
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Monitoring with Ganglia

Matt Massie, Bernard Li, Brad Nicholes,
and Vladimir Vuksan

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.allitebooks.com

http://www.allitebooks.org

Monitoring with Ganglia
by Matt Massie, Bernard Li, Brad Nicholes, and Vladimir Vuksan

Copyright © 2013 Matthew Massie, Bernard Li, Brad Nicholes, Vladimir Vuksan. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette
Production Editor: Kara Ebrahim
Copyeditor: Nancy Wolfe Kotary
Proofreader: Kara Ebrahim

Indexer: Ellen Troutman-Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Kara Ebrahim

November 2012: First Edition.

Revision History for the First Edition:
2012-11-7 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449329709 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Monitoring with Ganglia, the image of a Porpita pacifica, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-32970-9

[LSI]

1352302880

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449329709
http://www.allitebooks.org

Table of Contents

Preface . ix

1. Introducing Ganglia . 1
It’s a Problem of Scale 1
Hosts ARE the Monitoring System 2
Redundancy Breeds Organization 3
Is Ganglia Right for You? 4
gmond: Big Bang in a Few Bytes 4
gmetad: Bringing It All Together 7
gweb: Next-Generation Data Analysis 8
But Wait! That’s Not All! 9

2. Installing and Configuring Ganglia . 11
Installing Ganglia 11

gmond 11
gmetad 14
gweb 16

Configuring Ganglia 20
gmond 20
gmetad 33
gweb 38

Postinstallation 40
Starting Up the Processes 41
Testing Your Installation 41
Firewalls 41

3. Scalability . 43
Who Should Be Concerned About Scalability? 43
gmond and Ganglia Cluster Scalability 43
gmetad Storage Planning and Scalability 44

RRD File Structure and Scalability 44

iii

www.allitebooks.com

http://www.allitebooks.org

Acute IO Demand During gmetad Startup 46
gmetad IO Demand During Normal Operation 46
Forecasting IO Workload 47
Testing the IO Subsystem 48
Dealing with High IO Demand from gmetad 50

4. The Ganglia Web Interface . 53
Navigating the Ganglia Web Interface 53

The gweb Main Tab 53
Grid View 53
Cluster View 54
Host View 58
Graphing All Time Periods 58

The gweb Search Tab 60
The gweb Views Tab 60
The gweb Aggregated Graphs Tab 63

Decompose Graphs 64
The gweb Compare Hosts Tab 64
The gweb Events Tab 64

Events API 66
The gweb Automatic Rotation Tab 67
The gweb Mobile Tab 67
Custom Composite Graphs 67
Other Features 69
Authentication and Authorization 70

Configuration 70
Enabling Authentication 70
Access Controls 71
Actions 72
Configuration Examples 72

5. Managing and Extending Metrics . 73
gmond: Metric Gathering Agent 73
Base Metrics 75
Extended Metrics 77
Extending gmond with Modules 78

C/C++ Modules 79
Mod_Python 89
Spoofing with Modules 96

Extending gmond with gmetric 97
Running gmetric from the Command Line 97
Spoofing with gmetric 99

How to Choose Between C/C++, Python, and gmetric 100

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

XDR Protocol 101
Packets 102
Implementations 103

Java and gmetric4j 103
Real World: GPU Monitoring with the NVML Module 104

Installation 104
Metrics 105
Configuration 105

6. Troubleshooting Ganglia . 107
Overview 107

Known Bugs and Other Limitations 107
Useful Resources 108

Release Notes 108
Manpages 108
Wiki 108
IRC 108
Mailing Lists 108
Bug Tracker 109

Monitoring the Monitoring System 109
General Troubleshooting Mechanisms and Tools 110

netcat and telnet 110
Logs 114
Running in Foreground/Debug Mode 114
strace and truss 115
valgrind: Memory Leaks and Memory Corruption 116
iostat: Checking IOPS Demands of gmetad 116
Restarting Daemons 117
gstat 117

Common Deployment Issues 119
Reverse DNS Lookups 119
Time Synchronization 119
Mixing Ganglia Versions Older than 3.1 with Current Versions 119
SELinux and Firewall 120

Typical Problems and Troubleshooting Procedures 120
Web Issues 120
gmetad Issues 125
rrdcached Issues 126
gmond Issues 126

7. Ganglia and Nagios . 129
Sending Nagios Data to Ganglia 130
Monitoring Ganglia Metrics with Nagios 133

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Principle of Operation 134
Check Heartbeat 135
Check a Single Metric on a Specific Host 135
Check Multiple Metrics on a Specific Host 136
Check Multiple Metrics on a Range of Hosts 136
Verify that a Metric Value Is the Same Across a Set of Hosts 137

Displaying Ganglia Data in the Nagios UI 138
Monitoring Ganglia with Nagios 139

Monitoring Processes 139
Monitoring Connectivity 140
Monitoring cron Collection Jobs 140
Collecting rrdcached Metrics 140

8. Ganglia and sFlow . 143
Architecture 145
Standard sFlow Metrics 147

Server Metrics 147
Hypervisor Metrics 149
Java Virtual Machine Metrics 150
HTTP Metrics 151
memcache Metrics 153

Configuring gmond to Receive sFlow 155
Host sFlow Agent 157

Host sFlow Subagents 158
Custom Metrics Using gmetric 160

Troubleshooting 161
Are the Measurements Arriving at gmond? 161
Are the Measurements Being Sent? 165

Using Ganglia with Other sFlow Tools 165

9. Ganglia Case Studies . 171
Tagged, Inc. 172

Site Architecture 172
Monitoring Configuration 173
Examples 175

SARA 180
Overview 180
Advantages 181
Customizations 182
Challenges 184
Conclusion 186

Reuters Financial Software 186
Ganglia in the QA Environment 186

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Ganglia in a Major Client Project 188
Lumicall (Mobile VoIP on Android) 190

Monitoring Mobile VoIP for the Enterprise 191
Ganglia Monitoring Within Lumicall 191
Implementing gmetric4j Within Lumicall 192
Lumicall: Conclusion 194

Wait, How Many Metrics? Monitoring at Quantcast 194
Reporting, Analysis, and Alerting 196
Ganglia as an Application Platform 198
Best Practices 198
Tools 199
Drawbacks 200
Conclusions 201

Many Tools in the Toolbox: Monitoring at Etsy 202
Monitoring Is Mandatory 202
A Spectrum of Tools 202
Embrace Diversity 203
Conclusion 204

A. Advanced Metric Configuration and Debugging . 205

B. Ganglia and Hadoop/HBase . 215

Index . 221

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Preface

In 1999, I packed everything I owned into my car for a cross-country trip to begin my
new job as Staff Researcher at the University of California, Berkeley Computer Science
Department. It was an optimistic time in my life and the country in general. The econ-
omy was well into the dot-com boom and still a few years away from the dot-com bust.
Private investors were still happily throwing money at any company whose name
started with an “e-” and ended with “.com”.

The National Science Foundation (NSF) was also funding ambitious digital projects
like the National Partnership for Advanced Computing Infrastructure (NPACI). The
goal of NPACI was to advance science by creating a pervasive national computational
infrastructure called, at the time, “the Grid.” Berkeley was one of dozens of universities
and affiliated government labs committed to connecting and sharing their computa-
tional and storage resources.

When I arrived at Berkeley, the Network of Workstations (NOW) project was just
coming to a close. The NOW team had clustered together Sun workstations using
Myrinet switches and specialized software to win RSA key-cracking challenges and
break a number of sort benchmark records. The success of NOW led to a following
project, the Millennium Project, that aimed to support even larger clusters built on x86
hardware and distributed across the Berkeley campus.

Ganglia exists today because of the generous support by the NSF for the NPACI project
and the Millennium Project. Long-term investments in science and education benefit
us all; in that spirit, all proceeds from the sales of this book will be donated to Schol-
arship America, a charity that to date has helped 1.7 million students follow their
dreams of going to college.

Of course, the real story lies in the people behind the projects—people such as Berkeley
Professor David Culler, who had the vision of building powerful clusters out of com-
modity hardware long before it was common industry practice. David Culler’s cluster
research attracted talented graduated students, including Brent Chun and Matt Welsh,
as well as world-class technical staff such as Eric Fraser and Albert Goto. Ganglia’s use
of a lightweight multicast listen/announce protocol was influenced by Brent Chun’s
early work building a scalable execution environment for clusters. Brent also helped

ix

me write an academic paper on Ganglia1 and asked for only a case of Red Bull in return.
I delivered. Matt Welsh is well known for his contributions to the Linux community
and his expertise was invaluable to the broader teams and to me personally. Eric Fraser
was the ideal Millennium team lead who was able to attend meetings, balance com-
peting priorities, and keep the team focused while still somehow finding time to make
significant technical contributions. It was during a “brainstorming” (pun intended)
session that Eric came up with the name “Ganglia.” Albert Goto developed an auto-
mated installation system that made it easy to spin up large clusters with specific soft-
ware profiles in minutes. His software allowed me to easily deploy and test Ganglia on
large clusters and definitely contributed to the speed and quality of Ganglia
development.

I consider myself very lucky to have worked with so many talented professors, students,
and staff at Berkeley.

I spent five years at Berkeley, and my early work was split between NPACI and Mil-
lennium. Looking back, I see how that split contributed to the way I designed and
implemented Ganglia. NPACI was Grid-oriented and focused on monitoring clusters
scattered around the United States; Millennium was focused on scaling software to
handle larger and larger clusters. The Ganglia Meta Daemon (gmetad)—with its hier-
archical delegation model and TCP/XML data exchange—is ideal for Grids. I should
mention here that Federico Sacerdoti was heavily involved in the implementation of
gmetad and wrote a nice academic paper2 highlighting the strength of its design. On
the other hand, the Ganglia Monitoring Daemon (gmond)—with its lightweight mes-
saging and UDP/XDR data exchange—is ideal for large clusters. The components of
Ganglia complement each other to deliver a scalable monitoring system that can handle
a variety of deployment scenarios.

In 2000, I open-sourced Ganglia and hosted the project from a Berkeley website. You
can still see the original website today using the Internet Archive’s Wayback Machine.
The first version of Ganglia, written completely in C, was released on January 9, 2001,
as version 1.0-2. For fun, I just downloaded 1.0-2 and, with a little tweaking, was able
to get it running inside a CentOS 5.8 VM on my laptop.

I’d like to take you on a quick tour of Ganglia as it existed over 11 years ago!

Ganglia 1.0-2 required you to deploy a daemon process, called a dendrite, on every
machine in your cluster. The dendrite would send periodic heartbeats as well as publish
any significant /proc metric changes on a common multicast channel. To collect the
dendrite updates, you deployed a single instance of a daemon process, called an axon,

1. Massie, Matthew, Brent Chun, and David Culler. The Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing, 2004. 0167-8191.

2. Sacerdoti, Federico, Mason Katz, Matthew Massie, and David Culler. Wide Area Cluster Monitoring with
Ganglia. Cluster Computing, December 2003.

x | Preface

http://web.archive.org/web/20010603093706/http://www.millennium.berkeley.edu/ganglia/

that indexed the metrics in memory and answered queries from a command-line utility
named ganglia.

If you ran ganglia without any options, it would output the following help:

 $ ganglia

GANGLIA SYNTAX

 ganglia [+,-]token [[+,-]token]...[[+,-]token] [number of nodes]

 modifiers
 + sort ascending (default)
 - sort descending

 tokens
 cpu_num cpu_speed cpu_user cpu_nice cpu_system
 cpu_idle cpu_aidle load_one load_five load_fifteen
 proc_run proc_total rexec_up ganglia_up mem_total
 mem_free mem_shared mem_buffers mem_cached swap_total
 swap_free

 number of nodes
 the default is all the nodes in the cluster or GANGLIA_MAX

 environment variables
 GANGLIA_MAX maximum number of hosts to return
 (can be overidden by command line)

EXAMPLES

prompt> ganglia -cpu_num
 would list all (or GANGLIA_MAX) nodes in ascending order by number of cpus

prompt> ganglia -cpu_num 10
 would list 10 nodes in descending order by number of cpus

prompt> ganglia -cpu_user -mem_free 25

Preface | xi

 would list 25 nodes sorted by cpu user descending then by memory free ascending
 (i.e., 25 machines with the least cpu user load and most memory available)

As you can see from the help page, the first version of ganglia allowed you to query
and sort by 21 different system metrics right out of the box. Now you know why Ganglia
metric names look so much like command-line arguments (e.g., cpu_num, mem_total).
At one time, they were!

The output of the ganglia command made it very easy to embed it inside of scripts. For
example, the output from Example P-1 could be used to autogenerate an MPI machine
file that contained the least-loaded machines in the cluster for load-balancing MPI jobs.
Ganglia also automatically removed hosts from the list that had stopped sending heart-
beats to keep from scheduling jobs on dead machines.

Example P-1. Retrieve the 10 machines with the least load

$ ganglia -load_one 10
hpc0991 0.10
hpc0192 0.10
hpc0381 0.07
hpc0221 0.06
hpc0339 0.06
hpc0812 0.02
hpc0042 0.01
hpc0762 0.01
hpc0941 0.00
hpc0552 0.00

Ganglia 1.0-2 had a simple UI written in PHP 3 that would query an axon and present
the response as a dynamic graph of aggregate cluster CPU and memory utilization as
well as the requested metrics in tabular format. The UI allowed for filtering by hostname
and could limit the total number of hosts displayed.

Ganglia has come a very long way in the last 11 years! As you read this book, you’ll see
just how far the project has come.

• Ganglia 1.0 ran only on Linux, whereas Ganglia today runs on dozens of platforms.

• Ganglia 1.0 had no time-series support, whereas Ganglia today leverages the power
of Tobi Oetiker’s RRDtool or Graphite to provide historical views of data at gran-
ularities from minutes to years.

• Ganglia 1.0 had only a basic web interface, whereas Ganglia today has a rich web
UI (see Figure P-1) with customizable views, mobile support, live dashboards, and
much more.

• Ganglia 1.0 was not extensible, whereas Ganglia today can publish custom metrics
via Python and C modules or a simple command-line tool.

• Ganglia 1.0 could only be used for monitoring a single cluster, whereas Ganglia
today can been used to monitor hundreds of clusters distributed around the globe.

xii | Preface

I just checked our download stats and Ganglia has been downloaded more than
880,000 times from our core website. When you consider all the third-party sites that
distribute Ganglia packages, I’m sure the overall downloads are well north of a million!

Although the NSF and Berkeley deserve credit for getting Ganglia started, it’s the gen-
erous support of the open source community that has made Ganglia what it is today.
Over Ganglia’s history, we’ve had nearly 40 active committers and hundreds of people
who have submitted patches and bug reports. The authors and contributors on this
book are all core contributors and power users who’ll provide you with the in-depth
information on the features they’ve either written themselves or use every day.

Reflecting on the history and success of Ganglia, I’m filled with a lot of pride and only
a tiny bit of regret. I regret that it took us 11 years before we published a book about
Ganglia! I’m confident that you will find this book is worth the wait. I’d like to thank
Michael Loukides, Meghan Blanchette, and the awesome team at O’Reilly for making
this book a reality.

—Matt Massie

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Figure P-1. The first Ganglia web UI

Preface | xiii

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Monitoring with Ganglia by Matt Massie,
Bernard Li, Brad Nicholes, and Vladimir Vuksan (O’Reilly). Copyright 2013 Matthew
Massie, Bernard Li, Brad Nicholes, Vladimir Vuksan, 978-1-449-32970-9.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

xiv | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/ganglia.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xv

http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/ganglia
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introducing Ganglia

Dave Josephsen

If you’re reading this, odds are you have a problem to solve. I won’t presume to guess
the particulars, but I’m willing to bet that the authors of this book have shared your
pain at one time or another, so if you’re in need of a monitoring and metrics collection
engine, you’ve come to the right place. We created Ganglia for the same reason you’ve
picked up this book: we had a problem to solve.

If you’ve looked at other monitoring tools, or have already implemented a few, you’ll
find that Ganglia is as powerful as it is conceptually and operationally different from
any monitoring system you’re likely to have previously encountered. It runs on every
popular OS out there, scales easily to very large networks, and is resilient by design to
node failures. In the real world, Ganglia routinely provides near real-time monitoring
and performance metrics data for computer networks that are simply too large for more
traditional monitoring systems to handle, and it integrates seamlessly with any tradi-
tional monitoring systems you may happen to be using.

In this chapter, we’d like to introduce you to Ganglia and help you evaluate whether
it’s a good fit for your environment. Because Ganglia is a product of the labor of systems
guys—like you—who were trying to solve a problem, our introduction begins with a
description of the environment in which Ganglia was born and the problem it was
intended to solve.

It’s a Problem of Scale
Say you have a lot of machines. I’m not talking a few hundred, I mean metric oodles of
servers, stacked floor to ceiling as far as the eye can see. Servers so numerous that they
put to shame swarms of locusts, outnumber the snowflakes in Siberia, and must be
expressed in scientific notation, or as some multiple of Avogadro’s number.

Okay, maybe not quite that numerous, but the point is, if you had lots of machines,
how would you go about gathering a metric—the CPU utilization, say—from every
host every 10 seconds? Assuming 20,000 hosts, for example, your monitoring system

1

would need to poll 2,000 hosts per second to achieve a 10-second resolution for that
singular metric. It would also need to store, graph, and present that data quickly and
efficiently. This is the problem domain for which Ganglia was designed; to monitor
and collect massive quantities of system metrics in near real time for Large installations.
Large. With a capital L.

Large installations are interesting because they force us to reinvent or at least reevaluate
every problem we thought we’d already solved as systems administrators. The prospect
of firing up rsync or kludging together some Perl is altogether different when 20,000
hosts are involved. As the machines become more numerous, we’re more likely to care
about the efficiency of the polling protocol, we’re more likely to encounter exceptions,
and we’re less likely to interact directly with every machine. That’s not even mentioning
the quadratic curve towards infinity that describes the odds of some subset of our hosts
going offline as the total number grows.

I don’t mean to imply that Ganglia can’t be used in smaller networks—swarms of
locusts would laugh at my own puny corporate network and I couldn’t live without
Ganglia—but it’s important to understand the design characteristics from which Gan-
glia was derived, because as I mentioned, Ganglia operates quite differently from other
monitoring systems because of them. The most influential consideration shaping Gan-
glia’s design is certainly the problem of scale.

Hosts ARE the Monitoring System
The problem of scale also changes how we think about systems management, some-
times in surprising or counterintuitive ways. For example, an admin over 20,000
systems is far more likely to be running a configuration management engine such as
Puppet/Chef or CFEngine and will therefore have fewer qualms about host-centric
configuration. The large installation administrator knows that he can make configu-
ration changes to all of the hosts centrally. It’s no big deal. Smaller installations instead
tend to favor tools that minimize the necessity to configure individual hosts.

Large installation admin are rarely concerned about individual node failures. Designs
that incorporate single points of failure are generally to be avoided in large application
frameworks where it can be safely assumed, given the sheer amount of hardware in-
volved, that some percentage of nodes are always going to be on the fritz. Smaller
installations tend to favor monitoring tools that strictly define individual hosts centrally
and alert on individual host failures. This sort of behavior quickly becomes unwieldy
and annoying in larger networks.

If you think about it, the monitoring systems we’re used to dealing with all work the
way they do because of this “little network” mind set. This tendency to centralize and
strictly define the configuration begets a central daemon that sits somewhere on the
network and polls every host every so often for status. These systems are easy to use in
small environments: just install the (usually bloated) agent on every system and

2 | Chapter 1: Introducing Ganglia

www.allitebooks.com

http://www.allitebooks.org

configure everything centrally, on the monitoring server. No per-host configuration
required.

This approach, of course, won’t scale. A single daemon will always be capable of polling
only so many hosts, and every host that gets added to the network increases the load
on the monitoring server. Large installations sometimes resort to installing several of
these monitoring systems, often inventing novel ways to roll up and further centralize
the data they collect. The problem is that even using roll-up schemes, a central poller
can poll an individual agent only so fast, and there’s only so much polling you can do
before the network traffic becomes burdensome. In the real world, central pollers usu-
ally operate on the order of minutes.

Ganglia, by comparison, was born at Berkeley, in an academic, Grid-computing cul-
ture. The HPC-centric admin and engineers who designed it were used to thinking
about massive, parallel applications, so even though the designers of other monitoring
systems looked at tens of thousands of hosts and saw a problem, it was natural for the
Berkeley engineers to see those same hosts as the solution.

Ganglia’s metric collection design mimics that of any well-designed parallel applica-
tion. Every individual host in the grid is an active participant, and together they coop-
erate, organically distributing the workload while avoiding serialization and single
points of failure. The data itself is replicated and dispersed throughout the Grid without
incurring a measurable load on any of the nodes. Ganglia’s protocols were carefully
designed, optimizing at every opportunity to reduce overhead and achieve high
performance.

This cooperative design means that every node added to the network only increases
Ganglia’s polling capacity and that the monitoring system stops scaling only when your
network stops growing. Polling is separated from data storage and presentation, both
of which may also be redundant. All of this functionality is bought at the cost of a bit
more per-host configuration than is employed by other, more traditional monitoring
systems.

Redundancy Breeds Organization
Large installations usually include quite a bit of machine redundancy. Whether we’re
talking about HPC compute nodes or web, application, or database servers, the thing
that makes large installations large is usually the preponderance of hosts that are work-
ing on the same problem or performing the same function. So even though there may
be tens of thousands of hosts, they can be categorized into a few basic types, and a
single configuration can be used on almost all hosts that have a type in common. There
are also likely to be groups of hosts set aside for a specific subset of a problem or perhaps
an individual customer.

Ganglia assumes that your hosts are somewhat redundant, or at least that they can be
organized meaningfully into groups. Ganglia refers to a group of hosts as a “cluster,”

Redundancy Breeds Organization | 3

and it requires that at least one cluster of hosts exists. The term originally referred to
HPC compute clusters, but Ganglia has no particular rules about what constitutes a
cluster: hosts may be grouped by business purpose, subnet, or proximity to the Coke
machine.

In the normal mode of operation, Ganglia clusters share a multicast address. This
shared multicast address defines the cluster members and enables them to share infor-
mation about each other. Clusters may use a unicast address instead, which is more
compatible with various types of network hardware, and has performance benefits, at
the cost of additional per-host configuration. If you stick with multicast, though, the
entire cluster may share the same configuration file, which means that in practice Gan-
glia admins have to manage only as many configuration files as there are clusters.

Is Ganglia Right for You?
You now have enough of the story to evaluate Ganglia for your own needs. Ganglia
should work great for you, provided that:

• You have a number of computers with general-purpose operating systems (e.g.,
not routers, switches, and the like) and you want near real-time performance in-
formation from them. In fact, in cooperation with the sFlow agent, Ganglia may
be used to monitor network gear such as routers and switches (see Chapter 8 for
more information).

• You aren’t averse to the idea of maintaining a config file on all of your hosts.

• Your hosts can be (at least loosely) organized into groups.

• Your operating system and network aren’t hostile to multicast and/or User Data-
gram Protocol (UDP).

If that sounds like your setup, then let’s take a closer look at Ganglia. As depicted in
Figure 1-1, Ganglia is architecturally composed of three daemons: gmond, gmetad, and
gweb. Operationally, each daemon is self-contained, needing only its own configura-
tion file to operate; each will start and run happily in the absence of the other two.
Architecturally, however, the three daemons are cooperative. You need all three to
make a useful installation. (Certain advanced features such as sFlow, zeromq, and
Graphite support may belie the use of gmetad and/or gweb; see Chapter 3 for details.)

gmond: Big Bang in a Few Bytes
I hesitate to liken gmond to the “agent” software usually found in more traditional
monitoring systems. Like the agents you may be used to, it is installed on every host
you want monitored and is responsible for interacting with the host operating system
to acquire interesting measurements—metrics such as CPU load and disk capacity. If

4 | Chapter 1: Introducing Ganglia

you examine more closely its architecture, depicted in Figure 1-2, you’ll probably find
that the resemblance stops there.

Internally, gmond is modular in design, relying on small, operating system−specific
plug-ins written in C to take measurements. On Linux, for example, the CPU plug-in
queries the “proc” filesystem, whereas the same measurements are gleaned by way of
the OS Management Information Base (MIB) on OpenBSD. Only the necessary plug-
ins are installed at compile time, and gmond has, as a result, a modest footprint and
negligible overhead compared to traditional monitoring agents. gmond comes with
plug-ins for most of the metrics you’ll be interested in and can be extended with plug-
ins written in various languages, including C, C++, and Python to include new metrics.
Further, the included gmetric tool makes it trivial to report custom metrics from your
own scripts in any language. Chapter 5 contains in-depth information for those wishing
to extend the metric collection capabilities of gmond.

Unlike the client-side agent software employed by other monitoring systems, gmond
doesn’t wait for a request from an external polling engine to take a measurement, nor
does it pass the results of its measurements directly upstream to a centralized poller.
Instead, gmond polls according to its own schedule, as defined by its own local con-
figuration file. Measurements are shared with cluster peers using a simple listen/
announce protocol via XDR (External Data Representation). As mentioned earlier,
these announcements are multicast by default; the cluster itself is composed of hosts
that share the same multicast address.

Figure 1-1. Ganglia architecture

gmond: Big Bang in a Few Bytes | 5

Given that every gmond host multicasts metrics to its cluster peers, it follows that every
gmond host must also record the metrics it receives from its peers. In fact, every node
in a Ganglia cluster knows the current value of every metric recorded by every other
node in the same cluster. An XML-format dump of the entire cluster state can be re-
quested by a remote poller from any single node in the cluster on port 8649. This design
has positive consequences for the overall scalability and resiliency of the system. Only
one node per cluster needs to be polled to glean the entire cluster status, and no amount
of individual node failure adversely affects the overall system.

Reconsidering our earlier example of gathering a CPU metric from 20,000 hosts, and
assuming that the hosts are now organized into 200 Ganglia clusters of 100 hosts each,
gmond reduces the polling burden by two orders of magnitude. Further, for the 200
necessary network connections the poller must make, every metric (CPU, disk, mem-
ory, network, etc.) on every individual cluster node is recorded instead of just the single
CPU metric. The recent addition of sFlow support to gmond (as described in Chap-
ter 8) lightens the metric collection and polling load even further, enabling Ganglia to
scale to cloud-sized networks.

What performs the actual work of polling gmond clusters and storing the metric data
to disk for later use? The short answer is also the title of the next section: gmetad, but
there is a longer and more involved answer that, like everything else we’ve talked about
so far, is made possible by Ganglia’s unique design. Given that gmond operates on its
own, absent of any dependency on and ignorant of the policies or requirements of a
centralized poller, consider that there could in fact be more than one poller. Any num-
ber of external polling engines could conceivably interrogate any combination of

Figure 1-2. gmond architecture

6 | Chapter 1: Introducing Ganglia

gmond clusters within the grid without any risk of conflict or indeed any need to know
anything about each other.

Multiple polling engines could be used to further distribute and lighten the load asso-
ciated with metrics collection in large networks, but the idea also introduces the intri-
guing possibility of special-purpose pollers that could translate and/or export the data
for use in other systems. As I write this, a couple of efforts along these lines are under
way. The first is actually a modification to gmetad that allows gmetad to act as a bridge
between gmond and Graphite, a highly scalable data visualization tool. The next is a
project called gmond-zeromq, which listens to gmond broadcasts and exports data to
a zeromq message bus.

gmetad: Bringing It All Together
In the previous section, we expressed a certain reluctance to compare gmond to the
agent software found in more traditional monitoring systems. It’s not because we think
gmond is more efficient, scalable, and better designed than most agent software. All of
that is, of course, true, but the real reason the comparison pains us is that Ganglia’s
architecture fundamentally alters the roles between traditional pollers and agents.

Instead of sitting around passively, waiting to be awakened by a monitoring server,
gmond is always active, measuring, transmitting, and sharing. gmond imbues your
network with a sort of intracluster self-awareness, making each host aware of its own
characteristics as well as those of the hosts to which it’s related. This architecture allows
for a much simpler poller design, entirely removing the need for the poller to know
what services to poll from which hosts. Such a poller needs only a list of hostnames
that specifies at least one host per cluster. The clusters will then inform the poller as to
what metrics are available and will also provide their values.

Of course, the poller will probably want to store the data it gleans from the cluster
nodes, and RRDtool is a popular solution for this sort of data storage. Metrics are stored
in “round robin” databases, which consist of static allocations of values for various
chunks of time. If we polled our data every 10 seconds, for example, a single day’s
worth of these measurements would require the storage of 8,640 data points. This is
fine for a few days of data, but it’s not optimal to store 8,640 data points per day for a
year for every metric on every machine in the network.

If, however, we were to average thirty 10-second data points together into a single value
every 5 minutes, we could store two weeks worth of data using only 4,032 data points.
Given your data retention requirements, RRDtool manages these data “rollups” inter-
nally, overwriting old values as new ones are added (hence the “round robin” moniker).
This sort of data storage scheme lets us analyze recent data with great specificity while
at the same time providing years of historical data in a few megabytes of disk space. It
has the added benefit of allocating all of the required disk space up front, giving us a
very predictable capacity planning model. We’ll talk more about RRDtool in Chapter 3.

gmetad: Bringing It All Together | 7

gmetad, as depicted in Figure 1-1, is foreshadowed pretty well by the previous few
paragraphs. It is a simple poller that, given a list of cluster nodes, will poll each cluster,
writing whatever data values are returned for every metric on every host to individual
round robin databases.

You’ll recall that “polling” each cluster requires only that the poller open a read socket
to the target gmond node’s port 8649, a feat readily accomplished by telnet. Indeed,
gmetad could easily be replaced by a shell script that used netcat to glean the XML
dump from various gmond nodes and then parse and write the data to RRDtool data-
bases via command-line tools. As of this writing, there is, in fact, already a Python-
based replacement for gmetad, which adds a plug-in architecture, making it easier to
write custom data-handling logic.

gmetad has a few other interesting features, including the ability to poll data from other
gmetad instances, allowing for the creation of federated hierarchal architectures. It
includes interactive query functionality and may be polled by external monitoring sys-
tems via a simple text protocol on TCP port 8652. Finally, as mentioned in the previous
section, gmetad is also capable of sending data to Graphite, a highly scalable data vis-
ualization engine.

gweb: Next-Generation Data Analysis
But enough about data collection and storage. I know why you’re really here: visuali-
zation. You want graphs that make your data dance, brimming with timely, accurate
data and contrasted, meaningful colors. And not just pretty graphs, but a snazzy, well-
designed UI to go with them—a UI that is generous with the data, summarizing the
status of the entire data center in just a few graphs while still providing quick, easy
access to every combination of any individual metrics. It should do this without de-
manding that you preconfigure anything, and it should encourage you to create your
own graphs to explore and analyze your data in any way you can imagine.

If it seems like I’m reading your mind, it’s because the Ganglia authors are engineers
like you, who designed Ganglia’s visualization UI, gweb, from their own notion of the
ideal data visualization frontend. Quite a bit of thought and real-world experience has
gone into its creation, and we think you’ll find it a joy to work with. gweb gives you
easy, instant access to any metric from any host in the network without making you
define anything. It knows what hosts exist, and what metrics are available for those
hosts, but it doesn’t make you click through hierarchal lists of metrics to see graphs;
rather, it graphically summarizes the entire grid using graphs that combine metrics by
cluster and provides sane click-throughs for increased specificity.

If you’re interested in something specific, you can specify a system name, or a regex or
type-glob to combine various metrics from various hosts to create a custom graph of
exactly what you want to see. gweb supports click-dragging in the graphs to change
the time period, includes a means to easily (and programatically) extract data in various

8 | Chapter 1: Introducing Ganglia

textual formats (CSV, JSON, and more), and sports a fully functional URL interface so
that you can embed interesting graphs into other programs via predictable URLs. There
are many other features I could mention—so many, in fact, that we’ve dedicated an
entire chapter (Chapter 4) to gweb alone, so for now we’ll have to content ourselves
with this short description.

Before I move on, however, I should mention that gweb is a PHP program, which most
people run under the Apache web server (although any web server with PHP or FastCGI
support should do the trick). It is usually installed on the same physical hardware as
gmetad, because it needs access to the RRD databases created by the poller. Installation
details and specific software requirements are provided in Chapter 2.

But Wait! That’s Not All!
Chapter 2 deals with the installation and configuration of gmond, gmetad, and gweb,
and as previously mentioned, Chapter 4 covers gweb’s functionality in more detail, but
there’s a lot more to talk about.

We’ve documented everything you might ever want to know about extending Ganglia’s
metric-collection functionality in Chapter 5, from easily adding new metrics through
shell scripts using gmetric to writing full-fledged plug-ins for gmond in C, C++, or
Python. If you’re adept at any of those languages, you should appreciate the thorough
documentation of gmond’s internals included herein, written by the implementor of
gmond’s modular interface. I personally wish that documentation of this quality had
existed when I undertook to write my first gmond module.

Anyone who has spent any time on the Ganglia mailing lists will recognize the names
of the authors of Chapter 6. Bernard and Daniel both made the mistake of answering
one too many questions on the Ganglia-General list and have hence been tasked with
writing a chapter on troubleshooting. If you have a problem that isn’t covered in
Chapter 6, odds are you’ll eventually get the answer you’re looking for from either
Bernard or Daniel on the Ganglia lists.

Chapter 7 and Chapter 8 cover interoperation with other monitoring systems. Inte-
gration with Nagios, arguably the most ubiquitous open source monitoring system
today, is the subject of Chapter 7; Chapter 8 covers sFlow, an industry standard tech-
nology for monitoring high-speed switched networks. Ganglia includes built-in func-
tionality that enables it to integrate with both of these tools, each of which extend
Ganglia’s functionality beyond what would otherwise be a limitation.

Finally, the chapter we’re all most excited to bring you is Chapter 9, wherein we’ve
collected detailed descriptions of real-world Ganglia installs from several fascinating
organizations. Each case study highlights the varied and challenging monitoring re-
quirements of the organization in question and goes on to describe the Ganglia con-
figuration employed to satisfy them. Any customizations, integration with external
tools, and other interesting hurdles are also discussed.

But Wait! That’s Not All! | 9

The authors, all of whom are members of and contributors to the Ganglia community,
undertook to write this book ourselves to make sure it was the book we would have
wanted to read, and we sincerely hope it meets your needs. Please don’t hesitate to visit
us online. Until then, we bid you adieu by borrowing the famous blessing from
O’Reilly’s sed & awk book: “May you solve interesting problems.”

10 | Chapter 1: Introducing Ganglia

http://ganglia.sourceforge.net
http://shop.oreilly.com/product/9781565922259.do

CHAPTER 2

Installing and Configuring Ganglia

Dave Josephsen, Frederiko Costa, Daniel Pocock, and Bernard Li

If you’ve made it this far, it is assumed that you’ve decided to join the ranks of the
Ganglia user base. Congratulations! We’ll have your Ganglia-user conspiracy to con-
quer the world kit shipped immediately. Until it arrives, feel free to read through this
chapter, in which we show you how to install and configure the various Ganglia com-
ponents. In this chapter, we cover the installation and configuration of Ganglia 3.1.x
for some of the most popular operating systems, but these instructions should apply
to later versions as well.

Installing Ganglia
As mentioned earlier, Ganglia is composed of three components: gmond, gmetad, and
gweb. In this first section, we’ll cover the installation and basic setup of each compo-
nent.

gmond
gmond stands for Ganglia Monitoring Daemon. It’s a lightweight service that must be
installed on each node from which you want to have metrics collected. This daemon
performs the actual metrics collection on each host using a simple listen/announce
protocol to share the data it gleans with its peer nodes in the cluster. Using gmond, you
can collect a lot of system metrics right out of the box, such as CPU, memory, disk,
network, and data about active processes.

Requirements

gmond installation is straightforward, and the libraries it depends upon are installed
by default on most modern Linux distributions (as of this writing, those libraries are
libconfuse, pkgconfig, PCRE, and APR). Ganglia packages are available for most Linux
distributions, so if you are using the package manager shipped with your distribution

11

(which is the suggested approach), resolving the dependencies should not be
problematic.

Linux

The Ganglia components are available in a prepackaged binary format for most Linux
distributions. We’ll cover the two most popular types here: .deb- and .rpm-based
systems.

To install gmond on a Debian-based Linux distribution,
execute:

user@host:# sudo apt-get install ganglia-monitor

You’ll find that some RPM-based distributions ship with Ganglia
packages in the base repositories, and others require you to use special-purpose package
repositories, such as the Red Hat project’s EPEL (Extra Packages for Enterprise Linux)
repository. If you’re using a RPM-based distro, you should search in your current re-
positories for the gmond package:

user@host:$ yum search ganglia-gmond

If the search fails, chances are that Ganglia is not shipped with your RPM distribution.
Red Hat users need to install Ganglia from the EPEL repository. The following examples
demonstrate how to add the EPEL repository to Red Hat 5 and Red Hat 6.

If you need to add the EPEL repository, be sure to take careful note of
the distro version and architecture you are running and match it to that
of the EPEL you’re adding.

For Red Hat 5.x:

user@host:# sudo rpm -Uvh \
http://mirror.ancl.hawaii.edu/linux/epel/5/i386/epel-release-5-4.noarch.rpm

For Red Hat 6.x:

user@host:# sudo rpm -Uvh \
http://mirror.chpc.utah.edu/pub/epel/6/i386/epel-release-6-7.noarch.rpm

Finally, to install gmond, type:

user@host:# sudo yum install ganglia-gmond

OS X

gmond compiles and runs fine on Mac OS X; however, at the time of this writing, there
are no prepackaged binaries available. OS X users must therefore build Ganglia from
source. Refer to the following instructions, which work for the latest Mac OS X Lion.

Debian-based distributions.

RPM-based distributions.

12 | Chapter 2: Installing and Configuring Ganglia

www.allitebooks.com

http://www.allitebooks.org

For other versions of Mac OS X, the dependencies might vary. Please refer to Ganglia’s
website for further information.

Several dependencies must be satisfied before building and installing Ganglia on OS X.
These are, in the order they should be installed:

• Xcode >= 4.3

• MacPorts (requires Xcode)

• libconfuse (requires MacPorts)

• pkgconfig (requires MacPorts)

• PCRE (requires MacPorts)

• APR (requires MacPorts)

Xcode is a collection of development tools, and an Integrated Development Environ-
ment (IDE) for OS X. You will find Xcode at Apple’s developer tools website for down-
load or on the MAC OS X installation disc.

MacPorts is a collection of build instructions for popular open source software for
OS X. It is architecturally identical to the venerable FreeBSD Ports system. To install
MacPorts, download the installation disk image from the MacPorts website. MacPorts
for MAC OS X Lion is here. If you’re using Snow Leopard, the download is located
here. For older versions, please refer here for documentation and download links.

Once MacPorts is installed and working properly, use it to install both libconfuse and
pkconfig:

$ sudo port install libconfuse pkgconfig pcre apr

After satisfying the previously listed requirements, you are ready to proceed with the
installation. Please download the latest Ganglia source release.

Change to the directory where the source file has been downloaded. Uncompress the
tar-gzip file you have just downloaded:

$ tar -xvzf ganglia-major.minor.release.tar.gz

On Mac OS X 10.5+, you need to apply a patch so that gmond builds successfully. For
further details on the patch, please visit the website. Download the patch file, copy it
to the root of the build directory, and run the patch:

$ cd ganglia-major.minor.release
$ patch -p0 < patch-file

Assuming that you installed MacPorts under the default installation directory (/opt/
local), export MacPorts’ bin directory to your PATH and run the configure script, spec-
ifying the location of lib/ and include/ as options:

$ export PATH=$PATH:/opt/local/bin
$./configure LDFLAGS="-L/opt/local/lib" CPPFLAGS="-I/opt/local/include"

Installing Ganglia | 13

https://distfiles.macports.org/MacPorts/MacPorts-2.0.4-10.7-Lion.dmg
https://distfiles.macports.org/MacPorts/MacPorts-2.0.4-10.6-SnowLeopard.dmg
http://www.macports.org
http://sourceforge.net/projects/ganglia/files/latest/download?source=files
http://bugzilla.ganglia.info/cgi-bin/bugzilla/show_bug.cgi?id=168

Compile and install Ganglia:

$ make
$ sudo make install

Solaris

Convenient binary packages for Solaris are distributed in the OpenCSW collection.
Follow the standard procedure to install the OpenCSW. Run the pkgutil tool on So-
laris, and then use the tool to install the package:

$ pkgutil
$ CSWgangliaagent

The default location for the configuration files on Solaris (OpenCSW) is /etc/opt/csw/
ganglia. You can now start and stop all the Ganglia processes using the normal SMF
utility on Solaris, such as:

$ svcadm enable cswgmond

Other platforms

Because Ganglia is an open source project, it is possible to compile a runnable binary
executable of the gmond agent on virtually any platform with a C compiler.

The Ganglia projects uses the autotools build system to detect the tools available on
most Linux and UNIX-like environments and build the binaries.

The autotools build system is likely to have support for many other platforms that are
not explicitly documented in this book. Please start by reading the INSTALL file in the
source tree, and also look online for tips about Ganglia or generic tips about using
autotools projects in your environment.

gmetad
gmetad (the Ganglia Meta Daemon) is the service that collects metric data from other
gmetad and gmond sources and stores their state to disk in RRD format. It also provides
a simple query mechanism for collecting specific information about groups of machines
and supports hierarchical delegation, making possible the creation of federated mon-
itoring domains.

Requirements

The requirements for installing gmetad on Linux are nearly the same as gmond, except
for the addition of RRDtool, which is required to store and display time-series data
collected from other gmetad or gmond sources.

14 | Chapter 2: Installing and Configuring Ganglia

http://www.opencsw.org

Linux

Once again, you are encouraged to take advantage of the prepackaged binaries available
in the repository of your Linux distribution; we provide instructions for the two most
popular formats next.

To install gmetad on a Debian-based Linux distribution,
execute:

user@host:# sudo apt-get install gmetad

Compared to gmond, gmetad has additional software dependencies.

As mentioned in the earlier gmond installation section, an EPEL
repository must be installed if the base repositories don’t provide gmetad. Refer to
“gmond” on page 11 to add the EPEL repository. Once you’re ready, type:

user@host:# sudo yum install ganglia-gmetad

OS X

There are only two functional differences between building gmond and gmetad on
OS X. First, gmetad has one additional software dependency (RRDtool), and second,
you must include the --with-gmetad option to the configure script, because only gmond
is built by the default Makefile.

Following is the list of requirements that must be satisfied before you can build gmetad
on Mac OS X:

• Xcode >= 4.3

• MacPorts (requires Xcode)

• libconfuse (requires MacPorts)

• pkgconfig (requires MacPorts)

• PCRE (requires MacPorts)

• APR (requires MacPorts)

• RRDtool (requires MacPorts)

Refer to “OS X” on page 12 for instructions on installing Xcode and MacPorts. Once
you have those sorted out, install the following packages to satisfy the requirements:

$ sudo port install libconfuse pkgconfig pcre apr rrdtool

Once those packages have been installed, proceed with the Ganglia installation by
downloading the latest Ganglia version.

Debian-based distributions.

RPM-based distributions.

Installing Ganglia | 15

http://sourceforge.net/projects/ganglia/files/latest/download?source=files

Uncompress and extract the tarball you have just downloaded:

$ tar -xvzf ganglia-major.minor.release.tar.gz

Successfully building Ganglia 3.1.2 on OS X 10.5 requires that you apply the patch
detailed here. Download the patch file and copy it to the root of the extracted Ganglia
source tree, then apply it:

$ cd ganglia-major.minor.release
$ patch -p0 < patch-file

Assuming that you installed MacPorts under the default installation directory (/opt/
local). Export MacPorts’ /bin directory to your PATH, and run the configure script, spec-
ifying the location of lib/ and include/ as options

$ export PATH=$PATH:/opt/local/bin
$./configure --with-gmetad LDFLAGS="-L/opt/local/lib" CPPFLAGS="-I/opt/local/include"

Compile and install Ganglia:

$ make
$ sudo make install

Solaris

Convenient binary packages for Solaris are distributed in the OpenCSW collection.
Follow the standard procedure to install the OpenCSW. Run the pkgutil tool on So-
laris, and then use the tool to install the package:

$ pkgutil
$ CSWgangliagmetad

The default location for the configuration files on Solaris (OpenCSW) is /etc/opt/csw/
ganglia. You can now start and stop all the Ganglia processes using the normal SMF
utility on Solaris, as in:

$ svcadm enable cswgmetad

gweb
Ganglia wouldn’t be complete without its web interface: gweb (Ganglia Web). After
collecting several different metrics in order to evaluate how our cluster is performing,
we certainly need a visual representation, preferably using graphics in the Web. gweb
fills this gap. gweb is a PHP frontend in which you display all data stored by gmetad
using your browser. Please see the “Demos” section here for live demos of the web
frontend.

Requirements

As of Ganglia 3.4.0, the web interface is a separate distribution tarball maintained in a
separate source code repository. The release cycle and version numbers of gweb are no

16 | Chapter 2: Installing and Configuring Ganglia

http://bugzilla.ganglia.info/cgi-bin/bugzilla/show_bug.cgi?id=168
http://www.opencsw.org
http://ganglia.info

longer in lockstep with the release cycle and version numbers of the Ganglia gmond
and the gmetad daemon.

Ganglia developers support gweb 3.4.0 with all versions of gmond/gmetad version 3.1.x
and higher. Future versions of gweb may require a later version of gmond/gmetad. It’s
recommended to check the installation documentation for exact details whenever in-
stalling or upgrading gweb.

The frontend, as already mentioned, is a web application. This book covers gweb ver-
sions 3.4.x and later, which may not be available to all distributions, requiring more
work to get it installed. Before proceeding, please review the requirements to install
gweb:

• Apache Web Server

• PHP 5.2 or later

• PHP JSON extension installed and enabled

Linux

If you are installing from the repositories, the installation is pretty straightforward.
Requirements will be automatically satisfied, and within a few commands you should
be able to play with the web interface.

To install gweb on a Debian-based Linux distribution, execute
the following command as either root or user with high privilege:

root@host:# apt-get install apache2 php5 php5-json

This command installs Apache and PHP 5 to satisfy its dependencies, in case you don’t
have it already installed. You might have to enable the PHP JSON module as well. Then
execute this command:

root@host:# grep ^extension=json.so /etc/php5/conf.d/json.ini

and if the module is not enabled, enable it with the following command:

root@host:# echo 'extension=json.so' >> /etc/php5/conf.d/json.ini

You are ready to download the latest gweb. Once it’s downloaded, explode and edit
Makefile to install gweb:

root@host:# tar -xvzf ganglia-web-major.minor.release.tar.gz
root@host:# cd ganglia-web-major.minor.release

Edit Makefile and set DESTDIR and APACHE_USER variables. On Debian-based distros, the
default settings are the following:

Location where gweb should be installed to
DESTDIR = /var/www/html/ganglia2
APACHE_USER = www-data
...

Debian-based distributions.

Installing Ganglia | 17

https://ganglia.info/download

This means that gweb will be available to the user here. You can change to whichever
name you want. Finally, run the following command:

root@host:# make install

If no errors are shown, gweb is successfully installed. Skip to “Configuring Gan-
glia” on page 20 for further information on gweb settings.

The way to install gweb on a RPM-based distribution is very sim-
ilar to installing gweb on a Debian-based distribution. Start by installing Apache and
PHP 5:

root@host:# yum install httpd php

You also need to enable the JSON extension for PHP. It’s already included in PHP 5.2
or later. Make sure it’s enabled by checking the content of /etc/php.d/json.ini file. You
should have something similar to the following listing:

extension=json.ini

Download the latest gweb. Once downloaded, explode and edit Makefile to install
gweb 2:

root@host:# tar -xvzf ganglia-web-major.minor.release.tar.gz
root@host:# cd ganglia-web-major.minor.release

Edit Makefile and set the DESTDIR and APACHE_USER variables. On RPM-based distros,
the default settings are:

Location where gweb should be installed to
DESTDIR = /var/www/html/ganglia2
APACHE_USER = apache
...

This means that gweb will be available here. You can change to whichever name you
want. Finally, run:

root@host:# make install

If no errors are shown, gweb is successfully installed. Skip to “Configuring Gan-
glia” on page 20 for further information on gweb settings.

OS X

If you need to install gweb on Mac OS X, you have to follow a slightly different approach
than if you were installing in Linux. Again, there isn’t any binary package for Mac
OS X, leaving you with the option of downloading the source from the website. Before
downloading, you have to make sure that your Mac OS X has shipped with a few of
the requirements. That’s what this section is about.

First off, an HTTP server is required, and chances are good that your Mac OS X in-
stallation was shipped with Apache Web Server. You can also install it via MacPorts,
but this approach is not covered here. It is your choice. In order to verify your Apache

RPM-based distributions.

18 | Chapter 2: Installing and Configuring Ganglia

http://server_ipaddr/ganglia2/
https://sourceforge.net/projects/ganglia/files/gweb/
http://<server ip address>/ganglia2/

installation, go to System Preferences → Sharing. Turn Web Services on if it is off. Make
sure it’s running by typing http://localhost on your browser. You should see a test
page. You can also load Apache via Terminal by typing:

$ sudo launchctl load -w /System/Library/LaunchDaemons/org.apache.httpd.plist

PHP is also required to run gweb. PHP is shipped with Mac OS X, but it’s not enabled
by default. To enable, edit the httpd.conf file and uncomment the line that loads the
php5_module.

$ cd /etc/apache2
$ sudo vim httpd.conf

Search for the following line, uncomment (strip the #) it, and save the file:

LoadModule php5_module libexec/apache2/libphp5.so

Restart Apache:

$ sudo launchctl unload -w /System/Library/LaunchDaemons/org.apache.httpd.plist
$ sudo launchctl load -w /System/Library/LaunchDaemons/org.apache.httpd.plist

Now that you have satisfied the requirements, it’s time to download and install
gweb 2. Please download the latest release. Once you have finished, change to the
directory where the file is located and extract its content. Next, cd to the extraction
directory:

$ tar -xvzf ganglia-web-major.minor.release.tar.gz
$ cd ganglia-web-major.minor.release

This next step really depends on how Apache Web Server is set up on your system. You
need to find out where Apache serves its pages from or, more specifically, its Docu-
mentRoot. Of course, the following location isn’t the only possibility, but for clarity’s
sake, we will work with the default settings. So here, we’re using /Library/WebServer/
Documents:

$ grep -i documentroot /etc/apache2/httpd.conf

Edit the Makefile found in the tarball. Insert the location of your Apache’s Document-
Root and the name of the user that Apache runs. On Mac OS X Lion, the settings are:

Location where gweb should be installed
DESTDIR = /Library/WebServer/Documents/ganglia2
APACHE_USER = _www
...

This means that gweb will be available to the user here. You can change this to
whichever name you want. Finally, run:

$ sudo make install

If no errors are shown, Ganglia Web is successfully installed. Read the next sections to
configure Ganglia prior to running it for the first time.

Installing Ganglia | 19

https://sourceforge.net/projects/ganglia/files/gweb/
http://server_ipaddr/ganglia2/

Solaris

Convenient binary packages for Solaris are distributed in the OpenCSW collection.
Follow the standard procedure to install the OpenCSW. Run the pkgutil tool on So-
laris, and then use the tool to install the package:

$ pkgutil
$ CSWgangliaweb

The default location for the configuration files on Solaris (OpenCSW) is /etc/opt/csw/
ganglia. You can now start and stop all the Ganglia processes using the normal SMF
utility on Solaris, as in:

$ svcadm enable cswapache

Configuring Ganglia
The following subsections document the configuration specifics of each Ganglia com-
ponent. The default configuration shipped with Ganglia “just works” in most envi-
ronments with very little additional configuration, but we want to let you know what
other options are available in addition to the default. We would also like you to un-
derstand how the choice of a particular option may affect Ganglia deployment in your
environment.

gmond
gmond, summarized in Chapter 1, is installed on each host that you want to monitor.
It interacts with the host operating system to obtain metrics and shares the metrics it
collects with other hosts in the same cluster. Every gmond instance in the cluster knows
the value of every metric collected by every host in the same cluster and by default
provides an XML-formatted dump of the entire cluster state to any client that connects
to gmond’s port.

Topology considerations

gmond’s default topology is a multicast mode, meaning that all nodes in the cluster
both send and receive metrics, and every node maintains an in-memory database—
stored as a hash table—containing the metrics of all nodes in the cluster. This topology
is illustrated in Figure 2-1.

20 | Chapter 2: Installing and Configuring Ganglia

http://www.opencsw.org

Figure 2-1. Default multicast topology

Of particular importance in this diagram is the disparate nature of the gmond daemon.
Internally, gmond’s sending and receiving halves are not linked (a fact that is empha-
sized in Figure 2-1 by the dashed vertical line). gmond does not talk to itself—it only
talks to the network. Any local data captured by the metric modules are transmitted
directly to the network by the sender, and the receiver’s internal database contains only
metric data gleaned from the network.

This topology is adequate for most environments, but in some cases it is desirable to
specify a few specific listeners rather than allowing every node to receive (and thereby
waste CPU cycles to process) metrics from every other node. More detail about this
architecture is provided in Chapter 3.

The use of “deaf” nodes, as illustrated in Figure 2-2, eliminates the processing overhead
associated with large clusters. The deaf and mute parameters exist to allow some gmond
nodes to act as special-purpose aggregators and relays for other gmond nodes. Mute
means that the node does not transmit; it will not even collect information about itself
but will aggregate the metric data from other gmond daemons in the cluster. Deaf means
that the node does not receive any metrics from the network; it will not listen to state
information from multicast peers, but if it is not muted, it will continue sending out its
own metrics for any other node that does listen.

The use of multicast is not required in any topology. The deaf/mute topology can be
implemented using UDP unicast, which may be desirable when multicast is not prac-
tical or preferred (see Figure 2-3).

Further, it is possible to mix and match the deaf/mute, and default topologies to create
a system architecture that better suits your environment. The only topological require-
ments are:

1. At least one gmond instance must receive all the metrics from all nodes in the
cluster.

2. Periodically, gmetad must poll the gmond instance that holds the entire cluster
state.

Configuring Ganglia | 21

In practice, however, nodes not configured with any multicast connectivity do not need
to be deaf; it can be useful to configure such nodes to send metrics to themselves using
the address 127.0.0.1 so that they will keep a record of their own metrics locally. This
makes it possible to make a TCP probe of any gmond for an XML about its own agent
state while troubleshooting.

For a more thorough discussion of topology and scalability considera-
tions, see Chapter 3.

Figure 2-2. Deaf/mute multicast topology

Figure 2-3. UDP unicast topology

22 | Chapter 2: Installing and Configuring Ganglia

www.allitebooks.com

http://www.allitebooks.org

Configuration file

You can generate a default configuration file for gmond by running the following
command:

user@host:$ gmond -t

The configuration file is composed of sections, enclosed in curly braces, that fall roughly
into two logical categories. The sections in the first category deal with host and cluster
configuration; those in the second category deal with the specifics of metrics collection
and scheduling.

