and experiment without the fear of destroying existing functionality.

SVN and CVS users should note that this is fundamentally different from their
system’s implementation. Both of these programs record diffs for each file—an
incremental record of the changes in a project. In contrast, Git’s snapshots are
just that—snapshots. Each commit contains the complete version of each file it
contains. This makes Git incredibly fast since the state of a file doesn’t need to
be generated each time it’s requested:

Figure 7: Recording complete snapshots, not differences between revisions

This chapter introduces the basic workflow for creating snapshots using the
working directory, staging area, and committed history. These are the core
components of Git-based revision control.

The Staging Area
Git’s staging area gives you a place to organize a commit before adding it to the
project history. Staging is the process of moving changes from the working
directory to the staged snapshot.

17

Figure 8: Components involved in staging a commit

It gives you the opportunity to pick-and-choose related changes from the working
directory, instead of committing everything all at once. This means you can
create logical snapshots over chronological ones. This is a boon to developers
because it lets them separate coding activities from version control activities.
When you’re writing features, you can forget about stopping to commit them in
isolated chunks. Then, when you’re done with your coding session, you can
separate changes into as many commits as you like via the stage.

To add new or modified files from the working directory to the staging area, use
the following command:

git add <file>

To delete a file from a project, you need to add it to the staging area just like a
new or modified file. The next command will stage the deletion and stop tracking
the file, but it won’t delete the file from the working directory:

git rm --cached <file>

Inspecting the Stage
Viewing the status of your repository is one of the most common actions in Git.
The following command outputs the state of the working directory and staging
area:

git status

This will result in a message that resembles the following (certain sections may
be omitted depending on the state of your repository):

18

On branch master

Changes to be committed:

new file: foobar.txt

Changes not staged for commit:

modified: foo.txt

Untracked files:

bar.txt

The first section, “Changes to be committed” is your staged snapshot. If you were
to run git commit right now, only these files would be added to the project

history. The next section lists tracked files that will not be included in the next
commit. Finally, “Untracked files” contains files in your working directory that
haven’t been added to the repository.

Generating Diffs

If you need more detailed information about the changes in your working
directory or staging area, you can generate a diff with the following command:

git diff

This outputs a diff of every unstaged change in your working directory. You can
also generate a diff of all staged changes with the --cached flag:

git diff –cached

Note that the project history is outside the scope of git status. For displaying

committed snapshots, you’ll need git log.

19

Figure 9: Components in the scope of git status

Commits
Commits represent every saved version of a project, which makes them the
atomic unit of Git-based version control. Each commit contains a snapshot of the
project, your user information, the date, a commit message, and an SHA-1
checksum of its entire contents:

commit b650e3bd831aba05fa62d6f6d064e7ca02b5ee1b

Author: john <john@example.com>

Date: Wed Jan 11 00:45:10 2012 -0600

 Some commit message

This checksum serves as a commit’s unique ID, and it also means that a commit
will never be corrupted or unintentionally altered without Git knowing about it.

Since the staging area already contains the desired changeset, committing
doesn’t require any involvement from the working directory.

20

Figure 10: Components involved in committing a snapshot

To commit the staged snapshot and add it to the history of the current branch,
execute the following:

git commit

You’ll be presented with a text editor and prompted for a “commit message.”
Commit messages should take the following form:

<commit summary in 50 characters or less.>

<blank line>

<detailed description of changes in this commit.>

Git uses the first line for formatting log output, e-mailing patches, etc., so it
should be brief, while still describing the entire changeset. If you can’t come up
with the summary line, it probably means your commit contains too many
unrelated changes. You should go back and split them up into distinct commits.
The summary should be followed by a blank line and a detailed description of the
changes (e.g., why you made the changes, what ticket number it corresponds
to).

Inspecting Commits
Like a repository’s status, viewing its history is one of the most common tasks in
Git version control. You can display the current branch’s commits with:

git log

We now have the only two tools we need to inspect every component of a Git
repository.

21

Figure 11: Output of git status vs. git log

This also gives us a natural grouping of commands:

 Stage/Working Directory: git add, git rm, git status

 Committed History: git commit, git log

Useful Configurations

Git provides a plethora of formatting options for git log, a few of which are

included here. To display each commit on a single line, use:

git log –oneline

Or, to target the history of an individual file instead of the whole repository, use:

git log --oneline <file>

Filtering the log output is also very useful once your history grows beyond one
screenful of commits. You can use the following to display commits contained in
<until> but not in <since>. Both arguments can be a commit ID, a branch

name, or a tag:

git log <since>..<until>

Finally, you can display a diffstat of the changes in each commit. This is useful to
see what files were affected by a particular commit.

git log –stat

For visualizing history, you might also want to look at the gitk command, which

is actually a separate program dedicated to graphing branches. Run git help

gitk for details.

