Learning Play!
Framework 2

Start developing awesome web applications with this friendly,
practical guide to the Play! Framework

PACKT

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Play! Framework 2

Start developing awesome web applications with this
friendly, practical guide to the Play! Framework

Andy Petrella

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Learning Play! Framework 2

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2013
Production Reference: 1200313

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78216-012-0
www . packtpub.com

Cover Image by J. Blaminsky (milakéewp.pl)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Andy Petrella

Reviewers
Steve Chaloner

Marius Soutier

Acquisition Editors
Andrew Duckworth

Joanna Finchen

Lead Technical Editor
Sweny M. Sukumaran

Technical Editors
Veronica Fernandes

Dominic Pereira

Manmeet Singh Vasir

Copy Editors
Insiya Morbiwala

Aditya Nair
Alfida Paiva
Ruta Waghmare

Project Coordinator
Anish Ramchandani

Proofreaders
Maria Gould

Stephen Silk

Indexer
Rekha Nair

Production Coordinator

Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Andy Petrella is first and foremost a Belgian mathematician who tried to find
a way to apply his skills to the concrete world. One of them was programming,.
So, after graduating in Mathematics, he continued his study in Informatics at the
University of Liege.

He quickly became interested in Geomatics because of the heterogeneous needs
of this discipline, which led him to mainly work in the GIS field. Over there,

he got the opportunity to sharpen his skills on distributed architecture for
interoperable solutions.

After spending time developing in Java and integrating scripting languages

such as Python and JavaScript, he slowly moved back to functional programming.
Although working with JVM was a constraint, he tried his hand at Scala and took
the opportunity to use Play! 2 while it was still in development.

Having found a new way to enjoy mathematics along with programming, he joined
one of his friends and they decided to create NextLab (http://www.nextlab.be/),
a company that offers the perfect context to push Play! 2 and Scala to the foreground
through projects and customers.

Andy also loves to share his experiences, his enjoyment, and his discoveries through
the co-creation of a user group called WAJUG (http://wajug.be/) dedicated to
help Walloons to meet together and share ideas about information technology. In
order to ensure a constant flow of information, he also writes his thoughts on his
blog, SKA LA (http://ska-1la.blogspot.be/).

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgement

During the writing of this book, I had some difficulties, stress, and doubts; but they
were quickly annihilated by the laughters of my son, Noah, and the love of my wife,
Sandrine. I'd like to thank them again and again. Without them, I wouldn't have
done it.

And of course, the support of my parents and sister who have always been there for
me, and even more during the writing of this book.

My last thoughts are dedicated to my best friend Tof and to a Brazilian (R.C.) who
gave me some personal additional notes on the book.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Steve Chaloner has been a software developer, consultant, and mentor since 1999.
He specializes in Java, but believes in using the right tool for the job. The right tool
for him, for web-based applications at least, is Play! 2.

In addition to collaborating on several open source projects, he is the author
of several of his own. The most successful of these, Deadbolt and Deadbolt 2
(for Play! 1 and Play! 2 respectively), are used in commercial products.

In 2011, he was selected as one of the expert reviewers for Play Framework Cookbook,
Packt Publishing, along with the creator of Play! and two of its oldest contributors.
Since then, he has also acted as the expert reviewer for two more books covering
Play! 2 development in both Java and Scala.

In 2012, Steve co-founded The Belgian Play! Framework User Group, details of
which can be found at http://play-be.org.

www.it-ebooks.info

http://www.it-ebooks.info/

Marius Soutier is a German software engineer who specializes in modern
JVM programming languages, frameworks, and development processes.

After graduating with a degree in Business and Computer Science, Marius went
on to construct Java-based business solutions for various French enterprises in
Paris. Later, he supported a German healthcare organization eager to create
patient-care software. Over there, he served as WebObjects developer,

architect, and subsequently department head.

During the past year, Marius has been part of a new startup incubator for a
large German telecommunications company, which is leveraging advanced
functional/ object programming and NoSQL.

Marius runs the Cologne Scala User Group and regularly presents functional
programming paradigms in Play! Framework 2.

You can read his publications at http://www.soutier.de/blog, follow him at
@mariussoutier, or contact him directly at marius@soutier.de.

www.it-ebooks.info

http://www.it-ebooks.info/

www.packtpub.com

Support files, e-books, discount offers, and more

You might want to visit www.packtpub. com for support files and downloads related
to your book.

Did you know that Packt offers e-book versions of every book published, with PDF
and ePub files available? You can upgrade to the e-book version at www.packtpub.
com and as a print book customer, you are entitled to a discount on the e-book copy.
Get in touch with us at serviceepacktpub.com for more details.

At www.packtpub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on
Packt books and e-books.

PACKT

http://packtlib.packtpub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
o Fully searchable across every book published by Packt

e Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www. packtpub . com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

This book is dedicated to Noah.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Preface 1
Chapter 1: Getting Started with Play! Framework 2 7
Preparing your machine 7
Downloading the package 8
Installing 8
Microsoft Windows 9
Mac OS X 10
Ubuntu 10
The Typesafe Stack 10
Checking if it's okay in your terminal 10
Creating your first project 12
Keeping your habits 14
Using Eclipse 15
Eclipse Juno 15
Using Scala IDE 18
IntelliJ IDEA 19
Sublime Text 2 21
Simple Build Tool 23
Adding a third-party dependency 24
Repositories 24
It's alive and not empty! 25
Browsing the Java API 27
Understanding the core pieces 28
Routing 28
Action 30
Similarities between the Java and Scala action code 32
Differences between the Java and Scala action code 32
Templates 33

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Practicing 36
Modifying the template 36
Modifying the controller 37
Modifying the content type to JSON 38
Browsing our errors 39
Summary 42
Chapter 2: Scala — Taking the First Step 43
Introducing Scala 44
Expressing your code 44
If-else 44
Switch/Pattern matching 46
Generic types 47
Iterating over a sequence 50
Function — foreach 50
Function — map 51
Function — filter 52
Function — exists 52
Function — find 53
Function — apply 55
Other interesting functions 56
Partial application 56
Summary 58
Chapter 3: Templating Easily with Scala 59
Shape it, compose it, re-use it 59
Creating our first template 60
Structuring it 61
Adding content 61
Composing templates 63
Passing data structures 64
Playing around 67
Laying out 67
Using domain models 69
Re-using our code 72
Skinning with LESS pain 76
Summary 78
Chapter 4: Handling Data on the Server Side 79
Feeding some data 80
Forming a (server) form 80
Ingesting data 83
Extracting the data 83

Enhancing your data 85

Lii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Validating our data 91
Persisting them 97
Activating a database 97
Accessing the database 98
Object-relational mapping 103
Storing and fetching — a simple story 107
Porting to Scala 110
Models 111
Parsing the DB result 113
Speaking with the browser 115
Summary 117
Chapter 5: Dealing with Content 119
Body parsing for better reactivity 120
Creating a forum 123
Reorganizing and logging in 124
Chatting 126
Handling multipart content types 130
Rendering contents 134
Imaging all of the chat 135
Atomizing the chats 136
Summary 139
Chapter 6: Moving to Real-time Web Applications 141
Ready, JSON, poli 142
Configuring a dashboard 143
Some sugar with your Coffee(Script) 148
Words about CoffeeScript's syntax 149
Explaining CoffeeScript in action 150
Rendering the dashboard 151
Updating the dashboard in live mode 153
Dynamic maintains form 156
Real time (advanced) 165
Adding WebSocket 165
Receiving messages 168
Multiplexing events to the browser 169
Live multichatting 173
Summary 177
Chapter 7: Web Services — At Your Disposal 179
Accessing third parties 180
Interacting with Twitter 184
Using the Twitter API 187

[iii]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Integrating chatrum with Twitter search 191
Long tasks won't block 196
Summary 198

Chapter 8: Smashing All Test Layers 199
Testing atomically 200

Running our atomic tests 204
Writing applicative tests 206
Testing workflows 220
Summary 228

Chapter 9: Code Once, Deploy Everywhere 229
Continuous Integration (CloudBees) 230
Deployment (Heroku) 240
Monitoring (Typesafe Console) 245
Summary 247

Appendix A: Introducing Play! Framework 2 249
Why do we need Play! Framework? 249

Framework for the Web 250

Not JEE-based, but JVM 250
Underlying ideas and concepts 251

Reactive 251

NIO server 251
Asynchronous 252
lteratee 252
Wrap up 252
What's new? 252

Scala 252

Simple Build Tool 253

Templates 253

Assets 253
Amazing goodies 254

HTML5 254

External services 255

Form validation 255

Hot reloading 255

Only two tools — IDE and browser 256
Summary 256

[iv]

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

Appendix B: Moving Forward 257
More features 257
Plugin 257
Global 258
Session, cache, and i18n 258
Frontend languages 258
Scala-specific 259
Ecosystem 260
Appendix C: Materials 261
Index 263

[v]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

This book not only provides you with the opportunity to discover all the basics of
Play! Framework 2, but also gives you an insight into its advanced features. This
new version of Play! Framework has inherited a lot of features from the previous
versions, but it has also learned from them. Thus, it comes with fresh thoughts,

a clear vision, and amazing new APIs.

The book will focus on what kind of applications can be built using Play!
Framework 2, and what kind of technologies can be used easily with it. In

order to demonstrate how it can be easy and fast, we'll build a full application
from scratch, integrating as many functionalities as will be needed by any modern
web application.

Given that Play! Framework 2 can be used with both Java and Scala, you'll be
introduced to the Scala programming language. However, most of the examples
are in Java.

What this book covers

Chapter 1, Getting Started with Play! Framework 2, introduces readers to Play!
Framework 2 and helps them discover how easy it is to bootstrap your development
environment and take a fast track to creating your first application.

Chapter 2, Scala - Taking the First Step, covers just enough of Scala so as to enable you
to create advanced Scala templates.

Chapter 3, Templating Easily with Scala, keeps you in touch with the Scala
programming language while creating server-side templates. We'll see how to
produce views for content and how to combine them. From this chapter, we will
start making the application that we will build along with the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Chapter 4, Handling Data on the Server Side, explains how to create data on the

server side, how to add constraints to them, and then how to generate views on
them, while keeping in mind that a web application, especially a CRUD one, mainly
deals with data on both server and client sides. By the end of this chapter, you'll be
able to create a flow between the browser and the database.

Chapter 5, Dealing with Content, covers how easy it will be to manage different
representations of data. We'll introduce how streams are handled by Play!
Framework 2, using body parsers. We'll also take the opportunity to use JSON
to share our data between the client and the server sides. Also, we'll see how to
create an Atom feed of the same data.

Chapter 6, Moving to Real-time Web Applications, demonstrates how to achieve more
powerful features (required by any modern web applications) to deal with data in a
real-time fashion, using the APIs provided with Play! Framework 2. You'll build an
end-to-end workflow using CoffeeScript in the browser to consume events produced
on a WebSocket by the server.

Chapter 7, Web Services — At Your Disposal, covers the WS API that Play! Framework
2 includes. This API will leave us consuming or producing content to a different
application, using whatever representation of the data we're used to. To illustrate
such a use case, we'll connect to Twitter's end points to consume tweets and show
them in our application.

Chapter 8, Smashing All Test Layers, gives an overview of all test layers that can be
covered using the test features provided by Play! Framework 2. Being a full-stack
framework, Play! Framework 2 not only includes binding with testing frameworks,
but also mockups for the whole server. By the end of this chapter, you'll be able to
test the server-side code and also the user interface using Selenium. The chapter is
also the only one that is Scala- and not Java-oriented.

Chapter 9, Code Once, Deploy Everywhere, explains how a Play! Framework application
can be used in a continuous integration tool, and how to put it in production by
following the continuous-deployment philosophy. You'll also be introduced to the
Typesafe console that can help us monitor applications at runtime.

Appendix A, Introducing Play! Framework 2, gives you a deeper insight into the
underlying concepts on which Play! Framework is built. We'll see why it is so
awesome and what its differences are with the first version. It's also a good place to
start, where an overview of the features of Play! Framework 2 can be grasped at once.

[2]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Appendix B, Moving Forward, keeps you moving forward with all the very advanced
features of Play! Framework 2 that we had to leave aside for a while. You'll also see
that the Play! community is expanding very fast and that a lot of helpful plugins are
already available.

Appendix C, Materials, gives information about the publicly available sources
on GitHub.

What you need for this book

As Play! Framework 2 is meant to be "full stack" and completely integrated, the good
news is that there are no specific requirements for you or your environment to start
creating new web applications.

However, I could give you some common advice, for example, having random
hardware is good enough, but having an SSD can be really helpful. This is because
we'll be in the JVM world, where compilations will be needed and thus filesystem
access can be intense. So just bring your machine and your preferred text editor
(or IDE) and go ahead.

Who this book is for

The book does not focus on algorithms or model patterns at all. Instead, this

book is for web developers. The reader must be interested with the Web world
without (especially) being an expert in making web applications. However, a good
understanding of third-tier applications over HTTP will be a plus.

The skills required are as few as the prerequisite knowledge required is less. The
reader should be familiar with object-oriented languages and have some notion of
client-side technologies such as JavaScript, CSS, and HTML.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Now that your machine is prepared,
we can create our first project using the play command."

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

A block of code is set as follows:

Long chatId = Long.parselong(queryString.get ("chatid") [0]) ;
Map<String, String[] > queryString = request () .queryString() ;

Any command-line input or output is written as follows:

$> cd play-jbook
$> play
New terms and important words are shown in bold. Words that you see on the

screen, in menus or dialog boxes for example, appear in the text like this: "In the new
window, click on the Environment Variables... button."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[4]

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books —maybe a mistake in the text or the
code —we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http: //www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

www.it-ebooks.info

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with
Play! Framework 2

This chapter will introduce Play! Framework 2 by demonstrating its basic features
and overall structure.

We'll cover the bootstrapping tasks, including creating projects and running them.
To tackle this, the following list of topics will be put to use:

Set up Play! Framework 2 - installation and configuration
Create projects (Java and Scala)

Set up your IDE for the project

First contact with the build tool

See the projects in action

Review the code within default projects

Experiment by modifying the code

Preparing your machine

As the first step of using Play! Framework, we'll see how to install it on our machine
with minimum requirements as possible. The goal is to have our basic environment
set up in a few and simple tasks.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Downloading the package

The simplest way to install Play! Framework 2 is to download it from the website
http://www.playframework.org/. This is fairly simple. Just go to the Download
link in the upper-right-hand side of the website and click on the Latest official
version link. This will download a . zip file to your system. Unzip it to a location
of your choice.

This package can seem quite large (almost 150 MB, compressed), but if we have a
look inside, we'll see that it contains everything needed to run the framework or for
the developer to develop with it. That's because it is composed of documentation,
libraries with their dependencies (repository), and the framework itself. This means
that even when disconnected, we'll have access to all the information needed.

Let's have a look at the documentation folder:

* manual: This folder contains the documentation that can also be found on
the website

* api: This folder contains the Javadoc and Scaladoc of the Play! APIs

Apart from these, we'll find the samples folder. It is a mine of snippets for common
tasks and is split into two parts: java and scala. As you can imagine, here we have
an access to plenty of simple or advanced Play! 2 projects that have been written in
both in Java and Scala. For example, the forms sample project that introduces some
patterns to deal with forms, or the websocket-chat sample project that goes deeper
into the details of using the more advanced Play! 2 features.

Installing

At this stage, we're almost done; all we have to do is to update our PATH
environment variable to point to the extracted folder, which contains the
command-line tool: play!.

However, before that, as Play! Framework 2 is a JVM web framework, you must
check that Java 6 or a higher version is installed and available for use.

However, for "non-JVM" people, you can get the last version
%“ from http://www.oracle.com/technetwork/java/
’ javase/downloads/index.html.

[8]

www.it-ebooks.info

http://www.playframework.org/
http://www.playframework.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.it-ebooks.info/

Chapter 1

Microsoft Windows

Let's perform the following steps to update our PATH environment variable:

User variables for noootsab

1. Press the Windows key.
2. Type sys var.
. Selec it the system environment variables.
3. Select Edit th t t bl
4. In the new window, click on the Environment Variables... button.
. In the user variables panel, we can now a edit the variable wi e
5. Inth bl 1 dd/edit the PATH bl th th
path to the Play! installation. The following screenshot summarizes what we
just did:
===
")=[B v Control Panel x|
@i\,,/’"@ b tontelTensl b Systemn Properties |£|
2_& S_ystem | Computer Name | Hardware | Advanced | System Protection | Remote|
T B Edit the system environment variables “You must be logged on as an Administrator to make most of these changes.
Environment Variables |E| ance

bffects, processor echeduling, memany usage, and virtual memory

Variable Value

TEMP %USERPROFILE%:\AppData.ocal \Temp lofiles

™R %&USERPROFILE % \AppData Local Temp - settings related to your logon
[ew 1 [Eoit 1[pelate |

Mew User Variable IEI and Recovery

Variable name: PATH

startup, system failure, and debugging information

Variable valus: Ciiplay-2.0.2]
[O][Cancel]
Mew..][Edit...][Delete] oK][Cancel] Apply

[oK][Cancel]

[o]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Mac OS X

Open a terminal using the word terminal in Spotlight. Then type the
following commands:

$> cd ~
$> echo 'export PATH=$PATH:<PATH-TO-Play>' >> .bash profile

Ubuntu

Open a terminal using Ctrl + Alt + T. Then type the following commands:

$> cd ~
$> echo 'export PATH=$PATH:<PATH-TO-Play>' >> .profile

The Typesafe Stack

As you may know, Play! Framework is now part of a more general stack provided by
Typesafe, which redefines almost all the layers of the modern applications built on
top of the JVM: the Typesafe Stack 2.

Roughly, it begins with the language (Scala), continues with a concurrent layer
(Akka), and completes with a web layer (Play!).

It's quite helpful to install the stack rather than Play! 2 alone because it will install
versions that are validated to work together.

Checking if it's okay in your terminal
At this stage, we can use the command-line tool embedded with Play! Framework 2.

This tool, simply named play!, is the very beginning as it will start the whole
machinery. For that, let's open a terminal depending on our OS, as follows:

* Microsoft Windows: Press the Windows key + R. Then type cmd and
press Enter

* Mac OS X: Open Spotlight. Then type terminal and press Enter

* Ubuntu Linux: Press Ctrl + Alt + T

[10]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

We're ready to check whether our Play! environment has been correctly set up.
Let's enter the following command:

$> play
Once done, you should see the following screenshot:

noootsab@noootsab-xps-ubuntu:~S play
Getting net.java.dev.jna jna 3.2.3 ...
retrieving :: org.scala-sbt#boot-app
confs: [default]
1 artifacts copied, @ already retrieved (838kB/9ms)
Getting Scala 2.9.1 (for console)...
retrieving :: org.scala-sbt#boot-scala
confs: [default]
4 artifacts copied, 0 already retrieved (19939kB/23ms)
Getting play console_2.9.1 2.0.2 ...
retrieving :: org.scala-sbt#boot-app
confs: [default]
5 artifacts copied, 0 already retrieved (3667kB/9ms)

play! 2.0.2, http:f}www.playframmgnk.org

Use “play new to create a new Play application in the current directory,
or go to an existing application and launch the dewvelopment console using “play’.

You can also browse the complete documentation at http://www.playframework.org.

noootsab@noootsab-xps-ubuntu:~$ [

This means that Play! is correctly installed. Bravo! Don't worry about the message;
it only tells you that you weren't in a valid Play! project folder, that's all!

What's interesting at this point is that the play! tool is actually starting an SBT
console (http://www.scala-sbt.org/release/docs/index.html).

[11]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

You can also get some help from the tool by executing:
$> play help

noootsab@noootsab-xps-ubuntu:~$ play help

play! 2.8.2, http://www.playframework.org

Welcome to Play 2.0!
These commands are available:

Display licensing informations.
new [directory] Create a new Play application in the specified directory.

You can also browse the complete documentation at http://www.playframework.org.

As you may notice, it recommends that you create your first application. Here we go!

Creating your first project

Now that your machine is prepared, we can create our first project using the
play command.

As we have just seen, Play! Framework 2 comes with a handy command-line tool,
which is the easiest and fastest way to create a new project. The following screenshot
shows how to create a project with Java stubs:

noootsab@noootsab-xps-ubuntu:~/src/book$ play new play-jbook
1
| \| |/
| /11N
(|

play! 2.8.2, http://www.playframework.org

What is the application name?
play-jbook

Which template do you want to use for this new application?
1 - Create a simple Scala application
2 - Create a simple Java application

3 - Create an empty project

2

OK, application play-jbook is created.

Have fun!

[12]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

A\l

Downloading the example code

You can download the example code files for all the Packt books you
~ have purchased from your account at http: //www.packtpub. com.
If you have purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have

the files e-mailed directly to you.

As we can see from the previous screenshot of the console, in order to create a
brand new application in a directory, we just have to use the play! command-line
tool with a parameter (named new) followed by the name of the new application

(play-jbook).

The tool will ask us to specify whether our application is a Scala or Java application,
or even an empty project. In the first two cases, the structure of the application will

be created along with the source files for the chosen language. In the third case, only
the structure will be created —without sample code though.

By the way, the last option has been removed in the Play! 2.1
s release. Thus only the first two options remain now.

]

Let's have a very quick overview of the created structure (we'll go into further details

later on in this book).

At first, a new directory will be created with the name of the application, that is,
play-jbook. This will be the root of our project, so the whole structure is inside this
directory and looks like the following screenshot:

« [P Home dev

e

app

3

public

play-jbook

-

conf

-

» Q, search

el

project

This

README

[13]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Let's describe each folder briefly:

* app: This is the root of all the server-side source files, whatever type they are
(Java, Scala, server-side templates, compiled scripts, and so on). At creation,
only two subfolders will be created: controllers and views.

* conf: This folder is dedicated to all of the files meant to configure the
application itself, external services, or whatever the application could
need at runtime.

* project: As SBT is used behind the curtains, the project folder is meant to
contain all of the necessary files to configure this tool.

* public: This last folder will simply contain all of the external files that can
be accessed by the clients, such as stylesheets, images, and JavaScript source
files. A dedicated folder has been created for each type as well.

* test: This last folder will contain all all test files with some examples provided.

Keeping your habits

In the previous section, we installed the framework on our machine, and we even
created our first application. The next natural step for any developer would be to
open the project in our preferred IDE.

It is good for us that Play! has already configured everything in order to generate the
project and module files required by the most popular IDEs.

Let's see how to configure Eclipse and Intelli] IDEA, and then we'll see how to deal
with another editor: Sublime Text 2. But first of all, you will have to enter your
application in the terminal:

$> cd play-jbook

$> play

noootsab@noootsab-xps-ubuntu:~/src/book$ cd play-jbook/
noootsab@noootsab-xps-ubuntu:~/src/book/play-jbookS play

[info] Lgading global plugins from /home/noootsab/.sbt/plugins

[info] Loading project definition from fhome/noootsab/src/book/play-jbook/project

[info] Set current project to play-jbook (in build file:/home/noootsab/src/book/play-jbook/)

play! 2.0.2, http://www.playframework.org

> Type "help play" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[15[

[14]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

While executing, you might see checks for a lot of things (dependencies), but nothing
is failing and nothing has been downloaded (if you're disconnected). That's because
everything has already been packaged in the Play! 2 . zip file —especially all of the
dependency JARs are provided in Play! 2's dedicated repository.

Being in the console, you now have access to plenty of commands related to your
project (this should sound like déja vu for those who've used Maven plugins); for
example, version, name, and dependencies. Just try them, or hit the Tab key twice.

Commands have been created to execute tasks such as generating files based on the
project. Among them is the generation of the IDE settings.

Using Eclipse
Eclipse is probably the most commonly used editor by the Java community, the

advantages being: it's free, has a strong community, and provides a powerful
extension framework.

That's why this section will have two sections: one for the classical Eclipse Juno and
one for the Scala version named Scala IDE (http://scala-ide.org/).

Eclipse Juno

While in the play! console, you can ask it to generate the Eclipse project configuration
by simply invoking the eclipse:
[] § eclipse

[info] About to create Eclipse project files for your project(s).
[info] Successfully created Eclipse project files for project(s):

[info] play- jbook
lnoootsab@noootsab-xps-ubuntu:--/src/book/play-jbookS 1s -a
app .classpath conf .gitignore project .project public README .settings target test

This will generate all the specific files necessary to configure an Eclipse project.
Now we can open Eclipse and import the project into it. For that, let's perform the
following steps:

1. Go to File | Import.

[15]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

2. Then select General | Existing Projects into Workspace and click

on Next:
Select \
rP
Create new projects from an archive file or directory. H

Select animport source:

¥ = General
T Archive File
= Existing Projects into Workspace
[, File System
El Preferences
¥ = CVS
o, Projects from CVS
» = Install
* = Plug-in Development

* = Run/Debug
¥ [Team

® < Back Next > | Cancel Finish

[16]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

3. A new panel invites you to browse your filesystem in order to locate the
project folder. So select it, click on OK, and then on the Finish button:

Import Projects E_f
Select a directory to search For existing Eclipse projecks. 4
@ Select root directory: |/home/noootsab/src/boak/play-jbook | Browse...
" Select archive File:
Projects:
play-jbook (fhome/noootsab/src/book/play-jbook) | Selectall |
| DeselectAll |
| Refresh
[Copy projects into workspace
Working sets
["] Add project to working sets
@ . < Back | Next > | Cancel | Finish
The following screenshot is what you should see now:
Wi R FrOQrQ@ v G S o Q)
[£ Package Explorer 5% = g A1 Application.java &2 = g B2 Outline £
Bs ﬂ package controllers; 215 E ¥ e
¥ 1 play-jbook W ®import play.*;[] #®
T ®app public class Application extends Controller { Te A!)plication
v it controllers o Sindex() : Result
L] = public static Result index() {
> B views return ok(index.render("Your new application is ready."));
(= test
¥ mi Referenced Libraries ¥

» (28 classes_managed - /home/noootsab/
» @ play_2.9.1.jar - /home/noootsab/opt/

=] templates_2.9.1 jar - /home/noootsal

[17]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Looking at the screenshot, we should notice the following points:

* Some folders have been marked as sources and test files (app and test)

* A bunch of libraries have been mounted on the project (including the
Play! library)

* The Play! APl is recognized along with the generated template sources

(index.render)

Using Scala IDE

For projects that involve the Scala source code, even though a Play! project can contain
both Scala and Java source code, the Scala IDE is probably the best choice. The Scala
IDE is actually a customized Eclipse version, which has Scala as the main focus. To set
up a Scala project in the Scala IDE, we'll first need to create the project using the play!
console in a similar way to how the Java version was created. This is shown as follows:

noootsab@noootsab-xps-ubuntu:~/src/bookS play new play-sbook

play! 2.0.2, http://www.playframework.org

What is the application name?
play-sbook

Which template do you want to use for this new application?
1 - Create a simple Scala application
2 - Create a simple Java application
3 - Create an empty project
1

OK, application play-sbook is created.

Have fun!

[18]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The very next step is to install the Scala IDE. As it's an Eclipse plugin, all we have to
do is to start an Indigo version of Eclipse. Then go to Help | Install New Software....

In the Work with field, we'll enter the path from which the Scala IDE team is
distributing their plugin (http://scala-ide.org/download/current .html).

In order to import our project, we can just repeat the same steps that we performed
earlier in the Eclipse Juno section. At the end, we will have the following screenshot:

" =0 5 aApplication.scala £
- package controllers

3 Package Explorer

* 15 play-sbook “impert play.api. " w o
¥ Bapp

object Applicarion extends Contraller {

rE | def index = action {
* B views Ok{views.html. index(*Your new application is ready."})
ahistd ‘ } @ Index: play.apl.mvc.

play_2.9
* 2 templates_2.9.1.jar

As expected, the features brought by Eclipse for the Java version still remain in
this version. So do the features including syntax coloring for the Scala code, code
browsing, contextual documentation, and so on.

IntelliJ IDEA

IDEA is a great and well-known IDE despite the fact that it isn't open source or
totally free. At least, we can choose between the free version (Community) —which
has less features —and the other one (Ultimate).

. At the time of writing this book, a Play! 2 plugin is on its way for the
paid version, however we will try to stick with the free only IDE. But
e for those interested in this plugin, check the link at http://plugins.
jetbrains.com/plugin/index?pr=&pluginId=7080.

[19]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Let's go back to the play! console. We can now invoke a new task called idea:

noootsab@noocotsab-xps-ubuntu:~/srcfbook/play-jbookS play

[info] Loading glebal plugins from /home/ncootsab/.sbt/plugins

[info] Loading project definition from fhome/noocotsab/src/book/play-jbook/project

[info] Set current project to play-jbook (in build file:/home/noootsab/src/book/play-jbook/)

\
play! 2.0.2, http://www.playframework.org

> Type "help play" or "license" for more information.
> Type "exit" or use Ctrl+D to leave this console.

[] $ idea g

[info] Trying to create an Idea module play-jbook

[info] Excluding folder target

[info] Created fhome/noootsab/src/book/play-jbook/.1idea/IdeaProject.iml

[info] Created fhome/noootsab/src/book/play-jbook/.idea

[info] Excluding folder [home/noocotsab/src/book/play-jbook/target/scala-2.9.1/cache
[info] Excluding folder [home/noootsab/src/book/play-jbook/target/scala-2.9.1/classes
[info] Excluding folder [home/noootsab/src/book/play-jbook/target/scala-2.9.1/classes_managed
[info] Excluding folder [home/noootsab/src/book/play-jbook/target/streams

[info] Created /home/nocotsab/src/book/play-jbook/.idea_modules/play-jbook.iml

[info] Created frome/noootsab/src/book/play—jbook/.idea_modules/play—jbook—build.iml
[1%

This will create a fully configured project with the related modules for our project.

Now we can simply open the folder itself as a project in IDEA. For that, we need to
go to File | Open Project and navigate to the project folder:

Ede Edit Miew Movigete Code Anahge Befoctor Build Ryn Tools VCE Window Help

ntellij IDEA

@ Open Project

Quick Start Broject flas [ipr, .classpath, project, pom.sml, buld.gradia) or project diractorias [idea) HGQINS Qpen Plugln Manager

Create Ne @ N > P& Hida path | Plugins:

homenoootsablsrcibookiplayJbaak Coffeebrew

pt Phugin for CoffeeScnist language suppart

Scala .
Flugn for Seala language suppart

ndled Plugins:

Androld Support

Supports development of Open Mandset Alllance

-_xj -heck out frem Yerslen Contral P empiat Android applications with intell] IDEA,
You can check out an ertire project from &\ Ll Vidaos

CRE contrel System. Chick the icon o bk to sele s b Ant Support
VS Eds

ing and running ANT buld
1l IDEA

Recent Projects

Commander

e Frovides a two-pens! view for nevigating and
working with the project structurs

I . 1 play-sbook *
= play-sbos i

Copyright

Copyright Notice.
ensure fies b

II' Concel CVSs Integrati

Frovides integration wih CV5 version
control system

30M of T11M

[20]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The following screenshot shows what we should get after having confirmed our project
folder. Hopefully, we will get the same kind of features that we get with Eclipse.

Eile Edit View Navigate Code Analyge Refactor Build Run Tools WCS Window Help
| S RE|ad & - |82 | B
5 play-jbook ' 7 app 50 controllers © (o) Application

@

= || [H Project - @ = - [“ | @ Application.java *
o N .
F = E&play-jbook package controllers;
zl 3 .idea i
3 £3.idea_modules Eimport ...
L .settings

public class Application extends Controller {

#
[

target

i

= public static Result index() {
return ok({index.render (*'Your new application is ready.™));
a }

1 |

e

Caproject [play-jbook-build] (source rc
3 public

Jtarget

Catest

& .classpath

[.qgitignore

& .project

2 README

e

1
~ A free Scala plugin exists, bringing a lot of features and
enabling us to use IDEA for our Scala projects too.

Sublime Text 2

As Play! is fully integrated, we can sometimes feel an IDE to be overkill because of
two things:

* IDEs support of Play! is very young (obviously) and limited

* Play!is so easy that for most of the time we only need the documentation and
the Javadoc (or Scaladoc) of the provided API

Having said, that an IDE is helpful for code completion/navigation and maybe
sometimes in debugging sessions, but I think their need decreases slightly when
used with a simple framework like Play!.

Sublime Text 2 comes with features than an IDE. Actually, it comes with pure editing
features, such as multiple selects for batch edition, quick find, embedded console, and
macros. Moreover it takes fewer resources (thankfully, when we develop without
any power slots available). Another feature is that it has the best support of the Scala
template used by Play! 2 including syntax coloration, snippets, and more.

[21]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

To install it, we can download the installer related to our operating system from
http://www.sublimetext .com/2 and execute it. Now that Sublime Text 2 is
installed, we can also enable two packages:

* The package manager can add and search a package repository directly from
the Sublime Text 2 console. See http://wbond.net/sublime packages/
package control for more details.

* The Play! 2 support package installation is very easy and is well
explained at https://github.com/guillaumebort/play2-
sublimetext2#installation-instructions.

Now with everything set up and a Sublime Text 2 window opened, what we could
do is simply add our project folder to it using the console. So press Ctrl + Shift + P

and type Add Folder, and then browse to our project. The following screenshot is
what we should have:

FOLDERS

package comtrollers;

¥ play-jbook
v app :i.mpnrt play.*;
import play.mvc, *;
¥ controllers
import views. html. #*;

b views public class Application extends Controller {
[E= public static Result index() {
P project return okiindex.render("Your new application 1s ready."])
b public

Now, we can very often save a few lines of code by simply using the snippets
that are available for all components of a Play! 2 application (code, configuration,
templates, and so on). Let me introduce some of the most useful ones:

* pforeach: This creates a loop over sequence in a template

* Dbindform: This binds data from a form using the request content

* ok/redirect: They create the related HTTP result

* sessionget/sessionset: They retrieve or set a value to the session

Check the following page for an exhaustive list:
https://github.com/guillaumebort/play2-sublimetext2#code-snippets

[22]

www.it-ebooks.info

https://github.com/guillaumebort/play2-sublimetext2#code-snippets
https://github.com/guillaumebort/play2-sublimetext2#code-snippets
https://github.com/guillaumebort/play2-sublimetext2#code-snippets
http://www.it-ebooks.info/

Chapter 1

Simple Build Tool

In the earlier sections, we used the play! console a lot to access the tasks related to
our project. Actually, this command-line tool is a customization of Simple Build
Tool (SBT).

SBT is a powerful and easily extensible build tool like Maven or Ant. But, where the
latter rely exclusively on the external DSLs to manage their configuration, SBT uses
an internal Scala DSL for that. Of course, this isn't its only advantage.

What is interesting at this point is that SBT doesn't need any specific integration with
IDEs because it's simply Scala code. As one isn't required to know Scala in order to
create or update an SBT configuration, let's cover how to deal with its common tasks.

Looking into the project folder, we'll find a Build. scala file, which contains the
basic configuration of our build. It briefly defines play.Project: an extension of a
regular SBT project. The following screenshot shows what it contains:

Build.scala ®

import sbt._
import Keys._
import play.Project._

object ApplicationBuild extends Build {

val appMame = "play-jbogk"
val appVersion = "1.0-SMAPSHOT"
val appDependencies = Seqi
javaéﬁre;- . N S o
javaldbc,
javaEbean

val main = play.ProjectiappMame, appVersion, appDependencies].settings|

[23]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Adding a third-party dependency

Even if Play! 2 already integrates a lot of libraries that are usually sufficient, it often
happens that we need to add new dependencies to our projects to access new features
(such as a statistics library) or provided one with a different vision (such as a new
logging library).

As an example, we'll add the latest version of Guava (http://code.google.com/p/

guava-libraries/) to our project.

As Scala is powerful enough to create DSLs, SBT took the opportunity to provide a
DSL to define ta project. Let's see an example of adding a dependency using this DSL.

For that, the Build.scala file already defines a sequence (appDependencies) that
can be seen as an immutable java.util.List in Scala. This sequence is meant to
contain all the extra dependencies that we'll need to be added to our project.

As SBT can use the Maven or Ivy repositories, and is configured to check the
common public ones, what we'll do is add Guava using its Maven group1d,
artifactId, and the required version.

Let's see the syntax:

al appDependencies = Seql
javaCore,
javaldbe,
javaEbean,

"com.google . guava" % “guava" % "12.0.1"

Later on, this sequence will be used in the play.Project configuration as a parameter.

Repositories

In the previous section, we saw how to add new dependencies to our projects; but
this method will only work for the libraries that have been deployed on public
repositories. However, as developers, we'll face two other cases:

* Locally built libraries (either open source or owned) that are placed in our
local repository

* Alibrary that is not available in the common public repositories

[24]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

The way to go for such cases is to tell the play.Project configuration to look into
the other repositories that we have configured, shown as follows:

val localMavenRepo = "Local Maven Repository" at filel(Path.userHome.absolutePath+"/.m2/r sitory") .toURL.toURL.toString
al noootsabSnapshots = "Mopgtsab SMAPSHOTS" =t "https://repository-andy-petrella.forge.cloudhees.com/rel ease/"

al main = play.Project{appMame, appVersion, appDependencies).settingsl

resolvers ++= SeqgllocalMa venRepo, noootsabSnapshots)

A DSL is meant to be code-readable by expressing and using business-specific concepts
for a specific field. Let's check if it is, by reviewing the repositories' declaration.

A repository is nothing more than a folder that is accessible using a path, and
which has a structure that follows some convention. So, a declaration is composed
of three things:

* Aname (Local Maven Repository)

* A protocol or an access method (£ile is a function that takes a path and
declares it as a filesystem resource)

* A path: the location of the repository

For convenience, we store these definitions in val (which are immutable variables)
in order to use them in the play.Project declaration. This declaration is done by
adding the existing resolvers (or repositories) to our new sequence of repositories
(or resolvers) using the ++= operator.

It's alive and not empty!

In the earlier sections we saw how to create a project, import it into our development
environment, and we even learned how to attach new libraries to it.

Now it's time to look at what has been created so far. As we've chosen not to create
an empty project (which was the third option proposed by the play new command),
we already have a certain amount of things available for our perusal.

Rather than looking at the files, we are going to run the application using a play
command to compile everything and start a server that will run our application.

[25]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

To do this, enter the play! console and type run:

[infe] play - Listening for HTTP on port 92600...

As we can see, the console tells us that it has started the application and an HTTP
server is available on port 9000.

The next logical step is to open our browser and request this brand new server by
going to the URL http://localhost:9000/.

Once done, our page should look like the following screenshot:

€ 2> C fi © localhost:5000

Unable to connect to the Internet & chromium

Chromium can't display the webpage because your computer isn't connected to the Internet.

Welcome to Play 2.0 Browse
Congratulations, you've just created a new Play application. This page will help you in the few next
steps

Your are using Play 2.0.2 Start here

Why do you see this page?

The conf/routes file defines a route that tells Play to invoke the Application.index action b
whenever a browser requests the / URI using the GET method:

Home
GET

controllers.Application.index()

So Play has invoked the controllers.Application.index method

new application is ready."));

[26]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

What is being shown is the default welcome web page that Play! 2 has made
available for us.

As shown in the previous screenshot, this page already contains a lot of information,
essentially the basics (that we'll cover next) and some help about the environment
(which we've just covered).

Recall that when we installed Play!, the Play! Framework 2 installation directory
contained a documentation folder. Now that we have an application running,
we'll see that this documentation wasn't there for no reason.

If we pay more attention to the welcome page, there is a Browse menu on the right
side of the page. This menu has two items. Let's have a quick overview of them now.

The first item, Local documentation, is a reference to the manual folder of our
installation. So we can access the current Play! version's documentation directly
from our application (at development time only, not in production).

The second item is the API and is discussed in the next section.

Browsing the Java API

Before entering into any details, we must have noted that the menu has the word
Java in its name. That's because Play! has detected (we'll see how later) that we're
running a Java application.

On entering this menu, we'll see the following web page:

€ fi | O localhost:s I X e A
Al Clasees |EI Package Class Tree Deprecated Index Help
Packages PREY MEXT TRAMES B FRAMCS
nhay
piay caghe Play 2.0.2 Java API
B
play daca forma
. ation Packages
pay.do play Provides the Play framework's publicly accessible Java APL
s snean alky.cachs Provides the Cache APL
All Clnsses phay.data Provides data manipulation helpers, mainly for HTTP form handling.
Anwgn
.:;;;n Simpls play.dataformat Provides the formatting AP used by Form classes.
. play daayalidation Provides the JSR 303 validation constaints,
EBodyParser play.dh Provides the JDBC dawbase access APL
/| A
BomPARer EomEncaded play.ddb.ehean Provides Ebean ORM integration.
Dol o phay.db i Provides JPA ORM integration,
BuyParsen o1 plawilin Provides the 118 API.
BodvParser Raw
BodyParserText play.libs Provides various APls that are useful for developing web applicatons.
Bos :uilm: :; E:a:"'hl“ phaymve Provides the ComrollerActionResult AP1 for handling HTTP requests,
Huu}q|“|-_,‘-r_lul?-r-‘|_-|;xn|| play.test Contains test helpers.
‘BotvParperXm
Cache
Cache:
CachedAction
il
Come Package Class Tree Deprecated Index Help
Confguranan PREV NEXT FRAVES O FRAMES
Coastain
Consuaings Email
11 PRI ANEIROY
Consiraims Max
MaxLenath
v

[27]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

As expected, we obtained the well-known Javadoc website. We won't cover the API
here, but the good thing to note is that we'll always have direct access to it without
having to generate it, browse the Web to find it, and so on.

[

This kind of website is also available for the Scala version,
but it has a slightly different presentation.

Understanding the core pieces

In this section, we'll have a good time looking into the files that have been generated

while creating our project.

First of all, we should wonder what is responsible for taking a URL and deciding

what is to be done with it. That's done through routing.

Routing

As discussed earlier, we went to the root path of our running application

]

(http://localhost:9000/). What we got was an HTML page containing
information and links to some documentation — the welcome page.

What happened is that the browser took a URL and sent a GET request targeting
the / path of our server.

At this stage, Play! Framework 2 enters the game; it will try to find an action

somehow related to the received request using two pieces of information:

a method (GET) and a path (/).

For that, Play! uses a kind of mapping file, routes, that can be found under the conf

folder. Let's see what it looks like so far:

OPEN FILES
3
FOLDERS
¥ book_chapters
¥ chapl
¥ play-jbook
» app
¥ conf
applicati

B project

/ routes

SN

controllers. Application.index()

controllers. Assets.at(path="

public",

file)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

As we can see, the comments begin with the hash character (#), and the
relevant information is in the lines with three columns, as we can see in
the following screenshot:

GET controllers. Application.index()

Indeed, each row defines how to access server-side functionalities using HTTP,
and is composed of three columns:

* GET: This is the first column that contains the method used in the request

* /:This second column contains a relative path (to the application context,
which is void in our case)

* controllers.Application.index (): This third column is reserved for the
action to be invoked

So, when the Play! application is asked for a route, it looks in its defined mapping
to find the perfect match using the method (GET) and the path (/). In this case, it will
stop at the first line.

Having found a definition, Play! will call the action (third column): controllers.
Application.index (), which calls the index method in the Application class
that resides in the controllers package. We'll cover the action part in detail in
the next section.

Now let's have a look at the second line of the routes file:

GET fassets/¥file controllers. Assets.at(path="/public", filel

What it does is map all of the GET requests on the paths that start with /assets/. And
the next portion, *file, stands for: all next characters (*) must be kept in a resulting
string that will be named file. This variable is very important because it can be used
in the action part of the mapping to initialize data. Let's read ahead for more.

An example of matching requests would be the one that asks for the jQuery asset
(the version 1.7.1 is available by default): http://localhost:9000/assets/
javascripts/jquery-1.7.1-min.js

Looking at the mapping, it says that the £ile variable will hold the javascripts/
jquery-1.7.1.min.Js string. Let's see how this value can be used in the action.

[29]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

In the second line, the action is the at method in the controllers.Assets class; its
signature has two parameters:

e path: This is the source folder that will be the root

» file: This is the path to the wanted file, which is relative to the previously

defined root folder

To check which file will be retrieved, let's have a look at the source under public/
javascripts and verify that the jquery-1.7.1.min. js file is present.

OPEN FILES
*
FOLDERS
¥ play-jbook
b .settings
> app
B conf
> logs
b project
¥ public
I images

V¥ javascripts

- stylesheets

We'll see in the later chapters how we can define a more advanced matching system
that involves type checking, conditional data extraction, using HTTP methods other
than GET, defining HTTP query parameters, and so on.

Action

An action in Play! Framework 2 is the business logic that defines an HTTP request.
It's a simple method that has a defined route declaring it as the code to be executed
when a matching request arrives.

The action methods are declared in a container (a class in Java) that extends the
Controller type (either in Java or Scala). Such a container is itself usually called
a controller. Roughly, a controller is a bunch of methods that respond to the
HTTP requests.

Controllers are, by convention at least, defined in the controllers package under
the source root—the app folder.

[30]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

If we look back at the first route, its action was controllers.Application.
index (); it leads us to have a look at the code now.

What I'll propose is to review the next listing in both Java and Scala,
+ because they are really simple and can be an intuitive introduction
‘ to the Scala syntax. However, in the rest of the book, the code will be
mostly presented in Java and sometimes in Scala. In all cases, we can
find both versions in the code files of the book.

We'll start by looking at the Java version:

r Applicatinn_]aua * _

package comtrollers;

import play.*:
import play.mvc.*;

import wviews, html.*;
public class Application extends Controller {
public static Result index() {

return okiindex.render{"Your new application 1is ready."));

),

Now lets take a look at the Scala version. We can see that at this stage, both are
looking pretty much the same.

Application.scala ®

package controllers

import play.api._
import play.api.mvec._

object Application extends Controller {
def index = Action {

Okiviews.html . .index("Your new application 1s ready."]]

}
1

Having seen both versions, it'll be interesting to point out where they differ. But first,
let's see what's common between them.

[31]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Similarities between the Java and Scala action code

A controller is a type that extends a Controller structure provided in the
play.api.mvc package. Now it would seem obvious that the MVC pattern
is implemented by Play! 2, and we're just looking at the C part.

After this, we notice that a method, index, is defined. It means something similar in
both languages and could be phrased as follows: inform the client that the response
is OK with an HTML content rendered from something in the views package named
index and using a string parameter.

The sentence is enough representative information to figure what an action is in
Play! 2, but some keywords may require a bit more explanation:

* Response: An action is something that always returns an HTTP response,
which is represented in Play! 2 by the Result type.