All section names and attributes are case insensitive. The following attributes, for ex-
ample, are all equivalent:

name NAME Name NaMe

Some configuration sections are optional; others are required. Some may be defined in
the configuration file multiple times; others must appear only once. Some sections may
contain subsections.

The include directive can be used to break up the gmond.conf file into multiple files for
environments with large complex configurations. The include directive supports the
use of typeglobs. For example, the line:

include ('/etc/ganglia/conf.d/*.conf')

would instruct gmond to load all files in /etc/ganglia/conf.d/ that ended in “.conf”.

gmond.conf: Quick Start

To get gmond up and running quickly just to poke around, all you
should need to set is the name attribute in the “cluster” section of the
default configuration file.

The configuration file is parsed using libconfuse, a third-party API for configuration
files. The normal rules of libconfuse file format apply. In particular, boolean values can
be set using yes, true, and on for a positive value and their opposites, no, false, and
off for a negative value. Boolean values are not handled in a case-sensitive manner.

There are eight sections that deal with the configuration of the host itself.

The globals section configures the general characteristics of the daemon
itself. It should appear only once in the configuration file. The following is the default
globals section from Ganglia 3.3.1:

globals {
 daemonize = yes
 setuid = yes
 user = nobody
 debug_level = 0
 max_udp_msg_len = 1472

Section: globals.

Configuring Ganglia | 23

 mute = no
 deaf = no
 allow_extra_data = yes
 host_dmax = 86400 /*secs. Expires (removes from web interface) hosts in 1 day */
 host_tmax = 20 /*secs */
 cleanup_threshold = 300 /*secs */
 gexec = no
 send_metadata_interval = 0 /*secs */
}

daemonize (boolean)
When true, gmond will fork and run in the background. Set this value to false if
you’re running gmond under a daemon manager such as daemontools.

setuid (boolean)
When true, gmond will set its effective UID to the UID of the user specified by the
user attribute. When false, gmond will not change its effective user.

debug_level (integer value)
When set to zero (0), gmond will run normally. A debug_level greater than zero
will result in gmond running in the foreground and outputting debugging infor-
mation. The higher the debug_level, the more verbose the output.

max_udp_msg_len (integer value)
This value is the maximum size that one packet sent by gmond will contain. It is
not a good idea to change this value.

mute (boolean)
When true, gmond will not send data, regardless of any other configuration direc-
tive. “Mute” gmond nodes are only mute when it comes to other gmond daemons.
They still respond to queries from external pollers such as gmetad.

deaf (boolean)
When true, gmond will not receive data, regardless of any other configuration
directives. In large grids with thousands of nodes per cluster, or carefully optimized
HPC grids, in which every CPU cycle spent on something other than the problem
is a wasted cycle, “normal” compute nodes are often configured as deaf in order
to minimize the overhead associated with aggregating cluster state. In these in-
stances, dedicated nodes are set aside to be mute. In such a setup, the performance
metrics of the mute nodes aren’t measured because those nodes aren’t a compu-
tationally relevant portion of the grid. Their job is to aggregate, so their perfor-
mance data would pollute that of the functional portion of the cluster.

allow_extra_data (boolean)
When false, gmond will not send the EXTRA_ELEMENT and EXTRA_DATA parts of the
XML. This value might be useful if you are using your own frontend and would
like to save some bandwidth.

host_dmax (integer_value in seconds)
Stands for “delete max.” When set to 0, gmond will never delete a host from its
list, even when a remote host has stopped reporting. If host_dmax is set to a positive

24 | Chapter 2: Installing and Configuring Ganglia

number, gmond will flush a host after it has not heard from it for host_dmax sec-
onds.

host_tmax (integer_value in seconds)
Stands for “timeout max.” Represents the maximum amount of time that gmond
should wait between updates from a host. Because messages may get lost in the
network, gmond will consider the host as being down if it has not received any
messages from it after four times this value.

cleanup_threshold (integer_value in seconds)
Minimum amount of time before gmond will clean up expired data.

gexec (boolean)
When true, gmond will announce the host’s availability to run gexec jobs. This
approach requires that gexecd be running on the host and the proper keys have
been installed.

send_metadata_interval (integer_value in seconds)
Establishes the interval at which gmond will send or resend the metadata packets
that describe each enabled metric. This directive by default is set to 0, which means
that gmond will send the metadata packets only at startup and upon request from
other gmond nodes running remotely. If a new machine running gmond is added
to a cluster, it needs to announce itself and inform all other nodes of the metrics
that it currently supports. In multicast mode, this isn’t a problem, because any
node can request the metadata of all other nodes in the cluster. However, in unicast
mode, a resend interval must be established. The interval value is the minimum
number of seconds between resends.

module_dir (path; optional)
Indicates the directory where the metric collection modules are found. If omitted,
defaults to the value of the compile-time option: --with-moduledir. This option,
in turn, defaults to a subdirectory named Ganglia in the directory where libganglia
will be installed. To discover the default value in a particular gmond binary, gen-
erate a sample configuration file by running:

gmond -t

For example, in a 32-bit Intel-compatible Linux host, the default is usually at /usr/
lib/ganglia.

Each gmond daemon will report information about the cluster in which
it resides using the attributes defined in the cluster section. The default values are the
string "unspecified"; the system is usable with the default values. This section may
appear only once in the configuration file. Following is the default cluster section:

cluster {
 name = "unspecified"
 owner = "unspecified"
 latlong = "unspecified"
 url = "unspecified"
}

Section: cluster.

Configuring Ganglia | 25

The attributes in the cluster section directly correspond to the attributes
in the CLUSTER tag in the XML output from gmond.

name (text)
Specifies the name of the cluster. When the node is polled for an XML summary
of cluster state, this name is inserted in the CLUSTER element. The gmetad polling
the node uses this value to name the directory where the cluster data RRD files are
stored. It supersedes a cluster name specified in the gmetad.conf configuration file.

owner (text)
Specifies the administrators of the cluster.

latlong (text)
Specifies the latitude and longitude GPS coordinates of this cluster on earth.

url (text)
Intended to refer to a URL with information specific to the cluster, such as the
cluster’s purpose or usage details.

The name attribute specified in the cluster section does place this
host into a cluster. The multicast address and the UDP port specify
whether a host is on the cluster. The name attribute acts justs as
an identifier when polling.

The host section provides information about the host running this instance
of gmond. Currently, only the location string attribute is supported. The default host
section is:

host {
 location = "unspecified"
}

location (text)
The location of the host in a format relative to the site, although rack,U[,blade] is
often used.

UDP send and receive channels establish how gmond nodes talk to
each other. Clusters are defined by UDP communication channels, which is to say, that
a cluster is nothing more than some number of gmond nodes that share the same send
and/or receive channels.

By default, every node in a gmond cluster multicasts its own metric data to its peers via
UDP and listens for similar UDP multicasts from its peers. This is easy to set up and
maintain: every node in the cluster shares the same multicast address, and new nodes
are automatically discovered. However, as we mentioned in the previous section on

Section: host.

Section: UDP channels.

26 | Chapter 2: Installing and Configuring Ganglia

deaf and mute nodes, it is sometimes desirable to specify individual nodes by their
unicast address.

For this reason, any number of gmond send and receive channels may be configured
to meet the needs of your particular environment. Each configured send channel defines
a new way that gmond will advertise its metrics, and each receive channel defines a way
that gmond will receive metrics from other nodes. Channels may be either unicast or
multicast and either IPv4 or IPv6.

Note that a gmond node should not be configured to contribute metrics to more than
one Ganglia cluster, nor should you attempt to receive metrics for more than one
cluster.

UDP channels are created using the udp_(send|receive)_channel sections. Following
is the default UDP send channel:

udp_send_channel {
 #bind_hostname = yes
 mcast_join = 239.2.11.71
 port = 8649
 ttl = 1
}

bind_hostname (boolean; optional, for multicast or unicast)
Tells gmond to use a source address that resolves to the machine’s hostname.

mcast_join (IP; optional, for multicast only)
When specified, gmond will create a UDP socket and join the multicast group
specified by the IP. This option creates a multicast channel and is mutually exclu-
sive with host.

mcast_if (text; optional, for multicast only)
When specified, gmond will send data from the specified interface (eth0, for
example).

host (text or IP; optional, for unicast only)
When specified, gmond will send data to the named host. This option creates a
unicast channel and is mutually exclusive with mcast_join.

port (number; optional, for multicast and unicast)
The port number to which gmond will send data. If it’s not set, port 8649 is used
by default.

ttl (number; optional, for multicast or unicast)
The time-to-live, this setting is particularly important for multicast environments,
as it limits the number of hops over which the metric transmissions are permitted
to propagate. Setting this value to any value higher than necessary could result in
metrics being transmitted across WAN connections to multiple sites or even out
into the global Internet.

Configuring Ganglia | 27

Following is the default UDP receive channel:

udp_recv_channel {
 mcast_join = 239.2.11.71
 port = 8649
 bind = 239.2.11.71
}

mcast_join (IP; optional, for multicast only)
When specified, gmond will listen for multicast packets from the multicast group
specified by the IP. If you do not specify multicast attributes, gmond will create a
unicast UDP server on the specified port.

mcast_if (text; optional, for multicast only)
When specified, gmond will listen for data on the specified interface (eth0, for
example).

bind (IP; optional, for multicast or unicast)
When specified, gmond will bind to the local address specified.

port (number; optional, for multicast or unicast)
The port number from which gmond will receive data. If not set, port 8649 is used
by default.

family (inet4|inet6; optional, for multicast or unicast)
The IP version, which defaults to inet4. If you want to bind the port to an inet6
port, specify inet6 in the family attribute. Ganglia will not allow IPv6=>IPv4 map-
ping (for portability and security reasons). If you want to listen on both inet4 and
inet6 for a particular port, define two separate receive channels for that port.

acl (ACL definition; optional, for multicast or unicast)
An access control list may be specified for fine-grained access control to a receive
channel. See “Access control” on page 29 for details on ACL syntax.

TCP Accept Channels establish the means by which gmond
nodes report the cluster state to gmetad or other external pollers. Configure as many
of them as you like. The default TCP Accept Channel is:

tcp_accept_channel {
 port = 8649
}

bind (IP; optional)
When specified, gmond will bind to the local address specified.

port (number)
The port number on which gmond will accept connections.

family (inet4|inet6; optional)
The IP version, which defaults to inet4. If you want to bind the port to an inet6
port, you need to specify inet6 in the family attribute. Ganglia will not allow
IPv6=>IPv4 mapping (for portability and security reasons). If you want to listen

Section: TCP Accept Channels.

28 | Chapter 2: Installing and Configuring Ganglia

on both inet4 and inet6 for a particular port, define two separate receive channels
for that port.

interface (text; optional)
When specified, gmond will listen for data on the specified interface (eth0, for
example).

acl (ACL definition; optional)
An access control list (discussed in the following section) may be specified for fine-
grained access control to an accept channel.

The udp_recv_channel and tcp_accept_channel directives can contain an
Access Control List (ACL). This list allows you to specify addresses and address ranges
from which gmond will accept or deny connections. Following is an example of an ACL:

acl {
 default = "deny"
 access {
 ip = 192.168.0.0
 mask = 24
 action = "allow"
 }
 access {
 ip = ::ff:1.2.3.0
 mask = 120
 action = "deny"
 }
}

The syntax should be fairly self-explanatory to anyone with a passing familiarity with
access control concepts. The default attribute defines the default policy for the entire
ACL. Any number of access blocks may be specified that list hostnames or IP addresses
and associate allow or deny actions to those addresses. The mask attribute defines a
subnet mask in CIDR notation, allowing you to specify address ranges instead of in-
dividual addresses. Notice that in case of conflicting ACLs, the first match wins.

sFlow is an industry standard technology for monitoring high-
speed switched networks. Originally targeted at embedded network hardware, sFlow
collectors now exist for general-purpose operating systems as well as popular applica-
tions such as Tomcat, memcached, and the Apache Web Server. gmond can be con-
figured to act as a collector for sFlow agents on the network, packaging the sFlow agent
data so that it may be transparently reported to gmetad. Further information about
sFlow interoperability is provided in Chapter 8. The entire sFlow section is optional.
Following is the default sFlow configuration:

#sflow {
udp_port = 6343
accept_vm_metrics = yes
accept_jvm_metrics = yes
multiple_jvm_instances = no
accept_http_metrics = yes
multiple_http_instances = no

Access control.

Optional section: sFlow.

Configuring Ganglia | 29

accept_memcache_metrics = yes
multiple_memcache_instances = no
#}

udp_port (number; optional)
The port on which gmond will accept sFlow data.

The remaining configuration parameters deal with application-specific sFlow data
types. See Chapter 8 for details.

The modules section contains the parameters that are necessary to load
a metric module. Metric modules are dynamically loadable shared object files that ex-
tend the available metrics gmond is able to collect. Much more information about
extending gmond with modules can be found in Chapter 5.

Each modules section must contain at least one module subsection. The module subsec-
tion is made up of five attributes. The default configuration contains every module
available in the default installation, so you should not have to change this section unless
you’re adding new modules. The configuration for an imaginary example_module is
provided here:

modules {
 module {
 name = "example_module"
 language = "C/C++"
 enabled = yes
 path = "modexample.so"
 params = "An extra raw parameter"
 param RandomMax {
 value = 75
 }
 param ConstantValue {
 value = 25
 }
 }
}

name (text)
The name of the module as determined by the module structure if the module was
developed in C/C++. Alternatively, the name can be the name of the source file if
the module has been implemented in an interpreted language such as Python.

language (text; optional)
The source code language in which the module was implemented. Defaults to “C/
C++” if unspecified. Currently, only C, C++, and Python are supported.

enabled (boolean; optional)
Allows a metric module to be easily enabled or disabled through the configuration
file. If the enabled directive is not included in the module configuration, the enabled
state will default to yes.

Section: modules.

30 | Chapter 2: Installing and Configuring Ganglia

If a module that has been disabled contains a metric that is still
listed as part of a collection group, gmond will produce a warning
message but will continue to function normally by ignoring the
metric.

path (text)
The path from which gmond is expected to load the module (C/C++ compiled
dynamically loadable module only). If the value of path does not begin with a
forward slash, the value will be appended to that of the module_path attribute from
the globals section.

params (text; optional)
Used to pass a string parameter to the module initialization function (C/C++
module only). Multiple parameters can be passed to the module’s initialization
function by including one or more param sections. Each param section must be
named and contain a value directive.

The collection_group entries specify the metrics that gmond
will collect, as well as how often gmond will collect and broadcast them. You may
define as many collection groups as you wish. Each collection group must contain at
least one metric section.

These are logical groupings of metrics based on common collection intervals. The
groupings defined in gmond.conf do not affect the groupings used in the web interface,
nor is it possible to use this mechanism to specify the names of the groups for the web
interface. An excerpt from the default configuration follows:

collection_group {
 collect_once = yes
 time_threshold = 1200
 metric {
 name = "cpu_num"
 title = "CPU Count"
 }
}
collection_group {
 collect_every = 20
 time_threshold = 90
 /* CPU status */
 metric {
 name = "cpu_user"
 value_threshold = "1.0"
 title = "CPU User"
 }
 metric {
 name = "cpu_system"
 value_threshold = "1.0"
 title = "CPU System"
 }
}

Section: collection_group.

Configuring Ganglia | 31

collect_once (boolean)
Some metrics are said to be “nonvolatile” in that they will not change between
reboots. This includes metrics such as the OS type or the number of CPUs installed
in the system. These metrics need to be collected only once at startup and are
configured by setting the collect_once attribute to yes. This attribute is mutually
exclusive with collect_every.

collect_every (seconds)
This value specifies the polling interval for the collection group. In the previous
example, the cpu_user and cpu_system metrics will be collected every 20 seconds.

time_threshold (seconds)
The maximum amount of time that can pass before gmond sends all metrics speci-
fied in the collection_group to all configured udp_send_channels.

name (text)
The name of an individual metric as defined within the metric collection module.
Typically, each loaded module defines several individual metrics. An alternative to
name is name_match. By using the name_match parameter instead of name, it is possible
to use a single definition to configure multiple metrics that match a regular ex-
pression. The Perl-compatible regular expression (pcre) syntax is used (e.g.,
name_match = "multicpu_([a-z]+)([0-9]+)").

You can get a list of the available metric names by running gmond
with an -m switch.

value_threshold (number)
Each time a metric value is collected, the new value is compared with the last
measured value. If the difference between the last value and the current value is
greater than the value_threshold, the entire collection group is sent to the
udp_send_channels defined. The units denoted by the value vary according to the
metric module. For CPU stats, for example, the value represents a percentage, and
network stats interpret the value as a raw number of bytes.

Any time a value_threshold is surpassed by any single metric in a
collection group, all metrics in that collection group are sent to
every UDP receive channel.

title (text)
A user-friendly title for the metric for use on the web frontend.

32 | Chapter 2: Installing and Configuring Ganglia

www.allitebooks.com

http://www.allitebooks.org

gmetad
gmetad, the Ganglia Meta Daemon, is installed on the host that will collect and aggre-
gate the metrics collected by the hosts running gmond. By default, gmetad will collect
and aggregate these metrics in RRD files, but it is possible to configure gmetad to
forward metrics to external systems such as Graphite instead.

gmetad listens on tcp port 8651 for connections from remote gmetad instances and will
provide an XML dump of the grid state to authorized hosts. It also responds to inter-
active requests on tcp port 8652. The interactive facility allows simple subtree and
summation views of the grid state XML tree. gweb uses this interactive query facility
to present information that doesn’t fit naturally in RRD files, such as OS version.

gmetad topology

The simplest topology is a single gmetad process polling one or more gmond instances,
as illustrated in Figure 2-4.

Figure 2-4. Basic gmetad topology

Redundancy/high availability is a common requirement and is easily implemented.
Figure 2-5 shows an example in which two (redundant) gmetads poll multiple gmonds
in the same cluster. The gmetads will poll node2 only if they are unable to poll node1
successfully. Both gmetads are always polling (active-active clustering).

Configuring Ganglia | 33

gmetad is not limited to polling gmond: a gmetad can poll another gmetad to create a
hierarchy of gmetads. This concept is illustrated in Figure 2-6.

gmetad, by default, writes all metric data directly to RRD files on the filesystem, as
illustrated in Figure 2-4.

In large installations in which there is an IO constraint, rrdcached acts as a buffer
between gmetad and the RRD files, as illustrated in Figure 2-7.

gmetad.conf: gmetad configuration file

The gmetad.conf configuration file is composed of single-line attributes and their cor-
responding values. Attribute names are case insensitive, but their values are not. The
following attributes, for example, are all equivalent:

name NAME Name NaMe

Most attributes are optional; others are required. Some may be defined in the config-
uration file multiple times; others must appear only once.

The data_source attribute is the heart of gmetad configuration.
Each data_source line describes either a gmond cluster or a gmetad grid from which
this gmetad instance will collect information. gmetad is smart enough to automatically
make the distinction between a cluster and a grid, so the data_source syntax is the same

The data_source attribute.

Figure 2-5. gmetad topology for high availability (active-active)

34 | Chapter 2: Installing and Configuring Ganglia

for either. If gmetad detects that the data_source refers to a cluster, it will maintain a
complete set of round robin databases for the data source. If, however, gmetad detects
that the data_source refers to a grid, it will maintain only summary RRDs.

Setting the scalable attribute to off overrides this behavior and forces gmetad to main-
tain a full set of RRD files for grid data sources.

The following examples, excerpted from the default configuration file, are valid data
sources:

data_source "my cluster" 10 localhost my.machine.edu:8649 1.2.3.5:8655
data_source "my grid" 50 1.3.4.7:8655 grid.org:8651 grid-backup.org:8651
data_source "another source" 1.3.4.8:8655 1.3.4.8

Figure 2-6. gmetad hierarchical topology

Configuring Ganglia | 35

Each data_source is composed of three fields. The first is a string that uniquely identifies
the source. The second field is a number that specifies the polling interval for the
data_source in seconds. The third is a space-separated list of hosts from which gmetad
may poll the data. The addresses may be specified as IP addresses or DNS hostnames
and may optionally be suffixed by a colon followed by the port number where the
gmond tcp_accept_channel is to be found. If no port number is specified, gmetad will
attempt to connect to tcp/8649.

gmetad will check each specified host in order, taking the status data
from the first host to respond, so it’s not necessary to specify every host
in a cluster in the data_source definition. Two or three are usually suf-
ficient to ensure that data is collected in the event of a node failure.

The following attributes affect the functioning of the gmetad
daemon itself:

gridname (text)
A string that uniquely identifies the grid for which this gmetad instance is respon-
sible. This string should be different from the one set in gmond. The one set in
gmond.conf (at cluster { name = “XXX” }) is used in the CLUSTER tag that wraps all
the hosts that particular gmond instance has collected. The gridname attribute will
wrap all data sources specified in a GRID tag, which could be thought of as a col-
lection of clusters defined in the data_source.

authority (URL)
The authority URL for this grid. Used by other gmetad instances to locate graphs
for this instance’s data sources. By default, this value points to “http://hostname/
ganglia/”.

gmetad daemon behavior.

Figure 2-7. gmetad with rrdcached

36 | Chapter 2: Installing and Configuring Ganglia

trusted_hosts (text)
A space-separated list of hosts with which this gmetad instance is allowed to share
data. Localhost is always trusted.

all_trusted (on|off)
Set this value to on to override the trusted_hosts attribute and allow data sharing
with any host.

setuid_username (UID)
The name of the user gmetad will set the UID to after launch. This defaults to
nobody.

setuid (on|off)
Set this to off to disable setuid.

xml_port (number)
The gmetad listen port. This value defaults to 8651.

interactive_port (number)
The gmetad interactive listen port. This value defaults to 8652.

server_threads (number)
The number of simultaneous connections allowed to connect to the listen ports.
This value defaults to 4.

case_sensitive_hostnames (1|0)
In earlier versions of gmetad, the RRD files were created with case-sensitive host-
names, but this is no longer the case. Legacy users who wish to continue to use
RRD files created by Ganglia versions before 3.2 should set this value to 1. Since
Ganglia 3.2, this value has defaulted to 0.

Several attributes affect the creation and handling of RRD files.

RRAs (text)
These specify custom Round Robin Archive values. The default is (with a “step
size” of 15 seconds):

"RRA:AVERAGE:0.5:1:5856" "RRA:AVERAGE:0.5:4:20160" "RRA:AVERAGE:0.5:40:52704"

The full details of an RRA specification are contained in the manpage for
rrdcreate(1).

umask (number)
Specifies the umask to apply to created RRD files and the directory structure con-
taining them. It defaults to 022.

rrd_rootdir (path)
Specifies the base directory where the RRD files will be stored on the local
filesystem.

It is possible to export all the metrics collected by gmetad to Graphite,
an external open source metrics storage and visualization tool, by setting the following
attributes.

RRDtool attributes.

Graphite support.

Configuring Ganglia | 37

carbon_server (address)
The hostname or IP of a remote carbon daemon.

carbon_port (number)
The carbon port number, which defaults to 2003.

graphite_prefix (text)
Graphite uses dot-separated paths to organize and refer to metrics, so it is probably
desirable to prefix the metrics from gmetad with something descriptive like data
center1.gmetad, so Graphite will organize them appropriately.

carbon_timeout (number)
The number of milliseconds gmetad will wait for a response from the Graphite
server. This setting is important because gmetad’s carbon sender is not threaded
and will block waiting on a response from a down carbon daemon. Defaults to 500.

As mentioned previously, gmetad listens on TCP port
8652 (by default) for interactive queries. The interactive query functionality enables
client programs to get XML dumps of the state of only the portion of the Grid in which
they’re interested.

Interactive queries are performed via a text protocol (similar to SMTP or HTTP). Quer-
ies are hierarchal, and begin with a forward slash (/). For example, the following query
returns an XML dump of the entire grid state:

/

To narrow the query result, specify the name of a cluster:

/cluster1

To narrow the query result further, specify the name of a host in the cluster:

/cluster1/host1

Queries may be suffixed with a filter to modify the type of metric information returned
by the query (as of this writing, summary is the only filter available). For example, you
can request only the summary metric data from cluster1 like so:

/cluster1?filter=summary

gweb
Of the three daemons that comprise Ganglia, gweb is both the most configurable, and
also least in need of configuration. In fact, there is no need to change anything what-
soever in gweb’s default configuration file to get up and running with a fully functional
web UI.

Apache virtual host configuration

Although gweb itself requires no configuration to speak of, some web server configu-
ration is necessary to get gweb up and running. Any web server with PHP support will

gmetad interactive port query syntax.

38 | Chapter 2: Installing and Configuring Ganglia

do the job, and although web server configuration is beyond of the scope of this book,
the Apache Web Server is such a common choice that it has been included an example
of a virtual host configuration for Apache. Assuming that gweb is installed in /var/www/
html/ganglia2 on a host that resolves to myganglia.example.org, the following config-
uration should get you started with Apache:

NameVirtualHost *.80

<VirtualHost *:80>
 ServerName myganglia.example.org
 ServerAlias myganglia

 DocumentRoot /var/www/html/ganglia2

 # Other directives here
</VirtualHost>

This is, of course, a simplistic example. For further reading on the subject, we recom-
mend further reading here.

gweb options

gweb is configured by way of the conf.php file. In fact, this file overrides and extends
the default configuration set in conf_default.php. conf.php is located in the web root
directory. This file is well documented, and as of this writing there are more than 80
options, so it won’t cover them all, but it will cover some of the more important ones,
and make note of some option categories—just so you’re aware they’re there.

The file, as its name suggests, is itself a PHP script made up of variable assignments.
Unlike the other configuration files, assignments might span multiple lines. Attribute
names are themselves keys in gweb’s $conf data structure, so they are case sensitive,
and look like PHP array assignments. The following line, for example, informs gweb
of the location of the RRDtool binary:

$conf['rrdtool'] = "/usr/bin/rrdtool";

All attributes in the file are required, and some may be defined multiple times; others
must appear only once. Some values are derived from other values. For example, the
rrds attribute is derived from gmetad_root:

$conf['rrds'] = "${conf['gmetad_root']}/rrds";

Attributes in this category affect gweb’s functional parameters—its
own home directory, for example, or the directories in which it will check for RRDs or
templates. These are rarely changed by the user, but a few of them bear mentioning.

templates (path)
Specifies the directory in which gweb will search for template files. Templates are
like a skin for the site that can alter its look and feel.

Application settings.

Configuring Ganglia | 39

http://httpd.apache.org/docs/2.0/vhosts/

graphdir (path)
Specifies the directory where the user may drop JSON definitions of custom graphs.
As described in the next chapter, users may specify custom report graphs in JSON
format and place them in this directory, and they will appear in the UI.

rrds (path)
Specifies the directory where the RRD files are to be found.

As described in Chapter 7, various Nagios integration features may be set in gweb’s
conf.php. Collectively, these enable Nagios to query metric information from gweb
instead of relying on remote execution systems such as Nagios Service Check Acceptor
(NSCA) and Nagios Remote Plugin Executor (NRPE).

gweb may be configured to limit the number of graphs it displays at once
(max_graphs) and to use a specified number of columns for the grid and host views.
There are also a number of boolean options that affect the default behavior of the UI
when it is first launched, such as metric_groups_initially_collapsed .

The config.php file defines numerous settings that modify the functional attributes of
the graphs drawn in the UI. For example, you may change the colors used to plot the
values in the built-in load report graph and the default colors used in all the graphs and
even define custom time ranges.

Attributes in this category include the following:

auth_system (readonly|enabled|disabled)
gweb includes a simple authorization system to selectively allow or deny individual
users access to specific parts of the application. This system is enabled by setting
auth_system to enabled. For more information on the authorization features in
gweb, see Chapter 4.

Here are some advanced features:

rrdcached_socket (path)
Specifies the path to the rrdcached socket. rrdcached is a high-performance caching
daemon that lightens the load associated with writing data to RRDs by caching
and combining the writes. More information may be found in Appendix A.

graph_engine (rrdtool|graphite)
gweb can use Graphite instead of RRDtool as the rendering engine used to generate
the graphs in the UI. This approach requires you to install patched versions of
whisper and the Graphite webapp on your gweb server. More information can be
found here.

Postinstallation
Now that Ganglia is installed and configured, it’s time to get the various daemons
started, verify that they’re functional, and ensure that they can talk to each other.

Look and feel.

Security.

Advanced features.

40 | Chapter 2: Installing and Configuring Ganglia

http://sourceforge.net/apps/trac/ganglia/wiki/ganglia-web-2#UsingGraphiteasthegraphingengine

Starting Up the Processes
Starting the processes in a specific order is not necessary; however, if the daemons are
started in the order recommended here, there won’t be a delay waiting for metadata to
be retransmitted to the UDP aggregator and users won’t get error pages or incomplete
data from the web server:

1. If you’re using the UDP unicast topology, start the UDP aggregator nodes first.
This ensures that the aggregator nodes will be listening when the other nodes send
their first metadata transmission.

2. Start all other gmond instances.

3. If you’re using rrdcached, start all rrdcached instances.

4. Start gmetad instances at the lowest level of the hierarchy (in other words, gmetad
instances that don’t poll any other gmetad instances).

5. Work up the hierarchy starting any other gmetad instances.

6. Start the Apache web servers. Web servers are started after gmetad; otherwise, the
PHP scripts can’t contact gmetad and the users see errors about port 8652.

Remember rrdcached

If gmetad is configured to use rrdcached, it is essential for rrdcached to
be running before gmetad is started.

Testing Your Installation
gmond and gmetad both listen on TCP sockets for inbound connections. To test
whether gmond is operational on a given host, telnet to gmond’s TCP port:

user@host:$ telnet localhost 8649

In reply, gmond should output an XML dump of metric data. If the gmond is deaf or
mute, it may return a rather empty XML document, with just the CLUSTER tag. gmetad
may be likewise tested with telnet like so:

user@host:$ telnet localhost 8651

A functioning gmetad will respond with an XML dump of metric data.

See Chapter 6 for a more comprehensive list of techniques for validating the state of
the processes.

Firewalls
Firewall problems are common with new Ganglia installations that span network sub-
nets. Here, we’ve collected the firewall requirements of the various daemons together
to help you avoid interdaemon communication problems:

Postinstallation | 41

1. gmond uses multicast by default, so clusters that span a network subnet need to
be configured with unicast senders and listeners as described in the previous top-
ology sections. If the gmond hosts must traverse a firewall to talk to each other,
allow udp/8649 in both directions. For multicast, support for the IGMP protocol
must also be enabled in the intermediate firewalls and routers.

2. gmond listens for connections from gmetad on TCP port 8649. If gmetad must
traverse a firewall to reach some of the gmond nodes, allow tcp/8649 inbound to
a few gmond nodes in each cluster.

3. gmetad listens for connections on TCP port 8651 and 8652. The former port is
analogous to gmond’s 8649, while the latter is the “interactive query” port to which
specific queries may be sent. These ports are used by gweb, which is usually in-
stalled on the same host as gmetad, so unless you’re using some of the advanced
integration features, such as Nagios integration, or have custom scripts querying
gmetad, you shouldn’t need any firewall ACLs for gmetad.

4. gweb runs in a web server, which usually listens on ports 80 and 443 (if you enable
SSL). If the gweb server is separated from the end users by a firewall (a likely sce-
nario), allow inbound tcp/80 and possibly tcp/443 to the gweb server.

5. If your Ganglia installation uses sFlow collectors and the sFlow collectors must
traverse a firewall to reach their gmond listener, allow inbound udp/6343 to the
gmond listener.

42 | Chapter 2: Installing and Configuring Ganglia

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3

Scalability

Daniel Pocock and Bernard Li

Who Should Be Concerned About Scalability?
Scalability is discussed early in this book because it needs to be factored in at the plan-
ning stage rather than later on when stability problems are observed in production.

Scalability is not just about purchasing enough disk capacity to store all the RRD files.
Particular effort is needed to calculate the input/output operations per second (IOPS)
demands of the running gmetad server. A few hours spent on these calculations early
on can avoid many hours of frustration later.

The largest Ganglia installation observed by any of the authors is a tier-1 investment
bank with more than 50,000 nodes. This chapter is a must-read for enterprises of that
size: without it, the default Ganglia installation will appear to be completely broken
and may even flood the network with metric data, interfering with normal business
operations. If it’s set up correctly (with a custom configuration), the authors can con-
firm that Ganglia performs exceptionally well in such an environment.

In fact, the number of nodes is not the only factor that affects scalability. In a default
installation, Ganglia collects about 30 metrics from each node. However, third-party
metric modules can be used to collect more than 1,000 metrics per node, dramatically
increasing the workload on the Ganglia architecture. Administrators of moderate-sized
networks pursuing such aggressive monitoring strategies need to consider scalability
in just the same way as a large enterprise with a huge network does.

For a small installation of a few dozen hosts, this chapter is not required. It is quite
possible that the default installation will “just work” and never require any attention.

gmond and Ganglia Cluster Scalability
The default multicast topology is often quite adequate for small environments in which
the number of sender/receiver nodes is not too large. For larger environments, an

43

analysis of scalability is suggested. It is necessary to consider how the receiving nodes
are affected as the network is scaled:

Memory impact
The more nodes and the more metrics per node, the greater the memory con-
sumption on those gmond processes that are configured to receive metrics from
other nodes.

CPU impact
gmond is bound by a single thread. The faster the rate of metrics arriving from the
network, the more the CPU core is utilized. The metric arrival rate depends on
three things: the number of nodes, the number of metrics per node, and the rate
at which the nodes are configured to transmit fresh values.

gmond has to process all the metric data received from the other nodes in the cluster
or grid. As the data volume increases—due to more nodes joining the cluster, or a higher
rate of metric transmissions—every node must allocate more and more CPU time to
process the incoming data, which can be undesirable and unnecessary.

To reduce this overhead, the solution is the use of “deaf” nodes, as illustrated in the
deaf/mute node topology of Figure 2-2.

gmetad Storage Planning and Scalability
In a small Ganglia installation, the default gmetad configuration (storing the RRD files
on disk, not using rrdcached in any way) will just work. No special effort needs to be
made and this section can be skipped.

If you have a large installation, it is important to read this section carefully before
proceeding to configure gmetad.

RRD File Structure and Scalability
An RRD file is made up of a header followed by a series of one or more arrays. If the
entire RRD file fits into one block on disk (4,096 bytes, typically) then all modifications
to the file can, at best, be made with a single IO request.

The actual amount of data stored for a single data point in the RRD file is 8 bytes. If
data points are stored at 60-second intervals, a single 4,096-byte disk block will store
just over eight hours of data points.

With a single-data source (DS) RRD file, an update that writes to only one RRA will
change only 8 bytes of data in the entire 4K page. Furthermore, for the operating system
to make this write, it first has to have the entire page/block in RAM. If it is not in RAM,
there is a read IO before the write IO, a total of two IOs for one write. Having enough
physical RAM for the page cache to retain all the currently active blocks from each RRD
can avoid this double IO problem, reducing the IO load by 50 percent.

44 | Chapter 3: Scalability

If the RRD file is keeping data for an extended period of time, or keeping different types
of data (both MIN and MAX values), it may span more than one block and multiple
IOs are required when a single update occurs. This issue can be compounded by the
read-before-write problem just described.

The RRD file structure interleaves the data from different data sources but not from
different consolidation functions (such as MIN and MAX values). In RRDtool deploy-
ments that store data from multiple sources in a single RRD file, this means that all the
values for a particular time interval are likely to be stored in the same disk block ac-
cessible with a single disk IO read or write operation. However, this optimization is
not of any benefit with Ganglia: because Ganglia supports a variable number of data
sources for each host and RRD files are inherently static in structure, Ganglia creates
a different RRD file for each metric, rather than creating multiple data sources within
a single RRD file.

If more than one consolidation function is used (for example, MIN, MAX, and AVER-
AGE values are retained for a single data source), these values are not interleaved. The
RRD file contains a separate array for each function. Theoretically, if the sample interval
and retention periods were equivalent, such values could be interleaved, but this ap-
proach is not currently supported by RRDtool.

Although interleaving is significantly more efficient for writing, it has the slight disad-
vantage that reading/reporting on a single consolidation function for a single source
has to read all the interleaved data, potentially multiplying the number of blocks that
must be read. In many situations, the write workload is much heavier than the reporting
workload, so this read overhead of interleaving is far outweighed by the benefits of the
strategy.

When data is recorded for different step values (e.g., 8 hours of samples at a 20-second
interval and 7 days of samples at a 15-minute interval), there is no way to interleave the
data with different step values. In this example, on every 60th write to the array of 20-
second samples, there will also be a write to the array of 15-minute samples. It is likely
that the array of 15-minute samples is in the second or third disk block of the file, so
it is an extra write IO operation, it requires extra space in the page cache, and it may
not be a contiguous block suitable for a sequential read or write. This may not seem
like a major overhead for one write out of every 60, until you contemplate the possibility
that every RRD file may simultaneously make that extra write IO operation at the same
time, stressing the write IO system and page cache in order to handle the amount of
IO that is processed for every other sample. In fact, RRDtool’s designers anticipated
this nightmare scenario, and every RRD file has a randomized time offset to ensure that
the IO workload is spread out. Nonetheless, it is still important to bear in mind the
extra IO effort of accessing multiple regions in the RRD file.

Understanding the file format at this level is essential to anyone involved in an extreme
Ganglia deployment. RRDtool is an open source project with an active community

gmetad Storage Planning and Scalability | 45

behind it, and more demanding users are encouraged to join the RRDtool mailing list
to discuss such issues and strategies for dealing with scalability.

In conclusion, when deciding how to configure the RRA parameters in gmetad.conf, it
is essential to consider not only the disk space but also the extra IO demand created
by every consolidation function and sample interval.

Acute IO Demand During gmetad Startup
The first thing to be aware of is the startup phase. If gmetad stops for many hours, then
on the next startup, it has to fill in the gaps in the RRD files. gmetad and RRDtool fill
such gaps by writing the value NaN into each timeslot. This is a common scenario if a
server goes offline for a 12-hour weekend maintenance window, or if a server crashes
at midnight and is started up again by staff arriving eight hours later. If the RRD pa-
rameters are configured to retain data with short sample intervals for many hours, this
situation implies a lot of gaps to be filled.

During the startup phase, gmetad and RRDtool are trying to write to RRD files from
each cluster in parallel. This means that the disk write activity is not sequential.

Consequently, if there is a truly huge number of RRD files and if the disk storage system
does not cope well with a random access workload (e.g., if it is not an SSD or SAN),
the startup phase may take many hours or may not even complete at all. During this
phase, no new data is collected or stored. Sometimes, the only way to bypass this startup
issue is to delete all the existing RRDs (losing all history) and start afresh. Therefore,
when planning for scalability of the storage system, this startup phase should be con-
sidered the worst-case scenario that the storage must support. Decisions about the
storage system, sample intervals, and retention periods must be carefully considered
to ensure a smooth startup after any lengthy period of downtime.

gmetad IO Demand During Normal Operation
After the startup phase, it is also necessary to consider the IO demands during normal
operation:

Real-time write workload
If each RRD file spans more than one disk block, then storing an update to the file
is likely to involve multiple nonsequential writes: one write to the header (first
block), one write to each RRA, and one write to the file access time (directory-level
metadata). If the RRD stores MIN, MAX, and AVERAGE values, and there are
RRAs for 1-minute, 15-minute, and 1-hour samples, that is 9 distinct RRAs and
therefore 11 write operations. Moving to the next RRD file is likely to be nonse-
quential, as gmetad does not actively order the files or the writes in any particular
way. The gmetad processes runs a separate thread for each Ganglia cluster. Thus,
there can be concurrent write access. This combination of nonsequential writing

46 | Chapter 3: Scalability

and concurrent access creates a pattern of disk write access that appears almost
truly random.

Reading to generate web graphs/reports
Each time the user accesses a page in the web UI, the web server reads from every
RRD that is needed (maybe 30 separate files for a host view) to create the necessary
graphs. Due to the multithreaded nature of the web browser and web server, the
read workload is likely to be random access.

Reading for reporting
If any batch reports are executed on an hourly or daily basis, the workload may be
sequential or random access, depending on the amount of data extracted by the
report and the way the reporting script is written.

Due to the relatively simple architecture of Ganglia and RRDtool, they are inherently
very scalable and adaptable. Keep the previous points in mind as you design your Gan-
glia deployment, but rest assured that the lightweight and efficient architecture has
been scrutinized by many talented engineers and there’s not much to improve upon.
As long as the workload is relatively constant (a constant number of hosts in the net-
work), the IO workload will also remain somewhat constant. There are clear solutions
for this type of workload, which are covered extensively in the rest of this chapter.

When you consider all of these IO demands together, it should become obvious that
careful planning and real-time monitoring of the gmetad servers is needed.

Forecasting IO Workload
Before committing to a large installation of Ganglia, it is desirable to forecast the IO
workload. Here is a brief outline of how to make an accurate forecast:

1. Decide on the exact RRA structure you require (sample intervals, retention periods,
and functions such as MIN, MAX, or AVERAGE).

2. Create a logical volume big enough for one RRD file (4 MB should be fine). Format
the logical volume and mount it. Create one sample RRD file on the new filesystem.

3. Use iostat to observe write IO on the logical volume:

 $ iostat -k 60 -x /dev/dm-X

where X is replaced by the actual device node.

4. Use the rrdupdate command (man rrdupdate) to manually write updates to the RRD
file while observing the iostat IO levels. The simulation should generate enough
writes to span all the sample intervals. For example, if keeping 60-second samples
for 8 hours and 15-minute samples for 1 week, the simulation should generate 30
minutes worth of rrdupdates to fill two of the 15-minute samples:

gmetad Storage Planning and Scalability | 47

 # start time
 TS=`date +%s`

 # interval between simulated polls
 STEP=30

 # duration of test (not real time)
 PERIOD=`expr 60 '*' 30`

 LAST_TS=`expr $TS + $PERIOD`
 while [$TS -lt $LAST_TS];
 do
 rrdtool update /mnt/test_lv/testing.rrd ${TS}@0.0
 TS=`expr $TS + $STEP`
 done

5. Look at the output from the iostat command to see how many read and write
IOPS occurred. Look for the IOPS count and not the rate.

6. Divide the IOPS count by the value of $PERIOD to find the actual IOPS rate for a
system running in real time (the simulation runs faster than real time, so the rate
reported by iostat is meaningless). Multiply that by the anticipated number of
hosts and metrics to estimate the real IO workload.

7. Repeat the simulation with rrdcached.

Testing the IO Subsystem
The previous section described how to estimate the required IO throughput (measured
in IOPS). It is important to verify that the purchased disk system/SAN can support the
maximum throughput demands.

In many corporate environments, there is a standard SAN solution for all users. The
SAN may or may not be configured to operate at the IO levels claimed by the manu-
facturer. Existing applications on the SAN may already be using a significant portion
of its IO capacity. Therefore, it is necessary to run a test to verify the actual performance
that the SAN can offer.

It is a good idea to run such testing several times during the day and night to observe
whether the SAN provides consistent performance. For example, the SAN may be
slower on Sundays due to IO-heavy backup/replication tasks. It may run slowly be-
tween 7:00 am and 8:00 am due to a daily reporting batch that hammers multiple
databases. The only way to discover these patterns is to run a simulation every 15
minutes for a week.

There are many tools for testing disk IO capacity. The example presented here is for
the flexible IO tester tool (man fio). It is available as the package fio on Debian.

First, create a configuration file for the tool, a sample of which is shown here:

48 | Chapter 3: Scalability

Do some important numbers on SSD drives, to gauge what kind of
performance you might get out of them.
#
Sequential read and write speeds are tested, these are expected to be
high. Random reads should also be fast, random writes are where crap
drives are usually separated from the good drives.
#
This uses a queue depth of 4. New SATA SSD's will support up to 32
in flight commands, so it may also be interesting to increase the queue
depth and compare. Note that most real-life usage will not see that
large of a queue depth, so 4 is more representative of normal use.
#
[global]
bs=4k
ioengine=libaio
iodepth=1
size=1g
direct=1
runtime=60
directory=/mnt/san_volume
filename=fio.test.file.delete_me

[seq-read]
rw=read
stonewall

[rand-read]
rw=randread
stonewall

[seq-write]
rw=write
stonewall

[rand-write]
rw=randwrite
stonewall

There are two things to consider changing:

directory=/mnt/san_volume

Change to the actual mount point of a SAN filesystem.

size=1g

Increasing this value could make the test span more disks in the SAN, which makes
the test output more reliable, but it also makes the test take longer.

Now run the test (where config.fio is the config file name):

fio --output=san_test.out config.fio

The output report (san_test.out) is created in the current directory. Here is a sample of
how it might look:

gmetad Storage Planning and Scalability | 49

...

rand-write: (groupid=3, jobs=1): err= 0: pid=23038
 write: io=46512KB, bw=793566B/s, iops=193, runt= 60018msec
 slat (usec): min=13, max=35317, avg=97.09, stdev=541.14
 clat (msec): min=2, max=214, avg=20.53, stdev=18.56
 bw (KB/s) : min= 0, max= 882, per=98.54%, avg=762.72, stdev=114.51
 cpu : usr=0.85%, sys=2.27%, ctx=11972, majf=0, minf=21
 IO depths : 1=0.1%, 2=0.1%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0%
 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
 issued r/w: total=0/11628, short=0/0

 lat (msec): 4=1.81%, 10=32.65%, 20=31.30%, 50=26.82%, 100=6.71%
 lat (msec): 250=0.71%

...

Run status group 3 (all jobs):
 WRITE: io=46512KB, aggrb=774KB/s, minb=793KB/s, maxb=793KB/s, mint=60018msec, ...
Disk stats (read/write):
 dm-23: ios=277015/36964, merge=0/0, ticks=277884/471056, in_queue=749060, ...
 md2: ios=0/0, merge=0/0, ticks=0/0, in_queue=0, util=-nan%, aggrios=0/0, ...
 sda: ios=0/0, merge=0/0, ticks=0/0, in_queue=0, util=-nan%

In this sample, much of the output is truncated, so that only the rand-write job output
is displayed. This job gives the best simulation of gmetad/RRDtool write behavior.

The key point to look at is the IOPS throughput rate, iops=193 in the sample. Compare
this to the IOPS estimate calculated in the section “Forecasting IO Work-
load” on page 47 to find out whether the SAN will cope.

If you find that the IOPS capacity of the SAN is insufficient, consider options such as
reducing the number of RRAs for different functions (e.g., keep only MAX and not
MIN or AVERAGE), get a faster SAN, or review the list of suggestions in the next
section.

Dealing with High IO Demand from gmetad
Here are some common strategies:

Store RRD files on fast disks (RAID0, SAN, SSD).
By default, RRD files are stored in /var/lib/ganglia/rrds. This directory usually re-
sides on the local disk of the server that runs gmetad. If you are experiencing slow-
downs on your gmetad servers, consider purchasing a RAID system and storing
the RRD files there. Alternatively, good experiences have been reported by users
placing RRD files on SAN storage or solid-state drives (SSDs).

50 | Chapter 3: Scalability

Use a disk controller with a large hardware write cache.
Many RAID controllers now offer a 512 MB or 1 GB write cache. Furthermore,
these often have a battery-backup or flash-backup option that is essential for reli-
ability with such a large write cache.

Don’t use NFS.
NFS has a very strict protocol for ensuring that writes are fully committed to disk.
Although this approach is very reliable (and necessary) in a client/server model, it
is inappropriate for applications that have a heavy IO demand, particularly if the
application is accessing multiple files.

Mount the filesystem with the noatime option.
When a user invokes a web view that contains many graphs, many different RRD
files are accessed and atime is updated for every RRD file (metadata write opera-
tion). If it is a cluster view and the files are from different hosts, then each metadata
access is on a different directory, so a read operation actually involves a massive
nonsequential write operation at the same time. On a RAID5 system, this issue is
compounded by the R-W-R algorithm (one logical IOP = three physical IOPS).
Therefore, enabling the noatime option can eliminate a huge amount of unneces-
sary IO and have a huge benefit.

Store RRD files on RAM disk.
Similar to the previous solution, one could create a RAM disk using the physical
memory available on the gmetad server. For instance, if your server has 8 GB of
RAM, you could dedicate 4 GB specifically for storing RRD files, which could be
accomplished by adding the following line in /etc/fstab on a Linux system:

tmpfs /var/lib/ganglia/rrds tmpfs defaults 0 0

and mounting the directory accordingly. By default, half of the physical memory
will be used by tmpfs.

Because anything that is stored on tmpfs is volatile, the downside of this solution
is that you will need a method of regularly synchronizing the data on tmpfs to
persistent disk. The interval of backup should be determined by how much data
you are willing to lose if the server crashes unexpectedly. You’ll also need to set up
some script to automatically preload the data stored on persistent disk back to
tmpfs after each reboot prior to gmetad starting up.

Calculate your expected IOPS workload and test the storage.
Considering the size of your RRD files, the number of RRAs, sample intervals, and
retention periods, you can estimate the rate of IOPS.

Use a tool such as the flexible IO tester (man fio) to verify that your block device
supports the target IO rate.

Use rrdcached.
From the rrdcached manpage, rrdcached “is a daemon that receives updates to
existing RRD files, accumulates them, and, if enough have been received or a de-
fined time has passed, writes the updates to the RRD file.” This daemon comes

gmetad Storage Planning and Scalability | 51

with RRDtool 1.4 and later and has been used very successfully in boosting
scalability.

For instructions on how to set up rrdcached with Ganglia, please refer to “Con-
figuring gmetad for rrdcached” on page 211.

Set up a reverse proxy.
Use a web proxy such as Squid to cache the graphs so that the same graphs are not
constantly regenerated for multiple users. Doing so can dramatically reduce the IO
read workload.

Make data available through pregenerated reports.
Set up cron jobs to prepare static HTML reports at desired intervals. Give users
access to the static HTML reports rather than direct access to gweb.

Make sure there is sufficient physical RAM.
When updating RRDs, rrdtool must read and write entire disk blocks rather than
just writing out the bytes that change. Consequently, having enough RAM avail-
able for the page cache to buffer all active disk blocks (at least one 4,096-byte block
per RRD file) can avoid the need for rrdtool to read blocks from disk before the
write IO is executed.

52 | Chapter 3: Scalability

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

The Ganglia Web Interface

Vladimir Vuksan and Alex Dean

So far, this book has dealt with the collection of data. Now we will discuss visualizing
it. Visualization of these data is the primary responsibility of a web-based application
known as gweb. This chapter is an introduction to gweb and its features. Whether the
job is understanding how a problem began in your cluster or convincing management
that more hardware is required, a picture is worth a thousand data points.

Navigating the Ganglia Web Interface
gweb is organizaed into a number of top-level tabs: Main, Search, Views, Aggregated
Graphs, Compare Hosts, Events, Automatic Rotation, Live Dashboard, and Mobile.
These tabs allow you to easily jump right to the information you need.

The gweb Main Tab
gweb’s navigation scheme is organized around Ganglia’s core concepts: grids, clusters,
and nodes. As you click deeper into the hierarchy, breadcrumb-style navigation links
allow you to return to higher-level views. Figure 4-1 shows how you can easily navigate
to exactly the view of the data you want.

Grid View
The grid view (Figure 4-2) provides the highest-level view available. Grid graphs sum-
marize data across all hosts known to a single gmetad process. Grid view is the jumping-
off point for navigating into more details displays dealing with individual clusters and
the hosts that compose those clusters:

1. Clicking on any grid-level summary graphs brings up the all time periods display.
Clicking again enlarges the graph you’re interested in.

2. Clicking on any cluster-level graph displays the cluster view.

53

Cluster View
A cluster is a collection of gmonds. They may be grouped by physical location, common
workload, or any other criteria. The top of the cluster view (Figure 4-3) displays sum-
mary graphs for the entire cluster. A quick view of each individual host is further down
the page.

Figure 4-1. gweb navigation overview

54 | Chapter 4: The Ganglia Web Interface

Figure 4-2. Grid view

Figure 4-3. Cluster view

Navigating the Ganglia Web Interface | 55

1. Clicking on a cluster summary shows you that summary of a range of time periods.

2. Clicking on an individual host takes you to the host display.

The background color of the host graphs is determined by their one-minute load aver-
age. The metric displayed for each host can be changed using the Metric select box near
the top of the page.

The utilization heatmap provides an alternate display of the one-minute load averages.
This is a very quick way to get a feeling for how evenly balanced the workload is in the
cluster at the present time. The heatmap can be disabled by setting

$conf["heatmaps_enabled"]=0

in conf.php.

When working with a cluster with thousands of nodes, or when using gweb over a slow
network connection, loading a graph for each node in the cluster can take a significant
amount of time. $conf["max_graphs"] can be defined in conf.php to address this prob-
lem: to set an upper limit on the number of host graphs that will be displayed in cluster
view.

Physical view

Cluster view also provides an alternative display known as physical view (Figure 4-4),
which is also very useful for large clusters. Physical view is a compressed text-only
display of all the nodes in a cluster. By omitting images, this view can render much
more quickly than the main cluster view.

Figure 4-4. Physical view

56 | Chapter 4: The Ganglia Web Interface

Clicking on a hostname in physical view takes you to the node view for that host. Node
view is another text-only view, and is covered in more detail in “Host
View” on page 58.

Adjusting the time range

Grid, cluster, and host views allow you to specify the time span (Figure 4-5) you’d like
to see. Monitoring an ongoing event usually involves watching the last few minutes of
data, but questions like “what is normal?” and “when did this start?” are often best
answered over longer time scales.

Figure 4-5. Choosing a time range

You are free to define your own time spans as well via your conf.php file. The defaults
(defined in conf_default.php) look like this:

 #
 # Time ranges
 # Each value is the # of seconds in that range.
 #
 $conf['time_ranges'] = array(
 'hour' => 3600,
 '2hr' => 7200,
 '4hr' => 14400,
 'day' => 86400,
 'week' => 604800,
 'month'=> 2419200,
 'year' => 31449600
);

All of the built-in time ranges are relative to the current time, which makes it difficult
to see (for example) five minutes of data from two days ago, which can be a very useful
view to have when doing postmortem research on load spikes and other problems. The
time range interface allows manual entry of begin and end times and also supports
zooming via mouse gestures.

In both cluster and host views, it is possible to click and drag on a graph to zoom in on
a particular time frame (Figure 4-6). The interaction causes the entire page to reload,
using the desired time period. Note that the resolution of the data displayed is limited
by what is stored in the RRD database files. After zooming, the time frame in use is
reflected in the custom time frame display at the top of the page. You can clear this by
clicking clear and then go. Zoom support is enabled by default but may be disabled by
setting $conf["zoom_support"] = 0 in conf.php.

Navigating the Ganglia Web Interface | 57

Figure 4-6. Zooming in on an interesting time frame

Host View
Metrics from a single gmond process are displayed and summarized in the host view
(Figure 4-7). Summary graphs are displayed at the top, and individual metrics are
grouped together lower down.