22

Tagging Commits
Tags are simple pointers to commits, and they are incredibly useful for
bookmarking important revisions like public releases. The git tag command

can be used to create a new tag:

git tag -a v1.0 -m "Stable release"

The -a option tells Git to create an annotated tag, which lets you record a

message along with it (specified with -m).

Running the same command without arguments will list your existing tags:

git tag

23

Chapter 4 Undoing Changes
The whole point of maintaining “safe” copies of a software project is peace of
mind: should your project suddenly break, you’ll know that you have easy access
to a functional version, and you’ll be able to pinpoint precisely where the problem
was introduced. To this end, recording commits is useless without the ability to
undo changes. However, since Git has so many components, “undoing” can take
on many different meanings. For example, you can:

 Undo changes in the working directory

 Undo changes in the staging area

 Undo an entire commit

To complicate things even further, there are multiple ways to undo a commit. You
can either:

1. Simply delete the commit from the project history.
2. Leave the commit as is, using a new commit to undo the changes

introduced by the first commit.

Git has a dedicated tool for each of these situations. Let’s start with the working
directory.

Undoing in the Working Directory
The period of time immediately after saving a safe copy of a project is one of
great innovation. Empowered by the knowledge that you’re free to do anything
you want without damaging the code base, you can experiment to your heart’s
content. However, this carefree experimentation often takes a wrong turn and
leads to a working directory with a heap of off-topic code. When you reach this
point, you’ll probably want to run the following commands:

git reset --hard HEAD

git clean –f

This configuration of git reset makes the working directory and the stage

match the files in the most recent commit (also called HEAD), effectively

obliterating all uncommitted changes in tracked files. To get rid of untracked files,
you have to use the git clean command. Git is very careful about removing

code, so you must also supply the -f option to force the deletion of these files.

24

Figure 12: Resetting all uncommitted changes

Individual Files

It’s also possible to target individual files. The following command will make a
single file in the working directory match the version in the most recent commit.

git checkout HEAD <file>

This command doesn’t change the project history at all, so you can safely
replace HEAD with a commit ID, branch, or tag to make the file match the version

in that commit. But, do not try this with git reset, as it will change your history

(explained in Undoing Commits).

25

Figure 13: Reverting a file with git checkout

Undoing in the Staging Area
In the process of configuring your next commit, you’ll occasionally add an extra
file to the stage. The following invocation of git reset will unstage it:

git reset HEAD <file>

Omitting the --hard flag tells Git to leave the working directory alone (opposed

to git reset –-hard HEAD, which resets every file in both the working

directory and the stage). The staged version of the file matches HEAD, and the

working directory retains the modified version. As you might expect, this results
in an unstaged modification in your git status output.

26

Figure 14: Unstaging a file with git reset

Undoing Commits
There are two ways to undo a commit using Git: You can either reset it by simply
removing it from the project history, or you can revert it by generating a new
commit that gets rid of the changes introduced in the original. Undoing by
introducing another commit may seem excessive, but rewriting history by
completely removing commits can have dire consequences in multi-user
workflows (read more in Remote Repositories).

Resetting

The ever-versatile git reset can also be used to move the HEAD reference.

git reset HEAD~1

The HEAD~1 syntax parameter specifies the commit that occurs immediately

before HEAD (likewise, HEAD~2 refers to the second commit before HEAD). By

moving the HEAD reference backward, you’re effectively removing the most

recent commit from the project’s history.

27

 Figure 15: Moving HEAD to HEAD~1 with git reset

This is an easy way to remove a couple of commits that veered off-topic, but it
presents a serious collaboration problem. If another developer had started
building on top of the commit we removed, how would he or she synchronize with
our repository? The developer would have to ask us for the ID of the replacement
commit, manually track it down in your repository, move all of the changes to that
commit, resolve merge conflicts, and then share the “new” changes with
everybody again. Just imagine what would happen in an open-source project
with hundreds of contributors…

The point is, don’t reset public commits, but feel free to delete private ones
that you haven’t shared with anyone. We’ll revisit this concept in Remote
Repositories.

Reverting

To remedy the problems introduced by resetting public commits, Git developers
devised another way to undo commits: the revert. Instead of altering existing
commits, reverting adds a new commit that undoes the problem commit:

git revert <commit-id>

This takes the changes in the specified commit, figures out how to undo them,
and creates a new commit with the resulting changeset. To Git and to other
users, the revert commit looks and acts like any other commit—it just happens to
undo the changes introduced by an earlier commit.

Figure 16: Undoing a commit with a revert commit

28

This is the ideal way of undoing changes that have already been committed to a
public repository.

Amending

In addition to completely undoing commits, you can also amend the most recent
commit by staging changes as usual, then running:

git commit –amend

This replaces the previous commit instead of creating a new one, which is very
useful if you forgot to add a file or two. For your convenience, the commit editor
is seeded with the old commit’s message. Again, you must be careful when
using the --amend flag, since it rewrites history much like git reset.

