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Preface

Welcome. The aim of this book is to teach beginner and moderate Rust programmers how
to exploit modern parallel machines in the Rust programming language. This book will
contain a variety of information relevant specifically to the Rust programming language,
especially with regard to its standard library, but it will also contain information that is
more generally applicable but happens to be expressed in Rust. Rust itself is not a terribly
inventive language. Its key contribution, from where I sit, is the mainstreaming of affine
types with application to memory allocation tracking. In most other respects, it is a familiar
systems programming language, one that ought to feel familiar—with a bit of
adjustment—to those with a background in GC-less programming languages. This is a
good thing, considering our aim here is to investigate concurrency—there is a wealth of
information available in the papers and books written about this subject, and we
understand and apply their concepts. This book will reference a number of such works,
whose contexts are C++, ATS, ADA, and similar languages.

Who this book is for

If this is your first Rust programming book, I warmly thank you for your enthusiasm, but
encourage you to seek out a suitable introduction to the programming language. This book
will hit the ground running, and it will likely not be appropriate if you've got questions
about the basics. The Rust community has produced excellent documentation, including
introductory texts. The Book (https://doc.rust-lang.org/book/first-edition/), first
edition, is how many who are already in the community learned the language. The second
edition of the book, still in progress at the time of writing, looks to be an improvement over
the original text, and it is also recommended. There are many other excellent introductions
widely available for purchase, as well.
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What this book covers

The material that this book covers is very broad, and it attempts to go into that material at
some depth. The material is written so that you can work straight through, but it's also
expected that some readers will only be interested in a subset of the content.

Chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust, discusses
modern CPU architectures, focusing specifically on x86 and ARM. These two architectures
will be the focus of the book. The reader is assumed to be familiar with Rust, but we will
also discuss verifying that your installation works as expected.

Chapter 2, Sequential Rust Performance and Testing, introduces inspecting the performance of
a Rust program. The details of the underlying computer hardware are especially important
in this: cache interactions, memory layout, and exploiting the nature of the problem domain
are key to writing fast programs. However, fast doesn't matter if the results are inaccurate.
This chapter also focuses on testing in Rust.

Chapter 3, The Rust Memory Model — Ownership, References and Manipulation, discusses the
memory model of Rust, focusing specifically on what makes Rust memory safe, how the
language is constrained to achieve such safety and how these constraints influence the
fundamental types' implementations. The reader will understand the borrow checker and
its ways at the close of this chapter.

Chapter 4, Sync and Send — the Foundation of Rust Concurrency, is the first in which notions of
concurrency make their appearance. The chapter discusses the Sync and Send traits, both
why they exist and their implications. The chapter closes with a concrete demonstration of
a multithreaded Rust program. Not the last, either.

Chapter 5, Locks — Mutex, Condvar, Barriers and RWLock, introduces the

coarse synchronization methods available to the Rust programmer. Each is examined in turn
and demonstrated in context of an industrial Rust project, hopper. The

coarse synchronization methods are elaborated on in more detail in a series of smaller
projects and data structures.

Chapter 6, Atomics — the Primitives of Synchronization, introduces fine synchronization in
terms of atomic primitives available on all modern CPUs. This is an exceedingly difficult
topic, and a deep investigation into atomic programming and its methods is carried out.
The chapter lock-free, atomic data structures, and production-grade codebases. The reader
will construct many of the coarse synchronization mechanisms seen in Chapter 5, Locks —
Mutex, Condvar, Barriers and RWLock.

[2]
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Chapter 7, Atomics — Safely Reclaiming Memory, discusses at length one of the key
difficulties of atomic programming in any language—safely deallocating memory. The
main three methods—reference counting, hazard pointers, epoch-based reclamation—are
each discussed in great detail, and production-worthy codebases are investigated.
Crossbeam, especially, is discussed in great detail.

Chapter 8, High-Level Parallelism — Threadpools, Parallel Iterators and Processes, motivates and
explains the implementation of thread pooling. Having this knowledge in hand, the Rayon
project is investigated and subsequently used in a complex project that benefits greatly
from simple data parallelism.

Chapter 9, FFI and Embedding — Combining Rust and Other Languages, extends the final
project of chapter 8, High-Level Parallelism — Threadpools, Parallel Iterators, and Processes by
embedding C code into it. The rlua project, a convenient library to extend Rust programs
with lua programes, is discussed. The chapter closes by compiling Rust for embedding into
C, Python, and Erlang projects.

Chapter 10, Futurism — Near-Term Rust, closes the book with a discussion of the near-term
changes to the language that are apropos to parallel programmers, as well as a few
miscellaneous remarks.

To get the most out of this book

This book covers a deep topic in a relatively short space. Throughout the text, the reader is
expected to be comfortable with the Rust programming language, have access to a Rust
compiler and a computer on which to compile, and execute Rust programs. What
additional software appears in this book is covered in chapter 1, Preliminaries — Machine
Architecture and Getting Started with Rust, and it is recommended for use but not
mandatory.

The basic premise of this book is as follows—parallel programming is difficult but not
impossible. Parallel programming can be done, and done well, when attention is paid to the
computing environment and care is put into the validation of the produced program. To
that end, each chapter has been written with an eye toward imparting a solid foundation to
the reader of the chapter's subject. Once a chapter is digested, the reader will, hopefully,
have a solid path into the existing body of literature on that subject. In that, this is a book of
beginnings, not ends.

[3]
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I strongly encourage the reader to take an active role in reading this book, download the
source code, investigate the projects as you read through independent of the book's take,
and probe the running programs with the tools available on your operating system. Like
anything else, parallel programming ability is a skill that is acquired and honed by
practice.

One final note—allow the process of learning to proceed at its own pace. If one chapter's
subject doesn't immediately settle in your mind, that's okay. For me, the process of writing
the book was a confluence of flashes of insight and knowledge that unfolded slowly like a
flower. I imagine that the process of reading the book will proceed analogously.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Concurrency-with-Rust. In case there's an update to the code,
it will be updated on the existing GitHub repository.

You can also download the example code files for this book from your account
at www.packtpub.com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

[4]
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Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The seeds are for XorshiftRng, move to previous

line max_in_memory_bytes and max_disk_bytes are for hopper."

A block of code is set as follows:

fn main() {
println! ("Apollo is the name of a space program but also my dog.");

}
Any command-line input or output is written as follows:

> cat hello.rs

fn main() {

println! ("Apollo is the name of a space program but also my dog.");
}

> rustc -C opt-level=2 hello.rs

> ./hello

Apollo is the name of a space program but also my dog.

Bold: Indicates a new term, an important word, or words that you see onscreen.

Warnings or important notes appear like this.

Tips and tricks appear like this.

[5]
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Get in touch

Feedback is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please do leave a review for the book on the site that you purchased it from. Reviews help
us at Packt understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[6]



Preliminaries — Machine
Architecture and Getting
Started with Rust

In this chapter, we'll work through the preliminaries of the book, making sure to cover the
basics necessary to frame the remainder of the book. This book is about parallel
programming in the Rust programing language. It's essential, then, to understand modern
computing hardware at a high level. We'll need a sense of how a modern CPU operates,
how memory buses influence the CPU's ability to perform work and what it means for a
computer to be able to do multiple things at once. In addition, we'll discuss validating your
Rust installation, and cover generating executables for the two CPU architectures that this
book will be concerned with.

By the close of this chapter, we will have:

e Discussed a high-level model of CPU operations
¢ Discussed a high-level model of computer memory

Had a preliminary discussion of the Rust memory model

Investigated generating runnable Rust programs for x86 and ARM

Investigated debugging these programs



Preliminaries — Machine Architecture and Getting Started with Rust Chapter 1

Technical requirements

This chapter requires any kind of modern computer on which Rust can be installed. The
exact details are covered in depth below. The interested reader might choose to invest in an
ARM development board. I have used a Raspberry Pi 3 Model B while writing. The
Valgrind suite of tools are used below. Many operating systems bundle Valgrind packages,
but you can find further installation instructions for your system at valgrind.org. The gdb
and 11db tools are used, often installed along with the gcc and llvm compiler toolchains.

You can find the source code for this book's projects on GitHub: https://github.com/
PacktPublishing/Hands-On-Concurrency-with-Rust. This chapter has no relevant source
code.

The machine

In this book, independent of the specific Rust techniques, we'll attempt to teach a kind of
mechanical sympathy with the modern parallel computer. There are two model kinds of
parallelism we'll touch on—concurrent memory operations and data parallelism. We'll
spend most of our time in this book on concurrent memory operations, the kind of
parallelism in which multiple CPUs contend to manipulate a shared, addressable memory.
Data parallelism, where the CPU is able to operate with a single or multiple instructions on
multiple words at a time concurrently, will be touched on, but the details are CPU specific,
and the necessary intrinsics are only now becoming available in the base language as this
book goes to press. Fortunately, Rust, as a systems language with modern library
management, will easily allow us to pull in an appropriate library and emit the correct
instructions, or we could inline the assembly ourselves.

Literature on the abstract construction of algorithms for parallel machines must choose a
machine model to operate under. The parallel random access machine (PRAM) is common
in the literature. In this book, we will focus on two concrete machine architectures:

e x86
¢ ARM

[8]
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These machines were chosen because they are common and because they each have specific
properties that will be important when we get to chapter 6, Atomics — The Primitives of
Synchronization. Actual machines deviate from the the PRAM model in important ways.
Most obviously, actual machines have a limited number of CPUs and a bounded amount of
RAM. Memory locations are not uniformly accessible from each CPU; in fact, cache
hierarchies have a significant impact on the performance of computer programs. None of
this is to say that PRAM is an absurd simplification, nor is this true of any other model
you'll find in literature. What should be understood is that as we work, we'll need to draw
lines of abstraction out of necessity, where further detail does not improve our ability to
solve problems well. We also have to understand how our abstractions, suited to our own
work, relate to the abstractions of others so that we can learn and share. In this book, we
will concern ourselves with empirical methods for understanding our machines, involving
careful measurement, examination of assembly code, and experimentation with alternative
implementations. This will be combined with an abstract model of our machines, more
specific to today's machines than PRAM, but still, in the details, focusing on total cache
layers, cache sizes, bus speeds, microcode versions, and so forth. The reader is encouraged
to add more specificity should the need arise and should they feel so emboldened.

The CPU

The CPU is a device that interprets a stream of instructions, manipulating storage and other
devices connected to it in the process. The simplest model of a CPU, and the one that is
often introduced first in undergrad computer science, is that a CPU receives an instruction
from some nebulous place, performs the interpretation, receives the next instruction,
interprets that, and so forth. The CPU maintains an internal pace via an oscillator circuit,
and all instructions take a defined number of oscillator pulses—or clock cycles—to execute.
In some CPU models, every instruction will take the same number of clock cycles to
execute, and in others the cycle count of instructions will vary. Some CPU instructions
modify registers, have very low latency with specialized but exceedingly finite memory
locations built into the CPU. Other CPU instructions modify the main memory, RAM.
Other instructions move or copy information between registers and RAM or vice versa.
RAM—whose read/write latency is much higher than that of registers but is much more
plentiful—and other storage devices, such as SSDs, are connected to the CPU by specialized
buses.

[9]
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The exact nature of these buses, their bandwidth and transmission latency, varies between
machine architectures. On some systems, every location in the RAM is
addressable—meaning that it can be read or written to—in constant time from the available
CPUs. In other systems, this is not the case—some RAM is CPU-local and some is CPU-
remote. Some instructions control special hardware interrupts that cause memory ranges to
be written to other bus-connected storage devices. Mostly, these devices are exceedingly
slow, compared to the RAM, which is itself slow compared to the registers.

All of this is to explain that in the simplest model of a CPU, where instructions are executed
serially, instructions may well end up stalling for many clock cycles while waiting for reads
or writes to be executed. To that end, it's important to understand that almost all
CPUs—and especially the CPUs we'll concern ourselves with in this book—perform out-of-
order executions of their instructions. Just so long as a CPU can prove that two sequences of
instructions access the memory distinctly—that is, they do not interfere with each
other—then the CPU is free and will probably reorder instructions. This is one of the things
that makes C's undefined behavior concerning uninitialized memory so interesting.
Perhaps your program's future has already filled in the memory, or perhaps not. Out-of-
order execution makes reasoning about a processor's behavior difficult, but its benefit is
that CPUs can execute programs much faster by deferring a sequence of instructions that is
stalled on some kind of memory access.

In the same spirit, most modern CPUs—and especially the CPUs we'll concern ourselves
with in this book—perform branch prediction. Say that branches in our programs tend to
branch the same way at execution time—for example, say we have a feature-flag test that is
configured to be enabled for the lifetime of a program. CPUs that perform branch
prediction will speculatively execute one side of a branch that tends to branch in a certain
way while they wait on other stalled instruction pipelines' instructions. When the branch
instruction sequence catches up to its branch test, and if the test goes the predicted way,
there's already been a great deal of work done and the instruction sequence can skip well
ahead. Unfortunately, if the branch was mispredicted, then all this prior work must be torn
down and thrown away, and the correct branch will have to be computed, which is quite
expensive. It's for this reason that you'll find that programmers who worry about the nitty-
gritty performance characteristics of their programs will tend to fret about branches and try
to remove them.

[10]



Preliminaries — Machine Architecture and Getting Started with Rust Chapter 1

All of this is quite power-hungry, reordering instructions to avoid stalls or racing ahead to
perform computations that may be thrown away. Power-hungry implies hot, which implies
cooling, which implies more power expenditure. All of which is not necessarily great for
the sustainability of technological civilization, depending on how the electricity for all this
is generated and where the waste heat is dumped. To that end, many modern CPUs
integrate some kind of power-scaling features. Some CPUs will lengthen the time between
their clock pulses, meaning they execute fewer instructions in a certain span of time than
they might otherwise have. Other CPUs race ahead as fast as they normally would and then
shut themselves off for a spell, drawing minimal electricity and cooling in the meantime.
The exact method by which to build and run a power-efficient CPU is well beyond the
scope of this book. What's important to understand is that, as a result of all this, your
program's execution speed will vary from run to run, all other things being equal, as the
CPU decides whether or not it's time to save power. We'll see this in the next chapter when
we manually set power-saving settings.

Memory and caches

The memory storage of a CPU, alluded to in the last section, is fairly minimal. It is limited
to the handful of words in general-purpose registers, plus the special-purpose registers in
some limited cases. Registers are very fast, owing to their construction and on-die location,
but they are not suited for storage. Modern machines connect CPUs over a bus or buses to
the main memory, a very large block of randomly addressable bytes. This random
addressability is important as it means that, unlike other kinds of storage, the cost to
retrieve the 0" byte from RAM is not distinct from retrieving the 1,000,000,000™ byte. We
programmers don't have to do any goofy trickery to ensure that our structures appear in
the front of the RAM in order to be faster to retrieve or modify, whereas physical location in
storage is a pressing concern for spinning hard disks and tape drives. Exactly how our
CPUs interact with the memory varies between platforms, and the discussion that follows
is heavily indebted to Mark Batty's description in his 2014 book, The C11 and C++11
Concurrency Model.

In a machine that exposes a sequentially consistent model of memory access, every memory
load or store must be made in lockstep with one another, including in systems with
multiple CPUs or multiple threads of execution per CPU. This limits important
optimizations—consider the challenge of working around memory stalls in a sequentially
consistent model—and so neither of the processors we'll be considering in this book offer
this model. It will show up in literature by name because of the ease of reasoning about this
model, and is worth knowing about, especially when studying atomics literature.

[11]



Preliminaries — Machine Architecture and Getting Started with Rust Chapter 1

The x86 platform behaves as if it were sequentially consistent, excepting that every thread
of execution maintains a FIFO buffer for writes prior to their being flushed to the main
memory. In addition, there is a global lock for the coordination of atomic reads and writes
between threads of execution. There's a lot to unpack here. Firstly, I use the words load and
store interchangeably with read and write, as does most literature. There is also a variant
distinction between plain load/store and atomic load/store. Atomic loads/stores are special
in that their effects can be coordinated between threads of execution, allowing for
coordination with varying degrees of guarantees. The x86 processor platform provides
fence instructions that force the flush of write buffers, stalling other threads of execution
attempting to access the written range of main memory until the flush is completed. This is
the purpose of the global lock. Without atomicity, writes will be flushed willy-nilly. On x86
platforms, writes to an addressable location in the memory are coherent, meaning they are
globally ordered, and reads will see values from that location in the order of the writes.
Compared to ARM, the way this works on x86 is very simple—writes happen directly to
main memory.

Let's look at an example. Taking inspiration from Batty's excellent dissertation, consider a
setup where a parent thread sets two variables, x and y, to 0, then spawns two threads
called, say, A and B. Thread A is responsible for setting x and then y to 1, whereas thread B is
responsible for loading the value of x into a thread-local variable called thr_x and y into a
thread-local variable called thr_y. This looks something like the following:

WRITE x := 0
WRITE y := 0
[A] WRITE x := 1
[A] WRITE y := 1
FLUSH A
[B] READ x
[B] WRITE thr_ x := x
[B] READ y
[B] WRITE thr_y :=vy
In this specific example, thr_x == 1 and thr_y == 1. Had the flushes been ordered

differently by the CPU, this outcome would have been different. For instance, look at the
following;:

WRITE x := 0

WRITE vy := 0

[A] WRITE x := 1

[A] WRITE y := 1

[B] READ x

[B] WRITE thr_x := x
FLUSH A

[B] READ y

[12]
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[B] WRITE thr_y :=vy

The consequence of this is that thr_x == 0 and thr_y == 1. Without any other
coordination, the only other valid interleaving is thr_x == 0 and thr_y == 0.Thatis,
as a result of the write buffer on x86, the write of x in thread A can never be reordered to
occur after the writeof y: thr_x == 1 and thr_y == 0. This kind of stinks, unless you
enjoy this little program as a parlor trick. We want determinism out of our programs. To
that end, x86 provides different fence and lock instructions that control how and when
threads flush their local write buffers, and how and when threads may read byte ranges
from the main memory. The exact interplay here is... complicated. We'll come back to it in
great detail in chapter 3, The Rust Memory Model — Ownership, References, and
Manipulation and chapter 6, Atomics — The Primitives of Synchronization. Suffice it to say that,
for now, there's an SFENCE instruction available that forces a sequential consistency. We
can employ this instruction as follows:

WRITE x := 0
WRITE y := 0
[A] WRITE x :
[A] WRITE y :

[l
=

[A] SFENCE [B] SFENCE
[B] READ x
[B] WRITE thr_x := x
[B] READ y
[B] WRITE thr_y :=y
From this, we get thr_x == 1 and thr_y == 1.The ARM processor is a little

different—1/0 is a valid interleaving. There is no global lock to the ARM, no fences, and no
write buffer. In ARM, a string of instructions—called a propagation list, for reasons that
will soon be clear—is maintained in an uncommitted state, meaning that the thread that
originated the instructions will see them as in-flight, but they will not have been propagated
to other threads. These uncommitted instructions may have been performed—resulting in
side-effects in the memory—or not, allowing for speculative execution and the other
performance tricks discussed in the previous section. Specifically, reads may be satisfied
from a thread's local propagation list, but not writes. Branch instructions cause the
propagation list that led to the branch instruction to be committed, potentially out of the
order from that specified by the programmer. The memory subsystem keeps track of which
propagation list has been sent to which thread, meaning that it is possible for a thread's
private loads and stores to be out of order and for committed loads and stores to appear out
of order between threads. Coherency is maintained on ARM with more active participation
from the memory subsystem.
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Whereas on x86, the main memory is something that has actions done to it, on ARM, the
memory subsystem responds to requests and may invalidate previous, uncommitted
requests. A write request involves a read-response event, by which it is uniquely identified,
and a read request must reference a write.

This sets up a data-dependency chain. Responses to reads may be invalidated at a later time,
but not writes. Each location receives a coherence-commitment ordering, which records a
global order of writes, built up per-thread as propagation lists are propagated to threads.

This is very complicated. The end result is that writes to a thread's view of the memory may
be done out of programmer order, writes committed to main memory may also be done out
of order, and reads can be requested out of programmer order. Therefore, the following
code is perfectly valid, owing to the lack of branches in our example:

WRITE x := 0

WRITE y := 0

[A] WRITE x := 1

[B] READ x

[A] WRITE y := 1

[B] WRITE thr_y :=vy
[B] WRITE thr_ x := x
[B] READ y

ARM provides instructions for control of dependencies, called barriers. There are three
types of dependency in ARM. The address dependency means a load is used to compute
the address for access to the memory. The control dependency means that the program
flow that leads to memory access depends on a load. We're already familiar with the data
dependency.

While there is a lot of main memory available, it's not particularly fast. Well, let's clarify
that. Fast here is a relative term. A photon in a vacuum will go about 30.5 centimeters in 1
nanosecond, meaning that in ideal circumstances, I, on the west coast of the United States,
ought to be able to send a message to the east coast of the United States and receive a
response in about 80 milliseconds. Of course, I'm ignoring request-processing time, the
realities of the internet, and other factors; we're just dealing with ballpark figures, here.
Consider that 80 milliseconds is 80,000,000 nanoseconds. A read access from a CPU to the
main memory is around 100 nanoseconds, give or take your specific computer architecture,
the details of your chips, and other factors. All this is to clarify that, when we say, not
particularly fast, we're working outside normal human time scales.
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It is difficult, sometimes, to keep from misjudging things as fast enough. Say, we have a 4
GHz processor. How many clock cycles do we get per nanosecond? Turns out, it's 4. Say,
we have an instruction that needs to access main memory—which, remember, takes 100
nanoseconds—and happens to be able to do its work in exactly 4 cycles, or one nanosecond.
That instruction will then be stalled for 99 nanoseconds while it waits, meaning we're
potentially losing out on 99 instructions that could have been executed by the CPU. The
CPU will make up some of that loss with its optimization tricks. These only go so far,
unless our computation is very, very lucky.

In an effort to avoid the performance impact of the main memory on computation,
processor manufacturers introduced caching between the processor and the main memory.
Many machines these days have three layers of data cache, as well as an instruction cache,
called dCACHE and iCACHE, which are tools we'll be using later. You will see dCACHE
often consists of three layers these days, each layer being successively larger than the last,
but also slower for cost or power concerns. The lowest, smallest layer is called L1, the next
L2, and so forth. CPUs read into caches from the main memory in working blocks—or
simply blocks—that are the size of the cache being read into. Memory access will
preferentially be done on the L1 cache, then L2, then L3, and so forth, with time penalties at
each level for missing and block reads. Cache hits, however, are significantly faster than
going directly to the main memory. L1 dCACHE references are 0.5 nanoseconds, or fast
enough that our hypothetical 4-cycle instruction is 8 times slower than the memory access it
requires. L2 dCACHE references are 7 nanoseconds, still a fair sight better than the main
memory. Of course, the exact numbers will vary from system to system, and we'll do quite
a bit in the next chapter to measure them directly. Cache coherency—maintaining a high
ratio of hits to misses—is a significant component of building fast software on modern
machines. We'll never get away from the CPU cache in this book.

Memory model

The details of a processor's handling of memory is both complicated and very specific to
that processor. Programming languages—and Rust is no exception here—invent a memory
model to paper over the details of all supported processors while, ideally, leaving the
programmer enough freedom to exploit the specifics of each processor. Systems
languages also tend to allow absolute freedom in the form of escape hatches from the
language memory model, which is exactly what Rust has in terms of unsafe.
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With regard to its memory model, Rust is very much inspired by C++. The atomic orderings
exposed in Rust are those of LLVM's, which are those of C++11. This is a fine thing—any
literature to do with either C++ or LLVM will be immediately applicable to Rust. Memory
order is a complex topic, and it's often quite helpful to lean on material written for C++
when learning. This is especially important when studying up on lock-free/wait-free
structures—which we'll see later in this book—as literature on those topics often deals with
it in terms of C++. Literature written with C11 in mind is also suitable, if maybe a little less
straightforward to translate.

Now, this is not to say that the C++ programmer will be immediately comfortable in
concurrent Rust. The digs will be familiar, but not quite right. This is because Rust's
memory model also includes a notion of reference consumption. In Rust, a thing in memory
must be used zero or one times, but no more. This, incidentally, is an application of a
version of linear-type theory called affine typing, if you'd like to read up more on the subject.
Now, the consequence of restricting memory access in this way is that Rust is able to
guarantee at compile-time safe memory access—threads cannot reference the same location
in memory at the same time without coordination; out-of-order access in the same thread
are not allowed, and so forth. Rust code is memory safe without relying on a garbage
collector. In this book's estimation, memory safety is a good win, even though the
restrictions that are introduced do complicate implementing certain kinds of structures that
are more straightforward to build in C++ or similar languages.

This is a topic we'll cover in much greater detail in chapter 3, The Rust Memory Model —
Ownership, References and Manipulation.

Getting set up

Now that we have a handle on the machines, this book will deal with what we need to get
synchronized on our Rust compiler. There are three channels of Rust to choose
from—stable, beta, and nightly. Rust operates on a six-week release cycle. Every day the
nightly channel is rolled over, containing all the new patches that have landed on the
master branch since the day before. The nightly channel is special, compared to beta and
stable, in that it is the only version of the compiler where nightly features are able to be
compiled. Rust is very serious about backward compatibility. Proposed changes to the
language are baked in nightly, debated by the community, and lived with for some time
before they're promoted out of nightly only status and into the language proper. The beta
channel is rolled over from the current nightly channel every six weeks. The stable channel
is rolled over from beta at the same time, every six weeks.

[16]



Preliminaries — Machine Architecture and Getting Started with Rust Chapter 1

This means that a new stable version of the compiler is at most only ever six weeks old.
Which channel you choose to work with is up to you and your organization. Most teams
I'm aware of work with nightly and ship stable, as many important tools in the
ecosystem—such as clippy and rustfmt—are only available with nightly features, but the
stable channel offers, well, a stable development target. You'll find that many libraries in
the crate ecosystem work to stay on stable for this reason.

Unless otherwise noted, we'll focus on the stable channel in this book. We'll need two
targets installed—one for our x86 machine and the other for our ARMv7. Your operating
system may package Rust for you—kudos!—but the community tends to recommend the
use of rustup, especially when managing multiple, version-pinned targets. If you're
unfamiliar with rustup, you can find a persuasive explanation of and instructions for its
use at rustup. rs. If you're installing a Rust target for use on a machine on which rustup is
run, it will do the necessary triplet detections. Assuming that your machine has an x86 chip
in it and is running Linux, then the following two commands will have equivalent results:

> rustup install stable
> rustup target add x86_64-unknown-linux—-gnu

Both will instruct rustup to track the target x86_64-unknown-1linux-gnu and install the
stable channel version of Rust. If you're running OS X or Windows, a slightly different
triplet will be installed by the first variant, but it's the chip that really matters. The second
target, we'll need to be more precise with:

> rustup target add stable—armv7-unknown-linux—-gnueabihf

Now you have the ability to generate x86 binaries for your development machine, for x86
(which is probably the same thing), and for an ARMv7 running Linux, the readily available
RaspberryPi 3. If you intend to generate executables for the ARMv7—which is
recommended, if you have or can obtain the chip—then you'll also need to install an
appropriate cross-compiler to link. On a Debian-based development system, you can run
the following:

> apt—-get install gcc—-arm-linux—-gnueabihf
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Instructions will vary by operating system, and, honestly, this can be the trickiest part of
getting a cross-compiling project set up. Don't despair. If push comes to shove, you could
always compile on host. Compilation will just be pokey. The final setup step before we get
into the interesting part is to tell cargo how to link our ARMv7 target. Now, please be
aware that cross-compilation is an active area of work in the Rust community at the time of
writing. The following configuration file fiddling may have changed a little between this
book being published and your reading of it. Apologies. The Rust community
documentation will surely help patch up some of the differences. Anyway, add the
following—or similar, depending on your operating system—to ~/.cargo/config:

[target.armv7-unknown—-linux—-gnueabihf]
linker = "arm-linux—-gnueabihf-gcc"

If ~/.cargo/config doesn't exist, go ahead and create it with the preceding contents.

The interesting part

Let's create a default cargo project and confirm that we can emit the appropriate assembly
for our machines. Doing this will be one of the important pillars of this book. Now, choose
a directory on disk to place the default project and navigate there. This example will use
~/projects, but the exact path doesn't matter. Then, generate the default project:

~projects > cargo new —--bin hello_world
Created binary (application) "hello_world  project

Go ahead and reward yourself with some x86 assembler:

hello_world > RUSTFLAGS="--emit asm" cargo build —--target=x86_64—unknown-—
linux—gnu

Compiling hello_world v0.1.0 (file:///home/blt/projects/hello_world)

Finished dev [unoptimized + debuginfo] target(s) in 0.33 secs

hello_world > file target/x86_64—unknown—-linux-
gnu/debug/deps/hello_world-6000abel5b385411.s
target/x86_64—unknown-linux—gnu/debug/deps/hello_world-6000abel5b385411.s:
assembler source, ASCII text

Please be aware that if your compilation of a Rust binary on OS X x86 will not run on Linux
x86, and vice versa. This is due to the differences in the interfaces of the operating systems
themselves. You're better off compiling on your x86 Linux machine or your x86 OS X
machine and running the binaries there. That's the approach I take with the material
presented in this book.
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That said, reward yourself with some ARMv?7 assembler:

hello_world > RUSTFLAGS="—-—-emit asm" cargo build --target=armv7-unknown-
linux—gnueabihf

Compiling hello_world v0.1.0 (file:///home/blt/projects/hello_world)

Finished dev [unoptimized + debuginfo] target(s) in 0.45 secs

hello_world > file target/armv7-unknown-linux-
gnueabihf/debug/deps/hello_world-6000abel5b385411.s
target/armv7-unknown-linux-
gnueabihf/debug/deps/hello_world-6000abel5b385411.s: assembler source,
ASCII text

Of course, if you want to build release versions, you need only to give cargo the ——
release flag:

hello_world > RUSTFLAGS="--emit asm" cargo build --target=armv7-unknown-
linux—gnueabihf --release
Compiling hello_world v0.1.0 (file:///home/blt/projects/hello_world)
Finished release [optimized] target(s) in 0.45 secs
hello_world > wc -1 target/armv7-unknown-linux—-gnueabihf/
debug/ release/
hello_world > wc -1 target/armv7-unknown-linux-
gnueabihf/*/deps/hello_world*.s

1448 target/armv7-unknown-linux-
gnueabihf/debug/deps/hello_world-6000abel5b385411.s

101 target/armv7-unknown-linux—-gnueabihf/release/deps/hello_world-
dd65a12bd347£015.s

1549 total

It's interesting—and instructivel—to compare the differences in the generated code.
Notably, the release compilation will strip debugging entirely. Speaking of which, let's talk
debuggers.

Debugging Rust programs

Depending on your language background, the debugging situation in Rust may be very
familiar and comfortable, or it might strike you as a touch bare bones. Rust relies on the
commonly used debugging tools that other programming languages have to hand—gdb or
11db. Both will work, though historically, 11db has had some issues, and it's only since
about mid-2016 that either tool has supported unmangled Rust. Let's try gdb on
hello_world from the previous section:

hello_world > gdb target/x86_64—unknown-linux—gnu/debug/hello_world
GNU gdb (Debian 7.12-6) 7.12.0.20161007-git
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Copyright (C) 2016 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later
<http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux—gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word"...

Reading symbols from target/x86_64-unknown-linux-
gnu/debug/hello_world. . .done.

warning: Missing auto-load script at offset 0 in section .debug_gdb_scripts
of file /home/blt/projects/hello_world/target/x86_64—-unknown-linux-
gnu/debug/hello_world.

Use "info auto-load python-scripts [REGEXP]' to list them.

(gdb) run

Starting program: /home/blt/projects/hello_world/target/x86_64—unknown-
linux—-gnu/debug/hello_world

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/l1ib/x86_64-linux—gnu/libthread_db.so.1".
Hello, world!

[Inferior 1 (process 15973) exited normally]

Let's also try 11db:

hello_world > 1lldb —--version

11db version 3.9.1 ( revision )

hello_world > 1lldb target/x86_64—-unknown-linux—-gnu/debug/hello_world
(11db) target create "target/x86_64-unknown-linux—gnu/debug/hello_world"
Current executable set to 'target/x86_64—unknown-linux—
gnu/debug/hello_world' (x86_64).

(11db) process launch

Process 16000 launched: '/home/blt/projects/hello_world/target/x86_64-
unknown-linux—-gnu/debug/hello_world' (x86_64)

Hello, world!

Process 16000 exited with status = 0 (0x00000000)

Either debugger is viable, and you're warmly encouraged to choose the one that suits your
debugging style. This book will lean toward the use of 11db because of vague authorial
preference.
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The other suite of tooling you'll commonly see in Rust development—and elsewhere in this

book—is valgrind. Rust being memory safe, you might wonder when valgrind would
find use. Well, whenever you use unsafe. The unsafe keyword in Rust is fairly
uncommon in day-to-day code, but does appear when squeezing out extra percentage

points from hot code paths now and again. Note that unsafe blocks will absolutely appear

in this book. If we run valgrind on hello_world, we'll get no leaks, as expected:

hello_world > valgrind —--tool=memcheck target/x86_64-unknown-linux-
gnu/debug/hello_world

==16462==
==16462==
==16462==
info

==16462==
==16462==

Memcheck, a memory error detector
Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.

Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright

Command: target/x86_64-unknown-linux—-gnu/debug/hello_world

Hello, world!

==16462==
==16462==
==16462==
==16462==
==16462==
==16462==
==16462==
==16462==
==16462==

HEAP SUMMARY:
in use at exit: 0 bytes in 0 blocks
total heap usage: 7 allocs, 7 frees, 2,032 bytes allocated

All heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

Profiling memory use in Rust programs is an important day-to-day task when writing
performance-critical projects. For this, we use Massif, the heap profiler:

hello_world > valgrind —--tool=massif target/x86_64-unknown-linux-
gnu/debug/hello_world

==16471==
==16471==
==16471==
info

==16471==
==16471==

Massif, a heap profiler
Copyright (C) 2003-2015, and GNU GPL'd, by Nicholas Nethercote

Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright

Command: target/x86_64-unknown-linux—-gnu/debug/hello_world

Hello, world!

==16471==

Profiling the cache is also an important routine task. For this, we use cachegrind, the
cache and branch-prediction profiler:

hello_world > valgrind --tool=cachegrind target/x86_64-unknown-linux-—
gnu/debug/hello_world

==16495==

Cachegrind, a cache and branch-prediction profiler

Chapter 1
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==16495== Copyright (C) 2002-2015, and GNU GPL'd, by Nicholas Nethercote et

al.

==16495== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright
info

==16495== Command: target/x86_64—-unknown-linux—-gnu/debug/hello_world
==16495==

—-16495-- warning: L3 cache found, using its data for the LL simulation.
Hello, world!

==16495==

==16495== refs: 533,954

==16495== I1 misses: 2,064

==16495== LLi misses: 1,907

==16495== I1 miss rate: 0.39%

==16495== LLi miss rate: 0.36%

==16495==

==16495== D refs: 190,313 (131,906 rd + 58,407 wr)
==16495== D1 misses: 4,665 ( 3,209 rd + 1,456 wr)
==16495== LLd misses: 3,480 ( 2,104 rd + 1,376 wr)
==16495== D1 miss rate: 2.5% ( 2.4% + 2.5% )
==16495== LLd miss rate: 1.8% ( 1.6% + 2.4% )
==16495==

==16495== LL refs: 6,729 ( 5,273 rd + 1,456 wr)
==16495== LL misses: 5,387 ( 4,011 rd + 1,376 wr)
==16495== LL miss rate: 0.7% ( 0.6% + 2.4% )

Each of these will be used throughout the book and on much more interesting projects than
hello_world. But hello_world is the first cross-compilation achieved in this text, and
that's no small thing.

Summary

In this chapter, we've discussed the preliminaries of this book, the machine architecture of
modern CPUs, and the way loads and stores of memory may be interleaved for surprising
results, illustrating the need for some kind of synchronization for our computations. That
need for synchronization will drive much of the discussion of this book. We also discussed
installing Rust, the channels of the compiler itself, and our intention to focus on the

stable channel. We also compiled a simple program for both x86 and ARM systems. We also
discussed debugging and performance analysis of our simple program, mostly as a proof-
of-concept of the tools. The next chapter, chapter 2, Sequential Rust Performance and Testing,
will explore this area in much more depth.
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Further reading

At the end of each chapter, we'll include a list of bibliographic materials, things that are
warmly recommended for readers wishing to dive further into the topic discussed in the
chapter, links to relevant Rust community discussions, or links to the documentation of
important tools. Bibliographic material may appear in multiple chapters because if
something's important, it bears repeating.

e An Introduction to Parallel Algorithms, 1992, Joseph JaJa. A fine textbook that
introduces important abstract models. The book is significantly focused on
abstract implementations of algorithms from an era when cache coherency and
instruction pipelines were less important, so do be aware of that if you pull a
copy.

o What Every Programmer Should Know About Memory, 2006, Ulrich Drepper. A
classic, detailed description of how memory works in modern computers, despite
being twelve years old at the time of writing this book.

o Computer Architecture: A Quantitative Approach, 2011, John Hennessy and David
Patterson. A classic somewhat more geared toward computer architects than
software engineers. Still, this is well worth studying in depth, even if you do skip
over the circuit diagrams here and there.

e The C11 and C++11 Concurrency Model, 2014, Mark Batty. Batty formalizes the
C++11/C11 memory model, which if you can get up to speed with his logic
language, is an excellent way to learn the memory model and its consequences.

e LLVM Atomic Instructions and Concurrency Guide, available at https://11vm.org/
docs/Atomics.html. Rust has specifically documented its concurrency memory
model as being that of LLVM. This guide—and the documentation it links
to—will be well-trod territory for any Rust programmer reading this book.

e Cache Speculation Side-Channels, 2018, ARM. Speculative execution of branches
leads to surprising information leaks, it turns out. This paper by ARM gives a
very clear discussion of speculative execution on ARM, as well as tidy examples.
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° std::memory_order, available at nttp://en.cppreference.com/w/cpp/atomic/
memory_order. While this document covers the memory order defined in C++, its
examples of the consequences of the C++ memory-ordering guarantees are both
straightforward and illustrative.

° Valgrind User Manual, available at http://valgrind.org/docs/manual/manual.
html. We'll be making extensive use of Valgrind, and it's well worth it for any
systems programmer to be familiar with these tools. The documentation
necessarily touches on some of the same material as this book, and may help
illuminate things under a different light.

e Compiler Explorer, available at https://rust.godbolt.org/. Compiler Explorer is
not a paper so much as a well-designed web tool. It allows easy cross-
compilation, and refers to simplified explanations of instructions.
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Sequential Rust Performance
and Testing

"Make it work, then make it beautiful, then if you really, really have to, make it fast.”
- Joe Armstrong

In the previous chapter, we discussed the basics of modern computer architectures—the
CPU and its function, memory hierarchies, and their interplay. We left off with a brief
introduction to debugging and performance analysis of Rust programs. In this chapter,
we'll continue that discussion, digging into the performance characteristics of sequential
Rust programs, deferring, for now, considerations of concurrent performance. We'll also be
discussing testing techniques for demonstrating the fitness for purpose of a Rust program.
Why, in a book about parallel programming, would we wish to devote an entire chapter to
just sequential programs? The techniques we'll discuss in this sequential setting are
applicable and vital to a parallel setting. What we gain here is the meat of the
concern—being fast and correct—without the complication that parallel programming
brings, however, we'll come to that in good time. It is also important to understand that the
production of fast parallel code comes part and parcel with the production of fast
sequential code. That's on account of there being a cold, hard mathematical reality that we'll
deal with throughout the book.
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By the close of the chapter, we will:

e Have learned about Amdahl's and Gustafson's laws

e Have investigated the internals of the Rust standard library HashMap

¢ Be able to use QuickCheck to perform randomized validating of an alternative
HashMap implementation

¢ Be able to use American Fuzzy Lop to demonstrate the lack of crashes in the
same

¢ Have used Valgrind and Linux Perf to examine the performance of Rust software

Technical requirements

This chapter requires a working Rust installation. The details of verifying your installation
are covered in Chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust.
The Valgrind suite of tools will be used here. Many operating systems bundle valgrind
packages but you can find further installation instructions for your system at valgrind.org.
Linux Perf is used and is bundled by many Linux distributions. Any other software
required for this chapter is installed as a part of the text.

You can find the source code for this book's projects on GitHub: https://github.com/
PacktPublishing/Hands7On7Concurrencyfwitthust.TheSOUICQCOdefOIthﬂSChapﬂH
is under Chapter02.

Diminishing returns

The hard truth is that there's a diminishing return when applying more and more
concurrent computational resources to a problem. Performing parallel computations
implies some coordination overhead—spawning new threads, chunking data, and memory
bus issues in the presence of barriers or fences, depending on your CPU. Parallel
computing is not free. Consider this Hello, world! program:

fn main () A
println! ("GREETINGS, HUMANS");
}

Straightforward enough, yeah? Compile and run it 100 times:

hello_worlds > rustc -C opt-level=3 sequential_hello_world.rs
hello_worlds > time for i in {1..100}; do ./sequential_hello_world >
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/dev/null; done
real Om0.091s

user Om0.004s
sys Om0.012s

Now, consider basically the same program but involving the overhead of spawning a
thread:

use std::thread;

fn main () {
thread::spawn (|| println! ("GREETINGS, HUMANS"))
.join ()
.unwrap () ;

}
Compile and run it 100 times:

hello_worlds > rustc -C opt-level=3 parallel_hello_world.rs
hello_worlds > time for i in {1..100}; do ./parallel_hello_world >
/dev/null; done

real Om0.115s
user Om0.004s
sys O0m0.012s

This implies a thread-spawn time on my test system of 0.24 milliseconds. That is, of course,
without any synchronization. The point is, it's not free. It's also not magic. Say you have a
program that runs on a single processor in 24 hours and there are parts of the program that
will have to be done sequentially and which, added together, consume 1 hour of the total
runtime. The remaining 23 hours represent computations that can be run in parallel. If this
computation is important and needs to be done in a hurry, the temptation is going to be to
chuck in as much hardware as possible. How much of an improvement should you expect?

One well-known answer to this question is Amdahl's law. It states that the speedup of a
computation is proportional to the inverse of the percentage of time taken by the sequential
bit plus the percentage of the parallel time divided by the total new computation units, 1/(s
+p/N). As N tends toward infinity, 1/s == 1/(1-p), in our example, 1/(1 - (23/24)) = 24. That
is, the maximum factor speedup you can ever hope to see is 24 times, with infinite
additional capacity. Ouch.
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Amdahl's law is a touch pessimistic, as noted by John Gustafson in his 1988 Reevaluating
Amdahl's Law:

"At Sandia National Laboratories, we are currently engaged in research involving
massively-parallel processing. There is considerable skepticism regarding the
viability of massive parallelism; the skepticism centers around Amdahl's law, an
argument put forth by Gene Amdahl in 1967 that even when the fraction of serial
work in a given problem is small, say s, the maximum speedup obtainable from
even an infinite number of parallel processors is only 1/s. We now have timing
results for a 1024-processor system that demonstrate that the assumptions
underlying Amdahl's 1967 argument are inappropriate for the current approach to
massive ensemble parallelism."

Gustafson argues that real workloads will take the time factor of a computation as fixed
and vary the input work accordingly. In some hypothetical, very important computations
we'd see 24 hours as acceptable and, on increasing the total number of processors available,
then rush to figure out how to add in more computation so as to get the time back up to one
day. As we increase the total workload, the serial portion of the computation tends towards
zero. This is, itself, maybe somewhat optimistic and is certainly not applicable to problems
where there's no more datasets available. Communication overhead is not included in
either analysis.

Ultimately, what has to be internalized is this—performing computations in parallel is
subject to diminishing returns. Exactly how that take shape depends strongly on your
problem, the machine, and so on, but it's there. What the programmer must do to bend that
curve is shrink the percentage of time spent in serial computation, either by increasing the
relative portion of parallel computation per Gustafson with a larger dataset or by
optimizing the serial computation's runtime. The remainder of this chapter will be focused
on the latter approach—improving the runtime of serial computations.

Performance

In this section, we'll focus on the serial performance of a common data
structure—associative arrays. We'll apply the tools we learned about in the previous
chapter to probe different implementations. We'll focus on the associative array because it
is fairly well-trod territory, studied in introductory computer science courses, and is
available in most higher-level languages by default, Rust being no exception save the
higher-level bit. We'll look at Rust's associative array first, which is called
std::collections: :HashMap.

[28]



Sequential Rust Performance and Testing Chapter 2

Standard library HashMap

Let's poke around in HashMap's internals. A good starting place, I find, for inspecting
unfamiliar Rust data structures is jumping into the source to the struct definition itself.
Especially in the Rust codebase, there will be public rustdoc comments and private
comments explaining implementation ambitions. The reader is warmly encouraged to
inspect the HashMap comments for themselves. In this book, we're inspecting Rust at SHA
da569fa9ddf8369a9809184d43c600dc06bd4b4ad. The comments of
src/libstd/collections/hash/map.rs explain that the HashMap is implemented with
linear probing Robin Hood bucket stealing. Linear probing implies that we'll find HashMap
implemented in terms of a cell storage—probably a contiguous memory structure for
reasons we'll discuss shortly—and should be able to understand the implementation pretty
directly, linear probing being a common method of implementing associative arrays. Robin
Hood bucket stealing is maybe less common, but the private comments describe it as the
main performance trick in this hashmap and then goes on to quote Pedro Celis' 1986 Robin Hood
Hashing:

"If an insertion collides with an existing element, and that element's "probe
distance" (how far away the element is from its ideal location) is higher than how
far we've already probed, swap the elements."

If you pull the thesis yourself, you'll further find:

"(Robin Hood Hashing) leads to a new search algorithm which requires less than
2.6 probes on average to perform a successful search even when the table is nearly
full. Unsuccessful searches require only O(In n) probes."

Not bad. Here's HashMap:
pub struct HashMap<K, V, S = RandomState> {
// All hashes are keyed on these values, to prevent
// hash collision attacks.
hash_builder: S,
table: RawTable<K, V>,

resize_policy: DefaultResizePolicy,
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Okay, so, it interacts with RawTable<K, V> and we canjump to that definition:

pub struct RawTable<K, V> {

}

capacity_mask: usize,
size: usize,
hashes: TaggedHashUintPtr,

// Because K/V do not appear directly in any of the
// types in the struct, inform rustc that in fact
// instances of K and V are reachable from here.
marker: marker::PhantomData< (K, V)>,

But it's maybe not the most illuminating struct definition either. Common operations on a
collection are often a good place to dig in, so let's look at HashMap: : insert:

pub fn insert (&émut self, k: K, v: V) -> Option<vV> {
let hash = self.make_hash (&k);
self.reserve (1);
self.insert_hashed_nocheck (hash, k, v)

}

And then on into HashMap: : reserve:

pub fn reserve (&mut self, additional: usize) {
let remaining = self.capacity() — self.len(); // this can't
overflow
if remaining < additional {
let min_cap =
self.len () .checked_add(additional)
.expect ("reserve overflow");
let raw_cap = self.resize_policy.raw_capacity (min_cap);
self.resize (raw_cap);
} else if self.table.tag() && remaining <= self.len() {
// Probe sequence is too long and table is half full,
// resize early to reduce probing length.
let new_capacity = self.table.capacity() * 2;
self.resize (new_capacity);

[30]



Sequential Rust Performance and Testing Chapter 2

Whether reserve expands the underlying storage capacity because we've got near the
current total capacity of that storage or to reduce probe lengths, HashMap: :resize is
called. That's:

#[inline (never) ]

#[cold]
fn resize (&mut self, new_raw_cap: usize) {
assert! (self.table.size () <= new_raw_cap);
assert! (new_raw_cap.is_power_of_two() || new_raw_cap == 0);

let mut old_table = replace(&mut self.table,
RawTable: :new (new_raw_cap));

let old_size = old_table.size();

if old_table.size () == 0 {
return;

}

let mut bucket = Bucket::head_bucket (&mut old_table);

// This is how the buckets might be laid out in memory:
// ($ marks an initialized bucket)
//
/] 1885 555555 _S553555 |
//
// But we've skipped the entire initial cluster of buckets
// and will continue iteration in this order:
//
// [SSSSSS_S8SSS
// ~ wrap around once end is reached
//
/] $$$ \
// "~ exit once table.size ==
loop {

bucket = match bucket.peek () {

Full (bucket) => {
let h = bucket.hash();

let (b, k, v) = bucket.take();
self.insert_hashed_ordered(h, k, v);
if b.table() .size() == 0 {

break;
}

b.into_bucket ()
}
Empty (b) => b.into_bucket (),
bi
bucket .next ();
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assert_eq! (self.table.size (), old_size);

}
We're back at RawTable and have a lead on a structure called Bucket:

pub struct Bucket<K, V, M> {
raw: RawBucket<K, V>,
table: M,

}

Okay, we're going in some circles here. The bucket parameterizes the table on M rather than
the table holding some collection of buckets. The RawBucket is described as an unsafe view
of a RawTable bucket of which there are two variants—Empt yBucket and FullBucket.
These variants are used to populate a Bucket State enumeration:

pub enum BucketState<K, V, M> {
Empty (EmptyBucket<K, VvV, M>),
Full (FullBucket<K, VvV, M>),

}

Here, we can see it being used back in HashMap: : insert_hashed_ordered:
fn insert_hashed_ordered (&mut self, hash: SafeHash, k: K, v: V) {

let mut buckets = Bucket::new(&mut self.table, hash);
let start_index = buckets.index();

loop {
// We don't need to compare hashes for value swap.
// Not even DIBs for Robin Hood.
buckets = match buckets.peek () {
Empty (empty) => {
empty.put (hash, k, v);
return;
s
Full (b) => b.into_bucket (),
bi
buckets.next ();
debug_assert! (buckets.index () != start_index);

}

If we explore down into empty.push (hash, k, v), we find ourselves at the following:

pub fn put (mut self, hash: SafeHash, key: K, value: V)
-> FullBucket<K, V, M>
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unsafe {
*self.raw.hash() = hash.inspect();
ptr::write(self.raw.pair (), (key, value));

self.table.borrow_table_mut () .size += 1;

FullBucket {
raw: self.raw,
table: self.table,

}

Tidy. ptr::write(self.raw.pair(), (key, value)) demonstrates that we're
working with a structure built out of raw memory pointer manipulation, befitting a
structure that will see a lot of use in critical paths. self.raw.pair (), which returns the
appropriate offset to move (key, value) into, matching the HashMap: : insert move
semantics we're already familiar with. Take a look at the definition of RawBucket:

pub struct RawBucket<K, V> {
hash_start: *mut HashUint,
// We use *const to ensure covariance with respect to K and V
pair_start: *const (K, V),
idx: usize,
_marker: marker::PhantomData< (K, V)>,

}

Here, we've got two raw pointers: hash_start and pair_start. The former is the first
location in memory of our stored pairs' hashes, the latter is the first location in the memory
of the pairs. What this ends up being is contiguous storage in memory of two sets of data,
which is about what you'd expect. The table module documentation refers to this approach
as unzipped arrays. RawTable holds the capacity and the data, kind of. In reality, the data
held by RawTable is carefully placed in memory, as we've seen, but there's no owner as the
Rust type system understands it. That's where marker: marker::PhantomData< (K,

V) > comes in. PhantomData instructs the compiler to behave as if RawTable<K, V>owns
pairs of (K, V), even though with all the unsafe pointer manipulation we're doing that
can't actually be proven by Rust. We human observers can determine by inspection that
RawTable owns its data via RawTable: : raw_bucket_at as it computes where in memory
the data exists:

fn raw_bucket_at (&self, index: usize) -> RawBucket<K, V> {
let hashes_size = self.capacity() * size_of::<HashUint>();
let pairs_size = self.capacity () * size_of::<(K, V)>();
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let (pairs_offset, _, oflo) =
calculate_offsets (hashes_size, pairs_size,
align_of::<(K, V)>());
debug_assert! (!oflo, "capacity overflow");

let buffer = self.hashes.ptr() as *mut u8;
unsafe {
RawBucket |
hash_start: buffer as *mut HashUint,
pair_start: buffer.offset (pairs_offset as isize)
as *const (K, V),

idx: indexk,
_marker: marker::PhantomData,

}

Well, by inspection and testing, as you can see at the bottom of the module.

Naive HashMap

How else could we implement an associative array in Rust and how would it compare to
standard library's HashMap? The standard library HashMap is clever, clearly, storing just
enough information to reduce the total probes from ideal offsets by sharing information
between modifications to the underlying table. In fact, the comments in the table module
assert that the design we've just worked through is a lot faster than a table structured as
Vec<Option<(u64, K, V)>>—where u64 is the key hash, but presumably still using
Robin Hood hashing and linear probing. What if we went even simpler? We'll support only
two operations—insert and lookup—to keep things straightforward for ourselves. We'll
also keep more or less the same type constraints as HashMap so we compare similar things.

Start a new Rust project called naive_hashmap:

> cargo new naive_hashmap
Created library “naive_hashmap  project

Edit naive_hashmap/Cargo.toml to look like so:

[package]

name = "naive_hashmap"
version = "0.1.0"
[dependencies]

rand = "0.4.2"
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[dev-dependencies]

quickcheck

criterion =

[ [bench]]

name =
harness

[ [bin]]
name =

doc = false

[ [bin]]
name =

doc = false

[ [bin]]
name =

doc = false

[ [bench]]

name =
harness

[ [bin]]
name =

doc = false

[ [bin]]
name =

doc = false

"D.6"

"o.1"

"naive"

false

"naive_interpreter"

"standard"

"naive"

"specialized"

false

"specialized_interpreter"

"specialized"

Don't worry too much right now about some of the development dependencies, they'll be

explained in due course. Please note that in the following discussion we will run

compilation commands against the project before all the code has been discussed. If you are
following along with the book's pre-written source code open already, you should have no
issues. If you are writing the source out as the book goes along, you will need to comment
targets out. Now, open naive_hashmap/src/lib.rs and add the following preamble:

#lcfg(test)]
extern crate quickcheck;

use
use
use
use

std:
std:
std:
std::

:hash::{BuildHasher, Hash, Hasher};
:borrow: :Borrow;
:collections::hash_map::RandomState;

{cmp, mem, ptr};
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Most crate roots begin with a fairly long preamble, and naive_hashmap is no exception.
Next up, our HashMap struct:

# [derive (Default) ]
pub struct HashMap<K, V, S = RandomState>
where

K: Eqg,

V: ::std::fmt::Debug,

hash_builder: S,
data: Vec<(u64, K, V)>,
3

How does our naive HashMap differ from the standard library's HashMap we've seen so far?
The naive implementation maintains the parameterized hasher and type constraints, plus a
constraint on vV to implement the Debug trait for ease of fiddling. The primary difference, in
terms of underlying structure, is the use of a Vec—as called out in the comments of the
standard library HashMap—but without an Opt ion wrapper. We're not implementing a
delete operation so there's no reason to have an Opt ion but, even if we were, the plan for
this implementation would be to rely solely on Vec: : remove. The fact that it is less than
ideal that Vec: : remove shifts all elements from the right of the removal index to the left
should be well understood. Folks, this won't be a fast implementation. Now:

impl<K: Eqg, V> HashMap<K, V, RandomState>

where
K: Egq + Hash,
V: ::std::fmt::Debug,
{
pub fn new() —-> HashMap<K, V> {

HashMap A
hash_builder: RandomState::new(),
data: Vec::new(),

fn make_hash<T: ?Sized, S>(hash_builder: &S, t: &T) —-> ub64d
where

T: Hash,

S: BuildHasher,

let mut state = hash_builder.build_hasher();
t.hash (&mut state);
state.finish ()
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impl<K, V, S> HashMap<K, V, S>
where

K: Eg + Hash,

S: BuildHasher,

V: ::std::fmt::Debug,

pub fn with_hasher (hash_builder: S) -> HashMap<K, V, S> {
HashMap {
hash_builder: hash_builder,
data: Vec::new(),

}

Our naive implementation is following along with the standard library here, implementing
a HashMap that is parameterized on RandomState—so users don't have to think about the
underlying hasher—and in which the hasher is swappable, via HashMap: :with_hasher.
The Rust team chose to implement RandomState in terms of a verified cryptographically
secure hash algorithm, befitting a language that is intended for use on the public internet.
Some users won't desire this property—opting instead for a much faster, potentially
vulnerable hash—and will swap Randomstate out for something else. Our naive HashMap
retains this ability.

Let's examine insertion into our naive HashMap:

pub fn insert (&émut self, k: K, v: V) -> Option<v> {
let hash = make_hash (&self.hash_builder, &k);

let end = self.data.len();
for idx in 0..end {
match self.data[idx].0.cmp (&hash) {
cmp: :Ordering: :Greater => {
self.data.insert (idx, (hash, k, v));
return None;

cmp: :Ordering::Less => continue,

cmp: :Ordering: :Equal => {
let old = mem::replace(&mut self.datal[idx].2, v);
return Some (old);

}
self.data.push( (hash, k, v));
None
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Our naive implementation maintains the API of the standard library HashMap but that's
about it. The key is hashed and then a linear search is done through the entire data store to
find an index in that store where one of two conditions hold:

e Our new hash is greater than some hash in the store, in which case we can insert
our key/value pair

¢ Our new hash is equal to some hash in the store, in which case we can replace the
existing value

Key/value pairs are stored in terms of their ordered hashes. The expense of an insert
includes:

¢ Hashing the key

e Searching for the insert index, a linear operation to the number of stored
key/value pairs

e Potentially shifting key/value pairs in memory to accommodate a new key to the
store

Lookup follows a similar scheme:

pub fn get<Q: ?Sized> (&mut self, k: &Q) -> Option<&v>
where

K: Borrow<Q> + ::std::fmt::Debug,

Q: Hash + Eg + ::std::fmt::Debug,

let hash = make_hash (&self.hash_builder, k);

for & (bucket_hash, _, ref v) in &self.data {
if hash == bucket_hash {
return Some (V) ;

}

None

}

The key is hashed and a linear search is done for that exact hash in storage. Here, we only
pay the cost for:

e Hashing the key
e Searching for the retrieval offset, if one exists
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Let's take a moment and consider this before asking ourselves if our program is fast if it is
correct. The usual way of demonstrating fitness for purpose of software is through unit
testing, a minimal setup for which is built right into the Rust language. Unit testing is two
processes wrapped into a single method. When writing unit tests, a programmer will:

e Produce example data that exercises some code path in the software

e Write further code to demonstrate that when the example data is applied to the
system under test, a desirable property/properties holds

This is a good testing methodology for demonstrating that the happy path of a system
under test works as expected. The weak point of unit testing comes in the first process,
where the programmer must think very hard and produce an example dataset that
exercises the correct code paths, demonstrates the lack of edge cases, and so on. Human
beings are poor at this task, owing to it being tedious, biased toward demonstrating the
functioning of a thing made by one's own hands, chronic blind spots, or otherwise. What
we are pretty good at doing is cooking up high-level properties for our systems that must
always hold or hold in particular situations. Fortunately for us programmers, computers are
exceptionally good at doing tedious, repetitive tasks and the generation of example data for
tests is such a thing.

Testing with QuickCheck

With that in mind, in this book, we'll make extensive use of property-based testing, also
called generative testing by some literature. Property-based testing has a slightly different, if
similar, workflow to unit testing. When writing property tests, the programmer will:

e Produce a method for generating valid inputs to a system under test

e Write further code to demonstrate that for all valid inputs that a desirable
property or property of the system holds

Property-based testing is exceptionally good at finding corner cases in software, wacky
inputs that the programmer might not have dreamed up, or, as happens from time to time,
even understand as potentially problematic. We'll use Andrew Gallant's QuickCheck, a tool
that is patterned from Haskell QuickCheck, introduced by Koen Claessen and John Hughes
in their 2000 QuickCheck: A Lightweight Tool for Random Testing of Haskell Programs. First, a
little preamble to get us into the testing module:

#lcfg(test)]
mod test {
extern crate quickcheck;

use super::*;
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use quickcheck::{Arbitrary, Gen, QuickCheck, TestResult};

If we were to unit test our naive HashMap, we'd probably write a test where a particular
arbitrary key/value pair would be inserted and then we'd assert the ability to retrieve the
same value with that same key. How does this map to property-based testing? The
property is that if we perform an insertion on an empty HashMap with a key k of value v
and immediately perform a retrieval of k, we'll receive v back out. Here it is:

#[test]
fn get_what_you_give () {
fn property(k: ul6, v: ul6) -> TestResult {
let mut system_under_test = HashMap::new();

assert_eq! (None, system_under_test.insert (k, v));
assert_eq! (Some (&v), system_under_test.get (&k));

TestResult: :passed()
}
QuickCheck: :new () .quickcheck (property as fn(ul6, ul6) ->
TestResult) ;
}

The test is named get_what_you_give and is annotated # [test] as per usual Rust tests.
What's different is this test has a property inner function that encodes the property we
elaborated on earlier and a call out to QuickCheck for actually running the property test, by
default 100 times, with different inputs. Exactly how QuickCheck manages this is pretty
swell. Per the Claessen and Hughes paper, QuickCheck implements the Arbitrary trait
for many of the types available in the standard library. QuickCheck defines Arbitrary like
SO, in quickcheck/src/arbitrary.rs:

pub trait Arbitrary : Clone + Send + 'static {
fn arbitrary<G: Gen>(g: &mut G) -> Self;

fn shrink (&self) —> Box<Iterator<Item=Self>> {
empty_shrinker ()
¥
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The Gen parameter is a wrapper around rand:Rng with some extra machinery for
controlling distributions. The two functions are arbitrary and shrink. The purpose of
arbitrary is easy to explain: it generates new, random instances of a type that is
Arbitrary. The shrink function is a little more complicated to get across. Let's say we've
produced a function that takes a vector of u16 but just so happens to have a bug and will
crash if a member of the vector is 0. A QuickCheck test will likely find this but the first
arbitrary vector it generates may have a thousand members and a bunch of 0 entries. This is
not a very useful failure case to begin diagnosis with. After a failing case is found by
QuickCheck the case is shrunk, per the definition of Arbitrary: :shrink. Our
hypothetical vector will be cut in half and if that new case is also a failure then it'll be
shrunk by half again and so on until it no longer fails, at which point—hopefully—our
failing case is a much more viable diagnosis tool.

The implementation of Arbitrary for ul6 is a touch complicated due to macro use, but if
you squint some, it'll become clear:

macro_rules! unsigned_arbitrary {
(S(Sty:tt),*) => {
S
impl Arbitrary for S$ty {

fn arbitrary<G: Gen>(g: &mut G) -> Sty {
#![allow(trivial_numeric_casts) ]
let s = g.size() as S$ty;
use std::cmp::{min, max};
g.gen_range (0, max(l, min(s, $ty::max_value())))

I3

fn shrink (&self) -> Box<Iterator<Item=$ty>> {
unsigned_shrinker! ($ty);
shrinker::UnsignedShrinker: :new(*self)

)*
}

unsigned_arbitrary! {
usize, u8, ul6, u32, u64

}

Arbitrary instances are generated by unsigned_arbitrary!, each of which in turn
generates a shrinker via unsigned_shrinker!. This macro is too long to reprint here but
the basic idea is to remove half of the unsigned integer on every shrink again, until zero is
hit, at which point give up shrinking.

[41]



Sequential Rust Performance and Testing Chapter 2

Fifteen years after the original QuickCheck paper, John Hughes summarized his experience
in the intervening 15 years with his 2016 Experiences with QuickCheck: Testing the Hard Stuff
and Staying Sane. Hughes noted that many property-based tests in the wild don't generate
primitive types. The domain of applications in which primitive types are sufficient tends to
be those rare, blessed pure functions in a code base. Instead, as many functions in a
program are inherently stateful, property-based tests tend to generate arbitrary actions
against a stateful system, modeling the expected behavior and validating that the system
under test behaves according to its model.

How does that apply to our naive HashMap? The system under test is the naive HashMap,
that's clear enough. Our actions are:

e INSERT key value
e LOOKUP key

Hopefully, that's straightforward. What about a model? In this particular instance, we're in
luck. Our model is written for us: the standard library's HashMap. We need only confirm
that if the same actions are applied to both our naive HashMap and the standard HashMap
in the same order then we'll get the same returns from both the model and system under
test. How does that look? First, we need actions:

#[derive (Clone, Debug)]
enum Action<T>
where
T: Arbitrary,
{
Insert (T, ul6),
Lookup (T),
t

Our Action<T> is parameterized ona T: Arbitrary and all values via the Insert are
pegged as ul6s. This is done primarily for convenience's sake. Both key and value could be
arbitrary or concrete types, depending on the preference of the tester. Our Arbitrary
definition is as follows:

impl<T> Arbitrary for Action<T>
where
T: Arbitrary,
{
fn arbitrary<G>(g: &mut G) -> Action<T>

where
G: Gen,
{
let i: usize = g.gen_range (0, 100);
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match 1 {
0...50 => Action::Insert (Arbitrary::arbitrary(qg),
ul6::arbitrary(qg)),
_ => Action::Lookup (Arbitrary::arbitrary(g)),

}

Either action is equally likely to happen and any instance of T or u16 is valid for use. The
validation of our naive HashMap against the standard library's HashMap:

#[test]
fn sut_vs_genuine_article () {
fn property<T>(actions: Vec<Action<T>>) -> TestResult
where
T: Arbitrary + Egq + Hash + ::std::fmt::Debug,
{
let mut model = ::std::collections::HashMap::new();
let mut system_under_test = HashMap::new();
for action in actions.into_iter () {
match action {
Action::Insert (k, v) => {
assert_eq! (model.insert (k.clone(), v),
system_under_test.insert (k, v));
}
Action: :Lookup (k) => {
assert_eq! (model.get (&k),
system_under_test.get (&k));
}
}
}
TestResult: :passed()
}
QuickCheck: :new () .quickcheck (property as fn (Vec<Action<u8>>) ->
TestResult) ;
}
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Hopefully, this looks familiar to our previous QuickCheck test. Again, we have an inner
property function that does the actual work and we request that QuickCheck run this
property test over arbitrary vectors of Act ion<u8>. For every action present in the vector
we apply them to both the model and the system under test, validating that the results are
the same. The u8 type was intentionally chosen here compared to a large domain type such
as u64. One of the key challenges of writing QuickCheck tests is probing for extremely
unlikely events. QuickCheck is blind in the sense that it's possible for the same path to be
chosen through the program for each run if that path is the most likely path to be chosen.
While millions of QuickCheck tests can give high confidence in fitness for purpose the
blind nature of the runs means that QuickCheck should also be paired with tools known as
fuzzers. These do not check the correct function of a program against a model. Instead, their
sole purpose is to validate the absence of program crashes.

Testing with American Fuzzy Lop

In this book, we'll make use of American Fuzzy Lop, a best-of-breed fuzzer commonly used
in other systems languages. AFL is an external tool that takes a corpus of inputs, an
executable that reads inputs from STDIN, and mutates the corpus with a variety of
heuristics to find crashing inputs. Our aim is to seek out crash bugs in naive HashMap, this
implies that we're going to need some kind of program to run our HashMap in. In fact, if
you'll recall back to the project's Cargo.toml, we already had the infrastructure for such in
place:

[[bin]]
name = "naive_interpreter"
doc = false

The source for naive_interpreter is a little goofy looking but otherwise uneventful:
extern crate naive_hashmap;

use std::io;
use std::io::prelude::*;

fn main() {
let mut hash_map = naive_hashmap::HashMap: :new();

let n = io::stdin();
for line in n.lock () .lines () {
if let Ok (line) = line {
let mut cmd = line.split (" ");
match cmd.next () A
Some ("LOOKUP") => {
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if let Some (key) = cmd.next () {
let _ = hash_map.get (key);
} else {
continue;
I3
I3
Some ("INSERT") => {
if let Some (key) = cmd.next () {
if let Some (val) = cmd.next () {
let _ = hash_map.insert (key.to_string(),
val.to_string());
I3
} else {
continue;

}
}

_ => continue,

} else {
break;

}

Lines are read from stdin, and these lines are split along spaces and interpreted as
commands, either LOOKUP or INSERT and these are interpreted into actions on the naive
HashMap. The corpus for an AFL run can live pretty much anywhere. By convention, in this
book we'll store the corpus in-project in a top-level resources/directory. Here's
resources/in/mixed_gets_puts

LOOKUP 10
INSERT abs 10
LOOKUP abs

The larger your input corpus, the more material AFL has to mutate and the
faster—maybe—you'll find crashing bugs. Even in a case such as naive HashMap where we
can be reasonably certain that there will be no crashing bugs—owing to the lack of pointer
manipulation and potentially fatal integer operations—it's worthwhile building up a good
corpus to support future efforts. After building a release of the project, getting an AFL run
going is a cargo command away:

> cargo afl build --release
> cargo afl fuzz -i resources/in/ -o resources/out/
target/release/naive_interpreter
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This says to execute target/release/naive_interpreter under AFL with input corpus
at resources/in and to output any failing cases under resources/out. Such crashes
often make excellent unit tests. Now, the trick with fuzzing tools in general is they're not
part of any kind of quick-cycle test-driven development loop. These tool runs are long and
often get run on dedicated hardware overnight or over many days. Here, for example, is
the AFL run I had going while writing this chapter:

american fuzzy lop 2.52b (naive_interpreter)

@ days, 3 hrs, 55 min, 35 sec
@ days, 3 hrs, 28 min, 20 sec
none seen yet
none seen yet

142* (97.93%) : 0.28% / @.57%
@ (0.00%) 5.37 bits/tuple

interest 32/8 19 (13.16%)
711k/1.17M (60.062%) 23 (15.86%)
4,59M @ (@ unigue)
523.3/sec 23 (5 unique)
15/286k, @/286k, 2/285k
8/35.8k, @/27.5k, @/27.4k
4/1.54M, @/19.0k, 0/1250
8/163k, @/768k, 4/118k
8/9, a/9, 2/27.2k
115/280k, @/@
18.38%/3623, 22.77%

There's a fair bit of information here but consider that the AFL runtime indicator is
measured in days. One key advantage to the use of AFL compared to other fuzzers is the
prominence of AFL in the security community. There are a good many papers describing its
implementation and the interpretation of its, uh, comprehensive interface. You are warmly
encouraged to scan the Further reading section of this chapter for more information.
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Performance testing with Criterion

We can now be fairly confident that our naive HashMap has the same behavior as the
standard library for the properties we've checked. But how does the runtime performance
of naive HashMap stack up? To answer this, we'll write a benchmark, but not a benchmark
using the unstable Bencher subsystem that's available in the nightly channel. Instead, we'll
use Jorge Aparicio's criterion—inspired by the Haskell tool of the same name by Bryan
O'Sullivan—which is available on stable and does statistically valid sampling of runs. All
Rust benchmark code lives under the top-level benches/ directory and criterion
benchmarks are no different. Open benches/naive.rs and give it this preamble:

# [macro_use]

extern crate criterion;
extern crate naive_hashmap;
extern crate rand;

use criterion::{Criterion, Fun};
use rand::{Rng, SeedableRng, XorShiftRng};

This benchmark incorporates pseudorandomness to produce an interesting run. Much like
unit tests, handcrafted datasets in benchmarks will trend towards some implicit bias of the
author, harming the benchmark. Unless, of course, a handcrafted dataset is exactly what's
called for. Benchmarking programs well is a non-trivial amount of labor. The Rng we use is
Xorshift, a pseudo-random generator known for its speed and less cryptographic
security. That suits our purposes here:

fn insert_and_lookup_naive (mut n: u64) {
let mut rng: XorShiftRng = SeedableRng::from_seed([1981, 1986,
2003, 20111);
let mut hash_map = naive_hashmap::HashMap: :new();

while n !'= 0 {
let key = rng.gen::<u8>();
if rng.gen::<bool>() {
let value = rng.gen::<u32>();
hash_map.insert (key, value);
} else {

hash_map.get (&key) ;
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The first benchmark, named insert_and_lookup_native, performs pseudo-random
insertions and lookups against the naive HashMap . The careful reader will note that
XorshiftRng is given the same seed every benchmark. This is important. While we want
to avoid handcrafting a benchmark dataset, we do want it to be the same every run, else the
benchmark comparisons have no basis. That noted, the rest of the benchmark shouldn't be
much of a surprise. Generate random actions, apply them, and so forth. As we're interested
in the times for standard library HashMap we have a benchmark for that, too:

fn insert_and_lookup_standard(mut n: u64) {
let mut rng: XorShiftRng = SeedableRng::from_seed([1981, 1986,

2003, 20111);
let mut hash_map = ::std::collections::HashMap::new();
while n !'= 0 {
let key = rng.gen::<u8>();
if rng.gen::<bool> () {
let value = rng.gen::<u32>();
hash_map.insert (key, value);
} else {

hash_map.get (&key) ;

}

Criterion offers, as of writing this book, a method for comparing two functions or
comparing a function run over parameterized inputs but not both. That's an issue for us
here, as we'd like to compare two functions over many inputs. To that end, this benchmark
relies on a small macro called insert_lookup!:

macro_rules! insert_lookup {
($fn:ident, S$s:expr) => {
fn $fn(c: &mut Criterion) {
let naive = Fun::new("naive", |b, 1| b.iter (]|
insert_and_lookup_naive (*1))
)i
let standard = Fun::new("standard", |b, 1| b.iter (||
insert_and_lookup_standard(*i))

)i
let functions = vec![naive, standard];

c.bench_functions (&format! ("HashMap/{}", $s),
functions, &S$s);
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insert_lookup!
insert_lookup!
insert_lookup!
insert_lookup!
insert_lookup!
insert_lookup!

insert_lookup_100000, 100_000);
insert_lookup_10000, 10_000);
insert_lookup_1000, 1_000);
insert_lookup_100, 100);
insert_lookup_10, 10);
insert_lookup_1, 1);

The meat here is we create two Fun for comparison called naive and standard, then use
Criterion::bench_functions torun a comparison between the two. In the invocation
of the macro, we evaluate insert_and_lookup_* from 1 to 100_000, with it being the
total number of insertions to be performed against the standard and naive HashMaps.
Finally, we need the criterion group and main function in place:

criterion_group!{
name = benches;
config = Criterion::default();
targets = insert_lookup_100000, insert_lookup_10000,
insert_lookup_1000, insert_lookup_100,
insert_lookup_10, insert_lookup_1
I3

criterion_main! (benches);

Running criterion benchmarks is no different to executing Rust built-in benchmarks:

> cargo bench
Compiling naive_hashmap v0.1.0
(file:///home/blt/projects/us/troutwine/concurrency_in_rust/external_projec
ts/naive_hashmap)
Finished release [optimized] target(s) in 5.26 secs
Running target/release/deps/naive_hashmap-fe6fcaf7c£309bb8

running 2 tests

test test::get_what_you_give ... ignored

test test::sut_vs_genuine_article ... ignored

test result: ok. 0 passed; 0 failed; 2 ignored; 0 measured; 0 filtered out
Running target/release/deps/naive_interpreter-26c60c76389£fd26d

running 0 tests

test result: ok. 0 passed; 0 failed; O ignored; 0 measured; 0 filtered out

Running target/release/deps/naive-96230b57£e0068b7
HashMap/100000/naive time: [15.807 ms 15.840 ms 15.879 ms]
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Found 13 outliers among 100 measurements (13.00%)

2 (2.00%) low mild

1 (1.00%) high mild

10 (10.00%) high severe
HashMap/100000/standard time: [2.9067 ms 2.9102 ms 2.9135 ms]
Found 7 outliers among 100 measurements (7.00%)

1 (1.00%) low severe

5 (5.00%) low mild

1 (1.00%) high mild

HashMap/10000/naive time: [1.5475 ms 1.5481 ms 1.5486 ms]
Found 9 outliers among 100 measurements (9.00%)

1 (1.00%) low severe

2 (2.00%) high mild

6 (6.00%) high severe
HashMap/10000/standard time: [310.60 us 310.81 us 311.03 us]
Found 11 outliers among 100 measurements (11.00%)

1 (1.00%) low severe

2 (2.00%) low mild

3 (3.00%) high mild

5 (5.00%) high severe

And so forth. Criterion also helpfully produces gnuplot graphs of your runtimes, if gnuplot
is installed on your benchmark system. This is highly recommended.

Inspecting with the Valgrind Suite

Your specific benchmarking output will likely vary but it's pretty clear that the naive
implementation is, well, not very fast. What tools do we have available to us to diagnose
the issues with our code, guide us toward hot spots for optimization, or help convince us of
the need for better algorithms? We'll now leave the realm of Rust-specific tools and dip into
tools familiar to systems programmers at large. If you're not familiar with them personally
that's a-okay—we'll describe their use and there are plenty of external materials available
for the motivated reader. Okay, first, we're going to need some programs that exercise our
naive HashMap and the standard HashMap. naive_interpreter would work, but it's
doing a lot of extra things that'll muddy the water some. To that end, for examination
purposes, we'll need two programs, one to establish a baseline and one for our
implementation. Our baseline, called bin/standard.rs:

extern crate naive_hashmap;
extern crate rand;

use std::collections::HashMap;
use rand::{Rng, SeedableRng, XorShiftRng};
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fn main () {
let mut rng: XorShiftRng = SeedableRng::from_seed([1981, 1986,
2003, 20111);
let mut hash_map = HashMap::new();

let mut insert_empty = O0;
let mut insert_present = 0;
let mut get_fail = 0;

let mut get_success = 0;

for _ in 0..100_000 {
let key = rng.gen::<ulé6>();
if rng.gen::<bool>() {

let value = rng.gen::<u32>();
if hash_map.insert (key, value) .is_none () {
insert_empty += 1;
} else {
insert_present += 1;
3
} else {

if hash_map.get (&key) .is_none () {
get_fail += 1;

} else {
get_success += 1;

I3

3
3
println! ("INSERT");
println! (" empty: {}", insert_empty);
println! (" present: {}", insert_present);
println! ("LOOKUP") ;
println! (" fail: {}", get_£fail);
println! (" success: {}", get_success);

}

Our test article program is exactly the same, save the preamble is a bit different:

extern crate naive_hashmap;
extern crate rand;

use naive_hashmap: :HashMap;
use rand::{Rng, SeedableRng, XorShiftRng};

fn main () {
let mut rng: XorShiftRng = SeedableRng::from_seed([1981, 1986,
2003, 20111]);
let mut hash_map = HashMap::new();
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let mut insert_empty = 0;
let mut insert_present = 0;
let mut get_fail = 0;

let mut get_success = 0;

for _ in 0..100_000 {
let key = rng.gen::<ulé6>();
if rng.gen::<bool>() {

let value = rng.gen::<u32>();
if hash_map.insert (key, value).is_none () {
insert_empty += 1;
} else {
insert_present += 1;
3
} else {

if hash_map.get (&key) .is_none () {
get_fail += 1;

} else {
get_success += 1;

I3

3
3
println! ("INSERT");
println! (" empty: {}", insert_empty);
println! (" present: {}", insert_present);
println! ("LOOKUP") ;
println! (" fail: {}", get_£fail);
println! (" success: {}", get_success);

}

Easy enough and similar in spirit to the benchmark code explored earlier. Now, let's set our
baselines. First up, memory allocations:

naive_hashmap > valgrind —--tool=memcheck target/release/standard
==13285== Memcheck, a memory error detector
==13285== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==13285== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright
info
==13285== Command: target/release/standard
==13285==
INSERT
empty: 35217
present: 15071

LOOKUP
fail: 34551
success: 15161
==13285==

[52]



Sequential Rust Performance and Testing Chapter 2

==13285== HEAP SUMMARY:

==13285== in use at exit: 0 bytes in 0 blocks

==13285== total heap usage: 7 allocs, 7 frees, 2,032 bytes allocated
==13285==

==13285== All heap blocks were freed —-- no leaks are possible
==13285==

==13285== For counts of detected and suppressed errors, rerun with: -v
==13285== ERROR SUMMARY: 0 errors from O contexts (suppressed: 0 from 0)

Seven total allocations, seven total frees, and a grand total of 2,032 bytes allocated. Running
memcheck against naive has the same result:

==13307== HEAP SUMMARY:
==13307== in use at exit: 0 bytes in 0 blocks
==13307== total heap usage: 7 allocs, 7 frees, 2,032 bytes allocated

The naive run is noticeably slower, so it's not allocating memory that kills us. As so little
memory gets allocated by these programs we'll skip Valgrind massif—it's unlikely to turn
up anything useful. Valgrind cachegrind should be interesting though. Here's baseline:

naive_hashmap > valgrind —--tool=cachegrind —--branch-sim=yes
target/release/standard

==13372== Cachegrind, a cache and branch-prediction profiler

==13372== Copyright (C) 2002-2015, and GNU GPL'd, by Nicholas Nethercote et

al.

==13372== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright
info

==13372== Command: target/release/standard

==13372==

—-13372-- warning: L3 cache found, using its data for the LL simulation.
INSERT

empty: 35217
present: 15071

LOOKUP
fail: 34551
success: 15161
==13372==
==13372== 1 refs: 25,733,614
==13372== Il misses: 2,454
==13372== LLi misses: 2,158
==13372== Il miss rate: 0.01%
==13372== LLi miss rate: 0.01%
==13372==
==13372== D refs: 5,400,581 (2,774,345 rd + 2,626,236 wr)
==13372== D1 misses: 273,218 ( 219,462 rd + 53,756 wr)
==13372== LLd misses: 36,267 ( 2,162 rd + 34,105 wr)
==13372== D1 miss rate: 5.1% ( 7.9% + 2.0% )
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==13372== LLd miss rate: 0.7% ( 0.1% + 1.3% )
==13372==

==13372== LL refs: 275,672 ( 221,916 rd + 53,756 wr)
==13372== LL misses: 38,425 ( 4,320 rd + 34,105 wr)
==13372== LL miss rate: 0.1% ( 0.0% + 1.3% )
==13372==

==13372== Branches: 3,008,198 (3,006,105 cond + 2,093 ind)
==13372== Mispredicts: 315,772 ( 315,198 cond + 574 ind)
==13372== Mispred rate: 10.5% ( 10.5% + 27.4% )

Let's break this up some:

==13372== 1 refs: 25,733,614
==13372== I1 misses: 2,454
==13372== LLi misses: 2,158
==13372== I1 miss rate: 0.01%
==13372== LLi miss rate: 0.01%

The first section details our instruction cache behavior. I refs: 25,733, 614 tells us that
the standard program executed 25,733,614 instructions in all. This is often a useful
comparison between closely related implementations, as we'll see here in a bit. Recall that
cachegrind simulates a machine with two levels of instruction and data caching, the first
level of caching being referred to as I1 or D1 for instruction or data caches and the last level
cache being prefixed with LL. Here, we see the first and last level instruction caches each
missed around 2,500 times during our 25 million instruction run. That squares with how
tiny our program is. The second section is as follows:

==13372== refs: 5,400,581 (2,774,345 rd + 2,626,236 wr)
==13372== D1 misses: 273,218 ( 219,462 rd + 53,756 wr)
==13372== LLd misses: 36,267 ( 2,162 rd + 34,105 wr)
==13372== D1 miss rate: 5.1% ( 7.9% + 2.0% )
==13372== LLd miss rate: 0.7% ( 0.1% + 1.3% )

This is the data cache behavior, split into the two cache layers previously discussed and
further divided into read and writes. The first line tells us that 5,400,581 total reads and
writes were made to the caches, 2,774,345 reads and 2,626,236 writes. These totals are then
further divided by first level and last level caches. Here it turns out that the standard
library HashMap does real well, a D1 miss rate of 5.1% and a LLd miss rate of 0.7%. That last
percentage is key: the higher it is, the more our program is accessing main memory. Doing
so, as you'll recall from chapter 1, Preliminaries — Machine Architecture and Getting Started
with Rust, is painfully slow. The third section is as follows:

==13372== LL refs: 275,672 ( 221,916 rd + 53,756 wr)
==13372== LL misses: 38,425 ( 4,320 rd + 34,105 wr)
==13372== LL miss rate: 0.1% ( 0.0% + 1.3% )
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This focuses on the combined behavior of data and instruction cache accesses to the LL
cache. Personally, I don't often find this section illuminating compared to the previously
discussed sections. Your mileage may vary. The final section is as follows:

==13372== Branches: 3,008,198 (3,006,105 cond + 2,093 ind)
==13372== Mispredicts: 315,772 ( 315,198 cond + 574 ind)
==13372== Mispred rate: 10.5% ( 10.5% + 27.4% )

This details the branch misprediction behavior of our program. We're drowning out the
standard library's HashMap by branching so extensively in the runner program but it will
still serve to establish some kind of baseline. The first line informs us that 3,008,198 total
branches were taken during execution. The majority—3,006,105—were conditional
branches, branches that jump to a location based on some condition. This squares with the
number of conditional statements we have in the runner. The small majority of branches
were indirect, meaning they jumped to offsets in memory based on the results of previous
instructions. Overall, our branch misprediction rate is 10.5%.

Alright, how does the naive HashMap implementation stack up?

naive_hashmap > valgrind —--tool=cachegrind —--branch-sim=yes
target/release/naive

==13439== Cachegrind, a cache and branch-prediction profiler

==13439== Copyright (C) 2002-2015, and GNU GPL'd, by Nicholas Nethercote et

al.

