Learning Storm

Create real-time stream processing applications with
Apache Storm

PACKT

ww.allitebooks.co

http://www.allitebooks.org

Learning Storm

Create real-time stream processing applications with
Apache Storm

Ankit Jain
Anand Nalya

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Learning Storm

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2014

Production reference: 1200814

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-132-8
www . packtpub. com

Cover image by Pratyush Mohanta (tysoncinematicsegmail.com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors
Ankit Jain

Anand Nalya

Reviewers
Vinoth Kannan

Sonal Raj

Danijel Schiavuzzi

Commissioning Editor
Usha lyer

Acquisition Editor
Llewellyn Rozario

Content Development Editor
Sankalp Pawar

Technical Editors
Menza Mathew

Siddhi Rane

Copy Editors
Sarang Chari

Mradula Hegde

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Ameesha Green
Paul Hindle

Indexers
Hemangini Bari

Tejal Soni

Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator

Saiprasad Kadam

Cover Work
Saiprasad Kadam

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Ankit Jain holds a Bachelor's degree in Computer Science Engineering. He has

4 years of experience in designing and architecting solutions for the Big Data domain
and has been involved with several complex engagements. His technical strengths
include Hadoop, Storm, 54, HBase, Hive, Sqoop, Flume, ElasticSearch, Machine
Learning, Kafka, Spring, Java, and J2EE. He is currently employed with Impetus
Infotech Pvt. Ltd.

He also shares his thoughts on his personal blog at http://ankitasblogger.
blogspot.in/. You can follow him on Twitter at emynameisanky. He spends most
of his time reading books and playing with different technologies. When not at work,
he spends time with his family and friends watching movies and playing games.

I would like to thank my family and colleagues for always being
there for me. Special thanks to the Packt Publishing team; without
you guys, this work would not have been possible.

[vww allitebooks.cond

http://www.allitebooks.org

Anand Nalya is a full stack engineer with over 8 years of extensive experience
in designing, developing, deploying, and benchmarking Big Data and web-scale
applications for both start-ups and enterprises. He focuses on reducing the
complexity in getting things done with brevity in code.

He blogs about Big Data, web applications, and technology in general at
http://anandnalya.com/. You can also follow him on Twitter at @anandnalya.
When not working on projects, he can be found stargazing or reading.

I would like to thank my wife, Nidhi, for putting up with so many
of my side projects and my family members who are always there
for me. Special thanks to my colleagues who helped me validate the
writing, and finally, the reviewers and editors at Packt Publishing,
without whom this work would not have been possible.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Vinoth Kannan is a solution architect at WidasConcepts, Germany, that
focuses on creating robust, highly scalable, real-time systems for storage, search,
and analytics. He now works in Germany after his professional stints in France,
Italy, and India.

Currently, he works extensively with open source frameworks based on Storm,
Hadoop, and NoSQL databases. He has helped design and develop complex,
real-time Big Data systems for some of the largest financial institutions and
e-commerce companies.

He also co-organizes the Big Data User group in Karlsruhe and Stuttgart in Germany,
and is a regular speaker at user group meets and international conferences on Big
Data. He holds a double Master's degree in Communication Systems Engineering
from Politecnico di Torino, Italy, and Grenoble Institute of Technology, France.

This is for my wonderful parents and my beloved wife, Sudha.

[vww allitebooks.cond

http://www.allitebooks.org

Sonal Raj is a Pythonista, technology enthusiast, and an entrepreneur. He is an
engineer with dreams. He has been a research fellow at SERC, 1ISc, Bangalore, and
he has pursued projects on distributed computing and real-time operations. He has
spoken at PyCon India on Storm and Neo4] and has published articles and research
papers in leading magazines and international journals. Presently, he works

at Sigmoid Analytics, where he is actively involved in the development of
machine-learning frameworks and Big Data solutions.

I am grateful to Ankit and Anand for patiently listening to my
critiques, and I'd like to thank the open source community for
keeping their passion alive and contributing to remarkable projects
such as Storm. A special thank you to my parents, without whom I
never would have grown to love learning as much as I do.

Danijel Schiavuzzi is a software engineer and technology enthusiast with
a passionate interest in systems programming and distributed systems.

Currently, he works at Infobip, where he finds new usages for Storm and other
Big Data technologies in the telecom domain on a daily basis. He has a strong
focus on real-time data analytics, log processing, and external systems monitoring
and alerting. He is passionate about open source, having contributed a few minor
patches to Storm itself.

In his spare time, he enjoys reading a book, following space exploration and scientific
and technological news, tinkering with various gadgets, listening and occasionally
playing music, discovering old art movie masterpieces, and enjoying cycling around
beautiful natural sceneries.

I would like to thank the Apache Storm community for developing
such a great technology and making distributed computing more fun.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub . com for more details.

Atwww.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

[ﬂ]PACKT)

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content
* On demand and accessible via web browser

Free access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Setting Up Storm on a Single Machine 7
Features of Storm 8
Storm components 9
Nimbus 9
Supervisor nodes 9
The ZooKeeper cluster 10
The Storm data model 10
Definition of a Storm topology 11
Operation modes 14
Setting up your development environment 15
Installing Java SDK 6 15
Installing Maven 16
Installing Git — distributed version control 17
Installing the STS IDE 17
Developing a sample topology 19
Setting up ZooKeeper 25
Setting up Storm on a single development machine 26
Deploying the sample topology on a single-node cluster 28
Summary 31
Chapter 2: Setting Up a Storm Cluster 33
Setting up a ZooKeeper cluster 33
Setting up a distributed Storm cluster 37
Deploying a topology on a remote Storm cluster 39
Deploying the sample topology on the remote cluster 40
Configuring the parallelism of a topology 42
The worker process 42
The executor 42

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Tasks 42
Configuring parallelism at the code level 43
Distributing worker processes, executors, and tasks in the
sample topology 44
Rebalancing the parallelism of a topology 45
Rebalancing the parallelism of the sample topology 46
Stream grouping 48
Shuffle grouping 48
Fields grouping 48
All grouping 49
Global grouping 50
Direct grouping 50
Local or shuffle grouping 51
Custom grouping 52
Guaranteed message processing 53
Summary 55
Chapter 3: Monitoring the Storm Cluster 57
Starting to use the Storm Ul 57
Monitoring a topology using the Storm Ul 58
Cluster statistics using the Nimbus thrift client 65
Fetching information with the Nimbus thrift client 65
Summary 78
Chapter 4: Storm and Kafka Integration 79
The Kafka architecture 80
The producer 80
Replication 81
Consumers 81
Brokers 82
Data retention 83
Setting up Kafka 83
Setting up a single-node Kafka cluster 83
Setting up a three-node Kafka cluster 86
Running multiple Kafka brokers on a single node 88
A sample Kafka producer 89
Integrating Kafka with Storm 92
Summary 98
Chapter 5: Exploring High-level Abstraction in Storm with Trident 99
Introducing Trident 100
Understanding Trident's data model 100

Lii]

Table of Contents

Writing Trident functions, filters, and projections 100
Trident functions 101
Trident filters 102
Trident projections 103

Trident repartitioning operations 104
The shuffle operation 104
The partitionBy operation 105
The global operation 106
The broadcast operation 107
The batchGlobal operation 108
The partition operation 108

Trident aggregators 109
The partition aggregate 110
The aggregate 110

The ReducerAggregator interface 111
The Aggregator interface 112
The CombinerAggregator interface 113
The persistent aggregate 114
Aggregator chaining 114

Utilizing the groupBy operation 115

A non-transactional topology 116

A sample Trident topology 118

Maintaining the topology state with Trident 123

A transactional topology 124

The opaque transactional topology 125

Distributed RPC 126

When to use Trident 130

Summary 130

Chapter 6: Integration of Storm with Batch Processing Tools 131

Exploring Apache Hadoop 131
Understanding HDFS 132
Understanding YARN 134

Installing Apache Hadoop 135
Setting up password-less SSH 136
Getting the Hadoop bundle and setting up environment variables 137
Setting up HDFS 138
Setting up YARN 141

Integration of Storm with Hadoop 144
Setting up Storm-YARN 145

Deploying Storm-Starter topologies on Storm-YARN 149

Summary 151

[iii]

Table of Contents

Chapter 7: Integrating Storm with JMX, Ganglia, HBase,

and Redis 153
Monitoring the Storm cluster using JMX 154
Monitoring the Storm cluster using Ganglia 156
Integrating Storm with HBase 166
Integrating Storm with Redis 177
Summary 182

Chapter 8: Log Processing with Storm 183
Server log-processing elements 183
Producing the Apache log in Kafka 184
Splitting the server log line 188
Identifying the country, the operating system type,
and the browser type from the logfile 192
Extracting the searched keyword 196
Persisting the process data 198
Defining a topology and the Kafka spout 204
Deploying a topology 208
MySQL queries 209

Calculating the page hits from each country 209
Calculating the count for each browser 211
Calculating the count for each operating system 211
Summary 211

Chapter 9: Machine Learning 213
Exploring machine learning 213
Using Trident-ML 214
The use case — clustering synthetic control data 216
Producing a training dataset into Kafka 216
Building a Trident topology to build the clustering model 220
Summary 227

Index 229

[iv]

Preface

Real-time data processing is no longer a luxury exercised by a few big companies

but has become a necessity for businesses that want to compete, and Apache Storm

is becoming the de facto standard to develop real-time processing pipelines. The

key features of Storm are that it is horizontally scalable, fault-tolerant, and provides
guaranteed message processing. Storm can solve various types of analytical problems,
such as machine learning, log processing, and graph analysis.

Learning Storm will serve both as a getting-started guide for inexperienced developers
and as a reference to implement advanced use cases with Storm for experienced
developers. In the first two chapters, you will learn the basics of a Storm topology and
various components of a Storm cluster. In the later chapters, you will learn how to
build a Storm application that can interact with various other Big Data technologies
and how to create transactional topologies. Finally, the last two chapters cover case
studies for log processing and machine learning.

What this book covers

Chapter 1, Setting Up Storm on a Single Machine, gives an introduction to Storm and
its components, followed by setting up a single-node Storm cluster, developing a
sample Storm topology, and deploying it on a single-node cluster.

Chapter 2, Setting Up a Storm Cluster, covers the deployment of Storm in the cluster,
deploys sample topology on a Storm cluster, discusses how we can achieve parallelism
in Storm and how we can change the parallelism of the Storm topology in runtime,
and even covers the basic Storm commands.

Chapter 3, Monitoring the Storm Cluster, introduces you to various ways of monitoring
a Storm cluster, including the Storm Ul and the Nimbus thrift client.

Preface

Chapter 4, Storm and Kafka Integration, introduces Apache Kafka, a message-queuing
system, and shows how to integrate it with Storm to interact with data coming from
external systems.

Chapter 5, Exploring High-level Abstraction in Storm with Trident, gives an introduction
to Trident's function, filter, projection, aggregator, and repartitioning operations.

It also covers a description of the transactional, non-transactional, and opaque
transactional topologies. At the end, we cover how we can develop the sample
Trident topology and how we can use the distributed RPC feature.

Chapter 6, Integration of Storm with Batch Processing Tools, shows you how to integrate
Storm with Hadoop using the Storm-YARN framework.

Chapter 7, Integrating Storm with [MX, Ganglia, HBase, and Redis, shows you how to
integrate Storm with various other Big Data technologies. It also focuses on how we
can publish Storm's JVM metrics on Ganglia.

Chapter 8, Log Processing with Storm, covers a sample log processing application in
which, we parse Apache web server logs and generate some business information
from logfiles.

Chapter 9, Machine Learning, walks you through a case study of implementing
a machine learning topology in Storm.

What you need for this book

All of the code in this book has been tested on CentOS 6.4. It will run on other
variants of Linux and Windows as well with respective changes in commands.

We have tried to keep the chapters self-contained, and the setup and installation of
all the software used in each chapter is included in the chapter itself. The following
software packages are used throughout the book:

* CentOS6.4

* OQOracle JDK 6/7

* Apache ZooKeeper 3.4.5

* Apache Storm 0.9.0.1

* Eclipse or Spring Tool Suite

[2]

Preface

Who this book is for

If you are a Java developer who wants to enter the world of real-time stream
processing applications using Apache Storm, then this book is for you. No previous
experience in Storm is required as this book starts from the basics. After finishing
this book, you will be able to develop simple Storm applications.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The LearningStormBolt class extends the serialized BaseRichBolt class."

A block of code is set as follows:

public void open (Map conf, TopologyContext context,
SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;

}
Any command-line input or output is written as follows:

bin/storm nimbus

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"Specify com.learningstormas Group Id and storm-example as Artifact Id."

%ii‘ Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

[31]

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbacke@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub. com/support and register to
have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

[4]

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[51]

Setting Up Storm on
a Single Machine

With the exponential growth in the amount of data being generated and advanced
data-capturing capabilities, enterprises are facing the challenge of making sense out
of this mountain of raw data. On the batch processing front, Hadoop has emerged
as the go-to framework to deal with Big Data. Until recently, there has been a void
when one looks for frameworks to build real-time stream processing applications.
Such applications have become an integral part of a lot of businesses as they enable
them to respond swiftly to events and adapt to changing situations. Examples of
this are monitoring social media to analyze public response to any new product that
you launch and predicting the outcome of an election based on the sentiments of the
election-related posts.

Apache Storm has emerged as the platform of choice for the industry leaders to
develop such distributed, real-time, data processing platforms. It provides a set

of primitives that can be used to develop applications that can process a very large
amount of data in real time in a highly scalable manner.

Storm is to real-time processing what Hadoop is to batch processing. It is an open
source software, currently being incubated at the Apache Software Foundation.
Being in incubation does not mean that it is not yet ready for actual production.
Indeed, it has been deployed to meet real-time processing needs by companies such
as Twitter, Yahoo!, and Flipboard. Storm was first developed by Nathan Marz at
BackType, a company that provided social search applications. Later, BackType was
acquired by Twitter, and now it is a critical part of their infrastructure. Storm can be
used for the following use cases:

* Stream processing: Storm is used to process a stream of data and update
a variety of databases in real time. This processing occurs in real time and
the processing speed needs to match the input data speed.

[vww allitebooks.cond

http://www.allitebooks.org

Setting Up Storm on a Single Machine

Continuous computation: Storm can do continuous computation on data
streams and stream the results into clients in real time. This might require
processing each message as it comes or creating small batches over a little
time. An example of continuous computation is streaming trending topics
on Twitter into browsers.

Distributed RPC: Storm can parallelize an intense query so that you can
compute it in real time.

Real-time analytics: Storm can analyze and respond to data that comes
from different data sources as they happen in real time.

In this chapter, we will cover the following topics:

Features of Storm

Various components of a Storm cluster

What is a Storm topology

Local and remote operational modes to execute Storm topologies
Setting up a development environment to develop a Storm topology
Developing a sample topology

Setting up a single-node Storm cluster and its prerequisites
Deploying the sample topology

Features of Storm

The following are some of the features of Storm that make it a perfect solution
to process streams of data in real time:

Fast: Storm has been reported to process up to 1 million tuples per second
per node.

Horizontally scalable: Being fast is a necessary feature to build a high
volume/ velocity data processing platform, but a single-node will have an
upper limit on the number of events that it can process per second. A node
represents a single machine in your setup that execute Storm applications.
Storm, being a distributed platform, allows you to add more nodes to your
Storm cluster and increase the processing capacity of your application. Also,

it is linearly scalable, which means that you can double the processing capacity
by doubling the nodes.

[8]

Chapter 1

* Fault tolerant: Units of work are executed by worker processes in a Storm
cluster. When a worker dies, Storm will restart that worker, and if the node
on which the worker is running dies, Storm will restart that worker on some
other node in the cluster. The descriptions of the worker process is mentioned
in the Configuring the parallelism of a topology section of Chapter 2, Setting Up a
Storm Cluster.

* Guaranteed data processing: Storm provides strong guarantees that each
message passed on to it to process will be processed at least once. In the event
of failures, Storm will replay the lost tuples. Also, it can be configured so that
each message will be processed only once.

* Easy to operate: Storm is simple to deploy and manage. Once the cluster is
deployed, it requires little maintenance.

* Programming language agnostic: Even though the Storm platform runs
on Java Virtual Machine, the applications that run over it can be written in
any programming language that can read and write to standard input and
output streams.

Storm components

A Storm cluster follows a master-slave model where the master and slave processes are
coordinated through ZooKeeper. The following are the components of a Storm cluster.

Nimbus

The Nimbus node is the master in a Storm cluster. It is responsible for distributing the
application code across various worker nodes, assigning tasks to different machines,
monitoring tasks for any failures, and restarting them as and when required.

Nimbus is stateless and stores all of its data in ZooKeeper. There is a single Nimbus
node in a Storm cluster. It is designed to be fail-fast, so when Nimbus dies, it can
be restarted without having any effects on the already running tasks on the worker
nodes. This is unlike Hadoop, where if the JobTracker dies, all the running jobs are
left in an inconsistent state and need to be executed again.

Supervisor nodes

Supervisor nodes are the worker nodes in a Storm cluster. Each supervisor node runs

a supervisor daemon that is responsible for creating, starting, and stopping worker
processes to execute the tasks assigned to that node. Like Nimbus, a supervisor
daemon is also fail-fast and stores all of its state in ZooKeeper so that it can be restarted
without any state loss. A single supervisor daemon normally handles multiple worker
processes running on that machine.

[o]

Setting Up Storm on a Single Machine

The ZooKeeper cluster

In any distributed application, various processes need to coordinate with each other
and share some configuration information. ZooKeeper is an application that provides
all these services in a reliable manner. Being a distributed application, Storm also uses
a ZooKeeper cluster to coordinate various processes. All of the states associated with
the cluster and the various tasks submitted to the Storm are stored in ZooKeeper.
Nimbus and supervisor nodes do not communicate directly with each other but
through ZooKeeper. As all data is stored in ZooKeeper, both Nimbus and the
supervisor daemons can be killed abruptly without adversely affecting the cluster.

The following is an architecture diagram of a Storm cluster:

Nimbus |<:>| ZooKeeper |<:> Supervisor

Supervisor

A Storm Cluster

A Storm cluster's architecture

The Storm data model

The basic unit of data that can be processed by a Storm application is called a tuple.
Each tuple consists of a predefined list of fields. The value of each field can be a byte,
char, integer, long, float, double, Boolean, or byte array. Storm also provides an API
to define your own data types, which can be serialized as fields in a tuple.

A tuple is dynamically typed, that is, you just need to define the names of the fields
in a tuple and not their data type. The choice of dynamic typing helps to simplify
the API and makes it easy to use. Also, since a processing unit in Storm can process
multiple types of tuples, it's not practical to declare field types.

[10]

Chapter 1

Each of the fields in a tuple can be accessed by its name getvValueByField (String)
or its positional index getvalue (int) in the tuple. Tuples also provide convenient
methods such as get IntegerByField (String) that save you from typecasting the
objects. For example, if you have a Fraction (numerator, denominator) tuple,
representing fractional numbers, then you can get the value of the numerator by
either using getIntegerByField ("numerator") or getInteger (0).

You can see the full set of operations supported by backtype.storm.tuple.
backtype.storm. tuple.Tuple in the javadoc located at https://storm.
incubator.apache.org/apidocs/backtype/storm/tuple/Tuple.html.

Definition of a Storm topology

In Storm terminology, a topology is an abstraction that defines the graph of the
computation. You create a Storm topology and deploy it on a Storm cluster to
process the data. A topology can be represented by a direct acyclic graph, where
each node does some kind of processing and forwards it to the next node(s) in
the flow. The following is a sample Storm topology:

Spout A

Spout B

Graphical representation of the Storm topology

A Storm Topology

The following are the components of a Storm topology:

* Stream: The key abstraction in Storm is that of a stream. A stream is an
unbounded sequence of tuples that can be processed in parallel by Storm.
Each stream can be processed by a single or multiple types of bolts (the
processing units in Storm, which are defined later in this section). Thus,
Storm can also be viewed as a platform to transform streams. In the
preceding diagram, streams are represented by arrows.

[11]

Setting Up Storm on a Single Machine

Each stream in a Storm application is given an ID and the bolts can produce
and consume tuples from these streams on the basis of their ID. Each stream
also has an associated schema for the tuples that will flow through: it.

* Spout: A spout is the source of tuples in a Storm topology. It is responsible
for reading or listening to data from an external source, for example,
by reading from a logfile or listening for new messages in a queue and
publishing them —emitting, in Storm terminology —into streams. A spout
can emit multiple streams, each of different schemas. For example, it can read
10-field records from a logfile and emit them as different streams of 7-tuples
and 4-tuples each.

The backtype.storm. spout . ISpout interface is the interface used to
define spouts. If you are writing your topology in Java, then you should use
backtype.storm.topology.IRichSpout as it declares methods to use the
TopologyBuilder APIL. Whenever a spout emits a tuple, Storm tracks all the
tuples generated while processing this tuple, and when the execution of all
the tuples in the graph of this source tuple is complete, it will send back an
acknowledgement to the spout. This tracking happens only if a message ID
was provided while emitting the tuple. If nul1l was used as message ID, this
tracking will not happen.

A tuple-processing timeout can also be defined for a topology, and if a tuple
is not processed within the specified timeout, a fail message will be sent back
to the spout. Again, this will happen only if you define a message ID. A small
performance gain can be extracted out of Storm at the risk of some data loss
by disabling the message acknowledgements, which can be done by skipping
the message ID while emitting tuples.

The important methods of spout are:

° nextTuple (): This method is called by Storm to get the next tuple
from the input source. Inside this method, you will have the logic
of reading data from the external sources and emitting them to an
instance of backtype.storm. spout . ISpoutOutputCollector.
The schema for streams can be declared by using the declareStream
method of backtype.storm.topology.OutputFieldsDeclarer.

If a spout wants to emit data to more than one stream, it can declare
multiple streams using the declareStream method and specify a
stream ID while emitting the tuple. If there are no more tuples to
emit at the moment, this method would not be blocked. Also, if this
method does not emit a tuple, then Storm will wait for 1 millisecond
before calling it again. This waiting time can be configured using the
topology.sleep.spout.wait.strategy.time.ms setting.

[12]

Chapter 1

° ack(Object msgId): This method is invoked by Storm when the tuple
with the given message ID is completely processed by the topology. At
this point, the user should mark the message as processed and do the
required cleaning up such as removing the message from the message
queue so that it does not get processed again.

fail (Object msgId): This method is invoked by Storm when

it identifies that the tuple with the given message ID has not been
processed successfully or has timed out of the configured interval.

In such scenarios, the user should do the required processing so

that the messages can be emitted again by the nextTuple method.

A common way to do this is to put the message back in the incoming
message queue.

open () : This method is called only once —when the spout is initialized.
If it is required to connect to an external source for the input data,
define the logic to connect to the external source in the open method,
and then keep fetching the data from this external source in the
nextTuple method to emit it further.

Another point to note while writing your spout is that none of the methods
should be blocking, as Storm calls all the methods in the same thread. Every
spout has an internal buffer to keep track of the status of the tuples emitted
so far. The spout will keep the tuples in this buffer until they are either
acknowledged or failed, calling the ack or £ail method respectively.

Storm will call the nextTuple method only when this buffer is not full.

Bolt: A bolt is the processing powerhouse of a Storm topology and is
responsible for transforming a stream. Ideally, each bolt in the topology
should be doing a simple transformation of the tuples, and many such bolts
can coordinate with each other to exhibit a complex transformation.

The backtype.storm.task. IBolt interface is preferably used to define
bolts, and if a topology is written in Java, you should use the backtype.
storm. topology.IRichBolt interface. A bolt can subscribe to multiple
streams of other components — either spouts or other bolts —in the topology
and similarly can emit output to multiple streams. Output streams can be
declared using the declarestream method of backtype.storm. topology.
OutputFieldsDeclarer.

[13]

Setting Up Storm on a Single Machine

The important methods of a bolt are:

o

execute (Tuple input): This method is executed for each tuple

that comes through the subscribed input streams. In this method,
you can do whatever processing is required for the tuple and then
produce the output either in the form of emitting more tuples to the
declared output streams or other things such as persisting the results
in a database.

You are not required to process the tuple as soon as this method is
called, and the tuples can be held until required. For example, while
joining two streams, when a tuple arrives, you can hold it until its
counterpart also comes, and then you can emit the joined tuple.

The metadata associated with the tuple can be retrieved by the
various methods defined in the Tuple interface. If a message ID is
associated with a tuple, the execute method must publish an ack

or fail event using outputCollector for the bolt or else Storm will
not know whether the tuple was processed successfully or not. The
backtype.storm.topology.IBasicBolt interface is a convenient
interface that sends an acknowledgement automatically after the
completion of the execute method. In the case that a fail eventis
to be sent, this method should throw backtype.storm. topology.
FailedException.

prepare (Map stormConf, TopologyContext context,
OutputCollector collector): A bolt can be executed by multiple
workers in a Storm topology. The instance of a bolt is created on the
client machine and then serialized and submitted to Nimbus. When
Nimbus creates the worker instances for the topology, it sends this
serialized bolt to the workers. The work will desterilize the bolt and
call the prepare method. In this method, you should make sure the
bolt is properly configured to execute tuples now. Any state that you
want to maintain can be stored as instance variables for the bolt that
can be serialized / deserialized later.

Operation modes

Operation modes indicate how the topology is deployed in Storm. Storm supports
two types of operation modes to execute the Storm topology

* The local mode: In the local mode, Storm topologies run on the local
machine in a single JVM. This mode simulates a Storm cluster in a single
JVM and is used for the testing and debugging of a topology.

[14]

Chapter 1

The remote mode: In the remote mode, we will use the Storm client to submit
the topology to the master along with all the necessary code required to
execute the topology. Nimbus will then take care of distributing your code.

Setting up your development environment

Before you can start developing Storm topologies, you must first check/set up
your development environment, which involves installing the following software
packages on your development computer:

Java SDK 6
Maven
Git: Distributed version control

Spring Tool Suite: IDE

The following installation steps are valid for CentOS, and going forward,
all the commands used in this book are valid for CentOS.

Installing Java SDK 6

Perform the following steps to install the Java SDK 6 on your machine:

1.

Download the Java SDK 6 RPM from Oracle's site (http: //www.oracle.
com/technetwork/java/javase/downloads/index. html).

Install the Java jdk-6u31-1linux-amdé4.rpm file on your CentOS machine
using the following command:

sudo rpm -ivh jdk-6u3l-linux-amdé64.rpm

Add the environment variable in the ~/ .bashrec file:
export JAVA HOME=/usr/java/jdkl.6.0 31/

Add the path of the bin directory of the JDK in the PATH system environment
variable in the ~/ .bashrc file:

export PATH=$ JAVA_HOME/bin : $PATH

The PATH variable is the system variable that your operating
system uses to locate the required executables from the command
e line or terminal window.

Run the following command to reload the bashrc file on the current
login terminal:

source ~/.bashrc

[15]

Setting Up Storm on a Single Machine

6.

Check the Java installation as follows:

java -version

The output of the preceding command is:

java version "1.6.0_31"

Java(TM) SE Runtime Environment (build 1.6.0 31-b04)

Java HotSpot (TM) 64-Bit Server VM (build 20.6-b01, mixed mode)

Installing Maven

Apache Maven is a software dependency management tool and is used to manage
the project's build, reporting, and documentation. We are using this so that we do
not need to download all the dependencies manually. Perform the following steps
to install the Maven on your machine:

1.

Download the stable release of Maven from Maven's site
(http://maven.apache.org/download.cgi).

Once you have downloaded the latest version, unzip it. Now, set the
MAVEN_HOME environment variable in the ~/ .bashrc file to make the
setting up of Maven easier.

export MAVEN HOME=/home/root/apache-maven-3.0.4

Add the path to the bin directory of Maven in the $PATH environment
variable in the ~/ .bashrc file:

export PATH=$JAVA HOME/bin:$PATH:$MAVEN HOME/bin

Run the following command to reload the bashrc file on the current
login terminal:

source ~/.bashrc

Check the Maven installation as follows:

mvn -version

The following information will be displayed:

Apache Maven 3.0.4 (rl1232337; 2012-01-17 14:14:56+0530)
Maven home: /home/root/apache-maven-3.0.4

Java version: 1.6.0 31, vendor: Sun Microsystems Inc.
Java home: /usr/java/jdkl.6.0 31/jre

Default locale: en US, platform encoding: UTF-8

OS name: "linux", version: "2.6.32-279.22.1.el6.x86 64", arch:
"amd64", family: "unix"

[16]

Chapter 1

Installing Git — distributed version control

Git is one of the most used open source version control systems. It is used to track
content such as files and directories and allows multiple users to work on the same
file. Perform the following steps to install Git on your machine:

1. The command to install Git on a CentOS machine is:

sudo yum install git

2. Check the installation of Git using the following command:

git --version

The preceding command's output is:

git version 1.7.1

Installing the STS IDE

The STS IDE is an integrated development environment and is used to develop
applications. We will be using this to develop all the examples in this book.
Perform the following steps to install the STS IDE on your machine:

1. Download the latest version of STS from the Spring site
(https://spring.io/tools/sts/all).
Once you have downloaded the latest version, unzip it.
Start the STS IDE.

[17]

[vww allitebooks.cond

http://www.allitebooks.org

Setting Up Storm on a Single Machine

4. Go to Windows | Preferences | Maven | Installations and add the path
of maven-3.0.4, as shown in the following screenshot:

y Preferences X
¢ maven {1 Installations v . |7
| File Edit Source Refad ——
‘ v Maven Select the installation used to launch Maven:
L% Archetypes pm - T — g
Discn::p LLES Tl - £dd..
i 2 [¥] External /nomefankit/mywork/springsource/apache-maven-3.0.3 (3.0.3
R gl Templates =g
= User Interface)~
b @ Servers User'Settlngr'_
WTP integration
m D
Note: Embedded runtime is always used for dependency resolution, but
does not use global settings when it is used to launch Maven. To learn
more, visit the Maven web page.
=0
Global settings from installation directory (open file):
}fhomefankiUmyworktspnngsuurceﬂapache-mavem 0.3/conf/settings.xml
=]
©

Add maven-3.0.4 tolaunch Maven

5. Go to Window | Preferences | Java | Installed JREs and add the path of
Java Runtime Environment 6 (JRE 6), as shown in the following screenshot:

" Preferences
¢ java 4| Installed JREs o .
File Edit Navigate Seal — rumy .
Hovers ~ Add, remove or edit JRE definitions. By default, the checked JRE is added to the build path
[3ix (¢ of newly created Java projects.
_ Mark Occur
oY Save Action Installed JREs:
{2 Package Explorer &2 Syntax Colc Name Location Type Add...
Templates) m4 jek1.6.0_31, fusr/javaljdk1.6.0_31] Standard VM
- Typing
b 3 Servers ~ Installe 5|
Execution E
JUnit
Properties Fil! search...
Java EE

Java Persistence
v Javascript

v Appearance ‘
Members Si

= Code Style
Clean Up
Code Templ
Formatter

= Debug

Add jdk1.6.0_31 to the build path

[18]

Chapter 1

From now on, we will use the Spring Tool Suite to develop all the sample
Storm topologies.

Developing a sample topology

The sample topology shown in the following diagram will cover how to create
a basic Storm project, including a spout and bolt, build it, and execute it:

Hello World Topology

Spout

| |
e

This spout continuously
emits strings as tuples
chosen randomly from a
map.

This bolt read the stream
subscribed by a bolt and
print the tuples value.

A sample Hello World topology

[19]

Setting Up Storm on a Single Machine

Perform the following steps to create and execute a sample topology:

1. Start your STS IDE and create a Maven project as shown in the
following screenshot:

& Dashboard I
Select a wizard

Create a Maven Project

Wizards:

‘ maven

4 (= Maven
&, Checkout Maven Projects from SCM
@ Maven Module

% Maven Project |

©2007-2013 GoPivolal Inc.
Java-reiated trademarks and
Corporation. In the U.S. othe

trademark of the Eclipse Fou < Back Next > Finish

Create a Maven project

2. Specify com.learningstormas Group Id and storm-example as Artifact Id,
as shown in the following screenshot:

New Maven project

Specify Archetype parameters

Group Id: ‘ com.leamingstorm

Arifac | storm-emple

Version: | 0.0.1-SNAPSHOT v

Package: ‘(nm.lenmingmrmsmm_uampln

Properties available from archetype:

Name Value

_ » Advanced
18 2007-2013 GoPivolal Inc. /

Java-related trademarks and
Corporation. In the U.S. othe
trademark of the Eclipse Fou

Specify Archetype Parameters

[20]

Chapter 1

3. Add the following Maven dependencies in the pom. xm1 file:

<dependencies>
<dependencys>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>3.8.1l</versions>
<scope>test</scope>
</dependency>
<dependencys>
<groupIds>storm</groupIld>
<artifactIdsstorm</artifactIds>
<version>0.9.0.1l</version>
<scope>provided</scope>
</dependency>
</dependencies>

4. Add the following Maven repository in the pom.xm1 file:

<repositories>
<repositorys>
<id>clojars.org</id>
<urlshttp://clojars.org/repo</urls>
</repository>
</repositoriess>

5. Add the following Maven build plugins in the pom. xm1 file:

<builds>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<versions>2.2.1l</versions>
<configurations>
<descriptorRefs>
<descriptorRef>jar-with-dependencies
</descriptorRef>
</descriptorRefs>
<archives>
<manifest>
<mainClass />
</manifest>
</archives>
</configurations>
<executionss>
<execution>
<id>make-assembly</id>
<phase>package</phase>

[21]

Setting Up Storm on a Single Machine

<goals>
<goal>single</goal>
</goals>
</executions>
</executions>
</plugin>
</plugins>
</build>

6. Write your first sample spout by creating a LearningStormSpout class in the
com.learningstorm.stornLexamplepaCkagefTheLearningStormSpout
class extends the serialized BaseRichSpout class. This spout does not
connect to an external source to fetch data but randomly generates the data
and emits a continuous stream of records. The following is the source code
of the LearningStormSpout class with an explanation:

public class LearningStormSpout extends BaseRichSpout
private static final long serialVersionUID = 1Lj;
private SpoutOutputCollectorspoutOutputCollector;
private static final Map<Integer, String> map =
new HashMap<Integer, Strings>();
static {
map.put (0, "google");
map.put (1, "facebook");
map.put (2, "twitter")
map.put (3, "youtube");
map.put (4, "linkedin");

7

}
public void open (Map conf, TopologyContext context,
SpoutOutputCollector spoutOutputCollector) {

// Open the spout

this.spoutOutputCollector = spoutOutputCollector;

}

public void nextTuple()
// Storm cluster repeatedly calls this method to emit
a continuous
// stream of tuples.
final Random rand = new Random() ;
// generate the random number from 0 to 4.
int randomNumber = rand.nextInt (5) ;
spoutOutputCollector.emit (new
Values (map.get (randomNumber))) ;

public void declareOutputFields (OutputFieldsDeclarer
declarer) {

[22]

Chapter 1

// emit the tuple with field "site"
declarer.declare (new Fields ("site")) ;

}
}

Write your first sample bolt by creating a LearningStormBolt class

within the same package. The LearningStormBolt class extends the
serialized BaseRichBolt class. This bolt will consume the tuples emitted
by LearningStormSpout spout and will print the value of the field "site"
on the console. The following is the source code of the LearningStormBolt
class with an explanation:

public class LearningStormBolt extends BaseBasicBolt(
private static final long serialVersionUID = 1Lj;

public void execute (Tuple input, BasicOutputCollector
collector)
// fetched the field "site" from input tuple.
String test = input.getStringByField("site");
// print the value of field "site" on console.
System.out.println("Name of input site is : " + test);

public void declareOutputFields (OutputFieldsDeclarer
declarer) {

}
}

Create a main LearningStormTopology class within the same package. This
class creates an instance of the spout and bolt, classes and chained together
using a TopologyBuilder class. The following is the implementation of the
main class:

public class LearningStormTopology

public static void main(String[] args) throws

AlreadyAliveException, InvalidTopologyException {
// create an instance of TopologyBuilder class
TopologyBuilder builder = new TopologyBuilder () ;
// set the spout class
builder.setSpout ("LearningStormSpout",
new LearningStormSpout (), 2);
// set the bolt class
builder.setBolt ("LearningStormBolt",
new LearningStormBolt (), 4).shuffleGrouping
("LearningStormSpout") ;

[23]

Setting Up Storm on a Single Machine

}

9. Go to your project's home directory and run the following commands

Config conf = new Config() ;

conf .setDebug (true) ;

// create an instance of LocalCluster class for
// executing topology in local mode.
LocalCluster cluster = new LocalCluster() ;

// LearningStormTopolgy is the name of submitted
topology.
cluster.submitTopology ("LearningStormToplogy", conf,
builder.createTopology()) ;
try {

Thread.sleep(10000) ;
} catch (Exception exception) {

System.out.println ("Thread interrupted exception : "
+ exception) ;
}
// kill the LearningStormTopology
cluster.killTopology ("LearningStormToplogy") ;
// shutdown the storm test cluster
cluster.shutdown () ;

to execute the topology in the local mode:

mvn

compile exec:java -Dexec.classpathScope=compile

Dexec.mainClass=com.learningstorm.storm example.
LearningStormTopology

Al

Q

Also, we can execute the topology by simply running the main class through the

STS IDE.

In the preceding example, we used a utility called LocalCluster to execute the
topology in a single JVM. The LocalCluster class simulates the Storm cluster

Downloading the example code

You can download the example code files for all Packt books you

have purchased from your account at http: //www.packtpub. com.

If you purchased this book elsewhere, you can visit http: //www.
packtpub. com/support and register to have the files e-mailed
directly to you.

and starts all the Storm processes in a single JVM.

[24]

Chapter 1

We have submitted a topology in a simulated cluster by calling the submitTopology
method of the Localcluster class. The submitTopology method takes the name of a
topology, a configuration for the topology, and then the topology itself as arguments.

The topology name is used to identify the topology in the Storm cluster. Hence,
it is good practice to use a unique name for each topology.

Running the Storm infrastructure in local mode is useful when we want to test
and debug the topology.

The upcoming sections will cover the deployment of ZooKeeper, Storm native
dependencies, and Storm, and how we can submit the topology on a single-node
Storm cluster.

Setting up ZooKeeper

This section describes how you can set up a ZooKeeper cluster. We are deploying
ZooKeeper in standalone mode, but in the distributed cluster mode, it is always
recommended that you should run a ZooKeeper ensemble of at least three nodes
to support failover and high availability. Perform the following steps to set up
ZooKeeper on your machine:

1. Download the latest stable ZooKeeper release from the ZooKeeper's site
(http://www.apache.org/dyn/closer.cgi/zookeeper/); at this moment,
the latest version is ZooKeeper 3.4.5.

2. Once you have downloaded the latest version, unzip it and set the zZKk_HOME
environment variable.

3. Create the configuration file, zoo . cfg, at the $ZK_HOME/conf directory using
the following command:
cd $ZK_HOME/conf

touch zoo.cfg

4. Add the following three properties in the zoo. c£g file:
tickTime=2000
dataDir=/tmp/zookeeper
clientPort=2181

The following are the definitions of each of these properties:

[e]

tickTime: This is the basic time unit in milliseconds used by
ZooKeeper. It is used to send heartbeats and the minimum session
timeout will be twice the tickTime value.

[25]

Setting Up Storm on a Single Machine

° dataDir: This is an empty directory to store the in-memory database
snapshots and transactional log.

° clientPort: This is the port used to listen for client connections.