Figure 17: Amending the most recent commit

29

Chapter 5 Branches
Branches multiply the basic functionality offered by commits by allowing users to
fork their history. Creating a new branch is akin to requesting a new development
environment, complete with an isolated working directory, staging area, and
project history.

Figure 18: Basic branched development

This gives you the same peace of mind as committing a “safe” copy of your
project, but you now have the additional capacity to work on multiple versions at
the same time. Branches enable a non-linear workflow—the ability to develop
unrelated features in parallel. As we’ll discover in Remote Repositories, a non-
linear workflow is an important precursor to the distributed nature of Git’s
collaboration model.

Unlike SVN or CVS, Git’s branch implementation is incredibly efficient. SVN
enables branches by copying the entire project into a new folder, much like you
would do without any revision control software. This makes merges clumsy,
error-prone, and slow. In contrast, Git branches are simply a pointer to a commit.
Since they work on the commit level instead of directly on the file level, Git
branches make it much easier to merge diverging histories. This has a dramatic
impact on branching workflows.

Manipulating Branches
Git separates branch functionality into a few different commands. The git

branch command is used for listing, creating, or deleting branches.

30

Listing Branches

First and foremost, you’ll need to be able to view your existing branches:

git branch

This will output all of your current branches, along with an asterisk next to the
one that’s currently “checked out” (more on that later):

* master

some-feature

quick-bug-fix

The master branch is Git’s default branch, which is created with the first commit

in any repository. Many developers use this branch as the “main” history of the
project—a permanent branch that contains every major change it goes through.

Creating Branches

You can create a new branch by passing the branch name to the same git

branch command:

git branch <name>

This creates a pointer to the current HEAD, but does not switch to the new branch

(you’ll need git checkout for that). Immediately after requesting a new

branch, your repository will look something like the following.

Figure 19: Creating a new branch

Your current branch (master) and the new branch (some-feature) both

reference the same commit, but any new commits you record will be exclusive to
the current branch. Again, this lets you work on unrelated features in parallel,
while still maintaining sensible histories. For example, if your current branch was
some-feature, your history would look like the following after committing a

snapshot.

31

Figure 20: Committing on the some-feature branch

The new HEAD (denoted by the highlighted commit) exists only in the some-

feature branch. It won’t show up in the log output of master, nor will its

changes appear in the working directory after you check out master.

You can actually see the new branch in the internal database by opening the file
.git/refs/heads/<name>. The file contains the ID of the referenced commit,

and it is the sole definition of a Git branch. This is the reason branches are so
lightweight and easy to manage.

Deleting Branches

Finally, you can delete branches via the -d flag:

git branch -d <name>

But, Git’s dedication to never losing your work prevents it from removing
branches with unmerged commits. To force the deletion, use the -D flag instead:

git branch -D <name>

Unmerged changes will be lost, so be very careful with this command.

Checking Out Branches
Of course, creating branches is useless without the ability to switch between
them. Git calls this “checking out” a branch:

git checkout <branch>

32

After checking out the specified branch, your working directory is updated to
match the specified branch’s commit. In addition, the HEAD is updated to point to

the new branch, and all new commits will be stored on the new branch. You can
think of checking out a branch as switching to a new project folder—except it will
be much easier to pull changes back into the project.

Figure 21: Checking out different branches

With this in mind, it’s usually a good idea to have a clean working directory
before checking out a branch. A clean directory exists when there are no

33

uncommitted changes. If this isn’t the case, git checkout has the potential to

overwrite your modifications.

As with committing a “safe” revision, you’re free to experiment on a new branch
without fear of destroying existing functionality. But, you now have a dedicated
history to work with, so you can record the progress of an experiment using the
exact same git add and git commit commands from earlier in the book.

Figure 22: Developing multiple features in parallel

This functionality will become even more powerful once we learn how to merge
divergent histories back into the “main” branch (e.g., master). We’ll get to that in

a moment, but first, there is an important use case of git checkout that must

be considered…

Detached HEADs

Git also lets you use git checkout with tags and commit IDs, but doing so

puts you in a detached HEAD state. This means that you’re not on a branch
anymore—you’re directly viewing a commit.

34

Figure 23: Checking out an old commit

You can look around and add new commits as usual, but since there is no
branch pointing to the additions, you’ll lose all your work as soon as you switch
back to a real branch. Fortunately, creating a new branch in a detached HEAD

state is easy enough:

git checkout -b <new-branch-name>

This is a shortcut for git branch <new-branch-name> followed by git

checkout <new-branch-name>. After which, you’ll have a shiny new branch

reference to the formerly detached HEAD. This is a very handy procedure for

forking experiments off of old revisions.