* Ok: The Result type must be a valid HTTP response, so it must include a
valid HTTP status code. Hence 0k is setting it to 200.

* Rendered something: This seemingly esoteric portion of the phrase is only
referencing what is called a template file in Play! Framework 2. In other
words, this is about the V part of the MVC pattern.

* String parameter: A template can take parameters to adapt itself to
predictable situations. Here we may feel that these template parameters are
just like method parameters; perhaps because they are.

Differences between the Java and Scala action
code

Now that we've tackled the similarities, what about the differences? The very first
noticeable distinction is the following one:

* InJava, a controller is a class

* In Scala, a controller is an object
To illustrate this difference, we must know that an object in Scala can be thought
of as a classical singleton. And actually, our Java class is a bit special due to this
next distinction:

* InJava, an action is a static method

* InScala, an action is a function

[32]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Strictly, a controller in Java is nothing more than a bunch of static methods, and is a
convenient way to force a totally stateless code, which offers common functionalities.
We're approaching the notion of a singleton without static reference to an instance
(non-static get Instance method), because the singleton instance will be created and
held by the Play! 2 internals.

The Scala action definition is simply defining a new function—an object's method. If
we omit the pure syntactical differences (the return type and keyword are missing in
Scala), the last interesting difference is that Scala uses an additional structure: Action.

Such Action can be thought of as a block of code executor within an HTTP context that
could be synchronous or even asynchronous (this will be covered in Chapter 7, WWeb
Services — At Your Disposal.

Templates

So far we have learned how to map a request to some server-side code, and how to
define such server-side code as an action in a controller. In this section, we'll learn
what a view looks like in Play! Framework 2.

Actually, starting from version 2, templates (or views) are Scala based (whereas in
version 1 they were based on Groovy). That is to say, a template file is HTML mixed
with Scala code that can manipulate the server-side data.

As an introduction for those unfamiliar with what we covered earlier, we'll step into
the template we saw in the Action section: views.html. index. This file is located
under the app/views/ folder, and is named index.scala.html.

Here again we'll see that Play! is perfectly well integrated with Java or Scala,
showing that the templates are exactly the same in both versions. The following
screenshot shows what it looks like in Java:

r index.scala.html ® \

dimessage: String)

amain| "Welcome to Flay 2.0"

| {

dplay20.welcomel(message, style="Java")

[33]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Next, we can check what the Scala version has defined:

(index.scala.html * \

dlmessage: String)

dmain("Welcome to Play 2.@") {

dplay20.welcomelmessage)

OK, they are not exactly the same (at first glance), but that's where it becomes really
interesting. First of all, where is the HTML? We've just learned that a Scala template
is a mixture (Scala and HTML), while what we have here seems to be something like
Scala prefixed by @ ("magic character"). Actually, it's true, the magic character tells
the compiler that a Scala instruction is about to be defined in the very next block.

So, before talking about the difference (type = "Java"), we'll have a quick review
of the rest. The template starts with a parameter between the parentheses (...) and is
prefixed with an e character. This parameter is defining the signature of the template.
Then we have a new expression composed of two parts:

* The first part is invoking a certain function named main with one
string argument
* The second part is a curly brace block ({...}) containing another block of code
In fact, these two parts together compose the invocation of the main function, which
are Scala features:
* A function can have several blocks of parameters
* A block of parameters can be defined using either parenthesis or curly braces

The last portion to be reviewed is the content of the last parameter block. Since it
starts with an @ character, we know that it will be Scala code.

[34]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Confused? Actually, in a Scala template, a curly brace is opening a staged box in
which we can define a new output. In our case, the output is an HTML page. But the
default index page will delegate its content generation to another function named
welcome, located in a self-descriptive play2 object (provided by the framework). As
Scala code is not HTML, we must use the magic character. The content rendered by
the welcome function is what we saw while testing http://localhost:9000/ —an
HTML page with documentation. But, what the heck are these functions! Still no
HTML? Strictly speaking, a Scala template is compiled into a function, that's all.
Keeping this in mind, we'd better look at a file named main.scala.html that should
be located in the same folder as index.scala.html, since no import has been used at
all. Indeed, there is (HTML) and it is shown as follows:

@title: String)icontent: Html]
hrtml
head
title=@Etitle=/title
link ="stylesheet" ="screen" ="@routes. Assets . at("
stylesheets/main.css")"
1link ="shortcut i1con" ="image/png" ="@routes. Assets,
script ="@routes. Assets.at("javascripis/jgquery-1.7.1.min.]s"
" ="text/javascript" script
head
body
@content
body
html

As we can see, this new template contains things such as parameters, magic
characters, and so on. If we keep aside the 1ink and script tags, we have an
excerpt of HTML with an almost empty body.

Back to the parameters; we can see two blocks (similar to what we saw in the index.
scala.html template), where the first block is declaring a title and the second one
content. They are used to set the HTML title and the body content respectively.

The type of content is Html, which is the Scala structure that
can be written as HTML when invoked by the template. Thus,
@content is a parameter that represents valid HTML to be
written in the body of the document.
Both the Java and Scala versions of main.scala.html are
exactly the same.

[35]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

This leads us to remind ourselves of the difference we saw between the index
templates. The Java version is calling the welcome template with an extra parameter
(given by name — another Scala feature) telling the template that the current project is
a Java one.

This style parameter will be used by the welcome template to show specific links
to documentation, depending on the language. For instance, we can recall that
earlier we got a direct link to the Java API documentation. The Scala version is not
initializing this argument because its default value is Scala.

Practicing

Modifying the code and experimenting with the tool is probably the most fun part
for developers like us. In the next sections, we'll try to adopt what we have learned
so far to see what kind of results we can get very easily.

Let's start with the view part.

Modifying the template
We'll first try to slightly modify the index.scala.html template in order to replace
the default welcome page with a bunch of self-coded HTML.

To keep it very simple, that is, without modifying anything else other than the index
template itself, we'll try to disPlay! the given message in a header. For that, the first
thing to do is to remove the call to welcome:

(index.scala.html ® '\

dlmessage: Stringl

20" {

amaini "Welcome to Play

That was very simple. Now, to render some HTML, we'll have to fill in an Html value
in the second parameter — the curly braces block:

(index.scala.html ¥ '\,

dimessage: String)

amain("Welcome to Play 2.0") {

hl=@Emessage=/hl

[36]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

We've just written the most common HTML body ever, but also asked Play! to
echo the content of the message variable. This message variable came from the
controller with the Your new application is ready. value. If we check
http://localhost:9000 again, the following screenshot is what we should get:

T we
€« C & | © localhost:5000

Your new application is ready.

Not pretty, but at least we've made it ourselves. However, did you notice one thing?
We don't have to package the template to compile it, or whatever a "classic" Java web
application would require. What we have to do is simply save the file and check in
the browser because, in Play! 2, everything is compiled or packaged on the fly when
developing. And that's awesome!

Modifying the controller

The actual Application controller has only one action saying that our application
is ready. We'd now like to show in the view the well-known "It works!" message
coming from Apache 2.

For that, open the Application controller and simply change the value of the
argument of index:

package comtrollers:

import play.*;
import play.mvc,.¥;

import wiews.html . *;
public class Application extends Controller {
public static Result indexi) {

return okiviews.html.index.render{ "It Works."]]:

1

[37]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Now let's check it in the browser:

<« C #© i.C} iocalhost:.@ooo

It Works.

Feels nostalgic!

Again, no compilation or action is required to update the running code. Play! 2 does
the boring work for us.

There's another easy thing that can be done: changing the HTML title, which is left as
an exercise.

Modifying the content type to JSON

Just to show how easy it is to deal with the content type, we'll see how to render a
JSON response to the client.

All we have to do is to modify the index action and nothing else. Tasks such as
binding and creating a specific template are handled by Play! 2 for us.

As done earlier, we'll start with the Java version:

| public static Result index(] {
Map<5tring, 5tring> itWorks = new HashMap<5tring, S5trings=(]:
itWorks. put("message", "It Warks.")
return okiplays.libs. Json.tolson|itWorks)) ;

by

Followed by the Scala one:

def index = Actiaon {
import play.api.libs.json.
Ok{JsObjecti
Seql
“message” -= JsStringl"It Works.")
]
Iy

1

[38]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

A quick check in the browser should disPlay! the following screenshot:

—— .J'rj " -‘-'-___ g

localhost:2000

{
message: "It Works."
}

Name
Path

GET Gl applicationfjson

=] 19000/ - L
<

As we can see, the browser has rendered the response as JSON because its content
type was set by Play! with the application/json value. This content type has been
automatically inferred from the data type given to the OK response (a JSON object).
The content-type value can be checked in the browser console, as shown at the
bottom of the previous screenshot (see the Type column).

Browsing our errors

Until now, all our changes have been successfully applied. Unfortunately, we can
sometimes make errors or typos.

The good thing is that Play! is well integrated, even for errors. This would be quite
disappointing for some, but not much for those coming from the "classical LAMP
stack world" for instance.

This integration is another feature that makes Play! 2 different from the other
Java frameworks. Everything is compiled code — views, even assets (CoffeeScript,
LESS) —and every compile-time error is just disPlay!ed in the browser when
reloading the page.

This leads us to launch the application at start from the console and it'll probably be
the last time we'll interact with this console. The only tools that a Play! 2 developer
needs is an editor and a browser.

[39]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

It's quite easy to imagine the kind of errors that can be made and how. So, let's
see a few screenshots showing the result of applications presenting some of the
errors encountered.

Compilation error

cannot find symbol [symbal: variable outch] [location: class controllers. Application]

In /homenoootsab/srobook/play-jbook/app/controllers/Application.java at line 10.

7 public class Application extends Controller {

9 public static Result index) {

m return ok(views . htlm.index{outch));

1}

A Java error: forgot the double quotes

Compilation error

not found: value messag

In /home/noootsab/sro/book/play-jbook/app/vi ex.scala.html at line 4.

1 (TWmessage: String)

3 (@main("Welcome to Play 2.0") {

<h1>@[fessag<h>

A Scala error: the messag variable is not defined

[40]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

Compilation error

value idx is not a member of object controllers. Application

In /home/noootsab/srobook/play-jbook/confiroutes at line 6.

2 # This file defines all application routes (Higher priority routes first)
3 ey

3 # Home page

GET / controllers. Application.idx()

8 # Map static resources from the /public folder to the /assets URL path

9 GET /fassets/™file controllers. Assets.at{path="/public", file)

A routes error: the 1dxX action doesn't exist

Compilation error

unclosed INDENT on line 2

In /home/noootsab/srobook/play-jbook/app/assets/javascripts/jbook.coffee at line 2.

1 5>

alert(ok

A CoffeeScript error: forgot the last parenthesis

[41]

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with Play! Framework 2

Compilation error

.broder is undefined

In /home/noootsab/srobook/play-jbook/app/assets/stylesheets/jbook.less at line 2.

A LESS error: macro not defined

Summary

So far, we've already taken a big step forward in Play! Framework 2 by covering
high-level concepts, and also introduced more advanced ones in some cases.

We tackled a whole and definitive installation of the framework itself, but with
all of the other things that make a development environment: machine, IDE,
command-line tool, and so on.

We've also covered the basics that are common to all the Play! 2-based web
applications: Java and Scala controllers, actions, and even a bit of views.

We took the opportunity to see the whole machinery in action, and made some
adaptations showing us the coolest features provided by Play! 2, such as compilation
on the fly and errors shown on the browser side.

At this stage, we know that Scala is the core language of the system; moreover, it's
also the templating system's language. So in the next chapter, we'll see just enough
Scala to write great templates that are easy to create and maintain.

[42]

www.it-ebooks.info

http://www.it-ebooks.info/

Scala — Taking the First Step

Play! Framework in its second version has been implemented using the programming
language Scala. That is, the whole core is Scala based, but APIs are available in both
Java and Scala (without closing the doors on other JVM languages in the future).

If we're able to keep Java as the programming language of our web application, the
template system is still a Scala one. Hopefully, the scope of a templating system
shouldn't include business logic, as a result of which the needs are often quite simple
and recurrent.

This chapter's intent is to provide a very high-level view of what Scala is, without
going deeper into the details. Following are the topics that will be covered:

An introduction to what Scala is

Scala expressions versus Java statements

A taste of the Scala type system

How to get the best from sequences in Scala

Partial application of functions —a simple and powerful tool used
for composition

The examples will be presented both in Java and Scala to help you to
. intuitively understand the concepts presented in the Scala version.

www.it-ebooks.info

http://www.it-ebooks.info/

Scala - Taking the First Step

Introducing Scala

Scala is such a complete language that it could be defined in several ways. However,
we'll try to summarize it with some shortcuts. Scala is a complete language meant

to optimize development time and code. That's why the name Scala was chosen,
which stands as a mix of scalable and language. The name signifies that the underlying
concepts of the language are growing well with application needs or complexities.

Why Scala can be defined as optimized is mostly because of the paradigms on which it
relies and the ones it offers.

In short, Scala code is more concise and elegant, and can be less buggy simply
by smoothly combining the features from an object-oriented language and a
functional one. Very roughly, take a blender, drop in Java and Haskell, and
you'll get a taste of Scala.

In the coming sections, we'll see the common features of Scala.

Expressing your code

Scala is a language that uses expressions wherever it makes sense —which is
everywhere. Indeed, an expression is an instruction that returns something. So,
every construction is expected to return a value. That includes if-else, while,
for, and so on.

Let's see them in action and see how helpful it can be. In order to ease the readability
of the code, we'll see each example in both Java and Scala, enabling comparison on
the fly.

If-else

An if-else statement in Java is a way to alter a behavior based on a predicate,
which can be composed of repetitive if-else blocks. Scala has exactly the same
objective for if-else but will always return a value. The following screenshot
shows some examples:

[44]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

& comparison

& comparison:

class IfElse { ct IfElse {

public static String category(inmt age) { def categorylage:Int] =
String result = null;

f 18 {

= "Young

= "old';

result; jef categary2iage:Int) = if (age < 18) "Young” else "Old"

tegary(age: Int] =
1

c String finestCategory(inmt age) {
t = null:

iage = 18) {

public static String qualified(imt age, short kind] {
String g = null:
if (a 1

20 {
31

-

+ For those hungry to copy paste, this code is also provided in
the code files of the book. It's recommended that you look at the
’ sources but try them yourself first.

If we focus on the first example, we will see that the Scala version looks like the
corresponding if-else statement that Java has using » and :. However, the Java
version doesn't scale very well and you must embed them deeper and deeper,
whereas the Scala code remains easily readable. Another good feature is that no
extra temporary variable is required in the Scala version.

[45]

www.it-ebooks.info

http://www.it-ebooks.info/

Scala - Taking the First Step

Switch/Pattern matching

One of the greatest features that Scala brings is its pattern matching against
structures (even for complex/multilevel ones). Where Java's switch statement
gets stuck with integer and enum data types (String for Java 7), Scala provides
pattern matching.

Pattern matching can be seen (roughly) as a general switch statement that returns
a value. What we provide is an object and some patterns (type, possible values, and
so on) against which Scala will try to detect a match, stopping at the first match or
throwing a scala.MatchError exception if there is no match.

The following screenshot shows some examples:

PatternMatching.scala %

PatternMatching.java x

package comparisen

package comparison:

public class PatternMatching { object PatternMatching {

public static String switchOnInt(int value] { def matchOnInt(value:Int] =
i = null; val

two
three”; +
four®;
1t = “many";
return result;
' N
public static class Data { case class Datali:Int, b:Boclean) {}
int i; def mat mainChject (value:Data) =
oolean b; val ch {

Data(l, true)
Data(2, true)
Data(3, true)
Datalx, trus) if x < 100
Datal_, trus)
Datal_, falsel

public Dataldint i, boolean b) {
this.i = i
this.b = b:

¥

X g
data.i] {
case 1: result = "first’;
break;

1t = “second":

.

1t - "third';

default: result = (data.i < 100) ?"correct”: "finished";

return result;

}

The code is pretty straightforward; the Java version of the switch statement is
very reductive whereas the pattern matching of Scala can introspect a lot of things,
including structures, and strings that use regular expressions.

[46]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The important part of pattern matching in Scala is its flexibility. In the second
example (Scala version), we saw five interesting things appearing:

* Data is a case class, a class that can be matched on and that declares its
constructor inline
* The pattern matching is able to match within structures (Data (1, true))
* The fourth case is mapping the integer to a new variable named x
* The x variable can be checked further into a case guardian (x < 100)
* If a value is not of interest to us at some point, we can use _ to discard it
But apart from all this, what is very noticeable is the readability of the code. Where

Java's needed several levels (chaining if-else and/or switch statements), the Scala
one remains linear.

Generic types

What Scala adds to Java is a stronger type system, including generics that can span
several levels, which means that you can have a generic of generics, and so on.

We won't cover the Scala type system here as it would take the rest of the book to get
the gist of it, but we'll take an overview of what is often needed in templates when
declaring the arguments they can take.

The two major differences between the Java syntax and the Scala syntax are
as follows:

* Scala declares generics between square brackets ([...]) whereas Java does it
between angle ones (<...>).

* Java allows the declaration of a generic extending another type using the
extends keyword (Juice [F extends Fruit]).Scala generics can be lower
and upper bounded using operators >: and <:, so where Java generics are only
able to declare upper bounds, Scala can declare lower constraints as well.

In Scala, a type can follow the hierarchy of its generic. For example,
— alist of apples is also an instance of a list of fruits.

[47]

www.it-ebooks.info

http://www.it-ebooks.info/

Scala - Taking the First Step

Let's see some examples:

Generics.scala

Generics.java *®

package comparison

package comparison;
import java.util.List;

class Generics { object Generics {

class MonEmtpylList<G= { case class MonEmptyList[Gl(h:G, rest:ListlGl) {}
public & head;
public List<G> rest;

public NonEmtpylist(6 head, List<G> rest) {
this.head = head;
this.rest = rest:
T
T

trait Ser {
def export:ArraylBytel

interface Ser {
Byte[] exportf();

trait Writeable[El <: Ser] {
def writefel:El)

interface Writeable<El extends Ser> {
void write(EL ser):

)
trait AdaptableWriter[W =: Writeable[El], El =: Ser] {
def target:W

abstract class AdaptableWriter<W extends Writeable<El=,
public W target;

public abstract EL adapt(El e): def adapt(el:EL):EL

public woid out(EL e] { def outiel:EL)] = target writeladaptiel))
target writeladaptiel):

trait Functer[F[_]] {

interface Functionl<A,B> { _
def fmaplA, Blla:F[Al, f:A==B):F[B]

B applyiA al;

object ListFunctor extends Functor[List] {
def fmaplA,B](a:List[A], f:A==B) =
for (item =- al yield flitem)

}

I

Let's review the examples to figure out where the differences are and how Scala can
offer more.

The first example is quite easy to get. We define a list that cannot be empty. For this
purpose, we just defined a type that is instantiated using an element and a list. Of
course, the list can be composed of anything of the same type; that's why it declares a
generic G.

As we can see, the only difference (except the concision of Scala using case class)
is the syntax used for declaring the generic.

The second example defines a type that can output adapted elements. The output
w will be written with a version of the element s which w knows how to serialize —
thanks to the adapt method.

[48]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The adapt method shows how to declare several bounded generics that are allowed
using the inherited methods. Here again the syntax is the only difference; we used

<: in Scala rather than extends which we used in Java. If we pay more attention to
the type declaration, we will notice that the trait keyword appears in Scala whereas
interface and abstract class were used in the Java code. A trait can be thought
of as the conceptual union of an interface with an abstract class because they can be
mixed together (like interfaces) and can define implementation (like abstract classes),
but they cannot be instantiated (like interfaces and abstract classes).

The last example shows the limit of the Java type system. In Java, we started by
defining Functionl, which is just a "classic command" that accepts one parameter,
that has both the parameter's and the result's types as generics.

This wasn't necessary in Scala because functions are first-class citizens (a function can
be treated as an object). So what we can do out of the box is to declare a parameter as
being a function such as A=>B, which means that a function taking one parameter of
type A will result in a value of type B. So, a function in Scala can be passed to other
functions because they are "thinkable" as variables.

Then, we tried to define a high-order type called Functor. In short, it means a
functor should use generics such as Functor<F<?>> that are generics themselves.
Two things that Java doesn't like, the first being the interrogation point which is not
permitted at this depth (second generic level). The second thing is the real problem
and is the fact that Java doesn't support embedded generics at all. Even if the fmap
method is syntactically correct, we cannot use it efficiently because the F type cannot
be declared correctly.

Switching to the Scala code now, we declared Functor [F[_]] that compiles
perfectly. The _ is present in the definition of F because, at this level, we don't care
what the inner type of F is; we just need to assert that F has a generic.

_ A functor is basically something that can adapt a value in a container
without touching the container. It becomes obvious when looking at
e the Scala code that the fmap method of ListFunctor enables us to
adapt the element of a list by returning them in a list.

[49]

www.it-ebooks.info

http://www.it-ebooks.info/

Scala - Taking the First Step

Iterating over a sequence

Scala fits pretty well with list manipulations. Indeed, it facilitates their usage by
defining a lot of methods that enable a lot of behaviors, such as filtering elements or
grouping them based on an aggregation value. There are tons of such methods, and
actually, if we need something to do something with a sequence, it should already
be defined at http://www.scala-lang.org/api/current/index.html#scala.
collection.Seq.

In the coming sections, we'll cover the most useful sequences when building Scala
templates. First of all, let me just point to the fact that in Scala, when we think List
we mean Seq.

Function — foreach

The foreach method provides a way to iterate over a sequence and apply a given
function to each item. In object-oriented programming, we can think of it as a visitor
pattern on a flat list.

The result of foreach is Unit, which is the Scala version of void in Java.

The following screenshot shows how to use it:

/Fnraathjava ® \ foreach.scala ® \

package comparison: package comparison
import java.util List;

import javas.util ArraylList:
import jawa.util. Arrays;

public class Foreach {
static List<Imteger> list = Arrays.asList(l, 2, 3, 4, 5); al seq = Seqfl, 2, 3, 4, 5]

interface FunctionO<=A> {
void applylA al:

public static weid foreach({Function@<Integer> f] {
for (Integer i : list) {
f.applyli);

}

public static weid printSeql] { lef printSeq =
forei (new FunctionO<Integers>i) { sel ach {

ic woid zpply(Integer element) { element => printlnielement)

System.out.println{element); ¥

[50]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

As we can see, the Java code is less elegant and requires "boilerplate" (a Functiono
implementation), but it explains well what the Scala code does.

In Scala, we didn't declare the data type to be Int due to type
inference. Type inference stands for the mechanism that allows
= a compiler to discover what the type of a variable is.

Function — map

The map method is pretty much like the foreach method, but instead of returning
Unit, map returns a new sequence composed of the results of the function applied
to each element. So it provides a way to adapt each element, while keeping them
arranged in a sequence.

The following screenshot shows how to use it:

Map.java ® \ Map.scala E'3 \

ckzge comparison; package comparison

import java.util.
import java.util.
import java.util.Ar

object Map {
public class Map {

static List<Imteger> list = Arrays.asList(l, 2, 3, 4, 5): val seq = Seqll., 2, 3, 4,

interface Functionle=A,B> {
B apply(A al;

public static List nap(Functionl<Integer, B> | {
List result = new ArrayList():
for (Imteger i : list) {
result . add(f.applyiil);

eturn result;

]

def squaredSeq = seq.mapimath.pow(2, _

Here again, the Java version is more verbose, but reading the code would help you to
understand the Scala version better than if it was explained in words

. Inthe Scala version, we can see another use of the underscore ()

% character. Here it represents a placeholder for the current function's
s argument. It's the more concise way to define inline functions. In
this case, it is the same as having (x:Int)=>math.pow (2, x).

[51]

www.it-ebooks.info

http://www.it-ebooks.info/

Scala - Taking the First Step

Function - filter

The name of this function is self-descriptive; it allows us to iterate over a sequence
by applying a given predicate on each item, and returns a sequence of all the
valid elements.

Let's jump into the code directly:

Filter.java Filter.scala ®

package comparison; package comparisen

import java.util List;
import java util, ArraylList;
import java.util.Arrays:
object Filter {
public class Filter {

static List<Integer> list = Arrays.asList(l, 2, 3, 4, 5); val seq = Seqll, 2, 3, 4, 5)

interface Functionl<A,B> {
B apply(A al;

public static List<Integer> filter(Functionl<Integer, Boolean> p) {
List<Integer> result = new ArraylList<Integer=();
for (Imteger i : list) {
if (p.apply(i]) result.addii];

return result:

T
public static List<Integer> esven(] { def even = seq.filter(_%2==0)
return filterinew Functionl<Integer, Boolean>(] {
public Boolean apply(Integer i) { T
return i % 2 == 0;
3
T

So short and so helpful, isn't it?

The code is pretty straightforward and self-descriptive. We ask the seq sequence to
be filtered using a predicate function that tests if the integer is even. So the result will
be a new sequence of all the even elements in seq.

Function — exists

This exists method is like contains in Java, but it uses a comparison function
rather than using equals.

[52]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

The following screenshot shows how to make use of it:

Exists.java ® \ Exists.scala ® \

sckage comparison; package comparison

import java.util List:
import java.util . ArraylList:

import java.util.Arrays;
public class Exists { bject Exists {
static List<Integer> list = Arrays.aslistil, 2, 3, 4, 5):
al seq = Seqgil, 2, 3, 4, 5]
interface Functionl<A,B> {
B apply(A al:
public static Boolean exists(Functionl<Integer, Boolean> pl {
for | Imteger i : list)
(p.applylil) return true;
}
}
igagerThans() { lef biggerThan5 = seq exists (_

v Functionl<Integer, Booleans(| {
oolean zpply(Integer il { T
A

It's that simple!

Looking closer at the example, you'll see that the Scala version doesn't

use dots to separate the method from the caller; that's the point-less
%= mnotation. This feature could also be called the distraction-zero notation,

which is a welcome feature when creating a DSL.

Function - find

One of the common tasks with sequences is to retrieve an item that must match a
predicate. Scala has the £ind method for that, and it has a specific behavior when
none of the elements match.

This method will iterate over the sequence by checking the predicate and return an
Option[El] value in all cases. An Option is a special type in Scala that is meant to
represent a value or non-value; it is explained as follows:

object None extends Option[Nothing]: This extension of Option
represents a non-value. It'll be returned if no element has been found.

simply

case class Some[El] (v:El) extends Option[El]: This extension of

Option represents a wrapper over a value (v).

[53]

www.it-ebooks.info

http://www.it-ebooks.info/

Scala - Taking the First Step

This type enforces the definition of a variable to be potentially undefined. We can

also think of None as a type-safe null in Java, and it can be used as an alternative to
exceptions. Indeed, if we have a function that parses string as Int, it could return
an Option of type Int rather than an Int type, so the user will be able to react to bad
strings rather than catching the exception.

It's time to see it in action:

Find.java Find.scala x

package comparison; package comparison

import java.util.List:;
import java.util.ArraylList;
import java.util.Arrays:

public class Find { object Find {

static List<Integer> list = Arrays.aslList(l, 2, 3, 4, 5):
val seq = Seq{l, 2, 3, 4, 5|

interface Functienl<A,B> {
B applyiA a):

public static abstract class Option=A= {
public Boolean isDefined() { return this instanceof Some; }

ic class None<A= extends Option=A= {}

1c Mone<Integer> NoneInmt = new None<Inmtegers>(|
C ic class Some<A= extends Option=A= {

public A v;

public Some(A v) { this.v = v: }

7
public static Option<Imteger> find(Functionl<Integer, Boolean> p) {
for (Imteger 1 : list) {
if (p.applyli)) return new Some<Inmtegers>ii):

}
return NoneInt;

pu\;l-i-,)t.a£1-: Option<Integer> fetch3(| { -ief-fetélﬁ = seq find (_ == 3]
return findinew Functionl<Integer, Boolean>() {

public Boolean apply(Integer 1) { T
return i == 3;

1

As the option structure is not available in Java, we had to define it (in some way) in
order to mimic as much as possible of the Scala code.

;s Java 8 has introduced a new type called java.util.Optional
that does much the same. But it would have been cumbersome to
' implement our example with Java 8.

[54]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Function — apply

The last method we'll see in this section is the apply method. The Scala compiler
has a special behavior for the apply method because it's not mandatory to call

it explicitly.

Indeed, when a type declares an apply method, we'll be able to call its instances as if
they were functions. See the following screenshot for an example of this:

case class Fendereritemplate:File, arguments:Any¥] {

def render(]):5tring =

def applylwriter:Writer] = writer.writelrenderi].getBytes("UTF-8"]]
}
val myRenderer = Renderer(new Filel I, 1, "gk", true]
myRendererinew OutputStreamWriter(System.out)]
myRenderer(new FileWriteri 1]

What is shown in the previous screenshot is an example of how we can create

a template that has been rendered by giving a file and a list of arguments. It

has a render method that renders the file using the given parameters, which is
called within the apply method. As the goal of Renderer is to create a usable
representation of a template, it seems obvious that we should be able to call this task
easily and in a readable manner. This is what is achieved in the two last statements.

arguments: Any* is the Scala way to declare a varargs
e Object. .. argument, Any being Java's Object.

Going back to the sequences, we can now imagine what the apply method
of a sequence would be, given that it takes an Int type—it's the index of the
requested element.

Apply.java Apply.scala *®
package comparison; package comparison
import java.util.List;
import java. util.Arrays:
public class Apply { object Apply {
static List<Integer> list = Arrays.asListil, 2, 3, 4, 5): val seq = Segll, 2, 3, 4, 5)
Integer third = list.get(2): val third = seqiz)
T ¥
[55]

www.it-ebooks.info

http://www.it-ebooks.info/

Scala - Taking the First Step

Other interesting functions

Sequences (iterables) define plenty of methods that are very useful and, truly, cover
every use case that we'll encounter while dealing with them.

Following are some other functions that you might want to have a look at some time:

partition: Based on a predicate, this function splits the sequence in two
collect: This function mixes map and filter at once

groupBy: It takes a function that must produce the key values of a resulting
map that packages all elements having the same key value

sliding: This packages the elements using a window and slides it over the
whole sequence (it is graceful in dealing with items that need to be shown in
a predefined number of columns, for example, a gallery)

length: This returns the number of items in the sequence

Partial application

In simple terms, a function in Scala can declare several blocks of parameters. Thus,
a partial application of a function in Scala either leaves at least one block without
values or one parameter without a block. In this section, we'll only talk about the
first case.

Actually, filling up the last parameter block will create another function that takes
a number of block parameters and decreases them by one. Repeating this until no
blocks remain will result in the whole function being applied.

As this Scala feature will extensively be used when creating a layout of our future
templates, it's important to grasp this concept. Hopefully, it isn't hard; seriously!

[56]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

Let's see an example of such a partially applied function:

package comparison

object Currying {

val messages = Map_|

"en" -= Map_|
"welcame" -= "Hellaol",
"hye" -= "See Yal"

N5

"frpt-= Map.|
"welcaome" -= "Bonjour!",
"bye" -= "#A Plus!"

!

‘those following f
val showInEn
val showInFr

B e e e O e L . e e
CTI0OR ar 3 1al L IJpL1Ied note The vals
.

SHDQhessagE{;ét}ing;[ﬂen“i"
showMessagel _:String)("fr")

e

=1l

Hel in the BEFI

showInEn("welcome")

val showwWelcomeInEn
call it will output Salut! in the REPL
val showWelcomeInFr = showInFr{"welcome"]

' Currying-scala x _

import scala.collection.immutable.{Map == Map ; _} because of the comparison.Map

def showMessage(msg:String)(lang:String) = printlnimessages(lanag)imsg)])

First of all, we defined a map of i18n messages where a map is conceptually the same

as java.util.Map, thatis, a key-value pair type.

Then we defined a function (showMessage) that is able to retrieve an

internationalized message based on its key. We can see that the function name is

followed by two blocks of one parameter each.

The next two vals are partially applied versions of this showMessage function, and
they are actually vals but their value are functions. These versions are the common

functions that are used to show messages either in English or in French.

The last two vals are also functions, but they are fully completed versions of

showMessage, that is, with a complete set of parameters. Calling them will simply

print the relevant messages without computing them any more.

[57]

www.it-ebooks.info

http://www.it-ebooks.info/

Scala - Taking the First Step

Summary

In this chapter, we have reviewed parts of the Scala language that we'll need
in further sections when creating our web application's views using the Scala
templating system.

We first introduced the language itself. Then we moved to the definition of an
expression, studying some expressions in detail. We also looked at some ways with
which Scala allows us to manipulate sequences. Well actually, we've seen enough

to tackle most cases encountered when creating views for sequences (for instance,
showing a list of users grouped by the first letter of their last name). We've seen how
we can transform the elements into a new sequence, filter them, check their existence,
and so on.

Such sequences are used most of the time with generics (especially when domain
modeling is used with a top-level interface), but it's not a big deal for us as we can
now declare and use generics in Scala.

Finally, we are able to create functions that result in functions, which in turn result in
other functions, and so on. This will help us when creating templates and especially
for creating layouts with them, which will be discussed in the next chapter.

[58]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

Play! Framework 2 is a web framework, and so is meant to create web applications.
A web application is an application that presents an interactive interface through a
web browser. But the browser might not be the only client of such an application,
because data created while using it could be used by other applications (that's web
integration). And so, very often, the server side of a web application is also exposing
data through web services. Which leads us to the need, as developers, to not only
generate HTML pages, but also TXT pages, XML pages, and so on.

Play! 2 provides a powerful way to create all such external representations of server-
side data: a type-safe templating system based on Scala.

In this chapter, we'll cover the following topics:

* Understanding exactly what a template is

* Looking at where and how they are declared

* Creating a reusable HTML template

* Combining dynamic data with templates

* What Play! 2's compiler will generate

* How to combine several templates into a single one (layout)

* How to skin templates

Shape it, compose it, re-use it
This first section will concentrate on what a template is, its structure, and

its features. We'll see how it can help us to easily create views in a composable
and sharable fashion.

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

Creating our first template

A template in Play! Framework 2 is basically a file with a specific extension that
commonly resides under the views package. So, a template filename always has the
following pattern:

<template-name>.scala.<content-type>
It is composed of the following;:
* A template name, which must be formatted like a variable (for example,

listContainer). This will be used to reference it in the controllers.

* A first extension part, . scala, which is always the same. As stated earlier,
templates are Scala-based.

* A second extension part, which is the real type of the data. Out of the box
types are .html, .xml, and .txt, but Play! 2 is extensible enough to enable us
to add new ones.

OPEN FILES] .
listContainer.scala.htrml
#

FOLDERS
¥ play-jbook

P .settings
¥ app
P comparison
b controllers
VIEWS
index.scala. html
listContainer.scala.h

main.scala.html

B rnnf

Play! 2 will detect these files based on the pattern and will compile them into
functions that will be available for the controllers or other templates.

While the structure was rigid in Play! 1, this new version enables us to
create our files wherever we want. But views is a good convention—to
' have everything in one place. However, files still have to match the pattern.

So let's create a new template named listContainer that renders HTML content.

[60]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Structuring it

A template is expected to respect a certain structure that starts with the parameters
list. As a template will be compiled into a function, it can accept parameters just as
any other function in Scala.

When declaring a Scala function, we need to first give it a name — the filename is the
function name —and only then can we declare its parameters. So, logically, this is the
first line of all templates.

These parameters are declared in exactly the same way as for Scala functions — that
is, between parentheses and paired by the name and type separated with a colon—as
shown in the following screenshot:

/IistCu:untainer.scaIa.htmI - "\,

d(level :Int, items:Seq[5t -':'“J]j

The only thing that differs is that we need to use the magic character (@), because
it's Scala code in a template. To illustrate this, we'll add two parameters to our
listContainer template.

It's pretty easy. We've just defined our template as a function that takes the following
two parameters:

* level:ltis of type Int

* items: A sequence containing strings

At this stage, the Play! 2 compiler will make available to us a function with the
following signature:

def function(level:Int, items:Seq[String]) :Html

Play! 2 has worked out that the file is an HTML template, from the second extension
(.html) of the template name — that is, the Html result type of the function.

Adding content

Now that we have created a template with its parameters, we will define a function
that produces HTML, but an empty one!

The content of a template is inserted into the file directly after the parameters'
declaration.

[61]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

In our case, we're about to create an HTML structure using HTML notation (the same
happens for JSON, XML, and so on). So let's create some content in there:

listContainer.scala.html

@llevel :Int, items:Seg[Stringl)

hl=Here we go!=/hl

Now, the 1istContainer function will produce a small HTML instance of this
simple excerpt.

Wait! It's not really useful, because it does nothing with our parameters. That's
where Chapter 2, Scala - Taking the First Step, comes to our rescue. We'll use Scala
to create some relevant content based on the server-side data.

' listContainer.scala.html * ‘ index.scala.html ® -

@(level:Int, items:Seql[String])

h@level =Here we go!=/h@level
ul id="list@level" ="margin-left: @{5*levellx"
@items.map { item ==

li=@item=/11
1

ul

As you can see, we adapted the template to use the 1evel parameter —which is of the
type Int —to change the flow for both the title and the list of rendered items. We used
it to change the header level (h1, h2, and so on) and to adapt the style attribute.

Then we used the map function on seq to produce a new sequence of HTML blocks,
each of them being the representation of an item.

[62]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Composing templates

In order to see our 1istContainer template in action, we could define an action
and a route that asks to render it; but what we'll do instead is call this template in
our index.scala.html template. That's how layout is achieved in Play! 2. See the
following screenshot:

listContainer.scala.html % Y index.scala.html *® Application.java *® \

(message: String) packzsge conmtrollers;

maini "W ome to Play 2.@8"] { import play. *;
hl-@message</hl import play. mwc, *;

ilistContainer(?, ?) import wiews.html . #;
i

public class Application extends Controller {

public static Result index(] {
return ok(index.render("It Works!"]]
T

T

The previous screenshot shows how to call a template from within another one,
which is basically calling a function from within another function.

The screenshot also shows the action that must render the

index page; it has been covered in Chapter 1, Getting Started
with Play! Framework 2.

So the index.scala.html template/function is first declaring a single parameter
message, followed by its body/definition that starts by using the main function with
two parameter blocks.

* The first parameter is for the title

* The second parameter is actually a block of code that is enclosed within
curly braces

Actually, it's a Scala feature. A parameter might be within
parentheses or within curly braces. The latter enables the
K

parameter to be a block of code.

In this case, we defined an HTML block that refers another template,
listContainer, just as any other function. That's how templates are
combined in Play! 2.

So far so good? Well, not exactly. Looking closely at the 1istContainer call in the
index.scala.html template, we'll see that it still needs some parameters.

Let's see how to fill them.

[63]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

Passing data structures

Having composed our templates (index.scala.html using listContainer), we
need to do two more things:

* Adapt the parameter list of index.scala.html using curried parameters
(two sets of one parameter in this case)

* Adapt the index action in the Application controller to match the new needs

First we will modify the template to allow access to data usable by 1istContainer:

listContainer.scala.htrml % ! index.scala.htrl ®

@l message: String)(level:Int, list:Seqgl[String])

@main("Welcome to Play 2.0") {
hl=@Emessage=/hl
@listContainerilevel, list)

For that, we added a new parameter block that adds the required data.

A new parameter block is not mandatory; it's just a good way to have a clear
distinction of what is needed by what. Then the data is simply re-used within
the 1istContainer call.

If we try to hit the index.scala.html page right now, we'll see the same error
screen as the following screenshot:

(= e
& C f | © localhost:2000

Compilatton error

render(java.lang.String,int,scala.collection. Seg<java.lang.5tring=) in views.html.index cannot be applied to (java.lang.String)

In /homenoootsab/srobook/play-jbook/app/controllers/Application.java at line 11.

f public class Application extends Controller {

10 public static Result index() {

n return ok(indexfrender("It Works!"));

[64]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

This happens when we use our Java project and we notice that the template
compilation failed because parameters are missing in the template call from
within the Application.java#index action.

Currying is not allowed in Java; but our template function is.
s However, it is not a big deal. Indeed, some magic happens in order

to adapt our Scala function by taking two blocks of parameters into
AN . .
aJava render method, which takes all parameters collapsed in a

single parameter block.

So, let's go to this action to pass it an integer value and a collection of strings:

"Iisiﬂoniaimr.scala.html *® ! index.scala.html *® ! Application.java *® _

import play.¥;
import play.mvc, *®;

import views. html . *;
public class Application extends Controller {

public static Result index() {
imt level = 1;
java.util.List<String> list = java.util.Arrays.asList("me", "and you?", "tea", “for two?");
return oklindex.render("It Works!", lewel, list)):

Now let's check again in the browser:

Compilation error

render(java.lang. String,int,scala. collection. Seq<java.lang. String*) in views.html.index cannot be applied to (java.lang.String,int,java.util. List<java.lang. String>)

In /homemoootsab/sre/book/play-jhbook/app/controllers/Application.java at line 16.

13 public static Result index() {

14 int level = 1;

15 javautil List<String> list = java.util Arrays asList("me", "and you?", "tea”, "for two?");
Tetum uk(indexlrender("l[‘Works!", level, list));

17}

18

19 }

Ouch! Interestingly, in the Scala template we used a Scala collection to represent
our data; but going back to the controller (Java in this case), we're unable to use the
classic java.util.List collection to create our server-side data.

[65]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

In order to solve this problem, there are some conversion utilities available in
Scala, which can be found in scala.collection.JavaConversions. This class
provides a static method that will help us in converting our Java List to a Scala Seq:
asScalaBuffer.

I'Ibmmmer.scala.h'lml ® ! index.scala.htrl ® ynpplication_ja\ra ® _

import play.*;
import play.mvc.*;

import views. html.¥;
import static scala.collection. JavaConversions. EESEEIEENFTER:
public class Application extends Controller {
public static Result index() {
imt level = 1;

java.util.List<String> list = java.util.Arrays.asList|"me", "and you?", "tea", "for two?");

return ok{index.render("It Works!", level, [@sScalaBuffer)list]]):
}

Normally, everything should be OK now and we should get the following screenshot:

€« C N |O_localhost:9000

It Works!

Here we go!

me
and you?
tea

for two?

L I

Actually, since this was only an example we could have used
% java.util.List directly in the template. But as the Play!
— 2 project could involve Java or Scala code, it's better to use a

dedicated language for the templates.

[66]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Playing around

Now that we have a good understanding of how a template can help in creating
views, we'll try to adapt our templates to make them interesting. The idea is to fix

all the concepts seen so far in your mind.

Laying out

In the first section, we created a 1istContainer template that was able to render
a sequence of strings into a ul HTML element. In this section, we'll adapt it a bit
to enable a header and a footer around the list. For that, we'll use currying and the
internal HTML representation of Play! 2.

So, all we have to do is redefine the 1istContainer function to take two new
parameter blocks, header and footer, which are HTML excerpts.

listContainer.scala.html = index.scala.html ®

dl header:Html) (level :Int, items:Seg[String]){footer:Html)

div ="margin-left: @{5*levell}x"
dheader
ul 1d="list@level"

ditems. map { item ==
li=@item=/11i
X

ul
dfooter
div

As expected, the type of these new parameters is Html, which is the internal
representation of HTML blocks in Play! 2. Then, we use them right before
and right after the block disPlay'ing the list, and we remove the previous
h1 element (which was saying Here we go!).

We also encapsulated the whole thing into a dedicated

div element, which is holding the style attribute to
' shift everything at once.

[67]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

OK, now we must change the calling instruction in the index.scala.html template
by adding the header and footer HTML, shown as follows:

listContainer.scala.html % index.scala.html ®

@(message: String)(level:Int, list:Seq[String])

@main("Welcome to the Packt Publishing's Flay 2.0 Demo") {
hl=@message=/hl
@listContainer{
h@level=Level @level=/h@level
Flevel, list) {
div=-- end of Level@level=/div
X

That simple! We just created the "classic" header-body-footer layout, where the
former and the latter are simply passed as parameters. Having a look at their type,
Html, and how we passed them, we can see that we just wrote an HTML block
(including the Scala one) at will.

The following screenshot shows the result in the browser:

< C | @ localhost:2000

It Works!
Level 1

* me
« and you?
* (ea

« formwo?

--end of Levell

[68]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Using domain models

Up until now, we played with integers and character strings; that was really cool, but
not so representative of what we will face in the real world. Most of the time we're
dealing with domain model instances that may represent complex object trees and
myriad properties.

In this section, we will create an Item class that will be used in place of string in
the list of things to be disPlay!ed. The following screenshot shows this (in both Scala
and Java):

Item.java

ass Item(user:String, timestamp:localTime, message:String) {}

LocalTime timestamp, String message) {

s timestamp:
this.message = message;

As you can see from the previous screenshot, we created the class in the models
package; this is because we've just introduced the last component of our MVC
pattern (the M part). As a Controller is defined in the controllers package and
a View in the views package, a Model commonly resides in the models package.

The same remark applies for the models package as did for the

views one. It's no longer mandatory, but it's a rule of thumb
= to place models under the models package. For instance, the

models package is imported by default in templates.

To use it, we must perform the following steps:
1. Change the 1ist parameter in the 1istContainer and index templates to
use the new Item class rather than string.
2. Adapt the index action to create items and not strings.
What would have to be done is to modify the rendering of the list to use the data

of 1tem. However, we'll take this opportunity to create a dedicated template:
listItem.scala.html.

[69]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

This template is meant to render an item within a list (ul), which could be achieved
in the following way:

@ item:Item)

style=
1i.1tem span {
width: 100px; display:inline-block;

3

style=

1i class="item"==span=@item. user=/span= span=[@item. timestamp] =/span= = @item message=/li=

_ Weadded a quick and dirty styling instruction, but we'll see in the
coming sections that LESS could be used instead. Furthermore, this
L—" tag being here means that it will be added for every single item,

which is not desirable obviously.

Now that we've seen a lot of templates, 1istItem.scala.html should look
familiar. The only thing that is very new is the @import statement, which
should be self-explanatory.

Let's use it in the 1istContainer template:

' listContainer.scala.html

@l header:Html) ({level :Int, items:Seq[Item])(footer: Html]
@import models.Item

div style="margin-left: @{S*level}x"=
@header
ul 1d="list@level"=

@items.map { item ==
@listItemiitem)
i)

ul=
@footer
div=

[70]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

We simply adapted the list by renaming it i tems, changing its type from Seq [String]
to Seq[Item], and finally calling the 1istItem template in the map body.