5. The command to start the ZooKeeper node is as follows:

bin/zkServer.sh start

The following information is displayed:

JMX enabled by default
Using config: /home/root/zookeeper-3.4.5/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED

6. At this point, the following Java process must be started:
jps
The following information is displayed:

23074 QuorumPeerMain

7. The command to check the status of running the ZooKeeper node is as follows:

bin/zkServer.sh status

The following information is displayed:

JMX enabled by default
Using config: ../conf/zoo.cfg

Mode: standalone

Setting up Storm on a single development
machine

This section describes you how to install Storm on a single machine. Download
the latest stable Storm release from https://storm. incubator.apache.org/
downloads.html; at the time of this writing, the latest version is storm-0.9.0.1.
Perform the following steps to set up Storm on a single development machine:

1. Once you have downloaded the latest version, unzip it and set the
STORM_HOME environment variable.

2. Perform the following steps to edit the storm.yaml configuration file:
cd $STORM HOME/conf

vi storm.yaml

[26]

Chapter 1

Add the following information:

storm. zookeeper .Servers:

"127.0.0.1"

storm.zookeeper.port: 2181

nimbus

.host: "127.0.0.1"

storm.local.dir: "/tmp/storm-data"

java.library.path: "/usr/local/lib"

storm.messaging.transport: backtype.storm.messaging.netty.Context

supervisor.slots.ports:

6700
6701
6702
6703

The following is a definition of properties used in the storm.yaml file:

[e]

storm. zookeeper . servers: This property contains the IP addresses
of ZooKeeper servers.

storm. zookeeper .port: This property contains the ZooKeeper
client port.

storm.local.dir: The Nimbus and supervisor daemons require
a directory on the local disk to store small amounts of state
(such as JARs, CONFs, and more).

java.library.path: This is used to load the Java native libraries
that Storm uses (ZeroMQ and JZMQ). The default location of Storm
native libraries is /usr/local/lib: /opt/local/lib: /usr/lib.

nimbus.host: This specifies the IP address of the master
(Nimbus) node:

supervisor.slots.ports: For every worker machine, we can
configure how many workers run on that machine with this property.
Each worker binds with a single port and uses that port to receive
incoming messages.

Start the master node using the following commands:

cd $STORM HOME

bin/storm nimbus

Start the supervisor node using the following commands:

cd $STORM HOME

[27]

[vww allitebooks.cond

http://www.allitebooks.org

Setting Up Storm on a Single Machine

bin/storm supervisor

Deploying the sample topology on a
single-node cluster

In the previous example, we executed the Storm topology in the local mode.

Now, we will deploy the topology on the single-node Storm cluster.

1.

2. Build your Maven project by running the following command on the project
home directory:

We will first create a LearningStormSingleNodeTopology class within the
same package. The following LearningStormSingleNodeTopology class will
use the submitTopology method of the StormSubmitter class to deploy the
topology on the Storm cluster:

public class LearningStormSingleNodeTopology {
public static void main(String[] args) {

TopologyBuilder builder = new TopologyBuilder () ;
// set the spout class

builder.setSpout ("LearningStormSpout",
new LearningStormSpout (), 4);

// set the bolt class

builder.setBolt ("LearningStormBolt",
new LearningStormBolt (), 2)
.shuffleGrouping ("LearningStormSpout") ;

Config conf = new Config() ;
conf . setNumWorkers (3) ;
try {

// This statement submit the topology on remote
cluster.

// args[0] = name of topology

StormSubmitter.submitTopology (args[0], conf,
builder.createTopology()) ;

}catch(AlreadyAliveException alreadyAliveException)
System.out.println(alreadyAliveException) ;

} catch

(InvalidTopologyException invalidTopologyException)
System.out.println(invalidTopologyException) ;

mvn clean install

[28]

Chapter 1

The output of the preceding command is:

[INFO] Total time: 58.326s
[INFO] Finished at: Mon Jan 20 00:55:52 IST 2014
[INFO] Final Memory: 14M/116M

We can deploy the topology to the cluster using the following Storm
client command:

bin/storm jar jarName.jar [TopologyMainClass] [Args]

The preceding command runs TopologyMainClass with the arguments,
argl and arg2. The main function of TopologyMainClass is to define
the topology and submit it to Nimbus. The Storm JAR part takes care

of connecting to Nimbus and uploading the JAR part.

Go to the $sTORM_HOME directory and run the following command to deploy
LearningStormSingleNodeTopology to the Storm cluster:

bin/storm jar $PROJECT HOME/target/storm-example-0.0.1-SNAPSHOT-
jar-with-dependencies.jar com.learningstorm.storm example.
LearningStormSingleNodeTopology LearningStormSingleNodeTopology

The following information is displayed:

0 [main] INFO backtype.storm.StormSubmitter - Jar not
uploaded to master yet. Submitting jar...

7 [main] INFO backtype.storm.StormSubmitter - Uploading
topology jar /home/root/storm-example/target/storm-example-
0.0.1-SNAPSHOT-jar-with-dependencies.jar to assigned location: /
tmp/storm-data/nimbus/inbox/stormjar-dfce742b-calb-4121-bcbe-
1856dcl846a4.jar

19 [main] INFO backtype.storm.StormSubmitter - Successfully
uploaded topology jar to assigned location: /tmp/storm-data/
nimbus/inbox/stormjar-dfce742b-calb-4121-bcbe-1856dcl846a4.jar

19 [main] INFO backtype.storm.StormSubmitter - Submitting
topology LearningStormSingleNodeTopologyin distributed mode with
conf{"topology.workers":3}

[29]

Setting Up Storm on a Single Machine

219 [main] INFO backtype.storm.StormSubmitter - Finished
submitting topology: LearningStormSingleNodeTopology

5. Run the jps command to see the number of running JVM processes as follows:
jps
The preceding command's output is:

26827 worker

26530 supervisor
26824 worker

26468 nimbus

15987 QuorumPeerMain
26822 worker

6. Storm supports deactivating a topology. In the deactivated state, spouts
will not emits any new tuples into pipeline, but the processing of already
emitted tuples will continue. The following is the command to deactivate
the running topology:

bin/storm deactivate topologyName

7. Deactivate LearningStormSingleNodeTopology using the
following command:

bin/storm deactivate LearningStormSingleNodeTopology

The following information is displayed:

0 [main] INFO backtype.storm.thrift - Connecting to Nimbus at
localhost:6627r

76 [main] INFO backtype.storm.command.deactivate - Deactivated

topology: LearningStormSingleNodeTopology

8. Storm also supports activating a topology. When a topology is activated,
spouts will again start emitting tuples. The following is the command to
activate the topology:

bin/storm activate topologyName

9. Activate LearningStormSingleNodeTopology using the following command:

bin/storm activate LearningStormSingleNodeTopology

The following information is displayed:

0 [main] INFO backtype.storm.thrift - Connecting to Nimbus at
localhost:6627

65 [main] INFO backtype.storm.command.activate - Activated
topology: LearningStormSingleNodeTopology

[30]

Chapter 1

10.

11.

12.

Storm topologies are never-ending processes. To stop a topology, we need
to kill it. When killed, the topology first enters into the deactivation state,
processes all the tuples already emitted into it, and then stops. Run the
following command to kill LearningStormSingleNodeTopology

bin/storm kill LearningStormSingleNodeTopology

The following information is displayed:

0 [main] INFO backtype.storm.thrift - Connecting to Nimbus at
localhost:6627

80 [main] INFO backtype.storm.command.kill-topology - Killed
topology: LearningStormSingleNodeTopology

Now, run the jps command again to see the remaining JVM processes

as follows:

jps

The preceding command's output is:

26530 supervisor

27193 Jps

26468 nimbus

15987 QuorumPeerMain

To update a running topology, the only option available is to kill the
currently running topology and submit a new one.

Summary

In this chapter, we introduced you to the basics of Storm and the various components
that make up a Storm cluster. We saw the different operation modes in which a Storm
cluster can operate. We deployed a single-node Storm cluster and also developed a
sample topology to run it on the single-node Storm cluster.

In the next chapter, we will set up a three-node Storm cluster to run the sample
topology. We will also see different types of Stream groupings supported by
Storm and the guaranteed message semantic provided by Storm.

[31]

Setting Up a Storm Cluster

In the last chapter, we saw how to write a minimal Storm topology and run it on
the local mode and a single-node Storm cluster. In this chapter, we will cover the
following topics:

* How to run the sample topology in a distributed Storm cluster
* How to configure the parallelism of a topology

* How to partition a stream using different stream grouping

In the last chapter, we saw how to set up single-node ZooKeeper to use with Storm.
Even though we can proceed with the same ZooKeeper setup for a distributed Storm
cluster setup, then it will be a single point of failure in the cluster. To avoid this, we
are deploying a distributed ZooKeeper cluster.

It is advised to run an odd number of ZooKeeper nodes, as the ZooKeeper cluster
keeps working as long as the majority (the number of live nodes is greater than n/2,
where 1 is the number of deployed nodes) of the nodes are running. So, if we have a
cluster of four ZooKeeper nodes (3 > 4/2, only one node can die), then we can handle
only one node failure, while if we had five nodes (3 > 5/2, two nodes can die) in the
cluster, we can handle two node failures.

Setting Up a Storm Cluster

We will be deploying a ZooKeeper ensemble of three nodes that will handle
one node failure. The following is the deployment diagram of the three-node
ZooKeeper ensemble:

ZooKeeper Ensemble

N

Follower Leader Follower
Serverl Server2 Server3
(zool) (z002) (z003)

N

client | client | | client | | client |

A ZooKeeper ensemble

In the ZooKeeper ensemble, one node in the cluster acts as the leader, while the rest
are followers. If the leader node of the ZooKeeper cluster dies, then an election for
the new leader takes places among the remaining live nodes, and a new leader is
elected. All write requests coming from clients are forwarded to the leader node,
while the follower nodes only handle the read requests. Also, we can't increase the
write performance of the ZooKeeper ensemble by increasing the number of nodes
because all write operations go through the leader node.

The following steps need to be performed on each node to deploy the
ZooKeeper ensemble:

1. Download the latest stable ZooKeeper release from the ZooKeeper site
(http://zookeeper.apache.org/releases.html). At this moment,
the latest version is ZooKeeper 3.4.5.

2. Once you have downloaded the latest version, unzip it. Now, we set up
the zx_HOME environment variable to make the setup easier.

3. Point the zK_HOME environment variable to the unzipped directory. Create
the configuration file, zoo. cfg, at $ZK_HOME/conf directory using the
following commands:

cd $ZK_HOME/conf

touch zoo.cfg

[34]

Chapter 2

Add the following properties to the zoo. cfg file:
tickTime=2000

dataDir=/var/zookeeper

clientPort=2181

initLimit=5

syncLimit=2

server.l1l=z001:2888:3888
server.2=z002:2888:3888
server.3=z003.2888.3888

Here, zoo1, zoo2, and zoo3 are the IP addresses of the ZooKeeper nodes.
The following are the definitions for each of the properties:

° tickTime: This is the basic unit of time in milliseconds used by
ZooKeeper. It is used to send heartbeats, and the minimum session
timeout will be twice the tickTime value.

° databDir: This is the directory to store the in-memory database
snapshots and transactional log.

° clientPort: This is the port used to listen to client connections.

° initLimit: This is the number of tickTime values to allow followers
to connect and sync to a leader node.

° gyncLimit: This is the number of tickTime values that a follower
can take to sync with the leader node. If the sync does not happen
within this time, the follower will be dropped from the ensemble.

The last three lines of the server.id=host:port :port format specifies that
there are three nodes in the ensemble. In an ensemble, each ZooKeeper node
must have a unique ID between 1 and 255. This ID is defined by creating

a file named myid in the dataDir directory of each node. For example, the
node with the ID 1 (server.1=z001:2888:3888) will have a myid file at /
var/zookeeper with the text 1 inside it.

For this cluster, create the myid file at three locations, shown as follows:

At zool /var/zookeeper/myid contains 1
At zoo2 /var/zookeeper/myid contains 2
At zoo3 /var/zookeeper/myid contains 3

Run the following command on each machine to start the ZooKeeper cluster:

bin/zkServer.sh start

[35]

Setting Up a Storm Cluster

6. Check the status of the ZooKeeper nodes by performing the following steps:

1.

Run the following command on the zoo1 node to check the first
node's status:

bin/zkServer.sh status

The following information is displayed:
JMX enabled by default
Using config: /home/root/zookeeper-3.4.5/bin/../conf/zoo.cfg

Mode: follower
The first node is running in the follower mode.

Check the status of the second node by performing the
following command:

bin/zkServer.sh status

The following information is displayed:
JMX enabled by default
Using config: /home/root/zookeeper-3.4.5/bin/../conf/zoo.cfg

Mode: leader
The second node is running in the leader mode.

Check the status of the third node by performing the
following command:

bin/zkServer.sh status
The following information is displayed:
JMX enabled by default

Using config: /home/root/zookeeper-3.4.5/bin/../conf/zoo.cfg

Mode: follower

The third node is running in the follower mode.

7. Run the following command on the leader machine to stop the leader node:

bin/zkServer.sh stop

[36]

Chapter 2

8. Now, check the status of the remaining two nodes by performing the
following steps:

1. Check the status of the first node using the following command:

bin/zkServer.sh status

The following information is displayed:
JMX enabled by default
Using config: /home/root/zookeeper-3.4.5/bin/../conf/zoo.cfg

Mode: follower
The first node is again running in the follower mode.

2. Check the status of the third node using the following command:

bin/zkServer.sh status

The following information is displayed:
JMX enabled by default
Using config: /home/root/zookeeper-3.4.5/bin/../conf/zoo.cfg

Mode: leader
The third node is elected as the new leader.

3. Now, restart the third node with the following command:

bin/zkServer.sh status

This was a quick introduction to setting up ZooKeeper that can be used for
development; however, it is not suitable for production. For a complete reference
on ZooKeeper administration and maintenance, please refer to the online
documentation at the ZooKeeper site at http: //zookeeper.apache.org/doc/
trunk/zookeeperAdmin.html.

Setting up a distributed Storm cluster

In the last chapter, we saw how to set up a single-node Storm cluster. In this chapter,
we will learn how to set up a three-node Storm cluster, of which one node will be the
master node (Nimbus) and the other two will be worker nodes (supervisors).

[37]

[vww allitebooks.cond

http://www.allitebooks.org

Setting Up a Storm Cluster

The following is the deployment diagram of our three-node Storm cluster:

Storm three nodes cluster
(one master and two slaves)

Zool
Supervisorl
(Slavel)
Nimbus
(Masten) <:> Z002 <:>
Supervisor2
(Slave2)

Z003

A three-node Storm cluster

The following are the steps that need to be performed to set up a three-node
Storm cluster:

1.

Install and run the ZooKeeper cluster. The steps for installing ZooKeeper are
mentioned in the previous section.

Download the latest stable Storm release from https://storm.incubator.

apache.org/downloads.html; at the time of this writing, the latest version
is Storm 0.9.0.1.

Once you have downloaded the latest version, copy and unzip it in all three
machines. Now, we will set the $STORM HOME environment variable on each
machine to make the setup easier.

Go to the $STORM_HOME/conf directory at the master node and add the
following lines to the storm.yaml file:

storm. zookeeper.servers:

- "zool"

- "zoo2"

- "zoo3"

storm. zookeeper.port: 2181

nimbus.host: "nimbus.host.ip"
storm.local.dir: "/tmp/storm-data"
java.library.path: "/usr/local/lib"

storm.messaging.transport: backtype.storm.messaging.netty.Context

[38]

Chapter 2

Here, zoo1, zoo2, and zoo3 are the IP addresses of the ZooKeeper machines,
and nimbus.host . ip is the IP address of the master machine. The
storm.local.dir pathis a path to alocal directory where Nimbus

and supervisor store some local data such as state and topology JARs.

Go to the $STORM_HOME/conf directory at each worker node and add the
following lines to the storm.yaml file:

storm. zookeeper.servers:
- "zool"
- "zoo2"
- "zoo3"
storm. zookeeper.port: 2181
nimbus.host: "nimbus.host.ip"
storm.local.dir: "/tmp/storm-data"
java.library.path: "/usr/local/lib"
storm.messaging.transport: backtype.storm.messaging.netty.Context
supervisor.slots.ports:

- 6700

- 6701

- 6702

- 6703

Go to the $sTORM_HOME directory at the master node and execute the
following command to start the master daemon:

bin/storm nimbus

Go to the $sTORM_HOME directory at each worker node and execute the
following command to start the worker daemons:

bin/storm supervisor

Deploying a topology on a remote
Storm cluster

In this section, we will focus on how we can deploy topologies on a remote Storm
cluster. We will start with the installation of a Storm client on the client machine,
which can be different from the machines in the Storm cluster because submitting
and deploying topologies on a remote Storm cluster requires a Storm client.

[39]

Setting Up a Storm Cluster

The following are the steps that need to be performed to set up a Storm client:

1. Download the latest stable Storm release from https://storm.incubator.
apache.org/downloads.html.

2. Once you have downloaded the latest version, copy and unzip it to the
client machine. Now, we set the STORM_HOME environment variable to
make the installation easier.

3. Go to the $STORM_HOME/conf directory at the client node and add the
following line to the storm.yaml file:

nimbus.host: "nimbus.host.ip"

4. Also, now place the copy of the storm.yaml file located at $STORM_HOME/
conf in the ~/ . storm folder on the client machine.

Once the installation of the Storm client is done, we are good to go to deploy a
topology on the remote machine. To demonstrate how we can deploy a topology
on the remote cluster, we will use the sample topology developed in Chapter 1,
Setting Up Storm on a Single Machine. The following are the commands that need
to be executed to deploy a topology on the remote cluster.

Go to the $sTORM_HOME directory on the client machine and run the
following command:

bin/storm jar jarName.jar [TopologyMainClass] [Args]

Deploying the sample topology on the remote
cluster

This section will explain how we can deploy the sample topology created in
Chapter 1, Setting Up Storm on a Single Machine, on the Storm cluster by performing
the following steps:

1. Execute the following command on the Storm client machine to deploy the
sample topology on the remote Storm cluster. The client will then submit
this topology across the network to the Nimbus, which will then distribute
it to the supervisors.
bin/storm jar $STORM PROJECT HOME/target/storm-
example-0.0.1-SNAPSHOT-jar-with-dependencies.jar com.
learningstorm.storm example.LearningStormSingleNodeTopology
LearningStormClusterTopology

[40]

Chapter 2

The output of the preceding command is as follows:

18 [main] INFO backtype.storm.StormSubmitter - Uploading
topology jar ../storm-example/target/storm-example-0.0.1-SNAPSHOT-
jar-with-dependencies.jar to assigned location: /tmp/storm-data/
nimbus/inbox/stormjar-aa96e582-1676-4654-a995-15a4e88b6a50.jar

28 [main] INFO backtype.storm.StormSubmitter - Successfully
uploaded topology jar to assigned location: /tmp/storm-data/
nimbus/inbox/stormjar-aa96e582-1676-4654-a995-15a4e88b6a50.jar

29 [main] INFO backtype.storm.StormSubmitter - Submitting
topology test-ack in distributed mode with conf {"topology.
workers":3}

196 [main] INFO backtype.storm.StormSubmitter - Finished
submitting topology: LearningStormClusterTopology

The preceding console output shows that the
LearningStormClusterTopology topology is submitted
on the remote cluster, and three worker processes are executed.

Run the jps commands on the supervisor machines to view the
worker process:
1. Run the jps command on the first supervisor machine:
jps
The preceding command's output is as follows:
24347 worker

23940 supervisor
24593 Jps
24349 worker

Two worker processes are assigned to the first supervisor machine.
2. Run the jps command on the second supervisor machine:

jps

The preceding command's output is as follows:

24344 worker

23941 supervisor

24543 Jps

One worker process is assigned to the second supervisor machine.

[41]

Setting Up a Storm Cluster

Configuring the parallelism of a topology

There are a number of components in a Storm topology. The throughput (processing
speed) of the topology is decided by the number of instances of each component
running in parallel. This is known as the parallelism of a topology. Let's first look at the
processes or components responsible for the parallelism feature of the Storm cluster.

The worker process

A Storm topology is executed across multiple nodes in the Storm cluster. Each of
the nodes in the cluster can run one or more JVMs called worker processes that are
responsible for processing a part of the topology.

A Storm cluster can run multiple topologies at the same time. A worker process
is bound to one of these topologies and can execute multiple components of that
topology. If multiple topologies are run at the same time, none of them will share
any of the workers, thus providing some degree of isolation between topologies.

The executor

Within each worker process, there can be multiple threads that execute parts of the
topology. Each of these threads is called an executor. An executor can execute only
one of the components, that is, any one spout or bolt in the topology.

Each executor, being a single thread, can only execute tasks assigned to it serially.
The number of executors defined for a spout or bolt can be changed dynamically
while the topology is running. This means that you can easily control the degree
of parallelism for various components in your topology.

Tasks

A task is the most granular unit of task execution in Storm. Each task is an instance
of a spout or bolt. While defining a Storm topology, you can specify the number of
tasks for each spout and bolt. Once defined, the number of tasks cannot be changed
for a component at runtime. Each task can be executed alone or with another task of
the same type or another instance of the same spout or bolt.

[42]

Chapter 2

The following diagram depicts the relationship between the worker process,
executors, and tasks. Each of the blocks that contains tasks is an executor, for
example, there are two executors for each component, and each component
hosts a different number of tasks.

Also, as you can see in the following diagram, there are two executors and eight
instances for Task A. The two executors are running in two different workers. If you
are not getting enough performance out of this configuration, you can easily change
the number of executors to four or eight for Task A to increase performance. The
following diagram shows the relationship between various components of a topology:

Executors
Task_

Worker 1 Worker 2

Relationship between executors, tasks, and worker processes

Configuring parallelism at the code level

In Storm, we can achieve the desired level of parallelism for tuning parameters such
as the number of worker processes, number of executors, and number of tasks. Storm
provides an API to configure these parameters. In this section, the following steps
will show how we can configure parallelism at the code level:

1. Set the number of worker processes.

We can set the number of worker processes at the code level using the
setNumWorkers method of the backtype.storm.Config class. The following
is the code snippet that shows these settings in practice:

Config conf = new Config() ;
conf . setNumWorkers (3) ;

In the preceding code, we have configured the number of workers to three.
Storm will run the three workers for the LearningStormSingleNodeTopology

topology.

[43]

Setting Up a Storm Cluster

2.

Set the number of executors.

We can set the number of executors at the code level by passing the
parallelism_hint argument in the setSpout (args, args,parallelism_
hint) or setBolt (args,args,parallelism hint) method of the
backtype.storm. topology.TopologyBuilder class. The following is

the code snippet to show these settings in practice:

TopologyBuilder builder = new TopologyBuilder () ;
builder.setSpout ("LearningStormSpout", new
LearningStormSpout (), 2);

builder.setBolt ("LearningStormBolt", new
LearningStormBolt (), 4);

In the preceding code, we have set the parallelism_hint parameter to

2 for LearningStormSpout and 4 for LearningStormBolt. At the time of
execution, Storm will assign two executors for LearningStormSpout and
four executors for LearningStormBolt.

Set the number of tasks.

We can configure the number of tasks that can execute inside the executors.
The following is the code snippet to show these settings in practice:

builder.setSpout ("LearningStormSpout", new
LearningStormSpout (), 2).setNumTasks (4) ;

In the preceding code, we have configured the two executors and four tasks
of LearningStormSpout. For LearningStormSpout, Storm will assign two
tasks per executor. By default, Storm will run one task per executor if the
user does not set the number of tasks at the code level.

Distributing worker processes, executors, and
tasks in the sample topology

Let's assume the number of worker processes set for the sample topology is three, the
number of executors for LearningStormSpout is three, and the number of executors
for LearningStormBolt is three. Also, we have configured the number of tasks for
LearningStormBolt as six, which means each executor will run two tasks. Then,

the following diagram shows how the sample topology would look in the operation:

[44]

Chapter 2

Number of worker processes =3

Number of executors for spout =3

Number of tasks on each spout executor =1
Number of executor for bolt =3

Number of tasks on each bolt executor =2

Learning
Spout

Total parallelism = (Number of spout tasks)+
(Number of bolt tasks)
=>3+3*2=>9

Hello-World Topology

Task Task Task

Worker Process Worker Process Worker Process

The Hello-World topology distribution

The total parallelism of the topology can be calculated with the total parallelism =
number of spout tasks + number of bolt tasks formula.

If the total parallelism of the topology is not a multiple of the number of workers,
Storm will distribute the tasks as evenly as possible.

Rebalancing the parallelism of a topology

As explained in the previous section, one of the key features of Storm is that it allows
us to modify the parallelism of a topology at runtime. The process of updating a
topology parallelism at runtime is called rebalance. If we add new supervisor nodes
to a Storm cluster and don't rebalance the topology, the new nodes will remain idle.

There are two ways to rebalance the topology:

* Using the Storm Web Ul
* Using the Storm CLI

[45]

Setting Up a Storm Cluster

The Storm Web UI will be covered in detail in the next chapter. This section covers
how we can rebalance the topology using the Storm CLI tool. The following is the
command we need to execute on the Storm CLI tool to rebalance the topology:

bin/storm rebalance [TopologyName] -n [NumberOfWorkers] -e
[Spout] = [NumberOfExecutos] -e [Boltl]=[NumberOfExecutos]
[Bolt2] = [NumberOfExecutos]

The rebalance command will first deactivate the topology for the duration of the
message timeout and then redistribute the workers evenly around the Storm cluster.
After a few seconds or minutes, the topology will be back in the previous state of
activation and restart the processing of input streams.

Rebalancing the parallelism of the sample
topology

With the following steps, let's first check the number of worker processes that are
running in the Storm cluster by running jps commands on the supervisor machines:

1. Run the jps command on the first supervisor machine:
jps
The following information is displayed:
24347 worker
23940 supervisor

24593 Jps
24349 worker

Two worker processes are assigned to the first supervisor machine.
2. Run the jps command on the second supervisor machine:

jps

The following information is displayed:

24344 worker

23941 supervisor

24543 Jps
One worker process is assigned to the second supervisor machine.

In total, three worker processes are running on the Storm cluster.

[46]

Chapter 2

Let's try to reconfigure the LearningStormClusterTopology topology to use two
worker processes, the LearningStormSpout spout to use four executors, and
the LearningStormBolt bolt to use four executors using the following command:

bin/storm rebalance LearningStormClusterTopology -n 2 -e
LearningStormSpout=4 -e LearningStormBolt=4

The following is the output displayed:

0 [main] INFO backtype.storm.thrift - Connecting to Nimbus at nimbus.
host.ip:6627

58 [main] INFO backtype.storm.command.rebalance - Topology

LearningStormClusterTopology is rebalancing

Rerun the jps commands on the supervisor machines to view the number of worker
processes as follows:
1. Run the jps command on the first supervisor machine:
jps
The following information is displayed:
24377 worker

23940 supervisor

24593 Jps
One worker process is assigned to the first supervisor machine.
2. Run the jps command on the second supervisor machine:
jps
The following information is displayed:
24353 worker

23941 supervisor

24543 Jps
One worker process is assigned to the second supervisor machine.

In total, two worker processes are running on the Storm cluster.

[47]

[vww allitebooks.cond

http://www.allitebooks.org

Setting Up a Storm Cluster

Stream grouping

When defining a topology, we create a graph of computation with a number of
bolt-processing streams. At a more granular level, each bolt executes as multiple
tasks in the topology. A stream will be partitioned into a number of partitions and
divided among the bolts' tasks. Thus, each task of a particular bolt will only get a
subset of the tuples from the subscribed streams.

Stream grouping in Storm provides complete control over how this partitioning
of tuples happens among many tasks of a bolt subscribed to a stream. Grouping
for a bolt can be defined on the instance of the backtype.storm.topology.
InputDeclarer class returned when defining bolts using the backtype.storm.
topology.TopologyBuilder.setBolt method.

Storm supports the following types of stream groupings:

* Shuffle grouping

* Fields grouping

* All grouping

* Global grouping

* Direct grouping

* Local or shuffle grouping
* Custom grouping

Now, we will look at each of these groupings in detail.

Shuffle grouping

Shuffle grouping distributes tuples in a uniform, random way across the tasks. An
equal number of tuples will be processed by each task. This grouping is ideal when
you want to distribute your processing load uniformly across the tasks and where
there is no requirement of any data-driven partitioning.

Fields grouping

Fields grouping enables you to partition a stream on the basis of some of the fields in
the tuples. For example, if you want that all the tweets from a particular user should
go to a single task, then you can partition the tweet stream using fields grouping on
the username field in the following manner:

builder.setSpout ("1", new TweetSpout()) ;
builder.setBolt ("2", new TweetCounter()) .fieldsGrouping("1",
new Fields ("username"))

[48]

Chapter 2

Fields grouping is calculated with the following function:
hash (fields) % (no. of tasks)

Here, hash is a hashing function. It does not guarantee that each task will get tuples
to process. For example, if you have applied fields grouping on a field, say X, with
only two possible values, A and B, and created two tasks for the bolt, then it might
be possible that both hash (A) % 2 and hash (B) % 2 are equal, which will result in all
the tuples being routed to a single task and other tasks being completely idle.

Another common usage of fields grouping is to join streams. Since partitioning
happens solely on the basis of field values and not the stream type, we can join
two streams with any common join fields. The name of the fields do not need to
be the same. For example, in order to process domains, we can join the order
and ItemScanned streams when an order is completed:

builder.setSpout ("1", new OrderSpout ()) ;
builder.setSpout ("2", new ItemScannedSpout()) ;
builder.setBolt ("joiner", new OrderJoiner())
.fieldsGrouping("1l", new Fields ("orderId"))
.fieldsGrouping ("2", new Fields ("orderRefId")) ;

All grouping
All grouping is a special grouping that does not partition the tuples but replicates

them to all the tasks, that is, each tuple will be sent to each of the bolt's tasks
for processing.

One common use case of all grouping is for sending signals to bolts. For example,

if you are doing some kind of filtering on the streams, then you have to pass the filter
parameters to all the bolts. This can be achieved by sending those parameters over a
stream that is subscribed by all bolts' tasks with all grouping. Another example is to
send a reset message to all the tasks in an aggregation bolt.

The following is an example of all grouping;:

builder.setSpout ("1", new TweetSpout ()) ;

builder.setSpout ("signals", new SignalSpout()) ;
builder.setBolt ("2", new TweetCounter()) .fieldsGrouping("1",
new Fields ("username")) .allGrouping("signals") ;

Here, we are subscribing signals for all the TweetCounter bolt's tasks. Now, we can
send different signals to the TweetCounter bolt using Signalspout.

[49]

Setting Up a Storm Cluster

Global grouping

Global grouping does not partition the stream but sends the complete stream to the
bolt's task with the smallest ID. A general use case of this is when there needs to be
a reduce phase in your topology where you want to combine results from previous
steps in the topology in a single bolt.

Global grouping might seem redundant at first, as you can achieve the same results
with defining the parallelism for the bolt as one and setting the number of input
streams to one. Though, when you have multiple streams of data coming through
different paths, you might want only one of the streams to be reduced and others
to be processed in parallel.

For example, consider the following topology. In this topology, you might want to
route all the tuples coming from Bolt C to a single Bolt D task, while you might still
want parallelism for tuples coming from Bolt E to Bolt D.

G
Spout B @

Global grouping

This can be achieved with the following code snippet:

builder.setSpout ("a", new SpoutA()) ;
builder.setSpout ("b", new SpoutB()) ;
builder.setBolt ("c", new BoltC()) ;
builder.setBolt ("e", new BoltE()) ;
builder.setBolt ("d", new BoltD())
.globalGrouping("c")
.shuffleGrouping("e") ;

Direct grouping

In direct grouping, the emitter decides where each tuple will go for processing.
For example, say we have a log stream and we want to process each log entry
using a specific bolt task on the basis of the type of resource. In this case, we can
use direct grouping.

[50]

Chapter 2

Direct grouping can only be used with direct streams. To declare a stream as a
direct stream, use the backtype.storm. topology.OutputFieldsDeclarer.
declarestream method that takes a Boolean parameter directly in the following
way in your spout:

@Override
public void declareOutputFields (OutputFieldsDeclarer declarer) {

declarer.declareStream("directStream", true, new
Fields ("field1l")) ;

}

Now, we need the number of tasks for the component so that we can specify the
taskId parameter while emitting the tuple. This can be done using the backtype.
storm.task.TopologyContext .getComponentTasks method in the prepare
method of the bolt. The following snippet stores the number of tasks in a bolt field:

public void prepare (Map stormConf, TopologyContext context,
OutputCollector collector) ({
this.numOfTasks = context.getComponentTasks ("my-stream") ;
this.collector = collector;

}

Once you have a direct stream to emit to, use the backtype.storm. task.
OutputCollector.emitDirect method instead of the emit method to emit it.
The emitDirect method takes a taskId parameter to specify the task. In the
following snippet, we are emitting to one of the tasks randomly:

public void execute (Tuple input) {
collector.emitDirect (new Random() .nextInt (this.numOfTasks),
process (input)) ;

}

Local or shuffle grouping

If the tuple source and target bolt tasks are running in the same worker, using this
grouping will act as a shuffle grouping only between the target tasks running on the
same worker, thus minimizing any network hops resulting in increased performance.

In case there are no target bolt tasks running on the source worker process, this
grouping will act similar to the shuffle grouping mentioned earlier.

[51]

Setting Up a Storm Cluster

Custom grouping
If none of the preceding groupings fit your use case, you can define your

own custom grouping by implementing the backtype.storm.grouping.
CustomStreamGrouping interface.

The following is a sample custom grouping that partitions a stream on the basis
of the category in the tuples:

public class CategoryGrouping implements CustomStreamGrouping,
Serializable ({

// Mapping of category to integer values for grouping
private static final Map<String, Integer> categories =
ImmutableMap.of
(

"Financial", O,

"Medical", 1,

"FMCG", 2,

"Electronics", 3
)

// number of tasks, this is initialized in prepare method
private int tasks = 0;

public void prepare (WorkerTopologyContext context,
GlobalStreamId stream, List<Integer> targetTasks)
{

// initialize the number of tasks

tasks = targetTasks.size();

public List<Integer> chooseTasks (int taskId, List<Objects>
values)

// return the taskId for a given category

String category = (String) values.get(0);

return ImmutablelList.of (categories.get (category) % tasks);

}
Now, we can use this grouping in our topologies with the following code snippet:

builder.setSpout ("a", new SpoutA()) ;
builder.setBolt ("b", (IRichBolt)new BoltB())
.customGrouping ("a", new CategoryGrouping()) ;

[52]

Chapter 2

The following diagram represents the Storm groupings graphically:

Ta

Task

Task f

Shuffle Grouping

ojaC
tllE

Task [4X5 0y

Task

Task "> Task

Task . » Task

Task

Task f:

Task

Fields Grouping

All Grouping

Task ||
Task |-

Task -

Storm grouping

Global Grouping

Guaranteed message processing

In a Storm topology, a single tuple being emitted by a spout can result in a number
of tuples being generated in the later stages of the topology. For example, consider

the following topology:

Spout A T(A)

Bolt B

Bolt C

A Strom Topology

T(AB)
Bolt D

T(AC)

Here, Spout A emits a tuple T(A), which is processed by bolt B, and bolt C which
emits the tuples T(AB) and T(AC), respectively. So, when all the tuples produced

due to tuple T(A) —namely the tuple tree T(A), T(AB), and T(AC) —are processed,
we say that the tuple has been processed completely.

[53]

Setting Up a Storm Cluster

When some of the tuples in a tuple tree fail to process, either due to a runtime error
or a timeout, which is configurable for each topology, then Storm considers this to be
a failed tuple.

The following are the three steps that are required by Storm in order to guarantee
message processing:

1.

Tag each tuple emitted by a spout with a unique message ID. This can be
done by using the backtype . storm.spout.SpoutOutputColletor.emit
method that takes a messageId argument as follows:

spoutOutputCollector.emit (Collections.singletonList (
(Object) tuple), generateMessagelId (tuple));

Storm uses this message ID to track the state of the tuple tree generated by
this tuple. If you use one of the emit methods that don't take a messageId
argument, Storm will not track it for complete processing. When the message
is processed completely, Storm will send an acknowledgement with the same
messageId argument that was used while emitting the tuple.

A generic pattern implemented by spouts is that they read a message from
a messaging queue, say RabbitMQ, produce the tuple into the topology
for further processing, and then dequeue the message once it receives the
acknowledgement that the tuple has been processed completely.

When one of the bolts in the topology needs to produce a new tuple in

the course of processing a message, for example, bolt B in the preceding
topology, then it should emit the new tuple anchored with the original tuple
that it got from the spout. This can be done by using the overloaded emit
methods in the backtype.storm.task.OutputCollector class that takes

an anchor tuple as an argument. If you are emitting multiple tuples from the
same input tuple, then anchor each outgoing tuple. The emit method is given
in the following line of code:

collector.emit (inputTuple, transform(inputTuple)) ;

Whenever you are done with processing a tuple in the execute method
of your bolt, send an acknowledgment using the backtype.storm.task.
OutputCollector.ack method. When the acknowledgement reaches the
emitting spout, you can safely mark the message as being processed and
dequeue it from the message queue, if any.

Similarly, if there is a problem in processing a tuple, a failure signal should
be sent back using the backtype.storm.task.OutputCollector.fail
method so that Storm can replay the failed message.

[54]

Chapter 2

One of the general patterns of processing in Storm bolts is to process a

tuple in, emit new tuples, and send an acknowledgement at the end of the
execute method. Storm provides the backtype.storm.topology.base.
BaseBasicBolt class that automatically sends the acknowledgement at the
end of the execute method. If you want to signal a failure, throw backtype.
storm.topology.FailedException from the execute method. The
following code snippet illustrates this:

public void execute (Tuple inputTuple, BasicOutputCollector
collector) ({
try {
collector.emit (transform(inputTuple)) ;
// successful completion will automatically act the
tuple
} catch (Exception e) {
// this will automatically fail the tuple
throw new FailedException ("Exception while processing
tuple", e);

}
}

The preceding model results in at-least-once message processing semantics, and your
application should be ready to handle the scenario when some of the messages will
be processed multiple times. Storm also provides exactly-once message processing
semantics that we will discuss in Chapter 5, Exploring High-level Abstraction in Storm
with Trident.

Even though you can achieve some guaranteed message processing in Storm using
the preceding methods, it is always a point to ponder whether you actually require it
or not as you can gain a lot of performance boost by risking some of the messages not
being completely processed by Storm. This is a tradeoff that you can think of while
designing your application.

Summary

In this chapter, we learned how to set up a distributed Storm cluster and how to set
up the prerequisites such as ZooKeeper. We also learned how to deploy a topology
on a Storm cluster and how to control the parallelism of a topology. Finally, we saw
the various ways in which we can partition streams in Storm using various stream
groupings provided by Storm. Now, you should be able to develop basic Storm
topologies and deploy them.

In the next chapter, we will see how we can monitor the Storm cluster using the
Storm Ul and also how to collect topology statistics using the Nimbus thrift interface.

[55]

Monitoring the Storm Cluster

In the previous chapter, you learned how we can deploy a sample topology on a
remote Storm cluster, how we can configure the parallelism of a topology, different
types of stream groupings, and so on. In this chapter, we will focus on how we can
monitor and collect the diagnostics of topologies that run in a Storm cluster.

In this chapter, we will be covering the following topics:

* Start the Storm Ul
* Monitoring a topology using the Storm Ul

* Cluster statistics using the Nimbus thrift client

Starting to use the Storm Ul

This section will show you how we can start the Storm Ul daemon. However,
before starting the Storm UI daemon, we assume that you have a running Storm
cluster. The Storm cluster deployment steps are mentioned in Chapter 2, Setting
Up a Storm Cluster. Now, go to the Storm home directory (cd $STORM_HOME) at the
Nimbus machine and run the following command to start the Storm UI daemon:

bin/storm ui

By default, the Storm Ul starts on the 8080 port of the machine where it is started.
Now, we will browse to the http://nimbus-node:8080 page to view the Storm UlI,
where nimbus-node is the IP address or hostname of the Nimbus machine.