Merging Branches
Merging is the process of pulling commits from one branch into another. There
are many ways to combine branches, but the goal is always to share information
between branches. This makes merging one of the most important features of
Git. The two most common merge methodologies are:

 The “fast-forward” merge

 The “3-way” merge

They both use the same command, git merge, but the method is automatically

determined based on the structure of your history. In each case, the branch you
want to merge into must be checked out, and the target branch will remain
unchanged. The next two sections present two possible merge scenarios for the
following commands:

git checkout master

git merge some-feature

Again, this merges the some-feature branch into the master branch, leaving

the former untouched. You’d typically run these commands once you’ve
completed a feature and want to integrate it into the stable project.

35

Fast-forward Merges

The first scenario looks like this:

Figure 24: Before the fast-forward merge

We created a branch to develop some new feature, added two commits, and now
it’s ready to be integrated into the main code base. Instead of rewriting the two
commits missing from master, Git can “fast-forward” the master branch’s

pointer to match the location of some-feature.

Figure 25: After the fast-forward merge

After the merge, the master branch contains all of the desired history, and the

feature branch can be deleted (unless you want to keep developing on it). This is
the simplest type of merge.

36

Of course, we could have made the two commits directly on the master branch;

however, using a dedicated feature branch gave us a safe environment to
experiment with new code. If it didn’t turn out quite right, we could have simply
deleted the branch (opposed to resetting/reverting). Or, if we added a bunch of
intermediate commits containing broken code, we could clean it up before
merging it into master (see Rebasing). As projects get more complicated and

acquire more collaborators, this kind of branched development makes Git a
fantastic organizational tool.

3-way Merges

But, not all situations are simple enough for a fast-forward commit. Remember,
the main advantage of branches is the ability to explore many independent lines
of development simultaneously. As a result, you’ll often encounter a scenario that
looks like the following:

Figure 26: Before the 3-way merge

This started out like a fast-forward merge, but we added a commit to the master

branch while we were still developing some-feature. For example, we could

have stopped working on the feature to fix a time-sensitive bug. Of course, the
bug-fix should be added to the main repository as soon as possible, so we wind
up in the scenario shown above.

Merging the feature branch into master in this context results in a “3-way”

merge. This is accomplished using the exact same commands as the fast-
forward merge from the previous section.

37

Figure 27: After the 3-way merge

Git can’t fast-forward the master pointer to some-feature without

backtracking. Instead, it generates a new merge commit that represents the
combined snapshot of both branches. Note that this new commit has two parent
commits, giving it access to both histories (indeed, running git log after the 3-

way merge shows commits from both branches).

The name of this merge algorithm originates from the internal method used to
create the merge commit. Git looks at three commits to generate the final state of
the merge.

Merge Conflicts

If you try to combine two branches that make different changes to the same
portion of code, Git won’t know which version to use. This is called a merge
conflict. Obviously, this can never happen during a fast-forward merge. When
Git encounters a merge conflict, you’ll see the following message:

Auto-merging index.html

CONFLICT (content): Merge conflict in <file>

Automatic merge failed; fix conflicts and then commit

the result.

Instead of automatically adding the merge commit, Git stops and asks you what
to do. Running git status in this situation will return something like the

following:

On branch master

Unmerged paths:

both modified: <file>

38

Every file with a conflict is stored under the “Unmerged paths” section. Git
annotates these files to show you the content from both versions:

<<<<<<< HEAD

 This content is from the current branch.

=======

 This is a conflicting change from another branch.

>>>>>>> some-feature

The part before the ======= is from the master branch, and the rest is from the

branch you’re trying to integrate.

To resolve the conflict, get rid of the <<<<<<, =======, and >>>>>>> notation,

and change the code to whatever you want to keep. Then, tell Git you’re done
resolving the conflict with the git add command:

git add <file>

That’s right; all you have to do is stage the conflicted file to mark it as resolved.
Finally, complete the 3-way merge by generating the merge commit:

git commit

The log message is seeded with a merge notice, along with a “conflicts” list,
which can be particularly useful when trying to figure out where something went
wrong in a project.

And that’s all there is to merging in Git. Now that we have an understanding of
the mechanics behind Git branches, we can take an in-depth look at how veteran
Git users leverage branches in their everyday workflow.

Branching Workflows
The workflows presented in this section are the hallmark of Git-based revision
control. The lightweight, easy-to-merge nature of Git’s branch implementation
makes them one of the most productive tools in your software development
arsenal.

All branching workflows revolve around the git branch, git checkout, and

git merge commands presented earlier this chapter.

Types of Branches

It’s often useful to assign special meaning to different branches for the sake of
organizing a project. This section introduces the most common types of
branches, but keep in mind these distinctions are purely superficial—to Git, a
branch is a branch.

39

All branches can be categorized as either permanent branches or topic
branches. The former contain the main history of a project (e.g., master), while

the latter are temporary branches used to implement a specific topic, then
discarded (e.g., some-feature).