==13439== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright
info

==13439== Command: target/release/naive

==13439==

—-13439-- warning: L3 cache found, using its data for the LL simulation.
INSERT

empty: 35217
present: 15071

LOOKUP
fail: 34551
success: 15161
==13439==
==13439== 1 refs: 15, 385,395,657
==13439== Il misses: 2,376
==13439== LLi misses: 2,157
==13439== Il miss rate: 0.00%
==13439== LLi miss rate: 0.00%
==13439==
==13439== D refs: 1,609,901,359 (1,453,944,896 rd + 155,956,463
wr)
==13439== D1 misses: 398,465,518 ( 398,334,276 rd + 131,242
wr)
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==13439== LLd misses: 12,647 ( 2,153 rd + 10,494
wr)

==13439== D1 miss rate: 24.8% ( 27.4% + 0.1%
)

==13439== LLd miss rate: 0.0% ( 0.0% + 0.0%
)

==13439==

==13439== LL refs: 398,467,894 ( 398,336,652 rd + 131,242
wr)

==13439== LL misses: 14,804 ( 4,310 rd + 10,494
wr)

==13439== LL miss rate: 0.0% ( 0.0% + 0.0%
)

==13439==

==13439== Branches: 4,430,578,248 (4,430,540,970 cond + 37,278
ind)

==13439== Mispredicts: 193,192 ( 192,618 cond + 574
ind)

==13439== Mispred rate: 0.0% ( 0.0% + 1.5%

)

Already there are some standouts. Firstly, naive executed 15,385,395,657 instructions
compared to the 25,733,614 of baseline. The naive implementation is simply doing much,
much more work than that standard library is. At this point, without looking at any further
data, it's reasonable to conclude that the program under inspection is fundamentally
flawed: a rethink of the algorithm is in order. No amount of micro-optimization will fix
this. But, that was understood; it's why the program is called naive to start with. The second
major area of concern is that the D1 cache miss rate is just shy of 20% higher than baseline,
not to ignore that there are simply just more reads and writes to the first level cache than at
baseline. Curiously, the naive implementation suffers fewer LLd cache misses compared to
baseline—10,494 to 34,105. No hypothesis there. Skipping on ahead to the branch
misprediction section, we find that naive stays on-theme and performs drastically more
branches than standard but with a lower total number of mispredictions. This squares with
an algorithm dominated by linear seek and compares, as naive is.

Inspecting with Linux perf

It's worth keeping in mind that Valgrind's cachegrind is a simulation. If you have access to
a Linux system you can make use of the perf tool to get real, honest numbers about your
program's cache performance and more. This is highly recommended and something we'll
do throughout this book. Like git, perf is many tools arranged under a banner—perf—with
its own subcommands that have their own options.
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It is a tool well worth reading the documentation for. Anyhow, what does the standard
look like under perf?

naive_hashmap > perf stat —--event task-clock, context-switches, page-
faults, cycles, instructions, branches,branch-misses, cache-references, cache-

misses target/release/standard > /dev/null

Performance counter stats for 'target/release/standard’:

6.923765 task-clock (msec) # 0.948 CPUs utilized
0 context-switches # 0.000 K/sec
633 page—-faults # 0.091 M/sec
19,703,427 cycles # 2.846 GHz
26,234,708 instructions # 1.33 insn per cycle
2,802,334 branches # 404.741 M/sec
290,475 branch-misses # 10.37% of all branches
635,526 cache-references # 91.789 M/sec
67,304 cache-misses # 10.590 % of all cache refs

0.007301775 seconds time elapsed

How does the naive implementation stand up?
naive_hashmap > perf stat ——event task-clock, context-switches, page-

faults, cycles, instructions,branches,branch-misses, cache-references, cache-
misses target/release/naive > /dev/null

Performance counter stats for 'target/release/naive’:

1323.724713 task—-clock (msec) # 1.000 CPUs utilized
1 context-switches # 0.001 K/sec
254 page—-faults # 0.192 K/sec
3,953,955,131 cycles # 2.987 GHz
15,390,499, 356 instructions # 3.89 insn per cycle
4,428,637,974 branches # 3345.588 M/sec
204,132 branch-misses # 0.00% of all branches
455,719,875 cache-references # 344.271 M/sec
21,311 cache-misses # 0.005 % of all cache refs

1.324163884 seconds time elapsed

This squares pretty well with the Valgrind simulation and leads to the same conclusion: too
much work is being done to insert. Too many branches, too many instructions, the well-
studied reader will have seen this coming a mile off, it's just worthwhile to be able to put a
thing you know to numbers.
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A better naive HashMap

How can we do better than our naive implementation? Obviously, there's scope for
algorithmic improvement—we could implement any kind of probing—but if we're trying
to compete with standard library's HashMap it's likely that we have a specialized reason for
doing so. A specialized reason implies we know something unique about our data, or are
willing to make a trade-off that a general data structure cannot. Speaking broadly, the main
goals one should have when building software at the limit of machine performance are as
follows:

1. Improve the underlying algorithm, reducing total work done.

2. Improve cache locality of data accesses. This may mean:
a. Keeping your working-set in L1 cache

b. Compressing your data to fit better into cache.

3. Avoid branch mispredictions. This may mean:
a. Shaving off branches entirely when possible

b. Constraining the probability distribution of your branches.

How does that apply here? Well, say we knew that for our application K == u8 but we still
have an unconstrained v. u8 is a key with low cardinality and we ought to be able to trade a
little memory to build a faster structure for ug keys. Unfortunately, Rust does not yet have
type specialization in a stable channel. Type specialization is very important for producing
high-performance software without breaking abstractions. It allows the programmer to
define an abstract interface and implementation for such and then, at a later date, specialize
some of the parameterized types into concrete form with a special purpose implementation.
RuStRFC:1210(https://github.com/rustflang/rfcs/pull/1210/files#difff
b652f1fecad0247198ee29514ac22cf3) details how specialization in Rust will work and
Rust PR 31844 (https://github.com/rust-lang/rust/issues/31844) tracks the ongoing
implementation, which is to say, all of this is only exposed in nightly. This chapter sticks to
stable and so, unfortunately, we'll need to create a new HashMap rather than specializing.
The reader is encouraged to try out specialization for themselves. It's quite nice.

We'll park our HashMapU8 implementation in naive_hashmap/src/lib.rs. The
implementation is quite small:

pub struct HashMapU8<V>
where

V: ::std::fmt::Debug,
{

data: [Option<vVv>; 256],
}
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impl<V> HashMapU8<V>

where
V: ::std::fmt::Debug,
{
pub fn new() -> HashMapU8<V> {

let data = unsafe {
let mut data: [Option<V>; 256] =
for element in data.iter_mut () {
ptr::write (element, None)

mem: :uninitialized();

}
data

bi
HashMapU8 { data: data }

pub fn insert (&mut self, k: u8, v: V) -> Option<vV> {
mem: :replace (&mut self.datal (k as usize)], Some(v))

pub fn get (&mut self, k: &u8) —-> Option<&V> {
let val = unsafe { self.data.get_unchecked((*k as usize)) };
val.as_ref ()

}

The idea here is simple—u8 is a type with such cardinality that we can rework every
possible key into an array offset. The value for each key is an Opt ion<V>, None if no value
has ever been set for the key, and some otherwise. No hashing needs to be done and, absent
specialization, we drop the type requirements for that. Every HashMapU8 will reserve 256

* ::core::mem::size_of::<Option<V>>() bytes. Being that there's unsafe code in this
implementation, it's worthwhile doing an AFL run to search for crashes. The interpreter for
the specialized map is similar to the naive interpreter, except that we now take care to parse
for u8 keys:

extern crate naive_hashmap;

use std::io;
use std::io::prelude::*;
use std::str::FromStr;

fn main() {
let mut hash_map = naive_hashmap::HashMapU8: :new();

let n = io::stdin();
for line in n.lock () .lines () {
if let Ok (line) = line {

[591]



Sequential Rust Performance and Testing Chapter 2

let mut cmd = line.split (" ");
match cmd.next () {
Some ("LOOKUP") => {
if let Some (key) = cmd.next () {
if let Ok (key) = u8::from_str (key) {
let _ = hash_map.get (&key);
} else {

continue;
I3
} else {
continue;

3
Some ("INSERT") => {
if let Some (key) = cmd.next () {
if let Ok (key) = u8::from_str (key) {
if let Some (val) = cmd.next () {
let _ = hash_map.insert (key,
val.to_string());
} else {
continue;

}

} else {
continue;
I3
I3
_ => continue,
I3
} else {
break;

I3
I'll spare you the AFL output but, as a reminder, here's how you run the specialized
interpreter through:

> cargo afl build --release
> cargo afl fuzz -i resources/in/ -o resources/out/

target/release/specialized_interpreter
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Producing a criterion benchmark will be very similar to the approach taken for the naive
implementation, save that we'll swap out a few names here and there. We'll skip listing the
code with the hopes that you'll be able to reproduce it as desired. The results, however, are
promising;:

HashMap/100000/speciali time: [662.01 us 665.28 us 668.44 us]
HashMap/100000/standard time: [2.3471 ms 2.3521 ms 2.3583 ms]
HashMap/10000/specializ time: [64.294 us 64.440 us 64.576 us]
HashMap/10000/standard time: [253.14 us 253.31 us 253.49 us]

In a like manner to naive.rs and standard.rs from previously, we've also got a
specialized.rs runner which, to avoid duplication, we'll avoid listing here. Let's run
specialized through Valgrind cachegrind:

naive_hashmap > valgrind --tool=cachegrind —--branch-sim=yes
target/release/specialized

==24235== Cachegrind, a cache and branch-prediction profiler

==24235== Copyright (C) 2002-2015, and GNU GPL'd, by Nicholas Nethercote et

al.

==24235== Using Valgrind-3.12.0.SVN and LibVEX; rerun with -h for copyright
info

==24235== Command: target/release/specialized

==24235==

—-24235-- warning: L3 cache found, using its data for the LL simulation.
INSERT

empty: 256
present: 50032

LOOKUP

fail: 199

success: 49513
==24235==
==24235== 1 refs: 5,200,051
==24235== I1 misses: 2,248
==24235== LLi misses: 2,068
==24235== Il miss rate: 0.04%
==24235== LLi miss rate: 0.04%
==24235==
==24235== D refs: 443,562 (233,633 rd + 209,929 wr)
==24235== D1 misses: 4,736 ( 3,249 rd + 1,487 wr)
==24235== LLd misses: 3,512 ( 2,112 rd + 1,400 wr)
==24235== D1 miss rate: 1.1% ( 1.4% + 0.7% )
==24235== LLd miss rate: 0.8% ( 0.9% + 0.7% )
==24235==
==24235== LL refs: 6,984 ( 5,497 rd + 1,487 wr)
==24235== LL misses: 5,580 ( 4,180 rd + 1,400 wr)
==24235== LL miss rate: 0.1% ( 0.1% + 0.7% )

[61]



Sequential Rust Performance and Testing

Chapter 2

==24235==

==24235== Branches: 393,5
==24235== Mispredicts: 57,3
==24235== Mispred rate: 14

99
80
.6% (

(391,453 cond +
( 56,657 cond +
14.5%

+

2,

146 ind)
723 ind)

33.7% )

Compared to the standard valgrind run, we're doing around 1/5 the total number of
instructions and with substantially fewer D1 and LLd misses. No surprise here. Our hash for
HashMapU8 is an exceedingly cheap pointer offset and the size of the storage is going to fit
comfortably into the cache. Linux perf tells a similar story:

naive_hashmap > perf stat —--event task-clock, context-switches, page-
faults, cycles, instructions, branches,branch-misses, cache-references, cache-
misses target/release/specialized > /dev/null

Performance counter stats for 'target/release/specialized’:

1.433884 task-clock (msec) # 0.788 CPUs utilized
0 context-switches # 0.000 K/sec
104 page—-faults # 0.073 M/sec
4,138,436 cycles # 2.886 GHz
6,141,529 instructions # 1.48 insn per cycle
749,155 branches # 522.466 M/sec
59,914 branch-misses # 8.00% of all branches
74,760 cache-references # 52.138 M/sec
0.001818537 seconds time elapsed
Phew! Let's summarize our efforts:
name [ Task Clock (ms) | Instructions | Branches Br_anch Cache C?che
Misses References Misses
specialized|1.433884 6,141,529 749,155 59,914 74,760 n/a
standard [6.923765 26,234,708 2,802,334 290,475 635,526 67,304
naive 1323.724713 15,390,499,35614,428,637,974]|204,132 455,719,875 21,311
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Summary

What should we understand from all of this? To produce software that operates at the edge
of the machine's ability, you must understand some important things. Firstly, if you aren't
measuring your program, you're only guessing. Measuring runtime, as criterion does, is
important but a coarse insight. Where is my program spending its time? is a question the
Valgrind suite and perf can answer, but you've got to have benchmarks in place to
contextualize your questions. Measuring and then validating behavior is also an important
chunk of this work, which is why we spent so much time on QuickCheck and AFL.
Secondly, have a goal in mind. In this chapter, we've made the speed of standard library
HashMap our goal but, in an actual code base, there's always going to be places to polish
and improve. What matters is knowing what needs to happen to solve the problem at hand,
which will tell you where your time needs to be spent. Thirdly, understand your machine.
Modern superscalar, parallel machines are odd beasts to program and, without giving a
thought to their behaviors, it's going to be tough understanding why your program
behaves the way it does. Finally, algorithms matter above all else. Our naive HashMap
failed to perform well because it was a screwy idea to perform an average O(n/2) operations
for every insertion, which we proved out in practice. Standard library's HashMap is a good,
general-purpose structure based on linear probing and clearly, a lot of thought went into
making it function well for a variety of cases. When your program is too slow, rather than
micro-optimizing, take a step back and consider the problem space. Are there better
algorithms available, is there some insight into the data that can be exploited to shift the
algorithm to some other direction entirely?

That's performance work in a nutshell. Pretty satisfying, in my opinion.

Further reading

In this chapter, we covered measuring and improving the performance of a serial Rust
program while demonstrating the program's fitness for purpose. This is a huge area of
work and there's a deep well of literature to pull from.

e Rust's std::collections is absolutely horrible, available at https://www.reddit.com/
r/rust/comments/52grcl/rusts_stdcollections_is_absolutely_horrible/
. The original poster admitted the title is a bit on the click-baity side but the
discussion on Reddit is well worth reading. The original author of standard
library's HashMap weighs in on the design decisions in the implementation.
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e Robin Hood Hashing, 1985, Pedro Celis. This thesis introduced the Robin Hood
hashing strategy for constructing associative arrays and is the foundation for the
implementation you'll find in Rust. The paper also goes into further search
strategies that didn't find their way into Rust's implementation but should be of
interest to readers with ambitions toward building hashing search structures.

e Robin Hood hashing, Emmanuel Goossaert, available at http://codecapsule.com/
2013/11/11/robin-hood-hashing/. The Rust standard library HashMap makes
continued reference to this blog post and its follow-on, linked in the text. The
description here is of a higher-level than that of Celis' thesis and potentially
easier to understand as a result.

e Denial of Service via Algorithmic Complexity Attacks, 2003, Scott Crosby and Dan
Wallach. This paper outlines a denial of service attack on network services by
exploiting algorithmic blow-ups in their implementations. The consequence of
this paper influenced Rust's decision to ship a safe-by-default HashMap.

e QuickCheck: Lightweight Tool for Random Testing of Haskell Programs, 2000, Koen
Claessen and John Hughes. This paper introduces the QuickCheck tool for
Haskell and introduces property-based testing to the world. The research here
builds on previous work into randomized testing but is novel for realizing that
computers had got fast enough to support type-directed generation as well as
shipping with the implementation in a single page appendix. Many, many
subsequent papers have built on this one to improve the probing ability of
property testers.

e An Evaluation of Random Testing, 1984, Joe Duran and Simeon Ntafos. The 1970s
and 1980s were an interesting time for software testing. Formal methods were
seen as being just around the corner and the preferred testing methods relied on
intimate knowledge of the program's structure. Duran and Ntafos evaluated the
ideal techniques of the day against random generation of data and found that
randomness compared favorably with significantly less programmer effort. This
paper put random testing on the map.

o Experiences with QuickCheck: Testing the Hard Stuff and Staying Sane, 2016, John
Hughes. This paper is a follow-on to the original QuickCheck paper by Claessen
and Hughes in which Hughes describes his subsequent fifteen years of
experience doing property testing. The techniques laid out in this paper are a
significant evolution of those presented in the 2000 paper and well-worth
studying by anyone doing property tests as a part of their work. That ought to be
most people, is my take.
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o American Fuzzy Lop website, available at http://lcamtuf.coredump.cx/afl. AFL
is the product of a long tail of research into efficiently mutating inputs for the
purpose of triggering bugs. As of writing this book, it is best of breed and has a
long trophy list to show for it. The website has links to AFL's documentation and
relevant research to understand its function in deeper detail.

e Compact Data Structures: A Practical Approach, 2016, Gonzalo Navarro. One of the
major techniques of exploiting cache locality is to shrink the individual elements
of a working set, implying more elements are available in the working set.
Compact data structures, those that can be operated on, at, or near their
information theory minimal representation, is an ongoing and exciting area.
Navarro's book is excellent and well-worth studying for anyone who is interested
in exploring this avenue of optimization.

e vec_map, various authors. vec_map is a Rust crate that exploits the same ideas as
this chapter's HashMapU8 but in a generic implementation, with full
compatibility to the standard library HashMap. The source code is quite
interesting and warmly recommended.

e Reevaluating Amdahl’s Law, 1988, John Gustafson. This is an exceptionally short
paper and clearly explains Amdahl's formulation as well as Gustafson's objection
to its underlying assumptions. That the paper is describing an interpretation in
which the serial portion is shrunk is clear only after a few readings, or once some
kind soul explains this to you.

e Tracking issue for specialization (RFC 1210), available at https://github.com/
rust-lang/rust/issues/31844.This issue is a pretty good insight into the way
the Rust community goes about stabilizing a major feature. The original RFC is
from 2016. Pretty much ever since the point it was accepted that there's been a
feature flag in nightly for experimentation and a debate on the consequences of
making the work stable.

[65]



The Rust Memory Model —
Ownership, References and
Manipulation

In the previous chapter, Chapter 2, Sequential Rust Performance and Testing, we discussed
factors that contribute or detract from the serial performance of a Rust program. We did not
explicitly address concurrent performance for want of sufficient information about the way
Rust's abstract memory model interacts with the real memory hierarchy of a machine. In
this chapter, we'll discuss Rust's memory model, how to control the layout of types in
memory, how types are aliased, and how Rust's memory safety works. We'll dig into the
standard library to understand how this plays out in practice. This chapter will also
examine common crates in the ecosystem that will be of interest to us later in this book.
Please be aware that by the time you read this chapter, the rustc implementation will have
changed, potentially making our code listings here no longer square with the naming
patterns in rustc itself. If you wish to follow along, please check out Rust at

SHA da569£a9dd£8369a9809184d43c600dc06bd4b4d.

By the close of this chapter, we will have:

Investigated how Rust lays objects out in memory

Discussed the various ways Rust points to memory and their guarantees

Discussed how Rust allocates and deallocates memory

Discussed how Rust denotes stack and heap allocations

Investigated the internal implementation of Option, Cell, CellRef , Rc and
Vec.
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Technical requirements

This chapter requires a working Rust installation. The details of verifying your installation
are covered in Chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust.
No additional software tools are required.

You can find the source code for this book's projects on GitHub: https://github.com/
PacktPublishing/Hands-On-Concurrency-with-Rust. This chapter has its source code
under Chapter03.

Memory layout

Rust has a handful of mechanisms to lay out compound types in memory. They are as
follows:

e Arrays
e Enums
e Structs
e Tuples

Exactly how these are laid out in memory depends on the representation chosen. By
default, everything in Rust is repr (Rust). All repr (Rust) types are aligned on byte
boundaries to the power of two. Every type is at least one byte in memory, then two, then
four, and so forth. Primitives—u8, usize, bool, and &« T—are aligned to their size. In Rust,
representation structures have alignment according to the largest field. Consider the
following struct:

struct AGC {
elapsed_time2: ulé,
elapsed_timel: ulé,
wait_list_upper: u32,
wait_list_lower: ulé6,
digital_autopilot: ulé,
fine_scale: ulé6

}

AGC is aligned to u32 with padding inserted as appropriate to match that 32-bit alignment.
Rust will re-order fields to achieve maximal packing. Enums are different, being subject to a
host of optimizations, most notably null pointer optimization. See the following
enumeration:
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enum AGCInstruction {
TC,
TCF,
CCS (u8),
B(ule),
BZF,
I3

This will be laid out as follows:

struct AGCInstructionRepr {
data: ulé,
tag: us,

}

The data field is wide enough to accommodate the largest inner value and the tag allows
discrimination between variants. Where this gets complicated is in the case of an enum that
holds a non-nullable pointer, and other variants cannot refer to the same. Option<s&T>
means if a null pointer is discovered when dereferencing the option Rust can assume that
the None variant was discovered. Rust will optimize away the tag for Option<&T>.

Rust supports other representations. repr (C) lays out types in memory in a manner that
C would do and is often used in FFI projects, as we'll see later in this book.

repr (packed) lays types out in memory like repr (Rust) except that no padding is
added, and alignment occurs only to the byte. This representation is likely to cause
unaligned loads and a severe effect on performance of common CPUs, certainly the two
CPU architectures we concern ourselves with in this book. The remaining representations
have to do with forcing the size of fieldless enumerations—that is, enumerations that have
no data in their variants—and these are useful for forcing the size of such an enum with an
eye towards ABI compatability.

Rust allocations happen by default on the hardware stack, as is common for other low-level
languages. Heap allocations must be performed explicitly by the programmer or be done
implicitly when creating a new type that holds some sort of internal storage. There are
complications here. By default, Rust types obey move semantics: the bits of the type are
moved as appropriate between contexts. For example:

fn project_flights() —-> Vec<(ul6, u8)> {

let mut t = Vec::new();
t.push((1968, 2));

t.push((1969, 4));

t.push((1970, 1));

t.push((1971, 2));

t.push((1972, 2));

t
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}

fn main () {
let mut total: u8 = 0;
let flights = project_flights();
for &(_, flights) in flights.iter () {
total += flights;
I3
println! ("{}", total);
I3

The project_flights function allocates a new vec< (ul6, u8)> on the heap, populates
it, and then returns ownership of the heap-allocated vector to the caller. This does not mean
that the bits of t are copied from the stack frame of project_flights but, instead, that
the pointer t is returned from the project_flights stack to main. It is possible to
achieve copy semantics in Rust through the use of the Copy trait. Copy types will have their
bits copied in memory from one place to the other. Rust primitive types are Copy—copying
them is as fast as moving them, especially when the type is smaller than the native pointer.
It's possible to implement Copy for your own type unless your type implements Drop, the
trait that defines how a type deallocates itself. This restriction eliminates—in Rust code not
using unsafe —the possibility of double frees. The following code block derives Copy for
two user-defined types and is an example of a poor random generator:

#[derive (Clone, Copy, PartialEq, EQq)]
enum Project {

Apollo,

Gemini,

Mercury,

}

#[derive (Clone, Copy)]

struct Mission {
project: Project,
number: u8§,
duration_days: u8,

}

fn flight () -> Mission {
Mission {
project: Project::Apollo,
number: 8,
duration_days: 6,
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fn main () {
assert_eq! (::std::mem::size_of::<Mission> (), 3);
let mission = flight();
if mission.project == Project::Apollo && mission.number == 8 {

assert_eq! (mission.duration_days, 6);

}

Pointers to memory

Rust defines several kinds of pointers, each with a specific purpose. &T is a shared reference
and there may be many duplicates of that shared reference. The owner of &T does not
necessarily, own T and may not modify it. Shared references are immutable. Mutable
references—written smut T—also do not imply that the other &mut T owns T necessarily
but the reference may be used to mutate T. There may be only one reference for any T with
a gmut T. This complicates some code but means that Rust is able to prove that two
variables do not overlap in memory, unlocking a variety of optimization opportunities
absent from C/C++. Rust references are designed so that the compiler is able to prove the
liveness of the referred to type: references cannot dangle. This is not true of Rust's raw
pointer types—*const T and *mut T—which work analogously to C pointers: they are,
strictly, an address in memory and no guarantees about the data at that address are made.
As such, many operations on raw pointers require the unsafe keyword and they are
almost always seen solely in the context of performance-sensitive code or FFI interfaces. Put
another way, a raw pointer may be null; a reference may never be null.

The rules around references often cause difficulty in situations where an immutable borrow
is accidentally made of a mutable reference. The Rust documentation uses the following
small program to illustrate the difficulty:

fn main () {
let mut x: u8 = 5;
let y: &mut u8 = &mut x;

println! ("{}", x);
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The print1ln! macro takes its arguments by reference, implicitly here, creating a &x. The
compiler rejects this program as y: &mut u8 is invalid. Were this program to compile, we
would be subject to a race between the update of y and the read of x, depending on the
CPU and memory ordering. The exclusive nature of references could be potentially limiting
when working with structures. Rust allows programs to split borrows for a structure,
providing that the disjoint fields cannot be aliased.

We demonstrate this in the following brief program:

use std::fmt;

enum Project {
Apollo,
Gemini,
Mercury,

impl fmt::Display for Project {
fn fmt (&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Project::Apollo => write! (£, "Apollo"),
Project::Mercury => write! (f, "Mercury"),
Project::Gemini => write! (£, "Gemini"),

struct Mission {
project: Project,
number: u8§,
duration_days: u8,

fn main () {
let mut mission = Mission {
project: Project::Gemini,
number: 2,
duration_days: O,
bi

let proj: &Project = &mission.project;
let num: &mut u8 = &mut mission.number;
let dur: &mut u8 = &mut mission.duration_days;

*num = 12;
*dur = 3;
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println! ("{} {}
¥

flew for {} days", proj, num, dur);

This same trick is difficult to impossible for general container types. Consider a map where
two keys map to the same referenced T. Or, for now, a slice:

use std::fmt;

enum Project {
Apollo,
Gemini,
Mercury,

impl fmt::Display for Project {

fn fmt (&self,
match *self

f:

gmut fmt::Formatter)
{

::Apollo => write! (£,
::Mercury => write! (f,
::Gemini => write! (f,

-> fmt::Result {

"Apollo"),
"Mercury"),
"Gemini"),

Project
Project
Project
¥
}
}
struct Mission {
project: Project,
number: u8,

duration_days:

fn main () {

let mut missions:

Mission {
project
number:

duration_days:

b

Mission {
project
number:

duration_days:

by

let
let

gemini_2
_gemini_12

usg,

[Mission; 2] = [
: Project::Gemini,
2,

0,

: Project::Gemini,
12,
2,

&mut missions[0];

&mut missions[1];
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println! (
"{} {} flew for {} days",
gemini_2.project, gemini_2.number, gemini_2.duration_days
)i
}

This program fails to compile with the following error:

> rustc borrow_split_array.rs
error[E0499]: cannot borrow ‘missions[..]’ as mutable more than once at a

time
——> borrow_split_array.rs:40:27

|
39 | let gemini_2 = &mut missions[0];

| eee—————— first mutable borrow occurs here
40 | let _gemini_12 = &mut missions[1];

| ANAAAAAAAAA gacond mutable borrow occurs
here
46 | }

| — first borrow ends here
error: aborting due to previous error

We, the programmers, know that this was safe—gemini_2 and gemini_12 don't overlap
in memory—but it's not possible for the compiler to prove this. What if we had done the
following;:

use std::fmt;

enum Project {
Apollo,
Gemini,
Mercury,

impl fmt::Display for Project {
fn fmt (&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
Project::Apollo => write! (£, "Apollo"),
Project::Mercury => write! (f, "Mercury"),
Project::Gemini => write! (£, "Gemini"),

struct Mission {
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project: Project,
number: u8§,
duration_days: u8,

}

fn main () {
let gemini_2 = Mission {
project: Project::Gemini,
number: 2,
duration_days: O,
bi

let mut missions: [&Mission; 2] = [&gemini_2, &gemini_2];
let mO = &mut missions[0];

let _ml = &mut missions[1];

println! (

"{} {} flew for {} days",
m0.project, mO.number, mO.duration_days

)i
}

By definition, missions[0] and missions[1] overlap in memory. We, the programmers,
know we're breaking the aliasing rules and the compiler, being conservative, assumes that
the rules are being broken.

Allocating and deallocating memory

Deallocation happens in one of two ways, depending on whether the type is allocated on
the stack or the heap. If it's on the stack, the type is deallocated when the stack frame itself
ceases to exist. Each Rust stack frame comes into the world fully allocated but uninitialized
and exits the world when its associated function exits. Heap allocated types are deallocated
when the last valid binding moves out of scope, either through the natural flow of the
program or by an explicit std: :mem: : drop being called by the programmer. The
implementation of drop is as follows:

fn drop<T>(_x: T) { }

The value _x is moved into drop —meaning there are no other borrows of _x—and then
immediately falls out of scope when drop exits. An explicit drop is not able to remove
items from scope, however, so subtle interactions with structures where the Rust compiler
is not able to prove non-overlapping aliases and the like will happen. The drop
documentation discusses several cases and it is worth reviewing that material.
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Any Rust type that can be deallocated—meaning it is not Copy—will implement the Drop
trait, a trait whose sole function is drop (&mut self).Drop: :drop cannot be called
explicitly and is called when the type goes out of scope or is invocable by

std: :mem: :drop, as discussed previously.

So far in this chapter, we've discussed the layout of types in memory and allocation on the
heap but without fully discussing how allocation itself works in the Rust memory model.
The simplest way of forcing a heap allocation is with std: :boxed: : Box. In fact, the Rust
documentation for Box—which is also just called box—describes it as the simplest form of
heap allocation in Rust. That is, a Box<T> allocates enough space on the heap for a type T
and acts as the owner of that allocation. When the box is dropped, the drop of T occurs.
Here's the definition of Box<T> straight from the standard library, in the file
src/liballoc/boxed.rs:

pub struct Box<T: ?Sized> (Unique<T>);

The size of a type

There's two important things here we have not come across yet in this book—sized and
Unique. First, Sized, or more properly, std: :marker::Sized. Sized, isaRusttrait
that bounds a type to have a known size at compile time. Almost everything in Rust has an
implicit Sized bound, which we can inspect. For instance:

use std::mem;

#[allow (dead_code) ]

enum Project {
Mercury { mission: u8 1},
Gemini { mission: u8 },
Apollo { mission: u8 1},
Shuttle { mission: u8 1},

}

fn main() {
assert_eq! (1, mem::size_of::<u8>());
assert_eq! (2, mem::size_of::<Project>());

let ptr_sz = mem::size_of::<usize>();
assert_eq! (ptr_sz, mem::size_of::<&Project>());

let vec_sz = mem::size_of::<usize>() * 2 + ptr_sz;
assert_eq! (vec_sz, mem::size_of::<Vec<Project>>());

[75]



The Rust Memory Model — Ownership, References and Manipulation Chapter 3

u8 is a single byte, Project is the byte to distinguish the enum variants plus the inner
mission byte, pointers are the size of a machine word-a usize- and a Vec<T> is
guaranteed to be a pointer and two usize fields no matter the size of T. There's something
interesting going on with vec<T> and we'll get into it in depth later in this chapter. Note
that we said almost everything in Rust has an implicit Sized bound. Rust

supports dynamically sized types, these being types that have no known size or alignment.
Rust requires known size and alignment and so all DSTs must exist behind a reference or
pointer. A slice—a view into contiguous memory—is one such type. In the following
program, the compiler will not be able to determine the size of the slice of values:

use std::time::{SystemTime, UNIX_EPOCH};

fn main () {
let values = vec![O0, 1, 2, 3, 4, 5, 7, 8, 9, 10];
let cur: usize = SystemTime: :now()
.duration_since (UNIX_EPOCH)
.unwrap ()
.as_secs () as usize;

o

let cap: usize = cur % values.len();
let slc: &[u8] = &values[0..cap];

println! ("{:?}", slc);

}

Slices are a view into a block of memory represented as a pointer and a length, as the
documentation for the primitive type slice puts it. The trick is that the length is determined
at runtime. The following program will compile:

fn main() {
let values = vec![O, 1, 2, 3, 4, 5, 7, 8, 9, 10];
let slc: &[u8] = &values[0..10_000];

println! ("{:?}", slc);

I3
However, the previous code will panic at runtime:

> ./past_the_end thread

'main' panicked at 'index 10000 out of range for slice of length 10',
libcore/slice/mod.rs:785:5 note: Run with ‘RUST_BACKTRACE=1"' for a
backtrace.
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Rust allows programmers to include DSTs as the last field of a st ruct, like so:

struct ImportantThing {
tag: u8,
data: [u8],

¥

However, this causes the struct itself to become a DST.

Static and dynamic dispatch

Trait objects likewise have no statically known size in Rust. Trait objects are the mechanism
by which Rust performs dynamic dispatch. Preferentially, Rust is a static dispatch language
as there are increased opportunities for inlining and optimization—the compiler simply
knows more. Consider the following code:

use std::ops::Add;

fn sd_add<T: Add<Output=T>>(x: T, y: T) —-> T {
X + vy
}

fn main () {
assert_eq! (48, sd_add (16 as u8, 32 as u8));
assert_eq! (48, sd_add (16 as u64, 32 as ub64d));
}

Here, we define a function, sd_add<T: Add<Output=T>>(x: T, y: T) -> T.Rust, like
C++, will perform monomorphization at compile time, emitting two sd_add functions, one
for us and the other for u64. Like C++, this potentially increases the code size of a Rust
program and slows compilation but at the benefit of allowing inlining at the caller site,
potentially more efficient implementations owing to type specialization, and fewer
branches.

When static dispatch is not desirable, the programmer can construct trait objects to perform
dynamic dispatch. Trait objects do not have a known size—indeed, they can be any T that
implements the trait—and so, like slices, must exist behind a kind of pointer. Dynamic
dispatch will not see much use in this book. The reader is warmly encouraged to consult
the documentation for std: :raw: : TraitObject for full details on Rust's trait object
notion.
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Zero sized types

Rust also supports zero sized types or ZSTs; structs with no fields, the unit type (), or arrays
with no size are all zero sized. The fact that the type has no size is a boon to optimization
and dead-tree removal. Rust APIs often include return types like so: Result<(),

a_mod: :ErrorKind>. This type signals that while the function may error, its return value
in the happy path is the unit type. These types are somewhat rare in practice but unsafe,
and Rust must be aware of them. Many allocators return null when asked to allocate zero
bytes—making the allocation of a ZST indistinguishable from the allocator being unable to
find free memory—and pointer offsets from a ZST are of zero offset. Both of these
considerations will be important in this chapter.

Boxed types

That's the trait sized, but what does ?Sized mean? The 2 flags the relevant trait as
optional. So, a box is a type in Rust parameterized over some other type T which may or
may not have a size. A box is a kind of a pointer to heap allocated storage. Let's look into its
implementation further. What of Unique<T>? This type is a signal to the Rust compiler that
some *mut T is non-null and that the unique is the sole owner of T, even though T was
allocated outside the Unique. Unique is defined like so:

pub struct Unique<T: ?Sized> {
pointer: NonZero<*const T>,
// NOTE: this marker has no consequences for variance, but is
// necessary for dropck to understand that we logically
// own a “T.
_marker: PhantomData<T>,

}

NonZzZero<T> is a struct that the rustc source describes as a wrapper type for raw pointers
and integers that will never be NULL or 0 that might allow certain optimizations. It's
annotated in a special way to admit those null pointer optimizations discussed elsewhere in
this chapter. Unique is also of interest for its use of Phantombata<T>. PhantomData is, in
fact, a zero sized type, defined as pub struct PhantomData<T:?Sized>;.This type
instructs the Rust compiler to consider Phantombata<TI> as owning T even though,
ultimately, there's nowhere for PhantomData to store its newfound T. This works well for
Unique<T>, which must take ownership of <T> by maintaining a non-zero constant pointer
to T but does not, itself, have T stored anywhere other than in the heap. A box is then, a
unique, non-null pointer to a thing allocated somewhere in memory but not inside the
storage space of the box.
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The internals of box are compiler intrinsics: they sit at the interplay of the allocator and are
a special consideration in Rust's borrow checker. With that in mind, we will avoid chasing
down the internal details of Box as they will change from compiler version to compiler
version and this book is explicitly not a rustc internals book. For our purposes, however, it
is worth considering the API exposed by box. The key functions are:

e fn from_raw(raw: *mut T) -> Box<T>

e fn from_unique(u: Unique<T>) -> Box<T>
e fn into_raw(b: Box<T>) -> *mut T

e fn into_unique (b: Box<T>) -> Unique<T>

e fn leak<'a>(b: Box<T>) -> &'a mut T

Both from_raw and from_unique are unsafe. Conversion from a raw pointer is unsafe if a
raw pointer is boxed more than once or if a box is made from a pointer that overlaps with
another, as examples. There are other possibilities. Conversion from a Unique<T> is unsafe
as the T may or may not be owned by Unique, resulting in a possibility of the box not
being the sole owner of its memory. The into_* functions, however, are safe in the sense
that the resulting pointers will be valid but the caller will not have full responsibility for
managing the lifetime of the memory. The Box documentation notes that the caller can
release the memory themselves or convert the pointer back into the type they came from
and allow Rust to do it for them. The latter is the approach this book will take. Finally,
there's 1eak. Leak is a fun one and is not available on stable channel but is worth
discussing for applications that will ship to embedded targets. A common memory
management strategy for embedded systems is to pre-allocate all necessary memory and
only operate on that memory for the lifetime of the program. In Rust, this is trivially
accomplished if you desire uninitialized memory of a constant size: arrays and other
primitive types. In the event you desire heap allocations at the start of your program, the
situation is more complicated. That's where leak comes in: it causes memory to leak from a
box—a heap allocation—to wherever you please. When the leaked memory is intended to
live for the lifetime of the program—into the static lifetime—there's no issue. An example
is as follows, straight from the docs for leak:

#! [feature (box_leak)]

fn main() {
let x = Box::new(41);
let static_ref: &'static mut usize = Box::leak (x);

*static_ref += 1;
assert_eq! (*static_ref, 42);
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Here, we see a new usize allocated on the heap, leaked into static_ref—a mutable
reference of static lifetime—and then fiddled with through the remaining lifetime of the
program.

Custom allocators

It is possible to plug in one's own allocator to Rust, as can be done in C++ or similar system-
level programming languages. By default, on most targets, Rust uses jemalloc with a
backup alternative to the system-provided allocator. In embedded applications, there may
not be a system, let alone an allocator, and the interested reader is recommended to peruse
RFC:1183(https://github.com/rust—lang/rfcs/blob/master/text/1183—swap—out—
jemalloc.md)]KFC:1398(https://github.com/rust—lang/rfcs/pull/l398),andrekﬁed
RFCs. As of writing this, an interface for plugging in custom allocators to stable Rust is
under active discussion and any such capability is only available in nightly Rust. We will
not make use of custom allocators in this book.

Implementations

In chapter 2, Sequential Rust Performance and Testing, we very briefly dipped into the
implementation of std: :collections: : HashMap. Let's continue with that approach of
dissecting the standard library, paying special attention to the concerns of memory that pop

up.

Option
Let's examine Option<T>. We've already discussed Option<T> in this chapter; that it's

subject to null pointer optimization on account of its empty None variant in particular.
Option is as simple as you might imagine, being defined in src/libcore/option.rs:

#[derive (Clone, Copy, PartialEqg, PartialOrd, Eq, Ord, Debug, Hash)]
#[stable (feature = "rustl", since = "1.0.0")]
pub enum Option<T> {

/// No value

#[stable (feature = "rustl", since = "1.0.0")]

None,

/// Some value "T°

#[stable (feature = "rustl", since = "1.0.0")]

Some (# [stable (feature = "rustl", since = "1.0.0")] T),
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As is often the case with Rust internals, there are a great deal of flags around to control
when and where new features land in which channel and how documentation is generated.
A slightly tidier expression of Option<T> is:

#[derive (Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
pub enum Option<T> {

None,

Some (T) ,
I3

This is refreshingly simple, much like how you may have implemented an option type
yourself up on first thinking of it. Opt ion is the owner of its inner T and is able to pass out
references to that inner data per the usual restrictions. As an example:

pub fn as_mut (&mut self) -> Option<&mut T> {
match *self {
Some (ref mut x) => Some (x),
None => None,

}

Rust exposes a special trait type inside each trait: Self. It desugars simply to the
referent trait type, in this case, Opt ion<T>. The smut self is shorthand for self: &mut
Self, asis &self for self: &Self.as_mut isthen allocating a new option whose inner
type is a mutable reference to the original inner type. Now, consider the humble map:

pub fn map<U, F: FnOnce(T) -> U>(self, f: F) —-> Option<U> {
match self {
Some (x) => Some (f (x)),
None => None,

}

Rust allows closures as arguments to functions. In this way, Rust is similar to higher-level
and, especially, functional programming languages. Unlike these higher-level
programming languages, Rust has restrictions on closures in terms of the way variable
capture occurs and with regard to call totals and mutability. Here, we see the FnOnce trait
being used, restricting the closure being passed in as £ to the map function as being single-
use. The function traits, all defined in std: : ops, are:

® F'n
e F'nMut

® F'nOnce
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The first trait, Fn, is described by the Rust documentation as being a call operator that takes
an immutable receiver. This is maybe a little obscure until we look at the definition of Fn in
src/libcore/ops/function.rs:

pub trait Fn<Args>: FnMut<Args> {

/// Performs the call operation.

#[unstable (feature = "fn_traits", issue = "29625")]

extern "rust-call" fn call(&self, args: Args) —-> Self::0Output;
}

Now it's more obscure! But, we can work that back. Args is distinct from std: :env: :Args
but plays a similar role of being a placeholder for function arguments, save at a type-level.

FnMut <Args> means that the FnMut <Args> is a supertrait of Fn<Args>: all of the
methods available to FnMut are available to Fn when used as a trait object. Recall that trait
objects find use in dynamic dispatch, discussed previously. This also means that any
instance of Fn can be used where an FnMut is expected, in cases of static dispatch. Of
particular interest to understanding Fn is:

extern "rust-call" fn call(&self, args: Args) —-> Self::Output;

We'll approach this in parts. Firstly, extern "rust-call".Here, we are defining an inline
extern block that uses the "rust-call" ABIL Rust supports many ABIs, three of which are
cross-platform and guaranteed to be supported no matter the platform:

e extern "Rust" fn, implicit for all Rust functions unless otherwise specified
e extern "C" fn, often used in FFI and shorthanded to extern fn

® extern "system" fn,equivalenttoextern "C" fn save for some special
platforms

"rust-call" does not appear in that list because it is a rust-specific ABL, which also
includes:

e extern "rust-intrinsic" £n, specific to rustc intrinsics
e extern "rust-call" fn,the ABIforall Fn::call functions

e extern "platform-intrinsic" fn, which the documentation notes as being
something the programmer should never have to deal with

Here, we're signalling to the Rust compiler that the function is to be treated with a special
call ABI. This particular extern is important when writing traits that implement the Fn
trait, as box will when the unstable fnbox feature flag is enabled:

impl<'a, A, R> FnOnce<A> for Box<FnBox<A, Output = R> + 'a> {
type Output = R;
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extern "rust-call" fn call_once(self, args: A) —-> R {
self.call_box(args)

}

Secondly, fn call (sself, args: Args).The implementing type is taken in as an
immutable reference, in addition to the passed args; this is the immutable

receiver mentioned in the documentation. The final piece here is -> Self::Output, the
returned type after the call operator is used. This associated type defaults to self but can
be set by the implementer.

FnMut is similar to Fn save that it takes smut self rather than sself, and FnOnce is its
supertrait:

pub trait FnMut<Args>: FnOnce<Args> {
/// Performs the call operation.
#[unstable (feature = "fn_traits", issue = "29625")]
extern "rust-call" fn call_mut (&mut self, args: Args)
-> Self::0Output;
}

Only Fnonce deviates in its definition:

pub trait FnOnce<Args> {
/// The returned type after the call operator is used.
#[stable (feature = "fn_once_output", since = "1.12.0")]
type Output;

/// Performs the call operation.
#[unstable (feature = "fn_traits", issue = "29625")]
extern "rust-call" fn call_once(self, args: Args) —-> Self::Output;

}

Here, we see where self: :Output makes its appearance as an associated type and note
that the implementations of Fnonce are in terms of call_once rather than call. Also, we
now know that FnOnce is a supertrait of FnMut, which is a supertrait of Fn and it just so
happens that this property is transitive: if an Fnonce is called for an Fn, it can be used.
Much of the exact implementation of the function traits are kept internal to the compiler,
the details of which kind of jump around some as internals change. In fact, the "rust-
call", extern means that Fn traits cannot be implemented outside of special,
compiler-specific contexts; the exact feature flags that need to be enabled in a nightly build,
their use, and upcoming changes are not documented. Happily, closures and function
pointers implement function traits implicitly. For example:

fn mlen (input: &str) -> usize {
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input.len()
I3

fn main () {
let v: Option<&str> = Some ("hope");

assert_eq! (v.map(ls| s.len()), v.map(mlen));

}
The compiler is good enough to figure out the details for us.

Conceptually, Result<T> is a type similar to Opt ion<T>, save that it is able to
communicate an extra piece of information in its Err variant. In fact, the implementation in
src/libcore/result.rs is awfully similar to the way we'd likely write this at first
though, as with option:

pub enum Result<T, E> {
/// Contains the success value
#[stable (feature = "rustl", since = "1.0.0")]
Ok (# [stable (feature = "rustl", since = "1.0.0")] T),

/// Contains the error value
#[stable (feature = "rustl", since = "1.0.0")]
Err (# [stable (feature = "rustl", since = "1.0.0")] E),

Cell and RefCell

So far in this chapter, the mutable references we've been discussing have a property called,
by Rust, inherited mutability. That is, values are made mutable when we inherit their
ownership or the exclusive right—via a smut—to mutate the value. Inherited mutability is
preferred in Rust as it is statically enforcable—any defects in our program with regards to
memory mutation will be caught at compilation time. Rust does provide facilities for
interior mutability, that being mutability that is available for pieces of an immutable type.
The documentation calls interior mutability something of a last resort but, while not
common, it is not exactly rare in practice, either. The two options for interior mutability in
Rust are Ce11<T> and RefCell<T>.
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Let's consider Ce11<T>. How is it used? As suggested, Ce11<T> is useful when some field
or fields of an otherwise immutable structure need to be mutable and the T you're
concerned with is T: Copy. Consider a graph structure where a search operation is
performed. This is logically immutable—the graph structure does not need to be modified
during search. But, also consider the case where we would like to record the total number
of traversals along the graph's edges. Our options are to violate the logical immutability of
the graph search, require storage outside of the graph, or insert an interior, mutable counter
into the graph. Which choice is best will depend on the specific situation. Here is a
significantly less complicated example of Ce11<T>, compared to a graph search:

use std::cell::Cell;

enum Project {
Apollo,
Gemini,
Mercury,

}

struct Mission {
project: Project,
number: u8§,
duration_days: Cell<u8>,
I3

fn main() {
let mission = Mission {
project: Project::Mercury,
number: 7,
duration_days: Cell::new(255),
bi

mission.duration_days.set (0);
assert_eq! (0, mission.duration_days.get());

}

Of course, that's a bit contrived. Interior mutability shows up when the situation is non-
trivial, generally speaking. Note that Ce11<u8> had to be manipulated with get and set
methods, contrary to the normal process of setting and reading directly or through a
pointer. Let's dig into the implementation of Ce11<T>, defined in src/libcore/cell.rs:

pub struct Cell<T> {
value: UnsafeCell<T>,

}
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As is common in Rust internals, a safe interface hides an unsafe inner core, as we saw in
Chapter 2, Sequential Rust Performance and Testing, with HashMap. What is the definition of
UnsafeCell?

pub struct UnsafeCell<T: ?Sized> {
value: T,

}

Of particular note is an implementation that follows shortly afterward:

impl<T: ?Sized> !Sync for UnsafeCell<T> {}

We will discuss Sync in the following chapter in greater detail. Suffice it to say, for now,
any type that is threadsafe must implement Sync—and many do automatically—and by
disabling the Sync trait for UnsafeCell<T>—which is what ! Sync means—the type is
specifically being marked as not thread-safe. That is, any thread may be manipulating the
data owned by UnsafeCell at any time. As we've previously discussed, Rust is able to
make a good deal of optimizations off the back of the knowledge that &T is guaranteed to
also not be mutable somewhere and that smut T is unique. UnsafeCell<T> is the only
method Rust provides to turn these compiler optimizations off; it is possible to dip into an
unsafe block and transmute &T to smut T, but this is specifically called out as undefined
behavior. They key to UnsafeCell<T> is that it is possible for a client to retrieve multiple
mutable references to the interior data, even if the UnsafeCel1<T> is itself mutable. It is up
to the caller to ensure that there is only one mutable reference at any time. The
implementation of UnsafeCell —stripped of its comments for clarity's sake—is brief:

impl<T> UnsafeCell<T> {
pub const fn new(value: T) —-> UnsafeCell<T> {
UnsafeCell { value: value }

}

pub unsafe fn into_inner (self) -> T {
self.value

impl<T: ?Sized> UnsafeCell<T> {
pub fn get (&self) —-> *mut T {
&self.value as *const T as *mut T
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This brings us back to Ce11<T>. We know that Ce11<T> is built on top of an unsafe
abstraction and we will have to take care not to violate the smut T uniqueness constraint.
How is this done? First, construction of Ce11<T> is straightforward, as you may expect:

impl<T> Cell<T> {
pub const fn new(value: T) -> Cell<T> {
Cell {
value: UnsafeCell::new(value),
}
}

The const f£nis likely a surprise, on account of it being a nightly-only feature as of writing
this book. In Rust, a constant function is evaluated at compile time. The benefit to the
programmer of this particular definition is that the result of Cel1: : new can be assigned to
a constant variable, one which will exist for the lifetime of the program. Both as_ptr and
get_mut are different views of the underlying T, one a raw mutable pointer and the other a
mutable reference:

pub fn as_ptr(&self) —-> *mut T {
self.value.get ()
}

pub fn get_mut (&mut self) -> &mut T {
unsafe {
s&mut *self.value.get ()

}

pub fn into_inner(self) -> T {
unsafe { self.value.into_inner () }

}

Note that while the internals of get_mut are unsafe, the borrow checker is brought to bear
on the problem of keeping smut T unique and so Cell: :get_mut can itself be safe.
Cell::as_ptr is not marked as unsafe—it's safe to receive a raw pointer in Rust—but any
caller will have to do deferencing of that raw pointer in an unsafe block: it's possible that
there will be more than one raw, mutable pointer floating around. Setting a new value into
the cell is done in terms of replacement, discussed ahead, but with careful attention made
towards forcefully dropping the T pulled from the cell:

pub fn set (&self, wval: T) {
let old = self.replace(val);
drop (old);
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Cell::swapand Cell::replace are done in terms of the lower-level memory
manipulation tools from std: :ptr and std: :mem. swap is intended to replace the interior
of one cell with another. Its definition is as follows:

pub fn swap(&self, other: &Self) {
if ptr::eq(self, other) {
return;

}
unsafe {
ptr::swap(self.value.get (), other.value.get());

}

swap is done in terms of std: :ptr: : swap, a function documented as copying the memory
through the raw pointers passed to it as arguments. You'll note that Ce11: : swap is careful
to avoid the swap if the passed other is equivalent to self. The reason for this becomes
clear when we take a peek at the definition of std: :ptr: : swap, defined in
src/libcore/ptr.rs:

pub unsafe fn swap<T>(x: *mut T, y: *mut T) {
// Give ourselves some scratch space to work with
let mut tmp: T = mem::uninitialized();

// Perform the swap
copy_nonoverlapping (x, &mut tmp, 1);
copy(y, x, 1); // “x° and ‘y  may overlap
copy_nonoverlapping (&tmp, vy, 1);

// y and t now point to the same thing, but we need to completely
forget “tmp’

// because it's no longer relevant.

mem: : forget (tmp) ;

}

The exact details of copy_nonoverlapping and copy are unimportant here, except in
noting that swapping does require allocation of uninitialized space and copying back and
forth from that space. It's wise to avoid the work if you don't have to do it. Cell: :replace
works along similar lines:

pub fn replace(&self, val: T) —-> T {
mem: :replace (unsafe { &mut *self.value.get() }, val)

}
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std::mem: :replace takes a smut T and a T and then replaces the value at &mut
the passed in val, returning the old value and dropping neither. The definition of
std::mem: :replaceisin src/libcore/mem.rs and is as follows:
pub fn replace<T>(dest: &mut T, mut src: T) -> T {
swap (dest, &mut src);

sSrc

}
Chasing the definition of swap in the same module, we find it is as follows:
pub fn swap<T>(x: &mut T, y: &mut T) {
unsafe {
ptr::swap_nonoverlapping(x, vy, 1);

4

std::ptr::swap_nonoverlapping is as follows:

T with

pub unsafe fn swap_nonoverlapping<T>(x: *mut T, y: *mut T, count:

usize) {

let x = x as *mut u8;
let vy = y as *mut u8;
let len = mem::size_of::<T>() * count;

swap_nonoverlapping_bytes(x, y, len)

}

Finally, the private std: :ptr::swap_nonoverlapping_bytes is as follows:

unsafe fn swap_nonoverlapping_bytes(x: *mut u8, y: *mut u8, len:

{

usize)

// The approach here is to utilize simd to swap x & y efficiently.
// Testing reveals that swapping either 32 bytes or 64 bytes at

// a time is most efficient for intel Haswell E processors.
// LLVM is more able to optimize if we give a struct a

// #[repr(simd)], even if we don't actually use this struct
// directly.

//

// FIXME repr(simd) broken on emscripten and redox

// It's also broken on big-endian powerpc64 and s390x. #42778
#[cfg_attr (not (any (target_os = "emscripten", target_os = "redox",

target_endian = "big")),
repr (simd)) ]
struct Block (u64, u64d, u64, uod);
struct UnalignedBlock (u64, u64, u64, u64);

let block_size = mem::size_of::<Block>();
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// Loop through x & y, copying them "Block™ at a time
// The optimizer should unroll the loop fully for most types
// N.B. We can't use a for loop as the "range’ impl calls
// “mem::swap  recursively
let mut i = 0;
while i1 + block_size <= len {
// Create some uninitialized memory as scratch space

// Declaring "t  here avoids aligning the stack when this loop
// is unused
mut t: Block = mem::uninitialized();

let
let
let
let

t
X

y

gmut t as *mut _ as *mut u8;
x.offset (1 as isize);
y.offset (i as isize);

// Swap a block of bytes of x & y, using t as a temporary
// buffer. This should be optimized into efficient SIMD
// operations where available

copy_nonoverlapping (x, t, block_size);
copy_nonoverlapping(y, x, block_size);
copy_nonoverlapping(t, y, block_size);

i += block_size;

if 1 < len {

// Swap
mut
rem

let
let

let
let
let

t
X

y

any remaining bytes
t: UnalignedBlock = mem::uninitialized();
= len - 1i;

gmut t as *mut _ as *mut u8;
x.offset (1 as isize);
y.offset (i as isize);

copy_nonoverlapping(x, t, rem);
copy_nonoverlapping(y, x, rem);
copy_nonoverlapping(t, y, rem);

}

Whew! That's some rabbit hole. Ultimately, what we've discovered here is that
std::mem: :replace is defined in terms of block copies from one non-overlapping
location in memory to another, a process which the Rust developers have tried to make as
efficient as possible by exploiting LLVM's ability to optimize a bitwise operation on
common processors in terms of SIMD instructions. Neat.
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What of RefCe11<T>? It too is a safe abstraction over UnsafeCell<T> except that the copy
restriction of Ce11<T> is lifted. This makes the implementation a touch more complicated,
as we'll see:

pub struct RefCell<T: ?Sized> {
borrow: Cell<BorrowFlag>,
value: UnsafeCell<T>,

}

Like cell, RefCell has an inner unsafe value, that much is the same. What's fun here is
borrow: Cell<BorrowFlag>.RefCell<T> isa clientof Ce11<T>, which makes good
sense considering that the immutable RefCel1 is going to need interior mutability to track
the total number of borrows of its inner data. BorrowFlag is defined like so:

// Values [1, MAX-1] represent the number of "Ref ' active
// (will not outgrow its range since “usize  1is the size
// of the address space)

type BorrowFlag = usize;

const UNUSED: BorrowFlag = 0;

const WRITING: BorrowFlag = !0;

The implementation of RefCel1<T> is like to that of Ce11<T>. RefCell: :replace is also
implemented in terms of std: :mem: : replace, RefCell: : swap in terms of

std: :mem: : swap. Where things get interesting are the functions new to RefCell, which
are those to do with borrowing. We'll look at try_borrow and try_borrow_mut first as

they're used in the implementations of the other borrowing functions. try_borrowis
defined like so:

pub fn try_borrow(&self) —-> Result<Ref<T>, BorrowError> {
match BorrowRef::new(&self.borrow) {
Some (b) => Ok (Ref {
value: unsafe { &*self.value.get () 1},
borrow: b,
P

None => Err (BorrowError { _private: () }),

}

With BorrowRef being as follows:

struct BorrowRef<'b> {
borrow: &'b Cell<BorrowFlag>,

}

impl<'b> BorrowRef<'b> {
#[inline]
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fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRef<'b>> {

match borrow.get () {
WRITING => None,
b => {

borrow.set (b + 1);
Some (BorrowRef { borrow: borrow })

by

impl<'b> Drop for BorrowRef<'b> ({

#[inline]

fn drop (&mut self) {
let borrow = self.borrow.get();
debug_assert! (borrow != WRITING && borrow != UNUSED) ;
self.borrow.set (borrow - 1);

}

BorrowRef is a structure that holds a reference to the borrow field of RefCel1<T>.
Creating a new BorrowRe f depends on the value of that borrow; if the value is WRITING
then no BorrowRef is created—None gets returned—and otherwise the total number of
borrows are incremented. This achieves the mutual exclusivity of writing needed while
allowing for multiple readers—it's not possible for t ry_borrow to hand out a reference
when a write reference is out for the same data. Now, let's consider try_borrow_mut:

pub fn try_borrow_mut (&self) —-> Result<RefMut<T>, BorrowMutError> {
match BorrowRefMut: :new (&self.borrow)
Some (b) => Ok (RefMut {
value: unsafe { &mut *self.value.get () 1},
borrow: b,

I

None => Err (BorrowMutError { _private: () 1}),

}
Again, we find an implementation in terms of another type, BorrowRe fMut:

struct BorrowRefMut<'b> {
borrow: &'b Cell<BorrowFlag>,

impl<'b> Drop for BorrowRefMut<'b> {
#[inline]
fn drop (&mut self) {
let borrow = self.borrow.get();
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debug_assert! (borrow == WRITING) ;
self.borrow.set (UNUSED) ;

}

impl<'b> BorrowRefMut<'b> {

#[inline]
fn new(borrow: &'b Cell<BorrowFlag>) -> Option<BorrowRefMut<'b>> {
match borrow.get () |

UNUSED => {
borrow.set (WRITING) ;
Some (BorrowRefMut { borrow: borrow })

I
_ => None,

}

The key, as with BorrowRef, is in BorrowRefMut : : new. Here, we can see that if the inner
borrow from RefCell is unused then the borrow is set to write, excluding any potential
read references. Likewise, if there is a read reference in existence, the creation of a mutable
reference will fail. And so, exclusive mutable references and multiple immutable references
are held at runtime by abstracting over an unsafe structure that allows for the breaking of
that guarantee.

Rc

Now, let's consider one last single-item container before we get into a multi-item container.
We'll look into Rc<T>, described by the Rust documentation as being a single-threaded
reference-counting pointer. Reference counting pointers are distinct from the usual Rust
references in that, while they are allocated on the heap as a Box<T>, cloning a reference
counter pointer does not cause a new heap allocation, bitwise copy. Instead, a counter
inside the Rc<T> is incremented, somewhat analogously as to the way RefCel1<T> works.
The drop of an Re<T> reduces that internal counter and when the counter's value is equal
to zero, the heap allocation is released. Let's take a peek inside src/liballoc/rc.s:

pub struct Rc<T: ?Sized> {
ptr: Shared<RcBox<T>>,
phantom: PhantomData<T>,
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We've already encountered PhantomData<T> in this chapter, so we know that Re<T> will
not directly hold the allocation of T, but the compiler will behave as if it does. Also, we
know that T may or may not be sized. The pieces we need to catch up on then are
RcBox<T> and Shared<T>. Let's inspect Shared<T> first. Its full name is
std::ptr::Shared<T> and it's the same kind of pointer as *mut X except that it is non-
zero. There are two variants for creating a new Shared<T>, const unsafe fn
new_unchecked (ptr: *mut X) -> Self and fn new (ptr: *mut X) ->
Option<Self>. In the first variant, the caller is responsible for ensuring that the pointer is
non-null, and in the second the nulled nature of the pointer is checked, like so:

pub fn new(ptr: *mut T) -> Option<Self> {
NonZero: :new(ptr as *const T).map(|lnz| Shared { pointer: nz })

}

We find the definition and implementation of NonZero<T> in
src/libcore/nonzero.rs like so:

pub struct NonZero<T: Zeroable>(T);
impl<T: Zeroable> NonZero<T> {

/// Creates an instance of NonZero with the provided value.
/// You must indeed ensure that the value is actually "non-zero".

#[unstable (feature = "nonzero",
reason = "needs an RFC to flesh out the design",
issue = "27730")]

#[inline]
pub const unsafe fn new_unchecked(inner: T) -> Self {
NonZero (inner)

}

/// Creates an instance of NonZero with the provided value.
#[inline]

pub fn new(inner: T) —-> Option<Self> {
if inner.is_zero() {
None
} else {

Some (NonZero (inner))

}

/// Gets the inner value.

pub fn get(self) -> T {
self.0

i
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Zeroable is an unstable trait, which is pretty straightforward:

pub unsafe trait Zeroable {
fn is_zero(&self) -> bool;

}

Every pointer type implements an is_null () -> bool and this trait defers to that
function, and NonZzZero: :new defers to Zeroable: :is_zero. The presence of a
Shared<T>, then, gives the programmer the same freedom as *mut T but with added
guarantees about the pointer's nullable situation. Jumping back up to Rc: :new:

pub fn new(value: T) —-> Rc<T> {
Rc |
// there is an implicit weak pointer owned by all the strong
// pointers, which ensures that the weak destructor never frees
// the allocation while the strong destructor is running, even
// 1f the weak pointer is stored inside the strong one.
ptr: Shared::from(Box::into_unique (box RcBox {
strong: Cell::new(l),
weak: Cell::new (1),
value,

1)y
phantom: PhantomData,

}

Box::into_unique converts a Box<T> into a Unique<T>—discussed previously in this
chapter—which is then converted into a Shared<T>. This chain preserves the non-null
guarantee needed and ensures uniqueness. Now, what about strong and weak in RcBox?
Rc<T> provides a method, Self: :downgrade (sself) -> Weak<T>, that produces a non-
owning pointer, a pointer which does not guarantee the liveness of the referenced data and
does not extend its lifetime. This is called a weak reference. Dropping a Weak<T>, likewise,
does not imply that T is dropped. The trick here is that a strong reference does extend the
liveness of the underlying T—the drop of T is only called when the internal counter of
Rc<T> hits zero. For the most part, things rarely require a weak reference, except when a
cycle of references exist. Suppose a graph structure were to be constructed where each node
holds an Rc<T> to its connected nodes and a cycle exists in the graph. Calling drop on the
current node will recursively call drop on the connected nodes, which will recurse again
onto the current node and so forth. Were the graph to store a vector of all nodes and have
each node store weak references to connections, then a drop of the vector would cause a
drop of all nodes, cycles or not. We can see how this works in practice by inspecting the
Drop implementation of Re<T>:

unsafe impl<#[may_dangle] T: ?Sized> Drop for Rc<T> {
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fn drop (&mut self) {
unsafe {
let ptr = self.ptr.as_ptr();

self.dec_strong();

if self.strong() == 0 {
// destroy the contained object
ptr::drop_in_place(self.ptr.as_mut());

// remove the implicit "strong weak" pointer
// now that we've destroyed the contents.
self.dec_weak () ;

if self.weak () == 0 {
Heap.dealloc (ptr as *mut u8,
Layout::for_value (&*ptr));

}

This is trimmed some for clarity but the notion is as we've described—when the total
number of strong references is zero, a full deallocation occurs. The referenced Heap and
Layout are compiler internals and won't be discussed further here, but the interested
reader is warmly encouraged to go spelunking on their own. Recall that in Re<T>: :new,
both strong and weak counters started at 1. To avoid invalidating the weak pointers, the
actual T is only deallocated if there are no strong or weak pointers available. Let's have a
look at Drop for Weak<T>, again trimmed some for clarity:

impl<T: ?Sized> Drop for Weak<T> {
fn drop (&mut self) {
unsafe {
let ptr = self.ptr.as_ptr();

self.dec_weak ();
// the weak count starts at 1, and will only go to
// zero if all the strong pointers have disappeared.
if self.weak () == 0 {
Heap.dealloc (ptr as *mut u8, Layout::for_value (&*ptr));
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As expected, the T can only be deallocated when the weak pointer total falls to zero, which
is only possible if there are no strong pointers left. That's Rc<T>—a handful of important
traits, a specialized box, and a few compiler internals.

Vec

As our last subject in this chapter, let's consider vec<T>. The Rust vector is a growable
array, that is, an area of contiguous, homogeneous storage that can be grown through
reallocation as the need arises, or it cane be shrunk. The advantage compared to array is in
not needing to know ahead of time exactly what size of storage you need, plus all the
benefits of a slicable structure and additional functions in the type APIL. vec<T> is an
extremely common Rust structure, so much so that its actual name is std: : vec: : Vec<T>
but Rust imports the type by default. Rust programs are full of vectors and it stands to
reason we'd do well to understand how it interacts with the memory it holds.

Vec<T> is defined in src/liballoc/vec. rs and is defined as follows:

pub struct Vec<T> {
buf: RawVec<T>,
len: usize,

}

The Rust documentation declares that a Vec<T> will be laid out as a pointer, a capacity

of usize, and a length of usize. The order of these fields is completely unspecified. As
we've already discussed, Rust will reorder fields as it sees fit. Moreover, the pointer is
guaranteed to be non-null, allowing for a null-pointer optimization. Previously, we saw the
usual trick of Rust: define a higher-level structure in terms of a lower-level—or raw —
structure, or even in terms of a fully unsafe structure. We see the length usize already,
called 1en. This means there's a distinct difference between capacity and length, the
distinction of which we'll come back to as we dig into Rawvec<T>. Let's take a peek at
RawVec<T>, defined in src/liballoc/raw_vec.rs:

pub struct RawVec<T, A: Alloc = Heap> {
ptr: Unique<T>,
cap: usize,
a: A,
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What we have is a pointer to a Unique<T>, a *mut T with added guarantees that the
RawVec<T> is the only possessor of the allocation and that the pointer is not null. The cap
is the capacity of the raw vector. a: A is the allocator, Heap by default. Rust does allow for
allocators to be swapped, so long as the implementation obeys—as of writing this
book—the std: :heap: :Alloc trait. Swapping allocators is an unstable feature of Rust,
available only in the nightly channel, but one that is stable enough to see common use in
the embedded Rust community's libraries. In this book, we won't use anything other than
the default allocator, but the reader is warmly encouraged to explore the topic in more
detail. Allocator aside, there's the pointers, length, and capacity that the Rust
documentation promised. Let's pop back to Vec<T> and take a look at new:

pub fn new () —-> Vec<T> {
Vec {
buf: RawVec::new(),
len: O,

}
Now, the new of raw vec:

pub fn new() —-> Self {
Self::new_in (Heap)

}

This defers creation to new_in, a function on the same trait:

pub fn new_in(a: A) -> Self {
// 10 is usize::MAX. This branch should be stripped
// at compile time.
let cap = 1if mem::size_of::<T>() == 0 { !0 } else { 0 };

// Unique::empty () doubles as "unallocated" and "zero-sized
// allocation"
RawVec {

ptr: Unique::empty (),

cap,

a,
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The cap computation is interesting. It's possible to store a T in Vec<T>—and by extension
RawVec<T>—that has zero size. The implementers knew this and came up with a fun
solution: if the size of the type is zero, set the capacity to usize: :MAX, else 0. It's not
possible to cram usize: :MAX elements into a vector since we'd run out of memory one
allocation prior to hitting the cap and it's now possible to discriminate the case of zero-sized
types without having to introduce an enumeration or a flag variable. Tidy trick. If we
bounce back to vector and inspect with_capacity, we'll find that defers to

RawVec: :with_capacity, which defers to RawVec: :allocate_in:

fn allocate_in(cap: usize, zeroed: bool, mut a: A) —-> Self {
unsafe {
let elem_size = mem::size_of::<T>();

let alloc_size =
cap.checked_mul (elem_size) .expect ("capacity overflow");
alloc_guard(alloc_size);

// handles ZSTs and ‘cap = 0 alike
let ptr = 1if alloc_size == 0 {
mem: :align_of::<T>() as *mut u8
} else {
let align = mem::align_of::<T>();
let result = if zeroed {
a.alloc_zeroed(Layout::from_size_align(
alloc_size, align) .unwrap())
} else {
a.alloc(Layout::from_size_align/(
alloc_size, align) .unwrap())
bi
match result {
Ok (ptr) => ptr,

Err(err) => a.oom(err),
}
bi
RawVec {
ptr: Unique::new_unchecked (ptr as *mut _),
cap,
ay
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There's a lot going on here, but it's important, so let's break it into small pieces. Firstly, see
the following:

let elem_size = mem::size_of::<T>();

let alloc_size =
cap.checked_mul (elem_size) .expect ("capacity overflow");
alloc_guard(alloc_size);

At the head of the function, the size of the element is computed and the total allocation
requested by the caller is confirmed to be no more than the available system memory. Note
that checked_mul ensures we don't overflow usize and accidentally allocate too little
memory. Finally, a function called alloc_guard is called. That is as follows:

fn alloc_guard(alloc_size: usize) {

if mem::size_of::<usize>() < 8 {
assert! (
alloc_size <= ::core::isize::MAX as usize,

"capacity overflow"

)
}

This is a guarantee check. Remember that usize and isize are the signed and unsigned size
of the system pointer. To understand this guard, we must understand the answer to two
questions:

1. On a given machine, how much memory can I allocate?
2. On a given machine, how much memory can I address?

It's possible to allocate usize bytes from the operating system but here, Rust is checking that
the allocation size is less than the maximum isize. The Rust reference (https://doc.rust-
lang.org/stable/reference/types.html#machinefdependentfintegerftypes)ekaﬁnS
why:

"The isize type is a signed integer type with the same number of bits as the
platform's pointer type. The theoretical upper bound on object and array size is
the maximum isize value. This ensures that isize can be used to calculate
differences between pointers into an object or array and can address every byte
within an object along with one byte past the end."
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Combined with the capacity check from checked_mul, we know that the allocation is
properly sized and that it's addressable along the whole of itself:

let ptr = 1if alloc_size == 0 {
mem: :align_of::<T>() as *mut u8
} else {

In the event that the desired capacity is zero or the size of T is zero, the implementation
coerces the minimum alignment of T into a pointer to bytes, the *mut u8. This pointer is,
well, it points nowhere useful but the implementation has avoided an allocation when there
is nothing that could be allocated, whether there will never be anything to allocate because
of zero-sized types or not. This is good, and all the implementation will have to do is be
aware that when the capacity is zero, or if the type size is zero, the pointer cannot be
dereferenced. Right:

} else {
let align = mem::align_of::<T>();
let result = if zeroed {

a.alloc_zeroed(Layout::from_size_align(alloc_size,
align) .unwrap())
} else {
a.alloc(Layout::from_size_align(alloc_size,
align) .unwrap())
bi
match result {
Ok (ptr) => ptr,
Err(err) => a.oom(err),

}i

This branch is hit when there's memory to be allocated. Notably, two sub-possibilities,
controlled by the zeroed argument: either memory is zeroed or it is left uninitialized.
Vec<T> does not expose this option to the end user but we know from inspection that
memory starts off uninitialized, an optimization for non-trivial allocations:

RawVec {
ptr: Unique::new_unchecked(ptr as *mut _),
capy,
al
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The lack of an initialization flag is kind of tricky in some cases. Consider
std::io::Read: :read_exact. This function takes a smut [u8] and it's common enough
to create this slice from a specially created vec. This code will not read 1024 bytes:

use std::io;
use std::io::prelude::*;
use std::fs::File;

let mut £ = File::open("foo.txt")?;
let mut buffer = Vec:with_capacity(1024);

f.read_exact (&mut buffer)?;

Why? The slice that we pass in is actually of zero length! Rust dereferences are allowed on a
type by two traits: std: :ops: :Deref and std: :ops: :DerefMut, depending on your
desire for an immutable or mutable slide. The Deref trait is defined as follows:

pub trait Deref {

type Target: ?Sized;

fn deref (&self) —-> &Self::Target;
I3

And the mutable version analogously. When we slice our vector as in the preceding code
block, we're calling this DerefMut : :deref:

impl<T> ops::DerefMut for Vec<T> {
fn deref_mut (&mut self) -> &mut [T] |
unsafe {
let ptr = self.buf.ptr();
assume (!ptr.is_null());
slice::from_raw_parts_mut (ptr, self.len)

}

This is the very important part: slice:: from_raw_parts_mut (ptr, self.len). Vector
slices are built by length, not capacity. The capacity of a vector serves to distinguish how
much memory has been allocated versus how much memory has been initialized, either to
zeros or some other inserted values. This is an important difference. It's possible to initialize
memory ourselves:

let mut buffer: Vec<u8> = Vec::with_capacity(1024);
for _ in 0..1024 {
buffer.push(0);

}
assert_eq! (1024, buffer.len());
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Or to rely on the vec API to convert from a fixed-size array:

let buffer = [0; 10247;

let buffer = &mut buffer.to_vec();
assert_eq! (1024, buffer.len());

I3

Either will work. Which you choose depends on if you know the size of the buffer ahead of
time or not.

Befitting such an important type, there are a good many API functions on Vec<T>. In the
remainder of this chapter, we'll occupy ourselves with two mutations: push and insert.
The push function is a constant operation, modulo any reallocations necessary to cope with
the case of our capacity limit being reached. Here's the push function:

pub fn push (&mut self, wvalue: T) {
// This will panic or abort if we would allocate > isize::MAX bytes
// or if the length increment would overflow for zero-sized types.
if self.len == self.buf.cap() A
self.buf.double();
}
unsafe {
let end = self.as_mut_ptr().offset(self.len as isize);
ptr::write(end, value);
self.len += 1;

}

If you'll recall, self.buf is the underlying Rawvec<T>. The documentation for vec<T>
notes that when reallocation is required, the underlying memory will be doubled, which, it
turns out, is handled by RawVec<T>: : double. That function is fairly long and, as you
might suspect, is a bunch of arithmetic to compute the new, doubled size matched with a
realloc when there's an existing allocation, else when there's a new allocation. That is worth
listing:

None => {

// skip to 4 because tiny Vec's are dumb;
// but not if that would cause overflow

let new_cap = if elem_size > (!0) / 8 {
1
} else {
4

bi
match self.a.alloc_array::<T>(new_cap) A
Ok (ptr) => (new_cap, ptr),
Err(e) => self.a.oom(e),
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}

Alloc::alloc_array allocates space for contiguous memory, which is suitable to hold
new_cap humber of elements the size of T, returning the pointer to the first address of this
newly allocated space. Here then, is the contiguous memory promised in the
documentation of vec<T>! Back in Vec<T>, now that the capacity is twice that of what it
was, at least, the value T can be inserted:

unsafe {
let end = self.as_mut_ptr().offset(self.len as isize);
ptr::write(end, value);
self.len += 1;

}

Rust pointers are handy in that their offset function takes into account the size of T; there's
no need to do additional multiplication as the caller. The implementation is determining
the first of the unused T sized spaces in the contiguous allocation—denoted end—and then
writes the moved T onto that address. The fact that the space is unused is

important, std: :ptr::write does not deallocate any memory that may have originally
existed at the written-to pointer. If you ptr: : write over the top of a live reference, wacky
things will happen.

Finally, insert. The insert function of vec<T> allows for the insertion of T at any valid
index in the vector. If the insertion is to the end of the vector, the method is functionally
equivalent to pushing, though mechanically different, as we'll see shortly. If, however,
insertion occurs somewhere inside of the vector, all elements to the right of the insertion
index are shifted over once, a non-trivial operation depending on the size of the allocation.
Here's the full listing of insert:

pub fn insert (&émut self, index: usize, element: T) {
let len = self.len();
assert! (index <= len);

// space for the new element

if len == self.buf.cap() {
self.buf.double();

}

unsafe {
// infallible
// The spot to put the new value
{
let p = self.as_mut_ptr().offset (index as isize);
// Shift everything over to make space. (Duplicating the
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// “index th element into two consecutive places.)
ptr::copy(p, p.offset(l), len - index);

// Write it in, overwriting the first copy of the “index th
// element.

ptr::write(p, element);

}
self.set_len(len + 1);

}

The index checking and potential buffering is straightforward at this point in the chapter. In
the unsafe block, p is the proper offset for insertion. The two important lines are:

ptr::copy(p, p.offset(l), len - index);
ptr::write(p, element);

When a value is inserted into a vector, no matter the location, all the memory starting from
p to the end of the list is copied over the top of the memory, starting at p+1. Once this is
done, the inserted value is written over the top of p. This is a non-trivial operation and can
become incredibly slow, especially if the allocation to be shifted is fairly large.
Performance-focused Rust will use Vec: : insert sparingly, if at all. vec<T> will almost
surely make an appearance.

Summary

In this chapter, we covered the layout of Rust objects in memory, the way references work
across both safe and unsafe Rust, and have addressed the various allocation strategies of a
Rust program. We did a deep-dive on types in the Rust standard library to make these
concepts concrete and it is hoped that the reader will now feel comfortable further
exploring the compiler and will do so with confidence.

Further reading

The memory model of a programming language is a broad topic. Rust's, as of writing this
book, must be understood from the inspection of the Rust documentation, the rustc source
code, and research into LLVM. That is, Rust's memory model is not formally documented,
though there are rumblings in the community of providing it. Independent of that, it is also
important for the working programmer to understand the underlying machine. There's a
staggering amount of material to be covered.
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These notes are a small start, focusing especially on the Rust documentation that relates
most to this chapter:

e High Performance Code 201: Hybrid Data Structures, Chandler Carruth, available at
https://www.youtube.com/watch?v=vE1Zc6zSIXMindex=51ist=PLKW_

WLANyJtqQ6IWm3BjzHZvrFxFSooey. This, in point of fact, is a talk from CppCon
2016. Carruth is an engaging speaker and is a member of the LLVM team focused
on compiler performance. This talk is especially interesting from the point of
view of building information-dense data structures that interact well with CPU
caches. While the talk is in C++, the techniques apply directly to Rust.

e Cache-oblivious Algorithms, Matteo Frigo, Charles Leiserson, Harald Prokop, and
Sridhar Ramachandran. This paper introduces the concept of building data
structures that are cache oblivious, or, native to machines with memory
hierarchies and interact with them well, in addition to a machine model to
analyze such data structures.

o Cache-Oblivious Algorithms and Data Structures, Erik Demaine. This paper is a
classic in the cache-oblivious space, building on the work presented in the last by
Frigo et al and summarizing existing work. This is a highly recommended read,
especially in conjunction with the previous paper. It is well worth scanning the
bibliography as well.

o The Stack and the Heap, available at https://doc.rust-lang.org/book/first-
edition/the-stack-and-the-heap.html. This chapter from the first edition of
the Rust book explains the difference between the hardware stack and heap,
allocations to each, and the implications for Rust. This chapter has gone into
further detail in some areas, but the Rust book's chapter is warmly recommended
for anyone needing a refresher or a more gentle climb.

. Splitting Borrows, available at https://doc.rust-lang.org/beta/nomicon/
borrow-splitting.html. The Nomicon is a Rust book intended to teach low-level
Rust programming, not unlike this book. While it is a work-in-progress, the
information in it is invaluable. Splitting Borrows explains the reasoning behind a
common issue with new Rust developers: performing multiple mutable borrows
out of a vector or array. The fact that this works with structs is often a source of
great confusion and anguish.
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e Rust Reference, available at https://doc.rust-lang.org/reference/. Like any
established programming language, the Rust Reference is invaluable for
understanding the subtle details of the language itself, which have been hashed
out in mailing lists and over chat for years. The reference in its current form can
be a touch hard to search—it used to be one long page—but it's hoped the
situation will be improved upon by the time our book here has gone to press.

e Closures: Anonymous Functions that can Capture their Environment, available at
http://doc.rust-lang.org/1.23.0/book/second-edition/ch13-01-closures.
html. Rust closures have some subtle implications to them that can be hard to
internalize for new Rust developers. This chapter in the second edition of the
Rust Book is excellent in this regard.

o External blocks, available at nttps://doc.rust-lang.org/reference/items/
external-blocks.html. External blocks are relatively rare in this book—and,
perhaps, in most of the Rust code you're likely to see—but there's a fair few of
them available. It is well worth having a passing knowledge of this document's
existence.

e Hacker's Delight, Henry Warren Jr.This book is a classic. Many of the tricks
present in the book are now available as simple instructions on some chips, such
as x86, but you'll see the occasional delight here or there in the rustc source
code, the swap_nonoverlapping_bytes trick especially.
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Sync and Send — the
Foundation of Rust
Concurrency

Rust aims to be a programming language in which fearless concurrency is possible. What
does this mean? How does it work? In chapter 2, Sequential Rust Performance Testing, we
discussed the performance of sequential Rust programs, intentionally setting aside
discussion of concurrent programs. In chapter 3, The Rust Memory Model — Ownership,
References and Manipulation, we saw an overview of the way Rust handles memory,
especially with regard to composing high-performance structures. In this chapter, we'll
expand on what we've learned previously and, at long last, dig in to Rust's concurrency
story.

By the end of this chapter, we will have:

e Discussed the Sync and Send traits

e Inspected parallel races in a ring data structure with Helgrind
Resolved this race with a mutex

Investigated the use of the standard library MPSC

Built a non-trivial data multiplexing project
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Technical requirements

This chapter requires a working Rust installation. The details of verifying your installation
are covered in Chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust.
The Valgrind suite of tools are used below. Many operating systems bundle valgrind
packages but you can find further installation instructions for your system at valgrind.org.
Linux Perf is used and is bundled by many Linux distributions. Any other software
required for this chapter is installed as a part of the text.

You can find the source code for this book's projects on GitHub: https://github.com/
PacktPublishing/Hands-On-Concurrency-with-Rust/. This chapter has its source code
under Chapter04.

Sync and Send

There are two key traits that the parallel Rust programmer must understand—send and
Sync. The send trait is applied to types that can be transferred across thread boundaries.
That is, any type T: Send is safe to move from one thread to another. Re<T>:

! Send means that it is explicitly marked as being unsafe to move between threads. Why?
Consider if it were marked Send; what would happen? We know from the previous chapter
that Re<T> is a boxed T with two counters in place for weak and strong references to T.
These counters are the trick. Suppose we spread an Rc<T> across two threads—call them A
and B—each of which created references, dropped them, and the like. What would happen
if both A and B dropped the last reference to Rc<T> at the same time? We have a race
between either thread to see which can deallocate T first and which will suffer a double-free
for its troubles. Worse, suppose the taking of the strong reference counter in Rc<T> were
spread across three pseudo-instructions:

LOAD counter (tmp)
ADD counter 1 INTO tmp (tmp = tmp+l)
STORE tmp INTO counter (counter = tmp)

Likewise, suppose the dropping of a strong reference counter were spread across three
pseudo-instructions:

LOAD counter (tmp)
SUB counter 1 INTO tmp (tmp = tmp-1)
STORE tmp INTO counter (counter = tmp)
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In a single-threaded context, this works well, but consider this result in a multi-threaded
context. Let counter be equal to 10 for all threads at the beginning of the following
thought experiment:

[A]LOAD counter (tmp_a == 10)

[BILOAD counter (tmp_b == 10)

[B]ISUB counter 1 INTO tmp (tmp_b = tmp_b-1)

[A]JADD counter 1 INTO tmp (tmp_a = tmp_a + 1)
[A]STORE tmp INTO counter (counter = tmp_a) == 11
[A]JADD counter 1 INTO tmp (tmp_a = tmp_a + 1)
[A]STORE tmp INTO counter (counter = tmp_a) == 12
[A]JADD counter 1 INTO tmp (tmp_a = tmp_a + 1)
[A]STORE tmp INTO counter (counter = tmp_a) == 13
[B]STORE tmp INTO counter (counter == tmp_b) == 9

By the end, we've lost three references to Re<T>, meaning while T is not lost in memory, it
is entirely possible that when we drop T, references will remain to its no longer valid
memory out in the wild, the results of which are undefined but not likely to be great.