[vww allitebooks.cond

http://www.allitebooks.org

Monitoring the Storm Cluster

The following is a screenshot of the Storm home page:

Storm Ul

Cluster Summary

Topology summary

Supervisor summary

Nimbus Configuration

The home page of the Storm Ul

Monitoring a topology using the Storm Ul

This section covers how we can monitor the Storm cluster through the Storm UL Let's
first start with the definition of monitoring. Monitoring is used to track the health of
various components that are running in a cluster. The statistics or information collected
through monitoring is used by an administrator to spot an error or bottleneck in a
cluster. The Storm UI daemon provides the following important information:

* Cluster Summary: This portion of the Storm Ul shows the version of Storm
deployed in a cluster, uptime of the nimbus node, number of free worker
slots, number of used worker slots, and so on. While submitting a topology
to the cluster, the user first needs to make sure that the value of the Free slots
column should not be zero; otherwise, the topology doesn't get any worker
for processing and will wait in the queue till a worker becomes free.

* Nimbus Configuration: This portion of the Storm UI shows the configuration
of the Nimbus node.

* Supervisor summary: This portion of the Storm UI shows the list of
supervisor nodes running in the cluster along with their Id, Host, Uptime,
Slots, and Used slots columns.

[58]

Chapter 3

* Topology summary: This portion of the Storm UI shows the list of topologies
running in the Storm cluster along with their ID, number of workers assigned
to the topology, number of executors, number of tasks, uptime, and so on.

Let's deploy the sample topology (if not running already) in a remote Storm cluster
by running the following command:

bin/storm jar $STORM PROJECT HOME/target/storm-example-0.0.1-
SNAPSHOT-jar-with-dependencies.jar com.learningstorm.storm example.
LearningStormSingleNodeTopology LearningStormClusterTopology

As mentioned in the Configuring parallelism at the code level section of Chapter 2,

Setting Up a Storm Cluster, we created the LearningStormClusterTopology topology
by defining three worker processes, two executors for LearningStormSpout, and
four executors for LearningStormBolt.

After submitting LearningStormClusterTopology on the Storm cluster, the user
has to refresh the Storm home page.

The following screenshot shows that the row is added for
LearningStormClusterTopology in the Topology summary section.
The topology section contains the name of the topology, unique ID of the
topology, status of the topology, uptime, number of workers assigned to
the topology, and so on. The possible values of status fields are ACTIVE,
KILLED, and INACTIVE.

Storm Ul

Cluster Summary
Topology summary

Supervisor summary

Nimbus Configuration

The home page of the Storm UI after deploying the sample topology

[59]

Monitoring the Storm Cluster

Let's click on LearningStormClusterTopology to view its detailed statistics. This
shown in the following screenshot:

Topology summary

Topology actions

Deacteate || Rebatance || Wil

Topology stats

Spouts (All time)

Bolts (All time)

The statistics of LearningStormClusterTopology

The preceding screenshot shows the statistics of the bolt and spout running
in LearningStormClusterTopology. The screenshot contains the following

major sections:

Topology actions: This section allows us to activate, deactivate, rebalance,
and kill the topology's functionality directly through the Storm UI.

Topology stats: This section will give the information about the number of
tuples emitted, transferred, and acknowledged, the capacity latency, and so
on, within the window of 10 minutes, 3 hours, 1 day, and since the start of
the topology.

Spouts (All time): This section shows the statistics of all the spouts running
inside a topology. The following is the major information about a spout:

[e]

Executors: This column gives details about the number of executors
assigned to LearningStormSpout. The value of the number of
executors is two for LearningStormSpout because we have started
LearningStormClusterTopology by assigning two executors for
LearningStormSpout.

Tasks: This column gives details about the number of tasks assigned
to LearningStormSpout. As explained in Chapter 2, Setting Up a Storm
Cluster, the tasks will run inside the executors, and if we don't specify
the tasks, then Storm will automatically assign one task per executor.
Hence, the number of tasks of LearningStormSpout is equal to the
number of executors assigned to LearningStormSpout.

[60]

Chapter 3

Emitted: This column gives details about the number of records
emitted all time by LearningStormSpout.

Port: This column defines the worker port assigned to
LearningStormSpout.

Transferred: This column gives details about the number of records
transferred all time by LearningStormSpout.

Complete latency (ms): This column gives the complete latency of a
tuple. The complete latency is the difference in the timestamp when
the spout emits the tuple to the timestamp when the ACK tree is
completed for the tuple.

The difference between the emitted and transferred records is that
the term emitted signifies the number of times the emit method of
the outputCollector class is called. On the other hand, the term
transferred signifies the number of tuples actually sent to other tasks.

For example, the bolt Y has two tasks and subscribes to the bolt X
using the all grouping type, then the value of emitted and transferred
records is 2x for the bolt X. Similarly, if the bolt X emits the stream for
which no one is subscribed to, then the value of transferred is zero.

* Bolts (All time): This section shows the statistics of all the bolts running
inside a topology. Here is some important information about a bolt:

[e]

Executors: This column gives details about the number of executors
assigned to LearningStormBolt. The value of the number of
executors is four for LearningStormBolt because we have started
LearningStormClusterTopology by assigning four executors to
LearningStormBolt.

Tasks: This column gives the details about the number of tasks
assigned to LearningStormBolt. As explained in Chapter 2, Setting
Up a Storm Cluster, the tasks will run inside the executors, and if we
don't specify the tasks, then Storm will automatically assign one task
per executor. Hence, the number of tasks of LearningStormBolt is
equal to the number of executors assigned to LearningStormBolt.

Emitted: This column gives the details about the number of records
emitted all time by LearningStormBolt.

Port: This column defines the worker port assigned to
LearningStormBolt.

Transferred: This column gives the details about the number
of records transferred all time by LearningStormBolt.

[61]

Monitoring the Storm Cluster

[e]

Capacity (last 10m): The capacity metric is very important to
monitor the performance of the bolt. This parameter gives an
overview of the percent of the time spent by the bolt in actually
processing tuples in the last 10 minutes. If the value of the Capacity
(last 10m) column is close to 1, then the bolt is at capacity, and

we will need to increase the parallelism of the bolt to avoid an

"at capacity" situation. An "at capacity" situation is a bottleneck for
the topology because if spouts start emitting tuples at a faster rate,
then most of the tuples will timeout and spout will need to re-emit
the tuples into the pipeline.

Process latency (ms): Process latency means the actual time
(in milliseconds) taken by the bolt to process a tuple.

Execute latency (ms): Execute latency is the sum of the processing
time and the time used in sending the acknowledgment.

Let's click on the LearningStormSpout link to view the detailed statistics of a spout,
as shown in the following screenshot:

Spout stats

Component summary

Output stats (All time)

Executors (All time)

The statistics of LearningStormSpout

[62]

Chapter 3

The preceding screenshot shows that the tasks of LearningStormSpout are assigned
to two executors. The screenshot also shows that the first executor is assigned to the
supervisorl machine and the second one is assigned to the supervisor2 machine.

Now, let's go to the previous page of the Storm Ul and click on the
LearningStormBolt link to view detailed statistics for the bolt, as
shown in the following screenshot:

Bolt stats

Input stats (All time)

Output stats (All time)

Executors

The statistics of LearningStormBolt

The preceding screenshot shows that the tasks of LearningStormBolt are assigned
to four executors. The screenshot also shows that the one executor is assigned to
the supervisorl machine and the remaining three executors are assigned to the
supervisor2 machine. The Input stats (All time) section of the bolt shows the
source of tuples for LearningStormBolt; in our case, the source

is LearningStormSpout.

[63]

Monitoring the Storm Cluster

Again, go to the previous page and click on the Kill button to stop the topology.
While killing the topology, Storm will first deactivate the spouts and wait for the kill
time mentioned on the alerts box, so the bolts have a chance to finish the processing
of the tuples emitted by spouts before the ki11 command. The following screenshot
shows how we can kill the topology through the Storm UI:

Topology actions
Deactrvate | Rebalance || Kdl
Topology stats

The page at 192.168.41.122:8080 says

116 bl g
emiClustesTopologyT H yes, plesse, specily wait
ti nds

oK [

Spouts (All time)

Bolts (All time)

Killing a topology

Let's go to the Storm Ul's home page to check the status of
LearningStormClusterToplogy, as shown in the following screenshot:

Storm Ul

Cluster Summary
Topology summary

Supervisor summary

Nimbus Configuration

The status of LearningStormClusterTopology

[64]

Chapter 3

Cluster statistics using the Nimbus
thrift client

Thrift is a binary protocol and is used for cross-language communication. The
Nimbus node in Storm is a thrift service, and the topologies structure is also defined
in the thrift structure. Due to the wide used of thrift in Storm, we can write code in
any language to connect to the Nimbus node.

This section covers how we can collect the cluster details (similar to the details
shown on the Storm Ul page) using the Nimbus thrift client. The extraction or
collection of information through the Nimbus thrift client allows us to plot or
show the cluster details in a more visual manner.

The Nimbus thrift API is very rich and it exposes all the necessary information
required to monitor the Storm cluster.

Fetching information with the Nimbus
thrift client

We are going to look at how we can use the Nimbus thrift Java API to perform the
following tasks:

* Collecting the Nimbus configuration

* Collecting the supervisor statistics

* Collecting the topology's statistics

* Collecting the spout's statistics for the given topology

* Collecting the bolt's statistics for the given topology

* Killing the given topology

[65]

Monitoring the Storm Cluster

The following are the steps to fetch the cluster details using the Nimbus thrift client:

1. Create a Maven project using com.learningstormas Group Id and
monitoring as Artifact Id, as shown in the following screenshot:

New Maven project =

Specify Archetype parameters m
Group Id: | com.leamingstorm v
Artifact |d: | monitoring v ‘
Version: 0.0.1-5NAPSHOT v

Package: | com.learningstorm.monitoring v

Properties available from archetype:

Narne Value Add...

Remove

b Advanced

@ < Back Next > Cancel

Create a new Maven project

2. Add the following dependencies in the pom.xm1 file:

<dependency>
<groupld>org.apache.thrift</groupIlds>
<artifactId>libthrift</artifactIds>
<version>0.7.0</version>

</dependency>

<dependency>
<groupld>storm</grouplds>
<artifactIds>storm</artifactIds>
<version>0.9.0.1</version>

</dependency>

3. Add the following repository in the pom.xm1 file:
<repositorys
<id>clojars.org</id>
<urlshttp://clojars.org/repo</urls>
</repositorys>

[66]

Chapter 3

4. Create a utility class, ThriftClient, in the com.learningstorm.monitoring
package. The ThriftClient class contains logic to make a connection to the
Nimbus thrift server and return the Nimbus client. The following is the code
for the ThriftClient class:

public class ThriftClient {

}

// IP of the Storm UI node
private static final String STORM UI NODE = "127.0.0.1";
public Client getClient () {

// Set the IP and port of thrift server.
// By default, the thrift server start on port 6627
TSocket socket = new TSocket (STORM_UI_NODE, 6627) ;
TFramedTransport tFramedTransport =
new TFramedTransport (socket) ;
TBinaryProtocol tBinaryProtocol =
new TBinaryProtocol (tFramedTransport) ;
Client client = new Client (tBinaryProtocol) ;
try {
// Open the connection with thrift client.
tFramedTransport.open() ;
}catch (Exception exception) {
throw new RuntimeException ("Error occurred while
making connection with nimbus thrift server");

}

// return the Nimbus Thrift client.

return client;

5. Let's create a NimbusConfiguration class in the com. learningstorm.
monitoring package. This class contains logic to collect the Nimbus
configuration using the Nimbus client. The following is the code for the
NimbusConfiguration class:

public class NimbusConfiguration {

public void printNimbusStats()

try {
ThriftClient thriftClient = new ThriftClient () ;

Client client = thriftClient.getClient () ;
String nimbusConiguration = client.getNimbusConf () ;

System.out.println
("*************************************") ;

System.out.println
("Nimbus Configuration : "+nimbusConiguration) ;

[67]

Monitoring the Storm Cluster

System.out.println
("*************************************") ;

}catch (Exception exception) {

throw new RuntimeException ("Error occurred while
fetching the Nimbus statistics : ");

}
public static void main(String[] args) {
new NimbusConfiguration () .printNimbusStats() ;

}

The preceding program uses the getNimbusConf () method of the backtype.
storm.generated.Nimbus.Client class to fetch the Nimbus configuration.

6. Create a SupervisorStatistics classin the com.learningstorm.
monitoring package to collect information about all the supervisor
nodes running in the Storm cluster. The following is the code for the
SupervisorStatistics class:

public class SupervisorStatistics

public void printSupervisorStatistics() {
try {
ThriftClient thriftClient = new ThriftClient () ;
Client client = thriftClient.getClient();
// Get the cluster information.
ClusterSummary clusterSummary =
client.getClusterInfol() ;
// Get the SupervisorSummary iterator

Iterator<SupervisorSummary> supervisorsIterator =
clusterSummary.get supervisors iterator();

while (supervisorsIterator.hasNext())
// Print the information of supervisor node
SupervisorSummary supervisorSummary =
(SupervisorSummary) supervisorsIterator.next();
System.out.println
("*************************************") ;
System.out.println
("Supervisor Host IP
"+supervisorSummary.get host()) ;
System.out.println ("Number of used workers
"+supervisorSummary.get num used workers()) ;
System.out.println ("Number of workers
"+supervisorSummary.get num workers()) ;

[68]

Chapter 3

System.out.println ("Supervisor ID
"+supervisorSummary.get supervisor_ id());

System.out.println ("Supervisor uptime in seconds
"+supervisorSummary.get uptime secs());

System.out.println
("*************************************") ;

}catch (Exception e) ({
throw new RuntimeException ("Error occurred while
getting cluster info : ");

}

The SupervisorStatistics class uses the getClusterInfo () method of
the backtype.storm.generated.Nimbus.Client class to get the instance
of the backtype.storm.generated.ClusterSummary class and then calls
the get supervisors iterator () method of the backtype.storm.
generated.ClusterSummary class to get an iterator over the backtype.
storm.generated. SupervisorSummary class. The following screenshot
is the output of the Supervisorstatistics class:

Supervisor Host IP : supervisor-1

Humber of used workers : 1

Humber of workers : 4

Supervisor ID : 872ad45ce-5f58-46b6Cc-basT-a293798991358
Supervisor uptime in seconds : 491

R AR R REERRAE R R AR AR AR A AR AR AR AR AR AR
R AR R REERRAE R R AR AR AR A AR AR AR AR AR AR

Supervisor Host IP : supervisor-2

Humber of used workers : 2

Humber of workers : 4

Supervi=zor ID : 5400bclZe-TeT4-47af-a3b8-246705c4fle7
Supervi=zor uptime in seconds @ 4735

R R AR R AR R AR AR AR RERR

The output of the SupervisorStatistics class

[69]

Monitoring the Storm Cluster

7. Create a TopologyStatistics class in the com.learningstorm.monitoring
package to collect information of all the topologies running in a Storm
cluster, as shown in the following code:

public class TopologyStatistics {

public void printTopologyStatistics()
try {
ThriftClient thriftClient = new ThriftClient () ;
// Get the thrift client
Client client = thriftClient.getClient () ;
// Get the cluster info

ClusterSummary clusterSummary =
client.getClusterInfo() ;

// Get the interator over TopologySummary class

Iterator<TopologySummary> topologiesIterator =
clusterSummary.get topologies iterator();

while (topologiesIterator.hasNext()) {
TopologySummary topologySummary =
topologiesIterator.next () ;
System.out.println
("*************************************") ;
System.out.println("ID of topology: " +
topologySummary.get id()) ;
System.out.println ("Name of topology: " +
topologySummary.get name()) ;
System.out.println ("Number of Executors: " +
topologySummary.get num_ executors()) ;
System.out.println ("Number of Tasks: " +
topologySummary.get num tasks()) ;
System.out.println ("Number of Workers: " +
topologySummary.get num workers()) ;
System.out.println("Status of topology: " +
topologySummary.get status()) ;
System.out.println("Topology uptime in seconds: " +
topologySummary.get uptime secs());

System.out.println
("*************************************") ;

}

}catch (Exception exception) ({

throw new RuntimeException ("Error occurred while
fetching the topologies information") ;

[70]

Chapter 3

The TopologyStatistics class uses the get topologies iterator ()
method of the backtype.storm.generated.ClusterSummary class to get

an iterator over the backtype.storm.generated. TopologySummary

class. The class TopologyStatistics will print the value of the number
of executors, the number of tasks, and the number of worker processes

assigned to each topology. The following is the console output of the

TopologyStatistics class:

R R R R R R R R R R R R R R
ID of copology: LearningStormCluscerTopology-1-13938475956
Name of ctopology: LearningScormClustcerTopology

Number of Executors: 7

Humber of Tasks: 7

Humber of Workers: 3

Status of toplogy: ACTIVE

Topology uptime in seconds: 133

v o o o o ok e ol ke ol ol o e o o o o o o ok e o e o o

The output of the TopologyStatistics class

Create a SpoutStatistics classin the com.learningstorm.monitoring

package to get the statistics of spouts. The SpoutsStatistics class

contains a printSpoutStatistics (String topologyId) method to
print the details about all the spouts served by the given topology, as

shown in the following code:

public class SpoutStatistics {

private static final String DEFAULT = "default";
private static final String ALL TIME = ":all-time";

public void printSpoutStatistics(String topologyId)
try {
ThriftClient thriftClient = new ThriftClient () ;
// Get the nimbus thrift client
Client client = thriftClient.getClient () ;
// Get the information of given topology
TopologyInfo topologyInfo =
client.getTopologyInfo (topologyId) ;
Iterator<ExecutorSummary> executorSummarylterator =
topologyInfo.get executors_ iterator() ;
while (executorSummarylterator.hasNext ())
ExecutorSummary executorSummary =
executorSummaryIterator.next () ;
ExecutorStats executorStats =
executorSummary.get stats() ;
if (executorStats !=null) ({
ExecutorSpecificStats executorSpecificStats =
executorStats.get specific();

[71]

Monitoring the Storm Cluster

String componentId =

executorSummary.get component id() ;

//

if (executorSpecificStats.is set spout()) {
SpoutStats spoutStats =
executorSpecificStats.get spout () ;
System.out.println
("*************************************") ;

System.out.println

("Component ID of Spout:- " + componentId) ;
System.out.println ("Transferred:- " +
getAllTimeStat (executorStats.get transferred(),
ALL TIME)) ;

System.out.println("Total tuples emitted:- " +
getAllTimeStat (executorStats.get emitted(),
ALL TIME)) ;

System.out.println("Acked: " +

getAllTimeStat (spoutStats.get acked(),

ALL TIME)) ;

System.out.println("Failed: " +

getAllTimeStat (spoutStats.get failed(),

ALL TIME)) ;

System.out.println
("*************************************") ;

}
}
}
}catch (Exception exception) ({

throw new RuntimeException ("Error occurred while
fetching the spout information : "+exception) ;

}
}

private static Long getAllTimeStat (Map<String,
Map<String, Long>> map, String statName)
if (map != null) {
Long statValue = null;
Map<String, Long> tempMap = map.get (statName) ;
statValue = tempMap.get (DEFAULT) ;
return statValue;

}

return O0L;

}

public static void main(String[] args) {
new SpoutStatistics().
printSpoutStatistics
("LearningStormClusterTopology-1-1393847956") ;

[72]

Chapter 3

The preceding class uses the getTopologyInfo (topologyId) method of

the backtype.storm.generated.Nimbus.Client class to fetch the spout
information of the given topology. The output of the TopologyStatistics
class prints the ID of each topology; we can pass this ID as an argument to
the getTopologyInfo (topologyId) method to get information about spouts
running inside a topology. The SpoutStatistics class prints the following
statistics of the spout:

° The spout ID

° The number of tuples emitted and transferred

o

The number of tuples failed

[e]

The number of tuples acknowledged

The following is the console output of the SpoutStatistics class:

Component ID of Spout:- LearningStormSpout
ITransferred:- 65845300

Total tuple= emitted:- 6584500

Acked: nul

Failed: null

Component ID of Spout:- LearningStormSpout
Tranasferred:- 60134980

Total tuplesz emitted:= 60134880

Acked: null

Failed: null

L A S A R 8 S 8 & A 8 R 8 R

The output of the Spout Statistics class

Create a BoltStatistics class in the com.learningstorm.monitoring
package to get the statistics of bolts. The BoltStatistics class contains
aprintBoltStatistics (String topologyId)nmﬁhodtopﬂhﬁ
information about all the bolts served by the given topology, as shown
in the following code:
public class BoltStatistics

private static final String DEFAULT = "default";

private static final String ALL TIME = ":all-time";

public void printBoltStatistics(String topologyId)

[73]

Monitoring the Storm Cluster

try {
ThriftClient thriftClient = new ThriftClient () ;
// Get the Nimbus thrift server client
Client client = thriftClient.getClient();

// Get the information of given topology

TopologyInfo topologyInfo =
client.getTopologyInfo (topologyId) ;

Iterator<ExecutorSummary> executorSummarylterator =
topologyInfo.get executors iterator();

while (executorSummarylterator.hasNext ())
// get the executor
ExecutorSummary executorSummary =
executorSummaryIterator.next () ;
ExecutorStats executorStats =
executorSummary.get stats() ;
if (executorStats != null) {
ExecutorSpecificStats executorSpecificStats =
executorStats.get specific();
String componentId =
executorSummary.get component id() ;
if (executorSpecificStats.is set bolt()) {
BoltStats boltStats =
executorSpecificStats.get bolt () ;
System.out.println
("*************************************") ;
System.out.println
("Component ID of Bolt " + componentId) ;
System.out.println ("Transferred: " +
getAllTimeStat (executorStats.get transferred(),
ALL TIME)) ;
System.out.println("Emitted:" +.
getAllTimeStat (executorStats.get emitted(),

ALL TIME)) ;

System.out.println("Acked: " +

getBoltStats (boltStats.get acked(), ALL TIME)) ;
System.out.println("Failed: " + getBoltStats(
boltStats.get_failed(), ALL_TIME)) ;
System.out.println ("Executed: " +.

getBoltStats (boltStats.get executed(),

ALL TIME)) ;

System.out.println
("*************************************") ;

[74]

Chapter 3

} catch (Exception exception) {

throw new RuntimeException ("Error occurred while
fetching the bolt information :"+exception);

private static Long getAllTimeStat (Map<String,
Map<String, Long>> map, String statName)

if (map != null) {
Long statValue = null;
Map<String, Long> tempMap = map.get (statName) ;
statValue = tempMap.get (DEFAULT) ;
return statValue;

}

return O0L;

public static Long getBoltStats (Map<String,
Map<GlobalStreamId, Long>> map, String statName)
if (map != null) {

Long statValue = null;

Map<GlobalStreamId, Long> tempMap =

map.get (statName) ;

Set<GlobalStreamId> key = tempMap.keySet () ;

if (key.size() > 0) {

Iterator<GlobalStreamId> iterator = key.iterator();

statValue = tempMap.get (iterator.next()) ;

}

return statValue;

}

return O0L;

public static void main(String[] args) {
new BoltStatistics().
printBoltStatistics
("LearningStormClusterTopology-1-1393847956") ;

[75]

Monitoring the Storm Cluster

The preceding class uses the getTopologyInfo (topologyId) method of
the backtype.storm.generated.Nimbus.Client class to fetch information
about the given topology. The output of the TopologyStatistics class
prints the ID of each topology; we can pass this ID as an argument to the
getTopologyInfo (topologyId) method to get information about spouts
running inside a topology. The BoltStatistics class prints the following
statistics about a bolt:

° The bolt ID
The number of tuples emitted and executed
The number of tuples failed

The number of tuples acknowledged

The following is the console output of the BoltStatistics class:

RHH:l:xR.R*.*.Q.*.*WH'RRRRR--*...‘P.‘;.-:'!PRR;:;!.RHHRR
Component ID of Bolt LearningStormBolt
Transferred: null

Emitted: null

Acked: 22000280

Failed: null

Executed : 22000320

OO W M N W S o N M N R R N e W R R W W W W W
Component ID of Bolt LearningStormBolt
Transferred: null

Emitced: null

Acked: 10872120

Failed: null

Executed : 10872140

R R R R R R E R R SRR R R R R R

Component ID of Bolt LearningStormBolrt
Transferred: null

Emicted: null

Acked: 24950400

Failed: null

Executed : 24350400

R R R R SRR o oo o o
Component ID of Bolt LearningStormBolt
Transferred: null

Emitted: null

Acked: 10874640

Failed: null

Executed : 10874640

The output of the BoltStatistics class

[76]

Chapter 3

10. Create a killTopology class in the com.learningstorm.monitoring package
to kill a topology. The following is the code for the killTopology class:

public class killTopology
public void kill(String topologyId) {
try {
ThriftClient thriftClient = new ThriftClient () ;
// Get the nimbus thrift client
Client client = thriftClient.getClient () ;
// kill the given topology
client.killTopology (topologyId) ;

}catch (Exception exception) ({
throw new RuntimeException ("Error occurred while
killing the topology : "+exception) ;

}
}
public static void main(String[] args) {

new killTopology () .kill ("topologyId") ;

}
}

The preceding class uses the killTopology (topologyName) method of the
backtype.storm.generated.Nimbus.Client class to kill the topology.

In this section, we covered several examples that enable you to collect Storm
cluster metrics or details using the Nimbus thrift client. The Nimbus thrift API
is very rich and can collect all the metrics that are available on the Storm Ul
through this APIL

[77]

Monitoring the Storm Cluster

Summary

In the first two chapters, we primarily focused on how to set up the local mode and
the distributed mode of Storm cluster. You also learned how we can develop and
deploy the topology on a Storm cluster.

In this chapter, we mainly concentrated on different ways of monitoring the Storm
cluster. We began by starting the Storm UI and covered how we can monitor the
topology using the Storm Ul We also walked through the Nimbus thrift client and
covered sample examples that demonstrate how we can collect the Storm cluster's
details using the Nimbus thrift client.

[78]

Storm and Kafka Integration

Apache Kafka is a high-throughput, distributed, fault tolerant, and replicated
messaging system that was first developed at LinkedIn. The use cases of Kafka vary
from log aggregation to stream processing to replacing other messaging systems.

Kafka has emerged as one of the important components of real-time processing
pipelines in combination with Storm. Kafka can act as a buffer or feeder for messages
that need to be processed by Storm. Kafka can also be used as the output sink for
results emitted from the Storm topologies.

In this chapter, we will cover the following topics:
* An overview of Apache Kafka and how it differs from traditional
messaging platforms
* Setting up a single node and multinode Kafka cluster
* Producing data into a Kafka partition

* Using KafkaSpout in a Storm topology to consume messages from Kafka

Storm and Kafka Integration

The Kafka architecture

Kafka has an architecture that differs significantly from other messaging systems.
Kafka is a peer-to-peer system in which each node is called a broker. The brokers
coordinate their actions with the help of a ZooKeeper ensemble.

Consumer A
Consumer B

A Kafka cluster

The following are the important components of Kafka.

The producer

In Kafka, messages are published by a producer to named entities called topics.

A topic is a queue that can be consumed by multiple consumers. For parallelism,

a Kafka topic can have multiple partitions. Reads and writes can happen to each
partition in parallel. Data for each partition of a topic is stored in a different directory
on the disk. Each of these directories can be on different disks, allowing us to
overcome the I/O limitations of a single disk. Also, two partitions of a single topic
can be allocated on different brokers, thus increasing throughput as each partition

is independent of each other. Each message in a partition has a unique sequence
number associated with it called an offset.

[80]

Chapter 4

Have a look at the following diagram showing the Kafka topic distribution:

Broker 1 Broker 2
Topic A Topic A
Topic B Topic B

Kafka topics distribution

Replication

Kafka supports the replication of partitions of a topic to support fault tolerance. It
automatically handles the replication of a partition and makes sure that the replica
of the partition will be assigned to different brokers. Kafka elects one broker as the
leader of a partition, and all the writes and reads must go to the leader partition.
The replication feature was introduced in Kafka 0.8.0.

Consumers

A consumer reads a range of messages from a broker. A group ID is associated with
each consumer. All the consumers with the same group ID act as a single logical
consumer. Each message of the topic is delivered to one consumer from a consumer
group (with the same group ID). Different consumer groups for a particular topic can
process messages at their own pace as messages are not removed from the topics as
soon as they are consumed. In fact, it is the responsibility of the consumers to keep
track of how many messages they have consumed.

[81]

Storm and Kafka Integration

The following diagram depicts the relationship between consumers and consumer
groups. We have a topic and two consumer groups with group ID 1 and 2. The
consumer group 1 has two consumers, namely A and B, and each of them will
consume from one of the partitions of the topic. Here, consumer A is consuming
from partition p and consumer B is consuming from partition q. For the consumer
group 2, we only have a single consumer, X, that will consume the message from
both the p and q partitions of the topic.

offsets: p1, p2, p3, p4...

» Consumer A

offsets: g1, 92, g3, g4...

» Consumer B

Consumer Group (ID=1)

Offsets: p1, q1, p2, q2...

O=—0O-

\ 4

Consumer X

Consumer Group (ID=2)

Kafka consumer groups

As mentioned earlier in this section, each message in a partition has a unique sequence
number associated with it, called an offset. It is through this offset that consumers
know how much of the stream they have already processed. If a consumer decides

to replay already-processed messages, all it needs to do is just set the value of the
offset to an earlier value while consuming messages from Kafka.

Brokers

A broker receives the messages from a producer (push mechanism) and delivers

the messages to a consumer (pull mechanism). A broker also manages the persistence
of messages on the disk. For each topic, it will create a directory on the disk. This
directory will contain multiple files. The Kafka broker is very lightweight; it only opens
the file handlers for partitions to persist messages and manage the TCP connections.

[82]

Chapter 4

Data retention

Each topic in Kafka has an associated retention time that can be controlled with
the log.retention.minutes property in the broker configuration. When this time
expires, Kafka deletes the expired data files for that particular topic. This is a very
efficient operation as it's a file delete operation.

Another way of controlling retention is through the 1og.retention.bytes property.
It tells Kafka to delete expired data files when a certain size is reached for a partition.
If both the properties are configured, the deletion will happen when any of the limits
are reached.

Setting up Kafka

At the time of this writing, the stable version of Kafka is 0.8.1. The prerequisites
for running Kafka is a ZooKeeper ensemble and Java Version 1.6 or above. Kafka
comes with a convenience script that can start a single-node ZooKeeper, but it

is not recommended to use it in a production environment. We will be using the
ZooKeeper cluster we deployed in the Setting up a ZooKeeper cluster section of
Chapter 2, Setting Up a Storm Cluster.

We will see both how to set up a single-node Kafka cluster first and how to
add two more nodes to it to run a full-fledged three-node Kafka cluster with
replication enabled.

Setting up a single-node Kafka cluster

The following are the steps to set up a single-node Kafka cluster:

1. Download the Kafka 0.8.1.1 binary distribution named kafka 2.8.0-
0.8.1.1.tgzfromhttp://kafka.apache.org/downloads.html.

2. Extract the archive to where you want to install Kafka with the
following command:
tar -xvzf kafka 2.8.0-0.8.1.1.tgz
cd kafka 2.8.0-0.8.1.1

We will refer to the Kafka installation directory as $KAFKA_ HOME from
now onwards.

3. Change the following properties in the Kafka server properties file,
server.properties, placed at SKAFKA HOME/config:

log.dirs=/var/kafka-logs

[83]

Storm and Kafka Integration

zookeeper.connect=z001:2181,z002:2181,z003:2181

Here, zoo1, zoo2, and zoo3 represent the hostnames of the ZooKeeper nodes.
The following are the definitions of the important properties in the server.
properties file:

o

broker.id: This is a unique integer ID for each broker in
a Kafka cluster.

port: This is the port number for a Kafka broker. Its default value is
9092. If you want to run multiple brokers on a single machine, give
a unique port to each broker.

° host.name: This is the hostname to which the broker should bind
and advertise itself.

° log.dirs: The name of this property is a bit unfortunate as it
represents not the log directory for Kafka, but the directory where
Kafka stores its actual data. This can take a single directory or a
comma-separated list of directories to store data. Kafka throughput
can be increased by attaching multiple physical disks to the broker
node and specifying multiple data directories, each lying on a
different disk. It is not of much use to specify multiple directories on
the same physical disk as all the I/O will still be happening on the
same disk.

num.partitions: This represents the default number of partitions
for newly created topics. This property can be overridden when
creating new topics. A greater number of partitions results in greater
parallelism at the cost of a larger number of files. By default, this
value is set to 1.

° log.retention.hours: Kafka does not delete messages immediately
after consumers consume them. It retains them for the number of
hours defined by this property so that in case of any issues, the
consumers can replay the messages from Kafka. The default value
is one week. Alternatively, you can also use the log.retention.
minutes property to specify the retention policy in minutes or the
log.retention.bytes property to specify the retention policy in
terms of topic size.

° zookeeper.connect: This is the comma-separated list of ZooKeeper
nodes in the hostname : port form.

4. Start the Kafka server by running the following command:

./bin/kafka-server-start.sh config/server.properties

[84]

Chapter 4

The following information is displayed:

[2014-06-28 09:40:21,954] INFO Verifying properties (kafka.utils.
VerifiableProperties)

[2014-06-28 09:40:22,094] INFO Property broker.id is overridden to
0 (kafka.utils.VerifiableProperties)

[2014-06-28 09:40:24,190] INFO [Kafka Server 0], started (kafka.
server.KafkaServer)

[2014-06-28 09:40:24,307] INFO New leader is 0 (kafka.server.Zooke
eperLeaderElector$LeaderChangeListener)

If you get something similar to the preceding lines on your console,
then your Kafka broker is up and running and we can proceed to test it.

Now, we will verify that the Kafka broker has been set up correctly by
sending and receiving a test message.

First, let's create a verification topic for testing by executing the

following command:

./bin/kafka-topics.sh --create --zookeeper zo00l:2181 --partitions
1l --replication-factor 1 --topic verification-topic

We will receive the following output:

creation succeeded!

Now, let's verify that the topic creation was successful by listing all
the topics:

./bin/kafka-topics.sh --zookeeper zoo0l:2181 --list

We will receive the following output:

verification-topic

Now that the topic is created, let's produce sample messages to Kafka. Kafka
comes with a command-line producer that we can use to produce messages
as follows:

./bin/kafka-console-producer.sh --broker-list localhost:9092
--topic verification-topic

Write the following messages on the console:

Message 1

Test Message 2

Message 3

[85]

Storm and Kafka Integration

Let's consume these messages by starting a console consumer on a new
console window and use the following command:

./bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic
verification-topic --from-beginning

The following output is displayed on the console:
Message 1
Test Message 2

Message 3

Now, as you type any message on the producer console, it will automatically
be consumed by this consumer and displayed on the command line.

Using Kafka's single-node ZooKeeper instance

If you don't want to use an external ZooKeeper ensemble,
you can use the single-node ZooKeeper instance that comes
with Kafka for quick and dirty development. To start

using it, first modify the zookeeper .properties file at
SKAFKA HOME/config to specify the data directory by

%j%‘\ supplying the following property:
dataDir=/var/zookeeper

Now, you can start the ZooKeeper instance with the
following command:

./bin/zookeeper-server-start.sh config/
zookeeper.properties

Setting up a three-node Kafka cluster

Now that we have a single-node Kafka cluster, let's see how we can set up a
multinode Kafka cluster using the following steps:

1.

Download and unzip Kafka on the three nodes, following steps 1 and 2
of the previous section.

Change the following properties in the Kafka server properties file,
server.properties, at SKAFKA HOME/config:

broker.id=0

port=9092

host .name=kafkal

log.dirs=/var/kafka-logs
zookeeper.connect=z001:2181,z002:2181,z003:2181

[86]

Chapter 4

Make sure that the value of the broker. id property is unique for each
Kafka broker.

Start the Kafka brokers on the nodes by executing the following command on
the three nodes:

./bin/kafka-server-start.sh config/server.properties

Now, let's verify the setup. First, we create a topic with the

following command:

./bin/kafka-topics.sh --create --zookeeper zoo0l:2181 --partitions
3 --replication-factor 1 --topic verification

We will receive the following output:

creation succeeded!

Now, we will list the topics to see whether the topic was created successfully
using the following command:

./bin/kafka-topics.sh --describe --zookeeper zo00l:2181 --topic
verification

The following information is displayed:

Topic:verification PartitionCount:3 ReplicationFactor:1 Configs:
Topic: verification Partition: 0 Leader: 0 Replicas: 0 Isr: 0
Topic: verification Partition: 1 Leader: 1 Replicas: 0 Isr: 0

Topic: verification Partition: 2 Leader: 2 Replicas: 0 Isr: 0

Now, we will verify the setup by using the Kafka console producer and
consumer as done in the previous section using the following command:

./bin/kafka-console-producer.sh --broker-list kafkal:9092,kafka2:9
092,kafka3:9092 --topic verification

Here, kafkal, kafka2, and kafka3 are the IP addresses of Kafka brokers.
Write the following messages on the console:

First

Second

Third

Let's consume these messages by starting a new console consumer on a new
console window as follows:

./bin/kafka-console-consumer.sh --zookeeper zool:2181 --topic
verification --from-beginning

We will receive the following output:

First

Second

Third

[87]

Storm and Kafka Integration

So now, we have a working three-broker Kafka cluster. In the next section,
we will see how to write a producer that can produce messages to Kafka.

Running multiple Kafka brokers on a single node

If you don't have multiple machines and you want to test how partitions are
distributed among various brokers, then you can run multiple Kafka brokers
on a single node. The following are the steps to set up multiple Kafka brokers
on a single node:

1.

Copy the server.properties file from the config folder to create the
serverl.properties and server2.properties files in the config folder.
Populate the following properties in the server.properties file:

broker.id=0

port=9092

log.dirs=/var/kafka-logs
zookeeper.connect=z001:2181,z002:2181,z003:2181

Populate the following properties in the serverl.properties file:

broker.id=1

port=9093

log.dirs=/var/kafka-1-logs
zookeeper.connect=z001:2181,z002:2181,z003:2181

Populate the following properties in the server2.properties file:

broker.id=2

port=9094

log.dirs=/var/kafka-2-logs
zookeeper.connect=z001:2181,z002:2181,z003:2181

Run the following commands on the three different terminals to start
Kafka brokers:

./bin/kafka-server-start.sh config/server.properties
./bin/kafka-server-start.sh config/serverl.properties

./bin/kafka-server-start.sh config/server2.properties

[88]

Chapter 4

A sample Kafka producer

In this section, we will learn how to write a producer that will publish events into
the Kafka messaging queue. In the next section, we will process the events published
in this section with a Storm topology that reads data from Kafka using KafkaSpout.
Perform the following steps to create the producer:

1.

Create a new Maven project with the com.learningstorm group ID and the
kafka-producer artifact ID.