Permanent Branches

Permanent branches are the lifeblood of any repository. They contain every
major waypoint of a software project. Most developers use master exclusively

for stable code. In these workflows, you never commit directly on master—it is

only an integration branch for completed features that were built in dedicated
topic branches.

In addition, many users add a second layer of abstraction in another integration
branch (conventionally called develop, though any name will suffice). This frees

up the master branch for really stable code (e.g., public commits), and uses

develop as an internal integration branch to prepare for a public release. For

example, the following diagram shows several features being integrated in
develop, then a single, final merge into master, which symbolizes a public

release.

Figure 28: Using the master branch exclusively for public releases

Topic Branches

Topic branches generally fall into two categories: feature branches and hotfix
branches. Feature branches are temporary branches that encapsulate a new
feature or refactor, protecting the main project from untested code. They typically
stem from another feature branch or an integration branch, but not the “super
stable” branch.

40

Figure 29: Developing a feature in an isolated branch

Hotfix branches are similar in nature, but they stem from the public release
branch (e.g., master). Instead of developing new features, they are for quickly

patching the main line of development. Typically, this means bug fixes and other
important updates that can’t wait until the next major release.

41

Figure 30: Patching master with a hotfix branch

Again, the meanings assigned to each of these branches are purely
conventional—Git sees no difference between master, develop, features, and

hotfixes. With that in mind, don’t be afraid to adapt them to your own ends. The
beauty of Git is its flexibility. When you understand the mechanics behind Git
branches, it’s easy to design novel workflows that fit your project and personality.

Rebasing
Rebasing is the process of moving a branch to a new base. Git’s rebasing
capabilities make branches even more flexible by allowing users to manually
organize their branches. Like merging, git rebase requires the branch to be

checked out and takes the new base as an argument:

git checkout some-feature

git rebase master

This moves the entire some-feature branch onto the tip of master:

42

Figure 31: Rebasing some-feature onto the master branch

After the rebase, the feature branch is a linear extension of master, which is a

much cleaner way to integrate changes from one branch to another. Compare
this linear history with a merge of master into some-feature, which results in

the exact same code base in the final snapshot:

Figure 32: Integrating master into some-feature with a 3-way merge

43

Since the history has diverged, Git has to use an extra merge commit to combine
the branches. Doing this many times over the course of developing a long-
running feature can result in a very messy history.

These extra merge commits are superfluous—they exist only to pull changes
from master into some-feature. Typically, you’ll want your merge commits to

mean something, like the completion of a new feature. This is why many
developers choose to pull in changes with git rebase, since it results in a

completely linear history in the feature branch.

Interactive Rebasing

Interactive rebasing goes one step further and allows you to change commits as
you’re moving them to the new base. You can specify an interactive rebase with
the -i flag:

git rebase –i master

This populates a text editor with a summary of each commit in the feature
branch, along with a command that determines how it should be transferred to
the new base. For example, if you have two commits on a feature branch, you
might specify an interactive rebase like the following:

pick 58dec2a First commit for new feature

squash 6ac8a9f Second commit for new feature

The default pick command moves the first commit to the new base just like the

normal git rebase, but then the squash command tells Git to combine the

second commit with the previous one, so you wind up with one commit
containing all of your changes:

44

Figure 33: Interactively rebasing the some-feature branch

Git provides several interactive rebasing commands, each of which are
summarized in the comment section of the configuration listing. The point is
interactive rebasing lets you completely rewrite a branch’s history to your exact
specifications. This means you can add as many intermediate commits to a
feature branch as you need, then go back and fix them up into meaningful
progression after the fact.

45

Other developers will think you are a brilliant programmer, and knew precisely
how to implement the entire feature in one fell swoop. This kind of organization is
very important for ensuring large projects have a navigable history.

Rewriting History

Rebasing is a powerful tool, but you must be judicious in your rewriting of history.
Both kinds of rebasing don’t actually move existing commits—they create brand
new ones (denoted by an asterisk in the above diagram). If you inspect commits
that were subjected to a rebase, you’ll notice that they have different IDs, even
though they represent the same content. This means rebasing destroys existing
commits in the process of “moving” them.

As you might imagine, this has dramatic consequences for collaborative
workflows. Destroying a public commit (e.g., anything on the master branch) is

like ripping out the basis of everyone else’s work. Git won’t have any idea how to
combine everyone’s changes, and you’ll have a whole lot of apologizing to do.
We’ll take a more in-depth look at this scenario after we learn how to
communicate with remote repositories.

For now, just abide by the golden rule of rebasing: never rebase a branch that
has been pushed to a public repository.

46

Chapter 6 Remote Repositories
Simply put, a remote repository is one that is not your own. It could be on a
central server, another developer’s personal computer, or even your file system.
As long as you can access it from some kind of network protocol, Git makes it
incredibly easy to share contributions with other repositories.

