

Play Framework
Cookbook

Over 60 incredibly effective recipes to take you under
the hood and leverage advanced concepts of the
Play framework

Alexander Reelsen

 BIRMINGHAM - MUMBAI

Play Framework Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2011

Production Reference: 2290711

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-849515-52-8

www.packtpub.com

Cover Image by Fillippo (filosarti@tiscali.it)

Credits

Author
Alexander Reelsen

Reviewers
Erik Bakker

Guillaume Bort

Steve Chaloner

Pascal Voitot

Acquisition Editor
Eleanor Duffy

Development Editor
Roger D’souza

Technical Editor
Kavita Iyer

Copy Editor
Neha Shetty

Project Coordinator
Joel Goveya

Proofreader
Aaron Nash

Indexer
Hemangini Bari

Tejal Daruwale

Graphics
Nilesh Mohite

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

Foreword

Why Play is a small revolution in the
Java world

Looking at the past years of application development, as a developer you might have noticed
a significant shift from desktop applications to web applications. The Web has evolved as the
major platform for applications and is going to take over many facets—not only in development
but also in everyday life, resulting in this shift accelerating. Who would have thought 10
years ago that current mobile phones are indeed only very strong ironed notebooks with a
permanent Internet connection?

The Internet provides a very direct connection between consumer and producer. For application
developers this implies a very easy -to- use- and- handle platform. Looking around, many
application frameworks have evolved in recent years in order to be very Internet-centric. These
frameworks interpret the Web as an ubiquitous platform for providing not only ordinary web
pages, as it was done 10 years ago. The web has become a data provider on top of one of the
most proven protocols in industry, the HyperText Transfer Protocol (HTTP). The core concepts of
the Internet being a decentralized highly available network with HTTP as a protocol on top of it
are the inner core of a big part of today’s applications. Furthermore, another development took
place in the last years. The browser became more and more a replacement of the operating
system. Fully fledged web applications like Google Docs, which act and look like desktop
applications, are becoming more popular. JavaScript engines like Google V8 or SpiderMonkey
are getting insanely fast to deliver web browser performance not thought of several years ago.
This means current web applications are now capable of delivering a real user experience
similar to applications locally installed on your system.

So many software engineers today are also web engineers as well. This poses a very big
problem. As most of software engineering is based on abstraction, many tools, frameworks,
and languages try to hide complexity from the engineer, which sounds good at first. No
web engineer cares about the fragmentation of the IP packets which are sent throughout
the whole world in milliseconds. By abstracting and layering your software to reduce the
complexity per layer, you inadvertently might hide features of the underlying protocol your
software is built upon. Many frameworks try to resemble the style of programming desktop
applications, with the exception of application being in the Web. However, in order to make
use of HTTP and its features you cannot easily hide them away in your application framework.

This is especially a problem in the Java world. The defined standard is the servlet spec,
which defines how web applications have to be accessible in a standard way. This implies
the use of classes like HttpServletRequest, HttpServletResponse, HttpServlet,
or HttpSession on which most of the available web frameworks are built upon. The servlet
specification defines the abstraction of the HTTP protocol into Java applications. Though it is
quite a good spec as HTTP carries quite some complexity around, it forces frameworks to obey
certain conventions which never got challenged in the past.

While many web frameworks like Django, Rails, or Symfony do not carry the burden of having
to implement a big specification and do not need to fit into a big standardized ecosystem,
most Java web frameworks have never questioned this. There are countless excellent web
frameworks out there which implement the servlet specification, Grails, Tapestry, Google
Web Toolkit, Spring Web MVC, and Wicket to name a few. However, there always was
one gap: having a framework which allows quick deployment like Django or rails while still
being completely Java based. This is what the Play framework finally delivers.

This feature set does not sound too impressive, but it is. Being Java based implies two things:

ff Using the JVM and its ecosystem: This implies access to countless libraries, proven
threading, and high performance.

ff Developer reusability: There are many Java developers who actually like this
language. You can count me in as well. Have you ever tried to convince Java
developers to use JavaScript as a backend language? Or PHP? Though Groovy and
Scala are very nice languages, you do not want your developers to learn a new
framework and a new language for your next project. And I do not talk about the
hassle of IDE support for dynamic languages.

Shortening development cycles is also an economic issue. As software engineers are quite
expensive you do not want to pay them to wait for another “compile-deploy-restart” cycle. The
Play framework solves this problem.

All of the new generation web frameworks (Django in Python, Rails on Ruby, expressjs on top
of nodejs in JavaScript) impose their own style of architecture, where HTTP is a first class
citizen. In Java, HTTP is only another protocol that a Java application has to run on.

So the Play framework is a pure Java-based solution, which brings a real HTTP focused
framework with lots of helpers to speed up development resulting in shorter iterations and
faster deployments.

This book should help you to get the most out of the Play framework and to be as fast as any
other developer on any platform when creating web applications.

Prerequisites
I made several assumptions about the persons reading this book. One of the first
assumptions is that you already have used Play a little bit. This does not mean that you have
deployed a 20 node cluster and are running a shop on top of it. It means that you downloaded
the framework, took a brief look at the documentation, and ran through a few of the
examples. While reading the documentation you will also take a first look at the source, which
is surprisingly short. I will try to repeat introductory stuff only when it is necessary and I will try
to keep new things as short as possible, as this is a cookbook and should come with handy
solutions in more complex situations.

What is missing: A Scala chapter
No book is perfect. Neither is this. Many people would be eager to read a chapter about
integration of Play and Scala. When I started writing this book, my Scala knowledge was
far from competitive (and still is in many areas). Furthermore I currently do not think about
using Scala in a production web application together with Play. This will change with growing
maturity of the integration of these two technologies.

Alexander Reelsen

About the Author

Alexander Reelsen is a software engineer living in Munich, Germany, where he has been
working on different software systems, for example, a touristic booking engine, a campaign
management and messaging platform, and a b2b ecommerce portal. He has been using the
Play framework since 2009 and was immediately astonished by the sheer simplicity of this
framework, while still being pure Java. His other interests includes scaling shared-nothing
web architectures and NoSQL databases.

Being a system engineer most of the time, when he started playing around with Linux at the
age of 14, Alexander got to know software engineering during studies and decided that web
applications are more interesting than system administration.

If not hacking in front of his notebook, he enjoys playing a good game of basketball or streetball.

Sometimes he even tweets at http://twitter.com/spinscale and can be reached
anytime at alexander@reelsen.net.

If I do not thank my girlfriend for letting me spend more time with the laptop
than with her while writing this book, I fear unknown consequences. So,
thanks Christine!

Uncountable appreciation goes out to my parents for letting me spent days
and (possibly not knowing) nights in front of the PC, and to my brother Stefan,
who introduced me into the world of IT - which worked pretty well until now.

Thanks for the inspiration, fun, and fellowship to all my current and former
colleagues, mainly of course to the developers. They always open up views
and opinions to make developing enjoyable.

Many thanks go out to the Play framework developers and especially
Guillaume, but also to the other core developers. Additionally, thanks to all
of the people on the mailing list providing good answers to many questions
and all the people working on tickets and helping to debug issues I had while
writing this book.

My last appreciation goes to everyone at Packt Publishing, who was involved
in this book.

About the Reviewers

Erik Bakker works as a software engineer for Lunatech Research in Rotterdam, The
Netherlands. Lunatech provides consulting and application development services for Play and
a range of other Java technologies, with small teams of highly skilled people, and employs
two Play committers. Erik has a long-time interest in web application development and has
been building web application for years, both small and large, using various languages
and frameworks. In 2010, he got hooked to the Play framework, which he has been using
for various projects, and has since written several editorials on the subject. Erik excels at
translating business needs into technical requirements and solutions. He holds a master’s
degree in physics from Utrecht University and you can write to him at erik@lunatech.com.

Guillaume Bort is co-founder and CTO of Zenexity, a French “web-oriented architecture”
company. He is the creator and lead developer of the Play framework, which makes it easier
to build Web applications in Java. Made by web developers, Play focuses on developer
productivity and targets RESTful architectures.

Steve Chaloner, a Brit living in Belgium, has been developing in Java since 1996, and has
been an avid user of the Play framework since 2010. Steve has introduced Play into several
companies for projects ranging from the fairly small to the extremely large. He is the author
of several Play modules, including the Deadbolt authorization system.

His company, Objectify (http://www.objectify.be), specializes in rapid development
using JVM languages and runs training courses on Play.

Greet and Lotte – thanks for putting up with the late nights when I was
working on the review. Love you both.

Pascal Voitot lives in Paris, France and is 34 years old. He is a senior developer and
technical expert mainly focused on open source server solutions. He has been working in
the mobile telecommunication and banking domains developing industrial solutions and
then in R&D on secured mobile services. In parallel, he has become an enthusiast open
source supporter and contributor. He currently works as technical expert in Java open
source business services, mainly focused on web content management solutions.

His favorite subjects nowadays are nowadays lightweight and distributed servers, rich
client and fast development web/mobile interfaces, and simple and scalable content
management systems.

He’s currently lead developer of Siena project (http://www.sienaproject.com), a Java
lightweight object mapping API bridging SQL and NoSQL databases based on active record
design. He is also an active supporter and contributor of Play, a “Rails inspired” Java/Scala
framework.

www.PacktPub.com

Support files, eBooks, discount offers and
more

You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy and paste, print and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Basics of the Play Framework	 5

Introduction	 5
Downloading and installing the Play framework	 6
Creating a new application	 7
Defining routes as the entry point to your application	 8
Configuring your application via application.conf	 11
Defining your own controllers	 12
Defining your own models	 15
Using fixtures to provide initial data	 18
Defining your own views	 20
Writing your own tags	 22
Using Java Extensions to format data in your views	 24
Adding modules to extend your application	 28
Using Oracle or other databases with Play	 31
Understanding suspendable requests	 32
Understanding session management	 35

Chapter 2: Using Controllers	 39
Introduction	 39
URL routing using annotation-based configuration	 40
Basics of caching	 43
Using HTTP digest authentication	 50
Generating PDFs in your controllers	 55
Binding objects using custom binders	 60
Validating objects using annotations	 63
Adding annotation-based right checks to your controller	 65
Rendering JSON output	 70
Writing your own renderRSS method as controller output	 74

ii

Table of Contents

Chapter 3: Leveraging Modules	 83
Introduction	 83
Dependency injection with Spring	 84
Dependency injection with Guice	 87
Using the security module	 89
Adding security to the CRUD module	 93
Using the MongoDB module	 95
Using MongoDB/GridFS to deliver files	 99

Chapter 4: Creating and Using APIs	 105
Introduction	 105
Using Google Chart API as a tag	 107
Including a Twitter search in your application	 114
Managing different output formats	 119
Binding JSON and XML to objects	 123

Chapter 5: Introduction to Writing Modules	 131
Introduction	 131
Creating and using your own module	 132
Building a flexible registration module	 137
Understanding events	 146
Managing module dependencies	 147
Using the same model for different applications	 150
Understanding bytecode enhancement	 152
Adding private module repositories	 158
Preprocessing content by integrating stylus	 160
Integrating Dojo by adding command line options	 164

Chapter 6: Practical Module Examples	 171
Introduction	 171
Adding annotations via bytecode enhancement	 171
Implementing your own persistence layer	 175
Integrating with messaging queues	 187
Using Solr for indexing	 195
Writing your own cache implementation	 206

iii

Table of Contents

Chapter 7: Running in Production	 213
Introduction	 213
Test automation with Jenkins	 214
Test automation with Calimoucho	 221
Creating a distributed configuration service	 225
Running jobs in a distributed environment	 231
Running one Play instance for several hosts	 234
Forcing SSL for chosen controllers	 235
Implementing own monitoring points	 237
Configuring log4j for log rotation	 239
Integrating with Icinga	 241
Integrating with Munin	 243
Setting up the Apache web server with Play	 248
Setting up the Nginx web server with Play	 251
Setting up the Lighttpd web server with Play	 253
Multi-node deployment introduction	 255

Appendix: Further Information About the Play Framework	 259
Further information	 259

Index	 263

Preface
The Play framework is the new kid on the block of Java frameworks. By breaking the existing
standards it tries not to abstract away from HTTP as with most web frameworks, but tightly
integrates with it. This means quite a shift for Java programmers. Understanding the
concepts behind this shift and its impact on web development with Java are crucial for fast
development of Java web applications.

The Play Framework Cookbook starts where the beginner's documentation ends. It shows
you how to utilize advanced features of the Play framework—piece by piece and completely
outlined with working applications!

The reader will be taken through all layers of the Play framework and provided with in-depth
knowledge with as many examples and applications as possible. Leveraging the most from
the Play framework means, learning to think simple again in a Java environment. Think
simple and implement your own renderers, integrate tightly with HTTP, use existing code,
and improve sites' performance with caching and integrating with other web 2.0 services.
Also get to know about non-functional issues like modularity, integration into production, and
testing environments. In order to provide the best learning experience during reading of Play
Framework Cookbook, almost every example is provided with source code. Start immediately
integrating recipes into your Play application.

What this book covers
Chapter 1, Basics of the Play Framework, explains the basics of the Play framework. This
chapter will give you a head start about the first steps to carry out after you create your first
application. It will provide you with the basic knowledge needed for any advanced topic.

Chapter 2, Using Controllers, will help you to keep your controllers as clean as possible,
with a well defined boundary to your model classes.

Chapter 3, Leveraging Modules, gives a brief overview of some modules and how to make use
of them. It should help you to speed up your development when you need to integrate existing
tools and libraries.

Preface

2

Chapter 4, Creating and Using APIs, shows a practical example of integrating an API into your
application, and provides some tips on what to do when you are a data provider yourself, and
how to expose an API to the outside world.

Chapter 5, Introduction to Writing Modules, explains everything related to writing modules.

Chapter 6, Practical Module Examples, shows some examples used in productive applications.
It also shows an integration of an alternative persistence layer, how to create a Solr module
for better search, and how to write an alternative distributed cache implementation
among others.

Chapter 7, Running in Production, explains the complexity that begins once the site goes live.
This chapter is targeted towards both groups, developers, as well as system administrators.

Appendix, Further Information About the Play Framework, gives you more information about
where you can find help with Play.

What you need for this book
Everything you need is listed in each recipe.

Who this book is for
This is the ideal book for people who have already written a first application with the Play
Framework or have just finished reading through the documentation. In other words - anyone
who is ready to get to grips with Play. Having a basic knowledge of Java is good, as well some
web developer skills—HTML and JavaScript.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Create an conf/application-context.xml file,
where you define your beans."

A block of code is set as follows:

require:
 - play
 - play -> router head

Preface

3

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Downloads
menu and get the latest version.".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from
your account at http://www.PacktPub.com. If you purchased this book elsewhere, you
can visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you.

Preface

4

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/support, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable
content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Basics of the Play

Framework

In this chapter, we will cover:

ff Downloading and installing the Play framework

ff Creating a new application

ff Defining routes as the entry point to your application

ff Configuring your application via application.conf

ff Defining your own controllers

ff Defining your own models

ff Using Fixtures to provide initial data

ff Defining your own views

ff Writing your own tags

ff Using Java Extensions to format data in your views

ff Adding modules to extend your application

ff Using Oracle or other databases with Play

ff Understanding suspendable requests

ff Understanding session management

Introduction
Let's begin with Play framework. There is no need for XML configuration, no need to create a
war file, just start off with a commandline tool. Play is a full stack. Everything is bundled. All
you need to do is download the Play framework, unzip it, and use it.

Basics of the Play Framework

6

Once you install it, this chapter will give you a head start about the first steps to carry out
after you create you first application. It will provide you the basic knowledge needed for any
advanced topic, which is described in the later chapters. After this chapter you know where
to look for certain files and how to change them.

Some features presented here are also shown in the only example application for the first
chapter, which you can find at examples/chapter1/basic-example.

Downloading and installing the Play
framework

This recipe will help you to install the Play framework as quickly and unobtrusively as possible
in your current system.

Getting ready
All you need is a browser and some basic knowledge about unzipping and copying files in your
operating system. Also be aware that you can install Play on Microsoft Windows, Linux as well
as Mac OS X or even BSD.

How to do it...
Open up a browser and go to http://www.playframework.org/download and download
the most up-to-date stable version http://download.playframework.org/releases/
play-1.2.zip (at the time of writing this recipe play 1.2 was the latest stable version).

After downloading it, unzip it, either with a GUI tool or via command line zip:

unzip play-1.1.zip

If you are using Linux or MacOS you might want to put the unzipped directory in /usr/
local/ in order to make Play available to all the users on your system; however, this is
optional and requires the root access on the particular system:

mv play-1.1 /usr/local/

As a last step adding the Play binary inside the play-1.1 directory to the PATH environment
variable is encouraged. This is easily possible with a symlink:

ln -s /usr/local/play-1.1/play /usr/local/bin/play

If you enter play on your commandline, you should get an ASCII art output along with some
help and, most importantly, the version of Play you just called. If you do not want to create
a symlink, you can also copy the Play binary to a path, which is already included in the PATH
variable. In the preceding example you could have copied it to /usr/local/bin.

Chapter 1

7

How it works...
As just mentioned, Play would also work by just unzipping the Play framework archive and
always using the absolute path of your installation. However, as this is not very convenient,
you should put your installation at the defined location. This also makes it quite easy for you
to replace old Play framework versions against newer ones, without having to change anything
else than the created symlink.

If you are on a Linux system and you do not see the ASCII art output as mentioned some
time back, it might very well be possible that you already have a Play binary on your system,
installed. For example, the sox package, which includes several tools for audio processing,
also includes a Play binary, which surprisingly plays an audio file. If you do not want to have
this hassle, the simplest way is just to create the symlink with another name such as:

ln -s /usr/local/play-1.1/play /usr/local/bin/play-web

Now calling play-web instead of play will for sure always call the Play framework
specific script.

Creating a new application
After installing the necessary parts to start with Play, the next step is to create a new
application. If you are a Java developer you would most likely start with creating a Maven
project, or alternatively create some custom directory structure and use Ant or scripts to
compile your sources. Furthermore, you would likely create a WAR file which you could test in
your web application server. All this is not the case with the Play framework, because you use
a command line utility for many tasks dealing with your web application.

How to do it...
Change into a directory where you want to create a new application and execute the
following command:

play new myApp

How it works...
This command will create a new directory named myApp and copy all needed resources for
any project into it. After this is done, it should be finished in almost no time. The following file
system layout exists inside the myApp directory:

./conf

./conf/dependencies.yml

./conf/routes

./conf/application.conf

Basics of the Play Framework

8

./conf/messages

./test

./lib

./public

./app

./app/models

./app/controllers

./app/views

If you are familiar with a rails application, you might be able to orientate very quickly. Basically,
the conf directory contains configuration and internationalization files, where as the app
folder has a subdirectory for its model definitions. Its controllers contain the business logic
and its views, being a mix of HTML and the Play template language. The lib directory
contains jar libraries needed to run your application. The public folder contains static
content like JavaScript, CSS, and images; and finally the test folder contains all types
of tests.

There's more...
Generally speaking, you can add arbitrary content in the form of directories and files in the
application directory; for example, the files needed to support Eclipse, or NetBeans will be
put here as well. However, you should never remove data which has been copied during the
creation of the application unless you really know what you are doing.

Support for various IDEs
You can add support for your IDE by entering: playeclipsify, playidealize, or
playnetbeansify. Every command generates the files needed to import a Play application
into your favorite IDE.

Defining routes as the entry point to your
application

If you analyze a HTTP based application, every execution of logic consists of three things.
First there is a HTTP method called as well as a specific URL. Optionally, the request may
include a payload like request parameters or a request body. No matter what you look at: a
news or a blog article, your favorite social network, you are bidding for some item during an
online auction, or delete e-mails in your web mail account, you always use an URL an a HTTP
method. Any unbelievably complex application such as Google Mail basically boils down to
this contract. So what would be easier for a web application than to resemble this contract by
mapping the tuple of HTTP method and HTTP URL to certain actions. This is what the routes
file is for in Play.

Chapter 1

9

Getting ready
As seen some time back in the filesystem layout, after creating a new application, there is a
conf/routes file. This file can be seen as the central point of your application. In order to
have a truly REST based architecture, the combination of the HTTP method and URL define an
implicit action. Using HTTP GET on any URL should never ever change any resource because
such calls are seen as idempotent calls and should always return the same result.

In order to fully understand the importance of the routes file, this graphic illustrates that it is
the starting point for every incoming HTTP request:

The image is also available at http://www.playframework.org/documentation/1.2/
images/diagrams_path.

Basically the router component parses the routes file on startup and does the mapping
to the Controller.

Always be aware that no logic can be executed from an external source if not triggered by the
router component, which in turn is configured by default in the conf/routes file.

Basics of the Play Framework

10

How to do it...
Edit your routes file as shown in the following code snippet:

GET / Application.index
POST /users Application.createUser
GET /user/{id} Application.showUser
DELETE /user/{id} Application.deleteUser

Map static resources from the /app/public folder to the /public path

GET /public staticDir:public

How it works...
The preceding example features a basic application for user management. It utilizes HTTP
methods and URIs appropriately. For the sake of simplicity, updating a user is not intended in
this example. Every URI (alternatively called a resource) maps to a Java method in a controller,
which is also called an action. This method is the last part of the line, with the exception to
the HTTP resource /public, where the public directory is mapped to the public URI. You
might have already noticed the usage of some sort of expression language in the URI. The ID
variable can be used in the controller and will contain that part of the URI. So /user/alex
will map alex to the ID variable in the showUser and deleteUser methods of the controller.

Please be aware that some browsers currently only support GET and POST methods. However,
you can freely use PUT and DELETE as well, because Play has a built-in workaround for this
which uses POST and setting the X-HTTP-Method-Override header telling the framework to
execute the code as needed. Be aware to set this request header when writing applications
yourself, that connect to a play-based application.

There's more...
As seen in the preceding screenshot, the router component can do more than parsing the
routes file. It is possible to have more complex rules such as using regular expressions.

Using regular expressions in the URL is actually pretty simple, as you can just include them:

GET /user/{<[0-9]+>id}		 Application.showUser

This ensures that only numbers are a valid user ID. Requesting a resource like /user/alex
now would not work anymore, but /user/1234 instead would work. You can even create a
List from the arguments in the URL with the following line of code:

GET /showUsers/{<[\0-9]+>ids}/?	 Application.showUsers

Chapter 1

11

In your application code you know you could use a List<Integer> IDs and show several
users at once, when the URL /showUsers/1234/1/2 is called. Your controller code would
start like this:

public static void showUsers(@As("/") List<Integer> ids) {

This introduces some new complexity in your application logic, so always be aware if you really
want to do this. One of the usecases where this is useful is when you want to use some sort
of hierarchical trees in your URLs, like when displaying a mailbox with folders and arbitrary
subfolders.

See also
You can also use annotations to create routing, which offers you some more flexibility. See the
first recipe in Chapter 2. Furthermore, routing can also be done for virtual host, and this will
also be presented later on.

Configuring your application via
application.conf

Though Play does not require a lot of configuration to run, there has to be one file where basic
information such as database connection strings, log levels, modules to enable additional
functionality, supported application languages, or the setting of the application mode is
configured. This file is conf/application.conf, though it looks like a properties file, it
really is not because of its UTF-8 encoding.

How to do it...
Just open conf/application.conf with your any editor supporting UTF-8, be it Eclipse,
Vim, textmate, or even notepad.

Now every configuration option follows the scheme:

Some comment
key = value

Notable for application start is the http.port option, which runs your Play application per
default on port 9000; this can be changed to any port above 1024 if you are a non-root user,
which is highly recommended anyway.

Basics of the Play Framework

12

How it works...
By definition Java property files are ISO-8859-1 and nothing else. Play, however, is thought
of as an everything-UTF-8 framework; hence, the application configuration filename does not
have a .properties suffix. For more info about standard Java properties, please refer to:

http://download.oracle.com/javase/6/docs/api/java/util/Properties.
html

As the documentation covers most of the possible parameters in the configuration file pretty
well, this file will only be mentioned if the default configuration has to be changed.

Most importantly, adding and configuring modules in order to enhance the basic functionality
of Play is part of the application.conf, and each module requires enabling it via defining
its path:

module.foo=${play.path}/modules/foo

After starting your Play application, the console output should include information about
which of your configured modules have been loaded successfully.

Please be aware that from play 1.2 modules are not configured via
this mechanism, but via the new dependencies.yml file. You can
still configure modules this way, but this is deprecated from then on.

Another important setup is the log level of your application when using log4j, which is used
by Play framework all over the place. When in production mode, it should be set to INFO or
ERROR; however, in testing mode the following line might help you to discover problems:

application.log=DEBUG

See also
We will refer to the application.conf file when setting up special databases later on in
this chapter. Also there is an own Configuring log4j for log rotation recipe in the Chapter 7,
Running in Production.

Defining your own controllers
Controllers represent the thin layer between HTTP and business logic. They are called by the
router, once the requested resource is mapped successfully to a controller method specified
in the conf/routes file.

Chapter 1

13

Getting ready
In order to follow this recipe, you should use the conf/routes file defined in the recipe
Defining routes as the entry point to your application in this chapter.

How to do it...
Fire up your favorite editor, open app/controllers/Application.java, and put the
following into the file:

package controllers;

import play.*;
import play.mvc.*;
public class Application extends Controller {

 public static void index() {
 render();
 }

 public static void showUser(String id) {
 render();
 }

 public static void deleteUser(String id) {
 render();
 }

 public static void createUser(User user) {
 render();
 }
}

How it works...
Absolutely no business logic happens here. All that is done here is to create a possibility
to execute business logic. When looking back at the conf/routes file you see the use of
the id parameter, which is again used here as a parameter for the static method inside
the Application class. Due to the name of the parameter it is automatically filled with
the corresponding part of the URL in the request; for example, calling GET /user/1234
will result in putting "1234" in the ID parameter of the showUser method. The most
important fact to make a Java class work as controller is to have it extend from play.mvc.
Controller. Furthermore, all your actions have to be static in order to be executed as
controller methods.

Basics of the Play Framework

14

As no business logic is executed here (such as creating or deleting a user from some
database) the render() method is called. This method is again defined in the controller
class and tells the controller to start the rendering phase. A template is looked up and
rendered. As Play also follows the convention over configuration pattern, a default template
location is assumed, which follows an easy naming scheme:

./app/views/${controller}/{method}.html

In the case of showing a user it would be:
./app/views/Application/showUser.html

There's more...
This not only looks pretty simple, it actually is. As Play framework follows the MVC principle,
you should be aware that the controller layer should be as thin as possible. This means that
this layer is not for business logic but merely for validation in order to ensure the model layer
will only get valid data.

Using POJOs for HTTP mapping
As it is not convenient for any web developer to construct the objects by hand from the HTTP
parameters, Play can easily do this task for you like this:

 public static void createUser(User user) {

 // Do something with the user object
 // ...
 render();
 }

This requires a certain naming convention of your form elements in the HTML source, which
will be shown later.

Using HTTP redirects
Instead of just rendering HTML pages there is another great feature. You can trigger a HTTP
redirect by just calling the Java method. Imagine the following code for creating a new user:

 public static void createUser(User user) {

 // store user here..., then call showUser()
 showUser(user.id);
 }

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Chapter 1

15

Now the last line of code will not call the static showUser method directly, but instead
issue a HTTP 304 redirect response to the client, which includes a Location: /show/1234
response header. This allows easy implementation of the common redirect-after-post pattern,
without cluttering your application logic. You only need to be aware that it is not possible
to directly call methods marked as public in your controller classes, as the framework
intercepts them.

Thread safety
Some Java developers might want to scream in pain and agony now that "Static methods in
a controller are not threadsafe!". However, the Controller is bytecode enhanced in order to
make certain calls threadsafe, so the developer has not to worry about such issues. If you
are interested in knowing more, you might want to check the class play.classloading.
enhancers.ControllerEnhancer.

See also
Many recipes will change controller logic. Consider dealing with controllers which is absolute
and essential core knowledge.

Defining your own models
As soon as you have to implement business logic or objects which should be persisted, the
implementation should be done in the model. Note that the default implementation of this
layer is implemented in Play with the use of JPA, Hibernate, and an SQL database in the
background. However, you can of course implement an arbitrary persistence layer if you want.

Getting ready
Any model you define should go into the models package, which resides in the app/models
directory.

How to do it...
As in the recipes before, this was already a reference to a user entity. It is the right time to
create one now. Store this in the file app/models/User.java:

package models;

import javax.persistence.Entity;
import play.data.validation.Email;
import play.data.validation.Required;
import play.db.jpa.Model;

Basics of the Play Framework

16

@Entity
public class User extends Model {

 public String login;

 @Required @Email
 public String email;
}

How it works...
Although there are not many lines of code, lots of things are included here. First, there are
JPA annotations marking this class to be stored in a database. Second, there are validation
annotations, which can be used to ensure which data should be in the object from an
application point of view and not dependent on any database.

Remember: If you do as many tasks as possible such as validation in
the application instead of the database it is always easier to scale.
Annotations can be mixed up without problems.

The next crucially important point is the fact that the User class inherits from Model. This is
absolutely essential, because it allows you to use the so-called ActiveRecord pattern for
querying of data.

Also, by inheriting from the Model class you can use the save() method to persist the object
to the database. However, you should always make sure you are importing the correct Model
class, as there exists another Model class in the Play framework, which is an interface.

The last important thing which again will be mainly noticed by the Java developers is the
fact, that all fields in the example code are public. Though the preceding code does not
explicitly define getters and setters, they are injected at runtime into the class. This has two
advantages. First, you as a developer do not have to write them, which means that your entity
classes are very short and concise and not filled with setters and getters irrelevant to your
logic. Second, if you really want to put logic into setters such as adding some complex check
or changing the result before really storing it to the database, then it is possible without any
problem. If you want you can also reuse your existing JPA entities, which are likely to have
getters and setters. It is all a matter of choice. But the shorter your models are the more
concise and easy to understand they will be.

There's more...
Now let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

Chapter 1

17

Using finders
Finders are used to query for existing data. They are a wonderful syntactic sugar on top of
the Model entity. You can easily query for an attribute and get back a single object or a list of
objects. For example:

User user = User.find("byName", name).).).first();

Or you can get a list of users with an e-mail beginning with a certain string:

List<User> users = User.find("byEmailLike", "alexander@%").fetch();

You can easily add pagination:

List<User> users = User.find("byEmailLike", "alexander@%")
 .from(20).fetch(10);

Or just add counting:

long results = User.count("byEmailLike", "alexander@%");

Never be anemic
Play has a generic infrastructure to support as many databases as possible. If you implement
other persistence solutions, for example, JPA, GAE, or MongoDB, then always try to use the
ActiveRecord pattern, because most of the Play developers will be used to it and it is very easy
to grasp and understand. If you cannot do this for whatever reasons, like some completely
different query language, then still do not use something like the DAO pattern in Play, as this
is not natural for the framework and would pretty much break its flow. The anemic domain
model—pulling logic from the object into data access objects—should be an absolute no-go
when developing with Play.

Learning from the existing examples
Please check the Play examples and the Play documentation at http://www.
playframework.org/documentation/1.2/jpa for an extensive introduction about
models before reading further as this will be essential as well before going on with more
complex topics. You will also find much more info about finders.

Regarding JPA and transactions
This is a short excursion into the JPA world but well worth it. Whenever you deal with
databases you will be forced to implement some sort of commit/rollback transaction
mechanism. As the standard Play persistence is based on JPA and Hibernate, the problem of
course exists as well.

http://www.playframework.org/documentation/1.2/jpa

Basics of the Play Framework

18

However, in order to simplify things, the HTTP request has been chosen as the transaction
boundary. You should keep that in mind when having problems with data you thought should
have been committed but is not persisted, because the request is not yet finished. A minor
solution to this problem is to call JPA.em().flush(), which synchronizes changes to
the database. If you want to make sure that you do not change data which has just been
created in another request, you should read a Hibernate documentation about optimistic
and pessimistic locking found at http://docs.jboss.org/hibernate/core/3.6/
reference/en-US/html/transactions.html.

See also
For more information on the active record pattern you might want to check the Wikipedia
entry http://en.wikipedia.org/wiki/Active_record or the more Ruby on Rails
specific active record API at http://ar.rubyonrails.org/. There is also an active record
implementation in pure Java at http://code.google.com/p/activejdbc.

There is a recipe for encrypting passwords before storing them on the database which makes
use of creating an own setter.

Using fixtures to provide initial data
Fixtures are the Swiss Army knife of database independent seed data. By defining and
describing your data entities in a text file it is pretty simple to load it into an arbitrary database.

This serves two purposes. First, you can make sure in your tests, that certain data exists when
running the tests. Second, you can ensure that the must-have data like a first administrative
account in your application exists, when deploying and starting your application in production.

How to do it...
Define a fixtures file and store it under conf/initial-data.yml:

User(alr):
 login: alr
 password: test
 email: alr@spinscale.de

Tweet(t1):
 content: Lets get ready to tweet
 postedAt: 2010-11-22T08:23:15
 login: alr

Chapter 1

19

How it works...
As you can see in the preceding snippet, there are two entities defined. The first one only
consists of strings, whereas the second one consists of a date and a reference to the first one,
which uses the name in parentheses after the type as a reference.

There's more...
Fixtures are helpful in two cases. For one you can ensure the same test data in your unit,
functional, and selenium tests. Also you can make sure, that your application is initialized with
a certain set of data, when the application is loaded for the first time.

Using a bootstrap job to load seed data
If you need to initialize your application with some data, you can execute a job loading this
data at application startup with the following code snippet:

@OnApplicationStart
public class Bootstrap extends Job {

 public void doJob() {
 // Check if the database is empty
 if(User.count() == 0) {
 Fixtures.load("initial-data.yml");
 }
 }

You should put the referenced initial-data.yml file into the./conf directory of your
application. If you reference it with its filename only in any class like in the doJob() method
that we saw some time back, it will be found and loaded in your current database by using the
count() method of the User entity. Also by extending this class from Job and putting the
@OnApplicationStart annotation at the top, the doJob() method is executed right at the
start of the application.

More information about YAML
Play uses SnakeYAML as an internal YAML parser. You can find out more about the integration
at either http://www.playframework.org/documentation/1.2/yaml or http://
code.google.com/p/snakeyaml/.

Using lists in YAML
Fixtures are quite flexible, they also allow lists; for example, if the tags field is from type
List<Tag>, this works:

tags: [tag1, tag2, tag3, tag4]

Basics of the Play Framework

20

Defining your own views
After getting a closer look at controllers and models, the missing piece is views. Views can
essentially be anything: plain text, HTML, XML, JSON, vCard, binary data such as images,
whatever you can imagine. Generally speaking, the templating component in Play is kept
very simple. This has several advantages. First, you are not confronted with a new tag library,
like you are in JSF with every new component. Second, every web developer will dig his way
through this templating language quite fast. Third, the templating language is very nice and
also very easy to extend. Even though the template language is based on Groovy and uses
some Groovy expressions, there is absolutely no need to have any deep knowledge in Groovy.
Even though you can use Groovy expressions, there is absolutely no need for it.

In this example, we will put together a small view showing our user entity.

How to do it...
The first step is to get the user inside the controller and allow it in the view to be used. Edit
app/controllers/Application.java and change the showUser() method to this:

public static void showUser(Long id) {
 User user = User.findById(id);
 notFoundIfNull(user);
 render(user);
}

After that create an HTML template file in ./app/views/Application/showUser.html:

#{extends 'main.html' /}
#{set title:'User info' /}

<h1>${user.login}</}</}</h1>

Send }">}">mail

How it works...
Though again only a couple of lines have been written, a lot of things have happened.
Beginning with the name and path of the template location, it is just the name of the class
(including the package, which the controller does not have in this case) and its method name
appended with a file format. Of course, you can change it, but this way it is pretty easy to
understand which view code belongs to which controller action.

Chapter 1

21

Regarding the controller logic all that has been done is to query the database for the user
with a specific ID (the one specified in the URL) and to return a HTTP 404 error, if the returned
object is null. This eliminates the nasty null checks from your code to keep it as clean as
possible. The last part triggers the rendering. The argument handed over (you can choose
an arbitrary amount of arguments) can be referenced in the HTML template under the name
you put in the render() method. If you used render(userObj) you could reference it as
userObj in the template.

The template contains lots of information in the four lines of code. First, Play template specific
tags always use a #{} notation. Second, Play templates support some sort of inheritance with
the #{extends} tag, as the main.html has been chosen here as a template into which the
rest of the code is embedded. Third, you can set variables in this template, which are parsed
in the main.html template, like the variable title, which is set in line two. Lastly you can
easily output fields from the user object by writing the name of the object inside the template
and its field name. As already done before, the field is not accessed directly, but the getter
is called.

There's more...
Templating is covered fairly well in the documentation and in the example, so be sure to check
it out.

Check out more possible template tags
There are more than two dozen predefined tags which can be used. Most of them are pretty
simple, but still powerful. There is a special #{a} tag for creating links, which inserts real
URLs from a controller action. There are of course #{if} structures and #{list} tags, form
helper tags, i18n and JavaScripts helpers, as well as template inheriting tags and some more:

http://www.playframework.org/documentation/1.2/tags

Check out more predefined variables
There are some variables which are always defined inside a template, which help you to
access data that are always needed without putting it explicitly into the render call. For
example, request, session, params, errors, out, messages, flash, and lang. You
can have a look at the documentation for more details:

http://www.playframework.org/documentation/1.2/templates#implicits

Supporting multiple formats
There are also more predefined render() methods with different output formats than
HTML defined. Most known are renderText(), renderXML(), renderJSON(), and
renderBinary() for images. Be aware that all of these methods do not use templates,
but write out the result directly to the client without invoking any template specific code.

Basics of the Play Framework

22

See also
It is very easy to write your own tags, so be sure to follow the next recipe as well as get some
information about mixins, which allows you to define some more logic for displaying
data without changing it in the model; for example, replacing the last digits with XXX for
privacy issues.

Furthermore, a recipe with an own renderRSS() is shown as last recipe in Chapter 2, which
is about controllers.

Writing your own tags
In order to keep repetitive tasks in your template short, you can easily define your own tags. As
all you need to know is HTML and the built-in templating language, even pure web developers
without backend knowledge can do this.

Getting ready
In this example, we will write a small tag called #{loginStatus /}, which will print the
username or write a small note, that the user is not logged in. This is a standard snippet,
which you might include in all of your pages, but do not want to write over again.

How to do it...
The following logic is assumed in the controller, here in Application.java:

public static void login(String login, String password) {
 User user = User.find("byLoginAndPassword", login, password).
 first();
 notFoundIfNull(user);
 session.put("login", user.login);
}

A new tag needs to be created in app/views/tags/loginStatus.html:

<div class="loginStatus">
#{if session.login}
Logged in as ${session.login}
#{/if}
#{else}
Not logged in
#{/else}
</div>

Chapter 1

23

Using it in your own templates is now easy, just put the following in your templates:

#{loginStatus /}

How it works...
The controller introduces the concept of state in the web application by putting something
in the session. The parameters of the login method have been (if not specified in routes file)
constructed from the request parameters. In this case, from a request, which has most likely
been a form submit. Upon calling the controller, the user is looked up in the database and
the user's login name is stored in the session, which in turn is stored on the client side in an
encrypted cookie.

Every HTML file in the app/views/tags directory is automatically used as a tag, which
makes creating tags pretty simple. The tag itself is quite self explanatory, as it just checks
whether the login property is set inside the session.

As a last word about sessions, please be aware that the session referenced in the code is
actually not a HttpSession as in almost all other Java based frameworks. It is not an object
stored on the server side, but rather its contents are stored as an encrypted cookie on the
client side. This means you cannot store an arbitrary amount of data in it.

There's more...
You should use tags whenever possible instead of repeating template code. If you need more
performance you can even write them in Java instead of using the templating language.

Using parameters and more inside tags
The preceding discussion was the absolute basic usage of tag. It can get somewhat more
complex by using parameters or the same sort of inheritance, which is also possible with
templates.

Check out http://www.playframework.org/documentation/1.2/templates#tags
for more about this topic.

Higher rendering performance by using FastTags
If you need more performance, there is a mechanism called FastTags inside of Play. These
tags are actually compiled, as they are written in pure Java. This speeds up execution time.
Most of the native supported tags are FastTags in order to keep performance high. For
example, take a look at your Play installation inside samples-and-tests/just-test-
cases/app/utils/MyTags.java and you will see that these tags are also very simple
to implement.

Basics of the Play Framework

24

See also
Keep on reading the next recipe, where we will reformat a Date type from boring numbers
to a string without using a tag, but a so-called extension.

Using Java Extensions to format data in
your views

Java Extensions are a very nice helper inside your templates, which will help you to keep
your template code as well as your model code clean from issues such as data formatting.
Reformatting values such as dates is a standard problem at the view layer for most web
developers. For example, the problem of having a date with millisecond exactness, though
only the year should be printed. This is where these extensions start. Many web developers
also do this by using JavaScript, but this often results in code duplication on frontend
and backend.

This recipe shows a pretty common example, where a date needs to be formatted to show
some relative date measured from the current time. This is very common in the Twitter
timeline, where every Tweet in the web interface has no correct date, but merely a "n hours
ago" or "n days ago" flag.

Getting ready
Just create a tiny application. You will need to create a new application and add a database
to the application configuration, so entities can be specified.

How to do it...
You need a route to show your tweets in conf/routes:

GET /{username}/timeline Application.showTweet

After that we can model a tweet model class:

package models;

import java.util.Date;
import javax.persistence.Entity;
import play.data.validation.Max;
import play.db.jpa.Model;

@Entity

Chapter 1

25

public class Tweet extends Model {

 @Max(140) public String content;
 public Date postedAt;
 public User user;
}

As well as a simple user entity:

@Entity
public class User extends Model {

 @Column(unique=true)
 public String login;
}

The controller is quite short. It uses an alternative query for the 20 newest tweets, which is
more JPA like:

public static void showTweets(String username) {
 User user = User.find("byLogin", username).first();
 notFoundIfNull(user);
 List<Tweet> tweets = Tweet.find("user = ? order by postedAt
DESC", user).fetch(20);
 render(tweets, user);
}

The rendering code will look like this:

#{extends 'main.html' /}
#{set 'title'}${user.login} tweets#{/set}

#{list tweets, as:'tweet'}
<div><h3>${tweet.content}</h3> by ${tweet.user.login} at <i>${tweet.
postedAt.since()}</i></h3></div>
#{/list}

Now this code works. However, the since() Java Extension, which is built in with Play only
works when you hand over a date in the past as it calculates the difference from now. What
if you want to add a feature of a future tweet which is blurred, but will show a time when it
is shown? You need to hack up your own extensions to do this. Create a new class called
CustomExtensions in the extensions package inside your application directory (so the file
is ./app/extensions/CustomExtension.java)

public class CustomExtensions extends JavaExtensions {

 private static final long MIN = 60;

Basics of the Play Framework

26

 private static final long HOUR = MIN * 60;
 private static final long DAY = HOUR * 24;
 private static final long MONTH = DAY * 30;
 private static final long YEAR = DAY * 365;

 public static String pretty(Date date) {
 Date now = new Date();
 if (date.after(now)) {
	 long delta = (date.getTime() - now.getTime()) /
1000;

 if (delta < 60) {
 return Messages.get("in.seconds", delta,
 pluralize(delta));
 }

 if (delta < HOUR) {
 long minutes = delta / MIN;
 return Messages.get("in.minutes", minutes,
pluralize(minutes));
 }

 if (delta < DAY) {
 long hours = delta / HOUR;
 return Messages.get("in.hours", hours,
 pluralize(hours));
 }

 if (delta < MONTH) {
 long days = delta / DAY;
 return Messages.get("in.days", days,
pluralize(days));
 }

 if (delta < YEAR) {
 long months = delta / MONTH;
 return Messages.get("in.months", months,
 pluralize(months));
 }

 long years = delta / YEAR;
 return Messages.get("in.years", years,
pluralize(years));

Chapter 1

27

 } else {
 return JavaExtensions.since(date);
 }

 }
}

Update your ./app/conf/messages file for successful internationalization by appending
to it:

in.seconds = in %s second%s
in.minutes = in %s minute%s
in.hours = in %s hour%s
in.days = in %s day%s
in.months = in %s month%s
in.years = in %s year%s

The last change is to replace the template code to:

#{list tweets, as:'tweet'}
<div><h3>${tweet.content}</h3> by ${tweet.user.login} at <i>${tweet.
postedAt.pretty()}</i></h3></div>
#{/list}

How it works...
A lot of code has been written for an allegedly short example. The entity definitions, routes
configuration, and controller code should by now be familiar to you. The only new thing is the
call of ${tweet.postedAt.since()} in the template, which does call a standard Java
Extension already shipped with Play. When calling the since() method, you must make sure
that you called it on an object from the java.util.Date class. Otherwise, this extension will
not be found, as they are dependent on the type called on. What the since() method does,
is to reformat the boring date to a pretty printed and internationalized string, how long ago this
date is from the current time. However this functionality only works for dates in the past and
not for future dates.

Therefore the CustomExtensions class has been created with the pretty() method
in it. Every class which inherits from JavaExtensions automatically exposes its methods as
extension in your templates. The most important part of the pretty() method is actually
its signature. By marking the first parameter as type java.util.Date you define for which
data type this method applies. The logic inside the method is pretty straightforward as it
also reuses the code from the since() extension. The only unknown thing is the call to
Messages.get(), which just returns the string in the correct language, such as"3 days ago"
in English and "vor 3 Tagen" in German.

Last but not least, the template code is changed to use the new extension instead of since().

Basics of the Play Framework

28

There's more...
Java Extensions can be incredibly handy if used right. You should also make sure that this
area of your application is properly documented, so frontend developers know what to search
for, before trying to implement it somehow in the view layer.

Using parameters in extensions
It is pretty simple to use parameters as well, by extending the method with an arbitrary
amount of parameters like this:

public static void pretty(Date date, String name) {

Using it in the template is as simple as ${tweet.postedAt.pretty("someStr")}

Check for more built in Java Extensions
There are tons of useful helpers already built-in. Not only for dates, but also for currency
formatting, numbers, strings, or list. Check it out at http://www.playframework.org/
documentation/1.2/javaextensions.

Check for internationalization on plurals
Play has the great feature and possibility of definin a plural of internationalized strings, which
is incidentally also defined in the built-in JavaExtensions class.

Adding modules to extend your application
Modules are the way to implement reusability in your application. Code which does not belong
to your core functionality can be combined into a single module and also reused in other
applications, or maybe even made open source. Furthermore, there are already quite a lot of
modules in Play, and since the release of play 1.1, there is quite a rise of new modules every
week. Using other modules is actually pretty easy and requires only one command and one
configuration change to get it working.

Basically modules are Play applications themselves, so you are embedding another Play
application into your own.

Getting ready
In this example the "search" module is going to be installed. It is a great module which allows
you to integrate with Apache Lucene by just adding two annotations to your JPA models. From
then on you can do lightning fast queries instead of using your database for full text search
queries. However, if you want to install any module, you need to have an Internet connection
for the first installation. Furthermore, this search module is used as an example in this case;
there will be no implementation hits on using it. Please refer to the documentation for this.

Chapter 1

29

How to do it...
Check whether the module is already installed. This should be executed in the directory of a
Play application in order to return useful data:

play modules

Check whether the module you want to install is available:

play list-modules

Put this in your conf/dependencies.yml file:

require:
 - play
 - play -> search head

Then run play deps. After you have run and downloaded the module, you will have a
./modules/search-head directory in your application, which gets automatically loaded
on application startup.

When starting your application the next time you should see the following startup message:

10:58:48,825 INFO ~ Module search is available (/path/to/app/modules/
search-head)

The next alternative possibility of installing modules is deprecated!

In case you are using an older version of Play than version 1.2, there is another mechanism
to install a module, which needs further configuration. Make sure you are inside of the Play
application where you want to install the module:

play install search

You are asked whether you are sure you want to install the module, because you need
to check whether this module is compatible with the version of Play you are using. The
installation tries to install the latest version of the module, but you can choose the module
version in case you need an older one.

Follow the hint in the last line and put it into the conf/application.conf file:

module.search=${play.path}/modules/search-head

When starting your application the next time you should see the following startup message:

10:58:48,825 INFO ~ Module search is available (/home/alex/devel/
play/play-1.1/modules/search-head)

From now on you can use the module and its functionality in your code.

Basics of the Play Framework

30

How it works...
The steps are pretty straightforward as it is automated as much as possible. When calling
Play install, everything is downloaded as a big package from the Web, unpacked in your
Play installation (not your application) and from then on, ready to run in any Play web, once
enabled in the configuration. The main difference between the old and new way of adding
modules is the fact that the old mechanism stored the modules not in the application but
in the framework directory, where as the new mechanism only stores modules inside of the
application directory.

There's more...
Many modules require additional configuration in the conf/application.conf file. For
example, if you install a module which persists your models in a MongoDB database, you
will need to configure the database connection additionally. However, such cases are always
documented, so just check the module documentation in case.

Also if modules do not work, first check whether they work in your version of Play. If this is the
case, you should also file a bug report or inform the module maintainer. Many modules are
not maintained by the core developers of Play, but instead by users of the Play framework.

Module documentation
As soon as you have added a new module and it includes documentation (most modules
do), it will always be available in development mode under http://localhost:9000/@
documentation.