The Sync trait is derived from Send and has to do with references: T: Syncif «T: Send.
That is, a T is Sync only if sharing a &«T which acts as if that T were sent into the thread. We
know from the previous code that Re<T>: !Send and so we also know that Re<T>:

! Sync. Rust types inherit their constituent parts' Sync and send status. By convention, any
type which is sync + Send is called thread-safe. Any type we implement on top of Re<T>
will not be thread-safe. Now, for the most part, Sync and Send are automatically derived
traits. UnsafeCell, discussed in cChapter 3, The Rust Memory Model — Ownership, References
and Manipulation, is not thread-safe. Neither are raw pointers, to go with their lack of other
safety guarantees. As you poke around Rust code bases, you'll find traits that would
otherwise have been derived thread-safe but are marked as not.

Racing threads

You can also mark types as thread-safe, effectively promising the compiler that you've
arranged all the data races in such a way as to make them safe. This is relatively rare in
practice but it's worth seeing what it takes to make a type thread-safe in Rust before we
start building on top of safe primitives. First, let's take a look at code that's intentionally
sideways:

use std::{mem, thread};
use std::ops::{Deref, DerefMut};

unsafe impl Send for Ring {}
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unsafe impl Sync for Ring {}

struct InnerRing {
capacity: isize,
size: usize,
data: *mut Option<u32>,
}

# [derive (Clone) ]
struct Ring {
inner: *mut InnerRing,

}

What we have here is a ring, or a circular buffer, of u32. InnerRing holds a raw mutable
pointer and is not automatically thread-safe as a result. But, we've promised to Rust that we
know what we're doing and implement Send and Sync for Ring. Why not on InnerRing?
When we manipulate an object in memory from multiple threads, the location of that object
has to be fixed. InnerRing—and the data it contains—have to occupy a stable place in
memory. Ring can and will be bounced around, at the very least from a creating thread to a
worker. Now, what's that data there in InnerRing? It's a pointer to the Oth offset of a
contiguous block of memory that will be the store of our circular buffer. At the time of

writing this book, Rust has no stable allocator interface and, so, to get a contiguous

allocation we have to do it in a roundabout fashion—strip a Vec<u32> down to its pointer:

impl Ring {
fn with_capacity (capacity: usize) -> Ring {

let mut data: Vec<Option<u32>> = Vec::with_capacity (capacity);

for _ in O..capacity {
data.push (None) ;

let raw_data = (&mut data) .as_mut_ptr();
mem: : forget (data) ;
let inner_ring = Box::new(InnerRing {
capacity: capacity as isize,
size: 0,
data: raw_data,

)i

Ring {
inner: Box::into_raw(inner_ring),

}
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Ring::with_capacity functions much the same as other types' with_capacity from the
Rust ecosystem: sufficient space is allocated to fit capacity items. In our case, we piggyback
off Vec: :with_capacity, being sure to allocate enough room for capacity Option<u32>
instances, initializing to None along the full length of the memory block. If you'll recall
from chapter 3, The Rust Memory Model — Ownership, References and Manipulation, this is
done as Vec is lazy about allocating and we require the allocation. Vec: :as_mut_ptr
returns a raw pointer to a slice but does not consume the original object, a problem for
Ring. When data falls out of scope, the allocated block must survive. The standard library's
mem: : forget is ideal for this very use case. The allocation now being safe, an InnerRing
is boxed to store it. The box is then consumed by Box: : into_raw and passed into a Ring.
Ta-da!

Interacting with a type that has an inner raw pointer can be verbose, scattering unsafe
blocks around to little good effect. To that end, Ring gets a Deref and DerefMut
implementation, both of which tidy up the interaction with Ring:

impl Deref for Ring {
type Target = InnerRing;

fn deref (&self) -> &InnerRing {
unsafe { &*self.inner }
I3
I3

impl DerefMut for Ring {
fn deref_mut (&mut self) -> &mut InnerRing {
unsafe { &mut *self.inner }
}
}

Now that we have Ring defined, we can get into the meat of the program. We'll define two
operations that will run concurrently with one another—writer and reader. The idea here is
that writer will race around the ring writing, increasing u32 values into the ring whenever
there's capacity to do so. (At type boundary the u32 will wrap.) The reader will race around
behind the writer reading the values written, checking that each read value is up one from
the previous read, with the caveat of wrapping. Here's the writer:

fn writer (mut ring: Ring) -> () {
let mut offset: isize = 0;
let mut cur: u32 = 0;
loop {
unsafe {
if (*ring) .size != ((*ring) .capacity as usize) {
*(*ring) .data.offset (offset) = Some (cur);
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(*ring) .size += 1;

cur = cur.wrapping_add(l);

offset += 1;

offset %= (*ring) .capacity;
} else {

thread::yield_now();
}

}

Now, to be crystal clear, there's a ot that's wrong here. The ambition is to only write when
the size of the ring buffer has not reached its capacity—meaning there's free space
available. The actual writing is:

*(*ring) .data.offset (offset) = Some (cur);
(*ring) .size += 1;

That is, we dereference the ring (*ring) and get the pointer to the Option<u32> sized
block at (*ring) .data.offset (offset), which we then dereference and move

Some (cur) onto the top of whatever was previously there. It is entirely possible that
because of races on the size of the Ring that we'll overwrite an unread u32 . The remainder
of the write block sets up our next cur and our next offset, adding one and modulating
around if need be:

} else {
thread::yield_now () ;
}

thread: :yield_now is new. The writer is a fast spin-loop—it checks a single condition
and loops back around again for another try. This is very CPU and power inefficient.
thread: :yield_now hints to the operating system that this thread had no work to do and
should be deprioritized in favor of other threads. The effect is OS and running
environment-dependent but it's still a good idea to yield if you have to spin-loop:

fn reader (mut ring: Ring) -> () {

let mut offset: isize = 0;

let mut cur: u32 = 0;

while cur < 1_000 {

unsafe {
if let Some (num) = mem::replace (

&mut * (*ring) .data.offset (offset),
None)

assert_eq! (num, cur);
(*ring) .size -= 1;
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cur = cur.wrapping_add(l);

offset += 1;

offset %= (*ring) .capacity;
} else {

thread::yield_now();
}

}

The reader is similar to the writer, with the major difference being that it's not an infinite
loop. Reads are done with mem: : replace, swapping the block at the reader offset with
None. When we hit bingo and score a Some, the memory of that u32 is now owned by the
reader—a drop will be called when it goes out of scope. This is important. The writer is
responsible for losing memory inside of a raw pointer and the reader is responsible for
finding it. In this way, we are careful not to leak memory. Or, well, we would if there
wasn't a race on the size of the Ring.

Finally, we have the main function:

fn main () A
let capacity = 10;
let ring = Ring::with_capacity (capacity);

let reader_ring = ring.clone();

let reader_jh = thread::spawn (move || {
reader (reader_ring);

}) i

let _writer_jh = thread::spawn (move || {
writer (ring);

)i

reader_jh.join () .unwrap() ;

}

There are two new things going on here. The first is our use of thread: : spawn to start a
reader and awriter. Themove || {} constructis called a move closure. That is, every
variable reference inside the closure from the outer scope is moved into the closure's scope.
It's for this reason that we clone ring to reader_ring. Otherwise, there'd be no ring for
the writer to work with. The second new thing is the JoinHandle that thread: : spawn
returns. Rust threads are not a drastic departure from the common POSIX or Windows
threads. Rust threads receive their own stack and are independently runnable by the
operating system.
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Every Rust thread has a return value, though here ours is (). We get at that return value by
joining on the thread's JoinHandler, pausing execution of our thread until the thread

wraps up successfully or crashes. Our main thread assumes its child threads will return
successfully, hence the join () .unwrap ().

What happens when we run our program? Well, failure, which is what we were expecting:

> rustc -C opt-level=3 data_race00.rs && ./data_race00

thread '<unnamed>' panicked at 'assertion failed: ° (left == right)"
left: "31°,
right: "21°', data_race00.rs:90:17
note: Run with "RUST_BACKTRACE=1" for a backtrace.

thread 'main' panicked at 'called "Result::unwrap() on an "Err value:
Any', libcore/result.rs:916:5

The flaw of the Ring

Let's explore what's going wrong here. Our ring is laid out in memory as a contiguous
block and we have a few control variables hung off the side. Here's a diagram of the system
before any reads or writes happen:

size: 0O
capacity: 5

rdr

I

|0: None |1: None |2: None |3: None |4: None |
I

wrt

Here's a diagram of the system just after the writer has written its first value:

size: O
capacity: 5

rdr

|

|0: Some(0) |1: None |2: None |3: None |4: None |
|

wrt
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To do this, the writer has performed a load of both size and capacity, performed a
comparison between then, written to its offset inside the block, and incremented size. None
of these operations are guaranteed to be ordered as they are in the program, either due to
speculative execution or compiler reordering. As we've seen in the previous run example,
the writer has stomped its own writes and raced well ahead. How? Consider what happens
when the execution of the reader and writer are interleaved in this setup:

size: 5
capacity: 5

rdr

|

|0: Some(5) |1: Some(6) |2: Some(7) |3: Some(8) |4: Some(9)
|

wrt

The writer thread has looped through the ring twice and is poised at the start of the ring to
write 10. The reader has been through the ring once and is expecting to see 5. Consider
what happens if the reader's decrement of size makes it into main memory before the

mem: : replace happens. Imagine if, then, the writer is woken up just as its size and
capacity is checked. Imagine if, in addition to that, the writer writes its new cur to the main
memory before the reader wakes back up. You'll get this situation:

size: 5
capacity: 5

rdr

|

|0: Some (10) |1: Some(6) |2: Some(7) |3: Some(8) |4: Some (9)
|

wrt

That's what we see in practice. Sometimes. Here's the trick with concurrent programming at
the metal of the machine: you're dealing with probabilities. It's entirely possible for our
program to run successfully or, worse, run successfully on one CPU architecture and not on
another. Randomized testing and introspection of programs like this are vital. In fact, back
in chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust, we discussed
a valgrind suite tool called helgrind, but didn't have a real use for it then. We do now.
What does helgrind have to say about our intentionally racey program?

We'll run helgrind like so:

> valgrind --tool=helgrind —--history-level=full --log-file="results.txt"
./data_race00
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This will print the full history of the program but place the results in a file on disk for easier
inspection. Here's some of the output:

==19795==

==19795==

==19795== Possible data race during write of size 4 at 0x621A050 by thread
#3

==19795== Locks held: none

==19795== at 0x10F8E2: data_race00::writer::h4524c5c44483b66e (in

/home/blt /projects/us/troutwine/concurrency_in_rust/external_projects/data_
races/data_race00)

==19795== by 0x10FE75:

_ZN3std1l0sys_common9backtrace28__ rust_begin_short_backtracel7ha5ca0c09855dd
O05fE.1llvm.5C463C64 (in

/home/blt /projects/us/troutwine/concurrency_in_rust/external_projects/data_
races/data_race00)

==19795== by 0x12668E: __ rust_maybe_catch_panic (lib.rs:102)

==19795== by 0x110A42:
_SLT$FS$u20$as$u20$alloc. .boxed. .FnBoxSLTSASGTSSGTS: :call_box: :h6b5d5a2a8305
8684 (in

/home/blt /projects/us/troutwine/concurrency_in_rust/external_projects/data_
races/data_race00)

==19795== by 0x1191A7: call_once<(), ()> (boxed.rs:798)

==19795== by 0x1191A7:

std: :sys_common: :thread: :start_thread: :hdc3a308e21d56a9c (thread.rs:24)
==19795== by 0x112408:

std::sys::unix: :thread: :Thread: :new: :thread_start::h555aed63620dece?9
(thread.rs:90)

==19795== by 0x4C32D06: mythread_wrapper (hg_intercepts.c:389)
==19795== by 0x5251493: start_thread (pthread create.c:333)
==19795== by O0x5766AFE: clone (clone.S:97)

==19795==

==19795== This conflicts with a previous write of size 8 by thread #2
==19795== Locks held: none

==19795== at 0x10F968: data_race00::reader::h87e804792f6b43da (in
/home/blt /projects/us/troutwine/concurrency_in_rust/external_projects/data_
races/data_race00)

==19795== by 0x12668E: __ rust_maybe_catch_panic (lib.rs:102)

==19795== by 0x110892:
_SLT$F$u20$as$u20$alloc. .boxed. .FnBoxSLTSASGTSSGTS: :call_box: :h4b5b7e5£469a
419a (in

/home/blt /projects/us/troutwine/concurrency_in_rust/external_projects/data_
races/data_race00)

==19795== by 0x1191A7: call_once<(), ()> (boxed.rs:798)

==19795== by 0x1191A7:

std: :sys_common: :thread: :start_thread: :hdc3a308e21d56a9c (thread.rs:24)
==19795== by 0x112408:
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std::sys::unix: :thread: :Thread: :new: :thread_start: :h555aed63620dece9
(thread.rs:90)

==19795== by 0x4C32D06: mythread_wrapper (hg_intercepts.c:389)
==19795== by 0x5251493: start_thread (pthread_create.c:333)
==19795== by 0x5766AFE: clone (clone.S:97)

==19795== Address 0x621a050 is in a rw—- anonymous segment
==19795==

==19795==

The output is less clear than it might be, but helgrind is warning us about the data
stomping that we're already aware of. The reader is encouraged to run helgrind for
themselves and inspect the whole history.

Let's improve this situation. Clearly, we have a problem with racing reads and writes, but
we also have a problem in terms of the behavior of the writer. It stomps its own writes and
is entirely unaware of it. With an adjustment to the writer, we can stop absent-mindedly
stomping on writes as follows:

fn writer (mut ring: Ring) -> () {
let mut offset: isize = 0;
let mut cur: u32 = 0;
loop {
unsafe {
if (*ring).size != ((*ring) .capacity as usize) {
assert! (mem: :replace (&mut * (*ring) .data.offset (offset),
Some (cur) ) .is_none());
(*ring) .size += 1;
cur = cur.wrapping_add(l);
offset += 1;
offset %= (*ring) .capacity;
} else {

thread::yield_now() ;

}
Afterwards, we run the program a few times and find the following;:

> ./data_race01

thread '<unnamed>thread '' panicked at '<unnamed>assertion failed:
mem: :replace (&mut * (*ring) .data.offset (offset), Some(cur)) .is_none()'
panicked at '', assertion failed: " (left == right)"

left: "20°,

right: "10°'data_race0Ol.rs', :data_race0l.rs65::8517:
17note: Run with "RUST_BACKTRACE=1" for a backtrace.
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thread 'main' panicked at 'called "Result::unwrap()  on an "Err  value:
Any', libcore/result.rs:945:5

That's fun! Both threads have crashed for the same reason. The writer has inappropriately
stomped a write and the reader has read it.

Getting back to safety

Like we discussed previously, the preceding examples were intentionally low-level and
unsafe. How can we build something similar with the bits and pieces that Rust provides us
with? Here's one approach:

use std::{mem, thread};
use std::sync::{Arc, Mutex};

struct Ring {
size: usize,
data: Vec<Option<u32>>,

impl Ring {
fn with_capacity (capacity: usize) -> Ring {
let mut data: Vec<Option<u32>> = Vec::with_capacity (capacity);
for _ in O..capacity {
data.push (None) ;
}
Ring {
size: O,
data: data,

fn capacity(&self) -> usize {
self.data.capacity ()
I3

fn is_full (&self) —-> bool {
self.size == self.data.capacity()

fn emplace (&mut self, offset: usize, val: u32) -> Option<u32> {
self.size += 1;
let res = mem::replace (&mut self.dataloffset], Some(val));
res
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fn displace (&mut self, offset: usize) -> Option<u32> {
let res = mem::replace(&mut self.datal[offset], None);

if res.is_some () {
self.size —-= 1;
I3
res
I3
I3
fn writer (ring_lk: Arc<Mutex<Ring>>) -> () {
let mut offset: usize = 0;
let mut cur: u32 = 0;
loop {
let mut ring = ring_lk.lock () .unwrap();
if !ring.is_full() |
assert! (ring.emplace (offset, cur).is_none());
cur = cur.wrapping_add(l);
offset += 1;
offset %= ring.capacity();
} else {
thread::yield_now();
3
3
3
fn reader (read_limit: usize, ring_lk: Arc<Mutex<Ring>>) -> ()
let mut offset: usize = 0;
let mut cur: u32 = 0;
while (cur as usize) < read_limit {
let mut ring = ring_lk.lock () .unwrap();
if let Some (num) = ring.displace(offset) {
assert_eq! (num, cur);
cur = cur.wrapping_add(l);

offset += 1;

offset %= ring.capacity();
} else {

drop (ring) ;

thread::yield_now();

fn main () {
let capacity = 10;
let read_limit = 1_000_000;

{

let ring = Arc::new(Mutex::new(Ring::with_capacity (capacity)));

let reader_ring = Arc::clone(&ring);
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let reader_jh = thread::spawn (move || {
reader (read_limit, reader_ring);

)i

let _writer_jh = thread::spawn (move || {
writer (ring);

)i

reader_jh.join () .unwrap () ;

}

This is awfully similar to the previous, racey programs. We have Ring, which holds a size
and is a set of operations around a Vec<Option<u32>>. This time, the vec is not exploded
into a raw pointer and the implementation of Ring is fleshed out some more. Actually, it
was possible to provide more of an abstract implementation in our previous examples—as
we have seen by poking around inside Rust itself—but indirection and unsafety make for a
rough combination. It's sometimes the case that indirect, unsafe code is harder to recognize
as flawed than direct, unsafe code. Anyhow, you'll note that Ring: !Send in this
implementation. Instead, the writer and reader threads operate on Arc<Mutex<Ring>>.

Safety by exclusion

Let's talk about Mutex. Mutexes provide MUTual EXclusion among threads. Rust's Mutex
works just as you'd expect coming from other programming languages. Any thread that
calls a lock on a Mutex will acquire the lock or block until such a time as the thread that
holds the mutex unlocks it. The type for lock is 1ock (&self) —>
LockResult<MutexGuard<T>>. There's a neat trick happening here. LockResult<Guard>
is Result<Guard>, PoisonError<Guard>>. That is, the thread that acquires a mutex lock
actually gets a result, which containers the Mut exGuard<T> on success or a

poisoned notification. Rust poisons its mutexes when the holder of the mutex crashes, a
tactic that helps prevent the continued operation of a multi-threaded propagation that has
crashed in only one thread. For this very reason, you'll find that many Rust programs do
not inspect the return of a lock call and immediately unwrap it. The MutexGuard<T>, when
dropped, unlocks the mutex. Once the mutex guard is unlocked, it's no longer possible to
access the data ensconced inside and, so, there's no way for one thread to interact poorly
with another. A Mutex is both sync and send, which makes good sense. Why then do we
wrap our Mutex<Ring> in an Arc? What even is an Arc<T>?
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The Arc<T> is an atomic reference counting pointer. As discussed previously, Re<T> is not
thread-safe because if it were marked as such there'd be a race on the inner strong/weak
counters, much like in our intentionally racey programs. Arc<T> is built on top of atomic
integers, which we'll go into more detail on in the next chapter. Suffice it to say for now, the
Arc<T> is able to act as a reference counting pointer without introducing data races
between threads. Arc<T> can be used everywhere Rc<T> can, except those atomic integers
are not free. If you can use Rc<T>, do so. Anyway, more on this next chapter.

Why Arc<Mutex<Ring>>? Well, Mutex<Ring> can be moved but it cannot be cloned. Let's
take a look inside Mutex:

pub struct Mutex<T: ?Sized> {
// Note that this mutex is in a *box*, not inlined into
// the struct itself. Once a native mutex has been used
// once, its address can never change (it can't be
// moved). This mutex type can be safely moved at any time,
// so to ensure that the native mutex is used correctly we
// box the inner mutex to give it a constant address.
inner: Box<sys::Mutex>,
poison: poison::Flag,
data: UnsafeCell<T>,

}

We can see that T may or may not be sized and that T is stored in an UnsafeCell<T> next
to something called sys: :Mutex. Each platform that Rust runs on will provide its own
form of mutex, being that these are often tied into the operating system environment. If you
take a look at the rustc code, you'll find that sys: :Mutex is a wrapper around system-
dependent mutex implementations. The Unix implementation is in
src/libstd/sys/unix/mutex.rs and is an UnsafeCell around pthread_mutex_t, as
you might expect:

pub struct Mutex { inner: UnsafeCell<libc::pthread_mutex_t> }

It's not strictly necessary for Mutex to be implemented on top of system-dependent
foundations, as we'll see in the chapter on atomic primitives when we build our own locks.
Generally speaking though, it's a good call to use what's available and well-tested unless
there's a good reason not to (like pedagogy).
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Now, what would happen if we were to clone Mutex<T>? We would need a new allocation
of the system mutex, for one, and possibly a new UnsafeCell, if T itself were even
clonable. The new system mutex is the real problem—threads have to synchronize on the
same structure in memory. Tossing Mutex inside of an Arc solves that problem. Cloning
the Arc, like cloning an Rc, creates new strong references to the Mutex. These references are
immutable, though. How does that work out? For one, the mutex inside the Arc is never
changed. In the abstract model that Rust provides, the mutex itself has no internal state and
there's nothing really being mutated by locking threads. Of course, that's not actually true,
by inspection. The Rust Mutex only behaves that way because of the interior UnsafeCell
surrounding system-dependent structures. Rust Mut ex makes use of the interior mutability
that UnsafeCell allows. The mutex itself stays immutable while the interior T is mutably
referenced through the MutexGuard. This is safe in Rust's memory model as there's only
one mutable reference to T at any given time on account of mutual exclusion:

fn main() A
let capacity = 10;
let read_limit = 1_000_000;
let ring = Arc::new (Mutex::new(Ring::with_capacity (capacity)));

let reader_ring = Arc::clone(&ring);
let reader_jh = thread::spawn (move || {
reader (read_limit, reader_ring);

P
let _writer_jh = thread::spawn (move || {
writer (ring);

)i
reader_jh.join () .unwrap();

}

We wrap our Ring, which is not thread-safe in the least, in an Arc, Mutex layer, clone this
to the reader, and move it into the writer. Here, this is a matter of style, but it's important to
realize that if a main thread creates and clones an Arc into child threads then the contents
of Arc are still alive, at least as long as the main thread is. For instance, if a file handler
were held in a main-thread Arc, cloned to temporary start-up workers, and then not
dropped, the file handler itself would never be closed. This may or may not be what your
program intends, of course. The reader and the writer each take a lock on the mutex—arc
has convenient Deref/DerefMut implementations—and then perform their action.
Running this new program through helgrind gives a clean run. The reader is encouraged
to confirm this on their own system.
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Moreover, the program itself runs to completion successfully after repeated runs. The
unfortunate thing is that, theoretically, it's not especially efficient. Locking a mutex is not
free, and while our thread's operations are short—a handful of arithmetic in addition to one
memory swap—while one thread holds the mutex the other waits dumbly. Linux perf
proves this somewhat:

> perf stat —-—-event task-clock, context-switches, page-
faults, cycles, instructions,branches,branch-misses, cache-references, cache-
misses ./data_race02

Performance counter stats for './data_race02':

988.944526 task—-clock (msec) # 1.943 CPUs utilized
8,005 context-switches # 0.008 M/sec
137 page—-faults # 0.139 K/sec
2,836,237,759 cycles # 2.868 GHz
1,074,887,696 instructions # 0.38 insn per cycle
198,103,111 branches # 200.318 M/sec
1,557,868 branch-misses # 0.79% of all
branches
63,377,456 cache-references # 64.086 M/sec
3,326 cache-misses # 0.005 % of all cache

refs
0.508990976 seconds time elapsed

Only 1.3 CPUs are used during the execution. For a program as simple as this, we're likely
better off with the simplest approach. Also, because of cache write effects in the presence of
a memory barrier—of which a mutex assuredly is one—it may be cheaper to prefer mutual
exclusion instead of fine-grained locking strategies. Ultimately, it comes down to finding
the trade-off in development time, need for machine efficiency, and defining what machine
efficiency is for the CPU in use. We'll see some of this in later chapters.
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Using MPSC

We've come at Ring from an odd point of view, looking to build a malfunctioning program
from the start only to improve it later. In a real program where purposes and functions
gradually drift from their origins, it's worth occasionally asking what a piece of software
actually does as an abstract concept. So, what is it that Ring actually does? For one, it's
bounded, we know that. It has a fixed capacity and the reader/writer pair are careful to stay
within that capacity. Secondly, it's a structure that's intended to be operated on by two or
more threads with two roles: reading and writing. Ring is a means of passing u32 between
threads, being read in the order that they were written.

Happily, as long as we're willing to accept only a single reader thread, Rust ships with
something in the standard library to cover this common need—std: : sync: :mpsc. The
Multi Producer Single Consumer queue is one where the writer end—called
Sender<T>—may be cloned and moved into multiple threads. The reader thread—called
Receiver<T>—can only be moved. There are two variants of sender
available—sender<T> and SyncSender<T>. The first represents an unbounded MPSC,
meaning the channel will allocate as much space as needed to hold the Ts sent into it. The
second represents a bounded MPSC, meaning that the internal storage of the channel has a
fixed upper capacity. While the Rust documentation describes Sender<T> and
SyncSender<T> as being asynchronous and synchronous respectively this is not, strictly,
true. SyncSender<T>: : send will block if there is no space available in the channel but
there is also a SyncSender<T>: :try_send whichis of type try_send (&self, t: T)

—-> Result<(), TrySendError<T>>. It's possible to use Rust's MPSC in bounded memory,
keeping in mind that the caller will have to have a strategy for what to do with inputs that
are rejected for want of space to place them in.

What does our u32 passing program look like using Rust's MPSC? Like so:

use std::thread;
use std::sync::mpsc;

fn writer (chan: mpsc::SyncSender<u32>) -> () {
let mut cur: u32 = 0;
while let Ok (()) = chan.send(cur) {
cur = cur.wrapping_add(l);
}
}
fn reader(read_limit: usize, chan: mpsc::Receiver<u32>) -> () {
let mut cur: u32 = 0;
while (cur as usize) < read_limit {
let num = chan.recv () .unwrap();
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assert_eq! (num, cur);
cur = cur.wrapping_add(l);

fn main () {
let capacity = 10;
let read_limit = 1_000_000;
let (snd, rcv) = mpsc::sync_channel (capacity);

let reader_jh = thread::spawn (move || {
reader (read_limit, rcv);

)i

let _writer_jh = thread::spawn (move || {
writer (snd);

)i

reader_jh.join () .unwrap () ;

}

This is significantly shorter than any of our previous programs as well as being not at all
prone to arithmetic bugs. The send type of SyncSender is send (¢self, t: T) ->
Result< (), SendError<T>>, meaning that SendError has to be cared for to avoid a
program crash. SendError is only returned when the remote side of an MPSC channel is
disconnected, as will happen in this program when the reader hits its read_limit. The
performance characteristics of this odd program are not quite as quick as for the last Ring
program:

> perf stat —-—-event task-clock, context-switches, page-
faults, cycles, instructions, branches,branch-misses, cache-references, cache-
misses ./data_race03

Performance counter stats for './data_race03':

760.250406 task-clock (msec) # 0.765 CPUs utilized
200,011 context-switches # 0.263 M/sec
135 page-faults # 0.178 K/sec
1,740,006,788 cycles # 2.289 GHz
1,533,396,017 instructions # 0.88 insn per cycle
327,682,344 branches # 431.019 M/sec
741,095 branch-misses # 0.23% of all branches
71,426,781 cache-references # 93.952 M/sec
4,082 cache-misses # 0.006 % of all cache refs

0.993142979 seconds time elapsed
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But it's well within the margin of error, especially considering the ease of programming.
One thing worth keeping in mind is that messages in MPSC flow in only one direction: the
channel is not bi-directional. In this way, MPSC is not suitable for request/response
patterns. It's not unheard of to layer two or more MPSCs together to achieve this, with the
understanding that a single consumer on either side is sometimes not suitable.

A telemetry server

Let's build a descriptive statistics server. These pop up often in one way or another inside
organizations: a thing is needed that consumes events, does some kind of descriptive
statistic computation over those things, and then multiplexes the descriptions out to other
systems. The very reason my work project, postmates/cernan (https://crates.io/crates/
cernan), exists is to service this need at scale on resource constrained devices without tying
operations staff into any kind of pipeline. What we'll build here now is a kind of mini-
cernan, something whose flow is as follows:

_——> high_filter --> cma_egress

/

telemetry -> ingest_point ———
(udp) \_——> low_filter —--> ckms_egress

The idea is to take telemetry from a simple UDP protocol, receive it as quickly as possible
to avoid the OS dumping packets, pass these points through a high and low filter, and then
hand the filtered points off to two different statistical egress points. The egress
associated with the high filter computes a continuous moving average, while the low filter
associated egress computes a quantile summary using an approximation algorithm from
the postmates/quantiles (https://crates.io/crates/quantiles) library.

Let's dig in. First, let's look at Cargo. toml for the project:

[package]

name = "telem"
version = "0.1.0"
[dependencies]
quantiles = "0.7"
seahash = "3.0"
[[bin]]

name = "telem"
doc = false
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Short and to the point. We draw in quantiles, as mentioned previously, as well as
seahasher. Seahasher is a particularly fast—but not cryptographically safe—hasher that
we'll substitute into HashMap. More on that shortly. Our executable is broken out into
src/bin/telem. rs since this project is a split library/binary setup:

extern crate telem;

use std::{thread, time};

use std::sync::mpsc;

use telem::IngestPoint;

use telem::egress::{CKMSEgress, CMAEgress, Egress};
use telem::event::Event;

use telem::filter::{Filter, HighFilter, LowFilter};

fn main () {
let limit = 100;
let (lp_ic_snd, lp_ic_rcv) = mpsc::channel::<Event>();
let (hp_ic_snd, hp_ic_rcv) = mpsc::channel::<Event>();
let (ckms_snd, ckms_rcv) = mpsc::channel::<Event>();
let (cma_snd, cma_rcv) = mpsc::channel::<Event>();

let filter_sends = vec![lp_ic_snd, hp_ic_snd];

let ingest_filter_sends = filter_sends.clone();

let _ingest_jh = thread::spawn(move || {
IngestPoint::init ("127.0.0.1".to_string(), 1990,
ingest_filter_sends) .run();

P i

let _low_jh = thread::spawn (move || {
let mut low_filter = LowFilter::new(limit);
low_filter.run(lp_ic_rcv, vec![ckms_snd]);

P i

let _high_jh = thread::spawn (move || {
let mut high_filter = HighFilter::new(limit);
high_filter.run (hp_ic_rcv, vec![cma_snd]);

P i

let _ckms_egress_jh = thread::spawn (move || {
CKMSEgress::new(0.01) .run (ckms_rcv) ;

P i

let _cma_egress_jh = thread::spawn (move || {
CMAEgress: :new () .run(cma_rcv) ;

)i

let one_second = time::Duration::from_millis(1_000);
loop {
for snd in &filter_sends {
snd.send (Event: :Flush) .unwrap () ;
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thread: :sleep (one_second);

}

There's a fair bit going on here. The first eight lines are imports of the library bits and pieces
we need. The body of main is dominated by setting up our worker threads and feeding the
appropriate channels into them. Note that some threads take multiple sender sides of a
channel:

let filter_sends = vec![lp_ic_snd, hp_ic_snd];

let ingest_filter_sends = filter_sends.clone();

let _ingest_jh = thread::spawn (move || {
IngestPoint::init ("127.0.0.1".to_string(), 1990,
ingest_filter_sends) .run();

)i

That's how we do fanout using Rust MPSC. Let's take a look at IngestPoint, in fact. It's
defined in src/ingest_point.rs:

use event;

use std::{net, thread};

use std::net::ToSocketAddrs;
use std::str;

use std::str::FromStr;

use std::sync::mpsc;

use util;

pub struct IngestPoint {
host: String,
port: ulé,
chans: Vec<mpsc::Sender<event::Event>>,

}

An IngestPoint is a host—either an IP address or a DNS hostname, per
ToSocketAddrs—a port and a vector of mpsc: : Sender<event: :Event>. The inner type
is something we've defined:

#[derive (Clone) ]

pub enum Event {
Telemetry (Telemetry),
Flush,

#[derive (Debug, Clone)]

pub struct Telemetry {
pub name: String,
pub value: u32,
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}

telem has two kinds of events that flow through it—Telemetry, which comes from
IngresPoint and Flush, which comes from the main thread. F1ush acts like a clock-tick
for the system, allowing the individual subsystems of the project to keep track of time
without making reference to the wall-clock. It's not uncommon in embedded programs to
define time in terms of some well-known pulse and, when possible, I've tried to keep to
that in parallel programming as well. If nothing else, it helps with testing to have time as an
externally pushed attribute of the system. Anyhow, back to IngestPoint:

impl IngestPoint {
pub fn init(
host: String,
port: ulé6,
chans: Vec<mpsc::Sender<event::Event>>,
) —> IngestPoint {
IngestPoint {
chans: chans,
host: host,
port: port,

pub fn run (&mut self) {
let mut joins = Vec::new();

let addrs = (self.host.as_str (), self.port).to_socket_addrs();
if let Ok (ips) = addrs {
let ips: Vec<_> = ips.collect();

for addr in ips {
let listener =
net: :UdpSocket: :bind (addr)
.expect ("Unable to bind to UDP socket");
let chans = self.chans.clone();
joins.push (thread: :spawn (move || handle_udp (chans,
&listener)));

for jh in joins {
jh.join () .expect ("Uh oh, child thread panicked!");
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The first bit of this, init, is just setup. The run function calls to_socket_addrs on our
host/port pair and retrieves all the associated IP addresses. Each of these addresses get a
UdpSocket bound to them and an OS thread to listen for datagrams from that socket. This
is wasteful in terms of thread overhead and later in this book we'll discuss evented-1O
alternatives. Cernan, discussed previously, being a production system makes use of Mio in
its Sources. The key function here is handle_udp, the function that gets passed to the new
listener threads. It is as follows:

fn handle_udp (mut chans: Vec<mpsc::Sender<event::Event>>,

socket: &net::UdpSocket) {
let mut buf = vec![0; 16_2501];

loop {
let (len, _) = match socket.recv_from(&mut buf) {
Ok (r) => r,
Err (e) => {
panic! (
format! ("Could not read UDP socket with \

error {:?2}", e)),
}
bi
if let Some (telem) =
parse_packet (str::from_utf8 (&buf[..len]) .unwrap()) A
util::send(&mut chans, event::Event::Telemetry(telem));

}

}

The function is a simple infinite loop that pulls datagrams off the socket into a 16 KB
buffer—comfortably larger than most datagrams—and then calls parse_packet on the
result. If the datagram was a valid example of our as yet unspecified protocol, then we call
util::send to send the Event: :Telemetry out over the Sender<event: :Event> in
chans. util::send is little more than a for loop:

pub fn send(chans: &[mpsc::Sender<event::Event>], event: event::Event)
{
if chans.is_empty () {
return;
}
for chan in chans.iter () {
chan.send(event.clone()) .unwrap();

}

[131]



Sync and Send — the Foundation of Rust Concurrency Chapter 4

The ingest payload is nothing special: a name of non-whitespace characters followed by one
or more whitespace characters followed by a u32, all string encoded and utf8 valid:

fn parse_packet (buf: &str) —-> Option<event::Telemetry> {
let mut iter = buf.split_whitespace();
if let Some (name) = iter.next () |
if let Some(val) = iter.next () {
match u32::from_str(val) {
Ok (int) => {
return Some (event::Telemetry {
name: name.to_string(),
value: int,
})
}
Err(_) => return None,

bi

None

}

Popping out to the filters, both HighFilter and LowFilter are done in terms of a
common Filter trait, defined in src/filter/mod.rs:

use event;
use std::sync::mpsc;
use util;

mod high_filter;
mod low_filter;

pub use self::high_filter::*;
pub use self::low_filter::*;

pub trait Filter {
fn process(
gmut self,
event: event::Telemetry,
res: &mut Vec<event::Telemetry>,
) > ()i

fn run/(
gmut self,
recv: mpsc::Receiver<event::Event>,
chans: Vec<mpsc::Sender<event::Event>>,

let mut telems = Vec::with_capacity(64);
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for event in recv.into_iter () {
match event {
event::Event::Flush => util::send(&chans,
event::Event::Flush),
event::Event::Telemetry (telem) => {
self.process(telem, &mut telems);
for telem in telems.drain(..) {
util::send(&chans,
event::Event::Telemetry (telem))

}

Any implementing filter is responsible for providing their own process. It's this function
that the default run calls when an Event is pulled from the Receiver<Event> and found
to be a Telemetry. Though neither high nor low filters make use of it, the process function
is able to inject new Telemetry into the stream if it's programmed to do so by pushing
more onto the passed telems vector. That's how cernan's programmable filter is able to allow
end users to create telemetry from Lua scripts. Also, why pass telems rather than have
the process return a vector of Telemetry? It avoids continual small allocations. Depending
on the system, allocations will not necessarily be uncoordinated between threads—meaning
high-load situations can suffer from mysterious pauses—and so it's good style to avoid
them where possible if the code isn't twisted into some weird version of itself by taking
such care.

Both low and high filters are basically the same. The low filter passes a point through itself
if the point is less than or equal to a pre-defined limit, where the high filter is greater than
or equal to it. Here's LowFilter, defined in src/filter/low_filter.rs:

use event;
use filter::Filter;

pub struct LowFilter {
limit: u32,
}

impl LowFilter {
pub fn new(limit: u32) -> Self {
LowFilter { limit: limit }
}
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impl Filter for LowFilter {
fn process(
&mut self,
event: event::Telemetry,
res: &mut Vec<event::Telemetry>,
) —> 0 A
if event.value <= self.limit {
res.push (event);

}

Egress of telemetry is defined similarly to the way filter is done, split out into a sub-
module and a common trait. The trait is present in src/egress/mod.rs:

use event;
use std::sync::mpsc;

mod cma_egress;
mod ckms_egress;

pub use self::ckms_egress::*;
pub use self::cma_egress::*;

pub trait Egress {
fn deliver (&mut self, event: event::Telemetry) -> ();

fn report (&mut self) -> ();

fn run(&mut self, recv: mpsc::Receiver<event::Event>) {
for event in recv.into_iter () {
match event {
event::Event::Telemetry(telem) => self.deliver (telem),
event::Event::Flush => self.report(),
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The deliver function is intended to give the egress its Telemetry for storage. The report is
intended to force the implementors of Egress to issue their summarized telemetry to the
outside world. Both of our Egress implementors—CKMSEgress and CMAEgress—merely
print their information but you can well imagine an Egress that emits its information out
over some network protocol to a remote system. This is, in fact, exactly what cernan's
Sinks do, across many protocols and transports. Let's look at a single egress, as they're

both very similar. CKMSEgress is defined in src/egress/ckms_egress. rs:

use egress::Egress;
use event;

use quantiles;

use util;

pub struct CKMSEgress {
error: f64,
data: util::HashMap<String, quantiles::ckms::CKMS<u32>>,
new_data_since_last_report: bool,

impl Egress for CKMSEgress {

fn deliver (&mut self, event: event::Telemetry) -> () {
self.new_data_since_last_report = true;
let val = event.value;

let ckms = self.data

.entry (event.name)

.or_insert (quantiles::ckms::CKMS: :new(self.error));
ckms.insert (val);

fn report (&émut self) -> () |
if self.new_data_since_last_report {
for (k, v) in &self.data {
for g in &[0.0, 0.25, 0.5, 0.75, 0.9, 0.99] {

println! ("[CKMS] {} {}:{}", k, g,
v.query (*q) .unwrap () .1);
}
}
self.new_data_since_last_report = false;

impl CKMSEgress {
pub fn new(error: f64) —-> Self {
CKMSEgress {
error: error,
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data: Default::default (),
new_data_since_last_report: false,

}

Note that data: util::HashMap<String, quantiles::ckms::CKMS<u32>>. This
util::HashMap is a type alias for std: :collections: :HashMap<K, V,

hash: :BuildHasherDefault<SeaHasher>>, as mentioned previously. The
cryptographic security of hashing here is less important than the speed of hashing, which is
why we go with SeaHasher. There are a great many alternative hashers available in crates
and it's a fancy trick to be able to swap them out for your use

case. quantiles: :ckms: : CKMS is an approximate data structure, defined in Effective
Computation of Biased Quantiles Over Data Streams by Cormode et al. Many summary
systems run in limited space but are willing to tolerate errors. The CKMS data structure
allows for point shedding while keeping guaranteed error bounds on the quantile
approximations. The discussion of the data structure is outside the domain of this book but
the implementation is interesting and the paper is remarkably well-written. Anyhow, that's
what the error setting is all about. If you flip back to the main function, note that we hard-
code the error as being 0.01, or, any quantile summary is guaranteed to be off true within
0.01.

That, honestly, is pretty much it. We've just stepped through the majority of a non-trivial
Rust program built around the MPSC abstraction provided in the standard library. Let's
fiddle with it some. In one shell, start telem:

> cargo run --release

Compiling quantiles v0.7.0

Compiling seahash v3.0.5

Compiling telem v0.1.0
(file:///Users/blt/projects/us/troutwine/concurrency_in_rust/external_proje
cts/telem)

Finished release [optimized] target(s) in 7.16 secs

Running ‘target/release/telem’

In another shell, start sending UDP packets. On macOS, you can use nc like so:

> echo "a 10" | nc —=¢ -u 127.0.0.1 1990
> echo "a 55" | nc -=¢ -u 127.0.0.1 1990

The call is similar on Linux; you just have to be careful not to wait for a response is all. In
the original shell, you should see an output like this after a second:

[CKMS] a 0:10
[CKMS] a 0.25:10
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[CKMS] a 0.5:10
[CKMS] a 0.75:10
[CKMS] a 0.9:10
[CKMS] a 0.99:10
[CKMS] a 0:10
[CKMS] a 0.25:10
[CKMS] a 0.5:10
[CKMS] a 0.75:55
[CKMS] a 0.9:55
[CKMS] a 0.99:55

The points, being below the limit, have gone through the low filter and into the CKMS
egress. Back to our other shell:

> echo "b 1000" | nc —=c -u 127.0.0.1 1990
> echo "b 2000" | nc —¢c -u 127.0.0.1 1990
> echo "b 3000" | nc —c¢ -u 127.0.0.1 1990

In the telem shell:

[CMA] b 1000
[CMA] b 1500
[CMA] b 2000

Bang, just as expected. The points, being above the limit, have gone through the high filter
and into the CMA egress. So long as no points are coming in, the telem should be
drawing almost no CPU, waking up each of the threads once every second or so for the
Flush pulse. Memory consumption will also be very low, being primarily represented by
the large input buffer in IngestPoint.

There are problems with this program. In many places, we explicitly panic or unwrap on
potential problem points, rather than deal with the issues. While it's reasonable to unwrap
in a production program, you should be very sure that the error you're blowing your
program up for cannot be otherwise dealt with. Most concerning is that the program has no
concept of back-pressure. If IngestPoint were able to produce points faster than the filters
or the egresses, they could absorb the channels between threads that would keep
allocating space. A slight rewrite of the program to use mpsc: : SyncSender would be
suitable—back-pressure is applied as soon as a channel is filled to capacity—but only if
dropping points is acceptable. Given that the ingest protocol is in terms of UDP it almost
surely is, but the reader can imagine a scenario where it would not be. Rust's standard
library struggles in areas where alternative forms of back-pressure are needed but these are,
admittedly, esoteric. If you're interested in reading through a production program that
works along the lines of telem but has none of the defects identified here, I warmly
recommend the cernan codebase.
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All in all, Rust's MPSC is a very useful tool when constructing parallel systems. In this
chapter, we built our own buffered channel, Ring, but that isn't common at all. You'd need
a fairly specialized use case to consider not using the standard library's MPSC for intra-
thread channel-based communication. We'll examine one such use case in the next chapter
after we cover more of Rust's basic concurrency primitives.

Summary

In this chapter, we discussed the foundations of Rust concurrency—sync and Send.
Furthermore, we started on what makes a primitive thread-safe in Rust and how to build
concurrent structures with those primitives. We reasoned through an improperly
synchronized program, showing how knowledge of the Rust memory model, augmented
by tools such as helgrind, allow us to determine what's gone sideways in our programs.
This is, perhaps unsurprisingly to the reader, a painstaking process that is, like as not,
prone to error. In chapter 5, Locks — Mutex, Condvar, Barriers and RWLock, we'll discuss the
higher-level coarse synchronization primitives that Rust exposes to the programmer.

In chapter 6, Atomics —the Primitives of Synchronization, we'll discuss the

fine synchronization primitives that modern machines expose.

Further reading

Safe concurrent programming is, unsurprisingly, a very broad topic and the
recommendations for further reading here reflect that. The careful reader will note that
these references span time and approach, reflecting the broad changes in machines and
languages over time.

e The Art of Multiprocessor Programming, Maurice Herlihy and Nir Shavit. This book
is an excellent introduction to multiprocessor algorithms. Application to systems
languages is made a touch difficult by the fact that the authors assume a Java
environment—garbage collection is a huge win for implementing reclamation in
that, well, you don't have to do it.

o C++ Concurrency in Action: Practical Multithreading, Anthony Williams. This book
is an excellent pair to TAoMP, being focused on implementation of similar
structures in C++. While there is a translation step needed between C++ and Rust,
it's not so great a jump as from Java to Rust.
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e LVars: Lattice-based Data Structures for Deterministic Parallelism, Lindsey Kuper and
Ryan Newton. This book presents a certain kind of parallel construction, one
influenced by current machines. It is possible, however, that our current models
are overly complicated and will someday be seen as archaic, even without having
to sacrifice raw performance as we've done in the move to VM-based languages.
This paper presents a construction alternative, influenced by the work done on
distributed algorithms in recent years. It may or may not be the future but the
reader is encouraged to keep a look out.

e ffwd: delegation is (much) faster than you think, Sepideh Roghanchi, Jakob Eriksson,
and Nilanjana Basu. Modern machines are odd beasts. Conceptually, the fastest
data structure is one that minimizes the wait time of working threads, speeding
through instructions to work completion. This is... not entirely the case, as this
paper demonstrates. The authors, by carefully maintaining cache locality, are
able to outpace more complicated structures that might, theoretically, be much
faster due to more aggressive sharing between threads with fine-grained locks.

e Flat Combining and the Synchronization-Parallelism Tradeoff, Danny Hendler, Itai
Incze, and Nir Shavit. Along the same lines as ffwd, the authors present a flat
combining approach to constructing concurrent structures, which relies on coarse
exclusive locking between threads with a periodic combination of logs of
operations. The interaction with cache makes flat combining faster than more
complicated lock-free/wait-free alternatives, which do not interact with the cache
as gracefully.

e New Rustacean, e022: Send and Sync, available at http://www.newrustacean.com/
show_notes/e022/struct.Script.html. The New Rustacean is an excellent
podcast for Rust developers of all levels. This episode dovetails nicely with the
material discussed in the current chapter. Warmly recommended.

e Effective Computation of Biased Quantiles Over Data Streams, Graham Cormode, Flip
Korn, S. Muthukrishnan, and Divesh Srivastava. This paper underpins the CKMS
structure used in telem. It's instructive to examine the difference between the
implementation outlined in the paper—based on linked-lists—and the
implementation found in the library, a variant of a skip-list. This difference is
wholly due to cache locality concerns.
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e The Cernan Project, various developers, available at https://github.com/
postmates/cernan under the MIT license. Cernan is an event multiplexing
server, the production version of the toy telem discussed in this chapter. As of
writing this book, it is 17,000 lines of code contributed by 14 people. Careful
attention has been taken to maintain low resource consumption and high levels
of performance. I am the primary author of this project and the techniques
discussed in this book are applied in cernan.
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In this chapter, we're going to do a deep-dive on hopper, the grown-up version of Ring
from chapter 4, Sync and Send — the Foundation of Rust Concurrency. Hopper's approach to
back-pressure—the weakness we identified in telem—is to block when filled to capacity, as
SyncSender does. Hopper's special trick is that it pages out to disk. The hopper user
defines how many bytes of in-memory space hopper is allowed to consume,

like syncsender, except in terms of bytes rather than total elements of T. Furthermore, the
user is able to configure the number of on-disk bytes that are consumed when hopper's in-
memory capacity is filled and it has to page out to disk. The other properties of MSPC are
held, in-order delivery, retention of data once stored, and so on.

Before we can dig through hopper, however, we need to introduce more of Rust's
concurrency primitives. We'll work on some puzzles from The Little Book of Semaphores to
explain them, which will get a touch hairy in some places on account of how Rust does not
have a semaphore available.

By the close of this chapter, we will have:

¢ Discussed the purpose and use of Mutex, Condvar, Barriers, and RWLock

e Investigated a disk-backed specialization of the standard library's MPSC called
hopper

¢ Seen how to apply QuickCheck, AFL, and comprehensive benchmarks in a
production setting
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Technical requirements

This chapter requires a working Rust installation. The details of verifying your installation
are covered in Chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust.
No additional software tools are required.

You can find the source code for this book's projects on GitHub at: https://github.com/
PacktPublishing/Rust-Concurrency/. This chapter has its source code under Chapter05.

Read many, write exclusive locks — RwLock

Consider a situation where you have a resource that must be manipulated only a single
thread at a time, but is safe to be queried by many—that is, you have many readers and
only one writer. While we could protect this resource with a Mutex, the trouble is that the
mutex makes no distinction between its lockers; every thread will be forced to wait, no
matter what their intentions. RwLock<T> is an alternative to the mutex concept, allowing
for two kinds of locks—read and write. Analogously to Rust's references, there can only be
one write lock taken at a time but multiple reader locks, exclusive of a write lock. Let's look
at an example:

use std::thread;
use std::sync::{Arc, RwLock};

fn main () {
let resource: Arc<RwLock<ulé6>> = Arc::new (RwLock::new(0));

let total_readers = 5;

let mut reader_jhs = Vec::with_capacity(total_readers);
for _ in 0..total_readers {
let resource = Arc::clone(&resource);
reader_jhs.push (thread: :spawn (move ||

{

let mut total_lock_success = 0;
let mut total_lock_failure = 0;
let mut total_zeros = 0;
while total_zeros < 100 {

match resource.try_read() {

Ok (guard) => {
total_lock_success += 1;
if *guard == 0 {

total_zeros += 1;

}
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Err(_) => {
total_lock_failure += 1;
}
}
}
(total_lock_failure, total_lock_success)
)i

let mut loops = 0;
while loops < 100 {

let mut guard = resource.write () .unwrap();
*guard = guard.wrapping_add(1l);
if *guard == 0 {

loops += 1;
¥

}

for jh in reader_jhs {
println! ("{:?}", jh.join() .unwrap());
3
3

The idea here is that we'll have one writer thread spinning and incrementing, in a wrapping
fashion, a shared resource—a u16. Once the ul6 has been wrapped 100 times, the writer
thread will exit. Meanwhile, a total_readers number of read threads will attempt to take
a read lock on the shared resource—a ul6—until it hits zero 100 times. We're gambling
here, essentially, on thread ordering. Quite often, the program will exit with this result:

(0, 100)
(0, 100)
(0, 100)
(0, 100)
(0, 100)
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This means that each reader thread never failed to get its read lock—there were no write
locks present. That is, the reader threads were scheduled before the writer. Our main
function only joins on reader handlers and so the writer is left writing as we exit.
Sometimes, we'll hit just the right scheduling order, and get the following result:

(0, 100)
(126143752, 2630308)
(0, 100)
(0, 100)
(126463166, 2736405)

In this particular instance, the second and final reader threads were scheduled just after the
writer and managed to catch a time when the guard was not zero. Recall that the first
element of the pair is the total number of times the reader thread was not able to get a read
lock and was forced to retry. The second is the number of times that the lock was acquired.
In total, the writer thread did (2718 * 100) ~= 2724 writes, whereas the second reader
thread did 1og_2 2630308 ~= 2721 reads. That's a lot of lost writes, which, maybe, is
okay. Of more concern, that's a lot of useless loops, approximately 2~26. Ocean levels are
rising and we're here burning up electricity like nobody had to die for it.

How do we avoid all this wasted effort? Well, like most things, it depends on what we're

trying to do. If we need every reader to get every write, then an MPSC is a reasonable
choice. It would look like this:

use std::thread;
use std::sync::mpsc;

fn main () {
let total_readers = 5;

let mut sends = Vec::with_capacity (total_readers);

let mut reader_jhs = Vec::with_capacity(total_readers);

for _ in 0..total_readers {
let (snd, rcv) = mpsc::sync_channel (64);
sends.push (snd) ;
reader_jhs.push (thread: :spawn (move || {
let mut total_zeros = 0;
let mut seen_values = 0;

for v in rcv {
seen_values += 1;
if v == 0 {
total_zeros += 1;
}
if total_zeros >= 100 {
break;
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for

}

}
}
seen_values

)i

let mut loops = 0;
let mut cur: ul6 = 0;
while loops < 100 {
cur = cur.wrapping_add(l);
for snd in &sends {
snd.send (cur) .expect ("failed to send");
3
if cur == 0 {
loops += 1;
3

jh in reader_jhs {
println! ("{:?}", jh.join() .unwrap());

It will run—for a while—and print out the following:

6553600
6553600
6553600
6553600
6553600

But what if every reader does not need to see every write, meaning that it's acceptable for a
reader to miss writes so long as it does not miss all of the writes? We have options. Let's

look at one.

Blocking until conditions change - condvar

One option is a condvar, or CONDition VARiable. Condvars are a nifty way to block a
thread, pending a change in some Boolean condition. One difficulty is that condvars are
associated exclusively with mutexes, but in this example, we don't mind all that much.
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The way a condvar works is that, after taking a lock on a mutex, you pass the MutexGuard
into Condvar: :wait, which blocks the thread. Other threads may go through this same
process, blocking on the same condition. Some other thread will take the same exclusive
lock and eventually call either notify_one or notify_all on the condvar. The first wakes
up a single thread, the second wakes up all threads. Condvars are subject to spurious
wakeup, meaning the thread may leave its block without a notification being sent to it. For
this reason condvars check their conditions in a loop. But, once the condvar wakes, you are
guaranteed to hold the mutex, which prevents deadlocks on spurious wakeup.

Let's adapt our example to use a condvar. There's actually a fair bit going on in this
example, so we'll break it down into pieces:

use std::thread;
use std::sync::{Arc, Condvar, Mutex};

fn main () {
let total_readers = 5;
let mutcond: Arc<(Mutex<(bool, ulé6)>, Condvar)> =
Arc::new( (Mutex::new((false, 0)), Condvar::new()));

Our preamble is similar to the previous examples, but the setup is already quite strange.
We're synchronizing threads on mut cond, which is an Arc< (Mutex< (bool, ul6)>,
Condvar) >. Rust's condvar is a touch awkward. It's undefined behavior to associate a
condvar with more than one mutex, but there's really nothing in the type of Condvar that
makes that an invariant. We just have to remember to keep them associated. To that end,
it's not uncommon to see a Mutex and Condvar paired up in a tuple, as here. Now, why
Mutex< (bool, ul6)>? The second element of the tuple is our resource, which is common
to other examples. The first element is a Boolean flag, which we use as a signal to mean that
there are writes available. Here are our reader threads:

let mut reader_jhs = Vec::with_capacity (total_readers);

for _ in 0..total_readers {
let mutcond = Arc::clone (&mutcond);
reader_jhs.push (thread: :spawn (move || {
let mut total_zeros = 0;
let mut total_wakes = 0;
let & (ref mtx, ref cnd) = &*mutcond;

while total_zeros < 100 {
let mut guard = mtx.lock () .unwrap();
while !guard.O {
guard = cnd.wait (guard) .unwrap () ;
}
guard.0 = false;
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total_wakes += 1;
if guard.l == 0 {
total_zeros += 1;
}
}

total_wakes
)i
}

Until total_zeros hits 100, the reader thread locks the mutex, checks the guard inside the
mutex for write availability, and, if there are no writes, does a wait on the condvar, which
gives up the lock. The reader thread is then blocked until a notify_all is called—as we'll
see shortly. Every reader thread then races to be the first to reacquire the lock. The lucky
winner notes that there are no more writes to be read and then does the normal flow we've
seen in previous examples. It bears repeating that every thread that wakes up from a
condition wait is racing to be the first to reacquire the mutex. Our reader is uncooperative
in that it immediately prevents the chance of any other reader threads finding a resource
available. However, they will still wake up spuriously and be forced to wait again. Maybe.
The reader threads are also competing with the writer thread to acquire the lock. Let's look
at the writer thread:

let _ = thread::spawn(move || {
let & (ref mtx, ref cnd) = &*mutcond;
loop {
let mut guard = mtx.lock () .unwrap();
guard.l = guard.l.wrapping_add(1l);
guard.0 = true;
cnd.notify_all();

)i

The writer thread is an infinite loop, which we orphan in an unjoined thread. Now, it's
entirely possible that the writer thread will acquire the lock, bump the resource, notify
waiting reader threads, give up the lock, and then immediately re-acquire the lock to begin
the while process before any reader threads can get scheduled in. This means it's entirely
possible that the resource being zero will happen several times before a reader thread is
lucky enough to notice. Let's close out this program:

for jh in reader_jhs {
println! ("{:?2}", Jjh.join() .unwrap());

}
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Ideally, what we'd like is some manner of bi-directionality—we'd like the writer to signal
that there are reads and the reader to signal that there is capacity. This is suspiciously like
how Ring in the previous chapter worked through its size variable, when we were careful
to not race on that variable, that is. We might, for instance, layer another condition variable
into the mix, this one for the writer, but that's not what we have here and the program
suffers for it. Here's one run:

7243473
6890156
6018468
6775609
6192116

Phew! That's significantly more loops than previous examples. None of this is to say that
condition variables are hard to use—they're not—it's just that they need to be used in
conjunction with other primitives. We'll see an excellent example of this later in the chapter.

Blocking until the gang's all here - barrier

A barrier is a synchronization device that blocks threads until such time that a predefined
number of threads have waited on the same barrier. When a barrier's waiting threads wake
up, one is declared leader—discoverable by inspecting the BarrierWaitResult—but this
confers no scheduling advantage. A barrier becomes useful when you wish to delay threads
behind an unsafe initialization of some resource—say a C library's internals that have no
thread-safety at startup, or have a need to force participating threads to start a critical
section at roughly the same time. The latter is the broader category, in your author's
experience. When programming with atomic variables, you'll run into situations where a
barrier will be useful. Also, consider for a second writings multi-threaded code for low-
power devices. There are two strategies possible these days for power management: scaling
the CPU to meet requirements, adjusting the runtime of your program live, or burning
through a section of your program as quickly as possible and then shutting down the chip.
In the latter approach, a barrier is just the primitive you need.
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More mutexes, condvars, and friends in
action

Admittedly, the examples in the preceding sections got a little convoluted. There's a reason
to that madness, I promise, but before we move on I'd like to show you some working
examples from the charming The Little Book of Semaphores. This book, in case you skipped
previous bibliographic notes, is a collection of concurrency puzzles suitable for self-
learning, on account of the puzzles being amusing and coming with good hints. As the title
implies, the book does make use of the semaphore primitive, which Rust does not have.
Though, as mentioned in the previous chapter, we will build a semaphore in the next
chapter.

The rocket preparation problem

This puzzle does not actually appear in The Little Book of Semaphores but it is based on one of
the puzzles there - the cigarette smoker's problem from section 4.5. Personally, I think
cigarettes are gross so we're going to reword things a touch. The idea is the same.

We have four threads in total. One thread, the producer, randomly publishes one of fuel,
oxidizer, or astronauts. The remaining three threads are the consumers, or rockets,
which must take their resources in the order listed previously. If a rocket doesn't get its
resources in that order, it's not safe to prepare the rocket, and if it doesn't have all three, the
rocket can't lift-off. Moreover, once all the rockets are prepped, we want to start a 10 second
count-down, only after which may the rockets lift-off.

The preamble to our solution is a little longer than usual, in the interest of keeping the
solution as a standalone:

use std::{thread, time};
use std::sync::{Arc, Barrier, Condvar, Mutex};

// NOTE if this were a crate, rather than a stand-alone
// program, we could and _should_ use the XorShiftRng
// from the 'rand' crate.
pub struct XorShiftRng {

state: u32,
}

impl XorShiftRng {
fn with_seed(seed: u32) -> XorShiftRng {
XorShiftRng { state: seed }
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fn next_u32 (&mut self) —-> u32 {
self.state "= self.state << 13;
self.state "= self.state >> 17;
self.state "= self.state << 5;
return self.state;

}

We don't really need excellent randomness for this solution—the OS scheduler injects
enough already—but just something small-ish. Xorshi ft fits the bill. Now, for our
resources:

struct Resources {
lock: Mutex< (bool, bool, bool)>,
fuel: Condvar,
oxidizer: Condvar,
astronauts: Condvar,

}

The struct is protected by a single Mutex< (bool, bool, bool) >, the Boolean being a flag
to indicate that there's a resource available. We hold the first flag to mean fuel, the second
oxidizer, and the third astronauts. The remainder of the struct are condvars to match
each of these resource concerns. The producer is a straightforward infinite loop:

fn producer (resources: Arc<Resources>) {
let mut rng = XorShiftRng::with_seed (2005);

loop {
let mut guard = resources.lock.lock () .unwrap();
(*guard) .0 = false;
(*guard) .1 = false;
(*guard) .2 = false;
match rng.next_u32() % 3 {
0 => {
(*guard) .0 = true;
resources.fuel.notify_all ()
}
1 => {
(*guard) .1 = true;
resources.oxidizer.notify_all ()
}
2 => {

(*guard) .2 = true;
resources.astronauts.notify_all ()
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_ => unreachable! (),

}

o

On each iteration, the producer chooses a new resource—rng.next_u32 () % 3—and sets
the Boolean flag for that resource before notifying all threads waiting on the fuel condvar.
Meanwhile, the compiler and CPU are free to re-order instructions and the memory
notify_all acts like a causality gate; everything before in the code is before in causality,
and likewise, afterwards. If the resource bool flip was after the notification, the wake-up
would be spurious from the point of view of the waiting threads and lost from the point of
view of the producer. The rocket is straightforward:

fn rocket (name: String, resources: Arc<Resources>,
all_go: Arc<Barrier>, 1lift_off: Arc<Barrier>) {

let mut guard = resources.lock.lock () .unwrap();
while ! (*guard) .0 {

guard = resources.fuel.wait (guard) .unwrap();
}
(*guard) .0 = false;
println! ("{:<6} ACQUIRE FUEL", name);

let mut guard = resources.lock.lock () .unwrap();
while ! (*guard) .l {

guard = resources.oxidizer.wait (guard) .unwrap();
}
(*guard) .1 = false;
println! ("{:<6} ACQUIRE OXIDIZER", name);

let mut guard = resources.lock.lock () .unwrap();
while ! (*guard) .2 {
guard = resources.astronauts.wait (guard) .unwrap();
}
(*guard) .2 = false;
println! ("{:<6} ACQUIRE ASTRONAUTS", name);

all _go.wait();
lift_off.wait();
println! ("{:<6} LIFT OFF", name);
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Each thread, regarding the resource requirements, waits on the condvar for the producer to
make it available. A race occurs to re-acquire the mutex, as discussed, and only a single
thread gets the resource. Finally, once all the resources are acquired, the al1l_go barrier is
hit to delay any threads ahead of the count-down. Here we need the main function:

fn main () {

let all _go = Arc::new(Barrier::new(4));
let 1lift_off = Arc::new(Barrier::new(4));
let resources = Arc::new(Resources {

lock: Mutex::new((false, false, false)),
fuel: Condvar::new(),

oxidizer: Condvar::new(),

astronauts: Condvar::new(),

let mut rockets = Vec::new/();

for name in &["KSC", "VAB", "WSMR"] {
let all_go = Arc::clone(&all_go);
let 1lift_off = Arc::clone(&lift_off);
let resources = Arc::clone(&resources);
rockets.push (thread: :spawn (move || {

rocket (name.to_string (), resources,
all_go, lift_off)

)i

thread: :spawn (move || {
producer (resources) ;

)i

all _go.wait();
let one_second =
println! ("T-11");
for 1 in 0..10 {
println! ("{:>4}", 10 - 1);
thread: :sleep (one_second);

time: :Duration::from_millis (1_000);

}
lift_off.wait ();

for jh in rockets {
jh.join () .unwrap() ;
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Note that, roughly, the first half of the function is made up of the barriers and resources or
rocket threads. all_go.wait () is where it gets interesting. This main thread has spawned
all the children and is now blocked on the all-go signal from the rocket threads, meaning
they've collected their resources and are also blocked on the same barrier. That done, the
count-down happens, to add a little panache to the solution; meanwhile, the rocket threads
have started to wait on the 1ift_off barrier. It is, incidentally, worth noting that the
producer is still producing, drawing CPU and power. Once the count-down is complete,
the rocket threads are released, the main thread joins on them to allow them to print their
goodbyes, and the program is finished. Outputs will vary, but here's one representative
example:

KSC ACQUIRE FUEL

WSMR ACQUIRE FUEL

WSMR ACQUIRE OXIDIZER
VAB ACQUIRE FUEL

WSMR ACQUIRE ASTRONAUTS
KSC ACQUIRE OXIDIZER
KSC ACQUIRE ASTRONAUTS
VAB ACQUIRE OXIDIZER
VAB ACQUIRE ASTRONAUTS

T-11

10

9

8

7

6

5

4

3

2

1
VAB LIFT OFF
WSMR LIFT OFF
KSC LIFT OFF
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The rope bridge problem

This puzzle appears in The Little Book of Semaphores as the Baboon crossing problem, section
6.3. Downey notes that it is adapted from Tanenbaum's Operating Systems: Design and
Implementation, so you're getting it third-hand here. The problem description is thus:

"There is a deep canyon somewhere in Kruger National Park, South Africa, and a single
rope that spans the canyon. Baboons can cross the canyon by swinging hand-over-hand on
the rope, but if two baboons going in opposite directions meet in the middle, they will fight
and drop to their deaths. Furthermore, the rope is only strong enough to hold 5 baboons. If
there are more baboons on the rope at the same time, it will break.Assuming that we can
teach the baboons to use semaphores, we would like to design a synchronization scheme
with the following properties:

e Once a baboon has begqun to cross, it is guaranteed to get to the other side
without running into a baboon going the other way.

o There are never more than 5 baboons on the rope."

Our solution does not use semaphores. Instead, we lean on the type system to provide
guarantees, leaning on it to ensure that no left-traveler will ever meet a right-traveler. Let's
dig in:

use std::thread;

use std::sync::{Arc, Mutex};

#[derive (Debug) ]

enum Bridge {
Empty,
Left (u8),
Right (u8),

I3

We see here the usual preamble, and then a type, Bridge. Bridge is the model of the rope
bridge of the problem statement and is either empty, has left-traveling baboons on it, or has
right-traveling baboons on it; there's no reason to fiddle with flags and infer state when we
can just encode it into a type. In fact, leaning on the type system, our synchronization is
very simple:

fn main () {
let rope = Arc::new(Mutex::new(Bridge::Empty));
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Just a single mutex. We represent either side of the bridge as a thread, each side trying to
get its own baboons across but co-operatively allowing baboons to reach its side. Here's the
left side of the bridge:

let lhs_rope = Arc::clone (&rope);

let lhs = thread::spawn(move || {
let rope = lhs_rope;
loop {

let mut guard = rope.lock () .unwrap();
match *guard {
Bridge: :Empty => {
*guard = Bridge::Right (1);
I3
Bridge::Right (i) => {
if 1 < 5 {
*guard = Bridge::Right (i + 1);
I3
I3
Bridge::Left (0) => {
*guard = Bridge::Empty;
I3
Bridge::Left (i) => {
*guard = Bridge::Left (i - 1);
I3

)i

When the left side of the bridge finds the bridge itself empty, one right-traveling baboon is
sent on its way. Further, when the left side finds that there are already right-traveling
baboons on the bridge and the rope's capacity of five has not been reached, another baboon
is sent on its way. Left-traveling baboons are received from the rope, decrementing the total
baboons on the rope. The special case here is the clause for Bridge: :Left (0). While there
are no baboons on the bridge still, technically, if the right side of the bridge were to be
scheduled before the left side, it would send a baboon on its way, as we'll see shortly. We
could make the removal of a baboon more aggressive and set the bridge to Bridge: : Empty
as soon as there are no travelers, of course. Here's the right side of the bridge, which is
similar to the left:

let rhs = thread::spawn (move || loop {
let mut guard = rope.lock () .unwrap();
match *guard {
Bridge: :Empty => {
*guard = Bridge::Left (1);
}
Bridge::Left (i) => {
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if 1 < 5
*guard = Bridge::Left (i + 1);
}
}
Bridge::Right (0) => {
*guard = Bridge: :Empty;
}
Bridge::Right (i) => {
*guard = Bridge::Right (i - 1);
}

)i

rhs.join () .unwrap () ;
lhs.join () .unwrap () ;

}

Now, is this fair? It depends on your system mutex. Some systems provide mutexes that are
fair in that, if one thread has acquired the lock repeatedly and starved other threads
attempting to lock the same primitive, the greedy thread will be de-prioritized under the
others. Such fairness may or may not incur additional overheads when locking, depending
on the implementation. Whether you want fairness, in fact, depends strongly on the
problem you're trying to solve. If we were only interested in shuffling baboons across the
rope bridge as quickly as possible—maximizing throughput—then it doesn't truly matter
which direction they're coming from. The original problem statement makes no mention of
fairness, which it kind of shuffles around by allowing the stream of baboons to be infinite.
Consider what would happen if the baboons were finite on either side of the bridge and we
wanted to reduce the time it takes for any individual baboon to cross to the other side, to
minimize latency. Our present solution, adapted to cope with finite streams, is pretty poor,
then, in that regard. The situation could be improved by occasional yielding, layering in
more aggressive rope packing, intentional back off, or a host of other strategies. Some
platforms allow you to dynamically shift the priority of threads with regard to locks, but
Rust does not offer that in the standard library.

Or, you know, we could use two bounded MPSC channels. That's an option. It all depends
on what you're trying to get done.
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Ultimately, the tools in safe Rust are very useful for performing computations on existing
data structures without having to dip into any funny business. If that's your game, you're
very unlikely to need to head much past Mutex and Condvar, and possibly into RwLock
and Barrier. But, if you're building structures that are made of pointers, you'll have to dip
into some of the funny business we saw in Ring, with all the dangers that brings.

Hopper—an MPSC specialization

As mentioned at the tail end of the last chapter, you'd need a fairly specialized use-case to
consider not using stdlib's MPSC. In the rest of this chapter, we'll discuss such a use-case
and the implementation of a library meant to fill it.

The problem

Recall back to the last chapter, where the role-threads in telem communicated with one
another over MPSC channels. Recall also that telem was a quick version of the cernan
(https://crates.io/crates/cernan) project, which fulfills basically the same role but over
many more ingress protocols, egress protocols, and with the sharp edges worn down. One
of the key design goals of cernan is that if it receives your data, it will deliver it
downstream at least once. This implies that, for supporting ingress protocols, cernan must
know, along the full length of the configured routing topology, that there is sufficient space
to accept a new event, whether it's a piece of telemetry, a raw byte buffer, or a log line.
Now, that's possible by using syncsender, as we've seen. The trick comes in combination
with a second design goal of cernan—very low, configurable resource consumption. Your
author has seen cernan deployed to high-availability clusters with a single machine
dedicated to running a cernan, as well as cernan running shotgun with an application
server or as a part of a daemonset in a k8s cluster. In the first case, cernan can be configured
to consume all of the machine's resources. In the later two, some thought has to be taken to
giving cernan just enough resources to do its duties, relative to the expected input of the
telemetered systems.

On modern systems, there's often an abundance of disk space and limited—relatively
speaking—RAM. The use of syncSender would require either a relatively low number of
ingestible events or a high possible consumption of memory by cernan. These cases usually
hit when an egress protocol is failing, possibly because the far-system is down. If cernan
were to exacerbate a partial system failure by crowding out an application server because of
a fault in a loosely-coupled system, well, that'd be pretty crummy.
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For many users, it's also not acceptable to go totally blind during such a partial outage.
Tricky constraints for SyncSender. Tricky enough, in fact, that we decided to write our
own MPSC, called hopper (https://crates.io/crates/hopper). Hopper allows endusers
to configure the total in-memory consumption of the queue, in bytes. That's not far off
SyncSender, with a bit of calculation. What's special about hopper is that it can page to
disk.

Hopper shines where memory constraints are very tight but you do not want to shed
events. Or, you want to push shedding events off as far as possible. Similarly to the in-
memory queue, hopper allows endusers to configure the maximum number of bytes to be
consumed ondisk. A single hopper queue will hold in_memory_bytes + on_disk_bytes
maximally before it's forced to shed events; we'll see the exact mechanism here directly. All
of this is programmed with an eye toward maximal throughput and blocking threads that
have no work, to save CPU time.

Hopper in use

Before we dig into the implementation of hopper, it'll be instructive to see it in practice.
Let's adapt the last iteration of our ring program series. For reference, here's what that
looked like:

use std::thread;
use std::sync::mpsc;

fn writer (chan: mpsc::SyncSender<u32>) -> () {
let mut cur: u32 = 0;
while let Ok (()) = chan.send(cur) {
cur = cur.wrapping_add(l);
}
}
fn reader (read_limit: usize, chan: mpsc::Receiver<u32>) -> () {
let mut cur: u32 = 0;
while (cur as usize) < read_limit {
let num = chan.recv () .unwrap();
assert_eq! (num, cur);
cur = cur.wrapping_add(l);
}
}
fn main() {

let capacity = 10;
let read_limit = 1_000_000;
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let (snd, rcv) = mpsc::sync_channel (capacity);

let reader_jh = thread::spawn (move || {
reader (read_limit, rcv);

)i

let _writer_jh = thread::spawn (move || {
writer (snd);

)i

reader_jh.join () .unwrap () ;

}

The hopper version is a touch different. This is the preamble:

extern crate hopper;
extern crate tempdir;

use std::{mem, thread};

No surprise there. The function that will serve as the writer thread is:

fn writer (mut chan: hopper::Sender<u32>) -> () {
let mut cur: u32 = 0;
while let Ok (()) = chan.send(cur) {
cur = cur.wrapping_add(l);
}

}

Other than the switch from mpsc: : SyncSender<u32> to hopper: : Sender<u32>—all
hopper senders are impliclty bounded—the only other difference is that chan must be
mutable. Now, for the reader thread:

fn reader (read_limit: usize,

mut chan: hopper::Receiver<u32>) -> () {
let mut cur: u32 = 0;
let mut iter = chan.iter();
while (cur as usize) < read_limit {
let num = iter.next ().unwrap/();
assert_eq! (num, cur);
cur = cur.wrapping_add(l);
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Here there's a little more to do. In hopper, the receiver is intended to be used as an iterator,
which is a little awkward here as we want to limit the total number of received values. The
iterator will block on calls to next, never returning a None. However, the send of the
sender in hopper is very different to that of MPSC's—hopper: : Sender<T>: :send (&mut
self, event: T) —-> Result<(), (T, Error)>.IgnoreError forasecond; why
return a tuple in the error condition that contains a T? To be clear, it's the same T that is
passed in. When the caller sends a T into hopper, its ownership is passed into hopper as
well, which is a problem in the case of an error. The caller might well want that T back to
avoid its loss. Hopper wants to avoid doing a clone of every T that comes through and, so,
hopper smuggles the ownership of the T back to the caller. What of Error? It's a simple
enumeration:

pub enum Error {
NoSuchDirectory,
IoError (Error),
NoFlush,
Full,

}

The important one is Error: : Full. This is the condition that occurs when both the in-
memory and disk-backed buffers are full at the time of sending. This error is recoverable,
but in a way that only the caller can determine. Now, finally, the main function of our
hopper example:

fn main() {
let read_limit = 1_000_000;
let in_memory_capacity = mem::size_of::<u32>() * 10;

let on_disk_capacity = mem::size_of::<u32>() * 100_000;

let dir = tempdir::TempDir::new("queue_root") .unwrap();
let (snd, rcv) = hopper::channel_with_explicit_capacity::<u32>(
"example",

dir.path(),
in_memory_capacity,
on_disk_capacity,
lr

) .unwrap () ;

let reader_jh = thread::spawn (move || {
reader (read_limit, rcv);

)i

let _writer_jh = thread::spawn (move || {
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writer (snd);

)i

reader_jh.join () .unwrap () ;

}

The read_limit is in place as before, but the big difference is the creation of the channel.
First, hopper has to have some place to put its disk storage. Here we're deferring to some
temporary directory—let dir =

tempdir::TempDir: :new ("queue_root") .unwrap () ; —to avoid cleaning up after
running the example. In real use, the disk location is chosen carefully.

hopper: :channel_with_explicit_capacity creates the same sender as

hopper: :channel except that all the configuration knobs are open to the caller. The first
argument is the name of the channel. This value is important as it will be used to create a
directory under dir for disk storage. It is important for the channel name to be unique.
in_memory_capacity isin bytes, as well as on_disk_capacity, which is why we have
the use of our old friend mem: : size_of. Now, what's that last configuration option there,
set to 1? That's the maximum number of gqueue files.

Hopper's disk storage is broken into multiple queue files, each of on_disk_capacity size.
Senders carefully coordinate their writes to avoid over-filling the queue files, and the
receiver is responsible for destroying them once it's sure there are no more writes
coming—we'll talk about the signalling mechanism later in this chapter. The use of queue
files allows hopper to potentially reclaim disk space that it may not otherwise have been
able to, were one large file to be used in a circular fashion. This does incur some complexity
in the sender and receiver code, as we'll see, but is worth it to provide a less resource-
intensive library.

A conceptual view of hopper

Before we dig into the implementation, let's walk through how the previous example works
at a conceptual level. We have enough in-memory space for 10 u32s. If the writer thread is
much faster than the reader thread—or gets more scheduled time—we could end up with a
situation like this:

write: 99

in-memory-buffer: [90, 91, 92, 93, 94, 95, 96, 97, 98]
disk-buffer: [87, 88, 89]
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That is, a write of 99 is entering the system when the in-memory buffer is totally full and
there are three queued writes in the diskbuffer. While it is possible for the state of the world
to shift between the time a write enters the system for queuing and between the time it is
queued, let's assume that no receivers pull items between queuing. The result will then be a
system that looks like this:

in-memory-buffer: [90, 91, 92, 93, 94, 95, 96, 97, 98]
disk-buffer: [87, 88, 89, 99]

The receivers, together, must read only three elements from the diskbuffer, then all the in-
memory elements, and then a single element from the diskbuffer, to maintain the queue's
ordering. This is further complicated considering that a write may be split by one or more
reads from the receivers. We saw something analogous in the previous chapter with regard
to guarding writes by doing loads and checks - the conditions that satisfy a check may
change between the load, check, and operation. There's a further complication as well; the
unified disk buffer displayed previously does not actually exist. Instead, there are
potentially many individual queue files.

Let's say that hopper has been configured to allow for 10 u32 in-memory, as mentioned,
and 10 on-disk but split across five possible queue files. Our revised after-write system is as
follows:

in-memory-buffer: [90, 91, 92, 93, 94, 95, 96, 97, 98]
disk-buffer: [ [87, 88], [89, 99] ]

The senders are responsible for creating queue files and filling them to their max. The
Receiver is responsible for reading from the queue file and deleting the said file when it's
exhausted. The mechanism for determining that a queue file is exhausted is simple; when
the Sender exits a queue file, it moves on to create a new queue file, and marks the old
path as read-only in the filesystem. When the Receiver attempts to read bytes from disk
and finds there are none, it checks the write status of the file. If the file is still read-write,
more bytes will come eventually. If the file is read-only, the file is exhausted. There's a little
trick to it yet, and further unexplained cooperation between Sender and Receiver, but
that should be enough abstract detail to let us dig in effectively.

The deque

Roughly speaking, hopper is a concurrent deque with two cooperating finite state machines
layered on top. We'll start in with the deque, defined in src/deque.rs.
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The discussion of hopper that follows lists almost all of its source code.
We'll call out the few instances where the reader will need to refer to the
listing in the book's source repository.

To be totally clear, a deque is a data structure that allows for queuing and dequeuing at
either end of the queue. Rust's std1ib has VecDeque<T>, which is very useful. Hopper is
unable to use it, however, as one of its design goals is to allow for parallel sending and
receiving against the hopper queue and vecDeque is not thread-safe. Also, while there are
concurrent deque implementations in the crate ecosystem, the hopper deque is closely tied
to the finite state machines it supports and to hopper's internal ownership model. That is,
you probably can't use hopper's deque in your own project without some changes.
Anyhow, here's the preamble:

use std::sync::{Condvar, Mutex, MutexGuard};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::{mem, sync};

unsafe impl<T, S> Send for Queue<T, S> {}
unsafe impl<T, S> Sync for Queue<T, S> {}

The only unfamiliar piece here are the things imported from std: : sync: :atomic. We'll be
covering atomics in more detail in the next chapter, but we're going to breeze over them at
a high-level as needed in the explanation to follow. Note as well the unsafe declarations of
send and sync for some as yet unknown type Queue<T, S>. We're about to go off-road:

pub struct Queue<T, S> {
inner: sync::Arc<InnerQueue<T, S>>,

}

The Queue<T, S> definition is similar to what we saw in previous chapters: a simple
structure wrapping an inner structure, here called InnerQueue<T, s>.The InnerQueue is
wrapped in an Arc, meaning there's only one allocated InnerQueue on the heap. As you
might expect, the clone of Queue is a copy of the Arc into a new struct:

impl<T, S> Clone for Queue<T, S> {
fn clone(&self) —-> Queue<T, S> {
Queue {
inner: sync::Arc::clone(&self.inner),

}
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It's important that every thread that interacts with Queue sees the same InnerQueue.
Otherwise, the threads are dealing with distinct areas of memory and have no relationship
with one another. Let's look at InnerQueue:

struct InnerQueue<T, S> {
capacity: usize,
data: *mut Option<T>,
size: AtomicUsize,
back_lock: Mutex<BackGuardInner<S>>,
front_lock: Mutex<FrontGuardInner>,
not_empty: Condvar,

}

Okay, this is much more akin to the internals we saw in Rust itself, and there's a lot going
on. The field capacity is the maximum number of elements that the InnerQueue will
hold in data. Like the first Ring in the previous chapter, InnerQueue uses a contiguous
block of memory to store its T elements, exploding a Vec to get that contiguous block. Also,
like the first Ring, we store Opt ion<T> elements in the contiguous block of memory.
Technically, we could deal with a contiguous block of raw pointers or copy memory blocks
in and out. But the use of Option<T> simplifies the code, both for insertion and removal, at
the cost of a single byte of memory per element. The added complication just isn't worth it
for the performance goals hopper is trying to hit.

The size field is an atomic usize. Atomics will be covered in more detail in the next
chapter, but the behavior of size is going to be important. For now, think of it as a very
small piece of synchronization between threads; a little hook that will allow us to order
memory accesses that happens also to act like a usize. The condvar not_empty is used to
signal to any potential readers waiting for new elements to pop that there are, in fact,
elements to pop. The use of condvar greatly reduces the CPU load of hopper without
sacrificing latency to busy loops with sleeps. Now, back_lock and front_lock. What's
going on here? Either side of the deque is protected by a mutex, meaning there can be only
one enqueuer and one dequeuer at a time, but these can be running in parallel to each
other. Here are the definitions of the two inner values of the mutexes:

#[derive (Debug, Clone, Copy) ]
pub struct FrontGuardInner {
offset: isize,

}

# [derive (Debug) ]

pub struct BackGuardInner<S> {
offset: isize,
pub inner: S,
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FrontGuardInner is the easier to explain of the two. The only field is of fset, which
defines the offset from the first pointer of InnerGuard's data of the thread manipulating
the front of the queue. This contiguous store is also used in a ring buffer fashion.

In BackGuardInner, we see the same offset, but an additional inner, s. What is this? As
we'll see, the threads manipulating the back of the buffer need extra coordination between
them. Exactly what that is, the queue does not care. Therefore, we make it a type parameter
and allow the caller to sort everything out, being careful to pass the data around as needed.
In this fashion, the queue smuggles state through itself but does not have to inspect it.

