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Chapter 1. Getting started with R
Language

Section 1.1: Installing R

You might wish to install RStudio after you have installed R. RStudio is a development environment for R that
simplifies many programming tasks.

Windows only:

Visual Studio (starting from version 2015 Update 3) now features a development environment for R called R Toals,
that includes a live interpreter, IntelliSense, and a debugging module. If you choose this method, you won't have to
install R as specified in the following section.

For Windows

1. Go to the CRAN website, click on download R for Windows, and download the latest version of R.
2. Right-click the installer file and RUN as administrator.

3. Select the operational language for installation.

4. Follow the instructions for installation.

For OSX / macOS
Alternative 1

(0. Ensure XQuartz is installed )

1. Go to the CRAN website and download the latest version of R.
2. Open the disk image and run the installer.
3. Follow the instructions for installation.

This will install both R and the R-MacGUI. It will put the GUI in the /Applications/ Folder as R.app where it can either
be double-clicked or dragged to the Doc. When a new version is released, the (re)-installation process will overwrite
R.app but prior major versions of R will be maintained. The actual R code will be in the
/Library/Frameworks/R.Framework/Versions/ directory. Using R within RStudio is also possible and would be using
the same R code with a different GUI.

Alternative 2

1. Install homebrew (the missing package manager for macOS) by following the instructions on https://brew.sh/
2. brew install R

Those choosing the second method should be aware that the maintainer of the Mac fork advises against it, and will
not respond to questions about difficulties on the R-SIG-Mac Mailing List.

For Debian, Ubuntu and derivatives

You can get the version of R corresponding to your distro via apt-get. However, this version will frequently be quite
far behind the most recent version available on CRAN. You can add CRAN to your list of recognized "sources".

sudo apt-get install r-base

You can get a more recent version directly from CRAN by adding CRAN to your sources list. Follow the directions
from CRAN for more details. Note in particular the need to also execute this so that you can use
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install.packages(). Linux packages are usually distributed as source files and need compilation:

sudo apt-get install r-base-dev

For Red Hat and Fedora
sudo dnf install R

For Archlinux
R is directly available in the Extra package repo.
sudo pacman-Sr

More info on using R under Archlinux can be found on the ArchWiki R page.

Section 1.2: Hello World!

"Hello World'"

Also, check out the detailed discussion of how, when, whether and why to print a string.

Section 1.3: Getting Help

You can use function help() or ? to access documentations and search for help in R. For even more general
searches, you can use help.search() or ??.

#For help on the help function of R
help()

#For help on the paste function
help(paste) #0R
help("paste") #OR

?paste #0R

?"paste”

Visit https://www.r-project.org/help.html for additional information

Section 1.4: Interactive mode and R scripts

The interactive mode

The most basic way to use R is the interactive mode. You type commands and immediately get the result from R.
Using R as a calculator

Start R by typing R at the command prompt of your operating system or by executing RGui on Windows. Below you
can see a screenshot of an interactive R session on Linux:
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user:~% R

R version 3.3.2 (2016-18-31) -- "Sincere Fumpkin Patch"
Copyright (C) 2816 The R Foundation for Statistical Computing
Platform: x86 64-pc-linux-gnu (64-bit)

R ist freie Software und kommt OHNE JEGLICHE GARANTIE.
Sie sind eingeladen, es unter bestimmten Bedingungen weiter zu verbreiten.
Tippen Sie 'license()' or 'licence()' fir Details dazu.

R ist ein Gemeinschaftsprojekt mit vielen Beitragenden.
Tippen Sie 'contributors()' fir mehr Information und 'citation()’,
um zu erfahren, wie R oder R packages in Publikationen zitiert werden konnen.

Tippen 5ie ‘demo()" fir einige Demos, "help()' fir on-line Hilfe, oder
"help.start()® fir eine HTML Browserschnittstelle zur Hilfe.
Tippen Sie 'gf{)', um R zu verlassen.

>
[1] 2
>

This is RGui on Windows, the most basic working environment for R under Windows:

R RGui (64-bit) — O e

File Edit View Misc Packages Windows Help
S ENEERIENE

R wversion 3.4.0 Patched (2017-05-25 r727468) —-- "You Stupid Darkness"
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: xBE_E&—wE&—mingwEEfxE& (64-bit)

R iz free software and comes with ABSCLUTELY HNO WARRLNTY.
¥You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Hatural language support but running in an English locale

E i= a collaborative project with many contributors.
Type 'contributors()}' for more information and
'citation()"'" on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.=tart ()} " for an HTML browser interface to help.

Type 'gl)' to guit R.

> 141

After the > sign, expressions can be typed in. Once an expression is typed, the result is shown by R. In the
screenshot above, R is used as a calculator: Type
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1+1

to immediately see the result, 2. The leading [1] indicates that R returns a vector. In this case, the vector contains
only one number (2).

The first plot

R can be used to generate plots. The following example uses the data set PlantGrowth, which comes as an example
data set along with R

Type int the following all lines into the R prompt which do not start with ##. Lines starting with ## are meant to
document the result which R will return.

data(PlantGrowth)

str(PlantGrowth)

## 'data.frame': 30 obs. of 2 variables:

## S weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
## S group : Factor w/ 3 levels "ctrl","trt1",..: 1111111111

anova(lm(weight ~ group, data = PlantGrowth))
## Analysis of Variance Table

##

## Response: weight

## Df Sum Sq Mean Sq F value Pr(>F)

## group 2 3.7663 1.8832 4.8461 0.01591 *

## Residuals 27 10.4921 0.3886

## ---

## Signif. codes: @ ‘**x’ ©0.001 ‘**x’ ©.61 ‘*’ .85 ‘.’ 0.1 " ' 1

boxplot(weight ~ group, data = PlantGrowth, ylab = "Dry weight")

The following plot is created:

S
4 T ) |
J —— I
— D : i
§ o = |
o n | |
g o L
= W
o < | ,
wn | o
(] I [ I
cirl trid tri2

data(PlantGrowth) loads the example data set PlantGrowth, which is records of dry masses of plants which were
subject to two different treatment conditions or no treatment at all (control group). The data set is made available
under the name PlantGrowth. Such a name is also called a Variable.

To load your own data, the following two documentation pages might be helpful:

¢ Reading and writing tabular data in plain-text files (CSV, TSV, etc.)
¢ |/O for foreign tables (Excel, SAS, SPSS, Stata)

str(PlantGrowth) shows information about the data set which was loaded. The output indicates that PlantGrowth
is a data.frame, which is R's name for a table. The data.frame contains of two columns and 30 rows. In this case,
each row corresponds to one plant. Details of the two columns are shown in the lines starting with $: The first
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column is called weight and contains numbers (num, the dry weight of the respective plant). The second column,
group, contains the treatment that the plant was subjected to. This is categorial data, which is called factor in R.
Read more information about data frames.

To compare the dry masses of the three different groups, a one-way ANOVA is performed using anova(1m( ... )).
weight ~ group means "Compare the values of the column weight, grouping by the values of the column group".
This is called a Formula in R. data = ... specifies the name of the table where the data can be found.

The result shows, among others, that there exists a significant difference (Column Pr(>F)), p = 8.01591) between
some of the three groups. Post-hoc tests, like Tukey's Test, must be performed to determine which groups' means
differ significantly.

boxplot(...) creates a box plot of the data. where the values to be plotted come from. weight ~ group means:
"Plot the values of the column weight versus the values of the column group. ylab = ... specifies the label of they
axis. More information: Base plotting

Type q() or[ Ctrl [ D Jto exit from the R session.
R scripts

To document your research, it is favourable to save the commands you use for calculation in a file. For that effect,
you can create R scripts. An R script is a simple text file, containing R commands.