Add the following dependencies for Kafka in the pom. xml file:

<dependency>
<grouplds>org.apache.kafka</groupId>
<artifactIdskafka 2.8.0</artifactIds>
<version>0.8.1.1l</version>
<exclusionss>
<exclusion>
<groupld>javax.jms</grouplds>
<artifactId>jms</artifactIds>
</exclusions>
<exclusion>
<groupId>com.sun.jdmk</groupIld>
<artifactId>jmxtools</artifactIds>
</exclusions>
<exclusion>
<groupld>com.sun. jmx</grouplds>
<artifactIds>jmxri</artifactId>
</exclusions>
</exclusions>
</dependency>

Add the following build plugins to the pom. xm1 file; it will execute the
producer using Maven:

<builds>
<plugins>
<plugin>
<groupld>org.codehaus.mojo</grouplds>
<artifactIdsexec-maven-plugin</artifactIds>
<version>1.2.1</version>
<executionss>
<execution>
<goals>
<goalsexec</goal>
</goals>
</executions>

[89]

Storm and Kafka Integration

</executions>

<configurations>
<executable>java</executable>
<includeProjectDependenciess>true
</includeProjectDependencies>
<includePluginDependencies>false
</includePluginDependencies>
<classpathScope>compile</classpathScope>
<mainClass>com.learningstorm.kafka.WordsProducer
</mainClass>

</configurations>

</plugin>
</plugins>
</build>

4. Now, we will create the WordsProducer class in the com.learningstorm.
kafka package. This class will produce each word from the first paragraph
of Franz Kafka's Metamorphosis into the words_topic topic in Kafka as
a single message. The following is the code of the WordsProducer class
with explanation:

public class WordsProducer {
public static void main(String[] args) {
// Build the configuration required for connecting to
Kafka
Properties props = new Properties();

//List of Kafka brokers. Complete list of brokers is
not

//required as the producer will auto discover the rest
of

//the brokers. Change this to suit your deployment.
props.put ("metadata.broker.list", "localhost:9092");

// Serializer used for sending data to kafka. Since we
are sending string,

// we are using StringEncoder.

props.put ("serializer.class",
"kafka.serializer.StringEncoder") ;

// We want acks from Kafka that messages are properly
received.
props.put ("request.required.acks", "1");

// Create the producer instance
ProducerConfig config = new ProducerConfig(props) ;
Producer<String, Strings> producer = new

[90]

Chapter 4

}

Now, we can run the producer by executing the following command:

Producer<String, Strings(config);

// Now we break each word from the paragraph
for (String word
METAMORPHOSIS OPENING PARA.split ("\\s")) {
// Create message to be sent to "words topic" topic
with the word
KeyedMessage<String, Strings> data =
new KeyedMessage<String, Strings>
("words_topic", word) ;

// Send the message
producer.send (data) ;

System.out.println ("Produced data") ;

// close the producer
producer.close () ;

// First paragraph from Franz Kafka's Metamorphosis
private static String METAMORPHOSIS OPENING PARA =

"One morning, when Gregor Samsa woke from troubled
dreams, " + "he found himself transformed in his bed into
a horrible " + "vermin. He lay on his armour-like back,
and if he lifted " + "his head a little he could see his
brown belly, slightly " + "domed and divided by arches
into stiff sections.";

mvn compile exec:java

The following output is displayed:

Produced data

Now, let's verify that the message has been produced using Kafka's console
consumer by executing the following command:

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic
words topic --from-beginning

The following output is displayed:

One

morning,

when

Gregor

[91]

Storm and Kafka Integration

Samsa
woke
from
troubled
dreams,
he

found
himself
transformed
in

his

bed

into

a
horrible

vermin.

So, we are able to produce messages into Kafka. In the next section, we will see
how we can use KafkaSpout to read messages from Kafka and process them inside
a Storm topology.

Integrating Kafka with Storm

Now, we will create a Storm topology that will consume messages from a Kafka
topic, word_topic, and aggregate words into sentences.

The complete message flow is shown in the following diagram:

Storm Topology

KafkaSpout
SentenceBolt
PrinterBolt

Kafka Broker

Words Producer

The message flow in the example Storm-Kafka integration

[92]

Chapter 4

We have already seen the wordsProducer class that produces words into the Kafka
broker. Now, we will create a Storm topology that will read these words from Kafka
and aggregate them into sentences. For this, we will have one KafkaSpout in the
application that will read the messages from Kafka and two bolts: SentenceBolt,
which receives words from KafkaSpout and then aggregates them into sentences
which are then passed onto PrinterBolt, which simply prints them on the output
stream. We will be running this topology in a local mode. Perform the following
steps to create the Storm topology:

1. Create a new Maven project with the com.learningstorm group ID
and the kafka-storm-topology artifact ID

2. Add the following dependencies for KafkaSpout and Storm in the
pom. xm1 file:

<!-- Dependency for Storm-Kafka spout --»>

<dependency>
<groupIds>net.wurstmeister.storm</groupId>
<artifactId>storm-kafka-0.8-plus</artifactId>
<version>0.4.0</version>

</dependency>

<!-- Dependency for Storm -->

<dependency>
<groupId>storm</groupld>
<artifactIdsstorm-core</artifactIds>
<version>0.9.0.1</version>
</dependency>

<!-- Utilities -->

<dependency>
<groupId>commons-collections</groupIds>
<artifactId>commons-collections</artifactIds>
<version>3.2.1l</version>
</dependency>

<dependency>
<groupld>com.google.guava</groupld>
<artifactIds>guava</artifactIds>
<version>15.0</version>
</dependency>

[93]

Storm and Kafka Integration

3. Add the exec-maven-plugin plugin to the pom.xml file so that we are
able to run the topology from the command line in a local mode using
the following code:
<plugins>

<groupIds>org.codehaus.mojo</groupIld>
<artifactIds>exec-maven-plugin</artifactIds>
<version>1l.2.1l</versions>
<executionss>
<execution>
<goals>
<goal>exec</goal>
</goals>
</executions>
</executions>
<configurations>
<executable>java</executable>
<includeProjectDependencies>true
</includeProjectDependencies>
<includePluginDependencies>false
</includePluginDependencies>
<classpathScope>compile</classpathScope>
<mainClass>${main.class}</mainClass>
</configurations>
</plugin>

4. Add the maven-assembly-plugin plugin to the pom.xml file so that we
can package the topology to deploy it on Storm using the following code:
<plugins>

<artifactId>maven-assembly-plugin</artifactId>
<configurations>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archives>
<manifests>
<mainClass></mainClass>
</manifest>
</archives>
</configurations>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>

[94]

Chapter 4

<goal>single</goal>
</goals>
</executions>
</executions>
</plugin>

Now, add the repositories for the kafkaSpout dependencies in the
pom. xml file:

<repositories>
<repositorys
<id>github-releases</id>
<url>http://oss.sonatype.org/content/repositories/
github-releases/</urls>
</repository>
<repositorys
<id>clojars.org</id>
<urls>http://clojars.org/repo</urls>
</repository>
</repositories>

Now, we will first create sentenceBolt, which will aggregate the words
into sentences. For this, create a class called SentenceBolt in the com.
learningstorm.kafka package. The following is the code for the
SentenceBolt class with explanation:

public class SentenceBolt extends BaseBasicBolt
// list used for aggregating the words
private List<String> words = new ArrayList<Strings() ;
public void execute (Tuple input, BasicOutputCollector
collector)
// Get the word from the tuple
String word = input.getString(0) ;
if (StringUtils.isBlank (word)) {
// ignore blank lines
return;

}

System.out.println("Received Word:" + word) ;

// add word to current list of words

words.add (word) ;

if (word.endsWith(".m")) {
// word ends with '.' which means this is the end
// the SentenceBolt publishes a sentence tuple

collector.emit (ImmutableList.of (
(Object) StringUtils.join(words, ' ')));

[95]

Storm and Kafka Integration

// and reset the words list.
words.clear () ;

}
}

public void declareOutputFields (OutputFieldsDeclarer
declarer) {
// here we declare we will be emitting tuples with

// a single field called "sentence"
declarer.declare (new Fields ("sentence")) ;

}

7. Nextis printerBolt, which just prints the sentences that are received.
Create the PrinterBolt class in the com.learningstorm.kafka package.
The following is the code with explanation:

public class PrinterBolt extends BaseBasicBolt {
public void execute (Tuple input, BasicOutputCollector
collector) {
// get the sentence from the tuple and print it
String sentence = input.getString(0) ;
System.out.println("Received Sentence: " + sentence);
}
public void declareOutputFields (OutputFieldsDeclarer
declarer)
// we don't emit anything

}

8. Now, we will create KafkaTopology, which will define KafkaSpout and
wire it with PrinterBolt and SentenceBolt. Create a new KafkaTopology
class in the com.learningstorm. kafka package. The following is the code
with explanation:

public class KafkaTopology {

public static void main(String[] args) throws

AlreadyAliveException, InvalidTopologyException {
// zookeeper hosts for the Kafka cluster
ZkHosts zkHosts = new ZkHosts ("localhost:2181");
// Create the KafkaSpout configuration
// Second argument is the topic name
// Third argument is the ZooKeeper root for Kafka
// Fourth argument is consumer group id
SpoutConfig kafkaConfig = new SpoutConfig(zkHosts,
"words_ topic", "", "id7");
// Specify that the kafka messages are String

[96]

Chapter 4

}

kafkaConfig.scheme = new SchemeAsMultiScheme (new
StringScheme ()) ;

// We want to consume all the first messages in
// the topic every time we run the topology to
// help in debugging. In production, this

// property should be false
kafkaConfig.forceFromStart = true;

// Now we create the topology

TopologyBuilder builder = new TopologyBuilder () ;
// set the kafka spout class

builder.setSpout ("KafkaSpout", new

KafkaSpout (kafkaConfig), 1);

// configure the bolts

builder.setBolt ("SentenceBolt", new SentenceBolt(),

1) .globalGrouping ("KafkaSpout") ;

builder.setBolt ("PrinterBolt", new PrinterBolt (),

1) .globalGrouping ("SentenceBolt") ;

// create an instance of LocalCluster class

// for executing topology in local mode.

LocalCluster cluster = new LocalCluster() ;

Config conf = new Config() ;

// Submit topology for execution

cluster.submitTopology ("KafkaToplogy", conf,

builder.createTopology()) ;

try {
// Wait for some time before exiting
System.out.println("Waiting to consume from kafka") ;
Thread.sleep(10000) ;

} catch (Exception exception) {
System.out.println("Thread interrupted exception : "
+ exception) ;

}

// kill the KafkaTopology

cluster.killTopology ("KafkaToplogy") ;

// shut down the storm test cluster

cluster.shutdown () ;

Now, we will run the topology. Make sure the Kafka cluster is running and
you have executed the producer in the last section so that there are messages
in Kafka for consumption.

Run the topology by executing the following command:

mvn clean compile exec:java -Dmain.class=com.learningstorm.kafka.
KafkaTopology

[97]

Storm and Kafka Integration

This will execute the topology. You should see messages similar to the

following output:

RecievedWord
RecievedWord
RecievedWord
RecievedWord
RecievedWord
RecievedWord
RecievedWord
RecievedWord
RecievedWord
RecievedWord
RecievedWord:
RecievedWord:
RecievedWord:
RecievedWord:
RecievedWord:
RecievedWord:
RecievedWord
RecievedWord
RecievedWord

RecievedWord

:One
:morning,
:when
:Gregor
:Samsa
:woke
:from
:troubled
:dreams,

the

found
himself
transformed
in

his

bed

:into
:a
:horrible

:vermin

RecievedSentence:0One morning, when Gregor Samsa woke from troubled
dreams, he found himself transformed in his bed into a horrible
vermin.

So, we were able to consume messages from Kafka and process them in
a Storm topology.

Summary

In this chapter, we learned about the basics of Apache Kafka and how to use it as
part of a real-time stream processing pipeline build with Storm. We learned about
the architecture of Apache Kafka and how it can be integrated into Storm processing
by using KafkaSpout.

In the next chapter, we will have a look at Trident, which is a high-level abstraction
for defining Storm topologies. We will also see transactional topologies in Storm that
support exactly-once message processing semantics.

[98]

Exploring High-level
Abstraction in Storm
with Trident

In the previous chapter, we learned how we can set up a cluster of Kafka, how we
can write the Kafka producer, integration of Kafka and Storm, and so on.

In this chapter, we will cover the following topics:

* Introducing Trident

* Trident's data model

* Trident functions, filters, and projections
* Trident repartitioning operations
* Trident aggregators

* Trident's groupBy operation

* A non-transactional topology

* A sample Trident topology

* Trident's state

* Distributed RPC

* When to use Trident

Exploring High-level Abstraction in Storm with Trident

Introducing Trident

Trident is a high-level abstraction built on top of Storm. Trident supports stateful
stream processing, while pure Storm is a stateless processing framework. The main
advantage of using Trident is that it will guarantee that every message that enters the
topology is processed only once, which is difficult to achieve in the case of Vanilla
Storm. The concept of Trident is similar to high-level batch processing tools such as
Cascading and Pig developed over Hadoop. Trident processes the input stream as
small batches to achieve exactly once processing in Storm. We will cover this in greater
detail in the Maintaining the topology state with Trident section of this chapter.

So far, we have learned that in the Vanilla Storm topology, the spout is the source
of tuples, a tuple is a unit of data that can be processed by a Storm application, and
the bolt is the processing powerhouse where we write the transformation logic.
However, in the Trident topology, the bolt is replaced with higher-level semantics
of functions, aggregates, filters, and states.

Understanding Trident's data model

The TridentTuple interface is the data model of a Trident topology. The
TridentTuple interface is the basic unit of data that can be processed by a Trident
topology. Each tuple consists of a predefined list of fields. The value of each field
can be a byte, character, integer, long, float, double, Boolean, or byte array. During
the construction of a topology, operations are performed on the tuple, which will
either add new fields to the tuple or replace the tuple with a new set of fields.

Each of the fields in a tuple can be accessed by the name getvalueByField (String)
or its positional index getvalue (int) in the tuple. The TridentTuple interface also
provides convenient methods such as get IntegerByField (String) that saves you
from type casting the objects.

Writing Trident functions, filters, and
projections

This section covers the definitions of Trident functions, filters, and projections. Trident
functions, filters, and projections are used to modify or filter the input tuples based on
certain criteria. This section also covers how we can write Trident functions, filters,
and projections.

[100]

Chapter 5

Trident functions

Trident's function contain the logic to modify the original tuple. A function gets a set
of fields of a tuple as input and emits one or more tuples as output. The output fields
of the tuple are merged with the input fields of a tuple to form the complete tuple,
which will pass to the next action in the topology. If the function emits a zero tuple
that corresponds to the input tuple, then that tuple is removed from the stream.

We can write a custom Trident function by extending the storm. trident.
operation.BaseFunction class and implementing the execute (TridentTuple
tuple, TridentCollector collector) method.

Let's write a sample Trident function that will calculate the sum of first two fields and
emit the new sum field. The following is the code of the SumFunction class:

public class SumFunction extends BaseFunction
private static final long serialVersionUID = 5L;
public void execute (TridentTuple tuple, TridentCollector
collector)
int numberl = tuple.getInteger(0);
int number2 = tuple.getInteger(l);
int sum = numberl+number?2;
// emit the sum of first two fields

collector.emit (new Values (sum)) ;

}
}

Suppose we are getting the dummyStream stream as an input that contains four
fields, a, b, ¢, and d, and only the a and b fields are passed as input fields to the
SumFunction class. The SumFunction class emits the new sum field. The sum field
emitted by the execute method of the sumFunction class is merged with the input
tuple to form the complete tuple. Hence, the total number of fields in the output
tupleis 5 (a, b, ¢, 4, and sum). The following is a sample piece of code that shows
how we can pass the input fields and the name of a new field to the Trident function:

dummyStream.each (new Fields("a","b"), new SumFunction (), new
Fields ("sum"))

[101]

Exploring High-level Abstraction in Storm with Trident

The following diagram shows the input tuples, sumFunction, and output tuples. The
output tuples contain five fields, a, b, ¢, d, and sum:

[1,4,7,10] [1,4,7,10,5]

[1,1,3,11] [1,1,3,11,2]

[2,2,7,1] [2,2,7,1,4]

[2,5,7,2] [2,5,7,2,7]
SumFunction

dummyStream outputStream

Working of the Trident function

Trident filters

A Trident filter gets a set of fields as input and returns either true or false
depending on whether certain conditions are satisfied or not. If true is returned,
then the tuple is kept in the output stream; otherwise, the tuple is removed from
the stream.

We can write a custom Trident filter by extending the storm.trident.operation.
BaseFilter class and implementing the isKeep (TridentTuple tuple) method.

Let's write a sample Trident filter that will check whether the sum of the input fields is
even or odd. If the sum is even, then the Trident filter emits t rue; otherwise, it emits
false. The following is the code of the CheckEvenSumFilter class:

public static class CheckEvenSumFilter extends BaseFilter({
private static final long serialVersionUID = 7L;

public boolean isKeep (TridentTuple tuple)
int numberl = tuple.getInteger(0) ;
int number2 = tuple.getInteger(l);
int sum = numberl+number?2;
if(sum % 2 == 0) {
return true;

}

return false;

[102]

Chapter 5

Suppose you get dummyStream as input, which contains four fields, a, b, ¢, and 4,
and only the a and b fields are passed as input fields in the CheckEvensumFilter
class. The execute method of the CheckEvenSumFilter class will emit only those
tuples whose sum of the a and b fields is even. The following is the sample piece
of code that shows how we can define the input fields for the Trident filter:

dummyStream.each (new Fields("a","b"), new CheckEvenSumFilter ())

The following diagram shows the input tuples, CheckEvensSumFilter, and output
tuples. The outputStream stream contains only those tuples whose sum of the a
and b fields is even.

[1,4,7,10]
[1,1,3,11] [1,1,3,11]
[2,2,7,1] [2,2,7,1]

[2,5,7,2] —)
|:> CheckEvenSumFilter

dummyStream outputStream

Working of the Trident filter

Trident projections

Trident projections keep only those fields in the stream that are specified in the
projection operation. Suppose an input stream contains three fields, x, y, and z,
and we are passing the x field in the projection operation. Then, the output stream
will contain tuples with the single field x. The following is the piece of code that
shows how we can use the projection operation:

mystream.project (new Fields ("x"))

The following diagram shows the projection operation:

[1,4,7] 1]
[4,1,3]

——) projection p—)

dummyStream outputStream

Working of the Trident projection

[103]

Exploring High-level Abstraction in Storm with Trident

Trident repartitioning operations

By performing repartitioning operations, a user can partition tuples across multiple
tasks. A repartitioning operation doesn't make any changes to the content of tuples.
Also, the tuples will only pass over the network in the case of a repartitioning
operation. The different types of repartitioning operations are explained in this section.

The shuffle operation

The shuf fle repartitioning operation partitions the tuples in a uniform, random way
across multiple tasks. This repartitioning operation is generally used when we want
to distribute our processing load uniformly across tasks. The following diagram
shows how the input tuples are repartitioned using the shuffle operation:

Partition O:
[1,3,5]
Partition O: [2,4,6]
20 MyFilter
[2,4,6]
[7,9,10]
Spout shuffle
Partition 1: MyFilter
[7,9,10]

Working of the shuffle repartitioning operation

The following piece of code shows how we can use the shuffle operation:

mystream.shuffle () .each(new Fields("a","b"), new
myFilter()) .parallelismHint (2)

[104]

Chapter 5

The partitionBy operation

The partitionBy repartitioning operation enables you to partition a stream on
the basis of some fields in the tuples. For example, if you want all tweets from a
particular user to be delivered to the same target partition, then you can partition
the tweet stream by applying the partitionBy operation on the username field in
the following manner:

mystream.partitionBy (new Fields ("username")) .each (new
Fields ("username", "text"), new myFilter()) .parallelismHint (2)

The partitionBy operation applies the target partition = hash (fields) % (number of
target partition) formula to decide the target partition.

As the preceding formula shows, the partitionBy operation calculates the hash of
input fields to decide the target partition. Hence, it does not guarantee that all the
tasks will get tuples to process. For example, if you have applied a partitionBy
operation on a field, say X, with only two possible values, A and B, and created two
tasks for the myFilter filter, then it is possible that both hash (A) % 2 and hash (B)

% 2 are equal. This will result in all the tuples being routed to a single task and the
other being completely idle.

The following diagram shows how the input tuples are repartitioned using the
partitionBy operation:

Partition O:
[john,4]
Partition O: [iohn,8] MyFilter
[john,4]
[lita, 7]
[john,8]

Partition 1:
artitionBy(“user’)———> MyfFilter

MyfFilter

Partition 2:
[lita, 7]

Working of the part it ionBy repartitioning operation

[105]

Exploring High-level Abstraction in Storm with Trident

As seen in the preceding diagram, partitions 0 and 2 contain the set of tuples,
but partition 1 is empty.

The global operation

The global repartitioning operation routes all tuples to the same partition. Hence,
the same target partition is selected for all the batches in the stream. The following
diagram shows how the tuples are repartitioned using the global operation:

Partition O:

[1,3,5]
Partition O: [g'g%
(1,3,5] [7,9,10] MyFilter
[2,4,6]
[7,9,10]

Spout global()
MyFilter

Working of the global repartitioning operation

The following piece of code shows how we can use the global operation:

mystream.global () .each(new Fields("a","b"),
new myFilter()) .parallelismHint (2)

[106]

Chapter 5

The broadcast operation

The broadcast operation is a special repartitioning operation that does not partition
the tuples but replicates them to all partitions. The following is a diagram that shows
how the tuples are sent over the network:

Partition O:
[1,3,5]
Partition O: [2,4,6]
[1,3,5] [7,9,10] MyFilter
[2,4,6]
[7,9,10]
Spout broadcast()

Partition 1: MyFilter
[1,3,5]

[2,4,6]

[7,9,10]

Working of the broadcast repartitioning operation

The following piece of code shows how we can use the broadcast operation:

mystream.broadcast () .each (new Fields("a","b"),
new myFilter()) .parallelismHint (2)

[107]

Exploring High-level Abstraction in Storm with Trident

The batchGlobal operation

This repartitioning operation routes all tuples that belong to one batch to the same
target partition. The other batches of the same stream may go to a different partition.
As the name suggests, this repartition is global at the batch level. The following
diagram shows how the tuples are repartitioned using the batchGlobal operation:

Partition O:
Batch1l [1,3,5]
Partition O: [2,4,6]
[1,3,5] [7,9,10] MVFil
[2.4.6] yFilter
[7,9,10]
batchGlobal()
Spout MyFilter
Batch2
Partition O:
[1,3,5] MyFilter
[2,4,6] &
[7,9,10]
batchGlobal()
Spout MyFilter
Partition O:
[1,3,5]
[2,4,6]
[7,9,10]

Working of the bat chGlobal repartitioning operation

The following piece of code shows how we can use the batchGlobal operation:

mystream.batchGlobal () .each (new Fields("a","b"),
new myFilter()) .parallelismHint (2)

The partition operation

If none of the preceding repartitioning operations fit your use case, you can define
your own custom repartition function by implementing the backtype . storm.
grouping.CustomStreamGrouping interface. The following is a sample custom
repartition that partitions the stream on the basis of the values of the country field:

public class CountryRepartition implements CustomStreamGrouping,
Serializable {

private static final long serialVersionUID = 1L;

[108]

Chapter 5

private static final Map<String, Integer> countries =
ImmutableMap.of (

"India", O,
"Japan", 1,
"United State", 2,
"China", 3,
"Brazil", 4
) ;
private int tasks = 0;

public void prepare (WorkerTopologyContext context,
GlobalStreamId stream, List<Integer> targetTasks) {

tasks = targetTasks.size() ;

public List<Integer> chooseTasks (int taskId, List<Objects>
values)
String country = (String) values.get (0);

)

return ImmutablelList.of (countries.get (country) % tasks);

}
}

The CountryRepartition class implements the backtype.storm.grouping.
CustomStreamGrouping interface. The chooseTasks () method contains the
repartitioning logic to identify the next task in the topology for the input tuple.
The prepare () method calls at the start and performs the initialization activity.

Trident aggregators

The Trident's aggregator is used to perform aggregation operations on an input batch
or partition or stream. For example, let's say a user wants to count the number of
tuples present in each batch, then he/she can use the count aggregator to count the
number of tuples in each batch. The output of the Aggregator interface completely
replaces the value of the input tuple. There are three types of aggregators available
in Trident:

* The partition aggregate
* The aggregate

* The persistence aggregate

Let's understand each type of aggregator in detail.

[109]

Exploring High-level Abstraction in Storm with Trident

The partition aggregate

As the name suggests, the partition aggregate works on each partition instead of
the entire batch. The output of the partition aggregate completely replaces the input
tuple. Also, the output of the partition aggregate contains a single field tuple. The
following is the piece of code that shows how we can use the partitionAggregate
method:

mystream.partitionAggregate (new Fields ("x"), new Count (), new
Fields ("count"))

For example, we have an input stream that contains the x and y fields, and we will
apply a partitionAggregate function on each partition; the output tuples contain
a single field called count. The count field represents the number of tuples present
in the input partition. The following is a diagram that shows the working of the
partitionAggregate function:

Partition 0

[raj,0]

[dinesh,1]

Partition 1 Ea]rtltlon 0

[lita,34]

[tom,2]

[rakesh,4] Partition 1
[3]

E:ﬁlg?n 3 Partition 3

[kumar, 1] Count [2]

partitionAggregate

Working of the partition aggregate

The aggregate

An aggregate works on each batch. During the aggregate process, the tuples are first
repartitioned using the global operation to combine all partitions of the same batch
into a single partition. Then, we run the aggregation function on each batch. The
following is the piece of code that shows how we can use the aggregate function:

mystream.aggregate (new Fields("x"), new Count () ,new
Fields ("count"))

[110]

Chapter 5

Three types of the Aggregator interface are available in Trident:

® ReducerAggregator
¢ Aggregator

® CombinerAggregator

The preceding three Aggregator interfaces can also be used with the
partition aggregate.

The ReducerAggregator interface

The Reduceraggregator interface first runs the global repartitioning operation on
the input stream to combine all the partitions of the same batch into a single partition,
and then runs the aggregation function on each batch. The Reduceraggregator<T>
interface contains the following methods:

e init (): This method returns the initial value

* reduce(T curr, TridentTuple tuple): This method iterates over the
input tuples and emits a single tuple with a single value

The following example code shows how we can implement a Sum class using the
ReducerAggregator interface:

public static class Sum implements ReducerAggregator<Longs> {

private static final long serialVersionUID = 1L;
//return the initial value zero
public Long init() {
return O0L;
}
//Iterates on the input tuples, calculate the sum and
//produce the single tuple with single field as output
public Long reduce (Long curr, TridentTuple tuple) {
return curr+tuple.getLong(0) ;

}

[111]

Exploring High-level Abstraction in Storm with Trident

The Aggregator interface

The Aggregator interface first runs the global repartitioning operation on the input

stream to combine all the partitions of the same batch into a single partition, and then
runs the aggregation function on each batch. By definition, the Aggregator interface

looks very similar to the ReduceAggregator interface. The BaseAggregator<State>
interface contains the following methods:

init (Object batchId, TridentCollector collector): The init ()
method is called before starting the processing of the batch. This method
returns the state object, which we will use to save the state of the batch.
This object is used by the aggregate () and complete () methods.
aggregate (State s, TridentTuple tuple, TridentCollector
collector): This method iterates over each tuple of the given batch.

It also updates the state in the State object after processing each tuple.

complete (State state, TridentCollector tridentCollector): This
method is called at the end if all tuples of the given batch are processed.
This method returns a single tuple corresponding to each batch.

The following is an example that shows how we can implement the
SumAsAggregator class using the BaseAggregator interface:

public static class SumAsAggregator extends
BaseAggregator<SumAsAggregator.State> {

private static final long serialVersionUID = 1L;
// state class
static class State {
long count = 0;
}
// Initialize the state
public State init (Object batchId, TridentCollector collector) {
return new State() ;
}
// Maintain the state of sum into count variable.
public void aggregate (State state, TridentTuple tridentTuple,
TridentCollector tridentCollector) {
state.count = tridentTuple.getLong(0) + state.count;
}
// return a tuple with single value as output
// after processing all the tuples of given batch.
public void complete (State state, TridentCollector tridentCollector)

tridentCollector.emit (new Values (state.count)) ;

}

[112]

Chapter 5

The CombinerAggregator interface

The combinerAggregator interface first runs the partition aggregate on each partition,
then runs the global repartitioning operation to combine all the partitions of the same
batch into a single partition, and then reruns the aggregator on the final partition to
emit the desired output. The network transfer in the case of the CombinerAggregator
interface is less compared to the other two aggregators. Hence, the overall performance
of the CombinerAggregator interface is better compared to the Aggregator and

ReduceAggregator interfaces. The CombinerAggregator<Ts interface contains the
following methods:

* init (): This method runs on each input tuple to retrieve the field values
from the tuples.

* combine(T vall, T val2):This method combines the values of tuples.
It emits a single tuple with a single field as output.

* zero(): This method returns a zero value if the input partition contains
no tuple.

The following example code shows how we can implement the sum class using the
CombinerAggregatorinkﬂface

public class Sum implements CombinerAggregator<Numbers> {
private static final long serialVersionUID = 1Lj;

public Number init (TridentTuple tridentTuple)
return (Number) tridentTuple.getValue (0) ;

}

public Number combine (Number numberl, Number number2) {
return Numbers.add (numberl, number2) ;

}

public Number zero() {
return O0;

}

[113]

Exploring High-level Abstraction in Storm with Trident

The persistent aggregate

The persistent aggregate works on all tuples across all the batches in a stream
and persists the aggregate result to the source of the state (Memory, Memcached,
Cassandra, or some other database). The following piece of code shows how we
can use the persistentAggregate function:

mystream.persistentAggregate (new MemoryMapState.Factory (),
new Fields("select"),new Count(),new Fields("count")) ;

We will discuss more on this in the Maintaining the topology state with Trident section.

Aggregator chaining

Trident provides us with a feature to apply multiple aggregators on the same input
stream, and this process is called aggregator chaining. The following piece of code
shows how we can use aggregator chaining;:

mystream.chainedAgg () .partitionAggregate (new Fields ("b"),
new Average (), new Fields("average")) .partitionAggregate (
new Fields("b"), new Sum(), new Fields("sum")) .chainEnd() ;

We have applied the Average () and Sum () aggregators on each partition. The output
of the chainedagg () function contains a single tuple corresponding to each input
partition. The output tuple contains two fields, sum and average.

The following diagram shows how aggregator chaining works:

Sum
Aggregator
Aggregator
mystream ~ ——> gﬁaiﬁing
Average
Aggregator

Working of aggregator chaining

[114]

Chapter 5

Utilizing the groupBy operation

The groupBy operation doesn't involve any repartitioning. The groupBy operation
converts the input stream into a grouped stream. The main function of the groupBy
operation is to modify the behavior of the subsequent aggregate function.

The following diagram shows how the groupBy operation groups the tuples

of a single partition:

[hi]
[hi]
Group O
[hi] | [test] |
[test]
[hello] Group 1
[hi] | [hello]
Partition O Group 2
GroupBy Partition 0
[test] [test]
[hello] [test]
[test]
G
Partition 1 roup 0
[hello]
Group 2
Partition 1

Working of the groupBYy operation

* If the groupBy operation is used before the partition aggregate, then the
partition aggregate will run the aggregate on each group created within
the partition.

* If the groupBy operation is used before the aggregate, then in that case, tuples
of the same batch are first repartitioned into a single partition and then the
groupBy operation is applied on each single partition. At the end, it will
perform the aggregate operation on each group.

So far, we have covered the basics of the Trident APIs. In the following section,
we will cover how to write a non-transactional topology in Trident.

[115]

Exploring High-level Abstraction in Storm with Trident

A non-transactional topology

In a non-transactional topology, a spout emits a batch of tuples and doesn't
guarantees about what is in each batch. By processing behavior, we can divide
the pipeline into two categories:

* At-most-one-processing: In this type of topology, failed tuples are not retried.
Hence, the spout does not wait for an acknowledgment.

* At-least-once-processing: The failed tuples are re-entered into the processing
pipeline. Hence, this type of topology guarantees that every tuple entered in
to the processing pipeline must be processed at least once. The retried logic
is handled at the spout end because the spout is the source of tuples in the
Trident topology.

Let's understand how we can write a non-transactional spout by implementing the
storm.trident.spout.IBatchSpout interface:

public class FakeTweetSpout implements IBatchSpout

private static final long serialVersionUID = 10L;
private int batchSize;
private HashMap<Long, List<List<Object>>> batchesMap =
new HashMap<Long, List<List<Object>>>();
public FakeTweetSpout (int batchSize) {

this.batchSize = batchSize;

}

private static final Map<Integer, String> TWEET MAP =

new HashMap<Integer, Strings();

static {
TWEET MAP.put (0, " Adidas #FIFA World Cup Chant Challenge ");
TWEET MAP.put (1, "#FIFA worldcup") ;
TWEET MAP.put (2, "#FIFA worldcup") ;
TWEET MAP.put (3, " The Great Gatsby is such a good #movie ");
TWEET MAP.put (4, "#Movie top 10");

}

private static final Map<Integer, String> COUNTRY MAP =
new HashMap<Integer, Strings>();
static {
COUNTRY MAP.put (0, "United State");
COUNTRY MAP.put (1, "Japan");
COUNTRY MAP.put (2, "India");
COUNTRY MAP.put (3, "China");
COUNTRY MAP.put (4, "Brazil");

}

private List<Object> recordGenerator() {
final Random rand = new Random() ;

[116]

Chapter 5

int randomNumber = rand.nextInt (5) ;

int randomNumber2 = rand.nextInt (5) ;

return new Values (TWEET MAP.get (randomNumber) ,
COUNTRY MAP.get (randomNumber2)) ;

@Override
public void ack(long batchId) {
this.batchesMap.remove (batchId) ;

@Override

public void close() {
/*This method is used to destroy or close all the connection
opened in open method.*/

@Override
public void emitBatch(long batchId, TridentCollector collector) {
List<List<Object>> batches = this.batchesMap.get (batchId) ;
if (batches == null)
batches = new ArrayList<List<Object>>() ;
for (int i=0;i < this.batchSize;i++) ({
batches.add (this.recordGenerator()) ;

}

this.batchesMap.put (batchId, batches) ;

}

for (List<Object> list : batches) {
collector.emit (list) ;

}

@Override

public Map getComponentConfiguration() {
/* This method is use to set the spout configuration
like defining the parallelism, etc.*/
return null;

@Override
public Fields getOutputFields() {

return new Fields ("text", "Country") ;

}

[117]

Exploring High-level Abstraction in Storm with Trident

@Override

public void open(Map arg0, TopologyContext argl) {
/*This method is used to initialize the variable, open the
connection with external source, etc. */

}

The FakeTweetSpout class implements the storm. trident . spout.IBatchSpout
interface. The construct of the FakeTweetSpout (int batchSize) method takes
batchSize as an argument; if batchSize is 3, then every batch emitted by the
FakeTweetSpout class contains three tuples. The recordGenerator () method
contains logic to generate the fake tweet. The following is a sample fake tweet:

["Adidas #FIFA World Cup Chant Challenge", "Brazil"]
["The Great Gatsby is such a good movie", "India"]

The getoutputFields () method returns two fields, text and country. The
emitBatch(long batchId, TridentCollector collector) method uses the
batchSize variable to decide the number of tuples in each batch and emits a batch
to the processing pipeline.

The batchesMap collection contains batch1d as the key and the batch of tuples as
the value. All batches emitted by emitBatch (long batchId, TridentCollector
collector) will be added to the batchesMap collection.

The ack (long batchId) method receives batchid as an acknowledgment and will
remove the corresponding batch from the batchesMap collection.

A sample Trident topology

This section explains how you can write a Trident topology. We will perform the
following steps to create a sample Trident topology:

1. Create a Maven project using com.learningstorm as the group ID and
trident-example as the artifact ID.

2. Add the following dependencies and repositories in the pom.xm1 file:

<dependenciess>
<dependency>
<groupId>junit</grouplds>
<artifactId>junit</artifactIds>

[118]

Chapter 5

<version>3.8.1l</versions>
<scope>test</scope>

</dependency>

<dependencys>
<groupIds>storm</groupIld>
<artifactIdsstorm</artifactIds>
<version>0.9.0.1l</versions>
<scope>provided</scope>

</dependency>

</dependencies>

<repositories>
<repositorys
<id>clojars.org</id>
<urlshttp://clojars.org/repo</urls>
</repository>
</repositories>

Create a TridentUtility class in the com.learningstorm.trident
example package. This class contains a Trident filter and function:

public class TridentUtility {
/* Get the comma separated value as input, split the
field by comma, and then emits multiple tuple as
output.*/
public static class Split extends BaseFunction {

private static final long serialVersionUID = 2Lj;

public void execute (TridentTuple tuple,
TridentCollector collector) {
String countries = tuple.getString(0) ;
for (String word : countries.split(",m")) ({
collector.emit (new Values (word)) ;

/* This class extends BaseFilter and contain isKeep
method which emits only those tuple which has #FIFA in

text field.*/
public static class TweetFilter extends BaseFilter {

private static final long serialVersionUID = 1Lj;
public boolean isKeep (TridentTuple tuple)

if (tuple.getString(0).contains ("#FIFA"))
return true;

[119]

Exploring High-level Abstraction in Storm with Trident

} else {
return false;

/* This class extends BaseFilter and contain isKeep
method which will print the input tuple.*/
public static class Print extends BaseFilter {

private static final long serialVersionUID = 1Lj;

public boolean isKeep (TridentTuple tuple)

}

System.out.println (tuple) ;
return true;

The TridentUtility class contains the following three inner classes:

o

The split class extends the storm. trident .operation.
BaseFunction class and contains the execute (TridentTuple
tuple, TridentCollector collector) method. The execute ()
method takes a comma-separated value as the input, splits the
input value, and emits multiple tuples as the output.

The TweetFilter class extends the storm.trident.operation.
BaseFilter class and contains the isKeep (TridentTuple tuple)
method. The isKeep () method takes the tuple as the input and
checks whether the input tuple contains the #FIFA value in the text
field or not. If the tuple contains #FIFA in the text field, then the
method returns true; otherwise, it returns false.

The pPrint class extends the storm.trident .operation.BaseFilter
class and contains the isKeep (TridentTuple tuple) method. The
isKeep () method prints the input tuple and returns true.

4. Create a TridentHelloWorldTopology class in the com.learningstorm.
trident_example package. This class defines the sample Trident topology;
its code is as follows:

public class TridentHelloWorldTopology {

public static void main(String[] args) throws Exception

[120]

Chapter 5

Config conf = new Config() ;

conf . setMaxSpoutPending (20) ;

if (args.length == 0) {
LocalCluster cluster = new LocalCluster() ;
cluster.submitTopology ("Count", conf,
buildTopology ()) ;

} else {
conf .setNumWorkers (3) ;
StormSubmitter.submitTopology (args[0], conf,
buildTopology ()) ;

public static StormTopology buildTopology () {

FakeTweetSpout spout = new FakeTweetSpout (10) ;
TridentTopology topology = new TridentTopology () ;

topology.newStream("faketweetspout", spout) .

shuffle() .each(new Fields("text", "Country"),

new TridentUtility.TweetFilter ()) .groupBy (

new Fields ("Country")) .aggregate (new Fields ("Country"),
new Count (), new Fields ("count")) .each(

new Fields("count"), new TridentUtility.Print()).
parallelismHint (2) ;

return topology.build() ;

}
}

Let's understand the code line by line. Firstly, we are creating an object of the
TridentTopology class to define the Trident computation.

The TridentTopology class contains a method called newStream () that
will take the input source as an argument. In this example, we are using the
FakeTweetSpout class created in the A non-transactional topology section as
an input source. Like Storm, Trident also maintains the state of each input
source in ZooKeeper. Here, the faketweetspout string specifies the node
name in ZooKeeper where Trident maintains the metadata.

The spout emits a stream which has two fields, text and country.

We are repartitioning the batch of tuples emitted by the input source using
the shuffle () operation. The next line of the topology definition applies the
TweetFilter class on each tuple. The TweetFilter class filters out all those
tuples that do not contain the #r1Fa keyword.