Updating modules
There is currently no functionality to update your modules automatically. This is something
you have to do manually. In order to keep it up-to-date you can either read the mailing list or
alternatively just check the source repository of the module. This should always be listed in
the module description page.

More on the search module
Go to http://www.playframework.org/modules/search-head/home for more
information about this module.

See also
If you are interested in modules, check out the Chapter 5, Introduction to Writing Modules
in this book. It also includes a recipe Using Solr for indexing, which takes up the search
topic again.

Chapter 1

31

Using Oracle or other databases with Play
This is just a quick recipe to show that any database with a JDBC driver can be used as
persistence storage in Play, though it has been mainly developed with MySQL in mind. The
most simple configuration of a database is to use the in memory H2 database by specifying
db=mem in the application.conf file. You can ensure persistence by specifying db=fs,
which also uses the H2 database. Both of these options are suitable for development mode
as well as automated test running. However, in other cases you might want to use a real SQL
database like MySQL or PostgreSQL.

How to do it...
Just add driver-specific configuration in your configuration file. In order to support PostgreSQL,
this is the way:

db.url=jdbc:postgresql:accounting_db
db.driver=org.postgresql.Driver

db.user=acct
db.pass=Bdgc54S

Oracle can also be configured without problems:

db.url=jdbc:oracle:thin:@db01.your.host:1521:tst-db01

db.driver=oracle.jdbc.driver.OracleDriver

How it works...
As the JDBC mechanism already provides a generic way to unify the access to arbitrary
databases, the complexity to configure different database is generally pretty low in Java.
Play supports this by only needing to configure the db.url and db.driver configuration
variables to have support for most databases, which provide a JDBC driver.

There's more...
You can even go further and configure your connection pool (if the JDBC driver has support for
that), reusing application server resources, or check whether changing your JPA dialect is also
needed when changing your default database.

Basics of the Play Framework

32

Using application server datasources
It is also possible to use datasources provided by the underlying application server, just put
the following line in your config file:

db=java:/comp/env/jdbc/myDatasource

Using connection pools
Connection pools are a very important feature to ensure a performant and resource saving
link to the database from your application. This means saving resources by not creating a new
TCP connection every time you issue a query. Most JDBC drivers come with this out of the box,
but you can also tweak the settings in your config file:

db.pool.timeout=1000
db.pool.maxSize=30
db.pool.minSize=10

Configuring your JPA dialect
It might also be necessary to configure your JPA dialect for certain databases. As Play uses
hibernate, you need to specify a hibernate dialect:

jpa.dialect=org.hibernate.dialect.Oracle10gDialect

For more information about dialects, check out http://docs.jboss.org/hibernate/
core/3.3/reference/en/html/session-configuration.html#configuration-
optional-dialects.

Understanding suspendable requests
Most web frameworks bind an incoming HTTP request via the servlet to a thread. However,
this means that each connection requires a thread, resulting in 300 concurrent connections
needing 300 threads. Often, having that many threads does not scale when switching
threads. This means that the computation time to manage threads and grant resources to
them in a synchronized and fair mode increases with the amount of threads. Especially, when
you consider the fact that most web connections are blocking and are waiting for something
to happen in the background, like persisting an entity or executing another web request.
This means that you can keep a small thread pool for accepting HTTP requests and have a
bigger thread pool for executing business logic. Here comes the feature of continuations and
suspendable requests into Play.

Chapter 1

33

Getting ready
In order to have a simple test, you could create a small application which creates a big PDF
report. Then access the URL mapped to the PDF report creation more often simultaneous
than you have CPU cores. So you would have to request this resource three times at once
on a duo core machine. You will see that a maximum two HTTP connections are executed
simultaneously; in development mode it will be only one, regardless of your CPU count.

How to do it...
Play 1.2 introduces a new feature called continuations, which allows transparent suspension
of threads including recovery without writing any additional code to do this:

public static void generateInvoice(Long orderId) {
 Order order = Order.findById(orderId);
 InputStream is = await(new OrderAsPdfJob(order).now());
 renderBinary(is);
}

Of course, the OrderAsPdfJob needs a signature like this:

public void OrderAsPdfJob extends Job<InputStream> {

 public InputStreamdoJobWithResult() {
 // logic goes here
 }
}

There is an alternative approach in play before version 1.2, which
needed a little bit more core but still allowed asynchronous and
non thread bound code execution.

You can suspend your logic for a certain amount of time like this:

public static void stockChanges() {
 List<Stock> stocks = Stock.find("date > ?", request.date).fetch();
 if (stocks.isEmpty()) {
 suspend("1s");
 }
renderJSON(stocks);
}

Basics of the Play Framework

34

Alternatively, you can wait until a certain job has finished its business logic:

public static void generateInvoice(Long orderId) {
 if(request.isNew) {
 Order order = Order.findById(orderId);
 Future<InputStream> task = new OrderAsPdfJob(order).now();
 request.args.put("task", task);
 waitFor(task);
 }
 renderBinary((Future<InputStream>)request.args.get("task").get());
}

How it works...
Following the three lines of code in the first example, you see that there is actually no
invocation telling the framework to suspend the thread. The await() method takes a
so-called Promise as argument, which is returned by the now() method of the job. A
Promise is basically a standard Java Future with added functionality for invocation
inside of the framework, when the task is finished.

The stockChanges() example is pretty self explanatory as it waits the defined amount of
time before it is called again. This means that the operation is only called again if there was no
updated stock available and it is very important it is called again from the beginning. Otherwise
it will happily render the JSON output and has to be triggered by the client again. As you can
see, this would be a pretty interesting starting point for implementing SLAs for your customers
in a stock rate application, as you could allow your premium customers quicker updates.

The second example takes another approach. The controller logic is actually run twice. In the
first run, the isNew parameter is true and starts a Play job to create the PDF of an invoice.
This parameter is automatically set by the framework depending on the status of the request
and gives the developer the possibility to decide what should happen next. The waitFor()
tells the framework to suspend here. Again, after the task is finished, the whole controller
method will be called again, but this time only the renderBinary() method is called as
isNew is false, which returns the result by calling get() on the Future type.

There's more...
Always think whether introducing such a suspended response is really what you want or
whether this just shows certain problems in your application design. Most of the time
such a mechanism is not needed.

Chapter 1

35

More about promises
Promises are documented in the javadoc at http://www.playframework.org/
documentation/api/1.2/index.html?play/libs/F.Promise.html as well as in
the play 1.2 release notes at http://www.playframework.org/documentation/1.2/
releasenotes-1.2#Promises. There are even better features like waiting for the end of
a list of promises or even waiting for only one result of a list of promises.

More about jobs
The job mechanism inside a Play is used to execute any business logic either on application
startup or on regular intervals and has not been covered yet. It is however pretty well
documented in the public documentation at http://www.playframework.org/
documentation/1.2/jobs.

More information about execution times
In order to find out whether parts of your business logic need such a suspendable
mechanism, use playstatus in your production application. You can check how long
each controller execution took in average and examine bottlenecks.

See also
The recipe Integration with Munin in Chapter 7 shows how to monitor your controller execution
times in order to make sure you are suspending the right requests.

Understanding session management
Whenever you read about Play, one of the first advantages you will hear is that it is stateless.
But what does this mean actually? Does it mean you do not have a session object, which can
be used to store data while a visitor is on your website? No, but you have to rethink the way
sessions are used.

Usually a session in a servlet-based web application is stored on a server side. This means,
every new web request is either matched to a session or a new one is created. This used
to happen in memory, but can also be configured to be written on disk in order to be able
to restart the servlet container without losing session data. In any scenario there will be
resources used on the server side to store data which belongs to a client.

Imagine a server environment with two servers receiving all HTTP connections. After the
session has been created on server A, some logic has to redirect the user with this session
always to server A, because otherwise a new session would have to be created on server
B without taking over the session data from server A. Alternatively, the sessions have to be
shared somehow. Both solutions require additional logic somewhere.

Basics of the Play Framework

36

Play goes the way of sharing the session, but in a slightly different way. First, the real session
used to identify the client is stored as a Cookie on the client. This cookie is encrypted and
cannot be tampered with. You can store data in this cookie; however, the maximum cookie
size is only 4KB. Imagine you want to store big data in this session, like a very large shopping
cart or a rendered graphic. This would not work.

Play has another mechanism to store big data, basically a dumb cache. Caches are good at
storing temporary data as efficient and fast accessible as possible. Furthermore, this allows
you to have a scaling caching server, as your application scales. The maximum session size is
4KB. If you need to store more data, just use a cache.

How to do it...
Use the session object inside the controller to write something into it. This is a standard task
during a login:

public static void login(String login, String password) {
 User user = User.find("byLoginAndPassword", login, password).
first();
 notFoundIfNull(user);
 session.put("login", user.login);
 index();
}

The session variable can now be accessed from any other controller method as long as it is
not deleted. This works for small content, like a login:

String login = session.get("login");

Now, you can also use the built-in cache functionality instead of the session to store data
on the server side. The cache allows you to put more data than the session maximum
of 4 kilobytes into the cache (for the sake of having a lot of data assume that you are a
subcontractor of Santa Claus, responsible for the EMEA region and constantly filling your
shopping cart without checking out):

Cache.set(login, shoppingCart, "20mn");

Querying is as easy as calling:

Cache.get(login)

Chapter 1

37

How it works...
Adding data to the session is as easy as using a regular session object. However, there is no
warning if there is data put into the session, which is bigger than the maximum allowed cookie
size. Unfortunately, the application will just break when getting the data out of the cookie, as
it is not stored in the cookie, and the session.get() call will always fail.

In order to avoid this problem, just use the Cache class for storing such data. You can also
add a date when the data should expire out of the cache.

There's more...
Caching is a very powerful weapon in the fight for performance. However, you always gain
performance at the cost of reducing the actuality of your data. Always decide what is more
important. If you can keep your data up-to-date by scaling out and adding more machines, this
might be more useful in some cases, than caching it. As easy as caching is, it should always
be the last resort.

Configuring different cache types
If you have a setup with several Play nodes, there is a problem if every instance uses its
own cache, as this can lead to data inconsistency among the nodes. Therefore, Play comes
with support to offload cache data to memcached instead of using the built-in Java-based
EhCache. You will not have to change any of your application code to change to memcached.
The only thing to change is the configuration file:

memcached=enabled
memcached.host=127.0.0.1:11211

Using the cache to offload database load
You can store arbitrary data in your cache (as long as it is serializable). This offers you the
possibility to store queries to your persistence engine in the cache. If 80 percent of your
website visits only hit the first page of your application, where the 10 most recent articles
are listed, it makes absolute sense to cache them for a minute or 30 seconds. However, you
should check whether it is really necessary as many databases are optimizing for this case
already; please check your implementation for that.

See also
There is a recipe on writing your own cache implementation in Chapter 4 called Writing your
own cache implementation, where Hazelcast is used to store data. In Chapter 3 there is also a
general recipe Basics of caching about caching different aspects of your application.

2
Using Controllers

In this chapter, we will cover:

ff URL routing using annotation-based configuration

ff Basics of caching

ff Using HTTP digest authentication

ff Generating PDFs in your controllers

ff Binding objects using custom binders

ff Validating objects using annotations

ff Adding annotation-based right checks to your controller

ff Rendering JSON output

ff Writing your own renderRSS method as controller output

Introduction
This chapter will help you to keep your controllers as clean as possible, with a well defined
boundary to your model classes. Always remember that controllers are really only a thin layer
to ensure that your data from the outside world is valid before handing it over to your models,
or something needs to be specifically adapted to HTTP. The chapter will start with some basic
recipes, but it will cover some more complex topics later on with quite a bit code, of course
mostly explained with examples.

Using Controllers

40

URL routing using annotation-based
configuration

If you do not like the routes file, you can also describe your routes programmatically by adding
annotations to your controllers. This has the advantage of not having any additional config
file, but also poses the problem of your URLs being dispersed in your code.

You can find the source code of this example in the examples/chapter2/annotation-
controller directory.

How to do it...
Go to your project and install the router module via conf/dependencies.yml:

require:
 - play
 - play -> router head

Then run playdeps and the router module should be installed in the modules/ directory of
your application. Change your controller like this:

@StaticRoutes({
 @ServeStatic(value="/public/", directory="public")
})
public class Application extends Controller {

 @Any(value="/", priority=100)
 public static void index() {
 forbidden("Reserved for administrator");
 }

 @Put(value="/", priority=2, accept="application/json")
 public static void hiddenIndex() {
 renderText("Secret news here");
 }

 @Post("/ticket")
 public static void getTicket(String username, String password) {
 String uuid = UUID.randomUUID().toString();
 renderJSON(uuid);
 }
}

Chapter 2

41

How it works...
Installing and enabling the module should not leave any open questions for you at this point.
As you can see in the controller, it is now filled with annotations that resemble the entries
in the routes.conf file, which you could possibly have deleted by now for this example.
However, then your application will not start, so you have to have an empty file at least.

The @ServeStatic annotation replaces the static command in the routes file. The
@StaticRoutes annotation is just used for grouping several @ServeStatic annotations
and could be left out in this example.

Each controller call now has to have an annotation in order to be reachable. The name of
the annotation is the HTTP method, or @Any, if it should match all HTTP methods. Its only
mandatory parameter is the value, which resembles the URI—the second field in the routes.
conf. All other parameters are optional. Especially interesting is the priority parameter,
which can be used to give certain methods precedence. This allows a lower prioritized catch-
all controller like in the preceding example, but a special handling is required if the URI is
called with the PUT method. You can easily check the correct behavior by using curl, a very
practical command line HTTP client:

curl -v localhost:9000/

This command should give you a result similar to this:

> GET / HTTP/1.1
> User-Agent: curl/7.21.0 (i686-pc-linux-gnu) libcurl/7.21.0
OpenSSL/0.9.8o zlib/1.2.3.4 libidn/1.18
> Host: localhost:9000
> Accept: */*
>

< HTTP/1.1 403 Forbidden
< Server: Play! Framework;1.1;dev
< Content-Type: text/html; charset=utf-8
< Set-Cookie: PLAY_FLASH=;Path=/
< Set-Cookie: PLAY_ERRORS=;Path=/
< Set-Cookie: PLAY_SESSION=0c7df945a5375480993f51914804284a3bb
ca726-%00___ID%3A70963572-b0fc-4c8c-b8d5-871cb842c5a2%00;Path=/
< Cache-Control: no-cache
< Content-Length: 32
<

<h1>Reserved for administrator</h1>

Using Controllers

42

You can see the HTTP error message and the content returned. You can trigger a PUT request
in a similar fashion:

curl -X PUT -v localhost:9000/

> PUT / HTTP/1.1
> User-Agent: curl/7.21.0 (i686-pc-linux-gnu) libcurl/7.21.0
OpenSSL/0.9.8o zlib/1.2.3.4 libidn/1.18
> Host: localhost:9000
> Accept: */*
>

< HTTP/1.1 200 OK
< Server: Play! Framework;1.1;dev
< Content-Type: text/plain; charset=utf-8
< Set-Cookie: PLAY_FLASH=;Path=/
< Set-Cookie: PLAY_ERRORS=;Path=/
< Set-Cookie: PLAY_SESSION=f0cb6762afa7c860dde3fe1907e8847347
6e2564-%00___ID%3A6cc88736-20bb-43c1-9d43-42af47728132%00;Path=/
< Cache-Control: no-cache
< Content-Length: 16

Secret news here

As you can see now, the priority has voted the controller method for the PUT method which is
chosen and returned.

There's more...
The router module is a small, but handy module, which is perfectly suited to take a first look
at modules and to understand how the routing mechanism of the Play framework works at its
core. You should take a look at the source if you need to implement custom mechanisms of
URL routing.

Mixing the configuration file and annotations is possible
You can use the router module and the routes file—this is needed when using modules as they
cannot be specified in annotations. However, keep in mind that this is pretty confusing. You
can check out more info about the router module at http://www.playframework.org/
modules/router.

Chapter 2

43

Basics of caching
Caching is quite a complex and multi-faceted technique, when implemented correctly.
However, implementing caching in your application should not be complex, but rather the
mindwork before, where you think about what and when to cache, should be. There are
many different aspects, layers, and types (and their combinations) of caching in any web
application. This recipe will give a short overview about the different types of caching and
how to use them.

You can find the source code of this example in the chapter2/caching-general directory.

Getting ready
First, it is important that you understand where caching can happen—inside and outside
of your Play application. So let's start by looking at the caching possibilities of the HTTP
protocol. HTTP sometimes looks like a simple protocol, but is tricky in the details. However,
it is one of the most proven protocols in the Internet, and thus it is always useful to rely on
its functionalities.

HTTP allows the caching of contents by setting specific headers in the response. There are
several headers which can be set:

ff Cache-Control: This is a header which must be parsed and used by the client and
also all the proxies in between.

ff Last-Modified: This adds a timestamp, explaining when the requested resource had
been changed the last time. On the next request the client may send an If-Modified-
Since header with this date. Now the server may just return a HTTP 304 code without
sending any data back.

ff ETag: An ETag is basically the same as a Last-Modified header, except it has a
semantic meaning. It is actually a calculated hash value resembling the resource
behind the requested URL instead of a timestamp. This means the server can decide
when a resource has changed and when it has not. This could also be used for some
type of optimistic locking.

So, this is a type of caching on which the requesting client has some influence on. There
are also other forms of caching which are purely on the server side. In most other Java web
frameworks, the HttpSession object is a classic example, which belongs to this case.

Play has a cache mechanism on the server side. It should be used to store big session data,
in this case any data exceeding the 4KB maximum cookie size. Be aware that there is a
semantic difference between a cache and a session. You should not rely on the data being
in the cache and thus need to handle cache misses.

Using Controllers

44

You can use the Cache class in your controller and model code. The great thing about it is
that it is an abstraction of a concrete cache implementation. If you only use one node for your
application, you can use the built-in ehCache for caching. As soon as your application needs
more than one node, you can configure a memcached in your application.conf and there
is no need to change any of your code.

Furthermore, you can also cache snippets of your templates. For example, there is no need
to reload the portal page of a user on every request when you can cache it for 10 minutes.

This also leads to a very simple truth. Caching gives you a lot of speed and might even lower
your database load in some cases, but it is not free. Caching means you need RAM, lots
of RAM in most cases. So make sure the system you are caching on never needs to swap,
otherwise you could read the data from disk anyway. This can be a special problem in cloud
deployments, as there are often limitations on available RAM.

The following examples show how to utilize the different caching techniques. We will show four
different use cases of caching in the accompanying test. First test:

public class CachingTest extends FunctionalTest {

 @Test
 public void testThatCachingPagePartsWork() {
 Response response = GET("/");
 String cachedTime = getCachedTime(response);
 assertEquals(getUncachedTime(response), cachedTime);

 response = GET("/");
 String newCachedTime = getCachedTime(response);
 assertNotSame(getUncachedTime(response), newCachedTime);
 assertEquals(cachedTime, newCachedTime);
 }

 @Test
 public void testThatCachingWholePageWorks() throws Exception {
 Response response = GET("/cacheFor");
 String content = getContent(response);
 response = GET("/cacheFor");
 assertEquals(content, getContent(response));
 Thread.sleep(6000);
 response = GET("/cacheFor");
 assertNotSame(content, getContent(response));
 }

 @Test
 public void testThatCachingHeadersAreSet() {

Chapter 2

45

 Response response = GET("/proxyCache");
 assertIsOk(response);
 assertHeaderEquals("Cache-Control", "max-age=3600", response);
 }

 @Test
 public void testThatEtagCachingWorks() {
 Response response = GET("/etagCache/123");
 assertIsOk(response);
 assertContentEquals("Learn to use etags, dumbass!", response);

 Request request = newRequest();

 String etag = String.valueOf("123".hashCode());
 Header noneMatchHeader = new Header("if-none-match", etag);
 request.headers.put("if-none-match", noneMatchHeader);

 DateTime ago = new DateTime().minusHours(12);
 String agoStr = Utils.getHttpDateFormatter().format(ago.
 toDate());
 Header modifiedHeader = new Header("if-modified-since",
 agoStr);
 request.headers.put("if-modified-since", modifiedHeader);

 response = GET(request, "/etagCache/123");
 assertStatus(304, response);
 }

 private String getUncachedTime(Response response) {
 return getTime(response, 0);
 }

 private String getCachedTime(Response response) {
 return getTime(response, 1);
 }

 private String getTime(Response response, intpos) {
 assertIsOk(response);
 String content = getContent(response);
 return content.split("\n")[pos];
 }
}

Using Controllers

46

The first test checks for a very nice feature. Since play 1.1, you can cache parts of a page,
more exactly, parts of a template. This test opens a URL and the page returns the current date
and the date of such a cached template part, which is cached for about 10 seconds. In the
first request, when the cache is empty, both dates are equal. If you repeat the request, the
first date is actual while the second date is the cached one.

The second test puts the whole response in the cache for 5 seconds. In order to ensure that
expiration works as well, this test waits for six seconds and retries the request.

The third test ensures that the correct headers for proxy-based caching are set.

The fourth test uses an HTTP ETag for caching. If the If-Modified-Since and If-None-
Match headers are not supplied, it returns a string. On adding these headers to the correct
ETag (in this case the hashCode from the string 123) and the date from 12 hours before,
a 302 Not-Modified response should be returned.

How to do it...
Add four simple routes to the configuration as shown in the following code:

GET / Application.index
GET /cacheFor Application.indexCacheFor
GET /proxyCache Application.proxyCache
GET /etagCache/{name} Application.etagCache

The application class features the following controllers:

public class Application extends Controller {

 public static void index() {
 Date date = new Date();
 render(date);
 }

 @CacheFor("5s")
 public static void indexCacheFor() {
 Date date = new Date();
 renderText("Current time is: " + date);
 }

 public static void proxyCache() {
 response.cacheFor("1h");
 renderText("Foo");
 }

Chapter 2

47

 @Inject
 private static EtagCacheCalculator calculator;

 public static void etagCache(String name) {
 Date lastModified = new DateTime().minusDays(1).toDate();
 String etag = calculator.calculate(name);
 if(!request.isModified(etag, lastModified.getTime())) {
 throw new NotModified();
 }
 response.cacheFor(etag, "3h", lastModified.getTime());
 renderText("Learn to use etags, dumbass!");
 }
}

As you can see in the controller, the class to calculate ETags is injected into the controller. This
is done on startup with a small job as shown in the following code:

@OnApplicationStart
public class InjectionJob extends Job implements BeanSource {

 private Map<Class, Object>clazzMap = new HashMap<Class, Object>();

 public void doJob() {
 clazzMap.put(EtagCacheCalculator.class, new
 EtagCacheCalculator());
 Injector.inject(this);
 }

 public <T> T getBeanOfType(Class<T>clazz) {
 return (T) clazzMap.get(clazz);
 }
}

The calculator itself is as simple as possible:

public class EtagCacheCalculator implements ControllerSupport {

 public String calculate(String str) {
 return String.valueOf(str.hashCode());
 }
}

The last piece needed is the template of the index() controller, which looks like this:

Current time is: ${date}
#{cache 'mainPage', for:'5s'}
Current time is: ${date}
#{/cache}

Using Controllers

48

How it works...
Let's check the functionality per controller call. The index() controller has no special
treatment inside the controller. The current date is put into the template and that's it.
However, the caching logic is in the template here because not the whole, but only a part of
the returned data should be cached, and for that a #{cache} tag used. The tag requires two
arguments to be passed. The for parameter allows you to set the expiry out of the cache,
while the first parameter defines the key used inside the cache. This allows pretty interesting
things. Whenever you are in a page where something is exclusively rendered for a user (like
his portal entry page), you could cache it with a key, which includes the user name or the
session ID, like this:

#{cache 'home-' + connectedUser.email, for:'15min'}
${user.name}
#{/cache}

This kind of caching is completely transparent to the user, as it exclusively happens on
the server side. The same applies for the indexCacheFor() controller. Here, the whole
page gets cached instead of parts inside the template. This is a pretty good fit for non-
personalized, high performance delivery of pages, which often are only a very small portion
of your application. However, you already have to think about caching before. If you do a time
consuming JPA calculation, and then reuse the cache result in the template, you have still
wasted CPU cycles and just saved some rendering time.

The third controller call proxyCache() is actually the most simple of all. It just sets the
proxy expire header called Cache-Control. It is optional to set this in your code, because
your Play is configured to set it as well when the http.cacheControl parameter in
your application.conf is set. Be aware that this works only in production, and not in
development mode.

The most complex controller is the last one. The first action is to find out the last modified
date of the data you want to return. In this case it is 24 hours ago. Then the ETag needs
to be created somehow. In this case, the calculator gets a String passed. In a real-world
application you would more likely pass the entity and the service would extract some
properties of it, which are used to calculate the ETag by using a pretty-much collision-safe
hash algorithm. After both values have been calculated, you can check in the request
whether the client needs to get new data or may use the old data. This is what happens
in the request.isModified() method.

If the client either did not send all required headers or an older timestamp was used, real
data is returned; in this case, a simple string advising you to use an ETag the next time.
Furthermore, the calculated ETag and a maximum expiry time are also added to the
response via response.cacheFor().

Chapter 2

49

A last specialty in the etagCache() controller is the use of the EtagCacheCalculator.
The implementation does not matter in this case, except that it must implement the
ControllerSupport interface. However, the initialization of the injected class is still
worth a mention. If you take a look at the InjectionJob class, you will see the creation
of the class in the doJob() method on startup, where it is put into a local map. Also,
the Injector.inject() call does the magic of injecting the EtagCacheCalculator
instance into the controllers. As a result of implementing the BeanSource interface, the
getBeanOfType() method tries to get the corresponding class out of the map. The map
actually should ensure that only one instance of this class exists.

There's more...
Caching is deeply integrated into the Play framework as it is built with the HTTP protocol
in mind. If you want to find out more about it, you will have to examine core classes of
the framework.

More information in the ActionInvoker
If you want to know more details about how the @CacheFor annotation works in Play, you
should take a look at the ActionInvoker class inside of it.

Be thoughtful with ETag calculation
Etag calculation is costly, especially if you are calculating more then the last-modified stamp.
You should think about performance here. Perhaps it would be useful to calculate the ETag
after saving the entity and storing it directly at the entity in the database. It is useful to make
some tests if you are using the ETag to ensure high performance. In case you want to know
more about ETag functionality, you should read RFC 2616.

You can also disable the creation of ETags totally, if you set http.useETag=false in your
application.conf.

Use a plugin instead of a job
The job that implements the BeanSource interface is not a very clean solution to the
problem of calling Injector.inject() on start up of an application. It would be better to
use a plugin in this case.

See also
The cache in Play is quite versatile and should be used as such. We will see more about it in
all the recipes in this chapter. However, none of this will be implemented as a module, as it
should be. This will be shown in Chapter 6, Practical Module Examples.

Using Controllers

50

Using HTTP digest authentication
As support for HTTP, basic authentication is already built-in with Play. You can easily access
request.user and request.password in your controller as using digest authentication is
a little bit more complex. To be fair, the whole digest authentication is way more complex.

You can find the source code of this example in the chapter2/digest-auth directory.

Getting ready
Understanding HTTP authentication in general is quite useful, in order to grasp what is done in
this recipe. For every HTTP request the client wants to receive a resource by calling a certain
URL. The server checks this request and decides whether it should return either the content
or an error code and message telling the client to provide needed authentication. Now the
client can re-request the URL using the correct credentials and get its content or just do
nothing at all.

When using HTTP basic authentication, the client basically just sends some user/password
combination with its request and hopes it is correct. The main problem of this approach
is the possibility to easily strip the username and password from the request, as there are
no protection measures for basic authentication. Most people switch to an SSL-encrypted
connection in this case in order to mitigate this problem. While this is perfectly valid (and
often needed because of transferring sensitive data), another option is to use HTTP digest
authentication. Of course digest authentication does not mean that you cannot use SSL.
If all you are worrying about is your password and not the data you are transmitting, digest
authentication is just another option.

In basic authentication the user/password combination is sent in almost cleartext over the
wire. This means the password does not need to be stored as cleartext on the server side,
because it is a case of just comparing the hash value of the password by using MD5 or SHA1.
When using digest authentication, only a hash value is sent from client to server. This implies
that the client and the server need to store the password in cleartext in order to compute the
hash on both sides.

How to do it...
Create a user entity with these fields:

@Entity
public class User extends Model {

 public String name;
 public String password; // hashed password
 public String apiPassword; // cleartext password
}

Chapter 2

51

Create a controller which has a @Before annotation:

public class Application extends Controller {

 @Before
 static void checkDigestAuth() {
 if (!DigestRequest.isAuthorized(request)) {
 throw new UnauthorizedDigest("Super Secret Stuff");
 }
 }

 public static void index() {
 renderText("The date is " + new Date());
 }
}

The controller throws an UnauthorizedDigest exception, which looks like this:

public class UnauthorizedDigest extends Result {

 String realm;

 public UnauthorizedDigest(String realm) {
 this.realm = realm;
 }

 @Override
 public void apply(Request request, Response response) {
 response.status = Http.StatusCode.UNAUTHORIZED;
 String auth = "Digest realm=" + realm + ", nonce=" +
 Codec.UUID();
 response.setHeader("WWW-Authenticate", auth);
 }
}

The digest request handles the request and checks the authentication:

class DigestRequest {

 private Map<String,String>params = new HashMap<String,String>();
 private Request request;

 public DigestRequest(Request request) {
 this.request = request;
 }

Using Controllers

52

 public booleanisValid() {
...
 }

 public booleanisAuthorized() {
 User user = User.find("byName", params.get("username")).
 first();
 if (user == null) {
 throw new UnauthorizedDigest(params.get("realm"));
 }

 String digest = createDigest(user.apiPassword);
 return digest.equals(params.get("response"));
 }

 private String createDigest(String pass) {
...
 }

 public static booleanisAuthorized(Http.Request request) {
 DigestRequest req = new DigestRequest(request);
 return req.isValid() && req.isAuthorized();
 }
}

How it works...
As you can see, all it takes is four classes. The user entity should be pretty clear, as it only
exposes three fields, one being a login and two being passwords. This is just to ensure that
you should never store a user's master password in cleartext, but use additional passwords
if you implement some cleartext password dependant application.

The next step is a controller, which returns a HTTP 403 with the additional information
requiring HTTP digest authentication. The method annotated with the Before annotation
is always executed before any controller method as this is the perfect place to check for
authentication. The code checks whether the request is a valid authenticated request. If this
is not the case an exception is thrown. In Play, every Exception which extends from Result
actually can return the request or the response.

Taking a look at the UnauthorizedDigest class you will notice that it only changes
the HTTP return code and adds the appropriate WWW-Authenticate header. The WWW-
Authenticate header differs from the one used with basic authentication in two ways. First
it marks the authentication as "Digest", but it also adds a so-called nonce, which should be
some random string. This string must be used by the client to create the hash and prevents
bruteforce attacks by never sending the same user/password/nonce hash combination.

Chapter 2

53

The heart of this recipe is the DigestRequest class, which actually checks the request
for validity and also checks whether the user is allowed to authenticate with the credentials
provided or not. Before digging deeper, it is very useful to try the application using curl and
observing what the headers look like. Call curl with the following parameters:

curl --digest --user alex:test -v localhost:9000

The response looks like the following (unimportant output and headers have been stripped):

> GET / HTTP/1.1
> Host: localhost:9000
> Accept: */*
>

< HTTP/1.1 401 Unauthorized
< WWW-Authenticate: Digest realm=Super Secret Stuff, nonce=3ef81305-
745c-40b9-97d0-1c601fe262ab
< Content-Length: 0
<
* Connection #0 to host localhost left intact
* Issue another request to this URL: 'HTTP://localhost:9000'

> GET / HTTP/1.1
> Authorization: Digest username="alex", realm="Super Secret Stuff",
nonce="3ef81305-745c-40b9-97d0-1c601fe262ab", uri="/", response="6e97a
12828d940c7dc1ff24dad167d1f"
> Host: localhost:9000
> Accept: */*
>

< HTTP/1.1 200 OK
< Content-Type: text/plain; charset=utf-8
< Content-Length: 20
<
This is top secret!

Curl actually issues two requests. The first returns a 403 "not authorized" error, but also the
nonce, which is used together with the username and password in the second request to
create the response field inside the WWW-Authenticate header. As the client also sends the
nonce and the username inside the header, the server can reconstruct the whole response on
the server side. This means it is actually stateless and the server does not need to store any
data between two requests.

Using Controllers

54

Looking at the DigestRequest class, it is comprised of three core methods: isValid(),
isAuthorized(), and createDigest(). The isValid() method checks whether a
request contains all the needed data in order to be able to compute and compare the hash.
The isAuthorized() method does a database lookup of the user's cleartext password
and hands it over to the createDigest method, which computes the response hash and
returns true if the computed hash with the local password is the same as the hash sent in the
request. If they are not, the authentication has to fail.

The static DigestRequest.isAuthorized() method is a convenient method to keep the
code in the controller as short as possible.

There are two fundamental disadvantages in the preceding code snippet. First, it is
implementation dependent, because it directly relies on the user entity and the password field
of this entity. This is not generic and has to be adapted for each implementation. Secondly,
it only implements the absolute minimum subset of HTTP digest authentication. Digest
authentication is quite complex if you want to support it with all its variations and options.
There are many more options and authentication options, hashing algorithms, and optional
fields which have to be supported in order to be RFC-compliant. You should see this only
as a minimum starting point to get this going. Also this should not be thought of as secure,
because without an additional header called "qop", every client will switch to a less secure
mode. You can read more about that in RFC2069 and RFC2617.

There's more...
You can also verify this recipe in your browser by just pointing it to http://localhost:9000/.
An authentication window requiring you to enter username and password will popup.

Get more info about HTTP digest authentication
As this recipe has not even covered five percent of the specification, you should definitely read
the corresponding RFC at http://tools.ietf.org/html/rfc2617 as well as RFC2069
at http://tools.ietf.org/html/rfc2617.

See also
In order to be application-independent you could use annotations to mark the field of
the entity to be checked. The recipe Rendering JSON output will show you how to use an
annotation to mark a field not to be exported via JSON.

Chapter 2

55

Generating PDFs in your controllers
Generating binary content is a standard procedure in every web application, be it a
dynamic generated image such as a CAPTCHA or user-specific document such as an
invoice or an order confirmation. Play already supports the renderBinary() command
in the controller to send binary data to the browser, however this is quite low level.
This recipe shows how to combine the use of Apache FOP – which allows creation of PDF
data out of XML-based templates – and the Play built-in templating mechanism to create
customized PDF documents in real time.

You can find the source code of this example in the chapter2/pdf directory.

Getting ready
As there is already a PDF module included in Play, you should make sure you disable it in
your application in order to avoid clashes. This of course only applies, if it has already been
enabled before.

How to do it...
First you should download Apache FOP from http://www.apache.org/dyn/closer.
cgi/xmlgraphics/fop and unpack it into your application. Get the ZIP file and unzip it so
that there is a fop-1.0 directory in your application depending on your downloaded version.

Now you have to copy the JAR files into the lib/ directory, which is always included in the
classpath when your application starts.

cp fop-1.0/build/fop.jar lib/
cp fop-1.0/lib/*.jar lib/
cp fop-1.0/examples/fo/basic/simple.fo app/views/Application/index.fo
rm lib/commons*

Make sure to remove the commons JAR files from the lib directory, as Play already provides
them. In case of using Windows, you would have to use copy and del as commands instead
of the Unix commands cp and rm. Instead of copying these files manually you could also
add the entry to conf/dependencies.yml. However, you would have to exclude many
dependencies manually, which can be removed as well.

Create a dummy User model, which is rendered in the PDF:

public class User {

 public String name = "Alexander";
 public String description = "Random: " +
RandomStringUtils.randomAlphanumeric(20);
}

Using Controllers

56

You should now replace the content of the freshly copied app/views/Application/
index.fo file to resemble something from the user data like you would do it in a standard
HTML template file in Play:

<fo:block font-size="18pt"
 ...
 padding-top="3pt">
 ${user.name}
</fo:block>

<fo:block font-size="12pt"
 ...
 text-align="justify">
 ${user.description}
</fo:block>

Change the application controller to call renderPDF() instead of render():

import static pdf.RenderPDF.renderPDF;

public class Application extends Controller {

 public static void index() {
 User user = new User();
 renderPDF(user);
 }
}

Now the only class that needs to be implemented is the RenderPDF class in the
PDF package:

public class RenderPDF extends Result {

 private static FopFactoryfopFactory = FopFactory.
 newInstance();
 private static TransformerFactorytFactory =
 TransformerFactory.newInstance();
 private VirtualFiletemplateFile;

 public static void renderPDF(Object... args) {
 throw new RenderPDF(args);
 }

 public RenderPDF(Object ... args) {
 populateRenderArgs(args);

Chapter 2

57

 templateFile = getTemplateFile(args);
 }

 @Override
 public void apply(Request request, Response response) {
 Template template = TemplateLoader.load(templateFile);

 String header = "inline; filename=\"" + request.
actionMethod + ".pdf\"";
 response.setHeader("Content-Disposition", header);

 setContentTypeIfNotSet(response, "application/pdf");

 try {
 Fop fop = fopFactory.newFop(MimeConstants.MIME_PDF,
response.out);
 Transformer transformer = tFactory.
newTransformer();
 Scope.RenderArgsargs = Scope.RenderArgs.current();
 String content = template.render(args.data);
 InputStream is = IOUtils.toInputStream(content);
 Source src = new StreamSource(is);
 javax.xml.transform.Result res = new SAXResult(fop.
getDefaultHandler());
 transformer.transform(src, res);
 } catch (FOPException e) {
 Logger.error(e, "Error creating pdf");
 } catch (TransformerException e) {
 Logger.error(e, "Error creating pdf");
 }
 }

 private void populateRenderArgs(Object ... args) {
 Scope.RenderArgsrenderArgs = Scope.RenderArgs.current();
 for (Object o : args) {
 List<String> names = LocalVariablesNamesTracer.
getAllLocalVariableNames(o);
 for (String name : names) {
 renderArgs.put(name, o);
 }
 }
 renderArgs.put("session", Scope.Session.current());

Using Controllers

58

 renderArgs.put("request", Http.Request.current());
 renderArgs.put("flash", Scope.Flash.current());
 renderArgs.put("params", Scope.Params.current());
 renderArgs.put("errors", Validation.errors());
 }

 private VirtualFilegetTemplateFile(Object ... args) {
 final Http.Request request = Http.Request.current();
 String templateName = null;
 List<String>renderNames = LocalVariablesNamesTracer.getAll
LocalVariableNames(args[0]);
 if (args.length> 0 &&args[0] instanceof String
&&renderNames.isEmpty()) {
 templateName = args[0].toString();
 } else {
 templateName = request.action.replace(".", "/") +
".fo";
 }

 if (templateName.startsWith("@")) {
 templateName = templateName.substring(1);
 if (!templateName.contains(".")) {
 templateName = request.controller + "." +
templateName;
 }
 templateName = templateName.replace(".", "/") + ".fo";
 }

 VirtualFile file = VirtualFile.search(Play.templatesPath,
templateName);
 return file;
 }

}

How it works...
Before trying to understand how this example works, you could also fire up the included example
of this application under examples/chapter2/pdf and open http://localhost:9000/
which will show you a PDF that includes the user data defined in the entity.

When opening the PDF, an XML template is rendered by the Play template engine and
later processed by Apache FOP. Then it is streamed to the client. Basically, there is a new
renderPDF() method created, which does all this magic. This method is defined in the
pdf.RenderPDF class. All you need to hand over is a user to render.

Chapter 2

59

The RenderPDF is only a rendering class, similar to the DigestRequest class in the
preceding recipe. It consists of a static renderPDF() method usable in the controller
and of three additional methods.

The getTemplateFile() method finds out which template to use. If no template was
specified, a template with the name as the called method is searched for. Furthermore it is
always assumed that the template file has a .fo suffix. The VirtualFile class is a Play
helper class, which makes it possible to use files inside archives (like modules) as well. The
LocalVariablesNamesTracer class allows you to get the names and the objects that
should be rendered in the template.

The populateRenderArgs() method puts all the standard variables into the list of
arguments which are used to render the template, for example, the session or the request.

The heart of this recipe is the apply() method, which sets the response content type to
application/pdf and uses the Play built-in template loader to load the .fo template.
After initializing all required variables for ApacheFOP, it renders the template and hands the
rendered string over to the FOP transformer. The output of the PDF creation has been specified
when calling the FopFactory. It goes directly to the output stream of the response object.

There's more...
As you can see, it is pretty simple in Play to write your own renderer. You should do this
whenever possible, as it keeps your code clean and allows clean splitting of view and
controller logic. You should especially do this to ensure that complex code such as Apache
FOP does not sneak in to your controller code and make it less readable.

This special case poses one problem. Creating PDFs might be a long running task. However,
the current implementation does not suspend the request. There is a solution to use the
await() code from the controller in your own responses as seen in Chapter 1.

More about Apache FOP
Apache FOP is a pretty complex toolkit. You can create really nifty PDFs with it; however, it
has quite a steep learning curve. If you intend to work with it, read the documentation under
http://xmlgraphics.apache.org/fop/quickstartguide.html and check the
examples directory (where the index.fo file used in this recipe has been copied from).

Using other solutions to create PDFs
There are many other solutions, which might fit your needs better than one based on xsl-fo.
Libraries such as iText can be used to programmatically create PDFs. Perhaps even the PDF
module available in the module repository will absolutely fit your needs.

Using Controllers

60

See also
There is also the recipe Writing your own renderRSS method as controller output for writing
your own RSS renderer at the end of this chapter.

Binding objects using custom binders
You might already have read the Play documentation about object binding. As validation is
extremely important in any application, it basically has to fulfill several tasks.

First, it should not allow the user to enter wrong data. After a user has filled a form, he should
get a positive or negative feedback, irrespective of whether the entered content was valid or
not. The same goes for storing data. Before storing data you should make sure that storing
it does not pose any future problems as now the model and the view layer should make sure
that only valid data is stored or shown in the application. The perfect place to put such a
validation is the controller.

As a HTTP request basically is composed of a list of keys and values, the web framework
needs to have a certain logic to create real objects out of this argument to make sure the
application developer does not have to do this tedious task.

You can find the source code of this example in the chapter2/binder directory.

How to do it...
Create or reuse a class you want created from an item as shown in the following code snippet:

public class OrderItem {

 @Required public String itemId;
 public Boolean hazardous;
 public Boolean bulk;
 public Boolean toxic;
 public Integer piecesIncluded;

 public String toString() {
 return MessageFormat.format("{0}/{1}/{2}/{3}/{4}", itemId,
piecesIncluded, bulk, toxic, hazardous);
 }
}

Create an appropriate form snippet for the index.xml template:

#{form @Application.createOrder()}
<input type="text" name="item" />

<input type="submit" value="Create Order">
#{/form}

Chapter 2

61

Create the controller:

public static void createOrder(@Valid OrderItem item) {
 if (validation.hasErrors()) {
 render("@index");
 }

 renderText(item.toString());
}

Create the type binder doing this magic:

@Global
public class OrderItemBinder implements TypeBinder<OrderItem> {

 @Override
 public Object bind(String name, Annotation[] annotations, String
value,
 Class actualClass) throws Exception {

 OrderItem item = new OrderItem();
 List<String> identifier = Arrays.asList(value.split("-", 3));

 if (identifier.size() >= 3) {
 item.piecesIncluded = Integer.parseInt(identifier.get(2));
}

 if (identifier.size() >= 2) {
 int c = Integer.parseInt(identifier.get(1));
 item.bulk = (c & 4) == 4;
 item.hazardous = (c & 2) == 2;
 item.toxic = (c & 1) == 1;
 }

 if (identifier.size() >= 1) { item.itemId = identifier.get(0);
}

 return item;
 }
}

Using Controllers

62

How it works...
With the exception of the binder definition all of the preceding code has been seen earlier. By
working with the Play samples you already got to know how to handle objects as arguments
in controllers. This specific example creates a complete object out of a simple String. By
naming the string in the form value (<input …name="item" />) the same as the controller
argument name (createOrder(@Valid OrderItem item)) and using the controller
argument class type in the OrderItemBinder definition (OrderItemBinder implements
TypeBinder<OrderItem>), the mapping is done.

The binder splits the string by a hyphen, uses the first value for item ID, the last for
piìesIncluded, and checks certain bits in order to set some Boolean properties.

By using curl you can verify the behavior very easily as shown:

curl -v -X POST --data "item=Foo-3-5" localhost:9000/order

Foo/5/false/true/true

Here Foo resembles the item ID, 5 is the piecesIncluded property, and 3 is the argument
means that the first two bits are set and so the hazardous and toxic properties are set, while
bulk is not.

There's more...
The TypeBinder feature has been introduced in Play 1.1 and is documented at http://
www.playframework.org/documentation/1.2/controllers#custombinding.

Using type binders on objects
Currently, it is only possible to create objects out of one single string with a TypeBinder. If
you want to create one object out of several submitted form values you will have to create your
own plugin for this as workaround. You can check more about this at:

http://groups.google.com/group/play-framework/browse_thread/
thread/62e7fbeac2c9e42d

Be careful with JPA using model classes
As soon as you try to use model classes with a type binder you will stumble upon strange
behavior, as your objects will always only have null or default values when freshly instanced.
The JPA plugin already uses a binding and overwrites every binding you are doing.

Chapter 2

63

Validating objects using annotations
Basic validation should be clear for you now. It is well-documented in the official
documentation and shows you how to use the different annotations such as @Min, @Max,
@Url, @Email, @InFuture, @InPast, or @Range. You should go a step forward and add
custom validation. An often needed requirement is to create some unique string used as
identifier. The standard way to go is to create a UUID and use it. However, validation of the
UUID should be pretty automatic and you want to be sure to have a valid UUID in your models.

You can find the source code of this example in the chapter2/annotation-validation
directory.

Getting ready
As common practice is to develop your application in a test driven way, we will write an
appropriate test as first code in this recipe. In case you need more information about
writing and using tests in Play, you should read http://www.playframework.org/
documentation/1.2/test.

This is the test that should work:

public class UuidTest extends FunctionalTest {

 @Test
 public void testThatValidUuidWorks() {
 String uuid = UUID.randomUUID().toString();
 Response response = GET("/" + uuid);
 assertIsOk(response);
 assertContentEquals(uuid + " is valid", response);
 }

 @Test
 public void testThatInvalidUuidWorksNot() {
 Response response = GET("/absolutely-No-UUID");
 assertStatus(500, response);
 }
}

So whenever a valid UUID is used in the URL, it should be returned in the body and whenever
an invalid UUID has been used, it should return HTTP error 500.

Using Controllers

64

How to do it...
Add an appropriate configuration line to your conf/routes file:

GET /{uuid} Application.showUuid

Create a simple @UUID annotation, practically in its own annotations or validations package:

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.FIELD, ElementType.PARAMETER})
@Constraint(checkWith = UuidCheck.class)
public @interface Uuid {
 String message() default "validation.invalid.uuid";
}

Create the appropriate controller, which uses the @Uuid annotation:

public class Application extends Controller {

 public static void showUuid(@Uuid String uuid) {
 if (validation.hasErrors()) {
 flash.error("Fishy uuid");
 error();
 }

 renderText(uuid + " is valid");
 }
}

Create the check, which is triggered by the validation. You might want to put it into the
checks package:

public class UuidCheck extends AbstractAnnotationCheck<Uuid> {

 @Override
 public booleanisSatisfied(Object validatedObject, Object value,
 OValContext context, Validator validator)
 throws OValException {

 try {
 UUID.fromString(value.toString());
 return true;
 } catch (IllegalArgumentException e) {}

 return false;
 }
}

Chapter 2

65

How it works...
When starting your application via play test and going to http://localhost:9000/@
tests you should be able to run the UuidTest without problems.

Except the UuidCheck class, most of this here is old stuff. The Uuid annotation has two
specialties. First it references the UuidCheck with a constraint annotation and second you
can specify a message as argument. This message is used for internationalization.

The UuidCheck class is based on an Oval class. Oval is a Java library and used by the Play
framework for most of the validation tasks and can be pretty easily extended as you can see
here. All you need to implement is the isSatisfied() method. In this case it has tried to
convert a String to a UUID. If it fails, the runtime exception thrown by the conversion is caught
and false is returned, marking the check as invalid.

There's more...
The oval framework is pretty complex and the logic performed here barely scratches
the surface. For more information about oval, check the main documentation at
http://oval.sourceforge.net/.

Using the configure() method for setup
The AbstractAnnotationCheck class allows you to overwrite the configure(T object)
method (where T is generic depending on your annotation). This allows you to set up missing
annotation parameters with default data; for example, default values for translations. This is
done by many of the already included Play framework checks as well.

Annotations can be used in models as well
Remember that the annotation created above may also be used in your models, so you can
label any String as a UUID in order to store it in your database and to make sure it is valid
when validating the whole object.

@Uuid public String registrationUuid;

Adding annotation-based right checks
to your controller

Sooner or later any business application will have some login/logout mechanism and after
that there are different types of users. Some users are allowed to do certain things, others
are not. This can be solved via a check in every controller, but is way too much overhead. This
recipe shows a clean and fast (though somewhat limited) solution to creating security checks,
without touching anything of the business logic inside your controller.

Using Controllers

66

You can find the source code of this example in the chapter2/annotation-rights
directory.