Let's start on the implementation of InnerQueue:

impl<T, S> InnerQueue<T, S>
where
S: ::std::default::Default,

pub fn with_capacity(capacity: usize) -> InnerQueue<T, S> {
assert! (capacity > 0);
let mut data: Vec<Option<T>> = Vec::with_capacity (capacity);
for _ in O0..capacity {
data.push (None) ;
}
let raw_data = (&mut data) .as_mut_ptr();
mem: : forget (data) ;
InnerQueue {
capacity: capacity,
data: raw_data,
size: AtomicUsize::new(0),
back_lock: Mutex::new(BackGuardInner {
offset: O,
inner: S::default (),
Py
front_lock: Mutex::new(FrontGuardInner { offset: 0 }),
not_empty: Condvar::new(),

}

The type lacks a new () —-> InnerQueue, as there was no call for it to be made. Instead,
there's only with_capacity and that's quite similar to what we saw of Ring's
with_capacity—a vector is allocated, and exploded into a raw pointer, and the original
reference is forgotten before the pointer is loaded into a newly minted struct.
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The type s has to implement a default for initialization that is sufficient, as the caller's
smuggled state will always be the same value, which is more than adequately definable as a
default. If this deque were intended for general use, we'd probably need to offer a
with_capacity that also took an s directly. Now, a few further functions in the
implementation that we'll just breeze right past:

pub fn capacity(&self) —-> usize {
self.capacity

pub fn size(&self) -> usize {
self.size.load (Ordering: :Relaxed)

pub fn lock_back (&self) —-> MutexGuard<BackGuardInner<S>> {
self.back_lock.lock () .expect ("back lock poisoned")

pub fn lock_front (&self) —-> MutexGuard<FrontGuardInner> {
self.front_lock.lock () .expect ("front lock poisoned")

}
The next function, push_back, is very important and subtle:

pub unsafe fn push_back (

&self,

elem: T,

guard: &mut MutexGuard<BackGuardInner<S>>,
) —> Result<bool, Error<T>> {

let mut must_wake_dequeuers = false;

if self.size.load(Ordering::Acquire) == self.capacity {
return Err (Error::Full (elem));

} else {
assert! ((*self.data.offset ((*guard).offset)) .is_none());
*self.data.offset ((*guard) .offset) = Some (elem);

(*guard) .offset += 1;

(*guard) .offset %= self.capacity as isize;

if self.size.fetch_add(l, Ordering::Release) == 0 {
must_wake_dequeuers = true;

}

Ok (must_wake_dequeuers)
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InnerQueue: :push_back is responsible for placing a T onto the current back of the ring
buffer, or failing capacity to signal that the buffer is full. When we discussed Ring, we
noted that the size == capacity check was a race. Not so in InnerQueue, thanks to the
atomic nature of the size. self.size.load (Ordering: :Acquire) performs a memory
load of the self.size but does so with certainty that it's the only thread with self.size
as a manipulable value. Subsequent memory operations in the thread will be ordered after
Acquire, at least until a store of Ordering: :Release happens. A store of that nature does
happen just a handful of lines down—self.size.fetch_add (1,

Ordering::Release). Between these two points, we see the element T loaded into the
buffer—with a prior check to ensure that we're not stomping a Some value—and a
wrapping bump of the BackGuardInner's offset. Just like in the last chapter. Where this
implementation differs is the return of Ok (must_wake_dequeuers). Because the inner s is
being guarded, it's not possible for the queue to know if there will be any further work that
needs to be done before the mutex can be given up. As a result, the queue cannot itself
signal that there's a value to read, even though it's already been written to memory by the
time the function returns. The caller has to run the notification. That's a sharp edge. If the
caller forgets to notify a thread blocked on the condvar, the blocked thread will stay that
way forever.

The InnerQueue: :push_front is a little simpler and not a radical departure from
push_back:

pub unsafe fn pop_front (&self) —-> T {
let mut guard = self.front_lock.lock()
.expect ("front lock poisoned");
while self.size.load(Ordering: :Acquire) == 0 {
guard = self.not_empty

.wait (guard)

.expect ("oops could not wait pop_front");
}
let elem: Option<T> = mem::replace (&mut
*self.data.offset ((*guard) .offset), None);
assert! (elem.is_some ());
*self.data.offset ((*guard) .offset) = None;
(*guard) .offset += 1;
(*guard) .offset %= self.capacity as isize;
self.size.fetch_sub(l, Ordering::Release);
elem.unwrap ()
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The thread popping front, because it does not have to coordinate, is able to take the front
lock itself, as there's no state that needs to be threaded through. After receiving the lock, the
thread then enters a condition check loop to guard against spurious wake-ups on
not_empty, replacing the item at offset with None when the thread is able to wake up. The
usual offset maintenance occurs.

The implementation of Queue<T, S> is pretty minimal in comparison to the inner
structure. Here's push_back:

pub fn push_back(
&self,
elem: T,
mut guard: &mut MutexGuard<BackGuardInner<S>>,
) —> Result<bool, Error<T>> {
unsafe { (*self.inner) .push_back (elem, &mut guard) }

}

The only function that's substantially new to Queue is notify_not_empty (&self,
_guard: &MutexGuard<FrontGuardInner>) -> (). The caller is responsible for calling
this whenever push_back signals that the dequeuer must be notified and, while the guard
is not used, one rough edge of the library is smoothed down by requiring that it be passed
in, proving that it's held.

That's the deque at the core of hopper. This structure was very difficult to get right. Any
slight re-ordering of the load and store on the atomic size with respect to other memory
operations will introduce bugs, such as parallel access to the same memory of a region
without coordination. These bugs are very subtle and don't manifest immediately. Liberal
use of helgrind plus quickcheck testing across x86 and ARM processors—more on that
later—will help drive up confidence in the implementation. Test runs of hours were not
uncommon to find bugs that were not deterministic but could be reasoned about, given
enough time and repeat examples. Building concurrent data structures out of very
primitive pieces is hard.
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The Receiver

Now that we've covered the deque, let's jump on to the Receiver, defined in
src/receiver.rs. As mentioned previously, the receiver is responsible for either pulling
a value out of memory or from disk in the style of an iterator. The Receiver declares the
usual machinery for transforming itself into an iterator, and we won't cover that in this
book, mostly just because it's a touch on the tedious side. That said, there are two important
functions to cover in the Receiver, and neither of them are in the public interface. The first
is Receiver: :next_value, called by the iterator version of the receiver. This function is
defined as follows:

fn next_value (&émut self) —-> Option<T> {
loop {
if self.disk_writes_to_read == 0 {

match self.mem_buffer.pop_front () {
private::Placement: :Memory (ev) => {
return Some (ev);

}

private::Placement::Disk(sz) => {
self.disk_writes_to_read = sz;
continue;
}
}
} else {
match self.read_disk_value() {
Ok (ev) => return Some (ev),
Err(_) => return None,

}

A hopper defined to move T values does not define a deque—as discussed in the previous
section—over Ts. Instead, the deque actually holds P1lacement <T>. Placement, defined in
src/private.rs, is a small enumeration:

pub enum Placement<T> {
Memory (T),
Disk (usize),
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This is the trick that makes hopper work. The primary challenge with a concurrent data
structure is providing sufficient synchronization between threads that your results can
remain coherent despite the chaotic nature of scheduling, but not require so much
synchronization that you're underwater compared to a sequential solution.

That does happen.

Now, recall that maintaining order is a key design need for any channel-style queue. The
Rust standard library MPSC achieves this with atomic flags, aided by the fact that,
ultimately, there's only one place for inserted elements to be stored and one place for them
to be removed from. Not so in hopper. But, that one-stop-shop is a very useful, low
synchronization approach. That's where Placement comes in. When the Memory variant is
hit, the T is present already and the receiver simply returns it. When Disk (usize) is
returned, that sends a signal to the receiver to flip itself into disk mode. In disk mode, when
self.disk_writes_to_read is not zero, the receiver preferentially reads a value from
disk. Only when there are no more disk values to be read does the receiver attempt to read
from memory again. This mode-flipping approach maintains ordering but also has the
added benefit of requiring no synchronization when in disk mode, saving critical time
when reading from a slow disk.

The second important function to examine is read_disk_value, referenced in
next_value. It's long and mostly book-keeping, but I did want to call out the first part of
that function here:

fn read_disk_value (&mut self) —-> Result<T, super::Error> {
loop {
match self.fp.read_u32::<BigEndian> () {
Ok (payload_size_in_bytes) => {
let mut payload_buf = vec![0; payload_size_in_bytes
as usizel;
match self.fp.read_exact (&émut payload_buf[..]) {
Ok (()) =>{

let mut dec =
DeflateDecoder: :new (&payload_bufl..]);
match deserialize_from(&mut dec) {

Ok (event) => {
self.disk_writes_to_read —-= 1;
return Ok (event) ;

}

Err(e) => panic! ("Failed decoding.

Skipping {:?2}", e),
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This small chunk of code uses two very useful libraries. Hopper stores its disk-slop
elements to disk in bincode format. Bincode (https://crates.io/crates/bincode) was
invented for the servo project and is a serialization library intended for IPC - more or less
the exact use hopper has for it. The advantage of bincode is that it's fast to serialize and
deserialize but with the disadvantage of not being a standard and not having a guaranteed
binary format from version to version. The second library to be called out is almost
invisible in this example; byteorder. You can see it here:
self.fp.read_u32::<BigEndian>. Byteorder extends std: :io: :Read to allow for the
deserialization of primitive types from byte-buffers. It is possible to do this yourself by
hand but it's error-prone and tedious to repeat. Use byteorder. So, what we're seeing here is
hopper reading a 32-bit length big-ending length prefix from self.fp—a
std::io::BufReader pointed to the current on-disk queue file—and using the said prefix
to read exactly that many bytes from disk, before passing those on into the deserializer.
That's it. All hopper on-disk slop elements are a 32 bit length prefix chased by that many
bytes.

The Sender

Now that we've covered the Receiver, all that remains is the Sender. It's defined in
src/sender.rs. The most important function in the Sender is send. The Sender follows
the same disk/memory mode idea that Receiver uses but is more complicated in its
operation. Let's dig in:

let mut back_guard = self.mem_buffer.lock_back();

if (*back_guard) .inner.total_disk_writes == 0 {
// in-memory mode
let placed_event = private::Placement::Memory (event);

match self.mem_buffer.push_back (placed_event, &mut
back_guard) {

Ok (must_wake_receiver) => {
if must_wake_receiver {
let front_guard = self.mem_buffer.lock_front();

self.mem_buffer.notify_not_empty (&front_guard);
drop (front_guard) ;
}

}

Err (deque::Error::Full (placed_event)) => {
self.write_to_disk (placed_event.extract () .unwrap(),
&mut back_guard) ?;

(*back_guard) .inner.total_disk_writes += 1;

[171]



Locks — Mutex, Condvar, Barriers and RWLock Chapter 5

Recall that the deque allows the holder of the back guard to smuggle state for coordination
through it. We're seeing that pay off here. The Sender's internal state is called Sendersync
and is defined as follows:

pub struct SenderSync {
pub sender_fp: Option<BufWriter<fs::File>>,
pub bytes_written: usize,
pub sender_seq_num: usize,
pub total_disk_writes: usize,
pub path: PathBuf, // active fp filename
¥

Every sender thread has to be able to write to the current disk queue file, which sender_fp
points to. Likewise, bytes_written tracks how many bytes have been, well, written to
disk. The sender must keep track of this value in order to correctly roll queue files over
when they grow too large. sender_seq_num defines the name of the current writable
queue file, being as they are named sequentially from zero on up. The key field for us is
total_disk_writes. Notice that a memory

write—self.mem_buffer.push_back (placed_event, &mut back_guard)—might fail
with a Full error. In that case, self.write_to_disk is called to write the T to disk,
increasing the total number of disk writes. This write mode was prefixed with a check into
the cross-thread sendersync to determine if there were outstanding disk writes.
Remember, at this point, the Receiver has no way to determine that there has been an
additional write go to disk; the sole communication channel with the Receiver is through
the in-memory deque. To that end, the next Sender thread will flip into a different write
mode:

} else {
// disk mode
self.write_to_disk (event, &mut back_guard) ?;
(*back_guard) .inner.total_disk_writes += 1;

assert! ((*back_guard) .inner.sender_fp.is_some());

if let Some (ref mut fp) = (*back_guard).inner.sender_fp {
fp.flush () .expect ("unable to flush");

} else {
unreachable! ()

s

if let Ok (must_wake_receiver) = self.mem_buffer.push_back

private::Placement: :Disk (
(*back_guard) .inner.total_disk_writes

)
&mut back_guard,

(*back_guard) .inner.total_disk_writes = 0;
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if must_wake_receiver {
let front_guard = self.mem_buffer.lock_front();
self.mem _buffer.notify_not_empty (&front_guard) ;
drop (front_guard) ;

}

Once there's a single write to disk, the sender flips into disk preferential write mode. At
the start of this branch the T goes to disk, is flushed. Then, the Sender attempts to push a
Placement: :Disk onto the in-memory deque, which may fail if the Receiver is slow or
unlucky in its scheduling assignment. Should it succeed, however, the
total_disk_writes is set to zero—there are no longer any outstanding disk writes—and
the Receiver is woken if need be to read its new events. The next time a Sender thread
rolls through it may or may not have space in the in-memory deque to perform a memory
placement but that's the next thread's concern.

That's the heart of sender. While there is another large function in-module,
write_to_disk, we won't list it here. The implementation is primarily book-keeping
inside a mutex, a topic that has been covered in detail in this and the previous chapter, plus
filesystem manipulation. That said, the curious reader is warmly encouraged to read
through the code.

Testing concurrent data structures

Hopper is a subtle beast and proves to be quite tricky to get correct, owing to the difficulty
of manipulating the same memory across multiple threads. Slight synchronization bugs
were common in the writing of the implementation, bugs that highlighted fundamental
mistakes but were rare to trigger and even harder to reproduce. Traditional unit testing is
not sufficient here. There are no clean units to be found, being that the computer's non-
deterministic behavior is fundamental to the end result of the program's run. With that in
mind, there are three key testing strategies used on hopper: randomized testing over
random inputs searching for logic bugs (QuickCheck), randomized testing over random
inputs searching for crashes (fuzz testing), and multiple-million runs of the same program
searching for consistency failures. In the rest of the chapter, we'll discuss each of these in
turn.
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QuickCheck and loops

Previous chapters discussed QuickCheck at length and we'll not duplicate that here.
Instead, let's dig into a test from hopper, defined in src/1ib.rs:

#[test]
fn multi_thread_concurrent_snd_and_rcv_round_trip() {
fn inner (
total_senders: usize,
in_memory_bytes: usize,
disk_bytes: usize,
max_disk_files: usize,
vals: Vec<ub64>,
) —> TestResult {
let sz = mem::size_of::<u64d>();
if total_senders == |
total_senders > 10 ||
vals.len() == 0 ||
(vals.len() < total_senders) ||
(in_memory_bytes / sz) == |
(disk_bytes / sz) ==

return TestResult::discard();
}
TestResult::from_bool (
multi_thread_concurrent_snd_and_rcv_round_trip_exp (
total_senders,
in_memory_bytes,
disk_bytes,
max_disk_files,
vals,
))
}
QuickCheck: :new ()
.quickcheck (inner as fn(usize, usize, usize, usize,
Vec<u64>) -> TestResult);

}

This test sets up a multiple sender, single receiver round trip environment, being careful to
reject inputs that allow less space in the in-memory buffer than 64 bits, no senders, or the

like. It defers to another function,
multi_thread_concurrent_snd_and_rcv_round_trip_exp, to actually run the test.
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This setup is awkward, admittedly, but has the benefit of allowing
multi_thread_concurrent_snd_and_rcv_round_trip_exp to be run over explicit
inputs. That is, when a bug is found you can easily re-play that test by creating a
manual—or explicit, in hopper testing terms—test. The inner test function is complicated
and we'll consider it in parts:

fn multi_thread_concurrent_snd_and_rcv_round_trip_exp (
total_senders: usize,
in_memory_bytes: usize,
disk_bytes: usize,
max_disk_files: usize,
vals: Vec<ub64d>,
) —> bool {
if let Ok(dir) = tempdir::TempDir::new ("hopper") {
if let Ok ((snd, mut rcv)) =
channel_with_explicit_capacity(
"tst",
dir.path(),
in_memory_bytes,
disk_bytes,
max_disk_files,

) A

Much like our example usage of hopper at the start of this section, the inner test function
uses tempdir (https://crates.io/crates/tempdir) to create a temporary path for passing
into channel_with_explicit_capacity. Except, we're careful not to unwrap here.
Because hopper makes use of the filesystem and because Rust QuickCheck is aggressively
multi-threaded, it's possible that any individual test run will hit a temporary case of file-
handler exhaustion. This throws QuickCheck off, with the test failure being totally
unrelated to the inputs of this particular execution.

The next piece is as follows:
let chunk_size = vals.len() / total_senders;

let mut snd_jh = Vec::new();
let snd_vals = vals.clone();
for chunk in snd_vals.chunks (chunk_size) {
let mut thr_snd = snd.clone();
let chunk = chunk.to_vec();
snd_Jjh.push (thread: :spawn (move || {
let mut queued = Vec::new();
for mut ev in chunk {
loop {
match thr_snd.send(ev) {
Err(res) => {
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ev = res.0;

Ok (()) => {
break;

}
queued.push (ev) ;

}

let mut attempts = 0;

loop {
if thr_snd.flush().is_ok () {

break;
}
thread: :sleep(
::std::time: :Duration::from_millis (100)

)
attempts += 1;
assert! (attempts < 10);

}

queued

)
}

Here we have the creation of the sender threads, each of which grabs an equal sized chunk
of vals. Now, because of indeterminacy in thread scheduling, it's not possible for us to
model the order in which elements of vals will be pushed into hopper. All we can do is
confirm that there are no lost elements after transmission through hopper. They may, in
fact, be garbled in terms of order:

let expected_total_vals = vals.len();
let rcv_jh = thread::spawn (move || {
let mut collected = Vec::new();
let mut rcv_iter = rcv.iter();
while collected.len() < expected_total_vals {
let mut attempts = 0;
loop {
match rcv_iter.next () {
None => {
attempts += 1;
assert! (attempts < 10_000);
}
Some (res) => {
collected.push (res);
break;
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}
collected

)i

let mut snd_vals: Vec<u64> = Vec::new();
for jh in snd_jh {
snd_vals.append (&mut jh.join () .expect ("snd join

failed"));
}
let mut rcv_vals = rcv_jh.join() .expect ("rcv join
failed");

rcv_vals.sort ();
snd_vals.sort ();

assert_eq! (rcv_vals, snd_vals);

Another test with a single sender, single_sender_single_rcv_round_trip,is able to
check for correct ordering as well as no data loss:

#[test]
fn single_sender_single_rcv_round_trip() {
// Similar to the multi sender test except now with a single
// sender we can guarantee order.
fn inner (
in_memory_bytes: usize,
disk_bytes: usize,
max_disk_files: usize,
total_vals: usize,
) —> TestResult {
let sz = mem::size_of::<u6d>();
if total_vals == || (in_memory_bytes / sz) == ||
(disk_bytes / sz) == 0 {
return TestResult::discard();
}
TestResult::from_bool (
single_sender_single_rcv_round_trip_exp (
in_memory_bytes,
disk_bytes,
max_disk_files,
total_vals,
))
}

QuickCheck: :new () .quickcheck (inner as fn(usize, usize,
usize, usize) -> TestResult);
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Like it's multi-cousin, this QuickCheck test uses an inner function to perform the actual test:

fn single_sender_single_rcv_round_trip_exp (
in_memory_bytes: usize,
disk_bytes: usize,
max_disk_files: usize,
total_vals: usize,
) —> bool {
if let Ok(dir) = tempdir::TempDir::new("hopper") {
if let Ok ((mut snd, mut rcv)) =
channel_with_explicit_capacity(
"tst",
dir.path(),
in_memory_bytes,
disk_bytes,
max_disk_files,

) A
let builder = thread::Builder::new();
if let Ok(snd_jh) = builder.spawn (move || {
for 1 in 0..total_vals {
loop {
if snd.send (i) .is_ok () {
break;
}
}
}
let mut attempts = 0;
loop {
if snd.flush().is_ok () {
break;
}

thread: :sleep(
::std::time: :Duration::from_millis (100)
)
attempts += 1;
assert! (attempts < 10);
}

P oA
let builder = thread::Builder::new();

if let Ok(rcv_jh) = builder.spawn (move || {
let mut rcv_iter = rcv.iter();
let mut cur = 0;
while cur != total_vals {
let mut attempts = 0;
loop {
if let Some (rcvd) = rcv_iter.next () {
debug_assert_eqg! (
cur, rcvd,
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"FAILED TO GET ALL IN ORDER: {:?}",
rcvd,

)

cur += 1;

break;

} else {
attempts += 1;
assert! (attempts < 10_000);

}

P oA
snd_Jjh.join () .expect ("snd join failed");
rcv_jh.join () .expect ("rcv join failed");

This, too, should appear familiar, except that the Receiver thread is now able to check
order. Where previously a Vec<u64> was fed into the function, we now stream 0, 1, 2,

total_vals through the hopper queue, asserting that order and there are no gaps on
the other side. Single runs on a single input will fail to trigger low-probability race issues
reliably, but that's not the goal. We're searching for logic goofs. For instance, an earlier
version of this library would happily allow an in-memory maximum amount of bytes less
than the total bytes of an element T. Another could fit multiple instances of T into the buffer
but if the total_vals were odd and the in-memory size were small enough to require
disk-paging then the last element of the stream would never be kicked out. In fact, that's
still an issue. It's a consequence of the lazy flip to disk mode in the sender; without another
element to potentially trigger a disk placement to the in-memory buffer, the write will be
flushed to disk but the receiver will never be aware of it. To that end, the sender does
expose a flush function, which you see in use in the tests. In practice, in cernan, flushing is
unnecessary. But, it's a corner of the design that the authors did not expect and may well
have had a hard time noticing had this gone out into the wild.

The inner test of our single-sender variant is also used for the repeat-loop variant of hopper
testing:

#ltest]

fn explicit_single_sender_single_rcv_round_trip() A
let mut loops = 0;
loop {

assert! (single_sender_single_rcv_round_trip_exp(8, 8, 5, 10));
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loops += 1;

if loops > 2_500 {
break;

}

thread::sleep(::std::time::Duration::from millis(1));
}

Notice that here the inner loop is only for 2,500 iterations. This is done in deference to the
needs of the CI servers which, don't care to run high CPU load code for hours at a time. In
development, that 2,500 will be adjusted up. But the core idea is apparent; check that a
stream of ordered inputs returns through the hopper queue in order and intact over and
over and over again. QuickCheck searches the dark corners of the state space and more
traditional manual testing hammers the same spot to dig in to computer indeterminism.

Searching for crashes with AFL

The repeat-loop variant of testing in the previous section is an interesting one. It's not, like
QuickCheck, a test wholly focused on finding logic bugs. We know that the test will work
for most iterations. What's being sought out there is a failure to properly control the
indeterminism of the underlying machine. In some sense that variant of test is using a
logical check to search for crashes. It is a kind of fuzz test.

Hopper interacts with the filesystem, spawns threads, and manipulates bytes up from files.
Each of these activities is subject to failure for want of resources, offsetting errors, or
fundamental misunderstandings of the medium. An early version of hopper, for instance,
assumed that small atomic writes to the disk would not interleave, which is true for XFS
but not true for most other filesystems. Or, another version of hopper always created
threads in-test by use of the more familiar thread: : spawn. It turns out, however, that this
function will panic if no thread can be created, which is why the tests use the

thread: :Builder pattern instead, allowing for recovery.

Crashes are important to figure out in their own right. To this end, hopper has a fuzzing
setup, based on AFL. To avoid producing an unnecessary binary on users' systems, the
hopper project does not host its own fuzzing code as of this writing. Instead, it lives in
blt/hopper-fuzz (https://github.com/blt/hopper-fuzz). This is, admittedly,
awkward, but fuzz testing, being uncommon, often is. Fuzz rounds easily run for multiples
of days and do not fit well into modern CI systems. AFL itself is not a tool that admits easy
automation, either, compounding the problem. Fuzz runs tend to be done in small batches
on users' private machines, at least for open-source projects with small communities. Inside
hopper-fuzz, there's a single program for fuzzing, the preamble of which is:
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extern crate hopper;
extern crate rand;

# [macro_use]

extern crate serde_derive;
extern crate bincode;
extern crate tempdir;

use bincode::{deserialize_from, Bounded};

use self::hopper::channel_with_explicit_capacity;
use std::{io, process};

use rand::{Rng, SeedableRng, XorShiftRng};

The fairly straightforward, based on what we've seen so far. Getting input into a fuzz
program is sometimes non-trivial, especially when the input is not much more than a set of
inputs rather than, say in the case of a parser, an actual unit of work for the program. Your
author's approach is to rely on serde to deserialize the byte buffer that AFL will fling into
the program, being aware that most payloads will fail to decode but not minding all that
much. To that end, the top of your author's fuzz programs usually have an input struct
filled with control data, and this program is no different:

#[derive (Debug, PartialEq, Deserialize)]
struct Input { // 22 bytes
seed_a: u32, // 4
seed_b: u32, // 4
seed_c: u32, // 4
seed_d: u32, // 4
max_in_memory_bytes: u32, // 4
max_disk_bytes: ul6, // 2
}

The seeds are for XorShiftRng, whereas max_in_memory_bytes and max_disk_bytes
are for hopper. A careful tally of the bytesize of input is made to avoid fuzz testing the
bincode deserializer's ability to reject abnormally large inputs. While AFL is not blind—it
has instrumented the branches of the program, after all—it is also not very smart. It's
entirely possible that what you, the programmer, intends to fuzz is not what gets fuzzed to
start. It's not unheard of to shake out bugs in any additional libraries brought into the fuzz
project. It's to keep the libraries drawn in to a minimum and their use minimal.

The main function of the fuzz program starts off with a setup similar to other hopper tests:

fn main () {
let stdin = io::stdin();
let mut stdin = stdin.lock();
if let Ok (input) = deserialize_from(&mut stdin, Bounded(22)) {
let mut input: Input = input;
let mut rng: XorShiftRng =
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SeedableRng::from_seed([input.seed_a, input.seed_b,
input.seed_c, input.seed_d]);

input.max_in_memory_bytes =
if input.max_in_memory_bytes > 2 << 25 {
2 << 25
} else {
input.max_in_memory_bytes
bi

// We need to be absolutely sure we don't run into another
// running process. Which, this isn't a guarantee but
// it's _pretty_ unlikely to hit jackpot.
let prefix = format! (
"hopper—{}-{}-{}1",
rng.gen: :<u64> (),
rng.gen: :<u64> (),
rng.gen: :<u64> ()
)i

The only oddity is the production of prefix. The entropy in the tempdir name is relatively
low, compared to the many, many millions of tests that AFL will run. We want to be
especially sure that no two hopper runs are given the same data directory, as that is
undefined behavior:

if let Ok(dir) = tempdir::TempDir::new(&prefix) {
if let Ok ((mut snd, mut rcv)) =
channel_with_explicit_capacity(
"afl",
dir.path(),
input.max_in_memory_bytes as usize,
input.max_disk_bytes as usize,

) A

The meat of the AFL test is surprising:

let mut writes = 0;
let mut rcv_iter = rcv.iter();
loop A
match rng.gen_range (0, 102) {
0...50 => {
if writes != 0 {
let _ = rcv_iter.next();
}
}
50...100 => {
snd.send (rng.gen: :<u64>());
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writes += 1;
}

=> {
process::exit (0);

}

}

This program pulled in a random number generator to switch off between performing a
read and performing a write into the hopper channel. Why no threads? Well, it turns out,
AFL struggles to accommodate threading in its model. AFL has a stability notion, which is
its ability to re-run a program and achieve the same results in terms of instruction execution
and the like. This is not going to fly with a multi-threaded use of hopper. Still, despite
missing out on probing the potential races between sender and receiver threads, this fuzz
test found:

e File-descriptor exhaustion crashes
e Incorrect offset computations in deque
e Incorrect offset computations at the Sender/Receiver level

e Deserialization of elements into a non-cleared buffer, resulting in phantom
elements

Arithmetic overflow/underflow crashes
e A failure to allocate enough space for serialization.

Issues with the interior deque that happen only in a multi-threaded context will be missed,
of course, but the preceding list is nothing to sneeze at.

Benchmarking

Okay, by now we can be reasonably certain that hopper is fit for purpose, at least in terms
of not crashing and producing the correct results. But, it also needs to be fast. To that end,
hopper ships with the criterion (https://crates.io/crates/criterion) benchmarks. As
the time of writing, criterion is a rapidly evolving library that performs statistical analysis
on bench run results that Rust's built-in, nightly-only benchmarking library does not. Also,
criterion is available for use on the stable channel. The target to match is standard library's
MPSC, and that sets the baseline for hopper. To that end, the benchmark suite performs a
comparison, living in benches/stdlib_comparison.rs in the hopper repository.
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The preamble is typical:

# [macro_use]

extern crate criterion;
extern crate hopper;
extern crate tempdir;

use std::{mem, thread};

use criterion::{Bencher, Criterion};

use hopper::channel_with_explicit_capacity;
use std::sync::mpsc::channel;

Note that we've pulled in both MPSC and hopper. The function for MPSC that we'll be
benching is:

fn mpsc_tst (input: MpscInput) -> () {
let (tx, rx) = channel();

let chunk_size = input.ith / input.total_senders;

let mut snd_jh = Vec::new();
for _ in O..input.total_senders {
let tx = tx.clone();
let builder = thread::Builder::new();
if let Ok (handler) = builder.spawn (move || {
for 1 in 0..chunk_size {
tx.send (i) .unwrap () ;

I3
B oA
snd_jh.push (handler) ;
3
3
let total_senders = snd_jh.len();
let builder = thread::Builder::new();
match builder.spawn (move || {
let mut collected = 0;
while collected < (chunk_size * total_senders) {
let _ = rx.recv () .unwrap();
collected += 1;
3
oA

Ok (rcv_ijh) => {
for jh in snd_jh {
jh.join () .expect ("snd join failed");
I3

rcv_jh.join() .expect ("rcv join failed");
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=> {
return;

}

Some sender threads get made, and a receiver exists and pulls the values from MPSC as
rapidly as possible. This is not a logic check in any sense and the collected materials are
immediately discarded. Like with the fuzz testing, the input to the function is structured
data. MpscInput is defined as follows:

# [derive (Debug, Clone, Copy)]

struct MpscInput {
total_senders: usize,
ith: usize,

}

The hopper version of this function is a little longer, as there are more error states to cope
with, but it's nothing we haven't seen before:

fn hopper_tst (input: HopperInput) -> () {
let sz = mem::size_of::<u64d>();
let in_memory_bytes = sz * input.in_memory_total;
let max_disk_bytes = sz * input.max_disk_total;
if let Ok(dir) = tempdir::TempDir::new("hopper") {
if let Ok((snd, mut rcv)) = channel with_explicit_capacity(
"tst",
dir.path(),
in_memory_bytes,
max_disk_bytes,
usize::max_value (),

let chunk_size = input.ith / input.total_senders;

let mut snd_jh = Vec::new();
for _ in O..input.total_senders {
let mut thr_snd = snd.clone();
let builder = thread::Builder::new();

if let Ok (handler) = builder.spawn (move || {
for 1 in 0..chunk_size {
let _ = thr_snd.send(i);
I3
B oA

snd_jh.push (handler) ;
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let total_senders = snd_jh.len();
let builder = thread::Builder::new();
match builder.spawn (move || {
let mut collected = 0;
let mut rcv_iter = rcv.iter();
while collected < (chunk_size * total_senders) {
if rcv_iter.next () .is_some () {
collected += 1;
I3
3
B oA

Ok (rcv_ijh) => {
for jh in snd_jh {
jh.join() .expect ("snd join failed");

3

rcv_jh.join() .expect ("rcv join failed");
I3
_ = {

return;
I3

}
The same is true of HopperInput:

# [derive (Debug, Clone, Copy) ]

struct HopperInput {
in_memory_total: usize,
max_disk_total: usize,
total_senders: usize,
ith: usize,

}

Criterion has many options for running benchmarks, but we've chosen here to run over
inputs. Here's the setup for MPSC:

fn mpsc_benchmark (c: &mut Criterion) {
c.bench_function_over_inputs(
"mpsc_tst",
|b: &mut Bencher, input: &MpscInput| b.iter (||
mpsc_tst (*input)),
vec! [
MpscInput {
total_senders: 2 << 1,
ith: 2 << 12,
}l
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1/
)i
}

To explain, we've got a function, mpsc_benchmark, that takes the mutable criterion
structure, which is opaque to use but in which criterion will store run data. This structure
exposes bench_function_over_inputs, which consumes a closure that we can thread
our mpsc_test through. The sole input is listed in a vector. The following is a setup that
does the same thing, but for hopper:

fn hopper_benchmark (c: &mut Criterion) {
c.bench_function_over_inputs (
"hopper_tst",
|b: &mut Bencher, input: &HopperInput| b.iter (||
hopper_tst (*input)),
vec! [
// all in-memory
HopperInput {
in_memory_total: 2 << 11,
max_disk_total: 2 << 14,
total_senders: 2 << 1,
ith: 2 << 11,
}I
// swap to disk
HopperInput {
in_memory_total: 2 << 11,
max_disk_total: 2 << 14,
total_senders: 2 << 1,
ith: 2 << 12,
}I
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Notice now that we have two inputs, one guaranteed to be all in-memory and the other
guaranteed to require disk paging. The disk paging input is sized appropriately to match
the MSPC run. There'd be no harm in doing an in-memory comparison for both hopper and
MPSC, but your author has a preference for pessimistic benchmarks, being an optimistic
sort. The final bits needed by criterion are more or less stable across all the benchmarks
we'll see in the rest of this book:

criterion_group!{

name = benches;
config = Criterion::default () .without_plots();
targets = hopper_benchmark, mpsc_benchmark

}

criterion_main! (benches) ;

I encourage you to run the benchmarks yourself. We see times for hopper that are
approximately three times faster for the systems we intended hopper for. That's more than
fast enough.

Summary

In this chapter, we covered the remainder of the essential non-atomic Rust synchronization
primitives, doing a deep-dive on the postmates/hopper libraries to explore their use in a
production code base. After having digested chapter 4, Sync and Send — the Foundation of
Rust Concurrency, and this chapter, the reader should be in a fine position to build lock-
based, concurrent data structures in Rust. For readers that need even more performance,
we'll explore the topic of atomic programming in Chapter 6, Atomics — the Primitives of
Synchronization, and in Chapter 7, Atomics — Safely Reclaiming Memory.

If you thought lock-based concurrency was hard, wait until you see atomics.
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Further reading

Building concurrent data structure is a broad field of wide concern. These notes cover much
the same space as the notes from chapter 4, Sync and Send — the Foundation of Rust
Concurrency. Please do refer back to those notes.

e The Little Book of Semaphores, Allen Downey, available at http://greenteapress.
com/wp/semaphores/.This is a charming book of concurrency puzzles, suitable for
undergraduates but challenging enough in Rust for the absence of semaphores.
We'll revisit this book in the next chapter when we build concurrency primitives
out of atomics.

e The Computability of Relaxed Data Structures: Queues and Stacks as Examples, Nir
Shavit and Gadi Taubenfeld. This chapter discussed the implementation of a
concurrent queue based on the presentation of The Art of Multiprocessor
Programming and the author's knowledge of Erlang's process queue. Queues are a
common concurrent data structure and there are a great many possible
approaches. This paper discusses an interesting notion. Namely, if we relax the
ordering constraint of the queue, can we squeeze out more performance from a
modern machine?

e Is Parallel Programming Hard, and, If So, What Can You Do About It?, Paul
McKenney. This book covers roughly the same material as chapter 4, Sync and
Send — the Foundation of Rust Concurrency, and chapter 5, Locks — Mutex, Condvar,
Barriers, and RWLock, but in significantly more detail. I highly encourage readers
to look into getting a copy and reading it, especially the eleventh chapter on
validating implementations.
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Synchronization

In chapter 4, Sync and Send — the Foundation of Rust Concurrency, and Chapter 5, Locks —
Mutex, Condvar, Barriers and RWLock, we discussed the fundamentals of lock-based
concurrency in Rust. However, there are some cases where lock-based programming is not
suitable, such as when extreme performance is a concern or threads may never block. In
such domains, the programmer must rely on the atomic synchronization primitives of
modern CPUs.

In this chapter, we'll be discussing the atomic primitives available to the Rust programmer.
Programming with atomics is a complex topic and an area of active research. An entire
book could be dedicated to the topic of atomic Rust programming. As such, we'll be
shifting our tactics slightly for this chapter, focusing on more of a tutorial style than
previous chapters where we've done deep dives on existing software. Everything presented
in the prior chapters will come to bear here. By the end of this chapter, you ought to have a
working understanding of atomics, being able to digest existing literature with more ease
and validate your implementations.

By the end of this chapter, we will have:

e Discussed the concept of linearizability

¢ Discussed the various atomic memory orderings, along with their meanings and
implications

e Built a mutex from atomic primitives

e Built a queue from atomic primitives

e Built a semaphore

e Made clear the difficulties of memory reclamation in an atomic context
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Technical requirements

This chapter requires a working Rust installation. The details of verifying your installation
are covered in Chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust.
No additional software tools are required.

You can find the source code for this book's projects on GitHub: https://github.com/
PacktPublishing/Hands-On-Concurrency-with-Rust. This chapter has its source code
under Chapter06.

Linearizability

Up till this point in the book, we've avoided dipping into the formal terms for specifying
concurrent systems, because while they are very useful for discussing ideas and reasoning,
they can be difficult to learn absent some context. Now that we have context, it's time.

How do we decide whether a concurrent algorithm is correct? How, if we're game for the
algorithm, do we analyze an implementation and reason about it's correctness? To this
point, we've used techniques to demonstrate fitness-for-purpose of an implementation
through randomized and repeat testing as well as simulation, in the case of helgrind. We
will continue to do so. In fact, if that's all we did, demonstrating fitness-for-purpose of
implementations, then we'd be in pretty good condition. The working programmer will
find themselves inventing more often than not, taking an algorithm and adapting it—as
was seen in the previous chapter's discussion of hopper—to fit some novel domain. It's easy
enough to do this and not notice.

What we're searching for, when we sit down to reason about the systems we're
constructing, is a unifying concept that'll separate the workable ideas from the goofs. That
concept for us, here, in the design and construction of concurrent data structures, is
linearizability. What we're looking to build are objects that, paraphrasing Nancy Lynch,
make it seem like operations on them occur one at a time, in some sequential order,
consistent with the order of operations and responses. Lynch's Distributed Algorithms is
concerned with the behavior of distributed systems, but I've always thought that her
explanation of what she refers to as atomic objects is brilliantly concise.

The notion of linearizability was introduced in Axioms for Concurrent Objects by Herlihy and
Wing in 1986. Their definition is a bit more involved, done up in terms of histories—a finite
sequence of operation invocation and response events—and specifications, which are, to be quick
about it, a set of axiomatic pre and post conditions that hold on, the object in terms of the
operations defined on it.
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Let the result of an operation be called res (op) and the application or invocation of an
operation be called inv (op), and distinguish operations by some extra identifier. op_1 is
distinct from op_2 but the identifier has no bearing on their ordering; it's just a name. A
history H is a partial order over operations so that op_0 < op_1 if res (op_0) happens
before inv (op_1) in H. Operations that have no ordering according to < are concurrent in
the history. A history H is sequential if all of its operations are ordered with regard to <.
Now, the history H is linearizable if it can be adjusted by adding zero or more operations
into the history to make some other history #' so that:

1. H' is composed only of invocations and responses and are equivalent to some
legal, sequential history s

2. The ordering operation of H' is an inclusive subset of the ordering of s.

Phew! An object is linearizable if you can record the order of the operations done to it,
fiddle with them some, and find an equivalent sequential application of operations on the
same object. We've actually done linearizabilty analysis in previous chapters, I just didn't
call it out as such. Let's keep on with Herlihy and Wing and take a look at their examples of
linearizable vs. unlinearizable histories. Here's a history on a familiar queue:

s = vo B oI =l o VI ve s
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We have two threads, A and B, performing the operations eng (val: T) -> Result ((),
Error) and deq() —-> Result (T, Error),in pseudo-Rust types. This history is in fact
linearizable and is equivalent to:
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Notice that the last operation does not exist in the original history. It's possible for a history
to be linearizable, as Herlihy and Wing note it, even if an operation takes effect before its
response. For example:

A: Eng(x) 0
B: Deqg() 1
C: Ok (x) 2

This is equivalent to the sequential history:

A: Eng(x) 0
A: Ok (())

B: Deqg() 1
B: Ok (x) 2

This history is not linearizable:

oW oW
O WN P o

The culprit in this case is the violation of the queue's ordering. In sequential history, the
dequeue would receive x and not y.

That's it. When we talk about a structure being linearizable, what we're really asking is, can
any list of valid operations against the structure be shuffled around or added to in such a
way that the list is indistinguishable from a sequential history? Each of the synchronization
tools we looked at in the last chapter were used to force linearizability by carefully
sequencing the ordering of operations across threads. At a different level, these tools also
manipulated the ordering of memory loads and stores. Controlling this ordering directly,
while also controlling the order of operations on structures, will consume the remainder of
this chapter.
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Memory ordering — happens-before and
synchronizes-with

Each CPU architecture treats memory ordering—the dependency relationships between
loads and stores—differently. We discussed this in detail in chapter 1, Preliminaries —
Machine Architecture and Getting Started with Rust. Suffice it to say here in summary, x86 is a
strongly-ordered architecture; stores by some thread will be seen by all other threads in the
order they were performed. ARM, meanwhile, is a weakly-ordered architecture with data-
dependency; loads and stores may be re-ordered in any fashion excepting those that would
violate the behavior of a single, isolated thread, and, if a load depends on the results of a
previous load, you are guaranteed that the previous load will occur rather than be cached.
Rust exposes its own model of memory ordering to the programmer, abstracting away
these details. Our programs must, then, be correct according to Rust's model, and we must
trust rustc to interpret this correctly for our target CPU. If we mess up in Rust's model, we
might see rustc come and re-order instructions to break linearizability, even if the
guarantees of our target CPU would otherwise have helped us skate by.

We discussed Rust's memory model in detail in chapter 3, The Rust Memory Model —
Ownership, References and Manipulation, noting that its low-level details are inherited near
whole-cloth from LLVM (and thus C/C++). We did, however, defer a discussion of
dependency relationships in the model until this chapter. The topic is tricky enough in its
own right, as you'll see directly. We will not go into the full details here, owing to the major
difficulty in doing so; see LLVM's Memory Model for Concurrent Operations (http://11lvm.
org/docs/LangRef.html#memory-model-for-concurrent-operations) and its link tree for
the full, challenging read. We will instead note that, outside of writing optimizers or
especially challenging low-level code for which you do need to study up on the LLVM
memory model reference, it's sufficient to understand that when we talk about ordering in
Rust we're talking about a particular kind of causality—happens-before/synchronizes-with. So
long as we structure our operations according to this causality and can demonstrate
linearizability, we'll be in good shape.

What is the happens-before/synchronizes-with causality? Each of these refers to a particular
kind of ordering relationship. Say we have three operations 2, B, and c. We say that A
happens-before B if:

e A and B are performed on the same thread and 2 is executed and then B is
executed according to program order

¢ A happens-before C and ¢ happens-before B
e A synchronizes-with B
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Note that the first point refers to single-thread program order. Rust makes no guarantees
about multi-threaded program order but does assert that single-threaded code will run in
its apparent textual order, even if, in actuality, both the optimized Rust is re-ordered and
the underlying hardware is re-ordering as well. We can say that A synchronizes-with B if all
of the following are true:

e Bis aload from some atomic variable var with Acquire or SeqCst ordering
e Ais a store to the same atomic variable var with Release or SeqCst ordering
¢ Breads the value from var

The last point exists to ensure that compilers or hardware won't optimize away the load in
the first point. But, did some additional information get stuck in there? Yep! More on that in
a minute.

How does linearizability link up to the causal ordering we've just described? It's important
to understand this. A structure in Rust can obey the causal ordering but still not linearize
under examination. Take, for instance, the discussion of Ring in previous chapters, where,
even though the causal ordering was protected by a mutex, writes were stomped due to an
offset bug. That implementation was not linearizable but it was causally ordered. In that
sense, then, getting the causality of your program is a necessary but not sufficient condition
for writing a fit-for-purpose concurrent data structure. Linearizability is an analysis done in
terms of the operations on a structure, while happens-before/synchronizes-with is an
ordering that happens inside of and between operations.

Now, we mentioned Acquire, SeqCst, and Release; what were they? Rust's memory
ordering model allows for different atomic orderings to be applied to loads and stores.
These orderings control the underlying CPU and the rustc optimizer's take on which
instructions to shuffle around and when to stall pipelines waiting for results from a load.
The orderings are defined in an enumeration called std: :sync: :atomic::Ordering.
We'll go through them one by one.

Ordering::Relaxed

This ordering didn't show up in the definition of happens-before/synchronizes-with.
There's a very good reason for that. Relaxed ordering implies no guarantees. Loads and
stores are free to be re-ordered around a load or store with relaxed ordering. That is, loads
and stores can migrate up or down in program order from the point of view of a Relaxed
operation.
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The compiler and the hardware are free to do whatever they please in the presence of
Relaxed ordering. There's quite a lot of utility in this, as we'll see in the upcoming detailed
examples. For now, consider counters in a concurrent program used for self-telemetry, or
data structures that have been designed to be eventually consistent. No need for strict
ordering there.

Before we move on, it's worth being very clear about what we mean by the ordering of
loads and stores. Loads and stores on what? Well, atomics. In Rust, these are exposed in
std::sync::atomic and there are, as of writing this book, four stable atomic types
available:

e AtomicUsize
e AtomicIsize
e AtomicPtr

e AtomicBool

There's an ongoing discussion centered around using Rust issue #32976 to support smaller
atomic types—you'll note, of the stable four, three are machine word sized and
AtomicBool is currently also one of them—but progress there looks to have stalled out, for
want of a champion. So, for now, these are the types. Of course, there's more loads and
stores than just atomics—manipulation of raw pointers, to name a familiar example. These
are data accesses and have no ordering guarantees beyond those that are built into Rust to
begin with. Two threads may load and store to the same raw pointer at the exact same
moment and there's nothing that can be done about it without prior coordination.

Ordering::Acquire

Acquire is an ordering that deals with loads. Recall that we previously said that if a
thread, B, loads var with Acquire ordering and thread A then stores with Release
ordering, then A synchronizes-with B, which means that 2 happens-before B. Recall that
back in the previous chapter we ran into Acquire in the context of hopper:

pub unsafe fn push_back (

&self,

elem: T,

guard: &mut MutexGuard<BackGuardInner<S>>,
) —> Result<bool, Error<T>> {

let mut must_wake_dequeuers = false;

if self.size.load(Ordering::Acquire) == self.capacity {
return Err (Error::Full (elem));

} else {

[196 ]



Atomics — the Primitives of Synchronization Chapter 6

assert! ((*self.data.offset ((*guard).offset)) .is_none());

*self.data.offset ((*guard) .offset) = Some (elem);

(*guard) .offset += 1;

(*guard) .offset %= self.capacity as isize;

if self.size.fetch_add(l, Ordering::Release) == 0 {
must_wake_dequeuers = true;

}

Ok (must_wake_dequeuers)

}

The size seen there is an AtomicUsize, which the current thread is using to determine if
there's space left for it to emplace a new element. Later, once the element has been
emplaced, the thread increases the size with Release ordering. That... seems preposterous.
It's clearly counter-intuitive to program order for the increase of size to happen-before the
capacity check. And, that's true. It's worth keeping in mind that there's another thread in
the game:

pub unsafe fn pop_front (&self) —-> T {
let mut guard = self.front_lock.lock()
.expect ("front lock poisoned");
while self.size.load(Ordering: :Acquire) == 0 {
guard = self.not_empty

.wait (guard)

.expect ("oops could not wait pop_front");
}
let elem: Option<T> = mem::replace (&mut
*self.data.offset ((*guard) .offset), None);
assert! (elem.is_some ());
*self.data.offset ((*guard) .offset) = None;
(*guard) .offset += 1;
(*guard) .offset %= self.capacity as isize;
self.size.fetch_sub(l, Ordering::Release);
elem.unwrap ()

}

Consider what would happen if there were only two threads, A and B, and A only
performed push_back and B only performed pop_front. The mutexes function to
provide isolation for threads of the same kind—those that push or pop—and so are
meaningless in this hypothesis and can be ignored. All that matters are the atomics. If the
size is zero and B is scheduled first, it will empty the condvar loop on an Acquire-load of
size. When 2 is scheduled and finds that there is spare capacity for its element, the element
will be enqueued and, once done, the size will be Release-stored, meaning that some
lucky loop of B will happen-after a successful push-back from A.
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The Rust documentation for Acquire says:

"When coupled with a load, all subsequent loads will see data written before a
store with Release ordering on the same value in other threads."

The LLVM documentation says:

"Acquire provides a barrier of the sort necessary to acquire a lock to access other
memory with normal loads and stores."

How should we take this? An Acquire load keeps loads and stores those that come after it
from migrating up, with regard to program order. Loads and stores prior to the Acquire
might migrate down, with regard to program order, though. Think of an Acquire as akin
to the starting line of a lock, but one that is porous on the top side.

Ordering::Release

If Acquire is the starting line of a lock, then Release is the finish line. In fact, the LLVM
documentation says:

"Release is similar to Acquire, but with a barrier of the sort necessary to release a
lock."

It's may be a little more subtle than 1ock might suggest, though. Here's what the Rust
documentation has to say:

"When coupled with a store, all previous writes become visible to the other
threads that perform a load with Acquire ordering on the same value."

Where Acquire stopped loads and stores after itself from migrating upward, Release
stops loads and stores prior to itself from migrating downward, with regard to program
order. Like Acquire, Release does not stop loads and stores prior to itself from migrating
up. A Release store is akin to the finish line of a lock, but one that is porous on the bottom
side.
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Incidentally, there's an interesting complication here that lock intuition is not helpful with.
Question: can two Acquire loads or two Release stores happen simultaneously? The
answer is, well, it depends on quite a lot, but it is possible. In the preceding hopper
example, the spinning pop_front thread does not block the push_back thread from
performing its check of size, either by permanently holding the size until a Release came
along to free the pop_front thread, even temporarily, until the while loop can be checked.
Remember, the causality model of the language says nothing about the ordering of two
Acquire loads or Release stores. It's undefined what happens and is probably going to
strongly depend on your hardware. All we do know is that the pop_front thread will not
partially see the stores done to memory by push_back; it'll be all-or-none. All of the loads
and stores after an Acquire and before a Release come as a unit.

Ordering::AcqRel

This variant is a combination of Acquire and Release. When aload is performed with
AcqRel, then Acquire is used, and stored to Release. AcgRel is not just a convenience in
that it combines the ordering behaviors of both Acquire and Release—the ordering is
porous on neither side. That is, loads and stores after an AcgRel cannot move up, as with

Acquire, and loads and stores prior to an AcgRel cannot move down, as with Release.
Nifty trick.

Before moving on to the next ordering variation, it's worth pointing out that so far we've
only seen examples of a thread performing an Acquire/Release in a pair, in cooperation
with another thread. It doesn't have to be this way. One thread can always perform
Acquire and another can always perform Release. The causality definition is specifically
in terms of threads that perform one but not both, except in cases when 2 is equal to B, of
course. Let's break down an example:

store X
store[Release] Y
load[Acquire] Y
load X
store[Release] 7
load[Acquire] Z
load X

QOQWwwyx >
g oUW N
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Here, we have three threads, 2, B, and ¢, performing a mix of plain loads and stores with
atomic loads and stores. store [Release] is an atomic store where store is not. As in the
section on linearizability, we've numbered each one of the operations, but be aware that
this does not represent a timeline so much as the numbers are convenient names. What can
we say of the causality of this example? We know:

happens-before 2

° synchronizes-with 3

happens—-before 4

1
2
3
e 3 happens-before 5
5 synchronizes-with 6
6

happens—-before 7

We'll see more analysis of this sort later in the chapter.

Ordering::SeqCst

Finally, and on the opposite side of the spectrum from Relaxed, there is SeqCst, which
stands for SEQuentially ConsiSTent. SeqCst is like AcqRel but with the added bonus that
there's a total order across all threads between sequentially consistent operations, hence the
name. SeqCst is a pretty serious synchronization primitive and one that you should use
only at great need, as forcing a total order between all threads is not cheap; every atomic
operation is going to require a synchronization cycle, for whatever that means for your
CPU. A mutex, for instance, is an acquire-release structure—more on that shortly—but
there are legitimate cases for a super-mutex like SeqCst. For one, implementing older
papers. In the early days of atomic programming, the exact consequence of more
relaxed—but not Relaxed—memory orders were not fully understood. You'll see literature
that'll make use of sequentially consistent memory and think nothing of it. At the very least,
follow along and then relax as needed. This happens more than you might think, at least to
your author. Your mileage may vary. There are cases where it seems like we're stuck on
SeqCst. Consider a multiple-producer, multiple-consumer setup like this one that has been
adapted from CppReference (see the Further reading section shown in the final section):

# [macro_use]
extern crate lazy_static;

use std::thread;
use std::sync::Arc;
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
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lazy_static! {

static ref X: Arc<AtomicBool>

Arc::new (AtomicBool::new(false));

static ref Y: Arc<AtomicBool> = Arc::new (AtomicBool::new(false));

static ref Z: Arc<AtomicUsize> = Arc::new(AtomicUsize::new(0));

}

fn

fn

fn

fn

fn

write_x() A
X.store (true, Ordering::SeqCst);

write_y () A
Y.store(true, Ordering::SeqCst);

read_x_then_y () {

while !X.load(Ordering::SeqCst) {}

if Y.load(Ordering::SeqCst) {
Z.fetch_add (1, Ordering::Relaxed);

read_y_then_x() {
while !Y.load(Ordering::SeqCst) {}
if X.load(Ordering::SeqCst) {
Z.fetch_add (1, Ordering::Relaxed);

main () A
let mut jhs = Vec::new();
jhs.push (thread: :spawn (write_x)); // a
jhs.push (thread: :spawn (write_y)); // b
jhs.push (thread: :spawn (read_x_then_y));
jhs.push (thread: :spawn (read_y_then_x));
for jh in jhs {
jh.join () .unwrap () ;
3

assert! (Z.load(Ordering::Relaxed) != 0);

[201]

// c
// d




Atomics — the Primitives of Synchronization Chapter 6

Say we weren't enforcing SeqCst between the threads in our example. What then? The
thread c loops until the thread a flips Boolean X, loads Y and, if true, increments z. Likewise
for thread d, except b flips the Boolean Y and the increment is guarded on X. For this
program to not crash after its threads have hung up, the threads have to see the flips of x
and Y happen in the same order. Note that the order itself does not matter, only so much as
it is the same as seen from every thread. Otherwise it's possible that the stores and loads
will interleave in such a way as to avoid the increments. The reader is warmly encouraged
to fiddle with the ordering on their own.

Building synchronization

Now that we have a good grounding on the atomic primitives available to us in the Rust
standard library, and have, moreover, a solid theoretical background, it's time for us to
build on these foundations. In the past few chapters, we've been teasing our intention to
build up mutexes and semaphores from primitives and, well, now the time has come.

Mutexes

Now that we understand linearizability and memory orderings, let's ask ourselves a
question. What exactly is a mutex? We know its properties as an atomic object:

e Mutex supports two operations, lock and unlock.

e A mutex is either locked or unlocked.

¢ The operation lock will move a mutex into a locked state if and only if the mutex is
unlocked. The thread that completes lock is said to hold the lock.

¢ The operation unlock will move a mutex into unlocked state if an only if the mutex
is previously locked and the caller of unlock is the holder of the lock.

¢ All loads and stores which occur after and before a lock in program order must
not be moved prior to or after the lock operation.

¢ Allloads and stores that occur before an unlock in program order must not be
moved to after the unlock.
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The second to last point is subtle. Consider a soft-mutex whose lock only keeps loads and
stores after migrating up. This means that load/stores could migrate into the soft-mutex,
which is all well and good unless your migration is the lock of another soft-mutex.
Consider the following:

lock (m0)
unlock (m0)
lock (m1)
unlock (m1)

This could be re-arranged to the following;:

lock (m0)
lock (ml)
unlock (m0)
unlock (ml)

Here, the unlock (m0) has migrated down in program order into the mutual exclusion
zone of m1, deadlocking the program. That is a problem.

You might not be surprised to learn that there's decades of research, at this point, into the
question of mutual exclusion. How should a mutex be made? How does fairness factor into
the implementation? The latter is a significantly broad topic, avoiding thread starvation, and
is one we'll more or less dodge here. Much of the historical research is written with regard
to machines that have no concept of concurrency control. Lamport's Bakery algorithm—see
the Further reading section— provides mutual exclusion that's absent in any hardware
support but assumes reads and writes are sequentially consistent, an assumption that does
not hold on modern memory hierarchies. In no small sense do we live in a very happy time
for concurrent programming: our machines expose synchronization primitives directly,
greatly simplifying the production of fast and correct synchronization mechanisms.

Compare and set mutex

First, let's look at a very simple mutex implementation, an atomic swap mutex that spins
around in a loop until the correct conditions arrive. That is, let's build a spin-lock. This
mutex is so named because every thread that blocks on 1ock is burning up CPU, spinning
on the condition that holds it from acquiring the lock. Anyhow, you'll see. We'll lay down
our Cargo.toml first:

[package]

name = "synchro"

version = "0.1.0"

authors = ["Brian L. Troutwine <brian@troutwine.us>"]
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[[bin]]

name = "swap_mutex"

doc = false

[[bin]]

name = "status_demo"

doc = false

[[bin]]

name = "mutex_status_demo"

doc = false

[[bin]]

name = "spin_mutex_status_demo"
doc = false

[[bin]]

name = "queue_spin"

doc = false

[[bin]]

name = "crossbeam_queue_spin"
doc = false

[dependencies]

crossbeam = { git = "https://github.com/crossbeam-rs/crossbeam.git", rev =

"89bd6857cd701bff54f7a8bf47ccaal38d5022btb" }

[dev-dependencies]
quickcheck = "0.6"

Now, we need src/1ib.rs:
extern crate crossbeam;
mod queue;
mod swap_mutex;
mod semaphore;
pub use semaphore::*;

pub use swap_mutex::*;
pub use queue::*;
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There's a fair bit here we're not going to use straight away, but we'll come to it shortly.
Now, let's dive into src/swap_mutex. rs. First, our preamble:

extern crate crossbeam;

mod gqueue;
mod swap_mutex;
mod semaphore;

Very little surprise here by this point. We see the usual imports, plus a few new
ones—AtomicBool and Ordering, as discussed previously. We implement send and Sync
ourselves—discussed in the previous chapter—because while we can prove that our
SwapMutex<T> is threadsafe, Rust cannot. The SwapMutex<T> is small:

pub struct SwapMutex<T> {
locked: AtomicBool,
data: *mut T,

}

The field 1ocked is an AtomicBool, which we'll be using to provide isolation between
threads. The idea is simple enough—if a thread shows up and finds that 1ocked is false
then the thread may acquire the lock, else it has to spin. It's also worth noting that our
implementation lives a little on the wild side by keeping a raw pointer to T. The Rust
standard library std: : sync: :Mutex keeps its interior data, as of writing this book, in an
UnsafeCell, which we don't have access to in stable. In this implementation we're just
going to be storing the pointer and not doing any manipulation through it. Still, we've got
to be careful about dropping the swapMutex. Creating a SwapMutex happens like you
might expect:

impl<T> SwapMutex<T> {
pub fn new(t: T) —-> Self {
let boxed_data = Box::new(t);
SwapMutex {
locked: AtomicBool::new(false),
data: Box::into_raw (boxed_data),
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The T is moved into SwapMutex and we box it to then get its raw pointer. That's necessary
to avoid a stack value being pushed into SwapMutex and promptly disappearing when the
stack frame changes, all of which was discussed in great detail in chapter 2, Sequential Rust
Performance and Testing. A mutex always starts unlocked, else there'd be no way to ever
acquire it. Now, let's look at locking the mutex:

pub fn lock (&self) —-> SwapMutexGuard<T> {
while self.locked.swap (true, Ordering::AcgRel) {
thread::yield_now () ;
}

SwapMutexGuard: :new (self)

}

The APl is a little different compared to the standard library Mutex. For one, SwapMutex
does not track poisoning, and, as a result, if lock is invoked it's guaranteed to return with a
guard, called SwapMutexGuard. SwapMutex is scope-based, however; just like standard
library MutexGuard there's no need—nor ability—to ever call an explicit unlock. There is
an unlock though, used by the drop of SwapMutexGuard:
fn unlock (&self) -> () {
assert! (self.locked.load (Ordering: :Relaxed) == true);
self.locked.store(false, Ordering::Release);

}

In this simple mutex, all that needs to be done to unlock is set the 1ocked field to false, but
not before confirming that, in fact, the calling thread has a right to unlock the mutex.

Now, can we convince ourselves that this mutex is correct? Let's go through our criteria:
"Mutex supports two operations, lock and unlock.”

Check. Next:
" A mutex is either locked or unlocked.”

Check, by reason that this is flagged by a Boolean. Finally:

"The operation lock will move a mutex into a locked state if and only if the mutex is
unlocked. The thread that completes the lock is said to hold the lock.”

[ 206 ]



Atomics — the Primitives of Synchronization Chapter 6

Let's talk through what AtomicBool: : swap does. The full type is swap (&¢self, val:
bool, order: Ordering) -> bool and the function does what you might expect by the
name; it atomically swaps the bool at self with the bool val atomically, according to the
passed ordering, and returns the previous value. Here, then, each thread is competing to
write true into the locked flag and only one thread at a time will see false returned as the
previous value, owing to the atomicity of swapping. The thread that has written false is
now the holder of the lock, returning SwapMutexGuard. Locking a SwapMutex can only be
done to an unlocked SwapMutex and it is done exclusive of other threads.

"The operation unlock will move a mutex into an unlocked state if and only if the mutex is
previously locked and the caller of unlock is the holder of the lock.”

Let's consider unlock. Recall first that it's only possible to call from swapMutexGuard, so
the assertion that the caller has the right to unlock the swapMutex is a check against a
malfunctioning lock: only one thread at a time can hold swapMutex, and as a result there
will only ever be one swapMutexGuard in memory. Because of the nature of Release
ordering, we're guaranteed that the Relaxed load of 1ocked will occur before the store, so
it's guaranteed that when the store does happen the value of 1ocked will be true. Only the
holder of the lock can unlock it, and this property is satisfied as well.

"All loads and stores that occur after and before a lock in program order must not be
moved prior to or after the lock.”

This follows directly from the behavior of AcqRel ordering.

"All loads and stores that occur before an unlock in program order must not be moved to
after the unlock.”

This follows from the behavior of Release ordering.

Bang, we have ourselves a mutex. It's not an especially power-friendly mutex, but it does
have the essential properties. Here's the rest of the thing, for completeness's sake:

impl<T> Drop for SwapMutex<T> {
fn drop (&mut self) {
let data = unsafe { Box::from_raw(self.data) };
drop (data) ;

}

pub struct SwapMutexGuard<'a, T: 'a> {
__lock: &'a SwapMutex<T>,

}
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impl<'a, T> SwapMutexGuard<'a, T> {
fn new(lock: &'a SwapMutex<T>) -> SwapMutexGuard<'a, T> {
SwapMutexGuard { __lock: lock }

impl<'a, T> Deref for SwapMutexGuard<'a, T> {
type Target = T;

fn deref (&self) -> &T {
unsafe { &*self._ lock.data }

impl<'a, T> DerefMut for SwapMutexGuard<'a, T> {
fn deref_mut (&mut self) -> &mut T {
unsafe { &mut *self._ lock.data }

impl<'a, T> Drop for SwapMutexGuard<'a, T> {

#[inline]
fn drop (&mut self) {
self.__lock.unlock();

}

Now, let's build something with SwapMutex. In src/bin/swap_mutex.rs, we'll replicate
the bridge problem from the last chapter, but on top of SwapMutex, plus some fancy add-
ons now that we know some clever things to do with atomics. Here's the preamble:

extern crate synchro;

use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;

use synchro::SwapMutex;

use std::{thread, time};

# [derive (Debug) ]
enum Bridge {
Empty,
Left (u8),
Right (u8),
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Familiar enough. We pull in our SwapMutex, and define Bridge. Fairly unsurprising
material. To continue:

static LHS_TRANSFERS: AtomicUsize = AtomicUsize::new(0);
static RHS_TRANSFERS: AtomicUsize = AtomicUsize::new(0);

This is new, though. Statics in Rust are compile-time globals. We've seen their lifetime static
floating around from time to time but have never remarked on it. A static will be part of the
binary itself and any initialization code needed for the static will have to be evaluated at
compile-time as well as being threadsafe. We're creating two static AtomicUsizes here at
the top of our program. Why? One of the major issues with the previous rope bridge
implementation was its silence. You could watch it in a debugger, sure, but that's slow and
won't impress your friends. Now that we have atomics at hand, what we're going to do is
get each side of the bridge to tally up how many baboons cross. LHS_TRANSFERS are the
number of baboons that go from right to left, RHS_TRANSFERS is the other direction. Our
left and right sides of the bridge are broken out into functions this time around, too:

fn lhs(rope: Arc<SwapMutex<Bridge>>) -> () {
loop {
let mut guard = rope.lock();
match *guard {
Bridge: :Empty => {
*guard = Bridge::Right (1);
I3
Bridge::Right (i) => {
if i < 5 H{
*guard = Bridge::Right (i + 1);
I3
I3
Bridge::Left (0) => {
*guard = Bridge::Empty;
I3
Bridge::Left (i) => {
LHS_TRANSFERS.fetch_add(l, Ordering::Relaxed);
*guard = Bridge::Left (i - 1);

}

fn rhs(rope: Arc<SwapMutex<Bridge>>) -> () {
loop {
let mut guard = rope.lock();
match *guard {
Bridge: :Empty => {
*guard = Bridge::Left (1);
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I3
Bridge::Left (i) => {
if 1 < 5 {
*guard = Bridge::Left (i + 1);

}

Bridge::Right (0) => {
*guard = Bridge::Empty;

}

Bridge::Right (i) => {

RHS_TRANSFERS.fetch_add(l, Ordering::Relaxed);

*guard = Bridge::Right (i - 1);

}

This ought to be familiar enough from the previous chapter, but do note that the transfer
counters are now being updated. We've used Relaxed ordering—the increments are
guaranteed to land but it's not especially necessary for them to occur strictly before or after

the modification to the guard. Finally, the main function:

fn main () {
let mtx: Arc<SwapMutex<Bridge>> =
Arc::new (SwapMutex: :new (Bridge: :Empty) ) ;

let lhs_mtx = Arc::clone (&mtx);
let _lhs = thread::spawn (move ||
let _rhs = thread::spawn(move || rhs(mtx));

let one_second = time::Duration::from_millis (1_000);

loop A
thread: :sleep (one_second);
println! (
"Transfers per second:\n LHS: {}\n

LHS_TRANSFERS.swap (0, Ordering::Relaxed),
RHS_TRANSFERS.swap (0, Ordering::Relaxed)

)i

lhs (lhs_mtx));

oy
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We can see here that the mutex is set up, the threads have been spawned, and that the main
thread spends its time in an infinite loop printing out information on transfer rates. This is
done by sleeping the thread in one-second intervals, swapping the transfer counters with
zero and printing the previous value. The output looks something like this:

> cargo build
> ./target/debug/swap_mutex
Transfers per second:
LHS: 787790
RHS: 719371
Transfers per second:
LHS: 833537
RHS: 770782
Transfers per second:
LHS: 848662
RHS: 776678
Transfers per second:
LHS: 783769
RHS: 726334
Transfers per second:
LHS: 828969
RHS: 761439

The exact numbers will vary depending on your system. Also note that the numbers are not
very close in some instances, either. The SswapMutex is not fair.

An incorrect atomic queue

Before we build anything else, we're going to need a key data structure—a unbounded
queue. In chapter 5, Locks — Mutex, Condvar, Barriers, and RWLock, we discussed a bounded
deque protected at either end by mutexes. We're in the business, now, of building
synchronization and can't make use of the mutex approach. Our ambition is going to be to
produce an unbounded first-in-first-out data structure that has no locks, never leaves an
enqueuer or dequeuer deadlocked, and is linearizable to a sequential queue. It turns out
there's a pretty straightforward data structure that achieves this aim; the Michael and Scott
Queue, introduced in their 1995 paper Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms. The reader is encouraged to breeze through that paper before
continuing on with our discussion here, but it's not strictly necessary.

A word of warning. Our implementation will be wrong. The careful reader will note that
we're following the paper closely. There are two, and maybe more, issues with the
implementation we'll present, one major and unresolvable and the other addressable with
some care. Both are fairly subtle. Let's dig in.
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Queue is defined in src/queue. rs, the preamble of which is:

use std::ptr::null_mut;
use std::sync::atomic::{AtomicPtr, Ordering};

unsafe impl<T: Send> Send for Queue<T> {}
unsafe impl<T: Send> Sync for Queue<T> {}

Right off you can see from null_mut that we're going to be dealing with raw pointers. The
AtomicPtr is new, though we did mention it in passing earlier in the chapter. An atomic
pointer adapts a raw pointer—*mut T—to be suitable for atomic operations. There's no
runtime overhead associated with AtomicPtr; the Rust documentation notes that the type
has the same in-memory representation as a *mut T. Modern machines expose
instructions, giving the programmer the ability to fiddle with memory atomically.
Capabilities vary by processor, as you'd expect. LLVM and therefore Rust expose these
atomic memory fiddling capabilities through At omicPtr, allowing the range of pointer
fiddling in the sequential language but atomically. What this means, in practice, is that we
can start setting up happens-before/synchronizes-with causality relationships for pointer
manipulation, which is essential for building data structures.

Here's the next part:

struct Node<T> {

value: *const T,

next: AtomicPtr<Node<T>>,
}

impl<T> Default for Node<T> {
fn default () -> Self {
Node {
value: null_mut (),
next: AtomicPtr::default (),

}

impl<T> Node<T> {
fn new(val: T) —-> Self {
Node {
value: Box::into_raw (Box::new(val)),
next: AtomicPtr::default (),
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The interior of deque from the previous chapter was a single, contiguous block. That's not
the approach we're taking here. Instead, every element inserted into the queue will get a
Node and that Node will point to the next Node, which may or may not exist yet. It's a
linked list. The contiguous block approach is a bit harder to pull off in an atomic
context—though it is entirely possible and there are discussions in the Further reading
section papers—and would come down to a linked list of contiguous blocks. It's more
trouble than it's worth for our purposes here:

struct InnerQueue<T> {
head: AtomicPtr<Node<T>>,
tail: AtomicPtr<Node<T>>,
}

One key thing to note is that Node holds a pointer to a heap allocated T, not the T directly.
In the preceding code, we have the InnerQueue<T> of Queue<T>, pulling the usual
inner/outer structure detailed elsewhere in this book and in rustc. Why is it important to
note that Node doesn't hold its T directly? The value inside of the head of the Queue<T> is
never inspected. The head of the Queue is a sentinel. When the InnerQueue is created,
we'll see the following:

impl<T> InnerQueue<T> {
pub fn new() —-> Self {
let node = Box::into_raw (Box: :new (Node::default ()));
InnerQueue |
head: AtomicPtr::new(node),
tail: AtomicPtr::new(node),

}

Both the head and tail of the InnerQueue point to the same nonsense-valued Node, as
expected. The value at the outset is, in fact, null. Atomic data structures have issues with
memory reclamation in that coordinating drops is problematic and must be done only once.
It's possible to alleviate this issue somewhat by relying on Rust's type system, but it's still a
non-trivial project and is an active area of research, generally. Here, we note that we're
careful to hand out the ownership of the element only once. Being a raw pointer, it can be
given away more than once at a time, but that path leads to double-frees. InnerQueue
converts *const T into T—an unsafe operation—and just never dereferences the *const
T again, allowing the caller to do the drop in its own sweet time:

pub unsafe fn eng(&mut self, val: T) -> () |

let node = Box::new (Node: :new(val));

let node: *mut Node<T> = Box::into_raw (node) ;

loop |
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let tail: *mut Node<T> = self.tail.load(Ordering::Acquire);
let next: *mut Node<T> =
(*tail) .next.load (Ordering: :Relaxed);

if tail == self.tail.load(Ordering::Relaxed) {
if next.is_null () {
if (*tail) .next.compare_and_swap (next, node,
Ordering::Relaxed) == next {

self.tail.compare_and_swap (tail, node,
Ordering: :Release);
return;

}

} else {
self.tail.compare_and_swap (tail, next,
Ordering::Release);

}

This is the eng operation, marked unsafe because of the raw pointer manipulation going
on. That's an important point to consider—AtomicPtr is necessarily going to be done with
raw pointers. There's a lot going on here, so let's break it up into smaller chunks:

pub unsafe fn eng(&mut self, val: T) -> () {
let node = Box::new (Node::new(val));
let node: *mut Node<T> = Box::into_raw (node);

Here, we're constructing the Node for val. Notice we're using the same boxing,

the into_raw approach used so often in previous chapters. This node doesn't have a place
in the queue yet and the calling thread does not hold an exclusive lock over the queue.
Insertion will have to take place in the midst of other insertions:

loop |
let tail: *mut Node<T> = self.tail.load(Ordering::Acquire);
let next: *mut Node<T>
(*tail) .next.load (Ordering: :Relaxed);

With that in mind, it's entirely possible that an insertion attempt can fail. The enqueing of
an element in a queue takes place at the tail, the pointer to which we load up and call last.
The next node after tail is called next. In a sequential queue, we'd be guaranteed that the
next of tail is null, but that's not so here. Consider that between the load of the tail
pointer and the load of the next pointer an enqg run by another thread may have already
completed.
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Enqueing is, then, an operation that might take several attempts before we hit just the right
conditions for it to succeed. Those conditions are last still being the tail of the structure
and next being null:

if tail == self.tail.load(Ordering::Relaxed) {
if next.is_null () {

Note that the first load of tail is Acquire and each of the possible stores of it, in either
branch, are Release. This satisfies our Acquire/Release needs, with regard to locking
primitives. All other stores and loads here are conspicuously Relaxed. How can we be sure
we're not accidentally stomping writes or, since this is a linked list, cutting them loose in
memory? That's where the At omicPtr comes in:

if (*tail) .next.compare_and_swap (next, node,
Ordering: :Relaxed) == next {
self.tail.compare_and_swap(tail, node,
Ordering: :Release);
return;

}

It is entirely possible that by the time we've detected the proper conditions for enqueing
another thread will have been scheduled in, have detected the proper conditions for
enqueing, and have been enqueued. We attempt to slot our new node in with

(*last) .next.compare_and_swap (next, node, Ordering::Relaxed), that is, we
compare the current next of last and if and only if that succeeds—that's the == next
bit—do we attempt to set tail to the node pointer, again with a compare and swap. If both
of those succeed then the new element has been fully enqueued. It's possible that the swap
of tail will fail, however, in which case the linked list is correctly set up but the tail
pointer is off. Both the eng and deq operations must be aware they could stumble into a
situation where the tail pointer needs to be adjusted. That is in fact how the eng function
finishes off:

}

} else {
self.tail.compare_and_swap (tail, next,
Ordering: :Release);
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On an x86, all of these Relaxed operations are more strict but on ARMv8 there will be all
sorts of reordering. It's very important, and difficult, to establish a causal relationship
between all modifications. If, for example, we swapped the tail pointer and then the next
of the tail pointer, we'd open ourselves up to breaking the linked list, or making whole
isolated chains depending on the threads' view of memory. The deq operation is similar:

pub unsafe fn deqg(&mut self) -> Option<T> {

let mut head: *mut Node<T>;

let value: T;

loop
head = self.head.load(Ordering::Acquire) ;
let tail: *mut Node<T> = self.tail.load(Ordering::Relaxed) ;
let next: *mut Node<T> =
(*head) .next.load (Ordering: :Relaxed) ;

if head == self.head.load(Ordering::Relaxed) {
if head == tail {
if next.is_null () {

return None;
}
self.tail.compare_and_swap(tail, next,
Ordering: :Relaxed);

} else {
let val: *mut T = (*next).value as *mut T;
if self.head.compare_and_swap (head, next,
Ordering: :Release) == head {
value = *Box::from_raw(val);
break;
}
}
}
}
let head: Node<T> = *Box::from_raw (head);

drop (head) ;
Some (value)

}

The function is a loop, like eng, in which we search for the correct conditions and
circumstance to dequeue an element. The first outer if clause checks that head hasn't shifted
on us, while the inner first branch is to do with a queue that has no elements, where first
and last are pointers to the same storage. Note here that if next is not null we try and patch
up a partially completed linked list of nodes before looping back around again for another
pass at dequeing.
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This is because, as discussed previously, eng may not fully succeed. The second inner loop
is hit when head and tail are not equal, meaning there's an element to be pulled. As the
inline comment explains, we give out the ownership of the element T when the first hasn't
shifted on us but are careful not to dereference the pointer until we can be sure we're the
only thread that will ever manage that. We can be on account of only one thread that will
ever manage to swap the particular first and next pair the calling thread currently holds.

After all of that, the actual outer Queue<T> is a touch anti-climactic:

pub struct Queue<T> {
inner: *mut InnerQueue<T>,

}

impl<T> Clone for Queue<T> {
fn clone (&self) —> Queue<T> {
Queue { inner: self.inner }

4

impl<T> Queue<T> {
pub fn new() —-> Self {
Queue {
inner: Box::into_raw (Box: :new(InnerQueue

}

pub fn eng(&self, val: T) —-> () {
unsafe { (*self.inner) .enqg(val) }

pub fn deqg(&self) —-> Option<T> {
unsafe { (*self.inner) .deqg() }

}

cinew())),

We've already reasoned our way through the implementation and, hopefully, you, dear
reader, are convinced that the idea should function. Where the rubber meets the road is in

testing:

#lcfg(test)]
mod test {
extern crate quickcheck;

use super::*;

use std::collections::VecDeque;

use std::sync::atomic::AtomicUsize;
use std::thread;
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use std::sync::Arc;
use self::quickcheck::{Arbitrary, Gen, QuickCheck, TestResult};

#[derive (Clone, Debug) ]
enum Op {

Eng(u32),

Deq,

impl Arbitrary for Op {
fn arbitrary<G>(g: &mut G) -> Self

where
G: Gen,
{
let i: usize = g.gen_range (0, 2);

match i {
0 => Op::Eng(g.gen()),
_ => Op::Deq,

}

This is the usual test preamble that we've seen elsewhere in the book. We define an op
enumeration to drive an interpreter style quickcheck test, which we call
here sequential:

#[test]
fn sequential () {
fn inner (ops: Vec<Op>) -> TestResult {
let mut vd = VecDeque::new/();
let g = Queue::new();

for op in ops {
match op {
Op::Eng(v) => {
vd.push_back (v) ;
g.enqg(v) ;

Op::Deg => {
assert_eq! (vd.pop_front (), g.deqg());

}

TestResult: :passed()
}
QuickCheck: :new () .quickcheck (inner as fn (Vec<Op>) ->
TestResult) ;
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}

We have a VecDeque as the model; we know it's a proper queue. Then, without dipping
into any kind of real concurrency, we confirm that Queue behaves similarly to a VecDeque.
At least in a sequential setting, Queue will work. Now, for a parallel test:

fn parallel_exp(total: usize, engs: u8, degs: u8) -> bool {
let g = Queue::new();
let total_expected = total * (engs as usize);
let total_retrieved = Arc::new (AtomicUsize::new(0));

let mut ejhs = Vec::new();

for _ in O0..engs {
let mut g = g.clone();
ejhs.push (
thread: :Builder: :new ()
.spawn (move || {

for 1 in 0..total {
g.enqg(i);

})

.unwrap (),

)i

let mut djhs = Vec::new();
for _ in 0..degs {

let mut g = g.clone();
let total_retrieved = Arc::clone(&total_retrieved);

djhs.push (
thread: :Builder: :new ()
.spawn (move || {
while total_retrieved.load (Ordering::Relaxed)
!= total_expected {
if g.deg() .is_some() {
total_retrieved.fetch_add (1,
Ordering::Relaxed);
}
}
)

.unwrap (),

)i

for jh in ejhs {
Jh.join () .unwrap () ;
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for jh in djhs {
Jh.join () .unwrap () ;

}

assert_eq! (total_retrieved.load (Ordering: :Relaxed),
total_expected);
true

}

We set up two groups of threads, one responsible for enqueing and the other for dequeing.
The enqueuing threads push a total number of items through the Queue and the
dequeuers pull until a counter—shared between each of the dequeuers—hits bingo. Finally,
back in the main test thread, we confirm that the total number of retrieved items is the
same as the expected number of items. It's possible that our dequeing threads will read past
the end of the queue because of a race between the check on the while loop and the call of
q.deg, which works in our favor because confirming the queue allows the deque of no
more elements than were enqueued. That, and there are no double-free crashes when the
test is run. This inner test function is used twice, once in repeated runs and then again in
a quickcheck setup:

#[test]
fn repeated() {
for 1 in 0..10_000 ¢{
println! ("{}", 1i);
parallel_exp (73, 2, 2);

}

#[test]
fn parallel () |
fn inner (total: usize, engs: u8, degs: u8) —-> TestResult {
if engs == || degs == 0 {
TestResult::discard()
} else {
TestResult::from_bool (parallel_exp(total, engs, degs))
}
}
QuickCheck: :new () .quickcheck (inner as fn(usize, u8, u8) ->
TestResult);
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What's wrong here? If you run the test suite, you may or may not hit one of the issues.
They are fairly improbable, though we'll shortly see a way to reliably trigger the worst. The
first issue our implementation runs into is the ABA problem. In a compare-and-swap
operation, pointer A is to be swapped by some thread with B. Before the check can be
completed in the first thread, another thread swaps A with C and then C back again to A.
The first thread is then rescheduled and performs its compare-and-swap of A to B, none the
wiser that A is not really the 2 it had at the start of the swap. This will cause chunks of the

queue's linked list to point incorrectly, possibly into the memory that the queue does not
rightly own. That's bad enough. What could be worse?