> Reflecting the same changes in the index template will be
% left as an exercise. However, one could just check the source
T code provided in the code files of the book.

The last thing that is needed is to modify the action to create an Item sequence. The
following screenshot shows the Scala version (the Java one is left as an exercise):

listContainer.scala. html * Y index.scala.htmi * y Application.scala *® v(Application.java *x Y listlten.scala.html » \

je controllers

import play.api._
1] ort |Jla'v‘a|:1‘m¢c.7

Item
da.time.LocalTime

made
org.

ds Controller {

Having done all of the adaptation, we can return to our browser and check what's
going on.

It Works!
Level 1
« Turgidson [07:53:55.019] > Uh, we're... Still trying to figure out the meaning of the las phrase, sir.
» Muffley [07:53:55.019] > There's nothing to figure out, General Turgidson. This man is obviously a psychotic
» Turgidson [07:53:55.019] > We-he-ell, I'd like to hold off judgment on a thing like that, sir, until all the facts are in.
--end of Levell

Cool, huh? But we could do better, couldn't we?

» The quote shown in the previous screenshot has been extracted
%j%“ from probably one of the greatest movies ever — Dr. Strangelove or:
g How I Learned to Stop Worrying and Love the Bomb.

[71]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

Re-using our code

In this section, we'll enjoy ourselves a bit by playing with what we have seen and
learned so far, in order to make our application look more interesting.

The following screenshot shows what the goal is:

It Works!
-- Chat Thu Aug 16 17:29:31 CEST 2012 --
-- Chat #1 --
* me [17:29:31.742] = Hello!
+ other [17:29:31.742] = Hi!
+ me [17:29:31.742] > Fine?
+ other [17:29:31.742] > Yes

-- Chat #2 --
s me [17:29:31.742] = It's hot today!
s other [17:29:31.742] = Indeed...

-- Chat Fri Aug 17 17:29:31 CEST 2012 --

-- Chat #1 --
s me [17:29:31.742] = Hello!
s me [17:29:31.742] > Youhou?
& NO-0NE [17:29:31.742] = ...

-- Chat #2 --
e me [17:29:31.742] > Ding ding!
* me [17:29:31.742] > Poueceeeeeeeeet?
No0-0ne [17:29:31.742] = ...

-- Chat #3 --
« me [17:29:31.742] > No one?
* NO-0NE [17:29:31.742] > Yes?

At this stage, we're able to show a list of items with a header and a footer, which
together would define a new structure: chat. A chat is a discussion between people
and can occur several times in a single day. So, the following screenshot shows the
definition of this class:

[72]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

|' Chat.java *® Y listltern.scala.html % Y Application.java

¢

package models;

import org.joda.time.DateTime;
import java.util.List;

public class Chat {
public DateTime dzte;

public imt occurrence;
public List<Item> itenms;

this.date = date;
this.occurrence = occurrence;
this.items = itenms;

public Chat(DateTime date, imt occurrence, List<Item> items) {

Quite simple and obvious. But now we're going to try to use it as
P gomg y

the top-level type of

our application; thus the index page should render chat instances rather than Item.

For that, we'll have to change the signature of the index template to only take a list
of Chat instances (note that we'll use java.util.List for convenience in the Java
controller). Then we'll have to adapt the 1istContainer template to take a single
Chat instance; so we will have totally removed the 1evel parameter from the scope.

' Chat.java *® Y listitem.scala.html % y Application.java

import org.joda.time.DateTime;
import org.joda.time.LocalTime;
import org.joda.time.Days:

public class Application extends Controller {
public static Result indexi) {
DateTime today = DateTime now!|:
DateTime yesterday = today.minusiDays.ONE):

Chat chatll = new Chat{yesterday, 1, aslList|

new Itemi"me", Local Time.now(), "Hellol"],
new Iteml "other", LocalTime . now(], "Hi!"],
new Iteml"me", Local Time. now(), "Fine?"],
new Iteml"other", LocalTime now(], "Yes"]

Chat chatl2 = new Chat{yesterday, 2, asList|
new Itemi"me", LocalTime.now(), "It's hot today!")
new Iteml "other", LocalTime . now(], "Indeed..."]

1)

Chat chat2l = new Chat({today, 1, asListi

new Item("me", LocalTime. now(], "Hellal"],
new Item|"me", LocalTime.nowl), "Youhou?"|,
new Ttem("no-one", LocalTime.now(), "... "]
1113
Chat chat2z = new Chatitoday, 2, asListi
new Item("me", LocalTime. now()., "Ding ding!"]).
new Itemi“me", LocalTime. now(). "Pouseeeeeeeeet?"|
new Iteml "no-one”, LocalTime now(], "..."]
113
Chat chat23 = new Chatitoday, 3, asListi
new Iteml"me", Local Time.now(), "Mo one?"],
new Iteml "no-one”, LocalTime now(], "Yes?"]
113
return ok(index.render("It Works!", asListi
chat23,
chatll,
chat2l,
chatl2,
chat22
1
1
i)
T

d

[73]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

The previous screenshot shows a very simple code example that creates a bunch of
Chat instances with underlying items.

For such use cases, that is, initializing with test data, Play! has a special feature that
enables a much higher level of control over the application. This feature is called a
global object. Such an object is a singleton that will be created by Play! at startup and
will provide plenty of hooks such as onstart and onBadrRequest. This object in Scala
or class in Java should be created keeping in mind the following points:

* It must extend the GlobalSettings type (provide default implementations
for all hooks)

* It must either be declared at the root of the application with the name Global,
or its fully qualified path must be configured in the application.conf file
using the key application.global

With this object created, one could override onstart in such a way that data can be
created for testing purposes.

. Application-wide hooks take an Application instance as parameter,
% which allows us to execute code whether we are in the Dev or Prod
e mode. Because mode is a field of the Application controller, it can
have one of the following values: Dev, Prod, or Test.

The problem now is that the chat instances are completely shuffled, and if we leave the
listContainer template as is, we'll get something similar to the following screenshot:

It Works!
-- Chat #3 --
. me [17:44:46.822] > No one?
* no-one [17:44:46.822] > Yes?
-- Chat #1 --
. me [17:44:46.822] > Hello!
« other [17:44:46.822] > Hi!
. me [17:44:46.822] > Fine?
« other [17:44:46.822] > Yes
-- Chat #1 --
. me [17:44:46.822] > Hello!
. me [17:44:46.822] > Youhou?
* no-one [17:44:46.822] > ...
-- Chat #2 -
. me [17:44:46.822] > It's hot today!
« other [17:44:46.822] > Indeed.
-- Chat #2 -

. me [17:44:46.822] > Ding ding!

. me [17:44:46.822] > Poueeeeeeeeeet?

« no-one [17:44:46.822] > .

[74]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Which is ugly!

To solve this, we'll use Scala at full power by using the following methods: sortBy
and groupBy on Seq, and toSeq on Map. The following screenshot shows our new
"empowered" template:

gimessage: String)lchats:List[Chat]]

gimport models.Item
gimport java.util.List

amain("Welcome the Packt Publishing's Play 2.0 Demo"] {
hl=@message=/hl
dchats
.sortByl(_.occurrence]
.groupBy(_.date.toDate)
. inSeq
.sortByl(_. 1]
.map { dateAndChats ==
div ="date"
h2=-- Chat @dateAndChats. 1 --</h2

adateAndChats._2.map { chat ==
dlistContainer{
h3=-- Chat #@chat.occurrence --=/h3
Yichat) {

hr/
X

div

As we can see from the previous screenshot, we're able to use the
methods we saw in Chapter 2, Scala - Taking the First Step, on java.
util.List. That's because of some magic that implicitly converts
List instances to Seq on the fly. But we won't cover this in the book.

Calling this template, we get anot found: dataAndChats error. This is because
of the formatting used to align the methods chaining after @chats. This is a sad

limitation of the template compiler, it needs Scala stuff to be single lined if not

wrapped in curly braces.

In short, the following steps explain what has been done on the chats list:

1.
2.

We sorted all instances based on their occurrence.

We grouped instances that have a similar date, resulting in a Map instance
where the date is the key and the list of chats is the value.

We converted the resulting map's items into a sequence of tuples
(key-value pairs).

[75]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

4. We sorted this sequence by the first element of the tuples (the date).
5. Finally, we mapped all tuple instances to an HTML excerpt.

A Tuple2 class in Scala has two properties, 1 and 2; these can
&= be seen as key and value when they represent a key-value pair.

Checking back in the browser, we'll get the result disPlayled at the start of this section.

Funny, huh? Now, try to make exactly the same kind of sorting and grouping using
Java; (just joking).

Skinning with LESS pain

This small section's intent is to show you how well Play! 2 is integrated with the Web
stack, especially the HTML styling.

Everyone who has worked with CSS knows that certain things are driving us
crazy, such as the no-variable feature, the no-hierarchy feature, the vendor-specific
boilerplates, duplication of code, and so on.

These problems are addressed by LESS, which is a richer way of defining styling
rules through the use of the following:

* Mixins: These are like a predefined set of properties that can be embedded
in other rules. A mixin can also take arguments to change the value of
these properties.

* Variables, which are probably the worst lack in pure CSS.

* Functions: These are JavaScript code and can be used to change how a rule or
a value is defined. For example, using a dedicated function one could lighten
a color or darken it, and much more.

* Hierarchical definitions (avoiding "repeating yourself" in selectors): Rules
can be embedded to mimic the hierarchy of elements rather than replicating
the selectors.

Play! 2 will compile (by default) all LESS files that are in app/assets/stylesheets
into CSS files that will be placed in the public/stylesheets folder. So these CSS
tiles will be available just as any other styling files: using their URL; but Play! will
also handle them using HTML features in such a way that they won't be fetched
several times for nothing (for instance using the ETag). So, we're going to skin our
templates a bit by creating a new file, app/assets/stylesheets/book. less.

[76]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Before we forget, we must add the related style import into our main template:

@ititle: String)icontent: Html)
DOCTYPE himl
html =
head=
title=@title=/title=
link rel="stylesheet" med "screen" href="@routes. Assets.at("stylesheets/main. css")"=
[<link- rel="stylesheet" media="screen" -href="@routes Assets . at("stylesheets/book.css"] "5
link rel="shortcut iceon" type="image/png" href="@routes.Assets.at("ima es’favicon.gﬂg"l"-
script src="@routes Assets.atl"javascripts/iguery-1.7.1.min.js")" type="text/lavascript"=</script=
head=
body=
@content
body=
html=

Next, I've added sample content for our application. It uses some of the features
brought by LESS. They are very easy to use, and so are left to your interpretation.

@import "book-utils.less";

body {
width: 960px;
margin: auto;

background-color: desaturate(lighten(@bgColor, 25%), 65%];

border: Zpx @bgColor solid;
Jborder-radius;

padding: Opx 15px:

|
h1 {
color: saturatel@baseColor, 25%);

.date {
hz {
border: 1lpx black dotted:
.border-radius(10@px] ;
color: @baseColor;

.chat {
.box-shadow(-2px, -3px, 2px, fade(spin(@bgColor, 15%), 30%);
h3 {
border: lpx black solid;
.border-radius;
color: @baseColaor

1i.item span {
width: 100px;
display:inline-block:

&:first-child {
color: lighten(@baseColor, 15%);
T

time {
color: saturatel @baseColor, 85%

a]

[77]

www.it-ebooks.info

http://www.it-ebooks.info/

Templating Easily with Scala

The first line imports another LESS file defined in our project too.
s Everything can be found in the code files of the book.

Summary

Reaching this checkpoint, we've seen enough about the templates to build some
amazing ones ourselves, with related server-side interactions —at least for static ones;
dynamic ones will come soon.

We've learned what exactly a template is in the Play! Framework 2 (a Scala one) —
an HTML, XML, or TXT file that embeds Scala code. Then we saw how to add
parameters to make type-checked functions out of them, allowing us to combine
them into full-fledged layouts. Furthermore, we took the opportunity to apply what
had been learned in the previous chapter, and see its worth.

Now that we can create a UI, we have to interact with server-side businesses and
third-party layers such as a database. That's exactly the goal of the next chapter.

[78]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the
Server Side

In the previous chapter, we were introduced to the templating system that enables us
to create amazing views or to render data coming from the server.

In this chapter, we'll focus on this last point: server data. Until now, it was
hardcoded in our actions and given directly to the views.

Of course, it's never that simple; data is regularly coming from a database, or at least
has been provided (at some time) by a user. So, we'll see how Play! 2 deals with these
use cases. The following is an overview of what will be achieved in this chapter:

* Create an HTML form to represent data

* Send data to the server

* Retrieve data from the server

* Add constraints to the data

* Persist data in a relational database

¢ Provide and render back the data to the client

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

Feeding some data

In this section, we'll cover the basis of dealing with data, both on the client side
within HTML views and the server side by manipulating a domain model.

Actually, Play! 2 provides helpers and commodities for these two sides and eases
their integration, even if a wire transfer occurs in between them.

We'll start by allowing the user of our application to provide some data, and the
most common way to do that is by using HTML forms. Hence Play! 2 brings a
shared concept for forms on the client and server sides.

Forming a (server) form

The Play! 2 data API is based on the notion of a form to declare a structure. For that,
the framework contains a fully-fledged API that resides under the package play.
api.libs.data, wherein we'll find the Form class. In order to learn how to use it,
we'll see how to create a user of our application.

We'll start with the simplest User structure ever:

/ User.java *® Da
b

.
,.
i
n,
"
i
i
1
m
-

Ok, for now our User class is just a wrapper around a name; of course, it will be
enhanced further to demonstrate the power of Play! 2's data APL

Now that the server knows what a user can be, we'll tell it how it
. can be represented from the outside (that is, strings) by creating a
% server-side form. The Java version requires less work than the Scala
L one; that's because of the Scala "youth". In Java, people have already
tackled the trickiness of reflection, but with Scala, it's still evolving. For
your information, Play! 2's reflection library is the Spring data binder.

[80]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

For that, we'll create a new controller, Data, where we'll define a new form for our
User class, which will be marked as static to allow us to use it in future actions:

' User.java ® y Data.java ® -

import play.libs.*;

import models.*;

import play.data.validation.*;

import static play.data.validation. Constraints. *:
import javax.validation.*;

import views.html.*;

import java.util.#®;

public class Data extends Controller {

static Form<User> userForm = formiUser.class):

The Java data binding is so easy when the structure to be represented is a
data container. Thanks to reflection, via the Spring data binder, what Play! 2
has defined for us is a way to bind a user to any map of data that matches the
User structure —that is a dictionary.

Let's try to interact with the outside world using such a simple map. For that,
we'll create an action, a template, and the related routing.

The template will look like the code shown in the following screenshot:

data.scala. htrml ®

@luser:User)]

@maini "Data tests") {
hl=@user.name=/hl

1

The routing is simply the code shown in the following screenshot:

GET fdata controllers. Datd. test(]

[81]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

And finally, the controller is shown as follows:

public class Data extends Controller {
static Formelser> userForm = formiUser.class):

public static Result test(] {

Hap<5tring, String> toBind = new HashMap<String, Strings();
toBind. puti "name", "Siegfried"];
User user = userForm.binditoBind] .geti];

return ok({data.renderiuser]];

+ For those that are reading the paperback version of this book, I'd
recommend you have a look at the source code provided in the code
"~ files of the book and try them, rather than decipher it on paper.

Before executing the code, let's review it a bit. The template and the routing are fairly
simple, so let's stick with the action only.

The test action is doing the following tasks:

* It creates a container of data representing the structure: a simple dictionary.

* Itadds one piece of data that is keyed by name and a dummy value. The key
is well chosen in order to match the user's name field name.

* It uses the bind method on the form using the data container. This will feed
the data to the underlying binder.

e It calls get on the resulting (filled) form to retrieve the structure expected.
* It calls our template with the result to show what has been bound.

The following screenshot shows the result when we go to the URL
http://localhost:9000/data on our browser:

Siegfried

Splendid! Our User instance has been created and it contains the correct data.
We're now able to create a user using a dictionary and ready to use the wire to
receive our data!

[82]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Ingesting data

In the coming sections, we'll focus on how we can send data to the servers that is
complex and is constrained in its shape and type. The first step being how to deal

with a request for content.

Extracting the da

ta

Earlier we saw how to create a structure from the dictionary, which was created by
us. However, in a web environment, such a dictionary will be coming from the client,

for instance, the browser.

In this section, we'll see that Play! 2 comes with everything that we might need to
map our external view back and forth to our server-side structure (until now User).

To illustrate the simplest case, we'll create an HTML form that will mimic

the dictionary:

ﬁlﬁs&m’ava x g: Data.java x y data.scala.html X ‘
@fuser:Option[User])
dmaini "Data tests") {
daif(user,isDefined] {
hl=@user,get . name=/hl
} else {
hl-Feed some data=/hl
form ="GET" i ="fdata/post"
input =*texi” ="name"
input 1 ="button" name="send ="Feed
form
}
i)

This form was created directly from the previous template by changing its signature
from a simple User to an Option [User]. This enables us to re-use the same template

for two different cases:

An Option is a

To show the view when the optional user is present

To present the form otherwise

Scala structure that defines an absent or present

% data in a type-safe way. A given value will be of the type Some,

whereas an abs

ent one will be of the type None.

[83]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

Reviewing the form, we can note a new URL (/data/post) that will handle our
new request for a new action (post), which we'll cover in a moment. The following
screenshot shows its route definition:

GET fdata controllers.Data.test(]
GET /data/post controllers.Data.posti)

So we have said that we want all URLs of the specified form to be routed to the post
action in the pata controller.

Let's see what this new action does:

public class Data extends Controller {
static Form<Users userForm = form{User.class);
public static Result test(] {
return okidata.renderiScala. Option((iUser] null)))]:
1
public static Result post(] {
User user = userForm.bindFromRequesti].geti]:

return ok(data.renderiScala. Option{user])];

First of all, we see that we have used a new method on the form, bindFromRequest,
which is meant to retrieve the data needed by the form somewhere in the request.

Why somewhere? Actually, this method is able to look up data of several types and in
several places. Depending on the content type, the HTTP method, and the encoding,
this binding will look for data in:

* The query string: This is our case, because we have sent a GET request.

* The body: For POST/PUT methods. There are several options here because the
content could be a map of URL parameters, a multipart, or JSON encoded.

[84]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

In fact, the binding method will look everywhere to gather all the data and then it
will retain the ones declared in the form definition to find which it's expecting.

After having found everything, it returns a Form instance filled with these values on
which we may call get in order to retrieve the related domain object. But, we could
also call the data method that would give us back the dictionary of values.

Having reached this point, we can now provide our brand new user to the data
template rendered within an ok (status 200) response.

. See how we used Play!'s specific class, Scala, which contains a lot
% of methods to interact from Java to Scala. Here we used it to create

" Scala.Option by giving it the options user (results in Some (user))
or null (correctly cast to have None of the underlying type User).

Trying this in the browser, we'll get the following result:

— e .

€ e | O locathost ! wH € € | O localhost] +Duk Tin X

Feed some data The Duke

That was really cool! From browser to domain object without any manual actions
needed. I know what you are thinking, the use case is so simple that it doesn't reflect
reality. So let's now test it a bit more by adding something new — validation of a
complex structure.

Enhancing your data

In the real world, data is more complex and is required to satisfy some constraints
for applications to accept it. In this section, we'll see how to deal with complexity and
the next section will cover the constraints.

As Play! 2 is made for realistic applications, it already contains everything we might
need to handle complexity.

[85]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

For now, a user is nothing more than a name; but a real user (as more data is
attached), has an age, a gender, an address, some friends, and so on.
In brief, he/she can be represented as follows:

User.java ® Address.java ®
package models; package models;
import java.util.List: public class Address {
import play.libs.F.Option; public String fullStreet;
public String county:
public class User { public String country;
public String name; i

public Inmteger age:

public Boolean female;

public Address address = new Address(|):
public List<User> friends;

public Option<Users spouse;

This should look like stuff we have already seen (possibly thousands of times). A
significant change worth noting, however, is the public accessors on the class fields.
This is due to the fact that Play! will generate them for us at compile time, so that
they will be available for any other reflection-based tool.

The interesting things are that we have added one external indirection (address) and
two internal ones (friends and spouse). What would be really great is if we could
bind everything from a single request! Ok, let's do some cool things now.

The really good thing at this stage, in Java, is that we don't have to touch anything in
the server-side form definition, thankfully, due to the binder. Having said that, we
can infer that the needed work will be on the client side only.

Earlier when creating our HTML form, we did it by hand mimicking the User
structure and hardcoded the action's URL. That's not what we'd expect from a
framework like Play! 2, and it's true because the framework brings a lot of helpers
to generate client-side code based on server-side information. So, rather than
adapting the existing HTML form to match the new User structure, we'll refactor
it using Play! 2's features.

[86]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

* V Address.java * V Data.java ® }‘(data.scala.html x \-

Lue.isDefined] {

: orm.get .name (@userForm.get . age)=/hl
h2=Lives at @userForm.get.address.fullStreet</h2
} else {
hl-Feed some data<=/hl
ghelper.forml{action = routes.D:

dghelper.inputText(userFaorm

input ="submit" name="send"

There are a lot of new concepts in this form. Conveniently, the interesting lines have
been indexed using a comment and their review is as follows:

1.

Rather than using a user (even in an option to avoid NPE) directly, we're
now using the server-side form itself.

In the previous version, we were checking that the option wasn't None. Over
here we can do the same on the value of the form —its value is actually None
until some data is used to fill it in, bound with valid data in an action.

In the case where the form is holding a value, we've access to the get method
of it in order to get the user back.

Also, this form is where we see the first usage of the helper package
provided by Play! 2. This one is defining plenty of utility functions (templates
in fact) that are able to generate HTML code. In this case, we used the form
template that generates an HTML form tag. Passing it a route, it will be able
to set the correct action and method attributes according to what is defined in
the routes file.

Our second usage of this package is the usage of a template that generates an
HTML input tag of type text. To generate it, it requires a form's field, which
is retrieved by using the given form instance, using it as a function with the
field name (userForm("name")).

The routes file is compiled in objects under the routes object. Actually,
all controllers will be available in this object, but reversed so that we're
able to recover the mapping routes for a given pair controller-action. So in
L the template that we just discussed, it provides the form helper with the
URL and the HTTP method defined for the post action.

The @* *@ notation is simply comments in the Scala template's syntax.

[87]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

So far, so good; we have changed the signature of the template that required us to
change our action a bit. But, we'll also take the opportunity to change the HTTP
method of the post action to something more relevant for a modification of the
server-side state: POST.

* Not only GET and POST HTTP methods are allowed, but also all
% HTTP-standardized methods such as PUT, DELETE, OPTIONS,
and so on.

_

1E public class Data extends Controller 1
18 static FormeUsers userForm = form{User.class);
20 public static Result show() {

21 return ok({data.render{userForm));

24 public static Result post() {
25 return okidata.render{userForm. bindFromRequesti])];

28 i
_

1 # Routes

2 # This file defines all application routes (Higher priocrity routes first)

TR —

Home page
GET / cantrollers. Application.index()

9 # Data tests
10 GET J/data controllers.Data.showl)

11 POST fdata/post controllers.Data.post(])

4 # Map static resources from the fpublic folder to the fassets URL path
15 GET fassets/*¥file controllers. Assets.atlpath="/public", file)

[88]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We can be satisfied now by how simple our actions are. The show method (renamed
from test) is just asking the template to be rendered using the userForm instance,
and the post one does the same but asks for a new instance of the form bound to the
request. That's all! We can now start editing and showing our user as the output of
our form. Let's try this:

Feed some data Ace ()

Lives at

Feed

So, we retrieved what we had done earlier, but User is now far more complex than
a simple name. This means it is now time to update our form with all of the relevant
information about the new fields.

@helper.form{action = routes.Data posti)] {
@helper.inputText {userFormi "name"] |

ghelper. input{userForm| "age"]) { (id. name, walue, a@rgsl ==
input =="number" e="@E@name" ="@1d" @EtoHimlArgsiargs)

dhelper.checkbox{userForm(" female"))

fieldset
legend=Address=/1legend

@helper.inputTextiuserForm("address. fullStreet”), |

@helper.inputText|
userForm("address. county"),
' label -> "County"

@helper.select {userFormi "address.country"), Seql
"AR" -> "Arda",
"BE" -= "Belgium",
"§l " -= "Smurfs Land")

]

fieldset

Wow! A lot in a few minutes, isn't it?

In this new version of the template, we have defined almost a whole user; what
hasn't been done yet are the links to other users. How did we achieve that? This
was done thanks to the default helpers available in Play! 2.

[89]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

Some save points have been set in the template, which means that it's time to review
them one by one:

1. The first thing we did is create the HTML input field for the user's age, which
is an integer (Ok, could be of a short type). For this kind of data, HTML5
has defined a new type of input, the number one. There is no inputNumber
template defined in Play! 2 (at the time of writing), however, it is very trivial
to create our own using the generic input template.

More than just using the template, we've had to create the HTML block
by ourselves, with the help of the given data. At this stage, you might be
wondering about the worth of this, but we'll cover that when validation occurs.

2. Then we wanted to let the user define their gender. For that, a Boolean is
used. So, we used the checkbox template to generate a checkbox.

3. The easy part has been done. Now, there is the link to the address
information, which is, itself, structured. We wrapped this part of the
form in a dedicated fieldset tag.

4. Inthis fieldset tag, we defined the input text for fullStreet and county.
It was trivial, but what is very cool is how we retrieved a form field using its
path to the information from the user. Indeed, we can navigate the object's
graph in the forms simply by using the dot notation. The only thing to ensure
in this case is that every intermediate object is at least initialized to dummies
(otherwise an NPE will be thrown).

As the labels are ugly by default (they equal the name of the field), we used
an argument of the input to set a custom label to something more readable.

The label is declared in the parameters list using a symbol that starts
with an underscore character. So a symbol is, briefly, a name (without
value), and its syntax is similar to val but starts with a quote.

5. For the last bit of data, country, we wanted to present a list to the user.
HTML has a specific form element for this case: select. This element has a
name and contains a list of options defined by a value and a display.

Of course, Play! 2 enables us to define such HTML blocks really easily (which is a pain
otherwise), all by passing a list of Tuple2 values where the first component is the value
that will be sent with the form and the second component is the display one.

[90]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

So now, what happens if we enter some data in the resulting form?

Feed some data Bilbo Baggins (111) | Feed some data (0]
name Lives at Bag End name Lives at
Bilbo Baggins
age age
11 2 :
female female
—Address————————— — Address
address. fullStreet address fullStreet
Bag End
County ‘ County
Shire
address.country address.country
Arda v — v
Feed Feed

The first try was a real success, but what about the second one (on the right). A guy
with no name, no age, and no home — the first piece of data is strange, the second
one is frightening me, and the last one makes me sad. Let's try to take things one step
further by adding validation.

Validating our data

What we're able to do now is create complex forms (both on the client and server
sides) to represent our data, however, most of the time, they have to satisfy some
constraints — business ones, for instance.

Java has a Java Specification Request (JSR) defined for exactly this situation,
JSR 303, wherein how constraints can be added to Java models — using
annotations —is specified.

So, Play! 2 takes advantages of this JSR and enables us to use it to validate our data,
but it also defines custom validators that are missing in the specification.

What we'll find very convenient is that the validation information is available on the
browser side as well, thanks to the form HTML helpers we saw earlier.

[91]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

Considering our User and Address models, the following screenshot shows how we
could ask Play! 2 to validate them:

' Data.java ® ‘ data.scala.htrnl ® } User.java ® Address.java ® _

package models; package models;
import java.util.List; import play.data.*;
import play.libs.F.Option; import play.data.validation.Constraints.#;
import play.data.*; public class Address {
import play.data.validation.Constraints.*; @Required
import javax.validation.Valid; @Pattern|
value="[A-Z]{1}\\w*, [0-9]+",
public class User { message="A street starts with..
@Required |
public String name; public String fullStreet;
@Required @Required
@Email public String county;
public String email:;
@Required
@Required @MaxLengthi 2]
@Min(0] public String country:
@Max(150) }
public Imteger age;
@Required
public Boolean female;
@valid
@Required

public Address address = new Address(];

@valid
public List<User> friends;

@valid
public Option<User> spouse;

Actually, we'll find everything we might need in the package play.api.validation,
especially the static methods available in the constraints class that defines the most
common annotations. But, sometimes we might need ones from the JSR; for instance,
in the User model we imported valid from the javax.validation package. Also we
can see that while defining the constraints, a new field, email, has appeared.

[92]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Browsing the code, we'll find almost all of the validation instructions that have been
set to be trivial. Let's review them one by one:

1.

We start with the required name field, which states that the field won't be
valid if a null value is given.

Then moving to the new field, email, we can see that it is also required but
that it is also constrained to be an Email annotation, which is simply asking
for a validation against the classic e-mail pattern.

For numbers, we very often need to assume that the value will always be
contained within a predefined range. This constraint is rather simple to
define using the Min and Max validation rules.

The next annotation that we now meet is the valid one. This one is related
to Required but is for embedded structures. That is, if an external object has
to be set and is also constrained by validation rules, we can ask the system
to check its validity as part of the upper-level object validation process (it's a
kind of a cascade on validation request).

Moving to Address, we use the Pattern validation, which supersedes the
Email validation rule, letting us define our own pattern. That's exactly what
has been done for the street, which is supposed to be fully qualified by
containing the street and the number.

Nevertheless, it is not the only interesting thing there; we can see for the first
time the message property in an annotation. This message is what will be
returned if this particular validation fails.

Now we can jump to the last one, validating the country information. We
should remember that our form was showing an HTML select element
with options having their values set to two chars (IDs). So these IDs will
now be validated by the MaxLength constraint.

[93]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

This last rule might not be enough though, because someone could send a custom
HTTP request with a fake country ID. To validate that the value is one of the
predefined options, we can define our own logic in a dedicated method —validate:

public class Address {

public enum Country {
ARDA("Arda", "AR"],
BELGIUM("Belgium", "BE"],
SMURFS_LAND("Smurfs Land", "SL");

public String name;

public Strinmg 1d

private Country(String name, String id) {
this.name = name;
this. id = id;

}

public static Coumtry getByIdiString id) {
for (Coumtry c: values(J] 1
if (c.id.equals(id)) {

return c;
i
throw new Illegal ArgumentExceptioni "Country not found == Bad id {"+id+"}");
i
i
@Required
@Pattern|

value="[A-Z]{1}\\w*, [0@-9]+",
message="A street starts with an upper case, and ends with a number after a comma"

|
public String fullStreet;

@Required
public String county;

@Required
@MaxLength(2|
public String country;

public String validatel) {
try {
Country.getById(country];
return null;
} catch | Illegal ArgumentException) {
return "Bad country : " +country;
i

[94]

www.it-ebooks.info

http://www.it-ebooks.info/

As shown in the previous screenshot, the validate method is checking our custom

rule and will return nul1 if it succeeds; an error message otherwise.

It seems that we've protected a lot of things on the server side now, but how are they

presented (if they are) on the other side—in the HTML form?

Feed some data
name

Required

age

ar

Minimum value: 0
Required
Maximum value: 150

gender

Required

— Address

address.fullStreet

County

address.country

— v

Feed some data
name

Required

age

b

Minimum value: 0
Required
Maximum value: 150

gender

Required

— Address

address.fullStreet

County

address.country

— v

Gosh! Without changing anything on the client side, the validation instructions have
appeared on each field. Recalling what we wondered earlier, "What was the value of
such helpers?" So, here we are; and it's not the end.

You're right; the address' constraints aren't shown in the
%“ dedicated fieldset, nevertheless, this has been fixed in the 2.1
g version of Play!.

On the right side (previous screenshot) is presented a slightly skinned version of our
HTML form in order to highlight where to look.

[95]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

Ok, but how is it supposed to work when incorrect data is sent to the server?

he form has 7 errors

Feed some data

name

—

This field is required

Required
age
Must be greater or equal to 0
Minimum value: 0
Required
Maximum value: 150
gender
This field is required
Required
—Address

address. fullStreet

Irua de la biestreye

A street starts with an upper case. and ends with a number afler a comma

County

—

This field is required

address.country
— T

This field is required

Fead

Impressive, isn't it? Without changing a single line of code in our templates, every
error just shows up. The only thing that has been done is to add a CSS rule to display
the error messages in red.

[96]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Oh yeah! The red div element is also a little addition. This addition takes the number
of errors that are available in the form object directly, which is shown as follows:

dgif(userForm.hasError

div ="h

ori;red; colar;white;"=The farm has @userForm.errors.size errars=/div

Moreover, it's intuitive!

Persisting them

At this stage, we have learned the functionalities offered by Play! 2 to represent our
data on both sides (server and client). However, that data was all transient. Indeed,
the HTML form was submitting data to an action that rendered them directly.

In a web application, most data isn't transient, but persistent — data is the value of
modern applications (moreover, social-oriented ones).

If we remember the structure of our User model, it includes two references to other
users: one optional (spouse) and one multiple (£riends). Such data must come from
somewhere other than the User form, because the actual form is only defined for a
single user.

This implies a third piece in our architecture, a database, in order to retrieve
previously created data—User. Once we have that, we'll adapt the User form
to present to the client's user a way to set this extra information.

Activating a database

Most of the time, within web applications, the chosen database is a relational one. This
use case is so common that Play! 2 integrates perfectly with a dev/test in-memory
relational database: H2. Of course, in production, we'll be able to target any database
server that we would like to use.

In order to ask Play! 2 to start such an in-memory database server, all we have
to do is enable it in the configuration file. In fact, the settings are already in our
application.conf file but commented out.

[97]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

So, in this file, locate the following lines and uncomment the db.default.driver
and db.driver.url properties:

These lines are defining an in-memory HSQLDB (as the URL is telling us), targeting
a database named play. The other settings, credentials, won't be useful for now (but
they will be in production).

The very last setting is for helping us expose our data source as a JNDI name, which,
as said in the comment, is very useful when using JPA (or other libraries requiring
such JNDI stuff).

Something to note in this configuration is the form of the properties; they all start
with db.default, which means that we're defining the default JDBC data source.
Obviously, if we need several data sources, we can simply duplicate the block and
use a different qualifier than default.

Ok, we enable the database, which will now start when we launch the server in
dev mode (play run), but then, what can we do with it? That's the purpose of
the next section.

Accessing the database

Having enabled a database server, loaded the related driver, and so on, we can use
the tools provided in the play.db package. This package contains everything we
might need to interact with the database, that is, all JDBC-related facilities. We will
now discuss how we might deal with JDBC, HSQL, Play! 2, and a browser.

[98]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We start with a class that is able to interact with the underlying database —creating a
table, inserting data, and getting it out.

V SampleDb.java ® Y JDBC.java ® Y routes *® Yithcsmlﬂ.lﬂlﬂ *®

package dhb. jdbc;

import play.db. *;
import java.sql. *;

import java.util. List:
import java.util. ArraylList;

public class SampleDb {
public static Connection connect() {

return DB.getConnectiaoni];

public static wedd disconnect(Conmection connection] throws Exception {
connectien.closel);

public static weid createTestTablel) throws Exceptien {
Connection c = connect|];

try {
c.createStatement () . executeUpdate("create table test{value wvarchari(s@))"];
} finally {

disconnect(c);
}

public static wedd insertTestDatalString v) throws Exception {
Connection ¢ = connecti];
try {

c.createStatement () .ekecu‘teUpda‘te{ "insert into test walues ('"+v+"']");
} finally {

disconnect(c);
i}
i

public static List<Strings> getTestDatal) throws Exception {
Connection ¢ = connecti];
try {
ResultSet resultsSet c.createStatement () . executeQuery("select * from test")
List<String> values = new ArrayList<String>():
while (resultSet.next()) {
values.addl resultSet .getStringll)):

return values;
} finally {
disconnect(c);

This class contains methods that are able to connect to a database using a DB
singleton provided by Play! 2. This singleton is performing all of the necessary
tasks for us when accessing a database, that is, it retrieves the connection string,
the credentials (if any), and so on to create the connection.

[99]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

Doing so, we are connected to the default data source (DB.getDatasource is also
available for other data sources).

A good exercise is to think about how this code would have
L been written in Scala, with the help of currying and sequences.

The implementations are purely JDBC ones, nothing very interesting in there, but
we'll see in the next section how we could do the same with an ORM such as Ebean.

Now that we can deal with our database, the following screenshot shows a controller
that will enable this code to be used in the frontend:

'SampleDh.java *® YJDE!C.ja\ra ® ! routes

package comtrollers:

import play.*;

import play.mvc. *;

import static play.mvc. Results, *;
import play.libs.*;

import java.wutil.List:

import db.jdbc. SampleDb:
public class JDBC extends Controller {

public static Result pagel] {
return ok({views.html.jdbc.render(]];
T

public static Result tablel) {
try {
SampleDb. createTestTablel) ;
return oki"table created"];
T catch [(Exception =] {
return internalServerErrorie. getMessagel)] ;
I

iy

public static Result test(String value] {

try {
SampleDb . insertTestDatalvalue) ;
List<S5tring> vs = SampleDb.getTestDatall;
return okiJdsen.toJson(vs)];

T catch [(Exception =] {
return internalServerErrorie.getMessagel)]

I

[100]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

It's trivial, but it does the job. This controller allows the outside world to create a
table (showcase only), to insert data, and return them all... in JSON. However, we
should pay attention to the test action that involves a string parameter: value.

The very first action is simply asking a dedicated template to be rendered:

@l

@maini"jdbe test") {
=gcript=
JavaScript that makes
and toggles the LIs one a
$(function(| {m=
script=
=gtyle=
ol 11 ¢
display:nane;
list-style:none;
1
ol li:first-child {
display:block:
1

style=

<ol id="jdbcresult"=
<li==a href="@routes.]DBC.table"=Create table=/a==/1li=
<li==a href="@routes.JDBC.testi{"Don''t insert me"]"=first val=</a==/li=
<li==a href="@routes.]JDBC.test("What did I said?")"=second val=/a==/li=
<li==a href="@routes,JDBC test("Grrr")"=third val=/a==/1i=
=li=End=/14i=
ol=

=ul 1d="result"
ul =

This template is meant to be self-sufficient and dynamic; that's why JavaScript code
was necessary to call actions dynamically, retrieving either a string or a JSON to be
shown in a dedicated result list (at the bottom).

But what is interesting here is what the HTML links are referring. Indeed, routes,
and the last three are using variables to create the correct URLs — of course, test
takes a parameter!

[101]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

Now we still have to create those routing instructions, and the following screenshot
shows them:

TEMP for tests

GET fiest/page controllers. JOBC. page
GET ;‘W controllers. JOBC.table
GET ftest/ value controllers, JDBC.test(value:String)

Ok, great routes, but again, let's focus on the test one to assert that it does exactly
what we expect. It defines that a GET request on /test /message will call the test
action with message as argument.

See the following screenshot for this sample JDBC interaction in action:

Create table Third value

« Don't insert me
e What did I say?

b
&« (& ﬂ% [localhost:9000/test/page

First value

* table created
End

’ 7

: * Don't insert me
€ = C & [localhost:9000/kest /page & * What did I say?

* Gnr

Second value

* Don't insert me

We can create full JDBC applications, but what if we would like to use an ORM in
order to create many more boilerplates for us? This is what we're about to look at in
the next section, that is, using Ebean with Play! 2.

[102]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Object-relational mapping

Play! 2 supports out of the box an object-relational mapping (ORM), Ebean, which
will fill the gap between our domain model and the relational database. Like any
other ORM, it aims to facilitate the usage of a model when dealing with relational
databases by implementing common helpers or operations such as finders based on
the model's properties or CRUD methods. But also, such an ORM is helpful when
propagating a transaction or to lazy load data transparently. These tools have gained
quite a lot of attention lately, but it's still a matter of taste whether to like or hate them.

I want to cool down Hibernate lovers that were about to see how
Play! 2 integrates with Ebean. Definitively, the intent of Play! 2 is
not to restrict us to their officially supported third-party libraries. So
you'll be able to use Hibernate (or whatever ORM) you're used to
coding with. Furthermore, Play! 2 has good support for JPA, which
L will ease your environment setup.

As this is a book about Play! 2, it won't cover these options.

However, the Play! 2 documentation will help with this, and
you might want to explore these options further by going to
http://localhost:9000/@documentation/JavaJPA.

How this integration begins is simply by enabling Ebean in the configuration file:

Fairly simple; this line (that was commented) is enabling us to define our domain
classes under the models package to be Ebean entities.

And, as mentioned in the comment, this single line will create an Ebean server and
all related configurations, providing us with all we need to work with this ORM; in
this case, it will target our default data source.

So far, so good; we can now make the necessary modifications to our model for
Ebean, recognizing them correctly. Like many other ORMs, this will pollute your
source code with meta instructions —annotations, hopefully. Ebean uses the
standardized ones from javax.persistence.

Thus, in order to have Ebean discovering instances of User to be persisted, we must
add two things: the first is noting that the class has to be considered an entity, and
the second is setting an 14 field.

[103]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

In Chapter 1, Getting Started with Play! Framework 2, we saw how
* to add a dependency. There we chose the Guava one; as we won't
% use it, I'd recommend removing it from the Build. scala file.
’ Otherwise, it may lead to errors, due to conflicts with Ebean's
dependencies.

import javax.persistence.*;

public class User {
@ARequired
public Strinmg name;

@ARequired

@AEmail

axd

public Strinmg email;

As mentioned earlier, new annotations were added and they came from the standard
persistence package.

Now, what if we hit refresh on our web page?

Database 'default' needs evolution!

An SQL script will be run on your database - [ESSREIEE S8t

This SQL script must be run:

I #— Rev:1.Ups - c19%010

2 create table user |

3 email varchar(255) not null,
4 name varchar(255).

5 age integer,

0 gender boolean,

constraint pk_user primary key (email)}

10 create sequence User_seq:

[104]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Huh! Merlin was around?

Yes, some magic happened, and it's the combination of the Ebean DDL generation
and the Play!'s evolution plugin. In short—but it would be worth it for advanced
usage to check the documentation for both — the former is generating the relational
database DDL for us, based on the added instructions, and the latter is detecting that
changes are needed. How does that work? Let's break it down:

1. Ebean detects the DDL changes needed.

2. Play! asks it to generate it.
3. [Ebean generates it.
4

Play! intercepts the DDL and stores it in an evolutions folder:
/conf/evolutions/default/1.sql

5. The evolution plugin detects that an evolution file has been applied (based
on the file number which corresponds to a version) and hooks the Play! 2
startup to render the error page.

6. We, as the users, click on the Apply this script now! button.
7. Play! 2 plays the SQL script on the database.

Looking into the created file, we'll discover that a basic structure is created based on
properties, but not the external references such as the address or other users:

create table user |

email varchar(255) not null,
name varchar(255) ,

age integer,

female boolean,
address_internal _id bigimt,

constraimt pk _user primary key (email])

create seguence use r_seq.

SET REFERENTIAL_ INTEGRITY FALSE:
drop table if exists user;
SET REFERENTIAL_ INTEGRITY TRLE;

drop seguence 1f exists user_seq;

[105]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

It is not hard to get that the plugin will enable us to write a 2. sq1 file, and so on in
order to have incremental DB schema changes. What is trivial also is that we'll have a
different folder by data source —here the folder is named default.

Having said that, we now have to update the address class to be an entity, but
something more will be needed for this class. Indeed, as it doesn't have any primary
key, we'll have to create an internal 1d field, shown as follows:

User.java * Address.java ®
package models; package models;
impert java.util List; import play.data.*:
import play.libs. F.Option; import play.data.validation.Constraints.*;
import play.data. *; import javax.persistence.*;
import play.data validation.Constraints.*;
import javax.validation. Valid; EEntity

¥ public class Address {
import javax.persistence.¥;

@Id
@Entity @GeneratedValue
public class User { public Long internalId:

@Required
public String name;

> public enum Country {ggm

@Required
@Email
axd
public String email;
@Required
@Required ¥ @rattern|
@Mini 0] value="|[\iwk, [B-9]+",
@Hax(150) | message="A street starts with an upper case, ..."

public Imteger age:; 1
public String fullStreet;

@Required
public Boolean female: @Required
public String county;
@valid
@Required @Required
@ManyToOne(cascade=CascadeType. ALL) @MaxLengthi 2|
public Address address = new Addressi]); public String country;

As we can see from the previous screenshot, it's not the only thing to do;

to link User with Address, we also need the address field of User to be added
with a new persistence instruction, @ManyToOne, because addresses can be shared
across several users.

This will result in a new DDL (to be applied on refresh), which will contain the new
address table and a new relation (foreign key) from a new property (address_
internal_id) in the user table to the address table's primary key.

[106]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

We have to use this functionality carefully because it has caveats on production. The
most important one is probably that such generation is not done incrementally, and
so it will generate the whole DDL at once. However, Play! 2 has evolutions to carry
out the incremental adaptations.

A safe way to use it would be to generate the DDL on a test database and then create
the incremental files manually.

Storing and fetching — a simple story

Reaching this section, we have created our domain model; we have also configured
our system and the model classes to be mapped with an ORM —Ebean. In the end, we
have a server that is able to connect to a database with tables created for our entities.

In this section, we'll see how to use this ORM to persist and retrieve our model
instances to and from the database.

As we're building a web application, we'll use a controller to ask the frontend user
what to create and what to retrieve. This controller will be our Data one, which we'll
adapt and enhance for more advanced usage.

So, back to our Data controller; we can recall that we only had one way to create
an in-memory User and to show some of its information. What must be done
now is the following:

* Add a persist instruction to the current action to save the newly created user

¢ Ensure that the address is saved and is not inserted several times with the
same values

e Add a new action to retrieve all created users in our database

As we can imagine, we'll need to query the database to retrieve either all users,
but we will also need to fetch a potential address based on its properties.

Again, Play! 2 and its perfect integration with Ebean will help us. Indeed, Ebean
defines Query that not only enables us to query the database using our model and
hierarchy, but also its internal structure. However, we won't have to manage it by
ourselves, because Play! 2 will do it for us through a Finder wrapper class.

[107]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

Also, the Play! 2 integration with Ebean will avoid a lot of boilerplate for CRUD
operations, because such methods will be automatically added to our model. This is
simply done by updating our model classes to extend play.db.ebean.Model. That's
all folks!

As this book is not about Ebean, we won't go deeply into its
features or arguing why it's so good. If you rely on the Play!'s team
+ choices blindly, I'd recommend you go to the Ebean documentation

(http://www.avaje.org/ebean/documentation.html)

and check out the Model implementation too (which is almost a
delegation to Ebean classes). Actually, using it is very straightforward
thanks to what has just been discussed.