Create a text file with the name plants.R, and fill it with the following text, where some commands are familiar
from the code block above:

data(PlantGrowth)
anova(lm(weight ~ group, data = PlantGrowth))

png("plant_boxplot.png", width = 400, height = 300)
boxplot(weight ~ group, data = PlantGrowth, ylab = "Dry weight")
dev.off()

Execute the script by typing into your terminal (The terminal of your operating system, not an interactive R session
like in the previous section!)

R --no-save <plant.R >plant_result.txt

The file plant_result. txt contains the results of your calculation, as if you had typed them into the interactive R
prompt. Thereby, your calculations are documented.

The new commands png and dev.off are used for saving the boxplot to disk. The two commands must enclose the
plotting command, as shown in the example above. png("FILENAME", width = ..., height = ...) opensanew
PNG file with the specified file name, width and height in pixels. dev.off () will finish plotting and saves the plot to
disk. No output is saved until dev.off() is called.
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Chapter 2: Variables

Section 2.1: Variables, data structures and basic Operations

In R, data objects are manipulated using named data structures. The names of the objects might be called
"variables" although that term does not have a specific meaning in the official R documentation. R names are case
sensitive and may contain alphanumeric characters(a-z,A-z,0-9), the dot/period(.) and underscore(_). To create
names for the data structures, we have to follow the following rules:

¢ Names that start with a digit or an underscore (e.g. 1a), or names that are valid numerical expressions (e.g.
.11), or names with dashes ('-') or spaces can only be used when they are quoted: "1a* and “.11". The
names will be printed with backticks:

list( '.11' ="a")
#8711
#[1] "a"

¢ All other combinations of alphanumeric characters, dots and underscores can be used freely, where
reference with or without backticks points to the same object.

¢ Names that begin with . are considered system names and are not always visible using the 1s()-function.

There is no restriction on the number of characters in a variable name.
Some examples of valid object names are: foobar, foo.bar, foo_bar, .foobar

In R, variables are assigned values using the infix-assignment operator <-. The operator = can also be used for
assigning values to variables, however its proper use is for associating values with parameter names in function
calls. Note that omitting spaces around operators may create confusion for users. The expression a<-1 is parsed as
assignment (a <- 1) rather than as a logical comparison (a < -1).

> foo <- 42
> fooEquals = 43

So foo is assigned the value of 42. Typing foo within the console will output 42, while typing fooEquals will output
43.

> foo
[1] 42
> fooEquals
[1] 43

The following command assigns a value to the variable named x and prints the value simultaneously:

> (x <- 5)

[1] 5

# actually two function calls: first one to '<-"; second one to the () -function
> is.function( (")

[1] TRUE # Often used in R help page examples for its side-effect of printing.

It is also possible to make assignments to variables using ->.

> 5 ->x
> X
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[1]

>

5

Types of data structures

There are no scalar data types in R. Vectors of length-one act like scalars.

Vectors: Atomic vectors must be sequence of same-class objects.: a sequence of numbers, or a sequence of
logicals or a sequence of characters.v <- ¢(2, 3, 7, 10),v2 <- ¢("a", "b", "c") are both vectors.
Matrices: A matrix of numbers, logical or characters. a <- matrix(data = ¢(1, 2, 3, 4, 5, 6, 7, 8, 9,
19, 11, 12), nrow = 4, ncol = 3, byrow = F). Like vectors, matrix must be made of same-class
elements. To extract elements from a matrix rows and columns must be specified: a[1,2] returns [1] 5 that
is the element on the first row, second column.

Lists: concatenation of different elements mylist <- list (course = 'stat', date = '04/07/2009',
num_isc = 7, num_cons = 6, num_mat = as.character(c(45020, 45679, 46789, 43126, 42345, 47568,
45674)), results = c(308, 19, 29, NA, 25, 26 ,27) ).Extracting elements from a list can be done by
name (if the list is named) or by index. In the given example mylist$results and mylist[[6]] obtains the
same element. Warning: if you try mylist[6], R won't give you an error, but it extract the result as a list.
While mylist[[6]][2] is permitted (it gives you 19), mylist[6][2] gives you an error.

data.frame: object with columns that are vectors of equal length, but (possibly) different types. They are not
matrices. exam <- data.frame(matr = as.character(c(45020, 45679, 46789, 43126, 42345, 47568,
45674)), res_S = ¢(30, 19, 29, NA, 25, 26, 27), res_0 = ¢(3, 3, 1, NA, 3, 2, NA), res_TOT =
c(30,22,30,NA,28,28,27)). Columns can be read by name exam$matr, exam[, 'matr'] or byindex exam[1],
exam[, 1]. Rows can also be read by name exam[ ' rowname', ] orindex exam[1, ]. Dataframes are actually
just lists with a particular structure (rownames-attribute and equal length components)

Common operations and some cautionary advice

Default operations are done element by element. See ?Syntax for the rules of operator precedence. Most
operators (and may other functions in base R) have recycling rules that allow arguments of unequal length. Given
these objects:

Example objects

V V. V V V V V V
=0 QO T O

Z

<=1
<- 2
<- ¢(2,3,4)

<- ¢(10,10,10)

<- ¢(1,2,3,4)

<- 1:6

<- cbind(1:4,5:8,9:12)

<- rbind(rep(0,3),1:3,rep(10,3),c(4,7,1))

Some vector operations

> a+b # scalar + scalar

[1]

3

> c+d # vector + vector

[1]

12 13 14

> a*b # scalar * scalar

[1] 2

> c¢xd # vector * vector (componentwise!)
[1] 20 30 40

> c+a # vector + scalar

[1]

345

> ch2 #

[1]

4 9 16

> exp(c)

[1]

7.389056 20.085537 54.598150

Some vector operation Warnings!
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> c+e # warning but.. no errors, since recycling is assumed to be desired.
[1]1 3576

Warning message:

In ¢ + e : longer object length is not a multiple of shorter object length

R sums what it can and then reuses the shorter vector to fill in the blanks... The warning was given only because the
two vectors have lengths that are not exactly multiples. c+f # no warning whatsoever.

Some Matrix operations Warning!

> Z+W # matrix + matrix #(componentwise)
> Z*W # matrix* matrix#(Standard product is always componentwise)

To use a matrix multiply: V %*% W

> W + a # matrix+ scalar is still componentwise
(,11 [,2] [,3]
[1,] 2 6 10

[2,] 3 7 11
[3,] 4 8 12
[4,] 5 9 13
>W + ¢ # matrix + vector... : no warnings and R does the operation in a column-wise manner

(.11 [,2] [.3]
[1,1] 3 8 13

[2,] 5 10 12
[3,] 7 9 14
[4,1] 6 11 16

"Private" variables

A leading dot in a name of a variable or function in R is commonly used to denote that the variable or function is
meant to be hidden.

So, declaring the following variables

> foo <- 'foo'
> .foo <- 'bar'

And then using the 1s function to list objects will only show the first object.

> 1s()
[1] "foo"

However, passing all.names = TRUE to the function will show the 'private' variable

> ls(all.names = TRUE)
[1] ".foo" "foo"
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Chapter 3. Arithmetic Operators

Section 3.1: Range and addition

Let's take an example of adding a value to a range (as it could be done in a loop for example):
3+1:5
Gives:

[1] 4567 8

This is because the range operator : has higher precedence than addition operator +.
What happens during evaluation is as follows:

® 3+1:5
e 3+c(1, 2, 3, 4, 5) expansion of the range operator to make a vector of integers.
e c(4, 5, 6, 7, 8) Addition of 3 to each member of the vector.