Let's cause a use-after-free violation with this structure. Our demonstration program is
short and lives at src/bin/queue_spin.rs:

extern crate synchro;

use synchro: :Queue;
use std::thread;

fn main (

) A
let g =

Queue: :new () ;
let mut jhs = Vec::new();

for _ in 0..4 {
let eq = g.clone();
jhs.push (thread: :spawn (move || {
let mut i = 0;
loop {
eg.enq (i) ;
i += 1;
eq.deq() ;

1)
}

for jh in jhs {
jh.join () .unwrap () ;

}
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The program creates four threads, each of which enqueue and dequeue in sequence as
rapidly as possible with no coordination between them. It's important to have at least two
threads, else the queue is used sequentially and the issue does not exist:

> time cargo run —--bin queue_spin
Finished dev [unoptimized + debuginfo] target(s) in 0.0 secs
Running " target/debug/queue_spin’

Segmentation fault

real Om0.588s
user Om0.964s
sys Om0.016s

Ouch. That took no time at all. Let's have a look at the program in a debugger. We'll use
11db, but if you're using gdb, the results will be the same:

> 11db-3.9 target/debug/queue_spin
(11db) target create "target/debug/queue_spin"
Current executable set to 'target/debug/queue_spin' (x86_64).
(11db) run
Process 12917 launched:
'/home/blt/projects/us/troutwine/concurrency_in_rust/external_projects/sync
hro/target/debug/queue_spin' (x86_64)
Process 12917 stopped
* thread #2: tid = 12920, 0x0000555555560585
queue_spin’_$LT$synchro. .queue. . InnerQueue$SLTSTSGTSSGTS: :deq: :heefaa8c9b1d4
10ee (self=0x00007£f£f£f£6c2a010) + 261 at queue.rs:78, name = 'queue_spin',
stop reason = signal SIGSEGV: invalid address (fault address: 0x0)

frame #0: 0x0000555555560585
queue_spin’ _$LT$synchro. .queue. . InnerQueue$SLTSTSGTSSGTS: :deq: :heefaa8c9b1d4
10ee (self=0x00007£f£f£f£6c2a010) + 261 at queue.rs:78

75 }

76 self.tail.compare_and_swap(tail, next,
Ordering: :Relaxed) ;

77 } else {

-> 78 let val: *mut T = (*next).value as *mut T;

79 if self.head.compare_and_swap (head, next,
Ordering: :Release) == head {

80 value = *Box::from_raw(val);

81 break;

thread #3: tid = 12921, 0x0000555555560585
queue_spin’ _$LT$synchro. .queue. . InnerQueue$SLTSTSGTSSGTS: :deq: :heefaa8c9b1d4
10ee (self=0x00007£f£f£f£6c2a010) + 261 at queue.rs:78, name = 'queue_spin',
stop reason = signal SIGSEGV: invalid address (fault address: 0x0)
frame #0: 0x0000555555560585
queue_spin’_$LT$synchro. .queue. . InnerQueue$SLTSTSGTSSGTS: :deq: :heefaa8c9b1d4
10ee (self=0x00007£f£f£f£6c2a010) + 261 at queue.rs:78
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75 }

76 self.tail.compare_and_swap(tail, next,
Ordering: :Relaxed) ;

77 } else {

-> 78 let val: *mut T = (*next) .value as *mut T;

79 if self.head.compare_and_swap (head, next,
Ordering: :Release) == head {

80 value = *Box::from_raw(val);

81 break;

Well look at that! And, just to confirm:

(11db) p next
(synchro: :queue: :Node<i32> *) $0 = 0x0000000000000000

Can we turn up another? Yes:

(11db) Process 12893 launched:
' /home/blt/projects/us/troutwine/concurrency_in_rust/external_projects/sync
hro/target/debug/queue_spin' (x86_64)
Process 12893 stopped
* thread #2: tid = 12896, 0x000055555555fb3e
queue_spin core::sync::atomic: :atomic_load: :hd37078e3d501£f11f (dst=0x0000000
000000008, order=Relaxed) + 78 at atomic.rs:1502, name = 'queue_spin', stop
reason = signal SIGSEGV: invalid address (fault address: 0x8)
frame #0: 0x000055555555fb3e
queue_spin core::sync::atomic: :atomic_load: :hd37078e3d501£f11f (dst=0x0000000
000000008, order=Relaxed) + 78 at atomic.rs:1502
thread #3: tid = 12897, 0x000055555555fb3e
queue_spin core::sync::atomic: :atomic_load: :hd37078e3d501£f11f (dst=0x0000000
000000008, order=Relaxed) + 78 at atomic.rs:1502, name = 'queue_spin', stop
reason = signal SIGSEGV: invalid address (fault address: 0x8)
frame #0: 0x000055555555fb3e
queue_spin core::sync::atomic: :atomic_load: :hd37078e3d501£f11f (dst=0x0000000
000000008, order=Relaxed) + 78 at atomic.rs:1502
thread #4: tid = 12898, 0x000055555555fb3e
queue_spin core::sync::atomic: :atomic_load: :hd37078e3d501£f11f (dst=0x0000000
000000008, order=Relaxed) + 78 at atomic.rs:1502, name = 'queue_spin', stop
reason = signal SIGSEGV: invalid address (fault address: 0x8)
frame #0: 0x000055555555fb3e
queue_spin core::sync::atomic: :atomic_load: :hd37078e3d501£f11f (dst=0x0000000
000000008, order=Relaxed) + 78 at atomic.rs:1502
thread #5: tid = 12899, 0x000055555555fb3e
queue_spin core::sync::atomic: :atomic_load: :hd37078e3d501£f11f (dst=0x0000000
000000008, order=Relaxed) + 78 at atomic.rs:1502, name = 'queue_spin', stop
reason = signal SIGSEGV: invalid address (fault address: 0x8)
frame #0: 0x000055555555fb3e
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queue_spin core::sync::atomic: :atomic_load: :hd37078e3d501£f11f (dst=0x0000000

000000008,

order=Relaxed) + 78 at atomic.rs:1502

In the first example, the head is pointing to null, which will happen when the queue is
empty, but this particular branch is only hit when the queue is not empty. What's going on
here? It turns out there's a nasty race and its down to deallocation. Let's look at deq again,
this time with line numbers:

64
65
66
67
68
69

70

71
72
73
74
75
76

77
78
79

80
81
82
83
84
85
86
87
88
89

pub unsafe fn deg(&mut self) -> Option<T> {

}

let mut head: *mut Node<T>;
let value: T;
loop {
head = self.head.load(Ordering::Acquire);
let tail: *mut Node<T> =
self.tail.load (Ordering: :Relaxed) ;
let next: *mut Node<T> =
(*head) .next.load (Ordering: :Relaxed);

if head == self.head.load(Ordering::Relaxed)

if head == tail {
if next.is_null () |
return None;

}

{

self.tail.compare_and_swap (tail, next,

Ordering::Relaxed);

} else {
let val: *mut T = (*next).value as *mut T;
if self.head.compare_and_swap (head, next,
Ordering::Release) == head {
value = *Box::from_raw(val);
break;
}
}
}
}
let head: Node<T> = *Box::from_raw (head);

drop (head) ;
Some (value)

Say we have four threads, A through D. Thread 2 gets to line 78 and is stopped. Thread 2 is
now in possession of a head, a tail, and a next, which point to a sensible linked-list in
memory. Now, threads B, C, and D each perform multiple eng and deq operations such that
when A wakes up the linked list pointed to by the head of 2 is long gone. In fact, head itself
is actually deallocated, but A gets lucky and the OS hasn't overwritten its memory yet.
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Thread A wakes up and performs line 78 but next now points off to nonsense and the whole
thing crashes. Alternatively, say we have two threads, A and B. Thread A wakes up and
advances through to line 70 and is stopped. Thread B wakes up and is very fortunate and
advances all the way through to line 88, deallocating head. The OS is feeling its oats and
overwrites the memory that 2 is pointing at. Thread A then wakes up, fires

(*head) .next.load (Ordering: :Relaxed), and subsequently crashes. There are many
alternatives here. What's common between them all is deallocation happening while there's
still outstanding references to one or more nodes. In fact, Michael and Scott's paper does
mention this as a problem, but briefly in a way that's easy to overlook:

"To obtain consistent values of various pointers we rely on sequences of reads that
re-check earlier values to be sure they haven't changed. These sequences of reads
are similar to, but simpler than, the snapshots of Prakash et al. (we need to check
only one shared variable rather than two). A similar technique can be used to
prevent the race condition in Stone's blocking algorithm. We use Treiber's simple
and efficient non-blocking stack algorithm to implement a non-blocking free list."

The key ideas here are sequences of reads that re-check earlier values and free list. What we've
seen by inspection is that it's entirely possible to compare-and-swap a value that has
changed—the ABA problem—which leaves our implementation pointing off into space.
Also, immediately deallocating nodes will leave us open to crashes even absent a compare-
and-swap. What Michael and Scott have done is create a minimal kind of memory
management; rather than delete nodes, they move them into a free list to be reused or
deleted at a later time. Free lists can be thread-local, in which case you avoid expensive
synchronization, but it's still kind of tricky to be sure your thread-local free list doesn't have
the same pointer as another thread.

Options to correct the incorrect queue

What should we do? Well, it turns out there's lots of options in the literature. Hart,
McKenney, Brown and Walpole's 2007 Performance of Memory Reclamation for Lockless
Synchronization discusses four, along with references to their originating papers:

* Quiescent-state-based reclamation (QSRB): The application's signal
quiescent'periods in which reclamation is allowed

e Epoch-based reclamation (EBR): The applications make use of structures that
determine when reclamation is allowed by moving memory through epochs
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¢ Hazard-pointer-based reclamation (HPBR): Threads cooperate and signal
pointers as being hazardous for reclamation

¢ Lock-free reference counting (LFRC): Pointers carry an atomic counter of uses
alongside them, which threads use to determine safe reclamation periods

Quiescent state reclamation works by having threads that operate on a shared concurrent
structure signal that have entered a quiescent state for a period of time, meaning that for the
signaled state the thread does not claim any stake over a reference from inside the shared
structure. A separate reclamation actor, which may be the structure itself or a thread in a
quiescent state, searched for grace periods in which it's safe to reclaim storage, either because
all threads have gone quiescent or because some relevant subsets have. It's quite tricky and
involves peppering your code with notifications of entering and exiting quiescent states.
Hart et al note that this reclamation method was commonly used in the Linux kernel at the
time of writing, which remains true at the time of this writing. Interested readers are
referred to the available literature on the Linux kernel's read-copy update mechanism. The
key difficulty of QSRB as a technique is that it's not always clear in user-space when a
natural quiescent period exists; if you signal one incorrectly you're going to get data-races.
Context switches in an operating system are a natural quiescent period—the relevant
contexts won't be manipulating anything until they get called back in—but it's less clear to
me in our queue where such a period would comfortably exist. The benefit of QSRB is that
it's a very fast technique, requiring less thread synchronization than any of the other
methods below.

Epoch-based reclamation is similar to QSRB, except that it's application independent. That
is, the application interacts with storage through an intermediary layer and this layer stores
enough information to decide when a grace period has come. In particular, every thread
ticks a flag, indicating that it means to interact with shared data, interacts, and then ticks
the flag the other direction on its way out. The number of flag cycles is referred to as an
'epoch’. Once shared data has gone through enough epochs, the thread will attempt to
reclaim the storage. This method has the benefit of being more automatic than QSRB—the
application developer uses specially designed intermediary types—but has the downside of
requiring some synchronization on either side of the data access—those flag ticks. (The
paper actually introduces a fifth, new epoch-based reclamation, which improves on epoch-
based replication but does require hints from the application developer. In some sense, it is
an EBR/QSRB hybrid approach.)
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The hazard pointer reclamation scheme is entirely data structure dependent. The idea is
that every involved thread will keep a collection of hazard pointers, one for each lockless
operation it intended to perform. This thread-local collection of hazard pointers is mirrored
into some reclamation system—perhaps a special-purpose garbage collector or plug-in
allocator—and this system is able to check the status of the hazard pointers. When a thread
is intended to perform a lockless operation on some shared data, it signals the hazard
pointer as protected, disallowing its reclamation. When the thread is done, it signals that
the shared data is no longer protected. Depending on context, the shared data may now be
free for reclamation or may be subject to later reclamation. Like EBR, HPBR requires access
to shared data through special structures and has overheads in terms of synchronization.
Also, there maybe be a higher burden of implementation compared to EBR, but less than
QSRB. Harder yet, if your data structure passes references to its internal storage, that also
requires a hazard pointer. The more threads, the more hazard pointer lists you require.
Memory overheads can get non-trivial real quick. Compared to grace period approaches,
hazard pointers can be much faster at reclaiming memory, due to there being no need to
search for a time when a reference is not hazardous. It is or it isn't. HPBR has higher
overheads per operation and higher memory requirements overall, but is potentially better
at reclamation. That's a non-trivial detail. If QSBR or EBR are run on systems where
allocation blocks the CPU, it's possible for these methods to never find a grace period,
eventually exhausting system memory.

The last of the bunch is atomic reference counting, akin to standard library's Arc but for
atomics. This method is not especially fast, incurring a cost per access to the reference
counter as well as the branch on that counter, but it is simple and reclamation occurs

promptly.

Aside from reference counting, each of these methods are tricky to implement. But we're in
luck; the crate ecosystem has an implementation of epoch-based reclamation and hazard
pointer reclamation. The relevant libraries are crossbeam (https://crates.io/crates/
crossbeam) and conc (https://crates.io/crates/conc). We'll discuss them in great detail
in the next chapter. Crossbeam aims to be the 1ibcds (https://github.com/khizmax/
libcds) of Rust and has a Michael and Scott queue already implemented for us. Let's give it
a spin. The relevant file is src/bin/crossbeam_gqueue_spin.rs:

extern crate crossbeam;

use crossbeam: :sync::MsQueue;
use std::sync::Arc;
use std::thread;

fn main (

) A
let g =

Arc::new (MsQueue: :new () ) ;
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let mut jhs = Vec::new();

for _ in 0..4 {
let g = Arc::clone(&q);
jhs.push (thread: :spawn (move || {
let mut i = 0;

for jh in jhs {
jh.join () .unwrap () ;
}
}

This is fairly similar to queue_spin, save that enqg is now push and deq is pop. It's worth
noting as well that MsQueue: : pop is blocking. The mechanism for that is very neat; we'll
discuss that in the next chapter.

Semaphore

We discussed semaphores in passing in chapter 5, Locks — Mutex, Condvar, Barriers, and
RWLock, especially with regard to the concurrency puzzles from The Little Semaphore. It's
now, as promised, time to implement a semaphore. What exactly is a semaphore? Similar to
our analysis of mutex as an atomic object, let's consider it:

¢ Semaphore supports two operations, wait and signal.

¢ A semaphore has an isize value that is used to track the available resource
capacity of the semaphore. This value is only manipulable by wait and signal.

e The operation wait decrements value. If the value is less than zero, 'wait' blocks

the calling thread until such time as a value becomes available. If the value is not
less than zero, the thread does not block.
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e The operation signal increments value. After increment, if the value is less
than or equal to zero then there are one or more waiting threads. One of these
threads is woken up. If the value is greater than zero after increment, there are no
waiting threads.

¢ All loads and stores that occur after and before a wait in program order must not
be moved prior to or after the wait.

¢ All loads and stores that occur before an signal in program order must not be
moved to after the signal.

If this seems familiar, there's a good reason for that. Viewed a certain way, a mutex is a
semaphore with only one resource available; a locking mutex maps to wait and signaling
maps to unwait. We have specified the behaviour of loads and stores around the waiting
and signaling of the semaphore to avoid the same deadlock behaviour identified previously
in the mutex analysis.

There are some subtleties not captured in the preceding breakdown that don't affect the
analysis of the semaphore but do affect the programming model. We'll be building a
semaphore with fixed resources. That is, when the semaphore is created, the programmer is
responsible for setting the maximum total resources available in the semaphore

and ensuring that the semaphore starts with these resources available. Some semaphore
implementations allow for the resource capacity to shift over time. These are commonly
called counting semaphores. Our variant is called a bounded semaphore; the subvariant of this
sort with only a single resource is called a binary semaphore. Behavior around the signaling
of waiting threads may vary. We will signal our threads on a first-come, first-serve basis.

Let's dig in. Our semaphore implementation is in src/semaphore.rs and it's very short:
use crossbeam: :sync: :MsQueue;

unsafe impl Send for Semaphore {}
unsafe impl Sync for Semaphore {}

pub struct Semaphore {
capacity: MsQueue<()>,

}

impl Semaphore {

pub fn new(capacity: usize) -> Self {
let g = MsQueue::new();
for _ in O..capacity {
q.push(());

¥
Semaphore { capacity: g }
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pub fn wait (&self) -> () |
self.capacity.pop();
}

pub fn signal (&¢self) -> () {
self.capacity.push(());
I3
I3

Well! Crossbeam's MsQueue has the correct ordering semantics when MsQueue: : push and
then MsQueue: : pop are done in that sequence by the same thread, where pop has the
added bonus of blocking until such a time where the queue is empty. So, our semaphore is
an MsQueue filled with the capacity total (). The operation wait decreases the value—the
total number of () in the queue—and does so with Acquire/Release ordering. The
operation signal increases the value of the semaphore by pushing an additional () onto the

queue with Release semantics. It is possible for a programming error to result in

wait/signal invocations that are not one-to-one, and we can resolve this with the same

Guard approach taken by Mutex and SwapMutex. The underlying queue linearizes

Guard—see the next chapter for that discussion—and so our semaphore does so also. Let's
try this thing out. We've got a program in-project to demonstrate the use of Semaphore,

src/bin/status_demo.rs:
extern crate synchro;
use std::sync::Arc;
use synchro::Semaphore;

use std::{thread, time};

const THRS: usize = 4;

static mut COUNTS: &'static mut [u64] = &mut [0; THRS];
static mut STATUS: &'static mut [bool] = &mut [false;

fn worker (id: usize, gate: Arc<Semaphore>) -> () {
unsafe {
loop {
gate.wait ();
STATUS[id] = true;
COUNTS[id] += 1;
STATUS[id] = false;
gate.signal ();

}

fn main () {
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let semaphore = Arc::new(Semaphore::new(1l));

for 1 in 0..THRS {
let semaphore = Arc::clone (&semaphore);

thread: :spawn (move || worker (i, semaphore));
I3
let mut counts: [u64; THRS] = [0; THRS];
loop {
unsafe {
thread::sleep(time::Duration::from_millis(1_000));
print! ("[");
for 1 in 0..THRS {
print! (" {:>5}; {:010}/sec |", STATUSI[i],
COUNTS[i] - counts[i]);
counts[i] = COUNTS[1];
3
println! ();

}

We make THRS total worker threads, whose responsibilities are to wait on the semaphore,
flip their STATUS to true, add one to their COUNT, and flip their STATUS to false before
signaling the semaphore. Mutable static arrays is kind of a goofy setup for any program,
but it's a neat trick and causes no harm here, except for interacting oddly with the
optimizer. If you compile this program under release mode, you may find that the
optimizer determines worker to be a no-op. The main function creates a semaphore with a
capacity of two, carefully offsets the workers, and then spins, forever printing out the
contents of STATUS and COUNT. A run on my x86 test article looks like the following:

> ./target/release/status_demo

| false; 0000170580/sec | true; 0000170889/sec | true; 0000169847/sec |
false; 0000169220/sec |

| false; 0000170262/sec | false; 0000170560/sec | true; 0000169077/sec |
true; 0000169699/sec |

| false; 0000169109/sec | false; 0000169333/sec | false; 0000168422/sec |
false; 0000168790/sec |
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| false; 0000170266/sec | true; 0000170653/sec | false; 0000168184/sec |
true; 0000169570/sec |

| false; 0000170907/sec | false; 0000171324/sec | true; 0000170137/sec |
false; 0000169227/sec |

And from my ARMv7 machine:

> ./target/release/status_demo

| false; 0000068840/sec | true; 0000063798/sec | false; 0000063918/sec |
false; 0000063652/sec |

| false; 0000074723/sec | false; 0000074253/sec | true; 0000074392/sec |
true; 0000074485/sec |

| true; 0000075138/sec | false; 0000074842/sec | false; 0000074791/sec |
true; 0000074698/sec |

| false; 0000075099/sec | false; 0000074117/sec | false; 0000074648/sec |
false; 0000075083/sec |

| false; 0000075070/sec | true; 0000074509/sec | false; 0000076196/sec |
true; 0000074577/sec |

| true; 0000075257/sec | true; 0000075682/sec | false; 0000074870/sec |
false; 0000075887/sec |

Binary semaphore, or, a less wasteful mutex

How does our semaphore stack up against standard library's Mutex? How about our
spinlock Mutex? Apply this diff to status_demo:

diff --git a/external_projects/synchro/src/bin/status_demo.rs

b/external_projects/synchro/src/bin/status_demo.rs

index cb3e850..fef2955 100644

-—— a/external_projects/synchro/src/bin/status_demo.rs

+++ b/external_projects/synchro/src/bin/status_demo.rs

@@ -21,7 +21,7 @@ fn worker (id: usize, gate: Arc<Semaphore>) -> () {
}

fn main() {
- let semaphore = Arc::new(Semaphore::new(2));
+ let semaphore Arc: :new (Semaphore::new(l));

for i in 0..THRS {
let semaphore = Arc::clone (&semaphore);
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You'll create a mutex variant of the semaphore status demo. The numbers for that on my
x86 test article look like this:

| false; 0000090992/sec | true; 0000090993/sec | true; 0000091000/sec |
false; 0000090993/sec |
| false; 0000090469/sec | false; 0000090468/sec | true; 0000090467/sec |
true; 0000090469/sec |
| true; 0000090093/sec | false; 0000090093/sec | false; 0000090095/sec |
false; 0000090093/sec |

The numbers at capacity two were 170,000 per second, so there's quite a dip. Let's compare
that against standard library mutex first. The adaptation is in
src/bin/mutex_status_demo.rs:

use std::sync::{Arc, Mutex};
use std::{thread, time};

const THRS: usize = 4;
static mut COUNTS: &'static mut [u64] = &mut [0; THRS];
static mut STATUS: &'static mut [bool] = &mut [false; THRS];

fn worker (id: usize, gate: Arc<Mutex<()>>) -> () {
unsafe {
loop {
let guard = gate.lock () .unwrap();
STATUS[id] = true;
COUNTS[id] += 1;
STATUS[id] = false;
drop (guard) ;

}

fn main() {
let mutex = Arc::new (Mutex::new(()));

for 1 in 0..THRS {
let mutex = Arc::clone (&mutex);

thread: :spawn (move || worker (i, mutex));
}
let mut counts: [u64; THRS] = [0; THRS];
loop {
unsafe {
thread::sleep(time::Duration::from_millis(1_000));
print! ("[");

for 1 in 0..THRS {
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print! (" {:>5}; {:010}/sec |", STATUSI[i],
COUNTS[i] - counts[i]);
counts[i] = COUNTS[1];

}
println! ();

}
Straightforward, yeah? The numbers from that on the same x86 test article are as follows:

| false; 0001856267/sec | false; 0002109238/sec | true; 0002036852/sec |

true; 0002172337/sec |
| false; 0001887803/sec | true; 0002072647/sec | false; 0002065467/sec |

true; 0002143558/sec |
| false; 0001848387/sec | false; 0002044828/sec | true; 0002098595/sec |

true; 0002178304/sec |

Let's be a little generous and say that the standard library mutex is clocking in at 2,000,000
per second, while our binary semaphore is getting 170,000 per second. How about the
spinlock? At this point, I will avoid the source listing. Just be sure to import SwapMutex
and adjust it from the standard library Mutex accordingly. The numbers for that are as

follows:

| true; 0012527450/sec | false; 0011959925/sec | true; 0011863078/sec |

false; 0012509126/sec |
| true; 0012573119/sec | false; 0011949160/sec | true; 0011894659/sec |

false; 0012495174/sec |
| false; 0012481696/sec | true; 0011952472/sec | true; 0011856956/sec |

false; 0012595455/sec |

Which, you know what, makes sense. The spinlock is doing the least amount of work and
every thread is burning up CPU time to be right there when it's time to enter their critical
section. Here is a summary of our results:

¢ Spinlock mutex: 11,000,000/sec
¢ Standard library mutex: 2,000,000/sec
e Binary semaphore: 170,000/sec

The reader is warmly encouraged to investigate each of these implementations in Linux
perf. The key thing to understand, from these results, is not that any of these
implementations is better or worse than the other. Rather, that they are suitable for

different purposes.
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We could, for instance, use techniques from the next chapter to reduce the CPU
consumption of the spinlock mutex. This would slow it down some, likely bringing it
within the range of standard library Mutex. In this case, use the standard library Mutex.

Atomics programming is not a thing to take lightly. It's difficult to get right, and an
implementation that may seem right might well not obey the causal properties of the
memory model. Furthermore, just because a thing is lock-free does not mean that it is faster
to execute.

Writing software is about recognizing and adapting to trade-offs. Atomics demonstrates
that in abundance.

Summary

In this chapter, we discussed the atomic primitives available on modern CPU architectures
and their reflection in Rust. We built higher-level synchronization primitives of the sort
discussed in chapter 4, Sync and Send — the Foundation of Rust Concurrency, and Chapter 5,
Locks — Mutex, Condvar, Barriers, and RWLock, as well as our own semaphore, which does not
exist in Rust. The semaphore implementation could be improved, depending on your
needs, and I warmly encourage the readers to give that a shot. We also ran into a common
problem of atomic programming, memory reclamation, which we discussed in terms of a
Michael Scott queue. We'll discuss approaches to this problem in-depth in the next chapter.

Further reading

e Axioms for Concurrent Objects, Maurice Herlihy and Jeannette Wing. This paper
by Herlihy and Wing introduced the formal definition of linearizability and the
formal analysis framework. Subsequent work has expanded or simplified on this
paper, but the reader is warmly encouraged to digest the first half of the paper, at
least.

e Distributed Algorithms, Nancy Lynch. To my knowledge, Lynch's work was the
first general overview of distributed algorithms in textbook form. It is incredibly
accessible and Chapter 13 of Lynch's book is especially relevant to this
discussion.
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e [n C++, are acquire-release memory order semantics transitive?, available at https://
softwareengineering.stackexchange.com/questions/253537/in-c-are-

acquire-release-memory-order-semantics—-transitive. The consequences of
memory orderings are not always clear. This question on StackExchange,
which influenced the writing of this chapter, is about the consequence of
splitting Acquire and Release across threads. The reader is encouraged to
ponder the question before reading the answer.

e std::memory_order, CppReference, available at http://en.cppreference.com/w/
cpp/atomic/memory_order. Rust's memory model is LLVM's, which is, in turn,
influenced by the C++ memory model. This discussion of memory ordering is
particularly excellent, as it has example code and a less language-lawyer
approach to explaining orders.

e Peterson’s lock with C++0x atomics, available at https://www.
justsoftwaresolutions.co.uk/threading/petersons_lock_with_C++0x_
atomics.html. This post discusses Bartosz Milewski's implementation of
Peterson's algorithm for Mutex, demonstrates how and why it is incorrect, and
describes a functional alternative. Milewski is a well-known C++ expert. It just
goes to show, atomic programming is difficult and easy to get subtly wrong.

o Algorithms for Mutual Exclusion, Michael Raynal. This book by Raynal was written
in 1986, well before the x86_64 architecture we've discussed was introduced and
a mere year after ARMv1 was introduced. Raynal's book remains useful, both as
a historical overview of mutual exclusion algorithms and for environments
where synchronization primitives are not available, such as on file systems.

e Review of many Mutex implementations, available at http://cbloomrants.
blogspot.com/2011/07/07-15-11-review-of-many-mutex.html. As it says on the
tin, this post is a review of many mutex implementations that are given a more
modern context than Raynal's book. Some explanations rely on Microsoft
Windows features, which may be welcome to the reader as this book is heavily
invested in a Unix-like environment.

o Encheapening Cernan Metrics, available at http://blog.troutwine.us/2017/08/
31/encheapening-cernan-internal-metrics/. In this chapter we have discussed
atomics largely in terms of synchronization. There are many other use cases. This
post discusses the application of atomics to providing cheap self-telemetry to a
complicated software project.
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e Roll Your Own Lightweight Mutex, available at http://preshing.com/20120226/
roll-your—-own-lightweight-mutex/. Preshing On Programming has a run of
excellent atomics material, focused on C++ and Microsoft environments. This
particular post is to do with implementing mutexes—a topic dear to this
chapter—and has an excellent follow-up conversation in the comments. The post
discusses a variant of semaphores called benaphores.

e Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue Algorithms,
Maged Michael and Michael Scott. This paper introduces the Michael and Scott
Queue, discussed in this chapter, and that's what it's best known for. You may
also recognize their queue with two locks from the previous chapter, adapted
through the Erlang VM, of course.

o Lock-Free Data Structures. The Evolution of a Stack, available at https://kukuruku.
co/post/lock-free-data-structures-the-evolution-of-a-stack/. This pOSt
discusses the 1ibcds implementation of Trieber stacks, as well as making
reference to other areas of the literature. Readers will note that previous Further
reading have introduced some of the same literature; it's always good to seek
alternate takes. Readers are especially encouraged to investigate the Hendler,
Shavit, and Yerushalmi paper referenced in the post.
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In the previous chapter, we discussed the atomic primitives available to the Rust
programmer, implementing higher-level synchronization primitives and some data
structures built entirely of atomics. A key challenge with atomic-only programming,
compared to using higher-level synchronization primitives, is memory reclamation. It is
only safe to free memory once. When we build concurrent algorithms only from atomic
primitives, it's very challenging to do something only once and keep performance up. That
is, safely reclaiming memory requires some form of synchronization. But, as the total
number of concurrent actors rise, the cost of synchronization dwarfs the latency or
throughput benefits of atomic programming.

In this chapter, we will discuss three techniques to resolve the memory reclamation issue of
atomic programming—reference counting, hazard pointers, and epoch-based

reclamation. These methods will be familiar to you from previous chapters, but here we
will do a deep-dive on them, investigating their trade-offs. We will introduce two new
libraries, conc and crossbeam, which implement hazard pointers and epoch-based
reclamation, respectively. By the close of this chapter, you should have a good handle on
the three approaches presented and be in a good place to start laying down production-
quality code.

By the end of this chapter, we will have:

Discussed reference counting and its associated tradeoffs

Discussed the hazard pointer approach to memory reclamation

Investigated a Treiber stack using the hazard pointer approach via the conc crate

Discussed the epoch-based reclamation strategy

Done a deep investigation of the crossbeam_epoch crate

Investigated a Treiber stack using the epoch-based reclamation approach



Atomics — Safely Reclaiming Memory Chapter 7

Technical requirements

This chapter requires a working Rust installation. The details of verifying your installation
are covered in Chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust.
No additional software tools are required.

You can find the source code for this book's projects on GitHub: https://github.com/
PacktPublishing/Hands-On-Concurrency-with-Rust. The source code for this chapter is
under Chapter07.

Approaches to memory reclamation

In the discussion that follows, the three techniques are laid out roughly in order of their
speed, slowest to fastest, as well as their difficulty, easiest to hardest. You should not be
discouraged—you are now at one of the forefronts of the software engineering world.
Welcome. Go boldly.

Reference counting

Reference-counting memory reclamation associates a piece of protected data with an atomic
counter. Every thread reading or writing to that protected data increases the counter on
acquisition and decreases the counter on de-acquisition. The thread to decrease the counter
and find it as zero is the last to hold the data and may either mark the data as available for
reclamation or deallocate it immediately. This should, hopefully, sound familiar. The Rust
standard library ships with std: : sync: :Arc—discussed in chapter 4, Sync and Send — the
Foundation of Rust Concurrency, and Chapter 5, Locks — Mutex, Condvar, Barriers and RWLock,
especially—to fulfill this exact need. While we discussed the usage of Arc, we did not
discuss its internals previously, owing to our need to reach chapter 6, Atomics — the
Primitives of Synchronization, before we had the necessary background. Let's dig into Arc
now.

The Rust compiler's code for Arc is src/liballoc/arc. rs. The structure definition is
compact enough:

pub struct Arc<T: ?Sized> {
ptr: Shared<ArcInner<T>>,
phantom: PhantomData<T>,
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We encountered Shared<T>in chapter 3, The Rust Memory Model — Ownership, References
and Manipulation, with it being a pointer with the same characteristics as *mut X except that
it is non-null. There are two functions for creating a new Shared<T>, which are const
unsafe fn new_unchecked(ptr: *mut X) -> Self and fn new (ptr: *mut X) ->
Option<Self>. In the first variant, the caller is responsible for ensuring that the pointer is
non-null, in the second, the nulled nature of the pointer is checked. Please refer back to
Chapter 3, The Rust Memory Model — Ownership, References and Manipulation, Rc section for a
deep-dive. We know, then, that ptr in Arc<T> is non-null and, owing to the phantom data
field, that the store of T is not held in Arc<T>. That'd be in ArcInner<T>:

struct ArcInner<T: ?Sized> {
strong: atomic::AtomicUsize,

// the value usize::MAX acts as a sentinel for temporarily
// "locking" the ability to upgrade weak pointers or

// downgrade strong ones; this is used to avoid races

// in ‘make_mut® and “get_mut’ .

weak: atomic::AtomicUsize,

data: T,
}

We see two inner AtomicUsize fields: st rong and weak. Like Rc, Arc<T> allows two
kinds of strength references to the interior data. A weak reference does not own the interior
data, allowing for Arc<T> to be arranged in a cycle without causing an impossible
memory-reclamation situation. A strong reference owns the interior data. Here, we see the
creation of a new strong reference via Arc<T>::clone () —-> Arc<T>:

fn clone(&self) —> Arc<T> {
let old_size = self.inner () .strong.fetch_add(l, Relaxed);

if old_size > MAX_REFCOUNT {

unsafe {
abort () ;

Arc { ptr: self.ptr, phantom: PhantomData }
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Here, we can see that on every clone, the strong of ArcInner<T> is increased by one
when you use relaxed ordering. The code comment to this block—dropped for brevity in
this text—asserts that relaxed ordering is sufficient owing to the circumstance of the use

of Arc. Using a relaxed ordering is alright here, as knowledge of the original reference
prevents other threads from erroneously deleting the object. This is an important
consideration. Why does clone not require a more strict ordering? Consider a thread, 2, that
clones some Arc<T> and passes it to another thread, B, and then, having passed to B,
immediately drops its own copy of Arc. We can determine from the inspection of
Arc<T>::new() —-> Arc<T> that, at creation time, Arc always has one strong and one
weak reference:

pub fn new(data: T) -> Arc<T> {
// Start the weak pointer count as 1 which is the weak
// pointer that's held by all the strong pointers
// (kinda), see std/rc.rs for more info
let x: Box<_> = box ArcInner {
strong: atomic::AtomicUsize::new(l),
weak: atomic::AtomicUsize::new (1),
data,
bi
Arc { ptr: Shared::from(Box::into_unique(x)),
phantom: PhantomData }
}

From the perspective of thread 2, the cloning of Arc is composed of the following
operations:

clone Arc
INCR strong, Relaxed
guard against strong wrap-around
allocate New Arc

move New Arc into B

drop Arc

We know from discussion in the previous chapter, that Release ordering does not offer a
causality relationship. It's entirely possible that a hostile CPU could reorder the increment
of st rong to after the movement of New Arc into B. Would we be in trouble if B then
immediately dropped Arc? We need to inspect Arc<T>: :drop ():

fn drop(&mut self) {

if self.inner().strong.fetch_sub(l, Release) != 1 {
return;

atomic::fence (Acquire);
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unsafe {
let ptr = self.ptr.as_ptr();

ptr::drop_in_place (&mut self.ptr.as_mut () .data);

if self.inner () .weak.fetch_sub (1, Release) == 1 {
atomic::fence (Acquire);
Heap.dealloc (ptr as *mut u8, Layout::for_value (&*ptr))

}

Here we go. atomic: : fence (Acquire) isnew to us. std: :sync::atomic::fence
prevents memory migration around itself, according to the causality relationship
established by the provided memory ordering. The fence applies to same-thread and other-
thread memory operations. Recall that Release ordering disallows loads and stores from
migrating downward in the source-code order. Here, we see, that the load and store of
strong will disallow migrations downward but will not be reordered after the Acquire
fence. Therefore, the deallocation of the T interior to Arc will not happen until both the A
and B threads have synchronized and removed all strong references. An additional

thread, c, cannot come through and increase the strong references to the interior T while
this is ongoing, owing to the causality relationship established—neither A nor B can give C a
strong reference without increasing the strong counter, causing the drops of A or B to bail
out early. A similar analysis holds for weak references.

Doing an immutable dereference of Arc does not increase the strong or weak counts:

impl<T: ?Sized> Deref for Arc<T> {
type Target = T;

#[inline]
fn deref (&self) -> &T {
&self.inner () .data
3
3

Because drop requires a mutable self, it is impossible to free Arc<T> while there is a valid
&T. Getting smut T is more involved, which is done via Arc<T>: :get_mut (smut Self)
-> Option<&mut T>.Note that the return is an Option. If there are other strong or weak
references to the interior T, then it's not safe to consume Arc. The implementation of
get_mut is as follows:

pub fn get_mut (this: &mut Self) -> Option<é&mut T> {
if this.is_unique () {
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// This unsafety is ok because we're guaranteed that the
// pointer returned is the *only* pointer that will ever
// be returned to T. Our reference count is guaranteed
// to be 1 at this point, and we required the Arc itself
// to be ‘mut’, so we're returning the only possible
// reference to the inner data.
unsafe {
Some (&mut this.ptr.as_mut () .data)

}

} else {
None

}

Where is_uniqueis:

fn is_unique (&mut self) —-> bool {
if self.inner () .weak.compare_exchange (1, usize::MAX,
Acquire, Relaxed) .is_ok () {

let unique = self.inner () .strong.load(Relaxed) == 1;
self.inner () .weak.store (1, Release);
unique

} else {
false

}

The compare and exchange operation on weak ensures that there is only one weak
reference outstanding—implying uniqueness—and does so on success with Acquire
ordering. This ordering will force the subsequent check of the strong references to occur
after the check of weak references in the code order and above the release store to the same.
This exact technique will be familiar from our discussion on mutual exclusion in the
previous chapter.

Tradeoffs

Reference counting has much to recommend it as an approach for atomic memory
reclamation. The programming model of reference counting is straightforward to
understand and memory is reclaimed as soon as it's possible to be safely reclaimed.
Programming reference-counted implementations without the use of Arc<T> remains
difficult, owing to the lack of double-word compare and swap in Rust. Consider a Treiber
stack in which the reference counter is internal to stack nodes. The head of the stack might
be snapshotted, then freed by some other thread, and the subsequent read to the reference
counter will be forced through an invalid pointer.
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The following reference-counted Treiber stack is flawed:

atomic::{fence
ptr};

use std::sync::
use std::{mem,

unsafe impl<T:
unsafe impl<T: Send> Sync for
struct Node<T> {

references: AtomicUsize,

next: *mut Node<T>,

data: Option<T>,

impl<T> Node<T> {
fn new(t: T)
Node {
references:
next:
data:

-> Self {

Some (t),

pub struct Stack<T> {

head: AtomicPtr<Node<T>>,

impl<T>
pub

Stack<T> {
fn new() -> Self {
Stack {

, AtomicPtr,

AtomicUsize, Ordering};

Send> Send for Stack<T> {}

Stack<T> {}

AtomicUsize::new(l),
ptr::null_mut (),

head: AtomicPtr::default (),

pub fn pop(&self)
loop {

let head:

-> Opti
*mut No

if head.is_null ()
return None;

}

let next:

if self.head.compare_and_swap (head,

Ordering::Relaxed

let mut head: Box<Node<T>>

on<T>

de<T>

{

*mut Node<T>

self.head.load (Ordering: :Relaxed) ;

unsafe { (*head) .next };

next,

) == head {

unsafe {

Box::from_raw (head)
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bi
let data: Option<T> = mem::replace (&mut (*head).data,
None) ;
unsafe {
assert_eq! (
(* (*head) .next) .references.fetch_sub (1,
Ordering: :Release),

)i
}
drop (head) ;
return data;

}
}
}
pub fn push(&self, t: T) —-> () A
let node: *mut Node<T> = Box::into_raw (Box: :new (Node::new(t)));
loop {
let head = self.head.load(Ordering::Relaxed);
unsafe {
(*node) .next = head;
}
fence (Ordering: :Acquire);
if self.head.compare_and_swap (head, node,
Ordering::Release) == head {
// node is now self.head
// head is now self.head.next
if 'head.is_null () {
unsafe {
assert_eq! (1,
(*head) .references.fetch_add(1,
Ordering: :Release)
)i
}
}
break;
}
}
}
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This is one of the few (intentionally) flawed examples in this book. You are encouraged to
apply the techniques discussed earlier in this book to identify and correct the flaws with
this implementation. It should be interesting. ].D. Valois' 1995 paper, Lock-Free Linked Lists
Using Compare-and-Swap, will be of use. You are further warmly encouraged to attempt a
Treiber stack using only Arc.

Ultimately, where reference counting struggles is contention, as the number of threads
operating on the same reference-counted data increase., those acquire/release pairs don't
come cheaply. Reference counting is a good model when you expect the number of threads
to be relatively low or where absolute performance is not a key consideration. Otherwise,
you'll need to investigate the following methods, which have tradeoffs of their own.

Hazard pointers

We touched on hazard pointers as a method for safe memory reclamation in the previous
chapter. We'll now examine the concept in-depth and in the context of a more or less ready-
to-use implementation via the Redox project (https://crates.io/crates/conc). We'll be
inspecting conc as a part of its parent project, tfs (https://github.com/redox-os/tfs), at
SHA 3e7dcdb0c586d0d8bb3f25bfd948d2f418a4abl0. Incidentally, if you're unfamiliar
with this, Redox is a Rust microkernel-based operating system. The allocator, coreutils, and
netutils are all encouraged reading.

The conc crate is not listed in its entirety. You can find the full listing in
this book's source repository.

Hazard pointers were introduced by Maged Michael—of Michael and Scott Queue
fame—in his 2004 book, Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. A
hazard, in this context, is any pointer that is subject to races or ABA issues in the rendezvous
of multiple treads participating in some shared data structure. In the previous section's
Treiber stack, the hazard is the head pointer inside of the Stack struct, and in the Michael
and Scott queue, it is the head and tail pointers. A hazard pointer associates these hazards
with single-writer multireader shared pointers, owned by a single writer thread and read by
any other threads participating in the data structure.
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Every participating thread maintains a reference to its own hazard pointers and all other
participating threads in addition to private, thread-local lists for the coordination of
deallocation. The algorithm description in section 3 of Michael's paper is done at a high
level and is difficult to follow with an eye towards producing a concrete implementation.
Rather than repeat that here, we will instead examine a specific implementation, conc. The
reader is encouraged to read Michael's paper ahead of the discussion of conc, but this is
not mandatory.

A hazard-pointer Treiber stack

The introduction of the Treiber stack in the previous section on reference counting was not
an idle introduction. We'll examine hazard pointers and epoch-based reclamation here,
through the lens of an effectively reclaimed Treiber stack. It so happens that conc ships
with a Treiber stack, in t fs/conc/src/sync/treiber.rs. The preamble is mostly
familiar:

use std::sync::atomic::{self, AtomicPtr};
use std::marker::PhantomData;

use std::ptr;

use {Guard, add_garbage_box};

Both Guard and add_garbage_box are new, but we'll get to them directly. The Treiber
struct is as you might have imaged it:

pub struct Treiber<T> {
/// The head node.
head: AtomicPtr<Node<T>>,
/// Make the “Sync’ and "Send’ (and other OIBITs) transitive.
_marker: PhantomData<T>,

}

As is the node:

struct Node<T> {
/// The data this node holds.
item: T,
/// The next node.
next: *mut Node<T>,
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This is where we need to understand conc: : Guard. Much like MutexGuard in the
standard library, Guard exists here to protect the contained data from being multiply
mutated. Guard is the hazard pointer interface for conc. Let's examine Guard in detail and
get to the hazard pointer algorithm. Guard is defined in tfs/conc/src/guard. rs:

pub struct Guard<T: 'static + ?Sized> {
/// The inner hazard.
hazard: hazard::Writer,
/// The pointer to the protected object.
pointer: &'static T,

}

As of writing this book, all T protected by Guard have to be static, but we'll ignore that as
the codebase has references to a desire to relax that restriction. Just be aware of it should
you wish to make immediate use of conc in your project. Like MutexGuard, Guard does
not own the underlying data but merely protects a reference to it, and we can see that our
Guard is the writer-end of the hazard. What is hazard: :Writer? It's defined in
tfs/conc/src/hazard.rs:

pub struct Writer {
/// The pointer to the heap-allocated hazard.
ptr: &'static AtomicPtr<u8>,

}

Pointer to the heap-allocated hazard? Okay, let's back out a bit. We know from the
algorithm description that there has to be thread-local storage happening in coordination
with, apparently, heap storage. We also know that Guard is our primary interface to the
hazard pointers. There are three functions to create new instances of Guard:

® Guard<T>::new<F: FnOnce() -> &'static T>(ptr: F) -> Guard<T>

® Guard<T>::maybe_new<F: FnOnce() —-> Option<&'static T>>(ptr: F)
-> Option<Guard<T>>

® Guard<T>::try_new<F: FnOnce () -> Result<&'static T, E>>(ptr: F)
-> Result<Guard<T>, E>

The first two are defined in terms of t ry_new. Let's dissect try_new:

pub fn try_new<F, E>(ptr: F) -> Result<Guard<T>, E>

where F: FnOnce () -> Result<&'static T, E> {
// Increment the number of guards currently being created.
#[cfg(debug_assertions) ]
CURRENT_CREATING.with (|x] x.set(x.get () + 1));
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The function takes Fnonce whose responsibility is to kick out a reference to T or fail. The
first call in t ry_new is an increment of CURRENT_CREATING, which is thread-local
Cell<usize>:

thread_local! {
/// Number of guards the current thread is creating.
static CURRENT_CREATING: Cell<usize> = Cell::new(0);
}

We've seen Cell in chapter 3, The Rust Memory Model — Ownership, References and
Manipulation, but thread_local! is new. This macro wraps one or more static values

into std: :thread: : LocalKey, Rust's take on thread-local stores. The exact
implementation varies from platform to platform but the basic idea holds: the value will act
as a static global but will be confined to a single thread. In this way, we can program as if
the value were global but without having to manage coordination between threads. Once
CURRENT_CREATING is incremented:

// Get a hazard in blocked state.
let hazard = local::get_hazard();

The local: :get_hazard function is defined in t fs/conc/src/local.rs:

pub fn get_hazard() -> hazard::Writer {
if STATE.state() == thread::LocalKeyState::Destroyed {
// The state was deinitialized, so we must rely on the
// global state for creating new hazards.
global::create_hazard()
} else {
STATE.with(|s| s.borrow_mut () .get_hazard())

}

The STATE referenced in this function is:

thread_local! {
/// The state of this thread.
static STATE: RefCell<State> = RefCell::new(State::default());
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The state is type defined like so:

#[derive (Default) ]

struct State {
garbage: Vec<Garbage>,
available_hazards: Vec<hazard::Writer>,
available_hazards_free_before: usize,

}

The field garbage maintains a list of Garbage that has yet to be moved to the global
state—more on that in a minute—for reclamation. Garbage is a pointer to bytes and a
function pointer to bytes called dtor, for destructor. Memory reclamation schemes must be
able to deallocate, regardless of the underlying type. The common approach, and the
approach taken by Garbage, is to build a monomorphized destructor function when the
type information is available, but otherwise work on byte buffers. You are encouraged to
thumb through the implementation of Garbage yourself, but the primary trick is
Box::from_raw(ptr as *mut u8 as *mut T), which we've seen repeatedly
throughout this book.

The available_hazards field stores the previously allocated hazard writers that aren't
currently being used. The implementation keeps this as a cache to avoid allocator thrash.
We can see this in action in local: :State: :get_hazard

fn get_hazard(&mut self) —-> hazard::Writer {
// Check if there is hazards in the cache.
if let Some (hazard) = self.available_hazards.pop() {
// There is; we don't need to create a new hazard.
//

// Since the hazard popped from the cache is not
// blocked, we must block the hazard to satisfy
// the requirements of this function.
hazard.block ();
hazard

} else {
// There is not; we must create a new hazard.
global::create_hazard()
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The final field, available_hazards_free_before, stores hazards in the freed state, prior
to the actual deallocation of the underlying type. We'll discuss this more later. Hazards are
in one of four states: free, dead, blocked, or protecting. A dead hazard can be deallocated
safely, along with the protected memory. A dead hazard should not be read. A free hazard
is protecting nothing and may be reused. A blocked hazard is in use by some other thread
can and will cause reads of the hazard to stall. A protecting hazard is, well, protecting some
bit of memory. Now, jump back to this branch in 1ocal: :get_hazarad:

if STATE.state() == thread::LocalKeyState::Destroyed {
// The state was deinitialized, so we must rely on the
// global state for creating new hazards.
global::create_hazard()

} else {

Whatis global: :create_hazard? This moduleis tfs/conc/src/global.rs and the
function is:

pub fn create_hazard() —-> hazard::Writer {
STATE.create_hazard()
}

The variable names are confusing. This STATE is not the thread-local STATE but a globally
scoped STATE:

lazy_static! {
/// The global state.
///
/// This state is shared between all the threads.
static ref STATE: State = State::new();
3

Let's dig in there:

struct State {
/// The message-passing channel.
chan: mpsc::Sender<Message>,
/// The garbo part of the state.
garbo: Mutex<Garbo>,
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The global STATE is a mpsc Sender of Message and a mutex-guarded Garbo. Message is a
simple enumeration:

enum Message {
/// Add new garbage.
Garbage (Vec<Garbage>),
/// Add a new hazard.
NewHazard (hazard: :Reader),

}

Garbo is something we'll get into directly. Suffice it to say for now that Garbo acts as the
global garbage collector for this implementation. The global state sets up a channel,
maintaining the sender side in the global state and feeding the receiver into Garbo:

impl State {
/// Initialize a new state.

fn new() —-> State {
// Create the message-passing channel.
let (send, recv) = mpsc::channel();

// Construct the state from the two halfs of the channel.
State {
chan: send,
garbo: Mutex::new(Garbo {
chan: recv,
garbage: Vec::new(),
hazards: Vec::new(),

H)
}

The creation of a new global hazard doesn't take much:

fn create_hazard(&self) —-> hazard::Writer {
// Create the hazard.
let (writer, reader) = hazard::create();

// Communicate the new hazard to the global state
// through the channel.
self.chan.send(Message: :NewHazard (reader)) ;

// Return the other half of the hazard.

writer
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This establishes a new hazard via hazard: :create () and feeds the reader side down
through to Garbo, returning the writer side back out to local: :get_hazard (). While the
names writer and reader suggest that hazard is itself an MPSC, this is not true. The hazard
module is t fs/conc/src/hazard. rs and creation is:

pub fn create() -> (Writer, Reader) {
// Allocate the hazard on the heap.
let ptr = unsafe {
§&§*Box::into_raw (Box: :new (AtomicPtr: :new (
&§BLOCKED as *const u8 as *mut u8)))
bi

// Construct the values.
(Writer {
ptr: ptr,
}, Reader {
ptr: ptr,
)
}

Well, look at that. What we have here are two structs, Writer and Reader, which each
store the same raw pointer to a heap-allocated atomic pointer to a mutable byte pointer.
Phew! We've seen this trick previously but what's special here is the leverage of the type
system to provide for different reading and writing interfaces over the same bit of raw
memory.

What about Garbo? It's defined in the global module and is defined as:

struct Garbo {
/// The channel of messages.
chan: mpsc::Receiver<Message>,
/// The to-be-destroyed garbage.
garbage: Vec<Garbage>,
/// The current hazards.
hazards: Vec<hazard: :Reader>,

}

Garbo defines a gc function that reads all Messages from its channel, storing the garbage
into the garbage field and free hazards into hazards. Dead hazards are destroyed, freeing
its storage as the other holder is guaranteed to have hung up already. Protected hazards
also make their way into hazards, which are to be scanned during the next call of gc.
Garbage collections are sometimes performed when a thread calls global: :tick () or
when global::try_gc () is called. A tick is performed whenever

local: :add_garbage is called, which is what whatconc: :add_garbage_box calls.
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We first encountered add_barbage_box at the start of this section. Every time a thread
signals a node as garbage, it rolls the dice and potentially becomes responsible for
performing a global garbage collection over all of the threads' hazard-pointed memory.

Now that we understand how memory reclamation works, all that remains is to
understand how hazard pointers protect memory from reads and writes. Let's finish
guard: :try_new in one large jump:

// This fence is necessary for ensuring that “hazard' does not
// get reordered to after ‘ptr’ has run.

// TODO: Is this fence even necessary?

atomic::fence (atomic::0rdering: :SeqgCst);

// Right here, any garbage collection is blocked, due to the
// hazard above. This ensures that between the potential

// read in ‘ptr’' and it being protected by the hazard, there
// will be no premature free.

// Evaluate the pointer through the closure.
let res = ptr();

// Decrement the number of guards currently being created.
#[cfg(debug_assertions) ]
CURRENT_CREATING.with(|x| x.set(x.get() - 1));

match res {
Ok (ptr) => {
// Now that we have the pointer, we can protect it by
// the hazard, unblocking a pending garbage collection
// if it exists.
hazard.protect (ptr as *const T as *const u8);

Ok (Guard {
hazard: hazard,
pointer: ptr,
})
}’
Err(err) => {
// Set the hazard to free to ensure that the hazard
// doesn't remain blocking.
hazard.free();

Err(err)
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We can see that the conc authors have inserted a sequentially consistent fence that they
question. The model laid out by Michael does not require sequential consistency and I
believe that this fence is not needed, being a significant drag on performance. The key
things here to note are the call to hazard: :protect and "hazard: : free. Both calls are
part of hazard: :Writer, the former setting the internal pointer to the byte pointer fed to
it, the latter marking the hazard as free. Both states interact with the garbage collector, as
we've seen. The remaining bit has to do with hardard: :Reader: : get, the function used
to retrieve the state of the hazard. Here it is:

impl Reader {
/// Get the state of the hazard.

/17
/17
/17
/17
pub

It will spin until the hazard is no longer in a blocked state,
unless it is in debug mode, where it will panic given enough
spins.

fn get (&self) —-> State {

// In debug mode, we count the number of spins. In release

// mode, this should be trivially optimized out.

let mut spins = 0;

// Spin until not blocked.
loop {

let ptr = self.ptr.load(atomic::0rdering::Acquire)
as *const u8;

// Blocked means that the hazard is blocked by another
// thread, and we must loop until it assumes another
// state.
if ptr == &BLOCKED {
// Increment the number of spins.
spins += 1;
debug_assert! (spins < 100_000_000, "\
Hazard blocked for 100 millions rounds. Panicking
as chances are that it will \
never get unblocked.\

")

continue;
} else if ptr == &FREE {
return State::Free;
} else if ptr == &DEAD {
return State::Dead;
} else {

return State::Protect (ptr);
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Only if the hazard is blocked does the get of the state spin until it's dead, free, or merely
protected. What blocks the hazard? Recall that they're created blocked. By creating the
hazards in a blocked state, it is not possible to perform garbage collection over a pointer
that has not been fully initialized—a problem we saw with the reference-counting
implementation—nor is it possible to read from a partially-initialized hazarded pointer.
Only once the pointer is moved into the protected state can reads move forward.

And there you go—garbage collection and atomic isolation.

Let's go all the way back up to the stack and look at its push implementation:

pub fn push(&self, item: T)
where T: 'static {
let mut snapshot = Guard::maybe_new (|| unsafe {
self.head.load(atomic::0rdering: :Relaxed) .as_ref ()

let mut node = Box::into_raw (Box::new (Node {
item: item,
next: ptr::null_mut (),

loop {
let next = snapshot.map_or (ptr::null_mut (),
|x| x.as_ptr() as *mut _);
unsafe { (*node) .next = next; }
match Guard::maybe_new (|| unsafe {

self.head.compare_and_swap (next, node,

atomic::0rdering: :Release) .as_ref ()
oA

Some (ref new) if new.as_ptr () == next => break,

None if next.is_null() => break,

// If it fails, we will retry the CAS with updated

// values.

new => snapshot = new,
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At the top of the function, the implementation loads the hazard pointer for the head node
into the snapshot. Guard: :as_ptr (sself) -> *const T retrieves the current pointer for
the hazard on each invocation, adapting as the underlying data shifts forward. The node is
the allocated and raw-pointered Node containing item: T.The remainder of the loop is the
same compare-and-swap we've seen for other data structures of this kind, merely in terms
of a hazard Guard instead of raw AtomicPtrs or the like. The programming model is very
direct, as it is for pop as well:

pub fn pop(&self) -> Option<Guard<T>> {
let mut snapshot = Guard::maybe_new (|| unsafe {
self.head.load(atomic::0rdering: :Acquire) .as_ref ()

)i

while let Some (old) = snapshot {
snapshot = Guard::maybe_new (|| unsafe {
self.head.compare_and_swap (
old.as_ptr() as *mut _,
old.next as *mut Node<T>,
atomic::0rdering: :Release,

) .as_ref ()
}) i
if let Some (ref new) = snapshot {
if new.as_ptr() == old.as_ptr() {

unsafe { add_garbage_box(old.as_ptr()); }
return Some (old.map(|x| &x.item));
}
} else {
break;

}

None

}

Note that when the old node is removed from the stack, add_garbage_box is called on it,
adding the node to be garbage-collected at a later date. We know, further, from inspection,
that this later date might well be exactly the moment of invocation, depending on luck.
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The hazard of Nightly

Unfortunately, conc relies on an unstable feature of the Rust compiler and will not compile
with a recent rustc. The last update to conc, and to TFS, its parent project, was in August
of 2017. We'll have to travel back in time for a nightly rustc from that period. If you
followed the instructions laid out in chapter 1, Preliminaries — Machine Architecture and
Getting Started with Rust, and are using rustup, that's a simple rustup default
nightly-2017-08-17 away. Don't forget to switch back to a more modern Rust when you're
done playing with conc.

Exercizing the hazard-pointer Treiber stack

Let's put the conc, Treiber stack through the wringer to get an idea of the performance of
this approach. Key areas of interest for us will be:

e Push/pop cycles per second
e Memory behavior, high-water mark, and what not
e Cache behavior

We'll run our programs on x86 and ARM, as in previous chapters. One thing to note here,
before we proceed, is that conc—at least as of version 0.5—requires the nightly channel to

be compiled. Please read the section just before this one if you're jumping around in the
book for full details.

Because we have to run on an old version of nightly, we have to stick static AtomicUsize
into lazy_static!, a technique you'll see in older Rust code but not in this book, usually.
With that in mind, here is our exercise program:

extern crate conc;

# [macro_use]

extern crate lazy_static;
extern crate num_cpus;
extern crate quantiles;

use conc::sync::Treiber;

use quantiles::ckms: :CKMS;

use std::sync::Arc;

use std::sync::atomic::{AtomicUsize, Ordering};
use std::{thread, time};

lazy_static! {
static ref WORKERS: AtomicUsize = AtomicUsize::new(0);
static ref COUNT: AtomicUsize = AtomicUsize::new(0);
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¥
static MAX_TI: u32 = 67_108_864; // 2 ** 26

fn main () {
let stk: Arc<Treiber<(u64, u64,
let mut jhs = Vec::new();

let cpus = num_cpus::get();
WORKERS.store (cpus, Ordering::Release);

for _ in O0..cpus {
let stk = Arc::clone(&stk);
jhs.push (thread: :spawn (move || {

for 1 in 0..MAX_ T {
stk.push((i as u64,
stk.pop () ;
COUNT. fetch_add (1,

i as u64, 1 as uo64d));
Ordering: :Relaxed) ;

}

WORKERS. fetch_sub (1, Ordering::Relaxed)

1)

let one_second = time::Duration::from_millis(1_000);
let mut iter = 0;
let mut cycles: CKMS<u32> = CKMS::new(0.001);
while WORKERS.load (Ordering::Relaxed) != 0 {
let count = COUNT.swap (0, Ordering::Relaxed);

cycles.insert ((count / cpus) as u32);
println! (
"CYCLES PER SECOND ({}):\n 25th: \
{}\n 50th: {}\n 75th: \
{}\n 90th: {}\n max: {}\n",
iter,
cycles.query(0.25) .unwrap() .1,
cycles.query (0.50) .unwrap() .1,
cycles.query(0.75) .unwrap() .1,
cycles.query(0.90) .unwrap() .1,
cycles.query(1.0) .unwrap() .1

)i
thread: :sleep (one_second);
iter += 1;

for jh in jhs {
jh.join () .unwrap () ;

u64d)>> = Arc::new(Treiber::new());
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We have a number of worker threads equal to the total number of CPUs in the target
machine, each doing one push and then an immediate pop on the stack. A COUNT is kept
and the main thread swaps that value for 0 every second or so, tossing the value into a
quantile estimate structure—discussed in more detail in chapter 4, Sync and Send — the
Foundation of Rust Concurrency—and printing out a summary of the recorded cycles per
second, scaled to the number of CPUs. The worker threads the cycle up through to MAX_T,
which is arbitrarily set to the smallish value of 2**26. When the worker is finished cycling,
it decreases WORKERS and exits. Once WORKERS hits zero, the main loop also exits.

On my x86 machine, it takes approximately 58 seconds for this program to exit, with this
output:

CYCLES PER SECOND (0) :

25th: 0
50th: O
75th: 0
90th: O
max: O

CYCLES PER SECOND (1) :
25th: 0
50th: 0
75th: 1124493
90th: 1124493
max: 1124493

CYCLES PER SECOND (56) :
25th: 1139055
50th: 1141656
75th: 1143781
90th: 1144324
max: 1145284

CYCLES PER SECOND (57) :
25th: 1139097
50th: 1141656
75th: 1143792
90th: 1144324
max: 1145284
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CYCLES PER SECOND (58) :
25th: 1139097
50th: 1141809
75th: 1143792
90th: 1144398
max: 1152384

The x86 perf run is as follows:
> perf stat --event task-clock, context-switches, page-

faults, cycles, instructions, branches,branch-misses, cache-references, cache-
misses target/release/conc_stack > /dev/null

Performance counter stats for 'target/release/conc_stack':

230503.932161 task-clock (msec) # 3.906 CPUs utilized
943 context-switches # 0.004 K/sec
9,140 page—-faults # 0.040 K/sec
665,734,124,408 cycles # 2.888 GHz
529,230,473,047 instructions # 0.79 insn per cycle
99,146,219,517 branches # 430.128 M/sec
1,140,398, 326 branch-misses # 1.15% of all
branches
12,759,284,944 cache-references # 55.354 M/sec
124,487,844 cache-misses # 0.976 % of all cache

refs
59.006842741 seconds time elapsed
The memory-allocation behavior of this program is very favorable as well.

On my ARM machine, it takes approximately 460 seconds for the program to run to
completion, with this output:

CYCLES PER SECOND (0) :

25th: 0
50th: 0
75th: 0
90th: 0
max: O
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CYCLES PER SECOND (1) :
25th: 0
50th: O
75th: 150477
90th: 150477
max: 150477

CYCLES PER SECOND (462) :
25th: 137736
50th: 150371
75th: 150928
90th: 151129
max: 151381

CYCLES PER SECOND (463) :
25th: 137721
50th: 150370
75th: 150928
90th: 151129
max: 151381

This is about 7.5 times slower than the x86 machine, even though both machines have the
same number of cores. The x86 machine has a faster clock and a faster memory bus than my
ARM:

> perf stat --event task-clock, context-switches, page-

faults, cycles, instructions,branches, branch-misses, cache

-references, cache-misses target/release/conc_stack > /dev/null

Performance counter stats for 'target/release/conc_stack':

1882745.172714 task-clock (msec) # 3.955 CPUs utilized
0 context-switches # 0.000 K/sec
3,212 page—-faults # 0.002 K/sec
2,109,536,434,019 cycles # 1.120 GHz
1,457,344,087,067 instructions # 0.69 insn per cycle
264,210,403,390 branches # 140.333 M/sec
36,052,283,984 branch-misses # 13.65% of all
branches
642,854,259,575 cache-references # 341.445 M/sec
2,401,725,425 cache-misses # 0.374 % of all cache
refs

476.095973090 seconds time elapsed
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The fact that the branch misses on ARM are 12% higher than on x86 is an interesting result.

Before moving on, do remember to execute the rustup default stable.

Tradeoffs

Assuming that conc was brought up to speed with modern Rust, where would you want to
apply it? Well, let's compare it to reference counting. In a reference-counting data structure,
every read and modification requires manipulating atomic values, implying some level of
synchronization between threads with an impact on performance. A similar situation exists
with hazard pointers, though to a lesser degree. As we've seen, the hazard requires
synchronization, but reading anything apart from the hazard, through it, is going to be at
machine speed. That's a significant improvement over reference counting. Furthermore, we
know that the hazard pointer approach does accumulate garbage—and the implementation
of conc is done via an especially neat trick—but this garbage is bounded in size, no matter
the frequency of updates to the hazardous structure. The cost of garbage collection is placed
on one thread, incurring potentially high latency spikes for some operations while
benefiting from bulk-operation calls to the deallocator. This is distinct from reference
counting approaches where every thread is responsible for deallocating dead memory as
soon as it is dead, keeping operation cost overheads similar but higher than baseline, and
incurred on each operation without the benefit of bulk accumulation of deallocations. The
hazard pointer approach struggles as the number of threads increase: recall that the
number of hazards needed grows linearly with the number of threads, but also consider
that an increase in thread count increases the traversal cost of any structure. Furthermore,
while many structures have easily identifiable hazards, this is not universally true. Where
do you put the hazard pointers for a b-tree?

In summary—hazard pointers are an excellent choice when you have relatively few
hazardous memory references to make and need bounded garbage, no matter the load on
your structure. Hazard-based memory reclamation does not have the raw speed of epoch-
based reclamation, but bounded memory use in all cases is hard to pass up.
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Epoch-based reclamation

We touched on epoch-based memory reclamation in the last chapter. We'll now examine
the concept in depth and in the context of a ready-to-use implementation via the crossbeam
project (https://github.com/crossbeam-rs). Some of the developers of conc overlap with
crossbeam, but there's been more work done to crossbeam in the pursuit of a general-
purpose framework for low-level atomic programming in Rust. The developers note that
they plan to support other memory management schemes, for example hazard pointers
(HP) and quiescent state-based reclamation (QSBR). The crate is re-exported as the epoch
module. Future editions of this book may well only cover crossbeam and simply discuss the
various memory reclamation techniques embedded in it. The particular crate we'll be
discussing in this section is crossbeam-epoch, at SHA
3179e799£384816a0a9f2a3da82a147850e14d38. This coincides with the 0.4.1 release of
the project.

The crossbeam crates under discussion here are not listed in their entirety.
You can find the full listings in this book's source repository.

Epoch-based memory reclamation was introduced by Keir Fraser in his 2004 PhD

thesis, Practical lock-freedom. Fraser's work builds on previous limbo list approaches,
whereby garbage is placed in a global list and reclaimed through periodic scanning when it
can be demonstrated that the garbage is no longer referenced. The exact mechanism varies
somewhat by author, but limbo lists have some serious correctness and performance
downsides. Fraser's improvement is to separate limbo lists into three epochs, a current
epoch, a middle, and an epoch from which garbage may be collected. Every participating
thread is responsible for observing the current epoch on start, adds its garbage to the
current epoch, and attempts to increase the epoch count when its operations complete. The
last thread to complete is the one that succeeds in increasing the epoch and is responsible
for performing garbage collection on the final epoch. Three total epochs are needed as
threads move from epochs independently from one another: a thread at epoch n may still
hold a reference from n-1, but not n-2, and so only n-2 is safe to reclaim. Fraser's thesis is
quite long—being, well, being that it is sufficient work to acquire a PhD—but Hart et al's
2007 paper, Performance of Memory Reclamation for Lockless Synchronization, is warmly
recommended to the reader pressed for time.
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An epoch-based Treiber stack

We inspected reference counting and hazard-pointer-based Treiber stacks earlier in this
chapter and will follow this approach in this section as well. Fortunately, crossbeam also
ships with a Treiber stack implementation, in the crossbeam-rs/crossbeam project, which
we'll examine at SHA 89bd6857cd701bff54f7a8bf47ccaa38d5022bfb, which is the
source for crossbeam: :sync: :TreiberStackisin src/sync/treiber_stack.rs. The
preamble is almost immediately interesting:

use std::sync::atomic::0rdering::{Acquire, Relaxed, Release};
use std::ptr;

use epoch::{self, Atomic, Owned};

What, for instance, are epoch: : Atomic and epoch: : Owned? Well, we'll explore these here.
Unlike the section on hazard pointers, which explored the implementation of conc in a
depth-first fashion, we'll take a breadth-first approach here, more or less. The reason being,
crossbeam-epoch is intricate—it's easy to get lost. Setting aside the somewhat unknown
nature of epoch: :Atomic, the TreiberStack and Node structs are similar to what we've
seen in other implementations:

#[derive (Debug) ]
pub struct TreiberStack<T> {
head: Atomic<Node<T>>,

}

# [derive (Debug) ]
struct Node<T> {
data: T,
next: Atomic<Node<T>>,

}

As is the creation of a new stack:

impl<T> TreiberStack<T> {
/// Create a new, empty stack.
pub fn new() —-> TreiberStack<T> {
TreiberStack {
head: Atomic::null (),
I3
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Pushing a new element also looks familiar:

pub fn push(&self, t: T) {
let mut n = Owned::new (Node {
data: t,
next: Atomic::null(),
)i
let guard = epoch::pin();
loop {
let head = self.head.load(Relaxed, &guard);
n.next.store (head, Relaxed);
match self.head.compare_and_set (head, n, Release, &guard) {
Ok (_) => break,
Err(e) => n = e.new,

}

Except, what is epoch: : pin () ? This function pins the current thread, returning a
crossbeam_epoch: : Guard. Much like previous guards we've seen throughout the book,
crossbeam_epoch's Guard protects a resource. In this case, the guard protects the pinned
nature of the thread. Once the guard drops, the thread is no longer pinned. Okay, great, so
what does it mean for a thread to be pinned? Recall that epoch-based reclamation works by
a thread entering an epoch, doing some stuff with memory, and then potentially increasing
the epoch after finishing up fiddling with memory. This process is observed in crossbeam
by pinning. Guard in hand—implying a safe epoch has been entered—the thread is able to
take a heap allocation and get a stack reference to it. Just any old heap allocation and stack
reference would be unsafe, however. There's no magic here. That's where At omic and
Owned come in. They're analogs to AtomicPtr and Box from the standard library, except
that the operations done on them require a reference to crossbeam_epoch: : Guard. We
saw this technique in chapter 4, Sync and Send — the Foundation of Rust Concurrency, when
discussing hopper, using the type-system to ensure that potentially thread-unsafe
operations are done safely by requiring the caller to pass in a guard of some sort.
Programmer error can creep in by using AtomicPtr, Box, or any non-epoch unprotected
memory accesses, but these will tend to stand out.

Let's look at popping an element off the stack, where we know marking memory as safe to
delete will have to happen:

pub fn try_pop(&self) —-> Option<T> {
let guard = epoch::pin();

loop {
let head_shared = self.head.load(Acquire, &guard);
match unsafe { head_shared.as_ref () } {
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Some (head) => {
let next = head.next.load(Relaxed, &guard);
if self.head
.compare_and_set (head_shared, next, Release,
&guard)
.1s_ok ()

unsafe {
guard.defer (move ||
head_shared.into_owned()) ;
return Some (ptr::read (& (*head) .data));

}

None => return None,

}

The key things to note are the creation of head_shared by performing a load on an
Atomic, the usual compare and set operation, and then this:

guard.defer (move || head_shared.into_owned());
return Some (ptr::read(& (*head) .data));

head_shared is moved into a closure, converted, and that closure is then passed into
the as-yet unexamined defer function of Guard. But, head is dereferenced and the data
from it is read out and returned. Absent some special trick, that's dangerous. We need to
know more.

crossheam_epoch::Atomic

Let's dig in with the holder of our data, At omic. This structure is from the
crossbeam_epoch library and its implementation is in src/atomic. rs:

pub struct Atomic<T> {
data: AtomicUsize,
_marker: PhantomData<*mut T>,

unsafe impl<T: Send + Sync> Send for Atomic<T> {}
unsafe impl<T: Send + Sync> Sync for Atomic<T> {}
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The representation is a little odd: why not data: *mut T? Crossbeam's developers have
done something neat here. On modern machines, there's a fair bit of space inside of pointer
to store information, in the least significant bits. Consider that if we point only to aligned
data, the address of a bit of memory will be multiples of 4 on a 32-bit system, or multiples
of 8 on a 64-bit system. This leaves either two zero bits at the end of a pointer on 32-bit
systems or three zero bits on a 64-bit system. Those bits can store information, called a tag.
The fact that At omic can be tagged will come into play. But, Rust doesn't allow us to
manipulate pointers in the fashion of other systems programming languages. To that end,
and because usize is the size of the machine word, crossbeam stores its *mut T as a
usize, allowing for tagging of the pointer. Null Atomics are equivalent to tagged pointers
to zero:

pub fn null() -> Atomic<T> {
Self {
data: ATOMIC_USIZE_INIT,
_marker: PhantomData,

}

New Atomics are created by passing T down through owned—which we saw
previously—and then converting from that owned:

pub fn new(value: T) -> Atomic<T> {
Self::from(Owned: :new(value))

}
Owned boxes T, performing a heap allocation:

impl<T> Owned<T> {
pub fn new(value: T) -> Owned<T> {
Self::from(Box: :new(value))

t
And subsequently converts that box into *mut T:

impl<T> From<Box<T>> for Owned<T> {
fn from(b: Box<T>) —-> Self {
unsafe { Self::from_raw(Box::into_raw (b)) }

}
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And converts that into a tagged pointer:

pub unsafe fn from_raw(raw: *mut T) —-> Owned<T> {
ensure_aligned(raw) ;
Self::from_data(raw as usize)

}

That's a bit of a trek, but what that tells us is that At omic is no different in terms of data
representation compared to AtomicPtr, except that the pointer itself is tagged.

Now, what about the usual operations on an atomic pointer, loading and the like? How do
those differ in Atomic? Well, for one, we know that an epoch Guard has to be passed in to
each call, but there are other important differences. Here's Atomic: : load:

pub fn load<'g>(&self, ord: Ordering, _: &'g Guard)
—> Shared<'g, T>
{
unsafe { Shared::from_data(self.data.load(ord)) }
}

We can see self.data.load (ord), so the underlying atomic load is performed as
expected. But, what is Shared?

pub struct Shared<'g, T: 'g> {
data: usize,
_marker: PhantomData<(&'g (), *const T)>,

}

It's a reference to At omic with an embedded reference to Guard. So long as Shared exists,
the Guard that makes memory operations on it safe will also exist and cannot, importantly,
cease to exist until Shared has been dropped. Atomic: : compare_and_set introduces a
few more traits:

pub fn compare_and_set<'g, O, P>(

&self,

current: Shared<T>,

new: P,

ord: O,

&'g Guard,

) —> Result<Shared<'g, T>, CompareAndSetError<'g, T, P>>
where

O: CompareAndSetOrdering,

P: Pointer<T>,

let new = new.into_data();
self.data
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.compare_exchange (current.into_data (), new,
ord.success (), ord.failure())
.map(|_| unsafe { Shared::from_data (new) })

.map_err (|current| unsafe {
CompareAndSetError {
current: Shared::from_data (current),
new: P::from_data (new),

})
}

Notice that compare_and_set is defined in terms of compare_exchange. This CAS
primitive is equivalent to a comparative exchange, but that exchange allows failure to be
given more relaxed semantics, offering a performance boost on some platforms.
Implementation of compare-and-set, then, requires understanding of which success
Ordering matches with which failure 0rdering, from which need

comes CompareAndSetOrdering:

pub trait CompareAndSetOrdering {
/// The ordering of the operation when it succeeds.
fn success (&self) -> Ordering;

/// The ordering of the operation when it fails.

/17

/// The failure ordering can't be “Release’ or "AcgRel’ and must be
/// equivalent or weaker than the success ordering.

fn failure(&self) -> Ordering;

impl CompareAndSetOrdering for Ordering {
#[inline]
fn success (&self) -> Ordering {
*self

#[inline]
fn failure(&self) -> Ordering {
strongest_failure_ordering(*self)
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VVherestrongest_failure_orderingi&

fn strongest_failure_ordering(ord: Ordering) -> Ordering {
use self::0rdering::*;
match ord {
Relaxed | Release => Relaxed,
Acquire | AcgRel => Acquire,
_ => SeqgCst,

}

The final new trait is Pointer, a little utility trait to provide functions over both Owned and
Shared:

pub trait Pointer<T> {

/// Returns the machine representation of the pointer.
fn into_data(self) -> usize;

/// Returns a new pointer pointing to the tagged pointer “data’.
unsafe fn from_data(data: usize) -> Self;

crossbeam_epoch::Guard::defer

Now, again, how is the following in TreiberStack: :try_pop a safe operation?

guard.defer (move || head_shared.into_owned());
return Some (ptr::read(& (*head) .data));

What we need to explore now is defer, which lives in crossbeam-epoch at src/guard. rs:

pub unsafe fn defer<F, R>(&self, f: F)

where
F: FnOnce() —> R,
{
let garbage = Garbage::new (|| drop(f()));
if let Some(local) = self.local.as_ref () {
local.defer (garbage, self);
}
}
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We need to understand Garbage. It's defined in src/garbage.rs as:

pub struct Garbage {
func: Deferred,

}

unsafe impl Sync for Garbage {}
unsafe impl Send for Garbage {}

The implementation of Garbage is very brief:

impl Garbage {
/// Make a closure that will later be called.
pub fn new<F: FnOnce()>(f: F) —-> Self {
Garbage { func: Deferred::new(move || £()) }
}
}

impl Drop for Garbage {
fn drop (&mut self) {
self.func.call();
}
}

Deferred is a small structure that wraps FnOnce (), storing it inline or on the heap as size
allows. You are encouraged to examine the implementation yourself, but the basic idea is to
maintain the same properties of FnOnce in a heap-allocated structure that finds use in

the Garbage drop implementation. What drops Garbage? This is where the following
comes into play:

if let Some(local) = self.local.as_ref () {
local.defer (garbage, self);

}

The self.local of Guardis *const Local, a struct called a participant for garbage
collection in crossbeam's documentation. We need to understand where and how this
Local is created. Let's understand the Guard internals, first:

pub struct Guard {
pub (crate) local: *const Local,

}
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Guard is a wrapper around a const pointer to Local. We know that instances of Guard are
created by crossbeam_epoch: :pin, defined in src/default.rs:

pub fn pin() -> Guard {
HANDLE.with (|handle| handle.pin())
I3

HANDLE is a thread-local static variable:

thread_local! {
/// The per-thread participant for the default garbage collector.
static HANDLE: Handle = COLLECTOR.register();

h
COLLECTOR is a static, global variable:

lazy_static! {
/// The global data for the default garbage collector.
static ref COLLECTOR: Collector = Collector::new();

4

This is a lot of new things all at once. Pinning is a non-trivial activity! As its name implies
and its documentation states, COLLECTOR is the entry point for crossbeam-epoch's global
garbage collector, called Global. Collector is defined in src/collector.rs and has a
very brief implementation:

pub struct Collector {
pub (crate) global: Arc<Global>,

unsafe impl Send for Collector {}
unsafe impl Sync for Collector {}

impl Collector {
/// Creates a new collector.
pub fn new() —-> Self {
Collector { global: Arc::new(Global::new()) }

/// Registers a new handle for the collector.
pub fn register (&self) -> Handle {
Local::register (self)
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We know that Collector is a global static, implying that Global: :new () will be called
only once. Global, defined in src/internal. rs, is the data repository for the global
garbage collector:

pub struct Global {
/// The intrusive linked list of “Local's.
locals: List<Local>,

/// The global queue of bags of deferred functions.
queue: Queue< (Epoch, Bag) >,

/// The global epoch.
pub (crate) epoch: CachePadded<AtomicEpoch>,
}

List is an intrusive list, which we saw reference to in the definition of Local. An intrusive
list is a linked list in which the pointer to the next node in the list is stored in the data itself,
the entry: Entry field of Local. Intrusive lists pop up fairly rarely, but they are quite
useful when you're concerned about small memory allocations or need to store an element
in multiple collections, both of which apply to crossbeam. Queue is a Michael and Scott
queue. The epoch is a cache-padded At omicEpoch, cache-padding being a technique to
disable write contention on cache lines, called false sharing. AtomicEpoch is a wrapper
around AtomicUsize. Global is, then, a linked-list of instances of Local — which,
themselves, are associated with thread-pinned Guards—a queue of Bags, which we haven't
investigated yet, associated with some epoch number (a usize) and an atomic, global
Epoch. This layout is not unlike what the algorithm description suggests. Once the sole
Global is initialized, every thread-local Handle is created by calling
Collector::register, whichis Local::register internally:

pub fn register(collector: &Collector) -> Handle {
unsafe {
// Since we dereference no pointers in this block, it is
// safe to use ‘unprotected’ .

let local = Owned::new(Local {
entry: Entry::default (),
epoch: AtomicEpoch: :new (Epoch::starting()),

collector: UnsafeCell::new(
ManuallyDrop: :new(collector.clone())

) 4
bag: UnsafeCell::new(Bag::new()),
guard_count: Cell::new(0),
handle_count: Cell::new (1),
pin_count: Cell::new (Wrapping(0)),

}) .into_shared (&unprotected());
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collector.global.locals.insert (local, &unprotected());
Handle { local: local.as_raw() }

}

Note, specifically, that the collector.global.locals.insert (local,
sunprotected () ) callis inserting the newly created Local into the list of G1obal locals.
(unprotectedis a Guard that points to a null, rather than some valid Local). Every
pinned thread has a Local registered with the global garbage collector's data. In fact, let's
look at what happens when Guard is dropped, before we finish defer:

impl Drop for Guard {
#[inline]
fn drop (&mut self) {
if let Some (local) = unsafe { self.local.as_ref() } {
local.unpin();

}
The unpin method of Local is called:

pub fn unpin(&self) {
let guard_count = self.guard_count.get();
self.guard_count.set (guard_count - 1);

if guard_count == 1 {
self.epoch.store (Epoch::starting(), Ordering::Release);

if self.handle_count.get () == 0 {
self.finalize();

}
}

The guard_count field, recall, is the total number of participating threads or otherwise
arranged for guards that keep the thread pinned. The handle_count field is a similar
mechanism, but one used by Collector and Local. Local:: finalize is where the
action is:

fn finalize(&self) {
debug_assert_eq! (self.guard_count.get (), 0);
debug_assert_eq! (self.handle_count.get (), 0);

// Temporarily increment handle count. This is required so that
// the following call to ‘pin’ doesn't call “finalize ' again.
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self.handle_count.set (1);
unsafe {
// Pin and move the local bag into the global queue. It's
// important that “push_bag® doesn't defer destruction
// on any new garbage.
let guard = &self.pin();
self.global () .push_bag(&mut *self.bag.get (), guard);
}
// Revert the handle count back to zero.
self.handle_count.set (0);

Local contains a self.bag field of the UnsafeCell<Bag> type. Here's Bag, defined in

src/garbage.rs:

pub struct Bag {

/// Stashed objects.

objects: ArrayVec<[Garbage; MAX_OBJECTS]>,
}

ArrayVec is new to this book. It's defined in the ArrayVec crate and is a Vec but with a
capped maximum size. It's the same growable vector we know and love, but one that can't
allocate to infinity. Bag, then, is a growable vector of Garbage, capped at MAX_OBJECTS
total size:

#[cfg(not (feature = "strict_gc"))]
const MAX_OBJECTS: usize = 64;
#[cfg(feature = "strict_gc")]

const MAX_OBJECTS: usize = 4;

Attempting to push garbage into a bag above MaX_0BJECTS will fail, signaling to the caller
that it's time to collect some garbage. What Local: : finalize is doing, specifically with
self.global () .push_bag(&mut *self.bag.get (), guard),istakingthe Local's
bag of garbage and pushing it into the Global's bag of garbage as a part of shutting Local
down. Global: :push_bagis:

pub fn push_bag(&self, bag: &mut Bag, guard: &Guard) {
let bag = mem::replace(bag, Bag::new());

atomic::fence (Ordering: :SegCst);

let epoch = self.epoch.load(Ordering::Relaxed) ;
self.queue.push((epoch, bag), guard);
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Unpinning Guard potentially shuts down a Local, which pushes its garbage into the queue
of epoch-tagged garbage in Global. Now that we understand that, let's finish
Guard: :defer by inspecting Local: :defer:

pub fn defer(&self, mut garbage: Garbage, guard: &Guard) {
let bag = unsafe { &mut *self.bag.get () };

while let Err(g) = bag.try_push(garbage) {
self.global () .push_bag(bag, guard);
garbage = g;

}

The pinned caller signals garbage to its Guard by calling defer. The Guard, in turn, defers
this garbage to its Local, which enters a while loop wherein it attempts to push garbage

onto the local bag of garbage but will shift garbage into Global so long as the local bag is
full.

When does garbage get collected from Global? The answer is in a function we've not yet
examined, Local: :pin.

crossheam_epoch::Local::pin

Recall that crossbeam_epoch: :pin calls Handle: : pin, which in turn calls pin on its
Local. What happens during the execution of Local: :pin? A lot:

pub fn pin(&self) -> Guard {
let guard = Guard { local: self };

let guard_count = self.guard_count.get ();
self.guard_count.set (guard_count.checked_add (1) .unwrap());

The Local guard count is increased, which is done amusingly by creating a Guard with
self. If the guard count was previously zero:

if guard_count == 0 {
let global_epoch =

self.global () .epoch.load (Ordering: :Relaxed) ;
let new_epoch = global_epoch.pinned();
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This means that there are no other active participants in Local, and Local needs to query
for the global epoch. The global epoch is loaded as the Local epoch:

self.epoch.store (new_epoch, Ordering::Relaxed);
atomic::fence (Ordering: :SeqgCst) ;

Sequential consistency is used here to ensure that ordering is maintained with regard to
future and past atomic operations. Finally, the Local's pin_count is increased and this
kicks off, potentially, Global::collect:

let count = self.pin_count.get();
self.pin_count.set (count + Wrapping(l));

// After every “PINNINGS_BETWEEN_COLLECT ' try advancing the

// epoch and collecting some garbage.

if count.0 % Self::PINNINGS_BETWEEN_COLLECT == 0 {
self.global().collect (&guard);

}

guard

}

It is possible for Local to be pinned and unpinned repeatedly, which is where pin_count
comes into play. This mechanism doesn't find use in our discussion here, but the reader is
referred to Guard: :repin and Guard: : repin_after. The latter function is especially
useful when mixing network calls with atomic data structures as, if you'll recall, garbage
cannot be collected until epochs advance and the epoch is only advanced by unpinning,
usually. Global: :collect is brief:

pub fn collect (&self, guard: &Guard) {
let global_epoch = self.try_advance (guard);

The global epoch is potentially advanced by Global: :try_advance, the advancement
only happening if every Local in the global list of Local is not in another epoch or the list
of locals is not modified during examination. The detection of concurrent modification is an
especially neat trick, being part of crossbeam-epoch's private List iteration. The tagged
pointer plays a part in this iteration and the reader is warmly encouraged to read and
understand the List implementation crossbeam-epoch uses:

let condition = |item: & (Epoch, Bag)| {
// A pinned participant can witness at most one epoch
advancement. Therefore, any bag
// that is within one epoch of the current one cannot be
destroyed yet.
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global_epoch.wrapping_sub(item.0) >= 2
bi

let steps = if cfg! (feature = "sanitize") {
usize: :max_value ()
} else {

Self::COLLECT_STEPS
bi

for in 0..steps {

match self.queue.try_pop_if (&condition, guard) {
None => break,
Some (bag) => drop (bag),

}

The condition will be passed into the Global's Queue: : try_pop_if, which only pops an
element from the queue that matches the conditional. We can see the algorithm at play
again here. Recall self.queue :: Queue<(Epoch, Bag)>? Bags of garbage will only be
pulled from the queue if they are greater than two epochs away from the current epoch,
otherwise there may still be live and dangerous references to them. The steps control how
much garbage will end up being collected, doing a tradeoff for time versus memory use.
Recall that every newly pinned thread is participating in this process, deallocating some of
the global garbage.