Host Overview contains textual information about the host, including any string met-
rics being reported by the host, such as last boot time or operating system and kernel
version.

Viewing individual metrics

The “inspect” option for individual metrics, which is also available in the “all time
periods” display, allows you to view the graph data interactively:

1. Raw graph data can be exported as CSV or JSON.

2. Events can be turned off and on selectively on all graphs or specific graphs.

3. Trend analysis can make predictions about future metric values based on past data.

4. Graph can be time-shifted to show overlay of previous period’s data.

Node view

Node view (Figure 4-8) is an alternative text-only display of some very basic information
about a host, similar to the physical view provided at the cluster level.

Graphing All Time Periods
Clicking on a summary graph at the top of the grid, cluster, or host views leads to an
“all time periods” view of that graph. This display shows the same graph over a variety
of time periods: typically the last hour, day, week, month, and year. This view is very

58 | Chapter 4: The Ganglia Web Interface

useful when determining when a particular trend may have started or what normal is
for a given metric.

Many of the options described for viewing individual metrics are also available for all
time periods, include CSV and JSON export, interactive inspection, and event display.

Figure 4-7. Host view

Navigating the Ganglia Web Interface | 59

The gweb Search Tab
Search allows you to find hosts and metrics quickly. It has multiple purposes:

• Find a particular metric, which is especially useful if a metric is rare, such as out
going_sms_queue.

• Quickly find a host regardless of a cluster.

Figure 4-9 shows how gweb search autocomplete allows you to find metrics across your
entire deployment. To use this feature, click on the Search tab and start typing in the
search field. Once you stop typing, a list of results will appear. Results will contain:

• A list of matching hosts.

• A list of matching metrics. If the search term matches metrics on multiple hosts,
all hosts will be shown.

Click on any of the links and a new window will open that will take you directly to the
result. You can keep clicking on the results; for each result, a new window will open.

The gweb Views Tab
Views are an arbitrary collection of metrics, host report graphs, or aggregate graphs.
They are intended to be a way for a user to specify things of which they want to have
a single overview. For example, a user might want to see a view that contains aggregate

Figure 4-8. Node view

60 | Chapter 4: The Ganglia Web Interface

load on all servers, aggregate throughput, load on the MySQL server, and so on. There
are two ways to create/modify views: one is via the web GUI, and the other by progra-
matically defining views using JSON.i

Creating views using the GUI
To create views click the Views tab, then click Create View. Type your name, then
click Create.

Adding metrics to views using the GUI
Click the plus sign above or below each metric or composite graph; a window will
pop up in which you can select the view you want the metric to be added. Op-
tionally, you can specify warning and critical values. Those values will appear as
vertical lines on the graph. Repeat the process for consecutive metrics. Fig-
ure 4-10 shows the UI for adding a metric to a view.

Defining views using JSON
Views are stored as JSON files in the conf_dir directory. The default for the
conf_dir is /var/lib/ganglia/conf. You can change that by specifying an alternate
directory in conf.php:

$conf['conf_dir'] = "/var/www/html/conf";

Figure 4-9. Searching for load_one metrics

The gweb Views Tab | 61

You can create or edit existing files. The filename for the view must start with
view_ and end with .json (as in, view_1.json or view_jira_servers.json). It must be
unique. Here is an example definition of a view that will result with a view with
three different graphs:

{
 "view_name":"jira",
 "items":[
 { "hostname":"web01.domain.com","graph":"cpu_report"},
 { "hostname":"web02.domain.com","graph":"load_report"},
 { "aggregate_graph":"true",
 "host_regex":[
 {"regex":"web[2-7]"},
 {"regex":"web50"}
],
 "metric_regex":[
 {"regex":"load_one"}
],
 "graph_type":"stack",
 "title":"Location Web Servers load"
 }
],
 "view_type":"standard"
 }

Table 4-1 lists the top-level attributes for the JSON view definition. Each item can
have the attributes listed in Table 4-2.

Table 4-1. View items

Key Value

view_name Name of the view, which must be unique.

view_type Standard or Regex. Regex view allows you to specify regex to match hosts.

items An array of hashes describing which metrics should be part of the view.

Figure 4-10. Metric actions dialog

62 | Chapter 4: The Ganglia Web Interface

Table 4-2. Items configuration

Key Value

hostname Hostname of the host that we want metric/graph displayed.

metric Name of the metric, such as load_one.

graph Graph name, such as cpu_report or load_report. You can use metric or graph keys

but not both.

aggregate_graph If this value exists and is set to true, the item defines an aggregate graph. This

item needs a hash of regular expressions and a description.

warning (Optional) Adds a vertical yellow line to provide visual cue for a warning state.

critical (Optional) Adds a vertical red line to provide visual cue for a critical state.

Once you compose your graphs, it is often useful to validate JSON—for example,
that you don’t have extra commas. To validate your JSON configuration, use
Python’s json.tool:

$ python -m json.tool my_report.json

This command will report any issues.

The gweb Aggregated Graphs Tab
Aggregate graphs (Figure 4-11) allow you to create composite graphs combining dif-
ferent metrics. At a minimum, you must supply a host regular expression and metric
regular expression. This is an extremely powerful feature, as it allows you to quickly
and easily combine all sorts of metrics. Figure 4-12 includes two aggregate graphs
showing all metrics matching host regex of loc and metric regex of load.

Figure 4-11. Aggregate line graph

The gweb Aggregated Graphs Tab | 63

Decompose Graphs
Related to aggregate graphs are decompose graphs, which decompose aggregate graphs
by taking each metric and putting it on a separate graph. This feature is useful when
you have many different metrics on an aggregate graph and colors are blending together.
You will find the Decompose button above the graph.

The gweb Compare Hosts Tab
The compare hosts feature allows you to compare hosts across all their matching met-
rics. It will basically create aggregate graphs for each metric. This feature is helpful
when you want to observe why a particular host (or hosts) is behaving differently than
other hosts.

The gweb Events Tab
Events are user-specified “vertical markers” that are overlaid on top of graphs. They
are useful in providing visual cues when certain events happen. For example, you might
want to overlay software deploys or backup jobs so that you can quickly associate
change in behavior on certain graphs to an external event, as in Figure 4-13. In this
example, we wanted to see how increased rrdcached write delay would affect our CPU
wait IO percentage, so we added an event when we made the change.

Alternatively, you can overlay a timeline to indicate the duration of a particular event.
For example, Figure 4-14 shows the full timeline for a backup job.

Figure 4-12. Aggregate stacked graph

64 | Chapter 4: The Ganglia Web Interface

By default, Ganglia stores event in a JSON hash that is stored in the events.json file.
This is an example JSON hash:

[
 { "event_id":"1234",
 "start_time":1308496361,
 "end_time":1308496961,
 "summary":"DB Backup",
 "description":"Prod daily db backup",
 "grid":"*",
 "cluster":"*",
 "host_regex":"centos1"
 },
 { "event_id":"2345",
 "start_time":1308497211,
 "summary":"FS cleanup",

Figure 4-13. Event line overlay

Figure 4-14. Event timeline overlay

The gweb Events Tab | 65

 "grid":"*",
 "cluster":"*",
 "host_regex":"centos1"
 }
]

It is also possible to use a different backend for events, which can be useful if you need
to scale up to hundreds or thousands of events without incurring the processing penalty
associated with JSON parsing. This feature is configured with two configuration op-
tions in your conf_default.php file. You should have PHP support for MySQL installed
on your gweb server before attempting to configure this support. The database schema
can be imported from conf/sql/ganglia.mysql:

What is the provider used to provide events
Examples: "json", "mdb2"
$conf['overlay_events_provider'] = "mdb2";
If using MDB2, connection string:
$conf['overlay_events_dsn'] = "mysql://dbuser:dbpassword@localhost/ganglia";

Alternatively, you can add events through the web UI or the API.

Events API
An easy way to manipulate events is through the Ganglia Events API, which is available
from your gweb interface at /ganglia/api/events.php. To use it, invoke the URL along
with key/value pairs that define events. Key/value pairs can be supplied as either GET
or POST arguments. The full list of key/value pairs is provided in Table 4-3.

Table 4-3. Events options

Key Value

action add to add a new event, edit to edit, remove or delete to remove an event.

start_time Start time of an event. Allowed options are now (uses current system time), UNIX

timestamp, or any other well-formed date, as supported by PHP’s strtotime

function.

end_time Optional. Same format as start_time.

summary Summary of an event. It will be shown in the graph legend.

host_regex Host regular expression, such as web-|app-.

Examples

To add an event from your cron job, execute a command such as:

curl "http://mygangliahost.com/ganglia/api/events.php?\
 action=add&start_time=now&\
 summary=Prod DB Backup&host_regex=db02"

or:

66 | Chapter 4: The Ganglia Web Interface

curl -X POST --data " action=add&start_time=now\
 &summary=Prod DB Backup&host_regex=db02" \
 http://mygangliahost.com/ganglia/api/events.php

API will return a JSON-encoded status message with either status = ok or status =
error.

If you are adding an event, you will also get the event_id of the event that was just
added in case you want to edit it later, such as to add an end_time.

The gweb Automatic Rotation Tab
Automatic rotation is a feature intended for people in data centers who need to con-
tinuously rotate metrics to help spot early signs of trouble. It is intended to work in
conjunction with views. To activate it, click Automatic Rotation and then select the
view you want rotated. Metrics will be rotated until the browser window is closed. You
can change the view while the view is rotated; changes will be reflected within one full
rotation. Graphs rotate every 30 seconds by default. You can adjust the rotation delay
in the GUI.

Another powerful aspect of automatic rotation is that if you have multiple monitors,
you can invoke different views to be rotated on different monitors.

The gweb Mobile Tab
gweb mobile represents the Ganglia web interface optimized for mobile devices. This
mobile view is found by visiting /ganglia/mobile.php on your gweb host. It is intended
for any mobile browsers supported by the jQueryMobile toolkit. This display covers
most WebKit implementations, including Android, iPhone iOS, HP webOS, Blackberry
OS 6+, and Windows Phone 7. The mobile view contains only a subset of features,
including views optimized for a small screen, host view, and search.

Custom Composite Graphs
Ganglia comes with a number of built-in composite graphs, such as a load report that
shows current load, number of processes running, and number of CPUs; a CPU report
that shows system CPU, user CPU, and wait IO CPU all on the same graph; and many
others. You can define your own composite graphs in two ways: PHP or JSON.

Defining graphs via PHP is more complex but gives you complete control over every
aspect of the graph. See the example PHP report for more details.

For typical use cases, JSON is definitely the easiest way to configure graphs. For ex-
ample, consider the following JSON snippet, which will create a composite graph that
shows all load indexes as lines on one graph:

Custom Composite Graphs | 67

https://github.com/ganglia/ganglia-web/blob/master/graph.d/sample_report.php

{
 "report_name" : "load_all_report",
 "title" : "Load All Report",
 "vertical_label" : "load",
 "series" : [
 { "metric": "load_one", "color": "3333bb", "label": "Load 1",
 "line_width": "2", "type": "line" },
 { "metric": "load_five", "color": "ffea00", "label": "Load 5",
 "line_width": "2", "type": "line" },
 { "metric": "load_fifteen", "color": "dd0000", "label": "Load 15",
 "type": "line" }
]
}

To use this snippet, save it as a file and put it in the graph.d subdirectory of your gweb
installation. The filename must contain _report.json in it to be considered by the web
UI. So you can save this file in your gweb install as load_all_report.json.

There are two main sections to the JSON report. The first is a set of configurations for
the overall report, and the second is a list of options for the specific data series that you
wish to graph. The configuration options passed to the report are shown in Table 4-4.

Table 4-4. Graph configuration

Key Value

report_name Name of the report that web UI uses.

title Title of the report to show on a graph.

vertical_label Y-axis description (optional).

series An array of metrics to use to compose a graph. More about how those are defined in

Table 4-5.

Options for series array are listed in Table 4-5. Note that each series has its own instance
of the different options.

Table 4-5. Series options

Key Value

metric Name of a metric, such as load_one and cpu_system. If the metric doesn’t exist it

will be skipped.

color A 6 hex-decimal color code, such as 000000 for black.

label Metric label, such as Load 1.

type Item type. It can be either line or stack.

line_width If type is set to line, this value will be used as a line width. If this value is not specified,

it defaults to 2. If type is stack, it’s ignored even if set.

68 | Chapter 4: The Ganglia Web Interface

Once you compose your graphs, it is often useful to validate JSON. One example would
be to verify that there are no extra commas, etc. To validate your JSON configuration,
use Python’s json.tool:

$ python -m json.tool my_report.json

This command will report any issues.

Other Features
There are a number of features in gweb that are turned off by default or can be adjusted:

Metric groups initially collapsed
By default, when you click on a host view, all of the metric groups are expanded.
You can change this view so that only metric graph titles are shown and you have
to click on the metric group to expand the view. To make this collapsed view the
default behavior, add the following setting to conf.php:

$conf['metric_groups_initially_collapsed'] = true;

Filter hosts in cluster view
If you’d like to display only certain hosts in the cluster view, it is possible to filter
them out using the text box that is located next to the “Show Node” dropdown.
The filter accepts regular expressions, so it is possible to show any host that has
“web” in its name by entering web in the filter box; to show only webservers
web10−web17, type web1[0-7]; or, to show web03 and web04 and all MySQL
servers, type (web0[34]|mysql). Note that the aggregate graphs will still include
data from all hosts, including those not displayed due to filters.

Default refresh period
The host and cluster view will refresh every 5 minutes (300 seconds). To adjust it,
set the following value in conf.php:

$conf['default_refresh'] = 300;

Strip domain name from hostname in graphs
By default, the gweb interface will display fully qualified domain names (FQDN)
in graphs. If all your machines are on the same domain, you can strip the domain
name by setting the strip_domainname option in conf.php:

$conf['strip_domainname'] = true;

Set default time period
You can adjust the default time period shown by adjusting the following variable:

$conf['default_time_range'] = 'hour';

Other Features | 69

Authentication and Authorization
Ganglia contains a simple authorization system to selectively allow or deny users access
to certain parts of the gweb application. We rely on the web server to provide authen-
tication, so any Apache authentication system (htpasswd, LDAP, etc.) is supported.
Apache configuration is used for examples in this section, but the system works with
any web server that can provide the required environment variables.

Configuration
The authorization system has three modes of operation:

$conf['auth_system'] = 'readonly';

Anyone is allowed to view any resource. No one can edit anything. This is the
default setting.

$conf['auth_system'] = 'disabled';

Anyone is allowed to view or edit any resource.

$conf['auth_system'] = 'enabled';

Anyone may view public clusters without login. Authenticated users may gain ele-
vated privileges.

If you wish to enable or disable authorization, add the change to your conf.php file.

When a user successfully authenticates, a hash is generated from the username and a
secret key and is stored in a cookie and made available to the rest of gweb. If the secret
key value becomes known, it is possible for an attacker to assume the identity of any user.

You can change this secret value at any time. Users who have already logged in will
need to log in again.

Enabling Authentication
Enabling authentication requires two steps:

1. Configure your web server to require authentication when accessing gweb/
login.php, and to provide the $_SERVER['REMOTE_USER'] variable to gweb/
login.php. (This variable is not needed on any other gweb page.)

2. Configure your web server to provide $_SERVER['ganglia_secret']. This is a secret
value used for hashing authenticated user names.

If login.php does not require authentication, the user will see an error message and no
authorization will be allowed.

70 | Chapter 4: The Ganglia Web Interface

Sample Apache configuration

More information about configuring authentication in Apache can be found here. Note
that Apache need only provide authentication; authorization is provided by gweb con-
figuration. A sample Apache configuration is provided here:

SetEnv ganglia_secret yourSuperSecretValueGoesHere
<Files "login.php">
 AuthType Basic
 AuthName "Ganglia Access"
 AuthUserFile /var/lib/ganglia/htpasswd
 Require valid-user
</Files>

Other web servers

Sample configurations for other web servers such as Nginx and Lighttpd are available
on the gweb wiki.

Access Controls
The default access control setup has the following properties:

• Guests may view all public clusters.

• Admins may view all public and private clusters and edit configuration (views) for
them.

• Guests may not view private clusters.

Additional rules may be configured as required. This configuration should go in
conf.php. The GangliaAcl configuration property is based on the Zend_Acl property.
More documentation is available here.

Note that there is no built-in distinction between a user and a group in Zend_Acl. Both
are implemented as roles. The system supports the configuration of hierarchical sets of
ACL rules. We implement user/group semantics by making all user roles children of
the GangliaAcl::GUEST role, and all clusters children of GangliaAcl::ALL:

Name Meaning

GangliaAcl::ALL_CLUSTERS Every cluster should descend from this role. Guests have view access on Gan

gliaAcl::ALL_CLUSTERS.

GangliaAcl::GUEST Every user should descend from this role. (Users may also have other roles, but this

one grants global view privileges to public clusters.)

GangliaAcl::ADMIN Admins may access all private clusters and edit configuration for any cluster.

GangliaAcl::VIEW This permission is granted to guests on all clusters, and then selectively denied for

private clusters.

GangliaAcl::EDIT This permission is used to determine whether a user may update views and perform

any other configuration tasks.

Authentication and Authorization | 71

http://httpd.apache.org/docs/2.2/howto/auth.html
https://github.com/ganglia/ganglia-web/wiki/Authorization-System
http://framework.zend.com/manual/en/zend.acl.html

Actions
Currently, we only support two actions, view and edit. These are applied on a per-cluster
basis. So one user may have view access to all clusters, but edit access to only one.

Configuration Examples
These should go in your conf.php file. The usernames you use must be the ones provided
by whatever authentication system you are using in Apache. If you want to explicitly
allow/deny access to certain clusters, you need to spell that out here.

All later examples assume you have this code to start with:

$acl = GangliaAcl::getInstance();

Making a user an admin

$acl->addRole('username', GangliaAcl::ADMIN);

Defining a private cluster

$acl->addPrivateCluster('clustername');

Granting certain users access to a private cluster

$acl->addPrivateCluster('clustername');
$acl->addRole('username', GangliaAcl::GUEST);
$acl->allow('username', 'clustername', GangliaAcl::VIEW);

Granting users access to edit some clusters

$acl->addRole('username', GangliaAcl::GUEST);
$acl->add(new Zend_Acl_Resource('clustername'), GangliaAcl::ALL_CLUSTERS);
$acl->allow('username', 'clustername', GangliaAcl::EDIT);

72 | Chapter 4: The Ganglia Web Interface

CHAPTER 5

Managing and Extending Metrics

Brad Nicholes, Daniel Pocock, and Jeff Buchbinder

In this chapter, we describe the various ways in which the Ganglia monitoring envi-
ronment can be extended. Primarily, we discuss two ways in which to extend Ganglia,
including the development and deployment of additional metric modules, and the use
of a standalone utility called gmetric. Either is suitable, and you should use whichever
approach works best for your environment. If you are someone who likes to get down
and dirty in source code, developing a gmond module might be the way to go. On the
other hand, if you just need a quick way to introduce an additional metric in your
environment, gmetric is the perfect utility.

gmond: Metric Gathering Agent
The Ganglia monitoring daemon (gmond) is a lightweight agent whose primary pur-
pose is to gather and report metric values. The first step in monitoring any system
through Ganglia is to install the gmond daemon on each machine. Once installed and
running, this daemon uses a simple listen/announce protocol via eXternal Data Rep-
resentation (XDR) to collect and share monitoring state information with other gmond
services within a cluster. In the Ganglia monitoring world, a cluster is defined as a group
of gmond services that are all listening and sharing data with each other. A Ganglia
cluster might consist of anything from a single gmond node to many nodes, all talking
to one another. In the default configuration, each node listens and talks on a single
multicast channel. As metric data is placed on the channel, every node in the cluster
has an opportunity to retrieve and store the data in its own internal data store. Being
configured in this way allows all cluster nodes to act as a backup for one another. Within
the cluster, one gmond instance is usually designated as the primary node and is queried
from time to time by the gmetad aggregating service. However, because any cluster
node could potentially act as the primary node, gmetad has the ability to quickly switch
from one node to another in the event that the primary node goes down. This means
that within a cluster of gmond nodes, there is no weak link or single point of failure for

73

data collection. If any node within the cluster goes down, there is always another one
ready to step up and take its place.

There are two different modes in which gmond clusters can be configured. The default
mode, which was described previously, is the multicast mode in which each gmond
node in a cluster is configured to listen for metric data as well as send its own data via
a single multicast channel. In multicast mode, each gmond node not only gathers metric
data from the host on which it is installed but also stores the last metric values gathered
by every other node in the cluster. In this way, every node in a cluster is capable of
acting as the primary node or reporting node for the gmetad aggregator in case of a
failover situation. Which node within the cluster is designated as the primary node is
determined through the configuration of gmetad itself. The gmetad configuration also
determines which nodes will act as failover nodes in case the primary node goes down.
The ability for any gmond node to report metrics for the entire cluster makes Ganglia
a very highly robust monitoring tool.

The second mode in which gmond can be configured is unicast mode. Unlike multicast
mode, unicast mode specifically declares one or more gmond instances as being the
primary node or reporting node for the cluster. The primary node’s job is to listen for
metric data from all other leaf nodes in the cluster, store the latest metric values for
each leaf node, and report those values to gmetad when queried. The major difference
between multicast mode and unicast mode is that most of the nodes in the cluster
neither listen for, nor store metric data from, any other nodes in the cluster. In fact, in
many configurations, the leaf nodes in the cluster are configured to be “deaf” and the
primary node is configured to be “mute.” What this means is that a deaf gmond instance
is only capable of gathering and sending its own metric data. A gmond instance that is
mute is only capable of listening for and storing data from other nodes in the cluster.
It is usually the mute nodes that are designated as the gmetad reporting nodes.

Another difference between unicast and multicast modes is that each gmond leaf node
is configured to send its data via a UDP socket connection rather than a multicast
channel. At first glance, unicast mode would appear to be less robust, due to the fact
that not every node in the cluster can act as a reporting node—and if the primary node
failed, no metric values would be reported to gmetad. However, because more than
one instance of gmond can be designated as the primary node, redundancy can be
achieved by configuring backup primary nodes and allowing each leaf node to send its
metric data to both the primary node as well as any backup nodes. One thing to keep
in mind is that multicast mode and unicast mode are not necessarily mutually exclusive.
Both multicast and unicast can be used within the same cluster at the same time. Also,
the configuration of gmond can include any number of send and received channels,
which allows the configuration of a gmond metric gathering and reporting cluster to
be extremely flexible in order to best fit your needs.

74 | Chapter 5: Managing and Extending Metrics

Base Metrics
From the very first release of Ganglia, gmond was designed to collect dozens of system
metrics that included a series of CPU-, memory-, disk-, network-, and process-related
values. Prior to version 3.1 of Ganglia, the set of metrics that gmond was able to gather
was fixed. There was no way to extend this set of fixed metrics short of hacking the
gmond source code, which limited Ganglia’s ability to expand and adapt. However,
there was a way to inject new metric values into the Ganglia monitoring system. Using
a very simple utility that shipped with the Ganglia monitoring system, called gmetric,
additional metric values could be gathered and written to the same unicast and multi-
cast channels on which each gmond agent listened. gmetric’s ability to inject data into
the system allowed each gmond instance within a cluster to read and store these new
metric values as if they had been originally collected by gmond. Even though gmetric
provided a simple way of injecting a new metric into the system, the reality was that
gmond was still incapable of gathering anything outside of its hard-coded set of metrics.
This hard-coded set of metrics became known as the default or base metrics that most
monitoring systems are used to gathering. Table 5-1 shows the set of included metrics.
Beyond the base metrics, there are many other metrics that are provided through ad-
dition modules. These modules, along with a description of the metrics that they pro-
vided, are listed in Appendix A.

Table 5-1. Default gmond metrics

Metric name Reporting
units

Description Type

load_one Average

over period

One-minute load average CPU

cpu_intr Percent Percentage of time CPU is participating in IO interrupts CPU

load_five Average

over period

Five-minute load average CPU

cpu_sintr Percent Percentage of time CPU is participating in soft IO interrupts CPU

load_fifteen Average

over period

Fifteen-minute load average CPU

cpu_idle Percent Percentage of time that the CPU or CPUs were idle and the system did not

have an outstanding disk IO request

CPU

cpu_aidle Percent Percent of time since boot idle CPU (not available on all OSs) CPU

cpu_nice Percent Percentage of CPU utilization that occurred while executing at the user

level with nice priority

CPU

cpu_user Percent Percentage of CPU utilization that occurred while executing at the user

level

CPU

cpu_system Percent Percentage of CPU utilization that occurred while executing at the system

level

CPU

Base Metrics | 75

Metric name Reporting
units

Description Type

cpu_wio Percent Percentage of time that the CPU or CPUs were idle during which the system

had an outstanding disk IO request (not available on all OSs)

CPU

cpu_num Count Total number of CPUs (collected once) CPU

cpu_speed Mhz CPU Speed in terms of MHz (collected once) CPU

part_max_used Percent Maximum percent used for all partitions Disk

disk_total Gb Total available disk space, aggregated over all partitions Disk

disk_free Gb Total free disk space, aggregated over all partitions Disk

mem_total Kb Total amount of memory displayed in KBs Memory

proc_run Count Total number of running processes Memory

mem_cached Kb Amount of cached memory Memory

swap_total Kb Total amount of swap space displayed in KBs Memory

mem_free Kb Amount of available memory Memory

mem_buffers Kb Amount of buffered memory Memory

mem_shared Kb Amount of shared memory Memory

proc_total Count Total number of processes Memory

swap_free Kb Amount of available swap memory Memory

pkts_out Packets/

second

Packets out per second Network

pkts_in Packets/

second

Packets in per second Network

bytes_in Bytes/sec-

ond

Number of bytes in per second Network

bytes_out Bytes/sec-

ond

Number of bytes out per second Network

os_release String Operating system release date System

gexec Boolean gexec available System

mtu Integer Network maximum transmission unit System

location String Location of the machine System

os_name String Operating system name System

boottime Time The last time that the system was started System

sys_clock Time Time as reported by the system clock System

heartbeat Integer Last heartbeat System

machine_type String System architecture System

One of the advantages of supporting a fixed set of metrics was that gmond could be
built as a very simplistic self-contained metric gathering daemon. It allowed gmond to

76 | Chapter 5: Managing and Extending Metrics

fit within a very small and very predictable footprint and thereby avoid skewing the
metrics through its own presence on the system. However, the disadvantage was ob-
vious: despite producing a very vital set of metrics in terms of determining system
capacity and diagnosing system issues by means of historical trending, gmond was
incapable of moving beyond this base set of metrics. Of course, introducing the ability
for gmond to expand would certainly increase its footprint and the risk of skewing the
metrics. But given the fact that expanding gmond would be done through a modular
interface, the user would have the ability to determine gmond’s footprint through the
configuration itself. Weighing the potential increase in footprint against the need to
monitor more than just the basic metrics, the decision was made to enhance gmond by
providing it with a modular interface.

Extended Metrics
With the introduction of Ganglia 3.1 came the ability to extend gmond through a newly
developed modular interface. Although there are many different ways in which a mod-
ular interface could have been implemented, the one chosen for gmond was very closely
modeled after one originally developed for the Apache HTTP server. Those familiar
with the Apache Web Server may recognize one of its main features: the ability to extend
functionality by adding modules to the server itself. In fact, without modules, the
Apache Web Server is almost useless. By adding and configuring modules to the web
server, its capabilities can be expanded in ways that for the most part, are taken for
granted. So rather than reinvent a new type of modular interface, why not just reuse a
tried and true interface? Of course, the fact that gmond is built on top of the Apache
Portability Runtime (APR) libraries made the Apache way of implementing a modular
interface an obvious fit.

With the addition of the modular interface to gmond in version 3.1, gmond was no
longer a single self-contained executable program. Even the base metrics that were
included as a fixed part of gmond were separated out and reimplemented as modules.
This meant that if desired, gmond’s footprint could be reduced even beyond the pre-
vious version by eliminating some of the base metrics as well. Because the base set of
metrics are essential to any system, why would anybody want to reduce or even elim-
inate them? Back in “Configuring Ganglia” on page 20, the cluster configuration of the
various gmond head and leaf nodes was described, including the multicast configura-
tion where head nodes could be configured as mute. By configuring a head node as
mute, basically there is no need for the node to gather metrics because it wouldn’t have
the ability to send them anyway. Therefore, if a node that has been configured to be
mute can’t send metrics, why include in its footprint the overhead of the metric gath-
ering modules? Why not just make that instance of gmond as lean and mean as possible
by eliminating all metric gathering ability? In addition to that scenario, if a specific
instance of gmond is configured to gather metrics for only a specific device (such as a
video card), why include CPU, network, memory, disk, or system metrics if they aren’t
needed or wanted? The point here is that the system administrator who is implementing

Extended Metrics | 77

the Ganglia monitoring throughout his data center now has the ability and flexibility
to configure and optimize the monitoring agents in a way that exactly fits his needs.
No more, no less. In addition, the system administrator also has the flexibility to gather
more than just basic system metrics. Ultimately, with the introduction of the modular
interface, if a metric can be acquired programatically, a metric module can be written
to track and report it through Ganglia.

When Ganglia 3.1 was initially released, it not only included the modular interface with
a set of base metric modules but also included some new modules that extended
gmond’s metric gathering capabilities, such as TcpConn, which monitors TCP con-
nection, and MultiCpu and MultiDisk for monitoring individual CPUs and disks, re-
spectively. In addition to adding new metrics to gmond, these modules as well as others
were included as examples of how to build a C/C++ or Python Ganglia module.

Extending gmond with Modules
Prior to the introduction of the modular interface, the gmetric utility, which will be
discussed later in this chapter, was the only way to inject new metrics into the Ganglia
monitoring system. gmetric is great for quickly adding simple metrics, but for every
metric that you wanted to gather, a separate instance of gmetric with its own means of
scheduling had to be configured. The idea behind introducing the modular interface
in gmond was to allow metric gathering to take advantage of everything that gmond
was already doing. It was a way to configure and gather a series of metrics in exactly
the same way as the core metrics were being gathered already. By loading a metric
gathering module into gmond, there was no need to set up cron or some other type of
scheduling mechanism for each additional metric that you wanted to gather. gmond
would handle it all and do so through the same configuration file and in exactly the
same way as the core set of metrics.

Of course with every new feature like this, there are trade-offs. As of Ganglia 3.1, gmond
would no longer be a single all-inclusive executable that could simply be copied to a
system and run. The new modular gmond required modules that are separate dynam-
ically loadable modules. Part of the transition from a single executable also included
splitting out other components such as the Apache Portable Runtime (APR) library,
which was previously being statically linked with gmond as well. The result of this new
architecture was the fact that gmond became a little more complex. Rather than being
a single executable, it was now an executable with library dependencies and loadable
modules. However, given the fact that gmond is now much more flexible and expand-
able, the trade-off was worth it.

In the current version of gmond, there are two types of pluggable modules, C/C++ and
Python. The advantages and disadvantages of each are, for the most part, the same
advantages and disadvantages of the C/C++ languages versus the Python scripting
language. Obviously, the C programing language provides the developer with a much
lower-level view of the system and the performance that comes with a precompiled

78 | Chapter 5: Managing and Extending Metrics

language. At this level, the programmer would also have the ability to take full advan-
tage of the C runtime and APR library functionality. However, C does not have many
of the conveniences of a scripting language such as Python. The Python scripting lan-
guage provides many conveniences that make writing a gmond module trivial. Even a
beginning Python programmer could have a gmond Python module up and running in
a matter of just a few minutes. The Python scripting language hides the complexity of
compiled languages such as C but at the cost of a larger memory and processing foot-
print. One advantage to gmond modular interface is that there is plenty of room for
other types of modules as well. As of the writing of this book, work is being done to
allow modules to be written in Perl or PHP as well. You can enable these with --enable-
perl and --enable-php, respectively.

C/C++ Modules
The first modular interface to be introduced into Ganglia 3.1 was the C/C++ interface.
As mentioned previously, if you were to open the hood and take a peek at the gmond
source code, and if you were familiar at all with the Apache HTTP server modules, you
would probably notice a similarity. The implementation of the gmond modular inter-
face looks very similar to the modular interface used by Apache. There were two major
reasons for this similarity. First, one of the major components of gmond is the APR
library, a cross-platform interface intended to provide a set of APIs to common platform
functionality in a common and predictable manner. In other words, APR allows a soft-
ware developer to take advantage of common platform features (that is, threading,
memory management, networking, disk access, and so on) through a common set of
APIs. By building software such as gmond on top of APR, the software can run on
multiple platforms without having to write a lot of specialized code for each supported
platform. Because gmond was built on APR, all of the APR APIs were already in place
to allow gmond to load and call dynamically loadable modules. In addition, there was
already a tried and proven example of exactly how to do it with APR. The example was
the Apache HTTP server itself. If you haven’t guessed already, APR plays a very sig-
nificant role in gmond—everything from loading and calling dynamically loadable
modules to network connections and memory management. Although having a deep
knowledge of APR is not a requirement when writing a C/C++ module for gmond, it
would be a good idea to familiarize yourself with at least the memory management
aspects of APR. Interacting with APR memory management concepts and even some
APIs may be necessary, as you will see in the following sections.

At this point, you might be wondering what the second reason is for modeling the
gmond modular interface after the Apache HTTP server, as the first reason seemed
sufficient. Well, the second reason is that the Ganglia developer who implemented the
modular interface also happened to be a member of the Apache Software Foundation
and already had several years of experience working on APR and the Apache HTTP
server. So it just seemed like a good idea and a natural way to go.

Extending gmond with Modules | 79

Anatomy of a C/C++ module

As mentioned previously, the gmond modular interface was modeled after the same
kind of modular interface that is used by the Apache HTTP server. If you are already
familiar with Apache server modules, writing a gmond module should feel very familiar
as well. If you aren’t familiar with this type of module, then read on. Don’t worry—the
Ganglia project has source code examples that you can reference and can also be used
as a template for creating your own module. Many of the code snippets used in the
following sections were taken from the mod_example gmond metric module source code.
If you haven’t done so already, check out the source code for mod_example. It is a great
place to start after having decided to implement your own C/C++ gmond metric
module.

A gmond module is composed of five parts: the mmodule structure that defines the mod-
ule interface, the array of Ganglia_25metric structures that define the metric that the
module supports, the metric_init callback function, the metric_cleanup callback func-
tion, and the metric_handler callback function. The following sections go into each
one of these module parts in a little more detail.

The mmodule structure defines everything that gmond needs to know
about a module in order for gmond to be able to load the module, initialize it, and call
each of the callback functions. In addition, this structure also contains information that
the metric module needs to know in order for it to function properly within the gmond
environment. In other words, the mmodule structure is the primary link and the initial
point of data exchange between gmond and the corresponding metric module. The
mmodule structure for a typical metric module implementation might look something
like this:

 mmodule example_module =
 {

 STD_MMODULE_STUFF, /* Standard Initialization Stuff */

 ex_metric_init, /* Metric Init Callback */

 ex_metric_cleanup, /* Metric Cleanup Callback */

 ex_metric_info, /* Metric Definitions Array */

 ex_metric_handler, /* Metric Handler Callback */

 };

When defining the mmodule structure within your metric module, the first thing to notice
about the structure is that it contains pointer references to each of the other four re-
quired parts of every gmond module. The data that are referenced by these pointers
provide gmond with the necessary information and entry points into the module. The
rest of the structure is filled in automatically by a C macro called STD_MMODULE_STUFF.
At this point, there is really no need to understand what this C macro is really doing.
But in case you have to know, it initializes to null several other internal elements of the
mmodule structure and fills in a little bit of static information. All of the elements that
are initialized by the C macro will be filled in by gmond at runtime with vital informa-
tion that the module needs in order to run properly. Some of these elements include
the module name, the initialization parameters, the portion of the gmond configuration

mmodule structure.

80 | Chapter 5: Managing and Extending Metrics

file that corresponds to the module, and the module version. Following is the complete
definition of the mmodule structure. Keep in mind that the data stored in this structure
can be referenced and used by your module at any time. The mmodule structure is defined
in the header file gm_metric.h.

 typedef struct mmodule_struct mmodule;
 struct mmodule_struct {

 int version;

 int minor_version;

 const char *name; /* Module File Name */

 void *dynamic_load_handle;

 char *module_name; /* Module Name */

 char *metric_name;

 char *module_params; /* Single String Parameter */

 apr_array_header_t *module_params_list; /* Array of Parameters */

 cfg_t *config_file; /* Module Configuration */

 struct mmodule_struct *next;

 unsigned long magic;

 int (*init)(apr_pool_t *p); /* Init Callback Function */

 void (*cleanup)(void); /* Cleanup Callback Function */

 Ganglia_25metric *metrics_info; /* Array of Metric Info */

 metric_func handler; /* Metric Handler Callback Function */

 };

The name of the Ganglia_25metric structure does not seem to
be very intuitive, especially as the purpose of this structure is to track the definitions
of each of the metrics that a metric module supports. Nevertheless, every gmond mod-
ule must define an array of Ganglia_25metric structures and assign a reference pointer
to this array in the metric_info element of the mmodule structure. Again, taking a look
at an example, an array of Ganglia_25metric structures might look like this:

 static Ganglia_25metric ex_metric_info[] =
 {

 {0, "Random_Numbers", 90, GANGLIA_VALUE_UNSIGNED_INT,

 "Num", "both", "%u", UDP_HEADER_SIZE+8,

 "Example module metric (random numbers)"},

 {0, "Constant_Number", 90, GANGLIA_VALUE_UNSIGNED_INT,

 "Num", "zero", "%u", UDP_HEADER_SIZE+8,

 "Example module metric (constant number)"},

 {0, NULL}

 };

In the previous example, there are actually three array entries, but only two of them
actually define metrics. The third entry is simply a terminator and must exist in order
for gmond to appropriately iterate through the metric definition array. Taking a closer
look at the data that each Ganglia_25metric entry provides, the elements within the
structure include information such as the metric’s name, data type, metric units, de-
scription, and extra metric metadata. For the most part, the elements of this structure
match the parameter list of the gmetric utility that will be discussed in a later section.
For a more in-depth explanation of the data itself, see “Extending gmond with gme-
tric” on page 97. The Ganglia_25metric structure is defined in the header file
gm_protocol.h.

Ganglia_25metric structure.

Extending gmond with Modules | 81

 typedef struct Ganglia_25metric Ganglia_25metric;
 struct Ganglia_25metric {

 int key; /* Must be 0 */

 char *name; /* Metric Name */

 int tmax; /* Gather Interval Max */

 Ganglia_value_types type; /* Metric Data Type */

 char *units; /* Metric Units */

 char *slope; /* Metric Slope */

 char *fmt; /* printf Style Formatting String */

 int msg_size; /* UDP message size */

 char *desc; /* Metric Description */

 int *metadata; /* Extra Metric Metadata */

 };

The metric_init callback function is the first of three func-
tions that must be defined and implemented in every gmond metric module. By the
name of this function, you can probably guess that its purpose is to perform any module
initialization that may be required. The metric_init function takes one parameter: a
pointer to an APR memory pool. We mentioned earlier that it would probably be a
good idea to understand some of the memory management concepts of APR. This is
the point at which that knowledge will come in handy.

The following code snippet is an example of a typical metric_init callback function.
The implementation in this example reads the module initialization parameters that
were specified in the gmond configuration for the module and it defines some extra
metric metadata that will be attached to metric information as it passes through gmond
and the rest of the Ganglia system.

 static int ex_metric_init (apr_pool_t *p)
 {

 const char* str_params = example_module.module_params;

 apr_array_header_t *list_params = example_module.module_params_list;

 mmparam *params;

 int i;

 srand(time(NULL)%99);

 /* Read the parameters from the gmond.conf file. */

 /* Single raw string parameter */

 if (str_params) {

 debug_msg("[mod_example]Received string params: %s", str_params);

 }

 /* Multiple name/value pair parameters. */

 if (list_params) {

 debug_msg("[mod_example]Received following params list: ");

 params = (mmparam*) list_params->elts;

 for(i=0; i < list_params->nelts; i++) {

 debug_msg("\tParam: %s = %s", params[i].name, params[i].value);

 if (!strcasecmp(params[i].name, "RandomMax")) {

 random_max = atoi(params[i].value);

 }

 if (!strcasecmp(params[i].name, "ConstantValue")) {

 constant_value = atoi(params[i].value);

metric_init callback function.

82 | Chapter 5: Managing and Extending Metrics

 }

 }

 }

 /* Initialize the metadata storage for each of the metrics and then

 * store one or more key/value pairs. The define MGROUPS macro defines

 * the key for the grouping attribute. */

 MMETRIC_INIT_METADATA(&(example_module.metrics_info[0]),p);

 MMETRIC_ADD_METADATA(&(example_module.metrics_info[0]),MGROUP,"random");

 MMETRIC_ADD_METADATA(&(example_module.metrics_info[0]),MGROUP,"example");

 /*

 * Usually a metric will be part of one group, but you can add more

 * if needed as shown above where Random_Numbers is both in the random

 * and example groups.

 */

 MMETRIC_INIT_METADATA(&(example_module.metrics_info[1]),p);

 MMETRIC_ADD_METADATA(&(example_module.metrics_info[1]),MGROUP,"example");

 return 0;

 }

As gmond loads each metric module, one of the first things that it does is allocate an
APR memory pool specifically for the module. Any data that needs to flow between the
module and gmond must be allocated from this memory pool. One of the first examples
of this is the memory that will need to be allocated to hold the extra metric metadata
that will be attached to the metrics themselves. Fortunately, there are some helper C
macros that will make sure that the memory allocation is done properly.

As mentioned previously, there were several elements of the mmodule structure that are
initialized by the STD_MMODULE_STUFF macro but filled in at runtime by gmond. At the
time when gmond loads the metric module and just before it calls the metric_init
function, gmond fills in the previously initialized elements of the mmodule structure.
What it means is that when your module sees the mmodule structure for the first time,
all of its elements have been initialized and populated with vital data. Part of this data
includes the module parameters that were specified in the corresponding module block
of the gmond configuration file.

There are actually two elements of the mmodule structure that can contain module pa-
rameter values. The first element is called module_params. This element is defined as a
string pointer and will contain only a single string value. The value of this element is
determined by the configuration params (plural) directive within a module block. This
value can be any string value and can be formatted in any way required by the module.
The value of this parameter will be passed straight though to the module as a single
string value. The second element is the module_params_list. The difference between
the module_params and the module_params_list elements is the fact that the latter ele-
ment is defined as an APR array of key/value pairs. The contents of this array are defined
by one or more param (singular) directive blocks within corresponding module blocks
of the gmond configuration file. Each param block must include a name attribute and a
value directive. The name and value of each of the parameters will be included in the

Extending gmond with Modules | 83

module_params_list array and can be referenced by your module initialization function.
There are two different ways of passing parameters from a configuration file to a metric
module merely for convenience. If your module requires a simple string value, refer-
encing the module_params string from the mmodule structure is much more convenient
than iterating through an APR array of name/value pairs. Additionally, as there is no
restriction on the format of the string contained in the module_params element, you can
actually format the string in any way you like and then allow your module to parse the
string into multiple parameters. Basically, whichever method of passing parameters to
your module works best for you, do it that way. Or use both methods—it doesn’t really
matter.

There is one other aspect of metric module initialization that should be explained at
this point: the definition or addition of extra module metadata. Each metric that is
gathered by gmond carries with it a set of metadata or attributes about the metric itself.
In previous versions of Ganglia, these metric attributes were fixed and could not be
modified in any way. These attributes included the metric name, data type, description,
units, and various other data such as the domain name or IP address of the host from
which the metric was gathered. Because gmond can be expanded through the module
interface, it is only fair that the metadata or metric attributes also be allowed to expand.
As part of the module initialization, extra attributes can be added to each metric defi-
nition. A few of the standard extended attributes include the group or metric category
that the metric belongs to, spoofing host, and spoofing IP address if the gmond module
is gathering metrics from a remote machine. However, the extra metric metadata is not
restricted to these extra attributes. Any data can be defined and set as extra metadata
in a metric definition.

Defining the extra metadata for a metric definition includes adding a key/value pair to
an APR array of metadata elements. Because adding an element to an APR array in-
cludes allocating memory from an APR memory pool as well as calling the appropriate
APR array functions, C macros have been defined to help make this functionality a little
easier to deal with. There are two convenience macros for initializing and adding extra
metadata to the APR array: MMETRIC_INIT_METADATA and MMETRIC_ADD_METADATA. The first
macro allocates the APR array and requires as the last parameter the reference to the
APR memory pool that was passed into the metric_init callback function. The second
macro adds a new metadata name/value pair to the array by calling the appropriate
APR array functions. Because the extra metadata becomes part of the metric definition,
this data can be referenced by your module at any time. If extra metadata was set that
helps to identify a metric at the time that the module metric_handler function is called,
this data could be referenced by accessing the mmodule structure. But keep in mind that
because the extra metadata is attached to the metric itself, this data will also be passed
through gmetad to the web frontend allowing the Ganglia web frontend to better iden-
tify and display metric information.

The metric_cleanup callback function is the second function that
must be implemented in every metric module and is also the last function that will be
metric_cleanup function.

84 | Chapter 5: Managing and Extending Metrics

called just before gmond terminates. The purpose of this function is to allow your
module to clean up any memory allocations or threads, close any files, or simply tidy
up any loose ends before the module is unloaded. Although many metric modules will
have no need for this function, it still must be implemented and it will still be called on
shutdown. The metric_cleanup function does not take any parameters, but at the time
that it is called, all of the data that is stored in the mmodule structure is still valid and
can still be referenced. Following is an example of a typical metric_cleanup callback
function:

 static void ex_metric_cleanup (void)
 {

 /* Do any necessary cleanup here */

 }

Finally, the metric_handler function is the last of the three func-
tions that every metric module must implement. It is the callback function that actually
does all of the work. It is called every time that gmond determines that your module
needs to provide a new metric value that corresponds to any one of the metric defini-
tions your module supports. The metric_handler function takes one parameter, which
is an index into the Ganglia_25metric structure array that contains the definitions of
your module’s metrics.

 static g_val_t ex_metric_handler (int metric_index)
 {

 g_val_t val;

 /* The metric_index corresponds to the order in which

 the metrics appear in the metric_info array

 */

 switch (metric_index) {

 case 0:

 val.uint32 = rand()%random_max;

 break;

 case 1:

 val.uint32 = constant_value;

 break;

 default:

 val.uint32 = 0; /* default fallback */

 }

 return val;

 }

By using this metric definition index, your module can easily identify the metric that
should be gathered, do the work necessary to gather the last metric value, and then
finally return the value back to gmond. The return type of the metric_handler function
is the g_val_t structure. The actual metric value that is returned from the metric_han
dler should be assigned to the element within the g_val_t structure that corresponds
to the data type specified in the metric definition. In other words, if the metric definition
stated that the data type of the metric was GANGLIA_VALUE_UNSIGNED_INT, the metric value
that is gathered by the metric_handler function for this metric should be assigned to

metric_handler function.

Extending gmond with Modules | 85

the uint32 element within the g_val_t structure. Unlike the Python metric module
(which will be discussed in “Extending gmond with gmetric” on page 97), there is
only one single metric_handler callback function in a C/C++ metric module. This single
callback function must be implemented in such a way that it is able to gather metric
values for any of the metrics supported by your module.

Outside of the five parts that are required of every metric module, your module is free
to do anything else that may be required in order to gather metric values. Keep in mind
that your module must also be well behaved. In other words, every time that gmond
calls a metric module callback function, it expects the function to return a value in as
short of a time as possible. gmond is not a multithreaded gathering agent and therefore,
every millisecond that your metric handler callback function takes to gather a metric
value is a millisecond that every other metric handler will have to wait before its turn
to gather a metric value. If the metrics that your module supports take a significant
time to gather, you might consider starting your own gathering thread within your
module and caching the metric values instead. This way when gmond asks for a metric,
our module can simply return the latest metric value from its cache.

Configuring a C/C++ metric module

The configuration of a gmond C/C++ module is a matter of telling gmond the name
and location of the dynamically loadable module. In addition, the configuration may
also include module parameters in the form of a single string parameter or a series of
name/value pairs. Unlike a Python module, which will be discussed later in this chapter,
a C/C++ module is loaded directly by gmond itself rather than by a module that acts
as a language proxy. There are two required configuration directives that every module
configuration file must provide: name and path. Previously, we discussed how to con-
struct a C/C++ metric module and how the primary link between a metric module and
gmond is the mmodule structure. During the implementation of the module, one of the
first things that is done is to define and name the mmodule structure. The name of this
structure is very important because the name is how gmond will identify the module
throughout its lifetime. Because the mmodule structure’s name is the module’s unique
identifier, the name directive in the module configuration file must match the mmodule
structure name exactly. gmond will use this name to dynamically import the mmodule
structure into its process space. Once gmond has imported this structure, it has all of
the information it needs to continue to load and configure the C/C++ module for
proper performance. The path to the module binary is also a required directive for every
metric module. The path directive can either contain a full file path or just the module
filename alone. If the path directive contains just the module filename, gmond will
derive the module location in one of the following ways: the module_dir directive speci-
fied in the globals section of the configuration file, the --with-moduledir build param-
eter, or the --prefix build parameter. If none of these parameters have been specified,
gmond will assume the location of the module binary to be the lib(64)/ganglia subdir-
ectory relative to the Ganglia installation location.

86 | Chapter 5: Managing and Extending Metrics

 modules {
 module {

 name = "example_module"

 path = "modexample.so"

 params = "A single string parameter"

 param RandomMax {

 value = 75

 }

 param ConstantValue {

 value = 25

 }

 }

 }

The rest of the module configuration for a C/C++ module is optional. Of course, the
module section must contain the name and path directives that have already been dis-
cussed. An optional parameter, which is not shown in the example above, is the lan
guage directive. The language directive is required for all other types of modules, but
for a C/C++ module, if the language directive is not specified, the value “C/C++” is
assumed. Specifying module parameters is also optional—unless, of course, your mod-
ule requires parameters.

There are two ways in which module parameters can be passed to a module. The first
way is by defining a single string parameter through the params directive. This directive
just provides the configuration with a very simple way of passing either a raw string or
a module-specific formatted string to the module’s initialization function. gmond does
not care what this string looks like and will not attempt to parse it in any way. Parsing
the parameter string or interpreting the contents of the string is strictly up to the module
itself. The second way to pass parameters to a module is through a series of param blocks.
A module configuration can define as many param blocks as required by the module.
Each param block must include a name and a value. The name of the param block rep-
resents the key that corresponds to the parameter value. gmond will pass all of the key/
value pairs to the module’s initialization function as part of an APR array. It is again
up to the module to extract the parameter values from the APR array and interpret them
appropriately. For an example of how to deal with both types of module parameters,
see the mod_example.c example in the Ganglia source code.

Deploying a C/C++ metric module

Now that you have implemented, built, and configured your C/C++ module, it is time
to deploy the module into your Ganglia environment. Deploying a module is as simple
as copying the dynamically loadable module to the location that was specified in your
module configuration as well as copying the module configuration to the Ganglia con-
figuration file directory, /etc/conf.d. There is really nothing more to it than that. In order
to verify that the new module is actually being loaded and configured within the Ganglia
environment, start an instance of gmond using the -m parameter. With the -m parameter
specified, a new instance of gmond will not be started. However, this parameter will
instruct gmond to load all of the modules that it knows about, read their corresponding

Extending gmond with Modules | 87

configuration files, call the init metric functions of each module, and then display on
the console all of the defined metrics. The list of defined metrics should include all of
the metrics defined by the new module (as well as all other defined metrics) and the
module name in which each one was defined. Finally, once the new module has been
loaded and all of the new metrics have been defined, start gmond normally and it should
begin to gather and display the new metrics in the web frontend.

Cloning and building a C/C++ module with autotools

Two standalone module packages have been provided to the community to demon-
strate the principles of building C/C++ modules. Traditionally, modules have been
built by downloading the full Ganglia source tree and then working within the gmond/
modules directory. This adds some slight complexity to the development process, es-
pecially when the developer wants to track changes coming from the main source code
repository. At the time when the Ganglia source code is downloaded, built, and in-
stalled on the system, the make install command will deploy copies of the C headers
that are required to compile a module. Packaged distributions (particularly on Linux
and Debian) typically distribute those headers in a dev package and install them into
the directory /usr/include. The standalone ganglia-modules-(linux|solaris) packages
demonstrate exactly how to build and distribute modules using nothing more than the
public API of Ganglia, as provided in one of these dev packages.

You can either add a new module to the ganglia-modules-(linux|solaris) packages or
use them as a basis for creating a new standalone project. There are two ways of using
these projects as a model, along with some general comments on autotools that are
common to both methods. These methods will be shown here.

Thanks to the git source control system, you can easily
clone either of these projects from the public repository in order to get started. From
that point, you can create a branch and start developing a custom module within your
branch. When you work this way, the process is very simple: first make a copy of the
example module directory (for example, to create a module called “foo”, you would
copy the example contents to the “foo” directory). Second, modify the directory con-
tents to your requirements. Finally, at the top level, modify both configure.ac, declaring
your Makefile in AC_OUTPUT, and Makefile.am, declaring your new module directory in
SUBDIRS.

If you prefer to have your own project be completely standalone,
then it is only slightly more difficult. First, start with the tarball distribution of one of
the sample projects. In this case, rename one of the module directories to use as your
own module. Second, delete all other module directories that are not required by your
module. Finally, work through the configure.ac file and each instance of Makefile.am
that you have retained, deleting references to the old modules and creating the necessary
description of the module you want to build.

Adding a module within either project.

Creating a new project.

88 | Chapter 5: Managing and Extending Metrics

No matter which approach you have chosen, once you
have modified the configure.ac and Makefile.am files, it is essential that you re-run the
autotools command autoreconf. Typically you would run a command such as autore
conf --install in the top level directory of your project. After that, you can then
run ./configure and then invoke any of the standard autotools make targets. For ex-
ample, run make DESTDIR=/tmp/my-module-test install or make dist to make a source
distribution tarball that you can upload to Sourceforge or any other community site.

Mod_Python
In the previous sections, we described how to build a gmond metric module using the
C/C++ programming language. These sections also described the basic structure of a
module along with its various functions that every gmond module must implement.
This section will explain how to develop similar modules using the Python program-
ming language. Many, if not most, of the concepts that were previously described for
a C/C++ module are just as relevant for a Python module. The programming language
may be different, but the anatomy of a gmond metric gathering module remains the
same.

Mod_Python is a gmond metric module that doesn’t actually gather metrics on its own.
Instead, it is a module that was completely designed to act as proxy for other metric
gathering modules. Mod_Python was written in the C programming language, and its
primary purpose is to provide an embedded Python scripting language environment in
which other gmond modules will run. In the previous section, we talked about the
modular interface that was introduced in Ganglia 3.1 and also described what it takes
to build a gmond module in C. Except for the fact that Mod_Python doesn’t actually
gather any metrics on its own, it still implements the gmond metric module interfaces
in exactly the same way as any other C−based module. By taking advantage of the
embedded Python capability, Mod_Python provides gmond with the ability to be ex-
tended through metric modules that are written in the Python scripting language rather
than the C programming language.