To avoid this behavior you have to tell the R interpreter how you want it to order the operations with ( ) like this:
(3+1):5
Now R will compute what is inside the parentheses before expanding the range and gives:

[1] 4 5

Section 3.2: Addition and subtraction
The basic math operations are performed mainly on numbers or on vectors (lists of numbers).
1. Using single numbers

We can simple enter the numbers concatenated with + for adding and - for subtracting:

3+
[1]
3 +
[1]
3 +
[1]
> 3 +
#[1] NA
> NA + NA
#[1] NA
> NA - NA
#[1] NA
> NaN - NA
#[1] NaN
> NaN + NA
#[1] NaN

+ 2 - 3.8

# V # V H# Vv
Z o hoOobduDd
N ool o

A

We can assign the numbers to variables (constants in this case) and do the same operations:
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#+ V #% V & VvV VvV

>

a <- 3; B <-4.5; cc <- 2; Dd <- 3.8 ;na<-NA;nan<-NaN
a +
[1]
a +
[1]
a +
[1]

B-nan

ccC

cc - Dd

g WO W N W
N+ o+ on

#[1] NaN

>

atna-na

#[1] NA

>

a + na

#[1] NA

>

B-nan

#[1] NaN

>

atna-na

#[1] NA

2. Using vectors

In this case we create vectors of numbers and do the operations using those vectors, or combinations with single
numbers. In this case the operation is done considering each element of the vector:

#+ V %V # V #% V V H V HF= V H V V

A <- ¢(3, 4.5, 2, -3.8);

A

[1] 3.6 4.5 2.8 -3.8

A + 2 # Adding a number

[1] 5.8 6.5 4.0 -1.8

8 - A # number less vector

[1] 5.6 3.5 6.0 11.8

n <- length(A) #number of elements of vector A

n

[1] 4

A[-n] + A[n] # Add the last element to the same vector without the last element
[1] -0.8 ©.7 -1.8

A[1:2] + 3 # vector with the first two elements plus a number

[1] 6.8 7.5

A[1:2] - A[3:4] # vector with the first two elements less the vector with elements 3 and 4
[1] 1.0 8.3

We can also use the function sum to add all elements of a vector:

¥ V H VvV H# VvV

sum(A)

[1] 5.7

sum(-A)

[1] -5.7
sum(A[-n]) + A[n]
[1] 5.7

We must take care with recycling, which is one of the characteristics of R, a behavior that happens when doing math
operations where the length of vectors is different. Shorter vectors in the expression are recycled as often as need be
(perhaps fractionally) until they match the length of the longest vector. In particular a constant is simply repeated. In this
case a Warning is show.

H V = Vv VvV

B <- ¢(3, 5, -3, 2.7, 1.8)
B

[1] 3.8 5.8 -3.0 2.7 1.8
A

[1] 3.0 4.5 2.0 -3.8
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> A + B # the first element of A is repeated

# [1] 6.0 9.5 -1.0 -1.1 4.8

Warning message:

In A + B : longer object length is not a multiple of shorter object length
> B - A # the first element of A is repeated

# [1] ©.06 ©.5-5.0 6.5 -1.2

Warning message:

In B - A : longer object length is not a multiple of shorter object length

In this case the correct procedure will be to consider only the elements of the shorter vector:

> B[1:n] + A
#[1] 6.8 9.5 -1.8 -1.1
> B[1:n] - A
# [1] ©.6 ©.5 -5.8 6.5

When using the sum function, again all the elements inside the function are added.

sum(A, B)

[1] 15.2
sum(A, -B)
[1] -3.8
sum(A)+sum(B)
[1] 15.2
sum(A)-sum(B)
[1] -3.8

H V # VvV # VvV H vV
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Chapter 4: Matrices

Matrices store data

Section 4.1: Creating matrices

Under the hood, a matrix is a special kind of vector with two dimensions. Like a vector, a matrix can only have one
data class. You can create matrices using the matrix function as shown below.

matrix(data = 1:6, nrow = 2, ncol = 3)

## [,1]1 [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6

As you can see this gives us a matrix of all numbers from 1 to 6 with two rows and three columns. The data

parameter takes a vector of values, nrow specifies the number of rows in the matrix, and ncol specifies the number

of columns. By convention the matrix is filled by column. The default behavior can be changed with the byrow
parameter as shown below:

matrix(data = 1:6, nrow = 2, ncol = 3, byrow = TRUE)

##t [,1]1 [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6

Matrices do not have to be numeric - any vector can be transformed into a matrix. For example:

matrix(data = c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE), nrow = 3, ncol = 2)
#i# [,1] [,2]

## [1,] TRUE FALSE

## [2,] TRUE FALSE

## [3,] TRUE FALSE

matrix(data = c¢("a", "b", "c", "d", "e", "f"), nrow = 3, ncol = 2)

## [.,1] [,2]

## [1,] "a" "d"

## [2,] "b" "e"

## [3,] "c" "f"

Like vectors matrices can be stored as variables and then called later. The rows and columns of a matrix can have
names. You can look at these using the functions rownames and colnames. As shown below, the rows and columns
don'tinitially have names, which is denoted by NULL. However, you can assign values to them.

mat1 <- matrix(data = 1:6, nrow = 2, ncol = 3, byrow = TRUE)
rownames (mat1)

## NULL

colnames(mat1)

## NULL

rownames (mat1) <- c("Row 1", "Row 2")
colnames(mat1) <- c¢("Col 1", "Col 2", "Col 3")
mat1

#i Col 1 Col 2 Col 3

## Row 1 1 2 3

## Row 2 4 5 6

It is important to note that similarly to vectors, matrices can only have one data type. If you try to specify a matrix
with multiple data types the data will be coerced to the higher order data class.
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The class, is, and as functions can be used to check and coerce data structures in the same way they were used
on the vectors in class 1.

class(mat1)

## [1] "matrix"
is.matrix(mat1)

## [1] TRUE
as.vector(mat1)

## [1] 1 42 536
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Chapter 5. Formula

Section 5.1: The basics of formula

Statistical functions in R make heavy use of the so-called Wilkinson-Rogers formula notation1 .

When running model functions like 1m for the Linear Regressions, they need a formula. This formula specifies which
regression coefficients shall be estimated.

my_formulal <- formula(mpg ~ wt)
class(my_formulal)
# gives "formula"

mod1 <- 1lm(my_formulal, data = mtcars)
coef(mod1)

# gives (Intercept) wt

# 37.285126 -5.344472

On the left side of the ~ (LHS) the dependent variable is specified, while the right hand side (RHS) contains the
independent variables. Technically the formula call above is redundant because the tilde-operator is an infix
function that returns an object with formula class:

form <- mpg ~ wt
class(form)
#[1] "formula"

The advantage of the formula function over ~ is that it also allows an environment for evaluation to be specified:
form_mt <- formula(mpg ~ wt, env = mtcars)

In this case, the output shows that a regression coefficient for wt is estimated, as well as (per default) an intercept
parameter. The intercept can be excluded / forced to be 0 by including @ or -1 in the formula:

coef(lm(mpg ~ 0 + wt, data = mtcars))
coef(Im(mpg ~ wt -1, data = mtcars))

Interactions between variables a and b can added by included a:b to the formula:

coef(lm(mpg ~ wt:vs, data = mtcars))
As it is (from a statistical point of view) generally advisable not have interactions in the model without the main
effects, the naive approach would be to expand the formulatoa + b + a:b. This works but can be simplified by

writing a*b, where the x operator indicates factor crossing (when between two factor columns) or multiplication
when one or both of the columns are 'numeric":

coef(Im(mpg ~ wt*vs, data = mtcars))
Using the * notation expands a term to include all lower order effects, such that:
coef(lm(mpg ~ wt*vsxhp, data = mtcars))

will give, in addition to the intercept, 7 regression coefficients. One for the three-way interaction, three for the two-
way interactions and three for the main effects.
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If one wants, for example, to exclude the three-way interaction, but retain all two-way interactions there are two
shorthands. First, using - we can subtract any particular term:

coef(lm(mpg ~ wt*vsxhp - wt:vs:hp, data = mtcars))
Or, we can use the * notation to specify which level of interaction we require:
coef(lm(mpg ~ (wt + vs + hp) *» 2, data = mtcars))

Those two formula specifications should create the same model matrix.