' LB * ! LS = Ym-iﬂ\'ﬂ = _

import statilc play.mvc. Results.*;

import play.data.*;

import play.libs.*;

import models. *;

import play.data.validation.*;

import static play.data.validation. Constraints. *;
import javax.walidation.*;

import views.html.#;

import java.util.*;

public class Data extends Controller {
static Forme<User> userForm = form(User.class);
public static Result show() {

return ok{data.render{userForm]);
H

@play . db. ebean. Transactional SELH]
public static Result post() {
Farm<User> boundForm = userForm.bindFromRequest(]);

if {boundForm.hasErrorsi)) {
return badRequest(data.renderi{boundForm));
} else {
User user = boundForm.geti):
Address existingOne = [E2%]
Address. find
wherel |

cegl"fullStreet”, user.address.fullStreet]
.eql "county", user.address.county]
.eql"country", user.address.country)
.findUniquel) :
if (existingOne != null) { JEELY
user.address = existingOne;

user.savel); /ey
return okldata. render(boundForm))

¥

public static Result allUsers_'

List<User> users = User.tind.join("address"
return oki
views.html.users.render(users)

). findList();

1a

[108]

www.it-ebooks.info

http://www.avaje.org/ebean/documentation.html
http://www.avaje.org/ebean/documentation.html
http://www.it-ebooks.info/

Chapter 4

Some checkpoints have been dropped into the code to let us review the additions
easily. Let's review them one by one now:

1. The very first thing we can see is that we have flagged the post action to be
Transactional; this wouldn't have been mandatory if we didn't have to
interact several times with the database (which is checking the address and
then saving the user with or without a new address).

2. Then we enter the wild indeed, we're using what has been added to Address
and User and we have access to it via Model, that is; a Finder wrapper class.
This is shown in the following screenshot (in Address):

Data.java #® \ User.java #® Address.java

import play.data.*;
import play.data.validation. Constraints. *;

import javax.persistence. *;

EEntity
public class Address extends play.db.ebean.Model {

/¥
.
public static Finder<Long, Address> find = new Finder<Long, Addresss|

Long.class, Address class
I:

3. Wecreated play.db.ebean.Model . Finder that enables us to work on
address' store easily, providing access to querying, update, and so on.
In this first usage, we queried all addresses where all three properties
match the ones from the user's address. As we expect such a combination
to be unique, we called £indunique on the resulted query.

The result of such a unique query is an instance of address (the given type to
find) or null if none has been found. In the former case, we've updated the
user's address to use the existing one.

4. Now that the user is referring to a valid, unique address, we can use
another method provided by extending Model: save. This will save the
user but will also save all other resources related to it, in this case, address
(because of the cascade strategy). The address will be created if it wasn't
found earlier (based on internal 14 this time), or it may be updated. And,
at the very end, the user is created.

[109]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

5. We also added a new action, allUsers, which retrieves all users from the
database. But it does it differently than expected (a1l () is also available in
Model), because of the lazy loading of the address field.

That's true. Yes, Ebean is also handling the lazy loading for us, but if we
want to show all users at once, with their address in a template, we must ask
Ebean to preload them while fetching the users —so a join is performed on
the address field.

6. The view part is left as an exercise, but an example is provided in the code
files of the book.

Porting to Scala

Until now, in this chapter, we have talked about the Java API that Play! 2 provides to
deal with data, nevertheless there is also a Scala version. We'll have a quick overview
here by implementing the same workflow (validation, forms, persistence).

Actually, both APIs look the same, but in Scala, binding is very often our job,
whereas in Java, it was the job of the reflection-based tools —Scala doesn't have
many tools like that, but times are changing with its 2.1 release.

The first impact regarding this is that, in Scala, binding form instances is our
responsibility. Then there is the communication with the database, where in Java,
we had the Model class helping us to deal with the Ebean ORM. On the other hand,
the Scala database API takes a completely different direction called Anorm —which
stands for Anorm is Not an Object Relational Mapper — because it relies on SQL
rather than automatic mapping.

To start with, we'll need to activate the database plugin; this is done in exactly the
same way as in the Java version. So we're already prepared to step into the model
classes definition.

[110]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Models

As we'll need the same classes as in the Java version of this example, we'll create a
User class and an Address class. For now, we'll tackle the User class only, as the
Address class will be very similar. So, the following screenshot shows what the
User class looks like:

' User'sl:ala * Y mm.mm * _

package models

import play.api.Play.current

import play.api.db.DB 1
import anorm._ 2

case class User|
name:String,
email :Pk[String] = MotAssigned,
age:Int,
gender;Boolean,
address: Address, 4

spouse:Option[User]=None,
friends:Seq[User]=Seaql)
| g

Pretty trivial. user defines its structure (containing a special type for its email field)
and then it imports the DB API to create connections and transactions.

For the search and persistence tasks, we can see (in the next screenshot) the first
usage of Anorm, which is a relational database access layer that supersedes JDBC by
providing a better API—less verbose, binding back and forth with the domain model
using Scala features such as pattern matching, for instance.

def save =
DB.withTransaction { implicit conn == 5
emall .to0ption.map { e == User.loadie] ¥ match {
case MNone == create
case _ == update
¥
}

[111]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

In this save method, we can see that a choice will be made over creating or updating
the data in the database. The following screenshot shows how create can be defined:

def create = DB.withConnection { implicit conn ==
SOLI
INSERT INTO user|
name,
email ,
age,
gender,
address_internal_id
|
VALLUES |
iname},
{email}.
{age}.
{gender},
{addressId}
|
I .on
'name -= name,
"email -= email.get.
'age -> age,
'gender -= gender,
'addressId -= address.internallId.get
| .executeUpdatei
this

}

def update = DB.withConnection { implicit conn ==

As a lot of new things were introduced so fast, the best idea would be to review them
one by one:

1. We import the DB API from Play! 2; it will provide us with the ability to wrap
database accesses within a transaction or at least give us a connection to a
data store.

2. The next import is the anorm package, which allows us to use a specific type
such as Pk and especially the sQL case class.

3. The pk type is helpful to define primary keys and is similar to option;
having said that, it can either be NotAssigned or 1d (x) — very helpful when
generated primary keys are used.

4. user keeps a heavy reference to Address, as it's not an Option type; we can
imagine that it will be eagerly fetched with the user.

[112]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

5. The save method on User is able to determine if the user already exists
(based on the email value) and then asks whether to create it or update it. So,
checks and persists are done in a single transaction —which are implemented
as the body of the withTransaction function that ensures a transaction is
present from the start of its body until its end where a commit takes place.

6. This point is twofold; we see that Pk can be used as a classic Option and
then we call a function of its companion (a companion of a class can be used
to create static functions) that is able to search on its potential value (for
illustrative purposes only because email will always be of the 1d type)— this
search will be covered in the next section.

7. Still in the same transaction, we can now retrieve the underlying connection
to the database to create the user in the database. For that, we can simply ask
for this connection using the withConnection function that will execute its
body in a classic JDBC connection.

8. The sqL case class is providing us with a way to create our custom SQL
queries —it's a kind of wrapper around string and JDBC prepared statements.

9. So it allows us to replace placeholders and set it directly to the underlying
PreparedStatement.

10. Add also to execute the query (INSERT in our case).

By the way, we can see that Anorm is not an ORM (hence its name), so it cannot
really see the structure of the data that it will have to handle. Because of this, it is
not able to generate the DDL for us—that's a drawback of such a choice, but in favor
of a lot of other advantages that are beyond the scope of this book. Thus we, as
developers, are responsible for creating and maintaining the DDL ourselves.

For this example, we can simply copy the 1. sql file from the
i~ Java project as the same structure has been defined.

Parsing the DB result

With Anorm, we're able to retrieve data from a database in several ways. Now we'll
see the parser one; nevertheless, it is worth checking its documentation for further
help on this topic (http://localhost:9000/@documentation/ScalaAnorm).

[113]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

In this section, we'll see how we can retrieve data from the database as domain
model instances by defining a mapping in the form of a SQL parser (manual ORM).

I' User.scala *® ! Data.scala *®

ct User {
t anorm,SqlParser._

Address. scala x

object Address {
t anorm. SqlParser._

val withAddr val simple = {

get [Pk[S r.email”) get[Pk[Long]] .internal_id") ~
get[String e"] ~ getl[Stringl(" ull_street"] ~
get [Imt] (" getl[Stringl(" ounty"] ~

g=t[Boolean] (ge
wple map {
il-nane~age~gender-address =»
ame, email, age, gender, address)

get[Stringl("ad ccountry") map {
c ernal Id~fullStreet ~county~country ==
Address{internalld, fullStreet. county, countryl

?
T

}
T

def loadladdressId:Long):OptionlAd =

def load(email:String):Option[User] = DB.withConnection { implicit conn

DB.withConnection { implicit conn == SoL(e
soL(""" SELECT
SELECT *
' FROM
FROM address
user, WHERE
address internal_id = {addressId}
WHERE wan g

d -=

user. address_internal_id = address. internal_id
AND user.email = {emaill}
") .on(
'email -> email
) .as(User.withAddress.singleOpt)

} onnection { implicit conn =>
st
def all:Seq[User] = SELECT
onnection { dmplicit conn == 3
" FROM
address
¥ "nv) as(Address.simple *)
FROM }
user,
address
WHERE)

user.address_internal_id = address.internal_id
""").as(User withAddress *)

}

Both the User and the Address companions have been shown in the previous
screenshot in order to have the picture at one glance.

The key points are the functions of sqlParser, which are meant to build an SQL
parser (of course), that's what is being done in the withAddress and simple values.
Indeed, sqlrarser defines the structure to be taken over a database's result set. This
enables us to combine at will, but also to define several for a single model depending
on the amount of data retrieved or to create joins for external resources such as the
user's address.

The syntax can help us build very complex stuff and has the advantage of being
oversimple. For instance, in our two-level fetching for User, we combined SQL
parsers of type String, Int, or Boolean with another one of type Address, which is
defined in the Address companion.

[114]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

The composition of such parsers is done using the ~ operator. Such compositions'
results will then be mapped using pattern matching and retrieved as combined
values to be used to create a user.

get [String] ("column") will create an SQL parser that
@’@‘\ parses the current row in the result set for a column named
’ column and returns it as a String value.

That was all about parsing (recall that it is only one of the several techniques that
Anorm is able to apply on a result set). Hence we've now defined the mapping
between the relational world and the domain model one.

Looking at the 1oad and all functions, we'll see that it will be used in the as method
of SQL, which is simply executing the SQL and the mapping.

The mapping is not usable as is when calling the database. At this

stage, we must also tell, for instance, if we expect zero or one row
= (singleOpt), a single result (single) or several (*).

Speaking with the browser

This last section will quickly cover how to deal with server-side forms.

As we said earlier, Scala doesn't have great introspection libraries in the current
version, so Play! 2 overcame this problem by providing a very neat and intuitive
API to define a mapping between the outside world and the server-side one.

However, we're lucky because Scala 2.10 has unleashed the power of
macros. Given that Play! 2.1 is using this Scala version, some work

has been done towards using macros to generate the formatting
’ boilerplates. But this is only available for the JSON formatting use

case, not yet for forms.

This APl is in the play.api.data package and notice especially the Forms object
that defines plenty of mapping functions, satisfying almost all common use cases
such as String, Option, Seq, embedded structures, constraints (Email, Min, Max),
and so on.

[115]

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Data on the Server Side

In the Scala world, we create mappings by defining the structure we expect to
come from or to be rendered to the outside world, and then we attach a constructor
(apply) and extractor (unapply) to it. Let's see that in action:

1

package controllers

impert play.apil._

impert play.api.Play.current

import play.api.mve._

import play.api.data.Forms._

import play.api.data.validation.Constraints._

impert play.api.db.DB
import anorm._

import play.api.data._
import models._
I object Data extends Controller {

def optToPk[T]lom:MappinglOption[T]]) =
om.transform[Pk[T]]io == o.map{x==Id(x)}.getOrElse(MNotAssigned), (_:Pk[T]] toOption]

lazy val userMapping:Mapping[User] 5
mappingl
"name" -= nonEmptyText.
"email" -= optToPk|optionaliemail)]).
"age" -= numberimin=0, max=150),
“gender" -= boolean,
"address" -= addressMapping,
"spouse" -= ignored(None:Option[User]]),
"friends" -= ignored|Seql]:5eq[User]]
JlUser. apply) (User.unapply)

lazy val addressMapping
mappingl
"internalId" -= optToPk(optionalllongNumber)),
"fullStreet" -=
i

text verifying pattern("""[A-Z] . *,[0Q-9]""". 1,
error="Street starts with upper case and ends with comma and number"]
la
"county" -= nonEmptyText,
"country" -= nonEmptyText

) { Address . apply) | Address . unapply)

val userForm = Form[User]{userMapping)

Not much to say; a mapping is defined as a map between outside-world keys and
server-side representation (globally, a type plus some constraints). Furthermore, all
functions are self descriptive, thanks to a well designed API: a DSL.

Having defined the structure, we see that we end by passing two functions, which
are the "so-called" apply constructor and the unapply extractor. Because we used
case classes, these functions are automatically created and maintained by the
compiler itself.

[116]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

And then the rest, like the form usage and so on, is 90 percent the same as in Java
(because the syntaxes differ). So we can mimic the actions from there.

Actually, functions to be passed to a form definition are just

conversions between the values from a request and an object
= from the database (for instance).

Summary

At the end of this chapter, we are now able to create HTML forms that are
based on server-side structures. We learned which forms will be used to send
data to the server, and where they'll be automatically mapped to on the domain
model definition.

We also learned how to manage the domain model into a database and how to
create, fetch, or update them.

With these forms and a database, we can now easily create a discussion between
the server and the client using forms on both side and persistence layers to save
the work.

In the next chapter, however, we'll add another dimension to our model, which is the
format of the data and their representations. Until now, we've only dealt with HTML
or textual data. Now it's time to see how data could be represented in a different
fashion or how to use binary data.

[117]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

A web application always has, at some point, the need to deal with multiple types
of content. Common content types include JSON, XML, HTML, but there could also
be images or even videos to be stored and streamed. Play! 2 provides a clean way of
dealing with such content types with the help of body parsers.

We won't cover the implementation details of such body parsers, because it's
purely based on a functional concept, Iteratee, and thus their implementations
are in Scala only. However, we'll see how they are used and how we can gain
benefits from them.

In this chapter, we'll update and clean up a bit of what we have been doing so far
in order to enable several workflows. So we will only be using examples we have
learned up to now. The following is what will be achieved:

* Make the chat and Item classes persistent using Ebean

* Create a link between an item and a user (a user's reply in a chat)

* Introduce a new type, Image, that will be part of a chat as an attachment

* Enable a user to connect

* Browse all chat instances

* Allow the connected user to reply in a chat

* Allow the connected user to attach an image to a chat

* Show examples of Uls

* Create an action that outputs a requested image

* Create an action that provides an Atom feed of all chats which have specific
users getting involved (kind of like following)

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

In order to keep the chapter short and to the point, we'll only

see the Java part. Keep in mind that the Scala version is little
"~ different for this level of detail.

Body parsing for better reactivity

As noted earlier, the way to manage content in Play! 2 is to use instances of body
parsers. In brief, a body parser is a component that is responsible for parsing the
body of an HTTP request as a stream to be converted into a predefined structure.
This has a common sense ring to it, however their strength is in their way of
consuming the stream —in a reactive fashion.

Reactivity, in this context, is meant to describe a process where an application won't
block on a task that is actually idle. As a stream consumption task is idle when no
bytes are incoming, a body parser should behave the same. It will read and construct
an internal representation of the incoming bytes. But it can also decide at any time
that it has read enough to terminate and return the representation. On the other
hand, if no more bytes are coming into the stream, it can relax its thread in favor of
another request; it pauses its work until new bytes are received.

Thinking about an HTTP request that is sending a bunch of XML content, the
underlying action can use the XML-related body parser to handle it correctly (read
reactively); that is, by parsing it and providing a DOM representation.

To understand what a body parser actually is, we'll first look at how they are
used —in the actions. An action in Play! 2 represents the piece of software that is able
to handle an HTTP request; therefore, they are the right place to use a body parser.

In the Java API, an action is allowed to be annotated with the of annotation available
in the BodyParser class. This annotation declares the expected type of request routed
to it, and it requires a parameter that is the class of the parser that will be instantiated
to parse the incoming request's body.

[120]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The following screenshot shows an example:

import org.w3c.dom, *;
public class Content extends Controller {

@BodyParser. 0f | BodyParser. Xml . class|
public static Result contenti] {

Document doc = requesti) . body().as¥ml(]

Isn't this helpful? We've gone from a request to a W3C document, in a

single line. Functionally speaking, this works because an action is semantically a
higher-order function that takes a body parser and generates a function that takes a
request (and so its body) and results in an HTTP response (result). This result will

then be used to construct the HTTP response by Play! 2.

In Java, it is not all that obvious how to create a higher-order function. A good way,
however, to achieve this was to add an annotation. An annotation can be processed

at runtime in order to execute the right body parser (in this case).

To illustrate this, we'll have a quick look at the Scala version:

[object Content extends Controller {

val doc = reguest.body

k| |

def content = Actioniparse.xml] { implicit request

=1

With this Scala version, it is easy to see that an action is dealing with a function from

a request to a response.

[121]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

There are a plenty of predefined body parsers that can be used to handle our
requests, and they are all defined in the BodyParser class as static inner classes. One
can have a specific behavior to be applied on its expected request body, and even
though a body parser has to be implemented in Scala, a Java coder can simply extend
these current implementations. Actually, they're already providing enough control to
cover all custom use cases.

So, we have in our hands tools to handle the following content types:

* JSON

« XML

* URL form encoded

* Multipart (for uploading files)
* Text

* Raw (fallback)

As we can see from the previous list, there is, obviously, an implementation for the
x-www-form-urlencoded content type. Indeed, this is the parser we've used so far
to retrieve data from the client side. For example, using POST requests throughout
HTML formes.

But wait, we never had to add such annotations to our actions, and, moreover,
we've never looked in the parsed result. That's true, Play! 2, as a great framework,
is already doing a lot of stuff for us. And that's because it's a web framework; it takes
advantage of HTTP; in this case, using the content-type header.

Based on this hint, it seems obvious that Play! Framework 2 will look in this header
to find the right parser to apply. So annotations are mandatory, but where did we
use them previously? In the bindFromrRequest method, of course. Let's see how.

In the previous chapter we have used form instances, and we fed them some

data through the client. Those instances were applied on the request using the
bindFromRequest method, and this method's job was to look for data according to
the provided content type. And, of course, this content type was set in the header by
the HTML forms themselves.

[122]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Indeed, an HTTP GET will send data in the request URL (query string), where an
HTTP POST will be sent with a body that contains all data encoded by default as
URL parameters (that is, x-www-url-encoded).

So, we can now give an overview of what the bindFromRequest method does.
When we ask a form to be filled in with data, this method will:

* Gather data as URL-form encoded data, if any
* Gather data from parts (if the content type is multipart-data)
* Gather data as JSON-encoded, if any

* Gather data from the query string (that's why GET requests were working
as well)

* Fill in the form's data with all of them (and validate)

You might be wondering the worth of such annotations; the quick answer to that is
they allow new types of parsers, but they can also enforce certain actions' requests to
match a given content type.

Another advantage of such annotations is that they allow us to extend or narrow the
length of the body that can be handled. By default, 100 K are accepted, and this can
be either configured (parsers.text .maxLength=42K) or passed as an argument to
the annotation.

With all of this in mind, we are now ready to implement these concepts in our code,
and what we're going to do is to update our code base to create a kind of forum.

A forum where one can log in, initiate a chat, reply to non-closed ones (based on
their date), or even attach files to them.

Creating a forum

In this section, we'll refactor our existing application in order to enable it to act as a
forum. And, chances are high that it won't be necessary to learn anything new; we'll
just re-use the skills gathered so far; but we'll also use the parsing commodities that
Play! 2 offers us.

[123]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

Reorganizing and logging in
The very first thing we have to do is to enable a user to log in; this ability was already
created in the Data controller. However, for that, we'll update our Application

controller a bit, to create a new index action that will check whether a user is logged
in or not.

/Cuntent.ja\ra xYChats.java xYApplicatiDn.jE x\

public class Application extends Controller {

public static Result indexi) {
String email = session().get("email");
if (email != null) {
return redirect(routes.Chats.allcChatsi] |;
{

return unauthorized|
views.html.lagin. render()
|:
}
}

So, index is now the new entry point of the application and can be routed from /
in the routes file. And, it's solely meant to check if a user has logged in or not. This
check is based on the session content, as we simply check whether a user's e-mail is
present in the session.

. Wenever see what a session can be in Play! 2, but we saw that
& Play! 2 is completely stateless. So, a session in Play! 2 is only an
" encrypted map of the value stored in the cookie. Thus it cannot
be that big, and definitely cannot contain full data.

If the user is present, we redirect the request to the chatroom by calling redirect
with the expected action. This will prevent the browser from posting the request
again if the user reloads the page. This method is called POST-redirect-GET.

Otherwise, we respond with an Unauthorized HTTP response (401) that contains the
HTML login page.

[124]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

The two actions (shown in the next screenshot) are so simple that we won't cover
them further, except for a single line: session () .clear (). It is simply revoking the
cookie's content, which will require the subsequent request to create a new one,
which then doesn't contain the previously stored e-mail.

public static Result logini) {
return ok|
views.html.login. renderi)
}
public static Result logout(] {
sessioni) .clear(];
return okl
views.html.login. renderi)
|
1

And finally, enter, which shows how a request's body can easily be handled using
the relevant method: asFormurlEncoded. It should look like that shown in the
following screenshot:

public static Result enter(] {
Hap<String, String[]l> params;
params = requesti).bodyi).asFormUrlEncoded(];

String email = params.get("email")[0]:

User user = User.find.byId(email];
if (user == null) {
return redirect(routes. Application.login(] :
T else {
session("email”., emaill:
return redirecti(rowutes.Chats. allcChats(] |:
}
}

Indeed, one would normally have to use a form to retrieve this information for us,
which would do it for us (behind the scenes); but in this case we have only a single
parameter to retrieve, so a form would be overkill.

So far, so good; we are now able to create a user, log in with it, and use a login page.
To target having cleaner code, it would be worth splitting the Data controller code into
several pieces (matter of a good separation of subject). Hence, the Users controller is
created, in which will be placed the user-related actions taken out of Data.

Now, we'll move back to something we saw earlier but didn't cover —the routes.
Chats.allChats () action call.

[125]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

Chatting

In the previous section, we were introduced to the Chats controller and its allChats
action. If the names are self-descriptive, the underlying code isn't that much.

First of all, we're now dealing with chat instances that must be persisted somewhere
in a database, along with their underlying items.

But we'll also prepare for the next section, which relates to multipart data
(for instance, it's helpful for file upload). That's why we'll add a brand new
type, Image, which is also linked to Chat.

Having said that, it would be worth checking our new chat implementation:

EEmtity

public class Chat extends play.db.ebean.Model {
aId
@Generatedvalue

public Leng internalId:

@Required
public String topic;

@Required
public LocalDate date:

@Required
public imt occurrence;

@valid

@0neToMany| cascade=CascadeType. ALL)

@0rderBy("timzstamp”)

@JoinColumn| name="CHAT_ID", referencedColumnName="internal_id
public List<Item> items;

@valid
@0neToMany| cascade=CascadeType. ALL |
@JoinColumn(name="CHAT _ID", referencedColumnName="internal_id"]

public Liste<Image> images;

public Chat{) {
x

public ChatlLocalDate date, imt occurrence, List<Items items, List<Image> images) {

this.date = date;
this.occurrence = occurrence;
this.items = items;
this.images = images;

i

public static Finder<Long,Chat> find = new Finder<lLong, Chat=
Long.class, Chat class
I:

public static imt occurrencesFor(LocalDate date) {
return find.wherei"date = :date").setParameter("date", date].findRowCount();

[126]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Thanks to the previous chapter, there's nothing all that new here, except the Image
type itself. Before we cover the Item and Image types, we'll first go to the Chats
controller to see what's going on.

'Cuntent.ja\ra ® YChaE.ja\ra ® ! Image.java * ! Chat.java ®

public class Chats extends Controller {
static public FormeChat> chatForm =

form(Chat.class)

public static Result loadChat(] {
Map<5tring, Stringl]l> gqueryString = request().queryStringl]:
Long chatId = Leng.parselLonglqueryString.geti“chatid"][0]]:

Chat chat = Chat. find
wherel]
.eql"internalId", chatId)
.joini "items")
.joinl "items. user"]
.join{ "images")
.join("images.user")
findUniquel] ;

return ok
views. html.chatroom. renderichat, itemForm, imageForm)
|

}
public static Result allcChats(] {
return okl
views, html.chats.render(Chat.find.alli]]
!

a

Finally, we can see our allcChats action; it's simply rendering all existing instances
within a template. Even the rest of the controller is simple; everything is done in
templates, which are left as exercises (we're so good at them now!).

However, there's still the 1oadChat action that contains something related to
this chapter:

Long chatId = Long.parselong(queryString.get ("chatid") [0]) ;

This action handles requests asking to show a particular chat instance, which is

a resource and thus should be served using a GET request. This implies that the
parameter value is stored in the query string (or in the URL itself) rather than in the
request body.

Regarding query string access, it's more interesting to analyze the following line:

Map<String, String[] > queryString = request () .queryString() ;

[127]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

In fact, all actions contextually refer to a request object, which is accessible using

the request () method. This request object declares a queryString () method that
returns a map of string and an array of strings. What comes next is trivial; we just get
chatid out of this map (ok... in a very unsafe way).

Until now, we have been able to log in and access the chatroom, where we can create
or show chat instances. But we're still unable to reply to a chat. That's what will be
tackled now.

For that, we need to create an action that will, based on a chat ID, post a new
message linked to the logged in user, and then attach this message as an item of the
underlying chat instance.

For this, we must update the Item class with persistence information. Afterwards,
we'll be able to update the Chats controller in order to create instances.

package models:
import org.joda.time.LocalTime;

import play.data.*;
import play.data.validation.Constraints. *;
import javax.validation.Valid;

import javax.persistence.¥;

EEmt it]"

public class Item extends play.db.ebean.Model {
aId
AGeneratedvalue
public Long internalId:;

@0neTolne
public User user;

@ARequired
public LocalTime timestamp;

ARequired
@AHaxLength(140
public String message;

public Itemi) {

¥
public ItemiUser user, LocalTime timestamp, String message] {
this.user = user;
this.timestamp = timestamp;
this. message = message; E
¥
}

[128]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Ok, it's like a beefed-up POJO; let's jump into the action that will create Item instances.

The workflow to post a message for a user starts by enabling him/her to participate
in a chat. This is done by loading it (using the 1oadchat action) where the user will
be able to post a new message (an overview of the Ul will be presented at the end of
this chapter for illustration only).

The following screenshot shows how it can be done:

Content.java * Chats.java # Image.java ¥ Chat.java * Item.java *

public class Chats extends Controller {
static public FormeChat»> chatForm = formi{Chat.class);

public static Result registercChat(] {3
}

public static Result loadChat(] {gm
¥

public static Result allchatsi) {&

public static Result createcChat(] {&
}

static public Forme<Item»> itemForm = form{Item.class);
public static Result talk{Long chatId) {
User user = User.find . byIdisession("email")];
Chat chat = Chat.find
where()
.egl"internalId", chatId]
Jjoini"1tems")
| findUniquel) ;

Forme<Item> boundForm = itemForm.bindFromRequesti];
Item item itemForm.bindFromRequesti) .get(]:
item.user = user;

chat .items . add(item):

chat .savel) ;

return oki
views, html .chatroom.render(chat, itemForm, imageForm)
.

1

Observe how the user was recovered using the session.

Still, nothing cumbersome to review here, we've just re-used a lot of stuff we've
already covered. The action receives a POST request in which information about the
message is given, and then we can bind the request to itemForm and finally save to
the database the item contained in the resulting form.

[129]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

At most, we should notice that we're still free to encode the body as we want, and
also that the chat ID is not a part of the form but a part of the action signature — that's
because it is a part of the URL (routing).

We've almost finished our forum; the only thing needed is to enable users to
post images.

Handling multipart content types

The HTTP protocol is ready to accept, from a client, a lot of data and/or large
chunks of data, at once. A way to achieve this is to use a specific encoding type:
multipart/form-data. Such requests will have a body that can hold several data
pieces formatted differently and attributed with different names. So, Play! 2 is a web
framework that fits into HTTP as much as possible; that's why it deals with such
requests goods, and provides an API that hides almost all of the tricky parts.

In this section, we'll see how one could upload an image along with some caption
text that will be attached to a specific chat.

Before diving into the workflow, let's first create the holding structure: Image.

EEmtity
public class Image extends Model {

public static enum ImageType {
GIFi"image/gif"],

PNGI "1mage/png") .
JPEGI| "1mage/]peg") ;

!

@Id @GeneratedValuelstrategy = GenerationType AUTO)
public Long internalld;

@MaxLength(140)
public String caption;

A

LR o
@Transient
public File pic:

public String filePath;

@0neTolne
public User user;

public static Finder<Long, Image> find =
new Finder<Long, Image>(Long. class, Image class);

public Imagei) {}
public File pici) {

1

[130]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

This newly introduced type is not hard to understand as well; only two things
should be pointed out:

* The pic () method that relies on the filePath field to recover the file itself. It
uses a File instance to memorize subsequent calls.

* The enum type that prepares the action logic to filter the incoming files based
on the given MIME type.

This logic could also be defined in the validate method.

These instances are always locked in with the connected user who uploaded it and
will be added to a chat instance. This will allow a chatroom to display all attached
images with their caption beside the messages themselves.

Now we're ready to look at the file upload itself by paying some attention to the last
action of the chats controller, that is, receiveImage.

public static Form<Image> imageForm = form(Image.class):
public static Result receivelImage(Long chatId) {

User user = User.find.byIdisession("email")]):
Chat chat = Chat.find
.where(]

.eql"internalId”, chatlId)
.join{"items")
findUniquel];

Form<Image> filledForm = imageForm.bindFromRequesti):
1f(filledForm.hasErrors()) {
return badRequest|
filledForm.errors() . toStringl)
13
} else {
Http HultipartFormData body;

body = request(]).body().asMultipartFormDatal);

Http. MultipartFormData FilePart pic = body.getFilel pic"):

iT(Image. ImageType. get(pic.getContentTypell) == null] {
return badRequesti
views.html.chatroom.render(chat, itemForm, imageForm)
I

1
Image image = filledForm.get(]);

image.plc = pic.getFile(];
image.filePath = pic.getFile().getPathi]:

image.user = user;

chat . images.add(image) ;
chat . savel) ;

return okl

views, html.chatroom.render({chat, itemForm, imageForml
1;
}
1

[131]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

As we are used to simplifying the code (Play! 2 is there to ease our work, after all)
and to get straight to the point, we reflected this in our receiveImage action..

In a very few lines, we declared a new action that expects requests to be multipart
encoded containing at least two parts, where the first is a map of data (no matter
how this map is encoded) to fill in imageForm (essentially a caption). The second will
be the image part.

After binding the request with the form and verifying that no errors have occurred,
we can move to the body content in order to recover the binary data that was sent
along with its metadata: the file content, its content type, its length, and so on.

That was quite an intuitive thing to do - asking the body to be parsed as a

multipart/ multidata and and get it as an Http.MultipartFormData object, which

has a getFile method that returns an Http.MultipartFormData.FilePart value.

To understand why we didn't specify a body parser, recall that Play! 2 is able, most of
the time, to discover which method fits best by itself. The Http.MultipartFormData.
FilePart type is not only allowing us to recover the content as a file, but also its key in
the multipart body, its filename header, and (especially) its content type.

Having all of these things in hand, we are now able to check the content-type
validity against the image's enum, and to store the image by getting the file path of
the provided file.

This file path will target the Temp directory of your machine. In
@’@‘\ the real world, the file should be relocated in a dedicated folder or
g maybe on an S3 repository.

Et voila! We have now learned about some of the features that can provide a very
simple forum. The following screenshot shows what it could look like (without any
efforts on the design, of course). First, the forms to show and enter archived and
active chats:

Connected as me@home.org

Archives
Yesterday Chat on 2012-09-18 ¥ Show
Active

Chat about Today on 2012-09-19 ¥ Load

Create a new one

[132]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

On entering an active chat, let's say the one named Today, we reach a page similar to
the one shown next:

Connected as me@home.org

Chat about Today

Attached Images
So far...

* [16:13:00.257] me(@home.org > Which day is it?
* [16:15:13.120] no(@one.biz > Today...
* [16:15:28.040] me(@home.org > Ah... r'u sure?

React Attach an image

message caption

Maximum length: 140 Maximum length: 140

Required

Choose File | No file chosen
send

Using the Attach an image form, we can select an image on our filesystem to be sent
to the server. The result obtained is shown as follows:

Connected as no@one.biz

Chat about Today

Attached Images
So far...

e [16:13:00.257] me@home.org > Which day is it?
e [16:15:13.120] no@one.biz > Today... r
e [16:15:28.040] me@home.org > Ah... r'u sure? \’

* Yes!| TAM :

React Attach an image
message caption

Maximum length: 140 Maximum length: 140

Required pic

send Browse...
Send
[133]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

Until now, we have spoken about handling various content types coming from the
outside world, but what about our application having to render content other than
HTML? That's what we're about to see next.

Rendering contents

In this section, we'll see how a Play! 2 server is able to render different resources in
different ways rather than simply providing HTML pages.

The actions' body in Play! 2 not only have the responsibility of creating resources to
be provided to the outside world, but also of declaring how this resource has to be
rendered. Fortunately, there are a lot of boilerplates already written for our use in the
default actions builder.

The so-called actions builder are the methods we have used almost blindly until now;
that is to say, the static methods available in the play.mvc.Results. java class such
as ok, redirect, badRequest, and unauthorized.

Indeed, these methods have been overloaded several times in order to accept several
representations. The following are some examples:

* content: This takes content that is of the base type of classic string
representations such as Html, Xml, and Txt. This is also the result-type
of a rendered template.

* string: This will be rendered as is, as a plain text content (an overloaded
version of the method accepts the encoding as a second argument).

e JsonNode: This is trivial. If we create an instance of such a class, we'll have
our resource serialized as application/json.

* InputStream: This is a convenient way to dump a stream into a response
body (accepts chunks for an HTTP-chunked encoded connection).

* File: This helps us avoid typing new FileInputStream(...) in
InputStream. This accepts the file and will deal with the stream for us.

Knowing all this, we'll now enhance our forum a bit to not only show the persisted
attached images but also to provide a dynamic Atom feed for all chats that users
have participated in.

The previous screenshot shows our attached image
= being displayed.

[134]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

To tackle this, we'll retrieve the empty Content controller we saw at the beginning of
this chapter. And we'll add two actions, routed as shown in the following screenshot:

GET fchat/images/:imageld controllers.Content . getImagelimageId:Long]
GET /content/atom/*emails controllers.Content.atomiemails:String)

The former action asks for a specific image content, whereas the latter one is asking
for an Atom feed for certain users.

Imaging all of the chat

So, it's now time to render our images back to the client and show them in their
respective chatrooms. The following screenshot shows how to do it:

public class Content extends Controller {

public static Result getImageilLong imageId] {
Image image = Image.find.byId(imageId];
try {
return okinew FileInputStream(image.pici(]]]:
catch (FileNotFoundException) {
eturn badRequest("Bad File..."]:

}
}
}

So trivial... take the ID, get the related image in the database, ask for its underlying
file, and return it in an OK (HTTP 200) response.

Thus, we're now able to use this action in our HTML templates using a simple img
tag that has its src attribute pointing to our new action, shown as follows:

div st ="margin-lefi:510px;"
h2=Attached Images=/h2
ul
@chat .images .map { 1 ==
1i=@i.caption : =img ="@routes.Content . getImageli.internalId)" ="@1,caption" tle="@1.caption" 1i

ul
div

With the image rendering done, let's now move to the Atom feed.

[135]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

Atomizing the chats
This section is dedicated to the production of XML content.

In Java, we all know how painful it is to generate a DOM structure that has to be
dumped as a string. Actually, Scala has a native syntax for XML, but it's still better
(easier) to use templates for that.

Indeed, we used Scala templates for generating Html responses (remember Html
derives from Ccontent), but we could also generate xml contents for the templates that
are accordingly named. In other words, where myBeautifulContent.scala.html
creates an Html response, myStructuredContent.scala.xml generates Xml content.

But first of all, we'll have to gather the data before applying them to an XML
template. This is done in the code shown in the following screenshot:

public static Result atom{String userEmails) {

Hap<User, Set<Chat>> chats = new HashHap<User, Set<Chat>>(]:
List<String> emails = new ArraylList<String=():
for (String e userEmails.split{"s")) {
emails.add(e);
¥

List<User> users = User.find
.joinl "address")
where(]
.inf "email”, emails)
findListi);

List<Chat> list0fChats = Chat.find
.fetch("items")
.fetch({"items. user")
.where(]
.in{"items.user.email", emails)
.orderByl "items.user.email"”]
LfindListi);

for (Chat chat listOfchats) {
for (Item 1 chat . items) {
Set<Chat> 1ist = chats.get(i.user):
if (list == null) {
list = new HashSet<Chat>(]:
chats.putii.user, list):

list.add({chat];

return okiviews.xml.content atom.render{chats, users)) . asi{"application/atom+xml"];

[136]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Apart from database interactions to retrieve user and chat information, the points
worth noting are the following;:

* We used an ok result builder that relies on a template to generate content

* We don'tlet the XML's default content type to be returned (text/xml), but
we override it by specifying the Atom one, application/atom+xml, using
the as method on the ok response

Having prepared the data and the content type to be rendered, we can now look at
the real representation: the template.

According to the action that uses the views.xml.content.atom.render method,
the template must be located in the content package under the views one and
must be named atom.scala.xml. And its content might be as shown in the
following screenshot:

'atom.scala.xrnl L] ! Content.java ®

@l chats: Map[User, Set[Chat]]. users:List[User]}L':ml version="1. encoding="utf-8"7>
@import arg. Joda time. DateTime.now

feed xmlns="http: //www w3.0rg/2005/Atom" =
title=Chat Stream=/title=
updat ed=@now</updated=

author=
name=Nooot sab</name=
author=
id=@routes. Content . atom(users.map{_.email} mkString("/")] url</id=
@chats.map { case (u, chatList) ==
@chatlist . toSeq.sortBy(_.occurrence).map { c ==
entry=
id=@
{

routes.Content.atomiusers
.map{_.email}
.mkString("/"]
) .absoluteURL(reguest(]]
} entry;@u email /@c.date/@c.occurrence

t1t1e Chat for @u.email @@ @c.date [@c.occurrence]=/title=
updated=@c . date=/updated=

summary:
@c.items
.sortByl_.timestamp.toDateTimeToday . toDate)
.mapli ==i.user.email + " ; " + 1.message)
.mkString(" <br/="]
summary=
emtry=
X
feed=

We were able to gracefully generate our xml content using XML directly, which
avoided the headaches with DOM manipulations.

[137]

www.it-ebooks.info

http://www.it-ebooks.info/

Dealing with Content

The only noticeable thing in the previous screenshot is the first line (all of the
others are just data manipulations for displaying purposes), which is declaring the
necessary parameters directly after we find the first XML line. That's because of the
XML specification that requires this meta-information to be positioned at the very

first character.

With this small amount of effort and code, we're already done and can now see the
result in an appropriate Atom viewer, shown as follows:

@) localhost:9000/content/atom/me@home.org/no@one.biz/ >
Chat Stream Subscribe with: | Go |

CfN X

Chat for me@home.org @ 2012-09-20 [1]

me@home.org : Ih
no@eone.biz : Hi
me@home.org : Huh

Thu Sep 20 2012 02:00:00

Chat for no@one.biz @ 2012-09-20 [1]

me@home.org : Ih
no@one.biz : Hi
me@home.org : Huh

Thu Sep 20 2012 02:00:00

This client enables us to add our feed to Google Reader for instance.

[138]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Summary

We're at the halfway point of the book and we've already built a forum-like web
application with really basic features, but we are able to at least create chatrooms for
particular topics, join them, participate with messages, or add images to them. All
this without any pain or boilerplate, thanks to the content management features that
Play! Framework 2 puts in our hands for free.

Indeed, in this chapter we were able to deal with complex routing involving several
ways to provide information, using different HTTP methods and URLs with or
without extra parameters. Such requests were used to feed the server with data very
easily, by using a single API that is independent of how the data is represented. For
instance, on both sides we were dealing with forms.

Body parsing was there to help us, and to facilitate resource binding with our
constrained forms. Moreover, they are consuming data in such a way that even
large data sets won't crash the server — they are consumed reactively.

At this stage, we're also able to send data to the client in whatever fashion we'd like.
XML, JSON, HTML, and all such are now open doors for our web applications.

But, for now, our forum is switching statically between pages all the time
(read: loading the full page), and sometimes requests that we go back and
refresh the page to use it further, such as refreshing a chatroom to see other
participants' new messages.

So, what's missing now? Dynamic client behavior. That's exactly what will be
covered in the next chapter.

[139]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time
Web Applications

A web application, nowadays, is expected to be as reactive as a desktop one; moving
statically from one page to another is no longer accepted. Furthermore, to enhance
the user experience, we need to reduce as much as possible the amount of actions
needed to have the content updated constantly.

We entered the real-time era some time back, and the mobile explosion has
definitively confirmed that. Given this fact, the problem we face when creating a web
application dedicated to mobile devices is, still, the bandwidth (this doesn't seem like
we have entered the same era as our needs). So, we'll have to think more about some
optimizations while communicating with the server. This chapter is dedicated to the
utilities Play! Framework 2 is offering us to enable us to satisfy these points.

The following is what will be covered in this chapter:

* Creating a dashboard, where the data will be updated in the background
* Following the naive approach using a polling service over HTTP

* Introducing CoffeeScript before using it for client-side logic

* Adapting the dashboard a bit to use dynamically updated forms

* Doing a final update of the dashboard using WebSockets

At the end, we'll have a good overview on how to replicate the solution to other
similar needs.

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

Ready, JSON, poll

In the earlier chapters, we built an application that mixed the notion of a chat and a
forum. If we use it, we'll face some problems for sure; indeed, when we post a new
message or image, the other users that are connected won't be notified unless they
refresh their whole page. This kind of workflow is a pain in terms of performance
and user experience. As it requires several users' actions, and because all data has
to be provided by the server (which will give the same stuff again and again); think
about big images that are loaded each time the application is refreshed. All of this
tells us that such a workflow is not optimal at all. How are we going to tackle this?
First we will use the ancestral polling system.

Polling is a system asking the server (or a bunch of services) the same resources
repeatedly, and, normally, at a high rate (the higher it is, the better user experience
you should have). So, it's trivial that it'll consume a lot of power, and often wasted
because the requested state in the server hasn't changed. Project this problem in

a mobile application and it can empty the battery quickly. We'll achieve this by
rendering our resources in a more convenient way using JSON, and by having
some JavaScript scripts on the client side to fetch them.

To make our application more user-friendly, we'll create a kind of dashboard that
can be customized to include those interesting chat instances / topics for the user.
Thanks to this use case, we'll also see some other helpers provided by Play! 2 in
order to dynamize forms on the client and the server side, through the need of the
non-deterministic structure (list).

The second thing we will resort to here will be the use of CoffeeScript rather than
JavaScript (in some sense). Because the Play! 2 Framework is perfectly integrated
with CoffeeScript, we will be able to use it like we were using simple JavaScript
scripts. Indeed, Play! 2 will handle the compilation and hot refresh on its own. Its
official website (http://coffeescript.org/) defines CoffeeScript as follows:

CoffeeScript is a little language that compiles into JavaScript.

[142]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

CoffeeScript is a language that eliminates boilerplates or

enables class definition (among other things). Furthermore,
Yo it has the advantage to be compiled into a readable

JavaScript file (helpful for debugging, for instance).

One of the reasons we'll use CoffeeScript over JavaScript is because it is more
readable for most server-side programmers (the syntax is similar to Python).

So, we want a dashboard, which is something that presents a lot of things at the
same time, in order to multitask optimally. Let's do it.

Configuring a dashboard

A dashboard is something that can be configured to present the exact amount of
information that a user wants to see. So, in our case, where only chat instances are
involved, we're going to provide a way to see several chat instances at once.

For that, we'll have to deal with a dynamic form on the server side. This form will
be such that the number of values passed to the server is neither predetermined nor
fixed (non-deterministic).

First of all, we'll need a new template for this and its related server-side action. The

template will present an HTML form, where the user can select which chat instances
he/she wants to add to his/her dashboard. So we'll need all available chat instances
as a parameter of this template in order to create the Ul that enables such selections.

On the server side, the action should be able to retrieve as many chat instances as
the user has configured; hence we're going to have a kind of dynamic list of chat
references to be bound to the request content.

[143]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

The following screenshot shows an example of how we can define our template:

@i dashboardForm: Form[controllers.Dashboard.Datal, allChats:List[Chat] = MNil)

as function defin

{

@*% Even inner “fenm be defined as

@createSelect[elId Fleld preparedchats SeqiEStrlng, Strlngl]l =
@helper.select(elld, preparedChats, ' label -= "Chats", 'class

= "selectChat"]

ated variable *@

.toSeq) { preparedchats =z

@ defining enables to keep & speci c computatis in @ de

ﬂdeflnlngfallchats map[c ol 1nternalId toStrlng, c.topic)

@mainf "Welcome on Play! 2 - ChatRum") {
=div "dashboard"=
"loader"”
"header" title="Click to toggle"=Change Chats or create</span=

<div class= “samplerBlock chat " style="display:none; "=
@createSelect | dashboardFormi "chatIds[x]"), preparedChats]
div=

._jl EEEEE S |.:.'E

d+ 'iarf k@

L Il-r.|
@helper formtactlnn rnutes Dashbuard open, 'id -= "selectChats”) {

=div 1d="chatSelectors"=

@helper.repeat[dashboardForm["chatIds“], min=2] { chatId ==
@createSelecti{chatId, preparedChats]

fdiv=

a=

What we see in this example is interesting in several ways. First of all, while
defining a dashboard for our chat system, we tried to split the tasks in order to

improve readability.