With the introduction of Mod_Python, much of the complexity of implementing a
gmond metric module in C has been removed. The gmond module developer no longer
has to worry about mmodule structures, MMETRIC_INIT_METADATA macros, or the intricacies
of the Apache Portable Runtime API. All of those elements of a gmond module are
hidden behind the easy-to-understand Python scripting language. In fact, one of the
very convenient aspects of developing a Python metric module is that you don’t even
need gmond at all. A gmond Python module can actually be fully designed, imple-
mented, debugged, and tested without ever having to fire up a single instance of gmond.

One very important observation to make at this point is that there is no special bond
between the Python scripting language and Ganglia. The fact that Mod_Python exists,
and with it the ability to extend gmond’s metric gathering ability through Python mod-
ules, is merely a convenience. The same thing could have been done, or better yet, can

Putting it all together with autotools.

Extending gmond with Modules | 89

be done with any embedded scripting language. The Python language is not unique in
this area. By implementing a similar module with Perl, Ruby, or PHP, gmond would
instantly gain the ability to be extended by implementing gmond metric modules in
those languages as well. The main point to remember is that the gmond modular in-
terface was written with future expansion in mind. There are plenty of opportunities
to make gmond even more useful and extensible. Mod_Python just happens to be the
forerunner to many other possibilities.

Configuring gmond to support Python metric modules

As mentioned previously, Mod_Python is a gmond metric module written in the C
programming language. Because it is a module, it needs to be configured just like any
other metric module. A base configuration file is included in the Ganglia source code
and should have been installed automatically through a standard package install. The
name of the dynamically loadable module is modpython.so; its corresponding configu-
ration file is called modpython.conf. The configuration file for Mod_Python can usually
be found in Ganglia’s etc/conf.d directory of the Ganglia installation. The file contains
a very simple and straightforward module configuration that follows the same pattern
as every other gmond module. Following is a typical example of the Mod_Python
configuration:

 modules {
 module {

 name = "python_module"

 path = "modpython.so"

 params = "<directory_path_for_python_modules>"

 }

 }

 include ('../etc/conf.d/*.pyconf')

The most significant part of the Mod_Python configuration is the params directive. The
path that is assigned to this directive will be passed down to the Mod_Python module
and used to search for and locate the Python modules that should be loaded.
Mod_Python will search this location for any file with a .py extension. For each Python
module that it finds, it will attempt to also locate a matching module configuration
block with a module name that corresponds with the Python module filename. The
actual configuration for a Python module is described in “Configuring a Python metric
module” on page 94. Any Python module that is found in this location and has a
matching module configuration will be loaded and assumed to be a metric gathering
module. The recommended file extension of a Python module configuration file
is .pyconf. However, there is nothing about a Python module that requires any specific
configuration file extension.

Writing a Python metric module

The first thing to understand when starting to implement a Python metric module is
that there are three functions that every Python module must include and implement:

90 | Chapter 5: Managing and Extending Metrics

metric_init(params), metric_handler(name), and metric_cleanup(). The following is a
stripped-down template of what a typical Python metric module might look like. As
you can see, there really isn’t much to one of these types of modules:

import sys, os

descriptors = list()

def My_Callback_Function(name):

 '''Return a metric value.'''

 return <Some_Gathered_Value_Here>

def metric_init(params):

 '''Initialize all necessary initialization here.'''

 global descriptors

 if 'Param1' in params:

 p1 = params['Param1'])

 d1 = {'name': 'My_First_Metric',

 'call_back': My_Callback_Function,

 'time_max': 90,

 'value_type': 'uint',

 'units': 'N',

 'slope': 'both',

 'format': '%u',

 'description': 'Example module metric',

 'groups': 'example'}

 descriptors = [d1]

 return descriptors

def metric_cleanup():

 '''Clean up the metric module.'''

 pass

#This code is for debugging and unit testing

if __name__ == '__main__':

 params = {'Param1': 'Some_Value'}

 metric_init(params)

 for d in descriptors:

 v = d['call_back'](d['name'])

 print 'value for %s is %u' % (d['name'], v)

In order to give you a better understanding of the required elements of every Python
module, we’ll start out by describing each of the three functions that every Python
module must implement. The first required function is metric_init(params). The met-
ric init function serves exactly the same purpose as the init function in a C/C++ metric
module. However, unlike a C/C++ metric module init function, the Python init func-
tion must be called metric_init and must take a single parameter.

The metric_init(params) function will be called once at initialization time. Its primary
purpose is to construct and return a dictionary of metric definitions, but it can also
perform any other initialization functionality required to properly gather the intended
metric set. The params parameter that is passed into the init function contains a

Extending gmond with Modules | 91

dictionary of name/value pairs that were specified as configuration directives for the
module in the module section of the .pyconf module configuration file. Each metric
definition returned by the init function as a dictionary object, must supply at least the
following elements:

 d = {'name': '<name>', #Name used in configuration
 'call_back': <handler_function>, #Call back function queried by gmond

 'time_max': int(<time_max>), #Maximum metric value gathering interval

 'value_type': '<data_type>', #Data type (string, uint, float, double)

 'units': '<label>', #Units label

 'slope': '<slope_type>', #Slope ('zero' constant values, 'both' numeric values)

 'format': '<format>', #String formatting ('%s', '%u','%f')

 'description': '<description>'} #Free form metric description

All of the data elements that are required in a metric definition (i.e., the elements listed
previously) are the same data elements that are described as command-line parameters
of the gmetric command-line utility (see the section “Extending gmond with gme-
tric” on page 97). The only exception is the call_back function.

The call_back element designates a function that will be called whenever the data for
this metric needs to be gathered. The callback function is the second required function
that must be implemented in a gmond metric module. We will explain more about the
callback function in just a moment, but for now just remember that the name of this
function can be anything, but whatever name is assigned to the callback function must
match the name given in the metric definition.

In addition to the required elements, the metric definition may contain additional el-
ements. The additional elements will be ignored by gmond itself, but the name/value
pairs will be included in the metric data packet as extra data. You can consider any
additional elements as extra metadata for a metric. Metadata can be used to further
identify or describe the metric and will be available to anything that consumes the
metric XML produced directly by gmond or from gmetad. For example, if your metric
definition contained an extra element 'my_key': '12345', the name/value pair would
be included as an EXTRA_ELEMENT in the gmond XML dump. Because gmetad is the
primary consumer of the gmond XML data, these EXTRA_ELEMENTs will also be stored
by gmetad and available in the XML data that it produces.

There are a few special elements that can be used to enhance the web frontend or cause
gmond to treat a specific metric as if it originated from a different host. These special
elements are GROUP, SPOOF_HOST, and SPOOF_NAME. The concept of spoofing will be dis-
cussed in “Spoofing with gmetric” on page 99.

The GROUP element is used to categorize a metric in the web frontend. If the GROUP ele-
ment is specified in a metric definition, the corresponding value may contain one or
more group names separated by commas. Because the GROUP element along with its
value is passed as an EXTRA_ELEMENT in the XML data, when the web frontend sees the
group value, it uses that information to appropriately display the metric graph under
the specified group header. Also keep in mind that the GROUP element may contain more
than one group value. If additional group values are specified, the web frontend will

92 | Chapter 5: Managing and Extending Metrics

display the same metric group under each additional group designation as well. This
can be very useful if the metric can be intuitively categorized in multiple ways. Ulti-
mately, it allows the user of the web frontend to view the metric graph alongside other
metrics within the same categories.

As mentioned earlier, the second function that must be implemented by all gmond
Python modules is the metric handler function or the function that was referred to as
the “callback” function. Unlike a C/C++ metric module, a Python metric module must
implement at least one handler function, but it may also choose to implement more
than one if needed. The handler definitions must be defined similar to the following:

def My_Metric_Handler(name):

The value of the name parameter will be the name of the metric that is gathered. This
is the name of the metric that was defined in the metric definition returned by the init
function described previously. By passing the metric name as a parameter to the call-
back function, a handler function gains the ability to process more than one metric and
to determine which metric is currently being gathered. The callback function should
implement all of the necessary code that is required to determine the identity of the
metric to be gathered, gather the metric value, and return the value to gmond. The
return value from the callback function must match the data type that was specified in
the corresponding metric definition.

Finally, the third function that must be implemented in all gmond Python metric mod-
ules is the cleanup function.

def metric_cleanup():

This function will be called once when gmond is shutting down. The cleanup function
should include any code that is required to close files, disconnection from the network,
or any other type of clean up functionality. Like the metric_init function, the
cleanup function must be called metric_cleanup and must not take any parameters. In
addition, the cleanup function must not return a value.

As described previously, building a Python metric module requires the implementation
of the init function and the cleanup function, at least one metric definition, and at least
one callback function. Outside of those requirements, the metric module is free to do
whatever it needs in order to appropriately gather and return the supported metric data.

Debugging and testing a Python metric module

One of the most convenient aspects of implementing a gmond module in the Python
language is that Ganglia is not required during development. The entire implementa-
tion, debugging, and testing of the module can be done outside of the Ganglia envi-
ronment. Thus, there is no requirement for any special development tools outside of
the standard and familiar Python development tools that you are used to using. One
of the best tools that we have found for developing Python metric modules is the Eric
Python IDE. Eric is an open source IDE and Python language editor that was written

Extending gmond with Modules | 93

entirely in the Python language. The Eric Python IDE provides you with all of the
features that you would expect from an IDE, including source code autocompletion,
syntax highlighting, source code indenting help (which is a must in Python), and, most
importantly, a full-featured multithread-capable debugger. The IDE also gives you a
command-line window that is attached to the currently running Python script. The nice
thing about the command-line windows is that when the IDE is stopped at a break
point, you can use the command-line window to further inspect variables, construct
new source code statements, or basically just do anything you want with Python.

In the module template that was shown in “Mod_Python” on page 89, there are several
lines of code at the end of the template that enable you to test and debug your module
outside of gmond. If you are not already familiar with writing Python code, the fol-
lowing statements will allow you to run your module as a standalone Python script:

 #This code is for debugging and unit testing
 if __name__ == '__main__':

 params = {'Param1': 'Some_Value'}

 descriptors = metric_init(params)

 for d in descriptors:

 v = d['call_back'](d['name'])

 print 'value for %s is %u' % (d['name'], v)

The if statement at the beginning of the block will be evaluated as true only if the
Python script is being run by the Python interpreter directly. The rest of the code block
defines the parameters that will be passed to the metric init function and iterates
through each metric definition, calls the specified callback function with the metric
name as a parameter, and finally prints out the metric value that was gathered. In other
words, this very small block of code actually simulates the interaction that gmond
would have with the module. Once you have implemented, tested, and debugged your
Python metric module outside of gmond, you can be confident that your module will
perform correctly when loaded by gmond. Of course, there is always the possibility
that a problem might arise when your module is run inside the gmond-embedded
Python environment. In order to debug your module under those conditions, there is
always the print statement. Just remember to start gmond in debug mode.

Configuring a Python metric module

The configuration of a gmond Python module is really no different than any other
module. In fact, the following configuration example should look very familiar. Most
Python modules will not require any specialized configuration at all. One difference
between the configuration of a Python module and C/C++ module is that the Python
module configuration does not include a path directive. Modules written in the
C/C++ language must include a path to the location of the dynamically loadable mod-
ule or the module name relative to the library path (see the previous discussion on
configuring C/C++ modules). However, as all Python modules are loaded and managed
by Mod_Python rather than by gmond itself, the path that points to the location of the
Python module is defined in the configuration of Mod_Python. In fact, the Python

94 | Chapter 5: Managing and Extending Metrics

module path is passed into Mod_Python as a simple parameter to Mod_Python’s metric
init function. Passing parameters into a Python module is supported in exactly the same
way as well. This allows any module specific configuration to be specified in the con-
figuration file and passed to the module at initialization time.

 modules {
 module {

 name = "example"

 language = "python"

 param <param_1> {

 value = Whatever

 }

 param <param_2> {

 value = NewValue

 }

 }

 }

At the risk of duplicating how to configure a gmond metric module, we’ll go through
each of the directives shown in the previous example for configuring a Python metric
module. The module section must contain a name and a language directive. The value of
the name directive must match the file name of the Python module’s .py file. When
Mod_Python loads each Python metric module, it first searches through the Python
module directory that was specified in the Mod_Python configuration for each file that
includes the .py file extension. Once it finds and confirms that a .py file is actually a
Python module, it then searches for a module configuration block whose name matches
the name of the Python script file. All metric modules must specify the language in
which they were written. Therefore, the value of the language directive for a Python
module must be "python". The final part of the module configuration in specifying any
parameter values that should be passed into the metric_init() function. This part of
the module configuration can take multiple param blocks. Each param block must in-
clude a name and a value. The name of the param block represents the key that corre-
sponds to the parameter value in the dictionary object that is ultimately passed to
metric_init(). Finally, the value directive specifies the parameter value. One thing to
note is that the value of a parameter will always be passed to the metric module as a
string within a dictionary object. If the module requires some data type other than a
string, the string value of the parameter will have to be cast to the correct data type
before it is used.

Deploying a Python metric module

In the previous section, we described how to implement, debug, and test your Python
metric module. The next step is to actually deploy the module within a running instance
of gmond. The nice thing about deploying a module into the Ganglia environment is
that it is as simple as copying a file to a specific directory.

To deploy your newly developed Python module, copy your module’s .py file to the
Ganglia Python module directory. The directory path is specified in the configuration

Extending gmond with Modules | 95

of Mod_Python, which was described in “Configuring gmond to support Python metric
modules” on page 90. The next step is to configure your Python module by creating
a .pyconf configuration file. Then make sure that the module’s .pyconf file has been
copied to the Ganglia’s etc/conf.d directory as well. In order to verify that the new
module is properly loaded and configured within the gmond environment, start an
instance of gmond using the -m parameter. With the -m parameter, a new instance of
gmond will not be started, but this parameter will instruct gmond to load all of the
modules that it knows about, read their corresponding configuration files, call the
metric_init() functions of each module, and then display on the console all of the
defined metrics. The list of defined metrics should include all of the metrics defined by
the new module as well as all other defined metrics and the module name in which each
one was defined. Once you have confirmed that the new module loads successfully,
start gmond in normal operation mode. gmond should begin to gather and report the
new metrics, and they should appear in the web frontend.

Spoofing with Modules
Spoofing is a concept that allows an instance of gmond running on one host to report
the metrics that it gathers as if they were coming from an instance of gmond running
on another host. In other words, gmond can fool the rest of Ganglia into thinking that
the metrics that it is gathering are really coming from somewhere else. Spoofing was a
concept originally designed and implemented as part of the gmetric utility. The idea of
being able to report metrics as if they originated somewhere else was so popular in
gmetric, that it only seemed natural to extend that idea into gmond modules as well.

Spoofing a metric within a gmond Python module is a matter of adding extra metadata
elements to the metric description. Each metric definition, as previously described, may
contain extra elements, which indicate to gmond that special handling of the metric is
required. These extra elements include SPOOF_HOST and SPOOF_NAME. By adding
SPOOF_HOST and SPOOF_NAME to a metric definition, gmond will treat the metric as a
spoofed metric rather than an actual metric.

Because the concept of spoofing original came from the gmetric utility, the format of
the SPOOF_HOST and SPOOF_NAME values also follow the same format as defined by gmetric.
The SPOOF_HOST extra element specifies the IP address and the hostname of the host for
which the metric should be reported. The format of the SPOOF_HOST value must be the
IP address followed by the hostname separated by a colon (ip_address:host_name).
When gmond sees this extra element, it will automatically replace the originating IP
address and hostname with the values that are specified by this element. The
SPOOF_NAME extra element is used to indicate to gmond that the metric definition should
assume the name of a different metric. In other words, if spoofing is being used to gather
the boot time of a remote host, the SPOOF_NAME can be set to boot_time to indicate that
this metric is actually an alias of the standard boot_time metric. This concept makes a
little more sense when you consider that each spoofed metric must also have a unique
name.

96 | Chapter 5: Managing and Extending Metrics

Let’s take the example of the boot_time metric. If you have a metric module that gathers
the boot time of not only the host on which it is currently running but also several other
remote hosts, the dictionary of metric definitions that is returned by this module must
include a metric definition for the local boot_time metric as well as each remote host
boot_time. Because gmond requires that every metric defined by a module have a unique
metric name, there would be no way to define three different metrics all with the same
boot_time metric name. Therefore, in order to uniquely identify each metric by its name,
a common practice when defining a spoofed metric is to include the hostname as part
of the metric name (boot_time:my_host). But naming a metric in this way would cause
each of the remote host boot time metrics to show up in the web frontend as separate
metrics that don’t actually correspond to the boot time of the host. In order to fix this
problem, use the SPOOF_NAME extra element to tell gmond that the metric definition is
actually an alias for the standard boot_time metric.

Just to make sure that you got all of that, let’s summarize. Specifying SPOOF_HOST as part
of the metric definition tells gmond that this metric is a spoofed metric. The format of
its value should be the remote host IP address followed by the hostname separated by
a colon. Specifying SPOOF_NAME as part of the metric definition tells gmond that the spoof
name is really an alias for another metric. Finally, the name of each spoofed metric must
be unique. In addition to that, you will need to remember that when your metric call-
back function is called, the name parameter that is passed in will be the unique name
of the metric and not the SPOOF_NAME. By passing in the unique name, this helps your
callback function determine not only the metric it needs to gather but also the remote
host that it should gather the metric from.

Extending gmond with gmetric
The gmetric utility, which is distributed with the monitoring core, as well as being
available in multiple native variants for various programming languages, allows us to
submit metrics values without having to rely on either the scheduler present in gmond,
or the constraints of the native shared library or Python modules on which it depends.

gmetric packets can be debugged and examined using the gmond-debug instance, for
which code is hosted on github. Running this utility will dump out the values for each
packet as it is received and parsed.

Running gmetric from the Command Line
gmetric configures its metric transmission based on the settings of the local
gmond.conf file (or another similarly formatted file, if one is specified). Beyond that,
there are a number of command-line options to configure the behavior of gmetric, as
listed in Table 5-2.

Extending gmond with gmetric | 97

https://github.com/ganglia/ganglia_contrib/tree/master/gmond-debug

Table 5-2. gmetric command-line arguments

Short Option Long Option Description

-h --help Prints list of supported command-line parameters and exits. This ar-

gument should not be used with any other options.

-V --version Prints the current version of gmetric and exits. This argument should

not be used with any other options.

-c STRING --conf=STRING Specifies the gmond.conf format configuration file to use for configuring

send channels. By default, this will be the default installation location

of gmond.conf, so if you are using the configuration specified in the

active gmond.conf file, this option can be omitted.

-n STRING --name=STRING Specifies the string name that is attached to the submitted metric. By

default, gmond will script most nonalphanumeric characters, with the

notable exception of underscore, so you should restrict the character

set of submitted metric names; otherwise, your names will be sanitized

with underscores.

-v STRING --value=STRING Specifies the current value for the metric that you are submitting.

-t STRING --type=STRING Specifies the type of metric being submitted, which is used eventually

by gmetad to aid in construction of the RRD files that will hold this

metric. Acceptable values are string for string metric values,

int8 and uint8 for 8-bit signed and unsigned integers, int16 and

uint16 for 16-bit signed and unsigned integers, int32 and

uint32 for 32-bit signed and unsigned integers, float for floating-

point numbers, and double for double-precision numbers.

-u STRING --units=STRING Specifies a textual value that is used in display of the metric values to

quantify the units of measurement used. This value is not used for any

calculator or interpolation of the values, and is completely arbitrary.

By default, no value is specified. An example unit value would be C for

degrees centigrade or kb to indicate that the current metric indicates

kilobytes.

-s STRING --slope=STRING Specifies the slope/derivative type of the metric being submitted. The

possible values are zero for a zero slope metric, positive for an

increment-only metric, negative for a decrement-only metric, and

both for an arbitrarily changing metric. The default value is both.

Using the value positive for the slope of a new metric will cause

the corresponding RRD file to be generated as a COUNTER, with delta

values being displayed instead of the actual metric values.

-x INT --tmax=INT Specifies the maximum time in seconds between gmetric metric sub-

mission. Defaults to 60 seconds.

-d INT --dmax=INT Specifies the lifetime of this metric in seconds. After the lifetime of the

metric has expired, it will be represented as a NaN value and appear

as a gap in its representative graph.

-g STRING --group STRING Specifies the arbitrary textual group name of this metric, which is used

by Ganglia’s web interface to group metrics. It is very useful when large

98 | Chapter 5: Managing and Extending Metrics

Short Option Long Option Description
numbers of metrics are present for a host or cluster, as they can be

viewed grouped by this value. Defaults to having no group specified.

-C --cluster=STRING Specifies a cluster name “hint”, which is presented with the metric.

The current version of gmetad does not respect this extra data, so it is

necessary to use a gmond.conf configuration that submits data for the

desired cluster. This behavior will most likely change in future, but for

now, this flag does not have any effect.

-D STRING --desc=STRING Specifies an arbitrary textual description of the metric. It is not used

for processing or interpretation of values, and it is blank by default.

-t STRING --title=STRING Specifies a display name, which is used by the Ganglia web UI to rep-

resent the metric. It defaults to being blank, which means that the

metric name is used instead.

-S STRING --spoof=STRING Specifies a spoofed identification for the metric. This means that the

metric will be identified by this information, rather than the local host

identification assigned by the gmond instance(s) to which gmetric is

transmitting this data. It uses a format of IP + : + hostname.

-H --heartbeat Indicates that a Ganglia heartbeat should be sent for a spoofed host.

Heartbeat packets are usually sent by gmond instances, so that their

current hosts are thought to be alive by upstream instances of gmond

and gmetad. This argument should be used in tandem with the

-S/--spoof option to fake a heartbeat packet for a host that does

not directly correspond to a running gmond instance. When used, the

metric-specific options, such as -n, -v, and so on, should not be

specified.

Spoofing with gmetric
“Spoofing” a gmetric value involves submitting a “spoofed” hostname and IP address.
It essentially allows packets to be submitted for hosts other than the gmond instance
receiving the packets. The format is:

 IP address + ":" + hostname

The hostname should match the reverse lookup of the IP address being presented, or
your results may vary unexpectedly. You can use the fully qualified domain name of
the host if you need to match what is being presented by another gmond instance. (This
approach is covered in much greater depth in “Spoofing with Modules” on page 96.)

A large caveat is that due to the current cluster model used by gmond, you cannot
submit spoofed metrics for a host that is not in the same cluster as the gmond instance
to which you are submitting your gmetric packets. This issue can be overcome by simply
using a separately specified gmond.conf file that points at the appropriate gmond in-
stance (if you are using the standard monitoring core gmetric instance) or directly sub-
mitting the metrics to a gmond instance in the appropriate cluster (if you are not using
the monitoring core gmetric instance).

Extending gmond with gmetric | 99

An example of spoofing for a cluster using a VIP, assuming that the name of the ma-
chines are the VIP name plus p1 or p2 that could be used with regular gmetric metrics
parameters, is:

#!/bin/bash

gmetric-spoof.sh

SPOOF_HOSTNAME=$(hostname -s | sed -e 's/p[12]$//g;')

SPOOF_IP=$(host $SPOOF_HOSTNAME | cut -d' ' -f4 | head -1)

Pull the hostname again to get FQDN

SPOOF_HOSTNAME=$(host $SPOOF_HOSTNAME | cut -d' ' -f1 | head -1)

/usr/bin/gmetric -S ${SPOOF_IP}:${SPOOF_HOSTNAME} -H

/usr/bin/gmetric -S ${SPOOF_IP}:${SPOOF_HOSTNAME} $*

How to Choose Between C/C++, Python, and gmetric
With such a diverse range of options, what factors should you consider when choosing
how to add a custom metric to Ganglia? To answer this question, let’s take a look at
what each method brings to the table as well as some of the complexities. The imple-
mentation of a C/C++ API would normally be chosen when there is a demand for
minimal impact on the rest of the system. Because the C and C++ programing languages
are lower-level compiled languages, the resulting modules tend to occupy a much
smaller memory footprint on the system. The implementation of a C/C++ module
would be most beneficial particularly when the metric-gathering code is intended to be
run frequently and must perform complex functions in a very small period of time. This
consideration is very relevant for servers running real-time systems, such as market
data, Voice over IP (VoIP), or high-frequency trading. The development of a C/C++
module makes sense when there is preexisting C/C++ source code available that already
lends itself to gathering and reporting metrics. For example, a database vendor may
have provided a shared library and C headers for gathering metrics from the database.
Implementing a C/C++ module in this instance is highly recommended.

The gmetric solution offers a very simple approach to introduce new metrics into the
Ganglia system quickly. This is one of the main reasons why it should be chosen, es-
pecially when the need for simplicity is paramount and the requirements for perfor-
mance are not a high priority. For example, when a system administrator is running a
long upgrade task, he may only need to run the task once. In this case, there are no real-
time performance concerns. In order to monitor the upgrade process, the admin may
choose to write a shell script that invokes gmetric to gather the metric data during the
upgrade. In such cases, the shell script is often fewer than 10 lines of code but may
spawn multiple processes each time it executes.

One further consideration of gmetric: if a metric changes rarely, but the application
generating the metric knows when it changes, then it can be appropriate to have the
application invoke gmetric. This solution avoids the need for gmond (either a C module
or Python module) to poll repetitively for a value that changes rarely.

100 | Chapter 5: Managing and Extending Metrics

Implementing a Python module is probably the most common choice for two reasons.
It is simpler and quicker to develop a module using the Python language than it is using
C or C++. This ease of use is particularly relevant when writing a module that must
work on multiple platforms. The second reason for using Python is that it is much more
efficient than gmetric, as it runs in the same address space as the gmond process. The
implementation of a Python module is often chosen as a default when there is no com-
pelling reason to use C/C++ or gmetric.

XDR Protocol
XDR is a binary protocol that is used by not only gmetric but also gmond itself to pass
metric packets from one instance to another. The XDR protocol can also be used to
insert metric packets into the metric stream by a third-party utility. In fact, gmetric is
a good example of how the XDR protocol can be used in this manner. gmetric, being
an external utility, uses the XDR protocol to submit metrics directly to a gmond instance
in the form of a binary packet. The metric information is submitted as a series of two
UDP packets: one containing metadata regarding the metric in question, and a second
packet containing the metric value. Table 5-3 explains the lower-level format of XDR
integer and string values. See Table 5-4 and Table 5-5 for descriptions of the metadata
and value formats.

Table 5-3. Types

Type Representation

INT Integer values in XDR are represented as a series of four sequential 8-bit values that, taken together,

form a single 32-bit integer value. The value is ordered high byte to low byte.

STRING String values in XDR are represented as an integer XDR “length” value, being the length of the target

string followed by a series of characters forming the string. These values are padded to a string length

that is a multiple of 4 by 0 byte values. Null string values are represented as a zero-length value,

followed by four 0 bytes.

Table 5-4. Metadata packet

Name Type Value

Packet type INT “gmetadata_full”, represented as 128

Hostname STRING Source hostname for this metric. This should be represented in “spoof” form (IP address

+ “:” + hostname) if the packet represents spoofed data.

Metric name STRING Textual name of the metric presented. Any nonalphanumeric characters will be trans-

lated into underscore characters by gmond in modern versions of the monitoring core.

Spoof INT 1 if the packet is being spoofed, 0 if it is not a spoofed packet.

Type

representation

STRING One of the following: unknown, string, uint16, int16, uint32, int32, float, double.

Metric name STRING Repetition of the earlier metric name field.

XDR Protocol | 101

Name Type Value

Units STRING Textual name of the units being used for this metric.

Slope INT • 0: zero slope

• 1: positive slope (creates a COUNTER style metric)

• 2: negative slope

• 3: both (should be the default for most metrics)

• 4: unspecified

tmax INT Maximum time in seconds between gmetric values submitted. The minimum value of

this should be 60.

dmax INT Lifetime in seconds of this metric. 0 indicates an unlimited lifetime.

Extra data quali-

fier

INT This “magic” value specifies how many repetitions of the two following values are in

the packet. Most packets contain at least a GROUP value, if not a SPOOF_NAME one.

This value can be 0 if there are no additional extra data values being passed.

Extra data name

(repeats)

STRING Additional data name to be submitted with this packet. Common keys are “GROUP”

and “SPOOF_NAME”.

Extra data value

(repeats)

STRING Corresponding value for extra data.

Table 5-5. Value packet

Name Type Value

Packet type INT 133 (128 + 5)

Hostname STRING Should match the hostname in the preceding metadata packet.

Metric name STRING Should match the metric name in the preceding metadata packet.

Spoof INT Should match the spoof value in the preceding metadata packet.

Format string STRING “%s”. Note: ideally, this should be the printf/scanf-style format of the value being

passed, but in reality, all are presently passed as string values, and are then converted

to their specified types by gmond.

Metric value STRING Reported metric value.

Packets
A metadata packet is an XDR packet that contains the definition of an individual metric.
Before a metric can be understood and viewed by the Ganglia monitoring system, its
metadata must have been communicated throughout the system by a metadata packet.
When an instance of gmond is started, the first thing it does is send a metadata packet
over the network for each metric for which it intends to provide a value. If the config-
uration directive, send_metadata_interval, is set to a positive value, the instance of
gmond will resend each metric’s metadata according to the interval value.

A value packet contains only enough information to communicate a metric value. In
order to reduce the amount of data that an instance of gmond produces, the actual

102 | Chapter 5: Managing and Extending Metrics

metric values are communicated through a much smaller packet, which allows gmond
to communicate the much larger metric metadata on an as-needed basis while main-
taining a very small footprint when communicating metric values.

Implementations
In addition to gmetric, there are several other metric-generating utilities that are avail-
able. Each of these utilities have generate metric data and insert the data into the metric
stream through the use of the XDR protocol. Some of these metric generating utilities
are listed in Table 5-6.

Table 5-6. Implementations

Software Language URL

Embeddedgmet-

ric

C/C++ http://code.google.com/p/embeddedgmetric

Ganglia::Gme-

tric::PP

Perl http://search.cpan.org/~athomason/Ganglia-Gmetric-PP-1.04/lib/Ganglia/Gmetric/

PP.pm

gmetric4j Java https://github.com/ganglia/gmetric4j

gmetric-java Java https://github.com/ganglia/ganglia_contrib/tree/master/gmetric-java Note: doesn’t

support wire format for Ganglia 3.1 or greater

gmetric-python Python https://github.com/ganglia/ganglia_contrib/tree/master/gmetric-python

go-gmetric Go https://github.com/jbuchbinder/go-gmetric

jmxetric Java/JMX http://code.google.com/p/jmxetric/

node-gmetric Node.js https://github.com/jbuchbinder/node-gmetric

Ruby Gmetric Ruby https://github.com/igrigorik/gmetric

Java and gmetric4j
Various pure-Java implementations of the XDR protocol and gmetric functionality are
available, including gmetric4j, jmxetric, gmetric-java, and the GangliaContext and re-
lated classes embedded within the Hadoop project.

Here we cover gmetric4j, as it can be used as a standalone in a wide variety of contexts
(an application server or an Android application). It should also be noted that gmetric-
java does not currently support the current Ganglia wire format; it supports only the
format used before v3.1. gmetric4j supports both the new and old wire formats.

Deploying gmetric4j (in any context) involves two basic steps:

• Create subclasses of info.ganglia.GSampler to sample values for gmetric4j.

• Create an instance of info.ganglia.GMonitor, add your sampler(s), and invoke
GMonitor.start().

Java and gmetric4j | 103

http://code.google.com/p/embeddedgmetric
http://search.cpan.org/~athomason/Ganglia-Gmetric-PP-1.04/lib/Ganglia/Gmetric/PP.pm
http://search.cpan.org/~athomason/Ganglia-Gmetric-PP-1.04/lib/Ganglia/Gmetric/PP.pm
https://github.com/ganglia/gmetric4j
https://github.com/ganglia/ganglia_contrib/tree/master/gmetric-java
https://github.com/ganglia/ganglia_contrib/tree/master/gmetric-python
https://github.com/jbuchbinder/go-gmetric
http://code.google.com/p/jmxetric/
https://github.com/jbuchbinder/node-gmetric
https://github.com/igrigorik/gmetric

If there is no local gmond instance running on the machine where gmetric4j is deployed,
then the machine will not be sending a heartbeat metric. gmetric4j includes the class
info.ganglia.CoreSampler, which is capable of spoofing the heartbeat. Add this class
to your GMonitor instance just as you would add any other custom sampler of your
own:

info.ganglia.GMonitor g;
g = new GMonitor();
// Set up the communications properties
g.setGmetric(new GMetric("239.2.11.71", 8649, UDPAddressingMode.MULTICAST));
// Add info.ganglia.CoreSampler for heartbeat
g.addSampler(new CoreSampler());
// Add a custom GSampler instance, MySampler
g.addSampler(new MySampler());
g.start();

Real World: GPU Monitoring with the NVML Module
High-performance coprocessors like the Graphics Processing Unit (GPU) are growing
in popularity within HPC clusters. In addition, GPUs designed for the cloud will soon
debut. In HPC clusters, CPUs can offload data parallel workloads to the accelerators.
The GPU/CPU hybrid architecture is desirable for its overall performance, high per-
formance per watt, and ease of programming. In the cloud, virtualized GPUs will pro-
vide thin clients such as smartphones and tablets and access to a high-performance
graphics experience. Virtual GPUs will enable applications ranging from computer
games to 3D computer-aided design to run in the cloud.

The official NVML module is a valuable tool for cluster administrators who manage
GPUs in an HPC cluster or datacenter environment. This module offers access to var-
ious GPU metrics that are needed to ensure high GPU availability and performance.

Installation
The installation process for the NVML module requires the installation of multiple
packages on each gmond instance. The Python interpreter, along with pyNVML and
the NVML plug-in, must be installed. It is best to ensure that all nodes are set up the
same way using a common shell script, executed via a parallel SSH client or configu-
ration management tool.

The first step in installing the NVML module is to install the NVIDIA display driver.
If the machine is already set up to run CUDA, then the needed NVIDIA driver is already
installed. The following command will verify that nvidia-smi is installed and working:

 $ nvidia-smi –q

The nvidia-smi utility queries GPU metrics from the NVML library. Both the nvidia-
smi utility and the NVML library were installed with the NVIDIA display driver pack-
age. Check the NVML feature matrix for a description of the supported features that

104 | Chapter 5: Managing and Extending Metrics

http://developer.nvidia.com/tesla-deployment-kit

are available for each GPU. The NVML plug-in uses the same interface that nvidia-
smi uses, so metrics that are unsupported in nvidia-smi are also unsupported in the
NVML plug-in.

The NVML plug-in requires Python 2.5 or an earlier version with the ctypes library
installed. Run the following command to ensure that you have the appropriate version
of Python installed:

 $ python –V

 Python 2.5

Once the required version of Python is installed, you can proceed to download and
install pyNVML, the Python interface to the NVML library. pyNVML can be installed
via the easy_install tool:

 $ sudo easy_install nvidia-ml-py

or by downloading and installing the package manually here:

 $ sudo python setup.py install

The next step is to download and install the NVML module. The README file that is
included with the download contains the installation instructions.

Now that the module is installed, gmond must be restarted so that the new configura-
tion can take effect. gmond will load the NVML module, which will allow the GPU
metrics to be viewed in the node view of the Ganglia web interface, as shown in Fig-
ure 5-1.

Metrics
The NVML plug-in provides a variety of GPU metrics. These metrics include the GPU
count and the NVIDIA driver version. For each GPU discovered on the system, the
NVML modules expose the maximum and current clock speeds utilization information
for the GPU memory and SM, temperature, fan speeds, power draw, ECC mode, used
and total GPU memory, performance state, and identifiers such as the PCI bus ID, the
GPU UUID, and the brand.

Reporting GPU metrics in Ganglia enables a cluster administrator to better monitor
the GPUs in systems that they manage. Utilization information can provide a coarse-
grained metric for assessing a cluster scheduler’s efficiency. Temperature and fan speed
information can provide insight into how effective the system cooling is working.

Configuration
The default configuration contained in the file conf.d/nvidia.pyconf exposes all GPU
metrics. However, this default configuration can easily be modified to fit your needs
by editing the module’s configuration file. Please refer to Chapter 2 as well as the

Real World: GPU Monitoring with the NVML Module | 105

http://pypi.python.org/pypi/nvidia-ml-py/
https://github.com/ganglia/gmond_python_modules/tree/master/gpu/nvidia

previous module configuration sections of this chapter for further information about
how to modify the configuration of a gmond module.

For HPC nodes, there is often a desire to minimize the overhead related to the collection
of metrics. Some GPU metrics are more expensive to query than others. For example,
querying fan speed can be 100 times slower than querying the performance state. Dis-
abling unwanted metrics or decreasing the frequency of queries to a particular collec-
tion group can help reduce undesirable overhead.

Figure 5-1. Sample output of Ganglia with the NVML plug-in

106 | Chapter 5: Managing and Extending Metrics

CHAPTER 6

Troubleshooting Ganglia

Bernard Li and Daniel Pocock

Overview
Sooner or later, you may encounter a problem with the Ganglia infrastructure. Because
it is a distributed architecture, it is not always obvious which component is at fault.
Sometimes, the fault may be completely outside the scope of the Ganglia system, such
as a DNS issue, a faulty network card, or even a poorly configured web browser that
results in a user mistakenly asserting that the Ganglia reports are broken.

This chapter aims to provide a systematic way of categorizing the faults, investigating
them, identifying which component is responsible, rectifying the issue, and, if neces-
sary, communicating details of the issue to the Ganglia community for discussion on
the mailing list or registration in the bug database.

Known Bugs and Other Limitations
There are a number of known bugs and other limitations in the Ganglia system. For
example, Ganglia is dependent on the system clock, and meaningful data will not be
collected and reported if the cluster machines, data collectors, and web server machines
do not have clock synchronization. This is a limitation of the Ganglia design, but it is
not considered a bug.

Another known issue, fixed only just before the publication of this book (in Ganglia
3.3.7 and beyond), is that Ganglia was not working on a Solaris zone or container
environment (this issue can also be worked around by disabling the network module).

To save time troubleshooting, you may wish to peruse the list of open bug reports in
the Ganglia bug database maintained by the Ganglia community. If you encounter a
similar issue in your environment, you will then avoid wasting time diagnosing it.

107

http://bugs.ganglia.info

Useful Resources
In this section, we will describe helpful online/offline resources to help you trouble-
shoot issues with Ganglia.

Release Notes
Read the release notes, published on the download page. It usually includes important
information particular to the release (or previous releases). A large portion of issues
reported to the mailing lists are already known to the developers and noted in the release
notes.

Manpages
Manpages are a given, but a lot of users some times forget they exist. The manpages
are a great source of information pertaining to a particular component such as
gmond.conf options and syntax. These manuals should be consulted to double-check
that you have configured everything correctly.

Wiki
Our wiki has a lot of examples and information on different Ganglia implementations.
Check to see whether what you are trying to do has been documented and whether you
are doing it correctly. If it is not documented, consider adding it after you have figured
everything out, be it an issue you were having or some special setup you have developed.
User contribution plays a large role in the success of the project. The wiki resides in its
permanent home here.

IRC
Ganglia developers and users usually hang out in #ganglia on http://freenode.net. If you
run into issues or just feel like talking shop with other users, you are encouraged to join
us. If you do post a question, please be patient, as not everybody is watching the channel
all the time (not to mention in the same time zone), and you will get a response even-
tually. If not, or if the folks on IRC cannot answer your questions, you can post them
to the mailing lists described next.

Mailing Lists
There are two main mailing lists that users can contribute to, namely: ganglia-general
and ganglia-developers. If you encounter an issue, it is worthwhile to search the mailing-
list archives to see if somebody else has encountered something similar.

108 | Chapter 6: Troubleshooting Ganglia

http://ganglia.info
http://wiki.ganglia.info
http://freenode.net

The current mailing-lists are hosted at SourceForge and the search functionalities are
subpar. The Ganglia developers recommend using the Mail Archive for searches. Sim-
ply search for “ganglia” when you arrive at the main page, which will bring up links to
the two mailing lists that can then be searched. If the issue you encountered has not
been previously discussed, consider starting a discussion thread and/or filing a bug in
our bug tracker, discussed next. In order to post to a mailing list, you will need to first
subscribe to it. Instructions are available at our SourceForge site.

Bug Tracker
Our main bug tracker is located here. Before filing a bug, it is worthwhile to do a quick
keyword search to determine whether the issue is already in the system. If you have
already done so but nothing came up, please file a new issue in the bug tracker. Please
be as precise as possible when describing the issue and provide information that you
believe is relevant for developers to troubleshoot the issue, such as the version of Gan-
glia you are using, the operating system, special configuration options, and so on. Re-
member, more information is better than not enough information.

Monitoring the Monitoring System
It’s always a good idea to be proactive and anticipate problems. After all, that is why
most people deploy Ganglia—to monitor the rest of their systems and be alerted before
they have a crisis.

Monitoring the Ganglia infrastructure itself is also a good idea: doing so can help you
study any problems that arise as the network grows.

Ganglia does not automatically monitor itself, but it is not hard to make it do so. Here
are some of the key things you can do to monitor Ganglia with Ganglia:

• Enable mod_gstatus in the gmond config file. At a bare minimum, configure this
module to report the running Ganglia version. This information can be useful for
detecting agents that have not been updated.

• For any node that is acting as an aggregator of gmond packets, consider enabling
the multicpu module. The gmond process is single-threaded, and the multicpu
module will help identify when a core is always at capacity.

• For a gmetad server, consider installing and enabling the mod_io module to mon-
itor disk IO levels on the disk storing the RRD files. Also monitor the filesystem
capacity of those disks.

• See Chapter 7. Consider setting threshold alerts for the metrics mentioned in this
section.

Monitoring the Monitoring System | 109

http://www.mail-archive.com
http://www.sf.net/projects/ganglia
http://bugs.ganglia.info

General Troubleshooting Mechanisms and Tools
In this section, we provide some general strategies for troubleshooting Ganglia and a
discussion of various tools that are helpful.

netcat and telnet
Both gmond and gmetad communicates via TCP sockets in XML. Often the simplest
way to figure out whether the daemons are working correctly is to examine the XML
stream, which can be accomplished by running netcat against the ports that the dae-
mons are listening on (by default, 8649 for gmond, 8651 for gmetad noninteractive,
and 8652 for gmetad interactive). If netcat is not available, you could use the telnet
tool, but it would not be possible to pipe the output for further processing.

If it is your first time examining XML outputs from gmond or gmetad (or XML, for that
matter!), it might seem a bit daunting, because you do not know whether what you are
seeing is “correct.” However, you could still check for a few obvious errors:

• Can you see the hostnames (or IP addresses) of the hosts you expect?

• Can you see the metric values from those hosts?

• Do you see values that you do not expect (e.g., a HOST tag containing an IP address
rather than a hostname in the NAME attribute)?

• Are tags properly closed?

• Are there actual contents in the XML or is everything simply open/close tags?

• Is the output truncated?

• Are the outputs what you expect; for instance, is the metric showing up as an
integer when you are expecting a floating-point number?

Current versions of Ganglia (up to 3.4 at the time of writing) always emit the XML in
a particular way (one tag per line, no indenting), which makes it very easy to scan with
grep. Here are some common netcat/grep commands against gmetad port 8651. These
commands also work with port 8649 on a gmond instance:

 # observe a list of CLUSTER tags only:
 netcat localhost 8651 | grep ^.C

 # observe a list of CLUSTER and HOST tags:
 netcat localhost 8651 | grep ^.[CH]

 # show all hosts and show which hosts have the multicpu module active:
 netcat localhost 8651 | egrep '^.H|^.M.*NAME=.multicpu_user'

The first 51 lines of XML output of both gmond and gmetad are always the same, as
follows:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<!DOCTYPE GANGLIA_XML [
 <!ELEMENT GANGLIA_XML (GRID|CLUSTER|HOST)*>

110 | Chapter 6: Troubleshooting Ganglia

 <!ATTLIST GANGLIA_XML VERSION CDATA #REQUIRED>
 <!ATTLIST GANGLIA_XML SOURCE CDATA #REQUIRED>
 <!ELEMENT GRID (CLUSTER | GRID | HOSTS | METRICS)*>
 <!ATTLIST GRID NAME CDATA #REQUIRED>
 <!ATTLIST GRID AUTHORITY CDATA #REQUIRED>
 <!ATTLIST GRID LOCALTIME CDATA #IMPLIED>
 <!ELEMENT CLUSTER (HOST | HOSTS | METRICS)*>
 <!ATTLIST CLUSTER NAME CDATA #REQUIRED>
 <!ATTLIST CLUSTER OWNER CDATA #IMPLIED>
 <!ATTLIST CLUSTER LATLONG CDATA #IMPLIED>
 <!ATTLIST CLUSTER URL CDATA #IMPLIED>
 <!ATTLIST CLUSTER LOCALTIME CDATA #REQUIRED>
 <!ELEMENT HOST (METRIC)*>
 <!ATTLIST HOST NAME CDATA #REQUIRED>
 <!ATTLIST HOST IP CDATA #REQUIRED>
 <!ATTLIST HOST LOCATION CDATA #IMPLIED>
 <!ATTLIST HOST REPORTED CDATA #REQUIRED>
 <!ATTLIST HOST TN CDATA #IMPLIED>
 <!ATTLIST HOST TMAX CDATA #IMPLIED>
 <!ATTLIST HOST DMAX CDATA #IMPLIED>
 <!ATTLIST HOST GMOND_STARTED CDATA #IMPLIED>
 <!ELEMENT METRIC (EXTRA_DATA*)>
 <!ATTLIST METRIC NAME CDATA #REQUIRED>
 <!ATTLIST METRIC VAL CDATA #REQUIRED>
 <!ATTLIST METRIC TYPE (string | int8 | uint8 | int16 | uint16 | int32 | uint32 |
 float | double | timestamp) #REQUIRED>
 <!ATTLIST METRIC UNITS CDATA #IMPLIED>
 <!ATTLIST METRIC TN CDATA #IMPLIED>
 <!ATTLIST METRIC TMAX CDATA #IMPLIED>
 <!ATTLIST METRIC DMAX CDATA #IMPLIED>
 <!ATTLIST METRIC SLOPE (zero | positive | negative | both | unspecified)
 #IMPLIED>
 <!ATTLIST METRIC SOURCE (gmond) 'gmond'>
 <!ELEMENT EXTRA_DATA (EXTRA_ELEMENT*)>
 <!ELEMENT EXTRA_ELEMENT EMPTY>
 <!ATTLIST EXTRA_ELEMENT NAME CDATA #REQUIRED>
 <!ATTLIST EXTRA_ELEMENT VAL CDATA #REQUIRED>
 <!ELEMENT HOSTS EMPTY>
 <!ATTLIST HOSTS UP CDATA #REQUIRED>
 <!ATTLIST HOSTS DOWN CDATA #REQUIRED>
 <!ATTLIST HOSTS SOURCE (gmond | gmetad) #REQUIRED>
 <!ELEMENT METRICS (EXTRA_DATA*)>
 <!ATTLIST METRICS NAME CDATA #REQUIRED>
 <!ATTLIST METRICS SUM CDATA #REQUIRED>
 <!ATTLIST METRICS NUM CDATA #REQUIRED>
 <!ATTLIST METRICS TYPE (string | int8 | uint8 | int16 | uint16 |
 int32 | uint32 | float | double | timestamp) #REQUIRED>
 <!ATTLIST METRICS UNITS CDATA #IMPLIED>
 <!ATTLIST METRICS SLOPE (zero | positive | negative | both | unspecified)
 #IMPLIED>
 <!ATTLIST METRICS SOURCE (gmond) 'gmond'>
]>

The interesting part comes after:

General Troubleshooting Mechanisms and Tools | 111

<GANGLIA_XML VERSION="3.1.7" SOURCE="gmond">
<CLUSTER NAME="AC" LOCALTIME="1340596942" OWNER="Jeremy Enos" LATLONG="unspecified"
 URL="unspecified">
<HOST NAME="ac28" IP="192.168.1.28" REPORTED="1340596933" TN="9" TMAX="20" DMAX="0"
 LOCATION="unspecified" GMOND_STARTED="1337840143">
<METRIC NAME="gpu3_type" VAL="Tesla T10 Processor" TYPE="string" UNITS="" TN="270"
 TMAX="90" DMAX="0" SLOPE="zero">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU3 Type"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu3 Type"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="mem_total" VAL="8191780" TYPE="float" UNITS="KB" TN="270" TMAX="1200"
 DMAX="0" SLOPE="zero">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="memory"/>
<EXTRA_ELEMENT NAME="DESC" VAL="Total amount of memory displayed in KBs"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="Memory Total"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="gpu0_pci_id" VAL="99029214" TYPE="string" UNITS="" TN="270" TMAX="90"
 DMAX="0" SLOPE="zero">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU0 PCI ID"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu0 PCI ID"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="proc_run" VAL="1" TYPE="uint32" UNITS=" " TN="36" TMAX="950" DMAX="0"
 SLOPE="both">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="process"/>
<EXTRA_ELEMENT NAME="DESC" VAL="Total number of running processes"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="Total Running Processes"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="gpu0_mem_speed" VAL="297" TYPE="uint32" UNITS="MHz" TN="36" TMAX="90"
 DMAX="0" SLOPE="both">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU0 Memory Speed"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu0 Memory Speed"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="gpu1_ecc_mode" VAL="N/A" TYPE="string" UNITS="" TN="36" TMAX="90"
 DMAX="0" SLOPE="zero">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU1 ECC Mode"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu1 ECC Mode"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="gpu1_mem_used" VAL="3840" TYPE="uint32" UNITS="KB" TN="36" TMAX="90"
 DMAX="0" SLOPE="both">

112 | Chapter 6: Troubleshooting Ganglia

<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU1 Used Memory"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu1 Memory Used"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="gpu0_sm_speed" VAL="799" TYPE="uint32" UNITS="MHz" TN="36" TMAX="90"
 DMAX="0" SLOPE="both">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU0 SM Speed"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu0 SM Speed"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="gpu2_mem_speed" VAL="297" TYPE="uint32" UNITS="MHz" TN="36" TMAX="90"
 DMAX="0" SLOPE="both">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU2 Memory Speed"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu2 Memory Speed"/>
</EXTRA_DATA>
</METRIC>
<METRIC NAME="gexec" VAL="OFF" TYPE="string" UNITS="" TN="199" TMAX="300" DMAX="0"
 SLOPE="zero">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="core"/>
<EXTRA_ELEMENT NAME="DESC" VAL="gexec available"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="Gexec Status"/>
</EXTRA_DATA>
</METRIC>
...
</HOST>

The output is truncated for brevity, but each host in this cluster has 103 metrics, and
it repeats for each host. The end of the XML stream looks like this:

<METRIC NAME="gpu2_mem_total" VAL="4194112" TYPE="uint32" UNITS="KB" TN="272"
 TMAX="90" DMAX="0" SLOPE="zero">
<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU2 Total Memory"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu2 Memory Total"/>
</EXTRA_DATA>
</METRIC>
</HOST>
</CLUSTER>
</GANGLIA_XML>

The previous example is taken from a gmond in a multicast environment. For unicast
environment, only the collector gmond will have information on all hosts, as in this
example.

The XML stream from gmetad looks very similar, except that it will have additional
<GRID> </GRID>tags such as the following:

General Troubleshooting Mechanisms and Tools | 113

<GANGLIA_XML VERSION="3.1.7" SOURCE="gmetad">
<GRID NAME="NCSA" AUTHORITY="http://acfs/ganglia/" LOCALTIME="1340597372">
<CLUSTER NAME="AC" LOCALTIME="1340597360" OWNER="Jeremy Enos" LATLONG="unspecified"
 URL="unspecified">
<HOST NAME="ac07" IP="192.168.1.7" REPORTED="1340597359" TN="12" TMAX="20" DMAX="0"
 LOCATION="unspecified" GMOND_STARTED="1337840142">

The end of the stream looks like:

<EXTRA_DATA>
<EXTRA_ELEMENT NAME="GROUP" VAL="gpu"/>
<EXTRA_ELEMENT NAME="DESC" VAL="GPU0 Utilization"/>
<EXTRA_ELEMENT NAME="TITLE" VAL="gpu0 GPU Utilization"/>
</EXTRA_DATA>
</METRIC>
</HOST>
</CLUSTER>
</GRID>
</GANGLIA_XML>

Logs
gmond and gmetad do not log many things to syslog; however, these logs should always
be checked when there is a problem. gmetad occasionally logs messages about failures
to update RRD files. If there is a problem, and the logs provide no clues at all, see the
next section.

The component that does log to syslog is the web frontend, which logs to the web server
logs (for instance, /var/log/httpd/error_logs for Apache running on Linux). If you are
seeing a blank page when you point your web browser to your gweb page, you should
check for errors in the error logs. Both errors in PHP code and in RRD file generation
will show up in the web server error logs.

Running in Foreground/Debug Mode
All three main components of Ganglia—gmond, gmetad, and even the web frontend
—have debug modes that could be triggered to provide verbose output when the pro-
grams are being executed.

For the daemons (gmond, gmetad), this is accomplished by specifying -d on the com-
mand line. By default, gmond/gmetad run as daemons (background processes). If a
debug value greater than 0 is provided, the daemon will start in the foreground.

In debug mode, a lot more messages are printed during operation such that you can
see precisely what is happening. Because there is a lot of output, it is recommended
that you pipe the output to a temporary file and then examine the log file after the fact
for any special notices that are displayed while the issue you are observing is happening.

For instance, here’s a sample command for piping the output of running gmond in
debug mode to the file /tmp/gmond.log:

114 | Chapter 6: Troubleshooting Ganglia

gmond -d 10 > /tmp/gmond.log 2>&1

And here’s the content of the corresponding log file:

loaded module: core_metrics
loaded module: cpu_module
loaded module: disk_module
loaded module: load_module
loaded module: mem_module
loaded module: net_module
loaded module: proc_module
loaded module: sys_module
loaded module: python_module
loaded module: multicpu_module
/usr/lib64/ganglia/python_modules/tcpconn.py:33: DeprecationWarning: The popen2↩
 module is deprecated. Use the subprocess module.
 import os, sys, popen2
udp_send_channel mcast_join=239.2.11.71 mcast_if=NULL host=NULL port=8649

Discovered device /
Discovered device /boot

 metric 'tcp_established' being collected now
 metric 'tcp_established' has value_threshold 1.000000
 metric 'tcp_listen' being collected now
 metric 'tcp_listen' has value_threshold 1.000000
 metric 'tcp_timewait' being collected now
 metric 'tcp_timewait' has value_threshold 1.000000
 metric 'tcp_closewait' being collected now
 metric 'tcp_closewait' has value_threshold 1.000000
{...}

For the web frontend, you can specify debug mode by adding &debug=n at the end of
the URL, where n could be any number greater than or equal to 0.