[121]

Exploring High-level Abstraction in Storm with Trident

The output of the TweetFilter class is grouped by the country field. Then,
we will apply the count aggregator to count the number of tweets for each
country. Finally, we will apply a print class to print the output of the
aggregate method.

The following is the console output of the TridentHelloWorldTopology
class topology:

3141 [Thread-9] INFO Dbacktype.storm.daemon.executor - Loading executor spout®:[7 7]

3142 [Thread-9] INFO backtype.storm.daemon.executor - Loaded executor tasks spout®:([7 7]

3143 [Thread-9] INFO backtype.storm.daemon.executor - Finished loading executor spout@:[7 7]

3143 [Thread-26-spout@] INFO backtype.storm.daemon.executor - Preparing bolt spouté:(7)

3144 [Thread-26-spout®] INFO backtype.storm.daemon.executor - Prepared bolt spout®:(7)

3147 [Thread-9] INFO backtype.storm.daemon.executor - Loading executer _ system:[-1 -1]

3148 [Thread-9] INFO backtype.storm.daemon,executor - Loaded executor tasks _ system:[-1 -1]

3149 [Thread-9] INFO backtype.storm.daemon.executor - Finished loading executor _ system:[-1 -1]

3149 [Thread-28- system] INFO backtype.storm.daemon.executor - Preparing bolt _ system:(-1)

3151 [Thread-28-_ system] INFO backtype.storm.daemon.executor - Prepared bolt _ system:(-1)

3154 [Thread-9] INFO backtype.storm.daemon.executor - Loading executor $mastercoord-bgé:[1 1]

3155 [Thread-9] INFO backtype.storm.daemon.executor - Loaded executor tasks $mastercoord-bgo:[1 1]

3159 [Thread-9] INFO backtype.storm.daemon.executor - Finished loading executor $mastercoord-bgé:[1 1]

3159 [Thread-38-Smastercoord-bgB] INFO backtype.storm.daemon.executor - Opening spout Smastercoord-bgB:(l)

3160 [Thread-3] INFO backtype.storm.daemon.worker - Launching receive-thread for blbfbee5-be@d-4b1f-b436-ccc23Bd3acde:4
3161 [Thread-30-$mastercoord-bg@] INFO com.netflix.curator.framework.imps.CuratorframeworkImpl - Starting

3166 [Thread-9) INFO backtype.storm.daemon.worker - Worker has topology config {“storm.id" “Count-1-1395506684", "dev.zookee
3167 [Thread-9] INFO backtype.storm.daemon.worker - Worker b9fd29d4-e9c@-4e84-8826-6a7b22248e5e for storm Count-1-1395586684
3182 [Thread-30-$mastercoord-bg@] INFO com.netflix.curator.framework.imps.CuratorframeworkImpl - Starting

3192 [Thread-38-$mastercoord-bge] INFO backtype.storm.daemon.executor - Opened spout $mastercoord-bgé:{l)

3194 [Thread-30-$mastercoord-bg@] INFO backtype.storm.daemon.executor - Activating spout $mastercoord-bge:(1)

(2]

(1]

(1]

[1]

(2]

(2]

(2]

(4]

(1]

The output of the sample Trident topology

The following diagram shows the execution of the sample Trident topology:

TweetFilter ——> GroupBy

FakeTweetSpout —>/{ shuffle global | Aggregate —> PrintFilter

TweetFilter —>| GroupBy

The high-level view of the sample Trident topology

[122]

Chapter 5

Maintaining the topology state with
Trident

Trident provides an abstraction for reading from and writing results to stateful
sources. We can maintain the state either internal to the topology (memory) or
can store this in external sources (Memcached or Cassandra).

Let's consider that we are maintaining the output of the preceding sample Trident
topology in a database. Every time you process a tuple, the count of country present
in a tuple increases in the database. However, by maintaining the count in the
database, we can't achieve exactly one processing. The reason is that if any tuple
fails during processing, then the failed tuple is retried. This creates a problem while
updating the state because we are not sure whether the state of this tuple has been
updated previously or not. If the tuple has failed before updating the state,

then retrying the tuple will make the state consistent. However, if the tuple has
failed after updating the state, then retrying the same tuple will again increase the
count in the database and make the state inconsistent. Hence, maintaining only the
count in the database, an application has no idea whether this tuple is processed
earlier or not. You will require more details to make the right decision.

You will need to perform the following steps to achieve the exactly once processing
semantics:

1. Process the tuples in small batches.

2. Assign a unique ID to each batch (transactional ID). If the batch is retried, it is
given the same unique ID.

3. The state updates are ordered among batches. For example, the state update
of the second batch will not be possible until the state update for the first
batch has completed.

If we create a topology using the preceding three semantics, then we can easily make
a decision whether the tuple is processed earlier or not.

The following section will explain how you can write a transactional topology
using Trident.

[123]

Exploring High-level Abstraction in Storm with Trident

A transactional topology

As mentioned in the definition of the non-transactional topology, Trident processes
tuples in a batch, but this doesn't define what's in each batch. In the case of a
transactional topology, a transactional spout guarantees what's in each batch.

A transactional spout has the following characteristics:

* Each batch is assigned a unique transactional ID (txid). In the case of failure,
the entire batch is replayed. Hence, replays of the failed batch will contain
the same set of tuples as the first time the batch was emitted. The txid
transactional ID of the failed batch remains the same as the first time.

* Tuples of one batch are not mixed with tuples of another batch. Hence,
overlaps of tuples between batches are not allowed.

Let's consider the previous sample Trident topology example and see how we can
write a transactional topology. Suppose the sample Trident topology computes

the country field's count and stores the counts in a key/value store (Memory

Map, Cassandra, Memcached, and so on). The key will be the country's name, and
the value will contain the count of the country field so far. As mentioned in the
Maintaining the topology state with Trident section, just storing a count in the database,
we can't guarantee that the tuple is processed earlier or not. You will need to store
the transactional ID along with the count to make the decision whether the tuple

is processed the first time or already processed. If we are storing the count in the
database, then while updating the count in the database, we will first compare the
txid parameter of the current tuple with txid already stored in the database. If the
txid parameter of the current tuple is greater than the already stored txid, then
we will update the database, otherwise, we will escape the tuple without making
any change in the database. This entire process works successfully because the
transactional spout guarantees that the failed tuples will contain the same set of
tuples as the first batch, and state updates are ordered among batches.

For example, we will process txid that is set to 5 and contains the following set
of tuples:

[Indial
[Japan]
[China]

The current state of the key/value pairs in the database is as follows:

India => [count=7, txid=4]
Japan => [count=10, txid=5]
China => [count=12, txid=4]

[124]

Chapter 5

As mentioned, the txid parameter of the current batch is 5 and the txid parameter
associated with India is 4. The txid parameter of the current batch is greater than
the txid parameter of the already stored batch. This means the updates of the
current tuple are not present in the database. Hence, we will increment the count by
1 and update the txid parameter from 4 to 5 for India. Similarly, we will increase
the count of china and update the txid parameter to 5. On the other hand, the txid
parameter of Japan is the same as the txid parameter of the current batch. Hence,
we will skip the update of Japan. After performing all the updates, the database will
have the following values:

India => [count=8, txid=5]
Japan => [count=10, txid=5]
China => [count=13, txid=5]

In the construction of a transactional topology, a spout plays a key role because it
guarantees that the replay tuples will contain the same set of tuples as the first time
that the batch was emitted. As we know, the spout reads the data from the external
source (Kafka, Twitter, Queue, and so on). Let's consider that a spout is reading data
from a distributed queue and emits the batch. If any batch fails, the spout has to read
the same set of tuples again from the distributed queue. Now assume that at the
same time some nodes of the distributed queue are down. Hence, the spout will not
be able to reconstruct the same batch till all the nodes of the distributed queue come
up. Hence, the entire pipeline has nothing to process at that time. This concludes
that the transactional spouts are not very fault tolerant if the input data source
(distributed queue) is not fault tolerant. The data sources, such as Kafka

(as of Version 0.8), do guarantee fault tolerance via their partition replication feature;
so, using Kafka 0.8 with a transactional topology does give a good fault tolerance.

You can download the implementation of the transaction spout for Kafka from
https://github.com/nathanmarz/storm-contrib/blob/master/storm-kafka/
src/jvm/storm/kafka/trident/TransactionalTridentKafkaSpout.java.

The following section covers the overview of the opaque transactional topology.

The opaque transactional topology

The opaque transactional topology has overcome the limitation of the transactional
topology, and the opaque transactional spout is fault tolerant even if the data source
nodes are down. The opaque transactional spout has the following characteristics:

* Every tuple is processed in exactly one batch.

» If a tuple is not processed in one batch, it would be processed in the next
batch. But, the second batch doesn't have the same set of tuples as the first
processed batch.

[125]

Exploring High-level Abstraction in Storm with Trident

In the case of a transactional topology, we would maintain both the txid and count
parameters to make the decision whether the tuple was processed earlier or not. On
the other hand, in the case of an opaque transactional topology, we would need to
store the txid, count, and previous count parameters to maintain the consistency
of the database.

For example, we are processing a txid 5 which contains the following set of tuples:

[Indial
[Indial
[Japan]
[Chinal

The current state of the key/value in the database is as follows:

India => [count=7, txid=4, previous=5]
Japan => [count=10, txid=4, previous=9]
China => [count=12, txid=4, previous=10]

The current txid parameter is 5, which is greater than the stored txid. Hence, the
fifth batch was not processed earlier. The stored value of count is copied to the
previous values of count, the value of count for India is incremented by 2, and the
txid parameter is updated from 4 to 5. Similarly, we will increase the count value of
Japan and China. After processing the txid value to 5, the state of the database will
look like the following tuples:

India => [count=9, txid=5, previous=7]
Japan => [count=11, txid=5, previous=10]
China => [count=13, txid=5, previous=12]

Distributed RPC

Distributed RPC is used to query on and retrieve the result from the Trident topology
on the fly. Storm has an in-built distributed RPC server. The distributed RPC server
receives the RPC request from the client and passes it to the topology. The topology
processes the request and sends the result to the distributed RPC server, which is
redirected by the distributed RPC server to the client.

We can configure the distributed RPC server by setting the following properties in
the storm.yaml file:

drpc.servers:

- "nimbus-node"

[126]

Chapter 5

Here, nimbus-node is the IP address of the distributed RPC server.

Now, run the following command on the nimbus-node machine to start the
distributed RPC server:

bin/storm drpc

Let's consider that we are storing the count aggregation of the sample Trident
topology in the database and want to retrieve the count for the given country on
the fly. Then, we will need to use the distributed RPC feature to achieve this. The
following example code shows how we can incorporate the distributed RPC server
in the sample Trident topology created in the previous section. We will create a
DistributedRPC class that contains the buildTopology () method, as mentioned
in the following code:

public class DistributedRPC {

public static void main(String[] args) throws Exception
Config conf = new Config() ;
conf . setMaxSpoutPending (20) ;
LocalDRPC drpc = new LocalDRPC() ;
if (args.length == 0) {

LocalCluster cluster = new LocalCluster() ;

cluster.submitTopology ("CountryCount", conf,

buildTopology (drpc)) ;

Thread.sleep(2000) ;

for(int i=0; 1i<100; i++)
System.out.println (drpc.execute ("Count",
"Japan, India, Europe")) ;
Thread.sleep(1000) ;

}

} else {

conf . setNumWorkers (3) ;

StormSubmitter.submitTopology (args[0], conf,

buildTopology (null)) ;

Thread.sleep(2000) ;

DRPCClient client = new DRPCClient ("RRPC-Server", 1234);

System.out.println(client.execute ("Count",

"Japan, India, Europe")) ;

public static StormTopology buildTopology (LocalDRPC drpc)

FakeTweetSpout spout = new FakeTweetSpout (10) ;
TridentTopology topology = new TridentTopology () ;

[127]

Exploring High-level Abstraction in Storm with Trident

TridentState countryCount = topology.newStream

("spoutl", spout) .shuffle().each(new Fields ("text", "Country"),
new TridentUtility.TweetFilter ()) .groupBy (

new Fields ("Country")) .persistentAggregate (

new MemoryMapState.Factory () ,new Fields ("Country"),

new Count (), new Fields("count")) .parallelismHint (2) ;

try {

Thread.sleep(2000) ;
} catch (InterruptedException e) ({

}

topology.newDRPCStream("Count", drpc) .each(new Fields ("args"),

new TridentUtility.Split(), new Fields("Country")) .
stateQuery (countryCount, new Fields ("Country"), new MapGet (),
new Fields ("count")) .each(new Fields ("count"),

new FilterNull());

return topology.build() ;

}

Let's understand the code line by line. We are using the FakeTweetSpout class as an
input source and the TridentTopology class to define the Trident computation.

In the next line, we are using the persistentaAggregate function, which will store
the count aggregation of all the batches ever emitted to the Trident state. We are
using the MemoryMapState.Factory () method to maintain the count state. The
persistentAggregate function knows how to store and update the aggregation in
the source state:

persistentAggregate (new MemoryMapState.Factory(),
new Fields ("Country"), new Count (), new Fields("count"))

The memory mapstate is an in-memory Java map and stores the country's name as
the key and the aggregation count as the value, as shown in the following tuples:

India -> 124

United State -> 145
Japan -> 130

Brazil -> 155

China -> 100

The persistentAggregate function transforms the stream into the TridentState
object. In this case, the countryCount variable represents the count of each country
so far.

[128]

Chapter 5

The next part of the topology defines a distributed query to get the count of each
country on the fly. The distributed RPC query takes the comma-separated list of
countries as input and returns the count for each country. The following is the
piece of code that defines the distributed query portion:

topology.newDRPCStream("Count", drpc) .each(new Fields ("args"),

new TridentUtility.Split (), new Fields ("Country")).
stateQuery (countryCount, new Fields ("Country"), new MapGet (),
new Fields ("count")) .each(new Fields ("count"),

new FilterNull()) ;

The split function is used to split the comma-separated list of countries. We have
used a stateQuery () method to query the TridentState object, which is defined
in the first part of the topology. The stateQuery () method takes in a source of the
state, in this case, the countries count computed by the first part of the topology,
and a function to query that state. We are using a MapGet () function, which gets
the count for each country. Finally, the count of each country is returned as the
query output.

The following piece of code shows how we can pass input to a local distributed RPC:
System.out.println (drpc.execute ("Count", "Japan, India, Europe")) ;

To run the topology on the local mode, we have created an instance of the backtype.
storm.LocalDRPC class to simulate the distributed RPC server.

If you are running the distributed RPC server, then we would need to create an
instance of the distributed RPC client to execute the query. The following piece
of code shows how we can pass the input to the distributed RPC server:

DRPCClient client = new DRPCClient ("RRPC-Server", 1234);
System.out.println(client.execute ("Count", "Japan, India,Europe")) ;

[129]

Exploring High-level Abstraction in Storm with Trident

Trident's distributed RPC query executes like the normal RPC query, except these
queries are run in parallel. The following screenshot is of the console output
of the DistributedRPC class:

4895 [Thread-7] INFO backtype.storm.daemon.worker - Worker 27b@4604-89¢8-4153-b20d-77941304a008 for storm CountryCount-
1-1397638903 on de777eda-caea-435d-b9a3-697673088979:1 has finished loading

4916 [Thread-41-Smastercoord-bg@] INFO com.netflix.curator.framework.imps.CuratorFrameworkImpl - Starting
4926 [Thread-41-smastercoord-bg@] INFO backtype.storm.daemon.executor - Opened spout $mastercoord-bgé:(1)
4926 [Thread-41-$mastercoord-bg@] INFO backtype.storm.daemon.executor - Activating spout $mastercdgrd-bgo:(1)
[[*Japan,India, Europe”,“Japan”,39]]

[[*)apan,India, Europe”,“Japan”,63]]

[[*Japan,India, Europe”,“India",85]]

[["Japan,India, Europe®,“Japan”,121]]

[["Japan,India, Europe®, "India",133]]

[[*Japan,India, Europe”,“India",169]]

[[*Japan,India, Europe”,“India*,198]]

[[*Japan,India, Europe”,“Japan*,227]]

[[*Japan,India,Europe”,“India",250]]

[[*)apan,India, Europe”,“India",280]]

[[*)apan,India, Europe”,India",360]]

[["Japan,India, Europe®, "India",324]]

[["Japan,India, Europe®,"Japan”,363]]

[[*Japan,India, Europe®,"Japan”,397]]

Output of the distributed RPC topology

When to use Trident

As in many use cases, we have required exactly one processing, which we can
achieve by writing a transactional topology in Trident. On the other hand, it will
be difficult to achieve exactly one processing in the case of Vanilla Storm. Hence,
Trident will be useful for those use cases where we require exactly once processing.

Trident is not fit for all use cases, especially high-performance use cases,
because Trident adds complexity on Storm and manages the state.

Summary

In this chapter, we mainly concentrated on high-level abstraction over Storm with
Trident and learned about Trident filters, functions, aggregators, repartitioning
operations, and the non-transactional topology. We also walked through how we
can define a Trident topology. We also covered how we can query on the fly on the
Trident topology using distributed RPC.

In the next chapter, we will explain how we can combine batch processing
and real-time processing tools to solve real-world use cases.

[130]

Integration of Storm with
Batch Processing Tools

So far, we have seen how Storm can be used to develop real-time stream processing
applications. In general, these real-time applications are seldom used in isolation. They
are more often than not used in combination with other batch processing operations.

The most common platform to develop batch jobs is Apache Hadoop. In this chapter,
we will see how applications built with Apache Storm can be deployed over existing
Hadoop clusters with the help of the Storm-YARN framework for optimized use and

management of resources.
In this chapter, we will cover the following topics:

* Anoverview of Apache Hadoop and its various components
* Setting up a Hadoop cluster

* An overview of Storm-YARN

* Deploying Storm-YARN on Hadoop

* Running a Storm application on Storm-YARN

Exploring Apache Hadoop

Apache Hadoop is an open source platform to develop and deploy Big Data
applications. It was initially developed at Yahoo! based on the MapReduce
and Google File System papers published by Google. Over the past few years,
Hadoop has become the flagship Big Data platform.

Integration of Storm with Batch Processing Tools

The following are the key components of a Hadoop cluster:

* Hadoop Distributed File System (HDFS)
* Yet Another Resource Negotiator (YARN)

Both HDFS and YARN are based on a set of libraries called Hadoop Common.
It provides an abstraction for OS and filesystem operations so that Hadoop can

be deployed on a variety of platforms. Now let's have a deeper look into HDFS
and YARN.

Understanding HDFS

Commonly known as HDFS, Hadoop Distributed File System is a scalable, distributed,
fault-tolerant filesystem. HDFS acts as the storage layer of the Hadoop ecosystem. It
allows sharing and storage of data and application code among the various nodes in

a Hadoop cluster.

The following were the key assumptions made while designing HDFS:

* It should be deployable on a cluster of commodity hardware.

* Hardware failures are expected, and it should be tolerant to those.

* It should be scalable to thousands of nodes.

* It should be optimized for high throughput, even at the cost of latency.
* Most of the files will be large in size, so optimize for big files.

* Storage is cheap, so use replication for reliability.

* It should be locality aware so that the computations requested on data can
be performed on the physical node where it actually resides. This will result
in less data movement, and hence lower network congestion.

The following diagram illustrates the key components of an HDFS cluster and the
ways in which they interact with each other:

DataNode DataNode DataNode

An HDFS cluster

[132]

Chapter 6

Now, let's have a detailed look at each of the HDFS components:

NameNode: This is the master node in an HDFS cluster. It is responsible for
managing the filesystem metadata and operations. It does not store any user
data but only the filesystem tree of all files in the cluster. It also keeps track
of the physical locations of the blocks that are part of a file.

Since the NameNode keeps all the data in RAM, it should be deployed on
a machine with a large amount of RAM. Also, no other processes should be
hosted on the machine hosting the NameNode so that all the resources are
dedicated to it.

The NameNode is the single point of failure in an HDFS cluster. If the
NameNode dies, no operations can take place on an HDEFS cluster.

DataNode: This is responsible for storing user data in an HDFS cluster. There
can be multiple DataNodes in an HDFS cluster. A DataNode stores data on
the physical disks attached to the system hosting the DataNode. It is not
recommended to store DataNode data on disks in the RAID configuration

as HDFS achieves data protection by replicating data across DataNodes.

An HDFS client: An HDFS client is a client library that can be used to
interact with an HDFS cluster. It usually talks to the NameNode to do meta
operations, such as creating new files, deleting files, and so on, while the
DataNodes serve the actual data read and write requests.

Secondary NameNode: This is one of the poorly named components of HDFS.
Despite its name, it is not a standby for the NameNode. To understand its
function, we need to delve deep into how the NameNode works.

The NameNode keeps the filesystem metadata in the main memory. For
durability, it also writes this metadata to a local disk in the form of the
fsimage file. When a NameNode starts, it reads this £simage snapshot

file to recreate the in-memory data structure to hold filesystem data. Any
updates on the filesystem are applied to the in-memory data structure but
not to the £simage file. These changes are written to the disk in separate files
called edit logs. When a NameNode starts, it merges these edit logs into the
fsimage file so that the next restart will be quick. In production, the edit logs
can grow very large as the NameNode is not restarted frequently. This could
result in a very long boot time for the NameNode whenever it is restarted.

The Secondary NameNode is responsible for merging the edit logs of the
NameNode with the fsimage file so that the NameNode starts faster the next
time. It takes the £simage snapshot file and edit logs from the NameNode,
merges them, and then puts the updated f£simage snapshot file on the
NameNode machine. This process runs periodically and reduces the amount
of merging that is required by a NameNode on restarts, thus reducing the
time to boot for the NameNode.

[133]

Integration of Storm with Batch Processing Tools

The following diagram illustrates the working of the Secondary NameNode:

Get edit logs

Merge edit logs

\ 4
fsimage

Update fsimage

Edit fsimage

A

The Secondary NameNode's functioning

So far, we have seen the storage side of Hadoop; next, we will look into the
processing components.

Understanding YARN

Yet Another Resource Negotiator (YARN) is a cluster resource management
framework that enables users to submit a variety of jobs to a Hadoop cluster and
manages the scalability, fault tolerance, and scheduling of jobs. As HDFS provides
a storage layer for large amounts of data, the YARN framework gives you the
plumbing required to write Big Data processing applications.

The following are the major components of a YARN cluster:

ResourceManager (RM): This is the entry point for applications in the YARN
cluster. It is the master process in the cluster that is responsible for managing
all the resources in the cluster. It is also responsible for the scheduling of
various jobs submitted to the cluster. This scheduling policy is pluggable
and can be customized by users if they want to support new kinds

of applications.

NodeManager (NM): A NodeManager agent is deployed on each of the
processing nodes on the cluster. It is the counterpart to the ResourceManager
on the node level. It communicates with the RM to update the node state

and to receive any job requests from it. It is also responsible for the life cycle
management and reporting of various node metrics to the RM.

ApplicationMaster (AM): Once a job is scheduled by the RM, it no longer
keeps track of the job's status and progress. This results in the fact that a
ResourceManager can support a completely different kind of application

in the cluster without worrying about the internal communication and logic
of the application.

[134]

Chapter 6

Whenever an application is submitted, the RM creates a new
ApplicationMaster for that application, which is then responsible for
negotiating resources from the RM and communicating with the NM for
the resources. The NM gives resources in the form of resource containers
that are abstractions of resource allocation, where you can tell how much
CPU, memory, and so on are required.

Once the application starts running on various nodes in the cluster, the AM
keeps track of the status of various jobs and in the event of failures, reruns
those jobs. On completion of the job, it releases the resources to the RM.

The following diagram illustrates the various components in a YARN cluster:

| ResourceManager |

NodeManager NodeManager
¥

| Container ||AppMaster| | Container || Container |

YARN components

Installing Apache Hadoop

Now that we have seen both the storage and processing parts of a Hadoop cluster, let's
get started with the installation of Hadoop. We will use Hadoop 2.2.0 in this chapter.

[Hadoop 2.2.0 is not compatible with Hadoop 1.X versions.]

[135]

Integration of Storm with Batch Processing Tools

We will be setting up a cluster on a single node. Before starting, please make sure
that you have the following software installed on your system:

* JDK1.7: We need JDK to run Hadoop as it is written in Java

* ssh-keygen: This is used to generate SSH keys that are used to set
password-less SSH required for Hadoop

If you don't have ssh-keygen, install it with the following command:

yum install openssh-clients

Next, we will need to set up password-less SSH on this machine as it is required
for Hadoop.

Setting up password-less SSH

In a Hadoop cluster, executing commands on one of the machines in turn can execute
further commands on some nodes in the cluster. For example, when starting HDFS,
the DataNode is started on each of the machines. This is done automatically by the
scripts provided with your Hadoop distribution. Password-less SSH between all the
machines in a Hadoop cluster is a mandatory requirement for these scripts to

run without any user intervention. The following are the steps for setting up
password-less SSH:

1. Generate your ssh key pair by executing the following command:

ssh-keygen -t rsa -P '!
The following information is displayed:

Generating public/private rsa key pair.

Enter file in which to save the key (/home/anand/.ssh/id rsa):
Your identification has been saved in /home/anand/.ssh/id rsa.
Your public key has been saved in /home/anand/.ssh/id rsa.pub.
The key fingerprint is:

b7:06:2d:76:ed:df:£9:1d:7e:5f:ed:88:93:54:0f:24anand@localhost.
localdomain

The key's randomart image is:

+--[RSA 2048]----+

E .
o

o

[136]

Chapter 6

| S + ..o |

| = o. o]
| o... .o
| . 00.+*|
| 00X |
Hmm e +

Next, we need to copy the generated public key to the list of authorized keys
for the current user. To do this, execute the following command:

cp ~/.ssh/id rsa.pub ~/.ssh/authorized keys

Now, we can check whether password-less SSH is working by connecting to
localhost with ssh using the following command:

ssh localhost

The following output is displayed:

Last login: Wed Apr 2 09:12:17 2014 from localhost

Since we are able to SSH into localhost without a password, our setup is working
now, and we will now proceed with the Hadoop setup.

Getting the Hadoop bundle and setting up

environment variables
The following are the steps to set up Hadoop:

1.

Download Hadoop 2.2.0 from the Apache website at
http://hadoop.apache.org/releases.html#Download

Untar the archive at a location where you want to install Hadoop using
the following commands. We will call this location $HADOOP_HOME:

tar xzf hadoop-2.2.0.tar.gz

cd hadoop-2.2.0

Next, we need to set up the environment variables and path for Hadoop.
Add the following entries in your ~/ .bashrc file. Please make sure that
you provide the paths for Java and Hadoop as per your system using the
following commands:

export JAVA HOME=/usr/java/jdkl.7.0_ 45
export HADOOP HOME=/home/anand/opt/hadoop-2.2.0
export HADOOP COMMON HOME=/home/anand/opt/hadoop-2.2.0

[137]

Integration of Storm with Batch Processing Tools

export HADOOP HDFS HOME=$HADOOP COMMON HOME

export HADOOP MAPRED HOME=$HADOOP COMMON HOME

export HADOOP YARN HOME=$HADOOP COMMON HOME

export HADOOP CONF DIR=$HADOOP COMMON HOME/etc/hadoop

export HADOOP COMMON LIB NATIVE DIR=$HADOOP COMMON HOME/lib/native
export HADOOP OPTS="-Djava.library.path=$HADOOP COMMON HOME/lib"

export PATH=$PATH:$JAVA HOME/bin:$HADOOP COMMON HOME/bin:$HADOOP
COMMON HOME/sbin

Refresh your ~/ .bashrec file with the following command:

source ~/.bashrc

Now, let's check whether the paths are properly configured with the
following command:

hadoop version

The following information is displayed:

Hadoop 2.2.0

Subversion https://svn.apache.org/repos/asf/hadoop/common -r
1529768

Compiled by hortonmu on 2013-10-07T06:28Z
Compiled with protoc 2.5.0
From source with checksum 79e53ce7994d1628b240f09af91lelaf4

This command was run using /home/anand/opt/hadoop-2.2.0/share/
hadoop/common/hadoop-common-2.2.0.jar

Using the preceding steps, the paths are properly set. Now we will set up HDFS
on our system.

Setting up HDFS

Please perform the following steps to set up HDFS:

1.

Make directories to hold the NameNode and DataNode data as follows:
mkdir -p ~/mydata/hdfs/namenode
mkdir -p ~/mydata/hdfs/datanode

Specify the NameNode port in the core-site.xml file at the SHADOOP_CONF_
DIR directory by adding the following property inside the <configuration>
tag:

<propertys>

[138]

Chapter 6

<name>fs.default.name</names>
<values>hdfs://localhost:19000</value>

<!-- The default port for HDFS is 9000, but we are using
19000 Storm-Yarn uses port 9000 for its application
master -->

</property>

Specify the NameNode and data directory in the hdfs-site.xml file
at $HADOOP_CONF_DIR by adding the following property inside the
<configuration> tag:
<propertys>

<name>dfs.replication</name>

<values>l</value>

<!-- Since we have only one node, we have replication
factor=1 -->

</property>

<propertys>

<name>dfs.namenode.name.dir</name>
<value>file:/home/anand/hadoop-data/hdfs/namenode</value>
<!-- specify absolute path of the namenode directory -->
</property>
<propertys
<name>dfs.datanode.data.dir</name>
<value>file:/home/anand/hadoop-data/hdfs/datanode</value>
<!-- specify absolute path of the datanode directory -->
</property>

Now, we will format the NameNode. This is a one-time process and needs
to be done only while setting up HDFS using the following command:

hdfs namenode -format

The following output is displayed:

14/04/02 09:03:06 INFO namenode.NameNode: STARTUP MSG:
/***
STARTUP MSG: Starting NameNode

STARTUP_ MSG: host = localhost.localdomain/127.0.0.1
STARTUP_ MSG: args = [-format]

STARTUP_ MSG: version = 2.2.0

14/04/02 09:03:08 INFO namenode.NameNode: SHUTDOWN MSG:

/***

SHUTDOWN MSG: Shutting down NameNode at localhost.
localdomain/127.0.0.1

**/

[139]

Integration of Storm with Batch Processing Tools

5.

Now, we are done with the configuration and will start HDFS with the
following command:

start-dfs.sh

The following information is displayed:

14/04/02 09:27:13 WARN util.NativeCodeLoader: Unable to load
native-hadoop library for your platform... using builtin-java
classes where applicable

Starting namenodes on [localhost]

localhost: starting namenode, logging to /home/anand/opt/

hadoop-2.2.0/logs/hadoop-anand-namenode-localhost.localdomain.

localhost: starting datanode, logging to /home/anand/opt/

hadoop-2.2.0/logs/hadoop-anand-datanode-localhost.localdomain.

Starting secondary namenodes [0.0.0.0]

0.0.0.0: starting secondarynamenode, logging to /home/anand/

out

out

opt/hadoop-2.2.0/logs/hadoop-anand-secondarynamenode-localhost.

localdomain.out

14/04/02 09:27:32 WARN util.NativeCodeLoader: Unable to load
native-hadoop library for your platform... using builtin-java
classes where applicable

Now, execute the jps command to see whether all the processes are
running fine:

jps

We will get the following output:

50275 NameNode

50547 SecondaryNameNode

50394 DataNode
51091 Jps

Here, we can see that all the expected processes are running.

Now, you can check the status of HDFS using the NameNode Web UI
by opening http://localhost:50070 in your browser. You should
see something similar to the following screenshot:

[140]

Chapter 6

5] Hadoop NameNode localhost:29000 - Mozilla Firefox '.’.
File Edit Vview History Bookmarks Tools Help
| (i Hadoop NameNode localhost:2... | - |

NameNode 'localhost:29000' (active)

Started: Tue Apr 02 10:02:51 IST 2014

Version: 2.2.0, 1529768

Compiled: 2013-10-07T06:28Z by hortonmu from branch-2.2.0
Cluster ID: CID-a28ba0d2-257d-45ae-a51c-1e4619ced37d
Block Pool ID: || BP-309238341-127.0.0.1-1397529162336

Browse the filesystem
NameNode Logs

4 | & localhost v &) (B~ Google # L & e

Cluster Summary

Security is OFF

1 files and directories, 0 blocks = 1 total.

Heap Memory used 61.61 MB is 58% of Commited Heap Memory 105 MB. Max Heap
Memory is 1.74 GB.

Non Heap Memeory is 130 MB.

‘I Configured Capacity I ‘ 9523 GB |

Non Heap Memory used 24.31 MB is 93% of Commited Non Heap Memory 25.94 MB. Max

Bj

The NameNode Web Ul

You can interact with HDFS using the hdfs dfs command. Get all the
options by running the hdfs dfs command on the console or refer to the
documentation at http: //hadoop.apache.org/docs/r2.2.0/hadoop-

project-dist/hadoop-common/FileSystemShell.html. Most of the

commands mirror the filesystem interaction commands that you'll find

on any Linux system. For example, to copy a file on HDFS, use the

following command:

hdfs dfs -cp /user/hadoop/filel /user/hadoop/file2

Now that HDFS is deployed, we will set up YARN next.

Setting up YARN

The following are the steps to set up YARN:

1.

Create the mapred-site.xml file from mapred-site.xml.template using

the following command:

cp $HADOOP CONF DIR/mapred-site.xml.template $HADOOP CONF DIR/

mapred-site.xml

Specify that we are using the YARN framework by adding the following
property in the mapred-site.xml file located in the $HADOOP_CONF_DIR

directory in the <configurations tag:

<propertys>
<name>mapreduce. framework.name</name>

[141]

Integration of Storm with Batch Processing Tools

<values>yarn</value>
</property>

3. Configure the following properties in the yarn-site.xml file:

<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</valuex>
</property>

<propertys>
<!-- Minimum amount of memory allocated for containers in
MBs.-->
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1024</value>

</property>

<propertys>
<!--Total memory that can be allocated to containers in
MBs. -->
<names>yarn.nodemanager.resource .memory-mb</name>
<value>4096</value>

</property>

<propertys>
<name>yarn.nodemanager.aux-
services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>

</property>

<propertys>
<!-- This is ratio of physical memory to virtual memory
used when setting memory requirements for containers. If
you don't have enough RAM, increase this value. -->

<name>yarn.nodemanager .vmem-pmem-ratio</name>
<value>8</value>
</property>

4. Start the YARN processes with the following command:

start-yarn.sh

The following information is displayed:

starting yarn daemons

starting()resourcemanager, logging to /home/anand/opt/
hadoop-2.2.0/logs/yarn-anand-resourcemanager-localhost.
localdomain.out

localhost: starting nodemanager, logging to /home/anand/opt/
hadoop-2.2.0/logs/yarn-anand-nodemanager-localhost.localdomain.out

[142]

Chapter 6

5. Now, execute the jps command to see whether all the processes are
running fine:

ips

We will get the following output:
50275 NameNode

50547 SecondaryNameNode

50394 DataNode

51091 Jps

50813 NodeManager

50716 ResourceManager

Here, we can see that all the expected processes are running.

6. Now, you can check the status of YARN using the ResourceManager Web Ul
by opening http://localhost:8088/cluster in your browser. You should
see something similar to the following screenshot:

All Applications - Mozilla Firefox
Ele Edit View Higtory Bookmarks Jools Help
All Applications i

- lecalhest ~ @ (@ ™ & ~ ~

¥ ‘@ha deap F——

= Cluster Cluster Metrics
About Ap ;

Show 20 -|entries Search:

2 M Application Type ¢ Quaue

ta available in table

Showing 0 to 0 of 0 entries

Scheduler

The ResourceManager Web Ul

7. You can interact with YARN using the yarn command. Get all the options by
running the yarn command on your console, or refer to the documentation
at http://hadoop.apache.org/docs/r2.2.0/hadoop-yarn/hadoop-yarn-
site/YarnCommands.html. To get all the applications currently running on
YARN, run the following command:

yarn application -list

[143]

Integration of Storm with Batch Processing Tools

The following information is displayed:

14/04/02 11:41:42 WARN util.NativeCodeLoader: Unable to load
native-hadoop library for your platform... using builtin-java
classes where applicable

14/04/02 11:41:42 INFO client.RMProxy: Connecting to
ResourceManager at /0.0.0.0:8032

Total number of applications (application-types: [] and states:
[SUBMITTED, ACCEPTED, RUNNING]) :0

Application-Id Application-Name Application-
Type User Queue State Final-State
Progress Tracking-URL

With this, we have completed the deployment of a Hadoop cluster on a single node.
Next, we will see how to run Storm topologies on this cluster.

Integration of Storm with Hadoop

The probability that the organizations developing and operating Big Data applications
already have a Hadoop cluster deployed is very high. Also, there is a high possibility
that they also have real-time stream processing applications deployed to go along with
the batch applications running on Hadoop.

It would be great if we can leverage the already deployed YARN cluster to also run
Storm topologies. This will reduce the operational cost of maintenance by giving us
only one cluster to manage instead of two.

Storm-YARN is a project developed by Yahoo! that enables the deployment of Storm
topologies over YARN clusters. It enables the deployment of Storm processes on
nodes managed by YARN.

The following diagram illustrates how the Storm processes are deployed on YARN:

[144]

Chapter 6

YARN Container

Storm
Storm Nimbus
Application
YARN /
Master
Resource Manager \ Stﬁll’m

YARN ‘Qontainer

Storm
Supervisor

Storm processes on YARN

In the following section, we will see how to set up Storm-YARN.

Setting up Storm-YARN

Since Storm-YARN is still in alpha, we will proceed with the master branch of the
Git repository. The master branch is the branch where all the development for Git
repositories takes place. It is equivalent to the trunk in SVN repositories. Make sure
you have Git installed on your system. If not, then run the following command:

yum install git-core

Also make sure that you have Apache ZooKeeper and Apache Maven installed on
your system. Refer to previous chapters for their setup instructions.

The following are the steps for deploying Storm-YARN:

1. Clone the Storm-YARN repository with the following commands:
cd ~/opt
git clone https://github.com/yahoo/storm-yarn.git

cd storm-yarn

2. Build Storm-YARN by running the following Maven command:

mvn package

We will get the following output:

[INFO] Scanning for projects...
[INFO]

[145]

Integration of Storm with Batch Processing Tools

[INFO] = - oo o e o e oo e bbb eeeeeemmcccmimmaeaaas
[INFO] Building storm-yarn 1.0-alpha
[INFO] = - oo o e o e oo e bbb eeeeeemmcccmimmaeaaas

[INFO] = - oo o e o e oo e bbb eeeeeemmcccmimmaeaaas
[INFO] BUILD SUCCESS

[INFO] = - - - - s o m s oo o m o oo o oo
[INFO] Total time: 32.049s

[INFO] Finished at: Fri Apr 04 09:45:06 IST 2014

[INFO] Final Memory: 14M/152M

[INFO] = - oo o e o e oo e bbb eeeeeemmcccmimmaeaaas

3. Copy the storm. zip file from storm-yarn/1ib to HDFS using the
following commands:

hdfs dfs -mkdir -p /lib/storm/0.9.0-wip21l
hdfs dfs -put lib/storm.zip /lib/storm/0.9.0-wip2l/storm.zip

The exact version might be different in your case from 0.9.0-wip21.

4. Create a directory to hold our Storm configuration:
mkdir -p ~/storm-data
cp lib/storm.zip ~/storm-data/
cd ~/storm-data/

unzip storm.zip
5. Add the following configuration in the storm.yaml file located at ~/storm-

data/storm-0.9.0-wip21l/conf

storm. zookeeper.servers:
- "localhost™"

nimbus.host: "localhost"

master.initial-num-supervisors: 2
master.container.size-mb: 128

If required, change the values as per your setup.