Getting ready
Again we will start with a test, which performs several checks for security:

public class UserRightTest extends FunctionalTest {

 @Test
 public void testSecretsWork() {
 login("user", "user");
 Response response = GET("/secret");
 assertIsOk(response);
 assertContentEquals("This is secret", response);
 }

 @Test
 public void testSecretsAreNotFoundForUnknownUser() {
 Response response = GET("/secret");
 assertStatus(404, response);
 }

 @Test
 public void testSuperSecretsAreAllowedForAdmin() {
 login("admin", "admin");
 Response response = GET("/top-secret");
 assertIsOk(response);
 assertContentEquals("This is top secret", response);
 }

 @Test
 public void testSecretsAreDeniedForUser() {
 login("user", "user");
 Response response = GET("/top-secret");
 assertStatus(403, response);
 }

 private void login(String user, String pass) {
 String data = "username=" + user + "&password=" + pass;
 Response response = POST("/login",
 APPLICATION_X_WWW_FORM_URLENCODED, data);
 assertIsOk(response);
 }
}

Chapter 2

67

As you can see here, every test logs in with a certain user first, and then tries to access a
resource. Some are intended to fail, while some should return a successful access. Before
every access, a login is needed using the login() method. In case you wonder why a simple
HTTP request stores the returned login credentials for all of the next requests, this is actually
done by the logic of the FunctionalTest, which stores all returned cookies from the login
request during the rest of the test.

How to do it...
Add the needed routes:

POST /login Application.login
GET /secret Application.secret
GET /top-secret Application.topsecret

Create User and Right entities:

@Entity
public class User extends Model {

 public String username;
 public String password;
 @ManyToMany
 public Set<Right> rights;

 public booleanhasRight(String name) {
 Right r = Right.find("byName", name).first();
 return rights.contains(r);
 }
}

A simple entity representing a right and consisting of a name is shown in the following code:

@Entity
public class Right extends Model {

 @Column(unique=true)
 public String name;
}

Create a Right annotation:

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface Right {
 String value();
}

Using Controllers

68

Lastly, create all the controller methods:

public class Application extends Controller {

 public static void index() {
 render();
 }

 @Before(unless = "login")
 public static void checkForRight() {
 String sessionUser = session.get("user");
 User user = User.find("byUsername", sessionUser).first();
 notFoundIfNull(user);

 Right right = getActionAnnotation(Right.class);
 if (!user.hasRight(right.value())) {
 forbidden("User has no right to do this");
 }
 }

 public static void login(String username, String password) {
 User user = User.find("byUsernameAndPassword", username,
password).first();

 if (user == null) {
 forbidden();
 }

 session.put("user", user.username);
 }

 @Right("Secret")
 public static void secret() {
 renderText("This is secret");
 }

 @Right("TopSecret")
 public static void topsecret() {
 renderText("This is top secret");
 }
}

Chapter 2

69

How it works...
Going through this step by step reveals surprisingly few new items, but rather a simple and
concise change at the core of each controller call. Neither the routes are new, nor the entity
definitions, or its possibility to create the hasRight() method. The only real new logic is
inside the controller. The logic here is not meant as business logic of your application but
rather permission checking. On the one hand every security aware controller has a @Right
annotation at its definition, which defines the required right as a text string.

On the other hand all the logic regard permissions is executed at the checkForRight()
method before every controller call. It inspects the annotation value and checks whether
the currently logged-in user has this specific annotation value as a right set using the
hasRight() method defined in the user entity.

There's more...
This is a pretty raw method to check for rights. It imposes several design weaknesses and
severe performance issues. But it is a start to go further.

Be flexible with roles instead of rights
The security model here is pretty weak. You should think of using roles on user level instead
of rights, and check these roles for the rights called. This allows you to create less fine-grained
permission checks such as a "Content editor" and a "publisher" role for example.

More speed with caching
The whole code presented here can be pretty slow. First you could cache the roles or rights of
a certain user. Furthermore you could cache the security right of the controller action and the
login credentials, which are looked up on every request.

Increased complexity with context-sensitive rights
The security checks compared here are very simple. If you want to have a right, then only the
owner of an object can change it, you are not completely off with the solution presented here.
You need to define more logic inside your controller call.

Check out the deadbolt module
There is a module which already does more checks and has more options than this example.
You should take a look at the deadbolt module at http://www.playframework.org/
modules/deadbolt. This module offers restrictions not only on the controller level, but also
inside Views. Deadbolt also provides arbitrary dynamic security, which allows you to provide
application-specific security strategies.

Using Controllers

70

Rendering JSON output
As soon as a web application consists of a very fast frontend, no or seldom complete page
reloads occur. This implies a complete rendering by the browser, which is one of the most time
consuming tasks when loading a webpage in the browser. This means you have to get the
data as fast as possible to the client. You can either send them as pre-rendered HTML, XML,
or JSON format. Sending the data in either JSON or XML means the application on the browser
side can render the data itself and decide how and when it should be displayed. This means
your application should be able to create JSON or XML-based responses.

As JSON is quite popular, this example will not only show you how to return the JSON
representation of an entity, but also how to make sure sensitive data such as a password
will not get sent to the user.

Furthermore some hypermedia content will be added to the response, like an URL where more
information can be found.

You can find the source code of this example in the chapter2/json-render-properties
directory.

Getting ready
Beginning with a test is always a good idea:

public class JsonRenderTest extends FunctionalTest {

 @Test
 public void testThatJsonRenderingWorks() {
 Response response = GET("/user/1");
 assertIsOk(response);

 User user = new Gson().fromJson(getContent(response), User.
class);
 assertNotNull(user);
 assertNull(user.password);
 assertNull(user.secrets);
 assertEquals(user.login, "alex");
 assertEquals(user.address.city, "Munich");
 assertContentMatch("\"uri\":\"/user/1\"", response);
 }
}

Chapter 2

71

This expects a JSON reply from the request and parses it into a User instance with the help
of gson, a JSON library from Google, which is also used by Play for serializing. As we want to
make sure that no sensitive data is sent, there is a check for nullified values of password and
secrets properties. The next check goes for a user property and for a nested property inside
another object. The last check has to be done by just checking for an occurrence of the string,
because the URL is not a property of the user entity and is dynamically added by the special
JSON serializing routine used in this example.

How to do it...
Create your entities first. This example consists of a user, an address, and a SuperSecretData
entity:

@Entity
public class User extends Model {

 @SerializedName("userLogin")
 public String login;
 @NoJsonExport
 public String password;
 @ManyToOne
 public Address address;
 @OneToOne
 public SuperSecretData secrets;

 public String toString() {
 return id + "/" + login;
 }
}

@Entity
public class Address extends Model {
 public String street;
 public String city;
 public String zip;
}

@Entity
public class SuperSecretData extends Model {
 public String secret = "foo";
}

Using Controllers

72

The controller is simple as well:

public static void showUser(Long id) {
 User user = User.findById(id);
 notFoundIfNull(user);
 renderJSON(user, new UserSerializer());
}

The last and most important part is the serializer used in the controller above:

public class UserSerializer implements JsonSerializer<User> {

 public JsonElement serialize(User user, Type type,
 JsonSerializationContext context) {
 Gsongson = new GsonBuilder()
 .setExclusionStrategies(new LocalExclusionStrategy())
 .create();

 JsonElementelem = gson.toJsonTree(user);
 elem.getAsJsonObject().addProperty("uri", createUri(user.id));
 return elem;
 }

 private String createUri(Long id) {
 Map<String,Object> map = new HashMap<String,Object>();
 map.put("id", id);
 return Router.reverse("Application.showUser", map).url;
 }

 public static class LocalExclusionStrategy implements
ExclusionStrategy {

 public booleanshouldSkipClass(Class<?>clazz) {
 return clazz == SuperSecretData.class;
 }

 public booleanshouldSkipField(FieldAttributes f) {
 return f.getAnnotation(NoJsonExport.class) != null;
 }
 }
}

Chapter 2

73

How it works...
The entities used in this example are simple. The only differences are the two annotations in
the User entity. First there is a SerializedNamed annotation, which uses the annotation
argument as field name in the json output – this annotation comes from the gson library.
The @NoJsonExport annotation has been specifically created in this example to mark
fields that should not be exported like a sensitive password field in this example. The address
field is only used as an example to show how many-to-many relations are serialized in the
JSON output.

As you might guess, the SuperSecretData class should mark the data as secret, so this
field should not be exported as well. However, instead of using an annotation, the functions
of the Google gson library will be utilized for this.

The controller call works like usual except that the renderJson() method gets a specific
serializer class as argument to the object it should serialize.

The last class is the UserSerializer class, which is packed with features, although it
is quite short. As the class implements the JsonSerializer class, it has to implement
the serialize() method. Inside of this method a gson builder is created, and a specific
exclusion strategy is added. After that the user object is automatically serialized by the
gson object. Lastly another property is added. This property is the URI of the showUser()
controller call, in this case something like /user/{id} . You can utilize the Play internal
router to create the correct URL.

The last part of the serializer is the ExclusionStrategy, which is also a part of the
gsonserializer. This strategy allows exclusion of certain types of fields. In this case the method
shouldSkipClass() excludes every occurrence of the SuperSecretData class, where the
method shouldSkipFields() excludes fields marked with the @NoJsonExport annotation.

There's more...
If you do not want to write your own JSON serializer you could also create a template ending
with .json and write the necessary data like in a normal HTML template. However there is
no automatic escaping, so you would have to take care of that yourself.

More about Google gson
Google gson is a pretty powerful JSON library. Once you get used to it and learn to utilize
its features it may help you to keep your code clean. It has very good support for specific
serializers and deserializers, so make sure you check out the documentation before trying
to build something for yourself. Read more about it at http://code.google.com/p/
google-gson/.

Using Controllers

74

Alternatives to Google gson
Many developers do not like the gson library at all. There are several alternatives. There is
a nice example of how to integrate FlexJSON. Check it out at http://www.lunatech-
research.com/archives/2011/04/20/play-framework-better-json-
serialization-flexjson.

Writing your own renderRSS method as
controller output

Nowadays, an almost standard feature of web applications is to provide RSS feeds,
irrespective of whether it is for a blog or some location-based service. Most clients can handle
RSS out of the box. The Play examples only carry an example with hand crafted RSS feeds
around. This example shows how to use a library for automatic RSS feed generation by getting
the newest 20 post entities and rendering it either as RSS, RSS 2.0 or Atom feed.

You can find the source code of this example in the chapter2/render-rss directory.

Getting ready
As this recipe makes use of the ROME library to generate RSS feeds, you need to download
ROME and its dependency JDOM first. You can use the Play dependency management feature
again. Put this in your conf/dependencies.yml:

require:
 - play

 - net.java.dev.rome -> rome 1.0.0

Now as usual a test comes first:

public classFeedTest extends FunctionalTest {

 @Test
 public void testThatRss10Works() throws Exception {
 Response response = GET("/feed/posts.rss");
 assertIsOk(response);
 assertContentType("application/rss+xml", response);
 assertCharset("utf-8", response);
 SyndFeed feed = getFeed(response);
 assertEquals("rss_1.0", feed.getFeedType());
 }

 @Test
 public void testThatRss20Works() throws Exception {
 Response response = GET("/feed/posts.rss2");

Chapter 2

75

 assertIsOk(response);
 assertContentType("application/rss+xml", response);
 assertCharset("utf-8", response);
 SyndFeed feed = getFeed(response);
 assertEquals("rss_2.0", feed.getFeedType());
 }

 @Test
 public void testThatAtomWorks() throws Exception {
 Response response = GET("/feed/posts.atom");
 assertIsOk(response);
 assertContentType("application/atom+xml", response);
 assertCharset("utf-8", response);
 SyndFeed feed = getFeed(response);
 assertEquals("atom_0.3", feed.getFeedType());
 }

 private SyndFeedgetFeed(Response response) throws Exception {
 SyndFeedInput input = new SyndFeedInput();
 InputSource s = new InputSource(IOUtils.toInputStream
 (getContent(response)));
 return input.build(s);
 }
}

This test downloads three different kinds of feeds, rss1, rss2, and atom feeds, and checks
the feed type for each. Usually you should check the content as well, but as most of it is made
up of random chars at startup, it is dismissed here.

How to do it...
The first definition is an entity resembling a post:

@Entity
public class Post extends Model {

 public String author;
 public String title;
 public Date createdAt;
 public String content;

 public static List<Post>findLatest() {
 return Post.findLatest(20);
 }

Using Controllers

76

 public static List<Post>findLatest(int limit) {
 return Post.find("order by createdAt DESC").fetch(limit);
 }
}

A small job to create random posts on application startup, so that some RSS content can be
rendered from application start:

@OnApplicationStart
public class LoadDataJob extends Job {

 // Create random posts
 public void doJob() {
 for (int i = 0 ; i < 100 ; i++) {
 Post post = new Post();
 post.author = "Alexander Reelsen";
 post.title = RandomStringUtils.
 randomAlphabetic(RandomUtils.nextInt(50));
 post.content = RandomStringUtils.
 randomAlphabetic(RandomUtils.nextInt(500));
 post.createdAt = new Date(new Date().getTime() +
 RandomUtils.nextInt(Integer.MAX_VALUE));
 post.save();
 }
 }
}

You should also add some metadata in the conf/application.conf file:

rss.author=GuybrushThreepwood
rss.title=My uber blog
rss.description=A blog about very cool descriptions

The routes file needs some controllers for rendering the feeds:

GET / Application.index
GET /feed/posts.rss Application.renderRss
GET /feed/posts.rss2 Application.renderRss2
GET /feed/posts.atom Application.renderAtom
GET /post/{id} Application.showPost

The Application controller source code looks like this:

import static render.RssResult.*;

public class Application extends Controller {

 public static void index() {

Chapter 2

77

 List<Post> posts = Post.findLatest(100);
 render(posts);
 }

 public static void renderRss() {
 List<Post> posts = Post.findLatest();
 renderFeedRss(posts);
 }

 public static void renderRss2() {
 List<Post> posts = Post.findLatest();
 renderFeedRss2(posts);
 }

 public static void renderAtom() {
 List<Post> posts = Post.findLatest();
 renderFeedAtom(posts);
 }

 public static void showPost(Long id) {
 List<Post> posts = Post.find("byId", id).fetch();
 notFoundIfNull(posts);
 renderTemplate("Application/index.html", posts);
 }
}

You should also adapt the app/views/Application/index.html template to show
posts and to put the feed URLs in the header to make sure a browser shows the RSS logo
on page loading:

#{extends 'main.html' /}
#{set title:'Home' /}
#{set 'moreHeaders' }
<link rel="alternate" type="application/rss+xml" title="RSS 1.0 Feed"
href="@@{Application.renderRss2()}" />
<link rel="alternate" type="application/rss+xml" title="RSS 2.0 Feed"
href="@@{Application.renderRss()}" />
<link rel="alternate" type="application/atom+xml" title="Atom Feed"
href="@@{Application.renderAtom()}" />
#{/set}

#{list posts, as:'post'}
<div>
<h1>#{a @Application.showPost(post.id)}${post.title}#{/a}</h1>

by ${post.author} at ${post.createdAt.format()}
<div>${post.content.raw()}</div>
</div>
#{/list}

Using Controllers

78

You also have to change the default app/views/main.html template, from which all other
templates inherit to include the moreHeaders variable:

<html>
 <head>
 <title>#{get 'title' /}</title>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 #{get 'moreHeaders' /}
 <link rel="shortcut icon" type="image/png" href="@{'/public/
images/favicon.png'}">
 </head>
 <body>
 #{doLayout /}
 </body>
</html>

The last part is the class implementing the different renderFeed methods. This is again
a Result class:

public class RssResult extends Result {

 private List<Post> posts;
 private String format;

 public RssResult(String format, List<Post> posts) {
 this.posts = posts;
 this.format = format;
 }

 public static void renderFeedRss(List<Post> posts) {
 throw new RssResult("rss", posts);
 }

 public static void renderFeedRss2(List<Post> posts) {
 throw new RssResult("rss2", posts);
 }

 public static void renderFeedAtom(List<Post> posts) {
 throw new RssResult("atom", posts);
 }

 public void apply(Request request, Response response) {
 try {
 SyndFeed feed = new SyndFeedImpl();
 feed.setAuthor(Play.configuration.getProperty
 ("rss.author"));

Chapter 2

79

 feed.setTitle(Play.configuration.getProperty
 ("rss.title"));
 feed.setDescription(Play.configuration.getProperty
 ("rss.description"));
 feed.setLink(getFeedLink());

 List<SyndEntry> entries = new ArrayList<SyndEntry>();
 for (Post post : posts) {
 String url = createUrl("Application.showPost", "id",
 post.id.toString());
 SyndEntry entry = createEntry(post.title, url,
 post.content, post.createdAt);
 entries.add(entry);
 }

 feed.setEntries(entries);

 feed.setFeedType(getFeedType());
 setContentType(response);

 SyndFeedOutput output = new SyndFeedOutput();
 String rss = output.outputString(feed);
 response.out.write(rss.getBytes("utf-8"));
 } catch (Exception e) {
 throw new UnexpectedException(e);
 }
 }

 private SyndEntrycreateEntry (String title, String link, String
description, Date createDate) {
 SyndEntry entry = new SyndEntryImpl();
 entry.setTitle(title);
 entry.setLink(link);
 entry.setPublishedDate(createDate);

 SyndContententryDescription = new SyndContentImpl();
 entryDescription.setType("text/html");
 entryDescription.setValue(description);

 entry.setDescription(entryDescription);

 return entry;
 }

 private void setContentType(Response response) {
 ...
 }

Using Controllers

80

 private String getFeedType() {
 ...
 }

 private String getFeedLink(){
 ...
 }

 private String createUrl(String controller, String key, String
value) {
 ...
 }
}

How it works...
This example is somewhat long at the end. The post entity is a standard model entity with a
helper method to find the latest posts. The LoadDataJob fills the in-memory database on
startup with hundreds of random posts.

The conf/routes file features showing an index page where all posts are shown, as well as
showing a specific post and of course showing all three different types of feeds.

The controller makes use of the declared findLatest() method in the post entity to get the
most up-to-date entries. Furthermore the showPost() method also utilizes the index.html
template so you do not need to create another template to view a single entry. All of the used
renderFeed methods are defined in the FeedResult class.

The index.html template file features all three feeds in the header of the template. If you
take a look at app/views/main.html, you might notice the inclusion of the moreHeaders
variable in the header. Using the @@ reference to a controller in the template creates absolute
URLs, which can be utilized by any browser.

The FeedResult class begins with a constructor and the three static methods used in the
controller, which render RSS, RSS 2.0, or Atom feeds appropriately.

The main work is done in the apply() method of the class. A SyndFeed object is
created and filled with meta information like blog name and author defined in the
application.conf file.

After that a loop through all posts generates entries, each including the author, content, title,
and the generated URL. After setting the content type and the feed type—RSS or atom—the
data is written to the response output stream.

Chapter 2

81

The helper methods have been left out to save some lines inside this example. The
setContentType() method returns a specific content type, which is different for RSS
and atom feeds. The getFeedType() method returns "rss_2.0", "rss_1.0", or "atom_0.3"
depending on the feed to be returned. The getFeedLink() method returns an absolute URL
for any of the three feed generating controller actions. The createUrl() method is a small
helper to create an absolute URL with a parameter which in this case is an ID. This is needed
to create absolute URLs for each post referenced in the feed.

The example also uses ROME to extract the feed data again in the test, which is not
something you should do to ensure the correct creation of your feed. Either use another
library, or, if you are proficient in checking corner cases by hand, do it manually.

There's more...
This is (as with most of the examples here) only the tip of the iceberg. Again, you could also
create a template to achieve this, if you wanted to keep it simple. The official documentation
lists some of the preparing steps to create your own templates ending with .rss at
http://www.playframework.org/documentation/1.2/routes#Customformats

Using annotations to make your code more generic
This implementation is implementation specific. You could make it far more generic with the
use of annotations at the Post entity:

@Entity
public class Post extends Model {

 @FeedAuthor
 public String author;
 @FeedTitle
 public String title;
 @FeedDate
 public Date createdAt;
 @FeedContent
 public String content;
}

Then you could change the render signature to the following:

 public RssResult(String format, List<? extends Object> data) {
 this.data = data;
 this.format = format;
 }

 public static void renderFeedRss(List<? extends Object> data) {
 throw new RssResult("rss", data);
 }

Using Controllers

82

By using the generics API you could check for the annotations defined in the Post entity and
get the content of each field.

Using ROME modules
ROME comes with a bunch of additional modules. It is pretty easy to add GeoRSS information
or MediaWiki-specific RSS. This makes it pretty simple to extend features of your feeds.

Cache at the right place
Especially RSS URLs are frequently under heavy loads – one misconfigured client type can
lead to some sort of denial of service attack on your system. So again a good advice is to
cache here. You could cache the SyndFeed object or the rss string created out of it. However,
since play 1.1 you could also cache the complete controller output. See Basics of caching at
the beginning of Chapter 4 for more information about that.

3
Leveraging Modules

In this chapter, we will cover:

ff Dependency injection with Spring

ff Dependency injection with Guice

ff Using the security module

ff Adding security to the CRUD module

ff Using the MongoDB module

ff Using MongoDB/GridFS to deliver files

Introduction
As the core of the Play framework strives to be as compact as possible, the aim is to offer
arbitrary possibilities of extension. This is what modules are for. They are small applications
inside your own application and allow easy and fast extension without bloating your own source
code. Modules can introduce feature-specific abilities such as adding a different persistence
mechanism, just helping your test infrastructure, or integrating other view techniques.

This chapter gives a brief overview of some modules and how to make use of them. It should
help you to speed up your development when you need to integrate existing tools and libraries.

In case you wonder why some of the well-known modules are not included, this is merely
because there is not much that could be added by giving them their own recipes. The GAE
and GWT modules, for example, already have a good basic documentation included.

Leveraging Modules

84

Dependency injection with Spring
The Spring framework has been released in 2003, and has been very successful in introducing
concepts such as dependency injections and aspect-oriented programming to a wider audience.
It is one of the most comprehensive and feature-complete frameworks in the Java ecosystem.
It is possible that you may need to use the Spring framework in your Play application, maybe in
order to reuse some components that have dependencies on the Spring API. In this case, the
Spring module will help you to integrate the two frameworks together easily.

Also, you might want to use some existing code from your application and just test some
features of Play. This is where the Spring module comes in very handy.

The source code of this recipe is available in the examples/chapter3/spring directory.

Getting ready
Create an application. Install the Spring module by adding it to the dependencies.yml file
and rerun playdeps. Optionally, you may need to rerun the command to generate your IDE
specific files. And, as usual, let's go test first. This example features a simple obfuscation
of a string by using a service to encrypt and decrypt it:

public class EncryptionTest extends FunctionalTest {

 @Test
 public void testThatDecryptionWorks() {
 Response response = GET("/decrypt?text=foo");
 assertIsOk(response);
 assertContentEquals("Doof", response);
 }

 @Test
 public void testThatEncryptionWorks() {
 Response response = GET("/encrypt?text=oof");
 assertIsOk(response);
 assertContentEquals("Efoo", response);
 }
}

How to do it...
Now let's define some encryption service in this example.

Create a conf/application-context.xml file, where you define your beans:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN""http://www.
springsource.org/dtd/spring-beans-2.0.dtd">

Chapter 3

85

<beans>
<bean id="encryptionService" class="spring.EncryptionServiceImpl" />
</beans>

Define two routes:

GET /encrypt Application.encrypt
GET /decrypt Application.decrypt

Define an EncryptionService interface and create a concrete implementation:

package spring;

public interface EncryptionService {
 public String encrypt(String clearText);
 public String decrypt(String cipherText);
}

It is true that this is not the strict definition of encryption, but it serves the purpose:

package spring;

public class EncryptionServiceImpl implements EncryptionService {

 @Override
 public String decrypt(String cipherText) {
 return "D" + StringUtils.reverse(cipherText);
 }

 @Override
 public String encrypt(String clearText) {
 return "E" + StringUtils.reverse(clearText);
 }
}

The last part is the controller:

public class Application extends Controller {

 public static void decrypt() {
 EncryptionService encService =
 Spring.getBeanOfType(EncryptionService.class);
 renderText(encService.decrypt(params.get("text")));
 }

 public static void encrypt() {
 EncryptionService encService =

Leveraging Modules

86

 Spring.getBeanOfType(EncryptionService.class);
 renderText(encService.encrypt(params.get("text")));
 }

}

How it works...
If you have worked with Spring before, most of the work is straightforward. After defining a
bean in the application context and implementing the interface, your Spring application is up
and running. The Play specific part is calling Spring.getBeanOfType() in the controller,
which returns the specific spring bean.

You can call Spring.getBeanOfType() either with the name of the bean as argument or
with a class you want to have return.

There's more...
Unfortunately, the Spring module (version 1.0 at the time of writing) does not yet support the
@Inject annotation. Furthermore, the Spring version used is 2.5.5, so you might need to
patch the module by replacing the jars in the lib directory of the module, before you Play
around with the spring integration.

Use the component scanning feature
If you do not want to create a Spring definition file at all, you can use annotations. Comment
out any bean definitions in the application-context file (but do not remove it!) and annotate the
service with the @Service annotation on class level.

Have Spring configurations per ID
If you have set a special ID via "play ID", you can also load a special context on startup. If your
ID is set to foo, create a conf/foo.application-context.xml Spring bean definition.

Direct access to the application context
You can use SpringPlugin.applicationContext to access the application context
anywhere in your application.

See also
If you like dependency injection and inversion of control, just read on to find out that Google
guice is also supported.

Chapter 3

87

Dependency injection with Guice
Guice is the new kid on the block in the context dependency injection field. It tries not to be
a complete stack like Spring, but merely a very useful addition, which does not carry grown
structures around like Spring does. It has been developed by Google and is used in some of
their applications, for example, in Google Docs, Adwords, and even YouTube.

The source code of this recipe is available in the chapter3/guice directory.

Getting ready
This example implements the same encryption service as the Spring example, so the only
thing that changes is actually the controller implementation. You should have installed the
Guice module by now, using the dependencies.yml file.

How to do it...
First a Guice module needs to be defined, where the interface is glued to the implementation:

public class GuiceModule extends AbstractModule {

 @Override
 protected void configure() {
 bind(EncryptionService.class).to(EncryptionServiceImpl.class);
 }
}

After that the controller can be written in the following way:

public class Application extends Controller {

 @Inject
 private static EncryptionService encService;

 public static void decrypt() {
 renderText(encService.decrypt(params.get("text")));
 }

 public static void encrypt() {
 renderText(encService.encrypt(params.get("text")));
 }
}

Leveraging Modules

88

How it works...
As you can see, the @Inject annotation helps to keep code outside of the controller
methods. This means any method can access the service object as it is defined as static.
This also implies that you should never store state in such an object, the same as with any
Spring bean. Also, be aware that you should import javax.inject.Inject and not the
com.google.inject.Inject class in to inject your service correctly.

There's more...
Now let's talk about some other options, or possibly some pieces of general information that
are relevant to this task.

Default @Inject support of play
The Guice module has basic support for the @Inject annotation, where you do not need to
specify a mapping from an interface to a concrete implementation in the class which extends
AbstractModule, like GuiceModule in this example. However, it works only for classes,
which are either a Job, a Mailer, or implement the ControllerSupport interface. The
following snippet would return the current date in a controller whenever it is called:

 @Inject
 private static DateInjector dater;

 public static void time() {
 renderText(dater.getDate());
 }

The DateInjector would be defined as the following:

public class DateInjector implements ControllerSupport {

 public Date getDate() {
 return new Date();
 }
}

Keep in mind that the class you are injecting is always a singleton. Never store some
kind of state inside its instance variables. Also this injection still needs to have the
Guice module loaded.

Creating own injectors
The Guice module also supports the creation of own injectors. Please check the official
documentation for more information as it is well described in there.

Chapter 3

89

Using the security module
One of the basic functions of an application is the need for authentication and authorization.
If you only have basic needs and checks, you can use the security module that is already
bundled with Play. This recipe shows simple use cases for it.

You can find the source code of this example in the chapter3/secure directory.

Getting ready
Create an application and put the security module in the configuration. Though you do need to
install the module, you do not need to specify a version because it is built in with the standard
Play distribution. The conf/dependencies.yml entry looks like the following:

require:
 - play
 - play -> secure

As usual, nothing is complete without a test, here it goes:

public class SecurityTest extends FunctionalTest {

 @Test
 public void testThatIndexPageNeedsLogin() {
 Response response = GET("/");
 assertStatus(302, response);
 assertLocationRedirect("/login", response);
 }

 @Test
 public void testThatUserCanLogin() {
 loginAs("user");
 Response response = GET("/");
 assertContentMatch("Logged in as user", response);
 }

 @Test
 public void testThatUserCannotAccessAdminPage() {
 loginAs("user");
 Response response = GET("/admin");
 assertStatus(403, response);
 }

Leveraging Modules

90

 @Test
 public void testThatAdminAccessAdminPage() {
 loginAs("admin");
 Response response = GET("/admin");
 assertStatus(302, response);
 }

 private void assertLocationRedirect(String location, Response
resp) {
 assertHeaderEquals("Location", "http://localhost"+location,
resp);
 }

 private void loginAs(String user) {
 Response response = POST("/login?username=" + user +
 "&password=secret");
 assertStatus(302, response);
 assertLocationRedirect("/", response);
 }
}

These four tests should validate the application behavior. First, you cannot access a page
without logging in. Second, after logging in as user you should be redirected to the login
page. The login page should contain the username. The third test checks to make sure that
the useruser may not get access to the admin page, while the fourth test verifies a valid
access for the admin user.

This test assumes some things, which are laid down in the implementation:

ff A user with name user and password secret is a valid login

ff A user with name admin and password secret is a valid login and may see the
admin page

ff Watching the admin page results in a redirect instead of really watching a page

You might be wondering why the Play server is running in port 9000, but there is no port
specified in the location redirect. The request object is created by the tests with port 80, as
default. The port number does not affect testing because any functional test calls the Java
methods inside of the Play framework directly instead of connecting via HTTP to it.

How to do it...
Let's list the steps required to complete the task. The routes file needs to include a reference
to the secure module:

* / module:secure
GET / Application.index
GET /admin Application.admin

Chapter 3

91

Only one single template is used in this example. The template looks like this:

#{extends 'main.html' /}
#{set title:'Home' /}

<h1>Logged in as ${session.username}</h1>

<div>
Go to #{a @Application.index()}index#{/a}

Go to #{a @Application.admin()}admin#{/a}
</div>

#{a @Secure.logout()}Logout#{/a}

The Controller looks like the following:

@With(Secure.class)
public class Application extends Controller {

 public static void index() {
 render();
 }

 @Check("admin")
 public static void admin() {
 index();
 }
}

The last part is to create a class extending the Secure class. This class is used as class
annotation in the controller. The task of this class is to implement a basic security check, which
does not allow login with any user/pass combination like the standard implementation does:

public class SimpleSecurity extends Secure.Security {

 static boolean authenticate(String username, String password) {
 return "admin".equals(username) &&"secret".equals(password) ||
 "user".equals(username) &&"secret".equals(password);
 }

 static boolean check(String profile) {
 if ("admin".equals(profile)) {
 return connected().equals("admin");
 }
 return false;

Leveraging Modules

92

 }

 static void onAuthenticated() {
 Logger.info("Login by user %s", connected());
 }
 static void onDisconnect() {
 Logger.info("Logout by user %s", connected());
 }
 static void onCheckFailed(String profile) {
 Logger.warn("Failed auth for profile %s", profile);
 forbidden();
 }
}

How it works...
A lot of explanation is needed for the SimpleSecurity class. It is absolutely necessary
to put this class into the controller package, otherwise no security checks will happen. The
routes configuration puts the secure module in front of all other URLs. This means that every
access will be checked, if the user is authenticated, with the exception of login and logout
of course.

The template shows the logged-in user, and offers a link to the index and to the administration
site as well as the possibility to log out.

The controller needs to have a @With annotation at class level. It is important here to refer
to the Secure class and not to your own written SimpleSecure class, as this will not work
at all.

Furthermore, the admin controller is equipped with a @Check annotation. This will make
the secure module perform an extra check to decide whether the logged-in user has the
needed credentials.

The most important part though is the SimpleSecure class, which inherits form Secure.
Security. The authenticate() method executes the check where the user is allowed to
log in. In the preceding example it only returns success (as in Boolean true) if the user logs in
with username admin or user and password secret in both cases.

Furthermore, there are three methods which are executed only when certain events happen,
in this case a successful login, a successful logout, and missing permissions even though
the user is logged in. This last case can happen only when the Check annotation is used on
a controller, like done in the admin() controller. Furthermore, the check() method in the
SimpleSecure class needs to be defined. In this case the check method performs two
checks. First, if the value inside of the check annotation was admin and the second if the
currently logged-in user is admin as well. So this check resembles the most simple admin
check that can be implemented.

Chapter 3

93

There's more...
This module has been kept as simple as possible intentionally. Whenever you need more
complex checks, this module might not be what you search for, and you should write
something similar yourself or extend the module to fit your needs. For more complex
needs, you should take a look at the deadbolt and secure permissions modules.

Declare only one security class
You should have only one class in your project which inherits from security. Due to the problem
that the classloader possibly loads classes randomly, Play always picks the first it finds. There
is no possibility to enforce which security class is used.

Implementing rights per controller with the secure module
In Chapter 2 there was an example where you could put certain rights via an annotation at a
controller. Actually, it is not too hard to implement the same using the secure module. Take a
few minutes and try to change the example in that way.

Adding security to the CRUD module
The CRUD module is the base of any rapid prototyping module. It helps you to administer
data in the backend, while still being quick to create a frontend that closely resembles your
prototype. For example, when creating an online shop, your first task is to create a nice looking
frontend. Still it would be useful if you could change some things such as product name,
description, or ID in the backend. This is where CRUD helps. However, there is no security
inside the CRUD module, so anyone can add or delete data. This is where the secure module
can help.

You can find the source code of this example in the chapter3/crud-secure directory.

Getting ready
You should already have added controllers for CRUD editing, as well as an infrastructure for
authentication or at least something similar to a user entity. If you do not know about this part,
you can read about it at http://www.playframework.org/documentation/1.2/crud.

How to do it...
You should have your own security implementation, something like this:

public class Security extends Secure.Security {

 static boolean authenticate(String username, String password) {

Leveraging Modules

94

 User user = User.find("byUserAndPassword", username, Crypto.
passwordHash(password)).first();
 return user != null;
 }

 static boolean check(String profile) {
 if ("admin".equals(profile)) {
 User user = User.find("byUser", connected()).first();
 if (user != null) {
 return user.isAdmin;
 }
 } else if ("user".equals(profile)) {
 return connected().equals("user");
 }
 return false;
 }
}

Adding users via CRUD should only be done by the admin:

@Check("admin")
@With(Secure.class)
public class Users extends CRUD {
}

However, creating Merchants should never be allowed for the admin, but only by
an authorized user. Deleting (most data on live systems will not be deleted anyway)
Merchants, however, should be an admin only task again:

@With(Secure.class)
public class Merchants extends CRUD {

 @Check("admin")
 public static void delete(String id) {
 CRUD.delete(id);
 }

 @Check("user")
 public static void create() throws Exception {
 CRUD.create();
 }
}

Chapter 3

95

How it works...
As you can see, you can easily secure complete controllers to be only accessible for logged-in
users. Furthermore you can also make only special controllers available for certain users.
As these methods are static, you are not able to call super() in them, but need to define
the static methods of the parent controller again and then manually call the methods of the
CRUD controller.

There's more...
CRUD should never be a big topic in your finished business application because your business
logic will be far more complex than adding or removing entities. However, it can be a base for
certain tasks. This is where more advanced aspects come in handy.

Changing the design of the CRUD user interface
You can use the play crud:ov --template Foo/bar command line call to copy the
template HTML code to Foo/bar.html, so you can edit it and adapt it to your corporate design.

Checking out the scaffold module
There is also the scaffold module you can take a look at. It generates controllers and templates
by inferring the information of your model classes when you run play scaffold:gen on the
command line. It currently works for JPA and Siena.

Using the MongoDB module
MongoDB is one of the many rising stars on the NoSQL horizon. MongoDB outperforms other
databases in development speed once you get used to thinking in data structures again
instead of somewhat more or less arbitrary split rows. If you do not use MongoDB, this recipe
will not help you at all.

You can find the source code of this example in the chapter3/booking-mongodb directory.

Getting ready
As there is already a wonderful and well known booking application, which is also used in
many other frameworks (Seam, Spring, ZK) as an example, we will take it in this example
and convert it to use MongoDB as its persistence backend. So, in order to get ready, copy
it from the samples-and-tests/booking directory of your Play installation directory to
somewhere else, and follow the steps outlined here.

Leveraging Modules

96

After copying the application, you should install the Morphia module by adding it to the
dependencies.yml file and rerun play deps. Then you are ready to convert the
application to store data into MongoDB using Morphia instead of using the native SQL
storage of Play.

Of course, you should have an up and running MongoDB instance. You can find some help
installing it at http://www.mongodb.org/display/DOCS/Quickstart.

How to do it...
The first part is to convert the models of the application to use Morphia instead of JPA
annotations. The simplest model is the user entity, which should look like this:

import play.modules.morphia.Model;
import com.google.code.morphia.annotations.Entity;

@Entity
public class User extends Model {

 @Required
 @MaxSize(15)
 @MinSize(4)
 @Match(value="^\\w*$", message="Not a valid username")
 public String username;

 @Required
 @MaxSize(15)
 @MinSize(5)
 public String password;

 @Required
 @MaxSize(100)
 public String name;

 public User(String name, String password, String username) {
 this.name = name;
 this.password = password;
 this.username = username;
 }

 public String toString() {
 return "User(" + username + ")";
 }

}

Chapter 3

97

In order to keep the recipe short, only the required changes will be outlined in the other
entities instead of posting them completely. No JPA annotations should be present in your
models following these changes. Always make sure you are correctly checking your imports
as the annotations' names are often the same.

Remove the @Temporal, @Table, @Column, @ManyToOne, @Entity JPA annotations from
the entities. You can replace @ManyToOne with @Reference in the Booking entity.

One last important point is to set the BigDecimal typed price to a Float type. This means
losing precision. You should not do this in live applications if you need exact precision scale
numbers. Currently Morphia does not support BigDecimal types. If you need precision
arithmetic, you could create an own data type for such a task. Then replace this code from
the original Hotel entity:

 @Column(precision=6, scale=2)
 public BigDecimal price;

By removing the annotation and setting the price as a float as in:

 public Float price;

The next step is to replace some code in the Hotel controller. Whenever an ID is referenced
in the routes file, it is not a Long but an ObjectId from MongoDB represented as a String,
which consists of alphanumeric characters. This needs to be done in the signature of the
show(), book(), confirmBooking(), and cancelBooking() methods. You can also
set the ID field to be a Long type instead of an ObjectID via the morphia.id.type=Long
parameter in your application configuration, if you want.

Whenever find() is called on a mongo entity, the fetch() method does not return a list,
but an iterable. This iterable does not get the full data from the database at once. In order
to keep this example simple, we will return all bookings by a user at once. So the index()
methods need to replace the following:

List<Booking> bookings = Booking.find("byUser", connected()).fetch();

With the following:

List<Booking> bookings = Booking.find("byUser", connected()).asList();

The last change is the call of booking.id, which has to be changed to booking.getId()
because there is no direct ID property in the Model class based on Morphia. This needs to be
changed in the confirmBooking() and cancelBooking() methods.

How it works...
The functionality stays the same, as only the persistence layer and some controller code is
changed. If you wanted to separate controller code even further, you could make sure that
finders are always only constructed in the model class.

Leveraging Modules

98

If you click through the example now and compare it to the database version, you will not see
any difference. You can also use the mongo command line client to check whether everything
you did was actually persisted. When checking a booking, you will see it looks
like this:

>db.Booking.findOne()
{
 "_id" : ObjectId("4d1dceb3b301127c3fc745c6"),
 "className" : "models.Booking",
 "user" : {
 "$ref" : "User",
 "$id" : ObjectId("4d1dcd6eb301127c2ac745c6")
 },
 "hotel" : {
 "$ref" : "Hotel",
 "$id" : ObjectId("4d1dcd6eb301127c2dc745c6")
 },
 "checkinDate" : ISODate("2010-12-06T23:00:00Z"),
 "checkoutDate" : ISODate("2010-12-29T23:00:00Z"),
 "creditCard" : "1234567890123456",
 "creditCardName" : "VISA",
 "creditCardExpiryMonth" : 1,
 "creditCardExpiryYear" : 2011,
 "smoking" : false,
 "beds" : 1
}

As you can see, there is one booking. A specialty of Morphia is to store the class, where it was
mapped from into the data as well, with the property className. If needed, this behavior
can be disabled. The user and hotel properties are references to the specific collections and
reference a certain object ID there. Think of this as a foreign key, when coming from the
SQL world.

There's more...
This has only scratched the surface of what is possible. The Morphia module is especially
interesting, because it also supports embedded data, even collections. You can, for example,
map comments to a blog post inside of this post instead of putting it into your own collection.
You should read the documentation of Morphia and the play-specific Morphia module very
carefully though, if you want to be sure that you can easily convert an already started project
to persist into MongoDB.

Check out the Yabe example in the Morphia directory
Morphia already includes a port of the Yabe example, which uses some of the more advanced
features like map reduce.

Chapter 3

99

Use long based data types as unique IDs
The Morphia module also offers to use a long value as ID instead of an object ID. This would
have saved changing the controller code.

Aggregation and grouping via map reduce
As there is no join support in MongoDB, you will need to use map-reduce algorithms. There is
no really good support of map-reduce in the java drivers, as you have to write JavaScript code
as your map-reduce algorithms. For more information about that you might want to check the
MongoDB documentation at http://www.mongodb.org/display/DOCS/MapReduce.

Using MongoDB/GridFS to deliver files
MongoDB has a very nice feature called GridFS, which removes the need to store binary data
in the filesystem. This example will feature a small (and completely unstyled) image gallery.
The gallery allows you to upload a file and store it into MongoDB.

You can find the source code of this example in the chapter3/mongodb-image directory.

Getting ready
You should have installed the Morphia module in your application and should have a
configured up-and-running MongoDB instance.

How to do it...
The application.conf file should feature a complete MongoDB configuration as for any
Morphia-enabled application. Furthermore, a special parameter has been introduced, which
represents the collection to store the binary data. The parameter is optional anyway. The
uploads collection resembles the default.

morphia.db.host=localhost
morphia.db.port=27017
morphia.db.name=images
morphia.db.collection.upload=uploads

The routes file features four routes. One shows the index page, one returns a JSON
representation of all images to the client, one gets the image from the database and
renders it, and one allows the user to upload the image and store it into the database.

GET / Application.index
GET/images.json Application.getImages
GET/image/{id} Application.showImage
POST /image/ Application.storeImage

Leveraging Modules

100

The controller implements the routes:

public class Application extends Controller {

 public static void index() {
 render();
 }

 public static void getImages() {
 List<GridFSDBFile> files = GridFsHelper.getFiles();
 Map map = new HashMap();
 map.put("items", files);
 renderJSON(map, new GridFSSerializer());
 }

 public static void storeImage(File image, String desc) {
 notFoundIfNull(image);
 try {
 GridFsHelper.storeFile(desc, image);
 } catch (IOException e) {
 flash("uploadError", e.getMessage());
 }
 index();
 }

 public static void showImage(String id) {
 GridFSDBFile file = GridFsHelper.getFile(id);
 notFoundIfNull(file);
 renderBinary(file.getInputStream(), file.getFilename(),
 file.getLength(), file.getContentType(), true);
 }
}

As written in the preceding code snippet, an own Serializer for the GridFSDBFile class
uses its own Serializer when rendering the JSON reply:

public class GridFSSerializer implements JsonSerializer<GridFSDBFile>
{

 @Override
 public JsonElement serialize(GridFSDBFile file, Type type,
 JsonSerializationContextctx) {
 String url = createUrlForFile(file);
 JsonObjectobj = new JsonObject();
 obj.addProperty("thumb", url);

Chapter 3

101

 obj.addProperty("large", url);
 obj.addProperty("title", (String)file.get("title"));
 obj.addProperty("link", url);

 return obj;
 }

 private String createUrlForFile(GridFSDBFile file) {
 Map<String,Object> map = new HashMap<String,Object>();
 map.put("id", file.getId().toString());
 return Router.getFullUrl("Application.showImage", map);
 }
}

The GridFSHelper is used to store and read images as binary data from MongoDB:

public class GridFsHelper {

 public static GridFSDBFilegetFile(String id) {
 GridFSDBFile file = getGridFS().findOne(new ObjectId(id));
 return file;
 }

 public static List<GridFSDBFile>getFiles() {
 return getGridFS().find(new BasicDBObject());
 }

 public static void storeFile(String title, File image) throws
IOException {
 GridFSfs = getGridFS();
 fs.remove(image.getName()); // delete the old file
 GridFSInputFile gridFile = fs.createFile(image);
 gridFile.save();
 gridFile.setContentType("image/" + FilenameUtils.
getExtension(image.getName()));
 gridFile.setFilename(image.getName());
 gridFile.put("title", title);
 gridFile.save();
 }

 private static GridFS getGridFS() {
 String collection = Play.configuration.getProperty("morphia.
db.collection.upload", "uploads");

Leveraging Modules

102

 GridFSfs = new GridFS(MorphiaPlugin.ds().getDB(), collection);
 return fs;
 }
}

As the Dojo Toolkit is used in this example, the main template file needs to be changed to
include a class attribute in the body tag. The Dojo Toolkit is a versatile JavaScript library, which
features a nice gallery widget used in this example. So the file app/views/main.html
needs to be changed:

<!DOCTYPE html>
<html>
 <head>
 <title>#{get 'title' /}</title>
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
 #{get 'moreStyles' /}
 <link rel="shortcut icon" type="image/png"href="@{'/public/
images/favicon.png'}">
 #{get 'moreScripts' /}
 </head>
 <body class="tundra">
 #{doLayout /}
 </body>
</html>

Furthermore, the index templates file itself needs to be created at app/views/
Application/index.html:

#{extends 'main.html' /}
#{set title:'Gallery' /}
#{set 'moreStyles'}
<style type="text/css">
 @import "http://ajax.googleapis.com/ajax/libs/dojo/1.5/dojox/image/
resources/image.css";
 @import "http://ajax.googleapis.com/ajax/libs/dojo/1.5/dijit/themes/
tundra/tundra.css";
</style>
#{/set}
#{set 'moreScripts'}
<script src="http://ajax.googleapis.com/ajax/libs/dojo/1.5/dojo/dojo.
xd.js"djConfig="parseOnLoad:true"></script>
<script type="text/javascript">
 dojo.require("dojox.image.Gallery");
 dojo.require("dojo.data.ItemFileReadStore");
</script>
#{/set}

Chapter 3

103

#{form @Application.storeImage(), enctype:'multipart/form-data'}
 <div>Title: <input type="text" name="description"></div>
 <div>File: <input type="file" name="image"></div>
 <div><input type="submit" value="Send"></div>
#{/form}

<h1>The gallery</h1>

<div jsId="imageItemStore" dojoType="dojo.data.
ItemFileReadStore"url="@{Application.getImages()}"></div>

<div id="gallery1 dojoType="dojox.image.Gallery">
 <script type="dojo/connect">
 varitemNameMap = {
 imageThumbAttr: "thumb",
 imageLargeAttr: "large"
 };
 this.setDataStore(imageItemStore, {}, itemNameMap);
 </script>
</div>

How it works...
The configuration and routes files are already explained above. The controller mainly uses the
GridFSHelper and the GridFSSerializer.

The GridfSHelper calls the Morphia plugin to get the database connection. You could also
do this by just using the MongoDB driver; however, it is likely that you will use the rest of the
Morphia module as well. The getGridFS() method returns the object needed to extract
GridFS files from MongoDB. The getFile() method queries for a certain object ID, while the
getFiles() method returns all objects because a query by example is done with an empty
object. This is the way the standard MongoDB API works as well. The storeFile() method
deletes an already existing file (the image file name used when uploading is used here). After
deletion it is stored, and its content type is set along with a metadata tag called title. As
storing might pose problems (connection might be down, user may not have rights to store,
filesystem could be full), an exception can possibly be thrown, which must be caught in
the controller.

The Serializer for a GridFSDBFile is pretty dumb in this case. The format of the JSON
file is predefined. Due to the use of the Dojo Toolkit, data has to be provided in a special
format. This format requires having four properties set for each image:

ff thumb: Represents a URL of a small thumbnail of the image.

ff large: Represents a URL of the normal sized image.

Leveraging Modules

104

ff link: Represents a URL which is rendered as a link on the normal sized image.
Could possibly be a Flickr link for example.

ff title: Represents a comment for this particular image.

For the sake of simplicity, the thumb, large, and link URLs are similar in this special case – in
a real world application this would not be an option.

The controller has no special features. After a file upload the user is redirected to the index
page. This means only one template is needed. The getImages() method uses the special
serializer, but also needs to have an items defined to ensure the correct JSON format is
returned to the client. The showImage() method gets the file from the GridFSHelper class
and then sets header data as needed in the renderBinary() by calling it with the right
arguments. There is no need to set headers manually.