If you are trying to troubleshoot why a particular graph is not being generated, you can
do so by first getting the URL of the graph, either by right-clicking the graph placeholder
or just by looking at the source. Once you have the URL, you can then put that in the
browser and add &debug=3 at the end. This change will force the RRDtool command
that is used to generate the graph to be displayed on the browser. You can then cut and
paste the command into a command prompt on the gmetad server and execute it. It
should then tell you exactly why the graph was not generated. It could be because of
permission issues or syntax errors with the RRDtool command.

strace and truss
If the log messages and the debug mode output don’t provide a clear indication of what
is wrong, the next step is to try strace.

strace (truss on Solaris) is a tool that lets you hook onto a running process and intercept
its system calls and signals. When one of the Ganglia programs fails with a segmentation
fault or consumes 99 percent CPU, you can use strace to determine what system calls

General Troubleshooting Mechanisms and Tools | 115

are being executed while this is happening. The system calls will often show interesting
details about which files the process accessed just before the problem occurred. If
gmond or gmetad is misbehaving and you are trying to find out what it is doing, at-
taching to the running processes using strace could provide hints when running in
debug mode (described later in this chapter) is not sufficient.

valgrind: Memory Leaks and Memory Corruption
A basic gmond that is in deaf mode and has no custom metrics should not be using
more than 8 MB of RAM. A gmond process that receives metrics from other processes
(over multicast or acting as a UDP aggregator) may grow its memory usage in a manner
that is directly proportional to the number of hosts/metrics received. Any other growth
in memory usage should be seen as a sign that gmond or one of the metric modules is
misbehaving.

Check the process’s RSS by running top or ps. If you observe it going up at a steady
rate, try to run strace against it to see whether there are any clues as to what is causing
the memory consumption. If you are using metric modules, try disabling them one by
one to see if you can isolate the culprit. Finally, if all else fails, you can run tools such
as valgrind and see what sort of information you could gather. If you believe this par-
ticular issue has not yet been reported, it is a good idea to file a bug in our bug tracker
—and don’t forget to include the valgrind output in the bug report.

Memory corruption is another possibility, particularly if a third-party metric module
is behaving badly. valgrind should detect code that is accessing the wrong memory. If
such errors are detected, please share them in a bug report.

iostat: Checking IOPS Demands of gmetad
A heavily loaded gmetad server can create a lot of IO, as described in Chapter 3. Ob-
serving IO levels during normal operation is highly recommended. If gaps are observed
in all the graphs, it is often a symptom of IO saturation, and iostat can confirm this.

iostat is a common Linux command-line utility for checking disk IO levels. iostat can
show the volume of IO (number of IOPS and MB/s). It can also show statistics about
the IO queue performance, such as the average time an IO request is queued and the
utilization rate of the block device.

Here is an example of running iostat with a logical volume:

$ iostat -k 1 -x dm-14
Linux 3.2.0-0.bpo.2-amd64 (srv1) 26/06/12 _x86_64_ (2 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle
 3.64 0.01 2.81 1.55 0.00 92.00

Device: ... svctm %util
dm-14 ... 3.63 2.20

116 | Chapter 6: Troubleshooting Ganglia

avg-cpu: %user %nice %system %iowait %steal %idle
 4.71 0.00 3.66 0.00 0.00 91.62

Device: ... svctm %util
dm-14 ... 0.00 0.00

A value of %util approaching 100 percent indicates that the block device is saturated.
In that case, it is necessary to either reduce the workload or increase the IO capacity of
the block device. See “gmetad Storage Planning and Scalability” on page 44 for a dis-
cussion of scalability planning and common strategies and things to avoid.

Restarting Daemons
Occasionally, Ganglia gets into some strange state—for instance, the correct number
of hosts are reported but it is not the correct total number of cores. Sometimes these
issues can be resolved by restarting the daemons. Whenever restarting processes, be
sure to do so in the order recommended in “Starting Up the Processes” on page 41.

gstat
gstat is a nifty command-line program that comes standard with Ganglia. It allows you
to quickly determine things such as which hosts are down and how many cores each
host has, as well as their respective load.

If you invoke the command without any options, you will be presented with a quick
summary of your cluster:

CLUSTER INFORMATION
 Name: AC
 Hosts: 40
Gexec Hosts: 0
 Dead Hosts: 1
 Localtime: Sat Jun 30 19:03:05 2012

There are no hosts running gexec at this time

To get more details, specify the option -a1:

$ gstat -a1
CLUSTER INFORMATION
 Name: AC
 Hosts: 40
Gexec Hosts: 0
 Dead Hosts: 1
 Localtime: Sat Jun 30 19:05:12 2012

CLUSTER HOSTS
Hostname LOAD CPU Gexec
 CPUs (Procs/Total) [1, 5, 15min] [User, Nice, System, Idle, Wio]

ac43.local 24 (0/ 423) [0.00, 0.00, 0.00] [0.0, 0.0, 0.2, ...

General Troubleshooting Mechanisms and Tools | 117

ac42.local 24 (0/ 421) [0.00, 0.00, 0.00] [0.0, 0.0, 0.1, ...
ac33 24 (0/ 399) [0.00, 0.00, 0.00] [0.0, 0.0, 0.1, 99.9, ...
ac48.local 24 (0/ 425) [0.00, 0.04, 0.11] [0.0, 0.0, 0.1, ...
ac44.local 24 (0/ 421) [0.01, 0.01, 0.00] [0.0, 0.0, 0.1, ...
ac45.local 24 (1/ 425) [1.05, 1.02, 1.00] [4.3, 0.0, 0.1, ...
ac46.local 24 (1/ 454) [1.10, 1.07, 1.01] [4.1, 0.0, 0.3, ...
acfs 16 (4/ 585) [0.53, 0.36, 0.35] [6.0, 0.0, 12.6, 79.9, ...
ac20 4 (0/ 150) [0.00, 0.00, 0.00] [0.0, 0.0, 0.5, 99.4, ...
ac18 4 (0/ 150) [0.00, 0.00, 0.00] [0.0, 0.0, 0.5, 99.4, ...
{...}

This option gives you a list of all the hosts in the cluster with detail information re-
garding number of cores, number of processes running, load, and so on. Because -1
was specified, it prints a host and its respective details per line.

To get the same list with the IP addresses of each host instead of their hostnames
printed, use -an1:

$ gstat -a1n
CLUSTER INFORMATION
 Name: AC
 Hosts: 40
Gexec Hosts: 0
 Dead Hosts: 1
 Localtime: Sat Jun 30 19:11:21 2012

CLUSTER HOSTS
Hostname LOAD CPU Gexec
 CPUs (Procs/Total) [1, 5, 15min] [User, Nice, System, Idle, Wio]

192.168.1.44 24 (0/ 421) [0.00, 0.00, 0.00] [0.0, 0.0, 0.1, ...
192.168.1.43 24 (0/ 423) [0.00, 0.01, 0.00] [0.0, 0.0, 0.2, ...
192.168.1.42 24 (0/ 421) [0.00, 0.00, 0.00] [0.0, 0.0, 0.1, ...
192.168.1.33 24 (0/ 399) [0.00, 0.00, 0.00] [0.0, 0.0, 0.1, ...
192.168.1.48 24 (0/ 425) [0.00, 0.00, 0.07] [0.0, 0.0, 0.1, ...
192.168.1.46 24 (1/ 454) [1.00, 1.02, 1.00] [4.1, 0.0, 0.3, ...
192.168.1.45 24 (2/ 426) [1.02, 1.01, 1.00] [4.1, 0.0, 0.1, ...
192.168.1.250 16 (6/ 585) [0.36, 0.33, 0.34] [8.8, 0.0, 19.7, ...
192.168.1.15 4 (0/ 150) [0.00, 0.00, 0.00] [0.0, 0.0, 0.6, ...
192.168.1.24 4 (0/ 150) [0.00, 0.00, 0.00] [0.0, 0.0, 0.5, ...
{...}

To list just the dead hosts, use the -d option:

$ gstat -d
CLUSTER INFORMATION
 Name: AC
 Hosts: 40
Gexec Hosts: 0
 Dead Hosts: 1
 Localtime: Sat Jun 30 19:06:21 2012

DEAD CLUSTER HOSTS
 Hostname Last Reported
 ac49 Mon May 28 16:53:01 2012

118 | Chapter 6: Troubleshooting Ganglia

gstat comes in handy when you are trying to troubleshoot issues with Ganglia and you
don’t have direct access to the web frontend. By default, it tries to talk to the gmond
running on localhost, but you can specify another running gmond by specifying -i.

Common Deployment Issues
There are a few common deployment issues that you should be aware of when deploy-
ing Ganglia.

Reverse DNS Lookups
The first time gmond receives a metric packet from any other node, it must do a name
lookup to find the hostname corresponding to the packet’s source address.

If these lookups are satisfied by /etc/hosts, then it can be quite fast. If the lookups must
be handled by DNS, this can slow down the process. As it is a single-threaded design,
this scenario can have undesirable consequences.

When a gmond process first starts, it is likely that it will have to do such name lookups
for all packets it receives in the first one or two minutes of operation. If a large number
of hosts are reporting packets simultaneously, and if DNS is slow or even completely
unavailable, this issue can have a severe impact and metrics will not be reported at all
until the name lookups are complete and everything starts running normally.

Therefore, for those hosts that receive metrics (e.g., mute nodes or UDP aggregators),
you should have multiple name servers defined and/or populate /etc/hosts if convenient.

Time Synchronization
It is essential that all hosts participating in the Ganglia monitoring system have a
synchronized clock. Proactively deploying network time protocol (NTP) is highly
recommended.

If you see a message similar to the following in your web server logs, it is highly likely
that the hosts running gmond are not time-synced:

alleviateFeb 22 05:33:22 localhost.localdomain /usr/sbin/gmetad[2782]:
RRD_update (/var/lib/ganglia/rrds/...metric.rrd): illegal attempt to
update using time 1329950002 when last update time is 1329950002
(minimum one second step)

Mixing Ganglia Versions Older than 3.1 with Current Versions
In version 3.1, a new wire format for the multicast/UDP packets was introduced.
Therefore, hosts running 3.1 or later can’t be used in the same cluster as hosts running
3.0 or earlier.

Common Deployment Issues | 119

Specifically, if you are trying to upgrade your Ganglia installation, upgrade gmetad to
the latest version first because it can communicate with gmond 3.1 and newer as well
as 3.0 or earlier. Afterwards, you can upgrade each cluster one at a time to the current
version, but remember that each cluster cannot have a mixture of pre-3.1 gmonds and
gmonds running 3.1 or newer.

SELinux and Firewall
If you are new to Ganglia and feel that you have followed all the installation instructions
to the letter, but for some reason you are not getting any graphs on the web frontend,
you might want to check whether your OS has SELinux enabled by default.

Ganglia developers generally recommend disabling SELinux on systems running Gan-
glia daemons/web frontend, as it hinders normal operations. If you are attempting to
run Ganglia on systems that require SELinux, it is possible to create a security profile
that allows Ganglia to work. However, how to write such a SELinux security profile is
outside the scope of this book.

Ganglia daemons communicate with each other via network (TCP/UDP) sockets. The
web frontend also needs to communicate with gmetad via the interactive port. If a
firewall needs to be in place on servers running the Ganglia services, please ensure that
the ports are opened on the firewall. Default ports are 8649 for gmond, 8651 for gmetad
noninteractive, and 8652 for gmetad interactive.

Typical Problems and Troubleshooting Procedures
In this section, we list and categorize common issues encountered with a Ganglia in-
stallation. We categorize based on when the user will first notice the issue. For instance,
one might have misconfigured gmond to the extent that certain nodes are not shown
in the web interface. Even though technically the issue lies in gmond, because the user
will first come across the issue via the web interface, this particular issue will be listed
under “Web issues.”

Web Issues
There are a number of well-known problems that can occur when using gweb. We’ve
listed them here to help you quickly get back up and running.

Blank page appears in the browser

Check the Apache access log: did the browser connect to the web server? If not, it could
be a problem with the browser itself or a web proxy.

Does the Apache error log contain any errors? Look for errors about file permissions,
missing PHP modules, and the like. Try monitoring the log with tail -f while you

120 | Chapter 6: Troubleshooting Ganglia

reload the blank page; doing so will let you see exactly which messages are related to
the failure.

Try adding ?debug=3 to the end of the URL and check the error log by using tail -f.

Browser displays white page with error message

Is it an error about failing to connect to 127.0.0.1:8652? This error typically means that
gmetad is not running or not listening on the correct port.

Otherwise, please see the tips for the previous problem and look for more details in the
various log files. Check both the web server logs and the system logs (grep for any errors
mentioning gmetad).

Cluster view shows uppercase hostname, link doesn’t work

Often the host appears twice, with the name in uppercase and lowercase, or some other
differing variations of the hostname. Clicking some of the hosts shows a blank page
and no metrics.

Older versions of Ganglia treated hostnames in a case-sensitive manner, which is in-
correct. In some environments, the hostname is uppercase in the host’s file and low-
ercase in DNS. Ganglia thus becomes confused. As of Ganglia 3.3, hostnames are con-
verted to lowercase, RRD files are created with lowercase filenames, and lowercase
hostnames should be used in URLs to access the metrics. A config option allows the
legacy behavior to remain, but if you incorrectly have that option enabled in either or
both gmetad.conf and config.php, you may have trouble.

Host appears in the wrong cluster

In gmond.conf, you have defined the name of the Cluster to be cluster2, yet the host is
still displayed under cluster1. This is a common misconception of how Ganglia and
gmond work. gmond clusters via the port defined for udp_send_channel but not the
name of the cluster. The cluster name is used to generate the XML, which in turn shows
up in the web frontend. If you would like the host to show up under a different cluster,
use different ports for udp_send_channel. By default, the port number for gmond is 8649.
Don’t use ports 8651 and 8652, as these are the default ports used by gmetad.

Host appears multiple times in web, different variations of the hostname (or IP address)

Usually, the different hostnames/IP addresses correspond to different interfaces on the
host: the agent randomly picks a source IP address on the host for sending out metric
packets, which can produce unexpected results. If gmond is restarted, sometimes it will
not be sending on the same interface/source IP that it used previously.

The bind_hostname parameter can be used to lock it to the correct interface.

Typical Problems and Troubleshooting Procedures | 121

Some hosts appear with shortname instead of FQDN

The hostnames are inserted into the XML stream by the gmond host receiving the
multicast or UDP metric packets. It does a reverse lookup against the source address
of the packet. Sometimes that host has shortnames in /etc/hosts and it uses them instead
of the FQDNs from DNS. Therefore, consider adapting /etc/hosts to contain both
FQDN and shortname for each IP address.

One or more hosts don’t appear in the web interface

Make sure gmond is running on the host in question (see the section “netcat and tel-
net” on page 110).

If the hosts have only recently been added to the network, check whether the RRD files
for the hosts have been created yet. If the gmetad server has a full filesystem, it will fail
to create RRD files.

If using multicast, check the interface where packets are sent (a packet sniffer such as
tcpdump might help). One gotcha is that if you wanted multicast traffic to go through
eth1 as opposed to the default eth0, you need to add a route explicitly:

route add -host 239.2.11.71 dev eth1

Hosts don’t appear/data stale after UDP aggregator restarted

Occasionally, it is necessary to restart your collector gmond. If, as soon as you do that,
you notice that other gmonds stopped reporting new metric data, you should make
sure that send_metadata_interval in gmond.conf is set to a nonzero value.

Dead/retired hosts still appearing in the Web

Let’s say you have a 10-node cluster, one node has a hardware failure and cannot be
repaired. You may have replaced the node with another one with a different IP address,
or you do not want the dead host to show up any more. For unicast mode, all you need
to do is restart the collector. For multicast node, all nodes in the cluster will need to be
restarted. Subsequently, gmetad will also need to be restarted. This step should flush
the dead node out of the system.

Alternatively, you could set host_dmax to a nonzero number. This will flush out the
node automatically after the specified number of seconds have passed. For unicast
mode, this value needs to be set only on the collector. For multicast mode, the value
needs to be set on all gmonds’ configuration.

This issue is also relevant when monitoring dynamic environments such as cloud re-
sources (for example, Amazon EC2). Hosts are constantly brought up and shut down
and the IP addresses of hosts are generally not from a constant pool. You may end up
with a lot of dead hosts in your cluster if this option is not properly set.

122 | Chapter 6: Troubleshooting Ganglia

Wrong CPU count or other metrics are missing

You noticed that “Hosts up” is correct but “CPUs Total” is less than expected. If you
drill down to the host view, some hosts are missing certain metrics and graphs. In that
case, you might want to reload gmond on the hosts in question. If that does not work,
try to do a systemic restart of all the daemons.

Fonts in graphs are too big or too small

Graphs by default are generated by RRDtool. In certain situations, the fonts of the
graphs may be too large or too small, making it difficult to read the text. In that case,
try to install different TrueType fonts on your system. Alternatively, try upgrading the
version of RRDtool, as newer versions have better font management.

As of RRDtool v1.3, fontconfig is used to access system fonts. By default, it will use
the font DejaVu Sans Mono. If that’s not available, it will try Bitstream Vera Sans Mono,
Monospace, and finally Courier. Make sure that fontconfig provides one of these fonts.
Use fc-list to see which fonts are installed on your system.

Spikes in graphs

Sometimes it is possible to have unexpected spikes in your graphs that will throw the
scale totally off. If you are certain the spikes are not normal, you can remove them from
the RRDtool database using the contributed script removespikes.pl, which is usually
shipped in the Ganglia release tarball under contrib/. If it is not available, you can get
it from the github repository.

Certain Broadcom Network Interface Controllers (NICs) are known to cause spikes
due to hardware bugs. If the spikes are in your network graphs and are in the range of
petabytes/sec, consider rebuilding Ganglia using the following flag:

 make CPPFLAGS=-DREMOVE_BOGUS_SPIKES

This flag is known to alleviate the issue under Linux.

Custom metrics don’t appear

So you have written your first gmond metric module in Python and have confirmed by
testing that it is working as expected on the host you would like to collect data. You
have installed the module and the corresponding pyconf in the right location, but no
matter how many times you restart gmond, you are still not seeing the graph on the
web frontend.

Traditionally, gmond is executed by an unprivileged user, such as nobody or ganglia,
which has limited access. Your Python module will also be executed by this user:
therefore, it is important to check whether that user can run the script without any
issue (such as accessing certain files).

Typical Problems and Troubleshooting Procedures | 123

https://github.com/ganglia/monitor-core/blob/master/contrib/removespikes.pl

It is also a good idea to run gmond with the -m parameter. The -m parameter will instruct
gmond to load each module and display a list of all of the metrics that it knows about.
Check the output listing to make sure that your new metrics are included.

Custom metric’s value is truncated

You have just injected a new metric into Ganglia, which is a long string. However, you
noticed that it is being truncated.

By default the value of a metric is stored in a 32-byte structure. Anything beyond will
be truncated. It is possible to increase this value by recompiling Ganglia; alternatively,
you could also split the value into multiple metrics.

Gaps appear randomly in the graphs

Gaps that appear randomly in the graphs are often a sign that some component is
overloaded. Verify that no other network congestion issues exist. The UDP packets sent
by gmond are likely to be dropped by congested routers and switches.

On the gmond that receives the packets (either via multicast or acting as a UDP aggre-
gator), verify that the UDP receive buffer is big enough. Versions of Ganglia 3.4.0 and
later have a “buffer” parameter in gmond.conf that can be used to make the buffer larger.

Verify that the gmond process handling the TCP polls from gmetad is not overloaded.
If the gmond is using 100 percent of CPU, that is a sign that it is overloaded. Split the
cluster, reduce the number of metrics from each member node, reduce the transmission
rate from the member nodes, or put that gmond on a more powerful CPU.

Verify that the gmetad process is not overloading the CPU. If the gmetad is using 100
percent of CPU, that is a sign that it is overloaded. Split the workload over multiple
gmetads on different physical hosts.

Confirm that the IO device storing the RRDs is not overloaded. See “iostat: Checking
IOPS Demands of gmetad” on page 116 and also review Chapter 3.

If gaps are showing up only on graphs of a new metric added via gmetric or the gmond
metric interface, you may have specified an incorrect slope for the metric.

For most cases, use slope=both, which will cause the underlying RRD file to be of type
GAUGE and thus each data point collected will be graphed. However, if the metric you
are collecting is a rate of change, then specify slope=positive such that the RRD file
will be of type COUNTER. For more information regarding the difference between the two
types, refer to the documentation for RRDtool.

Some host is completely missing from the cluster

Confirm that the host is up and the gmond process is running. If the gmond process
won’t start, see the sections about troubleshooting gmond in debug mode.

124 | Chapter 6: Troubleshooting Ganglia

Use a packet sniffer (tcpdump or wireshark) to verify that the host is transmitting
packets.

Try restarting the gmond: this will cause it to retransmit its metadata.

If using UDP unicast, use netcat to check the UDP aggregator for the cluster: does it
hear the host?

If using multicast, use netcat to check the XML from a host in the cluster that is not
deaf: does it have XML for the missing host?

Use netcat to check the XML from the gmetad: does it have XML for the missing host?

Check if RRD files exist under /var/lib/ganglia/rrds; verify that they don’t have size 0.
If the filesystem fills up, the files are sometimes created with size 0.

gmetad hierarchy and federation; some grids don’t appear on the Web

Check the trusted_hosts setting in every gmetad.conf. The ACL can be tested by exe-
cuting netcat between the gmetad hosts. Make sure that the gmetad that is aggregating
the grids is configured to poll the correct port on the lower level gmetad: it should poll
port 8651, not 8649 or 8652.

gmetad Issues
This section contains a list of common gmetad problems and their solutions.

Empty (size = 0) RRD files created

This often happens if the filesystem is full.

gmetad takes a long time to start

If the network is large, this could be a scalability issue; see the discussion in “Acute IO
Demand During gmetad Startup” on page 46.

gmetad segmentation fault writing to RRD

gmetad crashes with a segmentation fault. The stack trace or strace output shows that
it was writing to an RRD. This may be due to a buggy version of RRDtool. Unfortu-
nately, the buggy version of RRDtool was distributed in Fedora 14 for a while (see
Ganglia bug 287). Using RRDtool v1.4.4 or greater may fix this issue; otherwise, please
try the other troubleshooting tools/techniques.

gmetad doesn’t poll all nodes defined in data_source

In gmetad.conf, the data_source definition can list multiple nodes for a single cluster.
However, gmetad doesn’t automatically failover/poll the second node when the first is

Typical Problems and Troubleshooting Procedures | 125

down. This is a known issue. In many cases, it is necessary to completely restart gmetad
to force it to resume polling the node that went down.

Some people have a cron job configured to restart gmetad every few hours just to avoid
this issue.

RRA definition changed in gmetad.conf, but RRD files are unchanged

The RRA definition in gmetad.conf is used only when new RRD files are created. If the
RRA definition is changed—for example, to increase the retention period of the data
—gmetad will not apply the change to existing RRD files.

Two options are available for handling data in existing RRD files:

• Archive old RRD files and let gmetad create new RRD files based on updated RRA
definition.

• Use rrddump to dump existing RRD files to XML format, massage them to conform
to the new RRA definition, and reimport back to RRD files using rrdrestore. For
more information about these tools, please refer to the RRDtool documentation.

rrdcached Issues
The most common issues you will face when using rrdcached relate to errors about the
number of open files or file descriptors. Use the ulimit command to increase the per-
mitted number of open files or file descriptors for the rrdcached process. The process
must be able to open all the RRDs for all the metrics concurrently.

gmond Issues
This section contains a list of common gmetad problems and their solutions.

gmond fails to start or localhost issues

When bind_hostname = true (the default in recent versions of gmond), gmond will try
to bind to the IP address associated with the hostname.

On some machines, the /etc/hosts file contains an entry mapping the hostname to the
localhost address (127.0.0.1). In this situation, gmond will fail. Try fixing the host’s file.

gmond uses a lot of RAM

This is not always a memory leak. If the gmond memory usage grows to 2 GB or more
and then gmond crashes, it is probably a memory leak or you have an extremely large
number of hosts sending metrics to the gmond. It could also be a sign of a denial-of-
service attack (someone sending random metrics to fill up the memory). See “valgrind:
Memory Leaks and Memory Corruption” on page 116.

126 | Chapter 6: Troubleshooting Ganglia

If the gmond memory usage is high (more than 100 MB) but constant, it is quite possible
that this is just the normal amount of memory needed to keep the state information for
all the metrics it is receiving from other nodes in the cluster.

gmond doesn’t start properly on bootup

Verify that the init script is installed and has the executable bit set. Verify that the
symlink from /etc/rcX.d exists for the run-level. Verify that the host has an IP address
before the gmond init script is invoked. If the system obtains an IP address dynami-
cally, it is possible that DHCP is not completed before the attempt to start gmond, and
so gmond fails to run. If network manager is in use (typically on desktop workstations),
there is often no DHCP IP address until the user has logged in. Ganglia v3.3.7 intro-
duced a new configuration option, retry_bind, that can be used to tell gmond to wait
for the IP address rather than aborting if it is not ready.

UDP receives buffer errors on a machine running gmond

If you notice UDP receive buffer errors/dropped packets on a machine running gmond,
you may find gmond itself to be the culprit. Check /proc/net/udp to see how many
packets are being dropped by the gmond process. If gmond is dropping packets, in-
crease the size of the UDP receive buffer (see the buffer parameter introduced in v3.4.0).
If that doesn’t help, and if the gmond process is at full capacity (100 percent of a CPU
core), consider reducing the rate of metric packets from all gmonds in the cluster, or
break the cluster into multiple clusters.

Typical Problems and Troubleshooting Procedures | 127

CHAPTER 7

Ganglia and Nagios

Vladimir Vuksan, Jeff Buchbinder, and Dave Josephsen

It’s been said that specialization is for insects, which although poetic, isn’t exactly true.
Nature abounds with examples of specialization in just about every biological kingdom,
from mitochondria to clownfish. The most extreme examples are a special kind of
specialization, which biologists refer to as symbiosis.

You’ve probably come across some examples of biological symbiosis at one time or
another. Some are quite famous, like the clownfish and the anemone. Others, like the
fig wasp, are less so, but the general idea is always the same: two organisms, finding
that they can rely on each other, buddy up. Buddies have to work less and can focus
more on what they’re good at. In this way, symbiosis begets more specialization, and
the individual specializations grow to complement each other.

Effective symbiotes are complementary in the sense that there isn’t much functional
overlap between them. The beneficial abilities of one buddy stop pretty close to where
those of the other begin, and vice versa. They are also complementary in the sense that
their individual specializations combine to create a solution that would be impossible
otherwise. Together the pair become something more than the sum of their parts.

It would surprise us to learn that you’d never heard of Nagios. It is probably the most
popular open source monitoring system in existence today, and is generally credited
for if not inventing, then certainly perfecting the centralized polling model employed
by myriad monitoring systems both commercial and free. Nagios has been imitated,
forked, reinvented, and commercialized, but in our opinion, it’s never been beaten, and
it remains the yardstick by which all monitoring systems are measured.

It is not, however, a valid yardstick by which to measure Ganglia, because the two are
not in fact competitors, but symbiotes, and the admin who makes the mistake of
choosing one over the other is doing himself a disservice. It is not only possible, but
advisable to use them together to achieve the best of both worlds. To that end, we’ve
included this chapter to help you understand the best options available for Nagios
interoperability.

129

Sending Nagios Data to Ganglia
Under the hood, Nagios is really just a special-purpose scheduling and notification
engine. By itself, it can’t monitor anything. All it can do is schedule the execution of
little programs referred to as plug-ins and take action based on their output.

Nagios plug-ins return one of four states: 0 for “OK,” 1 for “Warning,” 2 for “Critical,”
and 3 for “Unknown.” The Nagios daemon can be configured to react to these return
codes, notifying administrators via email or SMS, for example. In addition to the codes,
the plug-ins can also return a line of text, which will be captured by the daemon, written
to a log, and displayed in the UI. If the daemon finds a pipe character in the text returned
by a plug-in, the first part is treated normally, and the second part is treated as perfor-
mance data.

Performance data doesn’t really mean anything to Nagios; it won’t, for example, en-
force any rules on it or interpret it in any way. The text after the pipe might be a chili
recipe, for all Nagios knows. The important point is that Nagios can be configured to
handle the post-pipe text differently than pre-pipe text, thereby providing a hook from
which to obtain metrics from the monitored hosts and pass those metrics to external
systems (like Ganglia) without affecting the human-readable summary provided by the
pre-pipe text.

Nagios’s performance data handling feature is an important hook. There are quite a
few Nagios add-ons that use it to export metrics from Nagios for the purpose of im-
porting them into local RRDs. These systems typically point the service_perfdata_com
mand attribute in nagios.cfg to a script that use a series of regular expressions to parse
out the metrics and metric names and then import them into the proper RRDs. The
same methodology can easily be used to push metrics from Nagios to Ganglia by point-
ing the service_perfdata_command to a script that runs gmetric instead of the RRDtool
import command.

First, you must enable performance data processing in Nagios by setting process_per
formance_data=1 in the nagios.cfg file. Then you can specify the name of the command
to which Nagios should pass all performance data it encounters using the service_perf
data_command attribute.

Let’s walk through a simple example. Imagine a check_ping plug-in that, when executed
by the Nagios scheduler, pings a host and then return the following output:

PING OK - Packet loss = 0%, RTA = 0.40 ms|0;0.40

We want to capture this plug-in’s performance data, along with details we’ll need to
pass to gexec, including the name of the target host. Once process_performance_data
is enabled, we’ll tell Nagios to execute our own shell script every time a plug-in returns
with performance data by setting service_perfdata_command=PushToGanglia in
nagios.cfg. Then we’ll define pushToGanglia in the Nagios object configuration like so:

130 | Chapter 7: Ganglia and Nagios

define command{
command_name pushToGanglia
command_line /usr/local/bin/pushToGanglia.sh
"$LASTSERVICECHECK$||$HOSTNAME$||$SERVICEDESC$||$SERVICEOUTPUT$||$SERVICEPERFDATA$"
}

Careful with those delimiters!

With so many Nagios plug-ins, written by so many different authors,
it’s important to carefully choose your delimiter and avoid using the
same one returned by a plug-in. In our example command, we chose
double pipes for a delimiter, which can be difficult to parse in some
languages. The tilde (~) character is another good choice.

The capitalized words surrounded by dollar signs in the command definition are Nagios
macros. Using macros, we can request all sorts of interesting details about the check
result from the Nagios daemon, including the nonperformance data section of the out-
put returned from the plug-in. The Nagios daemon will substitute these macros for
their respective values at runtime, so when Nagios runs our pushToGanglia command,
our input will wind up looking something like this:

1338674610||dbaHost14.foo.com||PING||PING OK - Packet loss = 0%, RTA = 0.40 ms||0;0.40

Our pushToGanglia.sh script will take this input and compare it against a series of
regular expressions to detect what sort of data it is. When it matches the PING regex,
the script will parse out the relevant metrics and push them to Ganglia using gexec. It
looks something like this:

#!/bin/sh
while read IN
do
 #check for output from the check_ping plug-in
 if ["$(awk -F '[|][|]' '$3 ~ /^PING$/' <<<${IN})"]
 then

 #this looks like check_ping output all right, parse out what we need
 read BOX CMDNAME PERFOUT <<<$(awk -F '[|][|]' '{print $2" "$3" "$5}'<<<${IN})
 read PING_LOSS PING_MS <<<$(tr ';' ' '<<<${PERFOUT})

 #Ok, we have what we need. Send it to Ganglia.
 gmetric -S ${BOX} -n ${CMDNAME} -t PING_MS -v ${PING_MS}
 gmetric -S ${BOX} -n ${CMDNAME} -t PING_LOSS -v ${PING_LOSS}

 #check for output from the check_cpu plug-in
 elif ["$(awk -F '[|][|]' '$3 ~ /^CPU$/' <<<${IN})"]
 then
 #do the same sort of thing but with CPU data
 fi
done

Sending Nagios Data to Ganglia | 131

This is a popular solution because it’s self-documenting, keeps all of the metrics col-
lection logic in a single file, detects new hosts without any additional configuration,
and works with any kind of Nagios check result, including passive checks. It does,
however, add a nontrivial amount of load to the Nagios server. Consider that any time
you add a new check, the result of that check for every host must be parsed against the
pushToGanglia script. The same is true when you add a new host or even a new regex
to the pushToGanglia script. In Nagios, process_performance_data is a global setting,
and so are the ramifications that come with enabling it.

It probably makes sense to process performance data globally if you rely heavily on
Nagios for metrics collection. However, for the reasons we outlined in Chapter 1, we
don’t think that’s a good idea. If you’re using Ganglia along with Nagios, gmond is the
better-evolved symbiote for collecting the normal litany of performance metrics. It’s
more likely that you’ll want to use gmond to collect the majority of your performance
metrics, and less likely that you’ll want Nagios churning through the result of every
single check in case there might be some metrics you’re interested in sending over to
Ganglia.

If you’re interested in metrics from only a few Nagios plug-ins, consider leaving the
metric process_performance_data disabled and instead writing “wrappers” for the in-
teresting plug-ins. Here, for example, is what a wrapper for the check_ping plug-in
might look like:

#!/bin/sh

ORIG_PLUGIN='/usr/libexec/check_ping_orig'

#get the target host from the H option
while getopts "H:" opt
do
 if ["${opt}" == 'H']
 then
 BOX=${OPTARG}
 fi
done

#run the original plug-in with the given options, and capture its output
OOUT=$(${ORIG_PLUGIN} $@)
OEXIT=$?

#parse out the perfdata we need
read PING_LOSS PING_MS <<<$(echo ${OOUT} | cut -d\| -f2 | tr ";" " ")

#send the metrics to Ganglia
gmetric -S ${BOX} -n ${CMDNAME} -t PING_MS -v ${PING_MS}
gmetric -S ${BOX} -n ${CMDNAME} -t PING_LOSS -v ${PING_LOSS}

#mimic the original plug-in's output back to Nagios
echo "${OOUT}"
exit ${OEXIT}

132 | Chapter 7: Ganglia and Nagios

The wrapper approach takes a huge burden off the Nagios daemon but
is more difficult to track. If you don’t carefully document your changes
to the plug-ins, you’ll mystify other administrators, and upgrades to the
Nagios plug-ins will break your data collection efforts.

The general strategy is to replace the check_ping plug-in with a small shell script that
calls the original check_ping, intercepts its output, and sends the interesting metrics to
Ganglia. The imposter script then reports back to Nagios with the output and exit code
of the original plug-in, and Nagios has no idea that anything extra has transpired. This
approach has several advantages, the biggest of which is that you can pick and choose
which plug-ins will process performance data.

Monitoring Ganglia Metrics with Nagios
Because Nagios has no built-in means of polling data from remote hosts, Nagios users
have historically employed various remote execution schemes to collect a litany of
metrics with the goal of comparing them against static thresholds. These metrics, such
as the available disk space or CPU utilization of a host, are usually collected by services
like NSCA or NRPE, which execute scripts on the monitored systems at the Nagios
server’s behest, returning their results in the standard Nagios way. The metrics them-
selves, once returned, are usually discarded or in some cases fed into RRDs by the
Nagios daemon in the manner described previously.

This arrangement is expensive, especially considering that most of the metrics admin-
istrators tend to collect with NRPE and NSCA are collected by gmond out of the box.
If you’re using Ganglia, it’s much cheaper to point Nagios at Ganglia to collect these
metrics.

To that end, the Ganglia project began including a series of official Nagios plug-ins in
gweb versions as of 2.2.0. These plug-ins enable Nagios users to create services that
compare metrics stored in Ganglia against alert thresholds defined in Nagios. This is,
in our opinion, a huge win for administrators, in many cases enabling them to scrap
entirely their Nagios NSCA infrastructure, speed up the execution time of their service
checks, and greatly reduce the monitoring burden on both Nagios and the monitored
systems themselves.

There are five Ganglia plug-ins currently available:

1. Check heartbeat.

2. Check a single metric on a specific host.

3. Check multiple metrics on a specific host.

4. Check multiple metrics across a regex-defined range of hosts.

5. Verify that one or more values is the same across a set of hosts.

Monitoring Ganglia Metrics with Nagios | 133

Principle of Operation
The plug-ins interact with a series of gweb PHP scripts that were created expressly for
the purpose. See Figure 7-1. The check_host_regex.sh plug-in, for example, interacts
with the PHP script: “http://your.gweb.box/nagios/check_host_regex.php”. Each
PHP script takes the arguments passed from the plug-in and parses a cached copy of
the XML dump of the grid state obtained from gmetad’s xml_port to retrieve the current
metric values for the requested entities and return a Nagios-style status code (see
“gmetad” on page 33 for details on gmetad’s xml_port). You must functionally enable
the server-side PHP scripts before they can be used and also define the location and
refresh interval of the XML grid state cache by setting the following parameters in the
gweb conf.php file:

$conf['nagios_cache_enabled'] = 1;
$conf['nagios_cache_file'] = $conf['conf_dir'] . "/nagios_ganglia.cache";
$conf['nagios_cache_time'] = 45;

Figure 7-1. Plug-in principle of operation

Consider storing the cache file on a RAMDisk or tmpfs to increase performance.

Beware: Numerous parallel checks

If you define a service check in Nagios to use hostgroups instead of
individual hosts, Nagios will schedule the service check for all hosts in
that hostgroup at the same time, which may cause a race condition if
gweb’s grid state cache changes before the service checks finish
executing. To avoid cache-related race conditions, use the
warmup_metric_cache.sh script in the web/nagios subdirectory of the
gweb tarball, which will ensure that your cache is always fresh.

134 | Chapter 7: Ganglia and Nagios

Check Heartbeat
Internally, Ganglia uses a heartbeat counter to determine whether a machine is up. This
counter is reset every time a new metric packet is received for the host, so you can safely
use this plug-in in lieu of the Nagios check_ping plug-in. To use it, first copy the
check_heartbeat.sh script from the Nagios subdirectory in the Ganglia Web tarball to
your Nagios plug-ins directory. Make sure that the GANGLIA_URL inside the script is
correct. By default, it is set to:

GANGLIA_URL="http://localhost/ganglia2/nagios/check_heartbeat.php"

Next, define the check command in Nagios. The threshold is the amount of time since
the last reported heartbeat; that is, if the last packet received was 50 seconds ago, you
would specify 50 as the threshold:

define command {
 command_name check_ganglia_heartbeat
 command_line $USER1$/check_heartbeat.sh host=$HOSTADDRESS$ threshold=$ARG1$
}

Now for every host/host group, you want the monitored change check_command to be:

check_command check_ganglia_heartbeat!50

Check a Single Metric on a Specific Host
The check_ganglia_metric plug-in compares a single metric on a given host against a
predefined Nagios threshold. To use it, copy the check_ganglia_metric.sh script from
the Nagios subdirectory in the Ganglia Web tarball to your Nagios plug-ins directory.
Make sure that the GANGLIA_URL inside the script is correct. By default, it is set to:

GANGLIA_URL="http://localhost/ganglia2/nagios/check_metric.php"

Next, define the check command in Nagios like so:

define command {
 command_name check_ganglia_metric
 command_line $USER1$/check_ganglia_metric.sh host=$HOSTADDRESS$↩
 metric_name=$ARG1$ operator=$ARG2$ critical_value=$ARG3$
}

Next, add the check command to the service checks for any hosts you want monitored.
For instance, if you wanted to be alerted when the 1-minute load average for a given
host goes above 5, add the following directive:

check_command check_ganglia_metric!load_one!more!5

To be alerted when the disk space for a given host falls below 10 GB, add:

check_command check_ganglia_metric!disk_free!less!10

Monitoring Ganglia Metrics with Nagios | 135

Operators denote criticality

The operators specified in the Nagios definitions for the Ganglia plug-
ins always indicate the “critical” state. If you use a notequal operator, it
means that state is critical if the value is not equal.

Check Multiple Metrics on a Specific Host
The check_multiple_metrics plug-in is an alternate implementation of the
check_ganglia_metric script that can check multiple metrics on the same host. For ex-
ample, instead of configuring separate checks for disk utilization on /, /tmp, and /var
—which could produce three separate alerts—you could instead set up a single check
that alerted any time disk utilization fell below a given threshold.

To use it, copy the check_multiple_metrics.sh script from the Nagios subdirectory of
the Ganglia Web tarball to your Nagios plug-ins directory. Make sure that the variable
GANGLIA_URL in the script is correct. By default, it is set to:

GANGLIA_URL="http://localhost/ganglia2/nagios/check_multiple_metrics.php"

Then define a check command in Nagios:

define command {
 command_name check_ganglia_multiple_metrics
 command_line $USER1$/check_multiple_metrics.sh host=$HOSTADDRESS$ checks='$ARG1$'
}

Then add a list of checks that are delimited with a colon. Each check consists of:

metric_name,operator,critical_value

For example, the following service would monitor the disk utilization for root (/)
and /tmp:

check_command check_ganglia_multiple_metrics!disk_free_rootfs,less,↩
10:disk_free_tmp,less,20

Beware: Aggregated services

Anytime you define a single service to monitor multiple entities in Na-
gios, you run the risk of losing visibility into “compound” problems.
For example, a service configured to monitor both /tmp and /var might
only notify you of a problem with /tmp, when in fact both partitions
have reached critical capacity.

Check Multiple Metrics on a Range of Hosts
Use the check_host_regex plug-in to check one or more metrics on a regex-defined range
of hosts. This plug-in is useful when you want to get a single alert if a particular metric
is critical across a number of hosts.

136 | Chapter 7: Ganglia and Nagios

To use it, copy the check_host_regex.sh script from the Nagios subdirectory in Ganglia
Web tarball to your Nagios plug-ins directory. Make sure that the GANGLIA_URL inside
the script is correct. By default, it is:

GANGLIA_URL="http://localhost/ganglia2/nagios/check_host_regex.php"

Next, define a check command in Nagios:

define command {
 command_name check_ganglia_host_regex
 command_line $USER1$/check_host_regex.sh hreg='$ARG1$' checks='$ARG2$'
}

Then add a list of checks that are delimited with a colon. Each check consists of:

metric_name,operator,critical_value

For example, to check free space on / and /tmp for any machine starting with web-* or
app-* you would use something like this:

check_command check_ganglia_host_regex!^web-|^app-!disk_free_rootfs,less,↩
10:disk_free_tmp,less,10

Beware: Multiple hosts in a single service

Combining multiple hosts into a single service check will prevent Nagios
from correctly respecting host-based external commands. For example,
Nagios will send notifications if a host listed in this type of service check
goes critical, even if the user has placed the host in scheduled downtime.
Nagios has no way of knowing that the host has anything to do with
this service.

Verify that a Metric Value Is the Same Across a Set of Hosts
Use the check_value_same_everywhere plug-in to verify that one or more metrics on a
range of hosts have the same value. For example, let’s say you wanted to make sure the
SVN revision of the deployed program listing was the same across all servers. You could
send the SVN revision as a string metric and then list it as a metric that needs to be the
same everywhere.

To use the plug-in, copy the check_value_same_everywhere.sh script from the Nagios
subdirectory of the Ganglia Web tarball to your Nagios plug-ins directory. Make sure
that the GANGLIA_URL variable inside the script is correct. By default, it is:

GANGLIA_URL="http://localhost/ganglia2/nagios/check_value_same_everywhere.php"

Then define a check command in Nagios:

define command {
 command_name check_value_same_everywhere
 command_line $USER1$/check_value_same_everywhere.sh hreg='$ARG1$' checks='$ARG2$'
}

Monitoring Ganglia Metrics with Nagios | 137

For example:

check_command check_value_same_everywhere!^web-|^app-!svn_revision,num_config_files

Displaying Ganglia Data in the Nagios UI
In Nagios 3.0, the action_url attribute was added to the host and service object defi-
nitions. When specified, the action_url attribute creates a small icon in the Nagios UI
next to the host or service name to which it corresponds. If a user clicks this icon, the
UI will direct them to the URL specified by the action_url attribute for that particular
object.

If your host and service names are consistent in both Nagios and Ganglia, it’s pretty
simple to point any service’s action_url back to Ganglia’s graph.php using built-in
Nagios macros so that when a user clicks on the action_url icon for that service in the
Nagios UI, he or she is presented with a graph of that service’s metric data. For example,
if we had a host called host1, with a service called load_one representing the one-minute
load history, we could ask Ganglia to graph it for us with:

http://my.ganglia.box/graph.php?c=cluster1&h=host1&m=load1&r=hour&z=large

The hiccup, if you didn’t notice, is that Ganglia’s graph.php requires a c= attribute,
which must be set to the name of the cluster to which the given host belongs. Nagios
has no concept of Ganglia clusters, but it does provide you with the ability to create
custom variables in any object definition. Custom variables must begin with an un-
derscore, and are available as macros in any context a built-in macro would be available.
Here’s an example of a custom variable in a host object definition defining the Ganglia
cluster name to which the host belongs:

define host{
 host_name host1
 address 192.168.1.1
 _ganglia_cluster cluster1
 ...
}

Read more about Nagios Macros here.

You can also use custom variables to correct differences between the Nagios and Gan-
glia namespaces, creating, for example, a _ganglia_service_name macro in the service
definition to map a service called “CPU” in Nagios to a metric called “load_one” in
Ganglia.

To enable the action_url attribute, we find it expedient to create a template for the
Ganglia action_url, like so:

138 | Chapter 7: Ganglia and Nagios

http://nagios.sourceforge.net/docs/3_0/macros.html

define service {
 name ganglia-service-graph
 action_url http://my.ganglia.host/ganglia/graph.php?c=$_GANGLIA_CLUSTER$&↩
 h=$HOSTNAME$&m=$SERVICEDESC$&r=hour&z=large
 register 0
}

This code makes it easy to toggle the action_url graph for some services but not others
by including use ganglia-service-graph in the definition of any service that you want
to graph. As you can see, the action_url we’ve specified combines the custom-made
_ganglia_cluster macro we defined in the host object with the hostname and service
desc built-in macros. If the Nagios service name was not the same as the Ganglia metric
name (which is likely the case in real life), we would have defined our own _gan
glia_service_name variable in the service definition and referred to that macro in the
action_url instead of the servicedesc built-in.

The Nagios UI also supports custom CGI headers and footers, which make it possible
to accomplish rollover popups of the action_url icon containing graphs from the Gan-
glia graph.php. This approach requires some custom development on your part and is
outside the scope of this book, but we wanted you to know it’s there. If that sounds
like a useful feature to you, we suggest checking out this information.

Monitoring Ganglia with Nagios
When Ganglia is running, it’s a great way to aggregate metrics, but when it breaks, it
can cause a bit of frustration with regard to locating the cause of that breakage. Thank-
fully, there are a number of points to monitor, which can help stave off an inconvenient
breakage.

Monitoring Processes
Using check_nrpe (or even check_procs directly), the daemons that support Ganglia can
be monitored for any failures. It is most useful to monitor gmetad and rrdcached on
the aggregation hosts and gmond on all hosts. The pertinent snippets for local moni-
toring of a gmond process are:

define command {
 command_name check_gmond_local
 command_line $USER1$/check_procs -C gmond -c 1:2
 }

define service {
 use generic-service
 host_name localhost
 service_description GMOND
 check_command check_gmond_local
 }

Monitoring Ganglia with Nagios | 139

http://nagios.sourceforge.net/docs/3_0/cgiincludes.html

Monitoring Connectivity
A more “functional” type of monitoring is monitoring for connectivity on the outbound
TCP ports for the varying services. gmetad, for example, listens on ports 8651 and 8652,
and gmond listens on port 8649. Checking these ports, with a reasonable timeout, can
give a reasonably good idea as to whether they are functioning as expected.

Monitoring cron Collection Jobs
cron collection jobs, which are run by your cron periodic scheduling daemon, are an-
other way of collecting metrics without using gmond modules. Monitoring failures in
these scripts, by virtue of their extremely heterogeneous nature and lack of similar
structures, has the potential for being a place for fairly serious collection failures. These
can, for the most part, be avoided by following a few basic suggestions

Log, but not too much.
Using the logger utility for bash scripts or any of the variety of syslog submission
capabilities available will allow you to be able to see what your scripts are doing,
instead of being bombarded by logwatch emails or just seeing collection for certain
metrics stop.

Use “last run” files.
Touch a stamp file to allow other monitoring tools to detect the last run of your
script. That way, you can monitor the stamp file for becoming stale in a standard
way. Be wary of permissions issues, as test-running a script as a user other than the
one who will be running it in production can cause silent failures.

Expect bad data.
Too many cron jobs are written to collect data, but assume things like “the network
is always available,” “a file I’m monitoring exists,” or “some third-party depend-
ency will never fail.” These will eventually lead to error conditions that either break
collection completely or, worse, submit incorrect metrics.

Use timeouts.
If you’re using netcat, telnet, or other network-facing methods to gather metrics
data, there is a possibility that they will fail to return data before the next polling
period, potentially causing a pile-up or resulting in other nasty behavior. Use com-
mon sense to figure out how long you should be waiting for results, then exit
gracefully if you haven’t gotten them.

Collecting rrdcached Metrics
It can be useful to collect metrics on the backlog and processing metrics for your
rrdcached services (if you are using them to speed up your gmetad host). This can be
done by querying the rrdcached stats socket and pushing those metrics into Ganglia
using gmetric.

140 | Chapter 7: Ganglia and Nagios

Excessive backlogs can be caused by high IO or CPU load on your rrdcached server,
so this can be a useful tool to track down rogue cron jobs or other root causes:

#!/bin/bash
rrdcache-stats.sh
#
SHOULD BE RUN AS ROOT, OTHERWISE SUDO RULES NEED TO BE PUT IN PLACE
TO ALLOW THIS SCRIPT, SINCE THE SOCKET IS NOT ACCESSIBLE BY NORMAL
USERS!

GMETRIC="/usr/bin/gmetric"
RRDSOCK="unix:/var/rrdtool/rrdcached/rrdcached.sock"
EXPIRE=300

(echo "STATS"; sleep 1; echo "QUIT") | \
 socat - $RRDSOCK | \
 grep ':' | \
 while read X; do
 K="$(echo "$X" | cut -d: -f1)"
 V="$(echo "$X" | cut -d: -f2)"
 $GMETRIC -g rrdcached -t uint32 -n "rrdcached_stat_${K}" -v ${V} -x ${EXPIRE}
 -d ${EXPIRE} | \
 done

Monitoring Ganglia with Nagios | 141

CHAPTER 8

Ganglia and sFlow

Peter Phaal

Ganglia’s gmond agent already has built-in metrics and can be extended using plug-in
modules—why do I need to know about sFlow? The short answer is that sFlow agents
are available for platforms such as Windows servers and hypervisors that aren’t cur-
rently supported by gmond. A longer answer requires a basic understanding of how
sFlow integrates with Ganglia to extend coverage and improve efficiency.

There are strong parallels between Ganglia’s approach to monitoring large numbers of
servers and the sFlow standard used to monitor the switches connecting them. The
scalability challenge of monitoring the network links mirrors the challenge of moni-
toring servers because each server has at least one link to the network. However, the
constraints are different, leading to divergence in the functional split between gener-
ating and consuming metrics.

Network switches perform most of their functionality in hardware and have limited
processing and memory resources. While computational resources are scarce, switches
are richly connected to the network and excel at sending packets. With sFlow, raw
metrics from the switches are sent over the network to a central server, exploiting the
relatively abundant network resources to shift processing and state from the switches
to software running on the server. Removing state from the switches minimizes the
memory footprint and eliminates the need to dynamically allocate memory—both use-
ful properties when embedding the agent in switch firmware.

Unlike server metrics, switch metrics are largely implemented in hardware. For exam-
ple, byte and packet counts for each switch port are implemented as hardware counters.
Standards are critical: traffic passes through many devices often from different vendors
and they need to agree on how to quantify the traffic. A core part of sFlow is the spec-
ification of standard sets of metrics, allowing each switch vendor to embed the meas-
urements in hardware and produce interoperable results.

Ganglia’s binary protocol uses XDR to efficiently encode metrics and send them as UDP
packets. However, each packet contains only a single metric and additional packets are

143

needed to transmit metadata describing the metrics. For example, a host sending the
30 basic metrics every 15 seconds will generate an average of 2 packets per second and
a cluster of 1,000 servers will generate 2,000 packets per second of measurement traffic.
In contrast, the sFlow protocol encodes standard blocks of metrics as XDR structures,
allowing a host to send all 30 metrics in a single packet and requiring only 67 packets
per second to monitor the entire thousand node cluster.

Another difference between the Ganglia and sFlow binary protocols is that the default
Ganglia configuration multicasts the packets, meaning that every link in the 1,000-node
cluster carries 2,000 packets per second and every host needs to process 2,000 packets
per second. In contrast, sFlow is a unicast protocol, allowing the network to isolate
measurement traffic to individual links. Most links will carry only one sFlow packet
every 15 seconds and only the link connecting to the sFlow analyzer will carry the full
67 packets per second. The increased efficiency of the sFlow protocol allows 30,000
servers to be monitored with the same network overhead as gmond requires to monitor
1,000 servers.

Ganglia gmond agents can also be deployed in a unicast configuration.
For large clusters, switching to unicast improves scalability by reducing
the amount of memory, CPU, and network resources consumed on each
host in the cluster.

For most applications, the difference in scalability isn’t significant, but the improved
efficiency of using sFlow as the measurement transport helps Ganglia monitor the ex-
tremely large numbers of physical and virtual servers found in cloud data centers.

Standardizing the metrics helps reduce operational complexity by eliminating config-
uration options that would be needed for a more flexible solution. Again, this is very
important in multivendor networking environments where each configuration option
needs to be added to custom device firmware. Generally, sFlow agents export all the
metrics they are capable of generating and leave it up to the analyzer to decide which
metrics to keep or discard. This approach may seem wasteful, but often the measure-
ments are sent to multiple applications, each of which is interested in different metrics.
Maintaining complex, per-application state in the agents consumes significant resour-
ces and becomes a challenging configuration task as matching application and agent
configuration settings need to be maintained. Shifting the task of measurement selec-
tion to the collector frees up agent resources and reduces configuration complexity.

Security of network devices is also of paramount concern and sFlow agents are intrins-
ically secure against remote intrusion attacks because they send but never receive or
process packets.

At this point, you may be wondering how sFlow agents relate to server monitoring, as
most of the discussion has been about the challenges of embedding monitoring in net-
work switches. Although it is easy to deploy Ganglia agents and script custom metrics

144 | Chapter 8: Ganglia and sFlow

on a cluster of Linux servers, monitoring a large pool of virtual servers is a different
matter. In many ways, hypervisors have more in common with switches than they do
with a general-purpose server. The hypervisor acts as a virtual switch, connecting virtual
machines to each other and to the physical network. Just like the management pro-
cessor on a switch, the hypervisor is a tightly controlled, highly secure environment
with limited CPU and memory resources. The sFlow agent is designed for embedded
environments and is a natural fit for hypervisors.