[144]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

For that, we created an inner template createselect that takes a form field and a
sequence of a tuple of strings. The result of this template is an Html block that shows
an HTML select element. It has been defined against a parameter of type Field,
which is just a wrapper around all information that is necessary to show an HTML
element in an elegant and valuable way — the name, ID, errors, constraints, and so

on. These instances can be easily built from the Form instance based on their expected
name in the request.

We can also see that in order to define an inner template, we simply have to define
a function. This is quite intuitive because we already saw that Scala templates are
compiled into a Scala function.

Then we took all the existing chat instances (available as a parameter of the template)
in a sequence and mapped them to a representation that is easily usable by a select
input field.

As this computation will be done more than once, we can define it as a new variable,
preparedChats, through the use of the helper defining. As it's not possible to create
new variables within a template, we can use this helper that takes a computation and
a block of code that uses it. This is done by providing a function that takes the result
of the computation as the only argument. In this case, the function block of defining
is creating Html content to be rendered.

Now we're reaching two exciting blocks as we're about to define the dynamic part of
the form. Recall that we're trying to have a form that enables the user to select several
chat instances to be shown on a single page.

Let's skip the very next block with the class sampledsBlock, and first look at form
one, where we start directly with the action definition that targets a new dedicated
action (routes.Dashboard. open), followed by the usage of another helper: repeat.
This helper is indeed a very useful one (because it will hide for us all boilerplates
necessary to create form elements that must be serialized under the same name) and
is followed by an array index.

HTML enables a parameter to be defined multiple times by simply
. using the same name. However, there is a common pattern to handle
% a use case that adapts this specification. The solution is to follow the
s name with either empty brackets or brackets holding the index of a
value. Play! 2 uses the second convention, and so using the repeat
helper we'll have solutions such as param[0] =a and param[1] =b.

[145]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

Furthermore, this helper has a specific argument telling us how many times
its body definition has to be generated. In our case, we want at least two chat
instances to be shown. This so-called body, in our case, is exactly a call of our
inner template createSelect, which will create a select element containing
all available chat instances.

We shall go to the action now in order to check how the heck this parameter list
will be handled. But before that, it'd be worth looking at the block we kept aside,
which is there to enable the user to add more than two chat instances to his/her
dashboard, dynamically.

To do that, there is a common trick (a kind of pattern) that will enable us to create, on
the client side, a UI that matches exactly what is produced on the server side (using a
template and thus helpers). This is achieved by creating a dummy excerpt of HTML,
and hiding it outside the form tag. This is what has been done with the div tag
having the class sampledsBlock. In fact, this one just contains a generated select
element, but with a dummy field (giving dashboardForm the expected name, but
with a fake index).

In order to catch what will be necessary to do with it, it's important to check what
is produced:

Chats

Talk, it's only talk ¥

Chats

News... A

+

=

Open

Create a new one

¥ <html=
» <head=.=/head=>
¥ <body=
<hl=Connected as me@home.org=/hl=
b <script=.</script=
¥ <div id="dashbeoard"=
¥=div id="loader"=
=span class="header" title="Click to toggle"=Change Chats or create=/span=

¥<div class tainer" style="display: block; "=
v <div class="samplelsBlock chat" style="display:none;"=>
¥<dl class=" " id="chatlds_x_ field"s
¥ <dt>
<label for="chatIds_x_"=Chats</label=
</dt>
¥ <dd=
p <select id="chatIds_x_" name="chatIds[x]"=.</select=
</dd>
</dl=
</div=

v=form action="/dashboard/open" method="POST" id="selectChats"=
p <div id="chatSelectors"=.</div=>
<input id="addChatSelector" type="button" value="+"=
<br=
<input type="submit" walue="Open"=
</form=
<a href="/farm/chat"=Create a new one</a=
</div> hd

& = | Q himl | body div div.sampleJsBlock.chat

[146]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

We can see that there is a hidden div tag defining some elements, which has
attributes containing the provided dummy index, namely _x_ and [x].

So you can surmise that we'll have to produce a client-side code (we'll do it in
CoffeeScript) that takes this bunch of HTML and replaces all such instances of the
dummy index by the current count of selects being shown (starting at 2, though).

Let's keep this in mind and perform a quick hook in the controller to check how this
form is bound to an instance of controllers.Dashboard.Data according to the type
of template parameter, dashboardForm.

The controller that we're talking about is the one targeted by the form in its action
attribute, which is Dashboard:

public class Dashboard extends Controller {
static public Form<Data> dashboardForm = formiData.class):

static Result index(] {
n okl
views.html .dashboard.index.renderidashboardForm, Chat.find.all{), Chats.itemForm, Chats.imageForm)

public static Result openi) {
Form<Data> dashboardForm = form(Data.class);
Form<Data> filledForm = dashboardForm.bindFromRequest(];
ifldashboardForm. hasErrors()) {
return badRequest |
views, html.dashboard.index.render(filledForm, Chat.find.all()., Chats.itemForm, Chats.imageForm)

urn ok(
views. html.dashboard.index.render({filledForm, Chat.find.all(), Chats.itemForm, Chats.imageForm)

public static final class Data {
public List<Long> chatIds = new ArrayList<Long>():

public ListeChats> chatsi) {

List<Chat> cs = new ArraylListe<Chat>(]:
for (Long 1 chatIds) {
Chat ¢ = Chat.find . byIdil]):
if (¢ != null) {
cs.addic);
¥

The Dashboard controller is very straightforward and doesn't include any new stuff
that we need to point out. The only thing that is really interesting is the Data inner
class, which stands as a container for the received chat instances' IDs.

As done earlier, we use the form method to create the binding by reflection. This
binding will take into account the list and will expect several values with the same
indexed name. So, we're binding it with the request as usual in the open action.

[147]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

Something to note from here is that we're going to use the same template for
rendering the form and the dashboard itself; that's because we'll not change the
dashboard's configuration even if one is already opened. As a consequence, we'll
have everything in the same template.

It's now time to dynamize the form using CoffeeScript.

Some sugar with your Coffee(Script)

So what we need to do is enable the + button to take the sample HTML block created
on the server side to add a new select element after the existing ones. This block
must be reworked a bit in order to use the correct index; we'll do that in CoffeeScript.

To be able to code in CoffeeScript using the same techniques as Java or Scala (hot
recompile and reload, for instance) we can put our .coffee files in the folder app/
assets/javascripts/. Hence, we'll create the file app/assets/javascripts/
dashboard.coffee.

Obviously, cof fee is the extension of a
= CoffeeScript file.

As said earlier, CoffeeScript is there to help developers by eliminating a lot of
boilerplates, mostly in order to code in a more object-oriented fashion using
classes —for those who want this paradigm back.

The code in the following screenshot shows how we can implement our use case:

OPEN FILES

Dashboard.java ® V Application.java ® Y dashboard.coffee ® cha
Dashboard.java

class Dashboard
caonstructor: (opt] -»
% @el = opt.el

Application.java

chatroom.coffee

FOLDERS
¥ play-jbook @ r = @el . find(" header
b .settings @header.on "click", () -»
$i@ .next ogglel 'slow
¥ app if [opt.closed
¥ assets @header.eql@) . click
W javascripts
@el.find| "#addChatSelector") .on "click",] ==
ghalicom;colice tmpl = % sampleJsBlock.chat
count = @el.findl". selectChat").length
P stylesheets s
» comparison newContent = tmpl,html
¥ controliers creplace(/OINI_1Dx([N]_1)/g., "$1"+count+"$2
Application.java @el . findl "#chatSelectors”) .append| newContent
Chats.java window.Dashboard = Dashboard
[148]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Even though we're using the basic features of CoffeeScript in this example, it is
intuitive enough to get a big picture. However, there are still some concepts that
might be worth mentioning.

Words about CoffeeScript's syntax

An important thing to know about CoffeeScript is that its layout is actually driven by
the spaces used to indent the lines (Python style). Take a simple example: the body
of a function must be indented one time more than the function declaration's indent.

As a consequence, CoffeeScript doesn't require parenthesis for a parameter's block
and nor does it require a comma to separate the array's items or properties in an
object (if they are separated by well-indented blank lines).

A class can be defined as easily as in an object-oriented language, that is, by simply
using the class keyword followed by the class name. Methods and fields can

be defined using the object notation, that is, the name followed by a colon, and
then the definition of the field or the function. A commonly used method is the
constructor one, which will be used when using the new operator.

A variable declaration is not defined by any special keyword (such as var); actually,
all newly used variables will be created locally by default (rather than globally, as in
JavaScript).

A function can be declared in two ways: with an arrow (->) or a fat arrow (=>). These
arrows will separate the function parameters between parenthesis and the body of

the function (the implementation). The only difference between the arrow and the fat
arrow is that the latter will keep the actual scope (which is graceful when playing with
closures); the this object can be kept as the original class' object, for instance.

[149]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

The following screenshot shows two functions for illustration purposes:

a=new Al"I'm a
b= new Al"I'm b
a.f.callla Will
a.g.callia, "will
aofacakll b
1
Ll

Will praind

a.g.callib, "Will prin

print 'm a

'm a

To read the example, we must mention that the this variable doesn't exist, but @ can
be used to refer it; so eprop is compiled as this.prop.

Now we can understand that the g function, which makes use of the fat arrow, will
never lose its initial scope, that is, the object that holds it.

Explaining CoffeeScript in action

Back to our Dashboard class, we can see that it only defines its logic in its
constructor, so it doesn't provide any other functionalities besides starting itself
with some actions. These actions are twofold (using jQuery that was imported

in the main template):

* The first action is retrieving all the elements that have the header class.
On them, it will register a c1ick event that will toggle the next DOM
element. Another initial parameter is used to tell if it should close these

elements on startup.

[150]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

* The second action registers a click event on the + button that will look for
the block of HTML code in the form that wraps all select elements, then
keeps count of the already present ones, and finally retrieves the hidden
template's excerpt, so it will update the template with the relevant count
and then append it to the block.

In brief, this . coffee file defines the Dashboard class and makes it available in the
global scope in the very last statement. Having created this file, there are two things
to be done - add the compiled JavaScript file to the web page and use it.

Play! 2 will compile our CoffeeScript file in the same folder as our traditional
JavaScript files, that is, in the public/javascripts folder. Because of this, adding
them to the application is as simple as adding a new JavaScript library in the scope
(most of the time, this will be done in the main.scala.html file). This way, Play! 2
will be able to cache it and do some JavaScript minification for the production mode.

The way we're going to use it is not very conventional, but it will do the trick. In
our dashboard/index.scala.html file, we'll just add a bootstrap code creating an
instance of this Dashboard class:

adefining(allChats maplc == (c.internalId.toString, c.topic)) .toSeq) { preparedChats ==

main Play! 2 atF 11
$(function
board = w Dashboard!{

dForm.value.isDefined

In a real application, it's worth considering libraries such

as Spine.js or Backbone.js with Require. js for

organizing your code and loading them.

Rendering the dashboard

Until now, we've been able to tell the server which chat instances are to be shown
in the dashboard, but we haven't showed them yet. However, in the action, we saw
that we're rendering the same template by providing the updated form with a Data
instance, which has a helper method to fetch the chat instances.

[151]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

Here again, we'll take advantage of the composability of our templates, by re-using
the chatroom template for each chat in the chat instances list; the only thing we have
to do in it is remove the call to main.

As this template requires two more parameters (the form enabling new messages
or uploading of images), we're going to add them to the dashboard/index.scala.
html template's signature.

What comes next is fairly obvious. Check out the following screenshot:

dashboardForm: Form[controllers.Dashboard.Data],
allChats:List[Chat] = Mil,

itemForm:Form[Item],

sendImageForm:Form[Image])

@créafe%électleiid:Field.-brepéredchafs:éeqi:itring: Sfriﬁa|]n 5
@Bhelper.selectielId, preparedChats, '_label -= "Chats", 'class

i
-= "selectChat")

ﬁdefininéfélichats.mépfc = ;c:inférﬁélfd.faﬁffing._c.tapicr;.faSeﬁl { prépaﬁedchats =5

@main("Welcome on Play! 2 - ChatRum") {

script
%[function £
dashboard = new Dashboard! {
el: §("#dashboard"
closed: @ashboardForm, value,isDefined

i
H:
«=div 1d="dashboard"
div 1d="loader"=gg
div

@defining(dashboardForm.value] {data ==
@ifl(data isDefined] {

div
@data.get . chats.map{ ¢ ==
@chatroomic, itemForm, sendImageForm]
1
div
}
i
div

o

The action doesn't need to be changed as it
has foreseen them.

[152]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

That was easy game. We just checked whether the form contains some data; if so, we
looped on the embedded list of chat instances and called the relevant template.

The following screenshot shows the result (with a bit of skinning) we have so far:

Change Chats or create

Talk, it's only talk

So far... Attached Images

:47:54.276] me(@home.org > true
* [08:47:54.277] thiefiwhood.com > indeed
React i Attach an image
message ! caption

Maximum length: 140 Maximum length: 140

Required H
! pic
send Choose File | No file chosen
send
News...
So far... ; Attached Images
¢ [08:47:54.278] no(@one.biz > new HashMap() i
+ [08: 281] me(@home.org > new Date()

. This is what we get after having selected two chat instances in
& the form; we can also see that the form is hidden (that came
" from the bootstrapping JavaScript that told to close it when a
Data instance is available).

Updating the dashboard in live mode

So far so good —we have an aggregated view on several chat instances, but what
hasn't been satisfied yet is the "liveness" of the updates. Actually, this problem has
taken on more significance now, as several chat instances are involved. So let's

resolve it.

[153]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

What we're about to do is enable a poller for each chat to fetch its last updates that
are available. For that we'll need two kinds of things, as follows:

* A bunch of JavaScript files that run in the background in order to constantly
fetch items and images based on the last timestamp. The result, a JSON, will

be used to update the UL

* An action on the server side taking a timestamp and a chat that will return
a JSON-encoded response with the items and images created since the

given timestamp.

For the first part, we'll do quite the same as we did in the earlier section, that is,
create a . cof fee file that will contain the logic, add it to the main template, and

initialize it in the relevant template.

First, the . coffee file! We'll create a new one, named chatroom. coffee, which

could be as shown in the following screenshot:

@since = conf since

formatTimestamp: (ts] -»
ts.values[O] + + ts.values[1] + + ts.values[2] +
updatelist: (target, list, format] =»
c = target.find("yl

='+format (item) +' </li=

{items, images) =»

.react.past
T FEE Rl

+ @formatTimestamp(i.timestamp)+

@updatelList
ind(" attach.past

c i, caption
cap+ . <img sre="/chat/images/'+ i internalld+ '" alt="'+ cap+
fetchContent: =»
me = @
$.get
Jchat/content/" + @id + "7timestamp=" + @since,
1.
(data) >
me.updatecChat(data.items, data.images
me.poll
me.since = new Datel).getTime
poll: =»

setTimeout | @fetchContent, 5000

window.ChatRoom = ChatRoom

]=</span= <span='+i.user.email+

+ ts.values[3]

</span= = '+ 1.message

" title="'+ cap+

[154]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

So what's the big deal here?

The constructor of chatRoom takes a configuration object with three properties kept
as fields of the class: the chat's ID (id), the element (e1) wherein the UI has been
added, and the last updated timestamp (since).

At the end of the class definition, there is a po11 method, which simply starts an
endless loop over the fetchContent method right above it, every 5 seconds. This
latter method (thanks to the fat arrow) is always resolved to the actual instance, and
its work is actually to call the server-side action that will be tackled next.

For that, we used jQuery's ajax function (get is just a jQuery abstraction over it) by
giving it a URL filled with the expected parameters and a success function that will
handle the response (a data encoded in JSON).

When the call succeeds we ask the chatRoom class to update its UI with the new data,
and we call poll again.

Think about what is so bad here—! The URL was hardcoded!

. This will be resolved in the next chapter. Other things that can be
% improved here are the building of the items and images on the UL
L= Actually, we could re-use the tip we used earlier with the hidden
HTML excerpt. That is, we could create the HTML with some

placeholders to be replaced using JavaScript.

After including this script in the main page (<script src="..."), we must update
the chatroom.scala.html template to initialize an instance of chatRoom, shown
as follows:

d|chat : Chat, item:Form[Item], sendImage:Form[Image]

aimport helper.

script
| function(| {

var room = new ChatRooml{

id: @chat.internalld,

el: %("#chatroom @chat.internalld
since: new Datel].getTime

raam:pall

div id="chatroom @chat.internalId"”

[155]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

One last thing to have the whole polling system in place is to add the action to be
routed from URLs such as /chat/content/:id?timestamp=:since. So this action
should take two arguments: two Long types (one for the ID and the other for the last
update timestamp).

public static Result contentSince({Long chatId, Long timestamp) {
LocalTime t = new LocalTime(timestamp);
0Obj ectNode result = Json. newlbject(];
Chat chat = Chat.find byId|chatId];

if (chat == null) {
result.put{"error", "chat not found");
return notFound{result];
i
List<Item> items = chat items;
List<Item> ritems = new ArraylList<Item=():
List<Image> images = chat.images;
List<Image> rimages = new ArraylList<Image>(]
for (Item 1 items) {
if (1. timestampl) . isafterit)) {
ritems.add(i);
)
i
for (Image i : images) {
if (i.timestamp() . isAfterit]) {
rimages.add(i);
}

result.put(”items", Json.tolson(ritems])];
result.put(“images". Json.tolsonlrimages)):;
return okiresult];

Quite obvious, we just retrieve the chat instance and filter the items and images
based on the given timestamp (wouldn't it be great to have a higher function filter on
the lists?). Then we asked the JSON from Play! 2 to encode an object containing both
resulting lists (using reflection and thus without our help). And we're done. We can
now open several browsers, configure our dashboard, and do cross-chatting with
them all. And magically, everything is updated automatically.

Amazing, right? But not enough. Because, at first, we hardcoded URLSs, then we
polled for each chat instance. We also have the same forms for posting new items or
images for each chat instance, but using them will cause us to leave the page and will
force us to go back in order to go back to the dashboard.

So annoying! That's why we're about to change that in the next section.

Dynamic maintains form

In the previous section, we made another improvement to our application by
enabling some live updates while using the dashboard, all this using a polling
system that targets a dedicated action.

[156]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

However, we saw that it wasn't enough to excite the "chatrumer"; indeed, each time
he/she posts a message or a file, he/she will be redirected to a new page. That's not
what we call a "user-friendly" interface.

Chatrum: A fancy combination of chatting
e and forum.

Moreover, we did a very wild thing with the code, which was the hardcoding of a
URL —that's so scary.

To recover our peace, and the user's, we're going to use the amazing features that
Play! 2 is providing us with: a client-side router and a JavaScript version of the
server-side router which was used to perform redirects and so on. Both the server and
the client routers are generated by Play! 2's code generator based on the routes file.

Going even further, we'll reduce the number of forms (for posting) from twice the
number of chatrooms being shown to only two, simply by introducing a selector that
switches between them. The plan is set; so let's do this reduction by removing the
form's parameters from the chatroom template and put them back in a dedicated one
called participatingChats.

' participatingChats.scala.html \

dl
chats:List[Chat] = Nil,
itemForm:Form[Item],
sendImageForm: Form[Image]
|

gimport helper._

div ="interact row"
select id="chatSelect"”
dchats map{ ¢ ==
option ="f@c.1nternalId">@c.topic=/option

select
div ="react"
h3=React =/h3
form 1d="talk"
dinputTexti{itemForm(“message"))
input ="submit" ="send"
form
diw

div ="attach"
h3=Attach an image=/h3
form

="sendImage"
=g ="POS

="multipart/form-data"”
@inputText(sendImageForm| "caption")]

dinputFilelsendImageFormi "pic")]

input ="submit ="send"
form
diwv
div

[157]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

As the changes to the chatroom template are pretty straightforward, we'll only look
at what's going on in the newly introduced template.

Not that much actually, we just picked up the HTML block from the chatroom
template and dropped it in a new one. But we did two surgical modifications: one
related to the HTML form's definitions and the other one that creates a selector with
all chat instances being shown in the dashboard.

What has been done is revert the use of the helper. form template provided by Play!
2, which will generate a form on the server side with a fixed action (using a call
instance), to the classical HTML one. Looking closer, we can even see that the
actions haven't been set and have a dummy value such as #. So, are we expecting
some CoffeeScript?

Just before entering these details, we mustn't forget to call this template somewhere.
As its responsibility is to enable the user to select the chat that he/she wants to
interact with a message or an image, it'll be used in the dashboard/index.scala.
html template, shown as follows:

div id="dashboard"
div id="loader"=gZg
div

gdefining(dashboardForm.value] {data ==
difidata.isDefined) {

div
ddefining(data. get.chats){ chosenChats ==
dchosenChats.map{ c ==
achat roomic)
)]
dgparticipatingChats(chosenChats, itemForm, sendImageForm)
div
}
}
div

What we did is simply add the forms right after adding the chat instances, outside
the loop. As we're going to use the sequence of all shown chat instances, we've also
created a scoped variable (still using the defining template).

[158]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

At this stage, we can already run the code and see something like the following
screenshot; however, nothing is going to work since the action attributes haven't
been set on the forms.

Talk, it's only talk
So far... i Attached Images
e [17:23:56.207] thiefighood.com > yeah
¢ [17:23:560.219] me(@home.org > true
e [17:23:56.219] thiefi@hood.com > indeed
e [17:29:46.305] thiefiwhood.com > coucou
News...
So far... : Attached Images
e [17:23:56.220] no{@one.biz > new HashMap() I
e [17:23:56.221] me(@home.org > new Date()
e [17:23:56.222] thiefi@hood.com > Men...
Talk, it's only talk v | React i Attach an image
message : caption
Maximum length: 140 Maximum length: 140
Required i
i pic
send Choose File | No file chosen
i | send

What do we have to do with this now? The forms need an action to be set and they
cannot change the current page.

First the URLs. The problem with our URLs is that they are presenting information in
them, such as the target chat's ID:

GET Jchat/content/ 1d CONLFOLLErS . Chats . CONLENT SLNCEl 1d:Long, Limes
POST fchat/:chat/message controllers.Chats.talklchat:Longl

POST schat/:chat/image controllers.Chats.receiveImage(chat:Long)

What we did earlier was to extract the URL manually from the routes file, and
generate the URL ourselves (for the polling). But there is a smarter way to do this in
Play! 2, that is, using a JavaScript reverse router.

[159]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

What is this router? It is a JavaScript object that contains a representation of certain
server-side actions that we've expected will be used on the client side. In our case,
we'll create such a router entry for the actions talk and receiveImage.

Creating such a router is pretty simple. The idea is to ask Play! Framework 2 to create
a JavaScript file that can be imported in an HTML page (in our case, in the main one),
as we do for any other JavaScript file.

So first we need an action that creates this file and its route definition. Such an action
will use a builder that Play! 2 provides us, which is Routes. javascriptRouter,
with the help of the compiler that generates a JavascriptReverseRoute route for
each action.

Now check out the following screenshot:

public class Application extemds Controller {

Sk
¥ JavaScript version of the router to be injected in the main page
¥
public static Result jsi) {
responsel) setContentTypel 33&3;lﬂ@a35£iﬂl I
return okl
Routes. javascriptRouter("playRouter”,

controllers. routes. javascript. Chats. talkil),
controllers. routes. javascript. Chats. receivelmagel),

Good! What has been done in the previous screenshot was first setting the content
type of our HTTP response to be text/javascript, and then building this
embedded file to be sent with an OK status.

To build such a file, we first call the utility method in Routes called
javascriptRouter that takes two arguments:

* The first is the name of the JavaScript object (the name that will be available
under window on the client side).

* The second is a varargs of JavascriptReverseRoute; such routing instances
are created for our good by the compiler. Each time we define a route to
an action, this action will be reverse-routed in an object located under the
package controllers.routes.javascript.

[160]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

That's fine; this will generate the JavaScript file containing the reverse-routing part,
but now we have to route it too and call it in our main template. The following
screenshot shows the routing, and how we can use the js action with a script tag:

Content
GET /chat/images/:imageld controllers.Content.getImage(imageId:Long)
GET /content/atom/*emails controllers.Content.atomlemails:String)

Map static resources from the fpublic folder to the /fassets URL path
GET /fassets/#*file controllers. Assets.at(path="/public”, filel
GET /jsroutes controllers. Application.jsl)

main.scala.html *®

=Llink rel="stylesheet” medis="screen” hret="@routes. Assets.atl"” SthEShEEtS)’ Dook ._&5\’%" 1=

=link rel shortcut icon" type="image/png" href="@routes. Assets, at'"m o 3
=script s routes.Assets.at "m-l 7.1.min.js")" :-=—"text{1avascrlgt -</SCript=

=script src routes.Assets.atl

1SVaLerIRta/Iauery - Forn. 15°) ~ ypem"text [1RVASErIRE -2 scrint=

<gcript src="@routes.Assets.atl"javascripts/chatroom. lﬁ"'" ty "tex't;'javascrigt "sz/script=
<script s routes. Assets. at("javascrapts/dashboard 15")" type="text/1avascrapt"=</script=

=i-- "’“"O't 15 reverse routing --=

=script srec= Wl\éroutes.hppllcatlon.lé' type='text/javascript '=</script>

=/head=

As expected, we simply routed the actions to a custom URL that we used in our
template like any other JavaScript (or CoffeeScript) file.

So, what's available now on the client side? Let's check it in the browser:

> playRouter

¥ Object
¥ controllers: Object
¥ Chats: Object
» receiveImage: function (chat) {
bta'lk function (chat) {
. Object
Object
_ ¢ Object
> playRouter.controllers. Chats.talk

function (chat) {
return _wa({methed:"POST", url:"/chat/" + (functionik,v) {return v})("chat", chat) + "/message"})
¥

> playRouter.controllers. Chats.talki100000)
¥ Object
» absoluteURL: function (s){return _s('http'.s)+'localhost:2000'+r.url}
#ajax: function (c){c.url=r.url;c.type=r.method;return jQuery.ajaxic)}
method: "POST"
url: "/chat/100000/message"
» webSocketURL: function (si{return _si{'ws',s)+'localhost:2000"+r url}
_ proto_ i Object
> playRouter.control'lers‘Chats.ta'lkil] cajaxi{
data:{message:"Fram Js"},
success: functioniresp) {
alert(respl;

The page aj locall

gl
F Object
>

[161]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

Awesome, right? We can see that the structure is replicated in the JavaScript object,
and that each action has its own dedicated function as well. Such a function takes as
many arguments as the route definition has defined for the related action.

When applying values to this function, we'll get a fresh object that will have the
URL correctly set along with some other stuff, such as the helpful ajax one (which
preconfigures the URL), the method, and so on for dedicated AJAX uses. Thus we're
getting back the features that helper. form provided for us on the server side!

There is also another convenient property that has been created,
s webSocketURL, which will be used in the next chapter.

Back to our example, we now need our forms to use such JavaScript objects in
order to deal with the server in an asynchronous way, which will make our
application a single page one as we'll no longer leave the page when playing
with a configured dashboard.

For that, we'll do a quick change in the actions themselves in order to change the
response to a single text, rather than rendering a full HTML page.

static public Forme<Item> itemForm = form(Item.class]);
public static Result talkiLong chatId] {
User user User.find.byId(session("email"]];
Chat chat Chat. find .wherei) .egl"internalId”, chatId) .join{"items") .findUniquel];
Forme<Item> boundForm = itemForm.bindFromRequest():
if (boundForm.hasErrorsi)) {
return badRequestiboundForm.errorsAsJson() .toStringl));
}

Item item
item.user :
chat . items.addlitem);

boundForm.get();

chat .savel];
return ok{"done"];

public static Form<Image> imageForm = form({ Image.class);
public static Result receiveImage(Long chatId) {
User user = User.find.byId(s on{ "email ")) ;
Chat chat = Chat.find .wherei) .egl"internalId", chatId) .join{"items") .findUniquel];
Forme<Image> filledForm = imageForm.bindFromRequest!():
ififilledForm.hasErrorsi)) {
turn badRequest(filledForm.errors().toString(]]);

Http HultipartFormData body;
body = reguest().bodyi).asMultipartFormDatal):
Http. HultipartFormData. FilePart pic = body.getFilel LJV}\E I
ifiImage. ImageType. get(pic.getContentTypel)) == nulll]
return badRequest("bad file : + pic.getContentTypel]):

Image image = filledFarm.geti]:

image.pic = pic.getFilel):
filePath = pic.getFilel) .getPathi);

return okl "image saved"):

[162]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Basically, we've just replaced the calls to Scala templates by simple strings.

That drove us to the last point, the CoffeeScript files that glue everything together.
The main thing will essentially be the usage of the JavaScript routers when a form
is submitted.

Let's start with the easiest one: the item form that simply posts a message to the server.

As these forms are now added to the document in dashboard/index.scala.html,
and it will add the CoffeeScript file that dynamizes the form in the constructor
of Dashboard.

@1nteractSelector = @el.findl "#chatSelect
@chatsRouter = playRouter.controllers.Chats

@el.find("#¥talk").submit (e) =»
$form = $le.currentTarget

chat = @interactSelector.val
route = @chatsRouter.talkichat
route.ajax

data: %form.serialize
success: (] -»

console.logl "message sent

error: [(data) -»
console. dir(data
alert("message not sent + data

First of all, we create and initialize a field on Dashboard that will hold a reference to
the select box, which enables the user to switch between the shown chat instances.
Then we create and initialize another field that shortcuts the lookup of our router,
that is, the chats one.

After some manipulations with the jQuery part of the form, we called the function
talk on the reverse router that was created by Play! 2, and we used this function
by providing a parameter that is expected in the route definition: the chat's ID. The
result is the object with the ajax function in it, which we can use to send

our request.

That was really easy, thanks to Play! 2, its compiler, and the code generator.

[163]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

For the other form (the image) it's as simple as this one, but we will just need a
jQuery plugin, which will ease the work to send a form with a file asynchronously.
For that, I've chosen a good one, which has the advantage to work and to be simple:
jQuery Form Plugin. You can find it at http: //malsup.com/jquery/form/.

Download the file and place it in public/javascripts/ along with the already
present jQuery file, and then go to the main template to load it as well.

Having this library in the scope, we can go back to our Dashboard class and update
the constructor with the relevant code to publish the file asynchronously, shown
as follows:

@uploadFormOptions =

target: '#upload',

success: [responseText, statusText, xhr, $form) -» console.dir(responseText
@el.find("#sendImage") .submit (e) =»

$form = $le.currentTarget

chat = @interactSelector.val

route = @chatsRouter.receivelmagel chat

$form.attr("action”, route.url

B . L Rt
$form.ajaxSubmit | @uploadFormOptions

Quite the same kind of code as the previous one. The only thing that changes is the
usage of the plugin's function, ajaxsubmit, by changing the value of the action
attribute with the relevant one using the reverse action.

We're done now; we can now test by chatting in real time using several browsers
without having to go back each time we submit a new thing.

Actually, we're missing something — the hardcoded URL when we were polling. So?
What's the big deal? The only thing we have to do is adapt the JavaScript action to
declare the contentSince reverse router in Application.java, and use it in our
client-side code —I'll leave it as an exercise.

We have a very cool chatrum now. But still, there are some things that we could
do to enhance it, and to fit it better into "the new way of doing the Web". That is,
the usage of reactive streams rather than several pollers (which we might have to
aggregate into a single one, but anyway).

[164]

www.it-ebooks.info

http://malsup.com/jquery/form/
http://www.it-ebooks.info/

Chapter 6

Real time (advanced)

The Web has changed; HTMLS5 is almost there and is already implemented by all
browsers. At least, the useful parts of it are available, especially the parts we'll use in
this section.

It's now very familiar and it won't surprise you anymore, but Play! Framework 2
will again demonstrate that it is a real web framework by integrating things such as
WebSocket or its old fallback, Comet.

Actually, Comet is not really a fallback for WebSocket since it's unidirectional while
the latter is bidirectional. Nevertheless, there is another specification that does the
same as Comet: Server-Sent Events (SSE). Even if an implementation of SSE is not
(yet) provided by default, Play! 2's API will help us a lot in implementing it on our
own really easily. This tool in hand, our application would have a really good push
mechanism in place.

In this chapter, we'll focus on the most popular one, which is WebSocket. Hopefully,
this is the one we'll need in our application to make it more responsive and reduce its
consumption in bandwidth and resources (remember the endless loop to poll).

Adding WebSocket

WebSocket is a duplex connection between a client and a server that enables
bidirectional communication, like what we would love to have in our chatrum.

What we're going to do is enable our client side to listen to server messages in order to
update the chatrooms that the user has configured in its dashboard. We'll continue in
this great direction by re-using the connection in order to push the messages as well, in
a standardized way, using asynchronous tasks, no loops, and without boilerplates!

Essentially, what will be done is the replacement of the actions talk and
contentSince by a new single one that deals with WebSocket.

For this action, Play! 2 requires us to define an action that returns an instance of
play.mvc.WebSocket<A>. As you can see, it has a generic type, which is the class
of the expected representation of the messages that are sent to the connection.

So, first of all, we remove the obsolete actions and create a new one called
chatsStream. And, of course, we can remove the route definition as well.

[165]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

The following screenshot shows the resulting Chats controller:

public class Chats extends Controller {

static public Form<Chat> chatForm form(Chat.class);

|:;L|I:|1i-: static Result registerChat(] { =
|:;L|I:|1i-: static Result loadChati) {=
gulﬂi-: static Result allchatsi) {=
gulﬂi-: static Result createchat() {=

static final public Forme<Item> itemForm = form{Item.class];

public static WebSocket<JsonNode> chatsStreanfinal String chatIds, final Long timestamp) {3
3 L

public static Form<Image> imageForm = form|Image.class);

public static Result receiveImage(Lomg chatId) {m=
T

And the following screenshot shows the resulting routes file:

GET /form/chat controllers. Chats.registerChati]
GET /chats controllers. Chats.allChatsi)
POST /chat controllers.Chats.createcChat()
GET /chatroom controllers. Chats.loadChat!)

POST /chat/:chat/image controllers,Chats. receiveImage(chat:Long)

GET /real/chats/:ids controllers. Chats.chatsStreamiids:String, timestamp:Long)

With the noise gone, we can now look at the signature of our new action,
chatStream, that takes two parameters:

* chatIds: The chat instances' ID that the user has selected for his/her dashboard
* timestamp: The time at which the client will start listening for

incoming events

That was the parameter part, and if we look at the result type we'll see what
we had expected — the WebSocket type, with its generic type org. codehaus.
jackson.JsonNode.

[166]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

As WebSocket is a connection wherein streams are involved to transfer bytes,
commonly represented as strings, one would think that we'll have to slurp the
messages' content and process them into JSON. But we won't, because Play! 2 knows
that JSON will be used in 99 percent of use cases. So, everything will be done for us.
However, they've also prepared the ground for simple strings and bytes.

So far so good; but before getting into the details of creating such an instance of
WebSocket dealing with JsonNode, let's have a look at the preliminaries:

static final public Forme<Item> itemForm = form(Item.class):

public static WebSocket<lsonNode> chatsStream|final String chatIds, final Leng timestamp) {

final User user = User.find byId{session("email"]];
final List<Long> chatIdslList = new ArrayList<Long>():
String[] cis = chatIds.spliti",");

for (String c cis) {

chatIdsList.addi Long. parseLongl(c)):

1
return new WebSocket<lsonNodes(| {

public weid onReady|WebSocket.In<JsonNode> in, final WebSocket.Out<lsonNode> out) {

in.onMessagelnew Callback<JsenNode=(| {=
37
.

Our intent is to reduce the amount of traffic on the wire (graceful for mobile
applications), so we'll have only one connection between the client and the server.
This single connection will deal with all messages from the client (chatting) and a
multiplexed wave for all chat updates.

That's why our action takes a String parameter, which is the list of chat instances'
IDs list we'll have to listen to for updates.

I recommend you to think how we could have done this using

splat parameters in the routing definition rather than a simple
' string that we split explicitly in the action.

So we process this string to retrieve all IDs in a dedicated list, and we'll keep a
reference to the connected user too. Then we start creating the real answer, which is
the implementation of WwebSocket itself.

[167]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

As we may have noticed, to create such an instance we'll need to implement a single
method, that is, onReady. This is the method that will be called when the connection
will be set and the server will be able to deal with the client. As it's the time when
communication takes place, onReady accepts two streams as parameters:

* in: This parameter is an instance of WebSocket . In<As>. It represents the
messages' input stream, where the client is pushing messages that must be
compliant with the generic type A of WebSocket (here JsonNode).

* out: This parameter is simply the other way around, with a dedicated class
WebSocket .Out<A>.

Obviously, we return the inline implementation as the result of our action.

Having done that, we've already defined a connection between a client and this
action; really, nothing more has to be done. The internals will manage the persistent
connections with all connected users.

Thus, we can now move on to one of the two actions that this action might do, which
are receiving a message (talk) or publishing events (update). So let's start first with
the talk use case.

Receiving messages

The use case is to take the incoming JSON-encoded messages and persist them as the
Itenm list of the chat instance. As our socket is unique for each client, the message
should contain the information about the targeted chatroom.

Reacting to the incoming message is pretty easy, because of the webSocket . In<A>
class that has a method onMessage, which will be called whenever a message arrives.
Given this semantic, it's fair enough to pass it an argument, which is a callback (a
command) —so familiar when coming from the JavaScript world.

Such a callback is simply a Java workaround for a lambda function that will take in
our case one parameter of type JsonNode.

Back to our task now, we need a callback that retrieves the information about
which chat is targeted and what the message is, right before adding it to the
items list of Chat.

[168]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

return new WebSocket<JsonNode>(| {
public woid onReady(WebSocket . In<JsonNode> in, final WebSocket. Out<JsonNode> cut) {

in.onMessage(new CallbackelsonNodes(| 1
public woid invoke(JsonNode event] {
Long chatId = event.get("chatId") getLongValuel];
Chat chat = Chat.find.byId{chatId):

Form<Item> f = itemForm.bind{event);

if (f.hasErrors(])) {
ObjectNode error = Json.newlbject(]

error.put(“status", "errar"]
out .writelerror)

} else {
Item 1tem = f.get(];
item.user = user;
chat .1tems.add{1item] ;
chat .savel];

ObjectNode result = Json.newObject!(];
result.put("status", "success"):

Actually, there is nothing really hard to understand here. It's essentially the

previously created talk action, but rather than having the targeted chat's ID
available as a parameter of the action, we assumed that it's part of the JSON
message itself.

Then we bind (as usual) our form to the current message; here again, we diverged a
bit by calling bind rather than bindFromRequest, which is obvious because there is
no request here! What's also interesting is the response sent back to the client, which
is another JSON object that is created with the current status and then written on the
out stream. That's how messages are sent to the client. However, we're going to see a
better example of such a push message.

Multiplexing events to the browser

We have reached the last server-side part of the bilateral communication for our
chatrum. What we have to do now is provide the connected client information about
which chat instances have been updated and what is updated.

There are several ways to accomplish this task; the one we'll choose here is probably
the easiest and has the advantage of smoothly introducing the Akka library.

[169]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

Akka is part of the Typesafe Stack 2 for everything related to distributed, parallel
computing, and so on. It provides a fast and non-blocking API using what was
initially an Erlang concept: the Actor Model that is making us rethink the way
concurrent tasks might be done.

The killer features are, for instance, that our application's number of simultaneously

connected users is no longer limited to the number of threads our server can handle.

In short, J2EE is mainly based on servlets, where each request takes one thread in the
pool and holds it until it terminates: this is called blocking.

Even if Akka provides a lot of features, we won't discuss them here (there are plenty
of emerging books on it, which are worth considering reading conscientiously);
however, we'll use one of them, that is, the asynchronous recurring task definition
(a scheduler).

Indeed, we're going to check the updates through the usage of such an Akka scheduler,
by asking it to check the database content periodically based on a timestamp.

Using the item and image's t imestamp field, the recurring task will be able to

know whether they have to be sent or not. What we'll gain here over the previous
implementation using contentSince is that only events will be transferred over the
wire when updates have occurred for all chatrooms.

This is not yet the most efficient way to do it, but I tried to KISS.
% For those interested in a better one, a tip is to use messages and
T actors when items or images are persisted.

The following screenshot shows how we can define a scheduled task with Akka,
and how we can use it to send update events to the client:

[170]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

public woild onHeady| WebSocket . IncisonNode> 1n, Tinal WebSocket. Uut<JsonNode> out| 1

in. onHessage[nPw Callhackchnande:[l {E]
¥
2ll3

Akka systemil schedulertl schedule[
Duration.create(0, TimeUnit.MILLISECOMDS),
Duration.create(l, TimeUnit.SECONDS),

new Runnable(| {

Lnng lastTlmestamp = 1me5£amp;

public wodid runi) {

analTlme{lastTlmestampl

-
=]
S
T
-
[t
E]
]
=
[,

(1] |1.|

Dh]ectﬂnde result = ann newDb]ectil

result put[update "true ,;.

boolean send = %ai;e;

for [Lnng chatId g chatIdsList]-{
ObjectNode current = checkChat(chatId];
if [current 1= nulll {

send = {IUP
result.put|"chat"+chatId, current];
}

if [sendl {

== W he

out . wrlteiresultl

lastTlmestamp ; System currentTlmeMlllié[l

In the previous screenshot, there are some key points that are worth discussing.
So let's discuss them one by one.

[171]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

The very first thing is the call to the system method of play.1libs.Akka. This Akka
utility class is part of Play! Framework 2 and is hiding Akka's configuration part, which
is handled through a Play! 2 plugin. This plugin helps us configure Akka through some
properties in our application.conf file. Then comes the Akka class that wraps some
boilerplate for us and abstracts things such as retrieving an Akka's system.

In order to keep things simple, let's assume that such a system (ActorSystem) is able
to manage concurrent, asynchronous, or scheduled blocks.

It would have been overkill to talk about the plugin mechanism that
@’@‘\ Play! 2 is providing to extend its server capabilities. However, the
g documentation is evolving on this topic.

So this actor system has a scheduler accessor that itself enables us to schedule a
Runnable. For that, we need to configure how this task has to be scheduled by giving
it the information about the delay before the first execution, and the period between
each execution —both as Duration instances. In our example, we gave a delay of 0
milliseconds and a cadence of 1 second.

The last parameter is obviously the task to be performed, being an implementation of
the traditional Runnable.

The second thing to notice is the timestamp being cached at each iteration in order to
apply a valuable filter on items and images.

This method could induce the loss of some events due to
s some latencies, for instance. But it'll do the job for now.

Then there is the send flag, which is there to prevent us from flooding the client with
empty messages. And what will be sent is simply a message holding the information
about the updates that have been discovered.

How these events are discovered is part of the implementation of the checkChat
method (used in the loop). This method is rather straightforward, because it's pretty
much the same as our previous implementation of the contentSince action. That

is to say, we retrieve a Chat instance, loop over its items and images, and keep

only the new ones. The only thing new is that it will only return a non-null object

if at least one new event has been discovered. The following screenshot shows the
implementation of the checkChat method:

[172]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

i
public ObjectNeode checkChat(Long chatId] 1

ObjectNode current = Jsen.newObject(]:

Chat chat = Chat.find.byIdichatId];

List<Item> items = chat.items;
List<Image> images = chat.images:

List<Item= ritems = new ArrayList<Item>():
List<Image> rimages = new ArraylList<Image=(|:

for (Ttem 1 : items] {
if (1.timestampl).1safterit)] {
ritems.add(i]:;
}

}

for (Image 1 : images) {
if (1.timestampl).isafterit])] {
rimages.add(i) ;
i

}

if (ritems.sizel) = 0 || rimages.sizel) = @) {

current . put(items", Json.tolsonlritems]]):
current . puti"i1mages", Json.toldsonlrimages]);
return current;

T else {

return null;

Nothing more to say...

Live multichatting

Now that we're done with the server side, we must adapt our client-side code
(CoffeeScript and JavaScript) to deal with our new chatStream action instead
of the old talk and contentSince ones.

As there will be only one location where the updates will be resolved, the best place
to put this code is probably in the Dashboard class (in dashboard. coffee). So it will
have the responsibility of checking all chat instances it is configured with; that's why
it will now have to keep a reference to all of them.

[173]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

Until now, the check and talk implementations were done in the Chatroom class's
methods fetchContent and poll —we can remove them both!

With the code being a bit more clean now, we can have a look at the Dashboard part
we're interested in:

class Dashboard
canstructor: {opt] =->

@chatId5.=..né

@el . find("#talk").submit (e] =»
$form = %(e.currentTarget
chat = @interactSelectar.val
value = {
chatId : parselnt(chat
message: $form.find("[name=messagel"| .val

socket . send! JSOM, stringify(value

false

joinArray: (array, sep) ->

del = "*
cs = array.reduce (x, y] =>
x = x + del + y
del = sep
X
now: |) => new Datel].getTime

opened! (chatIds) =»
@chatIds = chatlds

@routeToStream = @chatsRouter.chatsStream{@oinArray| @chatIds, "."], @now
@socket = new WebSocket | @routeToSt ream, webSocketURL
@socket ,onmessage = (msgl ->

data = $.parselSONimsg.data
if (data.update
rooms = window.chatrum.rooms

rooms[c] .updateChat(d.items, d.images] for c, d of data when c.match!"chat[@-9]+

window.Dashboard = Dashboard

The previous screenshot presents the implementation of Dashboard cropped to what
we're talking about.

First, we cover the introduction of a new property, chatIds, which will be an array
of numbers — the chat instances' IDs. They will be necessary when registering to our
chatStream action.

[174]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

Still in the constructor, we have redefined the talk part by replacing the old form for
AJAX submission with the creation of a message object, where we drop a property
pointing to the target chat instance. Recall that the onMessage method of webSocket
in the action chatstream expects such a property to get the instance back from

the database. Then this message is sent over the wire using a new property of
Dashboard, @socket, which we'll look at in a moment.

Let's jump to the method of Dashboard named opened, which takes the list of chat
instances to be tracked and does the following tasks:

* It stores the list in the dedicated property of Dashboard named echatIds.

* It uses chatsRouter, which we have already created earlier (containing the
reverse JavaScript router). This time, we'll use its new action, chatsStream,
which takes the list of the chat instances' IDs as a string and the current
timestamp as a number.

* On this reverse JavaScript action, we can use the function webSocketURL,
which computes a specific URL to target our server-side action through a
WebSocket (for instance, it uses the protocol ws: //). For that, we used the
standard JavaScript webSocket constructor.

* The created websocket object has several callbacks that might be configured;
we're going to use the onmessage one in order to handle the server-side
events as JSON instances.