Finally, . is shorthand to use all available variables as main effects. In this case, the data argument is used to obtain
the available variables (which are not on the LHS). Therefore:

coef(lm(mpg ~ ., data = mtcars))

gives coefficients for the intercept and 10 independent variables. This notation is frequently used in machine
learning packages, where one would like to use all variables for prediction or classification. Note that the meaning
of . depends on context (see e.g. ?update. formula for a different meaning).

1. G. N. Wilkinson and C. E. Rogers. Journal of the Royal Statistical Society. Series C (Applied Statistics) Vol. 22, No. 3
(1973), pp. 392-399
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Chapter 6: Reading and writing strings
Section 6.1: Printing and displaying strings

R has several built-in functions that can be used to print or display information, but print and cat are the most
basic. As Ris an interpreted language, you can try these out directly in the R console:

print("Hello World")
#[1] "Hello World"
cat("Hello World\n")
#Hello World

Note the difference in both input and output for the two functions. (Note: there are no quote-characters in the
value of x created with x <- "Hello World".They are added by print at the output stage.)

cat takes one or more character vectors as arguments and prints them to the console. If the character vector has a
length greater than 1, arguments are separated by a space (by default):

cat(c("hello", "world", "\n"))
#hello world

Without the new-line character (\n) the output would be:

cat("Hello World")
#Hello World>

The prompt for the next command appears immediately after the output. (Some consoles such as RStudio's may
automatically append a newline to strings that do not end with a newline.)

print is an example of a "generic" function, which means the class of the first argument passed is detected and a
class-specific method is used to output. For a character vector like "Hello World", the resultis similar to the output
of cat. However, the character string is quoted and a number [ 1] is output to indicate the first element of a
character vector (In this case, the first and only element):

print("Hello World")
#[1] "Hello World"

This default print method is also what we see when we simply ask R to print a variable. Note how the output of
typing s is the same as calling print(s) or print("Hello World"):

s <- "Hello World"
s
#[1] "Hello World"

Or even without assigning it to anything:

"Hello World"
#[1] "Hello World"

If we add another character string as a second element of the vector (using the ¢ () function to concatenate the
elements together), then the behavior of print() looks quite a bit different from that of cat:

print(c("Hello World", "Here I am."))
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#[1] "Hello World" "Here I am."

Observe that the ¢ () function does not do string-concatenation. (One needs to use paste for that purpose.) R
shows that the character vector has two elements by quoting them separately. If we have a vector long enough to
span multiple lines, R will print the index of the element starting each line, just as it prints [1] at the start of the first
line.

c("Hello World", "Here I am!", "This next string is really long.")
#[1] "Hello World" "Here I am!"
#[3] "This next string is really long."

The particular behavior of print depends on the class of the object passed to the function.

If we call print an object with a different class, such as "numeric" or "logical", the quotes are omitted from the
output to indicate we are dealing with an object that is not character class:

print(1)
#[1] 1
print(TRUE)
#[1] TRUE

Factor objects get printed in the same fashion as character variables which often creates ambiguity when console
output is used to display objects in SO question bodies. It is rare to use cat or print except in an interactive
context. Explicitly calling print() is particularly rare (unless you wanted to suppress the appearance of the quotes
or view an object that is returned as invisible by a function), as entering foo at the console is a shortcut for
print(foo). The interactive console of R is known as a REPL, a "read-eval-print-loop". The cat function is best saved
for special purposes (like writing output to an open file connection). Sometimes it is used inside functions (where
calls to print() are suppressed), however using cat() inside a function to generate output to the console is
bad practice. The preferred method is to message() or warning() for intermediate messages; they behave
similarly to cat but can be optionally suppressed by the end user. The final result should simply returned so that
the user can assign it to store it if necessary.

message( 'hello world")
#hello world
suppressMessages (message( "hello world"))

Section 6.2: Capture output of operating system command

Functions which return a character vector

Base R has two functions for invoking a system command. Both require an additional parameter to capture the
output of the system command.

system("top -a -b -n 1", intern = TRUE)
system2("top", "-a -b -n 1", stdout = TRUE)

Both return a character vector.

[1] "top - ©8:52:03 up 70 days, 15:09, 0 users, load average: ©0.00, 0.00, 0.00"

[2] "Tasks: 125 total, 1 running, 124 sleeping, 0 stopped, 0 zombie"

[3] "Cpu(s): ©.9%us, 0.3%sy, 0.0%ni, 98.7%id, ©.1%wa, 0.0%hi, ©0.0%si, 0.0%st"
[4] "Mem: 12194312k total, 3613292k used, 8581020k free, 216940k buffers”

[5] "Swap: 12582908k total, 2334156k used, 10248752k free, 1682340k cached"

[6] ""

[7] " PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND "
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[8] "11300 root 20 0@ 1278m 375m 3696 S 0.0 3.2 124:40.92 trala
[9] " 6093 userT 20 0 1817m 269m 1888 S 0.0 2.3 12:17.96 R !
[10] " 4949 user2 20 0 1917m 214m 1888 S 0.0 1.8 11:16.73 R !

For illustration, the UNIX command top -a -b -n 1is used. This is OS specific and may need to be
amended to run the examples on your computer.

Package devtools has a function to run a system command and capture the output without an additional
parameter. It also returns a character vector.

devtools: :system_output("top", "-a -b -n 1")

Functions which return a data frame

The fread function in package data.table allows to execute a shell command and to read the output like
read. table. It returns a data.table or a data.frame.

fread("top -a -b -n 1", check.names = TRUE)

PID USER PR NI VIRT RES SHR S X.CPU X.MEM TIME. COMMAND
1: 11300 root 20 © 1278m 375m 3696 S 0 3.2 124:40.92 trala
2: 6093 user1l 20 © 1817m 269m 1888 S 0 2.3 12:18.56 R
3: 4949 user2 20 © 1917m 214m 1888 S 0 1.8 11:17.33 R
4. 7922 user3 20 0 3094m 131m 1892 S 0 1.1 21:04.95 R

Note, that fread automatically has skipped the top 6 header lines.

Here the parameter check.names = TRUE was added to convert %CPU, %MEN, and TIME+ to syntactically
valid column names.

Section 6.3: Reading from or writing to a file connection

Not always we have liberty to read from or write to a local system path. For example if R code streaming map-
reduce must need to read and write to file connection. There can be other scenarios as well where one is going
beyond local system and with advent of cloud and big data, this is becoming increasingly common. One of the way
to do this is in logical sequence.

Establish a file connection to read with file() command ("r" is for read mode):

conn <- file("/path/example.data", "r") #when file is in local system
connl <- file("stdin", "r") #when just standard input/output for files are available

As this will establish just file connection, one can read the data from these file connections as follows:
line <- readLines(conn, n=1, warn=FALSE)

Here we are reading the data from file connection conn line by line as n=1. one can change value of n (say 10, 20
etc.) for reading data blocks for faster reading (10 or 20 lines block read in one go). To read complete file in one go
setn=-1.