Instrumenting applications poses similar challenges. For example, mod_sflow embeds
sFlow instrumentation in the Apache web server. The mod_sflow agent has a minimal
footprint and a negligible impact on the performance of the web server. The alternative
of tailing the web server log files in order to derive metrics has a much greater overhead
that can become prohibitive for high traffic servers. Similar to the network, there is a
value in defining standard metrics in the application space. For example, the Apache,
NGINX, and Tomcat sFlow agents generate the same set of HTTP metrics, allowing
web servers to be monitored interchangeably using a variety of performance analysis
tools.

Metrics charts are an extremely useful way of summarizing large amounts of informa-
tion, making them a staple of operations dashboards. For example, each data point in
a chart trending HTTP activity may summarize information from hundreds of thou-
sands of HTTP requests. However, metrics can only take you so far; how do you follow
up if you see an unusual spike in HTTP requests? With sFlow monitoring, metrics are
only one part of the measurement stream; an sFlow agent also exports records describ-
ing randomly sampled transactions, providing detailed visibility into transaction at-
tributes, data volumes, response times, and status codes (for more information on
sFlow’s random sampling mechanism, see Packet Sampling Basics). The examples in
“Web load” on page 177 and “Optimizing memcached efficiency” on page 175 illus-
trate how analysis of sFlow’s sampled transactions provides additional detail that com-
plements Ganglia’s trend charts.

The remainder of this chapter describes in detail the architecture of a Ganglia and sFlow
deployment, standard sFlow metrics, configuration, troubleshooting, and integration
with the broader set of sFlow analysis tools. If you would like to see how Ganglia and
sFlow monitoring works in practice before diving into the details, see “Tagged,
Inc.” on page 172.

Architecture
In a classic Ganglia deployment, gmond agents are installed on each host in a cluster;
see “gmond: Big Bang in a Few Bytes” on page 4. Each gmond agent performs three
tasks:

1. Monitoring the performance of its host and sharing the metrics with other hosts
in the cluster by sending multicast messages

Architecture | 145

http://www.sflow.org/packetSamplingBasics/

2. Listening for updates from other hosts in the cluster in order to monitor cluster state

3. Responding to requests from gmetad for XML snapshots of the cluster state

In an sFlow deployment, sFlow agents replace gmond agents on all the hosts within
the cluster; see Figure 8-1. The sFlow agents in each cluster send metrics as unicast
messages to a single gmond instance that tracks cluster state and responds to requests
from gmetad. As you will see in “Configuring gmond to Receive sFlow” on page 155,
deploying gmond as an sFlow collector requires minimal configuration and eliminates
dependencies because functionality associated with generating and transmitting met-
rics is disabled.

Figure 8-1. sFlow, gmond, and gmetad

The sFlow agents export standard groups of metrics; see the section “Standard sFlow
Metrics” on page 147. However, supplementing sFlow’s standard metrics with addi-
tional custom metrics can be accomplished using gmetric; see “Custom Metrics Using
gmetric” on page 160.

A single gmond instance monitoring each cluster does represent a single point of failure.
If this is a concern, there are a number of strategies for making the deployment fault
tolerant. A second gmond instance can be added to each cluster and the sFlow agents
can be configured to send metrics to both the primary and secondary gmond instances.
Alternatively, a virtual IP address can be assigned to gmond and used as the destination
for sFlow messages and gmetad requests. The virtual IP address can be handed to a
secondary system in the event that the primary system fails. Running gmond instances

146 | Chapter 8: Ganglia and sFlow

on virtual machines makes it easy to quickly bring up replacements in the event of a
failure.

An entire cluster should be homogeneously monitored using sFlow agents or gmond
agents—mixing sFlow and gmond agents within a single cluster is not recommended.
However, you can adopt different measurement technologies within a grid, selecting
the best strategy for monitoring each cluster. Using sFlow as the agent technology works
best for commodity web, memcache, virtual server, and Java clusters where sFlow’s
standard metrics provide good coverage. For specialized environments, gmond’s ex-
tensibility and extensive library of modules are likely to be a better option.

Standard sFlow Metrics
Current approaches to server performance monitoring are highly fragmented. Each
operating system, server vendor, and application developer creates specific agents and
software for performance monitoring, none of which interoperate. Standardizing the
metrics simplifies monitoring by decoupling agents from performance monitoring ap-
plications, allowing measurements to be made once and shared among different mon-
itoring applications.

Server Metrics
The standard set of sFlow server metrics are a superset of Ganglia’s base metrics; see
“Base Metrics” on page 75. Base Ganglia metrics are indicated by an asterisk next to
the metric name, as seen in Table 8-1.

Table 8-1. sFlow server metrics

Metric Name Description Type

machine_type* Machine Type system

os_name* Operating System system

os_release* Operating System Release system

uuid System UUID System

heartbeat* Heartbeat System

load_one* One-minute Load Average load

load_five* Five-minute Load Average load

load_fifteen* Fifteen-minute Load Average load

proc_run* Total Running Processes process

proc_total* Total Processes process

cpu_num* CPU Count cpu

cpu_speed* CPU Speed cpu

boottime* Last Boot Time cpu

Standard sFlow Metrics | 147

Metric Name Description Type

cpu_user* CPU User cpu

cpu_nice* CPU Nice cpu

cpu_system* CPU System cpu

cpu_ide* CPU Idle cpu

cpu_wio* CPU I/O Wait cpu

cpu_intr* CPU Interrupts cpu

cpu_sintr* CPU Soft Interrupts cpu

interrupts Interrupts cpu

contexts Context Switches cpu

mem_total* Memory Total memory

mem_free* Free Memory memory

mem_shared* Shared Memory memory

mem_buffers* Memory Buffers memory

mem_cached* Cached Memory memory

swap_total* Swap Space Total memory

swap_free* Free Swap Space memory

page_in Pages In memory

page_out Pages Out memory

swap_in Swap Pages In memory

swap_out Swap Pages Out memory

disk_total* Total Disk Space disk

disk_free* Free Disk Space disk

part_max_used* Maximum Disk Space Used disk

reads Reads disk

bytes_read Bytes Read disk

read_time Read Time disk

writes Writes disk

bytes_written Bytes Written disk

write_time Write Time disk

bytes_in* Bytes Received network

pkts_in* Packets Received network

errs_in Input Errors network

drops_in Input Drops network

bytes_out* Bytes Sent network

pkts_out* Packets Sent network

148 | Chapter 8: Ganglia and sFlow

Metric Name Description Type

errs_out Output Errors network

drops_out Output Drops network

The overlap between Ganglia and sFlow server metrics is no coinci-
dence. One of the major contributions of the Ganglia project was iden-
tifying a common set of metrics that summarize server performance and
are portable across operating systems; the Ganglia base metrics were
used as a starting point for defining the standard sFlow server metrics.

Hypervisor Metrics
The standard set of sFlow hypervisor and virtual machine metrics (Table 8-2) are based
on metrics defined by the open source libvirt project. The libvirt project has created a
common set of tools for managing virtualization resources on different virtualization
platforms, currently including: Xen, QEMU, KVM, LXC, OpenVZ, User Mode Linux,
VirtualBox, and VMware ESX and GSX. The sFlow metrics provide consistency be-
tween different virtualization platforms and between sFlow- and libvirt-based perfor-
mance monitoring systems.

Table 8-2. sFlow hypervisor metrics

Metric Name Description Type

vnode_mem_total Hypervisor Memory Total hypervisor

vnode_mem_free Hypervisor Free Memory hypervisor

vnode_cpu_speed Hypervisor CPU Speed hypervisor

vnode_cpu_num Hypervisor CPU Count hypervisor

vnode_domains Hypervisor Domain Count hypervisor

<VM name>.vcpu_state <VM name>: VM CPU State vm cpu

<VM name>.vcpu_util <VM name>: VM CPU Utilization vm cpu

<VM name>.vcpu_num <VM name>: VM CPU Count vm cpu

<VM name>.vmem_total <VM name>: VM Memory Total vm memory

<VM name>.vmem_util <VM name>: VM Memory Utilization vm memory

<VM name>.vdisk_capacity <VM name>: VDisk Capacity vm disk

<VM name>.vdisk_total <VM name>: VDisk Space vm disk

<VM name>.vdisk_free <VM name>: Free VDisk Space vm disk

<VM name>.vdisk_reads <VM name>: VM Reads vm disk

<VM name>.vdisk_bytes_read <VM name>: VM Bytes Read vm disk

<VM name>.vdisk_writes <VM name>: VM Writes vm disk

<VM name>.vdisk_bytes_written <VM name>: VM Bytes Written vm disk

Standard sFlow Metrics | 149

http://libvirt.org

Metric Name Description Type

<VM name>.vdisk_errs <VM name>: VM Disk Errors vm disk

<VM name>.vbytes_in <VM name>: VM Bytes Received vm network

<VM name>.vpkts_in <VM name>: VM Packets Received vm network

<VM name>.verrs_in <VM name>: VM Input Errors vm network

<VM name>.vdrops_in <VM name>: VM Input Drops vm network

<VM name>.vbytes_out <VM name>: VM Bytes Sent vm network

<VM name>.vpkts_out <VM name>: VM Packets Sent vm network

<VM name>.verrs_out <VM name>: VM Output Errors vm network

<VM name>.vdrops_out <VM name>: VM Output Drops vm network

Per virtual machine statistics are distinguished in Ganglia by prefixing
the statistic by the virtual machine name.

Java Virtual Machine Metrics
The sFlow Java Virtual Machine (JVM) metrics (Table 8-3) are based on the metrics
exposed through the Java Management Extensions (JMX) interface, ensuring consis-
tency with existing JMX-based monitoring systems.

Table 8-3. sFlow Java virtual machine metrics

Metric Name Description Type

jvm_release JVM Release jvm

jvm_vcpu_util JVM CPU Utilization jvm

jvm_vmem_total JVM Memory Total jvm

jvm_vmem_util JVM Memory Utilization jvm

jvm_hmem_initial JVM Heap Initial jvm

jvm_hmem_used JVM Heap Used jvm

jvm_hmem_committed JVM Heap Committed jvm

jvm_hmem_max JVM Heap Max jvm

jvm_nhmem_initial JVM Non-Heap Initial jvm

jvm_nhmem_used JVM Non-Heap Used jvm

jvm_nhmem_committed JVM Non-Heap Committed jvm

jvm_nhmem_max JVM Non-Heap Max jvm

jvm_gc_count JVM GC Count jvm

jvm_gc_ms JVM GC mS jvm

150 | Chapter 8: Ganglia and sFlow

Metric Name Description Type

jvm_cls_loaded JVM Classes Loaded jvm

jvm_cls_total JVM Classes Total jvm

jvm_cls_unloaded JVM Classes Unloaded jvm

jvm_comp_ms JVM Compilation ms jvm

jvm_thread_live JVM Threads Live jvm

jvm_thread_daemon JVM Threads Daemon jvm

jvm_thread_started JVM Threads Started jvm

jvm_fds_open JVM FDs Open jvm

jvm_fds_max JVM FDs Max jvm

By default, Ganglia assumes that there is a single JVM instance per host.
If hosts contain more than one JVM instance, setting multi

ple_jvm_instances=yes in the gmond configuration file causes gmond
to prefix each metric and description with a distinct virtual machine
name; for example, the jvm_hmem_initial metric becomes
<name>.jvm_hmem_initial with description <name>: JVM Heap Initial.
See “Configuring gmond to Receive sFlow” on page 155.

HTTP Metrics
The sFlow HTTP metrics (Table 8-4) report on web server traffic by HTTP method and
status class.

Table 8-4. sFlow HTTP metrics

Metric Name Description Type

http_meth_option HTTP Method OPTION httpd

http_meth_get HTTP Method GET httpd

http_meth_head HTTP Method HEAD httpd

http_meth_post HTTP Method POST httpd

http_meth_put HTTP Method PUT httpd

http_meth_delete HTTP Method DELETE httpd

http_meth_trace HTTP Method TRACE httpd

http_meth_connect HTTP Method CONNECT httpd

http_meth_other HTTP Method other httpd

http_status_1xx HTTP Status 1XX httpd

http_status_2xx HTTP Status 2XX httpd

http_status_3xx HTTP Status 3XX httpd

Standard sFlow Metrics | 151

Metric Name Description Type

http_status_4xx HTTP Status 4XX httpd

http_status_5xx HTTP Status 5XX httpd

http_status_other HTTP Status other httpd

By default, Ganglia assumes that there is a single HTTP sFlow instance
per host. If hosts contain more than one HTTP instance, setting multi
ple_http_instances=yes in the gmond configuration file causes gmond
to prefix each metric and description with the TCP port number that
the instance uses to receive HTTP requests; for example, the
http_meth_option metric becomes <port>.http_meth_option with de-
scription <port>: HTTP Method OPTION. See “Configuring gmond to
Receive sFlow” on page 155.

In addition, an HTTP sFlow agent exports HTTP operation records for randomly sam-
pled HTTP requests. See Table 8-5.

Table 8-5. sFlow HTTP operation attributes

Attribute Name Description

http_method HTTP method (i.e., GET, HEAD, POST, etc.)

http_version HTTP protocol version (i.e., 1, 1.1, etc.)

http_uri URI exactly as it came from the client

http_host Host value from request header

http_referer Referer value from request header

http_useragent User-Agent value from request header

http_xff X-Forwarded-For value from request header

http_authuser RFC 1413 identity of user

http_mimetype Mime-Type of the response

http_req_bytes Content-Length of request

http_resp_bytes Content-Length of response

http_uS Duration of the operation (in microseconds)

http_status HTTP status code

socket_protocol IP protocol type (e.g., TCP, UDP, etc.)

socket_local_ip IP address of memcache server

socket_remote_ip IP address of memcache client

socket_local_port Server TCP/UDP port number

socket_remote_port Client TCP/UDP port number

152 | Chapter 8: Ganglia and sFlow

The HTTP operation records contain a superset of the attributes in the
widely supported Combined Logfile Format (CLF) commonly used in
web server logging. The section “Using Ganglia with Other sFlow
Tools” on page 165 describes how sFlow can be converted into CLF
for use with logfile analyzers.

memcache Metrics
The sFlow memcache statistics are consistent with the statistics reported by the
memcache STATS command, ensuring consistency with existing memcache monitoring
tools. The sFlow memcache metrics (Table 8-6) are a superset of those reported by the
gmond module; see also Table A-4. Metrics that are present in the gmond module are
indicated with an asterisk next to the metric name.

By default, Ganglia assumes that there is a single memcache sFlow in-
stance per host. If hosts contain more than one memcache instance,
setting multiple_memcache_instances=yes in the gmond configuration
file causes gmond to prefix each metric and description with the TCP
port number that the instance uses to receive memcache requests; for
example, the mc_curr_conns metric becomes <port>.mc_curr_conns with
description <port>: memcache Current Connections. See “Configuring
gmond to Receive sFlow” on page 155.

Table 8-6. sFlow memcache metrics

Metric Name Description Type

mc_curr_conns* memcache Current Connections memcache

mc_total_conns memcache Total Connections memcache

mc_conn_structs memcache Connection Structs memcache

mc_cmd_get* memcache Command GET memcache

mc_cmd_set* memcache Command SET memcache

mc_cmd_flush memcache Command FLUSH memcache

mc_get_hits* memcache GET Hits memcache

mc_get_misses* memcache GET Misses memcache

mc_delete_misses* memcache DELETE Misses memcache

mc_delete_hits* memcache DELETE Hits memcache

mc_incr_misses memcache INCR Misses memcache

mc_incr_hits memcache INCR Hits memcache

mc_decr_misses memcache DECR Misses memcache

mc_decr_hits memcache DECR Hits memcache

mc_cas_misses memcache CAS Misses memcache

Standard sFlow Metrics | 153

Metric Name Description Type

mc_cas_hits memcache CAS Hits memcache

mc_cas_badval memcache CAS Badval memcache

mc_auth_cmds memcache AUTH Cmds memcache

mc_auth_errors memcache AUTH Errors memcache

mc_bytes_read* memcache Bytes Read memcache

mc_bytes_written* memcache Bytes Written memcache

mc_limit_maxbytes* memcache Limit MaxBytes memcache

mc_accepting_conns memcache Accepting Connections memcache

mc_listen_disabled_num memcache Listen Disabled memcache

mc_threads memcache Threads memcache

mc_conn_yields memcache Connection Yields memcache

mc_bytes* memcache Bytes memcache

mc_curr_items* memcache Current Items memcache

mc_total_items memcache Total Items memcache

mc_evictions* memcache Evictions memcache

mc_cmd_touch memcache Command TOUCH memcache

mc_rejected_conns memcache Rejected Connections memcache

mc_reclaimed memcache Reclaimed memcache

In addition to the memcache metrics, a memcache sFlow agent also exports memcache
operation records for randomly sampled operations. See Table 8-7.

Table 8-7. sFlow memcache operation attributes

Attribute Name Description

mc_protocol memcache protocol (i.e., ASCII, BINARY, etc.)

mc_cmd memcache command (i.e., SET, GET, INCR, etc.)

mc_key Key used to store/retrieve data

mc_nkeys Number of keys in request

mc_value_bytes Size of the object referred to by key (in bytes)

mc_uS Duration of the operation (in microseconds)

mc_status Status of command (i.e., OK, ERROR, STORED, NOT_STORED, etc.)

socket_protocol IP protocol type (e.g., TCP, UDP, etc.)

socket_local_ip IP address of memcache server

socket_remote_ip IP address of memcache client

socket_local_port Server TCP/UDP port number

socket_remote_port Client TCP/UDP port number

154 | Chapter 8: Ganglia and sFlow

Configuring gmond to Receive sFlow
The bulk of a typical gmond configuration file, gmond.conf, is devoted to the metrics
that gmond exports for the local host. When gmond is configured as a pure sFlow
collector, most configuration settings can be eliminated, resulting in a simple config-
uration file:

/* Configuration settings for a pure sFlow receiver */
/* Delete all udp_send_channel, modules, collection_group and include sections */

globals {
 daemonize = yes
 setuid = yes
 user = nobody
 debug_level = 0
 max_udp_msg_len = 1472
 mute = yes /* don't send metrics */
 deaf = no /* listen for metrics */
 allow_extra_data = yes
 host_dmax = 0
 host_tmax = 20
 cleanup_threshold = 300
 gexec = no
 send_metadata_interval = 0
}

cluster {
 name = "unspecified"
 owner = "unspecified"
 latlong = "unspecified"
 url = "unspecified"
}

host {
 location = "unspecified"
}

/* channel to receive gmetric messages */
/* eliminate mcast_join - sFlow is a unicast protocol */
udp_recv_channel {
 port = 8649
}

/* channel to service requests for XML data from gmetad */
tcp_accept_channel {
 port = 8649
}

/* channel to receive sFlow */
/* 6343 is the default sFlow port, an explicit sFlow */
/* configuration section is needed to override default */
udp_recv_channel {
 port = 6343
}

Configuring gmond to Receive sFlow | 155

/* Optional sFlow settings */
#sflow {
udp_port = 6343
accept_vm_metrics = yes
accept_jvm_metrics = yes
multiple_jvm_instances = no
accept_http_metrics = yes
multiple_http_instances = no
accept_memcache_metrics = yes
multiple_memcache_instances = no
#}

/* end of configuration file */
/* Delete all modules, collection_group and include sections */

The deaf and mute global settings instruct gmond to listen for metrics
but not send them. All the settings related to local generation of metrics
have been removed. For consistency, an sFlow agent should be installed
on the host running gmond if local metrics are required.

In the Ganglia architecture, each cluster is monitored by a separate gmond process. If
more than one cluster is to be monitored, then it is possible to run multiple gmond
processes on a single server, each with its own configuration file. For example, if sFlow
agents on the first cluster are sending to port 6343, then sFlow agents on the second
cluster should be configured to send to a different port, say 6344. The following set-
tings, in a separate configuration file, configure the second gmond instance to listen on
the nonstandard port:

...

/* channel to receive gmetric messages */
udp_recv_channel {
 port = 8650
}

/* channel to service requests for XML data from gmetad */
tcp_accept_channel {
 port = 8650
}

/* channel to receive sFlow */
udp_recv_channel {
 port = 6344
}

/* Change sFlow channel to non-standard port 6344 */
sflow {
 udp_port = 6344
}

156 | Chapter 8: Ganglia and sFlow

The nonstandard port setting is only required if both gmond processes
are running on a single server. If each cluster is monitored by a separate
server, then the sFlow agents on each cluster need to be configured to
send metrics to the collector for their cluster.

Another alternative is to assign multiple IP addresses to a single server, one per cluster
that is to be monitored. In this case, multiple gmond instances are created, each asso-
ciated with a distinct IP address, and the sFlow agents in each cluster are configured
to send metrics to the associated IP address. For example, the following settings con-
figures the gmond instance to listen for sFlow on a specific IP address:

/* channel to receive sFlow */
udp_recv_channel {
 port = 6343
 bind = <IP address>
}

For more information on configuring Ganglia clusters, see Chapter 2.

Host sFlow Agent
The Host sFlow agent is an open source implementation of the sFlow standard for
server monitoring. The Host sFlow agent provides “scalable, multi-vendor, multi-OS
performance monitoring with minimal impact on the systems being monitored.

The following example shows how to install and configure the Host sFlow daemon
(hsflowd) on a Linux server in order to illustrate how to send sFlow metrics to Ganglia
gmond. The Host sFlow website should be consulted for detailed instructions on in-
stalling and configuring Host sFlow on other platforms.

First, install the hsflowd software:

rpm -Uvh hsflowd_XXX.rpm

Alternatively, hsflowd can be installed from sources:

tar -xzf hsflowd-X.XX.tar.gz
cd hsflowd-X.XX
make
make install
make schedule

Next, edit the hsflowd configuration file, /etc/hsflowd.conf:

sflow{
 DNSSD = off
 polling = 20
 sampling = 512
 sampling.http = 100
 sampling.memcache = 400
 collector{
 ip = <gmond IP address>

Host sFlow Agent | 157

http://host-sflow.sourceforge.net

 udpport = <gmond udp_rcv_channel port>
 }
}

By default, hsflowd is configured to use DNS Service Discovery (DNS-
SD) to automatically retrieve settings (i.e., DNSSD = on). Manual config-
uration (i.e., DNSSD = off) is recommended when using hsflowd to send
metrics to gmond because it allows each host to be configured to send
sFlow to the gmond instance responsible for its cluster. If only one clus-
ter is being monitored, consider using DNS-SD.

Finally, start the hsflowd daemon:

service hsflowd start

Within a few minutes, metrics for the server should start appearing in Ganglia. If metrics
fail to appear, follow the directions in “Troubleshooting” on page 161.

Host sFlow Subagents
The Host sFlow website maintains a list of related projects implementing subagents
that extend sFlow monitoring to HTTP, memcache, and Java applications running on
the server. These subagents require minimal additional configuration because they
share configuration settings with hsflowd (Figure 8-2).

Figure 8-2. Host sFlow subagents

The hsflowd daemon writes configuration information that it receives via DNS-SD or
through its configuration file to the /etc/hsflowd.auto file. Other sFlow subagents

158 | Chapter 8: Ganglia and sFlow

running on the host automatically detect changes to the /etc/hsflowd.auto file and apply
the configuration settings.

The sFlow protocol allows each subagent to operate autonomously and send an inde-
pendent stream of metrics to the sFlow collector. Distributing monitoring among the
agents eliminates dependencies and synchronization challenges that would increase
the complexity of the agents.

Extending the functionality of Host sFlow using subagents differs from
gmond’s use of modules (see the section “Extending gmond with Mod-
ules” on page 78), but is very similar in approach to adding custom
metrics using gmetric (see the section “Extending gmond with gme-
tric” on page 97). In fact, gmetric can easily be used to add custom
metrics to the standard metrics exported using sFlow (see “Custom
Metrics Using gmetric” on page 160).

Each of the sFlow subagents is responsible for exporting a different set of metrics. At
the time of writing, the following subagents are available:

hsflowd
The Host sFlow daemon exports standard host metrics (see “Server Met-
rics” on page 147), and can also export per-virtual-machine statistics (see “Hyper-
visor Metrics” on page 149) when run on a Hyper-V, Xen, XenServer, or KVM
hypervisor. In addition, network traffic monitoring using iptables/ULOG is sup-
ported on Linux platforms.

Open vSwitch
The Open vSwitch is the default switch in XenServer 6.0, the Xen Cloud Platform,
and also supports Xen, KVM, Proxmox VE, and VirtualBox. It has also been inte-
grated into many virtual management systems including OpenStack, openQRM,
and OpenNebula. Enabling the built-in sFlow monitoring on the virtual switch
offers the same visibility as sFlow on physical switches, providing a unified, end-
to-end view of network performance across the physical and virtual infrastructure.
The sflowovsd daemon ships with Host sFlow and automatically configures sFlow
monitoring on the Open vSwitch using the ovs-vsctl command. Similar integrated
sFlow support is available for the Microsoft extensible virtual switch that is part
of the upcoming Windows Server 2012 version of Hyper-V.

jmx-sflow-agent
The Java sFlow agent is invoked on the Java command line, easily adding moni-
toring to existing Java applications and exporting standard metrics (see “Java Vir-
tual Machine Metrics” on page 150).

tomcat-sflow-valve
This is a Tomcat Valve that can be loaded in an Apache Tomcat web server to
export Java metrics (see “Java Virtual Machine Metrics” on page 150) and HTTP
metrics (see “HTTP Metrics” on page 151).

Host sFlow Agent | 159

mod-sflow
This is a module for the Apache web server that exports HTTP metrics (see “HTTP
Metrics” on page 151).

nginx-sflow-module
This is a module for the NGINX web server that exports HTTP metrics (see “HTTP
Metrics” on page 151).

sflow/memcached
This project tracks the latest memcache release and includes an embedded sFlow
subagent that exports memcache metrics (see “memcache Metrics” on page 153).

Custom Metrics Using gmetric
One of the strengths of Ganglia is the ability to easily add new metrics. Although the
Host sFlow agent doesn’t support the addition of custom metrics, the Ganglia gmetric
command-line tool provides a simple way to add custom metrics (see “Extending
gmond with gmetric” on page 97).

For example, the following command exports the number of users currently logged
into a system:

gmetric -S 10.0.0.1:server1 -n Current_Users -v `who |wc -l` -t int32 -u current_users

Using the -S or --spoof option ensures that the receiving gmond instance correctly
associates metrics sent using gmetric with metrics sent by hsflowd. The spoof argument
is a colon-separated string containing an IP address and a hostname. The Host sFlow
daemon writes information about its configuration and sFlow settings into the /etc/
hsflowd.auto file, including the IP address and hostname used when it sends sFlow data;
the gmetric spoof string must match these values.

The gmetric command-line tool is distributed with gmond and picks up settings from
the gmond.conf file. Because there are no gmond instances running on the hosts in an
sFlow deployment, eliminating the dependency on gmond.conf, gmond, and gmetric is
worthwhile. The gmetric.py utility is a simple Python script that can be used a replace-
ment for gmetric.

The following bash script demonstrates how configuration settings can be extracted
from the hsflowd.auto file and used as arguments for the gmetric.py command:

#!/bin/bash
Read configuration settings from hsflowd.auto
while IFS="=" read name value
do
 case "$name" in
 agentIP)
 SPOOF_IP=$value
 ;;
 hostname)
 SPOOF_HOSTNAME=$value
 ;;

160 | Chapter 8: Ganglia and sFlow

https://github.com/ganglia/ganglia_contrib

 collector)
 set $value
 HOST=$1
 PORT=$(($2-6343+8649))
 ;;
 *)
 ;;
 esac
done < /etc/hsflowd.auto

Export one or more custom metrics using gmetric.py
/usr/local/bin/gmetric.py\
 --host $HOST\
 --port $PORT\
 --spoof $SPOOF_IP:$SPOOF_HOSTNAME\
 --name Current_Users\
 --value `/usr/bin/who |/usr/bin/wc -l`\
 --type int32\
 --units current_users

This script assumes that gmetric.py has been installed as an executable
in /usr/local/bin. The calculation for the gmetric port is based on the
numbering convention used in “Configuring gmond to Receive
sFlow” on page 155, where the standard sFlow and gmetric ports are
shifted by the same constant when creating multiple gmond instances.

Additional custom metrics can be added to the end of the script; ganglia/gmetric is a
library of user-contributed gmetric scripts maintained by the Ganglia project on github.
Scheduling the script to run every minute using cron allows Ganglia to automatically
track the custom metrics.

Troubleshooting
Most problems with sFlow deployments occur because the sFlow datagrams are drop-
ped somewhere between the sFlow agent and gmond. The following steps will help
identify where measurements are being dropped.

Are the Measurements Arriving at gmond?
Use a packet capture tool, such as tcpdump, to verify that the sFlow packets are arriving
at the server running gmond. The following command uses tcpdump to check for packets
arriving on UDP port 6343:

tcpdump -p udp port 6343

Troubleshooting | 161

https://github.com/ganglia/gmetric

Check every udp_recv_channel specified in gmond.conf files in order to
verify that metrics are arriving (see “Configuring gmond to Receive
sFlow” on page 155).

If the missing metrics are associated with a single host, use tcpdump to filter on the
specific host. The following command verifies that sFlow data is arriving from host
10.0.0.237:

tcpdump -p src host 10.0.0.237 and udp port 6343

Packet capture using tcpdump occurs before server firewall rules are
applied. Don’t assume that the fact that packets are being displayed by
tcpdump means that the packets are being received by gmond—packets
can still be dropped by the firewall. Make sure that incoming sFlow
packets are permitted by the local firewall iptables on a Linux system.
Typically, UDP port 6343, the default sFlow port, is required—but you
will need to ensure that every udp_recv_channel and tcp_accept_chan
nel configured in the gmond.conf file is allowed as an incoming con-
nection in the firewall rules.

A quick way to check whether the firewall is the problem is to tem-
porarily disable the firewall and see if metrics start to appear in Ganglia.
However, this procedure should be performed only if the server is in a
secure environment where the security risk of turning off the firewall is
acceptable.

Next, use telnet to connect to the gmond tcp_accept_channel and verify that the met-
rics appear in the XML document. The following command assumes that the default
tcp_accept_channel setting, 8649, is being used:

telnet localhost 8649

If metrics are missing from the XML output, the next step is to verify that the metrics
are arriving in the sFlow datagrams. The sflowtool command is similar to tcpdump,
decoding and printing the contents of network packets. However, whereas tcpdump is
a general purpose packet analyzer, sflowtool is specifically concerned with sFlow data,
performing a full decode of all the sFlow metrics and attributes.

If you are monitoring Windows hosts and the charts aren’t appearing
in the Ganglia user interface but the data appears to be correct in the
XML output, make sure that case_sensitive_hostnames is set to 0 in
gmetad.conf.

162 | Chapter 8: Ganglia and sFlow

The following command demonstrates how sflowtool is used in combination with
tcpdump in order to print out the contents of the sFlow datagrams and verify that specific
metrics are being received:

tcpdump -p -s 0 -w - udp port 6343 | sflowtool

You can use sflowtool on its own to receive and decode sFlow. How-
ever, when gmond is running, it will have opened the port to listen for
sFlow, blocking sflowtool from being able to open the port. Using
tcpdump allows the packets to be captured from the open port and fed
to sflowtool. The alternative is to stop gmond before running this test.

If you are receiving sFlow data, then sflowtool will print out the detailed contents, and
you should see output similar to the following:

startDatagram =================================
datagramSourceIP 10.1.4.2
datagramSize 432
unixSecondsUTC 1339651142
datagramVersion 5
agentSubId 100000
agent 10.1.4.2
packetSequenceNo 464
sysUpTime 9244000
samplesInPacket 1
startSample ----------------------
sampleType_tag 0:2
sampleType COUNTERSSAMPLE
sampleSequenceNo 464
sourceId 2:1
counterBlock_tag 0:2001
adaptor_0_ifIndex 1
adaptor_0_MACs 1
adaptor_0_MAC_0 000000000000
adaptor_1_ifIndex 2
adaptor_1_MACs 1
adaptor_1_MAC_0 eedb257595e5
counterBlock_tag 0:2005
disk_total 64427231232
disk_free 51740361728
disk_partition_max_used 35.43
disk_reads 20349
disk_bytes_read 403682304
disk_read_time 181676
disk_writes 16994
disk_bytes_written 144289792
disk_write_time 1130328
counterBlock_tag 0:2004
mem_total 1073741824
mem_free 723337216
mem_shared 0
mem_buffers 17854464
mem_cached 192057344

Troubleshooting | 163

swap_total 2181029888
swap_free 2181029888
page_in 201324
page_out 70454
swap_in 0
swap_out 0
counterBlock_tag 0:2003
cpu_load_one 0.000
cpu_load_five 0.000
cpu_load_fifteen 0.000
cpu_proc_run 1
cpu_proc_total 96
cpu_num 1
cpu_speed 3200
cpu_uptime 9298
cpu_user 5590
cpu_nice 5570
cpu_system 16120
cpu_idle 9204610
cpu_wio 66020
cpuintr 0
cpu_sintr 0
cpuinterrupts 231288
cpu_contexts 370635
counterBlock_tag 0:2006
nio_bytes_in 2514529
nio_pkts_in 7316
nio_errs_in 0
nio_drops_in 0
nio_bytes_out 1799289
nio_pkts_out 8199
nio_errs_out 0
nio_drops_out 0
counterBlock_tag 0:2000
hostname virtual-vm
UUID 7c270fa3830347a9b6aef60bac8cd16f
machine_type 3
os_name 2
os_release 2.6.18-308.1.1.el5xen
endSample ----------------------
endDatagram =================================

The output of sflowtool consists of simple key/value pairs that are easily
processed using scripting languages such as Perl. An example is given
in “Using Ganglia with Other sFlow Tools” on page 165.

At this point, if the sFlow is being received and metrics are missing, it is likely that the
sFlow agent has been incorrectly configured and the metrics aren’t being sent.

164 | Chapter 8: Ganglia and sFlow

Are the Measurements Being Sent?
If possible, use sflowtool and tcpdump on the sending machine to verify that meas-
urements are being transmitted. Again, it is possible that local firewall rules on the
sending machine are preventing transmission of the sFlow datagrams. See “Are the
Measurements Arriving at gmond?” on page 161.

Make sure to verify that the destination IP and port correspond to the gmond.conf file
settings at the receiving end.

Check the configuration of the sFlow agent. Verify that the sFlow agent’s counter poll-
ing interval is configured and set to a reasonable value—a polling interval of 30 seconds
is typical for sFlow deployments.

There are two types of sFlow data: periodic counters and randomly
sampled packets/transactions. Ganglia gmond is able to process only
counter data, so it is possible that sFlow sample records are being trans-
mitted to gmond, but without counter records, Ganglia will not show
any data.

If the measurements are being sent but not received, work with your network admin-
istrator to identify any firewall or ACL setting in intermediate switches, routers, or
firewall that may be dropping the sFlow datagrams.

Using Ganglia with Other sFlow Tools
Ganglia is reporting an increase in HTTP traffic to your web servers—how do you know
whether you are the target of a denial of service attack, or a marketing promotion has
just gone viral? You are seeing an increase in cache misses to your memcached cluster
—how can you fix the problem? If you are using sFlow agents to generate the metrics,
you have the data to answer these types of question at your fingertips.

The metrics that Ganglia displays are only part of the information contained in an sFlow
stream. For example, the mod_sflow agent running in Apache servers also randomly
samples HTTP operations, sending records that include attributes such as URL, user-
agent, response time, client socket, and bytes transferred; see Table 8-5. Accessing the
sampled HTTP operations allows you to dig deeper into a trend and identify the source
of the increased traffic.

The following sflowtool output shows the HTTP counters and operation samples re-
ported by mod_sflow:

startDatagram =================================
datagramSourceIP 10.0.0.150
datagramSize 132
unixSecondsUTC 1339652714
datagramVersion 5
agentSubId 0

Using Ganglia with Other sFlow Tools | 165

agent 10.0.0.150
packetSequenceNo 30526
sysUpTime 3981481944
samplesInPacket 1
startSample ----------------------
sampleType_tag 0:2
sampleType COUNTERSSAMPLE
sampleSequenceNo 19510
sourceId 3:80
counterBlock_tag 0:2002
parent_dsClass 2
parent_dsIndex 1
counterBlock_tag 0:2201
http_method_option_count 0
http_method_get_count 55755
http_method_head_count 4
http_method_post_count 1359
http_method_put_count 0
http_method_delete_count 0
http_method_trace_count 0
http_methd_connect_count 7
http_method_other_count 0
http_status_1XX_count 0
http_status_2XX_count 54577
http_status_3XX_count 2211
http_status_4XX_count 314
http_status_5XX_count 23
http_status_other_count 0
endSample ----------------------
endDatagram =================================
startDatagram =================================
datagramSourceIP 10.0.0.150
datagramSize 264
unixSecondsUTC 1339652714
datagramVersion 5
agentSubId 0
agent 10.0.0.150
packetSequenceNo 30527
sysUpTime 3981483944
samplesInPacket 1
startSample ----------------------
sampleType_tag 0:1
sampleType FLOWSAMPLE
sampleSequenceNo 28550
sourceId 3:80
meanSkipCount 2
samplePool 57126
dropEvents 2
inputPort 0
outputPort 1073741823
flowBlock_tag 0:2100
extendedType socket4
socket4_ip_protocol 6
socket4_local_ip 10.0.0.150
socket4_remote_ip 10.0.0.70

166 | Chapter 8: Ganglia and sFlow

socket4_local_port 80
socket4_remote_port 63729
flowBlock_tag 0:2206
flowSampleType http
http_method 2
http_protocol 1001
http_uri /index.php
http_host 10.0.0.150
http_useragent curl/7.21.4
http_request_bytes 0
http_bytes 0
http_duration_uS 1329
http_status 403
endSample ----------------------
endDatagram =================================

The following example demonstrates how the sflowtool output can be used to generate
additional metrics. The Perl script uses sflowtool to decode the HTTP request data and
calculates average response time over a minute, printing out the results:

#!/usr/bin/perl -w
use strict;
use POSIX;

my $total_time = 0;
my $total_requests = 0;
my $now = time();
my $start = $now - ($now % 60);

open(PS, "/usr/local/bin/sflowtool|") || die "Failed: $!\n";
while(<PS>) {

 my ($attr,$value) = split;

 # process attribute
 if('startDatagram' eq $attr) {
 $now = time();
 if($now - $start >= 60) {
 if($total_requests > 0) {
 printf "%d %d\n", $start, int($total_time/$total_requests);
 }
 $total_time = 0;
 $total_requests = 0;
 $start = $now - ($now % 60);
 }
 }
 if('http_duration_uS' eq $attr) {
 $total_time += $value;
 $total_requests++;
 }
}

The output of the script follows. The first column is the time (in seconds since the
epoch) and the second column is the average HTTP response time (in microseconds):

Using Ganglia with Other sFlow Tools | 167

[pp@pcentos ~]$./http_response_time.pl
1339653360 2912326
1339653420 3002692
1339653480 1358454
1339653540 3983638

This example demonstrated how sampled transactions can be used to generate new
metrics. The metrics can be fed back to Ganglia using gmetric; see “Custom Metrics
Using gmetric” on page 160.

This is just one simple example. There are many metrics that can be
calculated based on the detailed information in transaction samples.
Using sflowtool to pretty-print sFlow records is a good way to see the
information that is available and experiment with calculating different
metrics.

You don’t have to write your own analysis scripts. The sFlow data can be converted
into different forms for compatibility with existing tools. For example, the following
command uses sflowtool to convert the binary sFlow HTTP operation data into ASCII
CLF so that the operations can be visually inspected or exported to a web log analyzer
such as Webalizer:

sflowtool -H | rotatelogs log/http_log

You can also use protocol reporting tools such as Wireshark with sFlow, using sflow-
tool to convert sFlow into the standard PCAP format:

wireshark -k -i <(sflowtool -t)

In addition, there are a broad range of native sFlow analysis options that provide com-
plementary functionality to Ganglia’s. The sFlow.org website contains a list of open
source and commercial sFlow analysis tools—including Ganglia, of course!

When using multiple sFlow analysis tools, each tool needs to receive copies of the sFlow
packets. There are two main approaches to replicating sFlow:

Source replication
Configure each sFlow agent to send sFlow packets to multiple destinations. Be-
cause sFlow is a unicast protocol, this involves resending packets to each of the
destinations and this increases measurement traffic on the network. The additional
traffic is generally not an issue, as each sFlow agent generates a small number of
packets.

Destination replication
Some sFlow analyzers have built-in replication and packet forwarding capabilities,
and there are commercial and open source UDP replication tools available, in-
cluding sflowtool.

168 | Chapter 8: Ganglia and sFlow

http://www.webalizer.org/
http://www.wireshark.org/
http://www.sflow.org

Finally, the case study “Tagged, Inc.” on page 172 demonstrates how Ganglia and
sFlow are used in a large deployment, illustrating the techniques described in this
chapter and providing examples that demonstrate the importance of performance
monitoring to the operations and developer teams.

Using Ganglia with Other sFlow Tools | 169

CHAPTER 9

Ganglia Case Studies

Daniel Pocock, Bernard Li, Alex Dean, and Peter Phaal

The Ganglia project started out in 1999 with the aim of monitoring grid computing
infrastructure: largely homogeneous clusters of similar compute nodes, typically in the
academic and research community. The project founders (including Matt Massie) de-
signed the system to be lightweight and efficient.

In this chapter, we present a range of case studies that demonstrate just how widely
respected Ganglia has become—not just within the original audience, but in the wider
world of industry.

The SARA case study is just one example of Ganglia at home in the environment it was
designed for, albeit on the other side of the Atlantic.

The fact that Ganglia is being used to monitor 24 x 7 e-commerce enterprises is a sign
of just how robust it is. Some of these include Etsy and Quantcast, both of which have
shared an insight into just how Ganglia keeps their business running. The social net-
working trend is one of the most widely talked about revolutions in communications
today, and it is no surprise to find Ganglia has had its finger in that pie, too, as it is the
tool of choice at Tagged.

Stepping back from extremes of multicore CPU deployments, Ganglia has also proven
itself to be truly adaptable and versatile in the face of dramatic change. It is estimated
that more people will be accessing the Web from smartphones than from desktop PCs
by the time you are reading this book. In this new world, CPUs spend more time sleep-
ing than the average housecat; network connectivity stops and starts and nodes rarely
hold the same IP address for more than an hour. Ganglia’s lightweight protocol, which
functions reliably as unidirectional UDP traffic, has proven itself to be ready for busi-
ness at this level, too, as demonstrated by its presence as an embedded agent in the
Lumicall app for Android. It is this versatility that may well be the most significant
acknowledgment of how perceptive Ganglia’s founders were when designing an effi-
cient monitoring protocol.

171

Some of the most interesting case studies may be those that we can’t publish at all. It
is known that due to Ganglia’s bare-bones efficiency, in that it was written in low-level
C with the source code available for all to see, it was chosen for a number of algorithmic
trading systems, where every process on a server is closely scrutinized to maintain a
competitive edge.

Tagged, Inc.
Tagged.com is a social networking site with over 350 million registered users and 5
billion page views a month. This case study describes how Ganglia and sFlow (Chap-
ter 8) are used to monitor the performance of the Apache, memcached, and Java services
that make up the site (thanks to Dave Mangot and Tagged for providing the information
for this case study).

Site Architecture
Tagged’s scale-out, tiered site architecture, shown in Figure 9-1, is typical of social
networking websites.

Figure 9-1. Tagged.com site architecture

Incoming web requests are handled by load balancers that distribute the requests to
clusters of web servers. Application logic is implemented through a combination of
scripted pages in the web tier interacting with clusters that make up the application
tier. The application tier interacts with the database tier to maintain persistent user
data. The scale-out design of each tier ensures that the site can handle user growth by
adding additional servers to the clusters.

The memcache tier is a critical component in most social networking sites. It performs
two major functions:

1. Caching information retrieved from the database tier in order to reduce database
load

2. Providing the scatter/gather functionality needed to rapidly query each user’s
friends and their current status

172 | Chapter 9: Ganglia Case Studies

http://www.tagged.com

Tagged has over 7 terabytes of memory in their memcache pool, and the effect of the
cache on site performance is dramatically illustrated in “Optimizing memcached effi-
ciency” on page 175.

Ganglia is well suited to monitoring Tagged’s infrastructure, presenting a comprehen-
sive, near real-time view of the performance of the clusters making up the site. Tagged
had been using Ganglia for quite some time but we’re starting to see network perfor-
mance issues with gmond as they scaled up the site. Solving these performance issues
was an important motivation in deciding to migrate from gmond to sFlow agents.

One of the great things about replacing the gmond processes is the increased efficiency
of the monitoring infrastructure. With gmond, every metric sends a packet across the
wire. If you sample every 15 seconds, gmond sends a packet every 15 seconds for each
metric that you monitor. With sFlow agents, you can sample every 15 seconds, but the
agent will batch those metrics into a single packet to send across the wire. Tagged is
now able to collect more metrics, more often, with fewer packets. On a big network
like Tagged, anything that can lower packets per second is a big win. The difficult part
was converting from multicast to unicast. The switch to sFlow was used as an oppor-
tunity to templatize all the Puppet CMDB configurations for this purpose. Now Tagged
has a system that they really love.

Monitoring Configuration
The diagram in Figure 9-2 shows the elements making up Tagged’s monitoring system.
The diagram has been simplified—in reality there are multiple clusters within each of
the service tiers.

Host sFlow agents, described in “Host sFlow Agent” on page 157, are installed on each
server in the Web, memcached, and Application clusters. The Host sFlow agents report
the standard server metrics as described in “Server Metrics” on page 147 to gmond
instances running on two collection servers, gmond01 and gmond02. Each gmond
server has multiple gmond instances, each listening on a different UDP port for meas-
urements from each cluster; see “Configuring gmond to Receive sFlow” on page 155.

Custom metrics are generated using scripts and sent using the gmetric command to the
gmond instance responsible for the cluster; see the section “Custom Metrics Using
gmetric” on page 160. In addition, sFlow analysis software running on sflow01 pro-
cesses sampled transaction data, generating additional metrics that are exported to
Ganglia using gmetric; see “Using Ganglia with Other sFlow Tools” on page 165.

Puppet is used extensively by Tagged for managing server configurations. In this case,
gmond.conf, hsflowd.conf, and gmetad.conf files are all generated using Puppet ERB
templates. Coordination between the hsflowd.conf and gmond.conf settings is needed
to ensure that sFlow and gmetric messages are sent to the correct gmond instance. The
gmetad.conf files should also be coordinated with the gmond.conf files on gmond01 and

Tagged, Inc. | 173

http://puppetlabs.com/

gmond02 to ensure that clusters are correctly polled and labelled, which is achieved
through a Puppet ERB template in conjunction with a custom Puppet function.

Apache

Apache stats would normally be calculated based on the output of mod_status, typically
using a script to make HTTP requests to the Apache /server-status/ page and parse the
results. Using mod_sflow instead, HTTP metrics (see “HTTP Metrics” on page 151) are
streamed directly into Ganglia. No additional configuration is needed because
mod_sflow reads configuration settings from the Host sFlow agent (see “Host sFlow
Subagents” on page 158).

memcached

memcached has been a black box for systems administrators and developers for many
years. There are a limited number of statistics you can get using the STATS interface
to memcached, and those statistics are about the memcached instance as a whole, not
about individual keys. Some of the STATS commands (like SIZES) will actually lock up
the entire cache while it scans the items, leaving your memcached instance unusable
for several seconds. memcached/sFlow integrates sFlow instrumentation within the
memcached instances providing the ability to see details that previously could be ob-

Figure 9-2. Monitoring system

174 | Chapter 9: Ganglia Case Studies

http://mod-sflow.googlecode.com/
https://github.com/sflow/memcached

tained only by loading a kernel module like Gear6 Advanced Reporter. memcached/
sFlow is a simple open source patch to the memcached source (hopefully the patch will
be pulled into the memcached base soon), with no kernel recompilation required.

memcached/sFlow provides the regular metrics (see the section “memcache Met-
rics” on page 153), such as hit rates that you would get from the STATS command,
without having to telnet to the memcached instance every 15 seconds.

memcached/sFlow reads configuration settings from the Host sFlow agent, so no ad-
ditional configuration is needed (see “Host sFlow Subagents” on page 158).

Java

Before moving to sFlow, Tagged used to get Java virtual machine metrics using Zen-
oss, which uses a dedicated JMX poller to retrieve information from a designated list
of hosts. This approach unfortunately doesn’t scale to any large environment. Consider
Netflix in Amazon EC2, which has potentially thousands of machines disappearing
and appearing on the network in minutes but can refresh the host list on the poller only
so often. The alternative of using a gmond module (see “Extending gmond with Mod-
ules” on page 78) would require starting a JVM every time it needs to check a metric,
because a Java client is needed to retrieve metrics from a JVM using the JMX protocol.

With sFlow instrumentation of the JVM, data is pushed from the JVMs to gmond, with
no polling necessary. The jmx-flow-agent runs as a -javaagent argument to the Java
command line. Each JVM automatically sends its metrics (see “Java Virtual Machine
Metrics” on page 150) to gmond the moment the JVM starts.

Again, the jmx-sflow-agent reads configuration settings from the Host sFlow agent, so
no additional configuration is needed (see “Host sFlow Subagents” on page 158).

Examples
The following examples highlight some of the areas where Ganglia and sFlow provide
visibility into critical site services to the operations and developer teams at Tagged.

Optimizing memcached efficiency

Using Ganglia to monitor the cold start of a memcached cluster provides a compelling
demonstration of the leverage that a memcached cluster provides. The two charts
shown in Figure 9-3 show overall bytes in and out of a cluster as it starts up. In the
figure, the chart on the left shows initial traffic to the cold cache and the chart on the
right shows the same cluster minutes later once it has warmed up. Comparing the two
charts gives a clear illustration of the importance of the memcached clusters in scaling
the site. When the cache is cold, performance is limited by the database tier, data is
being written into the cache and the read performance delivers around 10 MB/s. Once
the cache has warmed up, read performance jumps to 1.7 GB/s—a 170x improvement
in throughput!

Tagged, Inc. | 175

http://community.zenoss.org/
http://community.zenoss.org/
http://jmx-sflow-agent.googlecode.com/

The jump in throughput is so dramatic that the rescaling of the vertical
axis on the right-hand chart makes the values shown on the left-hand
chart appear as a thin line with a near zero value.

The performance of the entire site is critically dependent on how effectively the memc-
ache clusters protect the database tier. Because the primary bottleneck limiting perfor-
mance is the database tier, any improvement in the cache hit rates reduces load on the
databases and improves scalability. For example, suppose that we can improve the
cache hit rate from 95 to 96 percent. This might not seem like much, but when you
consider that cache misses represent database queries, this seemingly trivial 1 percent
improvement in hit rate is actually a 20 percent reduction in the miss rate (going from
a 5 percent miss rate to a 4 percent miss rate), resulting in a proportional decrease in
the load on the databases and a significant increase in overall site capacity and
performance.

The Ganglia chart shown in Figure 9-4 trends the overall efficiency of the memcached
cluster and is one of the critical performance metrics tracked for the site.

Although Ganglia does an excellent job of trending the performance counters exported
by sFlow, one of the benefits of using sFlow as the measurement technology is that
counters aren’t the only information being exported. In addition to periodically ex-
porting the standard memcache counters to Ganglia, the sFlow agents embedded in
the memcached servers also randomly sample memcache operations.

For example, the table in Figure 9-5 is updated every minute to show the keys associated
with the most cache misses. Tracking misses helps identify problems that can have a

Figure 9-3. Cold start of memcached cluster

176 | Chapter 9: Ganglia Case Studies

significant impact on performance, such as a mistyped key name in a PHP script. The
data also identifies “hot keys” that, if deleted, could result in a stampede of requests to
the database—a cache miss storm.

Web load

Measurements from the web tier provide an overview of the entire site, tracking re-
sponse times and request rates to each of the applications running on the site.

The charts in Figure 9-6 show combined CPU, network, HTTP request type, and HTTP
status code metrics from a static web cluster. The CPU load is low, mostly waiting for
the disk, as you would expect when serving static content. Also notice that all the
requests are HTTP GET operations.

Figure 9-4. Session cache cluster efficiency

Figure 9-5. Missed keys

Tagged, Inc. | 177

The Ganglia chart in Figure 9-7 trends overall request rates and types to a web server
cluster serving nonstatic content for the Tagged.com site. An interesting point to note
is the large number of HTTP POST operations, which is typical of a Web 2.0 site where
a large proportion of the traffic is AJAX requests from JavaScript applications running
in client browsers.

Again, while Ganglia is used to trend sFlow performance counters from the web cluster,
sFlow agents also sample HTTP operations, providing details such as URL, user agent,
client address, and response time. This additional detail is used to identify performance
problems with specific services.

The table in Figure 9-8 clearly shows that uploading photos is the slowest operation,
which is unsurprising, as uploading a photo involves a significant data transfer and
many users have ADSL connections with poor upstream bandwidth. This data also
allows Tagged to track response time for popular content, such as the Pets game. This
information helps the operations and development teams work together to deliver faster
response times, keeping users happy and increasing revenue.

Java performance

The Ganglia chart in Figure 9-9 trends the amount of heap memory allocated by an
application over the course of a week. It turns out that this application periodically
needed to be restarted, but no one knew why. With sFlow-instrumented Java, fine-
grained detail of heap utilization can be tracked. We can see that the garbage collector

Figure 9-6. Static web cluster performance

178 | Chapter 9: Ganglia Case Studies

is unable to bring the heap on this application back to a steady state, and that over time,
it grows and grows until the machine starts swapping. After a restart, the garbage col-
lection is able to keep up again.

Monitoring isn’t limited to Java heap memory; there are many additional Java metrics
that we can track with Ganglia (see “Java Virtual Machine Metrics” on page 150),
allowing Tagged to keep a close eye on the many Java applications running on the site.

Figure 9-7. Requests to nonstatic web cluster

Figure 9-8. URLs by average duration

Tagged, Inc. | 179

SARA
Ramon Bastiaans, SARA

SARA is a supercomputing center in the Netherlands, founded by and in cooperation
with a number of universities.

Amongst other things, SARA provides computational, storage, and networking re-
sources for the Dutch research community and institutions. Their research fields are
very diverse and vary from meteorology, chemistry, and astronomy to economics and
psychology.

Researchers, students, and teachers may receive access to one or more of the facilities
provided by SARA through national subsidiaries or can approach SARA directly.
Amongst these facilities are a National Supercomputer “Huygens,” a National Com-
putational Cluster “LISA,” and various grid computational and storage services.

For more detailed and complete information on SARA, please visit their website.

Overview
We started out using Ganglia to monitor our National Beowulf cluster “Rainbow”
around 2002. At the time, this system consisted of about 200 “mini tower” personal
computers (Figure 9-10).

Now, 10 years later, we monitor just about every system with Ganglia. At the time of
writing, there are about 20 different systems, 1,400 hosts, and more than 18,000 CPUs.