To summarize, when the programmer calls for their thread to be pinned, this creates a
Local for storing thread-local garbage that is linked into a list of all Localsin a Global
context. The thread will attempt to collect G1lobal garbage, potentially pushing the epoch
forward in the process. Any garbage the programmer defers during execution is
preferentially pushed into the Local bag of garbage or, if that's full, causes some garbage
to shift into the G1obal bag. Any garbage in the Local bag is shifted onto the Global

bag when the Local is unpinned. Every atomic operation, by reason of requiring a
reference to Guard, is implicitly associated with some Local, some epoch, and can be safely
reclaimed by the method outlined in the preceding algorithm.

Phew!
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Exercising the epoch-based Treiber stack

Let's put the crossbeam-epoch Treiber stack through the wringer to get an idea of the
performance of this approach. Key areas of interest for us will be:

e Push/pop cycles per second
e Memory behavior, high-water mark, and what not
e cache behavior

We'll run our programs on x86 and ARM, like we did in previous chapters. Our exercise
program, similar to the hazard pointer program from the previous section:

extern crate crossbeam;

# [macro_use]

extern crate lazy_static;
extern crate num_cpus;
extern crate quantiles;

use crossbeam::sync::TreiberStack;

use quantiles::ckms: :CKMS;

use std::sync::Arc;

use std::sync::atomic::{AtomicUsize, Ordering};
use std::{thread, time};

lazy_static! {
static ref WORKERS: AtomicUsize = AtomicUsize::new(0);
static ref COUNT: AtomicUsize = AtomicUsize::new(0);

I3

static MAX_I: u32 = 67_108_864; // 2 ** 26

fn main() {
let stk: Arc<TreiberStack<(u64, u64, u6d)>> =
Arc::new (TreiberStack::new());

let mut jhs = Vec::new();

let cpus = num_cpus::get();
WORKERS.store (cpus, Ordering::Release);

for _ in 0..cpus {
let stk = Arc::clone(&stk);
jhs.push (thread: :spawn (move || {

for i1 in 0..MAX_TI {
stk.push((i as u64, 1 as u64, 1 as u64d));
stk.pop();
COUNT. fetch_add (1, Ordering::Relaxed);
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I3
WORKERS. fetch_sub (1, Ordering::Relaxed)

1)

let one_second time::Duration::from_millis (1_000);

let mut iter = 0;

let mut cycles: CKMS<u32> = CKMS::new(0.001);
while WORKERS.load (Ordering::Relaxed) != 0 {

let count = COUNT.swap (0, Ordering::Relaxed);
cycles.insert ((count / cpus) as u32);
println! (
"CYCLES PER SECOND ({}):\n 25th: \
{}\n 50th: {}\n 75th: \
{}\n 90th: {}\n max: {}\n",
iter,

cycles.query(0.25) .unwrap() .1,
cycles.query(0.50) .unwrap() .1,
cycles.query(0.75) .unwrap() .1,
cycles.query(0.90) .unwrap() .1,
cycles.query(1.0) .unwrap() .1

)i
thread: :sleep (one_second);
iter += 1;

}

for jh in jhs {
jh.join () .unwrap () ;
}
}

We have a number of worker threads equal to the total number of CPUs in the target
machine, each doing one push and then an immediate pop on the stack. A COUNT is kept
and the main thread swaps that value for 0 every second or so, tossing the value into a
quantile estimate structure—discussed in more detail in chapter 4, Sync and Send — the
Foundation of Rust Concurrency—and printing out a summary of the recorded cycles per
second, scaled to the number of CPUs. The worker threads cycle up through to MAX_T,
which is arbitrarily set to the smallish value of 2**26. When the worker is finished cycling,
it decreases WORKERS and exits. Once WORKERS hits zero, the main loop also exits.
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On my x86 machine, it takes approximately 38 seconds for this program to exit, with this
output:

CYCLES PER SECOND (0) :

25th: 0
50th: 0
75th: 0
90th: 0
max: O

CYCLES PER SECOND (1) :
25th: 0
50th: 0
75th: 1739270
90th: 1739270
max: 1739270

CYCLES PER SECOND (37) :
25th: 1738976
50th: 1739528
75th: 1740474
90th: 1757650
max: 1759459

CYCLES PER SECOND (38) :
25th: 1738868
50th: 1739528
75th: 1740452
90th: 1757650
max: 1759459

Compare this to the x86 hazard implementation, which takes 58 total seconds. The x86 perf
run is as follows:

> perf stat --event task-clock, context-switches, page-

faults, cycles, instructions, branches,branch-misses, cache-references, cache-
misses target/release/epoch_stack > /dev/null

Performance counter stats for 'target/release/epoch_stack':

148830.337380 task-clock (msec) # 3.916 CPUs utilized
1,043 context-switches # 0.007 K/sec
1,039 page-faults # 0.007 K/sec
429,969,505, 981 cycles # 2.889 GHz
161,901,052,886 instructions # 0.38 insn per cycle

[282]



Atomics — Safely Reclaiming Memory Chapter 7

27,531,697,676 branches # 184.987 M/sec
627,050,474 branch-misses # 2.28% branches
11,885,394,803 cache-references # 79.859 M/sec
1,772,308 cache-misses # 0.015 % cache refs

38.004548310 seconds time elapsed

The total number of executed instructions is much, much lower in the epoch-based
approach, which squares well with the analysis in the opening discussion of this section.
Even with a single hazardous pointer, epoch-based approaches do less work. On my ARM
machine, it takes approximately 72 seconds for the program to run to completion, with this
output:

CYCLES PER SECOND (0) :

25th: 0
50th: 0
75th: 0
90th: O
max: O

CYCLES PER SECOND (1) :
25th: 0
50th: 0
75th: 921743
90th: 921743
max: 921743

CYCLES PER SECOND (71) :
25th: 921908
50th: 922326
75th: 922737
90th: 923235
max: 924084

CYCLES PER SECOND (72) :
25th: 921908
50th: 922333
75th: 922751
90th: 923235
max: 924084
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Compared to the ARM hazard implementation, which takes 463 total seconds! The ARM
perf run is as follows:

> perf stat --event task-clock, context-switches, page-
faults, cycles, instructions, branches,branch-misses, cache-references, cache-
misses target/release/epoch_stack > /dev/null

Performance counter stats for 'target/release/epoch_stack':

304880.898057 task-clock (msec) # 3.959 CPUs utilized
0 context-switches # 0.000 K/sec
248 page—-faults # 0.001 K/sec
364,139,169,537 cycles # 1.194 GHz
215,754,991, 724 instructions # 0.59 insn per cycle
28,019,208, 815 branches # 91.902 M/sec
3,525,977,068 branch-misses # 12.58% branches
105,165,886,677 cache-references # 344.941 M/sec
1,450,538,471 cache-misses # 1.379 % cache refs

77.014340901 seconds time elapsed

Again, drastically fewer instructions are executed compared to the hazard-pointer
implementation on the same processor architecture. In passing, it's worth noting that the
memory use of both the x86 and ARM versions' epoch_stack were lower than the hazard
pointer stack implementations, though neither were memory hogs, consuming only a few
kilobytes each. Had one of our epoch threads slept for a long while—say, a second or
so—before leaving its epoch, memory use would have grown during execution. The reader
is encouraged to wreak havoc on their own system.

Tradeoffs

Of the three approaches outlined in this chapter, crossbeam-epoch is the fastest, both in
terms of our measurements and from discussions in the literature. The faster technique,
quiescent-state-based memory reclamation, is not discussed in this chapter as it's an
awkward fit for user-space programs and there is no readily-available implementation in
Rust. Furthermore, the authors of the library have put years of work into the
implementation: it is well-documented and runs on modern Rust across multiple CPU
architectures.
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Traditional issues with the approach—namely, threads introducing long delays to pinned
critical sections, resulting in long-lived epochs and garbage buildup—are addressed in the
API by the abiltiy of Guard to be arbitrarily repinned. The transition of standard-library
AtomicPtr data structures to crossbeam is a project, to be sure, but an approachable one.
As we've seen, crossbeam-epoch does introduce some overhead, both in terms of cache
padding and thread synchronization. This overhead is minimal and should be expected to
improve with time.

Summary

In this chapter, we discussed three memory reclamation techniques: reference counting,
hazard pointers, and epoch-based reclamation. Each, in turn, is faster than the last, though
there are tradeoffs with each approach. Reference counting incurs the most overhead and
has to be incorporated carefully into your data structure, unless Arc fits your needs, which
it may well. Hazard pointers require the identification of hazards, memory accesses that
result in memory that cannot be reclaimed without some type of coordination. This
approach incurs overhead on each access to the hazard, which is costly if traversal of a
hazardous structure must be done. Finally, epoch-based reclamation incurs overhead at
thread-pinning, which denotes the start of an epoch and may require the newly pinned
thread to participate in garage collection. Additional overhead is not incurred on memory
accesses post-pin, a big win if you're doing traversal or can otherwise include many
memory operations in a pinned section.

The crossbeam library is exceptionally well done. Unless you have an atomic data structure
specifically designed to not require allocations or to cope with allocations on a relaxed
memory system without recourse to garbage collection, you are warmly encouraged to
consider crossbeam as part and parcel with doing atomic programming in Rust, as of this
writing.

In the next chapter, we will leave the realm of atomic programming and discuss higher-
level approaches to parallel programming, using thread pooling and data parallel iterators.
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Further reading

e Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects, Maged Michael.
This paper introduces the hazard-pointer reclamation technique discussed in this
chapter. The paper specifically discusses the newly invented technique in
comparison to reference counting and demonstrates the construction of a safe
Michael and Scott queue using the hazard pointer technique.

e Practical Lock-Freedom, Keir Fraser. This is Keir Fraser's PhD thesis and is quite
long, being concerned with the introduction of abstractions to ease the writing of
lock-free structures—one of which is epoch-based reclamation—and the
introduction of lock-free search structures, skip-lists, binary search trees, and red-
black trees. Warmly recommended.

e Performance of Memory Reclamation for Lockless Synchronization, Thomas Hart et al.
This paper provides an overview of four techniques, all of which were discussed
in passing in Chapter 6, Atomics — the Primitives of Synchronization, of this book,
and three of which were discussed in-depth in this chapter. Further, the paper
introduces an optimization to epoch-based reclamation, which has influenced
crossbeam, if your author is not mistaken. The paper is an excellent overview of
the algorithms and provides comparative measurements of the algorithms'
performance in a well-defined manner.

e RFCs for changes to Crossbeam, available at https://github.com/crossbeam-rs/
rfcs. This Github repository is the primary discussion point for large-scale
changes to the crossbeam library and is an especially important read for its
discussions. For instance, RFC 2017-07-23-relaxed-memory lays out the changes
necessary to crossbeam to operate on relaxed-memory systems, a topic rarely
discussed in the literature.

o CDSCHECKER: Checking Concurrent Data Structures Written with C/C++ Atomics,
Brian Norris and Brian Demsky. This paper introduces a tool for checking the
behavior of concurrent data structures according to the C++11/LLVM memory
model. Given how utterly confounding relaxed-memory ordering can be, this
tool is extremely useful when doing C++ work. I am unaware of a Rust analog
but hope this will be seen as an opportunity for some bright spark reading this.
Good luck, you.

* A Promising Semantics for Relaxed-Memory Concurrency, Jeehoon Kang et al.
Reasoning about the memory model proposed in C++/LLVM is very difficult.
Which, despite how many people have thought about it in-depth over the years,
there's still active research into formalizing this model to validate the correct
function of optimizers and algorithms. Do read this paper in conjunction with
CDSCHECKER by Norris and Demsky.

[ 286 ]



High-Level Parallelism —
Threadpools, Parallel Iterators
and Processes

In previous chapters, we introduced the basic mechanisms of concurrency in the
Rust—programming language. In chapter 4, Sync and Send — the Foundation of Rust
Concurrency, we discussed the interplay of the type system of Rust with concurrent
programs, how Rust ensures memory safety in this most difficult of circumstances. In
Chapter 5, Locks — Mutex, Condvar, Barriers and RWLock, we discussed the higher, so-called
coarse, synchronization mechanisms available to us, common among many languages. In
Chapter 6, Atomics — the Primitives of Synchronization, and Chapter 7, Atomics — Safely
Reclaiming Memory, we discussed the finer synchronization primitives available on modern
machines, exposed through Rust's concurrent memory model. This has all been well and
good but, though we've done deep-dives into select libraries or data structures, we have yet
to see the consequences of all of these tools on the structure of programs, or how you might
choose to split up your workloads across CPUs depending on need.

In this chapter, we will explore higher-level techniques for exploiting concurrent machines
without dipping into manual locking or atomic synchronization. We'll examine thread
pooling, a technique common in other programming languages, data parallelism with the
rayon library, and demonstrate multiprocessing in the context of a genetic programming
project that will carry us into the next chapter, as well.

By the end of this chapter, we will have:

¢ Explored the implementation of thread pool

¢ Understood how thread pooling relates to the operation of rayon
¢ Explored rayon's internal mechanism in-depth

e Demonstrated the use of rayon in a non-trivial exercise
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Technical requirements

This chapter requires a working Rust installation. The details of verifying your installation
are covered in Chapter 1, Preliminaries — Machine Architecture and Getting Started with

Rust. A pMARS executable is required and must be on your PATH. Please follow the
instructions in the pMARS (http://www.koth.org/pmars/) source tree for building
instructions.

You can find the source code for this book's projects on GitHub: https://github.com/
PacktPublishing/Hands-On-Concurrency-with-Rust. The source code for this chapter is
under Chapter08.

Thread pooling

To this point in the book, whenever we have needed a thread, we've simply called
thread: : spawn. This is not necessarily a safe thing to do. Let's inspect two projects that
suffer from a common defect—potential over-consumption of OS threads. The first will be
obviously deficient, the second less so.

Slowloris - attacking thread-per-connection
servers

The thread-per-connection architecture is a networking architecture that allocates one OS
thread per inbound connection. This works well for servers that will receive a total

number of connections relatively similar to the number of CPUs available to the server.
Depending on the operating system, this architecture tends to reduce time-to-response
latency of network transactions, as a nice bonus. The major defect with thread-per-
connection systems has to do with slowloris attacks. In this style of attack, a malicious user
opens a connection to the server-a relatively cheap operation, requiring only a single file-
handler and simply holds it. Thread-per-connection systems can mitigate the slowloris
attack by aggressively timing out idle connections, which the attacker can then mitigate by
sending data through the connection at a very slow rate, say one byte per 100 milliseconds.
The attacker, which could easily be just buggy software if you're deploying solely inside a
trusted network, spends very little resources to carry out their attack. Meanwhile, for every
new connection into the system, the server is forced to allocate a full stack frame and forced
to cram another thread into the OS scheduler. That's not cheap.
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The server

Let's put together a vulnerable server, then blow it up. Lay out your Cargo.toml like so:

[package]

name = "overwhelmed_tcp_server"

version =
authors =

"0.1.0"

["Brian L. Troutwine <brian@troutwine.us>"]

[dependencies]
clap = "2.31"
slog = "2.2"
slog-term = "2.4"
slog—async = "2.3"

[[bin]]

name = "server"

[[bin]]

name = "client"

The library slog (https://crates.io/crates/slog) is a structured logging library that I
highly recommend in production systems. Slog itself is very flexible, being more of a
framework for composing a logging system rather than a set thing. Here we'll be logging to
terminal, which is what slog-term is for. The s1og-async dependency defers actual
writing to the terminal, in our case, to a dedicated thread. This dedication is more
important when slog is emitting logs over a network, rather than quickly to terminal. We
won't go in-depth on slog in this book but the documentation is comprehensive and I
imagine you'll appreciate slog if you aren't already using it. The library clap (https://
crates.io/crates/clap) is a command-line parsing library, which I also highly
recommend for use in production systems. Note, finally, that we produce two binaries in
this project, called server and client. Let's dig into server first. As usual, our projects
start with a preamble:

# [macro_use]

extern
extern
extern
extern

crate
crate
crate
crate

slog;

clap;
slog_async;
slog_term;

use clap::{App, Arg};

use slog::Drain;

use std::io::{self, BufRead, BufReader, BufWriter,
use std::net::{Tcplistener, TcpStream};
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use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;

static TOTAL_STREAMS: AtomicUsize = AtomicUsize::new(0);

By this point in the book, there's nothing surprising here. We import the external libraries
we've just discussed as well as a host of standard library material. The networking-related
imports are unfamiliar, with regard to the previous content of this book, but we'll go into
that briefly below. We finally create a static TOTAL_STREAMS at the top of the program that
the server will use to track the total number of TCP streams it has connected. The main
function starts off setting up slog;:

fn main() A
let decorator = slog_term::TermDecorator::new() .build();
let drain = slog_term::CompactFormat: :new(decorator) .build() .fuse();
let drain = slog_async::Async::new(drain) .build() .fuse();
let root = slog::Logger::root (drain, o! ());

The exact details here are left to the reader to discover in slog's documentation. Next, we set
up the clap and parse program arguments:

let matches = App::new("server")

.arg(
Arg::with_name ("host")
.long ("host")
.value_name ("HOST")
.help("Sets which hostname to listen on")
.takes_value (true),
)
.arg(
Arg::with_name ("port")

.long ("port")
.value_name ("PORT")
.help("Sets which port to listen on")
.takes_value (true),
)
.get_matches () ;

let host: &str = matches.value_of ("host") .unwrap_or ("localhost");
let port = matches

.value_of ("port")

.unwrap_or ("1987")
.parse::<ul6>()

.expect ("port-no not wvalid");
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The details here are also left to the reader to discover in clap's documentation, but
hopefully the intent is clear enough. We're setting up two arguments, host and port,
which the server will listen for connections on. Speaking of:

let listener = Tcplistener::bind((host, port)) .unwrap();

Note that we're unwrapping if it's not possible for the server to establish a connection. This
is user-hostile and in a production-worthy application you should match on the error and
print out a nice, helpful message to explain the error. Now that the server is listening for
new connections, we make a server-specific logger and start handling incoming
connections:

let server = root.new(o! ("host"™ => host.to_string(),
"port" => port));
info! (server, "Server open for business! :D");
let mut joins = Vec::new();
for stream in listener.incoming() {
if let Ok (stream) = stream {

let stream_no = TOTAL_STREAMS.fetch_add (1,
Ordering: :Relaxed);
let log = root.new(o! ("stream—no" => stream_no,
"peer—-addr" => stream.peer_addr ()
.expect ("no peer address")
.to_string()));
let writer = BufWriter::new(
stream.try_clone ()
.expect ("could not clone stream"));
let reader = BufReader::new(stream);
match handle_client (log, reader, writer) {
Ok (handler) => {
joins.push (handler);
}
Err (err) => {
error! (server,
"Could not make client handler. {:?2}",
err);

}
} else {
info! (root, "Shutting down! {:?}", stream);

info! (
server,
"No more incoming connections. Draining existing connections."
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)
for jh in joins {
if let Err(err) = jh.join() {
info! (server,
"Connection handler died with error: {:2}",
err);

}

The key thing here is handle_client (log, reader, writer). This function accepts the
newly created stream :: TcpStream- inits buffered reader and writer guise—and
returns std: :io::Result<JoinHandler< () >. We'll see the implementation of this
function directly. Before that and somewhat as an aside, it's very important to remember to
add buffering to your IO. If we did not have BufWriter and BufReader in place here,
every read and write to TcpSt ream would result in a system call on most systems doing
per-byte transmissions over the network. It is significantly more efficient for everyone
involved to do reading and writing in batches, which the BufReader and BufWriter
implementations take care of. I have lost count of how many overly slow programs I've
seen fixed with a judicious application of buffered-IO. Unfortunately, we won't dig into the
implementations of BufReader and BufWriter here as they're outside the scope of this
book. If you've read this far and I've done alright job explaining, then you've learned
everything you need to understand the implementations and you are encouraged to dig in
at your convenience. Note that here we're also allocating a vector for JoinHandler<() >s
returned by handle_client. This is not necessarily ideal. Consider if the first connection
were to be long-lived and every subsequent connection short. None of the handlers would
be cleared out, though they were completed, and the program would gradually grow in
memory consumption. The resolution to this problem is going to be program-specific but,
at least here, it'll be sufficient to ignore the handles and force mid-transaction exits on
worker threads. Why? Because the server is only echoing:

fn handle_client (
log: slog::Logger,
mut reader: BufReader<TcpStream>,
mut writer: BufWriter<TcpStream>,
) —> io::Result<thread::JoinHandle< ()>> {
let builder = thread::Builder::new();
builder.spawn (move || {
let mut buf = String::with_capacity(2048);

while let Ok(sz) = reader.read_line (&mut buf) {
info! (log, "Received a {} bytes: {}", sz, buf);
writer

.write_all (&buf.as_bytes())
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.expect ("could not write line");
buf.clear () ;
}
TOTAL_STREAMS.fetch_sub (1, Ordering::Relaxed);
)
}

A network protocol must, anyway, be resilient to hangups on either end, owing to the
unreliable nature of networks. In fact, the reader who has enjoyed this book and especially
Chapter 6, Atomics — the Primitives of Synchronization, and Chapter 7, Atomics — Safely
Reclaiming Memory, will be delighted to learn that distributed systems face many of the
same difficulties with the added bonus of unreliable transmission. Anyway, note that
handle_client isn't doing all that much, merely using the thread: :Builder APIto
construct threads, which we discussed in chapter 5, Locks — Mutex, Condvar, Barriers and
RWLock. Otherwise, it's a fairly standard TCP echo.

Let's see the server in operation. In the top of the project, run cargo run --release —-
bin server and you should be rewarded with something much like:

> cargo run —--release —-bin server
Finished release [optimized] target(s) in 0.26 secs
Running ‘target/release/server’
host: localhost
port: 1987
Apr 22 21:31:14.001 INFO Server open for business! :D

So far so good. This server is listening on localhost, port 1987. In some other terminal, you
can run a telnet to the server:

> telnet localhost 1987
Trying ::1...

Connected to localhost.
Escape character is '“]'.
hello server

I've sent hello server to my running instance and have yet to receive a response because
of the behavior of the write buffer. An explicit flush would correct this, at the expense of
worse performance. Whether a flush should or should not be placed will depend entirely
on setting. Here? Meh.

The server dutifully logs the interaction:

stream—-no: 0
peer—-addr: [::1]:65219
Apr 22 21:32:54.943 INFO Received a 14 bytes: hello server
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The client

The real challenge for our server comes with a specially constructed client. Let's go through
it before we see the client in action. The preamb]e is typical:

# [macro_use]

extern crate slog;
extern crate clap;
extern crate slog_async;
extern crate slog_term;

use clap::{App, Arg};

use slog::Drain;

use std::net::TcpStream;

use std::sync::atomic::{AtomicUsize, Ordering};
use std::{thread, time};

static TOTAL_STREAMS: AtomicUsize = AtomicUsize::new(0);

In fact, this client preamble hews fairly close to that of the server. So, too, the main function,
as we'll see shortly. As with many other programs in this book, we dedicate a thread to
reporting on the behavior of the program. In this client, this thread runs the long-lived
report:

fn report (log: slog::Logger) A

let delay = time::Duration::from millis(1000);

let mut total_streams = 0;

loop {
let streams_per_second = TOTAL_STREAMS.swap (0, Ordering::Relaxed);
info! (log, "Total connections: {}", total_streams);
info! (log, "Connections per second: {}", streams_per_second);
total_streams += streams_per_second;
thread: :sleep(delay);

}

Every second report swaps TOTAL_STREAMS, maintaining its own total_streams, and
uses the reset value as a per-second gauge. Nothing we haven't seen before in this book.
Now, in the main function, we set up the logger and parse the same command options as in
the server:

fn main() {
let decorator = slog_term::TermDecorator::new() .build();
let drain = slog_term::CompactFormat: :new(decorator) .build() .fuse();
let drain = slog_async::Async::new(drain) .build() .fuse();
let root = slog::Logger::root (drain, o!());
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let matches = App::new("server")

.arg(
Arg::with_name ("host")
.long ("host")
.value_name ("HOST")
.help ("Sets which hostname to listen on")
.takes_value (true),
)
.arg(
Arg::with_name ("port")

.long ("port")
.value_name ("PORT")
.help ("Sets which port to listen on")
.takes_value (true),
)

.get_matches () ;

let host: &str = matches.value_of ("host") .unwrap_or ("localhost");
let port = matches

.value_of ("port")

.unwrap_or ("1987")

.parse::<ul6>()

.expect ("port-no not wvalid");

let client = root.new(o! ("host" => host.to_string(), "port" => port));
info! (client, "Client ready to be mean. >:)");

Inmain, we start the reporter thread and ignore its handle:

let reporter_log = root.new(o! ("meta" => "report"));
let _ = thread::spawn (|| report (reporter_logqg));

That leaves only committing the slowloris attack, which is disappointingly easy for the
client to do:

let mut streams = Vec::with_capacity (2048);

loop |
match TcpStream::connect ( (host, port)) {
Ok (stream) => {
TOTAL_STREAMS. fetch_add (1, Ordering::Relaxed);
streams.push (stream) ;
}
Err (err) => error! (client,
"Connection rejected with error: {:?}",
err),
}
}
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Yep, that's it, one simple loop connecting as quickly as possible. A more sophisticated setup
would send a trickle of data through the socket to defeat aggressive timeouts or limit the
total number of connections made to avoid suspicion, coordinating with other machines to
do the same.

Mischief on networks is an arms race that nobody really wins, is the moral.

Anyway, let's see this client in action. If you run cargo run --release --bin client,
you should be rewarded with:

> cargo run —--release —-bin client
Finished release [optimized] target(s) in 0.22 secs
Running ‘target/release/client’
host: localhost
port: 1987
Apr 22 21:50:49.200 INFO Client ready to be mean. >:)
meta: report
Apr 22 21:50:49.200 INFO Total connections: 0
Apr 22 21:50:49.201 INFO Connections per second: 0
Apr 22 21:50:50.200 INFO Total connections: 0
Apr 22 21:50:50.200 INFO Connections per second: 1160
Apr 22 21:50:51.204 INFO Total connections: 1160
Apr 22 21:50:51.204 INFO Connections per second: 1026
Apr 22 21:50:52.204 INFO Total connections: 2186
Apr 22 21:50:52.204 INFO Connections per second: 915

You'll find a spew of errors in the server log as well as high-CPU load due to the OS
scheduler thrash. It's not a good time.

The ultimate problem here is that we've allowed an external party, the client, to decide the
allocation patterns of our program. Fixed sizes make for safer software. In this case, we'll
need to fix the total number of threads at startup, thereby capping the number of
connections the server is able to sustain to a relatively low number. Though, it will be a safe
low number. Note that the deficiency of allocating a whole OS thread to a single network
connection is what inspired C10K Problem in the late 1990s, leading to more efficient
polling capabilities in modern operating systems. These polling syscalls are the basis of Mio
and thereby Tokio, though the discussion of either is well outside the scope of this book.
Look them up. It's the future of Rust networking.
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What this program needs is a way of fixing the number of threads available for connections.
That's exactly what a thread pool is.

A thread-pooling server

Let's adapt our overwhelmed TCP server to use a fixed number of threads. We'll start a new
project whose Cargo. toml looks like:

[package]

name = "fixed_threads_server"

version = "0.1.0"

authors = ["Brian L. Troutwine <brian@troutwine.us>"]

[dependencies]
clap = "2.31"

slog = "2.2"
slog-term = "2.4"
slog—async = "2.3"
threadpool = "1.7"

[[bin]]
name = "server"

[[bin]]
name = "client"

This is almost exactly the same as the unbounded thread project, save that the name has
been changed from overwhelmed_tpc_server to fixed_threads_tcp_server and
we've added a new dependency-threadpool. There are a few different, stable thread-pool
libraries available in crates, each with a slightly different feature set or focus. The
workerpool project (https://crates.io/crates/workerpool), for example, sports almost
the same API as threadpool, save that it comes rigged up so in/out communication with the
worker thread is enforced at the type-level, where threadpool requires the user to establish
this themselves if they want. In this project, we don't have a need to communicate with the
worker thread.

The server preamble is only slightly altered from the previous project:

# [macro_use]

extern crate slog;
extern crate clap;
extern crate slog_async;
extern crate slog_term;
extern crate threadpool;
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use clap::{App, Arg};

use slog::Drain;

use std::io::{BufRead, BufReader, BufWriter, Write};
use std::net::{Tcplistener, TcpStream};

use std::sync::atomic::{AtomicUsize, Ordering};

use threadpool::ThreadPool;

static TOTAL_STREAMS: AtomicUsize = AtomicUsize::new(0);

The only changes here are the introduction of the thread-pooling library and the removal of
some unused imports. Our handle_client implementation is also basically the same, but
is notably not spawning a thread:

fn handle_client (
log: slog::Logger,
mut reader: BufReader<TcpStream>,
mut writer: BufWriter<TcpStream>,
) —> () A
let mut buf = String::with_capacity (2048);

while let Ok (sz) = reader.read_line (&mut buf) {
info! (log, "Received a {} bytes: {}", sz, buf);
writer

.write_all (&buf.as_bytes())
.expect ("could not write line");
buf.clear();

}
TOTAL_STREAMS. fetch_sub (1, Ordering::Relaxed);
}

Our main function, likewise, is very similar. We set up the logger and parse application
options, adding in a new max_connections option:

fn main() A
let decorator = slog_term::TermDecorator::new() .build();
let drain = slog_term::CompactFormat: :new(decorator) .build() .fuse();
let drain = slog_async::Async::new(drain) .build() .fuse();
let root = slog::Logger::root (drain, o!());
let matches = App::new("server")
.arg(
Arg::with_name ("host")
.long ("host")

.value_name ("HOST")
.help ("Sets which hostname to listen on")
.takes_value (true),
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.arg(
Arg::with_name ("port")

.long ("port")
.value_name ("PORT")
.help ("Sets which port to listen on")
.takes_value (true),

)

.arg(

Arg::with_name ("max_connections")
.long ("max_connections")
.value_name ("CONNECTIONS")
.help("Sets how many connections (thus,\
threads) to allow simultaneously")
.takes_value (true),
)

.get_matches () ;

let host: &str = matches.value_of ("host") .unwrap_or ("localhost");
let port = matches
.value_of ("port")
.unwrap_or ("1987")
.parse::<ul6>()
.expect ("port-no not wvalid");
let max_connections = matches
.value_of ("max_connections")
.unwrap_or ("256")
.parse::<ul6>()
.expect ("max_connections not valid");

Note that max_connections is ul6. This is arbitrary and will under-consume some of the
larger machines available in special circumstances. But this is a reasonable range for most
hardware today. Just the same as before, we adapt the logger to include the host and port
information:

let listener = Tcplistener::bind((host, port)) .unwrap();
let server = root.new(o! ("host" => host.to_string(), "port" => port));
info! (server, "Server open for business! :D");

So far, so good. Before the server can start accepting incoming connections, it needs a
thread pool. Like so:

let pool: ThreadPool = threadpool::Builder::new()
.num_threads (max_connections as usize)
.build();
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Exactly what threadpool: :Builder does and how it works we defer to the next section,
relying only on documentation to guide us. As such, we now have Threadpool with
max_connection possible active threads. This pool implementation does not bound the
total number of jobs that can be run against the pool, collecting them in a queue, instead.
This is not ideal for our purposes, where we aim to reject connections that can't be serviced.
This is something we can address:

for stream in listener.incoming () {
if let Ok (stream) = stream {
if pool.active_count () == (max_connections as usize) {
info! (
server,
"Max connection condition reached, rejecting incoming"

)i

} else {
let stream_no = TOTAL_STREAMS.fetch_add(
lr
Ordering::Relaxed
)
let log = root.new(o! ("stream-no" => stream_no,
"peer—-addr" => stream.peer_addr ()
.expect ("no peer address")
.to_string()));
let writer = BufWriter::new(stream.try_clone ()
.expect ("could not clone stream"));
let reader = BufReader::new(stream);
pool.execute (move || handle_client (log, reader, writer));
}
} else {

info! (root, "Shutting down! {:?}", stream);

}

The accept loop is more or less the same as in the previous server, except at the top of the
loop we check pool.active_count () against the configured max_connections, reject
the connection if the number of running workers is at capacity; otherwise we accept the
connection and execute it against the pool. Finally, much as before, the server drains
connections when the incoming socket is closed:

info!(
server,
"No more incoming connections. \
Draining existing connections."
)i
pool.join();
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The client presented in the previous section can be applied to this server without any
changes. If the reader inspects the book's source repository, they will find that the clients
are identical between projects.

This server implementation does not suffer from an ever-growing JoinHandle vector, as
the last server did. The pool takes care to remove panicked threads from its internal buffers
and we take care to never allow more workers than there are threads available to work
them. Let's find out how that works!

Looking into thread pool

Let's look into threadpool and understand its implementation. Hopefully by this point in
the book, you have a sense of how you'd go about building your own thread-pooling
library. Consider that for a moment, before we continue, and see how well your idea stacks
up against this particular approach. We'll inspect the library (https://crates.io/crates/
threadpool) at SHA a982e060ea2e3e85113982656014b212c5b88ba?2

The thread pool crate is not listed in its entirety. You can find the full
listing in the book's source repository.

Let's look first at the project's Cargo.toml:

[package]

name = "threadpool"

version = "1.7.1"

authors = ["The Rust Project Developers", "Corey Farwell
<coreyf@rwell.org>", "Stefan Schindler <dns2utf8@estada.ch>"]
license = "MIT/Apache-2.0"

readme = "README.md"

repository = "https://github.com/rust-threadpool/rust-threadpool"
homepage = "https://github.com/rust-threadpool/rust-threadpool"
documentation = "https://docs.rs/threadpool"

description = """

A thread pool for running a number of jobs on a fixed set of worker
threads.

nun
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keywords = ["threadpool", "thread", "pool", "threading", "parallelism"]
categories = ["concurrency", "os"]

[dependencies]

num_cpus = "1.6"

Fairly minimal. The only dependency is num_cpus, a little library to determine the number
of logical and physical cores available on the machine. On linux, this reads
/proc/cpuinfo. On other operating systems, such as the BSDs or Windows, the library
makes system calls. It's a clever little library and well worth reading if you need to learn
how to target distinct function implementations across OSes. The key thing to take away
from the threadpool's Cargo.toml is that it is almost entirely built from the tools available
in the standard library. In fact, there's only a single implementation file in the library,
src/1lib.rs. All the code we'll discuss from this point can be found in that file.

Now, let's understand the builder pattern we saw in the previous section. The Builder
type is defined like so:

#[derive (Clone, Default)]

pub struct Builder {
num_threads: Option<usize>,
thread_name: Option<String>,
thread_stack_size: Option<usize>,

}

We only populated num_threads in the previous section. thread_stack_size is used to
control the stack size of pool threads. As of writing, thread stack sizes are by default two
megabytes. Standard library's std: :thread: :Builder::stack_size allows us to
manually set this value. We could have, for instance, in our thread-per-connection example,
set the stack size significantly lower, netting us more threads on the same hardware. After
all, each thread allocated very little storage, especially if we had taken steps to read only
into a fixed buffer. The thread_name field, like the stack size, is a toggle for
std::thread: :Builder: :name. That is, it allows the user to set the thread name for all
threads in the pool, a name they will all share. In my experience, naming threads is a
relatively rare thing to do, especially in a pool, but it can sometimes be useful for logging
purposes.

The pool builder works mostly as you'd expect, with the public functions setting the fields
in the Builder struct. Where the implementation gets interesting is Builder: :build:

pub fn build(self) -> ThreadPool {
let (tx, rx) = channel::<Thunk<'static>>();

let num_threads = self.num_threads.unwrap_or_else (num_cpus::get);
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let shared_data = Arc::new(ThreadPoolSharedData {
name: self.thread_name,
job_receiver: Mutex::new(rx),
empty_condvar: Condvar::new(),
empty_trigger: Mutex::new(())
join_generation: AtomicUsize::new(0),
queued_count: AtomicUsize::new(0),
active_count: AtomicUsize::new(0),
max_thread_count: AtomicUsize::new (num_threads),
panic_count: AtomicUsize::new(0),
stack_size: self.thread_stack_size,

14

)i

// Threadpool threads
for _ in O..num_threads {
spawn_in_pool (shared_data.clone());

ThreadPool {
jobs: tx,
shared_data: shared_data,

}

There's a lot going on here. Let's take it a bit at a time. First, that channel is the

std::sync::mpsc::channel we discussed at length in Chapter 4, Sync and Send — the
Foundation of Rust Concurrency. What is unfamiliar there is Thunk. Turns out, it's a type

synonym:
type Thunk<'a> = Box<FnBox + Send + 'a>;
Now, what is FnBox? It's a small trait:

trait FnBox {
fn call_box(self: Box<Self>);

impl<F: FnOnce ()> FnBox for F {
fn call_box(self: Box<EF>) {
(*self) ()
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It is the FnOnce trait we encountered in chapter 3, The Rust Memory Model — Ownership,
References and Manipulation, so if you read that chapter, you know that ¥ will only be called
once. The boxing of the function closure means its captured variables are available on the
heap and don't get deallocated when the pool caller moves the closure out of scope. Great.
Now, let's jump back to build and look at shared_data:

let shared_data = Arc::new(ThreadPoolSharedData {
name: self.thread_name,
job_receiver: Mutex::new(rx),
empty_condvar: Condvar::new(),
empty_trigger: Mutex::new(())
join_generation: AtomicUsize::new(0),
queued_count: AtomicUsize::new(0),
active_count: AtomicUsize::new(0),
max_thread_count: AtomicUsize::new (num_threads),

14

panic_count: AtomicUsize::new(0),
stack_size: self.thread_stack_size,

)i

Alright, several atomic usizes, a condvar, a mutex to protect the receiver side of the thunk
channel, and a mutex that'll be paired with the condvar. There's a fair bit you can tell from
reading the population of a struct, with a little bit of background information. The
implementation of ThreadPoolSharedData is brief:

impl ThreadPoolSharedData {
fn has_work (&self) —-> bool {
self.queued_count.load(Ordering: :SeqCst)
self.active_count.load(Ordering: :SeqCst)

>0 ||
> 0

/// Notify all observers joining this pool if there
/// is no more work to do.
fn no_work_notify_all (&self) {

if !self.has_work () {
*self.empty_trigger
.lock ()

.expect ("Unable to notify all joining threads");
self.empty_condvar.notify_all();
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The has_work function does a sequentially consistent read of the two indicators of work,
an operation that is not exactly cheap considering the two sequentially consistent reads, but
implies a need for accuracy in the response. The no_work_notify_all function is more
complicated and mysterious. Happily, the function is used in the implementation of the
next chunk of Build: :build and will help clear up that mystery. The next chunk of build
is:

for in O0..num_threads {

spawn_in_pool (shared_data.clone());

ThreadPool {
jobs: tx,
shared_data: shared_data,

}

For each of the num_threads, the spawn_in_pool function is called over a clone of the
Arced ThreadPoolSharedData. Let's inspect spawn_in_pool:

fn spawn_in_pool (shared_data: Arc<ThreadPoolSharedData>) {
let mut builder = thread::Builder::new();
if let Some (ref name) = shared_data.name {
builder = builder.name (name.clone());
}
if let Some (ref stack_size) = shared_data.stack_size {
builder = builder.stack_size(stack_size.to_owned());

}

As you might have expected, the function creates std: : thread: : Builder and pulls
references to the name and stack size embedded in the ThreadPoolSharedData shared
data. With these variables handy, the builder. spawn is called, passing in a closure in the
usual fashion:

builder
.spawn (move || {
// Will spawn a new thread on panic unless it is cancelled.
let sentinel = Sentinel::new(&shared_data);
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Well, let's take a look at Sentinel:

struct Sentinel<'a> {
shared_data: &'a Arc<ThreadPoolSharedData>,

active: bool,

}

It holds a reference to Arc<ThreadPoolSharedData>—avoiding increasing the reference
counter—and an act ive boolean. The implementation is likewise brief:

impl<'a> Sentinel<'a> {
fn new(shared_data: &'a Arc<ThreadPoolSharedData>) -> Sentinel<'a> {
Sentinel {
shared_data: shared_data,
active: true,

/// Cancel and destroy this sentinel.
fn cancel (mut self) {
self.active = false;

}
The real key here is the Drop implementation:

impl<'a> Drop for Sentinel<'a> {
fn drop (&mut self) {
if self.active {
self.shared_data.active_count.fetch_sub (1, Ordering::SeqCst) ;
if thread::panicking() {
self.shared_data.panic_count
.fetch_add (1, Ordering::SeqgCst);

}
self.shared_data.no_work_notify_all();

spawn_in_pool (self.shared_data.clone())

}

Recall how in the previous section, our join vector grew without bound, even though
threads in that vector had panicked and were no longer working. There is an interface
available to determine whether the current thread is in a panicked state,
std::thread: :panicking (), in use here.
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When a thread panics, it drops its storage, which, in this pool, includes the allocated
Sentinel. drop then checks the active flag on the Sentinel, decrements the
active_count of the ThreadPoolSharedData, increases its panic_count, calls the as-
yet mysterious no_work_notify_all and then adds an additional thread to the pool. In
this way, the pool maintains its appropriate size and there is no need for any additional
monitoring of threads to determine when they need to be recycled: the type system does all
the work.

Let's hop back into spawn_in_pool:

loop A
// Shutdown this thread if the pool has become smaller
let thread_counter_val = shared_data

.active_count
.load (Ordering: :Acquire);
let max_thread_count_val = shared_data
.max_thread_count
.load (Ordering: :Relaxed) ;
if thread_counter_val >= max_thread_count_val {
break;

}

Here, we see the start of the infinite loop of the builder. spawn function, plus a check to
shut down threads if the pool size has decreased since the last iteration of the loop.
ThreadPool exposes the set_num_threads function to allow changes to the pool's size at
runtime. Now, why an infinite loop? Spawning a new thread is not an entirely fast
operation on some systems and, besides, it's not a free operation. If you can avoid the cost,
you may as well. Some pool implementations in other languages spawn a new thread for
every bit of work that comes in, fearing memory pollution. This is less a problem in Rust,
where unsafe memory access has to be done intentionally and FnBox is effectively a trap for
such behavior anyway, owing to the fact that the closure will have no pointers to the pool's
private memory. The loop exists to pull Thunks from the receiver channel side in
ThreadPoolSharedData:

let message = {
// Only lock jobs for the time it takes
// to get a job, not run it.
let lock = shared_data
.job_receiver
.lock ()
.expect ("Worker thread unable to \
lock job_receiver");
lock.recv ()
}i
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The message may be an error, implying that the ThreadPool was dropped, closing the
sender channel side. But, should the message be Ok, we'll have our FnBox to call:

let job = match message {
Ok (job) => job,
// The ThreadPool was dropped.
Err(..) => break,

bi

The final bit of spawn_in_pool is uneventful:

shared_data.active_count.fetch_add(l, Ordering::SeqgCst);
shared_data.queued_count.fetch_sub (1, Ordering::SeqgCst);

job.call_box();

shared_data.active_count.fetch_sub(l, Ordering::SeqgCst);
shared_data.no_work_notify_all();

sentinel.cancel () ;

H)

.unwrap () ;

}

The FnBox called job is called via call_box and if this panics, killing the thread, the
Sentinel cleans up the atomic references as appropriate and starts a new thread in the
pool. By leaning on Rust's type system and memory model, we get a cheap thread-pool
implementation that spawns threads only when needed, with no fears of accidentally
polluting memory between jobs.

ThreadPool: :execute is a quick boxing of FnOnce, pushed into the sender side of the
Thunk channel:

pub fn execute<F> (&self, job: F)
where
F: FnOnce() + Send + 'static,

self.shared_data.queued_count.fetch_add(1l, Ordering::SeqCst) ;
self.jobs

.send (Box: :new(job))

.expect ("ThreadPool: :execute unable to send job into queue.");
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The last piece here is ThreadPool: : join. This is where
ThreadPoolSharedData: :no_work_notify_all comes into focus. Let's look at join:

pub fn join(&self) {
// fast path requires no mutex

if self.shared_data.has_work () == false {
return ();

}

let generation = self.shared_data

.join_generation
.load (Ordering: :SeqCst) ;
let mut lock = self.shared_data.empty_trigger.lock () .unwrap();

while generation == self.shared_data
.join_generation
.load (Ordering: :Relaxed)
&& self.shared_data.has_work ()

lock = self.shared_data.empty_condvar.wait (lock) .unwrap () ;

// increase generation if we are the first thread to
// come out of the loop
self.shared_data.join_generation.compare_and_swap (
generation,
generation.wrapping_add (1),
Ordering: :SeqCst,
)i
¥

The function calls first to has_work, bailing out early if there are no active or queued
threads in the pool. No reason to block the caller there. Then, generation is set up to act as
a condition variable in the loop surrounding empty_condvar. Every thread that joins to the
pool checks that the pool generation has not shifted, implying some other thread has
unjoined, and that there's work yet to do. Recall that it's no_work_notify_all that calls
notify_all on condvar, this function in turn being called when either a Sentinel drops
or the inner-loop of spawn_in_pool returns from a job. Any joined thread waking on those
two conditions—a job being completed or crashing—checks their condition, incrementing
the generation on their the way to becoming unjoined.
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That's it! That's a thread pool, a thing built out of the pieces we've discussed so far in this
book. If you wanted to make a thread pool without queuing, you'd push an additional
check into execute. Some of the sequentially consistent atomic operations could likely be
relaxed, as well, as potentially the consequence of making a simple implementation more
challenging to reason with. It's potentially worth it for the performance gain if your
executed jobs are very brief. In fact, we'll discuss a library later in this chapter that ships an
alternative thread pool implementation for just such a use case, though it is quite a bit more
complex than the one we've just discussed.

The Ethernet sniffer

Of equal importance to understanding a technique in-depth is understanding when not to
apply it. Let's consider another thread-per-unit-of-work system, but this time we'll be
echoing Ethernet packets rather than lines received over a TCP socket. Our project's
Cargo.toml:

[package]

name = "sniffer"

version = "0.1.0"

authors = ["Brian L. Troutwine <brian@troutwine.us>"]
[dependencies]

pnet = "0.21"

[[bin]]

name = "sniffer"

[[bin]]

name = "poor_threading"

Like the TCP example, we'll create two binaries, one that is susceptible to thread
overload—-poor_threading-and another-snif fer—that is not. The premise here is that we
want to sniff a network interface for Ethernet packets, reverse the source and destination
headers on that packet, and send the modified packet back to the original source.
Simultaneously, we'll collect summary statistics of the packets we collect. On a saturated
network, our little programs will be very busy and there will have to be trade-offs made
somewhere in terms of packet loss and receipt.
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The only dependency we're pulling in here is pnet. libpnet is a low-level packet
manipulation library, useful for building network utilities or for prototyping transport
protocols. I think it's pretty fun to fuzz-test transport implementations with libpnet on
commodity network devices. Mostly, though, the reward is a crashed home router, but I
find that amusing. Anyhow, let's look into poor_threading. It's preamble is fairly ho-
hum:

extern crate pnet;

use pnet::datalink::Channel::Ethernet;

use pnet::datalink::{self, DatalLinkReceiver, DatalinkSender,
MacAddr, NetworkInterface};

use pnet::packet::ethernet::{EtherType, EthernetPacket,

MutableEthernetPacket};

use pnet::packet::{MutablePacket, Packet};

use std::collections::HashMap;

use std::sync::mpsc;

use std::{env, thread};

We pull in a fair bit of pnet's facilities, which we'll discuss in due time. We don't pull in clap
or similar argument-parsing libraries, instead requiring that the user pass in the interface
name as the first argument to the program:

fn main () A
let interface_name = env::args().nth(1l) .unwrap();
let interface_names_match = |iface: &NetworkInterface| {
iface.name == interface_name

Yi

// Find the network interface with the provided name
let interfaces: Vec<NetworkInterface> = datalink::interfaces();
let interface = interfaces

.into_iter ()

.filter (interface_names_match)

.next ()

.unwrap () ;

The user-supplied interface name is checked against the interfaces pnet is able to find, via
its datalink::interfaces () function. We haven't done much yet in this book with
iterators, though they've been omnipresent and assumed knowledge, at least minimally.
We'll discuss iteration in Rust in detail after this. Note here, though,

that filter (interface_names_match) is applying a boolean function,
interface_names_match (&§NetworkInterface) -> bool, to each member of the
determined interfaces.
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If the function returns true, the member passes through the filter, otherwise it doesn't. The
call to next () .unwrap () cranks the filtered iterator forward one item, crashing if there are
no items in the filtered iterator. This is a somewhat user-hostile way to determine whether
the passed interface is, in fact, an interface that pnet could discover. That's alright here in
our demonstration program.

Next, we establish a communication channel for the concurrent actors of this program:

let (snd, rcv) = mpsc::sync_channel (10);

let _ = thread::spawn (|| gather(rcv));

let timer_snd = snd.clone();

let _ = thread::spawn(move || timer (timer_snd));

The t imer function pushes a time pulse through the channel we just established at regular
intervals, as similarly is done in cernan, discussed previously in this book. The function is
small:

fn timer (snd: mpsc::SyncSender<Payload>) -> () {
use std::{thread, time};
let one_second = time::Duration::from_millis (1000);

let mut pulses = 0;

loop |
thread: :sleep (one_second);
snd.send (Payload: :Pulse (pulses) ) .unwrap () ;

pulses += 1;
}

The Payload type is an enum with only two variants:

enum Payload {
Packet {
source: MacAddr,
destination: MacAddr,
kind: EtherType,
}!
Pulse (u64),
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The Pulse (u64) variant is the timer pulse, sent periodically by the t imer thread. It's very
useful to divorce time in a concurrent system from the actual wall-clock, especially with
regard to testing individual components of the system. It's also helpful for the program
structure to unify different message variants in a union. At the time of writing, Rust's
MPSC implementation does not have a stable select capability, and so you'll have to
manually implement that with mpsc: :Receiver: :recv_timeout and careful
multiplexing. It's much better to unify it into one union type. Additionally, this gets the
type system on your side, confirming that all incoming variants are handled in a single
match, which likely optimizes better, too. This last benefit should be measured.

Let's look at gather now:

fn gather (rcv: mpsc::Receiver<Payload>) -> () {
let mut sources: HashMap<MacAddr, u64> = HashMap::new();
let mut destinations: HashMap<MacAddr, u64> HashMap: :new () ;
let mut ethertypes: HashMap<EtherType, u64> = HashMap::new();

while let Ok (payload) = rcv.recv() {
match payload {
Payload: :Pulse (id) => {
println! ("REPORT {}", id);

println! (" SOURCES: ") ;

for (k, v) in sources.iter () {
println! (" {}: {}", k, v);

}

println! (" DESTINATIONS:");

for (k, v) in destinations.iter () {
println! (" {}: {}", k, v);

}

println! (" ETHERTYPES:") ;

for (k, v) in ethertypes.iter() {
println! (" {}: {}", k, v);

}
Payload: :Packet {
source: src,
destination: dst,
kind: etype,
Po=> A
let mut destination = destinations.entry(dst).or_insert (0);
*destination += 1;

let mut source = sources.entry(src).or_insert (0);
*source += 1;

let mut ethertype = ethertypes.entry(etype).or_insert (0);
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*ethertype += 1;

}

Straightforward receiver loop, pulling off Payload enums. The Payload: :Packet variant
is deconstructed and its contents stored into three HashMaps, mapping MAC addresses to a
counter or an EtherType to a counter. MAC addresses are the unique identifiers of network
interfaces—or, ideally unique, as there have been goofs—and get used at the data-link layer
of the OSI model. (This is not a book about networking but it is, I promise, a really fun
domain.) EtherType maps to the two octet fields at the start of every Ethernet packet,
defining the packet's, well, type. There's a standard list of types, which pnet helpfully
encodes for us. When gather prints the EtherType, there's no special work needed to get
human-readable output.

Now that we know how gather and timer work, we can wrap up the main function:

let iface_handler = match datalink::channel (&interface,

Default::default ()) A
Ok (Ethernet (tx, rx)) => {
let snd = snd.clone();
thread::spawn (|| watch_interface(tx, rx, snd))
}
Ok (_) => panic! ("Unhandled channel type"),
Err(e) => panic! (

"An error occurred when creating the datalink channel: {}",
e
)I
bi

iface_handler.join () .unwrap () ;

}

The datalink: :channel function establishes an MPSC-like channel for bi-directional
packet reading and writing on the given interface. We only care about Ethernet packets
here and match only on that variant. We spawn a new thread for watch_interface,
which receives both read/write sides of the channel and the MPSC we made for Payload.
In this way, we have one thread reading Ethernet packets from the network, stripping them
into a normalized Payload: :Packet and pushing them to the gather thread. Meanwhile,
we have another t imer thread pushing Payload: :Pulse at regular intervals to the
gather thread to force user reporting.
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The sharp-eyed reader will have noticed that our Payload channel is actually
sync_channel (10), meaning that this program is not meant to store much transient
information in memory. On a busy Ethernet network, this will mean it's entirely possible
that watch_interface will be unable to push a normalized Ethernet packet into the
channel. Something will have to be done and it all depends on how willing we are to lose
information.

Let's look and see how this implementation goes about addressing this problem:

fn watch_interface (
mut tx: Box<DataLinkSender>,
mut rx: Box<DataLinkReceiver>,
snd: mpsc::SyncSender<Payload>,

loop {
match rx.next () {
Ok (packet) => {
let packet = EthernetPacket::new(packet) .unwrap();

So far, so good. We see the sides of datalink: :Channel that we discussed earlier, plus
our internal MPSC. The infinite loop reads & [u8] off the receive side of the channel and our
implementation has to convert this into a proper EthernetPacket. If we were being very
thorough, we'd guard against malformed Ethernet packets but, since we aren't, the creation
is unwrapped. Now, how about that normalization into Payload: :Packet and
transmission to gather:

{
let payload: Payload = Payload::Packet {
source: packet.get_source(),
destination: packet.get_destination(),
kind: packet.get_ethertype(),
bi
let thr_snd = snd.clone();
thread: :spawn (move || {
thr_snd.send (payload) .unwrap () ;
}) i
}

Uh oh. The EthernetPacket has normalized into Payload: :Packet just fine, but when we
send the packet down the channel to gather we do so by spawning a thread. The decision
being made here is that no incoming packet should be lost—implying we have to read them
off the network interface as quickly as possible—and if the channel blocks, we'll need to
store that packet in some pool, somewhere.
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The pool is, in fact, a thread stack. Or, a bunch of them. Even if we were to drop the thread's
stack size to a sensible low size on a saturated network, we're still going to overwhelm the
operating system at some point. If we absolutely could not stand to lose packets, we could
use something such as hopper, discussed in detail in chapter 5, Locks — Mutex, Condvar,
Barriers and RWLock, which was designed for just this use case. Or, we could defer these
sends to threadpool, allow it to queue the jobs, and run them on a finite number of threads.
Anyway, let's set this aside for just a second and wrap up watch_interface:

tx.build_and_send(l, packet.packet().len(),
&mut |new_packet |

{
let mut new_packet =
MutableEthernetPacket: :new (new_packet) .unwrap () ;

// Create a clone of the original packet
new_packet.clone_from (&packet) ;

// Switch the source and destination
new_packet.set_source (packet.get_destination());
new_packet.set_destination (packet.get_source());
1) i
t
Err(e) => {
panic! ("An error occurred while reading: {}", e);

}

}

The implementation takes the newly created EthernetPacket, swaps the source and
destination of the original in a new EthernetPacket, and sends it back across the network at
the original source. Now, let's ask ourselves, is it really important that we tally every
Ethernet packet we can pull off the network? We could speed up the HashMaps in the
gather thread in the fashion described in chapter 02, Sequential Rust Performance and
Testing, by inserting a faster hasher. Or, we could buffer in the watch_interface thread
when the synchronous channel is full, in addition to using threadpool or hopper. Only
speeding up gather and using hopper don't potentially incur unbounded storage
requirements. But hopper will require a filesystem and may still not be able to accept all
incoming packets, only making it less likely that there won't be sufficient storage.
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It's a tough problem. Given the nature of the network at layer 2, you might as well just shed
the packets. The network card itself is going to be shedding packets. With that in mind, the
implementation of watch_interface in the other binary in this project—sni f fer—differs
only marginally:

fn watch_interface (
mut tx: Box<DataLinkSender>,
mut rx: Box<DataLinkReceiver>,
snd: mpsc::SyncSender<Payload>,

loop {
match rx.next () {
Ok (packet) => {
let packet = EthernetPacket::new(packet) .unwrap();

let payload: Payload = Payload::Packet {
source: packet.get_source(),
destination: packet.get_destination(),
kind: packet.get_ethertype(),
}i
if snd.try_send(payload) .is_err () {
SKIPPED_PACKETS.fetch_add(l, Ordering::Relaxed);
}

Payload: :Packet is created and rather than calling snd. send, this implementation calls
snd.try_send, ticking up a SKIPPED_PACKETS static AtomicUsize in the event a packet
has to be shed. The gather implementation is likewise only slightly adjusted to report on
this new SKIPPED_PACKETS:

fn gather (rcv: mpsc::Receiver<Payload>) -> () A
let mut sources: HashMap<MacAddr, u64> = HashMap::new();
let mut destinations: HashMap<MacAddr, u64> = HashMap::new();
let mut ethertypes: HashMap<EtherType, u64> = HashMap::new();

while let Ok (payload) = rcv.recv() {
match payload {
Payload: :Pulse (id) => {

println! ("REPORT {}", id);

println! (
" SKIPPED PACKETS: {}",
SKIPPED_PACKETS.swap (0, Ordering::Relaxed)

)i

This program will use a moderate amount of storage for the Payload channel, no matter
how busy the network.
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In high-traffic domains or long-lived deployments, the HashMaps in the gather thread are
going to be a concern, but this is a detail the intrepid reader is invited to address.

When you run sniffer, you should be rewarded with output very much like this:

REPORT 6
SKIPPED PACKETS: 75
SOURCES:
ff.ff.ff. ff.££:££: 1453
00:23:6a:00:51:6e: 2422
5¢:£9:38:8b:4a:b6: 1034
DESTINATIONS:
33:33:ff:0b:62:e8: 1
33:33:£ff:a1:90:82: 1
33:33:00:00:00:01: 1
00:23:6a:00:51:6e: 2414
5¢:£9:38:8b:4a:b6: 1032
ff.ff.ff. ff.££:££: 1460
ETHERTYPES:
Ipv6: 4
Ipv4: 1999
Arp: 2906

This report came from the sixth second of my sniffer run and 75 packets were dropped for
lack of storage. That's better than 75 threads.

Iterators

So far, we've assumed that the reader has been at least passingly familiar with Rust
iterators. It's possible that you've used them extensively but have never written your own
iterator implementation. That knowledge is important for what follows and we'll discuss
Rust's iteration facility now.

A Rust iterator is any type that implements std: :iter::Iterator. The Iterator trait
has an interior Item type that allows the familiar iterator functions, such as next (&mut
self) -> Option<Self::Item>, tobe defined in terms of that generic Item. Many of the
iterator functions are, well, functional in nature: map, filter, and fold are all higher-
order functions on a stream of Item. Many of the iterator functions are searches on that
stream of Item: max, min, position, and find. It is a versatile trait. If you find it limited in
some manner, the community has put together a crate with more capability: itertools
(nttps://crates.io/crates/itertools). Here, we're less concerned with the interface of
Iterator than how to implement it for our own types.
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Smallcheck iteration

In chapters 2, Sequential Rust Performance and Testing, Chapters 5, Locks — Mutex, Condvar,
Barriers and RWLock, and chapters 6, Atomics —the Primitives of Synchronization, we've
discussed the QuickCheck testing methodology, a structured way of inserting random,
type-driven input into a function to search function property failures. Inspired by the work
done by Claessen and Hughes in their QuickCheck paper, Runciman, Naylor and Lindblad
observed that, in their experience, most failures were on small input and put forward the
observation that a library that tested from small output to big first might find failures faster
than purely random methods. Their hypothesis was more or less correct, for a certain
domain of function, but the approach suffers from duplication of effort, resolved somewhat
by the authors in the same paper with Lazy Smallcheck. We won't go into further detail
here, but the paper is included in the Further reading section of this chapter and the reader is
encouraged to check out the paper.

Anyway, producing all values of a small to big type sounds like iteration. In fact, it is. Let's
walk through producing iterators for signed and unsigned integers. The project's
Cargo.toml is minimal:

[package]

name = "smalliters"

version = "0.1.0"

authors = ["Brian L. Troutwine <brian@troutwine.us>"]

[dependencies]

No dependencies, just the default that cargo new lays down. The project has only one file,
src/lib.rs. The rest of our discussion will take place in the context of this file. First, the
preamble:

use std::iter::Iterator;
use std::mem;

We pullin Iterator, as you might expect, and then std: :mem, which we've seen
throughout this book. Nothing unusual here. What is unusual for this book is this:

macro_rules! unsized_iter {
(Sname:ident, $int:ty, S$Smax:expr) => {
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A macro! We've been using macros throughout the entire book but have not written one
yet. Macros in Rust are kind of a dark art and a touch on the fidgety side to get working.
Our ambitions here are simple. The iterators for the Rust integer types are mostly the same,
varying by signed/unsigned and total bit size of the type, hence std: :mem.

(Sname:ident, S$int:ty, and Smax:expr) declares three macro variables: $name,
which is an identifier, $int, which is a type, and $max, which is an expression. Here is how
we'll use the unsigned_iter! macro:

unsized_iter! (SmallU8, u8, u8::max_value());
unsized_iter! (SmallUl6, ul6, ul6::max_value());
unsized_iter! (SmallU32, u32, u32::max_value());
unsized_iter! (SmallU64, u64d, u6d::max_value());
unsized_iter! (SmallUsize, usize, usize::max_value());

That's an identifier, followed by a type, followed by an expression. OK, now back to the
macro definition:

macro_rules! unsized_iter {
(Sname:ident, $int:ty, S$max:expr) => {
# [derive (Default) ]
pub struct S$name {
cur: $int,
done: bool,

}

The first step in defining a small iterator for integer types is to produce some struct to store
whatever data the Iterator implementation needs. We require two things, the current
integer and a boolean flag to tell us when we're done iterating. When the macros expand,
there will be structs called Smal1U8, SmallU16, and so on in the expanded source code,
like this:

# [derive (Default) ]
pub struct SmallU8 {
cur: us,
done: bool,

}

The Iterator implementation for unsigned types is straightforward: keep incrementing
until you hit the maximum value for the type:

impl Iterator for $name {
type Item = $int;

fn next (¢mut self) -> Option<$int> {
if self.done {
return None;
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}

let old = self.cur;

if old == Smax {

self.done = true;

}

self.cur = self.cur.saturating_add(1);

return Some (old);

}

Technically, saturating_add is not needed and could be replaced with +=, but it's helpful
to have to avoid wrap-around bugs. Finally, we also provide an Iterator::size_hint

implementation:
fn size_hint (&self) -> (usize,
let size = mem::size_of::<$int>()
let total = 2_usize.pow(size as u32);
let remaining = total -

bi
}

Option<usize>)

(self.cur as usize);
(remaining, Some (remaining))

This function is an optional implementation, but it is neighborly to provide one. The return
tuple estimates how many items remain in the iteration, the first element being a lower
estimate and the second being an optional upper bound. We happen to know exactly how

many elements remain to be iterated because our domain is finite. Implementing

Iterator::size_hint will help out code with pre-allocating buffers, which includes

other functions on Iterator.

The sized integer types have a similar implementation. Their macro, sized_iter!, in use:

sized_iter! (SmallI8, i8, i8::min_value());
sized_iter! (SmallIl6, il16, 1il16::min_value());
sized_iter! (SmallI32, i32, i32::min_value());
sized_iter! (SmalllIcd, i64, i64::min_value());
sized_iter! (Smalllsize, isize, isize::min_value());

The macro itself starts out in the same way as its unsigned counterpart:

macro_rules! sized_iter {

($name:ident, S$int:ty, Smin:expr)

#[derive (Default) ]
pub struct $name {
cur: $int,
done: bool,
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impl Iterator for $name {
type Item = $int;

fn next (&émut self) -> Option<$int> {
if self.done {

return None;

}
Only the inner part of next is different:

let old = self.cur;

if self.cur == 0 {
self.cur = -1;
} else if self.cur.is_negative() && self.cur == Smin {
self.done = true;
} else if self.cur.is_positive() {
self.cur *= -1;
self.cur —-= 1;
} else if self.cur.is_negative() {
self.cur *= -1;
}

return Some (old);

}

This warrants some explanation. We take inspiration from the SmallCheck paper and
iterate values out like so: 0, -1, 1, -2, 2, and so on. The implementation could follow the
same method as the unsigned variant, proceeding up from min_value () tomax_value (),
but this would not be small to big, at least in terms of byte representation. Finally,
size_hint:

fn size_hint (&self) -> (usize, Option<usize>) {
let size = mem::size_of::<$int>() * 8;
let total = 2_usize.pow(size as u32);
let remaining = total - ((self.cur.abs() * 2) as usize);

(remaining, Some (remaining))

Fi
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If these implementations work correctly, the Iterator: : count for our new iterators ought
to be equal to the two-power of the bit size of the type, count being a function that keeps a
tally of elements iterated out. The tests also rely on macros to cut down on duplication.
First, the signed variants:

#lcfg(test)]

mod tests {

use super::*;

macro_rules! sized_iter_test {

(Stest_name:ident, $iter_name:ident, $int:ty) => {
#ltest]
fn $test_name () {
let i = S$iter_name::default ();
let size = mem::size_of::<$int>() as u32;

assert_eq! (i.count (), 2_usize.pow(size * 8));

bi

sized_iter_test! (i8_count_correct, SmallI8, 1i8);
sized_iter_test! (1i16_count_correct, SmallIlé6, 116);
sized_iter_test! (1i32_count_correct, SmallI32, 1i32);

// NOTE: These take forever. Uncomment if you have time to burn.
// sized_iter_test! (i64_count_correct, SmallI6d, 164);

// sized_iter_test! (isize_count_correct, Smalllsize, isize);

And now the unsigned variants:

macro_rules! unsized_iter_test {

($test_name:ident, $iter_name:ident, $int:ty) => {
#[test]
fn Stest_name () {
let i = S$iter_name::default ();
let size = mem::size_of::<$int>() as u32;

assert_eq! (i.count (), 2_usize.pow(size * 8));

}i

unsized_iter_test! (u8_count_correct, SmallU8, ul8);
unsized_iter_test! (ul6_count_correct, SmallUl6, ulo6);
unsized_iter_test! (u32_count_correct, SmallU32, u32);

// NOTE: These take forever. Uncomment if you have time to burn.
// unsized_iter_test! (u64_count_correct, SmallU64, u64);

// unsized_iter_test! (usize_count_correct, SmallUsize, usize);
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If you run the tests, you should find that they pass. It'll take a minute for the larger types.
But, that's iterators. All they are is some kind of base type—in this case, the built-in
integers—plus a state-tracking type—our Small* structs—and an implementation of
Iterator for that state-tracking type. Remarkably useful, and the optimizer is reasonably
good at turning iterator chains into loops and getting better at it all the time.

rayon — parallel iterators

In the previous section, we built an iterator over Rust integer types. The essential
computation of each next call was small—some branch checks, and possibly a negation or
an addition. If we were to try to parallelize this, we'd drown out any potential performance
bump with the time it takes to allocate a new thread from the operating systems. No matter
how fast that becomes, it will still be slower than an addition. But, say we've gone all-in on
writing in iteration style and do have computations that would benefit from being run in
parallel. How do you make std::iter::Iterator parallel?

You use rayon.

The rayon crate is a data-parallelism library for Rust. That is, it extends Rust's basic
Iterator concept to include a notion of implicit parallelism. Yep, implicit. Rust's memory
safety means we can pull some pretty fun tricks on modern machines. Consider that the
thread pool implementation we investigated previously in the chapter, which had no
concerns for memory pollution. Well, it's the same deal with rayon. Every element in an
iterator is isolated from each other, an invariant enforced by the type system. Which means,
the rayon developers can focus on building a data-parallelism library to be as fast as
possible while we, the end users, can focus on structuring out code in an iterator style.

We'll examine rayon (https://crates.io/crates/rayon) at SHA
5f98c019abc4d40697e83271c072cb2b92966£46. The rayon project is split into sub-
crates:

e rayon-core
e rayon-futures

We'll discuss rayon—the top-level crate—and rayon-core in this chapter, touching on the
fundamental technology behind rayon-futures in chapter 10, Futurism — Near-Term Rust.
The interested reader can flag rayon-futures on to play with that interface but please do
refer to the README at the top of that sub-crate for details.
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The rayon crate is not listed in its entirety. You can find the full listing in
this book's source repository.

The dependencies of rayon are minimal, being that rayon-core is the sole dependency by
default. The rayon-core dependencies are:

[dependencies]

rand = ">= 0.3, < 0.5"
num_cpus = "1.2"

libc = "0.2.16"
lazy_static = "1"

We've seen these dependencies before, except 1ibc. This library exposes the 1ibc platform
in a stable interface. From the project's documentation:

"This crate does not strive to have any form of compatibility across platforms, but rather it
is simply a straight binding to the system libraries on the platform in question.”

It's quite useful. Now, rayon is a large library and it can be a challenge to navigate. That's
okay, though, because it's simple to use. To give ourselves an in, let's pull the example code
from rayon's README and do an exploration from that point. The example is:

use rayon::prelude::*;

fn sum_of_squares (input: &[i32]) —-> 132 {
input.par_iter()
.map(l&i| i * i)
.sum ()

}

Okay, so what's going on here? Well, let's first compare it against the sequential version of
this example:

fn sum_of_squares (input: &[i32]) —-> 132 {
input.iter ()
.map(l&i| i * i)
.sum ()
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Spot the key difference? The sequential version is input.iter (), the parallel version is
input.par_iter (). Okay, first, we have to understand that every slice exposes

iter (&self) —-> std::slice::Iter.This Iter implements std::iter::Iterator,
which we recently discussed. rayon implements something similar, so that:

e input.iter() :: std::slice::Iter<'_, u32>

e input.par_iter() :: rayon::slice::Iter<'_, 132>
Let'slook at rayon::slice::Iter,insrc/slice/mod.rs:

# [derive (Debug) ]

pub struct Iter<'data, T: 'data + Sync> {
slice: &'data [T],

}

Okay, nothing we haven't seen so far. There's a lifetime data, and every T has to be part of
that lifetime plus sync. Now, what is the type of rayon's map? By inspection, we can see it's
ParallelIterator::map<F, R>(self, map_op: F) -> Map<Self, F> where F :
Fn(Self::Item) -> R + Sync + SendandR: Send. Alright, ParallelIterator.
That is new. There's an implementation for Iter just under the struct definition:

impl<'data, T: Sync + 'data> ParallelIterator for Iter<'data, T> {
type Item = &'data T;

fn drive_unindexed<C> (self, consumer: C) —-> C::Result
where C: UnindexedConsumer<Self::Item>

{
bridge (self, consumer)

}

fn opt_len(&self) —> Option<usize> {
Some (self.len())
}
}

Clearly, we need to understand ParallelIterator. This trait is defined in
src/iter/mod.rs and is declared to be the parallel version of the standard iterator trait.
Well, good! That gives us a pretty good anchor into its semantics. Now, we just have to
figure out its implementation. The implementation of ParallelIterator for Iter
defined two functions: drive_unindexed and opt_1len. The latter function returns the
optional length of the underlying structure, much like Tterator::size_hint.
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The rayon documentation notes that some of their functions can trigger fast-paths when
opt_len returns a value: always a win. drive_unindexed is more complicated and
introduces two unknowns. Let's figure out what consumer: UnindexedConsumer is first.
The trait definition, in src/iter/plumbing/mod. rs, is very brief:

pub trait UnindexedConsumer<I>: Consumer<I> {

}

/// Splits off a "left" consumer and returns it. The “self’

/// consumer should then be used to consume the "right" portion of
/// the data. (The ordering matters for methods like find_first -
/// values produced by the returned value are given precedence

/// over values produced by “self’.) Once the left and right

/// halves have been fully consumed, you should reduce the results
/// with the result of “to_reducer’ .

fn split_off_left (&self) -> Self;

/// Creates a reducer that can be used to combine the results from
/// a split consumer.
fn to_reducer (&self) —-> Self::Reducer;

Okay, we're missing some key pieces of information here. What is Consumer? This trait is
defined in the same file, like so:

pub trait Consumer<Item>: Send + Sized {

/// The type of folder that this consumer can be converted into.
type Folder: Folder<Item, Result = Self::Result>;

/// The type of reducer that is produced if this consumer is split.
type Reducer: Reducer<Self::Result>;

/// The type of result that this consumer will ultimately produce.
type Result: Send;

/// Divide the consumer into two consumers, one processing items
/// *0..index’ and one processing items from "index..' . Also

/// produces a reducer that can be used to reduce the results at
/// the end.

fn split_at(self, index: usize) -> (Self, Self, Self::Reducer);

/// Convert the consumer into a folder that can consume items
/// sequentially, eventually producing a final result.
fn into_folder(self) -> Self::Folder;

/// Hint whether this “Consumer’ would like to stop processing
/// further items, e.g. if a search has been completed.
fn full (&self) —-> bool;
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There are some key unknowns here, but the picture is getting a little clearer. Consumer is
able to take in Item and subdivide it at an index. rayon is performing a divide and
conquer, taking small chunks of the stream and dividing them over something. What are
Folder and Reducer? This trait folds into itself, like the higher-order fold function. The
trait definition is:

pub trait Folder<Item>: Sized {
type Result;

fn consume (self, item: Item) -> Self;

fn consume_iter<I> (mut self, iter: I) -> Self
where I: Intolterator<Item = Item>
{
for item in iter {
self = self.consume (item) ;
if self.full() |
break;

}

self
}

fn complete(self) -> Self::Result;

fn full (&self) -> bool;
}

The important function here is consume_iter. Note that it calls consume for each element
in the iter variable, folding the previous self into a new self, only stopping once the
implementor of Folder signals that it is full. Note as well that a Folder, once complete is
called on it, is turned into a Result. Recall that Result is set in Consumer. Now, what is
Reducer? Itis:

pub trait Reducer<Result> {
fn reduce(self, left: Result, right: Result) -> Result;
}
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Reducer combines two Results into one single Result. Consumer is then a type that can
take an Item, apply Folder over chunks of the Item, and then reduce the many Results
down into a single Result. If you squint, Consumer is a fold. UnindexedConsumer is a
specialization of Consumer that splits at an arbitrary point, where the plain Consumer
requires an index. We understand, then, that the parallel iterator for the slice iterator is
being driven by drive_unindexed. This function is passed some consumer: C, which is
minimally UnindexedConsumer and the function entirely defers to bridge to do its work.
Two questions: what is calling drive_unindexed and what is bridge? Let's look into the
bridge function, defined in src/iter/plumbing/mod. rs. The header of the function
immediately presents new information:

pub fn bridge<I, C>(par_iter: I, consumer: C) —-> C::Result
where I: IndexedParallellterator,
C: Consumer<I::Item>

What is IndexedParallelIterator? I'll spare you the exploration, but it's a further
specialization of ParallelIterator that can be split at arbitrary indices. This specialization
has more functions than the ParallelIterator trait, and rayon::slice::Iter
implements both. The definition is brief and something we'll need to know to understand
bridge:

impl<'data, T: Sync + 'data> IndexedParallellterator for Iter<'data, T> {

fn drive<C> (self, consumer: C) -> C::Result
where C: Consumer<Self::Item>

bridge(self, consumer)

fn len(&self) —-> usize {
self.slice.len()

fn with_producer<CB>(self, callback: CB) -> CB::0Output
where CB: ProducerCallback<Self::Item>
{

callback.callback (IterProducer { slice: self.slice })
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We see bridge backing a function drive and a new with_producer function with an
unknown purpose. Back to bridge:

{
let len = par_iter.len();
return par_iter.with_producer (Callback {
len: len,
consumer: consumer,

)i

We see bridge calculate the length of the underlying slice and then call with_producer
on some Callback struct. We know from the trait implementation on Iter that
Callback: ProducerCallback, which isitself an analogue to FnOnce, is taking some T, a
Producer<T>, and emitting an Output from ProducerCallback: :callback. If you
squint hard enough, that's a closure. A Producer is more or less an
std::iter::IntoIterator, butone thatcan be split at an index into two Producers.
Again, we see that rayon is dividing work into sub-pieces and that this method of operation
extends through multiple types. But what is Callback? It turns out, this struct is defined
inline with the function body of bridge:

struct Callback<C> {
len: usize,
consumer: C,

}

impl<C, I> ProducerCallback<I> for Callback<C>
where C: Consumer<I>
{
type Output = C::Result;
fn callback<P>(self, producer: P) —-> C::Result
where P: Producer<Item = I>
{
bridge_producer_consumer (self.len, producer, self.consumer)

}
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I admit, that's pretty weird! The producer: P thatis passed in the interior callback is an
IterProducer, a type defined in src/slice/mod. rs, which holds a reference to the slice.
The interesting thing is the implementation of Producer for IterProducer:

impl<'data, T: 'data + Sync> Producer for IterProducer<'data, T> {
type Item = &'data T;
type Intolter = ::std::slice::Iter<'data, T>;

fn into_iter (self) -> Self::Intolter {
self.slice.into_iter ()

fn split_at (self, index: usize) -> (Self, Self) {
let (left, right) = self.slice.split_at (index);
(IterProducer { slice: left }, IterProducer { slice: right })

}

Look at that split_at! Whenever rayon needs to split a slice Producer, it calls
std::slice::split_at and makes two new Producers. Alright, so now we know how

rayon is splitting things up but still not to what. Let's look further into the implementation
of bridge_producer_consumer:

pub fn bridge_producer_consumer<P, C>(len: usize, producer: P,

consumer: C) —> C::Result
where P: Producer,

C: Consumer<P::Item>

let splitter = LengthSplitter::new(producer.min_len(),

producer.max_len (), len);
return helper (len, false, splitter, producer, consumer);

Okay, we are mostly familiar with these types. LengthSplitter is new and is a type that
informs us whether a split of a certain length is valid for some minimum size. This is where
rayon is able to decide how small to make split work and whether or not to split a
workload further. The helper function rounds things out:

fn helper<P, C>(len: usize,
migrated: bool,
mut splitter: LengthSplitter,
producer: P,
consumer: C)
-> C::Result
where P: Producer,
C: Consumer<P::Item>
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if consumer.full () {
consumer.into_folder () .complete ()

} else if splitter.try(len, migrated) {
let mid = len / 2;

let (left_producer, right_producer) = producer.split_at (mid);
let (left_consumer, right_consumer,
reducer) = consumer.split_at (mid);

let (left_result, right_result) =
join_context (|context| {
helper (mid, context.migrated(), splitter,
left_producer, left_consumer)
}, |context| {
helper (len - mid, context.migrated(), splitter,
right_producer, right_consumer)
)i
reducer.reduce (left_result, right_result)
} else {
producer.fold_with (consumer.into_folder()) .complete ()

}

This is dense. Most of this is to do with splitting the current Producer into appropriately
sized chunks, but especially this block of code:

join_context (|context| {
helper (mid, context.migrated(), splitter,
left_producer, left_consumer)
}, lcontext| {
helper (len - mid, context.migrated(), splitter,
right_producer, right_consumer)
)i

Here we see newly split Producers that lazily make a recursive call to helper when
executed by join_context. This function is defined in rayon-core/src/join/mod.rs:

pub fn join_context<A, B, RA, RB>(oper_a: A, oper_b: B) -> (RA, RB)
where A: FnOnce (FnContext) -> RA + Send,
B: FnOnce (FnContext) -> RB + Send,
RA: Send,
RB: Send
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The new type here, FnContext, isa Send + Sync disabling boolean. The boolean interior
to FnContext is called migrated, an interesting clue to the context's purpose. Let's
continue in join_context:

registry::in_worker (|worker_thread, injected| unsafe {
log! (Join { worker: worker_thread.index() 1});

// Create virtual wrapper for task b; this all has to be
// done here so that the stack frame can keep it all live
// long enough.
let job_b = StackdJob::new(|migrated]|
oper_b (FnContext::new(migrated)),
SpinLatch::new());
let job_b_ref = job_b.as_job_ref();
worker_thread.push (job_b_ref);

Well hey, it's a thread pool! We know thread pools! There's a lot more detail to rayon's
thread pool implementation compared to the one we investigated earlier in this chapter,
but it's a known concept. Each thread in rayon's pool maintains its own queue of work.
Every thread queues up two new jobs—in this case, calls to helper with a specific
FnContext—that may execute the function that Consumer and Producer combined
represent, or split the work up into small chunks, pushing onto the thread's queue. Each
thread in the pool is able to steal jobs from the others in the pool, spreading the load around
the pool. In fact, what we've seen so far is that the caller of join_context immediately
constructs StackJob out of oper_b and calls worker_thread.push. This function is
defined in rayon-core/src/registry.rs:

#[inline]

pub unsafe fn push(&self, job: JobRef) {
self.worker.push (job) ;
self.registry.sleep.tickle(self.index);

sleep.tickle, in addition to being amusingly named, is meant to notify threads waiting
on condvar. This condvar is tracking whether or not there's work available, saving power
when there's none, rather than have threads in the pool spin-looping. What happens when
self.worker.push is called? It turns out, the WorkerThread: :worker field is of the
crossbeam_deque: :Deque<job: : JobRef> type. We discussed crossbeam in the previous
chapter! Things are starting to come together for us. Let's look at the definition of
WorkerThread:

pub struct WorkerThread {
/// the "worker" half of our local deque
worker: Deque<JobRef>,
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index: usize,

/// are these workers configured to steal breadth-first or not?
breadth_first: bool,

/// A weak random number generator.
rng: UnsafeCell<rand::XorShiftRng>,

registry: Arc<Registry>,

}

What is Registry? What's creating these WorkerThreads? Recall that in join_context,
we're inside a call to registry: :in_worker. That function is defined in rayon-
core/src/registry.rs and is:

pub fn in_worker<OP, R>(op: OP) -> R
where OP: FnOnce (&WorkerThread, bool) -> R + Send, R: Send

unsafe {
let owner_thread = WorkerThread::current ();
if l!'owner_thread.is_null() {

// Perfectly valid to give them a "&T : this is the
// current thread, so we know the data structure won't be
// invalidated until we return.
op (&*owner_thread, false)
} else {
global_registry () .in_worker_cold (op)

}

The WorkerThread: :current () call is polling a thread-local static variable called
WORKER_THREAD_STATE, a Cell<*const WorkerThread> that may or may not be null in
the event that no WorkerThread has been created inside the current operating system
thread or has ceased to exist for some reason. If the WorkerThread does exist as thread-
local, the passed op function is called, which is what we're investigating inside
join_context. But, if the thread-local is null,

global_registry () .in_worker_cold (op) is called. The global_registryis:

static mut THE_REGISTRY: Option<&'static Arc<Registry>> = None;
static THE_REGISTRY_SET: Once = ONCE_INIT;

/// Starts the worker threads (if that has not already happened). If
/// initialization has not already occurred, use the default

/// configuration.

fn global_registry() —-> &'static Arc<Registry> {
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THE_REGISTRY_SET.call once (|| unsafe {
init_registry(ThreadPoolBuilder::new()) .unwrap() });
unsafe {

THE_REGISTRY.expect ("The global thread pool \
has not been initialized."™)

}

That is, once global_registry () is called at least once, we've established a static
Registry populated by the return of init_registry:

unsafe fn init_registry (builder: ThreadPoolBuilder) -> Result<(),
ThreadPoolBuildError> {
Registry::new(builder) .map (| registry|
THE_REGISTRY = Some (leak (registry))

}

That function further defers to Registry: : new after having populated some builders for
configuration purposes:

impl Registry {

pub fn new (mut builder: ThreadPoolBuilder)
—-> Result<Arc<Registry>, ThreadPoolBuildError>

let n_threads = builder.get_num_threads();
let breadth_first = builder.get_breadth_first();

let inj_worker = Deque::new();

let inj_stealer = inj_worker.stealer();
let workers: Vec<_> = (0..n_threads)
.map (|_| Deque::new())

.collect ();
let stealers: Vec<_> = workers.iter () .map(|d]|
d.stealer ()
) .collect ();

let registry = Arc::new(Registry {
thread_infos: stealers.into_iter ()
.map(|s| ThreadInfo::new(s))
.collect (),
state: Mutex::new (RegistryState::new(inj_worker)),
sleep: Sleep::new(),
job_uninjector: inj_stealer,
terminate_latch: CountLatch::new(),
panic_handler: builder.take_panic_handler (),
start_handler: builder.take_start_handler (),
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exit_handler: builder.take_exit_handler (),
)i

Here, finally, we see threads being built:
// If we return early or panic, make sure to terminate

// existing threads.
let t£1000 = Terminator (&registry);

for (index, worker) in workers.into_iter () .enumerate () {
let registry = registry.clone();
let mut b = thread::Builder::new();
if let Some (name) = builder.get_thread_name (index) {
b = b.name (name) ;
}
if let Some(stack_size) = builder.get_stack_size() {

b = b.stack_size (stack_size);
}
if let Err(e) = b.spawn(move || unsafe {
main_loop (worker, registry, index, breadth_first)
P A
return Err (ThreadPoolBuildError: :new(
ErrorKind: :IOError (e))

}

// Returning normally now, without termination.
mem: : forget (£1000) ;

Ok (registry.clone())
}

Woo! Okay, a Registry is a static which, once created, spawns a number of threads and
enters them into main_loop. This loop creates WorkerThread, notifies the Registry of
WorkerThread being started, which marks the thread as alive. This is the thread_infos
of the Registry and is why WorkerThread carries an index in itself. main_thread calls
WorkerThread: :wait_until, a function whose purpose is to probe the Registry for
termination notice and, without that notice, calls WorkerThread: :wait_until_cold.
That cold condition is the status of WorkerThread when take_local_job or steal fail to
return any items. Taking a local job looks like so:

#[inline]
pub unsafe fn take_local_job(&self) —-> Option<JobRef> {
if !self.breadth_first {
self.worker.pop ()
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} else {
loop {
match self.worker.steal () {
Steal::Empty => return None,
Steal::Data(d) => return Some (d),
Steal::Retry => {},

}

The self.worker here is the deque from crossbeam and the breadth first option simply
controls which end of the deque work is retrieved from. Stealing is a little more
complicated, using the random number generator of WorkerThread to choose arbitrary
threads—indexed through the Registry—to steal work from, seeking forward through the
threads until work can be stolen from another thread's deque or until no work is found.