The primary role of remote repositories is to represent other developers within
your own repository. Branches, on the other hand, should only deal with project
development. That is to say, don’t try to give individual developers their own
branch to work on—give them a complete repository and reserve branches for
developing features.

This chapter begins by covering the mechanics of remotes, and then presents
the two most common workflows of Git-based collaboration: the centralized
workflow and the integrator workflow.

Manipulating Remotes
Similar to git branch, the git remote command is used to manage

connections to other repositories. Remotes are nothing more than bookmarks to
other repositories—instead of typing the full path, they let you reference it with a
user-friendly name. We’ll learn how we can use these bookmarks within Git in
Remote Workflows.

Listing Remotes

You can view your existing remotes by calling the git remote command with

no arguments:

git remote

If you have no remotes, this command won’t output any information. If you used
git clone to get your repository, you’ll see an origin remote. Git

automatically adds this connection, under the assumption that you’ll probably
want to interact with it down the road.

You can request a little bit more information about your remotes with the -v flag:

git remote –v

This displays the complete path to the repository. Specifying remote paths is
discussed in the next section.

Creating Remotes

The git remote add command creates a new connection to a remote

repository.

47

git remote add <name> <path-to-repo>

After running this command, you can reach the Git repository at <path-to-

repo> using <name>. Again, this is simply a convenient bookmark for a long

path name—it does not create a direct link into someone else’s repository.

Git accepts many network protocols for specifying the location of a remote
repository, including file://, ssh://, http://, and its custom git://

protocol. For example:

git remote add some-user ssh://git@github.com/some-

user/some-repo.git

After running this command, you can access the repository at
github.com/some-user/some-repo.git using only some-user. Since we

used ssh:// as the protocol, you’ll probably be prompted for an SSH password

before you’re allowed to do anything with the account. This makes SSH a good
choice for granting write access to developers, whereas HTTP paths are
generally used to give read-only access. As we’ll soon discover, this is designed
as a security feature for distributed environments.

Deleting Remotes

Finally, you can delete a remote connection with the following command:

git remote rm <remote-name>

Remote Branches
Commits may be the atomic unit of Git-based version control, but branches are
the medium in which remote repositories communicate. Remote branches act
just like the local branches we’ve covered thus far, except they represent a
branch in someone else’s repository.

48

Figure 34: Accessing a feature branch from a remote repository

Once you’ve downloaded a remote branch, you can inspect, merge, and extend it
like any other branch. This makes for a very short learning curve if you
understand how to use branches locally.

Fetching Remote Branches

The act of downloading branches from another repository is called fetching. To
fetch a remote branch, you can specify the repository and the branch you’re
looking for:

git fetch <remote> <branch>

Or, if you want to download every branch in <remote>, simply omit the branch

name. After fetching, you can see the downloaded branches by passing the -r

option to git branch:

git branch –r

This gives you a branch listing that looks something like:

origin/master

origin/some-feature

origin/another-feature

Remote branches are always prefixed with the remote name (origin/) to

distinguish them from local branches.

Remember, Git uses remote repositories as bookmarks—not real-time
connections with other repositories. Remote branches are copies of the local
branches of another repository. Outside of the actual fetch, repositories are

49

completely isolated development environments. This also means Git will never
automatically fetch branches to access updated information—you must do this
manually.

But, this is a good thing, since it means you don’t have to constantly worry about
what everyone else is contributing while doing your work. This is only possible
due to the non-linear workflow enabled by Git branches.

Inspecting Remote Branches

For all intents and purposes, remote branches behave like read-only branches.
You can safely inspect their history and view their commits via git checkout,

but you cannot continue developing them before integrating them into your local
repository. This makes sense when you consider the fact that remote branches
are copies of other users’ commits.

The .. syntax is very useful for filtering log history. For example, the following

command displays any new updates from origin/master that are not in your

local master branch. It’s generally a good idea to run this before merging

changes so you know exactly what you’re integrating:

git log master..origin/master

If this outputs any commits, it means you are behind the official project and you
should probably update your repository. This is described in the next section.

It is possible to checkout remote branches, but it will put you in a detached HEAD

state. This is safe for viewing other user’s changes before integrating them, but
any changes you add will be lost unless you create a new local branch tip to
reference them.

Merging/Rebasing

Of course, the whole point of fetching is to integrate the resulting remote
branches into your local project. Let’s say you’re a contributor to an open-source
project, and you’ve been working on a feature called some-feature. As the

“official” project (typically pointed to by origin) moves forward, you may want to

incorporate its new commits into your repository. This would ensure that your
feature still works with the bleeding-edge developments.