6. Add the storm-yarn/bin folder to your path by adding the following code
to the ~/ .bashrec file:

export PATH=$PATH:/home/anand/storm-data/storm-0.9.0-
wip21l/bin:/home/anand/opt/storm-yarn/bin

[146]

Chapter 6

10.

Refresh the ~/.bashrc file with the following command:

source ~/.bashrc

Make sure ZooKeeper is running on your system. If not, start ZooKeeper
by running the following command:

~/opt/zookeeper-3.4.5/bin/zkServer.sh start

Launch Storm-YARN using the following command:

storm-yarn launch ~/storm-data/storm-0.9.0-wip2l/conf/storm.yaml

We will get the following output:
14/04/15 10:14:49 INFO client.RMProxy: Connecting to
ResourceManager at /0.0.0.0:8032

14/04/15 10:14:49 INFO yarn.StormOnYarn: Copy App Master jar from
local filesystem and add to local environment

14/04/15 10:14:51 INFO impl.YarnClientImpl: Submitted application
application 1397537047058 0001 to ResourceManager at /0.0.0.0:8032

application 1397537047058 0001

The Storm-YARN application has been submitted with the
application 1397537047058_0001 application ID.

We can retrieve the status of our application using the following
yarn command:

yarn application -list
We will get the status of our application as follows:

14/04/15 10:23:13 INFO client.RMProxy: Connecting to
ResourceManager at /0.0.0.0:8032

Total number of applications (application-types: [] and states:
[SUBMITTED, ACCEPTED, RUNNING]):1

Application-Id Application-Name Application-
Type User Queue State Final-State
Progress Tracking-URL
application 1397537047058 0001 Storm-on-Yarn
YARN and default RUNNING UNDEFINED
50% N/A

[147]

Integration of Storm with Batch Processing Tools

11. We can also see Storm-YARN running on the ResourceManager Web UI at
http://localhost:8088/cluster/. You should be able to see something
similar to the following screenshot:

All Applications - Mozilla Firefox
Ele Edit Yiew Higlory Bockmarks Tools Help

All Applications [
@ B localhost -2 (@~ R
3 Logged in as: arane
< r11Elalalala) All Applications
[Cluster Cluster Metrics
- | ps “.: a . e ..’
1 0 1 1G8 4 GB

Show 20 - entries

aggfication 1397337047038 0001 anand Storm- YARN defaull Tue, 15 N/A MUNNING UNDEFINED ApplicationMaster
on Apr 2014
04:44:51
GMT

Shawing 1 te 1 of 1 entries

Storm-YARN on the ResourceManager Web Ul

You can explore the various metrics exposed by clicking on various links
on the UL

12. Nimbus should also be running now, and you should be able to see it
through the Nimbus Web Ul at http://localhost:7070/. You should
be able to see something similar to the following screenshot:

Storm Ul - Mozilla Firefox

Flle Edit View History Bookmarks Tools Help
Storm Ul L&

« P ~8 B LR T
Storm Ul

Cluster Summary

Topology summary

Harm. Sntus Uptime Hum worksr

Supervisor summary

MNimbus Configuration

The Nimbus Web Ul running on YARN

[148]

Chapter 6

13.

14.

Now, we need to get the Storm configuration that will be used when deploying
topologies on this Storm cluster deployed over YARN. To do so, execute the
following commands:

mkdir ~/.storm

storm-yarn getStormConfig --appId application 1397537047058 0001
--output ~/.storm/storm.yaml

We will get the following output:

14/04/15 10:32:01 INFO client.RMProxy: Connecting to
ResourceManager at /0.0.0.0:8032

14/04/15 10:32:02 INFO yarn.StormOnYarn: application report for
application 1397537047058 0001 :localhost.localdomain:9000

14/04/15 10:32:02 INFO yarn.StormOnYarn: Attaching
to localhost.localdomain:9000 to talk to app master
application 1397537047058 0001

14/04/15 10:32:02 INFO yarn.StormMasterCommand: storm.yaml
downloaded into /home/anand/.storm/storm.yaml

Please make sure that you are passing the correct application ID as retrieved
in step 9 to the -appId parameter.

Now that we have successfully deployed Storm-YARN, we will see how to run our
topologies on this Storm cluster.

Deploying Storm-Starter topologies on
Storm-YARN

In this section, we will see how to deploy Storm-Starter topologies on Storm-YARN.
Storm-Starter is a set of example topologies that comes with Storm. Perform the
following steps to run the topologies on Storm-YARN:

1.

Clone the Storm-Starter project with the following commands:
git clone https://github.com/nathanmarz/storm-starter

cd storm-starter

Package the topologies with the following mvn command:

mvn package -DskipTests

Deploy WordCountTopology on Storm-YARN with the following command:

storm jar target/storm-starter-0.0.1-SNAPSHOT.jar storm.starter.
WordCountTopology word-count-topology

[149]

Integration of Storm with Batch Processing Tools

The following information is displayed:

545 [main] INFO backtype.storm.StormSubmitter - Jar not uploaded
to master yet. Submitting jar...

558 [main] INFO backtype.storm.StormSubmitter - Uploading
topology jar target/storm-starter-0.0.1-SNAPSHOT.jar to assigned
location: storm-local/nimbus/inbox/stormjar-9ab704££f-29£3-4b9d-
bl0ac-e9e41d4399dd.jar

609 [main] INFO backtype.storm.StormSubmitter - Successfully
uploaded topology jar to assigned location: storm-local/nimbus/
inbox/stormjar-9ab704£f£f-29f3-4b9d-b0ac-e9e41d4399dd.jar

609 [main] INFO backtype.storm.StormSubmitter - Submitting
topology word-cout-topology in distributed mode with conf
{"topology.workers":3, "topology.debug":true}

937 [main] INFO backtype.storm.StormSubmitter - Finished
submitting topology: word-cout-topology

4. Now, we can see the deployed topology on the Nimbus Web Ul at
http://localhost:7070/, as shown in the following screenshot:

Storm Ul - Mozilla Firefox

File Edit View History Bookmarks Tools Help

| _istorm Ul L
4 | @ localhost =] @v}w gle @ I @& » ~
Storm Ul [

Cluster Summary
Version Nimbus uptime Supervisors Used slots Free slots Total slots Executors Tasks

34m 0s

Topology summary
Name 1d Status ~ Uptime Num workers Num executors Num tasks

word-cout-topology word-cout-topology-1-1397538997 ACTIVE 2m 27s

Supervisor summary

Id Host Uptime Slots Used slots

Nimbus Configuration

Key ~ Value

dev.zookeeper.path tmp/dev-storm-zookeepe

The Nimbus Web Ul showing the word-count topology on YARN

5. To see how you can interact with topologies running on Storm-YARN,
run the following command:

storm-yarn help

It will list all the options for interacting with various Storm processes and
starting new supervisors. The following operations are supported:

[150]

Chapter 6

launch

shutdown
addSupervisors
startSupervisors
stopSupervisors
startNimbus
stopNimbus
getStormConfig
setStormConfig

° startUI

° stopUI

In this section, we built a Storm-Started topology and ran it over Storm-YARN.

Summary

In this chapter, we explored Apache Hadoop in depth and covered its components,
such as HDFS, YARN, and so on, that are part of a Hadoop cluster. We also learned
about the subcomponents of an HDFS cluster and a YARN cluster and the ways

in which they interact with each other. Then, we walked through setting up a
single-node Hadoop cluster.

We also introduced Storm-YARN, which was the object of this chapter.
Storm-YARN enables you to run Storm topologies on a Hadoop cluster.
This helps from the manageability and operations points of view. Finally,
we learned how to deploy a topology on Storm running over YARN.

In the next chapter, we will see how Storm can integrate with other Big Data
technologies, such as HBase and Redis.

[151]

Integrating Storm with JMX,
Ganglia, HBase, and Redis

In the previous chapter, we covered an overview of Apache Hadoop and its
various components, overview of Storm-YARN and deploying Storm-YARN
on Apache Hadoop.

In this chapter, we will explain how you can monitor the Storm cluster using
well-known monitoring tools such as Java Managements Extensions (JMX)
and Ganglia.

We will also cover sample examples that will demonstrate how you can store
the process data into databases and a distributed cache.

In this chapter, we will cover the following topics:

* Monitoring Storm using JMX

* Monitoring Storm using Ganglia
* Integrating Storm with HBase

* Integrating Storm with Redis

Integrating Storm with JMX, Ganglia, HBase, and Redis

Monitoring the Storm cluster using JMX

In Chapter 3, Monitoring the Storm Cluster, we learned how to monitor a Storm cluster

using the Storm Ul or Nimbus thrift APIL. This section will explain how you can
monitor the Storm cluster using JMX. JMX is a set of specifications used to manage
and monitor applications running in the JVM. We can collect or display the Storm
metrics such as heap size, non-heap size, number of threads, number of loaded
classes, heap and non-heap memory, and virtual machine arguments, and manage
objects on the J]MX console. The following are the steps we need to perform to
monitor the Storm cluster using JMX:

1.

We will need to add the following line in the storm.yaml file of each
supervisor node to enable JMX on each of them:

supervisor.childopts: -verbose:gc -XX:+PrintGCTimeStamps -
XX:+PrintGCDetails -Dcom.sun.management.jmxremote -

Dcom. sun.management . jmxremote.ssl=false -

Dcom. sun.management . jmxremote.authenticate=false -

Dcom. sun.management . jmxremote.port=12346

Here, 12346 is the port number used to collect the supervisor Java Virtual
Machine (JVM) metrics through JMX.

Add the following line in the storm.yaml file of the Nimbus machine to
enable JMX on the Nimbus node:

nimbus.childopts: -verbose:gc -XX:+PrintGCTimeStamps -
XX:+PrintGCDetails -Dcom.sun.management.jmxremote -
Dcom. sun.management . jmxremote.ssl=false -

Dcom. sun.management . jmxremote.authenticate=false -
Dcom. sun.management . jmxremote.port=12345

Here, 12345 is the port number used to collect the Nimbus JVM metrics
through JMX.

Also, you can collect the JVM metrics of worker processes by adding the
following line in the storm.yaml file of each supervisor node:
worker.childopts: -verbose:gc -XX:+PrintGCTimeStamps -
XX:+PrintGCDetails -Dcom.sun.management.jmxremote -

Dcom. sun.management . jmxremote.ssl=false -

Dcom. sun.management . jmxremote.authenticate=false -
Dcom. sun.management . jmxremote.port=2%ID%

Here, $1D% denotes the port number of the worker processes. If the port
of the worker process is 6700, then its JVM metrics are published on port
number 26700 (2%ID%).

[154]

Chapter 7

Now, run the following commands on any machine where Java is installed to

start the JConsole:

cd $JAVA HOME

./bin/jconsole

The following screenshot shows how we can connect to the supervisor JMX
port using the JConsole:

Connection Window Help

Java Monitoring & Management Console

~ Local Process:

Name
org jruby.Main -X+0 jhomefankit/opt/hbase-0.96...

PID
20851

 org.apache.hadoop hbase regionserver.HRegion

D)

27915

org.apache zookeeper server.quorum.Quorump...

org.apache hadoop.hbase master.HM

27502

27729

Remote Process:

.. | 20395 |

| 127.0.0.1:12348|
B

Usage: <

T s
Username: | I Password:
Cancel Cnnﬂ_e(l
Connect to Java Virtual Machine
|£{]Console: New Connection
The JMX connection page

If you open the JMX console on a machine other than the supervisor machine,
then you need to use the IP address of the supervisor machine in the preceding
screenshot instead of 127.0.0.1.

[155]

Integrating Storm with JMX, Ganglia, HBase, and Redis

Now, click on the Connect button to view the metrics of the supervisor node.
The following screenshot shows what the metrics of the Storm supervisor
node looks like on the JMX console:

Java Monitering & Management Console

Connection Window Help

192.168.145 4912346

Overview| Memory | Threads | Classes | VM Summary | MBeans &=

Chart: | Heap Memory Usage v | Time Range: |All v Perform GC

70 Mb

Used

: / LB

50 Mb

10:25

Detalls

Time: 2014-04-22 10.25:37 100 -

Used: 56,023 kintes
Committed: 491,968 kbytes 75% -
Max: 7,301,824 kytes S04

GC time: 0.000 seconds on PS MarkSweep (0 collections)
0.010 seconds on PS Scavenge (1 collections) Lt
" |y
2] 192.168.145.49:12346
The JMX console

Similarly, you can collect the JVM metrics of the Nimbus node by specifying
the IP address and the JMX port of the Nimbus machine on the JMX console.

The following section will explain how you can display the Storm cluster metrics
on Ganglia.

Monitoring the Storm cluster using
Ganglia

Ganglia is a monitoring tool that is used to collect the metrics of different types of
processes that run on a cluster. In most of the applications, Ganglia is used as the
centralized monitoring tool to display the metrics of all the processes that run on

a cluster. Hence, it is essential that you enable the monitoring of the Storm cluster
through Ganglia.

[156]

Chapter 7

Ganglia has three important components:

Gmond: This is a monitoring daemon of Ganglia that collects the metrics of
nodes and sends this information to the Gmetad server. To collect the metrics
of each Storm node, you will need to install the Gmond daemon on each

of them.

Gmetad: This gathers the metrics from all the Gmond nodes and stores them
in the round-robin database.

The Ganglia web interface: This displays the metrics information in
a graphical form.

Storm doesn't have built-in support to monitor the Storm cluster using Ganglia.
However, with jmxtrans, you can enable Storm monitoring using Ganglia. The
jmxtrans tool allows you to connect to any JVM and fetches its JVM metrics without
writing a single line of code. The JVM metrics exposed via JMX can be displayed on
Ganglia using jmxtrans. Hence, jmxtrans acts as a bridge between Storm and Ganglia.

The following diagram shows how jmxtrans are used between the Storm node
and Ganglia:

Ganglia
JMXTrans JMXTrans JMXTrans
Nimbus Supervisor 1 Supervisor 2

Integrating Ganglia with Storm

Perform the following steps to set up jmxtrans and Ganglia:

1.

Run the following commands to download and install the jmxtrans tool on
each Storm node:

wget https://jmxtrans.googlecode.com/files/jmxtrans-239-0.noarch.
rpm

sudo rpm -i jmxtrans-239-0.noarch.rpm

[157]

Integrating Storm with JMX, Ganglia, HBase, and Redis

2. Run the following commands to install the Ganglia Gmond and Gmetad
packages on any machine in a network. You can deploy the Gmetad and
Gmond processes on a machine that will not be a part of the Storm cluster.

sudo yum -gq -y install rrdtool
sudo yum -gq -y install ganglia-gmond
sudo yum -q -y install ganglia-gmetad

sudo yum -q -y install ganglia-web

3. Edit the following line in the gmetad. conf configuration file, which is
located at /etc/ganglia in the Gmetad process. We are editing this file
to specify the name of the data source and the IP address of the Ganglia
Gmetad machine.

data_source "stormcluster" 127.0.0.1

You can replace 127.0. 0.1 with the IP address of the Ganglia
S Gmetad machine.

Edit the following line in the gmond. conf configuration file, which is located
at /etc/ganglia, in the Gmond process:

cluster {

name = "stormcluster"
owner = "clusterOwner"
latlong = "unspecified"
url = "unspecified"

}

host {
location = "unspecified"

}

udp_send channel {
host = 127.0.0.1
port = 8649
ttl = 1

}

udp_recv_channel {
port = 8649

}

Here, 127.0.0.1 is the IP address of the Storm node. You need to replace
127.0.0.1 with the actual IP address of the machine. We have mainly edited
the following entries in the Gmond configuration file:

o

The cluster name

[158]

Chapter 7

° The host address of the head Gmond node in the udp _send channel

o

The port in the udp_recv channel

5. Edit the following line in the ganglia. conf file, which is located at /etc/
httpd/conf.d. We are editing the ganglia. conf file to enable access on the
Ganglia UI from all machines.

Alias /ganglia /usr/share/ganglia
<Location /ganglia>Allow from all</Location>

The ganglia. conf file can be found on the node where the Ganglia
% web frontend application is installed. In our case, the Ganglia web
o . . .
interface and the Gmetad server are installed on the same machine.

6. Run the following commands to start the Ganglia Gmond, Gmetad, and Web
Ul processes:

sudo service gmond start

setsebool -P httpd can network connect 1

sudo service gmetad start

sudo service httpd stop

sudo service httpd start

7. Now, gotohttp://127.0.0.1/ganglia to verify the installation of Ganglia.

Replace 127.0. 0.1 with the IP address of the Ganglia web interface
= machine.

8. Now, you will need to write a supervisor. json file on each supervisor
node to collect the JVM metrics of the Storm supervisor node using jmxtrans
and publish them on Ganglia using the com.googlecode. jmxtrans.model.
output.GangliaWriter OutputWriters class. The com.googlecode.
jmxtrans.model .output.GangliaWriter OutputWriters classis used
to process the input JVM metrics and convert them into the format used by
Ganglia. The following is the content for the supervisor.json JSON file:

{

"servers" : [{
"port" : "12346",

[159]

Integrating Storm with JMX, Ganglia, HBase, and Redis

"host" : "IP_OF_ SUPERVISOR_MACHINE",
"queries" : [{

"outputWriters": [{
"@class":
"com.googlecode. jmxtrans.model.output.
GangliaWriter",
"settings": {
"groupName": "supervisor",
"host": "IP OF GANGLIA GMOND SERVER",
"port": "8649" }
1,
"obj": "java.lang:type=Memory",
"resultAlias": "supervisor",
"attr": ["ObjectPendingFinalizationCount"]

"outputWriters": [{

"@class":
"com.googlecode. jmxtrans.model.output.
GangliaWriter",
"settings": {
"groupName": " supervisor ",
"host": "IP OF GANGLIA GMOND SERVER",
"port": "8649"
}
1,
"obj": "java.lang:name=Copy, type=GarbageCollector",
"resultAlias": " supervisor ",
"attr": [
"CollectionCount",
"CollectionTime"

"outputWriters": [{
"@class":
"com.googlecode. jmxtrans.model.output.
GangliaWriter",
"settings": {

"groupName": "supervisor ",

"host": "IP OF GANGLIA GMOND SERVER",

"port": "8649"

}

1,
"obj": "java.lang:name=Code Cache, type=MemoryPool",
"resultAlias": "supervisor ",
"attr": [

[160]

Chapter 7

"CollectionUsageThreshold",
"CollectionUsageThresholdCount",
"UsageThreshold",
"UsageThresholdCount"

"outputWriters": [{
"@class":
"com.googlecode. jmxtrans.model.output.
GangliaWriter",
"settings": {
"groupName": "supervisor ",
"host": "IP OF GANGLIA GMOND_ SERVER",
"port": "8649"
}
1,
"obj": "java.lang:type=Runtime",
"resultAlias": "supervisor",
"attr": [
"StartTime",
"Uptime"
]
1,
"numQueryThreads" : 2
1
}

Here, 12346 is the JMX port of the supervisor specified in the storm.yaml file.

You need to replace the IP_OF SUPERVISOR MACHINE value with the IP
address of the supervisor machine. If you have two supervisors in a cluster,
then the supervisor.json file of node 1 contains the IP address of node 1,
and the supervisor. json file of node 2 contains the IP address of node 2.

You need to replace the IP_OF GANGLIA GMOND_SERVER value with the IP
address of the Ganglia Gmond server.

Create nimbus . json JSON file on the Nimbus node. Using jmxtrans, collect
the Storm Nimbus process JVM metrics and publish them on Ganglia using the
com.googlecode. jmxtrans.model.output.GangliaWriter OutputWriters
class. The following is the contents of the nimbus . json JSON file:

{

"servers" : [{
"port" : "12345",
"host" : "IP OF NIMBUS MACHINE",

[161]

Integrating Storm with JMX, Ganglia, HBase, and Redis

"queries" : [

{ "outputWriters": [{

"@class":

"com.googlecode. jmxtrans.model.output.

GangliaWriter",

"settings": {
"groupName": "nimbus",
"host": "IP OF GANGLIA GMOND_ SERVER",
"port": "8649"

}
1,
"obj": "java.lang:type=Memory",
"resultAlias": "nimbus",
"attr": ["ObjectPendingFinalizationCount"]

"outputWriters": [{

"@class":
"com.googlecode. jmxtrans.model.output.
GangliaWriter",
"settings": {
"groupName": "nimbus",
"host": "IP OF GANGLIA GMOND SERVER",
"port": "8649"

}
1.

"obj": "java.lang:name=Copy, type=GarbageCollector",
"resultAlias": "nimbus",
"attr": [

"CollectionCount",

"CollectionTime"

"outputWriters": [{
"@class":
"com.googlecode. jmxtrans.model.output.
GangliaWriter",
"settings": {

"groupName": "nimbus",

"host": "IP OF GANGLIA GMOND SERVER",

"port": "8649"

}

1,
"obj": "java.lang:name=Code Cache, type=MemoryPool",
"resultAlias": "nimbus",
"attr": [

[162]

Chapter 7

"CollectionUsageThreshold",
"CollectionUsageThresholdCount",
"UsageThreshold",
"UsageThresholdCount"

"outputWriters": [{

"@class":
"com.googlecode. jmxtrans.model.output.

GangliaWriter",
"settings": {
"groupName": "nimbus",
"host": "IP OF GANGLIA GMOND_ SERVER",
"port": "8649"
}
1,

"obj": "java.lang:type=Runtime",
"resultAlias": "nimbus",
"attr": [
"StartTime",
"Uptime"
]
3]

"numQueryThreads" : 2

bl
}
Here, 12345 is the JMX port of the Nimbus machine specified in the storm.
yaml file.
You need to replace the Ip_OF_NIMBUS_ MACHINE value with the IP address
of the Nimbus machine.
You need to replace the IP_OF_GANGLIA GMOND_SERVER value with the IP
address of the Ganglia Gmond server.

[163]

Integrating Storm with JMX, Ganglia, HBase, and Redis

10. Run the following commands on each Storm node to start the jmxtrans process:

cd /usr/share/jmxtrans/

sudo ./jmxtrans.sh start PATH OF JSON_ FILES

Here, PATH OF JSON FILE is the location of the supervisor.json and
nimbus.json files.

11. Now, go to the Ganglia page at http://127.0.0.1/ganglia to view the
Storm metrics. The following screenshot shows what the Storm metrics
look like:

Overview of stormeluster
stormcluster Cluster Load last hour stormcluster Cluster CPU last hour
4.0 — 100t
¢ 30 ¢ 5
2 g [}
o
S 2.0 E 40
3 10 0
f+ ! I N
0.0 = I8 14100 14120 14:40
14:00 14:20 1440 BUser CPU D Nice Py W Systen CPU D WAIT CPU
O1-nin Load [Hodes M CPUs M Running Processes | [Idle CPU
stormcluster Cluster Memory last hour stormcluster Cluster Network last hour
= 'Y
606 15 k
v b
o I “ ek
B 206 H
0.0 55k
40 Wi W0 | @ ‘
M Menory Used W Memory Shared [Memory Cached 9 -
0 Henory Buffered B Vemory Swapped 14:00 14:20 14:40
B Total In-Core Memory Bin W out
The Ganglia home page

12. Perform the followings steps to view the metrics of Storm Nimbus and the
supervisor processed on the Ganglia Ul:
1. Open the Ganglia page.

2. Now click on the stormcluster link to view the metrics of the
Storm cluster.

[164]

Chapter 7

3. The following screenshot shows the metrics of the Storm

supervisor node:

supervisor metrics (1)

supervisor.ObjectPendingFinalizationCount

17:40 18:00 18:20
W 127.0.0.1 last hour (now 0,00)

supervisor metrics (4)

supervisor .UsageThreshold

supervisor .UsageThresholdCount

W 127.0.0.1 last hour (now 1,405,677,128,068)

1.0 1.0
0.8 0.8
0.6 0.6
0.4 04
0.2 0.2
o 1740 18:00 18:20 ik 17:40 16:00 16:20
B 127.0.0.1 last hour (now 0,00) 0 127,0.0.1 last hour (now 0,00)
supervisor.StartTime supervisor, Uptime
15T 04
14T
54
HT
o 10H
17:40 18:00 18:20 17:40 18: 00 18:20

W 127.0.6.1 last hour (now 11,016,180)

Supervisor metrics

[165]

Integrating Storm with JMX, Ganglia, HBase, and Redis

4. The following screenshot shows the metrics of the Storm Nimbus node:

nimbus metrics (3)
nimbus.0bjectPendingFinalizationCount nimbus.StartTime [
Lo} 15T [
0|
0.6 | 147
G4 137
8.2 |
0.0+ , 127 [
1140 18:00 18:20 11:40 18:00 18:20
B 127.6.0.1 last hour (now ©.00) W 127.0.0.1 last hour (now 1,405,684,357,553)
nimbus.Uptime nimbus.UsageThreshold [
s.0Ht 1.0t '
: D.E‘
| 0.6 |
NM! v |
6.2
2,041 8.04 v o
17:40 18:00 18:20 17:40 16:00 18:20
W 127.0.0.1 last hour (now 3,786, 686) W 127.0.0.1 last hour (now 0.08)
nimbus. UsageThresholdCount
Lot
o.si
8.6
0.4 |
0.2 |
0.04
17:40 18:00 18:20
B 127.0.0.1 last hour (now 0,00)

Nimbus metrics

In the following section, we will explain how you can store the data processed by
Storm on the HBase database.

Integrating Storm with HBase

As explained in earlier chapters, Storm is meant for real-time data processing.
However, in most cases, you will need to store the processed data in a data store so
that you can use the stored data for further analysis and can execute the analysis
query on the data stored. This section explains how you can store the data processed
by Storm in HBase.

[166]

Chapter 7

HBase is a NoSQL, multidimensional, sparse, horizontal scalable database modeled
after Google BigTable. HBase is built on top Hadoop, which means it relies on
Hadoop and integrates with the MapReduce framework very well. Hadoop
provides the following benefits to HBase.

* A distributed data store that runs on top of commodity hardware

e Fault tolerance

We will assume that you have HBase installed and running on your system. You
can refer to the blog on HBase installation at http://ankitasblogger.blogspot .
in/2011/01/installing-hbase-in-cluster-complete.html.

We will create a sample Storm topology that explains how you can store the data
processed by Storm to HBase using the following steps:

1. Create a Maven project using com.learningstorm for the Group ID and
storm-hbase for the Artifact ID.

2. Add the following dependencies and repositories to the pom.xm1 file:

<repositories>
<repositorys>
<id>clojars.org</id>
<urlshttp://clojars.org/repo</urls>
</repository>
</repositoriess>
<dependencies>
<dependency>
<groupId>storm</groupld>
<artifactIds>storm</artifactIds>
<version>0.9.0.1</version>
<exclusionss>
<exclusion>
<artifactId>log4j-over-slf4j</artifactIds>
<groupldsorg.slf4j</groupld>
</exclusions>
</exclusions>
</dependency>
<dependency>
<grouplds>org.apache.hadoop</groupIlds>
<artifactId>hadoop-core</artifactIds>
<version>1.1.1l</version>
</dependency>
<dependency>
<groupldsorg.slf4j</groupld>
<artifactIds>slf4j-api</artifactIds>

[167]

Integrating Storm with JMX, Ganglia, HBase, and Redis

<version>1l.7.7</versions>
</dependency>
<dependencys>
<grouplds>org.apache.hbase</groupId>
<artifactIdshbase</artifactIds>
<version>0.94.5</version>
<exclusionss>
<exclusion>
<artifactIds>zookeeper</artifactId>
<groupld>org.apache.zookeeper</groupIlds>
</exclusions>
</exclusions>
</dependency>
<dependencys>
<groupId>junit</groupIld>
<artifactId>junit</artifactIds>
<version>4.10</version>
</dependency>
</dependencies>

3. Create an HBaseOperations class in the com.learningstorm. storm_hbase
package. The HBaseOperations class contains two methods:

° createTable (String tableName, List<String>

ColumnFamilies): This method takes the name of the table and the
HBase column family list as input to create a table in HBase.

insert (Map<String, Map<String, Object>> record, String
rowId): This method takes the record and its rowID parameter as
input and inserts the input record to HBase. The following is the
structure of the input record:

{

"columnfamilyl":

{

"columnl":"abc",
"column2": "pgr"

b

"columnfamily2":

{

"column3":"bc",
"column4":"jk1l"

}
}

Here, columnfamilyl and columnfamily?2 are the names of HBase column
families, and columni, column2, column3, and column4 are the names
of columns.

[168]

Chapter 7

The rowid parameter is the HBase table row key that is used to uniquely
identify each record in HBase.

The following is the source code of the HBaseOperations class:

public class HBaseOperations implements Serializable(
private static final long serialVersionUID = 1L;

// Instance of Hadoop Configuration class
Configuration conf = new Configuration() ;
HTable hTable = null;

public HBaseOperations (String tableName,
List<String> ColumnFamilies,
List<String> zookeeperIPs, int zkPort) {
conf = HBaseConfiguration.create() ;
StringBuffer zookeeperIP = new StringBuffer();
// Set the zookeeper nodes
for (String zookeeper : zookeeperIPs) {
zookeeperIP.append (zookeeper) .append (", ") ;

}

zookeeperIP.deleteCharAt (zookeeperIP.length() - 1);

conf.set ("hbase.zookeeper.quorum",
zookeeperIP.toString()) ;

// Set the zookeeper client port
conf.setInt ("hbase.zookeeper.property.clientPort",
zkPort) ;
// call the createTable method to create a table into
HBase.
createTable (tableName, ColumnFamilies) ;
try {
// initialize the HTable.
hTable = new HTable (conf, tableName) ;
} catch (IOException e) {
System.out.println ("Error occurred while creating instance
of HTable class : " + e);

}
}

/**

* This method create a table into HBase

@param tableName
Name of the HBase table
@param ColumnFamilies

* % x

*

[169]

Integrating Storm with JMX, Ganglia, HBase, and Redis

* List of column families
*
*/
public void createTable (String tableName, List<Strings
ColumnFamilies)
HBaseAdmin admin = null;
try {
admin = new HBaseAdmin (conf) ;
// Set the input table in HTableDescriptor
HTableDescriptor tableDescriptor =
new HTableDescriptor (Bytes.toBytes (tableName)) ;
for (String columnFamaliy : ColumnFamilies) {
HColumnDescriptor columnDescriptor =
new HColumnDescriptor (columnFamaliy) ;
// add all the HColumnDescriptor into
HTableDescriptor
tableDescriptor.addFamily (columnDescriptor) ;
}
/* execute the creaetTable (HTableDescriptor
tableDescriptor) of HBaseAdmin
* class to createTable into HBase.
*/
admin.createTable (tableDescriptor) ;
admin.close () ;

}catch (TableExistsException tableExistsException) {

System.out.println("Table already exist : " +
tableName) ;
if (admin != null)

try {

admin.close () ;

} catch (IOException ioException) {
System.out.println ("Error occurred while closing
the HBaseAdmin connection : " + ioException) ;

}catch (MasterNotRunningException e) {
throw new RuntimeException ("HBase master not running,
table creation failed : ");

} catch (ZooKeeperConnectionException e) {
throw new RuntimeException ("Zookeeper not running,
table creation failed : ");

} catch (IOException e) {
throw new RuntimeException("IO error, table creation
failed : ");

[170]

Chapter 7

/

*
*
*
*
*
*
*

* %

This method insert the input record into HBase.

@param record
input record
@param rowId
unique id to identify each record uniquely.

/

public void insert (Map<String, Map<String, Objects>>
record, String rowId) {

try {
Put put = new Put (Bytes.toBytes (rowld)) ;

for (String cf : record.keySet()) {
for (String column: record.get (cf).keySet()) {
put.add (Bytes.toBytes (cf), Bytes.toBytes(column),
Bytes.toBytes (record.get (cf) .get (column) .
toString())) ;

}
}

hTable.put (put) ;
}catch (Exception e) ({
throw new RuntimeException ("Error occurred while
storing record into HBase") ;

}

public static void main(String[] args) {

List<String> cFs = new ArrayList<Strings () ;
cFs.add("cf1") ;
cFs.add("cf2") ;

List<String> zks = new ArrayList<Strings () ;
zks.add("127.0.0.1") ;

Map<String, Map<String, Object>> record =
new HashMap<String, Map<String,Object>>();

Map<String, Object> cfl = new HashMap<String,
Object> () ;
cfl.put ("aa", "1");

Map<String, Object> cf2 = new HashMap<String,
Object> () ;

cf2.put ("bb", "1");

record.put ("cfl", cfl);

[171]

Integrating Storm with JMX, Ganglia, HBase, and Redis

record.put ("cf2", cf2);
HBaseOperations hbaseOperations =
new HBaseOperations ("tableName",
hbaseOperations.insert (record,
UUID.randomUUID () .toString()) ;

}

cFs, zks, 2181);

}

4. Create a SampleSpout class in the com.learningstorm. storm_ hbase
package. This class generates random records and passes them to the
next action (bolt) in the topology. The following is the format of the
record generated by the SampleSpout class:

[n] ohn" , "watson" , ngbe"]
The following is the source code of the Samplespout class:

public class SampleSpout extends BaseRichSpout {
private static final long serialVersionUID = 1Lj;
private SpoutOutputCollector spoutOutputCollector;

private static final Map<Integer, String> FIRSTNAMEMAP =

new HashMap<Integer, Strings>();
static {
FIRSTNAMEMAP.put (0, "john") ;
FIRSTNAMEMAP.put (1, "nick");
FIRSTNAMEMAP.put (2, "mick") ;
FIRSTNAMEMAP.put (3, "tom") ;
FIRSTNAMEMAP.put (4, "jerry");

private static final Map<Integer, String> LASTNAME =

new HashMap<Integer, Strings>();
static {
LASTNAME.put (0, "anderson") ;
LASTNAME.put (1, "watson") ;
LASTNAME.put (2, "ponting") ;
LASTNAME.put (3, "dravid");
LASTNAME.put (4, "lara");
}
private static final Map<Integer, String> COMPANYNAME =
new HashMap<Integer, Strings>();
static {
COMPANYNAME . put (0, "abc");
COMPANYNAME .put (1, "dfg");

[172]

Chapter 7

COMPANYNAME.put (2, "pgr") ;
COMPANYNAME .put (3, "ecd") ;
COMPANYNAME .put (4, "awe") ;

}

public void open (Map conf, TopologyContext context,
SpoutOutputCollector spoutOutputCollector) {
// Open the spout
this.spoutOutputCollector = spoutOutputCollector;

}

public void nextTuple()
// Storm cluster repeatedly call this method to emit
the continuous //
// stream of tuples.
final Random rand = new Random() ;
// generate the random number from 0 to 4.
int randomNumber = rand.nextInt (5) ;
spoutOutputCollector.emit (new
Values (FIRSTNAMEMAP.get (randomNumber) ,
LASTNAME . get (randomNumber) ,
COMPANYNAME . get (randomNumber))) ;

public void declareOutputFields (OutputFieldsDeclarer
declarer) {
// emits the field firstName, lastName and
companyName .
declarer.declare (new
Fields ("firstName", "lastName", "companyName")) ;

}
}

Create a StormHBaseBolt class in the com.learningstorm.storm hbase
package. This bolt received the tuples emitted by SampleSpout and then
calls the insert () method of the HBaseOperations class to insert the record
into HBase. The following is the source code of the StormHBaseBolt class:

public class StormHBaseBolt implements IBasicBolt {

private static final long serialVersionUID = 2Lj;
private HBaseOperations hbaseOperations;

private String tableName;

private List<String> columnFamilies;

private List<String> zookeeperIPs;

private int zkPort;

/**

[173]

Integrating Storm with JMX, Ganglia, HBase, and Redis

* Constructor of StormHBaseBolt class

*

@param tableName
* HBaseTableNam

* @param columnFamilies

* List of column families
* @param zookeeperIPs

* List of zookeeper nodes
* @param zkPort

* Zookeeper client port
*/

public StormHBaseBolt (String tableName, List<Strings>
columnFamilies, List<String> zookeeperIPs, int zkPort)
this.tableName =tableName;
this.columnFamilies = columnFamilies;
this.zookeeperIPs = zookeeperIPs;
this.zkPort = zkPort;

public void execute (Tuple input, BasicOutputCollector
collector)
Map<String, Map<String, Object>> record =
new HashMap<String, Map<String, Object>>() ;
Map<String, Object> personalMap = new HashMap<String,
Object> () ;

personalMap.put ("firstName",
input.getValueByField ("firstName")) ;

personalMap.put ("lastName",
input.getValueByField ("lastName")) ;

Map<String, Object> companyMap = new HashMap<String,
Object> () ;

companyMap.put ("companyName",

input.getValueByField ("companyName")) ;

record.put ("personal", personalMap) ;

record.put ("company", companyMap) ;

// call the inset method of HBaseOperations class to
insert record into

// HBase

hbaseOperations.insert (record,
UUID.randomUUID () .toString()) ;

[174]

Chapter 7

public void declareOutputFields (OutputFieldsDeclarer
declarer) {

@Override

public Map<String, Object> getComponentConfiguration()
// TODO Auto-generated method stub
return null;

@Override

public void prepare (Map stormConf, TopologyContext
context) {

// create the instance of HBaseOperations class

hbaseOperations = new HBaseOperations (tableName,
columnFamilies,

zookeeperIPs, zkPort);

@Override
public void cleanup() {
// TODO Auto-generated method stub

}

The constructor of the StormHBaseBolt class takes the HBase table name,
column families list, ZooKeeper IP address, and ZooKeeper port as an
argument and sets the class level variables. The prepare () method of the
StormHBaseBolt class will create an instance of the HBaseOperatons class.

The execute () method of the StormHBaseBolt class takes an input tuple as
an argument and converts it into the HBase structure format. It also uses the
java.util.UUID class to generate the HBase row ID.

Create a Topology class in the com. learningstorm. storm_hbase package.
This class creates an instance of the spout and bolt classes and chains them
together using a TopologyBuilder class. The following is the implementation
of the main class:

public class Topology
public static void main(String[] args) throws
AlreadyAliveException, InvalidTopologyException {
TopologyBuilder builder = new TopologyBuilder () ;

[175]

Integrating Storm with JMX, Ganglia, HBase, and Redis

List<String> zks = new ArrayList<Strings () ;
zks.add("127.0.0.1") ;

List<String> cFs = new ArrayList<Strings () ;
cFs.add("personal") ;
cFs.add ("company") ;

// set the spout class
builder.setSpout ("spout", new SampleSpout (), 2);
// set the bolt class

builder.setBolt ("bolt", new StormHBaseBolt ("user", cFs,
zks, 2181), 2).shuffleGrouping("spout") ;

Config conf = new Config() ;

conf .setDebug (true) ;

// create an instance of LocalCluster class for
// executing topology in local mode.
LocalCluster cluster = new LocalCluster() ;

// StormHBaseTopology is the name of submitted
topology.
cluster.submitTopology ("StormHBaseTopology", conf,
builder.createTopology()) ;
try {

Thread.sleep(60000) ;
} catch (Exception exception) {

System.out.println ("Thread interrupted exception : "
+ exception) ;

}

System.out.println("Stopped Called : ");

// kill the StormHBaseTopology

cluster.killTopology ("StormHBaseTopology") ;

// shutdown the storm test cluster

cluster.shutdown () ;

}

In the following section, we will cover how you can integrate Storm with an
in-memory cache called Redis.

[176]

Chapter 7

Integrating Storm with Redis

Redis is a key value data store. The key values can be strings, lists, sets, hashes,
and so on. It is extremely fast because the entire dataset is stored in the memory.
The following are the steps to install Redis:

1.