No more mysteries! As we descend further into rayon, we understand that it's got quite a
bit of machinery for representing split workloads that then gradually transition into the
execution of those chunks of work on a thread pool. That thread pool performs work-
stealing to keep the CPUs saturated. This understanding helps make the remainder of
join_context more understandable:

// Execute task a; hopefully b gets stolen in the meantime.
let status_a = unwind::halt_unwinding (move | |
oper_a (FnContext::new(injected)));
let result_a = match status_a {
Ok (v) => v,
Err (err) => join_recover_from_panic (worker_thread,
&job_b.latch,
err),

ri

The caller of join_context has packaged oper_b up, pushed it to the worker's queue, and
executes oper_a in the hopes that the other operation will be executed as well. The
remainder of the function is a loop, either pulling oper_b from the local deque or stealing
from some other thread:

while !job_b.latch.probe () {

if let Some (job) = worker_thread.take_local_job() {
if job == job_b_ref {
// Found it! Let's run it.
//

// Note that this could panic, but it's ok if we
// unwind here.
log! (PoppedRhs { worker: worker_thread.index () 1});
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let result_b = job_b.run_inline (injected);
return (result_a, result_b);
} else {

log! (PoppedJdob { worker: worker_thread.index () 1});
worker_thread.execute (job) ;

}

} else {
// Local deque is empty. Time to steal from other
// threads.
log! (LostJob { worker: worker_thread.index () 1});

worker_thread.wait_until (&job_b.latch);
debug_assert! (job_b.latch.probe());
break;

return (result_a, job_b.into_result());

H)

Ordering is maintained through the latch mechanism, defined in rayon-
core/src/latch.rs. You are encouraged to study this mechanism. It's very clever and
well within the capabilities of the reader who has gotten this far in the book, bless you.

That is almost it. We still have yet to discussmap (|&i| i * 1i).sum().The map thereis
defined on ParallelIterator, IndexedParallelIterator, and is:

fn map<F, R>(self, map_op: F) —-> Map<Self, F>
where F: Fn(Self::Item) -> R + Sync + Send,
R: Send

map: :new(self, map_op)

}

Map is, in turn, a ParallelIterator that consumes the individual map_op functions,
producing MapConsumers out of them, the details of which we'll skip as we are already
familiar enough with rayon's Consumer concept. Finally, sum:

fn sum<S> (self) -> S
where S: Send + Sum<Self::Item> + Sum<S>

sum: :sum(self)
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This is, in turn, defined in src/iter/sum. rs as:

pub fn sum<PI, S>(pi: PI) -> S
where PI: Parallellterator,
S: Send + Sum<PI::Item> + Sum
{

pi.drive_unindexed (SumConsumer: :new())

}

The producer is driven into a SumConsumer that splits the summation work up over the
thread pool and then eventually folds it into a single value.

And that is that. That's rayon. It's a thread pool that can automatically split workloads over
the threads plus a series of Iterator adaptations that greatly reduce the effort required to
exploit the thread-pooling model.

Now you know! That's not all that rayon can do—it's a very useful library—but that's the
central idea. I warmly encourage you to read through rayon's documentation.

Data parallelism and OS processes - evolving
corewars players

In this final section of the chapter, I'd like to introduce a project that will carry us over into
the next chapter. This project will tie together the concepts we've introduced so far in this
chapter and introduce a new one: processes. Compared to threads, processes have a lot to
recommend them: memory isolation, independent priority scheduling, convenient
integration of existing programs into your own, and a long history of standardized syscalls
(in Unix) to deal with them. But, memory isolation is less ideal when your aim is to fiddle
with the same memory from multiple concurrent actors—as in atomic programming—or
when you otherwise have to set up expensive IPC channels. Worse, some operating
systems are not fast to spawn new processes, limiting a multi-processesing program's
ability to exploit CPUs on a few fronts. All that said, knowing how to spawn and
manipulate OS processes is very useful and we'd be remiss not to cover it in this book.
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Corewars

Corewars is a computer programmer game from the 1980s. Introduced in a 1984 Scientific
American article, the game is a competition between two or more programs—or
warriors—that are written in an obscure assembly language called Redcode. Realistically,
there are effectively two variants of Redcode, one of which has nice features, such as labels
or pseudo-opcodes for variable assignments. This is usually referred to as Redcode. The
other variant is referred to as load file Redcode or simply load file and is a straight listening of
opcodes. The machine that Redcode targets is the Memory Array Redcode Simulator
(MARS). It is... peculiar. Memory is bounded and circular, the maximum address prior to
wrap-around is core_size-1. Most players set core_size to 8000 but any value is valid.
Each memory location is an instruction. There is no distinction between instruction cache
and data storage. In fact, there's not really data storage per se, though you can store
information in unused sections of an instruction. There is no such thing as absolute
memory addressing in the MARS machine: every address is relative in the ring of memory
to the current instruction. For instance, the following instruction will tell MARS to jump
backward two spots in memory and continue execution from there:

JMP -2

MARS executes one instruction from each warrior in turn, in the order that the MARS
loaded the warrior into memory. Warriors start at some offset from one another and are
guaranteed not to overlap. A warrior may spawn sub-warriors and this sub-warrior will get
executed like all the others. A single opcode DAT will cause a warrior to exit. The objective
of the game is force opposing warriors to execute DAT . The last warrior—plus any
spawned warriors—under simulation wins the game.

There's quite a bit more detail to Corewars than has been presented here, in terms of
opcode listing and memory modes and what not, but this is not a Corewars tutorial. There
are many fine tutorials online and I suggest some in the Further reading section. What's
important to understand is that Corewars is a game played between programmers with
programs. There are many MARS simulators but the most commonly used as the MARS is
PMARS (http://www.koth.org/pmars/), or Portable MARS. It'll build pretty easily even
under a modern GCC, though I can't say I've managed to build it under clang.
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Here's a pretty fun bomber from pmars 0.9.2's source distribution, to give you a sense of
how these programs look:

; redcode-94

;name Rave

;author Stefan Strack

;strategy Carpet-bombing scanner based on Agony and Medusa's
;strategy (written in ICWS'94)

;strategy Submitted: Qdate@

;assert CORESIZE==8000

CDIST equ 12

IVAL equ 42

FIRST equ scan+OFFSET+IVAL
OFFSET equ (2*IVAL)

DJNOFF equ —-431

BOMBLEN equ CDIST+2

org comp
scan sub.f incr, comp
comp cmp.i FIRST,FIRST-CDIST ;larger number is A
slt.a #incr-comp+BOMBLEN, comp ;compare to A-number
djn.f scan,<FIRST+DJNOFF ;decrement A- and B-number
mov.ab #BOMBLEN, count
split mov.i bomb,>comp ;post—-increment

count djn.b split, #0
sub.ab #BOMBLEN, comp

jmn.b scan, scan
bomb spl.a 0,0
mov.i incr,<count
incr dat.f <0-IVAL,<0-IVAL
end

A bomber tosses a bomb at offset intervals into memory. Some toss DATs, which force
warriors to exit if executed. This one tosses an imp. An imp is a Corewars program that
creeps forward in memory some number of instructions at a time. The Imp, introduced in
the 1984 article, is:

MOV.I 0 1
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The opcode here is MOV with modifier I, source address 0, and destination address 1. MOV
moves instructions at the source address, also traditionally called the a-field, to the
destination address, also called the b-field. The opcode modifier—the . I—defines how the
opcode interprets its mandate. Here, we're specifying that MOV moves the whole
instruction from the current cell to the next one up the ring. MOV . A would have only moved
the a-field of the current instruction into the a-field of the destination instruction. The
bomber's imp mov.i incr, <count relies on previously computed values to drop imps in
memory that advance at different rates with different offsets. The < on the b-field is an
indirect with predecrement operator on the address but, like I said, this is not a Corewars
tutorial.

The pMARS simulator can read in both load files and Redcode, will drop the warriors into
the simulator, and report the results. Here we run the bomber against the imp for 100
simulated rounds:

> pmars -b -r 1000 imp.red rave.red
Imp by Alexander Dewdney scores 537
Rave by Stefan Strack scores 1926
Results: 0 463 537

The imp does not fare too well. It wins 0 times but does manage to tie 537 times. An imp is
hard to kill.

Writing warriors is fun, but teaching a computer to write warriors is even more fun and so
that's what we're going to set out to do. Specifically, we'll write an evolver, a program that
uses a simulated evolution of a population of warriors to produce ever more fit specimens.
We'll call out to the pMARS executable to evaluate our population and, with enough time,
hopefully pop out something pretty impressive.

Feruscore — a Corewars evolver

I want to make sure we're all on the same page, before we start digging through source
code. The way simulated evolution works is you make a population—maybe totally
random, maybe not—and call it generation 0. You then run some fitness function on the
members of the population. Fitness may be defined in terms of some known absolute or as
a relative value between members of the population. The fittest members of the population
are then taken to form a subset of parents. Many algorithms take two members, but the
sky's the limit and your species could well require six individuals for reproduction. That's
what we're after—reproduction.
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The individuals of the population are non-destructively recombined to form children. The
population is then mutated, changing genes in an individual's genomes with some domain-
specific probability. This may be all members of the population or just children, or just
parents, or whatever you'd like. There's no perfect answer here. After mutation, the parents,
their children, and any non-reproducing members of the population that did not die during
fitness evaluation are then promoted to generation 2. The cycle continues:

e Fitness evaluation
¢ Parents reproduce
¢ Population is mutated

Exactly when the cycle stops is up to the programmer: perhaps when a fixed number of
generations have passed, perhaps when an individual that meets some minimum threshold
of fitness has evolved.

Simulated evolution is not magic. Much like QuickCheck, which uses randomness to probe
programs for property violations, this algorithm is probing a problem space for the most fit
solution. It's an optimization strategy, mimicking the biological process. As you can
probably infer from the description I just gave, there are a lot of knobs and alternatives to
the basic approach. We'll be putting together a straightforward approach here but the you
are warmly encouraged to make your own modifications.

Representing the domain

Before we can start evolving anything, we have to figure out how to represent the
individuals; we need to decide how to structure their chromosome. Many genetic algorithm
implementations represent these as a [u8], serializing and deserializing as appropriate.
There's a lot to recommend this representation. For one, modern computers have
instructions specifically tailored to operate on many bytes in parallel—a topic we'll touch
onin chapter 10, Futurism — Near-Term Rust,—which is especially helpful in the mutation
and reproduction stages of a genetic algorithm. You see, one of the key things to a
successful simulation of evolution is speed. We need a large population and many, many
generations to discover fit individuals. [u8] is a convenient representation for serialization
and deserialization, especially with something such as serde
(https://crates.io/crates/serde) and bincode (https://crates.io/crates/bincode) at
hand. The downside to a [u8] representation is creating individuals that don't deserialize
into something valid, in addition to eating up CPU time moving back and forth between
[u8] and structs.
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Program optimization comes down to carefully structuring one's computation to suit the
computer or finding clever ways to avoid computation altogether. In this particular project,
we do have a trick we can play. A valid individual is a finite list of instructions—feruscore
targets producing load files—and all we have to do, then, is represent an instruction as a
Rust struct and pop it into a vector. Not bad! This will save us a significant amount of CPU
time, though our mutation step will be a tad slower. That's okay, though, as fitness
evaluation will be the biggest time sink, as we'll see that shortly.

Exploring the source

Let's look at feruscore's Cargo . toml first. It is:

[package]

name = "feruscore"

version = "0.1.0"

authors = ["Brian L. Troutwine <brian@troutwine.us>"]
[dependencies]

rand = "0.4"

rayon = "1.0"

tempdir = "0.3"

We saw the tempdir crate back in chapter 5, Locks — Mutex, Condvar, Barriers and RWLock;
its purpose is to create temporary directories that get deleted when the directory handler is
dropped. We discussed rayon earlier in the chapter. The rand crate is new, though we did
mention it in passing in both chapter 2, Sequential Rust Performance and Testing, and
Chapter 5, Locks — Mutex, Condvar, Barriers and RWLock, when we produced our own
XorShift. The rand crate implements many different pseudo-random algorithms, in
addition to providing a convenient interface to OS facilities for randomness. We'll be
putting rand to good use.

The project is a standard library/executable bundle. Unlike many other projects in this
book, we are not creating multiple executables and so there's only a single src/main. rs.
We'll talk through that in due course. The library root, in src/lib.rs:

extern crate rand;
extern crate rayon;
extern crate tempdir;

pub mod individual;
pub mod instruction;
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Instructions

No surprises here. We import the project dependencies and expose two public modules:
instruction and individual. The instruction module at src/instruction.rs is feruscore's
version of [u8], or, rather, the u8 in the array. Let's take a look. The structure at the root is
Instruction:

#[derive (PartialEqg, Eqg, Copy, Clone, Debug)]
pub struct Instruction {

pub opcode: OpCode,

pub modifier: Modifier,

pub a_mode: Mode,

pub a_offset: Offset,

pub b_mode: Mode,

pub b_offset: Offset,
}

An instruction in Redcode is an opcode, a modifier for that opcode, an a-offset plus
modifier and a b-offset plus modifier. (The a-field and b-field are the combination of offset
and mode.) That's exactly what we have here. No need to deserialize from a byte array;
we'll work on a direct representation. The implementation of Instruction is small. To
start, we need some way of creating random Instructions:

impl Instruction {
pub fn random(core_size: ul6) —-> Instruction {
Instruction {
opcode: OpCode::random(),
modifier: Modifier::random(),
a_mode: Mode::random(),
a_offset: Offset::random(core_size / 32),
b_mode: Mode: :random(),
b_offset: Offset::random(core_size / 32),

}

This sets up a pattern we'll use through the rest of this module. Every type exposes
random () —-> Self or some variant thereof. Note that the offset is restricted to 1/32 the
passed core_size. Why? Well, we're trying to cut down the cardinality of the domain
being explored. Say the core size is 8,000. If all possible instances of core size values were
tried in an offset, there'd be 64,000,000 possible Instruction, notincluding any of the
other valid combinations with the other structure fields. Based on what I know about high-
scoring warriors, the explicit offsets are usually small numbers.
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By cutting down the offset domain, we've eliminated 62,000,000 potential instructions,
saving CPU time. This could well be a pessimistic restriction—forcing the population right
into a bottleneck—but I doubt it. Every struct in this module also has a serialize (&self,
w: &mut Write) -> io::Result<usize> function. Here's the one for Instruction:

pub fn serialize(&self, w: &mut Write) -> io::Result<usize> {
let mut total_written = 0;
self.opcode.serialize (w) ?;

total_written += w.write(b".")?;
self.modifier.serialize (w)?;
total_written += w.write(b" ")?;

total_written += match self.a_mode {
Mode: : Immediate => w.write (b"#")?,
Mode: :Direct => w.write (b"$")?,
Mode: :Indirect => w.write (b"*")?,
Mode: :Decrement => w.write (b"{")?,
Mode: : Increment => w.write(b"}")?,

Fi

self.a_offset.serialize (w)?;

total_written += w.write(b", ")?;

total_written += match self.b_mode {
Mode: : Immediate => w.write (b"#")?,
Mode: :Direct => w.write (b"$")?,
Mode: :Indirect => w.write (b"@")?
Mode: :Decrement => w.write (b"<'
Mode: : Increment => w.write (b">"

r’
)2,
)2
bi

total_written += self.b_offset.serialize(w)?;
total_written += w.write (b"\n") ?;

Ok (total_written)

}

We're going to be calling out to the local system's pmars executable when we run feruscore
and that program needs to find files on-disk. Every Instruction in every individual will
be serialized to disk each time we check fitness. That load file will be deserialized by pmars,
run in simulation and the results issued back to feruscore from pmars' stdout. That's not a
fast process.
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The remainder of the instruction module follows this general outline. Here, for instance, is
the Modifier struct:

#[derive (PartialEq, Eq, Copy, Clone, Debug)]
pub enum Modifier {

AI
BI
AB,
BA,
E‘I
XI
II
}

Here's the implementation:

impl Modifier

pub fn random()
match thread_rng() .

0

oY U1 b W N =

pub fn serialize (&self,

{

—> Modifier {

gen_range (0, 7) {

Modifier::A,
Modifier::B,
Modifier: :AB,
Modifier: :BA,
Modifier::F,
Modifier::X,
Modifier::I,
unreachable! (),

match *self {

Modifier:
Modifier:
Modifier:
Modifier:
Modifier:
Modifier:
Modifier:

w: &mut Write) —-> io

:A => w.write (b"A"),
:B => w.write (b"B"),
:AB => w.write (b"AB"),
:BA => w.write (b"BA"),
:F=> w.write (b"F"),
:X => w.write (b"X"),
:I => w.write(b"I"),

::Result<usize> {
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Individuals

Nothing special, especially by this point in the book. The random () -> Self functions are
a touch fragile because you can't query an enumeration for its total number of fields,
meaning that if we add or remove a field from Modi fier, for instance, we also have to
remember to update gen_range (0, 7) appropriately. Removal is not so bad, the compiler
will complain some, but addition is easy to forget and overlook.

Let's now look at the individual module. The bulk of the code is in src/individual/mod.rs.
The struct for Individual is very short:

# [derive (Debug) ]
pub struct Individual {
chromosome: Vec<Option<Instruction>>,

}

An Individual is a chromosome and little else, a vector of instructions just as we
discussed. The functions on the Individual provide what you might expect, given the
discussion of the evolution algorithm. Firstly, we have to be able to make a new
Individual:

impl Individual {

pub fn new(chromosome_size: ul6, core_size: ul6) -> Individual {
let mut chromosome = Vec::with_capacity (chromosome_size as usize);
chromosome.par_extend ((0.. (chromosome_size as usize))
.into_par_iter () .map(|_I A
if thread_rng() .gen_weighted_bool (OpCode::total () * 2) {
None
} else {

Some (Instruction: :random(core_size))
}
)i

Individual { chromosome }

}

Ah! Here now we've run into something new. What in the world is par_extend? It's a
rayon function, short for parallel extend. Let's work inside out. The interior map ignores its
argument and produces a None with 1/28 chance—14 being the total number of OpCode
variants—and some other random Instruction with 27/28th chance:

map (|_I {
if thread_rng () .gen_weighted_bool (OpCode::total () * 2) {
None
} else {
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Some (Instruction: :random(core_size))
)

The input that the interior map is so studiously ignoring is (0. . (chromosome_size as
usize)).into_par_iter (). That'saParallelIterator over arange of numbers, from
0 to the maximum number of chromosomes an Individual is allowed to have. One creative
solution in early Corewars was to submit a MOV 0 1 imp followed by 7999 DAT
instructions. If the MARS loaded your warrior and wasn't programmed to carefully check
warrior offsets, your opponent would lose by being immediately overwritten.
Instruction length limits were quickly put into place and we obey that here, too.
Serialization of an Individual follows the pattern we're familiar with:

pub fn serialize(&self, w: &mut Write) -> io::Result<usize> {
let mut total_wrote = 0;
for inst in &self.chromosome {

if let Some (inst) = inst {

total_wrote += inst.serialize(w)?;
} else {

break;

}
}
Ok (total_wrote)

Mutation and reproduction

Before we discuss competition between two Individuals, let's talk about mutation and
reproduction. Mutation is the easier of the two to understand, in my opinion, because it
operates on one Individual at a time. Our implementation:

pub fn mutate (&émut self, mutation_chance: u32, core_size: ul6) —-> () {
self.chromosome.par_iter_mut () .for_each(|gene| {
if thread_rng() .gen_weighted_bool (mutation_chance) {
*gene = if thread_rng() .gen::<bool> () {
Some (Instruction: :random(core_size))
} else {
None

bi
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The call to par_iter_mut creates a ParallelIterator in which the elements of the
iterator are mutable, much like iter_mut from the standard library. The for_each
operator applies the closure to each. The for_each operator is similar in purpose to map,
except it's going to necessarily consume the input but will be able to avoid allocating a new
underlying collection. Modifying a thing in-place? Use for_each. Creating a new thing
from an existing bit of storage? Use map. Anyway, the mutation strategy that feruscore uses
is simple enough. Every Instruction in the chromosome is going to be changed with
probability 1/mutation_chance and may be disabled with 1/2 probability, that is, be set to
None. The careful reader will have noticed that the serializer stops serializing instructions
when a None is found in the chromosome, making everything after that point junk DNA.
The junk still comes into play during reproduction:

pub fn reproduce (&self, partner: &Individual,
child: &mut Individual) -> ()
{
for (idx, (lgene, rgene)) in self.chromosome
.iter ()
.zip(partner.chromosome.iter ())
.enumerate ()

child.chromosome [idx] = if thread_rng() .gen::<bool>() {
*lgene

} else {
*rgene

}i
}

Feruscore uses a reproduction strategy called half-uniform crossover. Each gene from a
parent has even odds of finding its way into the child. The child is passed as a mutable
reference, which is creepy if you think about it too hard. I'm not sure of any real species that
takes over the body of a less fit individual and hot-swaps DNA into it to form a child in
order to save on energy (or computation, in our case) but here we are. Note that, unlike
mutation, reproduction is done serially. Remember that rayon is chunking work and
distributing it through a threadpool. If we were to make this parallel, there'd have to be a
mechanism in place to rectify the choices made from the zipper of the parents'
chromosomes into the child. If the chromosomes were many multiple megabytes, this
would be a good thing to tinker with. As is, the chromosomes are very small. Most
Corewars games limit a warrior to 100 instructions. rayon is impressive but it is not free,
either in runtime cost or programming effort.
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Competition — calling out to pMARS

It's now time to consider how each Individual competes. Earlier, we discussed calling out
to pmars on-system, which requires on-disk representations of the two competing
Individual warriors. True to that, competition first serializes both warriors to temporary
locations on the disk:

pub fn compete(&self, other: &Individual) -> Winner {
let dir = TempDir::new("simulate")
.expect ("could not make tempdir");

let 1_path = dir.path().Jjoin("left.red");

let mut 1lfp = BufWriter::new(File::create(&l_path)
.expect ("could not write 1lfp"));

self.serialize (&mut 1fp) .expect ("could not serialize");

drop (1£fp) ;

let r_path = dir.path().Jjoin("right.red");

let mut rfp = BufWriter::new(File::create(&r_path)
.expect ("could not write rfp"));

other.serialize (&mut rfp) .expect ("could not serialize");

drop (rfp) ;

We haven't interacted much with the filesystem in this book but, suffice it to say, Rust has
an excellent filesystem setup in the standard library, most of it under std: : £s. You are
warmly encouraged to take a gander at the documentation for any of the functions here if
they are not already familiar with them. Anyway, with both warriors written to disk, we
can run pmars on them:

let output = Command::new ("pmars")
.arg("-r") // Rounds to play
.arg(format! ("{}", ROUNDS))
.arg("-b") // Brief mode (no source listings)
.arg(&1l_path)
.arg(&r_path)
.output ()
.expect ("failed to execute process");

Let's break down what's happening here. std: :process: : Command is a builder struct for
running an OS process. If we did nothing but call Command: : output (smut self) on the
new Command then:

e pmars would be run without arguments
¢ The working directory and environment of feruscore would become pmars
¢ The stdout of pmars will be piped back to the feruscore process
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Each of these can be changed. The actual execution of pmars does not take place until the
output is called: or, spawn, which is intended for long-lived processes. The

Command: :stdin, Command: : stderr, and Command: : stdout functions control the IO
behavior of the process, whether feruscore's descriptors are inherited by the child-
process—which is the case with spawn—or piped back to feruscore, the default for output.
We don’t want pmars to write to feruscore's stdout/sterr, so the defaults of output are ideal
for our needs. The call to args adds a new argument to the Command and a new call is
required even for arguments that associate. We write .arg ("-r") .arg (format ("{}",
ROUNDS) ) rather than .arg (format! ("-r {}", ROUNDS)).Here, we're crashing the
program if pmars fails to make appropriate output, which might happen if the executable
can't be found or we trigger a crash-bug in pmars and don't have permissions to run the
program. Crashing is a bit user-hostile, but good enough for our purposes here.

Now, output: std::process::Output, a struct with three members. We've ignored the
exit status in favor of pulling the last stdio line:

let result_line = ::std::str::from_utf8 (&output.stdout)
.expect ("could not parse output")
.lines ()
.last ()

.expect ("no output");

If there was output on stdio, then pmars successfully ran the passed warriors, if not, then
the warriors were invalid. The parser in pmars is very forgiving if the warriors failed to
load the serializer in Individual or Instruction is faulty. Note that result_line is the last
line of output. The last line is always of the form Results: 10 55 32, meaning that the
left program won 10 times, the right program won 55 times, and they tied 32 times. A tie
happens when neither warrior is able to force the other out of the game by some pre-
determined number of executions, often around 10,000. Parsing that last line is a rugged
affair:

let pieces result_line.split (' ').collect::<Vec<&str>>();

let 1_wins pieces|[1l] .parse::<ul6>()
.expect ("could not parse 1_wins");
pieces[2] .parse::<ul6>()

.expect ("could not parse r_wins");

let r_wins

let ties = pieces[3].parse::<ul6>()
.expect ("could not parse ties");
assert_eq! ((l_wins + r_wins + ties) as usize, ROUNDS);
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Note the assertion. ROUNDS is a constant set in the module, set to 100. Our Command
informed pmars to play 100 rounds with the passed warriors, if the result doesn't add up to
100, we've got a real problem. Placing these sanity checks in code sometimes feels a bit silly
but, lo and behold, they do turn up bugs. Likewise, it's rarely a wasted effort to invest in
diagnostics. For instance, in genetic algorithms, it's hard to know how things are going in
your population. Is every generation getting fitter? Has the population bottlenecked
somewhere? To that end, the next step of compete is to tally the fitness of the left and right
warriors:

tally_fitness(l_wins as usize);
tally_fitness(r_wins as usize);

The tally_fitness function is defined like so:

fn tally_fitness(score: usize)
assert! (score <= ROUNDS) ;

-=> 0 A

match score {

0...10 => FITNESS_00010.fetch_add (1, Ordering::Relaxed),
11...20 => FITNESS_11020.fetch_add(l, Ordering::Relaxed),
21...30 => FITNESS_21030.fetch_add(1l, Ordering::Relaxed),
31...40 => FITNESS_31040.fetch_add(l, Ordering::Relaxed),
41...50 => FITNESS_41050.fetch_add(l, Ordering::Relaxed),
51...60 => FITNESS_51060.fetch_add(l, Ordering::Relaxed),
61...70 => FITNESS_61070.fetch_add (1, Ordering::Relaxed),
71...80 => FITNESS_71080.fetch_add(l, Ordering::Relaxed),
81...90 => FITNESS_81090.fetch_add(l, Ordering::Relaxed),
91...100 => FITNESS_91100.fetch_add(l, Ordering::Relaxed),
_ => unreachable! (),

}i
}

What is this, you ask? Well, I'll tell you! tally_fitness takes the input score—the wins of
the warrior—and buckets that score into a histogram. Usually this is done with a modulo
operation but we're stuck here. The implementation has to assume that tally_fitness
will be run by multiple threads at once. So, we've constructed a histogram from several
discrete At omicUsizes with names suggestive of their bucket purpose. The declaration of
the statics is as repetitive as you'd imagine and we'll spare repeating it here. Maintaining
this structure by hand is a real pain but it does get you an atomic histogram, so long as
you're fine with that histogram also being static. This implementation is. The histogram is
not used for decision making so much as it's meant for diagnostic display. We'll come to
that when we discuss the main loop.
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The final lines of compete are underwhelming:

if 1_wins > r_wins {
Winner::Left (1_wins)

} else if 1_wins < r_wins {
Winner::Right (r_wins)

} else {
Winner::Tie

}
}

The win counts of each warrior are compared and the winner is declared to be the one with
the higher score, or neither wins and a tie is declared. Depending on your problem domain,
this fitness' rubric might be too coarse. From the output, we don't know how much fitter an
individual was compared to its competitor, only that it was. The warriors may have tied at
0 wins each, or gone 50/50. We believe this simple signal is enough, at least for our
purposes now.

At least as far as creating an Individual, mutating it, reproducing it, and competing it,
that's it! Now all that's left is to simulate evolution and for that we have to jump to
main.rs. Before we do, though, I want to point out briefly that there's a submodule here,
individuals: :ringers. This module has functions such as:

pub fn imp (chromosome_sz: ul6) —-> Individual {
let mut chromosome = vec! |
// MOV.I $0, $1
Some (Instruction {
opcode: OpCode: :Mov,
modifier: Modifier::1I,
a_mode: Mode::Direct,
a_offset: Offset { offset: 0 },
b_mode: Mode: :Direct,
b_offset: Offset { offset: 1 },
Py
17
for _ in 0.. (chromosome_sz — chromosome.len() as ul6) {
chromosome.push (None) ;
}

Individual { chromosome }

}

Sometimes it's wise to nudge evolution along by sprinkling a little starter into the random
mixture. Feruscore has no parser—at least, not until some kind reader contributes one—so
the ringers are written out long-form.
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Now, on to main!

Main
The preamble to src/main.rs is typical for the programs we've seen so far in this book:

extern crate feruscore;
extern crate rand;
extern crate rayon;

use feruscore::individual::*;

use rand::{thread_rng, Rng};

use rayon::prelude::*;

use std::collections::VecDeque;

use std::fs::File;

use std::fs::{self, DirBuilder};

use std::io::{self, BufWriter};

use std::path::{Path, PathBuf};

use std::sync::atomic::{AtomicUsize, Ordering};
use std::{thread, time};

The program does start, however, with an abnormally large block of constants and statics:

// configuration

const POPULATION_SIZE: ulé6 = 256; // NOTE must be powers of two
const CHROMOSOME_SIZE: ulé = 25; // Must be <= 100

const PARENTS: ul6 = POPULATION_SIZE / 8;

const CHILDREN: ul6 = PARENTS * 2;

const RANDOS: ul6 = POPULATION_SIZE - (PARENTS + CHILDREN) ;
const CORE_SIZE: ulé6 = 8000;

const GENE_MUTATION_CHANCE: u32 = 100;

// reporting

static GENERATIONS: AtomicUsize = AtomicUsize::new(0);
static REGIONAL_BATTLES: AtomicUsize = AtomicUsize::new(0);
static FINALS_BATTLES: AtomicUsize = AtomicUsize::new(0);
static STATE: AtomicUsize = AtomicUsize::new(0);

static NEW_PARENTS: AtomicUsize = AtomicUsize::new(0);
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Realistically, the configuration constants could be adjusted into actual configuration, via
clap or some configuration-parsing library. The toml (https://crates.io/crates/toml)
crate paired with serde is very useful for parsing straightforward configuration, where the
validation steps are a few checks we now encode as comments. The reporting statics are the
same static AtomicUsizes we've seen through the book. In fact, starting the reporting
thread is the first thing that the main function does:

fn main() A

let _ thread: :spawn (report) ;

The report thread works in a similar fashion to the threads that fill a comparable role
elsewhere in the book: the global statics—including FITNESS_* from
feruscore::individuals—are swapped for zero, a little bit of computation happens,
then there's a block that prints to stdout, and finally the thread sleeps for a bit before
looping around again, forever. It's a well-worn technique by this point.

With the reporting thread online, feruscore creates its initial population:

let mut population: Vec<Individual> =
Vec::with_capacity (POPULATION_SIZE as usize);
let mut children: Vec<Individual> =
Vec::with_capacity (CHILDREN as usize);
let mut parents: VecDeque<Individual> =
VecDeque: :with_capacity (PARENTS as usize);
population.par_extend(
(0..POPULATION_SIZE)
.into_par_iter()
.map (|_| Individual::new (CHROMOSOME_SIZE, CORE_SIZE)),
)
population.pop();
population.pop();
population.push (ringers: :imp (CHROMOSOME_SIZE)) ;
population.push (ringers: :dwarf (CHROMOSOME_SIZE)) ;

rayon's par_extend makes an appearance again, useful when POPULATION_SIZE is a large
number but not harmful with its current value. As we saw, rayon will decline to split a
parallel collection too small to be effectively parallelized, the distribution to threads
overwhelming the time to compute. Individual: :new is called with the actual
chromosome and core sizes, and two unlucky, random members of the population are
ejected and deallocated in favor of ringers from individual: :ringers.
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There are many ways to decide the fitness of individuals in a population. The method that
feruscore takes is to run individuals in a tournament. The winner of the first tournament
becomes the first parent, the winner of the second becomes the second parent, and so forth
until each parent is filled up. That implementation is brief but contains multitudes:

loop {
// tournament, fitness and selection of parents
STATE.store (0, Ordering::Release);
while parents.len() < PARENTS as usize {
thread_rng () .shuffle (&mut population);
let res = population
.into_par_iter()

.fold (|| (None, Vec::new()), regional_tournament)
.reduce (|| (None, Vec::new()), finals_tournament);
population = res.l;

parents.push_back (res.0.unwrap());
NEW_PARENTS. fetch_add (1, Ordering::Relaxed);
}

What's going on here? The population is shuffled at the start to avoid pairing up the same
individuals in each tournament. Indeterminacy in thread makes this somewhat
unnecessary and the speed-obsessed evolver might do well to remove this. The main show
is the fold and reduce of the population. Readers familiar with functional programming
will be surprised to learn that rayon's fold and reduce are not synonymous. The type of
ParallelIterator::foldis:

fold<T, ID, F>(self, identity: ID, fold_op: F)
-> Fold<Self, ID, F>

where
F: Fn(T, Self::Item) -> T + Sync + Send,
ID: Fn() -> T + Sync + Send,
T: Send,

Readers familiar with functional programming will not be surprised to learn that fold's
type is somewhat involved. Jokes aside, note that the function does not return an instance
of T but Fold<self, ID, F>whereFold: Parallellterator.rayon's fold doesnot
produce a single T but, instead, a parallel iterator over chunks that will have Fn (T,
Self::Item) -> T applied: an iterator over folded chunks.
ParallelIterator::reduce has the following type:

reduce<OP, ID>(self, identity: ID, op: OP)
-> Self::Item

where
OP: Fn(Self::Item, Self::Item) -> Self::Item + Sync + Send,
ID: Fn() —-> Self::Item + Sync + Send,
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The oP takes two Items and combines them into one Item. Reduce, then, takes a
ParallelIterator of Items and reduces them down into a single instance of Item type.
Our tournament implementation folds regional_tournament over the population,
producing a Fold over (Option<Individual>, Vec<Individual>), the first element of
the tuple being the fittest individual in that subchunk of the population, the second element
being the remainder of the population. The reduce step, then, takes the winners of the
regional tournaments and reduces them into one final winner. The implementation of these
two functions is similar. First, regional_tournament:

fn regional_tournament (
(chmp, mut population): (Option<Individual>, Vec<Individual>),
indv: Individual,
) —> (Option<Individual>, Vec<Individual>) {
if let Some (chmp) = chmp {
REGIONAL_BATTLES.fetch_add(l, Ordering::Relaxed);
match chmp.compete (&indv) {
Winner::Left (_) | Winner::Tie => {
population.push (indv) ;
(Some (chmp), population)
}
Winner::Right (_) => {
population.push (chmp) ;
(Some (indv), population)

}
} else {
(Some (indv), population)

}

Note the call to compete and the choice to promote the existing chmp—champion—to the
next tournament round in the event of a tie. REGIONAL_BATTLES sees an update, feeding
the report thread information. The less fit individual is pushed back into the population.
finals_tournament is a little more complicated but built along the same lines:

fn finals_tournament (

(left, mut lpop): (Option<Individual>, Vec<Individual>),
(right, rpop): (Option<Individual>, Vec<Individual>),
) —> (Option<Individual>, Vec<Individual>) {
if let Some (left) = left {
lpop.extend (rpop) ;
if let Some(right) = right {

FINALS_BATTLES.fetch_add(l, Ordering::Relaxed);
match left.compete (&right) {
Winner::Left (_) | Winner::Tie => {

[358]



High-Level Parallelism — Threadpools, Parallel Iterators and Processes Chapter 8

lpop.push(right);
(Some (left), lpop)
}
Winner::Right (_) => {
lpop.push(left);
(Some (right), lpop)

}
} else {
(Some (left), lpop)
}
} else {
assert! (lpop.is_empty());
(right, rpop)

}

This function is responsible for rerunning competitions and for joining up the previously
split parts of the population. Note the call to 1pop.extend. The right
population—rpop—is always merged into the left population, as are less fit individuals.
There's no special reason for this, we could equally have merged right and returned right.

Now, take a minute to look at these two functions. They are sequential. We are able to
reason about them as sequential functions, we are able to program them like sequential
functions. We can test them like sequential functions. rayon's internal model doesn't leak
into this code. We have to understand only the types and, once that's done, rayon's able to
do its thing. This sequential inside, parallel outside model is unique, compared to all the
techniques we've discussed in the book so far. rayon's implementation is undoubtedly
complicated, but the programming model it admits is quite straightforward, once you get
the hang of iterator style.

Once the tournament selection is completed, the parents vector is filled with PARENTS,
number of Individuals and the population has members who are all suitable for being
turned into children. Why draw from the population? Well, the upside is we avoid having
to reallocate a new Individual for each reproduction. Many small allocations can get
expensive fast. The downside is, by drawing from the population, we're not able to easily
turn a direct loop into a parallel iterator. Given that the total number of reproductions is
small, the implementation does not attempt anything but a serial loop:

STATE.store (1, Ordering::Release);

while children.len() < CHILDREN as usize {
let parent0 = parents.pop_front ().expect ("no parent0");
let parentl = parents.pop_front ().expect ("no parentl");
let mut child = population.pop() .expect ("no child");
parentO.reproduce (&parentl, &mut child);
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children.push(child);

parents.push_back (parentO) ;

parents.push_back (parentl);
}

Two parents are popped off, a child is popped off, reproduction happens, and everyone is
pushed into their respective collection. Children exist to avoid reproducing into the same
Individual multiple times. Once reproduction is completed, children is merged back
into the population, but not before some sanity-checks take place:

assert_eq! (children.len(), CHILDREN as usize);
assert_eq! (parents.len(), PARENTS as usize);
assert_eq! (population.len (), RANDOS as usize);

population.append (&mut children);

Once children is integrated into the population, mutation:

STATE.store (2, Ordering::Release);
population.par_iter_mut () .for_each(|indv| {

let _ = indv.mutate (GENE_MUTATION CHANCE, CORE_SIZE);
}) i

The careful reader will note that the parents are not included in the mutation step. This is
intentional. Some implementations do mutate the parents in a given generation, and
whether or not this is a good thing to do depends very much on domain. Here, the
difference between a fit Individual and an unfit one is so small that I deemed it best to
leave parents alone. A matter for experimentation.

Finally, we bump the generation, potentially checkpoint, and re-integrate the parents
into the population:

let generation = GENERATIONS.fetch_add(l, Ordering::Relaxed);
if generation % 100 == 0 {
checkpoint (generation, &parents)
.expect ("could not checkpoint");

}

for parent in parents.drain(..) {
population.push (parent) ;
}

[360 ]



High-Level Parallelism — Threadpools, Parallel Iterators and Processes Chapter 8

There is no stop condition in feruscore. Instead, every 100 generations, the program will
write out its best warriors—the parents—to disk. The user can use this information as they
want. It would be reasonable to stop simulation after a fixed number of generations or
compare the parents against a host of known best-of-breed warriors, exiting when a warrior
had been evolved that could beat them all. That last would be especially nifty but would
require either a parser or a fair deal of hand-assembly. Checkpointing looks the way you
may imagine it:

fn checkpoint (generation: usize, best: &VecDeque<Individual>) ->
io::Result<()> {
let root: PathBuf = Path::new("/tmp/feruscore/checkpoints")
.join (generation.to_string());

DirBuilder::new () .recursive (true) .create (&root) ?;
assert! (fs::metadata (&root) .unwrap () .is_dir());
for (idx, indv) in best.iter () .enumerate () {

let path = root.join(format! ("{:04}.red", idx));
let mut fp = BufWriter::new(File::create (&path)

.expect ("could not write 1lfp"));
indv.serialize (&mut fp) ?;

}

Ok (())
}

Okay! Let's evolve some warriors.

Running feruscore

Before you attempt to run feruscore, please make sure pmars is available on your PATH.
Some operating systems bundle pmars in their package distribution, others, such as OS X,
require gcc to compile the program. The pMARS project is venerable C code and getting it
compiled can be a bit fiddly. On my Debian system, I had to tweak the makefile some, but
on OS X I found a helpful brew cask to get pMARS installed.

Once you've got pMARS installed, you should be able to run cargo run --release at the
head of the project and receive output like the following;:

GENERATION (0) :
STATE: Tournament
RUNTIME (sec): 4
GENS/s: 0
PARENTS: 2
PARENTS/s: 1
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BATTLES:

R_BATTLES/s:
F_BATTLES/s:

FITNESS:
00..
11..
21..
31..
41..
51..
61..
71..
8l..
91..

.10:
.20:
.30:
.40:
.50:
.60:
.60:
.70:
.80:
.100:

660
131
25

625

550

Woo! Look at it go. This instance of feruscore has been running for 4 seconds—RUNTIME
(sec): 4—and has computed two parents so far. This generation has gone through 660
battles: 131 regional and 25 final. The fitness histogram shows that the population is pretty
evenly bad, otherwise we'd expect to see a clump at the 0 end and a clump at the 100 end.
You should see something similar. I bet you'll also find that your CPUs are pegged. But,

there's a problem. This is slow. It gets worse. Once I evolved more fit warriors, the

generations took longer and longer to compute:

GENERATION (45) :

STATE:

RUNTIME (sec):

GENS/s:
PARENTS:

PARENTS/s:

BATTLES:

R_BATTLES/s:
F_BATTLES/s:

FITNESS:
00..
11..
21..
31..
41..
51..
61..
71..
8l..
91..

.10:
.20:
.30:
.40:
.50:
.60:
.60:
.70:
.80:
.100:

Tournament
25297

0

8

0

1960

12

796

P OOOOOOOOW
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That makes sense though. The better the population is, the longer members will hold out in
a round. It's not uncommon to run a genetic algorithm for thousands of generations before it
settles on a really excellent solution. A generation in the present implementation takes,
generously, 30 seconds at least. By the time we're able to evolve a halfway-decent warrior,
it'll be the 30th anniversary of the '94 ICWS Corewars standard! That's no good.

Turns out, serializing an Individual to disk, spawning a pMARS process, and forcing it to
parse the serialized format—the load file—is not a fast operation. We could also compact
our Individual representation significantly, improving cache locality of simulation.
There's also something fishy about performing a regional and then a finals tournament just
to fit the iterator style rayon requires. We can fix all of these things, but it'll have to wait
until the next chapter. We're going to embed a MARS written in C into feruscore and all
sorts of changes will fall out as a result.

Should be fun!

Summary

In this chapter, we set the lower-level details of concurrency in Rust as a foundation. We
discussed thread pools, which, it turns out, we had all the pieces in-hand from previous
chapters, to understand a fairly sophisticated one. Then we looked into rayon and
discovered that we could also understand an extremely sophisticated threadpool, hidden
behind the type system to enable data parallelism in the programming model. We
discussed architectural concerns with the thread-per-connection model and the challenges
of splitting small datasets up into data parallel iterators. Finally, we did a walkthrough of a
rayon and multi-processing-based genetics algorithm project. The std: :process interface
is lean compared to that exposed by some operating systems, but well-thought-out and
quite useful, as demonstrated in the feruscore project that closed out the chapter. We'll pick
up feruscore in the next chapter when we integrate C code into it, in lieu of calling out to a
process.

Further reading

The notes for the chapter are a bit unusual for the book. Rather than call out papers the
reader could look to for further research these notes are, overwhelmingly, suggestions of
codebases to read. Data parallel iterators are amazing but take a little getting used to.
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Nothing helps more than reading existing projects. Me, I figure every thousand lines of
source code takes an hour to understand well. Makes for a peaceful afternoon:

e rayon, available at https://github.com/rayon-rs/rayon. We discussed this crate
quite a bit in the chapter but only skimmed the surface of it. I highly, highly
recommend that the motivated reader go through Parallellterator and work to
understand the operators exposed there.

e xsv, available at https://github.com/BurntSushi/xsv. Andrew Gallant is
responsible for some of the fastest text-focused Rust code right now and xsv is no
exception. This crate implements a toolkit for very fast, parallel CSV querying
and manipulation. The threadpool crate discussed earlier drives the whole thing.
Well worth reading if you've got ambitions for fast text processing and want to
see the application of thread pooling to such.

e ripgrep, available at https://github.com/BurntSushi/xsv. Andrew Gallant's
ripgrep is one of the fastest grep implementations in the world. The reader will
be interested to know that the implementation does not use any off-the-shelf
threadpool crates nor rayon. Ripgrep spawns a result printing thread for every
search, then a bounded many threads to perform actual searches on files. Each
search thread communicates results to the print thread via an MPSC, thereby
ensuring that printed results are not torn and search can exploit the available
machine CPUs.

e tokei, available at https://github.com/Aaronepower/tokei. There are many
source-code line-counting programs in the world, but few cover as many
languages or are as fast as Aaron Power's tokei. The implementation is well
worth reading if you're interested in parsing alone. But, tokei also notably makes
use of rayon. Where the project has chosen sequential std iterators over rayon's
parallel iterators is something readers should discover for themselves. Then, they
should ponder through the reasons why such choices were made.

e 18080, available at https://github.com/Aaronepower/i8080. In addition to tokei,
Aaron Power wrote an impressive Intel 8080 emulator in Rust. MARS is a deeply
odd machine and the reader will probably have an excellent time discovering
how an actual, simple CPU is emulated.
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e QuickCheck: Lightweight Tool for Random Testing of Haskell Programs, 2000, Koen
Claessen and John Hughes. This paper introduces the QuickCheck tool for
Haskell and introduces property-based testing to the world. The research here
builds on previous work into randomized testing, but is novel for realizing that
computers had got fast enough to support type-directed generation as well as
shipping with the implementation in a single-page appendix. Many, many
subsequent papers have built on this one to improve the probing ability of
property testers.

e Smallcheck and Lazy Smallcheck: Automatic Exhaustive Testing for Small Values, 2008,
Colin Runciman, Matthew Naylor, and Fredrik Lindblad. This paper takes direct
inspiration from Claessen and Hughes work but works the hypothesis that many
program defects are to be found on small input first. The Lazy Smallcheck
discussion in the second half of the paper is especially interesting. I found myself
reading this with a growing ambition to implement a Prolog.

o Macros: The Rust Reference, available at https://doc.rust-lang.org/reference/
macros.html. Macro use in Rust is in a weird state. It's clearly useful but the
current macro implementation is unloved and a new macro system is coming,
gradually, to replace it. Meanwhile, if you want to build macros to use in code,
you're going to need this reference.

e The C10K Problem, available at http://www.kegel.com/c10k.html. This page was
much discussed when it first hit the internet. The problem discussed was that of
getting 10,000 active connections to a single network server, processing them in a
non-failing fashion. The author notes several resources for further reading, all of
which are still useful today, and discusses the state-of-the-art operating systems
at that time, in terms of kernal versions and the inclusion of new, better polling
APIs. Though old—the many-connection problem is often now stated as
C1M—it's still an excellent and informative read.

o Annotated Draft of the Proposed 1994 Core War Standard, available at http://
corewar.co.uk/standards/icws94.htm. Corewars is a subtle game, in terms of
the effect of the assembly language, Redcode, on the machine and the function of
the machine itself. This document is the attempt to standardize the behavior of
both in 1994. The standard was not accepted—the standard body was dying—but
the proposal document is very clear and even comes with a brief C
implementation of a MARS.
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FFI and Embedding —
Combining Rust and Other
Languages

Up until this point in the book, we've discussed Rust more or less in isolation. Rust was
intentionally designed to integrate with other programming languages by calling external
programming languages through its Foreign Function Interface (FFI) and by being
embedded itself. Many modern programming languages offer FFI, easy embedding, or
both. Python, for instance, can very conveniently call out to libraries with C calling
conventions and can be embedded with a little forethought. Lua, a high-level and garbage-
collected language like Python, has a convenient FFI and can be embedded without much
trouble. Erlang has a small handful of FFI interfaces but Erlang is not, itself, easily
embedded into user-space environments. Amusingly, it's fairly straightforward to compile
Erlang into an RTOS image.

In this chapter, we'll discuss calling out to foreign code in Rust and embedding Rust into
foreign programming languages. We'll start off by extending the corewars evolver program
—feruscore—that we covered at the tail end of chapter 8, High-Level Parallelism —
Threadpools, Parallel Iterators, and Processes. You are encouraged to read that material before
starting this chapter. After we've extended feruscore by embedding a C MARS simulator
inside it, we'll move on to calling Rust functions from a C program. We'll demonstrate
embedding Lua into a Rust system for convenient scripting and close the chapter by
embedding Rust in high-level garbage-collected languages—Python and Erlang.
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By the end of this chapter, we will have:

e Adapted the feruscore project from the last section to incorporate a C simulator
e Demonstrated the inclusion of Lua code into a Rust project

e Demonstrated the inclusion of Rust code into a C project

¢ Demonstrated the inclusion of Rust code into a Python project

e Demonstrated the inclusion of Rust code into an Erlang/Elixir project

Embedding C into Rust - feruscore without
processes

When we wrapped up our discussion of feruscore in the previous chapter, we'd
constructed a program that could discover corewars warriors through simulated natural
selection. This was done by writing evolved warriors out to disk, using Rust's OS process
interface to call out to pmars—the de facto standard MARS—and competing them to
discover their relative fitness. We used Rayon—Rust's very convenient data parallelism
library—to distribute the workload of competitions between available CPUs.
Unfortunately, the implementation was pretty slow. Building a tournament selection
criteria was maybe more difficult to express than we might have hoped—though I'm sure
there a bright-spark of a reader out there who will improve that substantially and wow me.
The real pain point was serializing every warrior to disk multiple times, allocating similar
structures repeatedly to establish each round, and then eating pmars' allocation and
parsing overhead. It's this last step, calling out to an external program to run competitions,
is something we'll address in this chapter. We will also address the other two issues
because, well, why not go all-in?

Not all of feruscore's source code appears in this chapter. Some of it was
discussed in-depth in the previous chapter, some of it—such as
benchmarking code—would be a rehash of material already covered in
the book. The C code is not printed in its entirety as it's very dense and
very long. You can find the full listing in the book's source repository.
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The MARS C interface

Corewars is a venerable game and there are many implementations of MARS out there.
PMARS, like I mentioned, is the defacto standard, implementing the '94 ICWS draft and
adding later additions, such as new instructions and a thing called p-space, that we won't go
into here. Corewars has never been serious business. Many of the MARS available online
today have traded code back and forth over the years, have been written with varying
levels of attention to correctness, and sometimes programmed for older machines where
multiprocessing was a concern for research labs. Most make no distinction between their
internal library interface and executable consumer, like Rust programs do. Some blessed
few are designed to be embedded, or, at least, are extractions of older MARS codebases that
can be extended. Some blessed few of those don't use static globals in their
implementations and can be embedded in a multiprocessing environment, such as
feruscore.

In the grand tradition of MARS implementations, we will take an existing, public domain
MARS, whittle it down to a manageable core, and put a new spin on it. Specifically, the
feruscore introduced in this chapter embeds exhaust 1.9.2 (http://corewar.co.uk/
pihlaja/exhaust/), written by M. Joonas Pihlaja in the early 2000s. Pihlaja seems to have
extracted select code from pMARS, especially in and around exhaust's main and parser
functions. We aren't after any of that code. What we need is the simulator. This means that
we can toss out anything to do with parsing, and any support code needed for exhaust's
main function. The extracted code we require lives in the feruscore project root, in c_src/.
The functions we'll embed are all implemented in c_src/sim.c. These are from
c_src/sim.h:

void sim_free_bufs (mars_t* mars);
void sim_clear_core (mars_t* mars);

int sim_alloc_bufs (mars_t* mars);
int sim_load_warrior (mars_t* mars, uint32_t pos,
const insn_t* const code, uintl6_t len);
int sim_mw (mars_t* mars, const uintl6_t * const war_pos_tab,
uint32_t *death_tab );

The sim_alloc_bufs function is responsible for allocating the internal storage of a blank
mars_t, the structure on which simulation is performed. sim_clear_core clearsmars_t
between rounds, setting core memory to DAT, and resetting any warrior queues.
sim_load_warrior loads the warrior into core memory, the warrior really just being a
pointer to an array of instructions—insn_t—with the 1en passed length. sim_mw runs the
simulation, reading the warrior positions from war_pos_tab, and writing to death_tab
when a warrior completely dies.
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Creating C-structs from Rust

Now, how do we call these functions from Rust? Moreover, how do we create instances of
mars_t or insn_t? Well, recall back in chapter 03, The Rust Memory Model — Ownership,
References, and Manipulation, that Rust allows control over memory layout in structures.
Specifically, all Rust structures are implicitly repr (Rust), types aligned to byte
boundaries with structure fields being reordered as the compiler sees fit, among other
details. We also noted the existence of a repr (C) for structures, in which Rust would lay
out a structure's memory representation in the same manner as C. That knowledge now
comes to bear.

What we will do is this. First, we'll compile our C code as a library and rig it to link into
feruscore. That's done by placing a build. rs at the root of the project and using the cc
(https://crates.io/crates/cc) crate to produce a static archive, like so:

extern crate cc;

fn main() {

cc::Build: :new ()
.file("c_src/sim.c")
.flag("-std=cl1")
.flag("-03")
.flag("-Wall")
.flag("-Werror")
.flag ("-Wunused")

(

.flag("-Wpedantic")
.flag ("-Wunreachable-code")
.compile ("mars");

}

Cargo will produce 1ibmars.a into target/ when the project is built. But, how do we
make insn_t? We copy the representation. The C side of this project defines insn_t like
so:

typedef struct insn_st {
uintl6_t a, b;
uintl6_t in;

} insn_t;

uint16_t aand uint16_t b are the a-field and b-field of the instruction,
where uint16_t is a compressed representation of the OpCode, Modifier, and Modes in
an instruction. The Rust side of the project defines an instruction like so:

#[derive (PartialEq, Eqg, Copy, Clone, Debug, Default)]
#[repr(C)]
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pub struct Instruction {
a: ule,
b: ule,
ins: ule6,

}

This is the exact layout of the inst_t C. The reader will note that this is quite different
from the definition of Instruction we saw in the previous chapter. Also, note that the
field names do not matter, only the bit representation. The C structure calls the last field of
the struct in, but this is a reserved keyword in Rust, so it is ins in the Rust side. Now, what
is going on with that ins field? Recall that the Mode enumeration only had five fields. All
we really need to encode a mode is three bits, converting the enumeration into numeric
representation. A similar idea holds for the other components of an instruction. The layout
of the ins field is:

bit 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
field |-flags—| |——opcode——| |-mod-| |b-mode| |a-mode]

The Mode for a-field is encoded in bits 0, 1 and, 2. The Mode for b-field is in bits 3, 4, and 5,
and so on for the other instruction components. The last two bits, 14 and 15, encode a f1ag
that is almost always zero. A non-zero flag is an indicator to the simulator that the non-zero
instruction is the START instruction—the 0" instruction of a warrior is not necessarily the
one executed first by MARS. This compact structure requires a little more work on the part
of the programmer to support it. For instance, the Instruction can no longer be created
directly by the programmer but has to be constructed through a builder. The
InstructionBuilder, defined in src/instruction.rs, is:

pub struct InstructionBuilder {
core_size: ul6,
ins: ulé6,
a: ule,
b: ule,
s

As always, we have to keep track of the core size. Building the builder is straightforward
enough, by this point:

impl InstructionBuilder {
pub fn new(core_size: ul6) —-> Self {
InstructionBuilder {
core_size,
ins: 0_ule,
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}

Writing a field into the instruction requires a little bit manipulation. Here's writing a
Modifier:

pub fn modifier (mut self, modifier: Modifier) -> Self {
let modifier_no = modifier as ulo6;
self.ins &= !MODIFIER_MASK;
self.ins |= modifier_no << MODIFIER MASK.trailing_zeros();
self
}

The constant MODIFIER_MASK is defined in a block at the top of the source file with the
other field masks:

const AMODE_MASK: ulé = 0b0000_0000_0000_0111;
const BMODE_MASK: ulé = 0b0000_0000_0011_1000;
const MODIFIER_MASK: ul6é = 0b0000_0001_1100_0000;
const OP_CODE_MASK: ul6 = 0b0011_1110_0000_0000;
const FLAG_MASK: ul6é = 0b1100_0000_0000_0000;

Observe that the relevant bits in the masks are 1 bits. In
InstructionBuilder::modifier we &= the negation of the mask, which boolean-ands
ins with the negation of the modifier mask, zero-ing the Modi fier that was previously
there. That done, the Modifier encoded as ul6 is shifted left and boolean-or'ed into place.
The trailing_zeros () function returns the total number of contiguous zeros in the lower
end of a word, the exact number we need to shift by for each mask. Those readers that have
done bit-manipulation work in other languages may find this to be very clean. I think so as
well. Rust's explicit binary form for integers makes writing, and later, understanding,
masks a breeze. Common bit-manipulation operations and queries are implemented on
every basic integer type. Very useful.

The OpCode layout has changed somewhat. We don't repr (C) the enum, as the bit
representation does not matter. What does matter, since this is enumeration is field-less, is
which integer the variants cast to. First in the source maps to 0, the second to 1, and so
forth. The C code has op-codes defined like so in c_src/insn.h:

enum ex_op {
EX_DAT, /* must be 0 */
EX_SPL,
EX_MOV,
EX_DJN,
EX_ADD,
EX_JMZ,
EX_SUB,
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EX_SEQ,

EX_SNE,

EX_SLT,

EX_JMN,

EX_JMP,

EX_NOP,

EX_MUL,

EX_MODM,

EX_DIV, /* 16 */
bi

The Rust version is as follows:

#[derive (PartialEq, Eq, Copy, Clone, Debug, Rand)]
pub enum OpCode {

Dat, // O
Spl, // 1
Mov, // 2
Din, // 3
Add, // 4
Jmz, // 5
Sub, // 6
Seq, // 7
Sne, // 8
sit, // 9

Jmn, // 10

Jmp, // 11

Nop, // 12

Mul, // 13

Modm, // 14

Div, // 15
}

The other instruction components have been shuffled around just a little bit to cope with
the changes required by the C code. The good news is, this representation is more compact
than the one from the previous chapter and should probably be maintained, even if all the
C code were ported into Rust, a topic we'll get into later. But—and I'll spare you the full
definition of InstructionBuilder because once you've seen one set-function you've seen
them all—all this bit fiddling does make the implementation harder to see, and to correct at
a glance. The instruction module now has QuickCheck tests to verify that all the fields get
set correctly, meaning they can be ready right back out again no matter how many times
fields are set and reset. You are encouraged to examine the QuickCheck tests yourself.
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The high-level idea is this—a blank Instruction is made and a sequence of change orders
is run over that Instruction—momentarily shifted into an InstructionBuilder to allow
for modification—and then the changed field is read and confirmed to have become the
value it was changed to. The technique is inline with what we've seen before elsewhere.

Now, what about that mars_t? The C definition, in ¢_src/sim.h, is:

typedef struct mars_st {
uint32_t nWarriors;

uint32_t cycles;
uintl6_t coresize;
uint32_t processes;

uintl6_t maxWarriorLength;

w_t* warTab;

insn_t* coreMem;

insn_t** queueMem;
} mars_t;

The nWarriors field sets how many warriors will be in the simulation, which for feruscore
is always two cycles controls the number of cycles a round will take before ending if both
warriors are still alive, processes the maximum number of processes available, and
maxWarriorLength shows the maximum number of instructions a warrior may be. All of
these are more or less familiar from the last chapter, just in a new programming language
and with different names. The final three fields are pointers to arrays and are effectively
private to the simulation function. These are allocated and deallocated by
sim_alloc_bufs and sim_free_bufs, respectively. The Rust side of this structure looks
like so, from src/mars.rs:

#[repr(C)]
pub struct Mars {
n_warriors: u32,
cycles: u32,
core_size: ul6,
processes: u32,
max_warrior_length: ulé6,
war_tab: *mut WarTable,
core_mem: *mut Instruction,
queue_mem: *const *mut Instruction,
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The only new type here is WarTable. Even though our code will never explicitly
manipulate the warrior table, we do still have to be bit-compatible with C. The definition of
WarTable is:

# [repr (C) ]

struct WarTable {
tail: *mut *mut Instruction,
head: *mut *mut Instruction,
nprocs: u32,
succ: *mut WarTable,
pred: *mut WarTable,
id: u32,

}

We could have maybe got away with just making these private fields in Mars pointers to
void in mars_st, but that would have reduced type information on the C side of the project
and this approach might hamper future porting efforts. With the type explicit on the Rust
side of the project, it's much easier to consider rewriting the C functions in Rust.

Calling C functions

Now that we can create Rust structs with C-bit layout, we can start passing that memory
down into C. It's important to understand, this is an inherently unsafe activity. The C code
might fiddle with memory in a way that breaks Rust's invariants and the only way we can
be sure this isn't true is auditing the C code ahead of time. This is the same with fuzzing,
which we'll do too. How do we link with 1ibmars.a? A small extern block will do it, in

src/mars.rs:

#[1link (name = "mars")]

extern "C" {
fn sim_alloc_bufs (mars: *mut Mars) -> isize;
fn sim_free_bufs (mars: *mut Mars) -> ();
fn sim_clear_core (mars: *mut Mars) -> ();

fn sim_load_warrior (mars: *mut Mars, pos: u32,
code: *const Instruction,

len: ul6) -> isize;
fn sim_mw(mars: *mut Mars, war_pos_tab: *const ulé,
death_tab: *mut u32) -> isize;
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With # [1ink (name = "mars") ], we're instructing the compiler to link to the 1ibmars.a
produced in the build process. If we were linking to a system library, the approach would
be the same. The Rust Nomicon section on FFI—referenced in the Further reading section at
the end of this chapter—links to libsnappy, for example. The extern block informs the
compiler that these functions will need to be called with the C ABI, not Rust's. Let's
compare sim_load_warrior side by side. Here is the C version:

int sim_load_warrior (mars_t* mars, uint32_t pos,
const insn_t* const code, uintl6_t len);

Here is the Rust version:

fn sim_load_warrior (mars: *mut Mars, pos: u32,
code: *const Instruction,
len: ul6) -> isize;

These are similar. C doesn't have the same mutability concept as Rust, though there are
const annotations for code that Rust picks up for free. We've enhanced that by making all of
Instruction's query functions take &self. Rule of thumb—unless the C is const-correct, you
should probably assume the Rust needs a *mut. This isn't always true, but it saves a fair
deal of headache. Now, on that notion, the careful reader may note that as I ported
exhaust's code into feruscore, I adapted it to use stdint . h. In the unaltered code, pos has
the unsigned int type or usize. The simulator C code assumes pos will be at least 32 bits
wide, hence the explicit conversation to a 32-bit integer. This wasn't entirely necessary, but
it's good form to used fixed-width types as they minimize surprises moving between CPU
architectures.

Managing cross-language ownership

Rust is now aware of the C functions, and we have our internal structs reworked to use C
layout: it is time to link up the C functions that manipulate mars_t with our Mars. Because
we're sharing ownership of Mars between the Rust allocator and the C allocator, we've got
to be careful to initialize the Mars struct with null pointers in the fields that C will own, like
S0:

impl MarsBuilder {
pub fn freeze(self) —-> Mars {
let mut mars = Mars {
n_warriors: 2,
cycles: u32::from(self.cycles.unwrap_or (10_000)),
core_size: self.core_size.unwrap_or (8_000),
processes: self.processes.unwrap_or (10_000),
max_warrior_length: self.max_warrior_length.unwrap_or (100),
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war_tab: ptr::null_mut(),
core_mem: ptr::null_mut (),
queue_mem: ptr::null_mut (),
}i
unsafe {
sim_alloc_bufs (&mut mars);

mars

}

This MarsBuilder is a builder-pattern for producing a Mars. The remainder of the

implementation works how you might expect:

pub fn core_size (mut self, core_size: ul6) —-> Self {
self.core_size = Some (core_size);
self

pub fn cycles (mut self, cycles: ul6) -> Self {
self.cycles = Some (cycles);
self

pub fn processes (mut self, processes: u32) -> Self {
self.processes = Some (processes);
self

pub fn max_warrior_length (mut self, max_warrior_length: ulé6)
self.max_warrior_length = Some (max_warrior_length);
self

}

-> Self {

Back to MarsBuilder: :freeze (self) -> Mars. This function creates a new Mars and

then passes it immediately into sim_alloc_bufs:

unsafe {
sim_alloc_bufs (&mut mars);

}

&mut mars automatically coerces into *mut mars and, as we know from previous
chapters, dereferencing a raw pointer is unsafe. The fact that it's C dereferencing the raw
pointer is icing on the cake. Now, let's take a look at sim_alloc_bufs and get a sense of

what's going on. In c_src/sim.c:

int sim_alloc_bufs (mars_t* mars) {
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mars—->coreMem = (insn_t*)malloc(sizeof (insn_t) * mars—->coresize);

mars—->queueMem = (insn_t**)malloc(sizeof (insn_t*) *
(mars—->nWarriors * mars->processes + 1));

mars->warTab = (w_t*)malloc(sizeof (w_t)*mars->nWarriors);

return (mars-—->coreMem
&& mars—>queueMem
&& mars—->warTab) ;
}

The three fields owned by C—coreMem, queueMem, and warTab—are allocated according
to the size of the structs being stored and the return is a boolean-and of the malloc returns,
a short way of determining whether malloc ever returned NULL, signaling that no more
memory was available on-system. Had we decided to add a new field into the Rust struct
and not updated the C struct to reflect this change, these stores would be too small.
Eventually, some code somewhere would reach past the bounds of an array and crash. No
good, that.

But! We've just called C code from Rust.

Let's talk about ownership for a second. Mars is a structure not wholly owned by Rust, and
not wholly owned by C. That's fine and is also not uncommon, especially if you're partially
(or completely) porting a C codebase into Rust. It does mean we've got to be careful about
Drop:

impl Drop for Mars {
fn drop (&mut self) {
unsafe { sim_free_bufs(self) }
}
}

As we've seen in previous chapters, we have to arrange for explicit Drop when there's raw
memory in use. Mars is no exception. The call here to sim_free_bufs clears up the C-
owned memory and Rust takes care of the rest. If cleanup were more difficult—as
sometimes happens—you'd have to take care to avoid deferencing the C-owned pointers
post-free. sim_free_bufs is a brief implementation:

void sim_free_bufs (mars_t* mars)
{

free (mars—>coreMem) ;

free (mars—>queueMem) ;

free (mars—->warTab) ;
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Running the simulation

All that's left to do is run warriors in simulation. In the previous chapter, an Individual
was responsible for managing its own pmars process. Now, Mars will be responsible for
hosting the competitors, which you may have gleaned from the C API. We simply don't
have any space in Individual to store something, and by pushing competition into Mars,
we can avoid allocation churn on temporary Mars structures.

The compete function that was formerly bound to Individual has now been moved to

Mars:

impl Mars |

/17
/17
/17
/17
/17
/17
/17
pub

Competes two Individuals at random locations

The return of this function indicates the winner.
"Winner::Right (12) " will mean that the 'right' player
won 12 more rounds than did 'left'. This may mean they
tied 40_000 times or maybe they only played 12 rounds

and right won each time.
fn compete (&mut self, rounds: ul6, left: &Individual,
right: &Individual) -> Winner {
let mut wins = Winner::Tie;
for _ in 0..rounds {
let core_size = self.core_size;
let half_core = (core_size / 2) - self.max_warrior_length;
let upper_core = core_size - self.max_warrior_length;
let left_pos = thread_rng() .gen_range (0, upper_core);

let right_pos = if (left_pos + self.max_warrior_length)

< half_core {

thread_rng () .gen_range (half_core + 1, upper_core)

} else {
thread_rng () .gen_range (0, half_core)
bi

wins = wins + self.compete_inner (left, left_pos,

right, right_pos);

}

tally_fitness (wins);
BATTLES.fetch_add (1, Ordering::Relaxed);
wins
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The C API requires that we calculate the warrior offsets and take care to not overlap them.
The approach taken here is to randomly place the left Individual, determine whether it's in
the upper or lower core, and then place the right Individual, taking care with both to not
place them past the end of the core. The actual implementation of the competition is

compete_inner:

pub fn compete_inner (
gmut self,
left: &Individual,
left_pos: ulé,
right: &Individual,
right_pos: uleé,
) —> Winner {
let (left_len, left_code) = left.as_ptr();
let (right_len, right_code) = right.as_ptr();

let warrior_position_table: Vec<ul6> = vec![left_pos, right_pos];
let mut deaths: Vec<u32> = vec![u32::max_value (),
u32::max_value () ];

Wecall Individual::as_ptr() -> (ul6, *const Instruction) to getaraw view of
the chromosome of the Individual and its length. Without this, we've got nothing to pass
down to the C functions. warrior_position_table informs MARS which instructions
are the start of its competitors. We could search out the START flag in the warriors and
place that in warrior_position_table. This is an improvement left for the reader. The
deaths table will be populated by the simulator code. If both warriors die during
competition, the array will be [0, 1].The death table is populated with

u32::max_value () to make distinguishing no-result from result easy enough. Before
starting the competition, we have to clear the simulator—which might be filled with
instructions from a previous bout:

unsafe {
sim_clear_core (self);

If you pull up the sim_clear_core implementation, you'll find a memset to 0 over
core_mem. Recall that DAT is the 0" variant of the Tnstruction enumeration. Unlike
pmars, this simulator must use DAT as a default instruction, but it does make resetting the
field very fast. sim_clear_core also clears up the process queue and other C-owned
storage. Loading the warriors is a matter of plugging in the information we've already
computed:

assert_eq! (
0,
sim_load_warrior (self, left_pos.into(),
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left_code, left_len)
)
assert_eqg! (
OI
sim_load_warrior(self, right_pos.into(),
right_code, right_len)
)

If the result is non-zero, that's an indicator that some serious and non-recoverable fault has
happened. sim_load_warrior is an array operation, writing the warrior Instructions into
core_mem at the defined offsets. We could, very conceivably, rewrite the functions of
sim_clear_core and sim_load_warrior in Rust if we wanted to. Finally, field cleared
and warriors loaded, we are able to simulate:

let alive = sim_mw(self,
warrior_position_table.as_ptr(),
deaths.as_mut_ptr());
assert_ne! (-1, alive);

}

The sim_mw function returns the total number of warriors left alive at the end of the
simulation run. If this value is -1, there's been some catastrophic, unrecoverable error.

Now, because we have a nice type system to play with, we don't really want to signal
results back to the user with a vector of integers. We preserve the winner type seen

in the previous chapter, doing a quick conversion before returning;:

let left_dead = deaths[0] != u32::max_value();
let right_dead = deaths[1] != u32::max_value();
match (left_dead, right_dead) {

(false, false) | (true, true) => Winner::Tie,

(true, false) => Winner::Right (1),

(false, true) => Winner::Left (1),

}

You may have noticed that Winner implements Add, allowing compete to signal how many
rounds the warriors won. impl Add for Winner isalsoin src/mars.rs, should you be
curious to see it. As a final sanity test around Mars, we confirm that the Imp will lose to
Dwarf more often than other outcomes:

#lcfg(test)]
mod tests {
use super::*;
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use individual::*;

#[test]
fn imp_vs_dwarf () {
let core_size = 8_000;
let rounds = 100;
let mut mars = MarsBuilder::default ()
.core_size (core_size) .freeze();
let imp = ringers::imp(core_size);
let dwarf = ringers::dwarf (core_size);
let res = mars.compete (rounds, &imp, &dwarf);
println! ("RES: {:?}", res);
match res {

Winner::Left () | Winner::Tie => {
panic! ("imp should lose to dwarf")

}I

Winner::Right (_) => {}

}

Recall that an Imp can't self-kill, only propagate. The Dwarf bombs core memory at regular,
increasing offsets. An Imp versus Dwarf competition, then, is a race between Imp finding
Dwarf's instructions and Dwarf dropping a DAT in the path of an Imp.

Fuzzing the simulation

Feruscore has been changed in this chapter to include raw memory access in both Rust and
through FFI. The responsible thing to do is fuzz Mars and make sure we're not causing
segmentation faults. We'll use AFL, which we discussed back in chapter 2, Sequential Rust
Performance and Testing, and again in Chapter 5, Locks — Mutex, Condvar, Barriers, and
RWLock. The fuzz target is src/bin/fuzz_target.rs. The trick with fuzzing is ensuring
stability. That is, AFL can't really do its work if for some input applied multiple times
multiple paths come out. Fuzzing is more efficient in the case of a deterministic system. We
were careful to make Mars: : compete_inner deterministic, where Mars: : compete uses
randomness to determine warrior positions. Fuzzing, then, will go through
compete_inner only. The preamble for fuzz_target doesn't contain any new crates:

extern crate byteorder;
extern crate feruscore;

use byteorder::{BigEndian, ReadBytesExt};
use feruscore::individual::*;
use feruscore::instruction::*;
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use feruscore::mars::*;
use std::io::{self, Cursor, Read};

Remember that AFL passes a byte slice through stdin and the fuzzing target is responsible
for deserializing that array into something sensible for itself. We'll build up a Config
structure:

# [derive (Debug) ]
struct Config {
pub rounds: ulé6,
pub core_size: ule,
pub cycles: ulé6,
pub processes: ulé,
pub max_warrior_length: ulé,
pub left_chromosome_size: ulé,
pub right_chromosome_size: ulé,
pub left: Individual,
pub right: Individual,
pub left_pos: ule,
pub right_pos: ule,
}

Hopefully, these fields are familiar. The rounds, core_size, cycles, and processes each
affect the MARS environment. The max_warrior_length, left_chromosome_size, and
right_chromosome_size affect the two individuals that will be made to compete. 1eft
and right are those Individual instances. left_pos and right_pos set where the
warriors will be placed in the MARS core memory. The numbers that we'll deserialize from
the byte slice won't always be entirely sensible, so there'll be some cleanup needed, like so:

impl Config {

pub fn new(rdr: &mut Cursor<Vec<u8>>) -> io::Result<Config> {
let rounds = (rdr.read_ulé6::<BigEndian>()? % 1000) .max(1);
let core_size = (rdr.read_ulé6::<BigEndian>()? % 24_000).max(256);
let cycles = (rdr.read_ulé6::<BigEndian>()? % 10_000).max(100);
let processes = (rdr.read_ul6::<BigEndian>()? % 1024) .max(2);
let max_warrior_length = (rdr.read_ul6::<BigEndian>()? %

256) .max (4);
let left_chromosome_size = (rdr.read_ulb6::<BigEndian>()?
% max_warrior_length) .max (2);

let right_chromosome_size = (rdr.read_ul6::<BigEndian>()?

o)

% max_warrior_length) .max (2);
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It doesn't make any sense for there to be 0 rounds, as an example, so we say thatthere must
be at least one round. Likewise, we need two processes, desire at least four warrior
instructions, and so forth. Creating the left and right warriors is a matter of passing the byte
reader into Config: :mk_individual:

let left = Config::mk_individual (rdr,
max_warrior_length,
left_chromosome_size,
core_size) ?;
let right =
Config::mk_individual (rdr,
max_warrior_length,
right_chromosome_size,
core_size)?;

Config::mk_individual deserializes into InstructionBuilder. The whole thing is
kind of awkward. While we can convert a field-less Enum into an integer, it's not possible
to go from an integer to a field-less Enum without some hairy match statements:

fn mk_individual (
rdr: &mut Cursor<Vec<u8>>,
max_chromosome_size: ulé6,
chromosome_size: ulé6,
core_size: ul6,
) —> io::Result<Individual> {
assert! (chromosome_size <= max_chromosome_size);

let mut indv = IndividualBuilder::new();
for _ in 0.. (chromosome_size as usize) {
let builder = InstructionBuilder::new(core_size);

let a_field = rdr.read_1i8/() ?;
let b_field = rdr.read_1i8() ?;
let a_mode = match rdr.read_u8()? % 5 {
0 => Mode::Direct,
1 => Mode::Immediate,
2 => Mode: :Indirect,
3 => Mode: :Decrement,
=> Mode: :Increment,
bi
let b_mode = match rdr.read_u8()? % 5 {
0 => Mode::Direct,
1 => Mode: :Immediate,
2 => Mode: :Indirect,
3 => Mode: :Decrement,
=> Mode: :Increment,

}i
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Here, we've established the InstructionBuilder and read the Mode for a-field and b-
field out from the byte slice. If a field is added, we'll have to come through here and update

the fuzzing code. It's a real pain. Reading the Modifier out works the same way:

let

}i

modifier = match rdr.read_u8()?

0 => Modifier::F,
=> Modifier::A,
=> Modifier::B,

Modifier: :AB,

=> Modifier::BA,

=> Modifier::X,
=> Modifier::I,

g W N e
U
Vv

As does reading out the OpCode:

let

bi

opcode = match rdr.read_u8

0 => OpCode: :Dat, //
1 => OpCode: :Spl, //
2 => OpCode: :Mov, //
3 => OpCode::Djn, //
4 => OpCode: :Add, //
5 => OpCode: :Jmz, //
6 => OpCode: :Sub, //
7 => OpCode: :Seq, //
8 => OpCode: :Sne, //
9 => OpCode::Slt, //
10 => OpCode::Jmn, //
11 => OpCode: :Jmp, //
12 => OpCode: :Nop, //
13 => OpCode::Mul, //
14 => OpCode: :Modm, //
_ => OpCode: :Div, //
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Producing an instruction is simple enough, thanks to the builder pattern in use here:

let

indv

inst = builder
.a_field(a_field)
.b_field(b_field)
.a_mode (a_mode)
.b_mode (b_mode)
.modifier (modifier)
.opcode (opcode)
.freeze();

= indv.push (inst);
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Ok (indv.freeze())
}

Moving back up to Config: :new, we create the left and right positions:

let left_pos =
Config::adjust_pos (core_size,
rdr.read_ul6::<BigEndian> () ?,
max_warrior_length);
let right_pos =
Config::adjust_pos (core_size,
rdr.read_ul6::<BigEndian> () ?,
max_warrior_length);

The adjust_pos function is a small thing, intended to keep warrior positions properly in
bounds:

fn adjust_pos(core_size: ul6, mut pos: ul6, space: ul6) —-> ulé6 {

pos %= core_size;
if (pos + space) > core_size {

let past = (pos + space) - core_size;
pos — past

} else {
pos

}

It's entirely possible that the warriors will overlap with this calculation. That is okay. Our
ambition with fuzzing is not to check the logic of the program, only to seek out crashes. In
fact, if overlapping two warriors causes a crash, that's a fact we need to know. The close of
Config: :new is fairly straightforward:

Ok (Config {
rounds,
core_size,
cycles,
processes,
max_warrior_length,
left_chromosome_size,
right_chromosome_size,
left,
right,
left_pos,
right_pos,
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After all that, the main function of fuzz_target is minimal:

fn main() {
let mut input: Vec<u8> = Vec::with_capacity (1024);
let result = io::stdin() .read_to_end(&mut input);
if result.is_err() {
return;
}
let mut rdr = Cursor::new(input);
if let Ok(config) = Config::new(&mut rdr) {

let mut mars = MarsBuilder::default ()
.core_size (config.core_size)
.cycles (config.cycles)
.processes (u32::from(config.processes))
.max_warrior_length(config.max_warrior_length as ul6)
.freeze();

mars.compete_inner (
&config.left,
config.left_pos,
&config.right,
config.right_pos,

)

}

Stdin is captured and a Cursor built from it, which we pass into Config: :new, as
explained earlier. The resulting Config is used to fuel MarsBuilder, and the Mars is then
the arena for competition between the two fuzzing Individual instances that may or may
not overlap. Remember, before running AFL, be sure to run cargo afl build—release
and not cargo build —release. Both will work, but the first is significantly faster to discover
crashes, as AFL's instrumentation will be inlined in the executable. I've found that even a
single instance of cargo afl fuzz -i /tmp/in -o /tmp/out
target/release/fuzz_target will run through AFL cycles at a good clip. There aren't
many branches in the code and, so, few paths for AFL to probe.

The feruscore executable

The final thing left to cover is src/bin/feruscore. rs. The careful reader will have noted
that there's been a suspicious lack of rayon in the implementation so far. In fact, rayon is
not in use in this version. Here's the full Cargo. toml for the project:

[package]
name = "feruscore"
version = "0.2.0"
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authors = ["Brian L. Troutwine <brian@troutwine.us>"]

[dependencies]

rand = "0.4"
rand_derive = "0.3"
libc = "0.2.0"
byteorder = "1.0"
num_cpus = "1.0"

[build-dependencies]
cc = "1.0"

[dev-dependencies]

quickcheck = "0.6"
criterion = "0.2"

[ [bench]]

name = "mars_bench"
harness = false
[[bin]]

name = "feruscore"
[[bin]]

name = "fuzz_target"

As mentioned at the start of the chapter, there were two issues with feruscore aside from
calling out to an OS process: repeat allocation of similar structures and poor control over
tournaments. Viewed a certain way, comparing Individual fitness is a sorting function.
Rayon does have a parallel sorting capability, ParallelSliceMut<T:

Send>::par_sort (smut self), where T: Ord. We could make use of that, defining an
Ord for Individual that allocated a new Mars for every comparison. Many tiny
allocations is a killer for speed, though. A thread-local Mars could reduce that to a single
allocation per thread, but then we're still giving up some control here. For instance, without
inspecting rayon's source, can we be sure that population chunks are going to be of roughly
equal size? Usually, this is not a concern, but it is for us here. Rayon's requiring that we
perform a fold and then a reduce step is also extra work we don't necessarily have to do if
we adjust our ambitions some.
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One common method to deal with parallelizing genetic algorithms, and the one we'll take
now, is to make islands that undergo evolution in parallel. The user sets a global
population, where this population is split among islands, and threads are assigned an
island to simulate for some number of generations. After that limit of generations is up, the
island populations are merged, shuffled, and redistributed to islands. This has the benefit
of reducing cross-thread communication, which potentially comes with cache locality
issues.