These messages contain all the latest updates for all chatrooms being
listened to, so we loop over it to update each of them. The update part is the
responsibility of the related chatroom instance, which declared a method
that accepts new items and images to be shown.

We used a static reference to the rooms, which is not a good practice;
% but again, it'll be worth considering something like require.js to
ta deal with such use cases.

[175]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving to Real-time Web Applications

The only thing left to do is slightly adapting the way we were defining the instance
of Dashboard and those of Chatroom in dashboard/index.scala.html and
chatroom.scala.html, respectively.

I]

=a href="@routes.Chats.registerChat()"=Create a new one=/a=
=/ div=
1 =/div=

4 @definingl dashboardForm.value] {data ==
5 @ifldata.isDefined) {
5 =div=
@defining(data.get.chats){ chosenChats ==
3 =seript=
var chatlIds = [];
$(functioni | {
61 @chosencChats.zipWithIndex map{ chat_and_index ==
62 chatIds[@chat_and index. 2] = @chat_and_index. 1l.internalld;
1
{ TELL the dashboard whose rooms have been opened
window.chat rum.dashboard.openedi chatIds) ;
BE 1
=/script=
58 @chosencChats.map{ ¢ ==
@chatroomic)

7 ¥
71 @participatingChatsichosenChats, itemForm, sendImageForm)
72 1
chatroom.scala.html *
} =script=

§(functioni | {

3 var room = new ChatRoom({

9 id: @chat.internalld,
16 el: §("#chatroom_@chat.internalId"|

11 1

12 f// HACK to have rooms populated in the chatrum.rooms package
13 window.chatrum = window.chatrum || {}

14 window.chatrum.rooms = window,chatrum, rooms || {}

15 window.chatrum.rooms["chat" + @chat. internalld] = room

16 1

17 =/scripts

19 =div id="chatroom_@chat internalld"=

What is done is pretty obvious: at the time the list of chat instances is known, we
gave the IDs' list to the opened method of the Dashboard instance kept statically
in a package of our own (chatrum).

The other part is quite the same, as we only store the Chatroom instances in another
static reference (which is used in the opened method of Dashboard, though).

[176]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

This closes the client-side part of the activation of real-time features to our
application. We can now open several browsers and chat in several rooms
in real time, with enhanced performance.

. Note that this is with a delay of a maximum of 1 second due to the
% checking period. But, as mentioned earlier, we could have used
/— advanced techniques of Akka and gotten rid of this small latency pretty
easily. Unfortunately, it would be beyond the scope of this book.

Summary

This chapter was really exciting. We've seen how Play! Framework 2 is there for us
when we have to bring advanced features to the client side.

We saw how a dynamic list of a single parameter is easily defined and used
on both sides: client and server. This is thanks to the Form API and the Scala
template helpers.

We also took the opportunity to quickly introduce CoffeeScript, which is
like a beefed-up JavaScript, avoiding a lot of boilerplates or common errors
with JavaScript.

With that in mind, it was so easy to poll the server in order to fetch the information
that must be updated asynchronously on the current view, without requesting any
actions from the user perspective.

We enjoyed the way we can have a predictable and checked generation of our URLs
without having to hardcode anything, even in the CoffeScript world! This has helped
us a lot in aggregating features in a single component, as we were able to compose
validated URLs on the client side.

We finally moved to real time, using WebSocket and Akka. Akka was there to ease
the definition of recurrent tasks, whereas WebSocket offered a standardized way of
dealing reactively with clients. We especially noticed how easy it was, thanks to a
clean and light API that Play! 2 has defined over such difficult use cases.

Along the way, we built an application, chatrum, that enables the user to configure
several chatrooms he/she would like to interact with —in real time.

This application is still missing a last point to match the standard of today's web
applications: an open door to the external world using web services offered by third
parties. We all have the Twitter or Facebook ones in our mind, so let's see how we
could integrate them into our application in the next chapter.

[177]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services —
At Your Disposal

Nowadays, all web applications have to connect with external services. Delegating
difficult or complex computations to them or interacting on a social network are just
some examples among thousands. Indeed, this means that our application can focus
on what it is built for and it will ask other applications for specific needs.

This leads to the SOA architecture, which is more prone to the separation of
concerns among services that have a clean and simple definition. A web service is
one such dedicated service but is available online. In this chapter, we will discuss
how to integrate a Play! Framework 2 application with such an architecture
involving web services.

This kind of distributed architecture can lead to some problems because it relies on
remote services, which most of the time don't have guaranteed SLAs. So they might
block the server until a response is given or a timeout has occurred; meanwhile,
other users who could have sent requests to the server will be queued.

For such cases, Play! Framework 2 comes with non-blocking helpers that will ease
the work with long or potentially long tasks. This is mainly based on the underlying
Akka system. To demonstrate this, we will cover the following points:

* Get the big picture of the Web Service API

* Access the Twitter API as a web service serving tweets in the JSON format

* Update the dashboard to integrate the Twitter Web Service which adds
external information about the content

* Explain how to use web services in a reactive fashion, even if they
are inefficient

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

Accessing third parties

In this section, we'll see how we can access remote services through HTTP using the
Web Service API (WS API) that Play! Framework 2 has defined for our use.

A web service can have several meanings, such as access to certain resources or
functionalities, but it can also have completely different architectures and data
representations, where the popular ones are JSON and XML.

So, integration with such third parties through a simple and common API requires
quite a lot of abstraction. Hopefully, Play! Framework 2 has prepared the field
with an API sharing concepts used in controllers' actions, such as body parsers,
for instance. So it won't take that much effort to understand how we can use it.

Actually, all that we'll need is a single endpoint for Java and another one for Scala:

* InJava, the play.1libs.Ws class declares plenty of static methods dealing
with web services

* InScala, there is the play.api.libs.ws.Ws object, which contains the same
functions as in Java, but with a Scala flavor

Indeed, these classes define all of the methods we'll need to interact efficiently with
our HTTP services.

ws defines two important classes: WSRequestHolder and Response.
WSRequestHolder enables multiple request creation and execution of all kinds
(GET, POST, streams, files, and so on). Response is obviously the opposite, that is, it
holds the result of our request after processing including the status, data, and so on.

But in fact, we'll never create any of them because Play! Framework 2 also
abstracts their usage through the function url in ws. This function is able to create
WSRequestHolder using the String argument we must pass in, which is the base
URL. The following screenshot shows the skeleton of the ws class:

[180]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

public class W5 {

private static AsyncHttpClienmt client(] {
return play.api.libs.ws.WS. client(];
i)

FEL.
* Prepare a new request. You can then construct it by chaining calls.
¥
¥ @param url the URL to request
¥ f

public static WSRequestHolder url(String url) {

return new WSRequestHolder(url];
1

FET
* Provides the bridge between Play and the underlying ping request

X

public static class WSRequest extends RequestBuilderBase<WSRequest= { =
i)

FEL.
* provides the User facing API for building WS reguest.
¥

public static class WSRequestHolder {=

'y

JEE
* A WS response.

xJ

public static class Response {3

1

JEE

¥ Sign a W5 call.

*

public static interface SignatureCalculator {&g
1

Ok, now what does WwsRequestHolder stand for? In simple terms, it provides the
abstraction over the creation of HTTP requests.

So, with such an instance of WSRequestHolder, we can prepare the query by setting
some parameters using setQueryParameter, and give it some authentication
information using setAuth (and so on for other preparation methods).

[181]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

Having prepared the query, the resulting instance can be sent using methods such as
get, put, post, delete, head, or option. The methods put and post are overloaded
several times because they can be assigned with a body content; that's the purpose of
methods such as put (InputStream body) Or post (String body).

That was for the request part; let's see what's reserved for us by Play! Framework 2
on the response side. But, before moving to this part, we should take a look at the
return type of the send methods (get, put, post, and so on):

IEL.
¥ Perform a PUT on the request asynchronously.

¥
¥ @param body represented as a File
£

public Promise<Response> put(File body) {
return executeFile("PUT", body];
1

In the previous screenshot, which presents one of the put methods available
to send a body to a web service using the HTTP puT method, we can see the
Promise<Responses result type

Promise is a structure that is nowadays more and more popular across languages
because of its worth in the Web world. For instance, jQuery.Deferred is one good
example a Promise object because of its heavy usage in the jQuery framework. In a
way, it represents an AJAX call.

The main purpose of Promise is to create a task that will be processed at some time,
asynchronously, that is, in a non-blocking way. Actually, it is built upon another
concept called Future, which is the real asynchronous piece as its name intuitively
implies. So, the put method is promising the invoker that a Response instance will
be available. Hence, Play! is able to react in such a way that it will suspend this
action once the result has arrived.

[182]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

We can now get back to our Response type, which is the generic type of the promise
object we've just discussed —which declares that a sent request is promised to get
some response at some point.

JI'JF-JF-

* A WS response,

®

public static class Response {

private com.ning. http. client. Response ahcResponse;

public Response(com.ning. http. client.Response zhcResponse] {&
I

/%% g
public dimt getStatusi) {zm
i

FEzL
* Get the HTTP status text of the response
*/

public Strimg getStatusText() {3

}

/¥4)
public Strimg getHeader(String key) {&=
¥

/%% g
public String getBodyi) {=
1

FEL YT
public Decumenmt as¥ml(] {3
i

¥)
public JsenNode aslson(] {
¥

¥)
public InputStream getBodyAsStream() {3
¥

/%%
public byte[] asByteaArrayi) {=
i

SRk
public URI getUril) {m=
1

[183]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

Great! Finally, a response is exactly the same as an action definition; it presents
methods that are very similar to the ones we've seen up until now. Indeed, the
highlighted methods are shortcuts that enable us to retrieve the response's body
(remember, for actions it was the body of the request) that is parsed and represented
as well-known and traversable structures such as XML, JSON, and so on.

The amazing hidden feature that is provided in Play! 2 is that the body is handled,
parsed, and translated in a completely reactive fashion, thanks to the Iteratee
pattern that is used, similar to what was done for the requests' body.

Now that we've got the overview of the API, we'll look at it in action. For that, we'll
choose a third-party service and try to integrate it smoothly into our application.

Let's take Twitter as this third-party service. Twitter exposes an API on top

of its social network which enables us to do almost everything that we would

like to do with Twitter, such as tweeting a small message, recovering others

based on a hashtag, or even searching for new users. Even though most of the
functions provided by this service require an authentication, others aren't. As the
implementation of such an authentication protocol (such as OAuth 2) is beyond the
scope of this book, let's focus on the ones that don't require authentication.

. There is an amazing Play! add-on (plugin) that eases
% integration with external services, especially for social ones.
= Some information regarding the add-on can be found at
http://securesocial.ws.

Interacting with Twitter

In this section, we will update the chatrum application to enable some interaction
with Twitter. What we're going to do is search for tweets based on a hashtag and a
username. For that, we'll look for items in the chatrum that have special patterns, that
is, words starting with a hash (#) or an at sign (@). First of all, we'll see how to use
Twitter to retrieve information using a browser and the API specification.

The Twitter REST API provides an entry point from which it will be able to do a lot
of search operations. This entry point is the URL http://search.twitter.com/
search. json. At first glance we can guess that the operations will represent the
response in JSON.

In order to search on a hashtag, this URL can be set with a search parameter named
g that holds the hashtag, prefixed by the well-known # character. Of course, the
request is a GET one.

[184]

www.it-ebooks.info

http://securesocial.ws/
http://securesocial.ws/
http://search.twitter.com/search.json
http://search.twitter.com/search.json
http://www.it-ebooks.info/

Chapter 7

So let's try this in our browser; it will help us later because we'll have the opportunity

to analyze the output and see what data we can retrieve, where, and how:

completed in: 0.033,

max id: 262636
max_id str: "Ic. ;
next page: "Tpage=limax Id=2&I 160804675585eg=%23playframes
page: I,
gquery: "i2iplayirames
refresh url: "?since Id=Z&: 1608046755856g=%23playframes
- resulta: |
created at: "Sur
from user: "piuk

from user id: =°
from user id str: "=
from user name: ":

geo:
id: 262636360804673600,
id str: "
iso_language code: 0.7,
- metadata: |

result_type: °

profile image url: "hiip:

— P ———sese—|
<« C & | © search.twitter.com/search.json?q=%23playframework

profile image url https: "f
source: "Lilt;a href=cgquot;http://twitter.com/&gquot;
taxt: "#PlayFrames

to_user:

to user id: 0,
to user id str: "07
to_user name:

The previous screenshot shows us how to create a query (note the %23 value before

the playframework tag) using the Twitter REST AP]I, and it also shows how a

response is structured (encoded in JSON, as expected).

The result presents a lot of information that we won't need in our example.

So we'll only use the results property. This property is a JSON array containing
all of the tweets matching the query, and with each tweet having a certain amount
of data. We'll continue to focus on the part we're interested in: the from user and

the text properties. These properties are the username of the tweeter and the

tweet's text respectively.

[185]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

The search on a particular username is exactly the same but the prefix has to be
@ rather than # in the g parameter; meanwhile, the result has exactly the same
structure. That's fine, we'll probably be able to share some code.

Based on that, let's now see how to create an action that will search Twitter and
return its own representation of the result, so that it will be usable on the client side
of our application.

For that, we'll first add a new dedicated controller named Twitter. This controller
defines two actions:

* searchTag(String tag):Searches Twitter for tweets tagged with the
given tag
* mentioning(String user):Searches Twitter for tweets mentioning the

given username

However, as said earlier, some logic can be shared, so this controller will have
another method called findAndSeek (String q), which is not an action by itself,
but will contain the logic for searching on Twitter.

The following screenshot shows the skeleton of our Twitter controller:

import statlc pLay.Llibs.r. +;

import play.libs.Jsan;

import org.codehaus.jackson. *;
import org.codehaus.jackson.node. *;

public class Twitter extends Controller

Is]

private static final String SEARCHURL

hitp://search twitter.com/search.json":

public static Result searchTag(String tag) {
String q = "#" + tag:
return findAndSeekiqg, true);

b

public static Result mentioning(Strimg user] {
String q = "@" + user;
return findAndSeek(g, false);

1
| private static Result findAndSeekiString g, Boolean isTag) {3
1

The definition at this stage is quite obvious (the logic is hidden). The actions are
simply calling the third method that contains the logic. As the parameters of
searchTag and mentioning don't include the Twitter-specific characters, the
actions are preparing the query before launching the search.

[186]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Before moving to the web service call, we'll define the route for each action:

GET /fws/tw/tag/ g controllers. Twitter.searchTagiqg:String)
GET fws/tw/mentions/:user controllers. Twitter.mentioningiuser:String)

Using the Twitter API

In the previous section, we set up our actions and routed them; let's now take a
deeper look at how we can deal with the Twitter REST API—the definition of the

findAndSeek method.

Its implementation will be split into three parts: the call to the Twitter API, the
transformation of the result's structure into a custom one (adapted to our needs),
and finally the execution of the whole thing.

The following screenshot shows the implementation of £indAndseek:

private static Result findAndSeek|String g. Boolean isTag] {

i

Promise<WS. Response= promise = WS, urliSEARCHURL) .setQueryParameter(“q", q).get(];
Promise<Result> promisedResult = promise. map|

new Function<WS.Response, Result=(] {
public Result apply(WS.Response response) {

JsonNode json = response.asJson(]);
ArrayNode results = (ArrayNode] json.getl"results"];
List<HMap<S5tring, String>> tweets = new ArraylList<Map<String, String>>():
Tterator<lsonNode> 1t = results. iteratorl);
while (i1 hasMext()) {
JsonNode t = 1t.next();
Hap<String, String> m = new HashMap<String, String>():
m.put{"user", t.geti{"from_user").asText(]);

m.put|"tweet", t.get|"text") asText(]]);

tweets.addim);

return okl Json.tolson(tweets)|;

return |J|'Dm15eaF!esu[t|.get' I

[187]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

We're now going to review each part separately. First, we create the request using
the WS API:

[t i)

Promise<WS. Response= promise = WS.urliSEARCHURL) .setQueryParameteri"q", ql.geti]:

What's being done here? First, we've used the URL from ws to create a
WSRequestHolder object using the base URL for Twitter's search, which
we've done before.

What's still missing at this point is the query parameter that is necessary to specify
what you want Twitter to search for. In the browser, it was provided as the query
string parameter q. In this case however, we can simply set this parameter using the
setQueryParameter method.

So far, we've defined the URL to the target and the parameter to be used; for our use
case, the only other thing needed (as we don't need any authentication, for instance) is
to end the definition by calling get () (one line using the fluent API of ws).

This will result in a Promise<WS.Response> response, that is, the HTTP GET hasn't
yet been executed. We've just prepared the whole request, which is now ready to be
sent. Also, it says that the type of the result will be a WS .Response response, but this
is not the type of response we need in our interface. What we want is a custom JSON
representation of the body of this response, as shown in the following screenshot:

[188]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Promise<Result> pram?ggﬁﬁesult = promise.map
new Function<WS.Response, Result=() {
public Result apply(WS. Response response] {

frmt

JsonNode json = response.asJson(];
ArrayNode results = (ArrayNode) json.geti"results");
List<Map<String, String>> tweets = new ArrayList<Map<String, String>=|
Iterator<JsonNode> it = results.iterator(];
while (11 RasNext(]] {
JsonNode t = it .next(];
Hap<=5tring, String> m = new HashMap<String, String=()
m,put {"user”, t.geti{"from_user") . asTexti]];

m.put("tweet", t.getl"text") . asTextl]]:

tweets.addim);

return ok(Json.tolson(tweets]];

For those who aren't familiar (yet) with deferred computation such as Promise, this
might look a bit strange. However, it's very simple.

First, recall that the result of the request is not yet there, but we still want to
transform it. How can we do this? By using the map method on promise.

This map method can be like registering a callback (at least for this particular case)
on the result of the request. But, where such a callback is meant to be imperative
(with side effects), a map method of Promise will register a function to be executed
on the result of the initial request and might adapt it in such a way that the result
of the whole Promise will change. An example is a process that promises to output
aresult of type string (Promise<Strings), which we'll map on to an integer
using map that invokes Integer.parseInt. The result won't be an instance of
Promise<Strings, but an instance of Promise<Integers.

[189]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

Also, the result of this callback should be synchronous; if it
should be asynchronous as well, we must use £1atMap rather
than map on Promise. Indeed, if we use map with a method
. returning a Promise<T> result type, we'll get a result of type
% Promise<Promise<Ts>>. In short, what we'll do with f1latMap
L is get rid of the second Promise object, that is, it will flatten the

result type. Talking about the real sense of map would require
much more time and effort than it's worth. However, if you're
interested in the underlying concepts, I'd recommend you learn
about Functors.

The callback we have registered is a function (does that remind you a bit
of AJAX?), in which Play! Framework 2 (Java) is an instance of the play.
libs.F.Function<A, B> interface. This type enables us to define an execution
logic that takes A as a parameter and returns B (well, a function from A to B...).

Our callback must take the result of the WS API call we have used, that is,
Promise<WS.Responses>, and we would like to set the action result, an
instance of Result.

The cool thing now is to check the result type of this map application; it's still a
promise but the expected type is no longer ws.Response, but Result. Indeed,
the Result type traversed the applications of get () and map, and is now a
type-checked promise.

The implementation of Function itself is only a transformation between the Twitter's
JSON structure to our custom one. However, the following statement should get our
attention for a moment:

JsonNode json = response.asdson() ;
This statement is very similar to a request body's usage we had in actions.

For the following section, it's worth understanding the shape of the constructed
custom representation of the tweets. The way to do this is to test one of them in our
browser. But before that, let's end the code review by covering the very last part of it:

"eturn |J|'-:um%ﬁt| getf]:

[190]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

A single line and its comment that says: take the instance of Promise<Results,

get the value in it, and return that value. However, what we did using get () is

we asked the thread to block until Twitter answers (followed by the handle of the
body as JSON and the transformation to the target's structure). That's bad! Where is
the non-blocking feature of Play! 2 in this case? Actually, it's our fault, and will be
covered in the next section.

Integrating chatrum with Twitter search

Now that we have implemented our actions, let's see them working in the browser.
The following screenshot shows a search for mentions of the username enoootsab:

€« C A | © localhost:3000/ws/tw/mentions/noootsab)l

[191]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

In the previous screenshot, we can see a rendered JSON. This is not

a part of the Play! Framework 2, but the browser itself might be
able to discover the content type and adapt its display.

The simplest form we can have is to represent a list of tweets for which we only want
to retain the tweeter's name and the tweet itself.

Everything is in place now to have our chatrum integrated with Twitter searches.
Actually, the server is now ready, but the client side needs to be updated too.

So the way we are going to integrate them is via the items that are shown in the
chatrooms. These items could contain usernames (words preceded by @) or tags
(words preceded by #). That's our entry point; we'll then parse the items in order and
add markers, which enables them to be searchable on Twitter through simple clicks on
them. Finally, the resulting tweets will be printed in a dedicated part of the page.

First we look at the items, which are rendered not only on the server side but also on
the client side, and then we'll manipulate the messages to wrap the relevant words in
HTML spans.

Remember that when we're loading a chat instance, the items are not only dumped
into the HTML result by rendering the chatroom template, 1istItem.scala.html,
but they are also serialized on the WebSocket during the use of the chat, that is, in
the chatroom. coffee file. Therefore, here is what we'll do. We'll take the message
text out and preprocess it to find words starting with @ or #.

/chatru-um.cuﬁee ® y listltermn.scala.html % thitter.cnﬁee S YADDI
dl1tem: Item)
1i ="item"
span ="time"=[@item.timestamp] =/span=
span=@1f(item.user!=null){@item.user. . email }=/span= =
ditem.message.spliti" ") .map{ w ==
afiwidl == '#'11{
span ="tag"=@Ew=/span
1
§|'__-I'“.'I [l == '@'l{
span ="mention"=@w=/span
i
afiwld) 1= '#' && wid] 1= '@'){
2
1
i
1i
[192]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

The previous screenshot shows the new listItem.scala.html template that splits the
item's message into words and then processes them all, based on their first character.
Note that we have also added a dedicated class for each type: mention and tag.

; Look at how the first character of a string can be accessed using
% parenthesis and the index. In Scala, a string is viewed as a sequence
’ of characters, so we can use the access method of the sequence.

That was the easy part; the server side using Scala. Now let's see how to do it
in CoffeeScript:

class ChatRoom
constructor: (conf]->3

formatTimestamp: (ts] ->3
updatelList: (target, list, format) =>gm

;arma£WaEd? (m, cll.;; ;Sﬁaﬁ ciasg;" scl+ J> +ﬁ+.{fspéa;'.
%afmé;Heﬁtian; .?ﬁl ;b @%ﬁ;mafﬁs;ﬂ.m. “mention"

;ﬂfmagfaé:x : .{ml == @%érmatﬁard m, "tag
;ﬁdatéiﬁat:.litéms, iﬁaéé;] ==

@Aupdatelist
@l . find(".react past
items,

[i] =

WDFd5.= i.meséa e.split(fAs+/f

message = words.map (w] =>
it w.chardt|@l=="@
@formatMentioniw
else if w.charat(ol=="#%"
@AformatTagiw
glse w

message = message.joinl

result = '=span &lﬁ&éﬁl&%ﬂﬁ:}[' + @formatTimestampii.timestamp|+

el b
result += message

[193]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

It might seem far more difficult, but it's not; we've just defined several functions that
have clean and clear responsibilities, such as formatting a word based on the type
and the class to add. We could have also pushed the limit further by adding the
wrapping element's tag name to the argument list.

Indeed, we're essentially doing the same thing as in 1istItem.scala.html: splitting
the message and formatting each word. The only real difference is the join usage;
that's because the template system is doing it behind the scenes for us.

With a bit of formatting for classes mention and tag, we can get the result shown
as follows:

€ Cc f lOlo(alhost:9000/dashboard/‘cpen

Ji -

€ c f lOlo(alhost:9000/dashboard/open

Connected as thief@hood.com
Change Chats or create

Talk, it's only talk

Connected as me@home.org

Change Chats or create

Talk, it's only

So far... i Attached Image So far... i Atta
¢ [12:43:55.728] thicfi@hood.com > yeah : ¢ [12:43:55.728] thicfi@hood.com > yeah :
* [12:43:55.745] me(@home.org > true * [12:43:55.745] me@home.org > true
* [12:43:55.740] thiefiwhood.com > indeed * [12:43:55.740] thiefl@hood.com > indeed
¢ [17:52:17.65] me{@home.org > hello, I'm [@noootsal ¢ [17:52:17.65] me{@home.org > hello, I'm (@noootsab
¢ [17:52:23.241] thiefi@ hood.com > hi man{span . ment ¢ [17:52:23.241] thief{@hood.com > hi man
¢ [17:52:36.252] thief{@hood.com > So how is #play’ ¢ [17:52:36.252] thief{@hood.com > So how is #playframework ?
News... News...
Talk, it's only talk v | React iAnach an il Talk, it's only talk v | React
message | caption message
So how is #playframewort : hello, I'm @noootsab
R ellss L - o Maximum length: 140
Required
a B
<span ciass= e

~| b Computed Style
¥ o

"mention">@nooofsab
=

[194]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Cool but useless at this stage; we need to add some interaction to it. As it's pure
CoffeeScript that uses everything we've seen so far, we'll just see what the result
could be:

t 1) https:/ft.co/gVF
2 with REST-

y! 2 with REST
2 with REST-

241] thiefi@hood.com > indeed

0.845] thiefi@hood.com > It's an

[

[4.907] me(@home.org > I lik
[
[63] me(@home.org > Yeah kind

News...

Talk, it's only tak ¥ | React { Attach an image

message { caption
It's an #obsession ?
Maximum length: 140 Maximum length: 140
Required :

This was done using only the JavaScript router to hit the actions mentioning and
searchTag and a bit of jQuery to provide a panel where tweets are shown. This
happens when one of the spans is clicked. For more, you can refer to the code files
of the book for an example.

So far so good; we have achieved an easy and straightforward use of a third-party
service such as Twitter with no pain, no response parsing, request handling, and
so on.

But there is still an enormous problem: we've lost the non-blocking features that Play!
Framework 2 brings. That's because we were waiting for the Promise object to return
before continuing (remember the return promisedResult.get () ; instruction?).

However, as mentioned earlier, that's our fault. We didn't use the WS API as
recommended, and that's the point of discussion for the next section.

[195]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

Long tasks won't block

In this section, we'll improve the behavior of our application while using
functionalities provided by third parties (like the one used so far, Twitter).
Such services aren't always very efficient or may encounter some problems
or maintenance.

The problem with that is its independence from our code, we don't have any control.
While they help us for some parts of our application, these third parties can also
break our performance. This impact comes from the fact that we're using them in
actions that have to wait for an external request to respond or to fail with a timeout.

In such cases, our server can become stuck really quickly by waiting on a large
number of third-party requests to release. But thinking further, we should be
wondering why those actions are blocking our threads and preventing other
requests being handled by the server? This makes no sense; the action, which is
under the covers waiting for a remote procedure to end, should release the thread
and wake up at some later point, that is, when the procedure has ended.

Actually, Play! Framework 2 is meant to work with a very small thread pool
(usually the number of cores plus one), and that's why our server will slow down
very quickly. But actually, it should slow very quickly in any case if we think that a
request is always handled by a thread.

However, this is not how things are going on in Play! 2. Roughly speaking, the
framework uses a loop to handle all requests where some can be inactive until
background operations have been released. This loop iterates each time a thread
is freed by another process.

So how can those threads be freed if the action hasn't finished yet? That's the point
where the Promises come back. Let's have a quick overview on how it's done.

An action is a static method that returns a Result that will cause an HTTP response
by the framework. Ok, but Result has a derived class, AsyncResult, which wraps
Promise<Result> in it. This is the key point. When an action returns such a result, it
has finished its process, or at least it has prepared it for a future result. As the method
has returned, the thread can be freed up and made available, which means a new
iteration that can take the next request or the next woken one. This is non-blocking!

[196]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Wow! That was intense. Let's now see how to create and return such an AsyncResult.
In this case, Play! Framework 2 will also hide a lot of things for us, simplifying things.
In order to create an AsyncResult object, we need to do the following:

* Create an instance of Promise<Result>

* Use async (Java) or Async (Scala)

Nothing else. What more could we ask for? Let's see how we can apply this in our
Twitter controller:

private static Result findAndSeek(String g, Boolean 1sTag) {

Promise<WS. Response= promise = WS, url | SEARCHURL| setQueryParameter("q", gl .geti]:

. e, -
Promise<Result> promisedResult = promise.map(=g
I

return asyncipromisedResult):

The only thing we had to do is to pass promisedResult to the async method, given
that it's already Promise<Result>. We didn't even have to change the return type!

Now the Scala version (yes, we had put it aside for a while, but the code files include
this version as well) is shown as follows:

def findAndSeek{g:String, 1sTag:Boolean) = Async oM BLO |
al promise = WS, url|SEARCHURL) .withQueryStringi“"g" -= q) . getl)
val promisedResult =promise.map{ resp == {5
¥
1
promisedResult
¥
[197]

www.it-ebooks.info

http://www.it-ebooks.info/

Web Services - At Your Disposal

In the Scala version, we had to replace await.get with the variable itself. But we
also passed the whole body of the function to the Async construct when we could
have just wrapped promiseResult only.

Reloading our application and clicking on a username or a tag will leave the
application unchanged at the user level. In fact, it turns out that these asynchronous
functionalities can be used for any type of long running task and not only for

web service calls. Indeed, a statistical call to a database can be time and resource
consuming, so it would be worth defining such requests as asynchronous too. (Note
that if, for instance, the database's driver is blocking, the request will block at the time
the data starts arriving.)

Summary

In this chapter, we learned that Play! Framework 2 provides all the tools needed
in order to work with remote third-party services. They represent their data either
as XML or JSON, but it's not a big deal, thanks to the body parsing feature of Play!
Framework 2.

We also took the opportunity to look at the WS API itself, the types that are
important, and how and in which situations to use them (GET, POST, and so on).
We're now ready to use any REST API easily.

Finally, we've seen what an asynchronous request in Play! Framework 2 is, and
how to create it for long or potentially long tasks. It resulted in the performance
of the application no longer being directly linked with the performance of remote
third parties.

We ended up with a good overview of what Play! Framework 2 is able to offer us
for the creation of amazing web applications, and how it is integrated with all layers
composing a modern application, including not only the server side but also the
client side.

However, what about the quality of the produced code or the exposed features?
Are things also going to go so nicely when trying to test such fully-fledged web
applications? We'll see in the next chapter that the answer to the second question is
definitively "Yes", and that everything is in place to help us answer the first one.

[198]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

A software development stack that does not include testing, in the age of test-driven
development (TDD), is like shooting itself in the foot. A web framework that is
involved transversally with the runtime environment should especially enable

the developer to assert all phases of his/her work - from core logic to an HTML
presentation through business logic.

Thankfully, Play! Framework 2 is a very good web framework. It provides plenty of
helpers to test all those layers. Those helpers will be helpful not only in unit testing
but also in applicative tests (business) or functional ones (UI, REST, and so on).

Even though Play! 2 can be integrated with either the Java or Scala testing
frameworks, in this book we'll focus on Scala testing for both Java and Scala
applications. That's because testing is a perfect way to start learning Scala, resulting
in the fact that a test code need not be highly efficient by essence and shouldn't
include any core logic at all. In short, its implementation is not critical and shouldn't
be visible to final users.

A last note before going into much detail, for those who have used the first version of
the Play! Framework; at the time writing, the way to execute tests has changed a lot.
Indeed, in the first version, we were able to launch tests through a dedicated URL
while running the application in DEV mode and we were presented with an HTML
page where tests could be run by clicking an item. This feature hasn't been recovered
yet in this second version. We'll see in the next sections how things are going now.

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

In this chapter we will:

* Start with the easiest tests to write the atomic ones
* See how to use the test framework that Play! 2 has included, that is, specs2
* Use the console to run them and interpret the results

* Perform complex tests that use other components that the application needs
such as applicative tests

* See workflow tests that are meant to test features a web application is
supposed to provide to the outside world (client, browsers, and so on)

Testing atomically

A web application is built on several layers, each of them having their own
responsibilities, such as storage, transport, or business. That's probably why
it's so difficult to test an application like this as a whole.

Indeed, most of the time a unit test, or what could be considered as a unit piece of
the software, will require boilerplates or mock-ups to run it.

The perfect example is fetching a user's information using the REST API our
application is exposing. This will require us to have a database, an HTTP broker, and
so on. But still it should be considered as a unit test. No business logic, no specific
requirements, just a GET method using an ID.

That's why in a web application there exist tests that I'm calling atomic. These
tests don't require a specific environment to be run and, of course, are the simplest
tests — they can be seen as plain unit tests in a utility library, for instance.

[200]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

A famous testing framework in Scala is specs2. specs2 has an amazing number of
features that shall require a full book and, actually, the user guide is already one in
itself (http://etorreborre.github.com/specs2/guide/org.specs2.UserGuide.
html). However, we'll see some of them in action in the following sections.

The principle that resides within specs2 is the definition of specifications, which are
kind-of readable sentences that describe the tests you're performing and allow you to
both define unit as well as acceptance tests.

Roughly, a specification is structured as several layers. The first layer defines the goal
of the specification. Then it will contain several fragments that include the test code
and return a Result class —a specs2 one —such as a standard status (ok, failure,
and so on) or a matcher (such as something must be not null).

specs2 also has two different notations for defining tests, which are the unit and the
acceptance notations. We'll use the unit one for the rest of the book because it offers
the more intuitive DSL.

So let's write an atomic test for our comparison code (back to Chapter 2,
Scala - Taking the First Step) between Java and Scala. But let's test the Java
implementation only in Scala!

What we'll test are the high-order functions that were created in order to draw
some parallelism between Java and Scala. These are gathered in the comparison.
Sequence. java file.

The root folder, where the tests files are expected to be in Play! 2, is test, right under
the root of the application; that is, sibling to app.

So in order to write our tests, we'll create a folder in tests/atomic and a file named
ComparisonTest.scala.

[201]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

Here is how simple tests would look and how we can run them:

r S _

package atomic

import org.specs2.mutable.

import play.api.test._
import play.api.test.Helpers._

import comparison.{Sequence}

import scala.collection.JavaConversions. _
import scala.collection.JavaConverters,_

import jawva.util.ArrayList

Camparisonqpec extend Specification {

“Sequence " should {

"return even 1nteger5 using 'even'" in {
val 1 = Sequence.even.tolist
1 must be_==(List(2, 4]]

T

"contain all squares using 'squaredSeq'" in {
val 1 = qequence squaredSeq.tolList

1 must be ——(List(l.ﬁ, 4, 9, 16, 25))

"return even integers using 'ewven' (list independent)® in {
val 1 qequence even, toList

1 must haveAllElementsLike { ase 1 == E1“2| must be ::[GI}

"return something when using 'fetch3!" in {
val three = Sequence fetch3

([three isDefined Baoleanl must beTrueI and

ithree get must not throwA(new NOJUChElEMEhTEKCEDTlOﬂ('||

"return false when using 'biggerThans''" in {
val big Bnnlean = qequence biggerThanS

big must beFalie

}
i

In the previous screenshot, we can see several tests of the comparison.Sequence
functions we've implemented in Chapter 2, Scala — Taking the First Step. We have at
least one test by function.

It should be worth reviewing it a bit now before seeing them run.

First of all, a specification has to extend the org. specs2.mutable.Specification
class, which expects in its body the definition of at least one specification. Such a
definition must start with a string message declaring the topic of the specification;
in this case, we test sequence. This message will be used to give an intuitive print of
the tests in the console.

[202]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Some would wonder, how is that possible? Actually, in Scala, monkey

patching is available using lexically scoped implicit conversions. Thus,
’ specs2 has patched the String class with new composition operators.

Having defined the topic, we have to declare what this topic should respect. That's
the role of the following fragments that have been introduced using the should
method on the "topic". In most cases, a fragment is some information separated

by the in method, a human-readable description of the message (one line) and the
testing block. Looking at the sample, we can see that those couples can be chained in
order to create several fragments to be checked all in one row.

So far so good, but what are those blocks defining how we can create some assertions?
For this, we need to review the testing blocks. Let's do it one by one, since they're
using different matchers. A matcher in specs2 can be seen as assertThat in JUnit

so that it can construct a complex check but also be composed. There are plenty

of different matchers provided by the specs2 framework and others provided by

the Play! Framework 2 as well (we'll see them in the following sections). There are
five fragments being defined in the sample shown in the previous screenshot. As
mentioned before, each of them return Results (of which matcher is a subtype).

The key point is the must method that can be used on any computation. This
method's role is to take a predicate to assert the correctness of the computed value.

This is possible using the monkey patching trick we saw previously

(for string). For your information, Scala has a dedicated term for
A~ . s . .
this technique called pimp-my-library.

OK, this time we can see how to do some checks. The first check for the even
function, which returns all even numbers in the Sequence list, is asserting that the
resulting list will exactly match the expected one. For that we take the result of the
computation and say that it must be identical to the provided expected List of 2 and
4. An equality comparison is done using the be_== operator. You guessed it; there
are other such comparators such as be_<= and so on.

We imported the Java conversion methods in the beginning of the
class, so we're able to ask toList on the java.util.List that

returns the even function.

[203]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

Moving to the second test (fragment), we checked that the result of squaring

each element in the list is equal to the provided List of squares. This is cool, but
hardcoded. Even if the comparison code is using the same List instance all the time,
in the real world those functions must work on any List instance. So we would like
to assert that the function is respecting its contract; for instance, the even function
execution must always return a List that is composed of even numbers only. This is
shown in the third test wherein we asked the result to have all elements respecting
the provided pattern. In this case, the pattern is simply the item itself (which is
inferred to be an Int), but it must be a multiple of 2.

The fourth test is a bit more advanced (OK, not that much) because its result involves
a conjunction of two assertions, one of them being a simple Boolean check using the
beTrue operator. The second is the negation (using not) of an unsafe result (that
throws a NoSuchElementException). For this last point, it'd be worth noting that
None that is extending option<as>, the result type of £ind, is throwing an exception
when trying to get the underlying value.

And finally, the last check is simply asserting a false result.

That was easy. Our tests have been written; let's see now how we can run them.

Running our atomic tests

In this second version of the Play! Framework, the test environment configuration
and their runs have been delegated to the build tool SBT. Hence, to run the tests
we must enter the play console, and rather than launching the run command, we
can execute the test command. This command has the responsibility to compile
everything, including the sources in the test folder, and then run all tests in there.

Here is the result for our tests.

[] § test
[info] ComparisondSpec
[info]
[info] Sequence should
[info] return even integers using 'even'
] x contain all squares using 'squaredSeq'
] '2.8, 4.8, 8.0, 16.0, 32.0' is not equal to '1.0, 4.0, 9.0, 16.0, 25.8' (ComparisonTests.scala:28)
] Expected: [1].0..., [9].0..., [25].@
] Actual: [2].8..., [8].0..., [32].8

return even integers using 'even' (list independent)

return something when using 'fetch3’
return false when using 'biggerThans''

Total for specification ComparisondSpec

] Failed: : Total 5, Failed 1, Errors 0, Passed 4, Skipped @

] Failed tests:

] atomic.ComparisondSpec

] {file:/home/noootsab/src/book/play-jbook/}play-jbook/test: : Tests unsuccessful
] Total time: 1 s, completed Nov 6, 2012 7:20:56 AM

[204]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Wow, what are those errors, crosses, and scary messages shown there? Actually,
that's why tests are written, to discover mistakes. And this is the result we'll get
when mistakes are found. The result of the tests shown here is telling us that four
tests out of five were successful, so one has failed. Finding which one is pretty easy
since it's the only one in the tests summary that has an orange cross whereas the
others have beautiful green plus signs.

Before looking at the failure, we shall take a look at what's being printed by the
framework on the console.

Indeed, since we respected the structure and the text content, for which we've been
helped by the DSL (Domain Specific Language) itself (using methods named should,
in, must, and so on), we can now take the output and read it from the top; line by
line it provides the following output:

* Sequence should return even integers using even

* Sequence contains all squares using squareseq
These sentences simply describe what the test will do.

Back to the test that has failed; we notice that the framework is literally telling us that
the result list (printed first) isn't equal to the expected list (printed later).

Then it prints the list again with their role in the test and where they differ.

So it seems our squareSeq function is buggy (it's true); here it is:

7 bmap kS
public static =B= List map|Functionl<Imteger, B> T) {
List result = new ArraylList();
for |(Imteger i @ list) {
result.add(f.applyi1l);
}
return result;
I
public static List<Double» squaredSeql] {
return maplnew Functionl<Imteger, Doubles() {
public Double apply(Inmteger element] {
return Math.powl2, element);
}
k.
T

See? Indeed, rather than computing the square of each element, we computed the
nth power of two of element, which can be checked easily since the test's result has
printed the actual List containing valuessuchas 1 (20),2 (21),4 (22),8 (23),
16 (24),and 32 (25).

[205]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

The fix is rather trivial; just swapping the arguments will do the trick. After that
change, running the tests again will result in the following screenshot:

] S test
Compiling 1 Java source to /home/noootsab/src/book/play-jbook/target/scala-2.9.1/classes...
Compiling 1 Scala source to /home/noootsab/src/book/play-jbook/target/scala-2.9.1/test-classes...
ComparisonSpec

Sequence should
return even integers using 'even'’
contain all squares using 'squaredSeq'
return even integers using 'even' (list independent)

return something when using 'fetch3'
return false when using 'biggerThans'’

Total for specification ComparisonSpec

Passed: : Total 5, Failed @, Errors 0, Passed 5, Skipped @
] Total_time: 3 s, completed Nov 6, 2012 4:50:14 PM

No more red!

That was a lot of fun, but atomic tests are not the only tests we need while creating
a web application. Most of the time actually, they're in the minority. Because of the
architecture of a web application, we mostly need tests that involve the server itself,
or at least a part of it.

In the Play! Framework 2, the main component at runtime is the Application
singleton itself, which is a piece of software that can do everything unless it is
working as an HTTP server.

Nevertheless, this is very common because we'll be able to test artifacts such
as controllers.

Writing applicative tests

When testing a web application, we quickly come upon the problem of setting

up a rather complete environment. This environment is meant to contain enough
information needed by business workflows. Such unit tests reach the limits of atomic
tests and thus can be considered applicative.

Such an environment can be complex because, most of the time, it involves a
database or an application context with components such as caching. This task
can be cumbersome in other frameworks because they either don't provide the
whole stack, like Play! Framework 2 does, or they require several actions (new
dependencies, annotations, project-specific configuration, dedicated test runner,
and so on) to be implemented.

[206]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

In Play! 2, applicative tests are handled by the framework itself through the
definition of a bunch of helpers and mock-ups.

The key point will be the Application class, which is responsible for setting up the
context of the web application. Indeed, an Application instance is created at the
very start of a Play! 2 application. It will also configure third-party tools based on
the application.conf file content. In a sense, it's able to simulate everything, even
the HTTP server itself. Actually, it won't accept HTTP requests but it will accept
simulated ones.

Examples of what will be configured are the database connection provider, the cache
system, the routing component, and so on.

What we end up with, with this Application in hand, is the ability to test our
Controllers or templates, or even the routes themselves. However, what we won't
be able to do at this stage is test remote functionalities such as HTTP requests served
by a real web server.

As said previously, Play! Framework 2 provides a good set of tools in order to start
or simulate such an application programmatically in our tests. This is done using the
running helper.

We'll create an example in a new file called test/applicative/LoginSpec.scala
that will contain some tests about login processes.

The following screenshot shows what it might look like with two sample tests:

import erg.specs2.mutable._

import play.api.test._
ort play.apil.test.Helpers._

class LoginSpec extends Specification {
"Login " should {
“return an OK result" in {
runningl FakeApplication()] {

1 result = controllers. Application.logini).getWrappedResult

status(result] must equalTolOK)

T
"have a template with an HTML form" in {
runningl FakeApplication()] {
al html = wviews.html.login(]
contentTypelhtml) must equalTol "text /html")
contentAsStringlhtml) must contain(“=form")
T

[207]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

The structure of the test is exactly the same as the atomic one, however we see the
appearance of a wrapper around our tests called running.

This method is able to start its first parameter and run the test block that is given as
the second parameter.

In this case, the first parameter is a mock-up of our Application; for this parameter,
a dedicated FakeApplication case class is available in the play.api.test package.
By running this fake application, we'll have the opportunity to test almost everything
that defines it, so we can test the rendering of a template or a controller's result.

The first test we've defined in the previous example is checking that the 1ogin action
in the Application controller will return an Ok result, that is, a response with a 200
HTTP status.

For that check, we used a matcher that Play! 2 has defined in the play.api.test.
Helpers object (which, by the way, is the object that defines the running function as
well). What this status matcher does is retrieve the status of the result (set using the
ok method in our action) and check it against the 200 constant.

Something to note before switching to the next test is the usage of
getWrappedResult on the result of the action. We did this because we're testing a
Java action using Scala matchers. These matchers are thus expecting Results from
the Scala world, given that Java Results is just a wrapper around the Scala version.

The second test is playing a different game. It's checking the validity of a template by
simply invoking it. This has the advantage of skipping the business logic defined in
an action to test specific use cases.

The template we're testing, the 1ogin one, expects to return an HTML result content
that contains a form tag.

These checks are straightforward; they are performed using the dedicated matchers
contentType and contentAsString from Play! 2. Where the former is checking the
encoding header, the latter is reading the body as a string. Also, we can use the
contain matcher from specs2 to check if a string is part of another.

So far so good; now we need to run them. For this we keep consistent by running
test in the console, due to which both the ComparisonTests and LoginSpec tests
classes will run.