After data processing or say model execution; one can write the results back to file connection using many different
commands like writeLines(), cat() etc. which are capable of writing to a file connection. However all of these
commands will leverage file connection established for writing. This could be done using file() command as:
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conn2 <- file("/path/result.data", "w") #when file is in local system
conn3 <- file("stdout", "w") #when just standard input/output for files are available

Then write the data as follows:

writeLines("text",conn2, sep = "\n")

GoalKicker.com - R Notes for Professionals

20


http://goalkicker.com/

Chapter 7: String manipulation with stringi
package

Section 7.1: Count pattern inside string

With fixed pattern

stri_count_fixed("babab", "b")

# [1] 3

stri_count_fixed("babab", "ba")

# [1] 2

stri_count_fixed("babab", "bab")
# [1] 1

Natively:

length(gregexpr("b", "babab")[[1]])

# [1] 3

length(gregexpr("ba", "babab")[[1]])
#[1] 2

length(gregexpr("bab", "babab")[[1]])
# [1] 1

function is vectorized over string and pattern:

stri_count_fixed("babab", c("b","ba"))

# [1]1 32

stri_count_fixed(c("babab", "bbb", "bca", "abc"), c("b","ba"))
#[1] 301080

A base R solution:
sapply(c("b", "ba"), function(x)length(gregexpr(x, "babab")[[1]1]))

# b ba
#3 2

With regex
First example - find a and any character after

Second example - find a and any digit after

stri_count_regex("al b2 a3 b4 aa", "a.")
# [1] 3

stri_count_regex("al b2 a3 b4 aa", "a\\d")
#[1] 2

Section 7.2: Duplicating strings

stri_dup("abc",3)
# [1] "abcabcabc"

A base R solution that does the same would look like this:
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paste@(rep("abc",3),collapse = "")
# [1] "abcabcabc"

Section 7.3: Paste vectors

stri_paste(LETTERS, "-", 1:13)
# [1] "A-1" "B-2" "C-3" "D-4" "E-5" "F-6" "G-7" "H-8" "I-9" "J-10" "K-11" "L-12"

Natively, we could do this in R via:

> paste(LETTERS, 1:13,sep="-")

"M-13"
# [14] IIN_1II Il0_2ll "P—3" IIQ_4II IIR_5H IIS_6II IIT_7II IIU_8II lIV_glI IIW_-IeII IIX_-I1II IIY_12II IIZ_-I3II

#[1] "A-1" "B-2" "C-3" "D-4" "E-5" "F-6" "G-7" "H-8" "I-9" - -11 - 13
#[14] "N-1" "0-2" "P-3" "Q-4" "R-5" "S-6" "T-7" "U-8" "V-9" "W-18" "X-11" "Y-12" "Z-13"

Section 7.4: Splitting text by some fixed pattern

Split vector of texts using one pattern:

stri_split_fixed(c("To be or not to be.", "This is very short sentence.")," ")

# [[1]]

# [1] "To" "be" "or" "not" "to" "be."

#

# [[2]]

# [1] "This" "is" "very" "short" "sentence."

Split one text using many patterns:

stri_split_fixed("Apples, oranges and pineaplles.”,c(" ", ",", "s"))

# [[1]]

# [1] "Apples," "oranges" "and" "pineaplles.”

#

# [[2]]

# [1] "Apples” " oranges and pineaplles."

#

# [[3]]

# [1] "Apple" ", orange" " and pineaplle" "."
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Chapter 8: Classes

The class of a data-object determines which functions will process its contents. The class-attribute is a character
vector, and objects can have zero, one or more classes. If there is no class-attribute, there will still be an implicit
class determined by an object's mode. The class can be inspected with the function class and it can be set or
modified by the class<- function. The S3 class system was established early in S's history. The more complex S4
class system was established later

Section 8.1: Inspect classes

Every object in R is assigned a class. You can use class() to find the object's class and str() to see its structure,
including the classes it contains. For example:

class(iris)
[1] "data.frame"

str(iris)

"data.frame’: 150 obs. of 5 variables:

$ Sepal.lLength: num 5.1 4.9 4.7 4.6 55.4 4.6 5 4.4 4.9

S Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1

$ Petal.Length: num 1.4 1.4 1.3 1.51.41.7 1.41.51.41.5

$ Petal.Width : num ©.2 6.2 6.2 6.2 6.2 6.4 6.3 0.2 0.2 0.1 ...

$ Species : Factor w/ 3 levels "setosa", "versicolor”,..: 111111111

class(irisS$Species)
[1] "factor"

We see that iris has the class data. frame and using str() allows us to examine the data inside. The variable
Species in the iris data frame is of class factor, in contrast to the other variables which are of class numeric. The
str() function also provides the length of the variables and shows the first couple of observations, while the
class() function only provides the object's class.

Section 8.2: Vectors and lists

Data in R are stored in vectors. A typical vector is a sequence of values all having the same storage mode (e.g.,

characters vectors, numeric vectors). See ?atomic for details on the atomic implicit classes and their corresponding

storage modes: "logical”, "integer", "numeric" (synonym "double"), "complex", "character" and "raw
Many classes are simply an atomic vector with a class attribute on top:

X <- 1826
class(x) <- "Date"
X

# [1] "1975-01-01"
X <- as.Date("1970-01-01")
class(x)

#[1] "Date"
is(x, "Date")

#[1] TRUE
is(x, "integer")

#[1] FALSE
is(x, "numeric")

#[1] FALSE

mode (x)
#[1] "numeric"
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Lists are a special type of vector where each element can be anything, even another list, hence the R term for lists:

"recursive vectors":
mylist <- list( A = ¢(5,6,7,8), B = letters[1:10], CC = list( 5, "Z") )

Lists have two very important uses:

¢ Since functions can only return a single value, it is common to return complicated results in a list:

f <- function(x) list(xplus = x + 10, xsq = x"2)

f(7)

# Sxplus
# [1] 17
#

# Sxsq

# [1] 49

e Lists are also the underlying fundamental class for data frames. Under the hood, a data frame is a list of

vectors all having the same length:

L <- list(x = 1:2, y = ¢("A","B"))
DF <- data.frame(L)
DF

H H H
N = X
o > <

]
2
is.list(DF)
# [1] TRUE

The other class of recursive vectors is R expressions, which are "language"- objects

Section 8.3: Vectors

The most simple data structure available in R is a vector. You can make vectors of numeric values, logical values,

and character strings using the c() function. For example:

c(1, 2, 3)

## [1]1 1 2 3

c(TRUE, TRUE, FALSE)

## [1] TRUE TRUE FALSE
c("a", "b", "c")

## [1] "a" "b" "c"

You can also join to vectors using the ¢ () function.
<- ¢(1, 2, 5)

<- ¢(3, 4, 6)
<= ¢(x, y)

N N < X

## [11 1253 46

A more elaborate treatment of how to create vectors can be found in the "Creating vectors" topic
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Chapter 9: Lists

Section 9.1: Introduction to lists

Lists allow users to store multiple elements (like vectors and matrices) under a single object. You can use the list

function to create a list:

11 <- list(c(1, 2, 3), c("a", "b", "c"))

11

## [[1]]

# [1]1 12 3
##

## [[2]]

## [1] "a" "b" "c"

Notice the vectors that make up the above list are different classes. Lists allow users to group elements of different

classes. Each element in a list can also have a name. List names are accessed by the names function, and are
assigned in the same manner row and column names are assigned in a matrix.

names(11)

## NULL

names(11) <- c("vector1", "vector2")
11

## Svector1

## [1] 1 2 3

#i#t

## Svector2

## [1] "a" "b" "c"

It is often easier and safer to declare the list names when creating the list object.

12 <- list(vec = c¢(1, 3, 5, 7, 9),
mat = matrix(data = c(1, 2, 3), nrow = 3))

12

## Svec

## [11 1357 9

##

## Smat

## [,1]

## [1,] 1

## [2, ] 2

## [3, ] 3

names (12)

## [1] "vec" "mat"

Above the list has two elements, named "vec" and "mat," a vector and matrix, resepcively.

Section 9.2: Quick Introduction to Lists

In general, most of the objects you would interact with as a user would tend to be a vector; e.g numeric vector,
logical vector. These objects can only take in a single type of variable (a numeric vector can only have numbers
inside it).

A list would be able to store any type variable in it, making it to the generic object that can store any type of
variables we would need.
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Example of initializing a list

examplelList1 <- list('a', 'b")
exampleList2 <- list(1, 2)
exampleList3 <- list('a', 1, 2)

In order to understand the data that was defined in the list, we can use the str function.

str(examplelList1)
str(examplelList2)
str(examplelList3)

Subsetting of lists distinguishes between extracting a slice of the list, i.e. obtaining a list containing a subset of the
elements in the original list, and extracting a single element. Using the [ operator commonly used for vectors
produces a new list.

# Returns List
examplelList3[1]
exampleList3[1:2]

To obtain a single element use [[ instead.