Figure 9-9. Java heap memory

180 | Chapter 9: Ganglia Case Studies

http://www.sara.nl

Advantages
Ganglia provides a number of advantages to both system administrators as well as our
users.

Operational

For system administrators and consultants, Ganglia provides a few benefits:

• System health at a glance

• Usage and trending

• History

We have a large TV setup in our office that rotates graphs at an interval, displaying
several different systems (Figure 9-11).

Ganglia allows us to keep a watch on the general status of the systems we manage. For
example, whenever the “running processes” does not match the “1-minute load,” or
the “gray area” goes higher than the “blue line,” we can conclude we have a rogue
machine in the cluster. This usually means that a machine is getting overloaded, is
crashing, or has some other issues that are out of the ordinary and needs attention. It
also allows us to see any peaks instantly.

It also enables us to see how well (or poorly) the system is being used. Low usage or
load might indicate a problem with batch job scheduling or inefficient usage of the
system. This might result in one of our consultants contacting a user about optimizing
his batch jobs. Obviously, it also allows us to see past values for certain statistics.

Figure 9-10. The SARA OSD grid with 1,400 hosts

SARA | 181

Users

For users, benefits include:

• System availability

• User job health

Our customers or users of the systems can use our Ganglia website (which is public)
to see how “busy” the system is and how their job is performing. For example, a user
might like to know how much memory his job is using or why the job is not consuming
CPU time. In this case, the user could access our Ganglia website to see these statistics.

Customizations
• (batch) job monitoring

• Custom metrics

• Custom graphs and reports

On our computational systems, we use batch job resource management and scheduling
software. Thus, users provide a sort of shell script that (amongst other things) contains

Figure 9-11. Live dashboard for the 512-node SARA LISA cluster

182 | Chapter 9: Ganglia Case Studies

a definition of the resources they need (CPUs, memory, etc.) and the tasks they would
like to run.

The batch system in conjunction with the scheduler decides when the job is actually
run. This decision is based on various things such as resource availability, network
fabric, fair share and backfilling mechanisms, and many more. Thus, users can’t always
be sure when their calculation is run.

We have developed an add-on to Ganglia called Job Monarch that interfaces with the
resource manager and reports in which batch jobs are running in the cluster, on which
nodes, and which resources they have reserved in the batch system (Figure 9-12). Al-
ternatively, this add-on can also store an archive of jobs for historical reference.

For more information on Job Monarch and SARA’s other open source projects, please
visit here.

Figure 9-12. SARA’s Job Monarch managing an 807-node cluster

Metrics

For operational usage, we report many extra metrics:

• Temperatures

• BIOS/firmware levels

• Support tag/serials

SARA | 183

http://subtrac.sara.nl/oss

These allow us to see immediately when any machine is out of sync with the latest
firmware. Additionally, we report things such as support service tags or serial numbers
so that we can easily report any issue.

We use the IPMI and Dell Open Manage software to poll this information from a shell
script and then submit the metrics through the use of gmetric.

Additionally, some system-specific metrics are relevant for a particular system:

• Tape drive occupation

• Number of SSH logins

• LDAP connections

• NFS connections/traffic

Thanks to the gmetric utility, the possibilities are pretty much endless. In the latest
Ganglia versions, some of these metrics now have modules that report their values
including NFS.

Custom graphs

Although custom metrics are nice to have, some metric values make sense only in a
proper context in relation to other metrics. In this case, custom graphs or reports can
be useful. With older versions of Ganglia, this type of reporting could be achieved using
graph.d PHP scripts; as of the latest Ganglia releases with JSON definitions, it is fairly
easy.

Challenges
Challenges including the following:

• Multicast/network

• Memory usage

One of the key features of Ganglia is its usage of multicast/UDP to submit its statistics.
This approach has some advantages but can also be challenging in a complex network
layout. Some clusters might have complex network layouts with various hops and
switches. Most of the time, UDP multicast is thus not an option.

In addition, Ganglia’s monitoring daemon by default receives and sends all information
to all machines in the same system. That is no problem if you have only a couple of
machines, but once you have hundreds of machines, this is no longer very useful. The
situation then arises that a simple compute node has all monitoring metrics of hundreds
of machines in memory.

This setup not only starts to consume large amounts of memory but is also not very
useful or necessary for the way Ganglia works. Once we got to the point that users’

184 | Chapter 9: Ganglia Case Studies

batch job calculations started to suffer from lack of available memory, we decided to
alter our configuration.

By removing the UDP receive channel, or in later versions setting gmond to deaf mode,
the compute nodes no longer receive all metrics from all machines, and their memory
usage decreased.

Central collector unicast receiver

One of our other approaches to the network issue is to set up a central collector daemon
and let all Ganglia daemons send in unicast mode. Unicast does travel through complex
network layouts whereas multicast does not. We use this setup in combination with
the aforementioned deaf compute nodes.

However, the issue of memory usage remains in this setup. For a cluster containing a
few hundred machines, like ours, the memory usage can exceed 1 GB. So make sure
that you have enough memory for your central collector.

Server RRD IO

When we started out using Ganglia with only a few machines, the server side of Ganglia
was under a tiny load and could handle it easily. However, the more machines we
added, the more we realized that the server and its disk IO were starting to become a
bottleneck. Because every machine stores about 50 metrics or more and every single
metric is 1 file on disk, for 1,800 machines this adds up to almost 100,000 files on disk.

While visiting a conference, I learned that one performance bottleneck was the Linux
kernel readahead ability. This kernel feature tries to predict IO actions and accelerate
performance by reading ahead. This feature does not work for RRD as the IO access is
fairly random. Installing a new RRDtool version that contains a call to disable reada-
head for RRDs helped a lot for this particular issue. This problem was fixed in version
1.2.24 and 1.3.x. (See this article by David Plonka, Archit Gupta, and Dale Carder.)

Even with readahead disabled, all the RRD activity can still be cumbersome on the
Ganglia server side. Because our Ganglia server has enough memory, we now use a
RAM disk for the RRD files. Obviously, RAM disks can be dangerous in terms of the
loss of files, but as long as you are aware of this risk, you can watch out for it.

We now use a 2 GB RAM disk with Linux tmpfs. The advantage of tmpfs is that it
resizes the actual memory usage for the RAM disk, based on utilization. We created an
init.d script that copies out and writes back the RRDs upon system boot and shutdown.
Additionally, we write all RRDs to disk at least once per hour. This way, we can be sure
that the loss of metrics is only for the last hour, should the server or the RAM disk
somehow fail and the RAM disk contents be lost.

SARA | 185

http://static.usenix.org/event/lisa07/tech/full_papers/plonka/plonka_html/

Conclusion
All in all, we are happy with our Ganglia setup, which translates to most of our systems
using it.

Although there can be some scaling issues, using some of the techniques described here
can help quite a bit. We are confident that our current setup can handle much more,
using techniques such as central collector daemons and RAM disks for the server side.

Reuters Financial Software
Thomson Reuters is a well-known provider of real-time financial data, news reporting,
business data, and related software products to help customers make best use of Reuters
data.

Reuters Financial Software (RFS) and the Risk Management division (which was part
of a private equity deal during 2012) produce software to fully automate the operations
of the treasury, capturing trade events, monitoring portfolios in real time, detecting
risks, and processing payments in the back office.

Ganglia in the QA Environment
Before new versions of software products are released to the clients, it is essential that
they pass through a testing regime.

Testing involves two things:

Functional testing
For example, entering a foreign exchange (FX) spot trade and verifying that it flows
to the back office for payment.

Nonfunctional testing
For example, verifying that the price server process does not use up more memory
than the previous release.

It is the nonfunctional testing requirement that has been satisfied by the use of Ganglia,
RRDtool, and Nagios.

Because the technical staff have a strong background in development and system ad-
ministration, the use of these tools provides a convenient way to obtain flexibility.

Market data overload

During the recent financial crisis, there have been times when trading activity has been
significantly in excess of normal levels. This typically happens on the days when banks
like Bear Stearns and Lehman Brothers collapsed in the United States, or when England
saw a bank run on the Northern Rock. For example, a bank handling 300 deals per

186 | Chapter 9: Ganglia Case Studies

http://www.thomsonreuters.com

hour may have traded 1,000 deals per hour as clients try to remove (perceived) risky
stocks from their portfolios.

These surges in trading subsequently lead to a surge in the volume of market data
(prices) transmitted from the exchanges. Each time a deal is concluded on an exchange,
the price is transmitted to all interested parties through the various networks (Reuters,
Bloomberg, and some other minor players). This surge in data comes back to all banks,
not just those that are trading more actively than usual.

The Kondor+ application, the flagship front-office product from RFS, receives the
market data through a single server process (known as KVS) and distributes the prices
to the trader workstations in the bank.

One client noticed that their KVS had crashed during the surge in data and the trader
workstations subsequently stopped showing the current prices. The client raised a
support request, demanding a full explanation and a solution.

Analysis and reproducing the problem

The client had already checked basic metrics. Network cards were operating way below
capacity, and CPU was not overloaded.

Therefore, it became necessary for the engineering team at RFS to conduct a more
detailed study and simulation of the problem. To create such a simulation, it is neces-
sary to emulate the bank’s environment: a database must be created containing a similar
number of deals and portfolios.

Fortunately, creating the replica environment was straightforward, and reproducing
the problem was also done very quickly, proving that the client would likely face the
same problem again if trading volumes went through the roof.

It is at this stage that monitoring became a factor. Not only was it necessary to monitor
the CPU and NIC, but it became necessary to focus on the individual process, the CPU
core it uses, and its memory footprint. Furthermore, it was possible to modify the
application to provide some metrics about its functional load (number of price updates
per second, and the time that each price update is queued).

All of the data can be combined and superimposed onto a single graph using the mon-
itoring tools, Ganglia for the system, and some custom scripts around rrdtool to rrdup-
date values from the application’s log.

As the underlying format of all data is rrdtool, it is easy to rrdgraph all the data together
as required. It was very quickly established that KVS response times become slower
and slower as the market data volume increases. Memory consumption was not un-
usual, but a CPU core was overloaded (due to a single thread). The graphs show a linear
relationship between the rate of incoming price ticks and the processing delay—up to
a point. When the market data level exceeds a certain threshold, the relationship be-
tween the tick rate and processing time ceases to become linear and demonstrates an
exponential increase. Soon afterward, the process crashes.

Reuters Financial Software | 187

Validating the solution

Using various profiling tools, some inefficient code paths were identified and opti-
mized. Such a solution requires testing to confirm its validity.

Once again, the simulations were performed and it was observed that the exponential
behavior no longer occurred within the trading volumes expected by the client.

The custom rrdtool graphs provide a convenient way to show the client evidence of the
testing and also allow them to forecast the market data volumes that they can safely
handle in the future.

Ganglia in a Major Client Project
Upgrading a Kondor+ client from an old version of the product to the current version
is a major project. One particular client desired to upgrade Kondor+ and the full suite
of related products in a single weekend—a tremendously complicated exercise.

Such projects often involve anywhere from six to twelve months of planning and testing
before a real upgrade is attempted. This process validates that the bank will be able to
complete the upgrade safely.

Upgrading takes too long

In most banks, upgrades are performed on Saturdays, and postupgrade tests are per-
formed on Sundays. There is always a fall-back plan in case a problem is found on a
Sunday so that the bank will always be open for business as usual on Monday morning.

This schedule imposes an important nonfunctional test criterion on the project: how
long does it take to run the upgrade?

For the project in question, in which the client was upgrading all components of the
Kondor Suite on the same weekend, the simulation upgrade required almost 40 hours.
Such a long upgrade would not be permitted, as it would not allow enough time for
bank staff to test the system on Sunday.

Analysis and studying the problem

This problem required analysis from many perspectives. For example, a specialist from
the database vendor was called to verify the configuration of the database server. Ap-
plication support staff pored over the log files looking for update queries that ran too
slowly. System staff look for trends in metrics, such as CPU, IOPS, memory usage, or
network IO, that might be correlated with the problem.

As the bank had purchased new servers for the project, there was no monitoring tool
available—staff from the bank headquarters were not planning to install their com-
mercial monitoring tool until the project want live.

188 | Chapter 9: Ganglia Case Studies

Consequently, the Thomson Reuters consultants proposed the use of Ganglia as a stop-
gap measure to enable monitoring of the new servers and some application-specific
metrics during the testing phase of the project.

Given the nature of the project (an upgrade), it should not be a big surprise that many
of the processes ran on a single thread (using a single CPU core), which is often a
bottleneck. In such phases, the project is CPU-bound.

Another common feature of upgrade projects is that all the data in the database is
scanned, reconstructing tables one by one where the schema has changed and recal-
culating values that have new meaning. Behind the scenes, the database server has to
perform an enormous amount of work updating indexes during such operations. All
of the database activity is typically IO-bound, so the SAN performance is the major
bottleneck during these phases of the upgrade.

It was not expected that Ganglia would solve all the problems on this project. In fact,
it was only expected to help answer a couple questions:

1. How many hours of the upgrade are CPU-bound, and how many hours are IO-
bound? (How often is it bound by one CPU?)

2. During those phases when the upgrade is IO-bound, is the IO performance of the
SAN satisfactory?

Using Ganglia for the analysis

To help answer these questions, Ganglia binaries are used from the OpenCSW project
for Solaris. In particular, the package ganglia_modules_solaris is used to obtain per-
core CPU metrics and per-LUN (logical unit number) metrics from the SAN.

The per-CPU metrics are very valuable for visualizing the periods when the upgrade
process is bound by a single CPU.

However, the per-LUN metrics (reporting IOPS from the SAN) are slightly more chal-
lenging because the database actually stripes across multiple LUNs. Fortunately, with
rrdtool as the backend for Ganglia, it is possible to manually define a graph that ag-
gregates metrics for all the LUNs backing each database. Such a graph is shown in
Figure 9-13. Notice that the average service time for each LUN is graphed separately
(colored lines), while the throughput (MB/s) for all LUNs is summed to create the
shaded area graph. Spikes in the shaded area graph show periods when there is a need
for significant IO throughput. It is interesting to note that the LUNs don’t all demon-
strate the same service times during those peaks in throughput; this is a very interesting
revelation that encouraged further analysis of the SAN architecture.

Results

The results showed that the project was more often blocked by IO than by CPU, making
it clear that remediation should be focused on the IO system itself, or on improving (or

Reuters Financial Software | 189

eliminating) some of the IO-intensive queries. Furthermore, the visualization with
RRDtool made it clear that a particularly long phase of the upgrade was IO bound all
the way through.

Lumicall (Mobile VoIP on Android)
Lumicall is an advanced open source mobile VoIP app for Android published as part
of the OpenTelecoms.org initiative.

Mobile VoIP started as a niche area, but recent trends suggest that it has the potential
to become the dominant paradigm for voice communications. Demand for mobile VoIP
is driven by the desire of consumers and businesses to break free of the straightjacket
created by the telephone companies. The paradigm of existing mobile communications
is largely insecure (as demonstrated by the wholesale level of phone hacking recently
exposed in the UK), overpriced (as demonstrated by the need for EU regulators to
intervene and set limits on roaming charges), and largely inflexible when compared to
modern unified communications solutions.

Figure 9-13. IO observations during trial upgrade

190 | Chapter 9: Ganglia Case Studies

http://www.lumicall.org
http://www.opentelecoms.org

Nobody expects telephone companies to reform; rather, the increasing power of smart-
phones (such as those running Android) is enabling consumers and businesses to de-
ploy VoIP apps that work around the cumbersome GSM model. For example, when a
Belgian goes to France, he no longer pays roaming charges: he simply locks his phone
onto Wi-Fi and uses mobile VoIP.

Although consumers have been quick to experiment with apps like Lumicall and Viber,
businesses are still one step behind. One of their key concerns is the need to maintain
the quality and consistency of phone calls.

Monitoring Mobile VoIP for the Enterprise
For VoIP communications, a change in network quality (or a change in application
performance due to some other app on the phone hogging the CPU) can lead to an
almost immediately perceptible change in audio quality.

It is often easy for the user to be disturbed by such issues in audio quality, yet it can be
troublesome for an IT department to take responsibility and diagnose the problem,
particularly if the user is in a remote location.

In such cases, a comprehensive monitoring solution at the level of the handset is nec-
essary. The solution can gather key metrics about the audio quality (for example, the
percentage of packets that are not received) and secondary metrics (such as wireless
strength) that may help understand how a quality problem has been induced.

Ganglia Monitoring Within Lumicall
Because the Android platform is based on Java, it is relatively easy to deploy the gme-
tric4j code into an Android app, which is exactly what has been done with Lumicall.

One particular issue with mobile users is that they often move between different wire-
less networks and mobile data networks, almost always behind network address trans-
lation (NAT). This makes it impossible to probe them continuously using a protocol
such as SNMP. However, Ganglia’s UDP unicast mode requires communication in only
one direction (from handset back to base), so it is an instant success. The same is likely
to be true for almost any mobile app, not just a VoIP app like Lumicall.

A more subtle issue is the tendency of Android phones to sleep. Many Java applications,
including the original gmetric4j code, rely on regular threading code and use the
Thread.sleep() method to perform background tasks. This code compiles and executes
on Android without any conspicuous error. However, it is obvious that when the phone
sleeps, the metrics stop updating. Consequently, the most recent version of gmetric4j
allows the timing code to be replaced by a user-supplied implementation, and Lumicall
leverages this mechanism to drive all background activity using the Android Alarm-
Manager, a special class that can wake the CPU when a sleep() interval elapses. This
code can be found in the class org.lumicall.android.ganglia.AndroidGScheduler.

Lumicall (Mobile VoIP on Android) | 191

Implementing gmetric4j Within Lumicall
The GMonitor instance, the main module of gmetric4j, is encapsulated within an An-
droid service, GMonitorService. The service is defined in the Android manifest:

 <service
 android:name="org.lumicall.android.ganglia.GMonitorService"
 android:enabled="true"/>

and started from elsewhere in the application:

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 startService(new Intent(this, GMonitorService.class));

The specific methods for Android (Wi-Fi and GSM metrics) and some VoIP quality
metrics are then defined in the org.lumicall.android.ganglia.*Sampler classes. A cut-
down version of the WifiSampler class, just extracting the Wi-Fi metric, is presented
here:

public class AndroidSampler extends GSampler {
private Context context;

 public AndroidSampler(Context context) {
 super(0, 5, "lumicall");
 this.context = context;
 }

 @Override
 public void run() {
 Publisher gm = getPublisher();
 publishWifi(gm);
 }

 protected void publishWifi(Publisher p) throws Exception {
 WifiManager wm = (WifiManager) context.getSystemService(Context.WIFI_SERVICE);
 WifiInfo wi = wm.getConnectionInfo();
 double rssi = Double.NaN;
 if(wi.getBSSID() != null) {
 rssi = wi.getRssi();
 }
 p.publish(process, "wifi_rssi",
 Double.toString(rssi), GMetricType.FLOAT, GMetricSlope.BOTH, "");
 }
}

The output of this metric is demonstrated by the RSSI graph in Figure 9-14.

Some mobile devices spend little time in Wi-Fi coverage areas, so it is also important
to understand the quality of the mobile/cell network. The class org.lumi

call.android.ganglia.TelephonySampler gathers this metric (see Figure 9-15).

One of the core metrics for a mobile VoIP application such as Lumicall is the latency
of packets during a call; Figure 9-16 shows a surge in latency just before 19:20.

192 | Chapter 9: Ganglia Case Studies

Figure 9-14. Lumicall RSSI metric (Wi-Fi signal level, −dBm)

Figure 9-15. Lumicall GSM signal strength metric

Figure 9-16. Lumicall VoIP latency metric

Lumicall (Mobile VoIP on Android) | 193

At the end of the day, does all this monitoring exhaust the phone’s battery? Ganglia
can monitor that, too! Figure 9-17 shows that the battery still holds a full day’s charge.

Figure 9-17. Lumicall battery metric

Lumicall: Conclusion
The data collected by gmetric4j in Lumicall and the advanced reporting provided by
the new Ganglia web interface provide a unique opportunity for those deploying mobile
VoIP to bring all of their quality metrics and useful support metrics within a single
framework.

This powerful visualization method is likely to see increases in mobile VoIP service
quality, particularly in campus environments where IT managers can tailor the Wi-Fi
topology based on real-time data from Lumicall.

Wait, How Many Metrics? Monitoring at Quantcast
Jonah Horowitz, Quantcast
Adam Compton, Quantcast
Andrew Dibble, Quantcast

194 | Chapter 9: Ganglia Case Studies

Count what is countable, measure what is measurable, and what is not measurable, make
measurable.

—Galileo Galilei

Quantcast offers free direct audience measurement for hundreds of millions of web
destinations and powers the ability to target any online audience across tens of billions
of events per day. Operating at this scale requires Quantcast to have an expansive and
reliable monitoring platform. In order to stay on top of its operations, Quantcast col-
lects billions of monitoring metrics per day. The Ganglia infrastructure we’ve developed
lets us collect these metrics from a wide variety of sources and deliver them to several
different kinds of consumers; analyze, report, and alert on them in real time; and pro-
vide our product teams with a platform for performing their own analysis and reporting.

The monitoring infrastructure at Quantcast collects and stores about 2 million unique
metrics from a number of data centers around the world, for a total of almost 12 billion
metrics per day—all of which are made available to our monitoring and visualization
tools within seconds of their collection (see Figure 9-18 as an example). This infra-
structure rests on Ganglia’s Atlas-like shoulders.

Figure 9-18. A graph of HTTP requests with Holt-Winters bounds

Some of the sources that generate these metrics are:

• Operating system metrics (CPU/memory/disk utilization)

• Application metrics (queries per second)

• Infrastructure metrics (network hardware throughput, UPS power utilization)

• Derived metrics (SLA compliance)

• Business metrics (spend and revenue)

We have a similarly broad spectrum of consumers of monitoring data:

Wait, How Many Metrics? Monitoring at Quantcast | 195

• Alerting tools (Nagios)

• Business analysis of historical trends

• Performance analysis byproduct teams

Ganglia gives us a system that can listen to all of these sources, serve all of these con-
sumers, and be performant, reliable, and quick to update.

Reporting, Analysis, and Alerting
Like many companies, we use Nagios to monitor our systems and alert us when some-
thing is not working correctly. Instead of running a Nagios agent on each of our hosts,
we use Ganglia to report system and application metrics back to our central monitoring
servers. Not only does this reduce system overhead, but it also reduces the proliferation
of protocols and applications running over our WAN network. Nagios runs a Perl script
called check_qcganglia, which has access to every metric in our RRD files stored on
ramdisk. This allows us to have individual host checks as well as health checks for entire
clusters and grids using the Ganglia summary data. Another great benefit of this ap-
proach is that we can configure checks and alerts on the application-level data that our
developers put into Ganglia. It also allows us to alert on aggregated business metrics
such as spend and revenue.

We have also implemented a custom Nagios alerting script that, through configuration
of the alert type, determines which Ganglia graphs would be useful for an operator to
see right away in the alert email and attaches those graphs as images to the outbound
alert. Typically, these include CPU and memory utilization graphs for the individual
host as well as application graphs for the host, cluster, and grid. These help the on-call
operator immediately assess the impact of any given alert on the overall performance
of the system.

Holt-Winters aberrance detection

Because Ganglia is built on RRDtool, we’re able to leverage some of its most powerful
(if intimidating) features as well. One of these is its ability to do Holt-Winters fore-
casting and aberrance detection. The Holt-Winters algorithm works on data that is
periodic and generally consistent over time. It derives an upper and lower bound from
historical data and uses that information to make predictions about current and future
data.

We have several metrics that are well suited for Holt-Winters aberrance detection, such
as HTTP requests per second. This metric varies significantly over the course of a single
day and each day of the week, but from one Monday to the next, our traffic is pretty
consistent. If we see a large swing of traffic from one minute to the next, it typically
indicates a problem. We use Nagios and RRDtool to monitor the Holt-Winters forecast
for our traffic and alert if the traffic varies outside of the expected range. This approach

196 | Chapter 9: Ganglia Case Studies

allows us to see and respond to network and application problems very quickly, using
dynamically derived thresholds that are always up to date.

Figure 9-19 shows an example of an aberrance. We took a datacenter offline for main-
tenance, and this triggered aberrance detection.

Figure 9-19. An expected aberrance is detected

Figure 9-20 shows an example of an unexpected aberrance alert.

Figure 9-20. An unexpected aberrance is detected

Wait, How Many Metrics? Monitoring at Quantcast | 197

Ganglia as an Application Platform
Because a gmond daemon is running on every machine in the company, we encourage
our application teams to use Ganglia as the pathway for reporting performance data
about their applications, which has several benefits:

Easy integration for performance monitoring
The Ganglia infrastructure is already configured, so the application developer
doesn’t have to do any special work to make use of it. Especially in concert with
the json2gmetrics tool described shortly, it’s easy for an application to generate
and report any metrics the developers think would be useful to see. Also, the de-
veloper doesn’t have to worry about opening up firewall ports, parsing or rotating
log files, or running other services devoted to monitoring, such as JMX.

Powerful analysis tools
By submitting metrics to Ganglia in this way, application developers get easy access
to very powerful analysis tools (namely, the Ganglia web interface). This set of
tools is particularly useful when troubleshooting problems with an application that
correlate with operating system metrics, such as attributing a drop in requests per
second to a machine swapping the application out of memory.

Simple and flexible alerting
Our Ganglia infrastructure is tied in with our alerting system. Once an alert is
configured, an application can trigger an alert state by generating a specific metric
with a sentinel value, which lets us centralize alert generation and event correlation;
for instance, we can prevent an application from generating alerts when the system
it runs on will be in a known maintenance window. This approach is much better
than the alternative of each application having to reinvent the wheel of monitoring
for an invalid state and sending its own emails.

Best Practices
Hard-won experience has given us some best practices for using Ganglia. Following
these practices has helped us scale Ganglia up to a truly impressive level while retaining
high reliability and real-time performance.

Using tmpfs to handle high IOPS

Collecting the sheer number of metrics we do and writing them to a spinning disk would
be impossible. To solve the IOPS problem, we write all our metrics to a ramdisk (Linux
tmpfs) and then back them up to a spinning disk with a cron job. Because we have
multiple gmetad hosts in separate locations, we’re able to protect against an outage at
either location. Also, our cron job runs frequently enough that if the tmpfs is cleared
(for instance, if the server reboots), our window of lost data is small.

198 | Chapter 9: Ganglia Case Studies

Sharding and instancing

Another way we deal with our large number of metrics is by splitting our gmetad col-
lectors up into several instances. We logically divided our infrastructure into several
different groups such as webservers, internal systems, map-reduce cluster, and real-
time bidding. Each system has its own gmetad instance, and the only place all the graphs
come together are on web dashboards that embed the graphs from each instance. This
design gives us the best of both worlds: a seamless interface to a large volume of data,
with the added reliability and performance of multiple instances.

Tools
We’ve developed several tools to get even more use out of Ganglia.

snmp2ganglia

snmp2ganglia is a daemon we wrote that translates Simple Network Management Pro-
tocol (SNMP) Object Identifiers (OIDs) into Ganglia metrics. It takes a configuration
file that maps a given OID (and whatever adjustments it might need) into a Ganglia
metric, with a name, value, type, and units label. The configuration file also associates
each OID with one or more hosts, such as network routers or UPS devices. On a con-
figurable schedule, snmp2ganglia polls each host for the OIDs associated with it and
delivers those values to Ganglia as metrics. We make use of the capability to “spoof”
a metric’s source IP and DNS name to create a pseudohost for each device.

json2gmetrics

json2gmetrics is a Perl script that wraps the Ganglia::Gmetric library to make it easy
to import a lot of metrics from almost any source. The script takes a JSON string with
a list of mappings of the form “name: <metric>, value: <value>.” With this tool, it’s
trivial for any program or system to generate Ganglia metrics, and each import requires
only one fork (as opposed to one fork per metric with the built-in gmetric tool).

gmond plug-ins

We make extensive use of gmond-style plug-ins, especially for operating system met-
rics. For instance, some of the plug-ins that we’ve written collect:

• SMART counters about disk health, temperature, etc.

• Network interface traffic (packets and bytes) and errors

• CPU and memory consumed by each user account

• Mail queue length and statistics

• Service uptimes

Wait, How Many Metrics? Monitoring at Quantcast | 199

These metrics are a powerful tool for troubleshooting and analyzing system perfor-
mance, especially when correlating systems that might seem unrelated through the
Ganglia web UI.

RRD management scripts

We have a small army of scripts that work with RRD files:

• Adding new RRAs to existing files, such as a new MAX or MIN RRA

• Adjusting the parameters of existing RRAs

• Merging data from multiple files into one coherent RRD

• Smoothing transient spikes in RRD data that throw off average calculations (par-
ticularly common with SNMP OID counters)

Drawbacks
Although Ganglia is both powerful and flexible, it does have its weak points. Each of
the following subsections describes a challenge we had to overcome to run Ganglia at
our scale.

Necessity of sharding

As our infrastructure grew, we discovered that a single gmetad process just couldn’t
keep up with the number of metrics we were trying to collect. Updates would be skipped
because the gmetad process couldn’t write them to the RRD files in time, and the CPU
and memory pressure on a single machine was overwhelming. We solved this problem
by scaling horizontally: setting up a series of monitoring servers, each of which runs a
gmetad process that collects some specific part of the whole set of metrics. This way,
we can run as many monitoring servers as we need to reach the scale of our operations.
The downside of this solution is significantly increased management cost; we have to
manage and coordinate multiple monitoring servers and track which metrics are being
collected where. We’ve mitigated this problem somewhat by setting up the Ganglia
web UI on each server to redirect requests to the appropriate server for each category
of metrics, so end users see a unified system that hides the sharding.

RRD data consolidation

RRD files offer the following quality: keeping an unbounded amount of time-series data
in a constant amount of space. They do so by consolidating older data with a consoli-
dation function (such as MIN, MAX, or AVERAGE) to make room for newer data at
full resolution.

For example, an RRD file might be configured to keep a data point at 15-second inter-
vals for an hour. This means keeping 240 unique values (60 minutes/hour × 4 data
points/minute). A whole day of data at this resolution would require 5,760 data points!

200 | Chapter 9: Ganglia Case Studies

However, instead of keeping all of those data points, this RRD file might instead be
configured to keep just one averaged data point per hour for the whole day. As new
updates are processed, a whole hour’s worth of 15-second data points would be aver-
aged to get a single data point that represents the entire hour. The file would contain
high-resolution data for the last hour and a consolidated representation of that data for
the rest of the day.

For Quantcast, we often need to analyze events in a very precise time window. If we
saw a CPU load spike for just one minute, for instance, RRDtool’s data consolidation
would average that spike with the rest of the data for that hour into a single value that
did not reflect the spike; the precise data about the event would be lost.

Coordination over a WAN

Quantcast is a global operation, so we needed to make some improvements to Ganglia
to get it to a global scale. One of these improvements involved the process of collecting
data from a gmond daemon. When a gmetad process collects metrics from a gmond,
the data is emitted as an XML tree with a node for each metric. This winds up being a
whole lot of highly compressible plain-text data. In order to save bandwidth over our
WAN links, we patched gmond to emit a compressed version of that tree, and we also
patched gmetad to work with compressed streams. Doing so substantially reduced the
amount of monitoring data we were sending over our WAN links in each site, which
left us with more room for business-critical data.

Excessive IOPS for RRD updates

Whenever a gmetad process writes a metric to an RRD file, the update process requires
several accesses to the same file: one read in the header area, one write in the header
area, and at least one update in the data area. RRDtool attempts to improve the speed
of this process by issuing fadvise/madvise system calls to prevent the filesystem from
doing normally clever things that interfere with this specific access pattern.

Because we write our RRD files into a tmpfs, the fadvise/madvise calls were just slowing
things down. We wrote a LD_PRELOAD library to hook those calls and negate them (return
0). This approach allowed us to collect a much larger number of metrics with each
gmetad shard and also significantly reduced CPU usage by the gmetad process.

Conclusions
Ganglia is an incredibly powerful and flexible tool, but at its heart, it’s designed to
collect performance monitoring data about the machines in a single high-performance
computing cluster and display them as a series of graphs in a web interface. Quantcast
has taken that basic tool and stretched it to its limit by growing it to an exceptionally
large scale, extending it across a global infrastructure, and scouring the hidden corners
of Ganglia’s potential to find new tools and functionality. Most important, though,
we’ve made Ganglia into a platform upon which other services rely. From Nagios alerts

Wait, How Many Metrics? Monitoring at Quantcast | 201

and rich emails to integration with application development, it’s become a cornerstone
of our production operations.

Many Tools in the Toolbox: Monitoring at Etsy
John Allspaw, Etsy

Monitoring Is Mandatory
Having metrics on your infrastructure should be considered mandatory, not optional.
We do wonder about how the underlying foundations of our applications are perform-
ing when we’re deploying changes, not to mention the continual process of capacity
planning.

We use Ganglia in the same vein that we use configuration management at Etsy: as the
basic building blocks of our confidence. A common approach in fast-growing web
operations is to gather clusters of nodes that do the same work and distribute workload
amongst them in one way or another. A node knows what it will be when it’s first born
into the infrastructure; it’s a “Web,” or a “Shard,” or a “Search” node, and so on. Very
rarely (if at all) do we have fewer than two nodes in a single cluster.

Because of this, Ganglia’s notion of the node/cluster/grid hierarchy makes it a good fit
for tiered web applications. Getting a node into production in its specific role within
Ganglia has one requirement: the placement of a single gmond.conf file. Because we
need no a priori knowledge about the host’s existence or even its hostname, it will come
up in the cluster in Ganglia for virtually no cost, which makes it ideal in an environment
cooked by automation.

A Spectrum of Tools
One of the challenges that all open source metrics collection and monitoring tools have
is a breadth of scope problem. Successful projects (that is, projects that have solid
communities and are reasonably popular, at least in the web operations field) all have
something in common: they stick to a constrained scope and don’t try to be everything
all at once. I think this is what I love about Ganglia, and why we used it at Friendster,
Flickr, and now Etsy.

Ganglia sits in a spectrum for us. I like to think of our metrics collection systems as
layered. At the lower layers, we have detailed metrics for network devices. SNMP polled
tools such as Cacti and our own FITB fit well here.

Above that layer sits Ganglia, picking up the metrics collection ball from network de-
vices and giving us everything we need at a node level, situated in an intuitive arrange-
ment. All host-level basics are covered: CPU, network, disk, memory, processes, and
so on. We are then only one line of code (using gmetric) away from getting software-

202 | Chapter 9: Ganglia Case Studies

http://www.cacti.net/
https://github.com/lozzd/FITB

specific metrics from a node into the aggregation hierarchy: Apache, memcached,
Squid, MySQL, PostgreSQL, Lucene/Solr, Postfix, Hadoop... If you can produce a value
or statistic from something, Ganglia will gladly and easily collect and display it for you
in multiple contexts.

As we are a “dashboard-driven” engineering culture at Etsy (to put it mildly), we need
tools that make it as free-as-possible to collect metrics. We want to focus on analysis,
not collection. One thing is clear to me: sending ad hoc metrics via gmetric is at least
50 percent of the reason we use Ganglia.

The benefit here is that node-based context is critical in a number of areas, which can’t
be overstated. Troubleshooting a large install of nodes is largely an exercise in reducing
the problem space as quickly as possible. Troubleshooting under time pressure means
that I’m going to want to first establish that a single or group of nodes in a cluster is
somehow behaving differently. In almost every case, we put nodes into a single cluster
because we expect them to behave exactly the same.

With stacked graphs and a single metric view on every node at a cluster level, outliers
will stick out easily. I can confirm (or not) the fact that all nodes are behaving identically.
If they do, I can drill into them with one action. If they don’t, I can eliminate node-level
issues and move my process of elimination elsewhere.

Above that sits Graphite, which rounds out the rest of what we need. Some metrics
simply don’t have a node context. Application metrics such as “registrations,” “pur-
chases,” and “logins” have rates and volumes that exist in the Etsy context, not the
node context. They are actions that depend on multiple nodes in multiple clusters
acting together to produce what is, in essence, a feature of our site.

Embrace Diversity
Trying to shoehorn these types of metrics into the node/cluster/grid context that Gan-
glia is so good at is akin to mowing a lawn with a snowplow. It would dilute the
strengths of Ganglia. If I can gather “registrations,” which node should I place them
in? I can’t point to one node (or even a cluster) that would be responsible for registering
new members on Etsy, so I would have misplaced context if I put that metric there.

In the same vein, I don’t believe that Graphite is appropriate at all for node and cluster-
level metrics; the UI and collection methods simply don’t encourage this usage and
forcing it would be a tough sell for me on a cost/benefit basis. We use Graphite for
application-level metrics such as those mentioned previously: statistics on high-
resolution values such as page performance and error log line entries.

This is the boundary of Ganglia and Graphite. We have Logster (based on the original
Ganglia logtailer), which can derive metrics from log files. We can send these metrics
to either Ganglia (for things that make sense in a node context) or Graphite (for things
that make sense in the application context), and we use both heavily. So we’re leaning

Many Tools in the Toolbox: Monitoring at Etsy | 203

http://graphite.wikidot.com/
https://github.com/etsy/logster/

on the strengths of both systems, via the same collection method, that are appropriate
for the context.

We aim to layer tools together, in complementary fashion, as part of a palette of tools
to gain situational awareness. To support this approach, we have a lightweight dash-
board UI framework that can juxtapose graphs from Cacti, FITB, Ganglia, Graphite,
and others.

Conclusion
Even in this world of disposable and fully automated infrastructures, node- and cluster-
level metrics matter a great deal. This is why we use Ganglia. There are some who think
that this “many tools” approach is wasteful, that there must be a singular “One Tool
to Rule Them All.” I don’t believe that idea is true or even possible. I have yet to see an
implementation of any metrics collection system that is the best at every one of these
layers—only individual tools that are the best at one of the layers.

To those who aspire to create such an omniscient tool that can elegantly handle metrics
collection for every device possible, along with flexible anomaly detection, alerting, and
escalation—all at the same time remaining human-centered enough to be used effi-
ciently: I salute you, and godspeed.

In the meantime, we have work to do. And Ganglia helps us do it.

204 | Chapter 9: Ganglia Case Studies

https://github.com/etsy/dashboard
https://github.com/etsy/dashboard

APPENDIX A

Advanced Metric Configuration and
Debugging

Module Metric Definitions
The following tables describe the metric modules that are part of the distribution of
the Ganglia monitoring system. In addition to these metric modules, there are also a
number of other modules that are available through the Ganglia module git reposi-
tory. As new modules are developed, many developers share them with the Ganglia
community through the Ganglia module repository. The Ganglia module git repository
is open to the public, and the modules are free to download and use. Some of the
additional modules that are available from this repository include modules for moni-
toring an Apache Web Server, MySQL database, and Xen virtual machine, as well as
Tomcat and Jetty servlet monitoring through JMX.

Mod_MultiCPU
Prior to the introduction of Mod_MultiCPU, gmond was able to produce only a single
CPU-related value for each of the various CPU metrics that it reported. If the hardware
architecture supported multiple CPUs, gmond reported only the overall usage rather
than the usage for each individual CPU. The Mod_MultiCPU module is capable of
detecting how many CPUs exist on the system and constructs the series of metric def-
initions for each one (Table A-1). Through the configuration of Mod_MultiCPU, all
CPU-related metrics can be reported for each CPU detected on the system.

Table A-1. Mod_MultiCPU: monitor individual CPU metrics

Metric Name Description

multicpu_user Percentage of CPU utilization that occurred while executing at the user level

multicpu_nice Percentage of CPU utilization that occurred while executing at the nice level

multicpu_system Percentage of CPU utilization that occurred while executing at the system level

205

https://github.com/ganglia/gmond_python_modules
https://github.com/ganglia/gmond_python_modules

Metric Name Description

multicpu_idle Percentage of CPU utilization that occurred while executing at the idle level

multicpu_wio Percentage of CPU utilization that occurred while executing at the wio level

multicpu_intr Percentage of CPU utilization that occurred while executing at the intr level

multicpu_sintr Percentage of CPU utilization that occurred while executing at the sintr level

Mod_GStatus
The Mod_GStatus module (Table A-2) started out as a metric module debugging tool
when the modular interface was first introduced into gmond. The purpose of this
module was to detect and report all of the metric gathering, data packet sends, and
receives as gmond was running. In other words, as gmond is capable of monitoring
every aspect of the system, why shouldn’t gmond also monitor itself? Some of the met-
rics that Mod_GStatus reports are the number of metadata packets sent and received
and the number of value packets sent and received, as well as the overall totals. It also
tracks any failures in the system. If gmond is incapable of sending or receiving a packet
of any kind, Mod_GStatus will report these failures as well.

Table A-2. Mod_GStatus: monitor gmond metrics

Metric Name Description

gmond_pkts_recvd_value Number of metric value packets received

gmond_pkts_recvd_metadata Number of metric metadata packets received

gmond_pkts_sent_value Number of metric value packets sent

gmond_pkts_recvd_failed Number of metric packets failed to receive

gmond_pkts_sent_metadata Number of metric metadata packets sent

gmond_pkts_recvd_request Number of metric metadata packet requests received (multicast only)

gmond_pkts_sent_request Number of metric metadata packet requests sent (multicast only)

gmond_version gmond version

gmond_pkts_recvd_all Total number of metric packets received

gmond_pkts_sent_all Total number of metric packets sent

gmond_version_full gmond full version

gmond_pkts_recvd_ignored Number of metric packets received that were ignored

Multidisk
The Multidisk module (Table A-3) was introduced as one of the new metric gathering
modules for many of the same reasons as Mod_MultiCPU. In previous versions of
gmond, the metrics that reported disk space added up the totals for all disks and re-
ported this value for total disk space and used space. The Multidisk module provided

206 | Appendix A: Advanced Metric Configuration and Debugging

a way to report disk usage metrics for each individual disk rather than a total of all disks
on the system.

Table A-3. Multidisk (Python module): report disk available and disk used space for each individual
disk device

Metric Name Description

<device name>_disk_total Available disk space for each disk device

<device name>_disk_used Amount of disk space used for each disk device

memcached
The memcached module (Table A-4) introduced a way to take a closer look at what is
actually happening under the hood of the memory management system. The standard
memory metrics only report overall memory usage and totals for the system and do not
provide any further details about memory management. This module dives a little
deeper into how the memory is being used and can help to point out memory
inefficiencies.

Table A-4. memcached (Python module)

Metric Name Description

<metric prefix>_curr_items Current number of items stored

<metric prefix>_cmd_get Cumulative number of retrieval reqs

<metric prefix>_cmd_set Cumulative number of storage reqs

<metric prefix>_bytes_read Total number of bytes read by this server from network

<metric prefix>_bytes_writ

ten

Total number of bytes sent by this server to network

<metric prefix>_bytes Current number of bytes used to store items

<metric prefix>_limit_max

bytes

Number of bytes this server is allowed to use for storage

<metric prefix>_curr_con

nections

Number of open connections

<metric prefix>_evictions Number of valid items removed from cache to free memory for new items

<metric prefix>_get_hits Number of keys that have been requested and found present

<metric prefix>_get_misses Number of items that have been requested and not found

<metric pre

fix>_get_hits_rate

Hits per second

<metric pre

fix>_get_misses_rate

Misses per second

<metric pre

fix>_cmd_get_rate

Gets per second

Module Metric Definitions | 207

Metric Name Description

<metric pre

fix>_cmd_set_rate

Sets per second

<metric pre

fix>_cmd_set_hits

Number of keys that have been stored and found present

<metric pre

fix>_cmd_set_misses

Number of items that have been stored and not found

<metric prefix>_cmd_delete Cumulative number of delete reqs

<metric pre

fix>_cmd_delete_hits

Number of keys that have been deleted and found present

<metric pre

fix>_cmd_delete_misses

Number of items that have been deleted and not found

TcpConn
The TcpConn metric module (Table A-5) provides a way to look at TCP network con-
nections in an effort to detect problems or misconfiguration. By monitoring the TCP
connection activity on the system, this module can help point out issues that may affect
network latency or the inability to send or receive data in an efficient manner. This
module also introduced a new pattern for how to write Python metric modules that
include threading and caching. Because the TcpConn module relies heavily on the
netstat Linux utility to acquire TCP metric data and the fact that gmond is not a mul-
tithreaded daemon, the module doesn’t want to cause any delays in the gmond gath-
ering process due to latency in calling an external process utility. In order to avoid any
kind of latency issues, the TcpConn module starts up its own gathering thread, which
is then free to invoke the netstat utility as required. By invoking the netstat utility within
a thread, the module is able to gather the TCP connection related values without having
to worry about delaying the gmond gathering process. As the metrics are being gathered
from within the thread, these values are stored in a shared cache that can be accessed
quickly whenever gmond asks the module for its metric values. Introducing threads
through Python is actually a very convenient way to make a single-threaded gmond
daemon act as if it were multithreaded.

Table A-5. TcpConn (Python module): monitor TCP connection states

Metric Name Description

tcp_established Total number of established TCP connections

tcp_listen Total number of listening TCP connections

tcp_timewait Total number of time_wait TCP connections

tcp_closewait Total number of close_wait TCP connections

tcp_synsent Total number of syn_sent TCP connections

tcp_synrecv Total number of syn_recv TCP connections

208 | Appendix A: Advanced Metric Configuration and Debugging

Metric Name Description

tcp_synwait Total number of syn_wait TCP connections

tcp_finwait1 Total number of fin_wait1 TCP connections

tcp_finwait2 Total number of fin_wait2 TCP connections

tcp_closed Total number of closed TCP connections

tcp_lastack Total number of last_ack TCP connections

tcp_closing Total number of closing TCP connections

tcp_unknown Total number of unknown TCP connections

Advanced Metrics Aggregation and You
There are certain types of metrics aggregation that can’t easily be accomplished by using
only gmond and gmetric submission. The most notable of these instances are “deriv-
ative” values and “counters.” These require collection and aggregation over time, in
the case of derivative values, and are less than optimally collected using counters.

It is worth pointing out, at this point in this text, that Ganglia does have a way of dealing
with some derivative values. Metrics submitted using a “positive” slope generate RRDs
that are created as COUNTERs; however, this mechanism is not ideal for situations in-
volving incrementing values that submit on each iteration (i.e., Apache httpd page
serving counts without log-scraping).

One of the solutions for dealing with counter values is statsd. It was created by the nice
folks at Etsy. It is written in Node.js, though there are quite a few ports and clones
available. Table A-6 lists some of these that are available at the time of writing.

Table A-6. statsd implementations

Software Language Description

statsd Node.js https://github.com/etsy/statsd. It should be noted that the original statsd implemen-

tation does not have Ganglia/gmetric submission support without an additional mod-

ule, which is available here.

statsd-go Go https://github.com/jbuchbinder/statsd-go. This implementation is a fork of the gogra-

phite port of statsd, which did not have Ganglia/gmetric submission support at the time

of writing.

py-statsd Python https://github.com/sivy/py-statsd

Ruby statsd Ruby https://github.com/fetep/ruby-statsdserver

 C https://github.com/jbuchbinder/statsd-c

The protocol for statsd is relatively simple, and most of the statsd servers come with
an example client for submitting statsd.

Advanced Metrics Aggregation and You | 209

https://github.com/etsy/statsd
https://github.com/jbuchbinder/statsd-ganglia-backend
https://github.com/jbuchbinder/statsd-go
https://github.com/sivy/py-statsd
https://github.com/fetep/ruby-statsdserver
https://github.com/jbuchbinder/statsd-c

In addition, there is another piece of software called VDED, which can be used to track
ever-increasing values.

Configuring statsd
Most statsd instances are fairly similar to configure for submitting metrics to Ganglia.
The important considerations should be how that data is represented in your Ganglia
instance. For example, statsd and its clones don’t have any particular notion of “host,”
so each statsd instance is tied to submitting metrics that will be associated with a specific
Ganglia host.

statsd

The original statsd instance requires the additional Ganglia NPM module to be in-
stalled, using npm install statsd-ganglia-backend. It can then be configured by adding
statsd-ganglia-backend to the array of backends and configuring the Ganglia config
key in your statsd configuration file:

{

 ganglia: {

 host: "127.0.0.1" // hostname/IP of gmond instance

 , port: 8649 // port of gmond instance

 , spoof: "10.0.0.1:myhost.mynet" // ganglia spoof string

 , useHost: 'myhost.mynet" // hostname to present to ganglia

 }

}

statsd-c

statsd-c can be configured to submit values to Ganglia by specifying:

-G (ganglia host) -g (ganglia port) -S (spoof string)

as part of the starting command line for statsd-c.

py-statsd

py-statsd can be configured to submit values to Ganglia by specifying:

--transport="ganglia" --ganglia_host="localhost" --ganglia_port=8649
--ganglia_spoof_host="statd:statd"

as part of the starting command line for py-statsd.

Configuring VDED
VDED has some of the same constraints as statsd, except that it is not constrained to
submit all values as if they belonged to a single host. The optional “spoof” parameter
for submitting metrics to VDED allows different spoof arguments to be associated with

210 | Appendix A: Advanced Metric Configuration and Debugging

https://github.com/jbuchbinder/vded

different tracked metrics. It is a good idea to remember that VDED aggregation is limi-
ted to the cluster of which the receiving gmond instance is a member.

The command-line arguments for VDED, which are managed in /etc/vded/config on
RHEL installations, is configured using the following switches:

--ghost=(ganglia host) --gport=(ganglia port) --gspoof=(default spoof)

rrdcached
rrdcached is a high-performance RRD caching daemon, which allows a larger number
of RRD files to be maintained by a gmetad instance without the higher IO load asso-
ciated with reading/writing those files to and from disk. It can be controlled via a com-
mand socket and is distributed with the standard RRDtool packages for most Linux
distributions.

Note that rrdcached may be unnecessary if you’re using a ramdisk to store your RRD
files.

Installing
The rrdcached package can be installed on Debian-based distributions (Debian,
Ubuntu, Linux, Mint, etc.) by using apt:

 $ sudo apt-get -y install rrdcached

For Red Hat/RHEL-based distributions (Red Hat/RHEL, Fedora, CentOS, etc.),
rrdcached can be installed via the rrdtool package, which was probably installed al-
ready for gmetad to function properly:

 $ sudo yum install -y rrdtool

Configuring gmetad for rrdcached
gmetad can be configured to use rrdcached by setting the RRDCACHED_ADDRESS variable
in the configuration file included by gmetad’s init script. For Red Hat distributions,
this is /etc/sysconfig/gmetad, and for Debian distributions, it is /etc/default/gmetad. For
local sockets, the format unix:/PATH/TO/SOCKET should be used to specify the address
parameter.

Along with the gmetad configuration change (which will require a restart of any running
gmetad processes), it is also recommended that a change be made to the Ganglia web
frontend, which will force the frontend to also use rrdcached for forming graphs. En-
abling rrdcached support in the web frontend is done by setting the configuration vari-
able $conf['rrdcached_socket'] to the value of gmetad’s RRDCACHED_ADDRESS.

rrdcached | 211

Controlling rrdcached
There are a number of useful operations that can be performed by using telnet, netcat,
or socat (depending on whether you have a network or Unix socket set up as the control
socket). For example, a FLUSHALL command forces the rrdcached daemon to flush all
RRD data to disk as soon as it can:

$ echo "FLUSHALL" | sudo socat - unix:/var/rrdtool/rrdcached/rrdcached.sock

$ echo "FLUSHALL" | nc -v -w 3 localhost 42217

Troubleshooting
There are several things that can go awry with an rrdcached Ganglia installation, pri-
marily because an extra layer of complexity has been added.

Permissions

Make sure that the permissions on the rrdcached socket file are permissive enough to
allow both the gmetad service user and the web server user to be able to read and write.
Failures to communicate via the socket will be visible in gmetad’s log.

Delays in metrics

rrdcached uses a series of event logs to cache changes to RRD files before it writes them
to disk. Heavy load on the server hosting the rrdcached instance may result in a backlog
of metrics that have not been written properly to disk. (Note that this does not indicate
that the metrics have been dropped, but rather that the rrdcached file still has not
written them to their final location.)

Individual metrics can be flushed to disk by using the rrdcached socket and issuing a
FLUSH command followed by the full pathname to the target RRD file. This will bring
the specified RRD file to the top of the rrdcached job queue. Alternatively, a full flush
to disk of all queued RRD updates can be initiated by sending a FLUSHALL instead.

Debugging with gmond-debug
gmond-debug is a useful tool for debugging inbound gmetric formatted traffic. It can
be used to debug any of the third-party gmetric libraries or to track down most unusual
gmetric behaviors.

To install gmond-debug, run the following commands:

$ git clone git://github.com/ganglia/ganglia_contrib.git

Cloning into 'ganglia_contrib'...

remote: Counting objects: 479, done.

remote: Compressing objects: 100% (302/302), done.

remote: Total 479 (delta 200), reused 434 (delta 156)

Receiving objects: 100% (479/479), 1.10 MiB | 908 KiB/s, done.

Resolving deltas: 100% (200/200), done.

212 | Appendix A: Advanced Metric Configuration and Debugging

$ cd ganglia_contrib/gmond-debug

$. source.env

$ for i in gems/cache/*.gem; do gem install $i; done

Successfully installed dante-0.1.3

1 gem installed

Installing ri documentation for dante-0.1.3...

Installing RDoc documentation for dante-0.1.3...

Successfully installed diff-lcs-1.1.3

...

Successfully installed uuid-2.3.5

1 gem installed

Installing ri documentation for uuid-2.3.5...

Installing RDoc documentation for uuid-2.3.5...

$

Now that you have gmond-debug installed, starting the service is straightforward.

$. source.env

$./bin/gmond-debug Starting gmond-zmq service...

With the following options:

{:zmq_port=>7777,

:host=>"127.0.0.1",

:verbose=>false,

:pid_path=>"/var/run/gmond-zmq.pid",

:gmond_host=>"127.0.0.1",

:test_zmq=>false,

:log_path=>false,

:gmond_port=>8649,

:debug=>true,

:gmond_interval=>0,

:zmq_host=>"127.0.0.1",

:port=>1234}

Now accepting gmond udp connections on address 127.0.0.1, port 1234...

To test using gmond-debug, point your gmetric submission software at this machine,
port 1234. As soon as UDP packets on port 1234 are received, gmond-debug will at-
tempt to decode it and print a serialized version of the information contained therein.

Debugging with gmond-debug | 213

APPENDIX B

Ganglia and Hadoop/HBase

You’ve got data—lots and lots of data that’s just too valuable to delete or take offline
for even a minute. Your data is likely made up of a number of different formats, and
you know that your data will only grow larger and more complex over time. Don’t fret.
The growing pains you’re facing have been faced by other people and there are systems
to handle it: Hadoop and HBase.

If you want to use Ganglia to monitor a Hadoop or HBase cluster, I have good news—
Ganglia support is built in.

Introducing Hadoop and HBase
Hadoop is an Apache-licensed open source system modeled after Google’s MapReduce
and Google File System (GFS) systems. Hadoop was created by Doug Cutting, who
now works as an architect at Cloudera and serves as chair of the Apache Software
Foundation. He named Hadoop after his son’s yellow stuffed toy elephant.