[208]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Here is the result we would get:

[info] Legin should
] return an OK result
] RuntimeException: There is no HTTP Context available from here. (Http.java:117)
] play.mvc.HttpSContext.current(Http.java:27)
] play.mvc.HttpSContext$SImplicit.session(Http.java:117)
] views.html.main$.apply(main.template.scala:51)
] views.html.loginS.apply(login.template.scala:34)
] views.html.login$.render(login.template.scala:43)
] views.html.login.render(login.template.scala)
] controllers.Application.login(Application.java:53)
] applicative.LoginSpec$Sanonfun$i$$SanonfunSapply$35SanonfunSapply$4.apply(LoginSpec.scala:15)
] applicative.LoginSpec$Sanonfun$iSSanonfunSapplyS$3sSanonfunSapply$4.apply(LoginSpec.scala:i2)
] play.api.test.Helpers$.running(Helpers.scala:33)
] applicative.LoginSpecSSanonfun$1SSanonfunSapplyS$3.apply(LoginSpec.scala:12)
] applicative.LoginSpec$Sanonfun$iSSanonfunsapply$3.apply(LoginSpec.scala:12)
] have a template with an HTML form
] RuntimeException: There is no HTTP Context available from here. (Http.java:117)
1 play.mvc.HttpSContext.current(Http.java:27)
] play.mvc.HttpSContext$SImplicit.session(Http.java:117)
] views.html.main$.apply(main.template.scala:51)
] views.html.login$.apply(login.template.scala:34)
] applicative.LoginSpecSSanonfun$1SSanonfunSapplyS65SanonfunSapplyS7.apply(LoginSpec.scala:22)
1 applicative.Loginspec$$Sanonfun$issanonfunsapply$6$sanonfunsapply$7.apply(Loginspec. kcala:21)
] play.api.test.Helpers$.running(Helpers.scala:33)
] applicative.LoginSpec$Sanonfun$iSSanonfunSapply$6.apply(LoginSpec.scala:21)
] applicative.LoginSpec$Sanonfun$i$$Sanonfun$apply$6.apply(LoginSpec.scala:21)

Total for specification LoginSpec

ComparisonSpec

Sequence should
return even integers using 'even’
contain all squares using 'squaredSeq'
return even integers using 'even' (list independent)
return something when using 'fetch3’
return false when using 'biggerThan5'’'

Oh my! Errors again!

Don't give up; since we saw the application running and have logged in thousands
of times in the previous chapters, there must have been a mistake somewhere in the
test or in the architecture.

[209]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

Before debugging, we're going to remove the noise, which produced our first
successful test, from the ComparisonTests class. To do this, SBT has a special
command that enables us to target a specific test class to run rather than launching
all test suites. This command is test-only and we can use it as shown in the
following screenshot:

applicative.lLoginSpec

[info] Compiling 1 Scala source to /home/noootsab/src/book/play-jbook/target/scala-2.9.1/classes...

[info] LoginSpec

[info]

[info] Login should

return an OK result
RuntimeException: There is no HTTP Context available from here. (Http.java:117)
play.mvc.HttpSContext.current(Http.java:27)
play.mvc.HttpSContextSImplicit.session(Http.java:117)
views.html.main$.apply(main.template.scala:57)
views.html.logins.apply(login.template.scala:34)
views.html.logins.render(login.template.scala:43)
views.html.login.render(login.template.scala)
controllers.Application.login(Application.java:53)
applicative.LoginSpecSSanonfunSiSSanonfunSapplyS$3SSanonfunSapplyS4.apply(LoginSpec.scala:15)
applicative.LoginSpecSSanonfuniSSanonfunSapplyS$3sSanonfunSapplyS4.apply(LoginSpec.scala:12)
play.api.test.Helpers$.running(Helpers.scala:33)
applicative.LoginSpec$Sanonfun$is$sanonfunSapplys3. apply(LoginSpec.scala:12)
applicative.LoginSpec$Sanonfunsissanonfunsapplyss. apply(LoginSpec.scala:12)
have a template with an HTML form
RuntimeException: There is no HTTP Context available from here. (Http.java:117)

play.mvc.HttpSContext.current(Http.java:27)
play.mvc.HttpSContextSImplicit.session(Http.java:117)
views.html.main$.apply(main.template.scala:57)
views.html.logins.apply(login.template.scala:34)
applicative.LoginSpec$SanonfunsissanonfunsapplysessanonfunsapplyS7?.apply(LoginSpec.scala:22)
applicative.LoginSpecS$Sanonfun$i$$SanonfunSapplys6SSanonfun$apply$7.apply(LoginSpec.scala:21)
play.api.test.HelpersS.running(Helpers.scala:33)
applicative.LoginSpecSSanonfun$1SSanonfunSapplyS6.apply(LoginSpec.scala:21)
applicative.LoginSpecSS$Sanonfun$1$$anonfunSapply$6.apply(LoginSpec.scala:21)

] Error: Total 2, Failed ©, Errors 2, Passed 8, Skipped @

] Error during tests:

] applicative.LoginSpec

1 {file:/home/noootsab/src/book/play-jbook/}play-jbook/test: : Tests unsuccessful
] Total time: 8 s, completed Nov 9, 2012 7:29:07 AM

Since test-only is used when debugging a specific behavior that
is exposed in a test, this latter test will probably be run many times
~ until the fix is found. In such a case, SBT has a special trick called
Q continuous command. Simply prefixing a command with a tilde (~)
will enable this command to run whenever a file has been touched
(saved) in the sources. In this case, we can use ~test-only.

[210]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We simply called the command by specifying the path to the test class that is to be
run. In this case, we want a specific class to be run, and SBT (onto which the Play!
console is built) is aware of the classpath, so you can use tab to auto-complete up to
the complete qualified name of the test class.

At least the whole message fits in the console window now and what it says is that
an HTTP context is required to run the tests.

Since the Application class we ran is everything but an HTTP stack and since we're
defining applicative tests, we can't try to run an HTTP server at this stage and so we
cannot have such HTTP context.

Furthermore, a login page should have nothing to do with the server; it should only
show a login form and that's all. We must have done something wrong in our code,
and where to look is provided by the stacktrace (as usual).

I took a shortcut here. It is possible to simulate an HTTP context
as well, and we'll do it next using the router. The fact is that this
T page shouldn't require it.

Looking at the stacktrace, we understand that line 57 of our compiled main template
expects a session - which is a cookie in Play! and thus it's part of an HTTP context.

Why is the main template involved here? It's because the 1ogin template is using it
to set the regular layout (the HTML boilerplates such as HTML tags and so on).

However, to find the problem even more easily than checking the template itself,
for which we don't have the line number where it has failed, we can go into the
compiled file itself instead.

The class file that has been created based on the template is apparently named
main.template.scala, so we can simply try to find it by searching the target
folder, but let me give the path and show its content directly.

This file is located under the folder /target/scala-2.9.1/src_managed/main/
views/html/main.template.scala.

1
~ If you're using Sublime Text, for instance, just hit
CTRL + P and type the name of the file to access it.

[211]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

The file looks like the following screenshot:

object main extends BaseScalaTemplatel[play.api.templates.Html,Format[play. api.templates. Html]]
def apply/*1.2%/(title: String)(content: Html):play.api.templates. Html = {
Tdisplay_ {
SeqlAnyliformat . raw/*1, 32%,/("""
<IDOCTYPE himl>
<html =
<head=
<title="""], display_(Seq[Any](/#7.17*/title)],format.raw/*7, 22¢/("""=/title=>
<link rel="alternate" type="application/atom+xml" href="http://localhost:9000/content /
<link rel="stylesheet" media="screen" href=""""|, display |SeqlAny]||/¥8.54¥ routes/¥g,
<link rel="stylesheet® media="screen® href=""""], display (Seq[Any]{/*10.54% /routes/*1{
<link rel="shortcut 1con® type="1mage/png" href= "], _display_(SeqlAny](/*11.59%/rout
=script gre=""""),_display_(Seq[Any](/*13.23*/routes/¥13. 29%/ Assets.at("javascripts/]
<script ._display_(SeqlAny](/*14.23%routes/¥14. 29%/ Assets.at("javascripts/j
=script ,_display_(SeqlAny] (/*15.23*%/routes/*¥15, 294/, Assets.at("javascripts/cl
<script ._display_(SeqlAny](/*16.23%/routes/¥16. 20*%/ Assets.at("javascripts/d
=script gres ,_display_(Seq[Any] (/*17.23*%/routes/¥17. 29+ Assets. at("javascripts/t
=script sre='"""),_display_(Seq[Any]l{/*18.25%/routes/¥18. 29%/ Application.js)),format.
=/head=>
<body=
=script=
$(function() "), format. raw("""{"""], format. raw/ 22, 27¢/ ("""
//dirty example without require.js
var tw = new Twitter($):
console. dir(iwl:
ten), format, raw(Utk t), format raws#26, 14k /()
=fscript=
vvv), display_(SeqlAny](/*28 10%/Option({session().get("email"))/*258. 40%/ map/*2
=hl=Connected as """],_display_(Seq[Anyl(/%29 31%/e]]), format.raw/¥29, 32¢/("""</h]1=
“+))T})). format . raw/#30, 164/ """
=div id="twitter-pane" style="display: none; position:absolute; top:@px; left:O0px;back
=span style="font-weight: bolder:Tloat: right margin:2px;width:lem:text-glign:cente
=yl=
=ful=
SR
""t),_display_(Seq[Any](/*37.10%/content]), format . raw/*37.17%/("""
</body>
=/html=

Interesting! A template has been compiled into a Scala object and what it seems to
be doing is building a bunch of string values (multiline string values are possible
in Scala using triple double quotes rather than single ones).

These string values that are essentially the HTML code from the template are
interleaved with Scala calls toa display function, which takes the Scala code
to be executed and dumps its result in the output.

The line that was erroneous in our tests was the 57th one, and what we can see in this
line is a call to Option(session () .get ("email™)).

[212]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

That's true! We're in the main template, which is the base of all high-level templates
and that uses an active session. This doesn't make much sense, because if we
consider the login page, this one mustn't rely on the existence of a session since it's
the entry point that could create it.

So, we know our architectural mistake and we also understand why it never
failed —because we ran it in a real server that can create an HTTP cookie!

Although we know what our error is, we still have to find it in our original main.
scala.html file, which can become a painful task when huge templates are involved.
However, Play! Framework 2 has foreseen this problem and tells us which is the line
number in the template file as well. Indeed, back to our main.template.scala file at
line 57, right before the call to Option, we see the /*28.10%/ comment. This comment
refers to the line in the template that has generated the following Scala code.

Now we go to our main.scala.html file at line 28 and character 10.

html
head
title=@gtitle=/title
1ink ="alternate"
1ink lesheet "
1ink
1ink

]
i
o
)
=l
= H
o
5
el
o
El
+
®
E]
=1

"shortcut icon"

"@routes

oG
='@routes. Application.]s’

body

script

$(functionl | {

var tw = new Twitter(§):
console.dir(tw];
1

—E e

#0ptionisession().geti{"ema1l")] .map {e==

hl=Connected as @e=/hl

div id="twitter-pane" ="display: none. position:absolute: top:0Opx: left:0px:background-color:
span ="font -weight: bolder:float:right:margin:2px:width:lem:text-align:center"=x=/span
ul

ul
div
dcontent
body
html

Oh yes, the check on the connected user is already done here; this means that every
page that will rely on this template to set its HTML boilerplate will involve a check
in the cookie, irrespective of whether it makes sense or not.

Moreover, if we take a deeper look at this template, it includes way too much
information, such as the scripts declaration, the initial creation of the Twitter
JavaScript tool, and even the tweets panel that is declared there.

[213]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

Since it's a common mistake, there is a common solution! The solution is to create
two levels of main templates, one for the HTML boilerplate (such as the DOCTYPE
declaration and common scripts) and another that includes everything needed for
the application to run— the second will rely on the first one.

Having created them (refer to the following list), we will have to go through each
dependent template and decide whether it is part of the application business
(which requires a logged-in user) or not.

To do so, what has to be done is to create another template that we'll name
mainExtended. This new template will hold the following:

e A call to the main template (which we might rename to something like
"bootstrap", for instance)

* The check in the cookie for a logged-in user

* The scripts that are only relevant while the application business is involved

(the chatrum itself)

Finally, the Twitter part will be moved to the dashboard/index.scala.html
template, which is the only place where it'll be used.

This means that the main.scala.html file should be quite empty now, as shown in
the following screenshot:

altitle: String){content: Html)

html

head
title=@title=/title
link ="alternate" ="application/atom+xml" 08/ content /atom/me@@home |
link ="shortcut icon" ="image/png" ="@routes. Assets.at("images/favicon.pn
link ="stylesheet"
link ="stylesheet"

="@routes. Assets.at("jav

='@routes. Application.js'

hea
body
dgcontent
body
html

The main template now contains only the common resources that are needed across
all other templates, which are the jQuery library, the JavaScript reverse routers, and
the stylesheets.

[214]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

The mainExtended template is almost similar to what we cut from the main template.
Take a look at the following screenshot:

@(title: Stringlicontent: Html]

@mainititle) {
@ption(session() .getl "email”)] .map {e==
hl=Connected as @e</hl

b}

@content

cati"javascripts/iguery.form. Js"1" ="text/javascript" script
.at|"javascripts/chatroom.js")" ="text/javascript"”

&t "Javascripts/dashboard.1s"1" ="text/javascript"

It simply calls the main template by giving its own title, and the second parameter
is only another wrapper over its own content variable. The wrapped code involves
the user login information in the session and will insert the JavaScript at the end of
the body (a common technique to accelerate the loading time of a web interface).

Up to now, the Twitter integration hasn't been restored. Actually, since we're pretty
sure that this tool will only be used in the dashboard, we can delegate its loading to
the dashboard/index.scala.html template as follows:

@mainExtended| "Welcome on Play! 2 - ChatRum"] {
div id="twitter-pane" ="display: none; position:absolute; top:0px; left:Opx;backgrour
span ="close"=x=/span
ul
ul
div
| ="@routes.Assets.at("javascripts/twitter.js"]" ="text/]avascript" script
ction(| {
dow.chatrum = {}
window. chat rum.dashboard = new Dashbeoard({
el: %l "#dashboard
losed: @dashboardForm.value.isDefined

b
d

We will add the tweets container, the script loading instruction, and finally the
JavaScript instance of the Twitter tool when the whole document is ready.

_ You might be wondering why we left all the]S libraries in
mainExtended, and you would be right because we should
s~ have dispatched these libraries as well. We left them there for
illustration purposes.

[215]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

In this template, we can also notice that we changed the call from main to
mainExtended. Indeed, it's our last step. Review all the templates that are using the
main template and check whether they should or should not use the extended one.
Of course, 1login.scala.html should remain unchanged.

Having done that, we've cleaned our application up a bit and we're now ready for a
second check on the applicative side by running the test-only command again.

] § test-only applicative.loginSpec
Compiling 2 Scala sources to /home/noootsab/src/book/play-jbook
LoginSpec

Login should

return an OK result
have a template with an HTML form

Total for specification LoginSpec

Passed: : Total 2, Failed @, Errors 8, Passed 2, Skipped @8
] Total time: 12 s, completed Nov 9, 2012 3:18:42 PM

Here we are! Now our login page is quite done, but what about the login validation
in the database and so on? Right!

It'd be worth it now to spend some time on this as well, checking, for instance,
whether an unknown user has been redirected to the login page again or not. For this
there is the enter action in Application that we've to test; the problem with this
action is that it requires some data in its body. So, it's not like 1ogin that we were
able to call directly.

In this case, we really need a request, at least a mock-up, that is a FakeRequest
instance. This mock-up can mimic everything a real request can do, so it'll enable
us to put some data in its body (if it's a POST or PUT request). Then we'll have two
ways to use it:

* By calling the action (enter) with it

* By using the router to send it to the target URL (/enter)

[216]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Okay, we should create such a FakeRequest matching the requirements of the enter
action, which is the only URL-encoded email parameter in the body. Using this
information, the action will check in the database if a User exists with this e-mail.

The following screenshot shows two examples, one for each option:

"that fails will redirect to the login page again" in {
running(Fakefpplication()) {
val fakeReguest = new play.test.FakeRequest(POST, "/enter")
al withEmail = fakeReguest.withFormUrlEncodedBody(Mapl "email” -= "unknown@example.com")]
al result = play.test.Helpers.callActionicontrollers.routes. ref.Application.enter(), withEmail)
redirectlLocationi result.getWrappedResult) must beSome.whichi_ == "/login"]
"{using the router] that fails will redirect to the login page again" in {
running(Fakefpplication()) {
val fakeReguest = new play.test.FakeRegquest| T, "fenter")
1 withEmail = fakeRequest.withFormUrlEncodedBody(Map("email” -= "unknown@example.com"])
al result = play.test.Helpers.routeAndCall(withEmail]
redirectlocation(result . getWrappedResult) must beSome.whichi_ == "/login"]
¥

Indeed, they are both identical; only the way to call the action is different, but they
are equal. Before tackling these lines, we'll review what has been done.

First, we created a FakeRequest (from the Java test API) and updated its body
with what the enter action expected, that is, the email parameter. This email was
then encoded as a form URL, since the enter action is dealing with such content
only. Then, this request was served using the callAction Java test helper. This
helper requires an action to be called with a request. Exactly what we want to do!
So, we used it by giving it the enter action reference available under the package
controllers.routes.ref that gives access to the action instance that Play! 2 will
generate based on the static method defined in the Application controller. The
second parameter is simply our request.

Using callAction is the key point here, since it'll simulate the action on the request.
However, note that we're still using the Java version of the test helpers to access the
action instance and call it. Thus, the action will have access to the request's body to
fetch parameters and so on.

In this case, we're trying to enter the application using a given e-mail that doesn't
exist in the database, so the enter action should redirect to the login page.

[217]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

This redirect information can be retrieved using the redirectLocation helper by
doing two things at once, namely checking if the status is one of the semantically
equivalent ones (such as MOVED PERMANENTLY Oor TEMPORARY REDIRECT) and then
checking if it returns the Location header.

Since either the status can be wrong or the header can be absent, the return type is
option. Given that we expect it to exist, we can simply check that header to be an
instance of Some which wraps the "/login" string.

In this test, we didn't use any HTTP stack (not even a fake one). For such use cases we
can use another helper to call the action, that is, the routeAndcall one. Its usage can
be seen in the second example shown in the previous screenshot. The preparation and
checks are exactly the same but the call itself is different. However, you'll probably
only use the second version that is less verbose, but it's important to know that no
magic is involved. That's what the first version is showing. All actions are compiled
into dedicated objects that will be available for testing purposes (in this case).

The really interesting thing to note so far is that we used the database to check the
user's existence without (re)configuring or even mentioning it. It worked because
we ran a fake version of our application, and also because our application is using
a database.

On the other hand, we're in the easiest situation, where the development database is
the same as the tests one. In this case, it's an in-memory database that is started with
the application. Most of the time, we have a dedicated test database for efficiency or to
reduce resource consumption while testing or, especially, to target different vendors
(MySQL, SQLite, Oracle, PostgreSQL, and so on). This can be achieved by giving an
extra parameter to our FakeApplication, as shown in the following screenshot:

— + T Y — - P [
a otherDatabase = 1
| “db,another ., dr

I

("db,anather.ur

T
!

1

[218]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

But wait; if it simulates an HTTP stack, we could check for a valid user to connect

and that his/her e-mail will be stored in the session! How about the test shown in the
following screenshot:

"succeed and redirect to the dashboard page" in {
runninglFakeApplication()) {

al address = new models.Addressi)
fullstreet = "Smurf, 1"

.county = "Smurt Villag
¥ AN

.country = "SL"

.save

wowmowmown

= new models. Userl)

mor

val C
user m randpa"
user.ema grandpa@smurf.com"
user.age i
user. d
user.
user.
al fakeReguest = new play.test.FakeRequest(POST, "/enter")
al withEmail = fakeRequest.withFormUrlEncodedBody(Map("email" -= "grandpa@smurf.com"))
val result = play.test.Helpers.routeAndCall(withEmail)
sessionl result.getWrappedResult) must not beMull:
sessioniresult . getWrappedResult) .geti"email”) must beSeme.which{_ == "grandpa@smurf.com")
redirectlLocation(result.getWrappedResult] must beSome.whichi_ == "/dashboard")

What's being done here? We begin by creating an instance of a User with its
mandatory Address reference, then they are both made persistent using save, and

finally we create a fake request targeting the enter action. Note that we update the
request with the new user's e-mail.

After having asked it to be routed and called, we must check what the result of this
action should be. The enter action will check that the e-mail corresponds to an
existing User. If so, it'll store the e-mail in the session and redirect the page to the

dashboard index page. The last three lines of the test check these things by doing
the following:

1. Checking that the session is not null using the helper session that extracts
the session object from the cookie.

2. Checking that the session has an entry named email. When retrieving its
value (instance of Option type) from the session, we check that it should be
an instance of the Some type. Where such instance extends the option type
by providing a content (the e-mail in this case).

3. Checking that the header Location and the status define a redirection to the
index page of the dashboard.

[219]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

That's it; we're now able to test anything in our application, right from the top layers to
the bottom ones. Plenty of other test helpers are also provided by the framework, but
it'd be overkill to present them all here. The best would be to check scala/Javadoc of
the Helpers classes when needed.

We've just said that the top layers are testable; it's definitively true for the server
side but not for its exported features that compose of the workflows enabled

by a web application, such as the operations that a service is exposing or the

Ul that it is presenting.

For this, we'll have to write different kinds of tests that have yet another more
complicated and more complete set of needs. This is the topic of the next section.

Testing workflows

In this last section, we'll cover another level of tests that is able to test exposed
features involving workflows crossing the atomic services provided by an
application. This level of testing is also able to test interfaces opened to the wild, such
as HTTP REST interfaces. These tests are probably the most important ones because
they're asserting that our application is presenting features to the end user and these
features are working well. That is, they are asserting that we've created added value
to our application for the end user.

These kinds of tests are also the most difficult ones because they include third-party
products or infrastructure components such as a browser and an HTTP server.
However, we'll see that Play! Framework 2 is aware of these requirements, and it
prepares everything for us in order to let us focus on the test logic only.

As in the preceding sections, several dedicated helpers are available for our tests. The
first one is an overloaded version of the running helper. This version has an extra
parameter, a server. Since it can be quite cumbersome to create or integrate a server
in our test environment, Play! Framework 2 has defined a wrapper around a Netty
server that is accessible through the Testserver class.

A TestServer instance is created using three parameters:

* The port where the server must listen
* AnAapplication to be run within the server

* An optional SSL port

[220]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

By having such a server running, it'll be possible to test the features, such as
the Twitter proxy in our application, that we're exposing to the outside world.
Let's see an example:

rmrmm.mm = ! R * _

package workflow

import org.specs2.mutable.

import play.api.test._
import play.apil.test.Helpers._

import play.api.libs.json.J]sString
import play.api.libs. ws.WS

class TwitterSpec extends Specification {
"Twitter search service " should {
"return tweets with the user name when searching for mentions" in {

runningiTestServer{éSBS, FakefApplication())) {

'S.urli“h{tp: localhost ; 3333/ws/tw/mentions/noootsab") .get)

val response = await|

response,status must egualTolOK)

Ry

[response.json \\ "tweet") must haveAllElementsLike

case 5:Js5t ing == 5.toString must BeMa%Qﬁ?Tﬁg[".&ﬂgaazgab.r“]

case x == kol"'tweet' must be a String : " + x]

What has been done here is that after the classical test structure, we used the
running helper with a TestServer that must listen for HTTP requests on port 3333
and that starts a simple FakeApplication like before.

Then we directly took the opportunity to use this server by defining a call to our own
application, targeting the Twitter controller, especially the mentioning action.

Such a call is exactly the same as it would be for any other web service, as in this
case, our application is also a web service. So, we're using the WS API that will hit
the test server on port 3333 by using the routed path for this action.

Recall that this ws#url method will return a promise of a result, that is to say that the
result won't be available until we explicitly wait for it. Waiting for Promise to return
can be done using another helper called await.

[221]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

This await helper takes a Promise instance and blocks the current thread until the
underlying promised result has arrived; then it returns this result back. That's why the
value of the variable response is already the complete response of the web service.

After doing a sanity check on the response status and confirming that it is OK, we
directly moved to a more specific one by asserting that all tweets must contain the
expected username.

Since the mentioning action is returning a result with a JSON-encoded body,

we can use the double backslashes (\\) operator on it to retrieve all tweet messages.
This will return a sequence of the value of all the properties named "tweet" in the
JSON tree.

For this, we have to first parse the body of the response as JSON using the json
method, after which we will be able to extract all the tweets out of it. The rest of
the test is a specs2-specific check for sequenced content.

All we said is that the text of all the tweets in the sequence must have a type
String (otherwise the test fails), and each of them must also contain the
searched username (noootsab).

Launching the test in the console will give the report shown in the following
screenshot:

1 $ test-only workflow.TwitterSpec
Compiling 1 Scala source to /home/noootsab/src/book/play-jbook/target/:
TwitterSpec

Twitter search service should
for mentions returns tweets with the user name

Total for specification TwitterSpec

Passed: : Total 1, Failed @, Errors 0, Passed 1, Skipped @
] Total time: 7 s, completed Nov 22, 2012 7:08:26 AM

Success!

This example is representative enough of what can be a service's feature test;
however, an application is not only composed of services to be used by other
programs. A web application targets real users most of the time, who are using
browsers and clicking and entering text and so on using a keyboard or mouse.

[222]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

We won't talk about mobile-native clients in this book, but since Play!

Framework 2 is not embedding anything to build such applications,
e— it's acceptable. However, these native applications are to be tested

alone, in which the used services are assumed to be correct.

For such high-level tests, Play! 2 uses Selenium. Even if we can use the classical
version of the Selenium API to test our stuff, Play! 2 will integrate a rather better
API on top of it called FluentLenium.

Selenium (and its wrapper) is able to either emulate a browser in-memory or use
specific drivers to launch tests. To use these drivers, we have to first set up our
machine with the targeted browsers (Safari, Firefox, Chrome, and others) and install
the associated Selenium web drivers.

Since it's not the purpose of this book to provide in-depth details

on how to efficiently use Selenium, we'll use the in-memory
g version of the browser that doesn't require any other setup.

What we're going to do now is to see how easy it is to test a web application end to
end involving as many layers as the application is using.

To illustrate this, we'll test an unregistered user logging in to our wonderful web
application chatrum. Since he/she really wants to use it, he/she will have to go on
the register page wherein he/she will have to enter all the information required by
the HTML form (and the related action on the server side).

Having submitted the registration form, he/she will be able to connect to the
application using e-mail and then use the dashboard.

This workflow will require the test to simulate a lot of things on the client side, click
on buttons, type text in some input fields, select a box or drop-down lists, and so on.

Under the sea, we'll need the full server to check the validity of the inputs, the
existence of the user, and to store information in the session.

[223]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

This kind of setup can become a nightmare really quickly, but not with Play!
Framework 2. Here is how we're supposed to do what is presented in the
following screenshot:

Reg

extends Specification {
ultd 1

r and then login® in {

r(3333, FakeApplication()), HTMLUNIT) { browser ==

O

ta
runninglTe

“be abl

So easy! There are only two things we have to do compared to the previous test,
as follows:

Pass a second argument to the running helper, which is the web driver we
want Selenium to use —constants such as HTMLUNIT and FIREFOX are
available in the helper class (Helpers.scala) and they define the web driver
to be used for related browsers.

The content of the running helper, rather than being a simple block, is now

a function taking one argument called browser, which is an instance of the
web driver. Note that the creation of this instance is out of our hands because
it will be handled by the framework.

[224]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Another point is to use this driver to simulate a user navigating the application,
generating data and requests. We can do this using FluentLenium, as follows:

package workflow

import
import
import
import
import
import
import
import

org.specs2. mutable.

play . api.test._

play api.test Helpers._

scala.collection. JavaConversions.
scala.collection. JavaConverters. _
play.api.libs.jsaon.JsString

play.api.libs.ws.WS

org.fluentlenium.core. filter.FilterConstructor._

class RegisterSpec extends Specification {
"Unknown user " should {
"be able to register and then login® in {

running(TestServer(3333, FakeApplicationi)), HTMLUNIT) { browser ==
val baseURL = "http;//localhost:3333"

browser.goTolbaselURL+"/login")

browser.$("a") .clickl]
browser.url must be_==(baseURL+"/form/user")
browser.$("#gender_radio label") . getTexts.get{@) must be_==("Female")

val sauronEmail = "sauron@ﬁu?get.land"
browser, fill("input", “wit "type"].notContains("radic")) . "with™
sauronEmail,
150.toString,
"Mardor, @",
WLddTE Earthe
browser.$i "#gender_radio false").click()
browser.clicki"option", withTexti"Arda")];
browser,submit({browser.$("form"))

import java.util.concurrent.Timelnit.SECONDS
browser.awalt().atMost(l, SECOMDS) .untili"input").withMamel "email") . 1sPresent;

browser.fillibrowser, find("input"]]. "with (sauronEmail)
browser.submit(browser.%("form"))

browser.awalt().atMost(1l, SECOMDS) .until("#dashboard").1isPresent;
browser.url must be ==(baseURL+"/dashboard")

browser.$("hl"].getTexts.get(0) must be_==("Connected as " + sauronEmail)

[225]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

Wow... we've done a lot. It'd be worth reviewing it a bit, so let's do it step by step.

Firstly, we'll store the base URL of our application and then we ask the browser to
navigate to the login page.

val baseURL = "http://localhost : 3333"

browser.goTolbaseURL+" /Login")

Since we're running a server on port 3333 (using the TestServer class), our web
application's base URL is obviously the value of baseUrl.

Then we ask the browser to navigate to the login page by using its endpoint (/1ogin)
as configured in the route file. Since the user has not been registered yet, he/she has
to click on the link to be redirected to the register page.

browser.$("a").clicki]
browser.url must be_==(baseURL+"/form/fuser”|
browser.$! "#gender_radio label").getTexts.getiQ) must be_==("Female")

Some interesting things here. First, the browser object has a method ¢, like jQuery,
that enables us to search the DOM for elements. This £ind method (its other name)
takes a CSS selector and supports most CSS3 features (pseudo classes, attributes, and
so on). In our case, we locate the link (<a> tag) and ask Selenium to simulate a click
on it by simply calling the c1ick method on the element.

Given that this link redirects to the register page, we can check right after that the
new browser's URL is now pointing to the route of the register action. But also, we
can check that artifacts are present on the page, like the example shown previously
that checks that the first 1abel HTML element under the gender radio input
HTML element contains the Female string. The register user page shows a form
containing a lot of information, such as the username and e-mail address. What we
must do now is fill them all. For this, we'll start by filling the textual inputs, then
we'll deal with the radio buttons and select boxes.

val sauronEmail = "sauron@uppet.land"

browser. fill{"input", “with ("type").notContains("radio")). with |
= - n -
Sauren” |
sauronEmail,
150.toString,
"Maordor, Q"

“Middle-Earth"
]

browser.$i "#gender_radio false").click()
browser.clicki"option", withTexti"Arda")];
browser,submitibrowser.$("form")]

[226]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

Filling an HTML form can be done using the browser's £i11 method that takes

two parameters to retrieve all the form elements that are to be filled in. The first
parameter is the CSS selector; the second can be used to add constraints on the found
elements. In this example, we fetched all the input elements and then removed the
radio ones (using the type attribute).

. You may have noticed the backticks around the with method.
& This is because with is a reserved keyword in Scala, and Scala
&~ enables us to use tricky names or reserved words if they are
surrounded by backticks.

Having collected all the needed elements in the form, we can now ask them to
receive values. This can be achieved using another with method, by passing it the
values in the same order as the order of the elements in the form.

That was easy for the text-based input fields, but our form has two other fields,
namely a radio button (gender) and a select one (country). Both of them don't take
String as a value but react to clicks, so we asked the browser to search for them and
click on the relevant parts.

Now that the form has been filled completely, it's time to submit it. This will be done
with the submit method on the browser using the form element to be submitted.
Submitting a form requires a server-side action that might take some time to return.
This is why we can ask Selenium to wait a certain amount of time until the server
replies. In our case, we asked the test to wait until an input element with a named
email appears in the DOM (Document Object Model) simply because the login page
has it, and register should redirect to the login page.

import java.util.concurrent.TimelUnit.SECONDS
browser.awaiti).atMost(1l, SECONDS) .until("input”).withMame("email").1sPresent;

UwasC . 1 ! FOWSEer ., i al i LU ' .W.l 5 " [i
browser.fill{browser. find("input")) ith™ (sauronEmail)
browser,submitibrowser.$("form")]

We were asked to wait for a second until the input named email was present. When
this field was present, we did the same thing again with the login form; we set the
e-mail value and then submitted it. So now we're logging the user in.

To end the test, we should now check that the result of the login action is the
dashboard page itself.

browser.awalt().atMost(1l, SECOMDS) .until("#dashboard").1isPresent;

browser.url must be ==(baseURL+"/dashboard"]

browser.§("hl"].getTexts.get(0) must be ==("Connected as " + sauronEmail)
[227]

www.it-ebooks.info

http://www.it-ebooks.info/

Smashing All Test Layers

Before any checks, we asked the browser to wait for an element with an ID that is
equal to dashboard to be present. Then we checked that the URL is the expected one
(the route of the Dashboard#index action). Finally, we verified that the h1 tag has a
text containing the e-mail used to register the user and log him/her in.

Starting from here, we can now envision all the tests we could perform for for
workflows that involve a chat, the creation of topics, and so on.

At this stage, we've reached the higher level of functional testing without having to
set up anything more than what was set up for the application itself.

Summary

In this chapter, we had an overview of all the testing phases using the bottom-up
approach for various kinds and amounts of tested features. We also took the
opportunity to review the helpers provided by Play! Framework 2 that enable

us to focus on the tests themselves rather than the set up of the application
components or tiers.

Since tests are a good starting point to learn Scala and to slightly introduce this
language into an existing application, we preferred this language over Java to write
our tests. But for those still preferring to stay in the pure Java world, you had enough
information about the helpers provided by Play! 2. Furthermore, those helpers and
mock-ups can be used along with any other Java testing framework you like.

There are plenty of amazing testing frameworks in Scala, however Play! 2 is
particularly well integrated with specs2, so we followed this track too.

Based on this, we separated the tests into three main logical sets, namely atomic,
applicative, and workflow. Although each of them have their use cases and their
needs in terms of infrastructure or third parties, the helpers of Play! 2 were there to
avoid us bothering with such integration.

At the end of this chapter, we're able to test every single part of our application
by creating as many specifications our application needs to respect (where a
specification explains a certain amount of features).

So it's now time to deploy our application using a continuous integration tool after
having asserted that the tests are not dependent on our machine. This is exactly the
purpose of the next chapter.

[228]

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once,
Deploy Everywhere

In this book, we saw how the Play! Framework 2 can be used to create great web
applications. However, we only saw them running on our machine, which is a dev
machine. So far, so good, but a web application is not meant to be used this ways; it
has to be productionized, which requires it to be deployed on a so-called Prod server.
A Play! Framework 2 application can be deployed in several ways, for example, in

a servlet container, such as Tomcat. However, in this chapter we'll concentrate on a
particular use case; cloud deployment on a Platform as a Service (PaaS).

But, wait! There is something that a web application needs before before it can be
released to the end user. It needs a neutral environment, which asserts that the
application is delivering its features correctly. Nowadays we like the Release Early,
Release Often vision, but for that to happen we need to have an automated and
continuous eye on its quality.

That's why we end up in a more general process called Continuous Delivery.
Continuous delivery means that the work done by a developer has to be checked
into a decentralized repository. This repository will be used by a tool, a Continuous
Integration (CI) server, to check that the modifications aren't leaving the application
in a stale state.

At this stage, we're not yet done because the final user cannot use the newly added
functionality (or bug fixes). For that, we need the CI to automatically deliver the
status to a deployer (it could be the Cl itself or a plugin), which will be able to
redeploy the application when the status is okay. On the other hand, if the code base
is failing the CI, we need it to send events to the dev team, which should pause its
current tasks and work on the problem until the application is stable again.

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once, Deploy Everywhere

So far, so good, our application will be continuously managed from the dev to the
user. But is it running fine in any case? How do we ensure that? Don't we need
another handy tool out there, such as an admin interface, which will act as an
applications' doctor?

In one word, a monitor that will enable us to react to strange runtime behaviors,
utilization peaks, and so on. Fortunately, this tool is already part of the Typesafe
stack (remember that Play! 2 is the web layer of this stack) and it is named
Typesafe Console.

In this chapter, we'll cover these three pillars of web application management,
essentially using a dedicated service on the cloud for each of them:

* Continuous Integration server using CloudBees DEV@cloud services (SaaS)
* Deployment on Heroku (PaaS)

* Monitoring using the Typesafe Console

Continuous Integration (CloudBees)

In this section, we'll talk about CloudBees, which is the provider of a blazing service
for Jenkins, the famous open source Continuous Integration server.

This is not the only great service this company is offering of course. Its portfolio
spans every single step of a Continuous Delivery process. And they do it very well
from the code repository to the runtime and even some monitoring through add-ons.

However, we'll specially focus on their DEV@cloud product, which is the CI service.

So, CloudBees is a Java Platform as a Service that aims to completely abstract the
Infrastructure as a Service (IaaS), which CloudBees uses on its side to provide a clean
and easy way to manage an environment that builds, tests, and runs a web application.
As a fully dedicated Java platform, it is particularly well integrated with the ecosystem
tools and framework built on top of this language and the related languages, such as
Scala, Clojure, JRuby, and so on. CloudBees is special in several aspects, the first is

that it's a freely-accessible panel of services, at least until the thresholds are reached.
Nevertheless, these thresholds are sufficiently high enough to enable up to three
regular developers to run their tests. On the other hand, the runtime needs are not
dependent on the number of coders, but are dependent on its quality and popularity.

[230]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Alright! Before starting with it, let me first introduce CloudBees' two major products:

* DEV@cloud: This service provides a perfect environment in which to test a
web application. It's completely integrated with a provided code repository
or with any code repository we own and is publicly accessible. It can also be
fully automated using hooks around the code repository that it's using for
running the tests.

* RUN@cloud: This service is the runtime environment that is available in two
flavors depending on your needs. There is the multi-tenant and the dedicated
one. Since they're abstracting the underlying infrastructure, we could own
fully dedicated machines (virtualized) or parts of machines (shared with
other applications) without any extra configuration.

After this short introduction to the CloudBees services, it's now time to get back to our
initial concern, that is, how to use CloudBees to continuously check that our Play! 2
application remains stable with each modification saved in the code repository.

First of all, we have to go to their website at http: //www.cloudbees. com and create
an account. Having done that, we can now log in to their website and access our
administration console:

Applieations Applications
Add New Application

o Vol GO Rt ANy ARPIICATIONS CARaN, yOu MG e 10 Crants ond
latabases

Manage

Add New Databaso

Ecosystem Services
Now Relic Monitoring
Papertrall Logs
SencGrid Mall Server
Waobsolr Search Indeces

AppDynamics Monlioring

The preceding screenshot shows a brand-new account without any application,
so it's time to create our Chatrum application. Here's where the magic starts!

Indeed, since CloudBees is a Java PaaS, and it's clever, it has eased the work for
developers wanting to bootstrap a new application on their framework of choice
using what are called ClickStarts.

[231]

www.it-ebooks.info

http://www.cloudbees.com/
http://www.it-ebooks.info/

Code Once, Deploy Everywhere

A CloudBees' ClickStart is in fact a wizard to create an application using several tools
commonly used together. Thus, the created application will include configuration
files for them, or even the glue between them. That's not all, the extra tools will be
preconfigured as well, such as the Continuous Integration server or the deployer. In
our case, we'll find it very handy that we can create a Play! Framework 2 application.
CloudBees recognized very early that Play! 2 will play a major role in the web world
in the coming years. Therefore, they created an end-to-end wizard, which can grasp
our application's code, preconfigure a Jenkins server for it, and also help the Jenkins
server to be able to deploy it. Moreover, it is done in just a few clicks. Let's see it in
action; click on the upper-left icon in the navigation bar of our admin interface (with
the label ClickStart). We should get something similar to the following screenshot:

) W csastn apps OB ClickStarl & arcy-cerena v |

AL

CiojureCampojure Facebook application
CHckStan starting peint

Look at the previous screenshot. It's right in the center of the page, surrounded
by giants such as J2EE 6, Node.js, Hibernate and Tomcat, and a Facebook
application environment.

[232]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

It's time to go ahead and click on the Play! 2 icon! This click will ask CloudBees to
prepare a Play! Framework 2 environment, which we'll need to test our application
(or run it). Before that, it will ask us for a name for our application:

ClickStart ’

Play! Framework 2

' Application Companents

FA
% -
S

Webs Al stion Flstabuave ot

The input field right below recaps what will be created for our application, in
terms of services and so on. We'll name our application Chatrum and click on
Create App >.

[233]

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once,

Deploy Everywhere

Plenty of infrastructure tasks were realized after just a few seconds of preparation,
which would have taken a full week of work without CloudBees. In the following

screenshot, we see that our server is ready with some available tools:

ClickStart (]
Play! Framework 2
Application Compoenents |
Source repository Jenkins build
Management URL
https:ifandy-petrella.ci.cloudbess. comd/job/chatrum
¢) Database Chatrum-16
!\..-r.:; Management URL
— hittps:ifrun. cloudbess. com/alandy-petrellsf#db-manage: Chatrum-16
managedevelopment: andy-petrefia’chatrum
URL
hittp:/fchatrum. andy-petrella. cloudbess. net
Congratulations!
Your Play! Framework 2 application, Chatrum, has been deployed to the account:
andy-petrella. It is now ready to use.
Close Dialog Open Application
o -
P

Amazing, huh? We can now check off, in two clicks or so, a source repository (Git), a
Continuous Integration server (Jenkins), a web administration interface (CloudBees'
interface), and even a database (MySQL)!

[234]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

We're about to see how to use them all, but first we must open the application by
clicking on the Open Application button. This will lead us to our account interface
from which we can access all of our services for all of our applications:

Bl snay-cetrelin v e

Welcome to CloudBees - Click a service to get started! BT

Cicudiees Platiorm

® 09 1

Reposiiories Jenking Bullds Applications Databases Maru Services
Community Links Quick Reference Recent Blog Entries
[« * DEV@doud Wik * AUNEdoud Wik = b T
© e » GIT/BVN mepositories « Maver Intogration
= Application mordoring » MySCL databases
© roy = Selonium browser testing. = Sonar code coverage
O =
Getting Started
Downloads = DEViEioud - Jenking a5 a sendoo
° CloudBeas Eoipse = RUN@doud - Deploying Java apps
Tools = Continuous deployment
o CloudBees SO = CloudBoes for Edipss

As we can see in the preceding screenshot, we can administer everything from here.

As mentioned before, we'll only focus on the first three icons — Repositories, Jenkins
Builds, and Applications. The first will show us how to deal with the Git repositories
we have at CloudBees, in this case there is only the chatrum repository (see the
following screenshot):

-

Ermail Netifications

Repeaitory Type

Anenymeus aciess Anceaymous Bk ks nol dvadabie

Authenticated acoms

Sorage Consumed) IME

Yo Birat comnmit {and ki)

» Committing mn existing preject 1s git

» Migraling bo yout CloudBiess mpouitory (from an sxisting git reponitocy) -

[235]

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once, Deploy Everywhere

The interface includes a lot of information about the Git repository, for example, its
URL, its visibility, and so on. The bottom-left corner also explains how to use the Git
repository in the cases where we already have some code to push (which might be
available from another Git repository) or if it's a brand-new application (when we're
starting from scratch). The cases are grouped within accordion panels.

. Note that the created repository already contains an empty Play!
& Framework 2 application, which has been deployed at the same
" time. So to be able to push an existing project to this repo, we must
ask Git to force the push.

After having pushed our chatrum application to this repository, it would now be

worthwhile seeing how to run Jenkins on it.

Don't forget to upload your SSH public key so that you'll be
= able to use the services easily from your own machine.

For that, we can click on Builds in our top navigation bar; it's a shortcut to our
Jenkins' administration interface:

&
£
2
E
£
£
H
£
i
i
H

tEeXCRINR

It appears that it's just a classic Jenkins console, but embedded within the CloudBees
interface. And what's already out there? Our chatrum application
of course!

Indeed, at this stage, a Jenkins' job has already been created for our application.
However, its sole task for now is to check the code repository for changes and
build the application without testing it by default.

That's great, but since the tests aren't being run, we're breaking the Continuous
Delivery process. We must now ask this job to run the tests, which automatically
implies that the application won't be deployed if at least one test has failed.

[236]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Yes, the application is deployed as well when built. We're
allowed to disable this behavior or to tune it, but we won't
cover the deployment phase in CloudBees here.

This can be achieved by going to the configure page of the chatrum job, as follows:

MName | Last Success
chatrum 1 hr 18 min (£8)
,,_,..-‘ Changes
I:'_ Workspace
&) Build Now
@ Delete Project
P Configure b

ﬁ, Groups
& Roles

Mowve

-
D Forge Hook Log

In this page, we'll have to update the Build | Execute Shell command, which

CloudBees has configured for us.

We'll add the following two things:

* A test goal, asking Jenkins to run our tests

* A configuration for a display environment, which is helpful for tests
using Selenium

[237]

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once, Deploy Everywhere

This is done by updating the default command line in the text area. In the following
screenshot, we can see which command has been set up by CloudBees for us:

Build

Execute shell (2]

Command

java -Xms512M -Xmx1536M -Xss51M -XX:+CMSClassUnloadin

MSC1a \abled -XX:MaxPermSize=384M -jar /opt/sbt/sbt-launch-0.11.3-2.jar -
Dsbt.log.noformat=true clean compile dist

see the list of avallable environment variables

And the next screenshot shows the resulting command line we must use:

uild

Execute shell @

Command [, ort DISELAY=:99
Xvib 193 &

java -XmsS12ZM -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XK:MaxPermSize=384M -jar /opt/sbt/sbt-launch-0.11.3-2.jar -
Dsbt.log.noformat=true clean test dist

See the list of avallahle environment varishles

What was done is that the compile goal was changed to test, and a DISPLAY
environment variable for a virtual display server was added.

So far, so good, we're going to make a little change in our code, push it to CloudBees,
and finally check what's going on. The change we will make is asking Selenium to
use Firefox rather than its in-memory web browser; since it's a very simple change

in the code, it looks fine for this example. To do that, simply navigate to workflow/
RegisterSpec.scala and replace HTMLUNIT with FIREFOX.

Now we can commit the change and push it back to the CloudBees code repository,
and then get back to the Jenkins console. We'll see that a new build has been
launched, thanks to the Git hooks and the configuration, which CloudBees has
made for us.