# Returns Character
exampleList3[[1]]

List entries may be named:

examplelList4 <- list(

num = 1:3,
numeric = 0.5,
char = c¢('a', 'b")

The entries in named lists can be accessed by their name instead of their index.
examplelList4[['char']]

Alternatively the $ operator can be used to access named elements.
examplelList4$num

This has the advantage that it is faster to type and may be easier to read but it is important to be aware of a
potential pitfall. The $ operator uses partial matching to identify matching list elements and may produce
unexpected results.

examplelList5 <- examplelList4[2:3]

exampleList4Snum
#c(1, 2, 3)

exampleList5Snum
# 0.5

exampleList5[[ 'num']]
# NULL
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Lists can be particularly useful because they can store objects of different lengths and of various classes.

## Numeric vector
exampleVector1l <- ¢(12, 13, 14)
## Character vector

exampleVector2 <- c¢("a", "b", "c", "d", "e", "f")

## Matrix

exampleMatrix1 <- matrix(rnorm(4), ncol = 2, nrow = 2)
## List

examplelList3 <- list('a', 1, 2)

examplelList6 <- list(
num = exampleVectorT,
char = exampleVector2,
mat = exampleMatrix1,
list = examplelList3

)

examplelist6

#Snum

#[1] 12 13 14

#

#Schar

#[1] "a" "b" "¢" "d" "e" "f"

#

#Smat

# [,1] [,2]

#[1,] 0.5013050 -1.88801542

#[2,] 0.4295266 ©.89751379

#

#S1list

#S$1ist[[1]]

#[1] "a"

#

#S81ist[[2]]

#[1] 1

#

#S81ist[[3]]

#[1] 2

Section 9.3: Serialization: using lists to pass information

There exist cases in which it is necessary to put data of different types together. In Azure ML for example, it is
necessary to pass information from a R script module to another one exclusively throught dataframes. Suppose we
have a dataframe and a number:

> df

name height team fun_index title age desc Y
1 Andrea 195 Lazio 97 6 33 eccellente 1
2 Paja 165 Fiorentina 87 6 31 deciso 1
3 Roro 190 Lazio 65 6 28 strano 0
4 Gioele 70 Lazio 100 0 2 simpatico 1
5 Cacio 170 Juventus 81 3 33 duro ©
6 Edola 171 Lazio 72 5 32 svampito 1
7 Salami 175 Inter 75 3 30 doppiopasso 1
8 Braugo 180 Inter 79 5 32 gjn ©
9 Benna 158 Juventus 80 6 28 esaurito ©
10 Riggio 182 Lazio 92 5 31 certezza 1
11 Giordano 185 Roma 79 5 29 buono 1
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> number <- "42"
We can access to this information:

> paste(dfSname[4],"is a",df3Steam[4], "supporter." )
[1] "Gioele is a Lazio supporter."”

> paste("The answer to THE question is", number )

[1] "The answer to THE question is 42"

In order to put different types of data in a dataframe we have to use the list object and the serialization. In
particular we have to put the data in a generic list and then put the list in a particular dataframe:

1 <- list(df, number)

dataframe_container <- data.frame(out2 = as.integer(serialize(1l, connection=NULL)))

Once we have stored the information in the dataframe, we need to deserialize it in order to use it:

#----- unserialize -----------oi o +
unser obj <- unserialize(as.raw(dataframe container$out2))
#----- taking back the elements-----------mmmmmmmon +
df mod <- unser obj[1][[1]]

number mod <- unser _obj[2][[1]]

Then, we can verify that the data are transfered correctly:

> paste(df_modSname[4],"is a",df_modSteam[4], "supporter." )
[1] "Gioele is a Lazio supporter."”

> paste("The answer to THE question is", number_mod )

[1] "The answer to THE question is 42"
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Chapter 10: Hashmaps

Section 10.1: Environments as hash maps

Note: in the subsequent passages, the terms hash map and hash table are used interchangeably and refer to the same
concept, namely, a data structure providing efficient key lookup through use of an internal hash function.

Introduction

Although R does not provide a native hash table structure, similar functionality can be achieved by leveraging the
fact that the environment object returned from new.env (by default) provides hashed key lookups. The following
two statements are equivalent, as the hash parameter defaults to TRUE:

H <- new.env(hash = TRUE)
H <- new.env()

Additionally, one may specify that the internal hash table is pre-allocated with a particular size via the size
parameter, which has a default value of 29. Like all other R objects, environments manage their own memory and
will grow in capacity as needed, so while it is not necessary to request a non-default value for size, there may be a
slight performance advantage in doing so if the object will (eventually) contain a very large number of elements. It
is worth noting that allocating extra space via size does not, in itself, result in an object with a larger memory
footprint:

object.size(new.env())
# 56 bytes

object.size(new.env(size = 10e4))
# 56 bytes

Insertion

Insertion of elements may be done using either of the [[<- or $<- methods provided for the environment class, but
not by using "single bracket" assignment ([ <-):

H <- new.env()
H[["key"]] <- rnorm(1)

key2 <- "xyz"
H[[key2]] <- data.frame(x = 1:3, y = letters[1:3])

HSanother_key <- matrix(rbinom(9, 1, 0.5) > 0, nrow = 3)
H["error"] <- 42

#Error in H["error"] <- 42 :
# object of type 'environment' is not subsettable

Like other facets of R, the first method (object[[key]] <- value)is generally preferred to the second (object$key
<- value) because in the former case, a variable maybe be used instead of a literal value (e.g key2 in the example
above).

As is generally the case with hash map implementations, the environment object will not store duplicate keys.
Attempting to insert a key-value pair for an existing key will replace the previously stored value:

H[["key3"]] <- "original value"
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H[["key3"]] <- "new value"

H[["key3"]]
#[1] "new value"

Key Lookup

Likewise, elements may be accessed with [[ or $, but not with [:

H[["key"]]
#[1] 1.630631

H[[key2]] ## assuming key2 <- "xyz"
Xy

HoH H
W N =
W N =
O T o

HSanother_key

# [,11 [,2]1 [,3]
# [1,] TRUE TRUE TRUE
# [2,] FALSE FALSE FALSE
# [3,] TRUE TRUE TRUE

H[1]
#Error in H[1] : object of type 'environment' is not subsettable

Inspecting the Hash Map

Being just an ordinary environment, the hash map can be inspected by typical means:

names (H)

#[1] "another_key" "xyz" "key" "key3"
1s(H)

#[1] "another_key" "key" "key3" "xyz"
str(H)

#<environment: 0x7828228>

1s.str(H)

# another_key : logi [1:3, 1:3] TRUE FALSE TRUE TRUE FALSE TRUE ...
# key : num 1.63

# key3 : chr "new value"

# xyz : 'data.frame': 3 obs. of 2 variables:

# $ x:dint 12 3

# S y: chr "a" "b" "c"

Elements can be removed using rm:

rm(list = c("key", "key3"), envir = H)

1s.str(H)
# another_key : logi [1:3, 1:3] TRUE FALSE TRUE TRUE FALSE TRUE ...
# xyz : 'data.frame': 3 obs. of 2 variables:

# S x: dint 123
# S$y: chr "a" "b" "c"

Flexibility

One of the major benefits of using environment objects as hash tables is their ability to store virtually any type of

object as a value, even other environments:
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H2 <- new.env()

H2[["a"]] <- LETTERS

H2[["b"]] <- as.list(x = 1:5, y = matrix(rnorm(10), 2))
H2[["c"]] <- head(mtcars, 3)

H2[["d"]] <- Sys.Date()

H2[["e"]] <- Sys.time()
H2[["f"]] <- (function() {
H3 <- new.env()
for (i in seq_along(names(H2))) {
H3[ [names(H2)[i]]] <- H2[[names(H2)[i]]]
}
H3