After setting the class attribute to the body tag in the main template, the last thing is to
write the index.html template. Here all the needed Dojo JavaScript and CSS files are
loaded from the Google CDN. This means that you do not need to download Dojo to your
local system. The dojo.require() statements are similar to Java class imports in order
to provide certain functionality. In this case the Gallery functionality itself uses a so-called
FileItemReadStore in order to store the data of the JSON reply in a generalized format
which can be used by Dojo. Whenever you want to support HTML form-based file uploads, you
have to change the enctype parameter of the form tag. The rest of the HTML is Dojo specific.
The first div tag maps the FileItemReadStore to the JSON controller. The second div tag
defines the gallery itself and maps the FileItemReadStore to the gallery, so it uses the
JSON data for display.

After you finished editing the templates, you can easily go to the main page, upload
an arbitrary amount of pictures, and see it including a thumbnail and a main image
on the same page.

There's more...
Of course this is the simplest example possible. There are many possibilities for improvement.

Using MongoDB's REST API
Instead of using the Morphia module, you could also use the MongoDB built-in REST API.
However, as it is quite a breeze to work with the Morphia API, there is no real advantage
except for the more independent layer.

Resizing images on the fly
You could possibly create thumbnails on the fly when uploading the file. There is a
play.libs.Images class which already features a resize() method.

4
Creating and

Using APIs

In this chapter, we will cover:

ff Using Google Chart API as a tag

ff Including a Twitter search in your application

ff Managing different output formats

ff Binding JSON and XML to objects

Introduction
Although possible, it is unlikely in today's web application environment that you will only
provide data inside your own application. Chances are high that you will include data from
other sources as well. This means you have to implement strategies so that your application
will not suffer from downtime of other applications. Though you are dependent on other data,
you should make sure your actual live system is not, or at least it has the capability to function
without the data provided.

The first recipe will show a practical example of integrating an API into your application. It will
use the nice Google Chart API. In order to draw such graphs, the templating system will be
extended with several new tags.

Another quick example will show you how to include a Twitter search in your own page, where
you have to deal with problems other than the one with the chart API example.

The last two examples provide some tips on what to do when you are being a data provider
yourself, and how to expose an API to the outside world.

Creating and Using APIs

106

However, first, we should dig a little deeper into the basics of mashups.

If you are asking yourself what mashups are, but you have already built several web
applications, then chances are high that you have already created mashups without knowing
it. Wikipedia has a very nice and short definition about it:

"In web development, a mashup is a web page or application that uses and
combines data, presentation or functionality from two or more sources to create
new services."

See http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid).

So, as seen earlier, just by putting Google maps on your page to show the exact address of
some data you stored, you basically created a mashup, or maybe you have already included
a Flickr search on your page?

What you create out of mashups is basically left to your power of imagination. If you
need some hints on what kind of cool APIs exist, then you may go to http://www.
programmableweb.com/ and check their API listings.

You can distinguish between the two types of mashups, namely, those happening on the
server side, and those happening on the client side.

You can render a special link or HTML snippet, which resembles a Google map view of your
house on your home page. This is client side because the data fetching is done by the client.
The only thing you are providing is the link that has to be fetched.

In contrast to this, there might be services where you have to query the service first and
then present the data to the client. However, you are getting the data from the API to your
application, and then using it to render a view to the client. A classic example of this might be
the access to your CRM system. For example you might need to get leads or finished deals of
the last 24 hours from your CRM system. However, you do not want to expose this data directly
to the client, as it needs to be anonymized first, before a graphical representation is shown
to the client.

The most important thing is to ensure that your application still works when the data provider
is down. It should not run into timeouts, blocking your application on the client side as well as
on the server side. If you keep fetching the same data, then you might want to store it locally
in order to be independent of outages. If you really rely on this data, then make sure you have
SLAs on your business, and a failure-proof implementation that monitors outages and keeps
on trying to access the data end point.

Chapter 4

107

Using Google Chart API as a tag
Sooner or later, one of your clients will ask for graphical representation of something in your
application. It may be time-based (revenue per day/month/year), or more arbitrary. Instead of
checking available imaging libraries like JFreeChart, and wasting your own CPU cycles when
creating images, you can rely on the Google Chart API that is available at http://code.
google.com/apis/chart/.

This API supports many charts, some of which do not even resemble traditional graphs. We
will come to this later in the recipe.

The source code of the example is available at examples/chapter4/mashup-chart-api.

How to do it...
Some random data to draw from might be useful. A customer entity and an order entity are
created in the following code snippets:

public class Customer {

 public String name;
 public List<Order> orders = new ArrayList<Order>();

 public Customer() {
 name = RandomStringUtils.randomAlphabetic(10);
 for (int i = 0 ; i< 6 ; i++) {
 orders.add(new Order());
 }
 }
}

Creating orders is even simpler, as shown in the following code snippet:

public class Order {
 publicBigDecimal cost = new BigDecimal(RandomUtils.nextInt(50));
}

The index controller in the Application needs to expose a customer on every call, as shown in
the following code snippet. This saves us from changing anything in the routes file:

public static void index() {
 Customer customer = new Customer();
 render(customer);
}

Creating and Using APIs

108

Now the index.html template must be changed, as shown in the following code snippet:

#{extends 'main.html' /}
#{settitle:'Home' /}

<h2>QrCode for customer ${customer.name}</h2>

#{qrcode customer.name, size:150 /}

<h2>Current lead check</h2>

#{metertitle:'Conversion sales rate', value:70 /}

<h2>Some random graphic</h2>

#{linecharttitle:'Some data',
 labelX: 1..10, labelY:1..4,
 data:[2, 4, 6, 6, 8, 2, 2.5, 5.55, 10, 1] /}

<h2>Some sales graphic</h2>

#{chart.lctitle:'Sales of customer ' + customer.name,
 labelY:[0,10,20,30,40,50],
 labelX:['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],
 data:customer.orders.subList(0, 6),
 field:'cost' /}

As you can see here, four new tags are used. The first two are pretty simple and represent
usual tags. The views/tags/qrcode.html file looks similar to the following code snippet:

%{
 size = _size?:200
}%
<img src="http://chart.apis.google.com/chart?cht=qr&chl=${_
arg}&chs=${size

 }x${size}">

The views/tags/meter.html file writes the image tag out a little different:

%{
 width = _width?:300
 height = _height?:150
 title = _title?:"No title"

 encodedData = googlechart.DataEncoder.encode([_value], 100)

Chapter 4

109

 out.print('<imgsrc="http://chart.apis.google.com/chart?cht=gm')
 out.print('&chs=' + width + 'x' + height)
 out.print('&chd=e:' + encodedData)
 out.println('&chtt='+title+'">')
%}

The linechart tag allows us to draw arbitrary data handed over into arrays. The file must be
placed at views/tags/linechart.html and needs to look like the following code snippet:

%{
 width = _width?:300
 height = _height?:225
 title = _title?:"No title"
 colors = _colors?:"3D7930"

 out.print('<imgsrc="http://chart.apis.google.com/chart?')
 out.print('cht=lc')

 String labelX = _labelX.join("|");
 String labelY = _labelY.join("|");
 out.println("&chxl=0:|"+ labelX + "|1:|" + labelY);

 out.print('&chs=' + width + 'x' + height)
 out.print('&chtt=' + title)
 out.print('&chco=' + colors)
 dataEncoded = googlechart.DataEncoder.encode(_data)
 out.print('&chd=e:' + dataEncoded)

 maxValue = googlechart.DataEncoder.getMax(_data)
 out.print('&chxr=0,0,' + maxValue)
 out.print('&chxt=x,y')
 out.print("&chls=1,6,3");

 out.print('">')

}%

The remaining tag, used as #{chart.lc} in the index template, is a so-called fast tag and
uses Java instead of the template language; therefore, it is a simple class that extends from
the standard FastTags class, as shown in the following code snippet:

@FastTags.Namespace("chart")
public class ChartTags extends FastTags {

 public static void _lc(Map<?, ?>args, Closure body, PrintWriter out,
 ExecutableTemplate template, intfromLine) throws Exception {

Creating and Using APIs

110

 out.print("<imgsrc="http://chart.apis.google.com/chart?");
 out.print("cht=lc");

 out.print("&chs=" + get("width", "400", args) + "x" +
get("height",
 "200", args));
 out.print("&chtt=" + get("title", "Standard title", args));
 out.print("&chco=" + get("colors", "3D7930", args));

 String labelX = StringUtils.join((List<String>)args.
get("labelX"),
 "|");
 String labelY = StringUtils.join((List<String>)args.
get("labelY"),
 "|");
 out.println("&chxl=0:|"+ labelX + "|1:|" + labelY);

 List<Object> data = (List<Object>) args.get("data");

 String fieldName = args.get("field").toString();

 List<Number>xValues = new ArrayList<Number>();
 for (Object obj : data) {
 Class clazz = obj.getClass();
 Field field = clazz.getField(fieldName);
 Number currentX = (Number) field.get(obj);
 xValues.add(currentX);
 }

 String dataString = DataEncoder.encode(xValues);

 out.print("&chd=e:" + dataString);
 out.print("&chxs=0,00AA00,14,0.5,l,676767");
 out.print("&chxt=x,y");
 out.print("&chxr=0,0," + DataEncoder.getMax(xValues));
 out.print("&chg=20,25");
 out.print("&chls=1,6,3");
 out.print("\">");
 }

 private static String get(String key, String defaultValue,
 Map<?,?>args) {
 if (args.containsKey(key)) {
 return args.get(key).toString();
 }
 return defaultValue;
 }
}

Chapter 4

111

If you have read the above tags and the last Java class, then you might have seen the usage
of the DataEncoder class. The Google chart API needs the supplied data in a special format.
The DataEncoder code snippet is as follows:

public class DataEncoder {

 public static String chars =

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-.";
 public static int length = chars.length();

 public static String encode(List<Number> numbers, intmaxValue) {
 String data = "";
 for (Number number : numbers) {
 double scaledVal = Math.floor(length * length * number.intValue()
 / maxValue);

 if (scaledVal> (length * length) -1) {
 data += "..";
 }
 else if (scaledVal< 0) {
 data += "__";
 }
 else {
 int quotient = (int) Math.floor(scaledVal / length);
 int remainder = (int) scaledVal - (length * quotient);
 data += chars.charAt(quotient) + "" + chars.charAt(remainder);
 }
 }
 Logger.debug("Called with %s and %s => %s", numbers, maxValue,
 data);
 return data;
 }

 public static String encode(List<Number> numbers) {
 return encode(numbers, getMax(numbers));
 }

 public static intgetMax(List<Number> numbers) {
 Number max = numbers.get(0);
 for (Number number : numbers.subList(1, numbers.size())) {
 if (number.doubleValue() >max.doubleValue()) {
 max = number;

Creating and Using APIs

112

 }
 }

 return (int) Math.ceil(max.doubleValue());
 }
}

This formatter always produces the extended format, which is a little bit longer, but can
represent all the data handed to it.

How it works...
A lot of code has been produced, so what has been done? Instead of writing the Google
image code all over again, tags were created to ease usage. No one can remember all those
parameters which are needed for this or that type of graph. Also, the template code looks
much cleaner, because you actually get to know by reading what kind of graphic is supposed
to be seen.

I will not explain here the myths of the Google APIs or how the data encoder is working.
It is created from the example JavaScript code on the chart API web pages. The request
parameters are extensively explained in the documentation. I will only show the specialties
of the tags.

Taking a closer look at the #{qrcode} tag reveals the usage of a default parameter for the
size. As long as it is not taken over as argument, as well as setting the title parameter of
the graphic.

The #{meter} tag uses a big Groovy scriptlet for executing its logic. Inside the script you can
access the request output stream via the out variable. Furthermore, the data encoder is
called with its full class path and name as you cannot import classes inside a template.

The #{linechart} tag is pretty long for a single tag. You should think whether it makes
more sense to write such a big logic inside the template with Groovy, or to use a fast tag direct
instead. Fast tags have the possibility of being unit tested for example. As you can see by the
use of the join() method on the labelX and labelY arrays, writing pure Groovy code is
not a problem here. When used correctly, this tag allows the developer to input arbitrary data
into the variable, as long as it is an array consisting of numbers. So, this is the generic version
of a drawing tag.

The#{chart.lc} tag is a more concrete version of the #{linechart} tag, because
you use the data of a certain field as the input. The data is a list of arbitrary objects, but
additionally you specify the field where data of each object should be extracted from. The first
six orders of a customer are used as data input as you can see in the index template. Inside
every order, the content of the cost property is used as data. This saves the developer the
hassle of always having to provide an array of data to the render() method. This is the big
difference to the #{linechart} tag.

Chapter 4

113

As #{chart.lc} is a fast tag, its implementation is in Java. Looking at the class, the @
Namespace annotation before the class definition shows where the chart prefix is coming
from. This helps you to have same named tags in your application. Every tag you want to
implement in Java has to be a method, which must be public, static, return void, and must
begin with an underscore. Also, the arguments must match. However, it may throw any
exception or none at all. This helps to keep the code free from exceptions in this case, as
no error handling is done. If the property you defined to check for does not exist, the whole
tag crashes. One should, of course, never do this in a production environment. You should
output nothing, but create an error log message. Basically, the tag does the same as the
#{linechart} does. It joins the labels for x and y axis as needed, then iterates through
the array of objects. For each object, the field is read from the object with the help of the
reflection API.

In case you are wondering why the DataEncoder class has the getMax() method exposed,
it is needed to keep the graph scaled.

There's more...
Before going on, you should delve deeper into tags by taking a look at the Play framework
source code, which shows off some nice examples and tricks to keep in mind.

Getting request data inside a fast tag
It is no problem to get the request or the parameters inside a fast tag. Access the request and
all its subsequent data structures via the following code:

Request req = Http.Request().current();

This ensures thread safety by always returning the request of the current thread.

The Google Chart API
The Google Chart API is really powerful and complex. I have barely scratched the surface here.
You will see that when you check the documentation at http://code.google.com/apis/
chart/docs/chart_params.html. An even better place to look at the Google Chart API is
the gallery at http://imagecharteditor.appspot.com, where you can try out different
image types in the browser. The API features several charts with magnitudes of options.

Make a graceful and more performant implementation
There is really a lot of room for improvement in this example. First, the tags are nowhere near
graceful. Many different errors can occur, like not handing over mandatory parameters, class
cast exceptions when converting the data to numbers, or defining a non existing property and
then calling the reflection API. As a little practice, you could try to improve this before adding
new graph options. If you want to create new charts, then the simplest way is to use the chart
wizard provided by Google to find out which parameter changes the behavior.

Creating and Using APIs

114

Considering privacy when transmitting data
By using the Google Chart API you are actually transmitting quite a lot of data out of your
system, in clear text. You should be aware that this might pose a privacy problem. Personally,
I would not submit sensitive data like my daily revenue through the Internet just to have it
graphed. On the other hand, I would not have a problem with the average response times of
my server from yesterday. Always think about such facts before creating mashups.

Including a Twitter search in your
application

This example shows you how to include the result of a Twitter search in your application. This
time it is not client based as the first recipe of this chapter. The result will be downloaded
to the server, and then displayed to the client. This poses a possible problem.

What happens if your server cannot reach Twitter? There might be a number of different
reasons. For example, your DNS is flaky, Twitter is down, the routing to Twitter is broken, or
you are pulling off too many requests resulting in a ban, and many, many more. However, this
should not affect your application. It might, of course, affect what data is displayed on the
page – it may however never stop, or block any of your services. Your complete system has
to be unaffected by failure of any external system. This recipe shows a small example and
incidentally uses the Twitter API for this. You can, however, copy the principle behind this to
any arbitrary API you are connecting to. You can get more information about the Twitter API
we are about to use at http://dev.twitter.com/doc/get/search.

The source code of the example is available at examples/chapter4/mashup-twitter-
search.

Getting ready
All you need is a small application which gets some data from an external source.

How to do it...
In order to be a little bit dynamic add the following query to the application.conf file:

twitter.query=http://search.twitter.com/search.
json?q=playframework%20OR%20from.playframework&lang=en

Create a POJO (Plain Old Java Object) which models the mandatory fields of a Twitter search
query response, as shown in the following code snippet:

public class SearchResult implements Serializable {

 @SerializedName("from_user") public String from;

Chapter 4

115

 @SerializedName("created_at") public Date date;
 @SerializedName("text") public String text;
}

Write a job which queries the Twitter service every 10 minutes and stores the results, as
shown in the following code snippet:

@OnApplicationStart
@Every("10min")
public class TwitterSearch extends Job {

 public void doJob() {
 String url = Play.configuration.getProperty("twitter.query");

 if (url == null) {
 return;
 }

 JsonElement element = WS.url(url).get().getJson();

 if (!element.isJsonObject()) {
 return;
 }

 JsonObject jsonObj = (JsonObject) element;

 Gson gson = new GsonBuilder().setDateFormat("EEE, dd MMM yyyy
HH:mm:ss Z").create();

 Type collectionType = new
 TypeToken<Collection<SearchResult>>(){}.getType();
 Collection<SearchResult> search =
 gson.fromJson(jsonObj.get("results"), collectionType);
 search = removeDuplicates(search);

 Cache.set("twitterSearch", search);
 }

 private Collection<SearchResult> removeDuplicates(Collection
<SearchResult> search) {
 Collection<SearchResult> nonduplicateSearches = new
LinkedHashSet();
 Set<String> contents = new HashSet();

Creating and Using APIs

116

 for (SearchResultsearchResult : search) {
 if (!contents.contains(searchResult.text)) {
 nonduplicateSearches.add(searchResult);
 contents.add(searchResult.text);
 }
 }

 return nonduplicateSearches;
 }
}

Put the Twitter results in your page rendering code, as shown in the following code snippet:

public class Application extends Controller {

 @Before
 public static void twitterSearch() {
 Collection<SearchResult> results = Cache.get("twitterSearch",
 Collection.class);
 if (results == null) {
 results = Collections.emptyList();
 }
 renderArgs.put("twitterSearch", results);
 }

 public static void index() {
 render();
 }
}

The final step is to create the template code, as shown in the following code snippet:

#{extends 'main.html' /}
#{settitle:'Home' /}

#{cache 'twitterSearchesRendered', for:'10min'}

 #{list twitterSearch, as:'search'}
 <i>${search.text}</i>by ${search.from},
 ${search.date.since()}
 #{/list}

#{/cache}

Chapter 4

117

How it works...
As you can see, it is not overly complex to achieve independence from your API providers with
a few tricks.

Configuration is pretty simple. The URL resembles a simple query searching for everything
which contains Play framework, or is from the @playframework Twitter account. The created
page should stay up-to-date with the Play framework.

The SearchResult class represents an entity with the JSON representation of the search
reply defined in the configuration file. If you put this URL into a browser, you will see a JSON
reply, which has from_user, createdAt, and text fields. As the naming scheme is not too
good, the class uses the @SerializedName annotation for a mapping. You could possibly
map more fields, if you wanted. Note that the @SerializedName annotation is a helper
annotation from the Gson library.

The logic is placed in the TwitterSearch class. It is a job. This helps to decouple the query
to Twitter from any incoming HTTP request. You do not want to query any API at the time new
requests come in. Of course, there are special cases such as market rates that have to be
live data. However, in most of the cases there is no problem, when the data provided is not
real-time. Decoupling this solves several problems. It reduces wait times until the request is
loaded. It reduces wait times, while the response is parsed. All this has to be done, while the
client is waiting for a response. This is especially important for Play in order to not block other
clients that are also requesting resources.

The TwitterSearch doJob() method checks whether a configuration URL has been
provided. If this is the case, then it is fetched via the WS class, which is a very useful helper
class – and directly stored as a JSON element. If the returned JSON element is a complex
JSON object, a Google gson parser is created. It is created with a special date format, which
automatically parses the date in the createdAt field, and saves the need to create a custom
date serializer, as the results field inside the JSON reply contains all Twitter messages. This
field should be deserialized into a collection of SearchResult instances. Because this is
going to be a collection, a special collection type has to be created and mapped. This is done
with the TypeToken class, which gets handed over to the gson.fromJson() method.
Finally, the removeDuplicates() methods filters out all retweets by not allowing duplicate
text content in the collection of SearchResult instances. This makes sure that only boring
retweets are not displayed in your list of tweets. After the collection is cleared of doubled
tweets, it is put in the cache.

The controller has a method with a @Before annotation, which checks the cache for a list
of SearchResults. If there is no cache hit, it creates an empty collection. In any case,
the collection is put into the renderArgs variable and can be used in any template of
this controller.

Creating and Using APIs

118

The last step is to display the content. If you take a look at the template, here again the
caching feature is used. It is absolutely optional to use the cache here. At worst, you get a
delay of 20 minutes until your data is updated, because the job only runs every ten minutes
in addition to caching for ten minutes inside of the template. Think about, whether such a
caching makes sense in your application before implementing it.

There's more...
Even though caching is easy and fast to implement, sometimes there are scenarios where it
might not be needed, like the possibility of telling the client to get the data. As usual, try to
create applications without caching and only add it if needed.

Make it a client side API
Check out the search documentation on the Twitter site at http://dev.twitter.com/
doc/get/search—when you check the possibility of the JSON API to use a callback
parameter. It actually gets pretty easy to build this as a client side search, so your servers do
not have to issue the request to Twitter. You should check any API, to see whether it is actually
possible to offload stuff to the client. This keeps your application even more scalable and
independent – from a server point of view, not the functionality point of view.

Add caching to your code late
Whenever you are developing new features and start integrating APIs, you should actually add
the caching feature as late as possible. You might stumble over strange exceptions, when
putting invalid or incomplete data into the cache because of incorrect error handling, or not
putting serialized objects into the cache. Keep this in mind, as soon as you stumble across
error messages or exceptions when trying to read data from a cache. Again, cover everything
with tests as much as possible.

Be fast with asynchronous queries
If you have a use-case where you absolutely must get live data from another system, you still
have the possibility to speed things up a little bit. Imagine the following controller call, which
returns two daily quotes, and queries remote hosts in order to make sure it always gets the
latest quote instead of a boring cached one, as shown in the following code snippet:

public static void quotes() throws Exception {

 Promise<HttpResponse> promise2 =
 WS.url("http://www.iheartquotes.com/api/v1/random?format=json").
 getAsync();
 Promise<HttpResponse> promise1 =
 WS.url("http://jamocreations.com/widgets/travel-
 quotes/get.php").getAsync();

Chapter 4

119

 // code here, preferably long running like db queries...
 // ...
 List<HttpResponse>resps = Promise.waitAll(promise1, promise2).get();

 if(resps.get(0) != null) {
 renderArgs.put("cite1",
 resps.get(0).getXml().getElementsByTagName("quote").
 item(0).getChildNodes().item(1).getTextContent());
 }

 if(resps.get(1) != null) {
 renderArgs.put("cite2", ((JsonObject)
 resps.get(1).getJson()).get("quote").getAsString());
 }

 render();
}

This allows you to trigger both external HTTP requests in a non-blocking fashion, instead
of calling them sequentially, and then perform some database queries. After that you can
access the promise, where the probability of them already having ended is much higher.
The preceding snippet is included in examples/chapter5/mashup-api.

Managing different output formats
In the preceding examples another API was consumed. When your application gets more
users, the demand to get data out of your application will not only rise in web pages. As soon
as machine-to-machine communication is needed, you will need to provide an API yourself.

This recipe will show you how to implement your own APIs using the Play framework. If you
need an API that exposes your data in as many data formats as possible, you might not be
right with selecting the Play framework. Currently, it is not that generic. You might want to go
with enunciate for example, which is reachable at http://enunciate.codehaus.org/

Find the accompanying source example at examples/chapter4/mashup-api.

Getting ready
There is some preliminary information you should know before implementing anything. Play
already has a built-in mechanism for finding out what type of data to return. It checks the
Accept header of the request and puts the result in the request.format variable inside
your controllers. Play also decides what template to render based on this information.

Creating and Using APIs

120

How to do it...
Let's start with a service to create tickets. There are several ways to provide authentication
to your API. One way is to always use HTTP Basic Authentication. This means a password is
supplied on every request. This implies that all your communication must be secure in order
to not to leak passwords. Encryption is expensive, if you do not have special crypto hardware
in your servers. If your data is not that confidential, it should be sufficient to only do the
authentication via SSL and use the created ticket for the rest. This basically resembles the
browser behaviour, where often login to a site is encrypted; the rest of the communication is
clear text. Be aware that session hijacking is possible with this scenario. If you need security,
go via HTTPS completely. The following code snippet is an example controller to generate a
unique ticket:

public static void createTicket(String user, String pass) {
 User u = User.find("byNameAndPassword", user, pass).first();
 if (u == null) {
 error("No authorization granted");
 }

 String uuid = UUID.randomUUID().toString().replaceAll("-", "");
 Cache.set("ticket:" + uuid, u.name, "5min");
 renderText(uuid);
}

Now the ticket needs to be checked on every incoming request, except the ticket creation
itself. This is shown in the following code snippet:

@Before(priority=1, unless="createTicket")
public static void checkAuth() {
 Header ticket = request.headers.get("x-authorization");
 if (ticket == null) {
 error("Please provide a ticket");
 }

 String cacheTicket = Cache.get("ticket:" + ticket.value(),
 String.class);
 if (cacheTicket == null) {
 error("Please renew your ticket");
 }

 Cache.set("ticket:" + ticket.value(), cacheTicket, "5min");
}

Chapter 4

121

From now on, every request should have an X-Authorization header, where the created
UUID is sent to the server. These tickets are valid for five minutes, and then they expire from
the cache. On every request the expired time is reset to five minutes. You could possibly put
this into the database as well, if you wanted, but the cache is a better place for such data.

As the ticket generator returns a text string by using renderText(), it is pretty easy to use.
However, you may want to return different output formats based on the client's request. The
following code snippet is an example controller that returns the user's favorite quote:

public static void quote() {
 String ticket = request.params.get("ticket");
 String username = Cache.get("ticket:" + ticket, String.class);
 User user = User.find("byName", username).first();
 String quote = user.quote;
 render(quote);
}

Now, add three templates for the controller method. The first is the HTML template which
needs to be put at app/views/Application/quote.html:

<html><body>The quote is ${quote}</body></html>

Then comes app/views/Application/quote.xml:

<quote>${quote}</quote>

And finally app/views/Application/quote.json:

{ "quote": "${quote}" }

How it works...
It is pretty simple to test the above implemented functionality by running curl against the
implementation – as an alternative to tests, which should always be the first choice. The
first thing in this example is to get a valid ticket:

curl -X POST --data "user=test&pass=test" localhost:9000/ticket

096dc3153f774f898f122d9af3e5cfcb

After that you can call the quote service with different headers:

curl --header "X-Authorization: 096dc3153f774f898f122d9af3e5cfcb"--
header
 "Accept: application/json" localhost:9000/quote

{ "quote": "Aleaiactaest!" }

Creating and Using APIs

122

XML is also possible:

curl--header "X-Authorization: 096dc3153f774f898f122d9af3e5cfcb"
--header
 "Accept: application/xml" localhost:9000/quote

<quote>Aleaiactaest!</quote>

Adding no header – or an invalid one –returns the standard HTML response:

curl--header "X-Authorization: 096dc3153f774f898f122d9af3e5cfcb"
 localhost:9000/quote

<html><body>The quote is Aleaiactaest!</body></html>

The functionality of being able to return different templates based on the client Accept
header looks pretty useful at first sight. However, it carries the burden of forcing the developer
to ensure that valid XML or JSON is generated. This is usually not what you want. Both formats
are a little bit picky about validation. The developer should create neither of those by hand.
This is what the renderJSON() and renderXml() methods are for. So always use the
alternative methods presented in this recipe with care, as they are somewhat error prone,
even though they save some lines of controller code.

There's more...
It is very simple to add more text based output formats such as CSV, and combine them with
the default templating engine. However, it is also possible to support binary protocols such as
the AMF protocol if you need to.

Integrating arbitrary formats
It is easily possible to integrate arbitrary formats in the rendering mechanism of Play.
You can add support for templates with a .vcf file suffix with one line of code. More
information about this is provided in the official documentation at the following link:
http://www.playframework.org/documentation/1.2.1/routes#Customformats

Getting out AMF formats
You should check the modules repository for more output formats like just JSON or XML. If
you are developing a Flex application, then you might need to create some AMF renderer. In
this case, you should check out https://bitbucket.org/maxmc/cinnamon-play/
overview.

See also
Another minor problem that needs to be solved is the ability to also accept incoming XML and
JSON data, and to convert it into objects. This is done in the next recipe.

Chapter 4

123

Binding JSON and XML to objects
After you have explored Play a little bit and written your first apps, you might have noticed
that it works excellently when binding complex Java objects out of request parameters, as
you can put complex objects as controller method parameters. This type of post request
deserialization is the default in Play. This recipe shows how to convert JSON and XML data
into objects without changing any of your controller code.

The source code of the example is available at examples/chapter4/mashup-json-xml.

Getting ready
Let's start with a controller, which will not change and does not yield any surprises, as shown
in the following code snippet:

public class Application extends Controller {

 public static void thing(Thing thing) {
 renderText("foo:"+thing.foo+"|bar:"+thing.bar+"\n");
 }
}

You should add a correct route for the controller as well in conf/routes

POST /thing Application.thing

Start with a test as usual:

public class ApplicationTest extends FunctionalTest {

 private String expectedResult = "foo:first|bar:second\n";

 @Test
 public void testThatParametersWork() {
 String html = "/thing?thing.foo=first&thing.bar=second";
 Response response = POST(html);
 assertIsOk(response);
 assertContentType("text/plain", response);
 assertContentMatch(expectedResult, response);
 }

 @Test
 public void testThatXmlWorks() {
 String xml = "<thing><foo>first</foo><bar>second</bar></thing>";
 Response response = POST("/thing", "application/xml", xml);

Creating and Using APIs

124

 assertIsOk(response);
 assertContentType("text/plain", response);
 assertContentMatch(expectedResult, response);
 }

 @Test
 public void testThatJsonWorks() {
 String json = "{ thing : { \"foo\" : \"first\", \"bar\" :
\"second\"
 } }";
 Response response = POST("/thing", "application/json", json);
 assertIsOk(response);
 assertContentType("text/plain", response);
 assertContentMatch(expectedResult, response);
 }

}

Three tests come with three different representations of the same data. The first one is the
standard representation of an object and its properties come via HTTP parameters. Every
parameter starting with "thing." is mapped as property to the thing object of the controller.
The second example represents the thing object as XML entity, whereas the third does the
same as JSON. In both cases, there is a thing root element. Inside of this element every
property is mapped.

How to do it...
In order to get this to work, a small but very effective plugin is needed. In this case, the plugin
will be put directly into the application. This should only be done for rapid prototyping but not
in big production applications. The first step is to create an app/play.plugins file with the
following content:

201:plugin.ApiPlugin

This ensures that the ApiPlugin class in the plugin package is loaded on application startup.

The next step is to modify the entity to support JAXB annotations:

@Entity
@XmlRootElement(name="thing")
@XmlAccessorType(XmlAccessType.FIELD)
public class Thing extends Model {
 @XmlElement public String foo;
 @XmlElement public String bar;
}

Chapter 4

125

The last step is to write the plugin itself, as shown in the following code snippet:

public class ApiPlugin extends PlayPlugin {

 private JAXBContext jc;
 private Gson gson;

 public void onLoad() {
 Logger.info("ApiPlugin loaded");
 try {
 List<ApplicationClass>applicationClasses =
 Play.classes.getAnnotatedClasses(XmlRootElement.class);
 List<Class> classes = new ArrayList<Class>();
 for (ApplicationClassapplicationClass : applicationClasses) {
 classes.add(applicationClass.javaClass);
 }
 jc = JAXBContext.newInstance(classes.toArray(new Class[]{}));
 }
 catch (JAXBException e) {
 Logger.error(e, "Problem initializing jaxb context: %s",
 e.getMessage());
 }
 gson = new GsonBuilder().create();

 }

 public Object bind(String name, Class clazz, Type type, Annotation[]
 annotations, Map<String, String[]>params) {
 String contentType = Request.current().contentType;

 if ("application/json".equals(contentType)) {
 return getJson(clazz, name);
 }
 else if ("application/xml".equals(contentType)) {
 return getXml(clazz);
 }

 return null;
 }

 private Object getXml(Class clazz) {
 try {
 if (clazz.getAnnotation(XmlRootElement.class) != null) {
 Unmarshaller um = jc.createUnmarshaller();

Creating and Using APIs

126

 return um.unmarshal(Request.current().params.get("body"));
 }
 }
 catch (JAXBException e) {
 Logger.error("Problem rendering XML: %s", e.getMessage());
 }
 return null;
 }

 private Object getJson(Class clazz, String name) {
 try {
 String body = Request.current().params.get("body");
 JsonElement jsonElem = new JsonParser().parse(body);
 if (jsonElem.isJsonObject()) {
 JsonObject json = (JsonObject) jsonElem;

 if (json.has(name)) {
 JsonObject from = json.getAsJsonObject(name);
 Object result = gson.fromJson(from, clazz);
 return result;
 }
 }
 }
 catch (Exception e) {
 Logger.error("Problem rendering JSON: %s", e.getMessage());
 }
 return null;
 }

}

How it works...
Though the presented solution is pretty compact in lines of code and amount of files touched,
lots of things happen here.

First, the created play.plugins file consists of two fields. The first field represents a priority.
This priority defines the order of modules loaded. Take a look at framework/src/play.
plugins of your Play installation. Check the number written before DBPlugin is mentioned.
This number represents a loading priority. In any case, the ApiPlugin should have a lower
priority than the DBPlugin, resulting in being loaded first. Otherwise, this recipe will not work
because the bind() method of the DBPlugin gets executed in favor of our own written one.

Chapter 4

127

The next step is to extend the entity. You need to add JAXB annotations. The @
XmlRootElement annotation marks the name of the root element. You have to set
this annotation, because it is also used by the plugin later on. The second annotation, @
XmlAccessorType, is also mandatory with its value XmlAccessType.FIELD. This ensures
field access instead of methods – this does not affect your model getters. If you use getters,
they are called as in any other Play application. It is merely a JAXB issue. The @XmlElement
annotations are optional and can be left out.

The core of this recipe is the ApiPlugin class. It consists of four methods, and more
importantly, in order to work as a plugin it must extend PlayPlugin. The onLoad()
method is called when the plugin is loaded, on the start of the application. It logs a small
message, and creates a Google gson object for JSON serialization as well as a JAXB context.
It searches for every class annotated with @XmlRootElement, and adds it to the list of
classes to be parsed for this JAXB context. The bind() method is the one called on incoming
requests. The method checks the Content-Type header. If it is either application/json
or application/xml, it will call the appropriate method for the content type. If none is
matched, null is returned, which means that this plugin could not create an object out of the
request. The getXml() method tries to unmarshall the data in the request body to an object,
in case the handed over class has an @XmlRootElement annotation. The getJson()
method acts pretty similar. It converts the response string to a JSON object and then tries
to find the appropriate property name. This property is then converted to a real object and
returned if successful.

As you can see in the source, there is not much done about error handling. This is the main
reason why the implementation is that short. You should return useful error messages to the
user, instead of just catching and logging exceptions.

There's more...
This implementation is quite rudimentary and could be made more error proof. However,
another major point is that it could be made even simpler for the developer using it.

Add the XML annotations via byte code enhancement
Adding the same annotations in every model class over and over again does not make much
sense. This looks like an easy to automate job. However, adding annotations is not as smooth
as expected with Java. You need to perform byte code enhancement. Read more about
enhancing class annotations via bytecode enhancement at the following link:

http://www.csg.is.titech.ac.jp/~chiba/javassist/tutorial/tutorial3.
html

Creating and Using APIs

128

Put plugins where they belong
Plugins never ever belong to your main application. They will clutter your code and make your
applications less readable. Put them into their own module, always.

Change your render methods to use JAXB for rendering
You could add a renderXML(Object o) method, which is similar to its
renderJSON(Object o) companion. By using JAXB, you get almost everything for free:

public class RenderXml extends Result {

 private Marshaller m;
 private Object o;

 public static void renderXML(Object o) {
 throw new RenderXml(o);
 }

 public RenderXml(Object o) {
 this.o = o;
 }

 @Override
 public void apply(Request request, Response response) {
 try {
 setContentTypeIfNotSet(response, "text/xml");
 m = ApiPlugin.jc.createMarshaller();
 m.marshal(o, response.out);
 }
 catch (JAXBException e) {
 Logger.error(e, "Error renderXml");
 }
 }
}

Your controller call may now look similar to the following code snippet:

public static void thingXml(Thing thing) {
 renderXML(thing);
}

Chapter 4

129

Of course, you should not forget the static import in your controller, as shown in the following
line of code:

import static render.RenderXml.*;

All of this is also included in the example source code.

See also
Learn how to create modules instead of putting code as shown in the preceding examples
directly into your application in the next chapter.

5
Introduction to

Writing Modules

In this chapter, we will cover:

ff Creating and using your own module

ff Building a flexible registration module

ff Understanding events

ff Managing module dependencies

ff Using the same model for different applications

ff Understanding bytecode enhancement

ff Adding private module repositories

ff Preprocessing content by integrating stylus

ff Integrating Dojo by adding command line options

Introduction
Modularity should be one of the main goals, when designing your application. This has
several advantages from a developer's point of view: reusability and structured components
are among them.

A module in Play is basically just an application which can be included in your current
application. This application-in-application architecture means that there are only very few
differences between your application and the included module. You implicitly know the
basics of modules as an average Play developer.

Introduction to Writing Modules

132

In order to get to know more modules, you should not hesitate to take a closer look at the
steadily increasing amount of modules available at the Play framework modules page at
http://www.playframework.org/modules.

When beginning to understand modules, you should not start with modules implementing its
persistence layer, as they are often the more complex ones.

In order to clear up some confusion, you should be aware of the definition of two terms
throughout the whole chapter, as these two words with an almost identical meaning are used
most of the time. The first is word is module and the second is plugin. Module means the little
application which serves your main application, where as plugin represents a piece of Java
code, which connects to the mechanism of plugins inside Play.

Creating and using your own module
Before you can implement your own functionality in a module, you should know how to create
and build a module. This recipe takes a look at the module's structure and should give you
a good start.

The source code of the example is available at examples/chapter5/module-intro.

How to do it...
It is pretty easy to create a new module. Go into any directory and enter the following:

play new-module firstmodule

This creates a directory called firstmodule and copies a set of predefined files into it. By
copying these files, you can create a package and create this module ready to use for other
Play applications. Now, you can run play build-module and your module is built. The build
step implies compiling your Java code, creating a JAR file from it, and packing a complete
ZIP archive of all data in the module, which includes Java libraries, documentation, and all
configuration files. This archive can be found in the dist/ directory of the module after
building it. You can just press Return on the command line when you are asked for the required
Play framework version for this module. Now it is simple to include the created module in any
Play framework application. Just put this in the in the conf/dependencies.yml file of your
application. Do not put this in your module!

require:
 - play
 - customModules -> firstmodule

repositories:

Chapter 5

133

 - playCustomModules:
 type: local
 artifact: "/absolute/path/to/firstmodule/"
 contains:
 - customModules -> *

The next step is to run play deps. This should show you the inclusion of your module.
You can check whether the modules/ directory of your application now includes a file
modules/firstmodule, whose content is the absolute path of your module directory. In
this example it would be /path/to/firstmodule. To check whether you are able to use
your module now, you can enter the following:

play firstmodule:hello

This should return Hello in the last line. In case you are wondering where this is coming
from, it is part of the commands.py file in your module, which was automatically created
when you created the module via play new-module. Alternatively, you just start your Play
application and check for an output such as the following during application startup:

INFO ~ Module firstmodule is available (/path/to/firstmodule)

The next step is to fill the currently non-functional module with a real Java plugin, so create
src/play/modules/firstmodule/MyPlugin.java:

public class MyPlugin extends PlayPlugin {

 public void onApplicationStart() {
 Logger.info("Yeeha, firstmodule started");
 }

}

You also need to create the file src/play.plugins:

1000:play.modules.firstmodule.MyPlugin

Now you need to compile the module and create a JAR from it. Build the module as shown
in the preceding code by entering play build-module. After this step, there will be a
lib/play- firstmodule.jar file available, which will be loaded automatically when you
include the module in your real application configuration file. Furthermore, when starting your
application now, you will see the following entry in the application log file. If you are running
in development mode, do not forget to issue a first request to make sure all parts of the
application are loaded:

INFO ~ Yeeha, firstmodule started

Introduction to Writing Modules

134

How it works...
After getting the most basic module to work, it is time go get to know the structure of a
module. The filesystem layout looks like this, after the module has been created:

app/controllers/firstmodule
app/models/firstmodule
app/views/firstmodule
app/views/tags/firstmodule
build.xml
commands.py
conf/messages
conf/routes
lib
src/play/modules/firstmodule/MyPlugin.java
src/play.plugins

As you can see a module basically resembles a normal Play application. There are directories
for models, views, tags, and controllers, as well as a configuration directory, which can
include translations or routes. Note that there should never be an application.conf
file in a module.

There are two more files in the root directory of the module. The build.xml file is an ant file.
This helps to compile the module source and creates a JAR file out of the compiled classes,
which is put into the lib/ directory and named after the module. The commands.py
file is a Python file, which allows you to add special command line directives, such as the play
firstmodule:hello command that we just saw when executing the Play command line tool.

The lib/ directory should also be used for additional JARs, as all JAR files in this directory are
automatically added to classpath when the module is loaded.

Now the only missing piece is the src/ directory. It includes the source of your module, most
likely the logic and the plugin source. Furthermore, it features a very important file called
play.plugins. After creating the module, the file is empty. When writing Java code in the
src/ directory, it should have one line consisting of two entries. One entry features the class
to load as a plugin; where as the other entry resembles a priority. This priority defines the
order in which to load all modules of an application. The lower the priority, the earlier the
module gets loaded.

If you take a closer look at the PlayPlugin class, which MyPlugin inherits from, you will
see a lot of methods that you can override. Here is a list of some of them accompanying a
short description:

ff onLoad(): This gets executed directly after the plugin has been loaded. However,
this does not mean that the whole application is ready!

Chapter 5

135

ff bind(): There are two bind() methods with different parameters. These methods
allow a plugin to create a real object out of arbitrary HTTP request parameters or even
the body of a request. If you return anything different other than null in this method,
the returned value is used as a parameter for controller whenever any controller is
executed. Please check the recipe Binding JSON and XML to objects, for more details
about usage of this, as it includes a recipe on how to create Java objects from JSON
or XML request bodies.

ff getStatus(), getJsonStatus(): Allows you to return an arbitrary string
representing a status of the plugin or statistics about its usage. You should always
implement this for production ready plugins in order to simplify monitoring.

ff enhance(): Performs bytecode enhancement. Keep on reading the chapter to learn
more about this complex but powerful feature.

ff rawInvocation(): This can be used to intercept any incoming request and change
the logic of it. This is already used in the CorePlugin to intercept the @kill and
@status URLs. This is also used in the DocViewerPlugin to provide all the
existing documentation, when being in test mode.

ff serveStatic(): Allows for programmatically intercepting the serving of static
resources. A common example can be found in the SASS module, where the access
to the .sass file is intercepted and it is precomplied. This will also be used in a later
recipe, when integrating stylus.

ff loadTemplate(): This method can be used to inject arbitrary templates into the
template loader. For example, it could be used to load templates from a database
instead of the filesystem.

ff detectChange(): This is only active in development mode. If you throw an
exception in this method, the application will be reloaded.

ff onApplicationStart(): This is executed on application start and if in
development mode, on every reload of your application. You should initiate stateful
things here, such as connections to databases or expensive object creations. Be
aware, that you have to care of thread safe objects and method invocations for
yourself. For an example you could check the DBPlugin, which initializes the
database connection and its connection pool. Another example is the JPAPlugin,
which initializes the persistence manager or the JobPlugin, which uses this
to start jobs on application start.

ff onApplicationReady(): This method is executed after all plugins are loaded, all
classes are precompiled, and every initialization is finished. The application is now
ready to serve requests.

ff afterApplicationStart(): This is currently almost similar
to onApplicationReady().

ff onApplicationStop(): This method is executed during a graceful shutdown.
This should be used to free resources, which were opened during the starting of the
plugin. A standard example is to close network connections to database, remove
stale file system entries, or clear up caches.

Introduction to Writing Modules

136

ff onInvocationException(): This method is executed when an exception, which is
not caught is thrown during controller invocation. The ValidationPlugin uses this
method to inject an error cookie into the current request.

ff invocationFinally(): This method is executed after a controller invocation,
regardless of whether an exception was thrown or not. This should be used to
close request specific data, such as a connection, which is only active during
request processing.

ff beforeActionInvocation(): This code is executed before controller invocation.
Useful for validation, where it is used by Play as well. You could also possibly put
additional objects into the render arguments here. Several plugins also set up some
variables inside thread locals to make sure they are thread safe.

ff onActionInvocationResult(): This method is executed when the controller
action throws a result. It allows inspecting or changing the result afterwards. You can
also change headers of a response at this point, as no data has been sent to the
client yet.

ff onInvocationSuccess(): This method is executed upon successful execution of a
complete controller method.

ff onRoutesLoaded(): This is executed when routes are loaded from the routes files.
If you want to add some routes programmatically, do it in this method.

ff onEvent(): This is a poor man's listener for events, which can be sent using
the postEvent() method. Another recipe in this chapter will show how to use
this feature.

ff onClassesChange(): This is only relevant in testing or development mode. The
argument of this method is a list of freshly changed classes, after a recompilation.
This allows the plugin to detect whether certain resources need to be refreshed or
restarted. If your application is a complete shared-nothing architecture, you should
not have any problems. Test first, before implementing this method.

ff addTemplateExtensions(): This method allows you to add further
TemplateExtension classes, which do not inherit from JavaExtensions,
as these are added automatically. At the time of this writing, neither a plugin nor
anything in the core Play framework made use of this, with the exception of the
Scala module.

ff compileAll(): If the standard compiler inside Play is not sufficient to compile
application classes, you can override this method. This is currently only done inside
the Scala plugin and should not be necessary in regular applications.

ff routeRequest(): This method can be used to redirect requests programmatically.
You could possibly redirect any URL which has a certain prefix or treat POST requests
differently. You have to render some result if you decide to override this method.

Chapter 5

137

ff modelFactory(): This method allows for returning a factory object to create
different model classes. This is needed primarily inside of the different persistence
layers. It was introduced in play 1.1 and is currently only used by the JPA plugin
and by the Morphia plugin. The model factory returned here implements a basic
and generic interface for getting data, which is meant to be independent from the
persistence layer. It is also used to provide a more generic fixtures support.

ff afterFixtureLoad(): This method is executed after a Fixtures.load()
method has been executed. It could possibly be used to free or check some
resources after adding batch data via fixtures.

There's more...
These are the mere basics of any module. You should be aware of this, when reading any
other recipe in this chapter.

Cleaning up after creating your module
When creating a module via Play new-module, you should remove any unnecessary cruft from
your new module, as most often, not all of this is needed. Remove all unneeded directories
or files, to make understanding the module as easy as possible.

Supporting Eclipse IDE
As play eclipsify does not work currently for modules, you need to set it up manually. A
trick to get around this is to create and eclipsify a normal Play application, and then configure
the build path and use "Link source" to add the src/ directory of the plugin.

Building a flexible registration module
This is the first hands-on module. We will write one of the most needed functionalities of
modern web applications in a module, a registration module featuring a double opt-in with
a confirmation e-mail. The following tasks have to be covered by this module:

ff A registration has to be triggered by a user

ff An e-mail is send to an e-mail address including a URL to confirm registration

ff A URL can be opened to confirm registration

ff On confirmation of the registration by the user, the account should be enabled

ff A Job to remove registrations, which are older than a specified time interval

You will also see that there are some problems in keeping your application modularized,
which will have to be worked around and require understanding, as to when to put code
into a module and when to put it into the application.

The source code of the example is available at examples/chapter5/registration.

Introduction to Writing Modules

138

Getting ready
Create an application, or you possibly already have an application, where you need the
registration functionality. Inside this application should be a class resembling a user, which has
an e-mail address property and a property which defines that the user is active. Create a new
module via play new-module registration named registration.

As there will be two applications written in this example, the module as well as the application,
an additional directory name will be prepended to any file path. In case of the module this
will be "registration", where in the case of the real application this will be "register-app". This
should sort out any possible confusion.