First, you will need to install make, gcc, and cc to compile the Redis code
using the following command:

sudo yum -y install make gcc cc

Download, unpack, and make Redis, and copy it to /usr/local/bin using
the following commands:

cd /home/$USER
Here, $USER is the name of the Linux user.

http://download.redis.io/releases/redis-2.6.16.tar.gz
tar -xvf redis-2.6.l1l6.tar.gz

cd redis-2.6.16

make

sudo cp src/redis-server /usr/local/bin

sudo cp src/redis-cli /usr/local/bin

Execute the following commands to make Redis as a service:
sudo mkdir -p /etc/redis

sudo mkdir -p /var/redis

cd /home/$USER/redis-2.6.16/

sudo cp utils/redis init script /etc/init.d/redis

wget https://bitbucket.org/ptylr/public-stuff/raw/41d5c8e87ceb6adb3
4aal6écd571c3f04fb4d5e7ac/etc/init.d/redis

sudo cp redis /etc/init.d/redis
cd /home/$USER/redis-2.6.16/

sudo cp redis.conf /etc/redis/redis.conf

Now, run the following commands to add the service to chkconfig, set it to
autostart, and actually start the service:

chkconfig --add redis
chkconfig redis on

service redis start

Check the installation of Redis with the following command:

redis-cli ping

[177]

Integrating Storm with JMX, Ganglia, HBase, and Redis

If the result of the test command is PONG, then the installation has been
successful.

Now, we will assume that you have the Redis service up and running.

Next, we will create a sample Storm topology that will explain how you
can store the data processed by Storm in Redis.

6. Create a Maven project using com.learningstorm for the Group ID
and storm-redis for the Artifact ID.

7. Add the following dependencies and repositories in the pom.xm1 file:

<repositoriess>
<repositorys>
<id>clojars.org</id>
<urlshttp://clojars.org/repo</urls>
</repository>
</repositoriess>
<dependencies>
<dependency>
<groupId>storm</groupld>
<artifactIdsstorm</artifactIds>
<version>0.9.0.1</version>
</dependency>
<dependency>
<groupId>junit</grouplds>
<artifactIds>junit</artifactIds>
<version>3.8.1l</version>
<scope>test</scope>
</dependency>
<dependency>
<groupIds>redis.clients</groupId>
<artifactIds>jedis</artifactIds>
<version>2.4.2</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupIld>
<artifactId>jackson-core</artifactIds>
<version>2.1.1l</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupIld>
<artifactId>jackson-databind</artifactIds>
<version>2.1.1l</version>
</dependency>
</dependencies>

[178]

Chapter 7

8. Create a RedisOperations class in the com.learningstorm.storm redis
package. The RedisOperations class contains the following method:

[e]

insert (Map<String, Object> record, String id): This method
takes the record and ID as input and inserts the input record in Redis.
In the insert () method, we will first serialize the record into a
string using the Jackson library and then store the serialized record
into Redis. Each record must have a unique ID because it is used to

retrieve the record from Redis.

The following is the source code of the RedisOperations class:

public class RedisOperations implements Serializable {

private static final long serialVersionUID = 1L;
Jedis jedis = null;

public RedisOperations(String redisIP, int port) {
// Connecting to Redis
jedis = new Jedis(redisIP, port) ;
}
/* This method takes the record and record id as input.
We will first serialize the record into String using
Jackson library and then store the whole record into
Redis.User can use the record id to retrieve the record
from Redis*/
public void insert (Map<String, Objects> record, String id)
{
try {
jedis.set (id, new
ObjectMapper () .writeValueAsString (record)) ;
} catch (Exception e) ({

System.out.println ("Record not persisted into datastore");

}

9. We will use the same samplespout class created in the IntegratingStorm with

HBase section.

[179]

Integrating Storm with JMX, Ganglia, HBase, and Redis

10. Create a sStormRedisBolt class in the com.learningstorm.storm redis
package. This bolt receives the tuples emitted by the samplespout class,
converts it to the Redis structure, and then calls the insert () method of the
RedisOperations class to insert the record into Redis. The following is the
source code of the StormRedisBolt class:

public class StormRedisBolt implements IBasicBolt({

private static final long serialVersionUID = 2Lj;
private RedisOperations redisOperations = null;
private String redisIP = null;
private int port;
public StormRedisBolt (String redisIP, int port)
this.redisIP = redisIP;
this.port = port;

public void execute (Tuple input, BasicOutputCollector

collector) {
Map<String, Objects> record =
new HashMap<String, Objects>();
//"firstName", "lastName", "companyName")
record.put ("firstName",
input.getValueByField("firstName")) ;
record.put ("lastName",
input.getValueByField("lastName")) ;
record.put ("companyName",
input.getValueByField ("companyName")) ;
redisOperations.insert (record,
UUID.randomUUID() .toString()) ;

public void declareOutputFields (OutputFieldsDeclarer
declarer) {

public Map<String, Object> getComponentConfiguration()
return null;

public void prepare (Map stormConf, TopologyContext
context) {
redisOperations = new RedisOperations (this.redisIP,
this.port) ;

[180]

Chapter 7

11.

public void cleanup() {

}

In the stormRedisBolt class, we are using the java.util.UUID class
to generate the Redis key.

Create a Topology class in the com. learningstorm. storm_redis package.
This class creates an instance of the spout and bolt classes and chains them
together using a TopologyBuilder class. The following is the implementation
of the main class:

public class Topology

public static void main(String[] args) throws
AlreadyAliveException, InvalidTopologyException {

TopologyBuilder builder = new TopologyBuilder () ;
List<String> zks = new ArrayList<Strings () ;
zks.add("127.0.0.1") ;

List<String> cFs = new ArrayList<Strings () ;
cFs.add("personal") ;
cFs.add ("company") ;

// set the spout class
builder.setSpout ("spout", new SampleSpout (), 2);
// set the bolt class

builder.setBolt ("bolt", new StormRedisBolt ("127.0.0.1",6379),
2) .shuffleGrouping ("spout") ;

Config conf = new Config() ;

conf .setDebug (true) ;

// create an instance of LocalCluster class for
// executing topology in local mode.
LocalCluster cluster = new LocalCluster() ;

// StormRedisTopology is the name of submitted
topology.
cluster.submitTopology ("StormRedisTopology", conf,
builder.createTopology()) ;
try {

Thread.sleep(10000) ;
} catch (Exception exception) {

[181]

Integrating Storm with JMX, Ganglia, HBase, and Redis

System.out.println ("Thread interrupted exception : "

+ exception) ;

}

// kill the StormRedisTopology
cluster.killTopology ("StormRedisTopology") ;
// shutdown the storm test cluster
cluster.shutdown () ;

}
}

In this section, we covered installation of Redis and how we can integrate Storm
with Redis.

Summary

In this chapter, we mainly concentrated on monitoring the Storm cluster through JMX
and Ganglia. We also covered how we can integrate Storm with Redis and HBase.

In the next chapter, we will cover the Apache log processing case study. We will
explain how you can generate business information by processing logfiles
through Storm.

[182]

Log Processing with Storm

In the previous chapter, we covered how we can integrate Storm with Redis and
HBase. Also, we learned how to use Ganglia and JMX to monitor the Storm Cluster.

In this chapter, we will cover the most popular use case of Storm, that is,
log processing.

This chapter covers the following topics:

* Server log-processing elements
* Producing the server log in Kafka
* Splitting the server logfile

* Identifying the country name, the operating system type, and the
browser type

* Extracting the searched keyword

* Persisting the process data

* Defining a topology and the Kafka spout
* Deploying a topology

* MySQL queries

Server log-processing elements

Log processing is becoming a need for every organization to collect business
information from log data. In this chapter, we are basically going to work on
how we can process the server log data to collect business information using Storm.

Log Processing with Storm

The following diagram shows the log-processing topology and illustrates all the
elements that we will develop in this chapter:

Log file

Log
producer

Log Calculate Keyword
splitter country, os, generator
bolt browser bolt

MySQL
dump bolt

Producing the Apache log in Kafka

As explained in Chapter 4, Storm and Kafka Integration, Kafka is a distributed
messaging queue and can integrate with Storm very well. In this section,
you'll see how to write a Kafka producer that will read the server logfile
and produce the log in Kafka.

As we all know, Storm provides guaranteed message processing, which means every
message that enters the Storm topology will be processed at least once. In Storm, data
loss is possible only at the spout. This happens if the processing capacity of the Storm
spout is less than the producing capacity of the data publisher. Hence, to avoid data
loss at the Storm spout, we will generally publish the data into a messaging queue,
and the Storm spout will use that messaging queue as the data source.

We will create a Maven project that will publish the server log into a Kafka broker.
Perform the following steps to create the server log producer:

1. Create a new Maven project with com. learningstorm for groupId
and kafkaLogProducer for artifactId.

[184]

Chapter 8

2. Add the following dependencies for Kafka in pom.xm1:

<dependencys>
<groupIds>org.apache.kafka</groupIds>
<artifactId>kafka 2.10</artifactId>
<version>0.8.0</versions>
<exclusionss>
<exclusion>
<groupIds>com.sun.jdmk</groupId>
<artifactId>jmxtools</artifactId>
</exclusions>
<exclusion>
<groupIds>com.sun.jmx</groupId>
<artifactId>jmxri</artifactId>
</exclusions>
</exclusions>
</dependency>
<dependencys>
<groupIds>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactIds>
<versions>2.0-beta9</versions>
</dependency>
<dependencys>
<groupIds>org.apache.logging.log4j</groupId>
<artifactId>log4j-1.2-api</artifactId>
<versions>2.0-beta9</versions>
</dependency>

3. Add the following build plugins to pom.xml. These plugins will let us
execute the producer using Maven:

<builds>
<pluginss>
<plugin>
<groupId>org.codehaus.mojo</groupIld>
<artifactId>exec-maven-plugin</artifactIds>
<version>1l.2.1l</versions>
<executionss>
<execution>
<goals>
<goal>exec</goal>
</goals>
</executions>
</executions>
<configurations>
<executable>java</executable>

[185]

Log Processing with Storm

<includeProjectDependenciess>true
</includeProjectDependencies>

<includePluginDependencies>false
</includePluginDependencies>
<classpathScope>compile</classpathScopes>
<mainClass>com.learningstorm.kafka.WordsProducer
</mainClass>
</configurations>
</plugin>
</plugins>
</build>

4. Now, we will create the ApacheLogProducer class in the com.learningstorm.
kafkaLogProducer package. This class will read the server logfile and produce
each log line in the apache_log topic in Kafka as a single message. The
following is the code for the ApacheLogProducer class with its explanation:

public class KafkaProducer {

public static void main(String[] args) {
// Build the configuration required
// for connecting to Kafka
Properties props = new Properties();

// List of kafka brokers.

// The complete list of brokers is not required as
// the producer will auto discover

//the rest of the brokers.

props.put ("metadata.broker.list", "localhost:9092");

// Serializer used for sending data to kafka.
// Since we are sending string,
// we are using StringEncoder.

props.put ("serializer.class",
"kafka.serializer.StringEncoder") ;

// We want acknowledgement from Kafka that
// the messages have been properly received.
props.put ("request.required.acks", "1");

// Create the producer instance
ProducerConfig config = new ProducerConfig(props) ;

Producer<String, String> producer =
new Producer<String, Strings> (config) ;

[186]

Chapter 8

try {
FileInputStream fstream =
new FileInputStream("./src/main/resources/
apache test.log");

BufferedReader br = new BufferedReader (
new InputStreamReader (fstream)) ;

String strLine;

/* read log line by line */

while ((strLine = br.readLine()) != null) {
KeyedMessage<String, Strings> data =

new KeyedMessage<String, Strings(
"apache log", strLine);

producer.send (data) ;

}

br.close() ;

fstream.close () ;

}catch (Exception e) ({

throw new RuntimeException ("Error occurred while
persisting records : ");

// close the producer
producer.close () ;

}

Replace localhost of the preceding ApacheLogProducer class with the
IP address of the broker machine.

Also, replace . /src/main/resources/apache_test.log (the server
log path) with the path of your logfile.

The preceding ApacheLogProducer class will directly produce the log data
in the apache_1log topic in Kafka. Hence, you need to create the apache_log
topic in Kafka before you run the ApacheLogProducer producer. To do so,
go to the home directory of Kafka and execute the following command:
bin/kafka-create-topic.sh --zookeeper localhost:2181 --replica 1
--partition 1 --topic apache log

creation succeeded!

[187]

Log Processing with Storm

6. Now, you can run ApacheLogProducer by executing the following Maven
command. The ApacheLogProducer needs to be run on a machine where the
server logs are generated:

mvn compile exec:java

7. Now, run the Kafka console consumer to check whether the messages are
successfully produced in Kafka. Run the following command to start the
Kafka console consumer:

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic
apache log --from-beginning

The following information is displayed:

4.19.162.143 - - [4-03-2011:06:20:31 -0500] "GET / HTTP/1.1"
200 864 "http://www.adeveloper.com/resource.html" "Mozilla/5.0
(Windows; U; Windows NT 5.1; hu-HU; rv:1.7.12) Gecko/20050919
Firefox/1.0.7"

4.19.162.152 - - [4-03-2011:06:20:31 -0500] "GET / HTTP/1.1"
200 864 "http://www.adeveloper.com/resource.html" "Mozilla/5.0
(Windows; U; Windows NT 5.1; hu-HU; rv:1.7.12) Gecko/20050919
Firefox/1.0.7"

4.20.73.15 - - [4-03-2011:06:20:31 -0500] "GET / HTTP/1.1" 200 864
"http://www.adeveloper.com/resource.html" "Mozilla/5.0 (Windows;
U; Windows NT 5.1; hu-HU; rv:1.7.12) Gecko/20050919 Firefox/1.0.7"

4.20.73.32 - - [4-03-2011:06:20:31 -0500] "GET / HTTP/1.1" 200 864
"http://www.adeveloper.com/resource.html" "Mozilla/5.0 (Windows;
U; Windows NT 5.1; hu-HU; rv:1.7.12) Gecko/20050919 Firefox/1.0.7"

Splitting the server log line

Now, we will create a new Storm topology that will read the data from Kafka using the
KafkaSpout spout, process the server logfiles, and store the process data in MySQL for
further analysis.

In this section, we will write a bolt, ApacheLogSplitterBolt, which has logic to
fetch the IP address, status code, referrer, bytes sent, and other such information
from the server log line. We will create a new Maven project for this use case:

1. Create a new Maven project with com.learningstorm for grouprd and
stormlogprocessing for artifactId.
2. Add the following dependencies to the pom.xml file:
<!-- Dependency for Storm -->
<dependency>

<groupId>storm</groupId>

[188]

Chapter 8

<artifactId>storm-core</artifactId>
<version>0.9.0.1l</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>15.0</version>

</dependency>

<dependency>
<groupId>commons-collections</groupId>
<artifactId>commons-collections</artifactId>
<version>3.2.1l</version>

</dependency>

Add the following repository to the pom.xm1 file:
<repository>
<id>clojars.org</id>
<urls>http://clojars.org/repo</url>

</repository>

Create an ApacheLogSplitter class in the com.learningstorm.
stormlogprocessing package and add the following content. This
class contains logic to fetch different elements such as ip, referrer,
user-agent, and so on from the Apache log line:
/ * %

* This class contains logic to Parse an Apache logfile

* with Regular Expressions

*/
public class ApacheLogSplitter {

public Map<String,Object> logSplitter (String apachelLog) {

String logEntryLine = apachelog;
// Regex pattern to split fetch
// the different properties from log lines.
String logEntryPattern = "*([\\d.l+) (\\S+) (\\S+)
AN TCDNw=:/T+\\s T4\ -TANG{4 P)ANT A" (L+2)\"
(NA{3}) A\\d+) \"(IO\N"TH)\" A" ([\"T+)\"";

[189]

Log Processing with Storm

Pattern p = Pattern.compile(logEntryPattern) ;
Matcher matcher = p.matcher (logEntryLine) ;
Map<String,Object> logMap =
new HashMap<String, Objects>();
if (!matcher.matches() || 9 != matcher.groupCount()) {
System.err.println("Bad log entry (
or problem with RE?):");
System.err.println(logEntryLine) ;
return logMap;

}

// set the ip, dateTime, request, etc into map.

logMap.put ("ip", matcher.group(l)) ;
logMap.put ("dateTime", matcher.group (4)) ;
logMap.put ("request", matcher.group(5)) ;
logMap.put ("response", matcher.group (6)) ;
logMap.put ("bytesSent", matcher.group(7));
logMap.put ("referrer", matcher.group(8)) ;
logMap.put ("useragent", matcher.group(9));

return logMap;

}

The input for the logSplitter (String apacheLog) method is as follows:

98.83.179.51 - - [18/May/2011:19:35:08 -0700] \"GET /css/main.css
HTTP/1.1\" 200 1837 \"http://www.safesand.com/information.htm\"
\"Mozilla/5.0 (Windows NT 6.0; WOW64; rv:2.0.1l) Gecko/20100101
Firefox/4.0.1\"

The output of the logSplitter (String apacheLog) method is as follows:

{response=200, referrer=http://www.safesand.com/information.
htm, bytesSent=1837, useragent=Mozilla/5.0 (Windows NT 6.0;
WOW64; rv:2.0.1) Gecko/20100101 Firefox/4.0.1, dateTime=18/
May/2011:19:35:08 -0700, request=GET /css/main.css HTTP/1.1,
ip=98.83.179.51}

5. Now, we will create an ApacheLogSplitterBolt class in the com.
learningstorm.stormlogprocessingchkagefrheApacheLogSplitterBolt
class extends the backtype.storm. topology.base.BaseBasicBolt class.
The execute () method of the ApacheLogSplitterBolt class receives
the tuples (server log lines) from Kafkaspout. Then, it internally calls the
logSplitter (String apachelog) method of the ApacheLogSplitter
class to process the server log lines. After this, the process data is emitted
to the next bolt in the topology. The following is the source code of the
ApacheLogSplitterBolt class:

/**
* This class calls the ApachelLogSplitter class and
* passes the set of fields (ip, referrer, user-agent,

[190]

Chapter 8

* and so on) to the next bolt in the topology.
*/

public class ApachelLogSplitterBolt extends BaseBasicBolt {

private static final long serialVersionUID = 1Lj;

// Create the instance of the ApacheLogSplitter class.

private static final ApachelLogSplitter
apacheLogSplitter = new ApacheLogSplitter();

private static final List<String> LOG_ ELEMENTS =
new ArrayList<Strings () ;

static {
LOG_ELEMENTS.add
LOG_ELEMENTS.add

("ip") ;

("dateTlme");
LOG_ELEMENTS.add ("request") ;
LOG_ELEMENTS.add ("response") ;
LOG_ELEMENTS.add ("bytesSent") ;
LOG_ELEMENTS.add ("referrer") ;
LOG_ELEMENTS.add ("useragent") ;

public void execute (Tuple input, BasicOutputCollector
collector)

// Get the Apache log from the tuple
String log = input.getString(0) ;

if (StringUtils.isBlank(log))
// Ignore blank lines
return;

}

// Call the logSplitter(String apachelog) method
// of the ApacheLogSplitter class.

Map<String, Object> logMap = apachelLogSplitter.
logSplitter(log) ;

List<Object> logdata = new ArrayList<Objects>() ;

for (String element : LOG_ELEMENTS) {
logdata.add(logMap.get (element)) ;

}

// emits set of fields (ip, referrer, user-agent,
// bytesSent, and so on.)

collector.emit (logdata) ;

}

public void declareOutputFields (OutputFieldsDeclarer
declarer) {

[191]

Log Processing with Storm

// Specify the name of output fields.

declarer.declare (new Fields ("ip", "dateTime",
"request", "response", "bytesSent", "referrer",
"useragent")) ;

}
}

The output of the ApacheLogSplitterBolt class contains seven fields.
These fields are ip, dateTime, request, response, bytesSent, referrer,
and useragent.

Identifying the country, the operating
system type, and the browser type
from the logfile

This section explains how you can identify a user's country name, the operating
system type, and the browser type by analyzing the server log line. By identifying
the country name, we can easily identify the locations from where our site is
attracting more attention and where it is getting less attention. Let's perform the
following steps to identify the country name, operating system type, and browser
type from the Apache log line:

1. We will use the open source geoip library to identify the country name from
the IP address. Add the following dependencies to the pom.xml file:

<dependencys>
<groupId>org.geomind</groupId>
<artifactIds>geoip</artifactIds>
<version>1.2.8</version>
</dependency>

2. Add the following repository to the pom.xm1 file:
<repositorys
<id>geoip</id>
<url>http://snambi.github.com/maven/</url>
</repository>

[192]

Chapter 8

We will create an IpToCountryConverter class in the com. learningstorm.
stormlogprocessing package. This class contains the parameterized
constructor that will take the location of the GeoLiteCity.dat file.
You can find the GeoLiteCity.dat file in the Resources folder of the
stormlogprocessing project. The location of the GeoLiteCity.dat file
must be the same in all Storm nodes. The GeoLiteCity.dat file is the
database we will use to identify the country name when the IP address is
given. The following is the source code of the IpToCountryConverter class:
/ * %

* This class contains logic to identify

* the country name from the IP address
*/

public class IpToCountryConverter
private static LookupService cl = null;

/**
* A parameterized constructor which would take
* the location of the GeoLiteCity.dat file as input.
*
* @param pathTOGeoLiteCityFile
*/
public IpToCountryConverter (String pathTOGeoLiteCityFile)
try {
cl = new LookupService ("pathTOGeoLiteCityFile",
LookupService.GEOIP_MEMORY_CACHE) ;
} catch (Exception exception) {
throw new RuntimeException (
"Error occurred while initializing
IpToCountryConverter class: ");

/**
* This method takes the IP address of the input and
* converts it into a country name.
*
* @param 1ip
* @return
*/
public String ipToCountry (String ip) {
Location location = cl.getLocation(ip) ;
if (location == null) {
return "NA";

[193]

Log Processing with Storm

}

if (location.countryName == null)

return "NA";

}

return location.countryName;

}

4. Now, download the UserAgentTools class from https://code.google.
com/p/ndt/source/browse/branches/applet 91/Applet/src/main/

java/edu/internet2/ndt/UserAgentTools.java?r=856.

This class contains the logic to identify the operating system and the browser
type from the user agent class. You can also find the UserAgentTools class in
thestormlogprocessingpﬂoﬁrt

5. Let's write the UserInformationGetterBolt class to the com. learningstorm.
stormlogprocessing package as follows. This bolt uses the UserAgentTools
and IpToCountryConverter classes to identify the country name, the operating
system type, and the browser type:

/ * *
* This class uses the IpToCountryConverter and
* UserAgentTools classes to identify
* the country, os, and browser from log line.
*/

public class UserInformationGetterBolt extends BaseRichBolt

private static final long serialVersionUID = 1Lj;

private IpToCountryConverter ipToCountryConverter = null;
private UserAgentTools userAgentTools = null;

public OutputCollector collector;

private String pathTOGeoLiteCityFile;

public UserInformationGetterBolt (String pathTOGeoLiteCityFile) {

// set the path of the GeoLiteCity.dat file.
this.pathTOGeoLiteCityFile = pathTOGeoLiteCityFile;

public void declareOutputFields (OutputFieldsDeclarer declarer) {

declarer.declare (new Fields ("ip", "dateTime", "request",
"response'",
"bytesSent", "referrer", "useragent", "country",
"browser",
"os")) ;

[194]

Chapter 8

public void prepare (Map stormConf, TopologyContext context,
OutputCollector collector) {
this.collector = collector;
this.ipToCountryConverter = new IpToCountryConverter (
this.pathTOGeoLiteCityFile) ;
this.userAgentTools = new UserAgentTools () ;

public void execute (Tuple input) {
String ip = input.getStringByField("ip") .toString() ;

// Identify the country using the IP Address
Object country = ipToCountryConverter.ipToCountry (ip) ;

// Identify the browser using useragent.
Object browser = userAgentTools.getBrowser (
input.getStringByField (
"useragent") .toString()) [1];

// Identify the os using useragent.

Object os = userAgentTools.getOS (
input.getStringByField ("useragent") .toString()) [1];
collector.emit (new Values (input.getString(0),
input.getString(1l), input.getString(2),
input.getString(3), input.getString(4),
input.getString(5), input.getString(6),
country, browser, os));

}

The output of the UserInformationGetterBolt class contains ten fields.
These fields are ip, dateTime, request, response, bytesSent, referrer,
useragent, country, browser, and os.

[195]

Log Processing with Storm

Extracting the searched keyword

This section explains how you can extract the searched keyword from the referrer
URL. Suppose a referrer URL is https://www.google.co.in/#qg=1learning+storm.
We will pass this referrer URL to our KeywordGenerator class and the output will be
learning storm. By extracting the keyword to be searched, we can easily identify the
search keyword that users are using to reach our site. Let's perform the following steps
to extract the keyword from the referrer URL:

1. We will create a KeywordGenerator class in the com.learningstorm.
stormlogprocessing package. This class contains the logic to generate
the keyword from the referrer URL. The following is the source code of
the KeywordGenerator class:

/ * %
* This class takes the referrer URL as the input,
* analyzes the URL and returns the
* keyword to be searched as the output.
*/
public class KeywordGenerator
public String getKeyword(String referer) {

String[] temp;
Pattern pat = Pattern.compile (" [?&#]lg=(["&]l+)");
Matcher m = pat.matcher (referer) ;
if (m.find()) {
String searchTerm = null;
searchTerm = m.group (1) ;

temp = searchTerm.split ("\\+");

searchTerm = temp[0];

for (int i = 1; i < temp.length; i++)
searchTerm = searchTerm + " " + templ[i];

}

return searchTerm;
} else {
pat = Pattern.compile (" [?&#]lp=(["&]l+)");
m = pat.matcher (referer) ;
if (m.find()) {
String searchTerm = null;
searchTerm = m.group (1) ;

temp = searchTerm.split ("\\+");

searchTerm = temp[0];

for (int i = 1; i < temp.length; i++)
searchTerm = searchTerm + " " + templ[i];

[196]

Chapter 8

return searchTerm;
} else {
//
pat = Pattern.compile (" [?&#]query=(["&]l+)");
m = pat.matcher (referer) ;
if (m.find()) {
String searchTerm = null;
searchTerm = m.group (1) ;

temp = searchTerm.split ("\\+");
searchTerm = temp[0];
for (int i = 1; i < temp.length; i++)
searchTerm = searchTerm + " " + templ[i];
}
return searchTerm;
} else {

return "NA";

The input for the KeywordGenerator class is as follows:

https://in.search.yahoo.com/search; ylt=AqHONZelhgPCzVapOPdKk7Guit
IF?p=india+live+score&toggle=1&cop=mss&ei=UTF-8&fr=yfp-t-704

Then, the output of the KeywordGenerator class is as follows:

india live score

We will create a KeyWordIdentifierBolt class in the com.learningstorm.
stormlogprocessing package. This class calls the KeywordGenerator class
that extracts the keyword from the referrer URL. The following is the source
code of the KeyWordIdentifierBolt class:
/* *

* This class uses the KeywordGenerator class

* to extract the keyword from the referrer URL.
*/
public class KeyWordIdentifierBolt extends BaseRichBolt

private static final long serialVersionUID = 1Lj;

private KeywordGenerator keywordGenerator = null;

public OutputCollector collector;

public KeyWordIdentifierBolt () {

[197]

Log Processing with Storm

}

public void declareOutputFields (OutputFieldsDeclarer
declarer) {

declarer.declare (new Fields("ip", "dateTime",
"request", "response", "bytesSent", "referrer",
"useragent", "country", "browser", "os",
"keyword")) ;

public void prepare (Map stormConf, TopologyContext
context, OutputCollector collector) {

this.collector = collector;
this.keywordGenerator = new KeywordGenerator () ;

public void execute (Tuple input) {

String referrer = input.getStringByField(
"referrer") .toString() ;
// Call the getKeyword(String referrer) method
// of the KeywordGenerator class to
// extract the keyword.
Object keyword = keywordGenerator.getKeyword (referrer) ;
// emits all the field emitted by previous bolt +
// the keyword
collector.emit (new Values (input.getString(0),
input.getString(1l), input.getString(2),
input.getString(3), input.getString(4),
input.getString(5), input.getString(6),
input.getString(7), input.getString(8),
input.getString(9), keyword)) ;

}

The output of the KeyWordIdentifierBolt class contains 11 fields.
These fields are ip, dateTime, request, response, bytesSent, referrer,
useragent, country, browser, os, and keyword.

Persisting the process data

This section will explain how you can persist the process data to the data store.
We are using MySQL as the data store for storing the processed data in this use case.

[198]

Chapter 8

We will assume that you have MySQL installed on your CentOS machine, or you
can follow the blog at http://www.rackspace.com/knowledge_center/article/
installing-mysqgl-server-on-centos to install MySQL on a CentOS machine.
Let's perform the following steps to persist records to MySQL:

1. Add the following dependency to the pom.xm1 file of the
stormlogprocessing pr@ect

<dependency>
<groupId>mysgl</groupld>
<artifactId>mysgl-connector-java</artifactIds>
<version>5.1.6</version>

</dependency>

2. We will create a MySQLConnection class in the com.learningstorm.
stormlogprocessing package. This class contains the
getMySQLConnection (String ip, String database, String user,
String password) function, which returns the MySQL connection.
The following is the source code of the MysQLConnection class:

/ * %
* This class returns the MySQL connection.
*/

public class MySQLConnection {

private static Connection connect = null;

/**

* This method returns the MySQL connection.
*

* @param ip

* IP address of the MySQL server
* @param database

* name of the database

* @param user

* name of the user

* @param password

* password of the given user

* @return MySQL connection

*

~

public static Connection getMySQLConnection (

String ip, String database, String user,
String password) {

try {
// This will load the MySQL driver,
// each DB has its own driver
Class.forName ("com.mysqgl.jdbc.Driver") ;
// Set up the connection with the DB.

[199]

Log Processing with Storm

connect = DriverManager.getConnection (
"jdbc:mysqgl://"+ ip +"/"+database+"?"+"user=
"+user+"&password="+password+"") ;
return connect;
} catch (Exception e) {
throw new RuntimeException ("Error occurred while
getting the MySQL connection: ") ;
}

}
}

3. Now, we will create a MySQLDump class in the com. learningstorm.
stormlogprocessing package. This class has a parameterized constructor
that will take the IP address, the database name, the user name, and the
password of the MySQL server as arguments. This class calls the getMySQLCo
nnection (ip, database,user, password) method of the MySQLConnection
class to get the MySQL connection. The MysQLDump class contains the
persistRecord(Tuple tuple)method, and this method persists the tuples
into MySQL. The following is the source code of the MysQLDump class:

/* *
* This class contains logic to persist the record
* into the MySQL database.

*/
public class MySQLDump {
/**
* Name of database you want to connect
*/
private String database;
/**
* Name of MySQL user
*/
private String user;
/**
* IP of the MySQL server
*/
private String ip;
/**
* Password of the MySQL server
*/

private String password;

public MySQLDump (String ip, String database,
String user, String password) {
this.ip = ip;
this.database = database;
this.user = user;

[200]

Chapter 8

this.password = password;

}

/**
* Get the MySQL connection
*/

private Connection connect = MySQLConnection.
getMySQLConnection (ip,database, user, password) ;

private PreparedStatement preparedStatement = null;

/**
* Persist input tuple.
* @param tuple
*/
public void persistRecord(Tuple tuple) {
try {

// preparedStatements can use variables and
// are more efficient

preparedStatement = connect.prepareStatement (
"insert into apachelog values (
default, ?, ?, 2,2, ?, ?, 2, 2 , 2, ?, ?)");

preparedStatement.setString (1,
tuple. getStringByField("ip")) ;
preparedStatement.setString (2,
tuple.getStringByField ("dateTime")) ;
preparedStatement.setString (3,
tuple.getStringByField ("request")) ;
preparedStatement.setString (4,
tuple.getStringByField ("response")) ;
preparedStatement.setString (5,
tuple.getStringByField ("bytesSent")) ;
preparedStatement.setString (6,
tuple.getStringByField ("referrer")) ;
preparedStatement.setString (7,
tuple.getStringByField ("useragent")) ;
preparedStatement.setString (8,
tuple.getStringByField ("country")) ;
preparedStatement.setString (9,
tuple.getStringByField ("browser")) ;
preparedStatement.setString (10,
tuple.getStringByField ("os")) ;
preparedStatement.setString (11,
tuple.getStringByField ("keyword")) ;

// Insert record

[201]

Log Processing with Storm

preparedStatement .executeUpdate () ;

} catch (Exception e) {
throw new RuntimeException ("Error occurred while
persisting records in MySQL: ") ;

} finally {
// close prepared statement
if (preparedStatement != null)
try {

preparedStatement.close() ;
} catch (Exception exception) {
System.out.println ("Error occurred while
closing PreparedStatement:") ;

}

public void close() {

try {
connect.close() ;
}catch (Exception exception) {
System.out.println ("Error occurred while closing
the connection") ;

}
}
}

4. Let's create a PersistenceBolt class in the com.learningstorm.
stormlogprocessing package. This class implements the bolt, backtype.
storm.topology.IBasicBolt. The PersistenceBolt class has a
parameterized constructor that will take the IP address, the database name, the
user name, and password of the MySQL server as arguments. The execute ()
method of the PersistenceBolt class calls the persistRecord (Tuple
tuple) method of the MySQLDump class to persist the record into MySQL. The
following is the source code of the PersistenceBolt class:

/* *
* This Bolt calls the getConnectionn(....) method
* of the MySQLDump class to persist
* the record into the MySQL database.

* @author Admin

[202]

Chapter 8

public class PersistenceBolt implements IBasicBolt {

private MySQLDump mySQLDump = null;
private static final long serialVersionUID = 1Lj;
/**

* Name of the database you want to connect

*/

private String database;

/**
* Name of the MySQL user
*/

private String user;

/**
* IP address of the MySQL server
*/

private String ip;

/**
* Password of the MySQL server
*/

private String password;

public PersistenceBolt (String ip, String database,
String user, String password) {

this.ip = ip;
this.database = database;
this.user = user;
this.password = password;

public void declareOutputFields (
OutputFieldsDeclarer declarer) {

public Map<String, Object> getComponentConfiguration ()

return null;

public void prepare (Map stormConf,
TopologyContext context) {

// create the instance of the MySQLDump(....) class.

mySQLDump = new MySQLDump (ip, database, user,
password) ;

[203]

Log Processing with Storm

/**
* This method calls the persistRecord(input) method
* of the MySQLDump class to persist records into MySQL.
*/

public void execute (Tuple input,
BasicOutputCollector collector) {
System.out.println ("Input tuple : " + input) ;
mySQLDump . persistRecord (input) ;

}

public void cleanup() {
// Close the connection
mySQLDump.close () ;

}
}

In this section, we covered how to insert the input tuples into the data store.

Defining a topology and the Kafka spout

This section will explain how you can read the server log from a Kafka topic. We
will use the Kafka spout integration available on GitHub at https://github.com/
wurstmeister/storm-kafka-0.8-plus for consuming the data from Kafka. This
section also defines the LogProcessingTopology topology that will chain together
all the bolts created in the preceding sections. Let's perform the following steps to
consume the data from Kafka and define a topology:

1. Add the following dependency and repository for Kafka in pom. xm1:

<dependencys>
<grouplds>net.wurstmeister.storm</groupIlds>
<artifactId>storm-kafka-0.8-plus</artifactIds>
<version>0.4.0</versions>

</dependency>

2. Add the following build plugins to pom.xml. These plugins will let us
execute LogProcessingTopology using Maven:

<builds>
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<version>2.5.1</versions>
<configurations>

[204]

Chapter 8

<sources>l.6</sources
<target>1l.6</target>
</configurations>
</plugin>

<plugins>
<artifactId>maven-assembly-plugin</artifactIds>
<version>2.2.1l</versions>
<configurations>
<descriptorRefss>
<descriptorRef>jar-with-dependencies
</descriptorRef>
</descriptorRefs>
<archives>
<manifests>
<mainClass />
</manifest>
</archive>
</configurations>
<executionss>
<executions>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</executions>
</executions>
</plugins>
</plugins>
</build>

Let's create a LogProcessingTopology class in the com. learningstorm.
stormlogprocessing package. This class uses the backtype.storm.
topology . TopologyBuilder class to define the topology. The following is
the source code of the LogProcessingTopology class with its explanation:

public class LogProcessingTopology
public static void main(String[] args) throws Exception

// zookeeper hosts for the Kafka cluster
ZkHosts zkHosts = new ZkHosts ("localhost:2181");

// Create the KafkaSpout configuartion
// Second argument is the topic name

[205]

Log Processing with Storm

// Third argument is the zookeeper root for Kafka
// Fourth argument is consumer group id

SpoutConfig kafkaConfig = new SpoutConfig(
zkHosts, "apache log", "", "id");

// Specify that the kafka messages are String

kafkaConfig.scheme = new SchemeAsMultiScheme (new
StringScheme ()) ;

// We want to consume all the first messages
// in the topic every time we run the topology
// to help in debugging. In production, this
// property should be false
kafkaConfig.forceFromStart = true;

// Now we create the topology
TopologyBuilder builder = new TopologyBuilder () ;

// set the kafka spout class

builder.setSpout ("KafkaSpout", new
KafkaSpout (kafkaConfig), 1);

// set the LogSplitter, IpToCountry, Keyword,
// and PersistenceBolt bolts

// class.
builder.setBolt ("LogSplitter",
new ApacheLogSplitterBolt (), 1)

.globalGrouping ("KafkaSpout") ;
builder.setBolt ("IpToCountry",
new UserInformationGetterBolt (
"./src/main/resources/GeoLiteCity.dat"), 1)
.globalGrouping ("LogSplitter") ;
builder.setBolt ("Keyword", new
KeyWordIdentifierBolt (), 1)
.globalGrouping ("IpToCountry") ;
builder.setBolt ("PersistenceBolt",

new PersistenceBolt ("localhost", "apachelog",
"root", "root"), 1).globalGrouping ("Keyword") ;
if (args != null && args.length > 0) {

// Run the topology on remote cluster.
Config conf = new Config() ;
conf.setNumWorkers (4) ;

try {

[206]

Chapter 8

StormSubmitter.submitTopology (args [0], conf,
builder.createTopology()) ;

} catch (AlreadyAliveException alreadyAliveException)

System.out.println(alreadyAliveException) ;
} catch (InvalidTopologyException
invalidTopologyException) {
System.out.println(invalidTopologyException) ;
}
} else {
// create an instance of the LocalCluster class

// for executing the topology in the local mode.

LocalCluster cluster = new LocalCluster() ;
Config conf = new Config() ;

// Submit topology for execution
cluster.submitTopology ("KafkaToplogy", conf,
builder.createTopology()) ;

try {
// Wait for some time before exiting

System'out'println("**********************Waiting

to consume from kafka") ;
Thread.sleep(10000) ;

} catch (Exception exception) {

System.out.println ("******kkkkkkk*k*k*k***Thread
interrupted exception : " + exception);

// kill KafkaTopology
cluster.killTopology ("KafkaToplogy") ;

// shut down the storm test cluster
cluster.shutdown () ;

}

{

This section covered how to chain the different types of bolts into a topology.
In addition to this, we covered how to consume the data from Kafka. In the

next section, we will learn how to deploy the topology.

[207]

Log Processing with Storm

Deploying a topology
This section will explain how you can deploy the LogProcessingTopology topology.
To deploy this topology, perform the following steps:

1.

Execute the following command on the MySQL console to define a
database schema:

create database apachelog;

use apachelog;

create table apachelog (
id INT NOT NULL AUTO INCREMENT,
ip VARCHAR(100) NOT NULL,
dateTime VARCHAR(200) NOT NULL,
request VARCHAR(100) NOT NULL,
response VARCHAR(200) NOT NULL,
bytesSent VARCHAR(200) NOT NULL,
referrer VARCHAR(500) NOT NULL,
useragent VARCHAR(500) NOT NULL,
country VARCHAR(200) NOT NULL,
browser VARCHAR(200) NOT NULL,
os VARCHAR(200) NOT NULL,
keyword VARCHAR(200) NOT NULL,
PRIMARY KEY (id)

)i

Before running the log-processing use cases, we need to produce some data
in Kafka using the KafkaLogProducer project, which was created at the start
of this chapter.