H O

1s.str(H2)

a chr [1:26] "A"™ "B" "C" "D" "E" "F" "G" "H" "I" "J"

b : List of 5

:int

: int

:int

:int

. int
‘data.frame’: 3 obs. of 11 variables:

mpg : num 21 21 22.8

cyl : num 6 6 4

disp: num 160 160 108

hp : num 110 110 93

drat: num 3.9 3.9 3.85

wt : num 2.62 2.88 2.32

gsec: num 16.5 17 18.6

VS I num

am : num

gear: num

carb: num
Date[1:1], format: "2016-08-03"
POSIXct[1:1], format: "2016-08-03 19:25:14"

: <environment: ©x91a7cb8>

wr U U
a b ON =

(¢}

A bh 2o
UG T i ¢ ]

A28 Vo Vo V5 B V) K V) N V) B8 V) B Vo B Vo I Vo8
Lo T W S Ry

HoH o oH B FH B FH OH H OHHHHHH B H B H R R
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1s.str(H2$f)

a chr [1:26] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J"

b : List of 5

. int

;. int

:int

:int

. int
"data.frame’: 3 obs. of 11 variables:

mpg : num 21 21 22.8

cyl : num 6 6 4

disp: num 160 160 108

hp : num 110 110 93

drat: num 3.9 3.9 3.85

wt : num 2.62 2.88 2.32

gsec: num 16.5 17 18.6

VS : num

am @ num

gear: num

carb: num
Date[1:1],
POSIXct[1:1

wr U
a b WON =

(9]

A b2

L2 R Vo R Vi Vo iV R Vo B Vo i Vo i Vo iR Vo R Vo
P N NG

o T W U R}

ormat: "2016-08-03"
, format: "2016-08-03 19:25:14"
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Limitations

One of the major limitations of using environment objects as hash maps is that, unlike many aspects of R,
vectorization is not supported for element lookup / insertion:

names (H2)
#[1] "a" "b" "c" "d" "e" "f"

H2[[e("a", "b")]]
#Error in H2[[c("a", "b")]]
# wrong arguments for subsetting an environment

KeyS <- c(llall' Ilbll)
H2[ [Keys]]
#Error in H2[[Keys]] : wrong arguments for subsetting an environment

Depending on the nature of the data being stored in the object, it may be possible to use vapply or list2env for
assigning many elements at once:

E1 <- new.env()
invisible({
vapply(letters, function(x) {
E1[[x]] <- rnorm(1)
logical(9)
}, FUN.VALUE = logical(9))
1)

all.equal(sort(names(E1)), letters)
#[1] TRUE

Keys <- letters
E2 <- list2env(
setNames (
as.list(rnorm(26)),
nm = Keys),
envir = NULL,
hash = TRUE

)

all.equal(sort(names(E2)), letters)
#[1] TRUE

Neither of the above are particularly concise, but may be preferable to using a for loop, etc. when the number of
key-value pairs is large.

Section 10.2: package:hash

The hash package offers a hash structure in R. However, it terms of timing for both inserts and reads it compares
unfavorably to using environments as a hash. This documentation simply acknowledges its existence and provides
sample timing code below for the above stated reasons. There is no identified case where hash is an appropriate
solution in R code today.

Consider:

# Generic unique string generator
unique_strings <- function(n){
string_i <- 1
string_len <- 1
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ans <- character(n)

chars <- c(letters,LETTERS)

new_strings <- function(len, pfx){

for(i in 1:length(chars)){
if (len == 1){
ans[string_i] <<- paste(pfx,chars[i],sep="")
string_i <<- string_i + 1

} else {
new_strings(len-1,pfx=paste(pfx,chars[i],sep=""))
}
if (string_i > n) return ()

}

}

while(string_i <= n){
new_strings(string_len,'")
string_len <- string_len + 1
}

sample(ans)

}

# Generate timings using an enviornment
timingsEnv <- plyr::adply(2*(10:15), .mar=1, .fun=function(i){
strings <- unique_strings(i)
ht1 <- new.env(hash=TRUE)
lapply(strings, function(s){ ht1[[s]] <<- 6L})
data.frame(
size=c(i,1i),
seconds=c(
system.time(for (j in 1:i) ht1[[strings[j]]]==06L)[3]),
type = c¢('1_hashedEnv")
)
})

timingsHash <- plyr::adply(2*(10:15), .mar=1, .fun=function(i)
strings <- unique_strings(i)
ht <- hash::hash()
lapply(strings, function(s) ht[[s]] <<- OL)
data.frame(
size=c(i,1),
seconds=c(
system.time(for (j in 1:i) ht[[strings[j]]]==6L)[3]),
type = c¢('3_stringHash")
)
1)

Section 10.3: package:listenv

Although package :1listenv implements a list-like interface to environments, its performance relative to
environments for hash-like purposes is poor on hash retrieval. However, if the indexes are numeric, it can be quite
fast on retrieval. However, they have other advantages, e.g. compatibility with package : future. Covering this
package for that purpose goes beyond the scope of the current topic. However, the timing code provided here can
be used in conjunction with the example for package:hash for write timings.

timingsListEnv <- plyr::adply(2*(10:15), .mar=1, .fun=function(i){
strings <- unique_strings(i)
le <- listenv::listenv()
lapply(strings, function(s) le[[s]] <<- @OL)
data.frame(
size=c(i,1i),
seconds=c(
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system.time(for (k in 1:i) le[[k]]==0L)[3]),
type = ¢('2_numericListEnv')
)
})
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Chapter 11: Creating vectors

Section 11.1: Vectors from build in constants: Sequences of

letters & month names

R has a number of build in constants. The following constants are available:

e LETTERS: the 26 upper-case letters of the Roman alphabet

letters: the 26 lower-case letters of the Roman alphabet

month.abb: the three-letter abbreviations for the English month names
¢ month.name: the English names for the months of the year

pi: the ratio of the circumference of a circle to its diameter

From the letters and month constants, vectors can be created.

1) Sequences of letters:

> letters
[1] "a" "b" "c¢" "d" "e" "f" "g" "h" "i" "_'j" "k""1" "m" "n" "o" "p" g "r" "x"
nyt g
> LETTERS[7:9]
[1] "G" "H" "I"
> letters([c(1,5,3,2,4)]
[1] "a" "e" "¢" "b" "d"
2) Sequences of month abbreviations or month names:
> month.abb
[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"
> month.name[1:4]
[1] "January" "February" "March" "April"
> month.abb[c(3,6,9,12)]
[1] "Mar" "Jun" "Sep" "Dec"
Section 11.2: Creating nhamed vectors
Named vector can be created in several ways. With c:
xc <- ¢('a' =5, 'b' =6, 'c' =7, 'd =8)
which results in:
> XC
abecd
5678
with 1list:
x1 <- list('a' =5, 'b' =6, '¢c' =7, 'd = 8)
which results in:
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> x1
Sa
[1] 5

$b
[1] 6

Sc
(11 7

$d
[1] 8

With the setNames function, two vectors of the same length can be used to create a named vector:

X <- 5:8
y <- letters[1:4]

Xy <- setNames(x, Yy)

which results in a named integer vector:

a o Vv
o T X
<
~N O
o a

As can be seen, this gives the same result as the ¢ method.
You may also use the names function to get the same result:

Xy <- 5:8
names(xy) <- letters[1:4]

With such a vector it is also possibly to select elements by name:

S Xy[IICII
c
7

This feature makes it possible to use such a named vector as a look-up vector/table to match the values to values of
another vector or column in dataframe. Considering the following dataframe:

mydf <- data.frame(let = c('c','a','b','d"))

Suppose you want to create a new variable in the mydf dataframe called num with the correct values from xy in the
rows. Using the match function the appropriate values from xy can be selected:

mydfSnum <- xy[match(mydf$let, names(xy))]

which results in:
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> mydf

let num
1 c 7
2 a 5)
3 b 6
4 d 8

Section 11.3: Sequence of numbers

Use the : operator to create sequences of numbers, such as for use in vectorizing larger chunks of your code:
X <- 1:5

X
## [11 123 45

This works both ways

10:4
#1116 9 8 7 6 5 4

and even with floating point numbers

12888
# [1] 1.25 2.25 3.25 4.25

or negatives

-4:4
#[1] -4 -3 -2 -1 86 1 2 3 4

Section 11.4: seq()

seq is a more flexible function than the : operator allowing to specify steps other than 1.
The function creates a sequence from the start (default is 1) to the end including that number.