How to do it...
Starting with the plugin, it will feature a simple controller, which allows confirmation of the
registration. This should be put into registration/app/controllers/Registration.
java:

public class Registration extends Controller {

 public static void confirm(String uuid) {
 RegistrationPlugin.confirm(uuid);
 Application.index();
 }
}

Furthermore, this module has its own routes definitions, right in registration/conf/
routes:

GET /{uuid}/confirm registration.Registration.confirm

The next step is to define an interface for the process of registration, which we will implement
in the application itself. This file needs to be put in registration/src/play/modules/
registration/RegistrationService.java:

public interface RegistrationService {
 public void createRegistration(Object context);
 public void triggerEmail(Object context);
 public boolean isAllowedToExecute(Object context);
 public void confirm(Object context);
}

Chapter 5

139

Now the plugin itself can be implemented. Put it into registration/src/play/modules/
registration/RegistrationPlugin.java:

public class RegistrationPlugin extends PlayPlugin {

 private static boolean pluginActive = false;
 private static RegistrationService service;

 public void onApplicationStart() {
 ApplicationClass registrationService = Play.classes.getAssignabl
eClasses(RegistrationService.class).get(0);

 if (registrationService == null) {
 Logger.error("Registration plugin disabled. No class
implements RegistrationService interface");
 } else {
 try {
 service = (RegistrationService) registrationService.
javaClass.newInstance();
 pluginActive = true;
 } catch (Exception e) {
 Logger.error(e, "Registration plugin disabled. Error when
creating new instance");
 }
 }
 }

 public void onEvent(String message, Object context) {
 boolean eventMatched = "JPASupport.objectPersisted".
equals(message);
 if (pluginActive && eventMatched && service.
isAllowedToExecute(context)) {
 service.createRegistration(context);
 service.triggerEmail(context);
 }
 }

 public static void confirm(Object uuid) {
 if (pluginActive) {
 service.confirm(uuid);
 }
 }
}

Introduction to Writing Modules

140

After creating the plugin the obligatory play.plugins file should not be forgotten, which
must be put into registration/src/play.plugins:

900:play.modules.registration.RegistrationPlugin

Now the module is finished and you can create it via play build-module in the
module directory.

In order to keep the whole application simple and the way it works together with the module,
the whole application will be explained in this example.

So including the module in the register-app/conf/dependencies.yml is the first step.
Running play deps after that is required:

require:
 - play
 - registration -> registration

repositories:
 - registrationModules:
 type: local
 artifact: "/absolute/path/to/registration/module"
 contains:
 - registration -> *

Then it needs to be enabled in the register-app/conf/routes file:

* /registration module:registration

The application itself consists of two entities, a user, and the registration entity itself:

@Entity
public class User extends Model {

 public String name;
 @Email
 public String email;
 public Boolean active;
}

The registration entity is also pretty short:

@Entity
public class Registration extends Model {

 public String uuid;
 @OneToOne
 public User user;
 public Date createdAt = new Date();
}

Chapter 5

141

The controllers for the main application consist of one index controller and one controller for
creating a new user. After the last one is executed, the logic of the registration plugin should
be triggered:

public class Application extends Controller {

 public static void index() {
 render();
 }

 public static void addUser(User user) {
 user.active = false;
 if (validation.hasErrors()) {
 error("Validation errors");
 }

 user.create();
 index();
 }
}

When a user registers, a mail should be sent. So a mailer needs to be created, in this case at
register-app/app/notifier/Mails.java:

public class Mails extends Mailer {

 public static void sendConfirmation(Registration registration) {
 setSubject("Confirm your registration");
 addRecipient(registration.user.email);
 String from = Play.configuration.getProperty("registration.mail.
from");
 setFrom(from);
 send(registration);
 }
}

A registration clean up job is also needed, which removes stale registrations once per week.
Put it at register-app/app/jobs/RegistrationCleanupJob.java:

@Every("7d")
public class RegistrationCleanupJob extends Job {

 public void doJob() {
 Calendar cal = Calendar.getInstance();
 cal.add(Calendar.MONTH, -1);

Introduction to Writing Modules

142

 List<Registration> registrations = Registration.find("createdAt
< ?", cal.getTime()).fetch();
 for (Registration registration : registrations) {
 registration.delete();
 }
 Logger.info("Deleted %s stale registrations", registrations.
size());
 }
}

The last part is the actual implementation of the RegistrationService interface from the
plugin. This can be put into register-app/app/service/RegistrationServiceImpl.
java:

public class RegistrationServiceImpl implements RegistrationService {

 @Override
 public void createRegistration(Object context) {
 if (context instanceof User) {
 User user = (User) context;
 Registration r = new Registration();
 r.uuid = UUID.randomUUID().toString().replaceAll("-", "");
 r.user = user;
 r.create();
 }
 }

 @Override
 public void triggerEmail(Object context) {
 if (context instanceof User) {
 User user = (User) context;
 Registration registration = Registration.find("byUser",
user).first();
 Mails.sendConfirmation(registration);
 }
 }

 @Override
 public boolean isAllowedToExecute(Object context) {
 if (context instanceof User) {
 User user = (User) context;
 return !user.active;
 }
 return false;
 }

Chapter 5

143

 @Override
 public void confirm(Object context) {
 if (context != null) {
 Registration r = Registration.find("byUuid", context.
toString()).first();
 if (r == null) {
 return;
 }
 User user = r.user;
 user.active = true;
 user.create();
 r.delete();
 Flash.current().put("registration", "Thanks for
registering");
 }
 }
}

There are only two remaining steps, the creation of two templates. The first one is the
register-app/app/views/Application/index.html template, which features a
registration mechanism and additional messages from the flash scope:

#{extends 'main.html' /}
#{set title:'Home' /}

${flash.registration}

#{form @Application.addUser()}
Name: <input type="text" name="user.name" />

Email: <input type="text" name="user.email" />

<input type="submit" value="Add" />
#{/form}

The last template is the one for the registration e-mail, which is very simple. And put the
following under register-app/app/views/notifier/Mails/sendConfirmation.txt:

Hey there...

a very warm welcome.
We need you to complete your registration at

@@{registration.Registration.confirm(registration.uuid)}

Also you should configure your register-app/conf/application.conf file with a valid
from e-mail address, which should be set in the sent out e-mails. Therefore, put the parameter
registration.mail.from=email@example.com in your configuration.

Introduction to Writing Modules

144

Many things happened here in two applications. In order to make sure, you got it right and
where to put what file, here is a list of each. This might help you not to be confused. First
goes the module, which is in the registration directory:

registration/app/controllers/registration/Registration.java
registration/build.xml
registration/conf/routes
registration/lib/play-registration.jar
registration/src/play/modules/registration/RegistrationPlugin.java
registration/src/play/modules/registration/RegistrationService.java
registration/src/play.plugins

Note that the play-registration.jar will only be there, after you built the module. Your
register application should consist of the following files:

register-app/app/controllers/Application.java
register-app/app/jobs/RegistrationCleanupJob.java
register-app/app/models/Registration.java
register-app/app/models/User.java
register-app/app/notifier/Mails.java
register-app/app/service/RegistrationServiceImpl.java
register-app/app/views/Application/index.html
register-app/app/views/main.html
register-app/app/views/notifier/Mails/sendConfirmation.txt
register-app/conf/application.conf
register-app/conf/routes

After checking you can start your application, go to the index page and enter a username and
an e-mail address. Then the application will log the sent mail, as long as the mock mailer is
configured. You can check the template and that the sent e-mail has an absolute URL to the
configuration including an URL with /registration/ in it, where the registration module
is mounted. When visiting the link of the e-mail, you will be redirected to the start page, but
there is a message at the top of the page. When reloading, this message will vanish, as it is
only put in the flash scope.

How it works...
The preceding list, where to find which resources, should primarily show one thing. This
example plugin is far from ideal. Indeed, it is very far from that. It should make you think
about when you really need a plugin, and when you should include most of the stuff inside
your actual project. It's time to discuss flaws and advantages of this example.

Chapter 5

145

First, when you take a look at the RegistrationPlugin in the module, you will
see a loosely coupled integration. The plugin searches for an implementation of the
RegistrationService interface on startup, and will be marked active, if it finds such
an implementation. The implementation in turn is completely independent of the module
and therefore done in the application. When you take another look at the plugin, there is an
invocation of the service, if a certain JPA event occurs, like the creation of a new object in
this case. Again the actual implementation of the service should decide, whether it should be
invoked or not. This happens via the isAllowedToExecute() method.

In case you are wondering, why there is no concrete implementation and especially no use
of the registration entity: this is a limitation of the Play framework. You cannot use models
in modules currently. You cannot import them in your plugin, as they are not visible at
compile time of your module. Instead you would have to get them via the Play classloader.
Using an interface, which is implemented in the application itself, was a design decision
to circumvent exactly this problem with models. Still this means a certain decoupling
from your concrete application and is not too good either. This is also the reason, why the
RegistrationCleanupJob is also in the application instead of being at the module.
Otherwise, it would also have to be configurable, like adding the time, how often it should
run, and what entities should be cleaned. As opposed in this example, any user who has not
registered might have to be cleaned as well. As all mailer classes are enhanced, they also do
not fit into the module. The same applies for the e-mail template due to its flexibility, which
implies it should not be packaged in any JAR files or external module, because it cannot be
changed in the application then.

So, as you can see in this example, there is no clear and implicit structure. Even though the
integration and writing of the plugin is nice, as it is completely decoupled from the storing of a
user entity, it would make more sense in this example, to write the logic of this plugin directly
in your application instead of building an own module with own packaging, as you could use
all your models easily.

So when does writing a module make more sense? It makes more sense whenever you
provide infrastructure code. This code is like your own persistence layer, specific templating,
specific parsing of incoming data, external authentication or general integration of external
services like a search engine. There are going to be enough examples inside this chapter to
give a grip what belongs in a module and what belongs in your application.

A last important note and weakness of modules are currently the test capabilities. You have
to write an application and use the module inside the applications tests. This is currently the
only way to ensure the functionality of your module.

There's more...
Hopefully, this example gave you a glimpse of how to write a first module, but more
importantly explains there is not always a use case for a module.

Introduction to Writing Modules

146

Think about when to write a module
If you sacrifice readability and structure of your application in favor of reuse, you should think
about whether this is the way to go. Make sure your application is kept as simple as possible.
It will be done this way the rest of this chapter.

Understanding events
As seen in the last example, events are a nice mechanism for attaching to certain actions
without changing any of the existing code. In the last recipe the RegistrationPlugin was
attached to the event of storing to create an entity. This is only one of many use-cases. This
mechanism is quite seldom used in Play. There are some pros and cons about using events.
It is always worth to think about whether using events is the right approach.

The source code of the example is available at examples/chapter5/events.

How to do it...
Triggering events yourself is absolutely easy. You can put the following anywhere in your code:

PlayPlugin.postEvent("foo.bar", "called it");

The first argument is an arbitrary string and should by convention consist of two words split
by a dot. The first part should resemble some generic identifier. In order to correlate it easily
this part is ideally the source of where it is coming from. The second part should be a unique
identifier representing the reason for this event to be triggered. The last argument of the
method can be any object. You have to take care of correct conversion and usage in the
plugin yourself.

Receiving events is just as simple. Just write a plugin and implement the onEvent method:

 public void onEvent(String event, Object context) {
 if (event.startsWith("foo.")) {
 Logger.info("Some event: %s with content %s", event,
context);
 }
 }

How it works...
There are actually surprisingly few events predefined in the framework. Only the JPA plugin
emits three different events:

ff JPASupport.objectDeleted is posted when any object is deleted. You could
possibly implement some sort of audit history this way. However, this is better done
with hibernate in this case.

Chapter 5

147

ff JPASupport.objectPersisted is posted when a new object is created.

ff JPASupport.objectUpdated is posted whenever an existing object is updated.

Currently, the event mechanism is not used that much. At the time of this writing, only the
Ebean plugin made use of it.

If you take a look at the PlayPlugin class' postEvent() method, you will see the
following snippet:

public static void postEvent(String message, Object context) {
 Play.pluginCollection.onEvent(message, context);
}

So, for each emitted event, the framework loops through all plugins and executes the
onEvent() method. This means that all this is done synchronously. Therefore, you should
never put heavy weight operations into this method, as this might block the currently
running request.

Possibly, you could also make the business logic inside your onEvent() methods run
asynchronously in order to speed things up and return to the caller method faster.

There's more...
Events are a nice and handy feature, but you should not use them overly, as they might make
your code less readable. Furthermore, you should not mix this mechanism up with real event
messaging solutions.

Think about multi-node environments
Events only get emitted inside the JVM. If you want a reliable way to collect and process your
events in a multi-node environment, you cannot use the built-in event mechanism of the Play
framework. You might be better off with a real messaging solution, which is in the Integrating
with messaging queues recipe in the next chapter.

Managing module dependencies
As of play 1.2, a new dependency mechanism has been introduced to make the developers
life much easier. It is based on Apache Ivy and thus does not require you to have an own
repository. You can use all the existing infrastructure and libraries which are provided by the
existing maven repositories.

The source code of the example is available at examples/chapter5/dependencies.

Introduction to Writing Modules

148

Getting ready
After a new application has been created, you will find a conf/dependencies.yml file in
your application. The only dependency is the Play framework itself by default.

How to do it...
In Chapter 2 the recipe Writing your own renderRSS method as controller output showed how
to write out RSS feeds with the Rome library. Rome was downloaded back then and put into
the lib/ folder. When searching for Rome on a Maven repository search engine, you will find
an entry like http://mvnrepository.com/artifact/rome/rome/0.9. All you need
to is to extend the existing configuration to:

require:
 - play
 - rome 0.9

And rerun play deps. When checking your lib/ directory you will see the Rome and JDOM
jar files copied into it. JDOM is a dependency of Rome, so it is copied as well. If you remove
the line with the Rome dependency again, you should run play deps --sync to make sure,
both JAR files are removed again.

The next step is to put the actual dependency into your module instead of your application.

So create a conf/dependencies.yml in your module:

self: play -> depmodule 1.0

require:
 - rome 0.9
 - rome georss 0.1

Also note that the version of the module is set explicitly here to 1.0.

Now run play deps in the module directory to make sure the JAR files are put into the
lib/ directory.

Put the module dependency in your application conf/dependencies.yml file:

require:
 - play
 - play -> depmodule 1.0

Chapter 5

149

How it works...
As you have probably found out while reading the preceding paragraphs, the dependencies
are again defined as a YML file, similar to the fixtures feature of Play. Furthermore, the
definition of module dependencies is a little bit different when compared to the normal
applications as it has to have a self: part defined first.

Generally, the syntax of the name of dependencies is similar to the one of Maven. A Maven
package contains a groupId, an artifactId, and a version. A dependency is written in
the form of:

- $groupId $artifactId $version

However, if groupId and artifactId are the same, one may be omitted, as seen with the
preceding Rome example.

There's more...
This recipe is rather short, because you will get used to this mechanism pretty quickly and it is
already well documented.

Learn more about dependency management with play
As there are more options available, you should definitely read the dependency
documentation at http://www.playframework.org/documentation/1.2/
dependency. In particular, the parts about versioning and transitive dependencies should be
read in order to make sure not to override dependencies from the framework itself. Also, if you
are interested in Apache Ivy, you can read more about it at http://ant.apache.org/ivy/

Search for jar files in Maven repositories
If you are searching for jar files in public repositories, you should use one of the following sites:

http://mvnrepository.com/

http://mavensearch.net/

http://www.jarvana.com/

http://search.mvnsearch.org/

http://www.mvnbrowser.com/ (also searches many other non-official Maven repositories)

See also
It is also very easy to create your own repositories for Play modules without creating any
Maven repositories. See the recipe Adding private module repositories in this chapter
for more.

Introduction to Writing Modules

150

Using the same model for different
applications

A more frequently occurring problem might be the need for using the same model in different
applications. A simple solution is to make the model layer a module itself.

The source code of the example is available at examples/chapter5/module-model.

How to do it...
So, create an application and a module:

play new app01
play new-module my-module-model

Change the dependencies.yml to include the module:

require:
 - play
 - modelModules -> my-module-model

repositories:
 - playmodelModules:
 type: local
 artifact: "/path/to/my-module-model/"
 contains:
 - modelModules -> *

If you just created your application like the one that we just saw, do not forget to add a
database connection in your application configuration. For testing purposes use the in
memory database via db=mem.

Put a User model into your module at my-module-model/app/models/User.java:

@Entity
public class User extends Model {

 public String name;
 public String login;
}

Use it like any other model in your controller inside of your application. You can even use all
the class reloading features after changing the model.

Chapter 5

151

How it works...
When talking about the directory layout of a module, you have already seen that it also
features an app/ directory. However, this directory is not included when a module is compiled
and packaged into a JAR file via play build-module. This is intended and should never
be changed. This means, a full module not only consists of a compiled jar library, but also of
these sources, which are compiled dynamically, when the application is started.

As soon as a Java class is packaged into a JAR file, it cannot be changed anymore on the start
of a Play application. The process of bytecode enhancement needs a compiled class file in the
filesystem, as this file is modified during the enhancement. Every model class is enhanced,
but there are many other classes as well, for example controllers and mailers.

This is also the reason why you cannot reference model classes in your plugin code inside the
src/ directory, although this would have been the quickest solution in the registration plugin
example. At the time of module compilation they are not enhanced and if they are included in
the JAR file, they will never be.

There's more...
The next step about modules is one of the more complex parts: bytecode enhancement.

Learn more about bytecode enhancers
Bytecode enhancement is quite a tricky process and definitely nothing quick to understand. To
learn about integration into Play, which makes writing your own enhancers pretty simple, you
should check the play.classloading.enhancers package, where several enhancers are
already defined.

Check the modules for even more enhancers
If you need more usage example of bytecode enhancers, there are several modules making
use of it. It is used mostly in order to resemble the finder methods in the model classes
of different persistence layers. Examples for these are the Morphia, Ebean, Siena, and
Riak modules.

See also
The next recipe will exclusively deal with two examples of bytecode enhancement in Play and
should give you a first impression how to make use of it.

Introduction to Writing Modules

152

Understanding bytecode enhancement
This recipe should show you why it is important to understand the basic concepts of bytecode
enhancement and how it is leveraged in the Play framework. The average developer usually
does not get in contact with bytecode enhancement. The usual build cycle is compiling the
application, and then using the created class files.

Bytecode enhancement is an additional step between the compilation of the class files and
the usage by the application. Basically this enhancement step allows you to change the
complete behavior of the application by changing what is written in the class files at a very low
level. A common use case for this is aspect oriented programming, is where you add certain
features to methods after the class has been compiled. A classical use case for this is the
measurement of method runtimes.

If you have already explored the source code of the persistence layer you might have noticed
the use of bytecode enhancement. This is primarily to overcome a Java weakness: static
methods cannot be inherited with class information about the inherited class, which seems
pretty logical, but is a major obstacle. You have already used the Model class in most of your
entities. It features the nice findAll() method, or its simpler companion, the count()
method. However, if you defined a User entity extending the Model class, all invocations of
User.findAll() or User.count() will always invoke the Model.findAll() or
Model.count(), which would never return any user entity specific data.

This is exactly the place where the bytecode enhancement kicks in. When starting your Play
application, every class which inherits from the Model class is enhanced to return entity
specific data, when the static methods from findAll() or count() are executed. As this
is not possible with pure java, bytecode enhancement is used to circumvent this problem.

If you take a look at the play.db.jpa.JPAEnhancer class, you will see that the code
which is inserted by the enhancer is actually written inside quotes and does not represent
real code inside the Java class, which is checked during compilation by the compiler. This
has the problem of being error prone, as typos are caught only when the actual bytecode
enhancement happens or, even worse, when the code is executed. There is currently no
good way around this.

The source code of the example is available at examples/chapter5/bytecode-
enhancement.

Getting ready
The example in this recipe will make use of the search module, which features fulltext
search capabilities per entity. Make sure, it is actually installed by adding it to the
conf/dependencies.yml file. You can get more information about the module at
http://www.playframework.org/modules/search. This example will enhance
every class with a method, which returns whether the entity is actually indexed or not.

Chapter 5

153

This could also be solved with the reflection API of course by checking for annotations at the
entity. This should just demonstrate how bytecode enhancement is supposed to work. So
create an example application which features an indexed and a not indexed entity.

Write the Test which should be put into the application:

public class IndexedModelTest extends UnitTest {

 @Test
 public void testThatUserIsIndexed() {
 assertTrue(User.isIndexed());
 assertTrue(User.getIndexedFields().contains("name"));
 assertTrue(User.getIndexedFields().contains("descr"));
 assertEquals(2, User.getIndexedFields().size());
 }

 @Test
 public void testThatOrderIndexDoesNotExist() {
 assertFalse(Order.isIndexed());
 assertEquals(0, Order.getIndexedFields().size());
 }
}

How to do it...
When you have written the preceding test, you see the use of two entities, which need to be
modeled. First the User entity:

@Entity
@Indexed
public class User extends IndexedModel {

 @Field
 public String name;
 @Field
 public String descr;
}

In case you are missing the Indexed and Field annotations, you should now really install
the search module, which includes these as described some time back in this chapter. The
next step is to create the Order entity:

@Entity(name="orders")
public class Order extends IndexedModel {

 public String title;
 public BigDecimal amount;
}

Introduction to Writing Modules

154

Note the change of the order table name as order is a reserved SQL word. As you can see, both
entities do not extend from model, but rather extend from IndexedModel. This is a helper
class which is included in the module we are about to create now. So create a new module
named bytecode-module. Create the file bytecode-module/src/play.plugins with
this content:

 1000:play.modules.searchhelp.SearchHelperPlugin

Create the IndexedModel class first in bytecode-module/src/play/modules/
searchhelp/IndexedModel.java:

public abstract class IndexedModel extends Model {

 public static Boolean isIndexed() {
 return false;
 }

 public static List<String> getIndexedFields() {
 return Collections.emptyList();
 }
}

The next step is to create the bytecode enhancer, which is able to enhance a single
entity class. So create bytecode-module/src/play/modules/searchhelp/
SearchHelperEnhancer.java:

public class SearchHelperEnhancer extends Enhancer {

 @Override
 public void enhanceThisClass(ApplicationClass applicationClass)
throws Exception {
 CtClass ctClass = makeClass(applicationClass);

 if (!ctClass.subtypeOf(classPool.get("play.modules.searchhelp.
IndexedModel")) ||
 !hasAnnotation(ctClass, "play.modules.search.Indexed"))
{
 return;
 }

 CtMethod isIndexed = CtMethod.make("public static Boolean
isIndexed() { return Boolean.TRUE; }", ctClass);
 ctClass.addMethod(isIndexed);

 List<String> fields = new ArrayList<string>();
 for (CtField ctField : ctClass.getFields()) {

Chapter 5

155

 if (hasAnnotation(ctField, "play.modules.search.Field")) {
 fields.add("\"" + ctField.getName() + "\"");
 }
 }

 String method;
 if (fields.size() > 0) {
 String fieldStr = fields.toString().replace("[", "").
replace("]", "");
 method = "public static java.util.List getIndexedFields() {
return java.util.Arrays.asList(new String[]{" + fieldStr + "}); }";
 CtMethod count = CtMethod.make(method, ctClass);
 ctClass.addMethod(count);
 }

 applicationClass.enhancedByteCode = ctClass.toBytecode();
 ctClass.defrost();
 }
}

The last part is to create the plugin, which actually invokes the enhancer on startup of the
application. The plugin also features an additional output in the status pages. Put the file into
bytecode-module/src/play/modules/searchhelp/SearchHelperPlugin.java:

public class SearchHelperPlugin extends PlayPlugin {

 private SearchHelperEnhancer enhancer = new SearchHelperEnhancer();

 @Override
 public void enhance(ApplicationClass applicationClass) throws
Exception {
 enhancer.enhanceThisClass(applicationClass);
 }

 @Override
 public JsonObject getJsonStatus() {
 JsonObject obj = new JsonObject();
 List<ApplicationClass> classes = Play.classes.getAssignableClass
es(IndexedModel.class);

 for (ApplicationClass applicationClass : classes) {
 if (isIndexed(applicationClass)) {
 List<String> fieldList = getIndexedFields(applicationCla
ss);
 JsonArray fields = new JsonArray();

Introduction to Writing Modules

156

 for (String field :fieldList) {
 fields.add(new JsonPrimitive(field));
 }

 obj.add(applicationClass.name, fields);
 }
 }

 return obj;
 }

 @Override
 public String getStatus() {
 String output = "";

 List<ApplicationClass> classes = Play.classes.getAssignableClass
es(IndexedModel.class);

 for (ApplicationClass applicationClass : classes) {
 if (isIndexed(applicationClass)) {
 List<String> fieldList = getIndexedFields(applicationCla
ss);
 output += "Entity " + applicationClass.name + ": " +
fieldList + "\n";
 }
 }

 return output;
 }

 private List<String> getIndexedFields(ApplicationClass
applicationClass) {
 try {
 Class clazz = applicationClass.javaClass;
 List<String> fieldList = (List<String>) clazz.
getMethod("getIndexedFields").invoke(null);
 return fieldList;
 } catch (Exception e) {}

 return Collections.emptyList();
 }

Chapter 5

157

 private boolean isIndexed(ApplicationClass applicationClass) {
 try {
 Class clazz = applicationClass.javaClass;
 Boolean isIndexed = (Boolean) clazz.getMethod("isIndexed").
invoke(null);
 return isIndexed;
 } catch (Exception e) {}

 return false;
 }
}

After this, build the module, add the module dependency to the application which
includes the test at the beginning of the recipe, and then go to the test page at
http://localhost:9000/@tests and check if the test is running successfully.

How it works...
Though the module consists of three classes, only two should need further explanation. The
SearchHelperEnhancer basically checks whether @Indexed and @Field annotations
exist, and overwrites the statically defined methods of the IndexedModel class with
methods that actually return true in case of isIndexed() and a list of indexed fields
in case of getIndexedFields().

As already mentioned in the overview of the modules, the enhance() method inside of
any Play plugin allows you to include your own enhancers and is basically a one liner in the
plugin, as long as you do type checking in the enhancer itself.

As you can see in the source, the code which is actually enhanced, is written as text string
inside of the CtMethod.make() method in the enhancer. This is error prone, as typos or
other mistakes cannot be detected at compile time, but only on runtime. Currently, this is
the way to go. You could possibly try out other bytecode enhancers such as JBoss AOP, if this
is a big show stopper for you. You can read more about JBoss AOP at http://www.jboss.
org/jbossaop:

This recipe shows another handy plugin feature. The plugin also implements getStatus()
and getJsonStatus() methods. If you run play status in the directory of your
application while it is running, you will get the following output at the end:

SearchHelperPlugin:
~~~~~~~~~~~~~~~~~~~
Entity models.User: [name, descr]



Introduction to Writing Modules

158

There's more...
As writing your own enhancers inside of your own plugins is quite simple, you should check 
out the different persistence modules, where enhancers are used for the finders. If you want 
to get more advanced, you should also check out the enhancement of controllers.

Overriding toString() via annotation
Peter Hilton has written a very good article on how one can configure the output of the 
toString() method of an entity with the help of an annotation by using bytecode 
enhancement. You can check it out at http://www.lunatech-research.com/
archives/2011/01/11/declarative-model-class-enhancement-play.

See also
In the next chapter the recipe Adding annotations via bytecode enhancements will add 
annotations to classes via bytecode enhancement. This can be used to prevent repeating 
placing annotations all over your model classes.

Adding private module repositories
With the release of play 1.2 and its new dependency management it is very easy to have 
private repositories where you can store your own modules.

As the dependency management of Play is based on Apache Ivy, it is theoretically possible 
to use a Maven repository for this task, but often it is simpler to use a small share on your 
Intranet web server for such task.

Getting ready
You should have some location, where you can upload your modules. If you just do this for 
testing purposes, you can start a web server via Python

python -m SimpleHTTPServer

This will start a web server on port 8000 with the current directory you are in as  
document root.



Chapter 5

159

How to do it...
When creating a new module, it is not necessary to set a version number in the modules 
conf/dependencies.yml file. However, if you do it, it helps you to keep module versions. 
So, for test reasons, go into one of your modules, set version to 0.1 and build the module. 
Then copy the created zip from the dist/ directory into the directory, where you started the 
web server or alternatively in the directory of your real web server. Repeat the steps again, but 
this time create a module using 0.2 as version. Going to http://localhost:8000 should 
now provide a listing with two zip files of your module.

Now add another repository to your application specific conf/dependencies.yml file:

require:
    - play
    - spinscale -> csv-module 0.1

# Custom repository
repositories:
    - spinscaleRepo:
        type:       http
        artifact:   "http://localhost:8000/[module]-[revision].zip"
        contains:
          - spinscale -> *

Now you can run play dependencies and the output should include this:

~ Installing resolved dependencies,
~
~    modules/csv-module-0.1

Normal JAR dependencies are put in the lib/ directory of your application; however modules 
like the referenced csv-module are unpacked into the modules/ directory inside of your Play 
application. Whenever you are starting your application now, all the modules in this directory 
are loaded automatically.

How it works...
The most important part is the format of the artifact in the dependencies file. It allows you 
to match arbitrary directory structures on the web server. Furthermore, you can possibly also 
have local repositories by using an artifact definition like the following:

artifact:   "${play.path}/modules/[module]-[revision]"

Always keep in mind not to use tabs in the YML files, but spaces when editing them. 
Furthermore, the artifact path has to be absolute.



Introduction to Writing Modules

160

If you want to remove a module, delete the entry from the dependencies file, and execute 
play dependencies --sync again to make sure all modules are removed from your 
application as well.

There's more...
Even though it is possible to have private repositories, you are of course encouraged to open 
source your modules.

Check the official documentation
There is an own page about dependency management where most of the possible options 
are written down, as there are still some more possibilities. Please read most of it at  
http://www.playframework.org/documentation/1.2/dependency.

Repositories with older versions
It is not simple to use any of the dependencies here with Play versions older than 1.2. There 
has been an effort at http://code.google.com/p/play-repo/ - but it looks like it is not 
in active development anymore.

Preprocessing content by integrating stylus
If you have taken a look at the available modules on the Play framework site, there are at the 
time of this writing two modules, which help the developer to write CSS. On one the hand is 
the SASS module and on the other hand the less module.

Both modules address the same problem: On every change of the source file, either SASS or 
less follows some recompilation into the destination CSS file. Only the most up to date CSS file 
may be delivered to the client. In development mode every incoming request should always 
create the most up to date CSS output, where as in production it is sufficient to create those 
files seldom and cache them in order to increase performance.

The source code of the example is available at examples/chapter5/stylus.

Getting ready
In case you have never heard what SASS, less CSS, or stylus do, now would be the perfect 
time to learn. Check out the URL of each tool at the end of this recipe. In short, they are 
simple preprocessors, which parse an arbitrary definition of CSS similar content and create 
CSS content out of it.



Chapter 5

161

This implies different behaviors in production and development mode. In development  
mode every incoming request should always create the most up to date CSS output, where  
as in production it is sufficient to create those files seldom and cache them in order to 
increase performance.

So, a HTTP request to the URI /public/test.styl should result in a pure CSS output, 
where the original content of the test.styl file was compiled and then returned to 
the client.

As usual, a test is the first point to start with, after installing stylus of course:

public class StylusCompilerTest extends UnitTest {

    @Test
    public void checkThatStylusCompilerWorks() throws Exception {
       StylusCompiler compiler = new StylusCompiler();
       File file = Play.getFile("test/test.styl");
       String result = compiler.compile(file);
       
       File expectedResultFile = Play.getFile("test/test.styl.
result");
       String expectedResult = FileUtils.readFileToString(expectedRes
ultFile);
       
       assertEquals(expectedResult, result);
    }
}

This simple test takes a prepared input file, compiles it, and checks whether the output is 
similar to an already parsed file. For simplicity, the file used in this test is the example from 
the stylus readme at https://github.com/LearnBoost/stylus/blob/master/
Readme.md.

In case you are asking why only the compiler is tested, and not the whole plugin, including 
the preceding HTTP request: at the time of this writing there was a special handling for non 
controller resources, which could not be handled in functional tests. If you look at the source 
code of this recipe, you will see how an example functional test should look.

How to do it...
This plugin is rather short. It consists of two classes, first the StylusCompiler doing all the 
hard work. I skipped the creation of a new module and the play.plugins file in this case:

public class StylusCompiler {

   public String compile(File realFile) throws Exception {
      if (!realFile.exists() || !realFile.canRead()) {



Introduction to Writing Modules

162

         throw new FileNotFoundException(realFile + " not found");
      }
      String stylusPath = Play.configuration.getProperty("stylus.
executable", "/usr/local/share/npm/bin/stylus");

      File stylusFile = new File(stylusPath);
      if (!stylusFile.exists() || !stylusFile.canExecute()) {
         throw new FileNotFoundException(stylusFile + " not found");
      }

      Process p = new ProcessBuilder(stylusPath).start();
      byte data[] = FileUtils.readFileToByteArray(realFile);
      p.getOutputStream().write(data);
      p.getOutputStream().close();

      InputStream is = p.getInputStream();
      String output = IOUtils.toString(is);
      is.close();

      return output;
   }
}

The second class is the plugin itself, which catches every request on files ending with styl 
and hands them over to the compiler:

public class StylusPlugin extends PlayPlugin {

   StylusCompiler compiler = new StylusCompiler();
   
   @Override
   public void onApplicationStart() {
      Logger.info("Loading stylus plugin");
   }
   
    @Override
    public boolean serveStatic(VirtualFile file, Request request, 
Response response) {
       String fileEnding = Play.configuration.getProperty("stylus.
suffix", "styl");
       if(file.getName().endsWith("." + fileEnding)) {
          response.contentType = "text/css";
          response.status = 200;
          try {
             String key = "stylusPlugin-" + file.getName();



Chapter 5

163

             String css = Cache.get(key, String.class);
             if (css == null) {
                css = compiler.compile(file.getRealFile());
             }
                
           // Cache in prod mode
           if(Play.mode == Play.Mode.PROD) {
              Cache.add(key, css, "1h");
              response.cacheFor(Play.configuration.getProperty("http.
cacheControl", "3600") + "s");
           }
           response.print(css);
         } catch(Exception e) {
             response.status = 500;
             response.print("Stylus processing failed\n");
             if (Play.mode == Play.Mode.DEV) {
                e.printStackTrace(new PrintStream(response.out));
             } else {
                Logger.error(e, "Problem processing stylus file");
             }
         }
         return true;
        }

     return false;
    }
}

How it works...
If the requested file ends with a certain configured suffix or styl, the response is taken care 
of in the serveStatic() method. If the content is not in the cache, the compiler creates it. 
If the system is acting in production mode, the created content is put in the cache for an hour, 
otherwise it is returned. Also, exceptions are only returned to the client in development mode, 
otherwise they are logged. As the return type of the method is Boolean, it should return true, if 
the plugin took care of delivering the requested resource.

The most notable thing about the stylus compiler is the way it is invoked. If you use stylus on 
the command line, you would execute it like stylus < in.styl in order to read the input 
from a file and print the output to the console, or more generally spoken, to stdout. As the 
< operator is a bash feature, we need to supply the input by writing the requested file into the 
output stream and reading the output from the input stream. This might be vice versa. This is 
what the StylusCompiler class mimics, when using the ProcessBuilder to invoke the 
external process.



Introduction to Writing Modules

164

Just to give you a feeling, how much a cache is needed: on my MacBook one hundred 
invocations on a small stylus file takes 16 seconds, including opening a new HTTP connection 
on each request. In production mode these hundred requests take less than one second.

A possible improvement for this plugin could be better handling of exceptions. The Play 
framework does a great job of exposing nice looking exceptions with exact error messages. 
This has not been accounted for in this example.

Stylus also supports CSS compression, so another improvement could be to build it into the 
compiler. However, this would merely be useful for production mode as it makes debugging 
more complex.

There's more...
There are lots of CSS preprocessors out there, so take the one you like most and feel 
comfortable with, as integration will be quite simple with the Play framework. Also you  
should take a look at the SASS, less, press, and greenscript modules of Play.

More information about CSS preprocessing
If you want to get more information about the CSS preprocessors mentioned in this recipe, 
go to http://sass-lang.com/, http://lesscss.org/, and https://github.com/
LearnBoost/stylus.

Integrating Dojo by adding command line  
options

There is one last key aspect of modules, which has not been touched yet: the opportunity 
to add new command line options to modules.

This recipe utilizes the Dojo toolkit to show this feature. Dojo is one of the big JavaScript 
toolkits, which features tons of widgets, a simple interface, and a very easy start for object 
oriented developers. If you are using the standard distribution of Dojo together with a lot of 
widgets, there are many HTTP requests for all the widgets, as every widget is put into its own 
JavaScript file in a default Dojo installation. Many requests result in very slow application 
loading. Dojo comes with its own JavaScript optimizer called ShrinkSafe, which handles lots 
of things, like compressing the JavaScript code needed by your custom application into one 
single file as well as creating i18n files and compressing CSS code.

In order to use the ShrinkSafe capabilities, you need a developer build of Dojo. A configuration 
file is created, where you specify exactly which widgets are needed for this custom build. Only 
these referenced widgets are compressed into the single JavaScript file.



Chapter 5

165

Such a precompilation step implies that there must be some way to download and compile 
the JavaScript before or during the Play application is running. You can develop without 
problems with a zero or partly optimized version of Dojo, because missing files are loaded  
at runtime. However, you should have a simple method to trigger the Dojo build process.  
A simple method like entering play dojo:compile on the command line.

The source code of the example is available at examples/chapter5/dojo-integration.

Getting ready
Create a new module called Dojo, and create any example application in which you 
include this module via your depdencies.yml file. Also put a Dojo version in your 
application.conf like this:

dojo.version=1.6.0

Just put the most up-to-date Dojo version as value in the key.

How to do it...
Your module is actually almost bare. The only file which needs to be touched is the  
dojo/commands.py file:

import urllib
import time
import tarfile
import os
import sys
import getopt
import shutil
import play.commands.modulesrepo

MODULE = 'dojo'

COMMANDS = ['dojo:download', 'dojo:compile', 'dojo:copy', 
'dojo:clean']

dojoVersion = "1.6.0"
dojoProfile = "play"

def execute(**kargs):
    command = kargs.get("command")
    app = kargs.get("app")
    args = kargs.get("args")
    env = kargs.get("env")



Introduction to Writing Modules

166

    global dojoVersion
    global dojoProfile

    dojoVersion = app.readConf("dojo.version")

    try:
        optlist, args = getopt.getopt(args, '', ['version=', 
'profile='])
        for o, a in optlist:
            if o in ('--version'):
                dojoVersion = a
            if o in ('--profile'):
                dojoProfile = a
    except getopt.GetoptError, err:
        print "~ %s" % str(err)
        print "~ "
        sys.exit(-1)

    if command == "dojo:download":
        dojoDownload()
    if command == "dojo:compile":
        dojoCompile()
    if command == "dojo:copy":
        dojoCopy()

The next three methods are helper methods to construct the standard naming scheme of Dojo 
directories and filenames including the specified version.

def getDirectory():
   global dojoVersion
   return "dojo-release-" + dojoVersion + "-src"

def getFile():
   return getDirectory() + ".zip"

def getUrl():
    global dojoVersion
    return "http://download.dojotoolkit.org/release-" + dojoVersion + 
"/" + getFile()

All the following defined methods start with Dojo and represent the code executed for each of 
the command line options. For example, dojoCompile() maps to the command line option 
of play dojo:compile:

def dojoCompile():
    dir = "dojo/%s/util/buildscripts" % getDirectory()
    os.chdir(dir)



Chapter 5

167

    os.system("./build.sh profileFile=../../../../conf/dojo-profile-
%s.js action=release" % dojoProfile)

def dojoClean():
    dir = "dojo/%s/util/buildscripts" % getDirectory()
    os.chdir(dir)
    os.chmod("build.sh", 0755)
    os.system("./build.sh action=clean" % dojoProfile)

def dojoCopy():
    src = "dojo/%s/release/dojo/" % getDirectory()
    dst = "public/javascripts/dojo"
    print "Removing current dojo compiled code at %s" % dst
    shutil.rmtree(dst)
    print "Copying dojo %s over to public/ directory" % dojoVersion
    shutil.copytree(src, dst)

def dojoDownload():
    file = getFile()

    if not os.path.exists("dojo"):
        os.mkdir("dojo")

    if not os.path.exists("dojo/" + file):
        Downloader().retrieve(getUrl(), "dojo/" + file)
    else:
        print "Archive already downloaded. Please delete to force new 
download or specifiy another version"

    if not os.path.exists("dojo/" + getDirectory()):
        print "Unpacking " + file + " into dojo/"
        modulesrepo.Unzip().extract("dojo/" + file, "dojo/")
    else:
        print "Archive already unpacked. Please delete to force new 
extraction"

After this is put into your commands.py, you can check whether it works by going into your 
application and running play dojo:download.

This will download and unpack the Dojo version you specified in the application configuration 
file. Now create a custom Dojo configuration in conf/dojo-profile-play.js:

dependencies = {
  layers:  [
    {
      name: "testdojo.js",
      dependencies: [
        "dijit.Dialog",



Introduction to Writing Modules

168

        "dojox.wire.Wire",
        "dojox.wire.XmlWire"
      ]
    }
  ],
  prefixes: [
    [ "dijit", "../dijit" ],
    [ "dojox", "../dojox" ],
  ]
};

Now you can run play dojo:compile and wait a minute or two. After this you have a 
customized version of Dojo, which still needs to be copied into the public/ directory of your 
application in order to be visible. Just run play dojo:copy to copy the files.

The last step is to update the code to load your customized JavaScript. So edit your HTML files 
appropriately and insert the following snippet:

<script src="@{'/public/javascripts/dojo/dojo/dojo.js'}" type="text/
javascript" charset="utf-8"></script>

<script src="@{'/public/javascripts/dojo/dojo/testdojo.js'}" 
type="text/javascript" charset="utf-8"></script>

<script type="text/javascript">
  dojo.require("dijit.Dialog")
  dojo.require("dojox.wire.Wire")
</script>

How it works...
Before explaining how this all works, you should make sure that an optimized build is actually 
used. You can connect to the controller, whose template includes the Dojo specific snippet 
that we saw some time back in this chapter. If you open your browser diagnostics tools, like 
Firebug for Mozilla Firefox, or the built in network diagnosis in Google Chrome, you should see 
the loading of only two JavaScript files, one being dojo.js itself, and the other testdojo.
js, or however you named it in the profile configuration. If you require some Dojo module, 
which was not added in the build profile, you will see another HTTP request asking for it. This 
is ok for development, but not for production.

Now it is time to explain what actually happens in the Python code. The commands.py file 
does not have too much logic itself. If there is no dojo.version parameter specified in the 
application configuration, it will use 1.6.0, which was the current version at the time of writing. 
Furthermore, a default profile named Play is defined, which is used for the profile configuration 
file in the conf/ directory. You can overwrite the version as well as the profile to be used via 
the --version or the --profile command line parameters if you need to.



Chapter 5

169

The execute() method parses the optional command line parameters and executes one of 
the four possible commands.

The getDirectory(), getFile() and getUrl() methods are simple helpers to create 
the correct named file, directory or download URL of the specified Dojo version.

The dojoCompile() method gets executed when entering play dojo:compile and 
switches the working directory to the util/buildscripts directory of the specified Dojo 
version. It then starts a compilation using either the specified or default profile file in the 
conf/ directory.

The dojoClean() method gets executed when entering play dojo:clean and triggers 
a clean inside of the dojo/ directory, but will not wipe out any files copied to the public/ 
folder. This command is not really necessary, as the code called in dojoCompile() already 
does this as well.

The dojoCopy() gets executed when entering play dojo:copy and method copies the 
compiled and optimized version which is inside the releases directory of the Dojo source to 
the public/dojo directory. Before copying the new Dojo build into the public directory, the 
old data is deleted. So if you stop the execution of this task, you might not have a complete 
Dojo installation in your public directory.

The dojoDownload() method gets executed when entering play dojo:download and 
downloads the specified Dojo version and extracts it into the dojo/ directory in the current 
application. It uses the ZIP file, because the unzip class included in Play is operating system 
independent. As ZIP files do not store permissions, the build.sh shell script has to be set 
as executable again. In order to save bandwidth it only downloads a version if it is not yet in  
the dojo/ directory.

There's more...
If you know Python a little bit, you have unlimited possibilities in your plugins, such 
as generating classes or configuration files automatically or validating data like 
internationalization data.

More about Dojo
The Dojo JavaScript toolkit is worth a look or two. Go to http://dojotoolkit.org/ or better 
yet to a site with tons of examples to view and copy, which is http://dojocampus.org/.

Create operating system independent modules
When watching closely, you will see that the module created in this recipe only works on non 
Unix based operating systems such as MacOS or Linux, as it executes the build.sh script 
directly. In order to be independent of the operating system you should always check the 
platform you are on and act appropriate. For example, getting the value of os.name returns 
posix for both Linux and Mac OS and could be used to differentiate operating systems.



Introduction to Writing Modules

170

More ideas for command support
Whenever you need to create configuration files from existing data in your application, this 
is the way to go. An example might be the Solr module in the next chapter. If you could 
create the needed XML configuration by typing play solr:xml, that would prevent some 
configuration mistakes. You could iterate over all model classes and check whether they  
have search fields configured and output these in the correct format.



6
Practical Module 

Examples

In this chapter, we will cover:

ff Adding annotations via bytecode enhancement

ff Implementing your own persistence layer

ff Integrating with messaging queues

ff Using Solr for indexing

ff Writing your own cache implementation

Introduction
The last chapter introduced you to the basics of writing modules. This chapter will show 
some examples used in productive applications. It will show an integration of an alternative 
persistence layer, how to create a Solr module for better search, and how to write an 
alternative distributed cache implementation among others. You should have read the  
basic module chapter before this one, if you are not familiar with modules.

Adding annotations via bytecode  
enhancement

If you remember the JSON and XML plugin written in Chapter 5, which was called API plugin, 
there was a possible improvement at the end of the recipe: adding the XML annotations is 
cumbersome and a lot of work, so why not add them automatically, so every entity defined in 
your application does not need the usually required annotations for XML processing with JAXB.



Practical Module Examples

172

The source code of the example is available at examples/chapter6/bytecode-
enhancement-xml.

Getting ready
As usual, write a test first, which actually ensures that the annotations are really added to the 
model. In this case they should not have been added manually to the entity, but with the help 
of bytecode enhancement:

public class XmlEnhancerTest extends UnitTest {

    @Test
    public void testThingEntity() {
       XmlRootElement xmlRootElem = Thing.class.
getAnnotation(XmlRootElement.class);
       assertNotNull(xmlRootElem);
       assertEquals("thing", xmlRootElem.name());
       
       XmlAccessorType anno = Thing.class.
getAnnotation(XmlAccessorType.class);
       assertNotNull(anno);
       assertEquals(XmlAccessType.FIELD, anno.value());
    }
}

All this test does is to check for the XmlAccessorType and the XmlRootElement 
annotations inside the Thing entity. The Thing class looks like any normal entity in 
the following example:

@Entity
public class Thing extends Model {
   public String foo;
   public String bar;
   
   public String toString() {
      return "foo " + foo + " / bar " + bar;
   }
}

How to do it...
As most of the work has already been done in the recipe about JSON and XML, we will only 
line out the differences in this case and create our own module. So create a module, copy the 
play.plugins file, the ApiPlugin, and RenderXml class into the src/ folder, and create 
a new XmlEnhancer as shown in the following code:



Chapter 6

173

public class XmlEnhancer extends Enhancer {

   @Override
   public void enhanceThisClass(ApplicationClass applicationClass) 
throws Exception {
        CtClass ctClass = makeClass(applicationClass);

        if (!ctClass.subtypeOf(classPool.get("play.db.jpa.JPABase"))) 
{
            return;
        }

        if (!hasAnnotation(ctClass, "javax.persistence.Entity")) {
            return;
        }

        ConstPool constpool = ctClass.getClassFile().getConstPool();
        AnnotationsAttribute attr = new AnnotationsAttribute(constpo
ol, AnnotationsAttribute.visibleTag);
        
        if (!hasAnnotation(ctClass, "javax.xml.bind.annotation.
XmlAccessorType")) {
           Annotation annot = new Annotation("javax.xml.bind.
annotation.XmlAccessorType", constpool);
           EnumMemberValue enumValue = new EnumMemberValue(constpool);
           enumValue.setType("javax.xml.bind.annotation.
XmlAccessType");
           enumValue.setValue("FIELD");
           annot.addMemberValue("value", enumValue);
           attr.addAnnotation(annot);
           ctClass.getClassFile().addAttribute(attr);
        }

        if (!hasAnnotation(ctClass, "javax.xml.bind.annotation.
XmlRootElement")) {
           Annotation annot = new Annotation("javax.xml.bind.
annotation.XmlRootElement", constpool);
           String entityName = ctClass.getName();
           String entity = entityName.substring(entityName.
lastIndexOf('.') + 1).toLowerCase();
           annot.addMemberValue("name", new StringMemberValue(entity, 
constpool));
           attr.addAnnotation(annot);
           ctClass.getClassFile().addAttribute(attr);
        }

        applicationClass.enhancedByteCode = ctClass.toBytecode();
        ctClass.defrost();
   }
}



Practical Module Examples

174

Finally, add loading of the enhancer to your plugin:

public class ApiPlugin extends PlayPlugin {
   ...
   private XmlEnhancer enhancer = new XmlEnhancer();
   ...

   public void enhance(ApplicationClass applicationClass) throws 
Exception {
       enhancer.enhanceThisClass(applicationClass);
    }
   ...
}

From now on whenever the application starts, all the models used are enhanced automatically 
with the two annotations.

How it works...
In order to check whether the module actually works, you can fire up the preceding unit  
test written.

As most of the code has already been written, the only part which needs a closer look is 
actually the XmlEnhancer. The XmlEnhancer first checks whether the application class is 
an entity, otherwise it returns without doing any enhancement.

The next step is to check for the @XmlAccessorType annotation, which must be set 
to field access. As the XmlAccessType is actually an enum, you have to create an 
EnumMemberValue object, which then gets added to the annotation.

The last step is to add the @XmlRootElement annotation, which marks the class for the JAXB 
marshaller to parse it. The name of the entity in lowercase is used as the root element name. 
If you want to change it, you can always use the annotation at the model and overwrite it. Here 
a StringMemberValue object is used, as the annotation takes a string as argument.

There's more...
Bytecode enhancement always helps to make your application easier, by possibly shortening 
error prone tasks such as adding annotations, or doing things which are not possible with 
standard Java, such as changing behavior of static methods. However, using bytecode 
enhancement means that you are doing something not visible at source code level. You 
should use this powerful feature only, if really needed, as it reduces the readability of your 
project. Do not forget to document these features clearly.



Chapter 6

175

Javassist documentation
The Javassist documentation is actually not the easiest to read; however, it often helps 
because there are not too many examples floating around on the Internet. You can check 
most of it at http://www.javassist.org as well as some more links to introductions 
at http://www.jboss.org/javassist.

Implementing your own persistence layer
Usually as a developer you are choosing a framework (be it a web framework or for any type of 
application development) because it already delivers most of the part's you need. Typically, a 
standard requirement is the support of a persistence layer or technology you are going to use 
for your project. However, there might be cases where you have to create your own persistence 
layer, for example, if you are using a proprietary or in-house developed solution or if you need 
access for a new technology like one of the many available NoSQL databases. There are 
several steps which need to be completed. All of these are optional; however, it makes sense 
to develop your own persistence layer as similar to other persistence layers in Play, so you 
actually make sure it fits best in the concept of Play and is easily understood by most of the 
users. These steps are:

ff Active record pattern for your models including bytecode enhancement for finders
ff Range queries, which are absolutely needed for paging
ff Having support for fixtures, so it is easy to write tests
ff Supporting the CRUD module when possible
ff Writing a module which keeps all this stuff together

In this recipe, simple CSV files will be used as persistence layer. Only Strings are supported 
along with Referencing between two entities. This is what an entity file like Cars.csv 
might look like:

"1"   "BMW"   "320"
"2"   "VW"   "Passat"
"3"   "VW"   "Golf"

The first column is always the unique ID, whereas the others are arbitrary fields of the class. 
Referencing works like the example in this User.csv file:

"1"   "Paul"   "#Car#1"

The connection to the BMW car above is done via the type and the ID by using additional 
hashes. As you might have already seen, the shown CSV files do not have any fieldnames. 
Currently, this persistence layer relies on the order read out of the class fields, which of course 
does not work when you change the order of fields add or remove other fields. This system is 
not ready for changes, but it works if you do not need such features as in this example.

The source code of the example is available at examples/chapter6/persistence.



Practical Module Examples

176

Getting ready
In order to have a running example application, you should create a new application, include 
the module you are going to write in your configuration, and create two example classes 
along with their CRUD classes. So you should also include the CRUD module. The example 
entities used here are a user and Car entity. In case you are wondering about the no args 
constructor, it is needed in order to support fixtures:

public class Car extends CsvModel {

   public Car() {}   
   public Car(String brand, String type) {
      this.brand = brand;
      this.type = type;
   }
   
   public String brand;
   public String type;
   
   public String toString() {
      return brand + " " + type;
   }
}

Now the user:

public class User extends CsvModel {

   public String name;
   public Car currentCar;
   
   public String toString() {
      return name + "/" + getId();
   }
}

In order to show the support of fixtures, it is always good to show some tests using it:

public class CsvTest extends UnitTest {

   private Car c;
   
   @Before
   public void cleanUp() {
      Fixtures.deleteAllModels();
      CsvHelper.clean();



Chapter 6

177

      Fixtures.loadModels("car-data.yml");
      c = Car.findById(1L);
   }

   // Many other tests

   @Test
   public void readSimpleEntityById() {
      Car car = Car.findById(1L);
      assertValidCar(car, "BMW", "320");
   }

   @Test
   public void readComplexEntityWithOtherEntites() {
      User u = new User();
      u.name = "alex";
      u.currentCar = c;
      u.save();
      
      u = User.findById(1L);
      assertNotNull(u);
      assertEquals("alex", u.name);
      assertValidCar(u.currentCar, "BMW", "320");
   }

   // Many other tests not put in here

   private void assertValidCar(Car car, String expectedBrand, String 
expectedType) {
      assertNotNull(car);
      assertEquals(expectedBrand, car.brand);
      assertEquals(expectedType, car.type);
   }
}

The YAML file referenced in the test should be put in conf/car-data.yml. It includes the 
data of a single car:

Car(c1):
  brand: BMW
  type: 320

As you can see in the tests, referencing is supposed to work. Now let's check how the plugin  
is built together.



Practical Module Examples

178

How to do it...
You should already have created a csv module, adapted the play.plugins file to specify 
the CsvPlugin to load, and started to implement the play.modules.csv.CsvPlugin 
class by now:

public class CsvPlugin extends PlayPlugin {

   private CsvEnhancer enhancer = new CsvEnhancer();
   
  public void enhance(ApplicationClass applicationClass) throws 
Exception {
       enhancer.enhanceThisClass(applicationClass);
    }
   
   public void onApplicationStart() {
      CsvHelper.clean();
   }

    public Model.Factory modelFactory(Class<? extends Model> 
modelClass) {
      if (CsvModel.class.isAssignableFrom(modelClass)) {
         return new CsvModelFactory(modelClass);
      }
     return null;
    }
}

Also, this example heavily relies on OpenCSV, which can be added to the conf/
dependencies.yml file of the module (do not forget to run play deps):

self: play -> csv 0.1

require:
    - net.sf.opencsv -> opencsv 2.0

The enhancer is pretty simple because it only enhances two methods, find()and 
findById(). It should be put into your module at src/play/modules/csv/
CsvEnhancer.java:

public class CsvEnhancer extends Enhancer {

   public void enhanceThisClass(ApplicationClass applicationClass) 
throws Exception {
        CtClass ctClass = makeClass(applicationClass);



Chapter 6

179

        if (!ctClass.subtypeOf(classPool.get("play.modules.csv.
CsvModel"))) {
            return;
        }

        CtMethod findById = CtMethod.make("public static play.modules.
csv.CsvModel findById(Long id) { return findById(" + applicationClass.
name + ".class, id); }", ctClass);
        ctClass.addMethod(findById);

        CtMethod find = CtMethod.make("public static play.modules.
csv.CsvQuery find(String query, Object[] fields) { return find(" + 
applicationClass.name + ".class, query, fields); }", ctClass);
        ctClass.addMethod(find);
        
        applicationClass.enhancedByteCode = ctClass.toBytecode();
        ctClass.defrost();
   }
}

The enhancer checks whether a CsvModel class is handed over and enhances the find() 
and findById() methods to execute the already defined methods, which take the class as 
argument. The CsvModel class should be put into the module at src/play/modules/csv/ 
and should look like the following:

public abstract class CsvModel implements Model {

   public Long id;
   
  // Getter and setter for id omitted
  …
   
   public Object _key() {
      return getId();
   }

   public void _save() {
      save();
   }

   public void _delete() {
      delete();
   }
   



Practical Module Examples

180

   public void delete() {
      CsvHelper helper = CsvHelper.getCsvHelper(this.getClass());
      helper.delete(this);
   }
   
   public <T extends CsvModel> T save() {
      CsvHelper helper = CsvHelper.getCsvHelper(this.getClass());
      return (T) helper.save(this);
   }

   public static <T extends CsvModel> T findById(Long id) {
      throw new UnsupportedOperationException("No bytecode 
enhancement?");
   }

   public static <T extends CsvModel> CsvQuery find(String query, 
Object ... fields) {
      throw new UnsupportedOperationException("No bytecode 
enhancement?");
   }

   protected static <T extends CsvModel> CsvQuery find(Class<T> clazz, 
String query, Object ... fields) {
  // Implementation omitted
   }
   
   protected static <T extends CsvModel> T findById(Class<T> clazz, 
Long id) {
      CsvHelper helper = CsvHelper.getCsvHelper(clazz);
      return (T) helper.findById(id);
   }
}

The most important part of the CsvModel is to implement the Model interface and its 
methods save(), delete(), and _key()—this is needed for CRUD and fixtures. One of 
the preceding find methods returns a query class, which allows restricting of the query even 
further, for example with a limit and an offset. This query class should be put into the module 
at src/play/modules/csv/CsvQuery.java and looks like this:

public class CsvQuery {

   private int limit = 0;
   private int offset = 0;
   private CsvHelper helper;
   private Map<String, String> fieldMap;



Chapter 6

181

   public CsvQuery(Class clazz, Map<String, String> fieldMap) {
      this.helper = CsvHelper.getCsvHelper(clazz);
      this.fieldMap = fieldMap;
   }

   public CsvQuery limit (int limit) {
      this.limit = limit;
      return this;
   }

   public CsvQuery offset (int offset) {
      this.offset = offset;
      return this;
   }

   public <T extends CsvModel> T first() {
      List<T> results = fetch(1,0);
      if (results.size() > 0) {
         return (T) results.get(0);
      }
      return null;
   }

   public <T> List<T> fetch() {
      return fetch(limit, offset);
   }

   public <T> List<T> fetch(int limit, int offset) {
      return helper.findByExample(fieldMap, limit, offset);
   }
}

If you have already used the JPA classes from Play, most of you will be familiar from a 
user point of view. As in the CsvModel class, most of the functionality boils down to the 
CsvHelper class, which is the core of this module. It should be put into the module at 
src/play/modules/csv/CsvHelper.java:

public class CsvHelper {

   private static ConcurrentHashMap<Class, AtomicLong> ids = new 
ConcurrentHashMap<Class, AtomicLong>();
   private static ConcurrentHashMap<Class, ReentrantLock> locks = new 
ConcurrentHashMap<Class, ReentrantLock>();
   private static ConcurrentHashMap<Class, CsvHelper> helpers = new 
ConcurrentHashMap<Class, CsvHelper>();



Practical Module Examples

182

   private static final char separator = '\t';
   private Class clazz;
   private File dataFile;
   
   private CsvHelper(Class clazz) {
      this.clazz = clazz;
      File dir = new File(Play.configuration.getProperty("csv.path", 
"/tmp"));
      this.dataFile = new File(dir, clazz.getSimpleName() + ".csv");
      
      locks.put(clazz, new ReentrantLock());
      ids.put(clazz, getMaxId());
   }

   public static CsvHelper getCsvHelper(Class clazz) {
      if (!helpers.containsKey(clazz)) {
         helpers.put(clazz, new CsvHelper(clazz));
      }
      return helpers.get(clazz);
   }

   public static void clean() {
      helpers.clear();
      locks.clear();
      ids.clear();
   }

The next method definitions include the data specific functions to find, delete, and save 
arbitrary model entities:

   public <T> List<T> findByExample(Map<String, String> fieldMap, int 
limit, int offset) {
      List<T> results = new ArrayList<T>();

     // Implementation removed to save space
      
      return results;
   }

   public <T extends CsvModel> void delete(T model) {
     // Iterates through csv, writes every line except
     // the one matching the id of the entity
   }



Chapter 6

183

   public void deleteAll() {
     // Delete the CSV file
   }

   public <T extends CsvModel> T findById(Long id) {
      Map<String, String> fieldMap = new HashMap<String, String>();
      fieldMap.put("id", id.toString());      List<T> results = 
findByExample(fieldMap, 1, 0);
      if (results.size() > 0) {
         return results.get(0);
      }
      return null;
   }

   public synchronized <T extends CsvModel> T save(T model) {

    // Writes the entity into the file
    // Handles case one: Creation of new entity
    // Handles case two: Update of existing entity

      return model;
   }

The next methods are private and needed as helper methods. Methods for reading entity 
files, for creating an object from a line of the CSV file, as well as the reversed operation, which 
creates a data array from an object, are defined here. Furthermore, file locking functions and 
methods to find out a the next free id on entity creation are defined here:

   private List<String[]> getEntriesFromFile() throws IOException {
      // Reads csv file to string array
   }

   private <T extends CsvModel> String[] createArrayFromObject(T 
model, String id) throws IllegalArgumentException, 
IllegalAccessException {
    // Takes and object and creates and array from it
    // Dynamically converts other CsvModels to something like
    // #Car#19
   }

   private <T extends CsvModel> T createObjectFromArray(String[] obj) 
throws InstantiationException, IllegalAccessException {
    // Takes an array and creates an object from it
    // Dynamically loads #Car#19 to the real object



Practical Module Examples

184

      return model;
   }

   private void getLock() {
    // helper method to create a lock for the csv file
   }
   
   private void releaseLock() {
    // helper method to remove a lock for the csv file
   }
   
   private synchronized void moveDataFile(File file) {
    // Replaces the current csv file with the new one
   }

   private Long getNewId() {
      return ids.get(clazz).addAndGet(1);
   }

   private AtomicLong getMaxId() {
     // Finds the maximum id used in the csv file
      return result;
   }

}

The last class file needed is the CsvModelFactory, which has been referenced in the 
CsvPlugin already. This is needed to support the CRUD plugin and have correct lookups of 
entities when referencing them in the GUI, for example in select boxes. As this class is almost 
similar to JpaModelLoader used by JPA, you can directly look into its source as well. The 
interface will be explained in some time.

How it works...
In order to understand what is happening in the source, you should build the module, include 
it together with the crud module in an example application, create some test classes (such as 
the User and Car entities as we did some time back), and click around in the CRUD module.

The CsvHelper is the core of the module. It uses HashMaps internally to hold some state 
per class, like the current ID to use when creating a new entity. Furthermore, it uses a  
lock in order to write any CSV file and holds CsvHelper instances per model entity. The 
main method in order to find entities is the findByExample() method, which allows the 
developer to hand over a map with fields containing specific values. This method loops 
through all entries and checks whether there are any entries matching the fields and their 
corresponding value. The findById() method for example is just a findByExample() 
invocation with a search for a specific ID value. Saving objects is either appending them  
to the file or alternatively replacing them in the CSV file.



Chapter 6

185

Some persistence layer APIs feature functions to map Java objects to the persistence layer. 
Naturally these functions heavily differ from the library you are using. The Morphia/MongoDB 
module for example uses Morphia, which already includes much of this mapping functionality 
and helps to keep the glue code between Play and the external library as small as possible. 
Whenever you implement a persistence layer make sure you are choosing a library, where 
in the best case you only need to extend it with Play functionality instead of writing it from 
scratch like this one. It gets very complex to support, as the following things can pose serious 
problems, and do in this concrete example:

ff Multiple accesses from different threads: When you take a closer look at the 
implementation, it is not thread safe at all. If two threads add a new entity each at 
the same time, then the added entity of the first thread will be lost after the second 
thread has stored its entity. This is because both threads take a backup from the 
data when both entities were not yet added. 

ff No referential integrity: This example has no referential integrity. If you remove a car, 
which is referenced in another CSV file, no one will notice.

ff Circular dependencies: It is possible to bring down this application in an endless loop 
by referencing entity a in entity b and vice versa.

ff Single node: All the data is stored on a single node. This is not scalable.

ff Complex object support: Currently everything is stored as a string. This is not really 
a solution for number focused applications. However, many web applications are 
number specific, for example e-commerce or statistical ones.

ff Collection support: This is a major problem. Of course you want to be able to store 
collections, such as @OneToMany and @ManyToOne annotations in JPA, with your 
persistence layer. A basic implementation in this example could be a string such as 
#Car#5,#Car#6 in the string representation of another entity. However, there is no 
implementation done for this here.

In most cases most of the preceding problems should be solved by your database or the driver 
you are using. Otherwise, you should split this code away from your Play framework support 
and provide it as an own library.

As a last step it makes a lot of sense to take a more exact look at the interfaces provided  
by the Play framework in order to have support for CRUD and fixtures. Take a look at the 
play.db.Model interface, which incorporates all the other interfaces needed.

Every model class, like the CsvModel, should implement the Model interface itself. The 
interface makes sure there are methods provided for saving, deleting entities, and as getting 
a unique key.



Practical Module Examples

186

The Factory interface referenced at the CsvModelFactory provides methods needed for 
finding, counting, and searching entities. The keyName(), keyType(), and keyValue() 
methods return different information about the unique key of a model class. In this case the 
name of the unique key field is id, the type is Long, and the value can be an arbitrary long 
out of the CSV file. The findById() method provides a generic way to find an entity with any 
unique key. The fetch() method is the most complex to be implemented. Fetching allows 
you to page through results by setting a limit and offset parameter. You can optionally define 
only to return certain fields, add ordering (direction and fields to order by), and add additional 
filtering by a where clause. This looks a little bit SQL centric, but can be implemented for 
any persistence layer. In order to support search you can additionally provide a list of fields 
to search in along with a keyword to search for. This allows you to do a search over on more 
than one field. Make sure that your database system does not suffer severe performance 
problems because of this. The count() method basically does the same as fetch(), 
but it does not need limits, offsets, or order information in order to run. The deleteAll() 
method deletes all data of all entities. This is especially important for testing in order to make 
sure to start with zero entries in your persistence layer. The last method to be implemented 
is listProperties(), which returns a representation of all properties of an entity. The 
representation includes a lot of metadata, which helps the CRUD controllers to display data.

This Property class also consists of several important fields. The name, type, and field 
properties resemble data of the field in the entity and are mostly read out of it. You could 
possibly read another name out of an annotation if you wanted. The isSearchable 
Boolean marks the field as being searchable. The JPA plugin uses this for only making fields 
searchable, which have this attribute set. The isMultiple Boolean marks a field as a 
collection. The isRelation Boolean should be used when the field is also a model entity. 
The last Boolean is the isGenerated Boolean, which marks a field you cannot set manually. 
This is often the unique key of an entity because it is being generated by the persistence 
layer, but could possibly also have fields like the creation date or the last modified date. The 
relationType class holds the class of related fields. If you have a one-to-one connection, 
it would be the entity type of the other class. If you have a one-to-many collection, it would be 
the entity type of the lists contents and not the list itself. This is important for select boxes 
filled with options of other entities in CRUD controllers. The last field to be explained is the 
choices field. It is responsible for the content in select boxes referencing entities. You can 
put an appropriate query in the list() method of the Choices interface and the returned 
results will then occur in the select boxes. For the sake of simplicity you can return all entities 
here. This is also done in the example code.

There is a last interface defined in the Model. The BinaryField interface allows you to treat 
binaries special. The play.db.jpa.Blob class is actually doing this. It stores files on the 
hard disk as they cannot be stored inside any database supporting JPA.

The factory itself is always returned in the plugin, where the developer may decide whether 
the plugin is responsible for the class asked for.



Chapter 6

187

There's more...
As documentation about support for the CRUD module is sparse currently, the quickest thing 
to get up and running is to look at existing plugins.

Check the JPA and Morphia plugins
If you want to know more, these two plugins are the place to start in order to get some more 
information about implementing own persistence layers. Also, the crudsiena plugin is worth 
taking a look at.

Integrating with messaging queues
As soon as your system and application landscape widens, you try to create components 
which are independent of each other. One of the first steps is to create an asynchronous 
messaging architecture. This allows decoupling of components, but more importantly, you can 
also be implementation-independent by simply using standards of data exchange. There exist 
messaging standards such as AMQP or STOMP, which can be read by any application. The most 
well known, defined API for messaging in the Java world is JMS, the Java Message Service.

In this example Apache ActiveMQ will be used to let an arbitrary amount of Play instances 
communicate with each other. The communication will be done via a publish-subscribe 
mechanism which is called a topic in JMS terms. In order to get a short overview, there are 
two mechanisms, which could be chosen for this task. First a producer-consumer pattern, 
second a publish-subscribe pattern. The producer-consumer pattern however requires not 
more than one listener which is an often needed use-case, but not feasible in this example. 
Think a little bit, as to which of these patterns you really need for your application.

In case you are asking why another technology is needed for this, it is because a distributed 
cache can possibly be accessed already by all Play nodes. This is right, but you would have to 
implement a reliable publish-subscribe infrastructure yourself using memcached. This is quite 
a lot of work and actually the wrong tool for this task.

The source code of the example is available at examples/chapter6/messaging.

Getting ready
In order to understand what happens in this example you should have taken a look at the 
chat example application in the samples-and-tests directory of your Play installation. 
This example will change the functionality of the websocket implementation of the chat 
application. Websockets are a new standard defined by W3C in order to support long running 
connections and to be able to communicate in both directions, from client to server and from 
server to client, which is not possible with pure HTTP. This is one of the biggest drawbacks in 
regular HTTP communication. Basically, the chat application takes a message from one user 
and directs it to all others currently connected.



Practical Module Examples

188

This works as long as only one application is running. As soon as more than one Play node is 
running, you need communication between these nodes. Every node has to:

ff Publish a message, whenever an action at this node happens

ff Receive messages at any time and feed them to their connected users

This sounds pretty simple with a publish-subscribe architecture. Every node subscribes and 
publishes to the same queue and whenever a received message on this queue has not been 
sent by the node itself, it has to be sent to all connected users on the node.

You need a running installation of Apache ActiveMQ. The assumption in this example is always 
a running ActiveMQ system on localhost. Installation of ActiveMQ is straightforward; you just 
grab a copy at http://activemq.apache.org/ and run bin/activemq start. Either 
an error message is written out on the console including the command you should execute 
next, or a process ID along with the message that ActiveMQ was started. You can check at 
http://localhost:8161 whether your ActiveMQ instance is running.

The next step is to write a unit test, which emulates the behavior of a second node. The unit 
test checks whether the plugin sends messages to ActiveMQ and also whether it correctly 
receives messages, when other nodes are sending messages:

public class ActiveMqTest extends UnitTest {

   private TopicConnection receiveConnection;
   private TopicSession receiveSession;
   private Topic receiveTopic;
   private TopicSubscriber receiveSubscriber;
   private TopicConnection sendingConnection;
   private TopicSession sendingSession;
   private Topic sendingTopic;
   private TopicPublisher sendingPublisher;

   @Before
   public void initialize() throws Exception {
      ActiveMQConnectionFactory connectionFactory = new 
ActiveMQConnectionFactory(
            ActiveMQConnection.DEFAULT_USER,
            ActiveMQConnection.DEFAULT_PASSWORD,
            ActiveMQConnection.DEFAULT_BROKER_URL);

      // removed code to create a connection for the subscriber and 
the publisher
      ...
      receiveSubscriber = receiveSession.
createSubscriber(receiveTopic);
      sendingPublisher = sendingSession.createPublisher(sendingTopic);



Chapter 6

189

      ChatRoom.clean();
   }
   
   @After
   public void shutdown() throws Exception {
      // removed: closing all connections      
      ...
   }

   @Test
   public void assertThatPluginSendsMessages() throws Exception {
      assertEquals(0, ChatRoom.get().archive().size());
      Event event = new Join("user");
      ChatRoom.get().publish(event);

      // Check chatroom
      int currentEventCount = ChatRoom.get().archive().size();
      assertEquals(1, currentEventCount);
      
      // Check for messages
      Message msg = receiveSubscriber.receive(2000);
      Event evt = (ChatRoom.Event) ((ObjectMessage) msg).getObject();
      assertEquals("join", evt.type);
   }
   
   @Test
   public void assertThatPluginReceivesMessages() throws Exception {
      assertEquals(0, ChatRoom.get().archive().size());
      
      // Send event via JMS
      Event event = new ChatRoom.Message("alex", "cool here");
      ObjectMessage objMsg = sendingSession.
createObjectMessage(event);
      sendingPublisher.publish(objMsg);
      
      Thread.sleep(1000); // short sleep to make sure the content 
arrives
      assertEquals(1, ChatRoom.get().archive().size());
   }
   
}



Practical Module Examples

190

As you can see, there are two tests. The first one publishes a local event like a web request 
would do via ChatRoom.get().publish(event). It then waits for a subscriber a 
maximum of two seconds to check whether the message has been published via ActiveMQ.

The second test fakes the existence of another node by sending a message directly via the 
publisher and checks whether the ChatRoom archive field now contains any content. In 
order to make sure the local archive of events is empty, ChatRoom.clean() is invoked in 
initialize() method.

How to do it...
The ActiveMQ plugin luckily only consists of one class and one interface. The first class is the 
plugin itself, which starts the JMS connection on application start and frees all resources 
when the application is stopped:

public class ActiveMqPlugin extends PlayPlugin {

   private ActiveMQConnectionFactory connectionFactory;
   
   private TopicConnection sendingConnection;
   private TopicSession sendingSession;
   private Topic sendingTopic;
   private TopicPublisher sendingPublisher;
   
   private TopicConnection receiveConnection;
   private TopicSession receiveSession;
   private Topic receiveTopic;
   private TopicSubscriber receiveSubscriber;

   private static final String uuid = UUID.randomUUID().toString();

   public void onApplicationStart() {
      Logger.info("ActiveMQ Plugin started");
      try {
         List<Class> jobClasses = new ArrayList<Class>();
         for (ApplicationClass applicationClass : Play.classes. 
getAssignableClasses(ActiveMqJob.class)) {
            if (Job.class.isAssignableFrom(applicationClass.
javaClass)) {
               jobClasses.add(applicationClass.javaClass);
            }
         }
         MessageListener listener = new ActiveMqConsumer(jobClasses);



Chapter 6

191

         // setting up all the topic specific variables
         ... // removed to save space
      } catch (Exception e) {
         Logger.error(e, "Could not start activemq broker");
      }
   }

   public void onApplicationStop() {
      Logger.info("Stopping activemq connections");
      try {
         // closing all activemq specific connections
         ... // removed to save space
      } catch (JMSException e) {
         Logger.error(e, "Problem closing connection");
      }
   }

The onEvent() method listens for all messages beginning with chatEvent and sends 
them via ActiveMQ if possible. The inner ActiveMQConsumer class handles incoming 
messages, extracts data out of the message, and executes a job which sets the received  
data in the application:

   @Override
   public void onEvent(String message, Object context) {
      if ("chatEvent".equals(message) && context instanceof 
Serializable) {
         Serializable event = (Serializable) context;
         try {
            ObjectMessage objMsg = sendingSession.
createObjectMessage(event);
            objMsg.setStringProperty("hostId", uuid);
            sendingPublisher.publish(objMsg);
            Logger.info("Sent event to queue: %s", ToStringBuilder.
reflectionToString(event));
         } catch (Exception e) {
            Logger.error(e, "Could not publish message");
         }
      }
   }

   public static class ActiveMqConsumer implements MessageListener {

      private List<Class> jobs;



Practical Module Examples

192

      public ActiveMqConsumer(List<Class> jobs) {
         this.jobs = jobs;
      }
      
      @Override
      public void onMessage(Message message) {
         try {
            if (message instanceof ObjectMessage) {
               ObjectMessage objectMessage = (ObjectMessage) message;
               if (uuid.equals(objectMessage.
getStringProperty("hostId"))) {
                  Logger.debug("Ignoring activemq event because it 
came from own host");
                  return;
               }
               Serializable event = (Serializable) objectMessage.
getObject();
               Logger.debug("Received activemq event to plugin: %s", 
ToStringBuilder.reflectionToString(event));
               for (Class jobClass : jobs) {
                  Job job = (Job) jobClass.newInstance();
                  job.getClass().getField("serializable").set(job, 
event);
                  job.now().get(); // run in sync
                  
               }
            }
         } catch (Exception e) {
            Logger.error(e, "Error getting message");
         }
      }
   }
}

A small interface definition is needed to mark jobs, which should be executed upon  
incoming messages:

public interface ActiveMqJob {
   public void setSerializable(Serializable serializable);
   public Serializable getSerializable();
}

After adding a play.plugins file for the ActiveMQ plugin the module can now be built and 
added to your copy of the chat application.



Chapter 6

193

The next change is regarding the ChatRoom class in the chat application. You need to add 
three methods:

public void publish(Serializable event) {
       PlayPlugin.postEvent("chatEvent", event);
       chatEvents.publish((Event) event);
}
    
public void publishWithoutPluginNotification(Serializable event) {
       chatEvents.publish((Event) event);
}
    
public static void clean() {
       instance = null;
}

Apart from that you need to make the Chatroom.Event class serializable so that it can be 
transmitted over the network. The last step is to change the three methods, which indicate a 
chat room join or leave or a text message sent by a user. You have to use the publish method 
inside each of these methods:

    public EventStream<ChatRoom.Event> join(String user) {
          publish(new Join(user));
        return chatEvents.eventStream();
    }
    
    public void leave(String user) {
        publish(new Leave(user));
    }
    
    public void say(String user, String text) {
        if(text == null || text.trim().equals("")) {
            return;
        }
        publish(new Message(user, text));
    }

The application needs to implement a special job, which implements the interface that we 
defined some time back:

public class UpdateChatroomJob extends Job implements ActiveMqJob {

   private Serializable serializable;

   public Serializable getSerializable() {
      return serializable;



Practical Module Examples

194

   }
   
   public void setSerializable(Serializable serializable) {
      this.serializable = serializable;
   }
   
   public void doJob() {
      if (serializable != null) {   ChatRoom.get().publishWithoutPlugi
nNotification(serializable);
      }
   }

}

How it works...
After making your changes you have two possibilities to test your code. First, start up your 
application and run the tests. Second, copy the application directory to a second directory, 
change the http.port variable to some arbitrary port, and remove the %test.db=mem 
entry in case you are running in test mode. Otherwise, the H2 databases will conflict when 
trying to bind to port 8082. After both applications are started, connect to both in a browser, 
choose websocket for chat connection, and check whether you can see the messages of the 
other user, even though both are connected to two different web applications.

So, after checking if it works, it is time to explain it in a little detail. The simplest part in 
the plugin is the interface definition. You are expected to have an arbitrary amount of jobs 
implementing this interface. The job implementation makes sure that the serialized object 
representing the content of the message received via the subscriber gets to its endpoint, 
which is the ChatRoom in the implementation. In order to make sure it does not create any 
loop or again sends this message to the ActiveMQ topic, the implementation invokes the 
publishWithoutPluginNotification() method. Otherwise content might 
be duplicated.

The plugin itself has a lot of code to create and initialize the connection to the broker. Broker 
is an alternative name for the messaging endpoint. The onApplicationStart() method 
collects all classes which implement the ActiveMqJob interface and are assigned from a 
job. The list of these classes is handed over to the internally defined ActiveMqConsumer 
class, which represents the code executed on each incoming message. This class checks if 
the incoming message was not sent from this host, as in this case the message has already 
been spread locally. Then it loops through the list of jobs and executes each of them, after 
setting the serializable field in order to hand over the incoming message to the job. This 
is not really a better solution, but it works in this case.



Chapter 6

195

The remaining part is the sending of messages, so that all other nodes can process them. 
As the ChatRoom class has been changed to always post a plugin event upon receiving a 
new chatroom specific event, the plugin checks for such events and sends chatroom specific 
events over the wire. Before sending an event a UUID gets attached as a property, which 
allows checking of whether an incoming message has been sent from this host.

As you can see, integrating messaging in your application is not too complex. However, 
keeping it fast and closely adapted to your needs might be complex. A message based 
architecture helps you to scale your systems, as you can decouple presentation from  
backend logic and scale your systems differently.

There's more...
Messaging is quite a complex topic. There are many more implementations and protocol 
standards other than those provided by ActiveMQ, so it's highly possible that you are already 
using a similar software.

More info about AMQP
In order to be more independent of an API you should try AMQP implementing services such as 
RabbitMQ or ZeroMQ. They provide a standard protocol, which can be used in any programming 
language. If you need speed in delivery, these might be faster than old fashioned JMS services. 
Find more information about AMQP at http://www.amqp.org/, about RabbitMQ at 
http://www.rabbitmq.com/, and about ZeroMQ at http://www.zeromq.org/.

Using Solr for indexing
As already mentioned several times in this book, there already exists a very nice plugin for 
searching, which is based on Apache Lucene. The primary drawback of this plugin is that it 
does not scale due to the fact that it searches on indexes stored on the local file system. If you 
had a multi-node setup, you would have to make sure that changes of objects are propagated 
to all nodes and all indexes are updated. This would be very cumbersome and there is already 
a solution for this problem. Its name is Apache Solr and basically it is a HTTP interface around 
Lucene. In fact, it has more functionality than that, but for this example, this fact is sufficient. 
This means using Apache Solr basically moves the index from one Play instance to a real 
search engine, which then is queried and updated by any Play instance.

This recipe will create a completely new plugin, which will use Solr for searching. This means 
that every change of an entity has to be forwarded to the search index. The search itself will 
also always be handled by Solr.

The source code of the example is available at examples/chapter6/search-solr.



Practical Module Examples

196

Getting ready
As usual we will write a test to show off what the Solr support should look like. This test should 
be put inside an application, not inside of the plugin which is created throughout this recipe:

public class SolrSearchTest extends UnitTest {

   CommonsHttpSolrServer server;
   
   @Before
   public void setup() throws Exception {
      Fixtures.deleteAllModels();

      server = new CommonsHttpSolrServer("http://localhost:8983/
solr");
      server.setRequestWriter(new BinaryRequestWriter());
      clearSolrServerIndex();

      Fixtures.loadModels("test-data.yml");
   }

   private void clearSolrServerIndex() throws Exception {
      server.deleteByQuery( "*:*" );
      server.commit();
   }

    @Test
    public void testEnhancedSearchCapability() {
       assertEquals(1, Car.search("byBrandAndType", "BMW", "320").
fetchIds().size());
       