With Hadoop, you can grow the size of your filesystem by adding more machines to
your cluster. This feature allows you to grow storage incrementally, regardless of
whether you need terabytes or petabytes of space. Hadoop also ensures your data is
safe by automatically replicating your data to multiple machines. You could remove a
machine from your cluster and take it out to a grassy field with a baseball bat to reenact
the printer scene from Office Space—and not lose a single byte of data.

The Hadoop MapReduce engine breaks data processing up into smaller units of work
and intelligently distributes them across your cluster. The MapReduce APIs allow de-
velopers to focus on the question they’re trying to answer instead of worrying about
how to handle machine failures—you’re regretting what you did with that bat now,
aren’t you? Because data in the Hadoop filesystem is replicated, Hadoop can automat-
ically handle failures by rerunning the computation on a replica, often without the user
even noticing.

215

HBase is an Apache-licensed open source system modeled after Google’s Bigtable.
HBase sits on top of the Hadoop filesystem and provides users random, real-time read/
write access to their data. You can think of HBase, at a high level, as a flexible and
extremely scalable database.

Hadoop and HBase are dynamic systems that are easier to manage when you have the
metric visibility that Ganglia can provide. If you’re interested in learning more about
Hadoop and HBase, I highly recommend the following books:

• White, Tom. Hadoop: The Definitive Guide. O’Reilly Media, 2009.

• Sammer, Eric. Hadoop Operations. O’Reilly Media, 2012.

• George, Lars. HBase: The Definitive Guide. O’Reilly Media, 2011.

Configuring Hadoop and HBase to Publish Metrics to Ganglia
Ganglia’s monitoring daemon (gmond) publishes metrics in a well-defined format. You
can configure the Hadoop metric subsystem to publish metrics directly to Ganglia in
the format it understands.

The Ganglia wire format changed incompatibly at version 3.1.0. All
Ganglia releases from 3.1.0 onward use a new message format; agents
prior to 3.1.0 use the original format. Old agents can’t communicate
with new agents, and vice versa.

In order to turn on Ganglia monitoring, you must update the hadoop-metrics.proper-
ties file in your Hadoop configuration directory. This file is organized into different
contexts: jvm, rpc, hdfs, mapred, and hbase. You can turn on Ganglia monitoring for
one or all contexts. It’s up to you.

Example B-1 through Example B-5 are example configuration snippets from each met-
ric context. Your hadoop-metrics.properties file will likely already have these Ganglia
configuration snippets in it, although they are commented out by default.

Example B-1. Hadoop Java Virtual Machine (jvm) context

Configuration of the "jvm" context for ganglia
jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext
jvm.period=10
jvm.servers=localhost:8649

Example B-2. Hadoop Remote Procedure Call (rpc) context

Configuration of the "rpc" context for ganglia
rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext
rpc.period=10
rpc.servers=localhost:8649

216 | Appendix B: Ganglia and Hadoop/HBase

http://shop.oreilly.com/product/9780596521981.do
http://shop.oreilly.com/product/0636920025085.do
http://shop.oreilly.com/product/0636920014348.do

Example B-3. Hadoop Distributed File System (dfs) context

Configuration of the "dfs" context for ganglia
dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext
dfs.period=10
dfs.servers=localhost:8649

Example B-4. Hadoop MapReduce (mapred) context

Configuration of the "mapred" context for ganglia
mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext
mapred.period=10
mapred.servers=localhost:8649

Example B-5. HBase (hbase) context

Configuration of the "hbase" context for ganglia
hbase.class=org.apache.hadoop.metrics.ganglia.GangliaContext
hbase.period=10
hbase.servers=localhost:8649

I’m sure you noticed some obvious patterns from these snippets. The prefix of the
configuration keys is the name of the context (e.g., mapred), and each context has class,
period, and servers properties.

class
The class specifies what format that metric should be published in. If you are
running Ganglia 3.1.0 or newer, this class should be set to org.apache.hadoop.met
rics.ganglia.GangliaContext31; otherwise, set the class to org.apache.hadoop.met
rics.ganglia.GangliaContext. Some people find the name GangliaContext31 to be
a bit confusing as it seems to imply that it works only with Ganglia 3.1. Now you
know that isn’t the case.

period
The period defines the number of seconds between metric updates. Ten seconds
is a good value here.

servers
The servers is a comma-separated list of unicast or multicast addresses to publish
metrics to. If you don’t explicitly provide a port number, Hadoop will assume you
want the default gmond port: 8649.

If you bind the multicast address using the bind option in gmond.conf,
you cannot also send a metric message to the unicast address of the host
running gmond. This is a common source of confusion. If you are not
receiving Hadoop metrics after setting the servers property, double-
check your gmond udp_recv_channel setting in gmond.conf.

Let’s work through a few samples.

Configuring Hadoop and HBase to Publish Metrics to Ganglia | 217

If you wanted to set up Hadoop to publish jvm metrics to three Ganglia 3.0.7 gmond
instances running on hosts 10.10.10.1, 10.10.10.2, and 10.10.10.3 with the gmond on
10.10.10.3 running on a nondefault port, 9999, you would drop the following snippet
into your hadoop-metrics.properties file:

Configuration of the "jvm" context for ganglia
jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext
jvm.period=10
jvm.servers=10.10.10.1,10.10.10.2,10.10.10.3:9999

If you want to set up Hadoop to publish mapred metrics to the default multicast channel
for Ganglia 3.4.0 gmond, drop the following snippet into your hadoop-metrics.proper-
ties file:

Configuration of the "mapred" context for ganglia
mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
mapred.period=10
mapred.servers=239.2.11.71

If you want to set up HBase to publish hbase metrics to a single host with the hostname
bigdata.dev.oreilly.com running Ganglia 3.3.7 gmond, use the following snippet:

Configuration of the "mapred" context for ganglia
mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
mapred.period=10
mapred.servers=bigdata.dev.oreilly.com

For your metric configuration changes to take effect, you must restart
your Hadoop and HBase services.

Once you have Hadoop/HBase properly configured to publish Ganglia metrics (Ta-
ble B-1), you will see the metrics in your gmond XML and graphs will appear in your
Ganglia web console for each metric:

$ telnet 10.10.10.1 8649
<METRIC NAME="jvm.DataNode.metrics.gcCount" VAL="4" ...
<METRIC NAME="jvm.NameNode.metrics.logError" VAL="0" ...
<METRIC NAME="jvm.NameNode.metrics.maxMemoryM" VAL="888.9375" ...
<METRIC NAME="jvm.DataNode.metrics.logWarn" VAL="9" ...
<METRIC NAME="jvm.DataNode.metrics.memHeapUsedM" VAL="2.4761734" ...
<METRIC NAME="jvm.DataNode.metrics.threadsWaiting" VAL="8" ...
...

At this point, you know how to turn on monitoring for any Hadoop context.

The Hadoop JVM metrics cover garbage collection, memory use, thread states, and the
number of logging events for each service: DataNode, NameNode, SecondaryName-
Node, JobTracker, and TaskTracker.

218 | Appendix B: Ganglia and Hadoop/HBase

The Hadoop RPC metrics will give you information about the number of open con-
nections, processing times, number of operations, and authentication successes and
failures.

The Hadoop DFS metrics provide information about data block operations (read, re-
moved, replicated, verify, written), verification failures, bytes read and written, volume
failures, and local/remote client reads and writes.

The Hadoop MapReduce metrics provide information about the number of map and
reduce slots used, shuffle failures, and tasks completed.

Table B-1. List of HBase metrics

Metric Name Explanation of value

hbase.regionserver.blockCa

cheCount

Block cache item count in memory. This is the number of blocks of StoreFiles (HFiles)

in the cache.

hbase.regionserver.blockCa

cheEvictedCount

Number of blocks that had to be evicted from the block cache due to heap size

constraints.

hbase.regionserver.blockCa

cheFree

Block cache memory available (bytes).

hbase.regionserver.blockCa

cheHitCachingRatio

Block cache hit caching ratio (0 to 100). The cache-hit ratio for reads configured to

look in the cache (i.e., cacheBlocks=true).

hbase.regionserver.blockCa

cheHitCount

Number of blocks of StoreFiles (HFiles) read from the cache.

hbase.regionserver.blockCa

cheHitRatio

Block cache hit ratio (0 to 100). Includes all read requests, although those with

cacheBlocks=false will always read from disk and be counted as a “cache miss.”

hbase.regionserver.blockCa

cheMissCount

Number of blocks of StoreFiles (HFiles) requested but not read from the cache.

hbase.regionserver.blockCa

cheSize

Block cache size in memory (bytes), that is, memory in use by the BlockCache.

hbase.regionserver.compac

tionQueueSize

Size of the compaction queue. This is the number of Stores in the RegionServer that

have been targeted for compaction.

hbase.regionserver.flush

QueueSize

Number of enqueued regions in the MemStore awaiting flush.

hbase.regionserver.fsRea

dLatency_avg_time

Filesystem read latency (ms). This is the average time to read from HDFS.

hbase.regionserver.fsRea

dLatency_num_ops

Filesystem read operations.

hbase.regionserver.memstor

eSizeMB

Sum of all the memstore sizes in this RegionServer (MB).

hbase.regionserver.regions Number of regions served by the RegionServer.

hbase.region

server.requests

Total number of read and write requests. Requests correspond to RegionServer RPC

calls; thus, a single Get will result in 1 request, but a Scan with caching set to 1,000

Configuring Hadoop and HBase to Publish Metrics to Ganglia | 219

Metric Name Explanation of value
will result in 1 request for each "next" call (i.e., not each row). A bulk-load request

will constitute 1 request per HFile.

hbase.regionserver.storeFi

leIndexSizeMB

Sum of all the StoreFile index sizes in this RegionServer (MB).

hbase.regionserver.stores Number of Stores open on the RegionServer. A Store corresponds to a ColumnFamily.

For example, if a table (which contains the column family) has three regions on a

RegionServer, there will be three stores open for that column family.

hbase.regionserver.store

Files

Number of StoreFiles open on the RegionServer. A store may have more than one

StoreFile (HFile).

220 | Appendix B: Ganglia and Hadoop/HBase

Index

Symbols
| (pipe symbol) in text returned by Nagios plug-

in, 130

A
access control

configuring for gmond, 29
default setup or configuring new rules, 71

ACLs (access control lists)
for gmond, 29
testing with netcat for gmetad hosts, 125

actions
allow or deny, 29
view and edit, 72

action_url attribute (Nagios services), pointing
to Ganglia graph.php, 138

active-active gmetad topology, 33
aggregated services, problems with, 136
aggregrate graphs in gweb, 63
AJAX requests from JavaScript applications in

client browsers, 178
Android, mobile VoIP on (see Lumicall case

study)
Apache Portable Runtime (APR) libraries, 12,

77
major component of gmond, 79

Apache web servers
Apache virtual host configuration for gweb,

39
configuring authentication, 71
expanding capabilities by adding modules,

77
mod_sflow, 145

HTTP counters and operation samples
reported by, 165

requirement for gweb installation, 17
starting up, 41
stats generated for Tagged using

mod_sFlow, 174
troubleshooting when blank page appears in

browser, 120
verifying installation on Mac OS X, 19

APACHE_USER variable (Linux)
setting for gweb on Debian-based

distributions, 17
setting for gweb on RPM-based

distributions, 18
application metrics, 195
application platform, Ganglia as, 198
application settings, configuring for gweb, 39
APR (see Apache Portable Runtime libraries)
atime updates for RRD files, 51
authentication and authorization, 70–72

access controls, 71
actions, 72
configuration examples, 72
enabling authentication, 70
modes of operation for authorization

system, 70
Automatic Rotation, 67
autotools, 73

build system, 14
cloning and building C/C++ module, 88
cloning and building C/C++ module with

autoreconf command, re-running, 89

B
batch job monitoring (SARA study), 183

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

221

battery metric for Lumicall, 194
Bigtable, 216
bind_hostname parameter, 121, 126
boot_time metric, spoofed, 97
Broadcom Net Interface Controllers (NICs),

bugs in, 123
browsers

blank page appearing in, 120
displaying white page with error message,

121
bug database, 107
bug tracker, 109
business metrics, 195

C
C/C++

choosing among Python, gmetric, and C/C
++ for custom metrics, 100

modules for gmond, 79–89
anatomy of, 80
cloning and building with autotools, 88
configuring a metric module, 86
deploying a metric module, 88
Ganglia_25metric structure, 81
metric_cleanup function, 85
metric_handler function, 85
metric_init function, 82
mmodule structure, 80

cache-related race conditions, 134
call_back element, 92
case studies, 171–204

Lumicall (mobile VoIP on Android), 190–
194

monitoring at Etsy, many tools in toolbox,
202

monitoring at Quantcast, 195–202
Reuters Financial Software (RFS), 186–190
SARA, 180–186
Tagged, Inc., 172–180

case_sensitive_hostnames attribute
(gmetad.conf), 162

CGI headers and footers (custom), support by
Nagios UI, 139

check heartbeat plug-in, 135
check_ganglia_metric plug-in, 135
check_host_regex plug-in, 134, 136
check_multiple_metrics plug-in, 136
check_nrpe command, 139
check_ping plug-in for Nagios (example), 130

wrapper for, 132
check_procs command, 139
check_value_same_everywhere plug-in, 137
clock synchronization, Ganglia issue with, 107
cloud resources, monitoring, 122
cluster section, gmond configuration file, 25
cluster view

gweb, 54
adjusting time range, 57
physical view, 56

hostname in uppercase, link not working,
121

clusters
configuring Ganglia clusters, 156
Ganglia versus HPC, 4
gmond and Ganglia cluster scalability, 44
gmond, spoofed metrics and, 99

collection_group section, gmond configuration
file, 31

Common Logfile Format (CLF), 153
using sflowtool to convert sFlow HTTP

operation data into, 168
composite graphs, custom, 67
conf.php file

defining time spans in, 57
GangliaAcl configuration property, 71

configure.ac file, 88
configuring Ganglia, 20–40

gmetad, 33–38
gmond, 20–32
gweb, 38–40

connectivity, monitoring, 140
COUNTER type (RRD files), 124
counter values, using statsd for, 209
CPU count, wrong, 123
CPU metrics, 195

Mod_MultiCPU, 205
obtaining in RFS case study, 189

cron collection jobs, monitoring with Nagios,
140

D
dashboard UI framework (Etsy), 204
data analysis with gweb, 8
data_source attribute (gmetad.conf), 35

gmetad not polling all nodes defined in,
126

deaf and mute global settings (gmond), 156
deaf/mute multicast topology, 21

222 | Index

Debian-based Linux, 11
(see also Linux)
fio package, 48
installing gmetad, 15
installing gmond, 12
installing gweb, 17

debug mode, 114
debugging with gmond-debug, 212
decompose graphs in gweb, 64
delimiters in Nagios plug-ins, 130
denial-of-service attacks, 126
derived metrics (SLA compliance), 195
DESTDIR variable (Linux)

setting for gweb on Debian-based
distributions, 17

setting for gweb on RPM-based
distributions, 18

destination replication (sFlow packets), 168
DFS metrics (Hadoop), 219
DHCP, failure to complete before starting

gmond, 127
disk IO levels, monitoring for disk storing RRD

files, 109
disk space metrics, Multidisk module, 207
disk utilization, 195
Distributed File System (DFS), Hadoop

context, 217
DNS lookups, reverse, 119
DocumentRoot, Apache server on Mac OS X,

19
download page, release notes on, 108

E
edit action, 72
EPEL (Extra Packages for Enterprise Linux),

12
Eric Python IDE, 94
ESX, 149
Etsy, monitoring at (case study), 202

spectrum of tools, 202
events, 64–67

manipulation through Ganglia Events API,
66

examples, 66
storage in JSON hash, 65

EXTRA_ELEMENT in gmond XML dump, 92

F
fadvise/madvise system calls, 201
fc-list command, 123
fio package, Debian-based Linux, 48
firewalls

and sFlow metrics' arrival at gmond server,
162

problems with, in new Ganglia installations,
41

SELinux and, 120
FLUSHALL command, 212
fontconfig command, 123
fonts, too big or small in graphs, 123
foreground mode, running daemons in, 114
FQDN for hosts, 122

G
Ganglia

determining if it's right for you, 4
gmond, gmetad, and gweb daemons, 4

Ganglia Meta Daemon (see gmetad)
Ganglia Monitoring Daemon (see gmond)
Ganglia Web Interface (see gweb)
Ganglia::Gmetric library, Perl script that wraps,

199
GangliaAcl configuration property, 71
Ganglia_25metric structure, 81
ganglia_modules_solaris package, 189
gaps appearing randomly in graphs, 124
GAUGE type (RRD files), 124
gexec, 130
git source control system, 88
github repository, 123
globals section, gmond.conf file, 23
gmetad, 4, 44–52

checking IOPS demands with iostat, 116
configuring, 33–38

for rrdcached, 211
gmetad.conf file, 34
topologies, 33

firewalls and, 42
installing, 14

on Mac OS X, 15
on Solaris, 16

monitoring connectivity with Nagios, 140
monitoring with Nagios, 139
necessity of sharding in Quanticast

monitoring, 200

Index | 223

overview of, 7
process overloading CPU, 124
running in debug mode, 114
sFlow and, 146
sharing/instancing collectors, 199
some grids not appearing in the Web, 125
starting up, 41
storage planning and scalability, 44

acute IO demand during startup, 46
forecasting IO workload, 47
high IO demand from gametad, 50
IO demand in normal operation, 46
RRD file structure and scalability, 44
testing IO subsystem, 48

testing whether operational, 41
troubleshooting, 125

gmetad taking long time to start, 125
not polling all nodes in data_source,

126
RRA definition changed, but RRD files

are unchanged, 126
segmentation fault writing to RRD, 125

XML output, 110, 113
gmetad.conf file

attributes affecting functioning of gmetad
daemon, 36

data_source attribute, 35
generated with Puppet ERB templates, 174
Graphite support, attributes for, 37
interactive port query syntax, 38
RRDTool attributes, 37

gmetric, 75, 97–101
adding custom metrics to Host sFlow agent,

160
choosing among C/C++, Python, and

gmetric, 100
custom metrics for SARA, 184
library of user-contributed gmetric scripts,

161
running from command line, 97
-S or --spoof option, 160
spoofing with, 99
XDR protocol, 101

gmetric4j, 191
implementing within Lumicall, 192
Java and, 103

gmond, 4
choosing among C/C++, Python, and

gmetric for custom metrics, 100

collecting performance data when using
Ganglia and Nagios, 132

configuring, 20–32
cluster section of configuration file, 25
collection_group section of

configuration file, 31
configuration file, 23
globals section of configuration file, 23
host section of configuration file, 26
modules section of configuration file,

30
to receive sFlow, 155–157
sFlow section of configuration file, 29
TCP Accept Channels section of

configuration file, 28
topology considerations, 20
UDP section of configuration file, 26

default metrics, 75
extended metrics, 77
extending with gmetric, 97–100

running gmetric from command line, 97
spoofing gmetric values, 99

extending with modules, 78
C/C++ modules, 79–89
GPU monitoring with NVML module,

104
Mod_Python, 89–96
spoofing with modules, 96

firewall settings for, 41
installing, 11–14

on Linux, 12
on Mac OS X, 13
on other platforms, 14
on Solaris, 14
requirements for, 12

Java Virtual Machine(s) and, 151
JVM metrics pushed to, using sFlow, 175
metric gathering agent, 73
Mod_GStatus module, monitoring gmond

metrics, 206
monitoring with Nagios, 139

connectivity, 140
multiple memcache sFlow instances and,

153
overview of, 5
plug-ins, Quanticast case study, 199
processing handling TCP polls from gmetad,

overloaded, 124
processing sFlow data, 165

224 | Index

replacement by sFlow agents in Tagged.com
monitoring, 173

restarting, problems caused by, 122
running in debug mode, command for

piping output, 114
scalability, 44
sFlow agents and, 143
sFlow and, 146
sFlow HTTP metrics and, 152
starting up, 41
tasks performed by agents, 145
testing whether operational on given host,

41
troubleshooting

excessive use of RAM, 126
failure to start/localhost issues, 126
not starting properly on bootup, 127
UDP receiving buffer errors, 127

verifying sFlow packets' arrival at gmond
server, 161

XDR protocol, 101
XML output

in multicast environment, 110
in unicast environment, 113

gmond-debug, 212
installing, 212
running, 213

gmond.conf file, 23
(see also gmond, configuring)
breadking into multiple files, 23
generated with Puppet ERB templates, 174

Google
Bigtable, 216
MapReduce, 215

Google File System (GFS), 215
GPU (Graphics Processing Unit), monitoring

with NVML module, 104
Graphite, 8, 203

attributes in gmetad.conf file, 37
graph_engine configuration attribute, gweb,

40
graphs, custom, created by SARA, 184
grep, 121

netcat/grep commands issued against
gmetad port 8651, 110

grid view (gweb), 53
GROUP element, 92
GSM metrics for Android, 192

Lumicall GSM signal strength metric, 192

gstat, 117
-al option for more details, 117
-aml option, listing hosts by IP addresses,

118
-d option, listing dead hosts, 118

GSX, 149
gweb, 4, 53–72

aggregate graphs, 63
authentication and authorization, 70–72
automatic rotation, 67
compare hosts feature, 64
configuring, 38–40

advanced features, 40
Apache virtual host, 39
application settings, 39
look and feel, 40
options, 39
security, 40

custom composite graphs, 67
decompose graphs, 64
events, 64–67
firewall settings for, 42
installing, 16–20

on Linux, 17
on Mac OS X, 18
on Solaris, 19
requirements for, 17

logs, 114
main navigation, 53

cluster view, 54
graphing all time periods, 59
grid view, 53
host view, 58
overview, 53

mobile, 67
Nagios plug-ins in versions as of 2.2.0, 133
other features, 69
overview of, 8
PHP scripts interacting with Nagios plug-

ins, 134
running in debug mode, 115
search, 60
views, 61

defining using JSON, 61

H
Hadoop and HBase, 215–220

configuring to publish metrics to Ganglia,
216–220

Index | 225

list of HBase metrics, 219
hadoop-metrics.properties file, 216
HBase (hbase) context, 217
headers

C headers required to compile a module,
88

custom CGI headers, support by Nagios UI,
139

heap memory, utilization by JVM in Tagged
case study, 179

heartbeat counter, 135
heatmaps, 56
hierarchical topology (gmetad), 34
Holt-Winters aberrance detection, 196
host regular expressions, 63
Host sFlow agents, 157–161

custom metrics using gmetric, 160
in Tagged.com monitoring, 173
installing and configuring daemon

(hsflowd), 157
subagents, 158

host view (gweb), 58
node view, 58
viewing individual metrics, 58

hostgroups, in Nagios service check, 134
hosts

appearing in wrong cluster, 121
appearing with shortname instead of

FQDN, 122
compare hosts feature in gweb, 64
dead or retired, still appearing in Web, 122
different hostnames or IP addresses showing

up for, 121
host completely missing from cluster, 124
host section of gmond configuration file,

26
listing by IP addresses instead of hostnames

with gstat, 118
listing only dead hosts with gstat -d

command, 118
as monitoring system, 2
not appearing in web interface, 122
problems with hostnames, 121
redundancy of, 3
searching for in gweb, 60

host_max, setting to nonzero number, 122
hsflowd.auto file, extracting settings and using

as arguments for gmetric.py
command, 160

hsflowd.conf file, 157
generated with Puppet ERB templates, 174

HTTP metrics (sFlow), 151
generating additional metrics with

sflowtool, 167
reported by mod_sFlow, slfowtool output,

165
HTTP operation attributes (sFlow), 152
hypervisors, 145

sFlow metrics on, 149

I
IDEs (integrated development environments)

Eric Python IDE, 94
Xcode, 13

info.ganglia.GMonitor, creating instance and
calling start(), 103

info.ganglia.GSampler, subclassing, 103
infrastructure metrics, 195
installing Ganglia, 11–20

gmetad, 14–16
gmond, 11–14
gweb, 16–20

interactive port query syntax (gmetad), 38
IO performance of SAN, 189
IO subsystem, testing, 48
IO workload, forecasting, 47
IOPS (input/output operations per second),

43
calculating expected workload and testing

storage, 51
checking IOPS demands of gmetad with

iostat, 116
excessive IOPS for RRD updates, 201
finding for SAN, 50
IOPS count from iostat command, 48
using tempfs to handle high IOPS, 198

iostat command, 47
checking IOPS demands of gmetad, 116

irc.freenode.net, 108

J
Java

Android platform based on, 191
heap memory utilization in Tagged study,

179
implementations of XDR protocol and

gmetric functionality, 103

226 | Index

Java Virtual Machine (JVM)
Hadoop JVM context, 216
Hadoop JVM metrics, 218
sFlow instrumentation of JVM data in

Tagged.com, 175
sFlow metrics on, 150

jmx-flow-agent, 175
Job Monarch and other SARA add-ons for

Ganglia, 183
jQueryMobile toolkit, 67
JSON

configuring graphs with, 67
series options, 68

events stored in HSON hash, 65
extension for PHP, 17
using to define views in gweb, 61
validating using Python's json.tool, 63

json2gmetrics, 199
jvm_hmem_initial metric, 151

K
key/value pairs defining events, 66
KVM, 149

L
language directive, module configuration files,

87, 95
large installations, maintenance and

monitoring of, 1
libconfuse, 12

parsing of gmond configuration file, 23
libraries

required for gemtad, 14
required for gmond, 12

libvirt project, 149
Linux

gmetad init script, 211
installing and configuring Host sFlow

daemon (hsflowd) on server, 157
installing gmetad, 14
installing gmond, 12
installing gweb, 17
installing rrdcached, 211
kernel readahed ability, bottleneck caused

by, 185
SELinux and firewall, problems with, 120
spikes in graphs, alleviating, 123

load_one metrics, searching for, 60

localhost address, causing faillure of gmond to
start, 126

logical unit number (LUN) metrics for SAN,
189

logs, 114
Combined Logfile Format (CLF) in HTTP

operation records, 153
conversion of sFlow data to ASCII CLF for

web log analyzers, 168
from gmond running in debug mode, 115
monitoring Apache error log, 121
tailing web server log files to derive metrics,

145
Logster, 204
look and feel, configuring for gweb, 40
Lumicall (mobile VoIP on Android) case study,

190–194
Ganglia monitoring within Lumicall, 191
implementing gmetric4j within Lumicall,

192
monitoring mobile VoIP for the enterprise,

191
LXC, 149

M
Mac OS X

installing gemetad, 15
installing gmond, 13
installing gweb, 18

MacPorts, 13
mailing lists for Ganglia, 108
Makefile.am file, 88
man fio (IO tester tool), 48
man rrupdate command, 47
manpages, 108
MapReduce, 215

Hadoop MapReduce metrics, 219
market data overload (RFS case study), 187
memcache

metrics (sFlow), 153
operation attributes (sFlow), 154
Tagged.com Memcache tier, 172

memcached, 175
metrics defined by, 207
optimizing efficiency in Tagged case study,

175
memory, 195

detecting leaks and corruption with
valgrind, 116

Index | 227

Java heap memor utilization, Tagged study,
179

usage issues in SARA case study, 185
metadata

defining extra for metric definition, 84
defining extra metadata for gmond metrics,

92
packets, 102

metric regular expressions, 63
metrics

adding to view in gweb, 61
advanced metrics aggregation, 209–211
base metrics collected by gmond, 75
choosing among C/C++, Python, and

gmetric for custom metrics, 100
custom metrics failing to appear, 123
custom metrics for SARA, 183
custom metrics, adding to Host sFlow agent

using gmetric, 160
extended gmond metrics, 77
extending gmond with gmetric, 97–100
extending gmond with modules, 78–96

C/C++ modules, 79–89
Python modules, 89–96

Ganglia, monitoring with Nagios, 133–138
gmond metric gathering agent, 73
Java and gmetric4j, 103
module metric definitions, 205
NVML module monitoring GPUs, 105
real world, GPU monitoring with NVML

module, 104
searching for in gweb, 60
sFlow, 144
spoofing gmond with modules, 96
standard sFlow metrics, 143, 147–155

HTTP metrics, 151
HTTP operation attributes, 152
hypervisor metrics, 149
Java Virtual Machine (JVM) metrics,

150
memcache metrics, 153
memcache operation attributes, 154
server metrics, 147

troubleshooting missing metrics, 123
truncated custom metric value, 124
XDR protocol, 101

metric generating utilities that
implement, 103

metric_cleanup function, 85, 91

implementing in Python gmond module,
93

metric_handler function, 85, 91
implementing in Python gmond module,

93
metric_info element, 81
metric_init callback function, 82, 91
missed keys (memcached in Tagged.com

study), 177
MMETRIC_ADD_METADATA macro, 84
MMETRIC_INIT_METADATA macro, 84
mmodule structure, 80

elements initialized by
STD_MMODULE_STUFF macro
and filled by gmond, 83

implementation of, 86
mobile VoIP on Android (see Lumicall case

study)
module metric definitions, 205

memcached, 207
Mod_GStatus, 206
Mod_MultiCPU, 205
Multidisk module, 207
TcpConn, 208

modules
configuration file section for gmond, 30
extending gmond, 78

C/C++ modules, 79–89
Mod_Python, 89–96

unprivileged user running Python module,
123

module_dir directive, 86
module_params element, 84
module_params_list element, 84
mod_io mudule for gmetad server, 109
mod_sflow, 145

generation of Apache stats for Tagged.com,
174

HTTP counters and operation samples
reported by, 165

monitoring Ganglia, 109
with Nagios, 139–141

collecting rrdcached metrics, 140
monitoring connectivity, 140
monitoring cron collection jobs, 140
monitoring processes, 139

monitoring systems, hosts as, 2
multicast

challenge in SARA case study, 184

228 | Index

Ganglia clusters sharing multicast address,
4

gmond configured in, 74
gmond topologies, 20

multicpu module, 109
Multidisk module, 207
multiple_http_instances attribute

(gmond.conf), 152
multiple_jvm_instances attribute

(gmond.conf), 151
multiple_memcache_instances attribute

(gmond.conf), 153

N
Nagios, 129–141

displaying Ganglia data in Nagios UI, 138
integration features, settings in gweb

conf.php file, 40
macros, 131

information on, 138
monitoring Ganglia metrics with, 133–138

check heartbeat, 135
checking multiple metrics on range of

hosts, 136
checking multiple metrics on specific

host, 136
checking single metric on specific host,

135
plug-in principle of operation, 134
verifying metric value across set of hosts,

137
monitoring Ganglia with, 139–141

collecting rrdcached metrics, 140
monitoring connectivity, 140
monitoring Cron collection jobs, 140
monitoring processes, 139

sending data to Ganglia, 130
nagios.cfg file, 130
name directive, module configuration files, 86,

95
netcat, 110

testing ACL by executing between gmetad
hosts, 125

using to check for missing host, 125
netstat, 208
network time protocol (NTP), 119
NFS, not using, 51
noatime option, mounting filesystem with, 51
node view (n gweb host view), 58

NPM module, 210
NRPE (Nagios Remote Plugin Executor), 40
NSCA (Nagios Service Check Acceptor), 40
nvidia-smi utility, 104
NVML module, GPU monitoring with, 104

configuration, 106
installing NVML module, 104
metrics, 105

O
Object Identifiers (OIDs), SNMP, 199
OpenCSW configuration files, 14
OpenVZ, 149
operating system metrics, 195

gmond-style plug-ins for, 199
operational advantages provided by Ganglia,

SARA study, 181
operators specified in Nagios definitions for

Ganglia plug-ins, 136

P
packet sniffers, 122, 125
params directive, modules, 87
path directive, module configuration files, 86
PCAP format, converting sFlow into, 168
PCRE library, 12
per-LUN (logical unit number) metrics from

SAN, 189
performance data, handling with Nagios, 130
PHP

conf.php file, gweb, 39
defining graphs via, 67
enabling on Mac OS X, 19
gweb, 9
gweb scripts interacting with Nagios plug-

ins, 134
requirements for gweb installation, 17

physical view (cluster view in gweb), 56
pkgconfig, 12
postinstallation tasks, 40

firewall requirements for daemons, 41
starting up the processes, 41
testing your installation, 41

pregenerated reports, making data available
through, 52

process_performance_data attribute
(nagios.cfg), 130

Index | 229

protocol reporting tools, using with sFlow,
168

Puppet, managing server configuration at
Tagged, 174

pushToGanglis.sh script (example), 131
py-statsd, configuring, 210
.pyconf configuration file, 96
Python

building gmond metric modules with, 89–
96

configuring gmond for Python metric
modules, 90

configuring Python metric modules, 95
debugging and testing Python metric

modules, 94
deploying Python metric modules, 95
writing a Python metric module, 91

choosing among C/C++, gmetric, and
Python for custom metrics in
Ganglia, 100

json.tool, 63
modules for gmond, 79

Q
QEMU, 149
Quantcast, monitoring at (case study), 195–

202
best practices for using Ganglia, 198
drawbacks of Ganglia, 200

coordination over a WAN, 201
excessive IOPS for RRD updates, 201
necessity of sharding, 200
RRD data consolidation, 200

Ganglia as application platform, 198
reporting, analysis, and alerting, 196

Holt-Winters aberrance detection, 196
tools for getting more out of Ganglia, 199

gmond plug-ins, 199
json2gmetrics, 199
RRD management scripts, 200
snmp2ganglia, 199

R
RAM

excessive use by gmond, 126
sufficient, for page cache to buffer active

disk blocks, 52

receive channel, UDP, gmond configuration
file, 28

RedHat Linux distributions, 12
(see also Linux; RPM-based Linux)

redundancy, organization from, 3
regular expressions

checking metrics on regex-defined range of
hosts, 136

host and metric, for aggregate graphs, 63
release notes, 108
Remote Procedure Call (RPC)

Hadoop context, 216
Hadoop RPC metrics, 219

removespikes.pl script, 123
replication of sFlow packets, 168
restarting daemons, 117

hosts not appearing/data state after gmond
restart, 122

Reuters Financial Software (RFS) case study,
186–190

Ganglia in major client project, 188
analysis and problem study, 188
upgrading takes too long, 188
using Ganglia for analysis, 189

Ganglia in QA environment, 186
analysis and reproducing problem, 187
market data overload, 187
validating solution, 188

reverse DNS lookups, 119
reverse proxy, 52
roles, user, 71
round robin databases, metrics storage in, 7
RPM-based Linux

installing gmetad, 15
installing gmond, 12
installing gweb, 18

RRAs (Round Robin Archive values), 37
definition changed in gmetad.conf, but RRD

files unchanged, 126
RRD file structure and scalability, 44

RRD files
created with size 0, 125
excessive IOPS for updates to, 201
GAUGE or COUNTER type, 124
gmetad segmentation fault while writing to,

125
management script for, Quanticast, 200
monitoring disk IO levels for disk storing,

109

230 | Index

server RRD I/O issues at SARA, 185
storing on fast disks, 50
storing on RAM disk, 51
unchanged, after RRA definition change in

gmetad.conf, 126
rrdcached, 211

collecting metrics with Nagios, 140
configuring gmetad for, 211
controlling, 212
gmetad with, 34
installing, 211
monitoring with Nagios, 139
rrdcached_socket configuration attribute,

gweb, 40
starting up, 41
troubleshooting, 126, 212
using to deal with high IO demand from

gmetad, 52
RRDTool, 7

attributes in gmetad.conf file, 37
better font management in newer versions,

123
command generating a graph, forcing

display of, 115
data consolidation, 200
graphs provided for Reuter Financial

Software (RFS), 187
requirement for gmetad installation, 14
RRD file structure and scalability, 44

rrupdate command, 47
RSSI metric for Lumicall, 192

S
SAN

I/O performance of, 189
testing, 48

SARA case study, 180–186
advantages provided by Ganglia, 181

for users, 182
operational, 181

challenges, 184
central collector unicast receiver, 185
server RRD I/O, 185

customizations, 182
custom graphs, 184
metrics, 183

overview, 180
scalability, 43–52

gmetad, 44–52

gmond and Ganglia cluster, 44
scale, problem of, 1
search (in gweb), 60
secret key for authenticated user, 70
security

configuration attributes for gweb, 40
sFlow and, 144

segmentation faults, 116
gmetad writing to RRD, 125

SELinux and firewall, 120
send channel, UDP, gmond configuration file,

27
send_metadata_interval (gmond.conf), 122
series options (JSON report), 68
servers

installing and configuring hsflowd on Linux
server, 157

monitoring, sFlow agents and, 145
server RRD I/O for SARA, 185
sFlow server metrics, 147

service_perfdata_command attribute
(nagios.cfg), 130

PushToGanglia, 130
session cache cluster efficiency (memcached),

176
sFlow, 143–169

architecture, 146
configuring for gmond, 29
configuring gmond to receive sFlow, 155–

157
examples of use in Tagged.com study, 175–

180
firewall setting for, 42
Ganglia and, 143
Host sFlow agent, 157–161

custom metrics using gmetric, 160
Host sFlow subagents, 158

integration with memcached, 175
JVM metrics for Tagged.com, 175
random sampling mechanism, 145
replacement of gmond in Tagged.com

monitoring, 173
standard metrics, 147–155

HTTP metrics, 151
HTTP operation attributes, 152
hypervisor metrics, 149
Java Virtual Machine (JVM) metrics,

150
memcache metrics, 153

Index | 231

memcache operation attributes, 154
server metrics, 147

troubleshooting, 161
verifying arrival of packets at gmond

server, 161
verifying that metrics are being sent,

165
using Ganglia with other sFlow tools, 165–

169
sFlow.org website, sFlow analysis tools, 168
sflowtool, 162

converting binary sFlow HTTP operation
data to ASCII CLF, 168

converting sFlow into PCAP format, 168
output showing HTTP counters and

operation samples, 165
printout of sFlow data contents, 163
using output to generate additional metrics,

167
sharding, 200
sharing/instancing gmetad collectors, 199
shortnames for hosts, 122
Simple Network Management Protocol

(SNMP) Object Identifiers (OIDs),
199

slope for metrics, 124
snmp2ganglia, 199
Solaris

Ganglia problems, 107
installing gmetad, 16
installing gmond, 14
installing gweb, 19
truss, 116
using Ganglia for SAN I/O metrics, 189

solid-state drives (SSDs), 50
source replication (sFlow packets), 168
SourceForge, Ganglia mailing lists, 109
spikes in graphs, troubleshooting, 123
spoofing

gmetric -S or --spoof option, 160
gmetric values, 99
metrics within gmond Python modules, 96

SPOOF_HOST element, 92, 96
SPOOF_NAME element, 92, 96
SSDs (solid-state drives), 50
STATS interface to memcached, 175
statsd

configuring, 210
py-statsd, 210

statsd, 210
statsd-c, 210

implementations, 209
STD_MMODULE_STUFF macro, 83
strace, 116
subagents (Host sFlow agent), 158
symbiosis, 129

T
Tagged.com case study, 172–180

examples using Ganglia and sFlow, 175
Java performance, 179
optimizing memcached efficiency, 175
Web load, 177

monitoring system, 173
site architecture, 172

tail -f command, monitoring logs with, 121
TCP Accept Channels section, gmond

configuration file, 28
TcpConn module, 208
tcpdump, 122, 125

sflowtool versus, 162
verifying sFlow packets' arrival at gmond

server, 161
tcp_accept_channel

Access Control List (ACL) in, 29
settings in gmond.conf, 162

telnet
troubleshooting tool, 110
using to connect to gmond

tcp_accept_channel, 162
Thomson Reuters, 186
threshold alerts for troubleshooting metrics,

109
time frames, viewing in gweb cluster and host

views, 57
time periods, graphing all in gweb views, 59
time range, choosing for gweb views, 57
time synchronization, problems with, 119
tmpfs (Linux), 185

using to handle high IOPS, 198
transactions

sampled transactions used to generate new
metrics, 168

sFlow sampling of, 145
troubleshooting Ganglia, 107–127

general mechanisms and tools, 110
gstat, 117
iostat, 116

232 | Index

logs, 114
netcat and telnet, 110
restarting daemons, 117
running in foreground/debug mode,

114
strace and truss, 115
valgrind, 116

gmond issues, 126
known bugs and limitations, 107
known difficulties

mixing versions older than 3.1 with
current version, 119

reverse DNS lookups, 119
SELinux and firewall, 120
time synchronization, 119

monitoring Ganglia, 109
rrdcached issues, 126
typical problems and troubleshooting

procedures, 120–127
gmetad issues, 125
Web issues, 120–125

useful resources for, 108
troubleshooting sFlow, 161

verifying sFlow packets' arrival at gmond
server, 161

verifying that metrics are being sent, 165
truss, 116
trusted_hosts setting (gmetad.conf), 125

U
UDP channels section, gmond.conf file, 26
UDP receiving buffer errors on machine

running gmond, 127
UDP replication, 168
UDP unicast topology, 21
udp_recv_channel

Access Control List (ACL) in, 29
settings in gmond.conf, 162

ulimit command, 126
unicast

central collector unicast receiver for SARA,
185

configuring gmond in, 74
sFlow, 144

User Mode Linux, 149
users (SARA), benefits provided by Ganglia,

182

V
valgrind, 116
value packets (XDR protocol), 103
variables (custom), creating in Nagios object

definitions, 138
VDED, configuring, 211
versions

current versions of Ganglia, XML output,
110

mixing Ganglia versions older than 3.1 with
current version, 119

view action, 72
views (in gweb), 61

defining using JSON, 61
item configuration attributes, 63
top-level attributes, 62

virtual host configuration for Apache, 39
VirtualBox, 149
virtualization platforms, 149
VMWare, 149
VoIP (mobile), on Android (see Lumicall case

study)
VoIP latency metric for Lumicall, 192

W
warmup_metric_cache.sh script, 134
Web issues, troubleshooting, 120–125

blank page appearing in browser, 120
browser displaying white page with error

message, 121
cluster view showing uppercase hostname,

link not working, 121
custom metric value is truncated, 124
custom metrics not appearing, 123
dead or retired hosts still appearing in Web,

122
fonts in graphs, incorrect size, 123
gaps appearing randomly in graphs, 124
gmetad hierarchy, some grids not appearing,

125
host appearing in wrong cluster, 121
host appearing multiple times, variations of

hostname or IP address, 121
host is completely missing from cluster,

124
hosts appearing with shortname, not

FQDN, 122

Index | 233

hosts don't appear/data state after UDP
aggregator restart, 122

hosts not appearing in web interface, 122
spikes in graphs, 123
wrong CPU count and other metrics

missing, 123
Web load (Tagged case study), 177
web servers, 17

(see also Apache web servers; servers)
configuring authentication, 71
error logs, 114

Webalizer, 168
Wi-Fi metrics for Android, 192
wiki, Ganglia examples and information, 108
wireshark, 125, 168
wrappers for Nagios plug-ins, 132

X
Xcode, 13
XDR protocol, 101–103, 144

metric generating utilities that implement,
103

packets, 102
Xen, 149
XML

examining output from gmond or gmetad,
110

output from gmond in multicast
environment, 110

output from gmond in unicast environment,
113

234 | Index

About the Authors
Matt Massie open sourced Ganglia in 2000 while working as a Staff Researcher at the
University of California, Berkeley. He designed Ganglia to monitor a shared compu-
tational grid of clusters distributed across the United States for scientific research. In
2010, he contributed a chapter on cluster monitoring for the O’Reilly book Web Op-
erations: Keeping the Data On Time by John Allspaw and Jesse Robbins. Matt is cur-
rently a software engineer at Cloudera and is focused on Apache Hadoop enterprise
management and monitoring.

Bernard Li is a High-Performance Computing (HPC) Systems Engineer at Lawrence
Berkeley National Laboratory. He is currently one of the maintainers of the Ganglia
project. He has been involved with HPC since 2003 and has worked on Open Source
projects such as OSCAR, SystemImager, and Warewulf.

Brad Nicholes is a member of the Apache Software Foundation and is currently work-
ing as a Consultant Software Engineer for Novell. In addition to being a committer on
the Apache HTTPD and APR projects, Brad is also a developer as well as one of the
administrators of the Ganglia project. As a developer on the Ganglia project, Brad
developed and introduced the C/C++ and Python metric module interface into Gangla
3.1.x. He also developed and contributed several of the initial metric modules that
currently ship with Ganglia. Brad attended school at the University of Utah and Brig-
ham Young University and holds a degree in computer science.

Vladimir Vuksan (Broadcom) has worked in technical operations, systems engineer-
ing, and software development for over 15 years. Prior to Broadcom he has worked at
Mocospace, Rave Mobile Safety, Demandware, and the University of New Mexico im-
plementing high-availability solutions and building tools to make managing and run-
ning infrastructure easier.

http://shop.oreilly.com/product/0636920000136.do
http://shop.oreilly.com/product/0636920000136.do

Colophon
The animal on the cover of Monitoring with Ganglia is a Porpita pacifica, which is found
in the tropical Pacific. P. pacifica, commonly called the sea money or blue button, is a
blue-fringed disc about 1.5 inches in diameter. Its delicate tentacles are sticky and ex-
tend from chambers in the gas-filled disc; the tentacles are usually damaged in the surf
and reportedly deliver a sting that is not powerful but may cause irritation to human
skin.

The blue button lives on the surface of the sea and consists of two main parts: the float
and the hydroid colony. The hard golden-brown float is round, almost flat, and about
1 inch wide. The hydroid colony, which can range from bright blue turquoise to yellow,
resembles tentacles like those of the jellyfish. Each strand has numerous branchlets,
each of which ends in knobs of stinging cells called nematocysts.

In the food web, its size makes it easy prey for several organisms. The blue button itself
is a passive drifter, meaning that it feeds on both living and dead organisms that come
in contact with it. It competes with other drifters for food and mainly feeds on small
fish, eggs, and zooplankton. The blue button has a single mouth located beneath the
float, which is used for both the intake of nutrients and the expulsion of wastes. This
species reproduces by releasing tiny medusa, which go on to develop new colonies.

The cover image is from Beauties and Wonders of Land and Sea. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSansMonoCondensed.

	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Introducing Ganglia
	It’s a Problem of Scale
	Hosts ARE the Monitoring System
	Redundancy Breeds Organization
	Is Ganglia Right for You?
	gmond: Big Bang in a Few Bytes
	gmetad: Bringing It All Together
	gweb: Next-Generation Data Analysis
	But Wait! That’s Not All!

	Chapter 2. Installing and Configuring Ganglia
	Installing Ganglia
	gmond
	Requirements
	Linux
	OS X
	Debian-based distributions
	RPM-based distributions

	Solaris
	Other platforms

	gmetad
	Requirements
	Linux
	OS X
	Debian-based distributions
	RPM-based distributions

	Solaris

	gweb
	Requirements
	Linux
	Debian-based distributions

	OS X
	RPM-based distributions

	Solaris

	Configuring Ganglia
	gmond
	Topology considerations
	Configuration file
	Section: globals
	Section: cluster
	Section: host
	Section: UDP channels
	Section: TCP Accept Channels
	Access control
	Optional section: sFlow
	Section: modules
	Section: collection_group

	gmetad
	gmetad topology
	gmetad.conf: gmetad configuration file
	The data_source attribute
	gmetad daemon behavior
	RRDtool attributes
	Graphite support

	gweb
	Apache virtual host configuration
	gmetad interactive port query syntax

	gweb options
	Application settings

	Postinstallation
	Starting Up the Processes
	Testing Your Installation
	Firewalls

	Chapter 3. Scalability
	Who Should Be Concerned About Scalability?
	gmond and Ganglia Cluster Scalability
	gmetad Storage Planning and Scalability
	RRD File Structure and Scalability
	Acute IO Demand During gmetad Startup
	gmetad IO Demand During Normal Operation
	Forecasting IO Workload
	Testing the IO Subsystem
	Dealing with High IO Demand from gmetad

	Chapter 4. The Ganglia Web Interface
	Navigating the Ganglia Web Interface
	The gweb Main Tab
	Grid View
	Cluster View
	Physical view
	Adjusting the time range

	Host View
	Viewing individual metrics
	Node view

	Graphing All Time Periods

	The gweb Search Tab
	The gweb Views Tab
	The gweb Aggregated Graphs Tab
	Decompose Graphs

	The gweb Compare Hosts Tab
	The gweb Events Tab
	Events API
	Examples

	The gweb Automatic Rotation Tab
	The gweb Mobile Tab
	Custom Composite Graphs
	Other Features
	Authentication and Authorization
	Configuration
	Enabling Authentication
	Sample Apache configuration
	Other web servers

	Access Controls
	Actions
	Configuration Examples

	Chapter 5. Managing and Extending Metrics
	gmond: Metric Gathering Agent
	Base Metrics
	Extended Metrics
	Extending gmond with Modules
	C/C++ Modules
	Anatomy of a C/C++ module
	mmodule structure
	Ganglia_25metric structure
	metric_init callback function
	metric_cleanup function
	metric_handler function

	Configuring a C/C++ metric module
	Deploying a C/C++ metric module
	Cloning and building a C/C++ module with autotools
	Adding a module within either project
	Creating a new project

	Mod_Python
	Configuring gmond to support Python metric modules
	Writing a Python metric module
	Debugging and testing a Python metric module
	Configuring a Python metric module
	Deploying a Python metric module

	Spoofing with Modules

	Extending gmond with gmetric
	Running gmetric from the Command Line
	Spoofing with gmetric

	How to Choose Between C/C++, Python, and gmetric
	XDR Protocol
	Packets
	Implementations

	Java and gmetric4j
	Real World: GPU Monitoring with the NVML Module
	Installation
	Metrics
	Configuration

	Chapter 6. Troubleshooting Ganglia
	Overview
	Known Bugs and Other Limitations

	Useful Resources
	Release Notes
	Manpages
	Wiki
	IRC
	Mailing Lists
	Bug Tracker

	Monitoring the Monitoring System
	General Troubleshooting Mechanisms and Tools
	netcat and telnet
	Logs
	Running in Foreground/Debug Mode
	strace and truss
	valgrind: Memory Leaks and Memory Corruption
	iostat: Checking IOPS Demands of gmetad
	Restarting Daemons
	gstat

	Common Deployment Issues
	Reverse DNS Lookups
	Time Synchronization
	Mixing Ganglia Versions Older than 3.1 with Current Versions
	SELinux and Firewall

	Typical Problems and Troubleshooting Procedures
	Web Issues
	Blank page appears in the browser
	Browser displays white page with error message
	Cluster view shows uppercase hostname, link doesn’t work
	Host appears in the wrong cluster
	Host appears multiple times in web, different variations of the hostname (or IP address)
	Some hosts appear with shortname instead of FQDN
	One or more hosts don’t appear in the web interface
	Hosts don’t appear/data stale after UDP aggregator restarted
	Dead/retired hosts still appearing in the Web
	Wrong CPU count or other metrics are missing
	Fonts in graphs are too big or too small
	Spikes in graphs
	Custom metrics don’t appear
	Custom metric’s value is truncated
	Gaps appear randomly in the graphs
	Some host is completely missing from the cluster
	gmetad hierarchy and federation; some grids don’t appear on the Web

	gmetad Issues
	Empty (size = 0) RRD files created
	gmetad takes a long time to start
	gmetad segmentation fault writing to RRD
	gmetad doesn’t poll all nodes defined in data_source
	RRA definition changed in gmetad.conf, but RRD files are unchanged

	rrdcached Issues
	gmond Issues
	gmond fails to start or localhost issues
	gmond uses a lot of RAM
	gmond doesn’t start properly on bootup
	UDP receives buffer errors on a machine running gmond

	Chapter 7. Ganglia and Nagios
	Sending Nagios Data to Ganglia
	Monitoring Ganglia Metrics with Nagios
	Principle of Operation
	Check Heartbeat
	Check a Single Metric on a Specific Host
	Check Multiple Metrics on a Specific Host
	Check Multiple Metrics on a Range of Hosts
	Verify that a Metric Value Is the Same Across a Set of Hosts

	Displaying Ganglia Data in the Nagios UI
	Monitoring Ganglia with Nagios
	Monitoring Processes
	Monitoring Connectivity
	Monitoring cron Collection Jobs
	Collecting rrdcached Metrics

	Chapter 8. Ganglia and sFlow
	Architecture
	Standard sFlow Metrics
	Server Metrics
	Hypervisor Metrics
	Java Virtual Machine Metrics
	HTTP Metrics
	memcache Metrics

	Configuring gmond to Receive sFlow
	Host sFlow Agent
	Host sFlow Subagents
	Custom Metrics Using gmetric

	Troubleshooting
	Are the Measurements Arriving at gmond?
	Are the Measurements Being Sent?

	Using Ganglia with Other sFlow Tools

	Chapter 9. Ganglia Case Studies
	Tagged, Inc.
	Site Architecture
	Monitoring Configuration
	Apache
	memcached
	Java

	Examples
	Optimizing memcached efficiency
	Web load
	Java performance

	SARA
	Overview
	Advantages
	Operational
	Users

	Customizations
	Metrics
	Custom graphs

	Challenges
	Central collector unicast receiver
	Server RRD IO

	Conclusion

	Reuters Financial Software
	Ganglia in the QA Environment
	Market data overload
	Analysis and reproducing the problem
	Validating the solution

	Ganglia in a Major Client Project
	Upgrading takes too long
	Analysis and studying the problem
	Using Ganglia for the analysis
	Results

	Lumicall (Mobile VoIP on Android)
	Monitoring Mobile VoIP for the Enterprise
	Ganglia Monitoring Within Lumicall
	Implementing gmetric4j Within Lumicall
	Lumicall: Conclusion

	Wait, How Many Metrics? Monitoring at Quantcast
	Reporting, Analysis, and Alerting
	Holt-Winters aberrance detection

	Ganglia as an Application Platform
	Best Practices
	Using tmpfs to handle high IOPS
	Sharding and instancing

	Tools
	snmp2ganglia
	json2gmetrics
	gmond plug-ins
	RRD management scripts

	Drawbacks
	Necessity of sharding
	RRD data consolidation
	Coordination over a WAN
	Excessive IOPS for RRD updates

	Conclusions

	Many Tools in the Toolbox: Monitoring at Etsy
	Monitoring Is Mandatory
	A Spectrum of Tools
	Embrace Diversity
	Conclusion

	Appendix A. Advanced Metric Configuration and Debugging
	Module Metric Definitions
	Mod_MultiCPU
	Mod_GStatus
	Multidisk
	memcached
	TcpConn

	Advanced Metrics Aggregation and You
	Configuring statsd
	statsd
	statsd-c
	py-statsd

	Configuring VDED

	rrdcached
	Installing
	Configuring gmetad for rrdcached
	Controlling rrdcached
	Troubleshooting
	Permissions
	Delays in metrics

	Debugging with gmond-debug

	Appendix B. Ganglia and Hadoop/HBase
	Introducing Hadoop and HBase
	Configuring Hadoop and HBase to Publish Metrics to Ganglia

	Index