Fortunately, you can use the exact same git merge command to incorporate

changes from origin/master into your feature branch:

git checkout some-feature

git fetch origin

git merge origin/master

50

Since your history has diverged, this results in a 3-way merge, after which your
some-feature branch has access to the most up-to-date version of the official

project.

Figure 35: Merging the official master into a feature branch

However, frequently merging with origin/master just to pull in updates

eventually results in a history littered with meaningless merge commits.
Depending on how closely your feature needs to track the rest of the code base,
rebasing might be a better way to integrate changes:

git checkout some-feature

git fetch origin

git rebase origin/master

51

As with local rebasing, this creates a perfectly linear history free of superfluous
merge commits:

Figure 36: Rebasing the feature branch onto the official master

Rebasing/merging remote branches has the exact same trade-offs as discussed
in the chapter on local branches.

Pulling

Since the fetch/merge sequence is such a common occurrence in distributed
development, Git provides a pull command as a convenient shortcut:

git pull origin/master

This fetches the origin’s master branch, and then merges it into the current
branch in one step. You can also pass the --rebase option to use git rebase

instead of git merge.

Pushing

To complement the git fetch command, Git also provides a push command.

Pushing is almost the opposite of fetching, in that fetching imports branches,
while pushing exports branches to another repository.

git push <remote> <branch>

The above command sends the local <branch> to the specified remote

repository. Except, instead of a remote branch, git push creates a local

branch. For example, executing git push mary my-feature in your local

52

repository will look like the following from Mary’s perspective (your repository will
be unaffected by the push).

Figure 37: Pushing a feature branch from your repository into Mary’s

Notice that my-feature is a local branch in Mary’s repository, whereas it would

be a remote branch had she fetched it herself.

This makes pushing a dangerous operation. Imagine you’re developing in your
own local repository, when, all of a sudden, a new local branch shows up out of
nowhere. But, repositories are supposed to serve as completely isolated
development environments, so why should git push even exist? As we’ll

discover shortly, pushing is a necessary tool for maintaining public Git
repositories.

53

Remote Workflows
Now that we have a basic idea of how Git interacts with other repositories, we
can discuss the real-world workflows that are supported by these commands.
The two most common collaboration models are: the centralized workflow and
the integrator workflow. SVN and CVS users should be quite comfortable with
Git’s flavor of centralized development, but using Git means you’ll also get to
leverage its highly-efficient merge capabilities. The integrator workflow is a
typical distributed collaboration model and is not possible in purely centralized
systems.

As you read through these workflows, keep in mind that Git treats all repositories
as equals. There is no “master” repository according to Git as there is with SVN
or CVS. The “official” code base is merely a project convention—the only reason
it’s the official repository is because that’s where everyone’s origin remote

points.

Public (Bare) Repositories

Every collaboration model involves at least one public repository that serves as a
point-of-entry for multiple developers. Public repositories have the unique
constraint of being bare—they must not have a working directory. This prevents
developers from accidentally overwriting each others’ work with git push. You

can create a bare repository by passing the --bare option to git init:

git init --bare <path>

Public repositories should only function as storage facilities—not development
environments. This is conveyed by adding a .git extension to the repository’s

file path, since the internal repository database resides in the project root instead
of the .git subdirectory. So, a complete example might look like:

git init --bare some-repo.git

Aside from a lack of a working directory, there is nothing special about a bare
repository. You can add remote connections, push to it, and pull from it in the
usual fashion.

The Centralized Workflow

The centralized workflow is best suited to small teams where each developer has
write access to the repository. It allows collaboration by using a single central
repository, much like the SVN or CVS workflow. In this model, all changes must
be shared through the central repository, which is usually stored on a server to
enable Internet-based collaboration.

54

Figure 38: The centralized workflow with many developers

Individual developers work in their own local repository, which is completely
isolated from everyone else. Once they’ve completed a feature and are ready to
share their code, they clean it up, integrate it into their local master, and push it

to the central repository (e.g., origin). This also means all developers need

SSH access to the central repository.

55

Figure 39: Mary pushing her updates to the central repository

Then, everyone else can fetch the new commits and incorporate them into their
local projects. Again, this can be done with either a merge or a rebase,
depending on your team’s conventions.

This is the core process behind centralized workflows, but it hits a bump when
multiple users try to simultaneously update the central repository. Imagine a
scenario where two developers finished a feature, merged it into their local
master, and tried to publish it at the same time (or close to it).

Whoever gets to the server first can push his or her commits as normal, but then
the second developer gets stuck with a divergent history, and Git cannot perform
a fast-forward merge. For example, if a developer named John were to push his
changes right before Mary, we’d see a conflict in Mary’s repository:

56

Figure 40: Conflicting updates during a push

The only way to make the origin’s master (updated by John) match Mary’s

master is to overwrite John’s commit. Obviously, this would be very bad, so Git

aborts the push and outputs an error message:

! [rejected] master -> master (non-fast-forward)

error: failed to push some refs to 'some-repo.git'

To remedy this situation, Mary needs to synchronize with the central repository.
Then, she’ll be able to push her changes in the usual fashion.

git fetch origin master

git rebase origin/master

git push origin master

Other than that, the centralized workflow is relatively straightforward. Individual
developers stay in their own local repository, periodically pulling/pushing to the
central repository to keep everything up-to-date. It’s a convenient workflow to set
up, as only one server is required, and it leverages existing SSH functionality.