       List<User> users = User.search("byNameAndTwitter", "a*ex", 
"spinscale*").fetch();
       User user = users.get(0);
       User u1 = User.find("byName", "alex").first();
       assertEquals(user.id, u1.id);
    }
}

If you ignore the setup of the test and take a look at the test, you will see the Model.
search() method, which looks pretty similar to the Model.find() method. Its basic 
function is the same, with the exception that it always queries the Solr index instead of the 
database. Also, there are two further methods to access the data returned by the Solr query. 
The first is Model.search().fetchIds() and the second is Model.search().fetch(). 
The first method fetches the IDs from the index, allowing you to get the data out of the 
database manually, whereas the second method issues the database query automatically.



Chapter 6

197

You also should have a working Solr instance in order to follow this example. You can 
download the most up to date release of Solr at http://lucene.apache.org/solr/ and 
start the example application. It is actually sufficient. Any changes in the configuration file of 
Solr will be documented in the next section. After downloading and extracting the archive, you 
can start Solr by:

cd apache-solr-3.1.0/example
java –jar start.jar

You should now be able to go to http://localhost:8983/solr/ and see a Welcome to 
Solr message.

How to do it...
After creating a new module via play new-module solr for a Solr plugin you need to get 
the dependencies right. As there are several dependencies overlapping with the versions in 
Play, you have to carefully define what files should be downloaded and what files should not. 
Create the following dependencies.yml file and run play dependencies:

self: play -> solr 0.1

require:
    - org.apache.solr -> solr-solrj 3.1.0:
       transitive: false
    - commons-httpclient -> commons-httpclient 3.1:
        transitive: false
    - org.codehaus.woodstox -> wstx-asl 3.2.7
    - stax -> stax-api 1.0.1

The next step is to put the module together. Do not forget to create an appropriate  
play.plugins file. The plugin actually needs only four classes. The first is the 
SearchableModel, which extends the standard Model class. Put all classes 
into the play.modules.solr package:

public class SearchModel extends Model {

   public static Query search(String query, String ... values) {
        throw new UnsupportedOperationException("Check your 
configuration. Bytecode enhancement did not happen");
   }
   
   protected static Query search(Class clazz, String query, String ... 
values) {
      StringBuilder sb = new StringBuilder();
      if (query.startsWith("by")) {
         query = query.replaceAll("^by", "");



Practical Module Examples

198

      }
      String fieldNames[] = query.split("And");
      
      for (int i = 0 ; i < fieldNames.length; i++) {
         String fieldStr = fieldNames[i];
         String value = values[i];
         
         String fieldName = StringUtils.uncapitalize(fieldStr);
         String solrFieldName = getSolrFieldName(fieldName, clazz);
         
         sb.append(solrFieldName);
         sb.append(":");
         sb.append(value);
         
         if (i < fieldNames.length-1) {
            sb.append(" AND ");
         }
      }
      
      return new Query(sb.toString(), clazz);
   }
   
   private static String getSolrFieldName(String fieldName, Class 
clazz) {
      try {
         java.lang.reflect.Field field = clazz.getField(fieldName);
         Field annot = field.getAnnotation(Field.class);
         if (annot != null && !annot.value().equals("#default")) {
            return annot.value();
         }
      } catch (Exception e) {
         e.printStackTrace();
      }
      return fieldName;
   }
}

The main part of this class is to define the static search() method, which was already used 
in the test. This method is filled by using bytecode enhancement, so a bytecode enhancer is 
needed next:

public class SolrEnhancer extends Enhancer {

   public void enhanceThisClass(ApplicationClass applicationClass) 
throws Exception {



Chapter 6

199

        CtClass ctClass = makeClass(applicationClass);

        if (!ctClass.subtypeOf(classPool.get("play.modules.solr.
SearchModel"))) {
            return;
        }

        String method = "public static play.modules.solr.
Query search(String query, String[] values) { return 
search("+applicationClass.name+".class, query, values); }";
        CtMethod count = CtMethod.make(method, ctClass);
        ctClass.addMethod(count);
        
        // Done.
        applicationClass.enhancedByteCode = ctClass.toBytecode();
        ctClass.defrost();
        
        Logger.info("Enhanced search of %s", applicationClass.name);
   }
}

The enhancer replaces the empty static search() method by invoking the second defined 
search() method with the class parameter and supplies it during enhancement with this 
information. As the method does not return entity objects but an object being a Query class, 
this result class has to be defined as well. The Query class issues the actual query to the Solr 
server and handles the response:

public class Query {

   private SolrQuery query;
   private SolrServer server;
   private Class clazz;

   public <T extends Model> Query(String queryString, Class<T> clazz) 
{
      query = new SolrQuery();
      query.setFilterQueries("searchClass:" + clazz.getName());
      query.setQuery(queryString);
      this.server = SolrPlugin.getSearchServer();
      this.clazz = clazz;
   }
   
   public Query limit(int limit) {
      query.setRows(limit);
      return this;



Practical Module Examples

200

   }
   
   public Query start(int start) {
      query.setStart(start);
      return this;
   }
   
   public List<String> fetchIds() {
      query.setFields("id");
      SolrDocumentList results = getResponse();
      List<String> ids = new ArrayList(results.size());
      for (SolrDocument doc : results) {
         String entityId = doc.getFieldValue("id").toString().
split(":")[1];
         ids.add(entityId);
      }
      
      return ids;
   }
   
   public <T extends Model> List<T> fetch() {
      List<T> result = new ArrayList<T>();
      
      List<String> ids = fetchIds();
      for (String id : ids) {
         Object objectId = getIdValueFromIndex(clazz, id);
         result.add((T) JPA.em().find(clazz, objectId));
      }

      return result;
   }
   
   private SolrDocumentList getResponse() {
      try {
         QueryResponse rp = server.query(query);
         return rp.getResults();
      } catch (SolrServerException e) {
         Logger.error(e, "Error on solr query: %s", e.getMessage());
      }
      
      return new SolrDocumentList();
   }
   



Chapter 6

201

    private Object getIdValueFromIndex(Class<?> clazz, String 
indexValue) {
        java.lang.reflect.Field field = getIdField(clazz);
        Class<?> parameter = field.getType();
        try {
            return Binder.directBind(indexValue, parameter);
        } catch (Exception e) {
            throw new UnexpectedException("Could not convert the ID 
from index to corresponding type", e);
        }
    }

    private java.lang.reflect.Field getIdField(Class<?> clazz) {
        for (java.lang.reflect.Field field : clazz.getFields()) {
            if (field.getAnnotation(Id.class) != null) {
                return field;
            }
        }
        throw new RuntimeException("Your class " + clazz.getName()  
+ " is annotated with javax.persistence.Id but the field Id was not 
found");
    }
}

This class issues the query, gets the result, and performs database lookups for the returned 
IDs, if necessary.

The plugin class which invokes the bytecode enhancer on startup is the central piece of the 
following plugin:

public class SolrPlugin extends PlayPlugin {

   private SolrEnhancer enhancer = new SolrEnhancer();
   
    public void enhance(ApplicationClass applicationClass) throws 
Exception {
      enhancer.enhanceThisClass(applicationClass);
    }

   public void onEvent(String message, Object context) {
      if (!StringUtils.startsWith(message, "JPASupport.")) {
         return;
      }
      
      try {



Practical Module Examples

202

         Model model = (Model) context;
         String entityId = model.getClass().getName() + ":" + model.
getId().toString();
         
         SolrServer server = getSearchServer();
         server.deleteById(entityId);
         
         if ("JPASupport.objectUpdated".equals(message)) {
            SolrInputDocument doc = new SolrInputDocument();
            doc.addField("id", entityId);
            doc.addField("searchClass", model.getClass().getName());
            
            for (java.lang.reflect.Field field : context.getClass().
getFields()) {
               String fieldName = field.getName();
               Field annot = field.getAnnotation(Field.class);
               if (annot == null) {
                  continue;
               }
               
               String annotationValue = annot.value();
               if (annotationValue != null && !"#default".
equals(annotationValue)) {
                  fieldName = annotationValue;
               }
               
               doc.addField(fieldName, field.get(context));
            }
            server.add(doc);
         }
         server.commit();
      } catch (Exception e) {
         Logger.error(e, "Problem updating entity %s on event %s with 
error %s", context, message, e.getMessage());
      }
   }
   
   public static SolrServer getSearchServer() {
      String url = Play.configuration.getProperty("solr.server", 
"http://localhost:8983/solr");
      CommonsHttpSolrServer server = null;
      try {
         server = new CommonsHttpSolrServer( url );
         server.setRequestWriter(new BinaryRequestWriter());
      } catch (MalformedURLException e) {



Chapter 6

203

         Logger.error(e, "Problem creating solr server object: %s", 
e.getMessage());
      }
      return server;
   }
}

The last step is to configure your entities inside your application appropriately like the 
following User entity:

package models;

import javax.persistence.Entity;
import org.apache.solr.client.solrj.beans.Field
import play.modules.solr.SearchModel;

@Entity
public class User extends SearchModel {

   @Field
   public String name;
   @Field
   public String shortDescription;
   @Field("tw_s")
   public String twitter;

   public Car car;
}

As you can see, you can annotate your fields to be indexed with the @Field annotation from 
the solrj client. As SolrJ is also used when indexing the entities the plugin does not have 
to define its own annotations.

How it works...
A lot of source code is needed, for a lot of functionality. There are many pieces needing an 
explanation. First, a little bit of information about how Solr querying works. The plugin does 
not use XML to import data into Solr, but rather binary data, as it is way faster than creating 
an XML response and sending it to the server. You explicitly have to configure Solr to support 
this binary format, which is described in the SolrJ wiki page at http://wiki.apache.org/
solr/Solrj.



Practical Module Examples

204

Furthermore, SolrJ supports indexing beans directly instead of creating a 
SolrInputDocument out of it. This does work for entities, as they are complex objects with 
more than simple types. The problem is the entity ID field. This field is included in the model 
class, where it also would need to be annotated. However, this would mean that there could 
be only one class stored, as entity IDs are similar on different models. So the creation of the 
ID has to be performed manually. The adding of entities to the index is again done via the 
event mechanism of Play. Whenever an entity is updated or deleted it is propagated to the 
index. This is done in the SolrPlugin. When you take a look at the onEvent() method, 
you will see that when the right event occurs the following happens:

ff The old document gets deleted from the index

ff A new document is created, with the ID of the entity

ff A searchClass property is added, which is needed for querying entities of a 
certain type

ff Every field of an entity with a @Field annotation is added to the document, 
possibly under a different name than the name of the field in the entity,  
if specified in the annotation

Be aware that you cannot store object graphs with Solr. This is basically all the code needed  
to store data into Solr.

The SearchModel class serves two purposes. First, it enables you to have IDE support and 
auto completion for the static search() method, second it translates the already known 
find("byFooAndBar") syntax to a real search query.

The last part is the Query class, which issues actual search queries and parses the results. 
Similar to the JPAQuery, which is returned when calling the find() method of an entity, it 
features a limit on the result size as well as starting from an offset. It also features the fetch() 
method. This method fetches all the IDs from the Solr search and then queries the database 
to get the complete entity. Be aware that this again adds some load to your database. The 
fetchIds() method returns the IDs from the search, but will not query your database.

Until now it has looked like as if it was not necessary at all to configure Apache Solr. This is 
not completely true. When you take a look at your schema.xml file, you will find the case of 
defining a schema for indexing and the support for dynamic fields. Dynamic fields often end 
with "_s" to represent a dynamic string field. This is used in the User entity above for the 
Twitter handle. However, as the name and shortDescription fields of this entity do not 
have such an alias set, they have to be defined like this:

  <field name="name" type="string" indexed="true" stored="true"/>
  <field name="shortDescription" type="text" indexed="true" 
stored="true"/>
  <field name="searchClass" type="textgen" indexed="true" 
stored="true" required="true" />
  <field name="id" type="string" indexed="true" stored="true" 
required="true" />



Chapter 6

205

The name and shortDescription fields are needed for the User class, while the 
searchClass and id properties are used for any entity which gets indexed.

When writing real applications you should also use a better index value than the one used in 
this case like models.User.1, which consists of a long string instead of a numerical hash, 
though of course still being unique from an application point of view. A murmur hash function 
or similar might be a good choice. Solr also has support for UUID based IDs. Check  
http://wiki.apache.org/solr/UniqueKey for more information.

This is quite a good example on how to integrate an existing API into Play framework, as it 
closely resembles the existing methods like find(). It adds up the search() methods, 
which makes it pretty easy for the developer to adapt to this new functionality. You should 
always think about the possibilities of integration. For example, the SolrQuery class used 
in this example supports facetted searches. However, integrating this neatly into the Play 
framework is a completely different issue. If it does not work in a nice way, you should use the 
native API instead of just adding another layer of complexity, which needs to be maintained.

If you want to optimize this module, the first possible spot to look for would be the fetch() 
method in the Query class. It is very inefficient to execute JPA.em().find() on every ID 
returned by the search query. You could easily group this query into one statement using a  
JPA query and the IN operator of JPQL.

There's more...
Search is a really complex topic. Make sure you know the search engine you are using before 
you tie it to your application.

More information about SolrJ
SolrJ is an incredibly useful library for connecting Solr with Java. You should read more about 
it at http://wiki.apache.org/solr/Solrj.

More complex queries
As you can access the Solr query inside the query class, you can define arbitrary complex 
queries if you change the query class as needed. This would include stuff such as facetting, 
range queries, and many more. Solr is actually very versatile and here we use only a very 
small number of features.

Support for other search engines
There is a very nice module for the elasticsearch engine, which is a new kid on the block 
of Lucene-based search engines. It scales transparently and you can even use it as a 
complete backend data store. More information about elasticsearch is available at  
http://www.elasticsearch.org



Practical Module Examples

206

Writing your own cache implementation
Play already comes with an easy to scale cache solution included, namely memcached. 
However, you might not want to use memcached at all. It might not fit your needs, your admin 
may not want to install another application on a system, or anything else. Instead of not using 
a cache at all, this recipe shows you how to write your own implementation of a cache. This 
example will use Hazelcast, a pure Java distributed system as implementation.

You can find the source code of this example in the examples/chapter6/caching-
implementation directory.

Getting ready
It requires a little bit of work to get to the point to start programming. We need to get 
Hazelcast instance up and running and setup an application for development. Hazelcast is 
basically a distributed data platform for the JVM. Hazelcast has tons of more features that are 
not needed in this little example—basically only a distributed map is featured here. Hazelcast 
scales very well, there are live examples of even 100 parallel running instances.

So, first download Hazelcast. Go to http://www.hazelcast.com, click on the Downloads 
menu and get the latest version, it usually comes in a ZIP file. Unzip it, and run the following 
commands:

cd hazelcast-${VERSION}
cd bin
sh run.sh

That's it. You should now have a running Hazelcast instance on localhost.

Furthermore, you need to copy two jars into the lib/ directory of your Play application. 
These are:

hazelcast-${VERSION}.jar
hazelcast-client-${VERSION}.jar

The files are in the lib/ directory of your Hazelcast installation.

As there is already a caching test included in the samples-and-tests directory of every Play 
framework distribution, we can reuse this test to make sure the hazelcast-based cache 
implementation works. You should copy the following files to the corresponding directories  
in your created application:

samples-and-tests/just-test-case/app/models/User.java

samples-and-tests/just-test-case/app/models/MyAddress.java



Chapter 6

207

samples-and-tests/just-test-case/test/CacheTest.java

samples-and-tests/just-test-case/test/users.yml

After copying these files and running the test in your web browser, you should get a working 
test because no code to change the cache has been built yet. If you are using a Play version 
other than 1.2, please check the Java files, to see whether you might need to copy other 
dependant classes as well in order to be able to compile your application.

How to do it...
You should create a new module for your application, for example, via play new-module 
hazelcast. You should put the following into the conf/dependencies.yml file of your 
module and call play deps afterwards:

self: play -> hazelcast 0.1

require:
    - play
    - com.hazelcast -> hazelcast-client 1.9.3.1:
        transitive: false
    - com.hazelcast -> hazelcast 1.9.3.1:
        transitive: false

Now create a play.plugins file like this, which references the plugin, which is going 
to be created:

1000:play.modules.hazelcast.HazelcastPlugin

The next step is to create the plugin itself, which checks whether the Hazelcast cache should 
be enabled and replaces the cache appropriately:

public class HazelcastPlugin extends PlayPlugin {

  public void onApplicationStart() {
    Boolean isEnabled = new Boolean(Play.configuration.
getProperty("hazelcast.enabled"));
    if (isEnabled) {
     Logger.info("Setting cache to hazelcast implementation");
     Cache.forcedCacheImpl = HazelCastCacheImpl.getInstance();
     Cache.init();
    }
  }
}



Practical Module Examples

208

Now the only missing part is the cache implementation itself. All this code belongs to one 
class, but to help you understand the code better, some comments follow between some 
methods. The first step is to create a private constructor and a getInstance() method 
in order to implement the singleton pattern for this class. The constructor also loads some 
default parameters from the configuration file. Put this code into your module at src/play/
modules/hazelcast/HazelCastCacheImpl.java:

public class HazelCastCacheImpl implements CacheImpl {

   private HazelcastClient client;
   private static HazelCastCacheImpl instance;

   public static HazelCastCacheImpl getInstance() {
      if (instance == null) {
         instance = new HazelCastCacheImpl();
      }
      return instance;
   }

   private HazelCastCacheImpl() {
      String groupName = Play.configuration.getProperty("hazelcast.
groupname", "dev");
      String groupPass = Play.configuration.getProperty("hazelcast.
grouppass", "dev-pass");
      String[] addresses = Play.configuration.getProperty("hazelcast.
addresses", "127.0.0.1:5701").replaceAll(" ", "").split(",");
      client = HazelcastClient.newHazelcastClient(groupName, 
groupPass, addresses);
   }
   
   private IMap getMap() {
      return client.getMap("default");
   }

The add() and safeAdd() methods only put objects in the cache, if they do not exist in the 
cache already. On the other hand the set() and safeSet() methods overwrite existing 
objects. Note that any method with a safe prefix in its name has the contract of executing 
the action (add, set, replace, or delete) synchronous and must make sure the cache has 
finished the operation before returning to the caller:

   @Override
   public void add(String key, Object value, int expiration) {
      if (!getMap().containsKey(key)) {
         getMap().put(key, value, expiration, TimeUnit.SECONDS);
      }
   }



Chapter 6

209

   @Override
   public boolean safeAdd(String key, Object value, int expiration) {
      getMap().putIfAbsent(key, value, expiration, TimeUnit.SECONDS);
      return getMap().get(key).equals(value);
   }

   @Override
   public void set(String key, Object value, int expiration) {
      getMap().put(key, value, expiration, TimeUnit.SECONDS);
   }

   @Override
   public boolean safeSet(String key, Object value, int expiration) {
      try {
          set(key, value, expiration);
          return true;
      } catch (Exception e) {}
      return false;
   }

The replace() and safeReplace() methods only place objects in the cache if other 
objects already exist under the referenced key. The get() method returns a not casted 
object from the cache, which also might be null. The get() method taking the keys 
parameter as varargs allows the developer to get several values at once. In case you are 
in need of easily incrementing or decrementing numbers, you also should implement the 
incr() and decr() methods:

   @Override
   public void replace(String key, Object value, int expiration) {
      if (getMap().containsKey(key)) {
         getMap().replace(key, value);
      }
   }

   @Override
   public boolean safeReplace(String key, Object value, int 
expiration) {
      if (getMap().containsKey(key)) {
         getMap().replace(key, value);
         return true;
      }
      return false;
   }



Practical Module Examples

210

   @Override
   public Object get(String key) {
      return getMap().get(key);
   }

   @Override
   public Map<String, Object> get(String[] keys) {
      Map<String, Object> map = new HashMap(keys.length);
      for (String key : keys) {
         map.put(key, getMap().get(key));
      }
      return map;
   }

   @Override
   public long incr(String key, int by) {
      if (getMap().containsKey(key)) {
         getMap().lock(key);
         Object obj = getMap().get(key);
         if (obj instanceof Long) {
            Long number = (Long) obj;
            number += by;
            getMap().put(key, number);
         }
         getMap().unlock(key);
         return (Long) getMap().get(key);
      }
      return 0;
   }

   @Override
   public long decr(String key, int by) {
      return incr(key, -by);
   }

The last methods are also quickly implemented. The clear() method should implement a 
complete cache clear. The delete() and deleteSafe() methods remove a single element 
from the cache. An important method to implement is the stop() method, which allows the 
implementation to correctly shutdown before it stops working. This is executed if your Play 
application is stopped, for example:

   @Override
   public void clear() {
      getMap().clear();
   }



Chapter 6

211

   @Override
   public void delete(String key) {
      getMap().remove(key);
   }

   @Override
   public boolean safeDelete(String key) {
      if (getMap().containsKey(key)) {
         getMap().remove(key);
         return true;
      }
      return false;
   }

   @Override
   public void stop() {
      client.shutdown();
   }
}

You can now build the module via play build-module and then switch to the application, 
which includes the CacheTest class.

There is only one thing left to do to get the new cache implementation working in your 
application. Enable your newly built module in your application configuration. You need  
to edit conf/application.conf and add Hazelcast-specific configuration parameters:

hazelcast.enabled=true
hazelcast.groupname=dev
hazelcast.grouppass=dev-pass
hazelcast.addresses=127.0.0.1:5701

Then start the application and you should be able to run the preceding CacheTest that 
is referenced.

How it works...
The configuration is pretty self explanatory. Every Hazelcast client needs a username, a 
password, and an IP to connect to. The HazelcastPlugin sets the field forcedCacheImpl 
of the Cache class to the hazelcast implementation and reruns the init() method. From 
now on the Hazelcast cache is used.

I will not explain every method of the cache, as most of the methods are pretty 
straightforward. The getMap() method fetches the default map of the Hazelcast cluster 
which basically works like the map interface, but has a few more features such as the 
expiration.



Practical Module Examples

212

Primarily, the class implements the singleton pattern by not providing a public constructor, but 
a getInstance() method in order to make sure that always the same instance is used.

There is also a client variable of type HazelcastClient, which does the communication 
with the cluster. The private constructor parses the Hazelcast specific setup variables and 
tries to connect to the cluster then.

The getMap() method returns a Hazelcast-specific IMAP, which basically is a map, but also 
has support for expiry. In case you are wondering where the client.getMap("default") 
is coming from, it is the default name of the distributed map, configured in Hazelcast. There is 
a hazelcast.xml file in the same directory, where the run.sh file resides.

The IMap structure gives us basically everything needed to implement the add, set, replace, 
and delete and their safe companion methods used in the cache. As opposed to other 
cache implementations, often there is no difference between the regular and the safe 
implementation due to the behavior of Hazelcast.

A little trick had to be done for the incr() method. First, the CacheTest enforces that 
incrementing in the cache only works if the key has already been created before. Second, it 
is the only code where a lock is put on the key of the map (not on the whole map), though no 
increments are actually missing out. If another process is incrementing, the method blocks 
until the key is unlocked again. Third, we only add increment counters if the values are of type 
Long and thus can be incremented.

It is also useful to implement the stop() method of the cache interface, which allows a 
graceful shutdown of the client.

There's more...
When you start the Hazelcast server, you get into a console where you can issue some 
commands. For example, you can issue m.size() there to get the current size of the 
distributed map. This could help you to debug some issues you might face.

More about Hazelcast
You should read more about Hazelcast as it is a really interesting technology. Go to 
http://www.hazelcast.com/ or http://code.google.com/p/hazelcast/ 
for more information.

Try building a Redis cache
As you have seen, it is pretty simple to build your own cache implementation. You could try to 
build a Redis cache as the next step. There are pretty simple libraries out there for Redis, like 
JRedis, which would make such an implementation quite easy.



7
Running in Production

In this chapter, we will cover:

ff Test automation with Jenkins

ff Test automation with Calimoucho

ff Creating a distributed configuration service

ff Running jobs in a distributed environment

ff Running one play instance for several hosts

ff Forcing SSL for chosen controllers

ff Implementing your own monitoring points

ff Configuring log4j for log rotation

ff Integrating with Icinga

ff Integrating with Munin 

ff Setting up the Apache web server with Play

ff Setting up the Nginx web server with Play

ff Setting up the Lighttpd web server with Play

ff Multi-node deployment introduction

Introduction
Until now the whole book has been about development. However, this is only half the story. 
The real complexity begins after that, when your application goes live, and even before that 
during the testing phase. 



Running in Production

214

Usually, this process is split apart from the developer, as another department or at least other 
people than the developers perform the deployment. However, this chapter is targeted at both 
groups, developers as well as system administrators. It is generally a good idea to try and 
merge the groups a little closer in order to be able to cooperate better and understand, why 
each groups prefers doing things differently.

Testing is another important issue. Test-driven development in small and agile teams is 
getting more common. This requires continuous integration systems in order to have constant 
information about the state of your code. These continuous integration systems help you to 
determine whether your code is ready to be deployed, and whether you have written enough 
tests. Two recipes are about making Play adapt to continuous integration, either using Jenkins 
(formerly Hudson) or using the Calimoucho application, a Play application itself which runs all 
tests of another Play application.

This chapter does not only include information on how to roll out a Play application, it also 
includes information on what the developer has to think about when an application goes  
from desktop development to a complex multi-node production setup. The complexity of 
switching to a complex production setup should be known by the developers as well as the 
system engineers. 

Test automation with Jenkins
If you are already having a continuous integration system, it might already be Jenkins as it is 
quite common in the Java world. If you do not want to set up another system, you should try to 
use Jenkins as well to run automated tests of your play applications. This recipe will help you 
to do a quick setup of Jenkins and make it ready to deploy on a Play application.

You can find the source code of this example in the examples/chapter7/test-jenkins 
directory.

Getting ready
A running Jenkins is essential of course. Either use the current running one, or get a fresh 
copy from http://www.jenkins-ci.org, download the WAR file and just start it with 
the following:

java -jar jenkins.war



Chapter 7

215

Again, we will also set up a repository using mercurial. This time we will also access the 
repository via HTTP instead of file system, as it would be done in a real world setup as well. 
First, you should install the mercurial plugin of Jenkins. Go to http://localhost:8080, 
click on Manage Jenkins on the left, then click on Manage Plugins. Just select the mercurial 
plugin there and click on Install at the bottom of the page. After the installation is finished, 
you need to restart Jenkins. Create a Play application, a mercurial repo inside of it, and start 
serving the repository in order for it to be accessible via HTTP:

play new test-jenkins
cd test-jenkins
hg init
hg add
hg commit -m "initial import"
hg serve

You can go to http://localhost:8000/ now and check the first commit. The preceding 
hg serve command started a web server and can be used to check out the Play application 
using the hg clone command. We will use this URL in Jenkins later.

In order to have support for Cobertura, you should install the Cobertura plugin for Jenkins 
the same way you installed the mercurial plugin. Furthermore, you also need to install the 
Cobertura plugin for Play. Add Cobertura to your conf/dependencies.yml file and commit 
it via hg commit –m "added cobertura dependency":

require
    play -> cobertura 2.1

There is a final plugin you should install for Jenkins. This is the HTML publisher plugin, which 
allows you to link special pages for each build. This makes it easy to link to the HTML results 
of the tests—the same you usually see in the browser test runner under the /@tests/ URL. 
When checking your Jenkins plugin page it should now look like the following. Note that all 
plugins except the mercurial, Cobertura, and HTML publisher plugin are a part of core Jenkins:



Running in Production

216

How to do it...
Configuring the job in Jenkins is relatively straightforward. Here are three screenshots. First 
you should create a free style project for your Play project:

After creating the project, you can add a small description in the next screen, where you 
configure the complete build process of the project:

The next step is to specify the source code repository to get the application from for each 
build. You should add the repository URL, optionally a branch, but also a cron-like time 
expression, how often the repository should be checked—every 5 minutes in this example by 
using */5 * * * *, which is a cron-like expression. For more information about timing, read 
the crontab(5) man page on most Unix systems.



Chapter 7

217

The Poll SCM option ensures that a new build is only triggered on changes:

The next step is to care for the code execution itself. You need to configure the start of a shell 
script there, which should be put in the repository as well. This makes it easy to track changes 
for it. You can see the configuration for it in the preceding screenshot. The ci-build.sh 
script is called, which looks like the following:

#!/bin/bash

set –xe
PLAY_PATH="/path/to/play/installation/"

$PLAY_PATH/play deps



Running in Production

218

$PLAY_PATH/play auto-test

cd test-result
(
echo "<html><head><title>Test results</title></head><body><ul>"

for i in *.failed.html ; do
        if [ -e $i ] ; then
                echo "<li><a href=\"$i\">$i</li>"
        fi
done

echo "</ul><p><ul>"

for i in *.passed.html ; do
        if [ -e $i ] ; then
                echo "<li><a href=\"$i\">$i</li>"
        fi
done

echo "</ul></body></html>"
) > index.html

if [ -e result.failed ] ; then
  return -1
fi

cd -

The shell script runs the headless test runner of Play and creates an additional index.html 
which summarizes and links to all failed and passed tests. As a last feature it returns a  
non-zero code if failed tests occur, in order to notify the developers about unsuccessful  
test runs.



Chapter 7

219

The last step is to enable Cobertura reports and to link to the HTML files of the test reports in 
order to examine the reasons for failed tests.

You need to configure the path to the Cobertura coverage XML file and can optionally set 
some thresholds to define the build as successful, if these have been passed. The Cobertura 
is at test-result/code-coverage/coverage.xml.

Below the Cobertura settings is the setup of the HTML publish plugin, which links to the 
index.html file in the test-result directory. This is the reason why the ci-build.sh 
script created this file. It has a nice overview now.



Running in Production

220

After setting up everything as needed and executing a successful build, you should have the 
following menu for every build record on the left, as shown in the following screenshot:

Now you have a Jenkins configuration, which builds your Play project on changes and creates 
Cobertura reports, as well as showing the test messages from the Play compilation.

How it works...
As all functionality is already explained, it is noteworthy here to mention the shortcomings. 
And there is a big one, depending on what your test and build philosophy is. Usually you have 
three states in Jenkins: success, build failure, and failing tests.

With this setup there are only two states: success and failure. There is no exact display of the 
amount of failing tests on the front page, only notification that something has gone wrong.

Usually a deployment only happens if all tests are successful, so it does not matter  if either 
tests fail or the complete build fails.

There's more...
Jenkins has a very nice plugin system, which makes it pretty easy to write custom plugins and 
enhance them for a specific use case. If you need a better and deeper integration, you should 
check the plugins or even consider writing your own, if you have special requirements.



Chapter 7

221

Other plugins might be useful
You should definitely check out the plugin page of Jenkins. There are lots of plugins and 
perhaps by the time of this writing, there is a plugin that allows you to count tests with the 
help of a shell script. This would allow some extension. Or the Play framework itself writes out 
the xUnit XML file like the Maven surefire plugin. The Jenkins plugin page is available under 
http://wiki.jenkins-ci.org/display/JENKINS/Plugins.

Check out the new play Jenkins plugin
Play plugin for Jenkins has recently been added. You can install it by selecting it from the 
plugin list and configuring the path of your Play installation in the system-wide configuration. 
It features a similar behavior as the shellscript in this recipe in order to supply the HTML test 
results to the client.

Test automation with Calimoucho
If you have not followed the Play framework mailing list, it is likely you have never heard of 
Calimoucho as software. Basically, Calimoucho itself is a Play application, which checks out 
other applications from a VCS, runs their tests, and reports this in a simple GUI. If you think 
Setting up a Jenkins instance and configuring it appropriately usually takes quite some time and 
might not be needed for a small play project. In such a case using Calimoucho makes sense.

In case you are wondering where the name is from: It is a drink, which consists of cola and  
red wine. The tool is way better than the drink.

You can find the source code of this example in the examples/chapter7/test-
calimoucho directory.

Getting ready
First you should check out Calimoucho from github:

git clone https://github.com/guillaumebort/calimoucho.git

Now you can check the calimoucho/conf/projects.yaml file, where the current projects 
are placed.

When following the examples of this recipe, you should create an application for each version 
control system, as each system stores its version data differently. This might lead to clashes.



Running in Production

222

How to do it...
We will try to add support for some version control systems. The starting point is bazaar:

play new test-bazaar
cd test-bazaar
bzr init
bzr whoami "Your name <me@example.com>"
bzr add
bzr commit -m "Initial commit"

Now edit the conf/projects.yml file if the Calimoucho application in order to set up 
configuration paths:

models.Project(bazaar):
  name:                   Bazaar test project
  path:                   checkout/test-bazaar
  framework:              /path/to/your/play/installation/
  updateCommand:          bzr update 
  versionCommand:         bzr revno %path
  versionPattern:         1.0r%version
  revisionDetailPattern:  http://bzr/test/browse/%version
  notifications:
                          - alexander@reelsen.net

Now put a copy of the repository into the checkout/test-bazaar (make sure the checkout 
directory actually exists) directory via:

bzr branch ../../test-bazaar

It is time to start Calimoucho now and see it working. After five minutes you should check  
the main page of the application, which runs on port 8084—also do not forget to visit the  
main page after starting the application in order to make sure it is running. The above 
mentioned 5 minute waiting time is the default time to wait before checking a repository 
for changes. You can configure this time via the cron.checkInterval parameter in your 
application conf.

To show you that Calimoucho actually works and updates, add a commit to the main 
repository (not the one in the checkout directory):

echo Foo > README
bzr add README
bzr commit -m "Added Readme"

Now you should see the second successful test run.



Chapter 7

223

How it works...
As you can see, Calimoucho automatically updates the repository with the command provided 
in the projects YAML file. However, what it does not do is check out the repository initially. 
That would be a nice feature indeed. Basically, you need to configure five different aspects  
per build job:

ff framework: The path to your Play framework installation. Changing this makes it easy 
to perform a build for a new Play framework version.

ff UpdateCommand: The command to update the local repository to the most 
up-to-date revision.

ff versionCommand: The command to get the current revision—may return 
anything unique.

ff revisionDetailPattern: A URL where you can link to the direct source code repository.

ff notifications: A list of e-mail addresses to send the results to. You have to fill the 
app/views/Notifier/sendResult.txt template file with some content in order 
to have this feature working.

After configuring it, all you have to do is make an initial checkout and from then on updating 
works automatically.

As there are more versioning systems available, you might want to check how you can use Git, 
mercurial, and SVN repositories as well.

There's more...
As there are plenty of version control systems available, the following paragraphs provide help 
to configure Calimoucho to also support Git, mercurial, and subversion.

Using git with Calimoucho
As Git is one of the most used versioning systems, so it should be listed here as well. Just 
change your project configuration to this one.

play new test-git
cd test-git
git init
git add .
git commit -m "initial import"

Go to the calimoucho/checkout directory and check out the freshly created repo:

git clone /path/to/absolute-repo



Running in Production

224

Add this to your conf/projects.yml:

models.Project(git):
  name:                   Git test project
  path:                   checkout/test-git
  framework:              /path/to/play-1.1/
  updateCommand:          git --git-dir=%path/.git pull
  versionCommand:         git --git-dir=%path/.git log --format=%h -1
  versionPattern:         g%version
  revisionDetailPattern:  http://git/test/browse/%version

Using mercurial with Calimoucho
Mercurial is another distributed versioning control system just like Git, and is also used in 
many cases:

play new test-mercurial
cd test-mercurial
hg init
hg add
hg commit -m "initial commit"

Now go to the calimoucho/checkout directory and check out the project:

hg clone file:///path/to/repo

Add this to your conf/projects.yml:

models.Project(mercurial):
  name:                   Mercurial test project
  path:                   checkout/test-mercurial
  framework:              /path/to/play-1.1/
  updateCommand:          hg pull -u -R %path
  versionCommand:         hg log -l 1 --template {rev} %path
  versionPattern:         r%version
  revisionDetailPattern:  http://hg/test/browse/%version
  notifications:
                          - alexander@reelsen.net

Using subversion with Calimoucho
Though subversion has already been around for a while, it is still used a lot. You can configure 
Calimoucho to check out any subversion based repository as well:

svnadmin create svn-repo
play new test-svn
svn import test-svn/ file:///absolute/path/to/svn-repo/test-svn/trunk 
-m "initial import"
rm -fr test-svn



Chapter 7

225

Now go to the calimoucho/checkout directory and check out the project:

svn co file:///path/to/svn-repo/test-svn/trunk test-svn

Add this to your conf/projects.yml:

models.Project(svn):
  name:                   SVN test project
  path:                   checkout/test-svn
  framework:              /path/to/play-1.1/
  updateCommand:          svn update %path
  versionCommand:         svnversion %path
  versionPattern:         r%version
  revisionDetailPattern:  http://svn/test/browse/%version
  notifications:
                          - your@email

Creating a distributed configuration service
As soon as your application and especially your application load gets bigger, you might want 
to share the load between several hosts. So you would setup several Play application nodes, 
all having the same configuration file, which is easily possible with Play. However, you would 
have to restart all application nodes, when you change one parameter. This is useful when you 
change something fundamental, like your database configuration. However there are cases 
where it is not useful to have a downtime of your application. This is where the principle of a 
centralised configuration service becomes useful. This recipe shows a simple example of how 
to implement such a service.

You can find the source code of this example in the examples/chapter7/
configuration-service directory.

Getting ready
You should set up memcached and the example application written here should run on two 
different ports. So, after installing memcached, it might have been started by your distribution 
already, if you are using Linux. Otherwise you can start it by typing: the following

memcached



Running in Production

226

As you need more than one instance of a running Play application, you could install it on two 
nodes. And you need to enable memcached as the caching server. Both can be done in the 
application.conf:

memcached=enabled
memcached.host=127.0.0.1:11211

%app01.http.port=9001
%app02.http.port=9002

The first two lines enable memcached, and the last two lines make use of the so-called 
application IDs. You can now start the application with a special ID via this command:

play run --%app01

This instance will bind to port 9001. Now open another terminal, copy the directory of the 
application to another directory, change to the copied directory, and enter the following:

play run --%app02

Now you will have one memcached and two Play instances of your application running. Do not 
forget to keep the directories in sync, when making changes.

The example itself will have two features. First, it allows you to set parameters on any host, 
which are then cached and can be retrieved from any other host. Second, it implements a 
good heartbeat function, which allows the admin to check quickly which hosts are alive—this 
would be interesting for monitoring and alerting purposes.

How to do it...
Three routes are needed for this example:

GET     /nodes           Application.nodes
GET     /config/{key}    Application.getConfig
POST    /config/{key}    Application.setConfig

One job, which registers itself on application startup in the cache, is needed:

@OnApplicationStart
public class CacheRegisterNodeJob extends Job {

   public static final key = "CS:nodes";

	 public void doJob() {
		  Set<String> nodes = Cache.get(key, Set.class);
		  if (nodes == null) {
			   Logger.info("%s: Creating new node list in cache", 
this.getClass().getSimpleName());



Chapter 7

227

			   nodes = new HashSet();
		  }
		  nodes.add(Play.id);
		  Cache.set(key, nodes);
	 }
}

Another job, which features a heartbeat operation, is needed:

@Every("10s")
public class CacheAliveJob extends Job {

	 private static final String key = "CS:alive:" + Play.id;
	
	 public void doJob() {
		  Date now = new Date();
		  Logger.info("CacheAliveJob: %s", now);
		  Cache.set(key, now.getTime(), "15s");
	 }
}

The last part is the controller code:

public class Application extends Controller {

	 public static void getConfig(String key) {
		  String value = (String) Cache.get(key);
		  String message = String.format("{ %s: \"%s\" }", key, 
value);
		  response.setContentTypeIfNotSet("application/json; 
charset=utf-8");
		  renderText(message);
	 }
	
	 public static void setConfig(String key) {
		  try {
			   Cache.set(key, IOUtils.toString(request.body));
		  } catch (IOException e) {
			   Logger.error(e, "Fishy request");
		  }
		  throw new Status(204);
	 }

    public static void nodes() {
    	 Set<String> nodes = Cache.get("CS:nodes", Set.class);
    	 Map<String, List> nodeMap = new HashMap();



Running in Production

228

    	 nodeMap.put("alive", new ArrayList<String>());
    	 nodeMap.put("dead", new ArrayList<String>());
    	
    	 for (String node : nodes) {
    		  if (Cache.get("CS:alive:" + node) == null) {
    			   nodeMap.get("dead").add(node);
    		  } else {
    			   nodeMap.get("alive").add(node);
    		  }
    	 }
    	
    	 renderJSON(nodeMap);
    }
}

How it works...
The simple part is—as you can see—using the cache as a node wide configuration service. In 
order to test this functionality, you should start two instances of this application and set the 
configuration parameter on the first node, while receiving it on the second:

curl -v -X POST --data "This is my cool configuration content" 
localhost:9001/config/myParameter
* About to connect() to localhost port 9001 (#0)
*   Trying ::1... connected
* Connected to localhost (::1) port 9001 (#0)
> POST /config/myParameter HTTP/1.1
> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 
OpenSSL/0.9.8l zlib/1.2.3
> Host: localhost:9001
> Accept: */*
> Content-Length: 37
> Content-Type: application/x-www-form-urlencoded
> 
< HTTP/1.1 204 No Content
< Server: Play! Framework;1.1;dev
< Content-Type: text/plain; charset=utf-8
< Set-Cookie: PLAY_FLASH=;Path=/
< Set-Cookie: PLAY_ERRORS=;Path=/
< Set-Cookie: PLAY_SESSION=83af29131d389f83adc89cea9ba65ab49347e5
8a-%00___ID%3A138cc7e0-5e11-4a52-a725-4109f7495c8f%00;Path=/
< Cache-Control: no-cache
< Content-Length: 0
< 
* Connection #0 to host localhost left intact
* Closing connection #0



Chapter 7

229

As you can see, there is no data sent back to the client in the response body, and therefore a  
HTTP 204 can be sent back. This means that the operation was successful, but nothing  
was returned to the client. Now, checking the data can be easily done on the other host:

curl -v localhost:9002/config/myParameter
* About to connect() to localhost port 9002 (#0)
*   Trying ::1... connected
* Connected to localhost (::1) port 9002 (#0)
> GET /config/myParameter HTTP/1.1
> User-Agent: curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 
OpenSSL/0.9.8l zlib/1.2.3
> Host: localhost:9002
> Accept: */*
> 
< HTTP/1.1 200 OK
< Server: Play! Framework;1.1;dev
< Content-Type: application/json; charset=utf-8
< Set-Cookie: PLAY_FLASH=;Path=/
< Set-Cookie: PLAY_ERRORS=;Path=/
< Set-Cookie: PLAY_SESSION=ad8a75f8a74cea83283eaa6c695aadb1810f1
5c3-%00___ID%3A256a3510-a000-45cb-a0a0-e4b98a2abf53%00;Path=/
< Cache-Control: no-cache
< Content-Length: 56
< 
* Connection #0 to host localhost left intact
* Closing connection #0
{ myParameter: "This is my cool configuration content" }

By connecting to port 9002 with cURL the second Play instance is queried for the content 
of the cache variable. A (hand-crafted) JSON reply containing the configuration content  
is returned.

The second part of this recipe is the heartbeat function. It is pretty cool to play with. When 
checking the CacheAliveJob, you will see that it runs every 10 seconds, and puts some 
data in the cache with an expiry time of 15 seconds. This means, if after 15 seconds  
no new entry is inserted, it will vanish from the cache.

However, in order to be able to check whether a node is active, one must know which nodes 
were online before. This is what the CacheRegisterNodeJob does. It gets a set with nodes 
from the cache, adds its own name to this set, and stores it back in the cache.

So there is now one list with nodes which have been added upon start up to this list. Using 
this list with node names, and then checking whether there are any cache entries which show 
that these nodes are up, enables us to create some sort of heartbeat service.



Running in Production

230

If you did not stop any of your two nodes, just check whether they are up with cURL:

curl localhost:9002/nodes

The above should return this:

{"dead":[],"alive":["app02","app01"]}

Now it is time to stop one of the instances. Stop the one running on port 9002, wait a little 
more than 15 seconds and call cURL again on it:

curl localhost:9001/nodes

This time it should return this:

{"dead":["app02"],"alive":["app01"]}

To show you that the cache works as expected, you can even stop the other instance as well; 
start the second one again and you should be able to call cURL again (of course, always be 
aware of the 15 second timeout):

curl localhost:9002/nodes

The above will get you this:

{"dead":["app01"],"alive":["app02"]}

Be aware that if you are in DEV mode, the first reply of the nodes query in this case will return 
both hosts as dead. This is because the whole application only starts when you issue the 
request above, which in turn means that the first run of the CacheAliveJob has not been run 
yet, so you have to wait another ten seconds. This is a problem you will not meet in production.

Now put up the first instance again and you should get the response that both nodes are 
up. Again pay attention here, if you are in DEV mode and wondering why the node you are 
querying is still marked as dead.

There's more...
If you have taken a closer look at the jobs you might have spotted the flaw in the design. If 
you bring up two nodes in parallel, they might get the set of nodes of the cache, add their own 
node, and store it back. This of course might imply losing one of the two nodes. Unfortunately, 
the Play cache implementation does not help here in any way.

More on memcached
Memcached is pretty powerful. Play supports multi memcached hosts as cache per default, 
by setting more hosts in the configuration:

memcached.1.host=127.0.0.1:11211
memcached.2.host=127.0.0.1:11212



Chapter 7

231

In order to understand this configuration a little background know-how on memcached is 
needed. Every memcached client (in this case the library included with Play) can have its own 
hashing function on how to distribute data to a cluster of memcache hosts. This means, both 
servers are completely independent from each other and no data is stored twice. This has two 
implications. If you use such a multi-node memcached setup in play, you have to make sure 
that every application node includes a configuration for all memcached hosts. Furthermore, 
you cannot be sure that any other library you are using for accessing memcached use the 
same hashing algorithm.

See also
If you are iclined to want to know more about cache, check out the recipe Writing your own 
cache implementation in Chapter 6, where you can write your own cache implementation.

Running jobs in a distributed environment
As you should be more than familiar with jobs by now, you might have implemented them in 
your own application. For example, take clean up jobs, which are weekly or hourly jobs that 
clear leftover or unneeded data that has accumulated over time out of the database. You've 
developed your application as usual, added this neat clean up job, and deployed it to a multi-
node system. Now your job runs on every node at the same time, which is most likely not what 
you wanted. This wastes application resources or might even lead to lock problems, as many 
systems try to access the same database resources at the same time.

In this example the standard cache functionality will be used to overcome this problem.

The source code of the example is available at examples/chapter7/distributed-jobs.

Getting ready
All you need is an application running on two nodes, in which both use the same memcached 
instance for caching. The configuration for memcached setup is already commented out in the 
standard application.conf file.

How to do it...
An easy method is to define an abstract job, which makes sure that it only runs on one node,  
but leaves the logic to the concrete implementation of the job:

public abstract class MultiNodeJob extends Job {
   

   protected final String cacheName =  this.getClass().
getSimpleName();
   

   public abstract void execute();



Running in Production

232

   public void doJob() {
      boolean isRunning = Cache.get(cacheName) != null;
      if (isRunning) {
         Logger.debug("Job %s is already running", cacheName);
         return;
      }
      // Possible race condition here
      Cache.safeSet(cacheName, Play.id, "10min");
   

      try {
         execute();
      } finally {
         if (!isRunning) {
            Cache.safeDelete(cacheName);
         }
      }
   }
}

The concrete implementation boils down to a standard job now:

@Every("10s")
public class CleanUpJob extends MultiNodeJob {
   

   @Override
   public void execute() {
      Logger.debug("Doing my job of all greatness");
      // do something long running here
   }
}

How it works...
In order to create arbitrary jobs, which run only on one host out of an arbitrary number 
of applications, a helper class is needed. The MultiNodeJob class checks in the cache 
whether an element with the same name as the short class name exists. If this is the case,  
no execution will happen. If not, then the element will be set so no other nodes will execute 
this job.

The concrete implementation of any job consists only of the code to execute and the definition 
of how often it should run. It does not include any specific checks whether another node 
already runs this job. It needs to inherit from the MultiNodeJob.

As seen in the preceding code, the method Cache.safeSet() was used because it waits 
until the set has been executed, before going on. You could possibly change this to set(). 
What is far more important is the expiration date of the set key. If any node setting the key 
crashes while running this job, it might never be executed again because no one explicitly 
removes the set key from the cache.



Chapter 7

233

As already written in the preceding comment, this solution is not one hundred percent  
correct, if you really need to make sure that the job runs exactly once at one time. If two  
nodes try to get the value of an non-existing element in the cache at the same time, both 
nodes will execute the job. This is a classical locking problem, which is hard to solve in multi 
node systems and cannot be solved with the current setup.

This problem gets more complex if you run jobs at a certain time via the @On annotation. Most 
likely the clocks of your servers are synced with an NTP time server, which means they will 
start pretty much at the same time.

In case you are using the @Every annotation, this problem will blur a little bit because the 
time between two jobs is actually the waiting time you defined in the annotation plus the 
execution time. So, if one node executes the job, and the other one does not, the difference  
in repeating times will start to differ a lot. If you do not intend this behavior at all, just use the 
@On annotation.

There's more...
Though this is a nice solution, it has already proven not to be perfect. Here are some possible 
areas for improvement.

Solving the locking problem
You cannot solve the above explained locking problem with the current cache implementation. 
You can however work around this problem. The easiest solution is to only allow one node to 
execute jobs. By setting the configuration property play.jobs.pool=0, no thread pool for 
jobs is created and no jobs except the synchronous ones on application startup are executed. 
You should however not forget to configure one node to execute jobs. This can easily be done 
with a specialized framework ID on one node. Another possible, but complex solution would 
be to go with events where a job triggers some event-based software such as ActiveMQ, which 
in turn decides who should execute this job. This is quite some engineering overhead however; 
it might be possible to live with this problem, or go the complex way of integrating a message 
queue if really needed. You might also create some better cache implementation (or a special 
implementation for locking), which acts as a single locking solution.

Changing cache clear times
It might not be a good idea to hard code the cache expiry time in the MultiNodeJob. If a job 
gets executed every five seconds and then stops for two hours because of one node crashing 
and not clearing the cache entry, you might wonder about unexpected results. Instead, you 
could use the time duration used in the @Every annotation and double or triple it. This would 
make sure the job is not run for a short period of time.



Running in Production

234

Running one Play instance for several hosts
As soon as you need multi tenancy support for your application, chances are high that every 
tenant will also run on its own host, such as http://firsttenant.yourapp.com and 
http://secondtenant.yourapp.com. For example, this way you can customize the 
application a little bit and the user who wants to log in does not have to supply any  
tenant information. 

The source code of the example is available at examples/chapter7/virtualhost.

How to do it...
Put the following in your routes file:

GET    {tenant}.mysoftware.com/         Application.index

From then on you can use the client variable in your controller methods:

public static void index(String tenant) {
    renderText(tenant);
}

You can even configure a different handling of CDN-based content for development and 
production right, use mode in your routes file. Write the following in your routes file:

#{if play.Play.mode.isDev()}
   GET /public/ staticDir:public
#{/}
#{else}
   GET assets.myapp.com/ staticDir:public
#{/}

In order to access the content, you need to use the @@ controller call to resolve to the absolute 
URL when templates are rendered:

<img src="@@{'/js/foo.js'}">

How it works...
If you want to test the first explained feature, you can use cURL like this and add your own 
host header, which is used to set the virtual host being used in HTTP 1.1:

> curl --header "Host: test.example.com" 127.0.0.1:9000/

test



Chapter 7

235

There's more...
Hosting an application supporting multiple tenants on the same host for different tenants 
is generally not a good idea except those low in traffic and you do not have strict security 
constraints on the data your are storing. Think about whether it is a good idea to add 
such a complexity to your application, or if splitting systems would just make more sense. 
Maintenance of course might be significantly reduced, if you only need to handle one instance.

Implementing multi tenant applications using hibernate
Erik Bakker from Lunatech Research has written an excellent write up on how to use hibernate 
filters to implement multi tenancy with Play. Check it out at http://www.lunatech-
research.com/archives/2011/03/04/play-framework-writing-multitenancy-
application-hibernate-filters.

A virtual hosting module
There is a vhost module included in the Play framework modules list. However, it suffers from 
the lack of documentation as it includes JNI based libnotify code, which is not guaranteed to 
run on every operating system. This module allows you to have a directory with subdirectories, 
which resembles virtual hosts including static files, but also allows each domain to have its 
own datasource.

Using properties to be more flexible
As you can see in the preceding routes file, a hardcoded hostname might not be a problem, 
but still is somewhat inflexible. The great thing is that the conf/routes file is preprocessed 
by the template engine, so there is absolutely no problem to use an expression like:

GET    {tenant}.${play.configuration['host']}/         Application.
index

And adding this to your application.conf:
host=example.com

Just retry cURL call in the last section and check whether it works.

Forcing SSL for chosen controllers
Sooner or later you will have to include encrypted communication in your software. Today 
most sites merely use it for login purposes in order to submit the username and password in 
a secure way. This prevents eavesdroppers from sniffing them, even in a public wireless LAN. 
However, it is still possible to take over a session in a public WLAN, after the login. In order to 
prevent this, the full application must run with an SSL encryption. However, this will increase 
your system load.

The source code of the example is available at examples/chapter7/ssl/example-app.



Running in Production

236

Getting ready
You should have a configured Play application and followed the steps at: http://www.
playframework.org/documentation/1.1.1/releasenotes-1.1#https.

Ensure that you can access your application at https://localhost:9443/ as well as 
http://localhost:9000. The next step is to force a login controller to be always SSL.

How to do it...
Create a controller with a @Before annotation, which checks whether the request is actually 
SSL encrypted:

public class EnsureSSL extends Controller { 
    @Before 
    static void sslOrRedirect() { 
        if(!request.secure) { 
            redirect("https://" + request.host + request.url); 
        } 
    } 
}

Now you can add this controller via the @With annotation to any other controller and make 
sure cleartext requests are redirected to SSL:

@With(EnsureSSL.class) 
public class Registration extends Controller {
   ...
}

How it works...
As you can see there is almost no logic in the preceding code. You can check if it works by 
trying to access your controller via HTTP:

> curl -v www.test.local/login
* Connected to www.test.local (192.168.0.7) port 80 (#0)
> GET /login HTTP/1.1
>
< HTTP/1.1 302 Found
< Location: https://www.test.local/login



Chapter 7

237

You should however always keep in mind, that it is useless to redirect a POST request from 
a cleartext to an encrypted connection, which already includes all the sensitive data. So just 
make sure that the redirection happens before the transmission of data. Use a sniffer like 
Wireshark or TCPDUMP if you are not sure about your current implementation. However, you 
should be able to understand what happens in your application anyway.

Implementing own monitoring points
As soon as you experience the first performance bottleneck in your application, there are two 
steps to carry out: analyze the problem and fix it. If you application design is not completely 
flawed, fixing usually takes a fraction of the time needed for analyzing. The analysis is split 
in two parts. Finding the occurrence of the problem in your platform and reproducing the 
problem reliably in order to fix it. Most likely problems will occur on production because real 
live problems will never be completely found by lab testing.

After you have fixed the problem, hopefully the operations department or even you would 
raise the rhetorical question about making sure this does not happen again. The answer is 
simple: Monitoring. You should always be able to return reliable statistics from the core of the 
application instead of relying on external measuring points such as database query times or 
HTTP request and response times.

There should be data about cache hit and miss times of your custom caches. There should 
be very application specific data like the amount of API login calls, or the count and top 10 of 
your daily search terms or your daily revenue. Anything remotely helping to gather problems 
should be easy to monitor.

The Play framework ships with JAMon, which is short for Java Application Monitor and 
provides exactly the infrastructure needed in order to integrate such monitoring points  
as easy as possible.

The source code of the example is available at examples/chapter7/monitoring.

Getting ready
You should be familiar with the output of play status before starting this recipe. Play 
already offers the minimum, maximum, and average run times as well as hit count of all 
of your controllers, error pages, jobs, and even all your custom tags. An already existing 
bottleneck is not needed, but might help with your concrete problem.

The example supplied with this recipe is a query to another system, which should help us 