The preamble of src/bin/feruscore.rs is straightforward:

extern crate feruscore;
extern crate num_cpus;
extern crate rand;

use feruscore::individual::*;

use feruscore::mars::*;

use rand::{thread_rng, Rng};

use std::fs::{self, DirBuilder, File};

use std::io::{self, BufWriter};

use std::path::{Path, PathBuf};

use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::mpsc;

use std::{thread, time};

The configuration and reporting globals are somewhat reduced, compared to the last
chapter:

// configuration

const POPULATION_SIZE: usize = 1_048_576 / 8;
const CHROMOSOME_SIZE: ulé6 = 100;

const CORE_SIZE: ulé6 = 8000;

const GENE_MUTATION_CHANCE: u32 = 100;

const ROUNDS: ul6 = 100;

// reporting
static GENERATIONS: AtomicUsize = AtomicUsize::new(0);

The report function is almost entirely the same as in last chapter, except there are a few
less atomic variables to read from. checkpoint is also almost entirely the same. We'll skip
reprinting both functions in the interest of space. What is new is sort_by_tournament:
fn sort_by_tournament (mars: &mut Mars,
mut population: Vec<Individual>)

-> Vec<Individual>

let mut i = population.len() - 1;
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while i >= (population.len() / 2) {

let left_idx = thread_rng().gen_range (0, 1i);

let mut right_idx = left_idx;

while left_idx == right_idx {

right_idx = thread_rng() .gen_range (0, 1i);

}

match mars.compete (ROUNDS,
&populationfleft_idx],
&population[right_idx])

Winner::Right (_) => {
population.swap (i, right_idx);

}

Winner::Left (_) => {
population.swap (i, left_idx);

}

Winner::Tie => {}

population

}

This function sorts a population by fitness, based on the result of competition inside the

passed Mars. The reader will note that it's not a true sort in that the last element is the most

fit, but that the last element is the winner of the first tournament, the second to last the
winner of the second tournament, and so forth. Only population.len() / 2
competitions are held and the resulting champions compare favorably to a population
precisely sorted by fitness. The reader is encouraged to experiment with their own
implementation of sort_by_tournament. Now, let's look at the main function:

fn main() {

let
let

let

let
for

mut out_recvs = Vec::with_capacity (num_cpus::get());
mut in_sends = Vec::with_capacity (num_cpus::get());

total_children = 128;

thr_portion = POPULATION_SIZE / num_cpus::get();

_ in 0..num_cpus::get () {

let (in_snd, in_rcv) = mpsc::sync_channel (1);

let (out_snd, out_rcv) = mpsc::sync_channel (1);

let mut population: Vec<Individual> = (0..thr_portion)
.into_iter ()
.map (|_| Individual::new (CHROMOSOME_SIZE))
.collect ();

population.pop();

Chapter 9
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population.pop();
population.push (ringers::imp (CORE_SIZE)) ;
population.push (ringers: :dwarf (CORE_SIZE));
let _ = thread::spawn(move || island(in_rcv,
out_snd,
total_children));
in_snd.send (population) .unwrap () ;
in_sends.push (in_snd);
out_recvs.push (out_rcv);

}

The total number of islands in a feruscore run will vary by the number of CPUs available
on-system. Each island causes two synchronous MPSC channels to be created, one for the
main thread to push populations into the worker thread and one for the worker thread to
push populations back to the main. The implementation refers to these as in_* and out_*
senders and receivers. You can see again that we're building up a population of random
Individual warriors and pushing the ringers in, though the island population is not
POPULATION_SIZE, but an even split of POPULATION_SIZE by the number of available
CPUs. The reporting thread is started after the island threads have their populations,
mostly just to avoid Ul spam:

let _ = thread::spawn(report);

The report function is much the same as it was in the previous chapter's discussion of
feruscore and I'll avoid listing it here for brievity's sake.

The final chunk of the main function is the recombining loop. When the island threads
finish their competitions, they write into their out sender, which gets picked up by the
recombination loop:

let mut mars = MarsBuilder::default () .core_size (CORE_SIZE) .freeze();
let mut global_population: Vec<Individual> =
Vec::with_capacity (POPULATION_SIZE) ;
loop {
for out_rcv in &mut out_recvs {
let mut pop = out_rcv.recv () .unwrap();
global_population.append (&mut pop);
}

Once all the islands have been merged together, the whole lot is shuffled:

assert_eq! (global_population.len(), POPULATION_SIZE);
thread_rng () .shuffle (&mut global_population);
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That's one generation done. We checkpoint, this time doing an additional tournament to
pull the save winners from the global population:

let generation = GENERATIONS.fetch_add(l, Ordering::Relaxed);
if generation % 100 == 0 {
global_population = sort_by_tournament (&mut mars,
global_population);
checkpoint (generation, &global_population)
.expect ("could not checkpoint");

}

Finally, the population is split back up and sent to the island threads:
let split_idx = global_population.len() / num_cpus::get();

for in_snd in &mut in_sends {
let idx = global_population.len() - split_idx;
let pop = global_population.split_off (idx);
in_snd.send (pop) .unwrap () ;

}

Now, what is island doing? Well, it's an infinite loop pulling from the population
assignment receiver:

fn island(
recv: mpsc::Receiver<Vec<Individual>>,
snd: mpsc::SyncSender<Vec<Individual>>,
total_children: usize,

) —> (O A
let mut mars = MarsBuilder::default () .core_size (CORE_SIZE) .freeze();
while let Ok (mut population) = recv.recv () {

Now a Mars is allocated above the loop, meaning we'll only ever do num_cpu: :get ()
allocations of this structure per feruscore run. Also recall that Receiver: : recv blocks
when there is no data in the channel, so island threads don't burn up CPU when there's no
work for them. The interior of the loop should be familiar. First, the Individual warriors
are put into competition:

// tournament, fitness and selection of parents
population = sort_by_tournament (&émut mars, population);
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Reproduction is done by taking high-ranking members of the population and producing
two children into the low reaches of the population until the total number of children
needed per generation is reached:

// reproduce
let mut child_idx = 0;
let mut parent_idx = population.len() - 1;
while child_idx < total_children {
let left_idx = parent_idx;

let right_idx = parent_idx - 1;
parent_idx -= 2;
population[child_idx] = population[left_idx]

.reproduce (&population[right_idx]);
child_idx += 1;
population[child_idx] = population[left_idx]
.reproduce (&population[right_idx]);
child_idx += 1;
}

New to this implementation, we also introduce random new population members just
before the newly introduced children:

for 1 in 0..32 {

population[child_idx + i] = Individual::new (CHROMOSOME_SIZE)
}

Random infusion can help tamp down premature convergence in a population. Remember,
simulated evolution is a kind of state-space search. Something else that has changed is that
all members of the population have a chance of mutation:

// mutation
for indv in population.iter_mut () {
indv.mutate (GENE_MUTATION_CHANCE) ;

}

Finally, we push the population back up to the recombination thread, having worked the
population over thoroughly:

snd.send (population) .expect ("could not send");
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With all the changes made here—cutting back on small allocations, reducing total number
of competitions per generation, removing pmars parsing plus spawn overhead—the
implementation is substantially faster. Recall that the implementation in the last chapter
struggled to peak 500 competitions—or BATTLES as the Ul has it—per second. Here's a
report diagnostic from a recent eight-hour run I did:

GENERATION (5459) :
RUNTIME (sec): 31248
BATTLES: 41181
BATTLES/s: 14340

FITNESS:
00...10: 151
11...20: 2
21...30: 0
31...40: 1
41...50: 0
51...60: 0
61...60: 2
71...70: 1
81...80: 0
91...100: 41024

That's 14,000 battles per second on an 8,000-sized core memory, or around 650 generations
per hour. Still not blazingly fast, but enough that with some time you can start to get pretty
mediocre players being produced. Reducing core memory size will improve the runtime, as
will limiting the maximum length of the warriors. Those who are interested in building a
better evolver would do well to investigate different ways of assessing fitness, of
introducing more ringers, and seeing whether porting sim_mw into Rust wouldn't improve
runtime some. This simulator doesn't support the full scope of instructions that pMARS
does, so that's also an area for improvement.

I'd love to hear about what you come up with.

Embedding Lua into Rust

Many of the programs we've discussed in this book use a report thread to notify the user of
the running behavior of the program. Each of these report functions have been coded in
Rust, an unchanging part of the executable. What if, however, we wanted end-users to be
able to supply their own reporting routine? Or, consider the cernan project (https://
crates.io/crates/cernan), discussed previously in this book, which supports a
programmable filter, an online data-stream filter that can be programmed by end-users
without changing the cernan binary. How do you pull such a trick off?
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A common answer, not just in Rust but in many compiled languages, is to embed a Lua
interpreter (https://www.lua.org/) and read user programs in at startup. It's such a
common answetr, in fact, that there are many Lua embeddings to choose from in the crates
ecosystem. We'll use rlua (https://crates.io/crates/rlua) here asit's a safe choice and
the project documentation is very good. Other Lua embeddings suit different ambitions.
Cernan uses a different, not necessarily safe embedding, for example, because we need to
allow end-users to define their own functions.

In the previous chapter, we wrote a project called snif fer whose purpose was
threefold—collect Ethernet packets on an interface, report about them, and echo the
Ethernet packet back. Let's take that program and adapt it so that users can decide how to
report with custom scripts. The Cargo. toml file of the project is a little different, including
the rlua dependency and dropping the thread-hungry alternative executable:

[package]

name = "sniffer"

version = "0.2.0"

authors = ["Brian L. Troutwine <brian@troutwine.us>"]
[dependencies]

pnet = "0.21"

rlua = "0.13"

[[bin]]

name = "sniffer"

The preamble to the sniffer program, defined in src/bin/sniffer.rs, holds no surprises
for us:

extern crate pnet;
extern crate rlua;

use pnet::datalink::Channel::Ethernet;

use pnet::datalink::{self, DatalinkReceiver, MacAddr,
NetworkInterface};

use pnet::packet::ethernet::{EtherType, EthernetPacket};

use rlua::{prelude, Function, Lua};

use std::fs::File;

use std::io::{prelude::*, BufReader};

use std::path::Path;

use std::sync::atomic::{AtomicUsize, Ordering};

use std::sync::mpsc;

use std::{env, thread};
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We're importing Function and Lua from the rlua crate, but that's about all that is new. The
SKIPPED_PACKETS and Payload details are unchanged:

static SKIPPED_PACKETS: AtomicUsize = AtomicUsize::new(0);

# [derive (Debug) ]
enum Payload {
Packet {
source: MacAddr,
destination: MacAddr,
kind: EtherType,
}I
Pulse (u64),
}

I'have removed the echoing of Ethernet packets in this example as it's not necessarily a kind
thing to do on a busy Ethernet network. watch_interface, as a result, is a little more
svelte than it used to be:

fn watch_interface (mut rx: Box<DatalLinkReceiver>, snd:
mpsc: :SyncSender<Payload>) {

loop |
match rx.next () |
Ok (packet) => {
let packet = EthernetPacket::new(packet) .unwrap();
let payload: Payload = Payload::Packet {
source: packet.get_source(),
destination: packet.get_destination(),
kind: packet.get_ethertype(),
bi
if snd.try_send(payload) .is_err () {
SKIPPED_PACKETS.fetch_add(l, Ordering::Relaxed);
}
}
Err(e) => {
panic! ("An error occurred while reading: {}", e);
}
}
}

}
The timer function is also unchanged:
fn timer (snd: mpsc::SyncSender<Payload>) -> () {

use std::{thread, time};
let one_second = time::Duration::from_millis (1000);
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let mut pulses = 0;

loop {
thread: :sleep (one_second);
snd.send (Payload: :Pulse (pulses) ) .unwrap () ;

pulses += 1;
}

The main function now picks up an additional argument, intended to be the on-disk path of
a Lua function:

fn main() {
let interface_name = env::args().nth(l) .unwrap();
let pulse_fn_file_arg = env::args().nth(2).unwrap();
let pulse_fn_file = Path::new(&pulse_fn_file_arg);
assert! (pulse_fn_file.exists());
let interface_names_match = |iface: &NetworkInterface| {
iface.name == interface_name

}i

// Find the network interface with the provided name
let interfaces = datalink::interfaces();
let interface = interfaces

.into_iter ()

.filter (interface_names_match)

.next ()

.unwrap () ;

The function is intended to handle the Payload: : Pulse that comes in from the timer
thread. The gather function from the previous chapter no longer exists. To actually do
something with the user-supplied function, we'll have to create a new Lua VM via
rlua::Lua: :new () and then load the function into it, like so:

let lua = Lua::new();
let pulse_fn = eval (&lua, pulse_fn_file, Some ("pulse")) .unwrap();

The eval function is brief and mostly to do with reading from disk:

fn eval<'a>(lua: &'a Lua, path: &Path, name: Option<&str>)
—> prelude: :LuaResult<Function<'a>>

let £ = File::open(path) .unwrap();
let mut reader = BufReader::new(f);

let mut buf = Vec::new();
reader.read_to_end (&mut buf) .unwrap/();
let s = ::std::str::from_utf8 (&buf) .unwrap/();
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lua.eval (s, name)

}

The lua-specific bit there is 1ua.eval (s, name). This evaluates the Lua code read from
disk and returns function, a Rust-callable bit of Lua. Any user-supplied name in the Lua
source itself is ignored and the name exists to add context to error messages on the Rust
side of things. rlua does not expose loadfile in its Rust API, though other Lua embeddings
do.

The next bit of the main function is mostly unchanged, though the packet buffer channel
has been increased from 10 elements to 100:

let (snd, rcv) = mpsc::sync_channel (100);

let timer_snd = snd.clone();
let _ = thread::spawn(move || timer (timer_snd));

let _iface_handler = match datalink::channel (&interface,
Default::default())
{

Ok (Ethernet (_tx, rx)) => {

let snd = snd.clone();

thread::spawn (|| watch_interface(rx, snd))
}
Ok (_) => panic! ("Unhandled channel type"),
Err(e) => panic! (

"An error occurred when creating the datalink channel: {}",
e

),
}i

Now, things are going to change. First, we create three Lua tables for storing the
components of the Payload: :Packet:

let destinations = lua.create_table () .unwrap();
let sources = lua.create_table() .unwrap();
let kinds = lua.create_table () .unwrap();

In the previous chapter, we used three HashMaps but, now, we need something we can
easily pass into Lua. The main thread is responsible for the role that gather used to play:
collecting Payload instances. This saves a thread and means we don't have to carefully
arrange for sending the Lua VM across thread boundaries:

while let Ok (payload) = rcv.recv() {
match payload {
Payload: :Packet {
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source,
destination,
kind,
Po=>
let d_cnt = destinations
.get (destination.to_string())
.unwrap_or (0) ;
destinations
.set (destination.to_string(), d_cnt + 1)
.unwrap () ;
let s_cnt = sources.get (source.to_string()) .unwrap_or (0);

sources.set (source.to_string (), s_cnt + 1).unwrap();

let k_cnt = kinds.get (kind.to_string()) .unwrap_or (0);
kinds.set (kind.to_string(), k_cnt + 1).unwrap();

}

Here, we've started pulling payloads from the receiver and have handled

Payload: :Packets coming across. Notice how the tables we created just before this loop
are now being populated. The same basic aggregation is in play; keep a running tally of the
Packet components coming in. A more adventurous reader might extend this program to
allow for the Lua side to build its own aggregation. Now all that remains is to handle
Payload: :Pulse:

Payload: :Pulse (id) => {
let skipped_packets = SKIPPED_PACKETS
.swap (0, Ordering::Relaxed);
pulse_fn
call::<_, ()>((
id,
skipped_packets,
destinations.clone (),
sources.clone (),
kinds.clone (),
))

.unwrap ()
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The pulse_fn created earlier is called with a four-tuple of arguments—the pulse ID, the
SKIPPED_PACKETS, and the aggregation tables. We don't expect pulse_fn to have any
kind of return value, hence the <_, () > bit. This version of sniffer includes an example
packet function, defined in examples/pulse.lua:

function (id, skipped_packets, dest_tbl, src_tbl, kind_tbl)
print ("ID: ", id)
print ("SKIPPED PACKETS: ", skipped_packets)
print ("DESTINATIONS:")
for k,v in pairs(dest_tbl) do
print (k, wv)
end
print ("SOURCES:")
for k,v in pairs(src_tbl) do
print (k, wv)
end
print ("KINDS:")
for k,v in pairs(kind_tbl) do
print (k, wv)
end
end

The reader will note that it does basically the same work as the former gather function once
did. Running sniffer works the same way as before. Be sure to cargo build --release
and then:

> ./target/release/sniffer en0 examples/pulse.lua
ID: 0

SKIPPED PACKETS: 0
DESTINATIONS:
5¢:£9:38:8b:4a:b6 11
8c:59:73:1d:¢c8:73 16
SOURCES:
5¢:£9:38:8b:4a:b6 16
8c:59:73:1d:¢c8:73 11
KINDS:

Ipv4 27

ID: 1

SKIPPED PACKETS: 0
DESTINATIONS:
5¢:£9:38:8b:4a:b6 14
8c:59:73:1d:¢8:73 20
SOURCES :
5¢:£9:38:8b:4a:b6 20
8c:59:73:1d:¢8:73 14
KINDS:

Ipv4 34
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The allocation-conscious reader will have noticed there's a lot of cloning going on here.
That's true. The primary compilation is interop with Lua's GC. A safe Rust interface must
assume that data passed down to Lua will be garbage-collected. But, Lua does support a
concept of user data, in which the programmer associates opaque blobs with Lua functions
to manipulate it. Lua also supports light user data, which is very similar to user data except
that the light variant is associated with a pointer to memory. The UserData type in RLua is
quite well done and the ambitious reader might do well to build a PacketAggregation
type that implements UserData to avoid all the cloning.

Combining a high-level language into a systems language is often a game of trade-offs
between memory management complexity, end-user burden, and initial programming
difficulty. rlua does an excellent job of landing on the safer side of these trade-offs.
Something like mond, in use in cernan, less so, but with more flexibility in use.

Embedding Rust

So far, we've seen how to embed C and Lua into Rust. But, what if you want to combine
Rust into other programming languages? Doing so is a very handy technique for improving
runtime performance in interpreted languages, making memory-safe extensions where
once you might have been using C or C++. If your target high-level language has difficulty
with concurrency embedding, Rust is a further win. Python programs suffer in this
regard—at least those implemented on CPython or PyPy—because of the Global Interpreter
Lock, an internal mutex that locks objects' bytecode. Offloading computation of large blocks
of data into a Rust + Rayon extension, for example, can be both straightforward to program
and improve computation speed.

Well, great. How do we make this sort of thing happen? Rust's approach is simple: if you
can embed C, you can embed Rust.

Into C

Let's embed some Rust into C. The quantiles library (https://crates.io/crates/
quantiles)—discussed in Chapter 4, Sync and Send — the Foundation of Rust
Concurrency—implements online summarization algorithms. These algorithms are easy to
get wrong, in terms of producing incorrect results, but more often in storing more points
than strictly necessary. A good deal of work has gone into quantiles to ensure the
algorithms implemented there are near the theoretical minimum storage requirements, and
so it makes sense to reuse this library for online summarization in C, rather than redo all
that work.
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Specifically, let's expose a quantiles: :ckms: :CKMS<£32>to C (https://docs.rs/
quantiles/0.7.l/quantiles/ckms/struct.CKMS.html).VVe]lavetOInakethetyFKECOHCRﬁe
as C lacks any manner of generics in its types, but that's okay.

The Rust side

There are new things in the Cargo. toml file that we need to discuss:

[package]

name = "embed_guantiles"

version = "0.1.0"

authors = ["Brian L. Troutwine <brian@troutwine.us>"]
[dependencies]

quantiles = "0.7"

[lib]

name = "embed_guantiles"

crate-type = ["staticlib"]

Note specifically that we're building the embed_quantiles library with crate-type =
["staticlib"]. What does that mean? The Rust compiler is capable of making many
kinds of linkages, and usually they're just implicit. For instance, a binary is crate-type =
["bin"]. There's a longish list of different link types, which I've included in the Further
reading section. The interested reader is encouraged to look through them. What we'd like
to produce here is a statically linked library, otherwise every C programmer that tries to
make use of embed_quantiles is going to need Rust's shared libraries installed on their
system. Not... not great. A staticlib crate will archive all the bits of the Rust standard library
needed by the Rust code. The archive can then be linked to C as normal.

Okay, now, if we're going to produce a static archive that C can call, we've got to export
Rust functions with a C ABI. Put another way, we've got to put a C skin on top of Rust. C++
programmers will be familiar with this tactic. The sole Rust file in this project is
src/lib.rs and its preamble is what you might expect:

extern crate quantiles;
use quantiles::ckms: :CKMS;

We've pulled in the quantiles library and have imported CKMS. No big deal. Check this out,
though:

# [no_mangle]
pub extern "C" fn alloc_ckms (error: £64) -> *mut CKMS<f32> {
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let ckms = Box::new (CKMS: :new(error));
Box::into_raw (ckms)

}

Hey! There's a bunch of new things. First, # [no_mangle]? A static library has to export a
symbol for the linker to, well, link. These symbols are functions, static variables, and so
forth. Now, usually Rust is free to fiddle with the names that go into a symbol to include
information, such as module location or, really, whatever else the compiler wants to do.
The exact semantics of mangling are undefined, as of this writing. If we're going to be
calling a function from C, we have to have the exact symbol name to refer to. no_mangle
turns off mangling, leaving us with our name as written. It does mean we have to be careful
not to cause symbol collisions. Similar to importing functions, the extern C here means
that this function should be written out to obey the C ABI. Technically, we could also have
written this as extern fn, leaving the C off as the C ABI is the implicit default.

alloc_ckms allocates a new CKMS, returning a mutable pointer to it. Interop with C
requires raw pointers, which, you know, makes sense. We do have to be very conscious of
memory ownership when embedding Rust—does Rust own the memory, implying we
need to provide a free function? Or, does the other language own the memory? More often
than not, it's easier to keep ownership with Rust, because to free memory, the compiler will
need to know the type's size in memory. By passing a pointer out, as we're doing here,
we've kept C in the dark about the size of ckMS. All the C side of this project knows is that it
has an opaque struct to deal with. This is a common tactic in C libraries, for good reason.
Here's freeing a CKMS:

# [no_mangle]

pub extern "C" fn free_ckms (ckms: *mut CKMS<£f32>) -> () {
unsafe {
let ckms = Box::from_raw (ckms);

drop (ckms) ;

}

Notice that in alloc_ckms, we're boxing the CKMs—forcing it to the heap—and in
free_ckms we're building a boxed CckMS from its pointer. We discussed boxing and freeing
memory in the context of raw pointers extensively in chapter 3, The Rust Memory Model —
Ownership, References and Manipulation. Inserting a value into the CKMS is straightforward
enough:

# [no_mangle]
pub extern "C" fn ckms_insert (ckms: &mut CKMS<£32>, wvalue: £32) -> () {
ckms.insert (value)

}
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Querying requires a little explanation:

#[no_mangle]
pub extern "C" fn query(ckms: &mut CKMS<£f32>, qg: f64,
quant: *mut £32)

-> 1i8
{
unsafe {
if let Some((_, res)) = ckms.query(q) {
*quant = res;
0
} else {
-1

}
}

Signaling error conditions in a C APl is tricky. In Rust, we return some kind of compound
type, such as an Opt ion. There's no such thing in C without building an error signaling
struct for your APL In addition to the error-struct approach it's common to either write
well-known nonsense into the pointer where the answer will be written or return a negative
value. C expects to have its answer written into a 32-bit float being pointed to by quant, and
there's no easy way to write nonsense into a numeric value. So, query returns an i8; zero
on success, negative on a failure. A more elaborate API would differentiate failures by
returning different negative values.

That's it! When you run cargo build --release, a static library obeying the C ABI will
get kicked out into target /release. We're ready to link it into a C program.

The C side

Our C program is c_src/main.c. We need a few system headers before we can define the
embed_quantiles interface:

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
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The only slightly unusual one is t ime . h. We pull that in because we're going to be pushing
random floats into the CKMs structure. Not cryptographically secure randomness, mind.
Here's the C view of the Rust API we just created:

struct ckms;

struct ckms* alloc_ckms (double error);

void free_ckms (struct ckms* ckms);

void ckms_insert (struct ckms* ckms, float value);

int8_t query(struct ckms* ckms, double g, float* quant);

Notice the CKMS struct . That's the opaque struct. C is now aware there is a structure but it
doesn't know how big it is. That's okay. Each of our functions only operate on a pointer to
this structure, which C does know the size of. The main function is brief:

int main(void) {
srand (time (NULL) ) ;

struct ckms* ckms = alloc_ckms (0.001);

for (int i=1; 1 <= 1000000; i++) {
ckms_insert (ckms, (float)rand()/ (float) (RAND_MAX/10000));
I3

float quant = 0.0;

if (query(ckms, 0.75, &guant) < 0) {
printf ("ERROR IN QUERY");
return 1;

}
printf ("75th percentile: %f\n", quant);

free_ckms (ckms) ;
return 0;

}

We allocate a ckMS, whose error bound is 0.001, load 1 million random floats into the CKMS,
and then query for the 75th quantile, which should be around 7,500. Finally, the function
frees the CKMS and exits. Short and sweet.

Now, building and linking 1ibembed_quantiles.a is fairly easy with a clang compiler,
and a little fiddly with GCC. I've gone ahead and included a Makefile, which has been
tested on OS X and Linux:

CC ?= $(shell which cc)
CARGO ?= $(shell which cargo)
0S := $(shell uname)
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run: clean build
./target/release/embed_quantiles

clean:
S (CARGO) clean
rm —-f ./target/release/embed_quantiles

build:
S (CARGO) build —--release
ifeq ($(0S),Darwin) # Assumption: CC == Clang
$(CC) -std=cll -Wall -Werror -Wpedantic -03 c_src/main.c \
-L target/release/ -1 embed_quantiles \
-0 target/release/embed_quantiles
else # Assumption: CC == GCC
$(CC) -std=cll -Wall -Werror -Wpedantic -03 c_src/main.c \
-L target/release/ —-lpthread -Wl,-no-as-needed -1dl1 \
-1lm -lembed_quantiles \
-0 target/release/embed_quantiles
endif

.PHONY: clean run

I don't have a Windows machine to test with so, uh, when this inevitably doesn't work I
really do apologize. Hopefully there's enough here to figure it out quickly. Once you have
the Makefile in place, you should be able to run make run and see something similar to the
following;:

> make run
/home/blt/.cargo/bin/cargo clean
rm -f ./target/release/embed_quantiles
/home/blt/.cargo/bin/cargo build —--release
Compiling quantiles v0.7.1
Compiling embed_gquantiles v0.1.0
Finished release [optimized] target(s) in 0.91 secs
cc -std=cll -Wall -Werror -Wpedantic -03 c_src/main.c \
-L target/release/ -lpthread -Wl,-no-as—needed -1dl \
-1lm -lembed_quantiles \
-o target/release/embed_quantiles
./target/release/embed_quantiles
75th percentile: 7499.636230

The percentile value will move around some, but it ought to be close to 7,500, as it is here.
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Into Python

Let's look at embedding Rust into Python. We'll write a function to sum up the trailing
zeros in a cytpes array, built by Python. We can't link statically into Python as the
interpreter is already compiled and linked, so we'll need to create a dynamic library. The
Cargo.toml project reflects this:

[package]
name = "zero_count"
version = "0.1.0"
authors = ["Brian L. Troutwine <brian@troutwine.us>"]
[dependencies]
[1ib]
name = "zero_count"
crate-type = ["dylib"]
The sole Rust file, src/1ib. rs, has a single function in it:

# [no_mangle]

pub extern "C" fn tail_zero_count (arr: *const ul6, len: usize) -> u64d {
let mut zeros: u6d4 = 0;
unsafe {
for 1 in 0..len {
zeros += (*arr.offset (i as isize)).trailing_zeros() as u64
I3
I3
zZeros

}

The tail_zero_count function takes a pointer to an array of ul6s and the length of that
array. It zips through the array, calling trailing_zeros () oneach ul6 and adding the
value to a global sum: zeros. This global sum is then returned. In the top of the project, run
cargo build --release and you'll find the project's dynamic library—possibly
libzero_count.dylib, libzero_count.dll, or libzero_count.so, depending on
your host—in target/release. So far, so good.

Calling this function is now up to Python. Here's a small example, which lives at
zero_count.py in the root of the project:

import ctypes
import random

length = 1000000
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lzc = ctypes.cdll.LoadLibrary ("target/release/libzero_count.dylib")

arr = (ctypes.c_uintl6 * length) (* [random.randint (0, 65000) for _ in
range (0, length)])
print (lzc.tail_zero_count (ctypes.pointer (arr), length))

We import the cytpes and random libraries, then load the shared library—here, pegged to
OS X's naming convention—and bind it to 1zc. Do edit this to read [so|d11] if you're
running this on an operating system other than OS X. Once 1zc is bound, we use the ctypes
API to create a random array of ul6 values and call tail_zero_count on that array.
Python is forced to allocate the full array before passing it into Rust using this approach, so
don't increase the length too much. Running the program is a matter of calling Python's
zero_count . py, like so:

> python zero_count.py

1000457

> python zero_count.py
999401

> python zero_count.py
1002295

Coping with opaque struct pointers—as we did in the C example—is well-documented in
the ctypes documentation. Rust will not know the difference; it's just kicking out objects
conforming to the C ABI.

Into Erlang/Elixir

In this last section of the chapter, we'll investigate embedding Rust into the BEAM, the
virtual machine that underpins Erlang and Elixir. The BEAM is a sophisticated work-
stealing scheduler system that happens to be programmable. Erlang processes are small C
structs that bounce around between scheduler threads and carry enough internal
information to allow interpretation for a fixed number of instructions. There's no concept of
shared memory in Erlang/Elixir: communication between different concurrent actors in the
system must happen via message passing. There are many benefits to this and the VM does
a great deal of work to avoid copying when possible. Erlang/Elixir processes receive
messages into a message queue, a double-ended threadsafe queue of the kind we've
discussed throughout the book.
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Erlang and Elixir are rightly known for their efficiency at handling high-scale IO in a real-
time fashion. Erlang was invented at Ericsson to serve as telephony control software, after
all. What these languages are not known for is serial performance. Sequential computations
in Erlang are relatively slow, it's just that it's so easy to get concurrent computations going
that this is sort of made up for. Sort of. Sometimes, you need raw, serial performance.

Erlang has a few answers for this. A Port opens up an external OS process with a
bidirectional byte stream. We saw an approach much like this in the previous chapter with
feruscore embedding pmars. A Port Driver is a linked shared object, often written in C. The
Port Driver interface has facilities for giving interrupt hints to BEAM's schedulers and has
much to recommend it. A Port Driver is a process and must be able to handle the things an
Erlang process normally does: servicing its message queue, dealing with special interrupt
signals, cooperatively scheduling itself, and so on. These are non-trivial to write. Finally,
Erlang supports a Natively Implemented Function (NIF) concept. These are simpler than
Port Drivers and are synchronous, being simply callable functions that happen to be
written in a language other than Erlang. NIFs are shared libraries and are often
implemented in C. Both Port Drivers and NIFs have a serious downside: memory issues
will corrupt the BEAM and knock your application offline. Erlang systems tend to be
deployed where fault-tolerance is a major factor and segfaulting the VM is a big no-no.

As a result, there's a good deal of interest in the Erlang/Elixir communities towards Rust.
The Rustler project (https://crates.io/crates/rustler)aims to make combining Rust
into an Elixir project as NIFs a simple matter. Let's take a look at a brief example project,
presented by Sonny Scroggin at Code BEAM 2018 in San Francisco—beamcoin (https://
github.com/blt/beamcoin). We'll discuss the project at SHA
3£510076990588c51ed4febldf990ce54££921a06.

The beamcoin project is not listed in its entirety. We've mostly dropped
the build configuration. You can find the full listing in this book's source
repository.

The build system for Elixir—the BEAM language that Rustler targets natively—is called
Mix. Its configuration file is mix . exs at the root of the project:

defmodule Beamcoin.Mixfile do
use Mix.Project

def project do
[app: :beamcoin,

version: "0.1.0",
elixir: "~> 1.5",
start_permanent: Mix.env == :prod,
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compilers: [:rustler] ++ Mix.compilers(),
deps: deps|(),
rustler_crates: rustler_crates()]

end

def application do
[extra_applications: [:logger]]
end

defp deps do
[{:rustler, github: "hansihe/rustler", sparse: "rustler_mix"}]
end

defp rustler_crates do
[beamcoin: [
path: "native/beamcoin",
mode: mode (Mix.env)

1]

end
defp mode (:prod), do: :release
defp mode(_), do: :debug

end

There's a fair bit here that we won't get into. Note, however, this section:

defp rustler_crates do
[beamcoin: [
path: "native/beamcoin",
mode: mode (Mix.env)
11

end

Embedded in the project under native/beamcoin is the Rust library we'll be exploring. Its
cargo configuration, at native/beamcoin/Cargo.toml, is:

[package]

name = "beamcoin"
version = "0.1.0"
authors = []

[1ib]

name = "beamcoin"
path = "src/lib.rs"
crate-type = ["dylib"]

[dependencies]
rustler = { git = "https://github.com/hansihe/rustler", branch = "master" }
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rustler_codegen = { git = "https://github.com/hansihe/rustler", branch =
"master" }

lazy_static = "0.2"

num_cpus = "1.0"

scoped-pool = "1.0.0"

sha2 = "0.7"

Nothing too surprising here. A dynamic library, called libbeamcoin, will be produced when
Rust compiles this and we've seen almost all the dependencies before. rustler and
rustler_codegen are the interface and compiler generators for Rustler, respectively.
rustler_codegen removes a lot of boilerplate C extern work we might otherwise have to
do. sha2 is a crate from the RustCrypto project that, well, implements the sha2 hashing
algorithm. Beamcoin is kind of a joke project. The idea is to distribute numbers between
threads and count the zeros at the back of the sha2-256 hash, mining those with a pre-set
number of zeros. This would be a very slow thing to do in Erlang but, as we'll see, is a
relatively fast computation in Rust. The scoped-pool crate is a threadpooling library that is
Sendable, meaning it can be placed ina lazy_static!

The preamble for src/1ib. rs is straightforward enough:

# [macro_use]

extern crate lazy_static;
extern crate num_cpus;
extern crate scoped_pool;
extern crate sha2;

# [macro_use]

extern crate rustler;

use rustler::{thread, Encoder, Env, Error, Term};
use scoped_pool::Pool;

use sha2::Digest;

use std::mem;

use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{mpsc, Arc};

We've seen much of this before. The Rustler imports are analogs of the Erlang C NIF APIL
The difficulty of mining is controlled by a top-level usize, called DIFFICULTY:

const DIFFICULTY: usize = 6;

This value controls the total number of zeros that are required to be found at the back of a
hash before it is declared minable. Here's our thread pool:

lazy_static! {
static ref POOL: Pool = Pool::new(num_cpus::get());

}
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I mentioned earlier that the BEAM maintains its own scheduler threads. This is true. The
beamcoin NIF also maintains its own, separate pool of threads to distribute mining over.
Now, Rustler reduces boilerplate but cannot totally remove it. We must, for instance, tell
BEAM which interpreted functions to associate with that symbol and pre-define atoms for
use:

rustler_atoms! {
atom ok;
atom error;

rustler_export_nifs! {
"Elixir.Beamcoin",
[("native_mine", 0, mine)],
None

}

An Erlang atom is a named constant. These are extremely common data types in
Erlang/Elixir programs. The threads in the pool are each given a chunk of the positive
integers to search, stripped according to their thread number. The pool workers use an
MPSC channel to communicate back to the mining thread that a result has been found:

# [derive (Debug) ]
struct Solution(u64, String);

fn mine<'a>(caller: Env<'a>, _args: &[Term<'a>])
-> Result<Term<'a>, Error>

thread: :spawn::<thread::ThreadSpawner, _>(caller, move |env| {
let is_solved = Arc::new (AtomicBool: :new(false));
let (sender, receiver) = mpsc::channel();

for i in O0..num_cpus::get () {
let sender_n = sender.clone();
let is_solved = is_solved.clone();

POOL.spawn (move || {
search_for_solution(i as u64, num_cpus::get () as ub4,
sender_n, 1is_solved);

)i

match receiver.recv () {
Ok (Solution (i, hash)) => (atoms::0k (), i,
hash) .encode (env),
Err(_) => (
atoms::error (),
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"Worker threads disconnected before the \
solution was found".to_owned(),
) .encode (env),

)i

Ok (atoms::0k () .encode (caller))

t
The search_for_solution function is a small loop:

fn search_for_solution (
mut number: u64,
step: u64,
sender: mpsc::Sender<Solution>,
is_solved: Arc<AtomicBool>,
) —> O A
let id = number;
while !'is_solved.load(Ordering::Relaxed) {

if let Some(solution) = verify_number (number) {
if let Ok(_) = sender.send(solution) {
is_solved.store(true, Ordering::Relaxed);
break;
} else {

println! ("Worker {} has shut down without \
finding a solution.", id);

}

number += step;

}

At the top of the loop, every thread in the pool checks to see whether any other thread has
mined a beamcoin. If one has, the function exits and the thread is available for new work in
the pool. Otherwise, verify_number is called. That function is:

fn verify_number (number: u64) -> Option<Solution> {
let number_bytes: [u8; 8] = unsafe {
mem: :transmute: :<u64, [u8; 8]> (number)

bi
let hash = sha2::Sha256::digest (&number_bytes);

let top_idx = hash.len() - 1;
// Hex chars are 16 bits, we have 8 bits. /2 is conversion.

let trailing_zero_bytes = DIFFICULTY / 2;

let mut jackpot = true;
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for i in O..trailing_zero_bytes {
jackpot &= hash[top_idx - i] == 0;
I3

if jackpot {

Some (Solution (number, format! ("{:X}", hash)))
} else {

None

}

The number is passed in, transmuted into a byte array of 8 members, and hashed. If the
hash has the appropriate number of trailing zero bytes, jackpot is true at the end of the
function, and the number plus its hash are returned. The careful reader will have noted that
the Rust module exports a NIF named native_mine. Erlang NIFs, generally speaking,
have a system language component with a BEAM-native implementation as a fallback. The
system language NIF implementation is called native_* by tradition.

The final piece here is the Elixir module to wrap the native NIF bits. This module is called
Beamcoin and is 1ib/beamcoin.ex:

defmodule Beamcoin do
use Rustler, otp_app: :beamcoin

require Logger

def mine do
:ok = native_mine ()

start = System.system_time (:seconds)
receive do
{:0k, number, hash} ->
done = System.system_time (:seconds)
total = done - start
Logger.info ("Solution found in #{total} seconds")
Logger.info ("The number is: #{number}")
Logger.info ("The hash is: #{hash}")
{:error, reason} —>
Logger.error (inspect reason)
end
end

def native_mine, do: :erlang.nif_error(:nif_not_loaded)
end
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After installing Elixir (https://elixir-lang.org/install.html), you can move to the root
of the project, execute mix deps.get to get the project's dependencies, and then

use MIX_ENV=prod iex -S mix to bring up the Elixir repl. That latter command should
look something like this:

> MIX ENV=prod iex -S mix
Erlang/OTP 20 [erts-9.3] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-
threads:10] [hipe] [kernel-poll:false] [dtrace]

Compiling NIF crate :beamcoin (native/beamcoin)...

Finished release [optimized] target(s) in 0.70 secs
Interactive Elixir (1.6.4) - press Ctrl+C to exit (type h() ENTER for help)
iex(1)>

At the prompt, type Beamcoin.mine and hit Enter. After a few seconds, you should see:
iex(1l)> Beamcoin.mine
23:30:45.243 [info] Solution found in 3 seconds
23:30:45.243 [info] The number is: 10097471

23:30:45.243 [info] The hash is:
2354BB63E90673A357F53EBC96141D5E95FD26B3058AFAD7B1F7BACCI9D000000
:ok

Or, something like it.

Building NIFs in the BEAM is a complicated topic, one we've hardly touched on here.
Sonny Scroggin's talk, included in the Further reading section, covers that nuance in detail. If
you're curious about how the BEAM functions, I've included a talk of mine on that subject
in the Further reading section as well. Decades of careful effort have gone into the BEAM
and it really shows.
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Summary

In this chapter, we discussed embedding languages in Rust and vice versa. Rust is an
incredibly useful programming language in its own right, but has been designed with care
to interoperate with the existing language ecosystem. Delegating difficult concurrency
work in a memory-unsafe environment into Rust is a powerful model. Mozilla's work on
Firefox has shown that path to be fruitful. Likewise, there are decades' worth of well-tested
libraries niche domains—weather modeling, physics, amusing programming games from
the 1980s—that could, theoretically, be rewritten in Rust but are probably better
incorporated behind safe interfaces.

This chapter is the last that aims to teach you a new, broad skill. If you've made it this far in
the book, thank you. It's been a real pleasure writing for you. You should, hopefully, now
have a solid foundation for doing low-level concurrency in Rust and the confidence to read
through most Rust codebases you come across. There's a lot going on in Rust and I hope it
seems more familiar now. In the next, and last, chapter of the book, we'll discuss the future
of Rust, what language features apropos this book are coming soon, and how they might
bring new capabilities to us.

Further reading

o FFI examples written in Rust, available at https://github.com/alexcrichton/
rust-ffi-examples. This repository by Alex Crichton is a well-done collection of
FFI examples in Rust. The documentation in this book on this topic is quite good,
but it never hurts to pour through working code.

e Hacker's Delight, Henry Warren Jr. If you enjoyed the bit fiddling present in this
chapter's take on feruscore, you'll love Hacker's Delight. It's old now and some of
its algorithms no longer function on 64-bit words, but it's still well worth reading,
especially if you, like me, work to keep fixed-width types as small as possible.

e Foreign Function Interface, available at https://doc.rust-lang.org/nomicon/
££i.ntml. The Nomicon builds a higher-level wrapper for the compression
library snappy. This wrapper is extended in ways we did not touch on here,
specifically with regard to C callbacks and vardic function calls.
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e Global Interpreter Lock, available at https://wiki.python.org/moin/
GlobalInterpreterLock. The GIL has long been the bane of multiprocessing
software written in Python. This wiki entry discusses the technical details
mandating the GIL and the historical attempts to remedy the situation.

e Guided Tour, available at https://github.com/chucklefish/rlua/blob/master/
examples/guided_tour.rs. The rlua crate includes a guided tour module, which
is well-documented and runnable. I haven't seen this approach to documentation
in other projects and I warmly encourage you to check it out. First, it's helpful for
learning rlua. Second, it's well-written and empathetic to the reader: a fine
example of technical writing.

° Linkage, available at https://doc.rust-lang.org/reference/linkage.html.
This is the Rust Reference chapter on linking. The details here are very specific,
but that's often necessary when being explicit about linking. The common reader
will more or less use the information we've covered in this chapter but there's
always some new domain requiring specific knowledge.

o Rust Inside Other Languages, available at https://doc.rust-lang.org/1.2.0/
book/rust-inside-other-languages.html. This chapter in the Rust Book covers
similar ground to this chapter—embedding Rust—but at a faster clip and with
different high-level languages. Specifically, The Book covers embedding Rust
into both Ruby and Node]JS, which we did not.

e FFlin Rust - writing bindings for libcpuid, available at http://siciarz.net/ffi-
rust-writing-bindings-libcpuid/. Zbigniew Siciarz has been writing about
Rust and writing in Rust for a good while. You may know him from his 24 days of
Rust series. In this post, Sicarz documents the process of building a safe wrapper
for libcpuid, a library whose job is to poll the OS for information about the user's
CPU.

e Taking Elixir to the Metal with Rust, Sonny Scroggin, available at https://www.
youtube.com/watch?v=1SLTwiqTbKQ. In this chapter we demonstrated Beamcoin,
a combination of Elixir and Rust in the same project. Integrating NIFs into a
BEAM system is a complicated subject. This talk, presented at NDC London
2017, is warmly recommended as an introduction to the subject.

e Piecemeal Into Space: Reliability, Safety and Erlang Principles, Brian L. Troutwine,
available at nttps://www.youtube.com/watch?v=pwoaJvrJE_U. There's a great
deal of work that's gone into the BEAM over the decades, earning those
languages a key place in fault-tolerant software deployments. Exactly how the
BEAM functions is something of a mystery without inspection. In this talk, I
cover the BEAM's semantic model and then discuss it's implementation at a high-
level.
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Futurism — Near-Term Rust

We've covered a lot of material in this book.

If you already knew parallel programming well from another systems programming
language, I hope that now you've got a confident handle on the way Rust operates. Its
ownership model is strict, and can feel foreign at first. Unsafe Rust, if my own experiences
are any kind of general guide, feels like more familiar ground. I hope that you too have
come to appreciate the general safety of Rust, as well as its ability to do fiddly things in
memory when needed. I find being able to implement unsafe code that is then wrapped up
in a safe interface nothing short of incredible.

If you knew parallel programming fairly well from a high-level, garbage-collected
programming language, then I hope that this book has served as an introduction to parallel
programming at a systems level. As you know, memory safety does not guarantee correct
operation, hence this book's continual focus on testing—generative and fuzz, in addition to
performance inspection—and careful reasoning about models. Rust, I have argued, is one
of the easier systems languages to do parallel programming well in because of the
language's focus on ownership management with lifetimes and the strong, static type
system. Rust is not immune to bugs—in fact, it's vulnerable to a wide variety—but these are
common to all languages on modern hardware, and Rust does manage to solve a swath of
memory-related issues.

If you already knew Rust, but didn't know much about parallel programming, I very much
hope that this book has managed to convince you of one thing—concurrency is not magic.
Parallel programming is a wide, wide field of endeavor, one that takes a great deal of
study, but it can be understood and mastered. Moreover, it need not be mastered all at
once. The shape of this book argues for one path among several. May this book be the first
of many on your journey.
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Whatever your background, thank you for reading through to the end. I know that, at
times, the material covered was not easy and it must have taken some real willpower to get
through it all. I appreciate it. I wrote this book to be what I would have wanted for myself
ten years ago. It was a real pleasure getting the opportunity to write it out for you.

By the end of this chapter, we will have:

e Discussed the future of SIMD in Rust

e Discussed the future of async IO in Rust

¢ Discussed the possibility of specialization being stablized and in what fashion
¢ Discussed more extensive testing methods for Rust

Introduced various avenues to get involved with the Rust community

Technical requirements

This chapter has no software requirements.

You can find the source code for this book's projects at https://github.com/
PacktPublishing/Hands-On-Concurrency-with-Rust. Chapter 10 has its source code under
Chapter10/.

Near-term improvements

The focus of 2018's Rust development has been stabilization. Since the 1.0 days in 2015,
many important crates were nightly-only, whether because of modifications to the compiler
or because of the fear of standardizing too quickly on awkward APIs. This fear was
reasonable. At the time, Rust was a new language and it changed very drastically in the
lead-up to 1.0. A new language takes time to resolve into its natural style. By the end of
2017, the community had come to a general feeling that a stabilization cycle was in order,
that some natural expression of the language had more or less been established, and that in
areas where this was not true, it could be established, with some work.

Let's discuss this stabilization work with regards to the topics we've followed throughout
the book.
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SIMD

In this book, we discussed thread-based concurrency. In chapter 8, High-Level Parallelism
— Threadpools, Parallel Iterators, and Processes, we took to a higher level of abstraction with
Rayon's parallel iterators. Underneath, as we saw, rayon uses a sophisticated work-stealing
threadpool. Threads are merely one approach to concurrency on modern CPUs. In a sense,
serial programs are parallel on CPUs with deep lookahead pipelines and sophisticated
branch predictors, as we saw in Chapter 2, Sequential Rust Performance and Testing.
Exploiting this parallelism is a matter of carefully structuring your data and managing
access to it, among the other details we discussed. What we have not gone into in this book
is how to exploit a modern CPUs' ability to perform the same operation on contiguous
memory in parallel without resorting to threads—vectorization. We haven't looked at this
because, as I write this, the language is only now getting minimal support in the standard
library for vectorization instructions.

Vectorization comes in two variants—MIMD and SIMD. MIMD stands for multiple
instructions, multiple data. SIMD stands for single instructions, single data. The basic idea
is this: A modern CPU can apply an instruction to a contiguous, specifically sized block of
data in parallel. That's it. Now, consider how many loops we've written in this book where
we've done the exact same operation to every element of the loop. More than a few! Had
we investigated string algorithms or looked into doing numeric calculations—encryption,
physics simulations, or the like—we would have had more such loops in this book.

As I write this, the merger of SIMD vectorization into the standard library is held up behind
RFC 2366 (https://github.com/rust-lang/rfcs/pull/2366), with ambitions to having x86
SIMD in a stable channel by year's end, with other architectures to follow. The reader may
remember from chapter 1, Preliminaries — Machine Architecture and Getting Started with Rust,
that the memory systems of x86 and ARM are quite different. Well, this difference extends
to their SIMD system:s. It is possible to exploit SIMD instructions using stable Rust via the
stdsimd (https ://crates. io/crates/stdsimd) and simd (https ://crates.io/crates/
simd) crates. The stdsimd crate is the best for programmers to target as it will eventually be
the standard library implementation.

A discussion of SIMD is beyond the scope of this book, given the remaining space. Suffice it
to say that getting the details right with SIMD is roughly on a par with the difficulty of
getting the details right in atomic programming. I expect that, post stabilization, the
community will build higher-level libraries to exploit SIMD approaches without requiring a
great deal of pre-study, though potentially with less chance for finely tuned optimizations.
The faster (https://crates.io/crates/faster) crate, for example, exposes SIMD-parallel
iterators in the spirit of rayon. The programming model there, from an end-user
perspective, is extremely convenient.
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Hex encoding

Let's look at an example from the stdsimd crate. We won't dig in too deeply here; we're
only out to get a sense of the structure of this kind of programming. We've pulled stdsimd
at 2£86c75a2479c£051b92£c98273daaf7£151e7al. The file we'll examine is
examples/hex.rs. The program's purpose is to hex encode stdin. For example:

> echo hope | cargo +nightly run —--release —--example hex -p stdsimd
Finished release [optimized + debuginfo] target(s) in 0.52s
Running ‘target/release/examples/hex’

686£70650a

Note that this requires a nightly channel, and not a stable one, we've used so far in this
book. I tested this on nightly, 2018-05-10. The details of the implementation are shifting so
rapidly and rely on such unstable compiler features that you should make sure that you use
the specific nightly channel that is listed, otherwise the example code may not compile.

The preamble to examples/hex.rs contains a good deal of information we've not seen in
the book so far. Let's take it in two chunks and tease out the unknowns:

#! [feature (stdsimd) ]
#![cfg_attr (test, feature(test))]
#! [cfg_attr (feature = "cargo-clippy",
allow (result_unwrap_used, print_stdout, option_unwrap_used,
shadow_reuse, cast_possible_wrap, cast_sign_loss,
missing_docs_in_private_items)) ]

#[cfg(any (target_arch = "x86", target_arch = "x86_64"))]
# [macro_use]
extern crate stdsimd;

#[cfg(not (any (target_arch = "x86", target_arch = "x86_64"))) ]
extern crate stdsimd;

Because we've stuck to stable Rust, we've not seen anything like #! [feature (stdsimd) ]
before. What is this? Rust allows the adventurous user to enable in-progress features that
are present in rustc, but that are not yet exposed in the nightly variant of the language. I say
adventurous because an in-progress feature may maintain a stable API through its
development, or it may change every few days, requiring updates on the consumer side.
Now, what is cfg_attr? This is a conditional compilation attribute, turning on features
selectively. You can read all about it in The Rust Reference, linked in the Further reading
section. There are many details, but the idea is simple—turn bits of code on or off
depending on user directives—such as testing—or the running environment.
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This later is what # [cfg (any (target_arch = "x86", target_arch = "x86_64")) ]
means. On either x86 or x86_64, stdsimd will be externed with macros enabled and without
them enabled when on any other platform. Now, hopefully, the rest of the preamble is self-
explanatory:

#lcfg(test)]
# [macro_use]
extern crate quickcheck;

use std::io::{self, Read};
use std::str;

#lcfg(target_arch = "x86")]
use stdsimd::arch::x86::%*;
#lcfg(target_arch = "x86_64")]

use stdsimd::arch::x86_64::%;

The main function of this program is quite brief:

fn main() A
let mut input = Vec::new();
io::stdin() .read_to_end(&mut input) .unwrap();
let mut dst = vec![0; 2 * input.len()];
let s = hex_encode (&input, &mut dst) .unwrap();
println! ("{}", s);

}

The whole of stdin is read into the input and a brief vector to hold the hash, called dst.
hex_encode, is also used. The first portion performs input validation:

fn hex_encode<'a>(src: &[u8], dst: &'a mut [u8]) —-> Result<&'a str, usize>
{
let len = src.len() .checked_mul (2) .unwrap();
if dst.len() < len {
return Err(len);

}

Note the return—a &str on success and a usize—the faulty length—on failure. The rest of
the function is a touch more complicated:

#[cfg(any (target_arch = "x86", target_arch = "x86_64"))]
{
if is_x86_feature_detected! ("avx2") {
return unsafe { hex_encode_avx2 (src, dst) };
}
if is_x86_feature_detected! ("ssed.1") {
return unsafe { hex_encode_ssed4l (src, dst) };

[421]



Futurism — Near-Term Rust Chapter 10

}

hex_encode_fallback(src, dst)

}

This introduces conditional compilation, which we saw previously, and contains a new
thing too—is_x86_feature_detected!. This macro is new to the SIMD feature, and
tests at runtime whether the given CPU feature is available at runtime via libcpuid. If it is,
the feature is used. On an ARM processor, for instance, hex_encode_fallback will be
executed. On an x86 processor, one or the other avx2 or sse4.1, implementations will be
followed, depending on the chip's exact capabilities. Which implementation is called is
determined at runtime. Let's look into the implementation of hex_encode_fallback first:

fn hex_encode_fallback<'a> (
src: &[u8], dst: &'a mut [u8]
) —> Result<&'a str, usize> {
fn hex (byte: u8) -> u8 {
static TABLE: &[u8] = b"012345678%abcdef";
TABLE [byte as usize]
s

for (byte, slots) in src.iter().zip(dst.chunks_mut (2)) {
slots[0] = hex((*byte >> 4) & 0xf);
slots[1l] = hex(*byte & 0xf);

s

unsafe { Ok (str::from_utf8_unchecked(&dst[..src.len() * 2])) }

}

The interior function hex acts as a static lookup table, and the for loop zips together the
bytes from the src and a two-chunk pull from dst, updating dst as the loop proceeds.
Finally, dst is converted into a &str and returned. It's safe to use from_ut£8_unchecked
here as we can verify that no non-utf8 characters are possible in dst, saving us a check.

Okay, now that's the fallback. How do the SIMD variants read? We'll look at
hex_encode_avx2, leaving the sse4.1 variant to the ambitious reader. First, we see the
reappearance of conditional compilation and the familiar function types:

#[target_feature (enable = "avx2")]
#[cfg(any (target_arch = "x86", target_arch = "x86_64"))]
unsafe fn hex_encode_avx2<'a> (
mut src: &[u8], dst: &'a mut [u8]
) —> Result<&'a str, usize> {
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So far, so good. Now, look at the following;:

let ascii_zero = _mm256_setl_epi8(b'0' as 1i8);

let nines = _mm256_setl_epi8(9);

let ascii_a = _mm256_setl_epi8((b'a' - 9 - 1) as 1i8);
let and4bits = _mm256_setl_epi8 (0xf);

Well, the function _mm256_set1_epi8 is certainly new! The documentation (https://
rust-lang-nursery.github.io/stdsimd/x86_64/stdsimd/arch/x86_64/fn._mm256_setl_

epis8.html) states the following:

"Broadcast 8-bit integer a to all elements of returned vector."

Okay. What vector? Many SIMD instructions are carried out in terms of vectors with
implicit sizes, the size being defined by the CPU architecture. For instance, the function that
we have been looking at returns an stdsimd: :arch::x86_64::__m256i, a 256-bit-wide
vector. So, ascii_zero is 256-bits-worth of zeros, ascii_a 256-bits-worth of a, and so
forth. Each of these functions and types, incidentally, follows Intel's naming scheme. It's my
understanding that the LLVM uses their own naming scheme, but Rust—in an effort to
reduce developer confusion—maintains a mapping from the architecture names to LLVM's
names. By keeping the architecture names, Rust makes it real easy to look up details about

each intrinsic. You can see this in the Intfel Intrinsics Guide at mm256_set1_epi8 (https://
software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm256_setl_epi8

expand=4676).

The implementation then enters a loop, processing src in 256-bit-wide chunks until there
are only 32 or fewer bits left:

let mut i = 0O_isize;
while src.len () >= 32 {
let invec = _mm256_loadu_si256(src.as_ptr() as *const _);

The variable invec is now 256 bits of src, with _mm256_loadu_si256 being responsible
for performing a load. SIMD instructions have to operate on their native types, you see. In
the actual reality of the machine, there is no type, but specialized registers. What comes
next is complex, but we can reason through it:

let maskedl

_mm256_and_si256 (invec, and4bits);

let masked2 = _mm256_and_si256(
_mm256_srli_epi64d (invec, 4),
and4bits

)i
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Okay, _mm256_and_si256 performs a bitwise boolean-and of two __m2561, returning the
result. masked1 is the bitwise boolean-and of invec and and4bits. The same is true for
masked2, except we need to determine what _mm256_srli_epi64 does. The Intel
document state the following:

"Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store
the results in dst."

invec is subdivided into four 64-bit integers, and these are shifted right by four bits. That
is then boolean-and'ed with and4bits, and masked2 pops out. If you refer back to
hex_encode_fallback and squint a little, you can start to see the relationship to (*byte
>> 4) & 0xf.Nextup, two comparison masks are put together:

let cmpmaskl = _mm256_cmpgt_epi8 (maskedl, nines);
let cmpmask2 = _mm256_cmpgt_epi8 (masked2, nines);

_mm256_cmpgt_epi8 greater-than compares 8-bit chunks of the 256-bit vector, returning
the larger byte. The comparison masks are then used to control the blending of
ascii_zeroand ascii_a, and the result of that is added to masked1:

let maskedl = _mm256_add_epi8(

maskedl,

_mm256_blendv_epi8 (ascii_zero, ascii_a, cmpmaskl),
)
let masked2 = _mm256_add_epi8(

masked2,

_mm256_blendv_epi8 (ascii_zero, ascii_a, cmpmask2),
)

Blending is done bytewise, with the high bit in each byte determining whether to move a
byte from the first vector in the arg list or the second. The computed masks are then
interleaved, choosing high and low halves:

let resl = _mm256_unpacklo_epi8 (masked2, maskedl);
let res2 = _mm256_unpackhi_epi8 (masked2, maskedl);
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In the high half of the interleaved masks, the destination's first 128 bits are filled with the
top 128 bits from the source, the remainder being filled in with zeros. In the lower half of
the interleaved masks, the destination's first 128 bits are filled from the bottom 128 bits
from the source, the remainder being zeros. Then, at long last, a pointer is computed into
dst at 64-bit strides and further subdivided into 16-bit chunks, and the res1 and res2 are
stored there:

let base = dst.as_mut_ptr().offset (i * 2);
let basel = base.offset (0) as *mut _;

let base2 = base.offset (16) as *mut _;

let base3 = base.offset (32) as *mut _;

let base4 base.offset (48) as *mut _;
_mm256_storeu2_ml128i (base3, basel, resl);
_mm256_storeu2_ml28i (base4, base2, res2);
src = &srcl[32..]1;

i += 32;

}

When the src is less than 32 bytes, hex_encode_sse4 is called on it, but we'll leave the
details of that to the adventurous reader:

let 1 = i as usize;
let _ = hex_encode_ssed4l (src, &mut dst[i * 2..1);

Ok (str::from_utf8_unchecked/(
&dst[..src.len() * 2 + 1 * 27,
))
}

That was tough! If our aim here was to do more than get a flavor of the SIMD style of
programming, then we'd probably need to work out by hand how these instructions work
on a bit level. Is it worth it? This example comes from RFC 2325 (https://github.com/
rust-lang/rfcs/blob/master/text/2325-stable-simd.md), Stable SIMD. Their
benchmarking demonstrates that the fallback implementation we looked at first hashes at
around 600 megabytes per second. The avx2 implementation hashes at 15,000 MB/s, a 60%
performance bump. Not too shabby. And keep in mind that each CPU core comes equipped
with SIMD capability. You could split such computations up among threads, too.

Like atomic programming, SIMD is not a panacea or even especially easy. If you need the
speed, though, it's worth the work.
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Futures and async/await

Asynchronous I/O is a hot topic in the Rust ecosystem right now. The C10K challenge we
discussed briefly in chapter 8, High-Level Parallelism — Threadpools, Parallel Iterators, and
Processes, was resolved when operating systems introduced scalable I/O notification syscalls
such as kqueue in the BSDs and epoll in Linux. Prior to epoll, kqueue, and friends, I/O
notification suffered linear growth in processing time as the number of file descriptors
increased—a real problem. The aggressively naive approach to networking we've taken in
this book also suffers from linear blowup. Every TCP socket we opened for listening would
need to be polled in a loop, underserving very high-volume connections and overserving
all others.

Rust's abstraction for scalable network I/O is mio (https://crates.io/crates/mio). If you
go poking around inside of mio, you'll find that it is a clean adapter for the I/O notification
subsystems of a few common platforms: Windows, Unixen, and that's about it. The user of
mio doesn't get much in the way of additional support. Where do you store your mio
sockets? That's up to the programmer. Can you include multithreading? Up to you. Now,
that's great for very specific use cases—cernan, for example, uses mio to drive its ingress
I/O because we wanted very fine control over all of these details—but unless you have very
specific needs, this is probably going to be a very tedious situation for you. The community
has been investing very heavily in tokio (https://crates.io/crates/tokio), a framework
for doing scalable I/O with essential things such as back-pressure, transaction cancellation,
and higher-level abstractions to simplify request/response protocols. Tokio's been a fast-
moving project, but will almost surely be one of the key projects in the coming years. Tokio
is, fundamentally, a reactor-based (https://en.wikipedia.org/wiki/Reactor_pattern)
architecture; an I/O event becomes available and handlers you've registered are then called.

Reactor-based systems are simple enough to program if you have only one event to
respond to. But, more often than you'd imagine, there exist dependency relationships
between I/O events in a real system—an ingressing UDP packet results in a TCP round-trip
to a network memory cache, which results in an egress UDP packet to the original ingress
system, and another as well. Coordinating that is hard. Tokio—and the Rust ecosystem
somewhat generally—has gone all-in on a promise library called futures (https://crates.
io/crates/futures). Promises are a fairly tidy solution to asynchronous I/O: the
underlying reactor calls a well-established interface, you implement a closure inside (or a
trait to then slot inside) that interface, and everyone's code stays loosely coupled. Rust's
futures are pollable, meaning you can hit the poll function on a future and it might resolve
into a value or a notification that the value isn't ready yet.
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This is similar to promise systems in other languages. But, as anyone who remembers the
early introduction of Node]JS into the JavaScript ecosystem can attest to, promises without
language support get weird and deeply nested fast. Rust's borrow checker made the
situation harder, requiring boxing or full-on arcs where, in straight-line code, this would
not have been necessary.

Languages with promises as a first-class concern generally evolve async/await syntaxes. An
async function is a function in Rust that will return a future and little else. A Rust future is
simple trait, extracted from the futures project. The actual implementation will live outside
the language's standard library and allow for alternative implementations. The interior of
an async function is not executed immediately, but only when the future is polled. The
interior of the function executes through the polling until an await point is hit, resulting in a
notification that the value is not yet ready and that whatever is polling the future should
move on.

As in other languages, Rust's proposed async / await syntax really is a sugar over the top of
an explicit callback chaining structure. But, because the async/await syntax and futures trait
is moving into the compiler, rules can be added to the borrow-checking system to remove
the current boxing concerns. I expect you'll see more futures in stable Rust once they
become more convenient to interact with. Indeed, as we saw in chapter 8, High-Level
Parallelism — Pools, Iterators, and Processes, rayon is investing time in a futures-based
interface.

Specialization

In chapter 2, Sequential Rust Performance and Testing, we noted that the technique of
specialization would be cut off from data structure implementors if they intended to target
stable Rust. Specialization is a means by which a generic structure—say, a HashMap—can
be implemented specifically for one type. Usually, this is done to improve
performance—say, by turning a HashMap with u8 keys into an array—or provide a simpler
implementation when possible. Specialization has been in Rust for a good while, but
limited to nightly projects, such as the compiler, because of soundness issues when
interacting with lifetimes. The canonical example has always been the following:

trait Badl {
fn badl (&self);
}

impl<T> Badl for T {
default fn badl (&self) |
println! ("generic");

[427]



Futurism — Near-Term Rust Chapter 10

}

// Specialization cannot work: trans doesn't know if T: 'static
impl<T: 'static> Badl for T {
fn badl (&self) |
println! ("specialized");
}
}

fn main() {
"test".badl ()
}

Lifetimes are erased at a certain point in the compilation process. String literals are static,
but by the time dispatch to specialized type would occur there's not enough information in
the compiler to decide. Lifetime equality in specialization also poses difficulties.

It seemed for a good while that specialization would miss the boat for inclusion into the
language in 2018. Now, maybe, a more limited form of specialization will be included. A
specialization will only apply if the implementation is generic with regard to lifetimes, does
not introduce duplication into trait lifetimes, does not repeat generic type parameters, and
all trait bounds are themselves applicable for specialization. The exact details are in flux as I
write this, but do keep an eye out.

Interesting projects

There are many interesting projects in the Rust community right now. In this section, I'd
like to look at two that I didn't get a chance to discuss at length in the book.
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Fuzzing

In previous chapters we've used AFL to validate that our programs did not exhibit crashing
behavior. While AFL is very commonly used, it's not the only fuzzer available for Rust.
LLVM has a native library—libfuzzer (https://11lvm.org/docs/LibFuzzer.
html)—covering the same space, and the cargo-fuzz (https://crates.io/crates/cargo-
fuzz) project acts as an executor. You might also be interested in honggfuzz-rs (https://
crates.io/crates/honggfuzz), a fuzzer developed at Google for searching out security
related violations. It is natively multithreaded—there is no need to spin up multiple
processes manually—and can do network fuzzing. My preference, traditionally, has been to
fuzz with AFL. The honggfuzz project has real momentum, and readers should give it a try
in their own projects.

Seer, a symbolic execution engine for Rust

Fuzzing, as we discussed previously, explores the state space of a program using random
inputs and binary instrumentation. This can be, as we've seen, slow. The ambition of
SymbOliC execution (https://en.wikipedia.org/wiki/Symbolic_execution) is to allow the
same exploration of state space, but without random probing. Searching for program
crashes is one area of application, but it can also be used with proof tools. Symbolic
execution, in a carefully written program, can let you demonstrate that your program can
never reach error states. Rust has a partially implemented symbolic execution tool, seer
(https://github.com/dwrensha/seer). The project uses z3, a constraint solver, to generate
branching inputs at program branches. Seer's README, as of SHA
91£12b2291fa52431f4ac73£28d3b18a0a56££32, amusingly decodes a hash. This is
done by defining the decoding of the hashed data to be a crashable condition. Seer churns
for a bit and then decodes the hash, crashing the program. It reports the decoded value
among the error report.

It's still early days for seer, but the potential is there.
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The community

The Rust community is large and multi-faceted. It's so large, in fact, that it can be hard to
know where to go with questions or ideas. More, books at the intermediate to advanced
level will often assume that readers know as much about the language community as the
author does. Having been mostly on the other side of the author, reader relationship I've
always found this assumption frustrating. As an author, though, I now understand the
hesitancy—mnone of the community information will stay up to date.

Oh well. Some of this information may be out of date by the time you get to it. Reader
beware.

Throughout this book, we've referred to the crates ecosystem; crates.io (https://crates.
io/)is the location for Rust source projects. The docs.rs (https://docs.rs/) is a vital
resource for understanding crates, and is run by the Rust team. You can also cargo docs
and get a copy of your project's dependency documentation locally. I'm often without Wi-
Fi, and I find this very useful.

As with almost all things in Rust, the community itself is documented on this web page
(https://www.rust-lang.org/en-US/community.html). IRC is fairly common for real-time,
loose conversations, but there's a real focus on the web-facing side of Rust's
communication. The Users Forum (https://users.rust-lang.org/) is a web forum
intended for folks who use the language and have questions or announcements. The
compiler people—as well as the standard library implementors, and so on—hang out on
the Internals Forum(https://internals.rust-lang.org/). There is a good deal of overlap
in the two communities, as you might expect.

Throughout this book, we've referenced various RFCs. Rust evolves through a request-for-
comments system, all of which are centralized (https://github.com/rust-lang/rfcs).
That's just for the Rust compiler and standard library. Many community projects follow a
similar system—for example, crossbeam RFCs (https://github.com/crossbeam-rs/rfcs).
These are well worth reading, by the way.
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Should | use unsafe?

It's not uncommon to hear some variant of the following position—I won 't use any library
that has an unsafe block in it. The reasoning behind this position is that unsafe, well,
advertises that the crate is potentially unsafe and might crash your otherwise carefully
crafted program. That's true—kind of. As we've seen in this book, it's entirely possible to
put together a project using unsafe that is totally safe at runtime. We've also seen that it's
entirely possible to put together a project without unsafe blocks that flame out at runtime.
The existence or absence of unsafe blocks shouldn't reduce the original programmer's
responsibilities for due diligence—writing tests, probing the implementation with fuzzing
tools, and so on. Moreover, the existence or absence of unsafe blocks does not relieve the
user of a crate from that same responsibility. Any software, at some level, should be
considered suspect unless otherwise demonstrated to be safe.

Go ahead and use the unsafe keyword. Do so when it's necessary. Keep in mind that the
compiler won't be able to help you as much as it normally would—that's all.

Summary

In this last chapter of the book, we discussed near and midterm improvements coming to
the Rust language—features being stabilized after a while out in the wilderness, the
foundations of larger projects being integrated, research that may or may not pan out, and
other topics. Some of these topics will surely have chapters of their own in the second
edition of this book, should it get a new edition (Tell your friends to pick up a copy!). We
also touched on the community, which is the place to find ongoing discussions, ask
questions, and get involved. Then, we affirmed that, yes indeed, you should write in unsafe
Rust when you have reason to do so.

Okay, that's it. That's the end of the book.
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Further reading

e Shipping specialization: a story of soundness, available at https://aturon.github.
io/blog/2017/07/08/1lifetime-dispatch/. There's long been an ambition to see
specialization available in stable Rust, and it's not for want of trying that it hasn't
happened yet. In this blog post, Aaron Turon discusses the difficulties of
specialization in 2017, introducing the Chalk logic interpreter in the discussion.
Chalk is interesting in its own right, especially if you are interested in compiler
internals or logic programming,.

o Maximally minimal specialization: always applicable impls, available at http://
smallcultfollowing.com/babysteps/blog/2018/02/09/maximally-minimal-
specialization-always-applicable—impls/. This blog post by Niko Matsakis
extends the topics covered in Turon's Shipping specialization article, discussing a
min-max solution to the specialization soundness issue. The approach seemed to
be the most likely candidate for eventual implementation, but flaws were
discovered. Happily, not unresolvable flaws. This post is an excellent example of
the preRFC conversation in the Rust community.

e Sound and ergonomic specialization for Rust, available at http://aturon.github.
10/2018/04/05/sound-specialization/. This blog post addresses the issues in
the min-max article and proposes the implementation discussed in this chapter. It
is, as of writing this book, the most likely to be implemented, unless some bright
spark finds a flaw in it.

o Chalk, available at nttps://github.com/rust-lang-nursery/chalk. Chalk is
really a very interesting Rust project. It is, according to the project description, a
PROLOG-ish interpreter written in Rust. To date, Chalk is being used to reason
about specialization in the Rust language, but there are plans to merge Chalk into
rustc itself someday. The project README, as of SHA
94a1941a021842a5fcb35cd043145c8faae59£08, has a list of excellent articles
on the applications of chalk.

o The Unstable Book, available at https://doc.rust-lang.org/nightly/unstable—
book/. rustc has a large number of in-flight features. The Unstable Book is
intended to be a best-effort collection of these features, the justifications behind
them, and any relevant tracking issues. It is well worth a read, especially if you're
looking to contribute to the compiler project.
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e Zero-cost futures in Rust, available at http://aturon.github.io/blog/2016/08/
11/ futures/. This post introduced the Rust community to the futures project and
explains the motivation behind the introduction well. The actual implementation
details of futures have changed with time, but this article is still well worth a
read.

o Async / Await, available at https://github.com/rust-lang/rfcs/blob/master/
text/2394-async_await.md. RFC 2394 introduces the motivation for simplifying
the ergonomics of futures in Rust, as well as laying out the implementation
approach for it. The RFC is, itself, a fine example of how Rust
evolves—community desire turns into experimentation which then turns into
support from the compiler.
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If you enjoyed this book, you may be interested in these other books by Packt:

Rust

Cookbook

Rust Cookbook
Vigneshwer Dhinakaran

ISBN: 978-1-78588-025-4

Understand system programming language problems and see how Rust provides
unique solutions

Get to know the core concepts of Rust to develop fast and safe applications

Explore the possibility of integrating Rust units into existing applications to
make them more efficient

Achieve better parallelism, security, and performance

Explore ways to package your Rust application and ship it for deployment in a
production environment

Discover how to build web applications and services using Rust to provide high-
performance to the end user



Other Books You May Enjoy

Jan Nils Ferner, Daniel Durante

Rust Standard
Library

Cooklook

Rust Standard Library Cookbook
Jan Nils Ferner, Daniel Durante

ISBN: 978-1-78862-392-6

e How to use the basic modules of the library: strings, command line access, and
more.

Implement collections and folding of collections using vectors, Deque, linked
lists, and more.

Handle various file types , compressing and decompressing data.

Search for files with glob patterns.
Implement parsing through various formats such as CSV, TOML, and JSON.
Utilize drop trait, the Rust version of destructor.

Resource locking with Bilocks.
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Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[436]



A

Amdahl's law 28
American Fuzzy Lop
about 44
naive HashMap, testing 44, 45, 46
associative arrays
HashMap 29, 30, 32, 33, 34
naive HashMap 34, 35, 38, 39
performance 28
async/await syntax 427
atomic swap mutex 203
AtomicPtr 212

B

barrier 148
beamcoin

reference 408
binary semaphore

about 229

versus mutex 232, 233, 235
bincode

about 171

reference 171, 343
bounded semaphore 229
boxed types 78, 79, 80

C

C functions
calling 374
cross-language ownership, managing 375, 377
feruscore executable 386, 390, 393
simulation, executing 378, 380
simulation, fuzzing 381, 385

C-structs
creating 369, 371, 372, 374

Index

C
embedding, into Rust 367
Rust, embedding into 400, 401, 403, 404
caches 11, 12,13, 14,15
cargo-fuzz
URL 429
cc
URL 369
Cell 84, 85, 86, 87, 88, 89, 91
cernan
URL 127,157,393
conc
URL 227
concurrent data structures, hopper
benchmarking 183, 185, 186, 188
crashes, searching with AFL 180, 181, 182, 183
QuickCheck, searching 174, 175, 176, 178,
179,180
testing 173
condition variable (condvar)
about 145
using 146,147, 148
Corewars
about 340, 368
players, evolving 339
counting semaphore 229
CPU 9,10
crates.io
reference link 430
criterion
naive HashMap, performance testing 47, 48, 49,
50
URL 183
using 183
crossbeam project
URL 264
crossbeam RFCs



URL 430
crossbeam

URL 227
custom allocators 80

D

data parallelism 339
diminishing return 26, 27, 28
docs.rs

reference link 430
dynamic dispatch 77

E
Elixir

URL 414
epoch-based reclamation (EBR)

about 225, 264

crossbeam_epoch 267, 269,270,271, 273,

275,276,277, 278

tradeoffs 284

Treiber stack 265, 267

Treiber stack, exercising 280, 283
Erlang/Elixir

Rust, embedding into 407, 408, 411, 414
Ethernet sniffer 310, 312, 315, 317, 318
exhaust 1.9.2

URL 368

F

feruscore
about 342
domain, representing 343
executing 361, 363
individual module 348
instruction module 345
main section, exploring 355, 358, 361
mutation 349
pMARS, calling out 351, 354
reproduction 349
source, exploring 344
Foreign Function Interface (FFI) 366
fuzzing 429

[438]

G

generative testing 39

H

HashMap 29, 30, 32, 33, 34
hazard pointers
about 246
nightly 258
tradeoffs 263
Treiber stack 247, 249, 252, 255, 257
Treiber stack, exercizing 258, 261, 263
hazard-pointer-based reclamation (HPBR) 226
hex encoding 420, 421, 423, 424, 425
honggfuzz-rs
URL 429
hopper-fuzz
URL 180
using 180
hopper
about 158
conceptual view 161, 162
concurrent data structures, testing 173
deque 162,163, 164,165, 166,167,168
problem 157,158
Receiver 169,170, 171
Sender 171,172,173
URL 158
use case 157
using 158,159,160, 161

incorrect atomic queue

about 211, 212,213,215, 216,217,221, 222

224,225
correcting 225, 226, 227
isize type 100
iterators
about 318
parallel iterator 324, 328, 331, 334, 336, 338
smallcheck iteration 319, 321, 324
itertools
reference 318




L

libcds
URL 227
libfuzzer
URL 429
library clap
URL 289
library slog
URL 289
linearizability 191, 192, 193
Linux perf
naive HashMap, inspecting 56, 57
lock-free reference counting (LFRC) 226
Lua interpreter
URL 394
Lua
embedding, into Rust 393, 396, 398, 400

machine model
caches 11,12,13, 14, 15
CPU 9, 10
memory 11, 12,13, 14,15
selecting 8, 9
MARS C interface 368
memory model
reference 194
memory ordering
about 194, 195
AcgRel 199, 200
Acquire 196, 198
Relaxed 195, 196
Release 198, 199
SeqCst 200, 202
memory reclamation
approaches 239
epoch-based reclamation (EBR) 264
hazard pointers 246
reference counting 239, 242
memory
about 11, 12,13, 14,15
allocating 74, 75
deallocating 74, 75
layout 67

[439]

memory model 15

pointers 70, 72, 73
move closure 114
MPSC

telemetry server, building 127, 128, 129, 130,

131,132,133,135,136,137, 138

using 125,126, 127
mutex

about 202
comparing 203, 205, 206, 207,209, 211
setting 203, 205, 206, 207,209, 211
soft-mutex 203
versus binary semaphore 232, 233, 235

N

naive HashMap
about 34
editing 34
implementation 38, 39, 58, 59, 60, 62
insertion, examining 37
inspecting, with Linux perf 56, 57

inspecting, with Valgrind Suite 50, 51, 52, 54,

55, 56

performance testing, with criterion 47, 49, 50

source code 35
starting 34

testing, with American Fuzzy Lop 44, 45, 46

testing, with QuickCheck 39, 41, 42, 43, 44

O

Option 80, 81, 82
OS processes 339

P

pMARS
URL 340

pointers
about 70, 72, 73
boxed types 78, 79, 80
custom allocators 80
dynamic dispatch 77
memory, allocating 74, 75
memory, deallocating 74, 75
static dispatch 77




type, size 75, 76, 77 Rust PR 31844

zero sized types (ZST) 78 reference 58
projects Rust RFC 1210
fuzzing 429 reference 58
Seer 429 Rust
property-based testing 39 about 418
Python async/await syntax 426
Rust, embedding into 406 C, embedding into 367
cargo project, creating 18, 19
Q community 430
quantiles library community, reference 430
URL 127, 400 embedding 400
queue embedding, into C 400, 401, 403, 404
defining 212 embedding, into Erlang/Elixir 407, 408, 411,
QuickCheck 414
about 39 embedding, into Python 406

futures 426
hex encoding 420, 421, 423, 424, 425
Lua, embedding 393, 394, 396, 399
R programs, debugging 19, 20, 21, 22
reference 100
settingup 16, 17
SIMD system 419
specialization 427
RwLock
about 142
example 142

naive HashMap, testing 39, 41, 42, 43, 44
quiescent-state-based reclamation (QSRB) 225

rayon
about 324, 339
dependencies 325
implementing 326, 327, 330, 331, 333, 336
rayon-core 324
rayon-futures 324

URL 324 using 142,143,144, 145
Rc 93, 94, 95, 97
reactor pattern S

reference link 426

Redox project seer
URL 246 about 429
RefCell 84, 85, 86, 87, 88, 89, 91 reference link 429
reference counting semaphore
about 239 242 binary semaphore 229
tradeoffs 243 binary semaphore, versus mutex 232, 233, 235
Ring bounded semaphore 229
flaws 115,116, 118, 119 counting semaphore 229
rua implementing 228, 229, 232
URL 394 Send trait 109, 110
rocket preparation problem serde
URL 343

example 149,150, 151, 152, 153
rope bridge problem
example 154, 155, 156

SIMD system 419
slowloris attack
about 288

[440]



client 294, 296
server 289, 290, 292, 293
thread-pooling server 297, 299, 301
soft-mutex 203
specialization 427
Stable SIMD
reference link 425
standard library
Cell 84, 85, 86, 87, 88, 89, 91
dissecting 80
Option 80, 81, 82
Rc 93, 94, 95, 97
RefCell 84, 85, 86, 87, 88, 89, 91
Vec 97, 98, 99,100,101, 102,103
static dispatch 77
symbolic execution
reference link 429
Sync trait
about 109, 110
threads, racing 110,112,113, 114, 115
synchronization
building 202
incorrect atomic queue 211,212, 213, 215,
216, 217,221,222,224, 225
mutex 202, 203
semaphore 228, 229

T

telemetry server
building 127, 128,129, 130, 131, 132, 133
135,136,137,138
tempdir

URL 175
using 175

thread pooling

about 288

corewars players, evolving 339

Ethernet sniffer 310, 312, 315, 316, 318
feruscore 342

implementation 301, 304, 306, 310
iterators 318

slowloris attack 288

thread-pooling library

reference 301

threads

MPSC, using 125, 126, 127
radng 110,112,113,114,115
RMQ,ﬂaWS 115,116,118,119
safety measures 119, 121

safety, by exclusion 121, 122, 124

toml crate

URL 356

U

unsafe blocks 431

\'

Valgrind Suite

naive HashMap, inspecting 50, 51, 52, 54, 55,
56

Vec 97, 98, 99,100, 101, 102, 103

Y4

zero sized types (ZST) 78



	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Preliminaries – Machine Architecture and Getting Started with Rust
	Technical requirements
	The machine
	The CPU
	Memory and caches
	Memory model


	Getting set up
	The interesting part
	Debugging Rust programs

	Summary
	Further reading

	Chapter 2: Sequential Rust Performance and Testing
	Technical requirements
	Diminishing returns
	Performance
	Standard library HashMap
	Naive HashMap
	Testing with QuickCheck
	Testing with American Fuzzy Lop
	Performance testing with Criterion
	Inspecting with the Valgrind Suite
	Inspecting with Linux perf

	A better naive HashMap

	Summary
	Further reading

	Chapter 3: The Rust Memory Model – Ownership, References and Manipulation
	Technical requirements
	Memory layout
	Pointers to memory
	Allocating and deallocating memory
	The size of a type
	Static and dynamic dispatch
	Zero sized types
	Boxed types
	Custom allocators


	Implementations
	Option
	Cell and RefCell
	Rc
	Vec

	Summary
	Further reading

	Chapter 4: Sync and Send – the Foundation of Rust Concurrency
	Technical requirements
	Sync and Send
	Racing threads
	The flaw of the Ring
	Getting back to safety
	Safety by exclusion

	Using MPSC
	A telemetry server



	Summary
	Further reading

	Chapter 5: Locks – Mutex, Condvar, Barriers and RWLock
	Technical requirements
	Read many, write exclusive locks – RwLock
	Blocking until conditions change – condvar
	Blocking until the gang's all here - barrier
	More mutexes, condvars, and friends in action
	The rocket preparation problem
	The rope bridge problem

	Hopper—an MPSC specialization
	The problem
	Hopper in use
	A conceptual view of hopper
	The deque
	The Receiver
	The Sender
	Testing concurrent data structures
	QuickCheck and loops
	Searching for crashes with AFL
	Benchmarking


	Summary
	Further reading

	Chapter 6: Atomics – the Primitives of Synchronization
	Technical requirements
	Linearizability
	Memory ordering – happens-before and synchronizes-with
	Ordering::Relaxed
	Ordering::Acquire
	Ordering::Release
	Ordering::AcqRel
	Ordering::SeqCst

	Building synchronization
	Mutexes
	Compare and set mutex

	An incorrect atomic queue
	Options to correct the incorrect queue
	Semaphore
	Binary semaphore, or, a less wasteful mutex

	Summary
	Further reading

	Chapter 7: Atomics – Safely Reclaiming Memory
	Technical requirements
	Approaches to memory reclamation
	Reference counting
	Tradeoffs

	Hazard pointers
	A hazard-pointer Treiber stack
	The hazard of Nightly
	Exercizing the hazard-pointer Treiber stack
	Tradeoffs

	Epoch-based reclamation
	An epoch-based Treiber stack
	crossbeam_epoch::Atomic
	crossbeam_epoch::Guard::defer
	crossbeam_epoch::Local::pin
	Exercising the epoch-based Treiber stack
	Tradeoffs


	Summary
	Further reading

	Chapter 8: High-Level Parallelism – Threadpools, Parallel Iterators and Processes
	Technical requirements
	Thread pooling
	Slowloris – attacking thread-per-connection servers
	The server
	The client
	A thread-pooling server

	Looking into thread pool
	The Ethernet sniffer
	Iterators
	Smallcheck iteration
	rayon – parallel iterators

	Data parallelism and OS processes – evolving corewars players
	Corewars

	Feruscore – a Corewars evolver
	Representing the domain
	Exploring the source
	Instructions
	Individuals
	Mutation and reproduction
	Competition – calling out to pMARS
	Main

	Running feruscore


	Summary
	Further reading

	Chapter 9: FFI and Embedding – Combining Rust and Other Languages
	Embedding C into Rust – feruscore without processes
	The MARS C interface
	Creating C-structs from Rust
	Calling C functions
	Managing cross-language ownership
	Running the simulation
	Fuzzing the simulation
	The feruscore executable


	Embedding Lua into Rust
	Embedding Rust
	Into C
	The Rust side
	The C side

	Into Python
	Into Erlang/Elixir

	Summary
	Further reading

	Chapter 10: Futurism – Near-Term Rust
	Technical requirements
	Near-term improvements
	SIMD
	Hex encoding
	Futures and async/await
	Specialization

	Interesting projects
	Fuzzing
	Seer, a symbolic execution engine for Rust

	The community
	Should I use unsafe?
	Summary
	Further reading

	Other Books You May Enjoy
	Index