The Integrator Workflow

The integrator workflow is a distributed development model where individual
users maintain a public repository, in addition to a private one. It exists as a
solution to the security and scalability problems inherent in the centralized
workflow.

The main drawback of the centralized workflow is that every developer needs
push access to the entire project. This is fine if you’re working with a small team
of trusted developers, but imagine a scenario where you’re working on an open-
source software project and a stranger found a bug, fixed it, and wants to

57

incorporate the update into the main project. You probably don’t want to give him
push access to the central repository, since he could start pushing all sorts of
random commits, and you would effectively lose control of the project.

But, what you can do is tell the contributor to push the changes to his own public
repository. Then, you can pull his bug fix into your private repository to ensure it
doesn’t contain any undeclared code. If you approve his contributions, all you
have to do is merge them into a local branch and push it to the main repository
as usual. You’ve become an integrator, in addition to an ordinary developer:

Figure 41: Integrating changes from John’s public repository

In this workflow, individual developers only need push access to their own public
repositories. Contributors use SSH to push to their public repositories, but the
integrator can fetch the changes over HTTP (a read-only protocol). This makes
for a more secure environment for everyone, even when you add more
collaborators:

58

Figure 42: The integrator workflow with many developers

Note that the team must still agree on a single “official” repository to pull from—
otherwise changes would be applied out-of-order and everyone would wind up
out-of-sync very quickly. In the above diagram, “Your Public Repo” is the official
project.

As an integrator, you have to keep track of more remotes than you would in the
centralized workflow, but this gives you the freedom and security to incorporate
changes from any developer without threatening the stability of the project.

In addition, the integrator workflow has no single point-of-access to serve as a
choke point for collaboration. In centralized workflows, everyone must be
completely up-to-date before publishing changes, but that is not the case in
distributed workflows. Again, this is a direct result of the nonlinear development
style enabled by Git’s branch implementation.

These are huge advantages for large open-source projects. Organizing hundreds
of developers to work on a single project would not be possible without the
security and scalability of distributed collaboration.

59

Conclusion
Supporting these centralized and distributed collaboration models was all Git was
ever meant to do. The working directory, the stage, commits, branches, and
remotes were all specifically designed to enable these workflows, and virtually
everything in Git revolves around these components.

True to the UNIX philosophy, Git was designed as a suite of interoperable tools,
not a single monolithic program. As you continue to explore Git’s numerous
capabilities, you’ll find that it’s very easy to adapt individual commands to entirely
novel workflows.

I now leave it to you to apply these concepts to real-world projects, but as you
begin to incorporate Git into your daily workflow, remember that it’s not a silver
bullet for project management. It is merely a tool for tracking your files, and no
amount of intimate Git knowledge can make up for a haphazard set of
conventions within a development team.

	The Story behind the Succinctly Series of Books
	Introduction
	Faster Commands
	Stability
	Isolated Environments
	Efficient Merging

	Chapter 1 Overview
	The Working Directory
	The Staging Area
	Committed History
	Development Branches

	Chapter 2 Getting Started
	Installation
	Configuration
	User Info
	Editor
	Aliases

	Initializing Repositories
	Cloning Repositories

	Chapter 3 Recording Changes
	The Staging Area
	Inspecting the Stage
	Generating Diffs

	Commits
	Inspecting Commits
	Useful Configurations

	Tagging Commits

	Chapter 4 Undoing Changes
	Undoing in the Working Directory
	Individual Files

	Undoing in the Staging Area
	Undoing Commits
	Resetting
	Reverting
	Amending

	Chapter 5 Branches
	Manipulating Branches
	Listing Branches
	Creating Branches
	Deleting Branches

	Checking Out Branches
	Detached HEADs

	Merging Branches
	Fast-forward Merges
	3-way Merges
	Merge Conflicts

	Branching Workflows
	Types of Branches
	Permanent Branches
	Topic Branches

	Rebasing
	Interactive Rebasing
	Rewriting History

	Chapter 6 Remote Repositories
	Manipulating Remotes
	Listing Remotes
	Creating Remotes
	Deleting Remotes

	Remote Branches
	Fetching Remote Branches
	Inspecting Remote Branches
	Merging/Rebasing
	Pulling
	Pushing

	Remote Workflows
	Public (Bare) Repositories
	The Centralized Workflow
	The Integrator Workflow

	Conclusion