[238]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

So, we just have to wait for this build to finish (and succeed obviously) to enter the
build's result by clicking on its item in the bottom-left panel. A Jenkins job result
page has a menu item to view the console output (on the left-hand side navigation
bar); if we click on it, here is what we'll see:

More

info] + that succeeds will redirect to the dashboard page

Total for speci
ished in 12

fication LoginSpec

S examples, O

ailed 0, Errors 0O
mpleted Dec 3

Your application is ready in /scratch/jenkins/workspace/chatrum/dist/play-jbook-1.0-5HNAP

[success] Total
Process leaked

time: 10 =, completed Dec 3, 2012

ile descriptors. See http:

more information
[cloudbees-deployer] Deploy
[cloudbees-deployer] Depl
[cloudbees-deployer] Depl
[cloudbees-deployer] 0 MB
[cloudbees-deployer] M
[cloudbees-deployer] Z M
[cloudbees-deployer] 4
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer]
[cloudbees-deployer] 20
[cloudbees-deployer] 2
[cloudbees-deployer] 2
[cloudbees-deployer] 2
[cloudbees-deployer] 2
[cloudbees-deployer] 2
[cloudbees-deployer]
[cloudbees-deployer] C

R te s L=y e = o i) & e e = oy ey s a3 e e e

Hurray! All tests passed! So we're now ready to code in a peaceful way, even with
several devs on the same code base or in different time zones. At least, we know that
the future commits won't break the application for the currently tested specifications.

As you can see, a second box has been drawn around another message, which
notifies the user that the application has been deployed as well. However, the
deployment part will be covered in the next section using Heroku.

[239]

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once, Deploy Everywhere

Deployment (Heroku)

Part of the Continuous Delivery process, the deployment phase is one of the most
critical. An application when deployed, is released into the wild where innocent
monsters (users) are massively mistreating it (using it).

The deployed version is the one that will be used, it will show end-users the new
features, bug fixes, and so on (or the problems, if any). It has to be resistant to peaks
of use. So there are several needs that we might find very helpful at deploy time.
Examples of those needs are the ability to redeploy quickly and easily when hot fixes
have been made, or to scale our application horizontally when running on the cloud.

Nowadays, a great solution to those problems is the Heroku provider
(cloud hosting) that comes with a PaaS, which is completely independent
of the underlying infrastructure. And managing a running application is
very easy, thanks to their amazing Toolbelt tool.

Okay, calm down! Let's rewind a bit and briefly introduce what Heroku is.

Heroku offers a hosting platform for cloud applications. For this it supports a
plethora of different languages from Ruby to Scala, through to Java or Python.

Their philosophy is their key value. As mentioned earlier, their platform is
completely abstracting the machines that were started under the covers for our
application. All we have to deal with is what they term as dyno. What we must
understand about a dyno is that it's like an isolated unit of work dedicated to our
application, which is able to receive requests or run commands. In one word, it's like
a small machine, we don't have to manage anything.

A dyno is built in such a way that our application can run on it, receive requests,
or even start batch processes. The coolest part is that we can add as many dynos
as we like (to pay for). Moreover, Heroku deals with them in a completely
fault-tolerant way.

[Q The free service provides only one dyno for free.]

So those requests and processes are dispatched, balanced, and recovered out of the
box — these problems are no longer ours! Isn't that beautiful?

[240]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Furthermore, their ever-increasing popularity has been reflected in the number
of tiers' services that have been integrated with their platform as add-ons.

This fact results in a very wide ecosystem, including ElasticSearch, Cache,

and NoSQL databases.

Great! After this quick introduction to Heroku, let's see how to use it. This leads us
to use their Toolbelt tool —a command-line tool enabling any application running on
Heroku to be remotely scaled, monitored, restarted, and so on. The best option, now,
would probably be to install it and deploy our application on Heroku. Its installation
is pretty simple and very well explained at https://toolbelt.herokuapp.com/.

M Obviously, we need to have an account on Heroku to be allowed
Q to deploy our application on their platform. For this, we just have
to follow the instructions on the login page.

With our account created and the CLI (toolbelt) installed, we must now get back to
our application, using the console. From here, the deployment is rather simple. First
of all, we have to create our application on Heroku, which will add it to our account's
administration console. This can be done as follows:

noootsab@noootsab-xps-ubuntu:~/src/book/play-jbookS heroku create
Creating arcane-castle-4628... done, stack is cedar
BUILDPACK_URL=https://github.com/ndeverge/heroku-buildpack-scala.git

http://arcane-castle-4028.herokuapp.com/ | git@heroku.com:arcane-castle-4028.git
noootsab@noootsab-xps-ubuntu:~/src/book/play-jbooks git push heroku master

Yeah, really, two commands and we're done!

Actually, the first command will create an application on Heroku for our chatrum
app with a generated name (arcane-castle-4028), the second will push our code to
the Git repository that Heroku has created along with the application.

If you don't want Heroku to generate a name for your application (that you still
can change in your administration interface on the website), you can update the
command as follows: heroku create <your-chosen-names.

This Git repository will be used by the Continuous Deployment feature of Heroku.

[241]

www.it-ebooks.info

https://toolbelt.herokuapp.com/
http://www.it-ebooks.info/

Code Once, Deploy Everywhere

When new commits are incoming (pushed), they will ask Heroku to try and redeploy
our application. So, let's try it directly by pushing our code into this repository and
see the next screenshot for an excerpt of the output. We can see that it has detected a
Play! Framework 2 application. Since it knows how to deploy such an application, it
did this deployment for us, directly!

noootsab@noootsab-xps-ubuntu:~/src/book/play-jbookS git push heroku master
Counting objects: 100, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (89/89), done.

Writing objects: 100% (100/100), 77.22 KiB, done.

Total 100 (delta 8), reused 0 (delta @)

Heroku receiving push

Fetching custom git buildpack... done

Play 2.8 - Java app detected

Installing OpenJDK 1.6...done

Building app with sbt

Running: sbt clean compile stage

[info] Packaging /tmp/build_17vlkpurkbpek/target/scala-2.9.1/play-jbook_2.9.1-1.8-SNAPSHOT. jar ...

[info] Done packaging.

[info]

[info] Your application is ready to be run in place: target/start
[info]

[success] Total time: 54 s, completed Dec 3, 2012 9:00:04 PM
Dropping ivy cache from the slug

Discovering process types

Procfile declares types -> (none)

Default types for Play 2.0 - Java -> web

Compiled slug size: 87.9MB

Launching... done, v7
http://arcane-castle-4028.herokuapp.com deployed to Heroku

ro git@heroku.com:arcane-castle-4028.git
* [new branch] master -> master

You might wonder how to open it. Try executing heroku open in your console.
Great! It opens our application in our default browser.

The problem is that we're not quite done, because of what is displayed on the screen
(an error message):

C ff O arcane-castle-4028.herokuapp.com

Application Error

An error occurred in the application and your page could not be served. Please try again in a few moments.

If you are the application owner, check your logs for details.

[242]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Ouch! What's that? Since our tests are running, everything should be okay
on production.

Our reflexes should have been shaken in a way that our eyes should have already
been looking for the logs. Right, that's easy, use heroku logs!
[1 pl.iy - Run with -Da Lons. Lt=t f u want to run

alter table image add cons
rict on update restrict;

in
int fk_item_chat_3 foreign

trict on update restrict;

scala.collection. LinearSeqoptinizedsc

Amazing, our logs have been fetched from the server and shown in our console!
And, what they are indicating is that we must apply evolutions to our database.

That's right, our application is using evolutions to manage the version of our
database schema and this same evolutions plugin has detected that our (in-
memory) database is not up-to-date. But since the application is currently running
in production mode, we cannot have the common web page we had in dev mode,
which asked us to apply the updates manually.

To overcome this problem, we'll take a shortcut and ask Heroku to always
update the database schema when needed (on restart/redeploy). But we'll
also take the opportunity to use the database that Heroku has provided by
default—a PostgreSQL database.

To use this database and to configure an automatic application of evolutions, that is,
to configure how Heroku should behave, we can use a specific file that Heroku will
use on deployment —a Procfile file.

This file is meant to configure the processes that Heroku must start on our dynos. In
this case, we need to update the way the Play! 2 application's process (called as web
process) is created.

[243]

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once, Deploy Everywhere

The procfile file must be created in the root of our application and will look like
the following;:

Procfile *®

web: target/start -Dhttp port=${PORT} ${JAVA OPTS} -DapplyEvolutions.default=true
-Ddb.default.driver=org.postgresgl .Driver -Ddb.default url=${DATABASE URL

In this file, we can see that we created a web process using the target/start script.
This process is running a JVM to which we've passed several options to be used

by the application, for instance, the port to listen on, or the default Java options set
by Heroku. Note that we've just reused some environment variables provided by
Heroku, and the same goes for our database URL.

But what has been done in this Procfile file to resolve the database status problem
is the addition of the applyEvolutions.default=true option. This option tells the
application that we want evolutions (1.sqgl) on the default database to be applied at
start time, where this default database has been reconfigured by two other variables
targeting the PostgreSQL database that Heroku is providing.

To check this solution, we can do the following:

1. Commit and push this new file to the Heroku Git repository.

2. Inthe console, use heroku restart.

3. When restarted, check that the web process is started using heroku ps.
4. Open the application using heroku open.

Your default browser will be opened at the application's URL and will show you the
login page. Hurray!

Now that the application is running, we would like to know if the current
deployment is sufficient for the load, and we would especially like to monitor some
metrics. Indeed, at runtime there are plenty of variables that might slow down our
application, or even blow it up. That's where monitoring tools enter the game, and
that's the topic of the next section.

[244]

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9

Monitoring (Typesafe Console)

In the cloud world (which we've entered recently), most of the new applications
are running in virtualized environments that are sold as services themselves
(IAAS, PAAS).

This implies that a lot of responsibilities (infrastructure, network, OS, filesystem, and
so on) are now out of our hands, which is good. But when we need to understand
why our application has crashed or why it is particularly slow, we should be able

to get our hands back on some of the responsibilities. For instance, our application
might be slower at some point because the host network is overloaded or because the
file system is being archived and is reducing the IO's performance.

Those facts have increased the need for monitoring, and this need has been tackled
by great teams, building great products; New Relic (http://newrelic.com/) is one
of them and probably the most famous one as well.

Actually, the Typesafe team is part of those smart teams, and so it has recently created
a brand-new product called the Typesafe Console. We'll take the opportunity to
introduce this product in this section, but first of all, let me warn you of some things.
This is a paid product; at the time of writing, however, it has been announced that it
will soon be free for developers.

Furthermore, this console is not yet ready to monitor a whole Play! Framework 2
application. Indeed, its first goal is to monitor the Akka systems; nevertheless, this
feature should come in the future.

So far, so good, but what's that console?

The Typesafe Console is a web application built upon the Typesafe stack 2, and thus
it uses Scala, Akka 2, and Play! Framework 2. But it also uses MongoDB to store
information about the metrics gathered from the running/monitored instances.

As this section is a short introduction to this product, we won't dive into too many
details, but we'll have a quick overview of its features.

The Typesafe Console is meant to monitor and trace the deployed event-based
systems using Akka. By capturing these events, it is able to compute metrics on
them and to present them in a neat, clean, and beautiful web interface. And so, no
matter whether our application is deployed on several nodes or using the remote
capabilities of Akka, the console remains the single monitoring point.

[245]

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once, Deploy Everywhere

See the next screenshot to know what the console looks like and what it can display.
If you want to see it in real life, you can, of course, download it and try it, or you can
also gotohttp://console-demo.typesafe.com/:

« NODES SYSTEM

QUERY

3d3h6min

N0 - 2267 THROUGHPUT

3d3hémin MAILBOX
1.283 1291

REMOTE

In the preceding screenshot, we see that we can monitor several nodes (two in this
case) and the system itself (with some filters enabled on the top right).

From here, a lot of views are available because almost everything is clickable, which
results in a different view (scoped). For instance, one could see the status of the
dispatcher of the second node:

NODES DISPATCHERS

n: nodel i : node2, as :Demo, d : akka.actor default-dispatcher

3d3h 14 min 2 = 1

32.2-2347 . 1.283-1.291 1181 ys

n:nodez

3d3h 14 min

1.283-1.291

[246]

www.it-ebooks.info

http://console-demo.typesafe.com/
http://www.it-ebooks.info/

Chapter 9

Or even see the workload of a particular actor (a piece of work):

NODES ACTOR

3d3h15min

322-2347

3d3h15min

1.283-1.291

Having that for Play! Framework 2's internals (requests, accesses, and so on)
will be awesome!

Summary

In this chapter we mostly talked about the tools to reach a Continuous Delivery
process for our application management, using some tools running in the cloud.

It was mainly divided into three parts; we started with Jenkins, the Continuous
Integration tool, available on CloudBees. This phase checks that the application has
the expected quality (statisfies all tests) independently of the host machine.

Then we saw how to use the Heroku platform to deploy a Play! Framework 2
application and took the opportunity to switch from an in-memory database to a
production database — the PostgreSQL database provided by Heroku.

And finally, we introduced the Typesafe Console that will be the next killer tool for
any Play! Framework 2 application, giving us a view of our application's health.

This chapter also ends the book for the pragmatic parts of Play! Framework 2.

[247]

www.it-ebooks.info

http://www.it-ebooks.info/

Code Once, Deploy Everywhere

The following chapters —appendices — will talk about where to go from here, for
even more advanced use cases. Those use cases would have been far too much for
the scope of this book, and would require a dedicated book in itself.

Before getting to these points, we'll also have an overview of the core concept of the
Play! Framework 2 —the why and how.

[248]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Play!
Framework 2

In this appendix, we'll spend some time speaking about Play! Framework 2 itself
rather than exposing what it can do, which, by the way, was the role of the book's
main content.

The following topics will be covered in this appendix:
* Whatis, in fact, Play! Framework 2, and what are the use cases that will fit
perfectly with this framework
* A glance on the core ideas

* Why the need for such a framework was so strong that it already has a
second version of it

* Why the second version is better than the first, and what the differences are

* A quick overview of the goodies given to developers

Why do we need Play! Framework?

The first thing to understand and to keep in mind while using Play! Framework 2 is
that it is a pure and full-stack web framework on the JVM. Creating web applications
using cutting-edge technologies is its first purpose, and it is the best at it. It is the
best as it gives developers a great and positive experience while creating web
applications. This experience comes with the fresh and neat vision that Play!
Framework has on how web development should be done.

The most appreciated feature from the developer's perspective is the short overhead
between the code session and the result in a web page, which is near to zero, thanks to
the hot reloading of any source files and the compilation errors shown in the browser.

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Play! Framework 2

Framework for the Web

This new framework has been built by taking some references from the Web world
and its success stories. Some of them are Ruby on Rails or Django in Python. They
bring to the JVM some facilities that aim at simplification of the work; for instance,
eliminating the boilerplates necessary to set up a development environment around
the framework.

Indeed, its full-stack approach means everything is prepared for us —all we need

is already there. Not that we're forced to use everything or we cannot swap a

library for another, but it's just that without specific actions and efforts by the web
developer, we don't have to do anything else but simply install the framework and
start working. And it's on the JVM —that means we have all the tools from one of the
biggest communities out there to help us in our daily work.

In short, Play! Framework 2 is the fastest way to create amazing applications that
make usage of all new features brought by the Web. Thus, it's also the best way to
show these new features!

Not JEE-based, but JVM

We have to mention that Play! 1 didn't follow the JEE specifications and abstractions,
and there are no reasons to have Play! 2 follow them either. Where most of the
abstractions in J2EE, at some point, eased the developer's work, nowadays they are
constraining him/her with what was foreseen years ago. But the Web is evolving so
fast, with needs that are completely different than were half a decade ago or so.

For instance, every year HTMLS5 has better support, and this specification along
with the Web is including many new features that help in building applications very
easily and in an integrated way. Examples are WebSockets, caching control, security
headers or metadata, and so on. While these features have to be enabled in JEE, they
haven't been hidden in Play! 2.

Learning from the past, where the first version supported the Scala language
through a plugin, this new version has been built upon Scala from the beginning.
Because Scala and the functional paradigm fit very well with highly-concurrent
applications, like a web framework should be, they both helped a lot for Play! 2
to be a highly-reactive web framework.

[250]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

However, even if Scala is gaining in reputation, the Java community with its tooling
and its amazing set of libraries, and also its "quasi-omnipresence" still has a place of
choice; that's why a Java-specific and adapted API is there for us. This might enable
a developer to mostly ignore the Scala language itself, apart from the templating and
build system.

Underlying ideas and concepts

The Play! Framework internals are based on very light and trivial concepts. One
of them is that the application should be separated from the Web by a single thin
layer —its APIL

Reactive

This framework helps in solving a fundamental problem in web-based
applications: the reactivity of a web server within a distributed environment.
In the following sections, we'll see which points are critical to building a
sustainable and relevant solution.

NIO server

A Play! 2 application is completely stateless, that is, no state can be stored on the server
to cover multi-request workflows. This fact will oblige applications to use different
patterns or to use specific tools to deal with a state —such as a caching system.

For responsiveness, they took the opportunity to distribute a dedicated server as part
of the stack, which is the non-blocking JBoss Netty server. This server is different
from others because of its behavior. Indeed, rather than dealing with threads for
every single request that is coming, it uses an event-based architecture where events
are created when a request is effectively asking something or sending something

to the server. That will help the server not to wait for a request to finish before
switching to another, or in other words, to block a thread until the request has
something to do.

This kind of behavior is contrary to the "one user, one thread" concept, which leads
the server to only serve as many users as the number of threads it can deal with, no
matter what they are doing.

[251]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Play! Framework 2

Asynchronous

But the responsiveness is not yet accomplished if we only tackle it in the core,
because a developer could block a thread on an external working process, such
as a web service call.

In order to avoid developers doing that, Play! Framework 2 can declare a process to
be asynchronous and leaves the server to choose when to process it or when to come
back on it. For example, if a process is running on an external machine, but the local
thread is simply waiting for an answer, this thread can be retrieved for other tasks
until the remote call has returned.

Iteratee

However, that's still not enough, thanks to the Scala language and its ability to

use functions as objects. Play! 2 uses Iteratee to add some responsiveness to handle
request bodies themselves. So the body to be processed as an XML or a JSON is no
more blocking the server because an Iteratee can pause its work until the server,
which is responsive in itself, has some data.

Furthermore, it's composable, which adds a new value to the framework, because it
prevents a body (that could be large) to be processed several times for transformation
purposes (bytes to string to JSON, for instance).

Wrap up
Using Play! Framework 2 and by following their conventions, any application is
ready for the Web, or more than that, it is ready for the cloud.

What's new?

The following sections will be dedicated to what comes with this new version of
Play! that wasn't available in the first version.

Scala

As said earlier, this version has been built using Scala as the core language, whereas
Play! 1 uses the Java language and provides support for Scala.

[252]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

Simple Build Tool

But that's not all! One of the biggest changes of Play! 2 is its console. Indeed, Play!
1's console was a custom one, using Python to reduce the memory footprint and the
need to start a JVM all the time. This has been revoked in Play! 2 because of Simple
Build Tool (SBT). This build tool has the disadvantage of starting a JVM but, you'll
start it only once! This is because the SBT console is a "real" console as it provides
commands, tasks, and so on.

Furthermore, SBT is easily extensible and that's exactly what has been done for Play!
to enable or customize specific actions for it (such as run).

Templates

In this new version, where Scala was chosen as the core language, the Play!
Framework 2 team has also chosen Scala for server-side rendering. This means that
they have built a brand new templating system that uses Scala rather than Groovy in
the first version.

However, they didn't use Scala as just an empty language to generate HTML
(for instance); rather, they integrated the generated page (or data) with Scala.
And how did they accomplish that? By producing a regular Scala file that will
be compiled. Hence, writing a template is type safe; they can be composed easily
and have a steep learning curve.

Assets

A web application will always come with assets that are meant to be served

as is by the server. However, those assets will be optimized by Play! for us, by
precompiling them or by using an HTTP mechanism to reduce the server's work
to serve them. One example is to use the ETag header to avoid resending the same
thing again and again.

That was for performance, but Play! has been created by web developers, and only
they know what other problems they had with assets such as JavaScript and CSS.
That's why a new feature that comes for free with Play! 2 is the ability to write
compiled assets such as a CoffeeScript file for JavaScript or LESS CSS for CSS,
without any configuration or additional tasks when starting to work.

The integration of these languages has been done deeply, so their compilation
errors are shown to the developers like it is for a classical "server" code, which
is on the browser!

[253]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Play! Framework 2

Amazing goodies

This section is reserved for stuff that you probably won't find out of the box in most
other web frameworks except Play! 2. As this framework is pretty recent, it has
directly embraced all the new stuff that is required for applications willing to stick
with cutting-edge technologies, HTML5 being the first one.

HTMLS5

HTMLS5 has defined a bunch of new concepts that aim to ease the work of all
developers if their web frameworks allow them or provide APIs to support them. And
that's the case for Play! 2 because of its architecture, which is very simple and does

not try to abstract too much, that is, Play! 2 doesn't try to hide the fact that we're using
HTTP and HTML to deal with a browser or a service. This results in the fact that a
developer is able to add the support to a new header without hacking Play! 2, or is able
to support a new type of streaming protocol without breaking the others.

The following are a few examples:

* Server-sent events: Part of the HTMLS5 specification, this concept enables
a server to push events to a connected client. This can be enabled in Play! 2
using an open connection and can push data to it.

* WebSocket: This is yet another part of the HTMLS5 specification, which
enables a bi-directional connection between a client and the server. No need
to implement it since Play! 2 is already implementing it, and in a reactive
fashion. So we've just got to use the dedicated API for that.

* Comet: This is not part of the HTMLS5 specification, but was the predecessor
of SSE for those applications that needed a server push functionality. The
same remark was said for WebSocket; everything has been done in the Play!
2 API to enable a developer using Comet easily. No need for a brand new
API like it was for the Servlet API Indeed, a new Servlet API was created
back in 2009; it was the third version in order to enable such features.

The WebSocket Java API is still under discussion (the JSR 356),
and that's another clue that Java is somehow breaking the early
= access to new web features.

[254]

www.it-ebooks.info

http://www.it-ebooks.info/

Appendix A

External services

HTMLS is not the only great support that Play! Framework 2 is providing us. There is
also the support of web services. There is a part of the API that is completely dedicated
to handle WS calls in a reactive fashion (using the Promise and Iteratee concepts).

By respecting Play! 2's conventions, an application can make excessive usage of
external services without suffering extra latency or bad response times for regular
requests. This is possible thanks to the asynchronous feature of Play! 2.

Form validation

Another tool in Play! 2 is the validation of HTML forms on both sides: client and
server. Indeed, you can rule the way data is provided to a server at runtime by
adding constraints on them. Plenty of constraints are defined in the API but we
can also create our own.

More than this runtime validation, a validation can be done at compile time using
the power of templates. Indeed, as a form is represented on the server side to match
a specific type structure (hey, we're in Java or Scala!), and that the templates will take
those forms as parameters to create HTML ones, the compiler will be able to find
problems with types.

We can easily create a workflow that deals with validated deep structures, without
boilerplates and also without any fear, thanks to the type safety brought both in the
templates and in the action.

Hot reloading

One of the biggest advantages of this framework is hot reloading! For those used to
Java web frameworks, you know how hard and long the path is to go from a line of
code to a manual test in a browser.

Most of the frameworks deal with J2EE interfaces that require a specific runtime
environment, such as a servlet container or even an application container. These
servers need packaging of the code to run it, so developers need to create this
package before being able to test it. Or, it can bind an IDE to a running instance

to hot swap the code; however, it won't work for changes in interfaces, signatures,
and so on.

Play! 2 being out of that world and without those constraints, plus the fact that it
has the full control on the environment (as it's a full-stack framework), they took the
opportunity to resolve all points by enabling hot swapping of the code, using hot
reload of the classpath.

[255]

www.it-ebooks.info

http://www.it-ebooks.info/

Introducing Play! Framework 2

OK, that's not a new feature for Play! 1 developers; however, for others and for Scala
ones, it is!

Only two tools — IDE and browser

This section is quite similar to the previous one. We already know that Play!
Framework 2 is a full stack and is completely integrated for web development.

In addition, it has also solved another frequent problem when creating a web
application. This problem is the time spent on looking for errors. Are they in the
server log, in the application one, or in the console? Or, maybe, nowhere because it
misses a configuration file?

The answer to all of these questions is that you don't have to ask them. Everything
will be shown in the browser when using it. That's it! You won't have to wonder
where are the errors, because they're shining with red lights in front of you.

Moreover, error types span from the server-side code —whatever it is, Java or Scala—
to the client code, for both CoffeeScript and LESS CSS files.

And that's why a developer only needs two tools during development: an IDE to
write the code (or an editor with syntax highlighting features) and his browser.
Actually, there is also the console, but, in development, you'll probably never

go to it after you've launched the application (run).

Summary

In this appendix, we've seen a bit further more on what makes Play! Framework 2 so
great. We took the opportunity to have a look at the core ideas and also compared
them to the mainstream ones. We also had an overview on the new features brought
by this second version, and what has been changed from the first one.

All this leads us to discuss and to list which specific functionalities are worth
considering when envisioning Play! 2 in a new project, for instance.

[256]

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Forward

In this appendix, we'll try to gather as much extra information as possible for those
willing to go further from this point.

Even though we covered a lot of ground in this book, the Play! Framework 2 hasn't
been covered entirely; there are yet some places to be discovered that wouldn't fit in
this book —most of them are for advanced users, and some more specific to Scala.

This appendix will relate information about the following topics:

* Play's features and internals that weren't covered

* Features that were covered, but roughly or quickly introduced
* Advanced features to ignite interest

* Play's ecosystem

* Play's communities —interesting blogs and groups

More features

Even though you have reached this point after reading the entire book and hacking
with all the features introduced, Play! Framework 2 still has some areas where
goodies can be learned.

Plugin

The first thing worth mentioning is its internal architecture, which is completely
modular. This allows Play 2 to provide developers with a range of end-points to
integrate an application perfectly with the framework; for instance, the application
life cycle, or its configuration.

www.it-ebooks.info

http://www.it-ebooks.info/

Moving Forward

These modules are called plugins (as always) and a specific API is available for
creating our own. This API not only enables a developer to hook on the application
itself, but also helps define global components that can be used along with the whole
application. Mostly, they are used for integrating third-party libraries.

Global

Another API is also available for those developers willing to interact with the
application with a reduced set of needs; it is completely related to the application
itself. This API is called global settings. For more information for the Java part on
the 2.0.4 Version, go to http://www.playframework.com/documentation/2.1.0/
JavaGlobal.

So far, so good; those APIs are there to extend the application's capabilities
in some way. However, there are even more features that a regular Play! 2
application can offer.

Session, cache, and i18n

The two features that are really important for scalable applications are the session-
like functionality of a request and the caching system API, available out of the box.

The former enables a request to add or remove session information; this information
is stored in the cookie until it expires and, on the other hand, short-lived data

can also be consumed using flash scopes. For more information on the Scala part
(2.0.4 Version), go to http://www.playframework.org/documentation/2.0.4/
ScalaSessionFlash.

For shared data, or for other use cases like that, we could use the cache API that gives
the ability to store or fetch data to a centralized destination, which is independent of
the user or the request. For more information, check this page (still Version 2.0.4) for
Java: http://www.playframework.org/documentation/2.0.4/JavaCache.

We didn't cover natural language and the classic internationalization (i18n)
problem, but Play! Framework 2 already has everything covered for us. See
http://www.playframework.org/documentation/2.0.4/Scalall8N.

Frontend languages

In this book we introduced CoffeeScript, but didn't spend enough time on it to
grasp every single advantage of it. So, I'd recommend browsing this documentation:
http://arcturo.github.com/library/coffeescript/index.html.

[258]

www.it-ebooks.info

http://www.playframework.com/documentation/2.1.0/JavaGlobal
http://www.playframework.com/documentation/2.1.0/JavaGlobal
http://www.playframework.org/documentation/2.0.4/ScalaSessionFlash
http://www.playframework.org/documentation/2.0.4/ScalaSessionFlash
http://www.playframework.org/documentation/2.0.4/JavaCache
http://www.playframework.org/documentation/2.0.4/ScalaI18N
http://www.playframework.org/documentation/2.0.4/ScalaI18N
http://arcturo.github.com/library/coffeescript/index.html
http://arcturo.github.com/library/coffeescript/index.html
http://www.it-ebooks.info/

Appendix B

We didn't use LESS CSS here, but it's probably one of the best ways to achieve
DRYness styling rules for a web application. This language aims to import all
missing features to CSS, such as variables or functions. It's very easy to understand,
and everything is documented at http://lesscss.org/.

Scala-specific

In this section we'll try to, somehow, list what can be used in the Scala world.

First, at the time of writing, Play! Framework 2 integrates ANORM as the default
library for accessing relational databases. This library has been built internally with
Play! and so is packaged with the distribution. Even if it lacks documentation at
this stage, it has a good vision about how to access databases functionally using
Scala. More information can be found at http://www.playframework.org/
documentation/2.0.4/ScalaAnorm.

However, now that Play! Framework 2 is part of the Typesafe stack, it will be worth
considering Slick too. Slick is the database access layer that is currently built at
Typesafe and takes advantage of the new features of Scala in its 2.10 release.

As the next release of Play will be based on this Scala version, Slick will also be
available. Note that their visions are completely different; on the one side, Slick tries
to enable an intuitive DSL integrated with the object model to deal with backend
systems (relational and otherwise), while ANORM is not an object relation mapper,
and so you're responsible for writing the SQL all by yourself (only relational).

Furthermore, the Slick documentation is gaining some muscle and reaching a good
level; it is available at http://slick.typesafe.com/docs/.

For very advanced workflows using the requests' bodies or resource handling in
general, it's important to understand the concept of Iteratee. There are plenty of great
blogs about it on the Web, some dedicated to Scala developers, others for those familiar
with imperative coding. But the first page to look at is the internal documentation page
at http://www.playframework.org/documentation/2.0.4/Iteratees.

Although not really related to Scala (but Scalaers are more familiar with

these concepts), Akka is another great toolkit to master in order to enhance an
application with completely distributed computation or advanced concurrent
workflows. Even if both the Scala and the Java APIs are amazing, knowing Scala

(of a functional programming language) helps a lot understanding the core ideas
such as Message Passing Style or Actors. Luckily, the Akka team is maintaining
great documentation that closely follows any new features or changes. It is available
athttp://doc.akka.io/docs/akka/2.0.4/. Don't skip the general section!

[259]

www.it-ebooks.info

http://lesscss.org/
http://www.playframework.org/documentation/2.0.4/ScalaAnorm
http://www.playframework.org/documentation/2.0.4/ScalaAnorm
http://slick.typesafe.com/docs/
http://www.playframework.org/documentation/2.0.4/Iteratees
http://www.playframework.org/documentation/2.0.4/Iteratees
http://doc.akka.io/docs/akka/2.0.4/
http://doc.akka.io/docs/akka/2.0.4/
http://www.it-ebooks.info/

Moving Forward

Ecosystem

The Play! Framework 2's ecosystem is evolving fast and well; a good metric is the
ever-increasing number of questions related to it on Stack Overflow (nearly 2000). Its
information page at http://stackoverflow.com/tags/playframework-2.0/info
is a great place to search for advanced information.

Another way to get help from the community is to use the Google group at
http://groups.google.com/group/play-framework, where hundreds of
topics are discussed by developers, including Play! 2's committers.

There are already a lot of applications built upon Play! Framework 2, so the number
of use cases is increasing day by day. As a consequence of that, the number of plugins
available for Play! 2 is also increasing very fast. At the time of writing, there are a lot
of third-party tools, services, and libraries that can be easily integrated with it.

Typesafe, by willing to have them gathered at a single place, has reserved a
temporary place for them all at https://github.com/playframework/Play20/
wiki/Modules.

But there is another project that has started to ease the integration of new plugins;
it enables developers to create their own plugins and publish them, with some
constraints on the quality, using a rating system. This project is open source and is
running well; it can be found at https://github.com/play-modules/modules.
playframework.org.

As part of the ecosystem, we will find a lot of blogs that mostly contain information
on Play! Framework 2's tricks and hints. A few of them are listed here:

® http://mandubian.com/

* http://www.touilleur-express.fr (French)

® http://www.objectify.be/wordpress/

® http://ska-la.blogspot.be/
Obviously, you can also search for your local meet-up (or similar) group

about Play! — there is always one, and that's probably the best way to be a
part of the community.

[260]

www.it-ebooks.info

http://stackoverflow.com/tags/playframework-2.0/info
http://groups.google.com/group/play-framework
http://groups.google.com/group/play-framework
https://github.com/playframework/Play20/wiki/Modules
https://github.com/playframework/Play20/wiki/Modules
https://github.com/play-modules/modules.playframework.org
https://github.com/play-modules/modules.playframework.org
http://mandubian.com/
http://mandubian.com/
http://www.touilleur-express.fr/
http://www.touilleur-express.fr/
http://www.objectify.be/wordpress/
http://www.objectify.be/wordpress/
http://ska-la.blogspot.be/
http://ska-la.blogspot.be/
http://www.it-ebooks.info/

Materials

In this book we've written a lot of code, incrementally building a full application
called chatrum.

A reference implementation exists for all chapters, both in Java and Scala, and they are
available on GitHub at https://github.com/andypetrella/play2-book-chapters.

To use this project, it would be best to fork it. For that, you will need a GitHub
account; then, when logged in and on the project page, use the dedicated button
named Fork on the upper-right-hand corner of the page.

This forked project will allow you to adapt, fix, or do whatever you want with it
(which I really recommend to you!).

If you find some bugs and manage to fix them, I'll be grateful if you create a pull
request on GitHub. This way I'll be able to integrate it and create the errata for
the book.

The content of this project is quite simple, since it contains one folder for every
chapter. In each folder, there are two folders named play-jbook and play-sbook.
These folders are regular Play! 2 applications built on Java and Scala respectively.

I hope you'll enjoy using them and also enjoy Play! Framework 2 in general, and
you'll soon be creating amazing web applications.

www.it-ebooks.info

https://github.com/andypetrella/play2-book-chapters
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Symbols

@* *@ notation 87

A

action
about 30, 31, 120
Java action code 32, 33
Scala action code 32, 33
Actor Model 170
Akka library 169
Anorm 110

Anorm is Not a Object Relational Mapper.

See Anorm
app folder 14
Application controller
modifying 37, 38
applicative test
writing 206-220
apply method 55
arguments: Any 55
assets 253
async method 197
asynchronous 252
at method 30
atomic 200
Attach an image form 133

B

bind method 82

body 123

body parser 120-122

Browse menu 27

Build | Execute Shell command 237

Index

C

case class 47
chat 72
chatrum 261
class 149
ClickStarts 231
client-side router 157
closures 149
CloudBees
about 230-239
DEV@cloud 231
RUN@cloud 231
code
re-using 72-76
code expression, Scala
about 44
if-else statement 44, 45
pattern matching 46, 47
CoffeeScript
dashboard, rendering 152, 153
defining 142
in action 150, 151
syntax 149
using 148, 149
CoffeeScript syntax
class 149
function 149
parenthesis 149
spaces 149
variable 149
collect function 56
Comet 165
comparison.Sequence 202
conf folder 14
container 30

www.it-ebooks.info

http://www.it-ebooks.info/

contents E
chats, atomizing 136-138

chats, imaging 135 Eclipse

examples 134 Eclipse Juno 15,17

rendering 134 Scala IDE, using 18, 19
content-type using 15

modifying, to JSON 38, 39 Eclipse Juno 15
content-type header 122 ecosystem 260
continuous command 210 errors
Continuous Delivery 229 browsing 39, 42
Continuous Integration. See CloudBees events
Continuous Integration (CI) server 229 multiplexing, to browser 169-172
contract 204 evolutions 107, 243
controller 30 exists method 52
Controller 69 expression 44
CIRL +P 211 external services 255

currying 65

D

F

fill method 227

dashboard filter method 52
about 143 first project
configuring 143-147 application, entering in terminal 14, 15
updating, in live mode 153-156 creating, play command used 12-14
Dashboard controller 147 FluentLenium 223
data foreach method 50
dealing with 80 Form class
enhancing 85-91 application user, creating 80-82
extracting 83-85 test action, tasks 82
validating 91, 93, 95, 96 form tag 208
database form validation 255
about 217 forum
accessing 98-102 chatting 126-130
activating 97, 98 creating 123
DEV@cloud 231 log in 124,125
distraction-zero notation 53 reorganizing 124, 125
documentation folder function 149, 224
api 8 functor 49
manual 8 Future 182
domain models
using 69-71 G

dynamic form
maintaining 157-164
dyno 240

g function 150
GitHub 261

[264]

www.it-ebooks.info

http://www.it-ebooks.info/

global object feature 74
global settings 258
groupBy function 56

H

Heroku 240-244
Heroku provider 240
hot reloading 255
HTML5
about 254
examples 254
external services 255
form validation 255
hot reloading 255, 256
IDE 256
HTML, examples
comet 254
server-sent events 254
web socket 254

IaaS 230

IDE 256

if-else statement 44

Infrastructure as a Service. See IaaS
in parameter 168

Intelli] IDEA 19-21

Iteratee 119, 252, 259

J

Java API

browsing 27, 28
JavaScript reverse router 159
Java Specification Request. See JSR
Java syntax

differentiating, with Scala syntax 47-49
JSON

length function 56

LESS
styling rules, defining 76
using 76, 78

level parameter 62

live multichatting 173-177

Mac OS X 10
mainExtended template 215
map method 51, 189
matchers 203
messages
receiving 168, 169
Microsoft Windows 10
model 69
monitor 230
multipart content types
handling 130-134
MVC 69

N

Netty server 220
new features, Play! Framework 2
assets 253
SBT 253
Scala 252
templates 253
New Relic 245
NIO server 251
non-blocking 196

(0

object-relational mapping. See ORM

ok action 32
Open Application button 235
Option 53, 83

using 142 ORM
json method 222 about 103-106
JSR 91 using, for model retrieving 107, 109
out parameter 168
L
P
laying out 67, 68
lazy load 103 PaaS 229
[265]

www.it-ebooks.info

http://www.it-ebooks.info/

parameters list 61
parenthesis 149
partial application 56, 57
partition function 56
pattern matching 46, 47
persistent data 97
pic() method 131
pimp-my-library 203
Platform as a Service. See PaaS
play command
used, for application running 25-27
play command-line tool 8
Play Framework 2
about 7
downloading 8
features 257
installing 8
JVM 250, 251
Mac OS X installation 10
Microsoft Windows installation 9
need for 249
prerequisites 7
terminal check 10, 11
Typesafe Stack 2 10
Ubuntu installation 10
web framework 250
Play! Framework 2, features
frontend languages 258
global setting 258
i18n 258
plugin 257, 258
play-jbook 261
play-sbook 261
plugins 258
point-less notation 53
polling 142
POST 88
POST-redirect-GET 124
Procfile file 243
Prod server 229
project folder 14
Promise 182
public folder 14

R

reactive framework
about 251

asynchronous 252

Iteratee 259

NIO server 251
reactivity 120
remote services

accessing 180-184
repository 25
request 216
request() method 128
response action 32
routing

about 28-30

columns 29
RUN@cloud 231

S

save method 113
SBT
about 23, 253
repositories 24, 25
third-party dependency, adding 24
Scala
about 44, 252
code expression 44
DB result, parsing 113, 115
models 111, 112
overview 43
porting to 110
server-side forms, dealing with 115-117
Scala IDE
using 18, 19
send flag 172
sequence iteration
about 50
apply method 55
collect function 56
exists method 52, 53
filter method 52
find method 53, 54
foreach method 50
groupBy function 56
length function 56
map method 51
partition function 56
sliding function 56
Server-Sent Events. See SSE

[266]

www.it-ebooks.info

http://www.it-ebooks.info/

showMessage function 57
Simple Build Tool. See SBT
Slick 259
sliding function 56
spaces 149
specs2 201
splat parameter 167
squareSeq function 205
src attribute 135
SSE 165
ssynchronous
String class 203
string parameter 32
style parameter 36
Sublime Text 2

using 21, 22
symbol 90

T

TDD 199
template
about 33-36, 60
components 60
composing 63
content, adding 61, 62
creating 60
data structures, passing 64-66
modifying 36, 37
structuring 61
test command 204
test-driven development. See TDD
test folder 14
test-only command 216
tests
about 200, 201
atomic tests, running 204-206
simple tests, working 202, 203
TestServer class 220
third party functionality
problems 196-198

Toolbelt tool 240

trait 49

transient data 97

Tuple2 class 76

Twitter
chatrum, integrating with 191-195
interacting with 184-186
Twitter AP, using 187-190

Twitter API
using 187-190

type inference 51

Typesafe Console 230, 245-247

U

Ubuntu Linux 10

\'

validate method 131
variable 149
View 69

w

web drivers 223
web process 243
web service 180
Web Service API. See WS API
WebSocket
about 165
adding 165-167
WebSocket Java API 254
with method 227
workflows
testing 220-227
TestServer instance, creating 220
WS API 180
WS#url method 221

[267]

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning Play! Framework 2

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub. com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Play Framework Cookbook
ISBN: 978-1-84951-552-8 Paperback: 292 pages
Over 60 incredibly effective recipes to take you under

the hood and leverage advanced concepts of the Play
framework

1. Make your application more modular, by
introducing you to the world of modules

Play Framework 2. Keep your application up and running in
Cookbook production mode, from setup to monitoring it
_ _ appropriately

3. Integrate Play applications into your CI
environment

4. Keep performance high by using caching

Web Application Development

with Yii and PHP
ISBN: 978-1-84951-872-7 Paperback: 332 pages

Learn the Yii application development framework
by taking a step-by-step approach to building a
Web-based project task tracking system from
conception through production deployment

x‘;"ﬁ ‘?i?glrifjalgf?lg Sexslopmart 1. A step-by-step guide to creating a modern Web
S — application using PHP, MySQL, and Yii

2. Build a real-world, user-based, database-driven
project task management application using the
Yii development framework

3. Start with a general idea, and finish with
deploying to production, learning everything
about Yii in between, from "A'"ctive record to
"Z"ii component library

Please check www.packtpub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

open source

community experience distilled

PUBLISHING

Yii 1.1 Application Development

Cookbook
ISBN: 978-1-84951-548-1 Paperback: 392 pages

Over 80 recipes to help you master using the Yii PHP
framework

1. Learn to use Yii more efficiently through
plentiful Yii recipes on diverse topics

Yii 1.1 Application
Development Cookbook 2. Make the most efficient use of your controller

and views and re-use them

3. Automate error tracking and understand the
Yii log and stack trace

4. Full of practically useful solutions and concepts
that you can use in your application, with
clearly explained code and all the necessary
screenshots

Yii Rapid Application
Development Hotshot
ISBN: 978-1-84951-750-8 Paperback: 340 pages

Become a RAD hotshot with Yii, the world's most
popular PHP framework

1. A series of projects to help you learn Yii and
Rapid Application Development

Cool projocts that will push your skills 1o the lmit

Yii Rapid Application
Development 2. Learn how to build and incorporate key web
technologies

3. Use as a cookbook to look up key concepts, or
work on the projects from start to finish for a
complete web application

Lauren J. O'Meara
James R. Hamilton 1l

Please check www.packtpub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.packtpub.com
	Table of Contents
	Preface
	Chapter 1:
Getting Started with
Play! Framework 2
	Preparing your machine
	Downloading the package
	Installing
	Microsoft Windows
	Mac OS X
	Ubuntu

	The Typesafe Stack
	Checking if it's okay in your terminal

	Creating your first project
	Keeping your habits
	Using Eclipse
	Eclipse Juno
	Using Scala IDE

	IntelliJ IDEA
	Sublime Text 2

	Simple Build Tool
	Adding a third-party dependency
	Repositories

	It's alive and not empty!
	Browsing the Java API

	Understanding the core pieces
	Routing
	Action
	Similarities between the Java and Scala action code
	Differences between the Java and Scala action code

	Templates
	Practicing
	Modifying the template
	Modifying the controller
	Modifying the content type to JSON
	Browsing our errors

	Summary

	Chapter 2:
Scala – Taking the First Step
	Introducing Scala
	Expressing your code
	If-else
	Switch/Pattern matching

	Generic types
	Iterating over a sequence
	Function – foreach
	Function – map
	Function – filter
	Function – exists
	Function – find
	Function – apply
	Other interesting functions

	Partial application
	Summary

	Chapter 3:
Templating Easily with Scala
	Shape it, compose it, reuse it
	Creating our first template
	Structuring it
	Adding content
	Composing templates
	Passing data structures

	Playing around
	Layouting
	Using domain models
	Re-using our code

	Skinning with LESS pain
	Summary

	Chapter 4:
Handling Data on the
Server Side
	Feeding some data
	Forming a (server) form

	Ingesting data
	Extracting the data
	Enhancing your data
	Validating our data

	Persisting them
	Activating a database
	Accessing the database
	Object-relational mapping
	Storing and fetching – a simple story

	Porting to Scala
	Models
	Parsing the DB result
	Speaking with the browser

	Summary

	Chapter 5:
Dealing with Content
	Body parsing for better reactivity
	Creating a forum
	Reorganizing and log in
	Chatting

	Handling multipart content types
	Rendering contents
	Imaging all of the chat
	Atomizing the chats

	Summary

	Chapter 6:
Moving to Real-time
Web Applications
	Ready, JSON, poll
	Configuring a dashboard
	Some sugar with your Coffee(Script)
	Words about CoffeeScript's syntax
	Explaining CoffeeScript in action
	Rendering the dashboard

	Updating the dashboard in live mode

	Dynamic maintains form
	Real time (advanced)
	Adding WebSocket
	Receiving messages
	Multiplexing events to the browser
	Live multichatting

	Summary

	Chapter 7:
Web Services –
At Your Disposal
	Accessing third parties
	Interacting with Twitter
	Using the Twitter API
	Integrating chatrum with Twitter search

	Long tasks won't block
	Summary

	Chapter 8:
Smashing All Test Layers
	Testing atomically
	Running our atomic tests

	Writing applicative tests
	Testing workflows
	Summary

	Chapter 9:
Code Once,
Deploy Everywhere
	Continuous Integration (CloudBees)
	Deployment (Heroku)
	Monitoring (Typesafe Console)
	Summary

	Appendix A:
Introducing Play!
Framework 2
	Why do we need Play! Framework?
	Framework for the Web
	Not JEE-based, but JVM

	Underlying ideas and concepts
	Reactive
	NIO server
	Asynchronous
	Iteratee
	Wrap up

	What's new?
	Scala
	Simple Build Tool
	Templates
	Assets

	Amazing goodies
	HTML5
	External services
	Form validation
	Hot reloading
	Only two tools – IDE and browser

	Summary

	Appendix B:
Moving Forward
	More features
	Plugin
	Global
	Session, cache, and i18n
	Frontend languages

	Scala-specific
	Ecosystem

	Appendix C:
Materials
	Index