to make sure that there are no performance issues with accessing an external API.



Running in Production

238

How to do it...
Imagine the following job, which gets remote data, transforms it from JSON to an object, and 
stores it in the cache. Now the task is to find out whether the complex JSON parsing lasts so 
long or retrieving the content from the remote system. This job shows how to do it:

@Every("5s")
public class RemoteApiJob extends Job {

   public void doJob() {
      Logger.info("Running job");
      Monitor monitor = MonitorFactory.start("RemoteApiCall");
      WSRequest req = WS.url("http://some.URL");
      HttpResponse resp = req.get();
      monitor.stop();
      
      // some other stuff like parsing JSON/XML into entities
      // ...
   }
}

This job starts and stops a monitor, which sets this monitor to automatically account for min, 
max, and average content. If you want to count for cache hits or misses, this functionality is 
not needed and you could go for the following in your code:

String foo = Cache.get("anyKey", String.class);

String monitorName = foo == null ? "cacheMiss" : "cachehHit";
MonitorFactory.add(monitorName, "cnt", 1);

Cache.set("anyKey", "anyContent", "5mn");

Instead of string names for the monitors you could also use the MonKey and MonKeyItem 
interfaces, if you are used to this from other applications using JAMon. However, using simple 
strings such as cacheMiss and cacheHit to identify your monitoring names should be 
sufficient in most cases.

How it works...
As you can see due to the rather short examples, integration of new monitors is only a few 
lines of code. As already mentioned, there will mostly be two different kinds of monitors in 
your code. There are simple monitors, which are counters, like cache hits or misses or the 
amount of currently open orders in your e-commerce shop system. The other kind of counter 
is the one who needs a data set to provide a real value to the reader of the monitor. If your 
system suffers from a peak one or two minutes a day and you are only taking the request 



Chapter 7

239

response values from this moment, you will not have a good statistical average, which might 
help you in finding bottlenecks. But when you access statistic values from a complete time 
duration, you might be able to analyze a peak load in a certain period which gives you an idea 
to only analyze this specific time period, instead of not being able to pinpoint the problem. 
Also, this allows you to measure performance decreases over time in a better way.

Both monitor types differ slightly in implementation. One can be called with monitor.add(), 
or you can directly use the MonitorFactory as done in the example. The other one needs a 
start() and a stop() method in order to calculate time differences correctly.

One of the bigger disadvantages of this example remains the same. Whenever you try to 
measure your code, you will clutter it when putting information such as monitors into it. You 
might be able to create some nice workaround via AOP and/or bytecode enhancement, but 
this will be a lot more work, for not too much change. Think about if this is really needed in 
your case.

You can get further statistics via the Monitor class. For example, the standard deviation, the 
last values for minimum, maximum, and average, or the date of the last access.

There's more...
Monitoring is often a crucially undervalued pinpoint in application development, as this is 
never a functional requirement. Make sure you know your application well enough in order  
to find out upcoming operations problems as soon as possible.

More about JAMon
Although, JAMon is currently not in active development (the last release is from 2007), 
it serves its purpose well. You can find the complete documentation of JAMon at 
http://jamonapi.sourceforge.net/.

See also
After adding new monitors, the next logical step is of course to really monitor such data. Read 
on for how to monitor this in Icinga and Munin.

Configuring log4j for log rotation
A big difference in production environments is the logging aspect. When testing your 
application locally, you start it via play start or play test and check the console output 
every now and then. On production system the application is started with play run and 
forked into the background from then on. Log output is written to the logs directory inside  
the application.



Running in Production

240

As the default log4j configuration in Play logs to the console, you should always go with a 
custom log4j file in production deployments.

How to do it...
There are several possibilities to do log rotation because it is being built into log4j. However, 
the most common ones are either rotating if the file has reached a certain limit, or does daily 
log rotation. This example works for file size based rotation:

log4j.rootLogger=ERROR, Rolling
log4j.logger.play=INFO # default log level

log4j.appender.Rolling=org.apache.log4j.RollingFileAppender
log4j.appender.Rolling.File=logs/application.log
log4j.appender.Rolling.MaxFileSize=1MB
log4j.appender.Rolling.MaxBackupIndex=100
log4j.appender.Rolling.layout=org.apache.log4j.PatternLayout
log4j.appender.Rolling.layout.ConversionPattern=%d{ABSOLUTE} %-5p ~ 
%m%n

You can change it to daily (or even hourly rotation) by writing the following:

log4j.appender.Rolling=org.apache.log4j.DailyRollingFileAppender 
log4j.appender.Rolling.DatePattern=yyyy-MM-dd

If you need hourly rotation due to heavy log writing, use .yyyy-MM-dd.HH as DatePattern.

In case you need class based logging, you may not use the play.logger.Logger class, but 
you have to implement your own logger in your class like the following code:

private static final Logger log = LoggerFactory.getLogger(YourClass.
class);

Use the logger now as every normal log4j logger in your source code. This means you will lose 
the varargs style logging, which comes with the nice Play logger, as it is wrapped around log4j.

Then add this to your log4j.properties:

log4j.logger.yourPackage.YourClass=DEBUG

How it works...
Logging is simple, as long as you keep it simple. You can possibly have arbitrary complex log4j 
configurations with different rotation and log levels per class. You should never have more 
than a few log files. Otherwise, you will lose overview pretty quick. A good rule of thumb is to 
talk to the system engineers, what kind of logging they want and need, as they are more likely 
to wade through these files instead of the developers.



Chapter 7

241

If you really wish to (as you might be used to or you have old configurations lying around) you 
can also put a log4j.xml file into the conf/ directory of your application. It will work as well 
as the log4j.properties file.

It is important to mention that the log4j configuration does not get reloaded on each change, 
especially if you are in production mode. You might be used to that, if you are using JBoss 
or other application servers. If you really need to change this, you can recompile the Play 
framework and change the play.logger.Logger class from:

PropertyConfigurator.configure(log4jConf);

To:

PropertyConfigurator.configureAndWatch(log4jPath);

This checks every 60 seconds whether the log4j configuration file has changed and reloads it. 
Not all changes are reflected though. You should check play.logger.Logger.setUp() for 
more information.

There's more...
As there is almost no Play specific part in logging, there is not much extra information to  
be listed.

More about log4j
You can read a whole lot more about log4j at http://logging.apache.org/log4j/.

Default log levels of others frameworks
Inside of the Play source a log4j configuration has already been defined. It defines several log 
levels by default, for example for Hibernate, Spring, Quartz, DataNucleus, Apache HttpClient, 
or OVAL. If you experience problems with one of these in logging, you should check this exact 
log4j configuration in the source code. You can grab the configuration file from framework/
src/log4j.properties in your Play framework folder.

Integrating with Icinga
External monitoring is one of the key tasks of the operations department. System engineers 
have to be able to measure performance degradation in the live setup in order to inform the 
developers, who in turn have to seek for solutions for these problems. Without monitoring no 
measurement is possible. Without measurement no debugging will happen. Icinga provides a 
pretty simple kind of monitoring. You can check whether your service, which is in our case the 
Play application, responds to a simple request or has to be marked as down.



Running in Production

242

One of the tools used for such tasks is Icinga, which is used for monitoring of whole networks 
and service landscapes. Icinga is a fork of the common Nagios monitoring system. It has been 
forked due to problems in the open source development process.

The source code is available at examples/chapter7/ssl/example-app for the example 
application used and in examples/chapter7/icinga for the Icinga specific files.

Getting ready
You need an up and running instance of Icinga. No additional tools are needed, as Icinga is 
shipped with everything needed.

The example listed here checks the output of the / URI. It checks for the occurrence of the 
string Is secure: true or Is secure: false. The string is created in the template 
by printing out the ${request.secure} variable. Using this it is simple to create a HTTP 
as well as a HTTPS check. Therefore, you should make sure that your Play application is 
configured with SSL support as well.

How to do it...
Create a Play specific Icinga configuration in the objects/ directory. On Ubuntu Linux you 
could create the following file in /etc/icinga/objects/play_icinga.cfg:

define host {
  use                  generic-host
  host_name            puck
  address              192.168.0.2
}       

define service {
  use                  generic-service
  host_name            puck
  service_description  HTTP/9000
  check_command      check_http!-p 9000 -s "Is secure: false"
}

define service {
  use                  generic-service
  host_name            puck
  service_description  HTTPS/9443
  check_command    check_http!-p 9443 -S -s "Is secure: true"
}



Chapter 7

243

How it works...
As you can see, the configuration is pretty short. Basically, there are two service 
checks defined for the same target host, which has the name puck and is reachable at 
192.168.0.2. The check_command parameter defines what kind of check to execute. The 
first check connects to http://192.168.0.2:9000/ and ensures the defined string, which 
marks the request as cleartext HTTP, occurs in the response. If this is not the case, the test 
will not succeed. The same happens to https://192.168.0.2:9443/, however the -S 
parameter tells Icinga to handle this as an SSL connection and the string searched in this 
case marks the request as secure.

As you can see, this check is pretty simple, you could possibly go further and check the response 
times to define a maximum allowed latency, before the service is marked as CRITICAL or WARN 
in the Icinga system. This helps you to keep track of service level agreements.

There's more...
Icinga is far more complex and used for complete network monitoring, so you should read 
about it.

Find out more about Icinga
Icinga is a pretty feature complete solution. Check more and especially its documentation  
at http://www.icinga.org/.

See also
If you need to monitor more information than a simple up/down state, you should read on and 
check the integration with Munin, where it is used to monitor controller runtimes.

Integrating with Munin
Munin is an ideal companion to Icinga, as it goes further than it. Munin is merely a visualizer 
of metrics, rather than a simple checker. As soon as your service is up and running you might 
want more information about it. And you want it to be OSI layer 8 compatible. Management 
should also know what is going on.

Munin with its default install is able to monitor stuff like disk usage, IO, CPU load, and 
memory usage, but it does not ship with any Play specific configuration. From a Play developer 
and administrator point of view, you want to see the output of play status graphed over 
time. This is exactly what Munin is made for. This example will graph the minimum, maximum, 
and average response times of controllers.



Running in Production

244

The source code is available at examples/chapter7/ssl/example-app for the example 
application used and in examples/chapter7/munin for the Munin specific files.

Getting ready
You should have an up and running Munin system somewhere, with access to added plugins. 
Due to Munins distributed architecture, there are two possibilities of setting Munin up to 
gather data. First, you could install an agent on the system Play is running on, and sending the 
data over to the Munin server. Second, you could query the /@status.json URI of the Play 
application. This example opts for the second way.

Again we will go through this recipe by using Ubuntu Linux as the monitoring system. Therefore, 
the paths of configuration files on other Linux distributions and server systems may vary.

You also need some Perl modules installed in order to make this work. In the case of Ubuntu 
Linux the packages needed are libjson-perl, libdigest-hmac-perl, and libwww-perl.

How to do it...
The first step is to add Play to your Munin node configuration, and append this to the 
munin-node file, which is placed under /etc/munin/plugin-conf.d/munin-node:

[play]
user munin
env.secret YOURSECRETHERE

Copy the secret from your application.conf file directly into this configuration, as the 
secret is needed to access the status page from remote.

Now create the check itself. Put it into the directory where all other checks reside or into  
/etc/munin/plugins/play and make sure it is flagged executable. If this is not the case, 
do this by entering chmod 755 /etc/munin/plugins/play:

#!/usr/bin/perl

use strict;
use Munin::Plugin;
use LWP::UserAgent;
use Digest::HMAC_SHA1;
use JSON;

my $secret = $ENV{'secret'};

my $hmac = Digest::HMAC_SHA1->new($secret);
$hmac->add('@status');
my $digest = $hmac->hexdigest;



Chapter 7

245

my $ua = LWP::UserAgent->new;
$ua->timeout(10);
$ua->default_header( 'Authorization' => "$digest" );

my $r = $ua->get('http://192.168.0.2:9000/@status.json');

my $json = new JSON->decode($r->content);

if ( defined($ARGV[0]) and $ARGV[0] eq "config" ) {

    foreach my $controller(@{$json->{"play.CorePlugin"}-
>{"monitors"}}) {
        my $name = $controller->{"name"};
        if ($name !~ /\(\)/) {
            next;       
        }       
        $name =~ s/^(.*)\(\).*/$1/;
        my $classMethod = $name;
        $name =~ s/\./_/;
                
        print "multigraph runtimes_$name\n";
        print "graph_title Play Controller runtimes $classMethod\n";
        print "graph_vlabel ms\n";
        print "graph_scale no\n";
        print "graph_category play\n";
        print "graph_info Statistics about min/max/avg controller 
rates\n";
        print "graph_args -l 0\n";
                
        print $name."_min.label $name min\n";
        print $name."_min.draw LINE2\n";
        print $name."_max.label $name max\n";
        print $name."_max.draw LINE2\n";
        print $name."_avg.label $name avg\n";
        print $name."_avg.draw LINE2\n";
    }   

} else {

    foreach my $controller(@{$json->{"play.CorePlugin"}-
>{"monitors"}}) {
        my $name = $controller->{"name"};
        if ($name !~ /\(\)/) {
            next;       



Running in Production

246

        }       
        $name =~ s/^(.*)\(\).*/$1/;
        $name =~ s/\./_/;

        my $avg = $controller->{"avg"};
        my $min = $controller->{"min"};
        my $max = $controller->{"max"};

        print "multigraph runtimes_$name\n";
        print $name."_min.value %d\n", $min;
        print $name."_max.value %d\n", $max;
        print $name."_avg.value %d\n", $avg;
    }
}

Restart Munin-node via /etc/init.d/munin-node restart or alternatively use upstart 
after storing the Perl script.

How it works...
Before explaining what happens here, you can check whether your configuration is working at 
all. Use Telnet to connect to your Munin server on port 4949 and check for configuration and 
returning data:

> telnet localhost 4949
Trying ::1...
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
# munin node at yourServer
config play
multigraph runtimes_Application_index
...

fetch play
multigraph runtimes_Application_index
Application_index_min.value 3
Application_index_max.value 253
Application_index_avg.value 132
...



Chapter 7

247

The bold marked lines are those typed in. The response of entering config play shows 
the configuration of the Play service, while the response of typing fetch play parses the 
data specific output of play status and returns it as needed for graphing. If you get similar 
results, just wait a few minutes for the next updates of your Munin server and you should  
see a nice graph for each controller, which yields the minimum, maximum, and average 
response times.

Back to the question—how is this all working? A Munin plugin has to implement two parts. 
First, a configuration setup needs to be returned if the plugin is called with a config 
parameter. The other part is to return the data needed to graph. In both cases the plugin code 
has to connect to the Play application in order to get a list of the currently active controllers. 
This means you can add or remove controllers, and the plugin will always cope with this. There  
is no need to add new controller methods somewhere manually in the Munin setup.

If you have read the configuration specific code of the plugin, you will see it uses another 
feature of Munin called multigraph. Usually one plugin can only emit one graph. However, it 
does not make too much sense to have all of your controllers packed into one graph. As soon 
as one controller is way slower than all the others, which might be an event intended in case 
of a big calculation or PDF creation, all your other graphs will not be readable at all when 
looking at the Munin GUI. The multigraph plugin allows having an arbitrary amount of  
graphs for one plugin, exactly what is needed.

I will not explain the Perl code too much. It parses the needed parts of the JSON response, 
checks whether the monitor name includes () which marks it as a controller and includes it 
then. It uses some regular expressions to beautify it for human reading. The only unknown 
part may be the use of the HMAC digest for the secret set in the configuration file. The digest 
is created by using the Play application secret as key for the message @status. The result is 
used in the Authorization HTTP header in order to authorize and get all needed data from 
the Play application. This is exactly how the command play status works as well.

There's more...
Munin is an incredibly flexible tool and should be used by you or your operations department 
to find out a great deal about your application. After you have added your monitoring points, 
as shown earlier in this chapter, this is one of the best ways to visualize such data.

Find out more about Munin and its plugins
Munin has tons of plugins, which might help you to graph some of your Play specific data 
further or to sharpen this example. Check Munin at http://munin-monitoring.org/.



Running in Production

248

Add and graph hit counts, tag runtimes, running jobs, and so on
As you might have noticed, only the most needed data has been used here to graph. The 
play status command includes lots of interesting data, waiting to be graphed. For example, 
each controller also includes the total hit count since starting the application, or the runtime 
of each tag, which might help you to decide whether to create a fast tag out of it. Also the 
status output shows scheduling data about your jobs. All this might be very useful to graph.  
All you have to do is to extend this or create a new Munin plugin based on the preceding one.

Setting up the Apache web server with Play
Apache is the most widely used web server. If you are already using it, you can set up Apache 
httpd as a proxy for your Play application, instead of exposing it to the Internet directly.

This recipe shows you how to configure SSL and non-SSL Play applications together with the 
Apache httpd. This chapter features a couple of recipes on how to use a web server as a proxy 
for Play. In any configuration example one assumption is made: You want to use SSL, but you 
do not want to use the built-in SSL support of the Play framework, because you are using a 
proxy in front of your Play application. The forwarding from the external SSL port is done to the 
internal Play application. However, the internal application does not use SSL. This prevents 
doing encryption twice or redirecting SSL directly to the Play application. However, you still 
have to make sure the Play application handles the request as if it came via HTTPS.

The source code of the example application is available at examples/chapter7/ssl/
example-app as well as for examples/chapter7/ssl/example-app-2 for the second 
application instance, which is needed for clustering. The configuration files for the web server 
are put at examples/chapter7/apache.

Getting ready
You should have an Apache 2 web server up and running. Furthermore, you should have the 
following modules enabled: mod_ssl, mod_headers, mod_proxy, mod_proxy_http, 
mod_proxy_balancer. The last one is only needed in case you want to do load balancing. 
When using a Debian derived distribution like Ubuntu, you can use the a2enmod command, 
for example a2enmod ssl to enable the SSL module.

How to do it...
The only thing you need to change on your Play application.conf, is the configuration 
about proxies, which redirect to Play. The IP referenced here is the one from the host Apache 
runs on:

XForwardedSupport=192.168.0.1



Chapter 7

249

This is a simple Apache configuration for redirecting from external port 80 to internal IP and 
port 9000 of your Play application.

Be aware that the configuration snippets are highly specific and 
might not work with your Apache configuration. If you have a web 
server with several virtual domains you have to specify a name in the 
<VirtualHost> directive. The snippets here have been tried without 
any other virtual hosts running on the apache instance. Please refer to 
the Apache documentation when having a more complex setup.

<VirtualHost *:80>
      ProxyPreserveHost on
      ProxyPass / http://192.168.0.2:9000/
      ProxyPassReverse / http://192.168.0.2:9000/
</VirtualHost>

Now a configuration for redirecting an external SSL connection to internal HTTP, but still 
making sure it is handled as SSL by the Play application:

<VirtualHost *:443>
        SSLEngine on
        SSLCertificateFile    /etc/ssl/host.crt
        SSLCertificateKeyFile /etc/ssl/host.key

        ProxyPreserveHost on
        ProxyPass / http://192.168.0.2:9000/
        ProxyPassReverse / http://192.168.0.2:9000/
        RequestHeader set "X-Forwarded-SSL" "on"
        RequestHeader set "X-Forwarded-Proto" "https"
</VirtualHost>

The main difference here is the enabling of SSL and adding a special header, which will tell 
Play to mark this request as secure.

The next possible step is to cluster your application by running it on several nodes: 

<Proxy balancer://playcluster>
        BalancerMember http://192.168.0.2:9000
        BalancerMember http://192.168.0.3:9000
</Proxy>

<VirtualHost *:80>
       ProxyPreserveHost on
       ProxyPass / balancer://playcluster/
       ProxyPassReverse / balancer://playcluster/
</VirtualHost>



Running in Production

250

How it works...
The Play configuration itself is merely a security feature. The support for proxy forwarding 
should be done explicitly. Instead of a single IP address you can also supply a comma 
separated list of IP addresses.

Depending on your setup, for example either by using localhost or only IP addresses, you also 
might have to use the ProxyPassReverseCookieDomain to make sure session cookies 
are set and handled correctly. Furthermore, it is not the best idea to use a wild card virtual 
host definition, but rather use name or IP-based virtual hosts. This has just been done out 
of convenience in this case. Also you should make sure to really use the RequestHeader 
instead of the Header directive to add the needed headers, as this directive ensures the 
headers are set before the request is forwarded to Play.

If you are seeking an answer about why the SSL code works and is then set up correctly, the 
answer is simple. This is a framework convention. You can read about it directly in the source 
at play.mvc.Http.Request.parseXForwarded().

Regarding load balancing, you need to replace the real hostname in the proxy-specific 
directive with the balancer configuration. As the Play framework has been designed as a real 
share nothing system, there is no need to add complex configurations like sticky session IDs, 
where load balancing is done by keeping the session ID of a node mapped to the application 
server instance, which always means to keep state on the redirect host. The configuration for 
SSL has to be done accordingly.

Also be aware that the trailing slash in the ProxyPass and ProxyPassReverse directives 
is absolutely essential, regardless of whether you are doing balanced or single forwarding, 
because you have to match to a URL in this case.

There's more...
As Apache is widely used, there is not much point in showing off other features that  
aren't needed. However, you can even do transparent upgrades of your applications  
with zero downtime!

Transparent upgrade of your application
As this feature of upgrading your application without any downtime is already written in the 
documentation, it does not make any sense to talk about it in this book, so just check out 
http://www.playframework.org/documentation/1.1.1/production# 
Apacheasafrontproxytoallowtransparentupgradeofyourapplication.



Chapter 7

251

Setting up the Nginx web server with Play
Nginx is a high performance web server and proxy, which is used by many big sites. If you 
need Nginx, you either have a high performance site, or you like the asynchronous event 
driven approach of it, which ensures a consistent usage of memory almost regardless of the 
connection amount. Nginx comes with a ton of features, but most likely, only the proxying and 
SSL features are needed in this recipe.

The source code of the example application is available at examples/chapter7/ssl/
example-app as well as for examples/chapter7/ssl/example-app-2 for the second 
application instance. The configuration files for the web server are put in examples/
chapter7/nginx.

Getting ready
Nginx should be installed, and up and running. Execute apt-get install nginx on any 
Debian derived distribution.

How to do it...
Let us start with a single external port 80 to internal port 9000 redirection:

server {
  listen       80;

  location / {
    proxy_set_header Host $host;
    proxy_set_header X-Forwarded-Host $host;
    proxy_set_header X-Forwarded-Server $host;
    proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
    proxy_pass http://192.168.0.2:9000;
    proxy_redirect http://192.168.0.2:9000/ http://your.external.
domain/;
}

The next step is to get SSL up and running:

server {
  listen               443;
  server_name          your.server.name;
  ssl                  on;
  ssl_certificate      /etc/nginx/host.crt;
  ssl_certificate_key  /etc/nginx/host.key;
  ssl_protocols        SSLv3 TLSv1;
  ssl_ciphers          HIGH:!ADH:!MD5;



Running in Production

252

  location / {
    proxy_set_header Host $host;
    proxy_set_header X-Forwarded-Host $host;
    proxy_set_header X-Forwarded-Server $host;
    proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
    proxy_set_header X-Forwarded-Ssl on;
    proxy_set_header X-Forwarded-Proto https;
    proxy_pass http://192.168.0.2:9000;
  }
}

As usual, load balancing is the last part of the setup:

upstream www.test.local {
  server 192.168.0.2:9000;
  server 192.168.0.3:9000;
}

server {
  listen       80;

  location / {
    proxy_set_header Host $host;
    proxy_set_header X-Forwarded-Host $host;
    proxy_set_header X-Forwarded-Server $host;
    proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
    proxy_pass http://www.test.local;
    proxy_redirect / http://www.test.local/;
  }
}

How it works...
While taking a closer look at the setup, there are almost no differences to the Apache setup 
except for the header rewriting. A closer look has to be taken at the proxy_redirect 
directive, as this is changing depending whether you are load balancing or not.

If you need load balancing support, you should make sure that you name the cluster  
the same as your site. This allows a far more readable configuration, when using the  
proxy_pass directive.

The SSL configuration also sets all needed headers, where in most cases, some predefined 
variables are used, like the $host one. For a complete reference go to http://wiki.
nginx.org/HttpCoreModule#Variables. Furthermore, you should make sure that the 
server_name directive in the SSL configuration matches with the SSL certificate host name.



Chapter 7

253

There's more...
You could possibly use Nginx for many more things because it has support for memcached, 
MPEG, and flash streaming or WebDAV.

More information about Nginx
Nginx had the problem of not having too much documentation. However, today the website 
at http://www.nginx.org as well as the wiki at http://wiki.nginx.org/ show you 
most of the configuration options. Furthermore, there is also a good book named Nginx HTTP 
Server about Nginx, which is also released by Packt Publishing.

Better load balancing
Nginx has a nice module called fair balancer that keeps in mind which node has the lowest 
load by counting currently processed requests, and thus balances all requests in an even 
manner instead of using pure round-robin based load balancing.

Transparent upgrade of your application
You can remove the node to be upgraded out of your load balancing configuration and call 
nginx -s reload to force it to reread its configuration. Then update your application and 
re-enable it in the configuration file. Reload the configuration again and you are done.

Setting up the Lighttpd web server with Play
Lighttpd (pronounced lighty) is another lightweight web server, similar to Nginx, as it also 
handles requests asynchronously. It is a matter of taste, and which web server you prefer,  
so this recipe is here for the sake of completeness.

The source code of the example application is available at examples/chapter7/ssl/
example-app as well as for examples/chapter7/ssl/example-app-2 for the second 
application instance. The configuration files for the web server are put in examples/
chapter7/lighttpd.

Getting ready
You should have a lighttpd installed on your system and have the the accesslog, proxy, 
and ssl modules enabled. When using a Debian derived operating system, you can use the 
lighttpd-enable-mod command, for example: lighttpd-enable-mod ssl.



Running in Production

254

How to do it...
Simple redirection works like this—put it into /etc/lighttpd/conf-enabled/10-proxy.
conf:

$HTTP["host"] == "www.test.local" {
        proxy.server  = ( "" => ((
                 "host" => "192.168.0.2",
                 "port" => 9000
        )))
}

SSL is also set up pretty quickly; however, there is one major difference. Instead of having two 
different files for certificate and key file, you have to merge both files into one. Concatenate 
them together like this:

cat host.crt host.key > host.pem

Put your SSL specific configuration into /etc/lighttpd/conf-enabled/10-ssl.conf:

$SERVER["socket"] == "0.0.0.0:443" {
    ssl.engine     = "enable"   
    ssl.pemfile    = "/etc/nginx/host.pem"

    $HTTP["host"] == "www.test.local" {
        proxy.server  = ( "" => (
            (
                "host" => "192.168.0.2",
                "port" => 9000
            )
        ))
    }
}

As you might have already noticed, the proxy configuration looks as if you could put more than 
one host into it. Exactly this is the case, which makes configuration very simple. You can just 
enhance your current configuration to enable load balancing:

$HTTP["host"] == "www.test.local" {
        proxy.balance = "round-robin"
        proxy.server  = ( "" => (
                (
                 "host" => "192.168.0.2",
                 "port" => 9000
                ),
                (



Chapter 7

255

                 "host" => "192.168.0.2",
                 "port" => 9001
                )
        ) )
}

How it works...
This configuration is by far the shortest, as it does most of the things which need to be done 
manually in Nginx and Apache configuration, automatically. There is no need to specify special 
redirect headers, and there is no need to specify special headers for SSL rewriting, as it's all 
implicit, which makes it by far the laziest solution.

If you are wondering about the somewhat strange configuration of proxy servers with 
the empty key for the servers, be aware that you can configure redirection for certain file 
extensions. This is actually pretty useless with a Play application. If you have designed nice 
looking URLs in your conf/routes file you will not have any file endings.

There's more...
Though lighttpd is not used as much as Apache or Nginx, you might want to consider it as a 
viable alternative in your web server landscape.

Learn more about lighttpd
You can find more information about lighttpd at http://www.lighttpd.net/, together 
with an impressive list of high performance sites currently using it.

Multi-node deployment introduction
Deployment is always a hot topic. There are developers, most of the time including myself, 
who do not worry about deployment, until it becomes a problem. Updating one node is never 
too much of a problem. The average developer can do it in a couple of minutes. But can you 
still do this with a multi node installation. Do you suddenly need half a day?

As this is the last recipe, I will not provide you with a solution, because it does not exist. There 
are a dozen ways of deploying nodes:

ff Check out the application from VCS and run it. Pretty simple. However, do you also 
keep Play itself in the VCS? How do you keep that updated?

ff Start some shell script from one main node, which copies everything via scp or 
rsync. Great, but you still need to restart. How do you handle database upgrades?



Running in Production

256

ff You can use BitTorrent. Twitter does this to deploy tens of thousands of nodes in well 
under a minute. They use a self-written system called murder, which is available at 
https://github.com/lg/murder.

ff You might want to create packages before distributing your application or the 
framework itself across your nodes. This makes rollbacks pretty simple, while still 
making sure that only one installation is on your server. Lunatech Research has a 
nice module for this for Debian Linux, which can be downloaded at http://www.
lunatech-labs.com/open-source/debian-play-module.

How to do it...
You should definitely use an init script, which is executed when the system starts. Possibly  
a script like this:

#!/bin/sh

PLAY=/usr/local/bin/play
APP=/usr/local/play/myapp
NAME=myapp
DESC="play application"

set -e

case "$1" in
    start)
        echo -n "Starting $DESC: " 
         $PLAY start $APP
         echo "$NAME."
        ;;
    stop)
        echo -n "Stopping $DESC: "
         $PLAY stop $APP
         echo "$NAME."
        ;;
    *)
        echo "Usage: $0 { start | stop }" >&2
        exit 1
        ;;
esac

exit 0



Chapter 7

257

This script requires the correct path of the Play binary and the correct path of the application. 
If both are symbolical links, you will always be able to point to the most up-to-date application 
as well as your current Play installation.

This way you could put all your Play installations into /usr/local/play-inst/ and have 
directories like play-1.1 or play-1.2 Similar to this setup you could have /usr/local/play 
directory, where /usr/local/play/myapp is a symlink pointing to the application to run 
in the directory. A sample application directory name could include a timestamp like /usr/
local/play/myapp-20110506.

As a preparation for every deployment, you could trigger the checkout of the VCS remotely, 
so that the application is already put into such a directory, when you switch to your updated 
application. You should also make sure, that your versioning system always grabs only the 
latest copy of your repository and not its complete history. Git has a so-called depth option, 
and bazaar features a lightweight checkout. Mercurial features this with some hacking around 
the convert extension.

If you do not want to use VCS on your application nodes, you could alternatively create an 
archive and put it up there.

How it works...
So let's sum up the preparation for each deployment here, in order to give you a guideline:

1.	 Optional: Copy a new framework version to /usr/local/play-inst/ (out of your 
VCS, as a tarball via rsync/scp).

2.	 Copy a new version of your application to /usr/local/play/myapp-
$timestamp—set your timestamp correctly, so none of your old installations 
are overwritten.

3.	 Stop your application.

4.	 Change the symlink of the Play framework, if you did an upgrade.

5.	 Change the symlink of the Play installation.

6.	 Execute scripts to be executed. Tasks like database migration should be executed 
only once and not for all nodes.

7.	 Start your application, make sure it starts, check the logs, and make sure the web 
server in front marks the application as up again.

There's more...
Multi node scalability in production is quite a complex topic, even with a shared nothing 
system like Play. You will run into dozens of obstacles, so always think ahead of problems 
instead of watching them flying in after deployment.



Running in Production

258

Add centralized logging to your multi node installation
Whenever you run multiple application nodes, it is pretty hard to track exceptions or 
even web sessions, as requests switch arbitrarily between hosts. A possible solution to  
this is a centralized log system, like Splunk. For more information on Splunk, check out 
http://www.splunk.com/. A possible problem with Splunk is, it not being a free software. 
The free version has only a limited amount of features, like only logging 500 megabytes of 
data a day.

Distributing configuration files in a different way
If you want to keep your configuration files away from your version control repository, you 
need to have another way to distribute them. You might want to check out some configuration 
management tools like puppet, which is available at http://www.puppetlabs.com/

Another more recent alternative is chef, which is newer than puppet, but does not yet feature 
as many plugins. Chef is available at http://wiki.opscode.com/display/chef/Home.

If you want to keep your data protected, like database passwords, this strategy might make 
sense, it also introduces quite some overhead because you have to keep two sources, namely 
the application and its configuration, in sync.



Further Information 
About the Play 

Framework

Further information
Before leaving you alone to try, copy, and test all the sources and samples included, you might 
be interested in some further information.

As already mentioned in the foreword, I would like to repeat that you are encouraged to use, 
copy, paste, change, improve, and of course extend all of the sources here. If you plan to 
create any module of the examples provided here, feel free to do so. Contributing is one of the 
core aspects to a viable open source framework, so do not hesitate in doing it. The worst thing 
would be no one using your module, which would have been the same if you never released it.

As a last hint I would like to point to some links you should know about, if you plan to use the 
Play framework in production.

Links
The following links feature some additional information about the Play framework. It is also a 
list of interesting articles and resources, which were not mentioned throughout this book, but 
should help you to get to know the framework better.
http://www.playframework.org



Further Information About the Play Framework

260

The Play framework homepage features a short introductory video, documentation, code 
snippets, binary downloads, modules, and many more.
http://www.playframework.org/community/planet

This link is an aggregator for community created content. Such content varies greatly,  
ranging from small how to's about a specific functionality to bigger articles explaining the 
usage of modules.

https://groups.google.com/forum/#!forum/play-framework

The Play framework's Google group is the most viable source of information. Be aware that 
this is a high traffic list, featuring far more than 1000 mails a month. Do not hesitate to ask 
questions as there are lots of active actors on the list.

http://stackoverflow.com/tags/playframework

Stack overflow features in a lot of questions about the Play framework, more than  
250 currently.

https://github.com/playframework/play 

If you need to take a look at the source code, check out Play framework on GitHub. There used 
to be a bazaar repository on Launchpad, but GitHub is the primary resource since play 1.1.

https://github.com/alexanderstrebkov/auditlog/wiki/

http://blog.matthieuguillermin.fr/2011/02/utiliser-envers-avec-play-
framework/

These two links show different solutions on how to add auditing to your application by using 
Hibernate Envers. You simply add an annotation to your entities and configure specific entity 
listeners. Note, that the second link is actually in French, but there is no problem using Google 
Translate for this. The second URL also does not require an own module for these features.

https://github.com/sebcreme/strike

Strike is a mobile framework on top of SASS, which resembles iPhone behavior. Going to the 
/@emulator URL shows you basically how your application would look, when rendered on a 
phone. It seems to not work with the current SASS version however.

https://github.com/hz/play-groovy/

This is quite an interesting module. It allows you to write model and controller code in pure 
groovy. It is simply a plugin, which uses a groovy compiler for all kinds of classes. It also 
includes samples for groovy and GPP, especially a (not completely groovy-fied) converted  
YABE example. 

https://github.com/GuyMograbi/play_test_module

http://blog.mograbi.info/p/test-module-for-playframework.html



Appendix

261

This test module offers a different approach as the standard Play framework in order to test 
controllers. The module resembles controller method calls as close as possible. This means, 
you do not need to call a specific URL, but rather a direct controller method. It is merely a 
matter of taste, and which approach is preferred. If you like testing more on the Java and 
method level instead of testing via URLs, you should take a look at this module.

https://github.com/fabienamico/sshdeploy

This little module is a helper for automatic deployment of single nodes via SSH – 
the secure shell. You can add your node to a configuration file and simply call play 
sshdeploy:nodeName, which copies and unzips your application to a remote host.

http://www.lunatech-research.com/editorials/tags/playframework

The blog from Lunatech (one of the companies that support Play commercially besides 
Zenexity) features high quality articles about many aspects of the Play framework. You  
should definitely get the RSS feed.

http://blog.aheron.de/

A weblog featuring some Play framework specific articles. However, most articles are written  
in German.

http://agaoglu.tumblr.com/post/2501419423/a-prototype-play-plugin-
for-activiti-integration

http://agaoglu.tumblr.com/post/2700789235/activiti-hello-world-on-
play

These articles feature a nice integration with Activiti, a business process engine. The second 
link includes a good step-by-step example.

http://splink.posterous.com/an-amf-module-for-the-amazing-
playframework

https://bitbucket.org/maxmc/cinnamon-play/overview

This module allows data exchange with flex and flash clients via AMF3 – the action  
message format.



Further Information About the Play Framework

262

Twitter
Here is a list of twitter nicks you might want to follow, as they sometimes post about the 
Play framework:

@playframework Guillaume Bort, founder of Play, founded Zenexity (also offering 
commercial support for Play)

@nicolasleroux	 Nicolas Leroux, committer, regular speaker about Play
@PeterHilton	 Peter Hilton, committer, works at Lunatech (commercial support for 

Play)
@erwan Erwan Loisant, committer, works at Zenexity
@nmartignole Nicolas Martignole, committer
@mbknor	 Morten Kjetland, committer
@pk11	 Peter Hausel, committer, focuses on scala
@codemwnci Wayne Ellis, author of an introductory Play framework book
@_felipera Felipe Oliveira, Play and web hacker, author of elasticsearch module 

besides several other modules
@steve_objectify Steve Chaloner, author of several modules
@eamelink Eric Bakker, module hacker, works at Lunatech
@ikeike443 Ikeda Takafumi, author of the Jenkins/Hudson plugin
@sadache	 Sadik Drobi, scala hacker, Play scala advocate
@sebcreme	 Sebastien Crème, Play framework developer at Zenexity
@spinscale	 Alexander Reelsen, software engineer, author of this book

In case you are using IRC (Internet Relay Chat), there is also an IRC channel #playframework 
on Freenode. You can use the server chat.freenode.net in order to connect to the 
freenode IRC network.



Index
Symbols
@Before annotation  51, 117
#{chart.lc} tag  112
@Field annotation  203
@Inject annotation  86
#{linechart} tag  112
@ManyToOne annotation  185
#{meter} tag  112
@NoJsonExport annotation  73
@OneToMany annotation  185
#{qrcode} tag  112
@Right annotation  69
@SerializedName annotation  117
@ServeStatic  annotation  41
@Service annotation  86
@StaticRoutes annotation  41
.vcf file suffix  122
@XmlAccessorType annotation  127, 174
@XmlRootElement annotation  127, 174

A
AbstractAnnotationCheck class  65
Accept header  119
ActionInvoker  49
ActiveMQConsumer class  191, 194
ActiveMQ plugin

about  187, 190
installing  188

add() method  208
addTemplateExtensions() method  136
afterApplicationStart() method  135
afterFixtureLoad() method  137
AMF formats

sretrieving  122
AMQP

about  187
URL, for info  195

annotation-based right checks
adding, to controllers  65-69

annotations
adding, via bytecode enhancement  171-174

Apache  248
Apache FOP  59
Apache web server

setting up, with play  248-250
ApiPlugin class  124, 127
application

Twitter search, including in  114-118
application.conf file  114
application server datasources

using  32
apply() method  59
arbitrary formats

integrating, in rendering mechanism  122
asynchronous queries  118
authenticate() method  92
await() method  34

B
beforeActionInvocation() method  136
BinaryField interface  186
bind() method  126, 127, 135
bytecode enhancement

about  151-153, 174
annotations, adding via  171-174
bytecode enhancer, creating  154-156
working  157
XML annotations, adding via  127



264

C
cache

using  37
Cache class  37
Cache -Control  43
cache implementation

writing  206-212
Cache.safeSet() method  232
CacheTest class  211
cache types

configuring  37
caching

about  43
HTTP ETag, using  46-48
proxy-based  caching  46
types  43

caching techniques
utilizing  44-46

Calimoucho
Git, using with  223, 224
mercurial, using with  224
subversion, using with  224, 225
test automations, performing with  221-223

cancelBooking() method  97
ChatRoom class  193
check_command parameter  243
checkForRight() method  69
Choices interface  186
ci-build.sh script  217
clear() method  210
client side API

creating  118
Cobertura plugin  215
compileAll() method  136
component scanning feature

using  86
conf/application.conf file  11
configure() method

using  65
confirmBooking() method  97
connection pools

using  32
content, modules

CSS preprocessing  164
preprocessing, by integrating stylus  160-163

controllers
annotation-based right checks, adding  65-69
HTTP digest authentication, using  50
JSON output , rendering  70-73
objects, binding using custom binders  60, 62
objects, validating using annotations  63, 64
PDFs, generating  55-59

count() method  152, 186
createdAt field  117
createDigest()  54
createDigest method  54
createUrl() method  81
CRUD module  175

about  93
security, adding  93-95

crudsiena plugin  187
CRUD user interface design

changing  95
CsvHelper class  181
CsvModel class  179, 181
CtMethod.make() method  157
custom controllers, play framework

defining  12, 14
CustomExtensions class  27
custom models, play framework

defining  15, 16
custom renderRSS method

writing, as controller output  74-81
custom tags

high rendering performance  23
parameters, using  23
writing  22, 23

D
DataEncoder class  111-113
data formatting, in views

Java Extensions, used  24-28
deadbolt module  69
decr() method  209
deleteAll() method  186
delete() method  180, 210
deleteSafe() method  210
dependency injection

with Guice  87, 88
with Spring  84-86



265

detectChange() method  135
DigestRequest class  53
DigestRequest.isAuthorized()  method  54
distributed configuration service

creating  225-230
Dojo

integrating, by adding command line options  
164-169

doJob() method  49
dojoClean() method  169
dojoCompile() method  169
dojoCopy() method  169
dojoDownload() method  169
Dojo JavaScript toolkit

URL  169

E
enhance() method  135, 157
EnumMemberValue object  174
ETag  43
etagCache() controller  49
ETag calculation  49
events

JPASupport.objectDeleted  146
JPASupport.objectPersisted  147
JPASupport.objectUpdated  147
understanding  146, 147

example application, play framework
configuring, via application.conf  11, 12
creating  7, 8
routes, defining as entry point  8-11

execute() method  169

F
Factory interface  186
FastTags class  109
fetchIds() method  204
fetch() method  186, 204
FileItemReadStore  104
findAll() method  152
findByExample() method  184
findById() method  178, 179
findLatest() method  80
find() method  178, 179
fixtures

bootstrap job, using  19

using, for initial data  18, 19
Fixtures.load() method  137
flexible registration module

building  137-145
framework  223

G
getBeanOfType() method  49
getDirectory() method  169
getFeedLink() method  81
getFeedType() method  81
getFile() method  169
getFiles() method  103
getGridFS() method  103
getImages() method  104
getIndexedFields()  157
getInstance() method  208, 212
getJson() method  127
getJsonStatus() method  135
getMap() method  211
getMax() method  113
get() method  209
getStatus() method  135, 157
getTemplateFile() method  59
getUrl() method  169
getXml() method  127
Git

about  223
using, with Calimoucho  223, 224

Google Chart API
about  113
using, as tag  107-113

Google gson
about  73
alternatives  74

GridFSHelper  101
GridFSSerializer  103
Groovy scriptlet  112
Guice  87, 88

H
HashMaps  184
hasRight() method  69
Hazelcast

about  206
URL, for downloading  206



266

URL, for info  212
hg clone command  215
hg serve command  215
HTTP digest authentication

about  50
reference  54
using, in controllers  50, 51
working  52, 53

http.port variable  194
HTTP redirects

using  14

I
Icinga

about  241
integrating with  241, 243

incr() method  209, 212
indById() method  184
indexCacheFor() controller  48
index() controller  48
IndexedModel class  157
index.html template  108
initialize() method  190
InjectionJob class  49
invocationFinally() method  136
isAllowedToExecute() method  145
isAuthorized()  54
isIndexed()  157
isNew parameter  34
isSatisfied() method  65
isValid() method  54

J
JAMon

about  237-239
documentation  239

Java Extensions
about  24
parameters, using  28
using, for data formatting  24-28

JavaExtensions class  28
Java Message Service. See  JMS
Javassist documentation

about  175
URL  175

JAXB marshaller  174

Jenkins
about  220
test automations, performing with  214-220
URL, for plugin page  221

JFreeChart  107
JMS  187
jobs, production

running, in distributed environment  231-233
join() method  112
JRedis  212
JSON

binding, to objects  123-127
JSON output

rendering  70-73

L
Last-Modified  43
lib/ directory  134
Lighttpd  253-255
Lighttpd web server

setting up, with play  253
list() method  186
listProperties() method  186
loadTemplate() method  135
log4j

configuring, for log rotation  239, 240
login() method  67
log levels  241

M
mashup  106
memcached  230, 231
mercurial

about  224
using, with Calimoucho  224

messaging  195
messaging queues

integrating with  187-194
modelFactory() method  137
module dependencies

dependency documentation  149
jar files, in Maven repositories  149
managing  147, 148, 149

module documentation  30
modules

about  83, 131



267

adding, to application  28-30
bytecode enhancers  151
clean up  137
command support  170
content, preprocessing by integrating stylus  

160-163
custom modules, creating  132-134
custom modules, using  132-134
Dojo, integrating by adding command line op-

tions  164-169
Eclipse IDE, supporting  137
events, understanding  146, 147
firstmodule directory  132
flexible registration module, building  137-145
module dependencies, managing  147-149
operating system independent modules, 

creating  169
private module repositories, adding  158, 159
same model, using in different applications  

150, 151
updating  30

MongoDB/GridFS
using  99-104

MongoDB module
about  95
using  95-98

MongoDBs REST API
using  104

monitoring points
implementing  237, 238

moreHeaders variable  78
Morphia  185
multi node deployment

about  255, 257
centralized logging, adding  258
configuration files, distributing  258
working  257

MultiNodeJob class  232
Munin

about  243
integrating with  243-247

N
Nginx

about  251-253
load balancing  253

Nginx web server
setting up, with play  251, 252

NoSQL databases  175
notifications  223
now() method  34

O
objects

binding, custom binders used  60-62
JSON, binding to  123-127
validating, annotations used  63, 64
XML, binding to  123-127

onActionInvocationResult() method  136
onApplicationReady() method  135
onApplicationStart() method  135, 194
onApplicationStop() method  135
onClassesChange() method  136
one play instance, production

multi tenant applications, implementing using 
hibernate  235

properties, using  235
running, for several hosts  234, 235
virtual hosting module  235

onEvent() method  136, 191, 204
onInvocationException() method  136
onInvocationSuccess() method  136
onLoad() method  127, 134
onRoutesLoaded() method  136
operating system independent modules

creating  169
Oracle

using, in play framework  31
output formats

managing  119-122
oval framework  65

P
PDFs

generating, in controllers  55-59
persistence layer

implementing  175-186
play deps  133
play documentation

reference  17
play examples

reference  17



268

play framework
about  5
annotations, adding via bytecode enhance-

ment  171-174
Apache web server, setting up  248-250
application server datasources, using  32
cache implementation, writing  206-212
caching  43
connection pools, using  32
controllers, defining  12, 14
custom tags, writing  22, 23
dependency injection, with Guice  87
dependency injection, with Spring  84, 85
distributed configuration service, creating  

225-230
downloading  6, 7
fixtures, using for initial data  18, 19
installing  6, 7
Java Extensions, using for data formatting   

24-28
job mechanism  35
JPA dialect, configuring  32
JSON, binding to objects  123-127
Lighttpd web server, setting up  253, 254
messaging queries  187-194
models, defining  15, 16
modules  83, 131
modules, adding  28-30
MongoDB/GridFS, using  99-104
MongoDB module, using  95-98
new application, creating  7, 8
Nginx web server, setting up  251, 252
Oracle, using  31
output formats, managing  119-122
persistence layer, implementing  175-186
reference links  259-261
security, adding to CRUD module  93-95
security module, using  89-92
session management, understanding  35, 37
suspendable requests, understanding  32-34
template tags  21
test automations, performing with Calimoucho  

221-223
test automations, with Calimoucho  221-223
test automations, with Jenkins  214-220
twitter nicks  262
URL routing, annotation based configuration  

used  40-42
views, defining  20
XML, binding to objects  123-127

play.logger.Logger class  240
play.modules.solr package  197
PlayPlugin class

addTemplateExtensions() method  136
afterApplicationStart() method  135
afterFixtureLoad() method  137
beforeActionInvocation() method  136
bind() method  135
compileAll() method  136
detectChange() method  135
enhance() method  135
getJsonStatus() method  135
getStatus() method  135
invocationFinally() method  136
loadTemplate() method  135
modelFactory() method  137
onActionInvocationResult() method  136
onApplicationReady() method  135
onApplicationStart() method  135
onApplicationStop() method  135
onClassesChange() method  136
onEvent() method  136
onInvocationException() method  136
onInvocationSuccess() method  136
onLoad() method  134
onRoutesLoaded() method  136
rawInvocation() method  135
routeRequest() method  136
serveStatic() method  135

POJOs
using, for HTTP mapping  14

Poll SCM option  217
populateRenderArgs() method  59
postEvent() method  136
post request deserialization  123
pretty() method  27
private module repositories

adding  158, 159
official documentation  160
older versions  160

production
cache clear times, changing  233
jobs, running in distributed environment  231-

233



269

locking problem, solving  233
log4j, configuring for log rotation  239, 240
monitoring points, implementing  237, 238
one play instance, running for several hosts  

234, 235
SSL, forcing for chosen controllers  235-237

Property class  186
proxyCache() controller  48
proxy_pass directive  252
publishWithoutPluginNotification() method  

194
puppet

about  258
URL  258

Q
Query class  199

R
RabbitMQ

about  195
URL, for info  195

rawInvocation() method  135
Redis cache  212
relationType class  186
renderArgs variable  117
renderBinary()  104
renderBinary() command  55
renderBinary() method  34
renderJson() method  73
renderJSON() method  122
render() method  14
RenderPDF class  56
renderPDF() method  58
renderText() method  121
renderXml() method  122
replace() method  209
request data

retrieving, inside fast tag  113
request.isModified() method  48
revisionDetailPattern  223
ROME modules  82
routeRequest() method  136
routes

defining as entry point to application  8-10

S
safeAdd() method  208
safeReplace() method  209
safeSet() method  208
save() method  180
scaffold module  95
searchClass property  204
SearchHelperEnhancer  157
search() method  198
SearchModel class  204
SearchResult class  117
security module

using  89-92
SerializedNamed annotation  73
serialize() method  73
serveStatic() method  135, 163
session management

understanding  35
working  37

setContentType() method  81
set() method  208
shouldSkipClass() method  73
shouldSkipFields() method  73
showImage()  104
showPost() method  80
showUser() controller  73
showUser method  13
SimpleSecure class  92
SimpleSecurity class  92
since() extension  27
since() method  27
Solr

complex queries  205
search engines support  205
used, for indexing  195-205

SolrJ  
about  203-205
URL, for info  205

Splunk  
about  258
URL  258

Spring configurations, per ID  86
Spring framework  84
Spring.getBeanOfType() method  86
SSL

forcing, for chosen controllers  235-237



270

stockChanges() example  34
STOMP  187
stop() method  210
storeFile() method  103
StringMemberValue object  174
StylusCompiler class  163
subversion

using, with Calimoucho  224, 225
SuperSecretData class  73
suspendable requests

understanding  32-34
symlink  7

T
tag

Google Chart API, using as  107-113
test automations

performing, with Jenkins  214-220
test-driven development  214
testing phase  214
toString() method

overriding, via annotation  158
Twitter search

about  114
including, in application  114-118

TwitterSearch class  117
Twitter site

URL, for documentation  118
TypeBinder feature  62
TypeToken class  117

U
UnauthorizedDigest class  52
UpdateCommand  223
URL routing

annotation based configuration, used  40-42

UserSerializer class  73
UUID  121
UuidCheck class  65

V
versionCommand  223
views

defining  20

W
waitFor()  34
websockets  187
where clause  186

X
X-Authorization header  121
XML

binding, to objects  123-127
XML annotations

about  171
adding, via byte code enhancement  127

Y
YAML  19
YAML file  177

Z
ZeroMQ

about  195
URL, for info  195



Thank you for buying 
Play Framework Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL 
Management" in April 2004 and subsequently continued to specialize in publishing highly focused 
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and 
customizing today's systems, applications, and frameworks. Our solution based books give you the 
knowledge and power to customize the software and technologies you're using to get the job done. 
Packt books are more specific and less general than the IT books you have seen in the past. Our 
unique business model allows us to bring you more focused information, giving you more of what 
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more 
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt Open Source brand, home 
to books published on software built around Open Source licences, and offering information to 
anybody from advanced developers to budding web designers. The Open Source brand also runs 
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project 
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to 
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors 
will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.



Learning Website 
Development with Django
ISBN: 978-1-847193-35-3             Paperback: 264 pages

A beginner's tutorial to building web applications, quickly 
and cleanly, with the Django application framework

1.	 Create a complete Web 2.0-style web application 
with Django

2.	 Learn rapid development and clean, pragmatic 
design

3.	 Build a social bookmarking application

4.	 No knowledge of Django required

MODx Web Development
ISBN: 978-1-847194-90-9            Paperback: 276 pages

Building dynamic websites with the PHP application 
framework and CMS

1.	 Simple, step-by-step instructions detailing how to 
install, configure, and customize MODx

2.	 Covers detailed theory from the basics, to 
practical implementation

3.	 Learn the most common web requirements and 
solutions, and build a site in the process

 
 

 
 

Please check www.PacktPub.com for information on our titles



Grok 1.0 Web Development
ISBN:  978-1-847197-48-1            Paperback: 308 pages

Create flexible, agile web applications using the power of 
Grok—a Python web framework

1.	 Develop efficient and powerful web applications 
and web sites from start to finish using Grok, 
which is based on Zope 3

2.	 Integrate your applications or web sites with 
relational databases easily

3.	 Extend your applications using the power of the 
Zope Toolkit 

4.	 Easy-to-follow and packed with practical, working 
code with clear explanations

Ext JS 3.0 Cookbook
ISBN: 978-1-847198-70-9            Paperback: 376 pages

Clear step-by-step recipes for building impressive rich 
internet applications using the Ext JS JavaScript library

1.	 Master the Ext JS widgets and learn to create 
custom components to suit your needs 

2.	 Build striking native and custom layouts, forms, 
grids, listviews, treeviews, charts, tab panels, 
menus, toolbars and much more for your real-
world user interfaces 

3.	 Packed with easy-to-follow examples to exercise 
all of the features of the Ext JS library 

4.	 Part of Packt's Cookbook series: Each recipe is 
a carefully organized sequence of instructions to 
complete the task as efficiently as possible

 
Please check www.PacktPub.com for information on our titles



Flash 10 Multiplayer Game 
Essentials
ISBN: 978-1-847196-60-6             Paperback: 336 pages

Flash 10 Multiplayer Game Essentials

1.	 A complete end-to-end guide for creating fully 
featured multiplayer games

2.	 The author's experience in the gaming industry 
enables him to share insights on multiplayer game 
development

3.	 Walk-though several real-time multiplayer game 
implementations

4.	 Packed with illustrations and code snippets with 
supporting explanations for ease of understanding

Joomla! 1.5 Top  
Extensions Cookbook
ISBN: 978-1-84951-180-3            Paperback: 460 pages

Over 80 great recipes for taking control of  
Joomla! Extensions

1.	 Set up and use the best extensions available  
for Joomla!

2.	 Covers extensions for just about every use  
of Joomla!

3.	 Packed with recipes to help you get the most of 
the Joomla! extensions

 
 

 
 

Please check www.PacktPub.com for information on our titles



Drupal 6 Attachment Views
ISBN:  978-1-849510-80-6            Paperback: 300 pages

Use multiple-display views to add functionality and value 
to your site!

1.	 Quickly learn about painlessly increasing the 
functionality of your Drupal 6 web site

2.	 Get more from your Views than you thought 
possible

3.	 Topics provide rapid instruction and results

4.	 Concise, targeted information rather than 
voluminous reference material

Flash Multiplayer  
Virtual Worlds
ISBN: 978-1-849690-36-2            Paperback: 412 pages

Build immersive, full-featured interactive worlds for 
games, online communities, and more

1.	 Build virtual worlds in Flash and enhance them 
with avatars, non player characters, quests, and 
by adding social network community

2.	 Design, present, and integrate the quests to the 
virtual worlds

3.	 Create a whiteboard that every connected user 
can draw on

4.	 A practical guide filled with real-world examples of 
building virtual worlds

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	Foreword
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Basics of the Play Framework
	Introduction
	Downloading and installing the Play 
framework
	Creating a new application
	Defining routes as the entry point to your 
application
	Configuring your application via 
application.conf
	Defining your own controllers
	Defining your own models
	Using fixtures to provide initial data
	Defining your own views
	Writing your own tags
	Using Java Extensions to format data in your views
	Adding modules to extend your application
	Using Oracle or other databases with Play
	Understanding suspendable requests
	Understanding session management

	Chapter 2
: Using Controllers
	Introduction
	URL routing using annotation-based 
configuration
	Basics of caching
	Using HTTP digest authentication
	Generating PDFs in your controllers
	Binding objects using custom binders
	Validating objects using annotations
	Adding annotation-based right checks 
to your controller
	Rendering JSON output
	Writing your own renderRSS method as 
controller output

	Chapter 3: Leveraging Modules
	Introduction
	Dependency injection with Spring
	Dependency injection with Guice
	Using the security module
	Adding security to the CRUD module
	Using the MongoDB module
	Using MongoDB/GridFS to deliver files

	Chapter 4: Creating and Using APIs
	Introduction
	Using Google Chart API as a tag
	Including a Twitter search in your 
application
	Managing different output formats
	Binding JSON and XML to objects

	Chapter 5: Introduction to Writing Modules
	Introduction
	Creating and using your own module
	Building a flexible registration module
	Understanding events
	Managing module dependencies
	Using the same model for different 
applications
	Understanding bytecode enhancement
	Adding private module repositories
	Preprocessing content by integrating stylus
	Integrating Dojo by adding command line 
options

	Chapter 6: Practical Module Examples
	Introduction
	Adding annotations via bytecode 
enhancement
	Implementing your own persistence layer
	Integrating with messaging queues
	Using Solr for indexing
	Writing your own cache implementation

	Chapter 7: Running in Production
	Introduction
	Test automation with Jenkins
	Test automation with Calimoucho
	Creating a distributed configuration service
	Running jobs in a distributed environment
	Running one play instance for several hosts
	Forcing SSL for chosen controllers
	Implementing own monitoring points
	Configuring log4j for log rotation
	Integrating with Icinga
	Integrating with Munin
	Setting up the Apache web server with Play
	Setting up the Nginx web server with Play
	Setting up the Lighttpd web server with Play
	Multi-node deployment introduction

	Appendix: Further Information About the Play Framework
	Further information

	Index