Go to the home directory of the stormlogprocessing project and run the
following command to build the project:

mvn clean install -DskipTests

Execute the following command to start the log-processing topology in the
local mode:

java -cp target/stormlogprocessing-0.0.l1-SNAPSHOT-jar-with-
dependencies.jar:$STORM HOME/storm-core-0.9.0.1.jar:$STORM HOME/
lib/* com.learningstorm.stormlogprocessing.LogProcessingTopology
/path/to/GeoLiteCity.dat localhost apachelog root root

[208]

Chapter 8

5. Now, go to the MySQL console and check out the rows in the
apachelog table.

select * from apachelog limit 2;

The following screenshot shows the data in the apachelog table:

e e +-—- - - -+
| id | ip | dateTime | request | response | bytesSent |
+ + B e e P L P +m—= + + -+
| 1 | 24.25.135.1%9 | 1-01-2011:06:20:31 -0500 | GET / HITP/1.1 | 200 | 864 |

| 2 | 180.183.50.208 | 1-01-2011:06:20:31 -0500 | GET / HTTP/1.1 | 200 | 864 |

2 i L 2

In this section, we covered how to deploy the log-processing topology. The next
section will explain how you can generate statistics from the data stored in MySQL.

MySQL queries
This section will explain how you can analyze or query the stored data to generate
some statistics. We will cover the following types of statistics:

* How to calculate the page hits from each country
* How to calculate the count of each browser

* How to calculate the count of each operating system

Calculating the page hits from each country

Run the following command on the MySQL console to calculate the number of hits
on a page from each country:

select country, count(*) from apachelog group by country;

The output for the preceding command is as follows:

T T Hmm e +
| country | count(*) |
T T Hmm e +
Asia/Pacific Region	9
Belarus	12
Belgium	12
Bosnia and Herzegovina	12
Brazil	36
Bulgaria	12

Log Processing with Storm

| canada | 218
| Europe | 24
| France | 44
| Germany | 48
| Greece | 12
| Hungary | 12
| India | 144
| Indonesia | 60
| Iran, Islamic Republic of | 12
| Italy | 24
| Japan | 12
| Malaysia | 12
| Mexico | 36
| NA | 10
| Nepal | 24
| Netherlands | 164
| Nigeria | 24
| Puerto Rico | 72
| Russian Federation | 60
| Singapore | 165
| Spain | 48
| Sri Lanka | 12
| Switzerland | 7
| Taiwan | 12
| Thailand | 12
| Ukraine | 12
| United Kingdom | 48
| United States | 5367
| Vietnam | 12
| Virgin Islands, U.S. | 129

36 rows in set (0.08 sec)

[210]

Chapter 8

Calculating the count for each browser

Run the following command on the MySQL console to calculate the count for
each browser:

select browser, count(*) from apachelog group by browser;

The output for the preceding command is as follows:

Fmmmmmmmm e emaoo Fommmmmm o +
| browser | count(*) |
Fmmmmmmmm e emaoo Fommmmmm o +
| Gecko(Firefox) | 6929 |
Fmmmmmmmm e emaoo Fommmmmm o +

1l row in set (0.00 sec)

Calculating the count for each operating
system

Run the following command on the MySQL console to calculate the count for each
operating system:

select os,count(*) from apachelog group by os;

The output for the preceding command is as follows:

#m-m-m - R +
| os | count(*) |
#m-m-m - R +
| WinXP | 6929 |
#m-m-m - R +

1l row in set (0.00 sec)

Summary

In this chapter, we learned how to process the Apache logfile, how to identify the
country name from the IP address, how to identify a user's operating system and
browser by analyzing the logfile, and how to extract the searched keyword by
analyzing the referrer URL.

In the next chapter, we will learn how to solve the machine learning problem
through Storm.

[211]

Machine Learning

In the previous chapter, you learned how to create a log processing application with
Storm and Kafka.

In this chapter, we will cover another important use case of Storm —machine learning.
The following are the major topics covered in this chapter:

* Introduction to machine learning

* Introduction to Trident-ML

* Introduction to the case study

* Producing training dataset into Kafka

* Building a Trident topology to build the clustering model
* Predicting the cluster for the test data

Exploring machine learning

Machine learning is a branch of applied computer science in which we build models
of real-world phenomena on the basis of existing data available for analysis, and
then using that model, we predict certain characteristics of data never seen before

by the model. Machine learning techniques are one of the important ways in which
decisions are made in applications. As most of the applications operate in real time,
using machine learning with Storm is a great way to implement decision making in
real-time applications.

Machine Learning

Grapbhically, the process of machine learning can be represented by the
following diagram:

1. Training Data

Machine Learning
Algorithm

2. Produces

4. Enriched Data

3. Data To Be Enriched

Machine learning

The process of building the model from data is called training in the machine learning
terminology. Training can happen in real time on a stream of data or can also be done
on historical data. When the training is done in real time, the model evolves over time
with the changed data. This kind of learning is referred to as online learning, and
when the model is updated every once in a while by running the training algorithm
on a new dataset, it is called offline learning.

When we discuss machine learning in the context of Storm, more often than not we
are discussing online learning algorithms.

The following are some of the real-world applications on machine learning:

* Online ad optimization
* New article clustering
* Spam detection

* Computer vision

* Sentiment analysis

Using Trident-ML

We introduced Trident in Chapter 5, Exploring High-level Abstraction in Storm with
Trident, of this book. Trident-ML (GitHub repository: https://github. com/
pmerienne/trident-ml) is an online machine-learning library written over Trident
that can be used to implement machine-learning algorithms in Storm applications.

[214]

Chapter 9

It supports the following algorithms out of the box:

* Linear classification
* Linear regression
* K-means clustering
* Feature normalization
* Text feature extraction
* Stream statistics (count, mean, variance, and standard deviation)
If the algorithm you are looking for is not implemented in Trident-ML, you can

easily implement it. Trident-ML also comes with a very useful pretrained Twitter
sentiment analyzer.

In Trident-ML, various parameters associated with the learned model is stored in

a TridentState object. As more training data comes in, these model parameters
can be updated. This TridentState object is then used in a DRPC server to retrieve
the model parameters to compute or predict new features of the incoming data and
enrich the stream to process further.

The following diagram illustrates a typical Trident-ML application:

1. Training Data Trident-ML

Topology

2. Produces/Updates

Model TridentState

B. Get Model Parameters

A. Data To Be Enriched C. Enriched Data

DRPC Server

The Trident-ML application

Next, we will look into the use case that we will be developing for in this chapter.

[215]

Machine Learning

The use case — clustering synthetic
control data

A control chart represents how a system behaves over time. It is a graph that plots
one or more variables of a system or process over time. This information can be used
for quality control in manufacturing and business process. When only one variable is
plotted against time, it is called a univariate control chart, and when more than one
variable is plotted against time, it is called a multivariate control chart.

In this chapter, we will be working with a synthetic control chart time series data
provided by the UCI Machine Learning Repository. Each of the control chart belongs
to one of the following categories:

* Normal

* Cyclic

* Increasing trend
* Decreasing trend
* Upward shift

e Downward shift

Each of the control charts consists of 60 columns, each a decimal value. There are 100

records for each category. Further details about the dataset can be found at http://
archive.ics.uci.edu/ml/databases/synthetic_control/synthetic control.
data.html.

We will be using 80 out of 100 records from each category to develop a clustering
model, and then we will use the remaining 20 records to predict the category for
them. We will be using the K-means clustering algorithm for this, which is provided
by Trident-ML.

But before going ahead with the producer, we need to download the dataset from
the UCI Machine Learning Repository located at http://archive.ics.uci.edu/
ml/databases/synthetic_control/synthetic control.data. Save this file so
that it can be used later for training and testing.

Producing a training dataset into Kafka

The first step while developing a machine-learning pipeline is to get the data in
a place from where we can feed it to the training algorithm. In this case study,
we will be using Kafka as the source of the training data.

[216]

Chapter 9

For this, we will be writing a Kafka producer that will stream 80 percent of the data in
the data file to the Kafka broker. The remaining 20 percent of the data will be stored in
a file, which we will use to test our clustering model created by our topology.

We will be creating a Maven project for publishing data into Kafka. The following
are the steps for creating the producer:

1. Create a new Maven project with the com.learningstorm group ID and the
ml-kafka-producer artifact ID.

2. Add the following dependencies for Kafka in the pom. xm1 file:

<!-- Apache Kafka Dependency -->
<dependency>
<grouplds>org.apache.kafka</groupIds>
<artifactIdskafka 2.10</artifactIds>
<version>0.8.0</version>
<exclusionss>
<exclusion>
<groupId>com.sun.jdmk</groupIld>
<artifactId>jmxtools</artifactId>
</exclusion>
<exclusion>
<groupId>com.sun. jmx</groupIlds>
<artifactId>jmxri</artifactIds>
</exclusion>
</exclusions>
</dependency>

3. Add the following build plugins to the pom.xm1 file. It will allow us to
execute the producer using Maven:

<plugin>
<grouplds>org.codehaus.mojo</grouplds>
<artifactIdsexec-maven-plugin</artifactIds>
<version>1.2.1l</version>
<executionss>
<execution>
<goals>
<goal>exec</goal>
</goals>
</executions
</executions>
<configuration>
<executable>java</executable>
<includeProjectDependenciess>true
</includeProjectDependencies>
<includePluginDependencies>false

[217]

Machine Learning

</includePluginDependencies>
<classpathScope>compile</classpathScope>

<mainClass>com.learningstorm.ml.kafka.KafkaProducer
</mainClass>

</configurations>
</plugin>

4. Now, we will create the com.learningstorm.ml.kafka.KafkaProducer
class that reads the input dataset and produces 80 percent of the data into
Kafka to train the model and the remaining data in a file that will be used
for predictions later. The following is the code of the KafkaProducer class:

public class KafkaProducer {

public static void main(String[] args) throws IOException

{

// Build the configuration required for connecting to
Kafka

Properties props = new Properties();

// List of kafka brokers.
props.put ("metadata.broker.list", "localhost:9092");

// Serializer used for sending data to kafka.
//Since we are sending

// strings, we are using StringEncoder.

props.put ("serializer.class",
"kafka.serializer.StringEncoder") ;

// We want acks from Kafka that messages are properly
received.

props.put ("request.required.acks", "1");

// Create the producer instance
ProducerConfig config = new ProducerConfig(props) ;

Producer<String, String> producer =
new Producer<String, Strings> (config) ;

// This is the input file. This should be the path to
the file downloaded

// from UIC Machine Learning Repository at

// http://archive.ics.uci.edu/ml/databases/

synthetic control/synthetic control.data

File file =

new File("/home/anand/Desktop/synthetic_control.data") ;

[218]

Chapter 9

Scanner scanner = new Scanner (file) ;

// This is the output file for prediction data.
Change it to something

// appropiate for your setup

File predictioFile =

new File ("/home/anand/Desktop/prediction.data") ;

BufferedWriter writer =
new BufferedWriter (new FileWriter (predictioFile)) ;

int 1 = 0;

while (scanner.hasNextLine ()) {
String instance = scanner.nextLine() ;
if(i++ % 5 == 0){

// write to file
writer.write (instance+"\n") ;

} else {
// produce to kafka
KeyedMessage<String, Strings> data =
new KeyedMessage<String, Strings>(
"training", instance) ;

producer.send (data) ;

// close the files
scanner.close() ;
writer.close() ;

// close the producer
producer.close() ;

System.out.println ("Produced data") ;

}

Now that the producer is ready, make sure Kafka is running on your system.
Now, run the producer with the following command:

mvn exec:java

The following output is displayed:

.o
[INFO] Building ml-kafka-producer 0.0.1-SNAPSHOT

[INFO] == == == m o oo oo oo oo o oo

Machine Learning

[INFO]

[INFO] --- exec-maven-plugin:l.2.l:java (default-cli) @ ml-kafka-
producer ---

Produced data

Now, let's verify that the data has been produced into Kafka by executing the
following command and verifying that the topic has been created:

./bin/kafka-list-topic.sh --zookeeper localhost:2181
The following output is displayed:
topic: training partition: 0 leader: 0 replicas: 0 isr: 0

The file that will be used for prediction should also be generated at the path
given in the class. Please verify that it exists.

Building a Trident topology to build the
clustering model

Now that we have the data to be used to train and predict in place, we will develop
the Trident topology using the Trident-ML library.

Again, we will create a Maven project to implement our topology. The following are
the steps to create this project:

1.

Create a new Maven project with the com. learningstorm group ID
and the m1l artifact ID.

Add the following dependencies for Kafka in the pom.xm1 file:

<!-- Dependency for Storm -->
<dependencys>
<groupIds>storm</groupIld>
<artifactIdsstorm-core</artifactIds>
<version>0.9.0.1l</versions>
<scope>provided</scope>
</dependency>

<!-- Dependency for Storm-Kafka spout -->

<dependencys>
<grouplds>net.wurstmeister.storm</groupIlds>
<artifactId>storm-kafka-0.8-plus</artifactIds>
<version>0.4.0</versions>

</dependency>

<!-- Dependency for Trident-ML -->

[220]

Chapter 9

<dependencys>
<groupId>com.github.pmerienne</groupIlds>
<artifactIdstrident-ml</artifactIds>
<version>0.0.4</version>

</dependency>

Add the following repository in the pom.xm1 file:

<repositorys
<id>clojars.org</id>
<urlshttp://clojars.org/repo</urls>
</repository>

Add the following build plugins to the pom.xm1 file. It will allow us to
execute the Trident topology in the local mode using Maven:

<plugin>

<groupld>org.codehaus.mojo</groupIlds>

<artifactIdsexec-maven-plugin</artifactIds>

<version>1.2.1</version>

<executionss>
<execution>

<goals>
<goals>exec</goal>
</goals>

</executions>

</executionss>

<configurations
<executable>java</executable>
<includeProjectDependencies>true
</includeProjectDependencies>
<includePluginDependencies>false
</includePluginDependencies>
<classpathScope>compile</classpathScope>
<mainClass>com.learningstorm.ml.TridentMLTopology
</mainClass>

</configurations>

</plugin>

The Trident-ML library takes the input—for both model building and later
prediction —as objects of the com.github.pmerienne.trident.ml.core.
Instance class. Let's create the com. learningstorm.ml.FeaturesToValues
class that will convert the first string from the tuple into an Instance object.
It will split the string on space character and convert each number into a
double value to create an Instance object. The following is the code for the
FeaturesToValues class:

public class FeaturesToValues extends BaseFunction (

[221]

Machine Learning

@SuppressWarnings ("rawtypes")
public void execute (TridentTuple tuple, TridentCollector
collector)

// get the input string

String line = tuple.getString(0) ;

double[] features = new double[60];

// split the input string and iterate over them and
covert to double

String[] featureList = line.split ("\\s+");
for(int i = 0; 1 < features.length; i++){
features[i] = Double.parseDouble (featureList [i]) ;

// emit the Instance object with the features from
given input string
collector.emit (new Values (new Instance (features))) ;

}

6. Now, we will create the Trident topology that will create the K-means
clustering model and will also expose this model as a DRPC call so that
the model can be used to predict the class for the test data. Create the com.
learningstorm.ml.TridentMLTopology class with the following code:

public class TridentMLTopology {

public static void main(String[] args) throws
InterruptedException, IOException {
// Kafka Spout definition
// Specify the zk hosts for Kafka, change as needed
BrokerHosts brokerHosts =
new ZkHosts ("localhost:2181") ;

// Specify the topic name for training and

the client id

// here topic name is 'training' and

client id is 'storm'

TridentKafkaConfig kafkaConfig =

new TridentKafkaConfig(brokerHosts, "training",
"storm") ;

// We will always consume from start so that we can run
the topology multiple times while debugging.
In production, this should be false.

[222]

Chapter 9

kafkaConfig.forceFromStart = true;

// We have string data in the kafka, so specify string
scheme here

kafkaConfig.scheme = new SchemeAsMultiScheme (
new StringScheme ()) ;

// Define the spout for reading from kafka
TransactionalTridentKafkaSpout kafkaSpout =
new TransactionalTridentKafkaSpout (kafkaConfig) ;

// Topology definition
// now we will define the topology that will build
the clustering model

TridentTopology topology = new TridentTopology () ;

// Training stream:

// 1. Read a from string from kafka

// 2. Convert trident tuple to instance
// 3. Update the state of clusterer
TridentState kmeansState =
topology.newStream("samples", kafkaSpout)

.each (new Fields("str"), new FeaturesToValues(),
new Fields("instance")) .partitionPersist (
new MemoryMapState.Factory (), new Fields("instance"),

new ClusterUpdater ("kmeans", new KMeans(6))) ;

// Now we will build LocalDRPC that will be used to
predict the cluster of a tuple

LocalDRPC localDRPC = new LocalDRPC() ;

// Clustering stream

// 1. Define a new clustering stream with name =
'predict’

// 2. Convert DRPC args to instance

// 3. Query cluster to classify the instance

// We are using KMeans (6) as we want to cluster into

6 categories

topology.newDRPCStream ("predict", localDRPC)

.each(new Fields("args"), new FeaturesToValues(),

new Fields ("instance")).

stateQuery (kmeansState, new Fields("instance"),

new ClusterQuery ("kmeans"), new Fields ("prediction"));

// Create a new local cluster for testing

[223]

Machine Learning

LocalCluster cluster = new LocalCluster() ;

// submit the topology for execution
cluster.submitTopology ("kmeans", new Config(),
topology.build()) ;

// give the topology enough time to create the
clustering model

Thread.sleep(10000) ;

// Create the prediction consumer, please change the
path for input and output
// file as needed

PredictionConsumer predictionConsumer =
new PredictionConsumer (localDRPC,

" /home/anand/Desktop/prediction.data",
" /home/anand/Desktop/predicted.data") ;

// Predict and write the output
predictionConsumer.predict () ;

// shutdown cluster and drpc
cluster.shutdown () ;
localDRPC.shutdown () ;

}

7. Now that the topology is ready, let's create a consumer that will predict
the category for the test data generated in the last section. For this, create
the com.learningstorm.ml.PredictionConsumer class with the
following code:

public class PredictionConsumer {
// drpc instance used for prediction
private final LocalDRPC drpc;

// input file, generated by kafka producer for prediction
private final String input;

// output file, where the predicted data will be stored
private final String output;

public PredictionConsumer (LocalDRPC drpc, String input,
String output) {

this.drpc = drpc;

this.input = input;

[224]

Chapter 9

}

this.output = output;

/**

* This method predicts the categories for the records in
the input file and writes them to the output file.

*/

public void predict() throws IOException({

// Scanner on the input file
Scanner scanner = new Scanner (new File (input)) ;

// Writer for the output

BufferedWriter writer =
new BufferedWriter (new FileWriter (new File (output))) ;

while (scanner.hasNextLine ()) {
String line = scanner .nextLine();
if (line.trim() .length()==1) {
// empty line, skip
continue;

// predict the category for this line
String prediction = drpc.execute ("predict", line);

// write the predicted category for this line
writer.write (prediction+"\n") ;

// close the scanner and writer
scanner.close() ;
writer.close() ;

Now we have all the components in place and we can run the topology.
Now, when running, it will first create the clustering model and then
classify the test data generated earlier using that mode. To run it

using Maven, execute the following command:

mvn exec:java

[225]

Machine Learning

If we are not running in the local mode DRPC, we will need to launch
the DRPC server before running the topology. The following are the
steps to run the DRPC server in the clustered mode:

. 1. Start the DRPC server with the following command:
% bin/storm drpc
7~ 2. Add DRPC servers in the storm.yaml file with the following entry:
drpc.servers:

- "gserverl"

- "server2" -

9. After running the preceding command, you should be able to see the output
with the classified example. Let's look at the first line in that file, which is
shown in the following screenshot:

Predicted Data

File Edit View Search Terminal Help
[§l§25.7812 34.4632 31.3381 31.2834 2

32.8717 29.2171 36.0253 32.337

2834, 28. 92@? 33 7596, 25.3969, 27. ?849 35.2479, 2? 1159 32 8?1? 29 21?1
36.0253, 32.337, 34.5249, 32.8717, 34.1173, 26.5235, 27.6623, 26.3693, 25.7744
29,27, 30.7326, 29.50534, 33.0292, 25.04, 28.9167, 24.3437, 26.1203, 34.9424,
25.0293, 26.6311, 35.6541, 28.4353, 29.1495, 28.1584, 26.1927, 33.3182, 308.97
72, 27.0443, 35.5344, 26.2353, 28.9964, 32.0036, 31.0558, 34.2553, 28.8721, 28
L9402, 35.4973, 29.747, 31.4333, 24.5556, 33.7431, 25.0466, 34.9318, 34.9879,
32.4721, 33.3759, 25.4652, 25.8?1?]],!]]

-- VISUAL -- 1,482 Top

The predicted data

The first highlighted string is the input tuple for which the prediction is to be made.
After that, we can see that this input instance was converted into an Instance
object with 1abel = null and features extracted from the input string in the form
of a double array. The final highlighted number — 1, in this case —represents the
predicted category for this input.

Here, we have run the topology and classification in the local mode using
LocalCluster and LocalDRPC, but this can run equally well on a Storm cluster.
The only change that we will need to make is to write predictions to some central
storage, such as NFS, instead of the local filesystem.

[226]

Chapter 9

Summary

In this chapter, we introduced the topic of machine learning. You also learned how
to run K-means clustering algorithms over Storm using Trident-ML and then use
the generated model to predict the category of data using DRPC.

Although we used Trident-ML in this chapter, there are other machine
learning packages also available for Storm. Storm.pattern (GitHub repository:
https://github.com/quintona/storm-pattern) is one such library that can
import models from other non-Storm packages, such as R, Weka, and so on.

With this, we come to the end of this book. Through the course of this book,
we have come a long way from taking our first steps with Apache Storm to
developing real-world applications with it. Here, we would like to summarize
everything that we learned.

We introduced you to the basic concepts and components of Storm and covered

how we can write and deploy/run the topology in the local and clustered modes.

We also walk through the basic commands of Storm and cover how we can modify
the parallelism of the Storm topology in runtime. We also dedicated an entire chapter
to monitoring Storm, which is an area often neglected during development, but is a
critical part of any production setting. You also learned about Trident, which is an
abstraction over the low-level Storm API to develop more complex topologies and
maintain the application state.

No enterprise application can be developed in a single technology, and so our

next step was to see how we could integrate Storm with other Big Data tools and
technologies. We saw specific implementation of Storm with Kafka, Hadoop, HBase,
and Redis. Most of the Big Data applications use Ganglia as a centralized monitoring
tool. Hence, we also covered how we could monitor the Storm cluster through JMX
and Ganglia.

You also learned about various patterns to integrate diverse data sources with Storm.
Finally, in Chapter 8, Log Processing with Storm, and this chapter, we implemented
two case studies in Apache Storm, which can serve as a starting point for developing
more complex applications.

We hope that reading this book has been a fruitful journey for you, and that

you developed a basic understanding of Storm and, in general, various aspects

of developing a real-time stream processing application. Apache Storm is turning
into a de facto standard for stream processing, and we hope that this book will act
as a catalyst for you to jumpstart the exciting journey of building a real-time
stream processing applications.

[227]

A

aggregate 110
aggregator chaining
about 114
working 114
Aggregator interface, Trident
about 112
CombinerAggregator interface 113
ReducerAggregator interface 111
aggregator, Trident
about 109,110
aggregator chaining 114
partition aggregate 110
persistent aggregate 114
all grouping 49
Apache Hadoop. See also Hadoop
about 131
bundle, obtaining 137, 138
environment variables, setting up 137, 138
exploring 131, 132
HDFS, setting up 138-141
installing 135
password-less SSH, setting 136, 137
YARN, setting up 141-144
Apache log
producing, in Kafka 184-188
Apache Storm. See Storm
ApplicationMaster (AM) 134
at-least-once-processing topology 116
at-most-one-processing topology 116

B

backtype.storm.spout.ISpout interface 12
backtype.storm.task.IBolt interface 13

Index

backtype.storm.topology.IBasicBolt
interface 14
BaseAggregator<State> interface, methods
aggregate(State s, TridentTuple tuple,
TridentCollector collector) 112
complete(State state, TridentCollector
tridentCollector) 112
init(Object batchld, TridentCollector
collector) 112
batchGlobal operation
utilizing 108
batch processing 7
bolt
about 13
methods 14
BoltStatistics class 76
broadcast operation
utilizing 107
broker 80, 82

clientPort property 35
clustering model
building 220-226
clustering synthetic control data use case
about 216
URL, for dataset 216
cluster setup requisites
JDK 1.7 136
ssh-keygen 136
cluster statistics
fetching, Nimbus thrift client used 66-77
obtaining, Nimbus thrift client used 65
CombinerAggregator interface 113

CombinerAggregator<T> interface, methods direct grouping 50

combine(T vall, T val2) 113 Distributed RPC 126-130
init() 113
zero() 113 E
components, Ganglia
Gmetad 157 edit logs 133
Gmond 157 execute() method 120

web interface 157 executor 42

components, Hadoop cluster

HDFS 132 F

YARN 132, 134 features, Storm
components, HDFS about 8

DataNode 133 easy to operate 9

HDEFS client 133 fasty 8 P

NameNode 133
Secondary NameNode 133
components, Storm

fault tolerant 9
guaranteed data processing 9
horizontally scalable 8

about 9 programming language agnostic 9
N1mbu§ 9 des 9 fields grouping
supervisor nodes about 48

ZooKeeper cluster 10

components, Storm topology calculating 49

bolt 13
spout 12 G
stream 11 Ganglia
components, YARN cluster about 153,183
ApplicationMaster (AM) 134 components 157
NodeManager (NM) 134 used, for monitoring Storm cluster 156-166
ResourceManager (RM) 134 Ganglia web interface 157
consumer 81, 82 Git
count field 110 installing 17
custom grouping 52 global grouping 50
global operation
D utilizing 106
dataDir property 35 ng::; 1155;
data model, Storm 10 .
groupBy operation

DataNode component 133

data retention 83 utilizing 115

development environment setup H
Git, installing 17
Java SDK 6, installing 15 Hadoop
Maven, i.nstalling 16 Storm, integrating with 144, 145
performing 15 Hadoop 2.2.0
STS IDE, installing 17-19 URL, for downloading 137
development machine Hadoop Common 132
Storm, setting up on 26, 27 Hadoop Distributed File System. See HDFS

[230]

HBase
about 183
Storm, integrating with 166-176
HBase installation
URL, for blog 167
HBaseOperations class
methods 168
HDFS
about 132
components 133
key assumptions, for designing 132
setting up 138-141
HDEFS client 133
hdfs dfs command 141
Hello World topology
deploying, on single-node cluster 28-31

initLimit property 35
installation, Apache Hadoop 135
installation, Git 17

installation, Java SDK 6 15
installation, Maven 16
installation, STS IDE 17-19

J

Java Managements Extensions. See JMX
Java Runtime Environment 6 (JRE 6) 18
Java SDK 6

installing 15

URL, for downloading 15
Java Virtual Machine (JVM) 154
JMX

about 183

used, for monitoring Storm cluster 154-156

jmxtrans tool 157
jps command 140

K

Kafka
about 79
Apache log, producing in 184-188
integrating, with Storm 92-98

Kafka architecture
about 80
broker 82
consumer 81, 82
data retention 83
producer 80
replication 81
Kafka spout
defining 204-207
Kafka spout integration
URL 204
Kafka topic distribution 81
keyword
extracting, to be searched 196-198

L

LearningStormClusterTopology
about 59
statistics 60
local or shuffle grouping 51
logfile
browser type, identifying from 192-195
operating system type, identifying
from 192-195
user's country name, identifying
from 192-195
log-processing topology
about 183
elements 184

machine learning

about 213

exploring 214

real-world applications 214
MapGet() function 129
Maven

installing 16

URL, for downloading stable release 16
MemoryMapState.Factory() method 128
message processing

guaranteeing 53-55
methods, bolt

execute(Tuple input) 14

setting up 83

prepare(Map stormConf, TopologyContext
training dataset, producing into 216-220

context, OutputCollector collector) 14

[231]

methods, spout
ack(Object msgld) 13
fail(Object msgld) 13
nextTuple() 12
open() 13
monitoring 58
multiple Kafka brokers
running, on single node 88
multivariate control chart 216
MySQL queries
about 209
count, calculating for each browser 211
count, calculating for each operating
system 211
page hit, calculating from each country 209

N

NameNode component 133
Nimbus 9
NimbusConfiguration class 67
nimbus-node 57
Nimbus thrift API 65
Nimbus thrift client
information, fetching with 65-77
used, for cluster statistics 65
NodeManager (NM) component 134
non-transactional topology
about 116-118
at-least-once-processing 116
at-most-one-processing 116

(0

offline learning 214
offset 80
online learning 214
opaque transactional spout
characteristics 125
opaque transactional topology 125,126
operation modes, Storm topology
local mode 14
remote mode 15

P

parallelism, sample topology
rebalancing 46, 47

parallelism, Storm topology
about 42
configuring, at code level 43, 44
executor 42
rebalancing 45
tasks 42
worker process 42
partition aggregate 110
partitionAggregate function
working 110
partitionBy operation
utilizing 105
partition operation
utilizing 108, 109
password-less SSH
setting up 136, 137
PATH variable 15
persistent aggregate 114
persistentAggregate function 128
process data
persisting 198-204
processing semantics
performing 123
producer
about 80
creating 89-91
properties, server.properties file
broker.id 84
host.name 84
log.dirs 84
log.retention.hours 84
num.partitions 84
port 84
zookeeper.connect 84

R

real-world applications, machine
learning 214
rebalance 45
recordGenerator() method 118
Redis
about 183
Storm, integrating with 177-182
ReducerAggregator interface 111
ReducerAggregator<T> interface, methods
init() 111
reduce(T curr, TridentTuple tuple) 111

[232]

remote cluster, Storm cluster
sample topology, deploying 40, 41
topology, deploying 39
repartitioning operations, Trident
about 104
batchGlobal operation, utilizing 108
broadcast operation, utilizing 107
global operation, utilizing 106
partitionBy operation, utilizing 105
partition operation, utilizing 108, 109
shuffle operation, utilizing 104
replication 81
ResourceManager (RM) 134

S

sample Kafka producer 89
sample topology
deploying, on remote Storm cluster 40, 41
developing 19-24
executors, distributing 44
tasks, distributing 44
worker processes, distributing 44
Secondary NameNode component 133
server log line
splitting 188-192
shuffle grouping 48
shuffle operation
utilizing 104
single node
multiple Kafka brokers, running on 88
single-node cluster
Hello World topology, deploying on 28-31
single-node Kafka cluster
setting up 83-86
single-node ZooKeeper instance
using 86
Split function 129
spout
about 12
methods 12, 13
SpoutStatistics class 71
stateQuery() method 129
statistics, LearningStormClusterTopology
Bolts (All time) 61
Spouts (All time) 60, 61
Topology actions 60
Topology stats 60

Storm
about 7
components 9
data model 10
features 8,9
home page 58
integrating, with Hadoop 144, 145
integrating, with HBase 166-176
integrating, with Redis 177-182
Kafka, integrating with 92-98
setting up, on single development
machine 26, 27
URL 38
URL, for downloading latest release 26
use cases 7,8
versus Trident 100
Storm client
setting up 40
Storm cluster
architecture 10
monitoring, Ganglia used 156-166
monitoring, JMX used 154-156
setting up 37
three-node Storm cluster deployment
diagram 38
three-node Storm cluster, setting up 38, 39
topology, deploying on remote cluster 39
Storm-Starter topologies
deploying, on Storm-YARN 149-151
Storm topology
about 11
components 11
parallelism, configuring 42
Storm UI
starting 57
used, for monitoring topology 58-64
Storm UI daemon
Cluster Summary 58
Nimbus Configuration 58
Supervisor summary 58
Topology summary 59
Storm-YARN
setting up 145-149
Storm-Starter topologies, deploying
on 150, 151
stream 11

[233]

stream grouping
about 48
all grouping 49
custom grouping 52
direct grouping 50
fields grouping 48, 49
global grouping 50
local or shuffle grouping 51
shuffle grouping 48
types 48
stream processing 7
STS
URL, for downloading latest version 17
STS IDE
installing 17-19
supervisor nodes 9
SupervisorStatistics class 68
syncLimit property 35

T

task 42
three-node Kafka cluster
setting up 86-88
three-node Storm cluster
deployment diagram 38
setting up 38, 39
ThriftClient class 67
tickTime property 35
topics 80
topology
defining 204-207
deploying 208, 209
deploying, on remote Storm cluster 39
monitoring, Storm Ul used 58-64
topology state
maintaining, with Trident 123
training 214
training dataset
producing, into Kafka 216-220
transactional topology 124, 125

transaction spout implementation
URL 125
Trident
about 100
advantage 100
data model 100
filter 100-102
function 100, 101
projection 100
sample topology, creating 118-122
topology, building 220-226
topology state, maintaining with 123
versus Storm 100
Trident-ML
about 214
using 215
TridentTuple interface 100
tuple
about 10
URL, for set of operations 11

U

UCI Machine Learning Repository
about 216
URL 216

univariate control chart 216

use cases, Storm
continuous computation 8
distributed RPC 8
real-time analytics 8
stream processing 7

\'

Vanilla Storm topology 100

w

worker process 42

[234]

Y

yarn command 143

Yet Another Resource Negotiator (YARN)
about 132,134
setting up 141-144
URL, for documentation 143

y4

ZooKeeper

setting up 25, 26

URL 34

URL, for downloading latest release 25
ZooKeeper cluster

about 10

setting up 33, 34
ZooKeeper ensemble

deploying 34-36

[235]

open source

community experience distilled

PUBLISHING

Thank you for buying
Learning Storm

About Packt Publishing

Packt, pronounced 'packed’, published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub. com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Storm Blueprints: Patterns
for Distributed Real-time
Computation

Storm Blueprints: Patterns for

Distributed Real-time Computation
ISBN: 978-1-78216-829-4 Paperback: 336 pages

Use Storm design patterns to perform distributed,
real-time big data processing, and analytics for
real-world use cases

1. Process high-volume logfiles in real time while
learning the fundamentals of Storm topologies
and system deployment.

2. Deploy Storm on Hadoop (YARN) and
understand how the systems complement
each other for online advertising and
trade processing.

Storm Real-time
Processing Cookbook

Storm Real-time Processing

Cookbook
ISBN: 978-1-78216-442-5 Paperback: 254 pages

Efficiently process unbounded streams of data in
real time

1. Learn the key concepts of processing data in
real time with Storm.

2. Concepts ranging from log stream processing
to mastering data management with Storm.

3. Written in a Cookbook style, with plenty
of practical recipes with well-explained
code examples and relevant screenshots
and diagrams.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

HTMLS5 Data and
Services Cookbook

HTML5 Data and Services

Cookbook
ISBN: 978-1-78355-928-2 Paperback: 480 pages

Over one hundred website building recipes utilizing
all the modern HTMLS features and techniques!

1. Learn to effectively display lists and tables,
draw charts, animate elements, and use modern
techniques such as templates and data-binding
frameworks through simple and short examples.

2. Examples utilizing modern HTMLS5 features
such as rich text editing, file manipulation,
graphics drawing capabilities, and
real-time communication.

Big Data Analytics with
R and Hadoop

Big Data Analytics with R

and Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R.

2. Learn data analytics with R and the
Hadoop platform.

3. Handle HDFS data within R.

4. Understand Hadoop streaming with R.

Please check www.PacktPub.com for information on our titles

Nikki
Typewriter
uploaded by [stormrg]

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Storm on
a Single Machine
	Features of Storm
	Storm components
	Nimbus
	Supervisor nodes
	The ZooKeeper cluster

	The Storm data model
	Definition of a Storm topology
	Operation modes
	Setting up your development environment
	Installing Java SDK 6
	Installing Maven
	Installing Git – distributed version control
	Installing the STS IDE

	Developing a sample topology
	Setting up ZooKeeper
	Setting up Storm on a single development machine
	Deploying the sample topology on a
single-node cluster

	Summary

	Chapter 2: Setting Up a Storm Cluster
	Setting up a ZooKeeper cluster
	Setting up a distributed Storm cluster

	Deploying a topology on a remote
Storm cluster
	Deploying the sample topology on the remote cluster

	Configuring the parallelism of a topology
	The worker process
	The executor
	Tasks
	Configuring parallelism at the code level
	Distributing worker processes, executors, and tasks in the sample topology

	Rebalancing the parallelism of a topology
	Rebalancing the parallelism of the sample topology

	Stream grouping
	Shuffle grouping
	Fields grouping
	All grouping
	Global grouping
	Direct grouping
	Local or shuffle grouping
	Custom grouping

	Guaranteed message processing
	Summary

	Chapter 3: Monitoring the Storm Cluster
	Starting to use the Storm UI
	Monitoring a topology using the Storm UI
	Cluster statistics using the Nimbus
thrift client
	Fetching information with the Nimbus
thrift client

	Summary

	Chapter 4: Storm and Kafka Integration
	The Kafka architecture
	The producer
	Replication
	Consumers
	Brokers
	Data retention

	Setting up Kafka
	Setting up a single-node Kafka cluster
	Setting up a three-node Kafka cluster
	Running multiple Kafka brokers on a single node

	A sample Kafka producer
	Integrating Kafka with Storm
	Summary

	Chapter 5: Exploring High-level Abstraction in Storm
with Trident
	Introducing Trident
	Understanding Trident's data model
	Writing Trident functions, filters, and projections
	Trident functions
	Trident filters
	Trident projections

	Trident repartitioning operations
	The shuffle operation
	The partitionBy operation
	The global operation
	The broadcast operation
	The batchGlobal operation
	The partition operation

	Trident aggregators
	The partition aggregate
	The aggregate
	The ReducerAggregator interface
	The Aggregator interface
	The CombinerAggregator interface

	The persistent aggregate
	Aggregator chaining

	Utilizing the groupBy operation
	A non-transactional topology
	A sample Trident topology
	Maintaining the topology state with Trident
	A transactional topology
	The opaque transactional topology
	Distributed RPC
	When to use Trident
	Summary

	Chapter 6: Integration of Storm with
Batch Processing Tools
	Exploring Apache Hadoop
	Understanding HDFS
	Understanding YARN

	Installing Apache Hadoop
	Setting up password-less SSH
	Getting the Hadoop bundle and setting up environment variables
	Setting up HDFS
	Setting up YARN

	Integration of Storm with Hadoop
	Setting up Storm-YARN

	Deploying Storm-Starter topologies on Storm-YARN
	Summary

	Chapter 7: Integrating Storm with JMX, Ganglia, HBase, and Redis
	Monitoring the Storm cluster using JMX
	Monitoring the Storm cluster using Ganglia
	Integrating Storm with HBase
	Integrating Storm with Redis
	Summary

	Chapter 8: Log Processing with Storm
	Server log-processing elements
	Producing the Apache log in Kafka
	Splitting the server log line
	Identifying the country, the operating system type, and the browser type
from the logfile
	Extracting the searched keyword
	Persisting the process data
	Defining a topology and the Kafka spout
	Deploying a topology
	MySQL queries
	Calculating the page hits from each country
	Calculating the count for each browser
	Calculating the count for each operating system

	Summary

	Chapter 9: Machine Learning
	Exploring machine learning
	Using Trident-ML
	The use case – clustering synthetic control data
	Producing training dataset into Kafka
	Building a Trident topology to build the clustering model
	Summary

	Index
	Uploaded by [StormRG]