You can supply only the end (to) parameter

seq(5)
#[1112345

As well as the start

seq(2, 5) # o
# [1]1 2345

r seq(from=2, to=5)
And finally the step (by)

seq(2, 5, 0.5) # or seq(from=2, to=5, by=0.5)
# [1] 2.0 2.5 3.0 3.5 4.0 4.5 5.0

seq can optionally infer the (evenly spaced) steps when alternatively the desired length of the output (length.out)
is supplied

seq(2,5, length.out = 10)

GoalKicker.com - R Notes for Professionals 37


http://goalkicker.com/

#[1]1 2.0 2.32.62.93.23.53.84.14.44.75.0

If the sequence needs to have the same length as another vector we can use the along.with as a shorthand for
length.out = length(x)

1:8
seq(2,5,along.with = x)
[1] 2.000000 2.428571 2.857143 3.285714 3.714286 4.142857 4.571429 5.000000

There are two useful simplified functions in the seq family: seq_along, seq_len, and seq. int. seq_along and
seq_len functions construct the natural (counting) numbers from 1 through N where N is determined by the
function argument, the length of a vector or list with seq_along, and the integer argument with seq_1len.

seq_along(x)
#[11 123456738

Note that seq_along returns the indices of an existing object.

# counting numbers 1 through 10

seq_len(10)

[1] 1 2 3 4 5 6 7 8 910

# indices of existing vector (or list) with seqg_along
letters[1:10]

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"
seq_along(letters[1:10])

[1] 1 2 3 4 5 6 7 8 910

seq.intis the same as seq maintained for ancient compatibility.

There is also an old function sequencethat creates a vector of sequences from a non negative argument.

sequence(4)

#[1]1 123 4
sequence(c(3, 2))

#[1]1 12312
sequence(c(3, 2, 5))
#[1] 1231212345

Section 11.5: Vectors

Vectors in R can have different types (e.g. integer, logical, character). The most general way of defining a vector is by
using the function vector ().

vector('integer',2) # creates a vector of integers of size 2.
vector('character',2) # creates a vector of characters of size 2.
vector('logical',2) # creates a vector of logicals of size 2.

However, in R, the shorthand functions are generally more popular.

integer(2) # is the same as vector('integer',2) and creates an integer vector with two elements
character(2) # is the same as vector('integer',2) and creates an character vector with two elements
logical(2) # is the same as vector('logical',2) and creates an logical vector with two elements

Creating vectors with values, other than the default values, is also possible. Often the function c() is used for this.
The cis short for combine or concatenate.
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c(1, 2) # creates a integer vector of two elements: 1 and 2.
c('a', 'b') # creates a character vector of two elements: a and b.
c(T,F) # creates a logical vector of two elements: TRUE and FALSE.

Important to note here is that R interprets any integer (e.g. 1) as an integer vector of size one. The same holds for
numerics (e.g. 1.1), logicals (e.g. T or F), or characters (e.g. 'a'). Therefore, you are in essence combining vectors,
which in turn are vectors.

Pay attention that you always have to combine similar vectors. Otherwise, R will try to convert the vectors in vectors
of the same type.

c(1,1.1,'a",T) # all types (integer, numeric, character and logical) are converted to the 'lowest'
type which is character.

Finding elements in vectors can be done with the [ operator.

vec_int <- ¢(1,2,3)
vec_char <- ¢('a','b','c")
vec_int[2] # accessing the second element will return 2

vec_char[2] # accessing the second element will return 'b'

This can also be used to change values

vec_int[2] <- 5 # change the second value from 2 to 5
vec_int # returns [1] 1 5 3

Finally, the : operator (short for the function seq()) can be used to quickly create a vector of numbers.

vec_int <- 1:10
vec_int # returns [1] 123 456 7 89 10

This can also be used to subset vectors (from easy to more complex subsets)

vec_char <- ¢('a','b','c','d","'e")
vec_char[2:4] # returns [1] "b" "c¢" "d"

vec_char[c(1,3,5)] # returns [1] "a C e

Section 11.6: Expanding a vector with the rep() function

The rep function can be used to repeat a vector in a fairly flexible manner.

# repeat counting numbers, 1 through 5 twice
rep(1:5, 2)
[111 234512345

# repeat vector with incomplete recycling
rep(1:5, 2, length.out=7)
[1]1 1234512

The each argument is especially useful for expanding a vector of statistics of observational/experimental units into
a vector of data.frame with repeated observations of these units.

# same except repeat each integer next to each other
rep(1:5, each=2)
[1T] 1122334455
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A nice feature of rep regarding involving expansion to such a data structure is that expansion of a vector to an

unbalanced panel can be accomplished by replacing the length argument with a vector that dictates the number of
times to repeat each element in the vector:

# automated length repetition
rep(1:5, 1:5)

[1] 122333444455555
# hand-fed repetition length vector
rep(1:5, ¢(1,1,1,2,2))

[1] 1234455

This should expose the possibility of allowing an external function to feed the second argument of rep in order to
dynamically construct a vector that expands according to the data.

As with seq, faster, simplified versions of rep are rep_len and rep.int. These drop some attributes that rep

maintains and so may be most useful in situations where speed is a concern and additional aspects of the repeated
vector are unnecessary.

# repeat counting numbers, 1 through 5 twice
rep.int(1:5, 2)
[11 1234512345

# repeat vector with incomplete recycling
rep_len(1:5, length.out=7)
[11 1234512
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Chapter 12: Date and Time

R comes with classes for dates, date-times and time differences; see ?Dates, ?DateTimeClasses, ?difftime and

follow the "See Also" section of those docs for further documentation. Related Docs: Dates and Date-Time Classes.

Section 12.1: Current Date and Time

R is able to access the current date, time and time zone:

Sys.Date() # Returns date as a Date object

## [1] "2016-07-21"

Sys.time() # Returns date & time at current locale as a POSIXct object
## [1] "2016-07-21 10:04:39 CDT"

as.numeric(Sys.time()) # Seconds from UNIX Epoch (1970-01-061 00:00:00 UTC)

## [1] 1469113479

Sys.timezone() # Time zone at current location

## [1] "Australia/Melbourne"
Use 0O1lsonNames( ) to view the time zone names in Olson/IANA database on the current system:

str(OlsonNames())

## chr [1:589] "Africa/Abidjan" "Africa/Accra" "Africa/Addis_Ababa" "Africa/Algiers"

"Africa/Asmara" "Africa/Asmera Africa/Bamako"

Section 12.2: Go to the End of the Month

Let's say we want to go to the last day of the month, this function will help on it:

eom <- function(x, p=as.POSIX1lt(x)) as.Date(modifyList(p, list(mon=pSmon + 1, mday=0)))

Test:

<- seq(as.POSIXct("2000-12-10"),as.POSIXct("2001-85-10"),by="months")
data.frame(before=x,after=eom(x))
before after
2000-12-10 2000-12-31
2001-01-10 2001-01-31
2001-02-10 2001-02-28
2001-03-10 2001-03-31
2001-04-10 2001-04-30
2001-085-10 2001-05-31

v X

vV oo b WON =

Using a date in a string format:

> eom('2000-01-01")
[1] "2000-81-31"
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Section 12.3: Go to First Day of the Month

Let's say we want to go to the first day of a given month:

date <- as.Date("2017-01-20")

> as.POSIX1lt(cut(date, "month"))
[1] "2017-01-81 EST"

Section 12.4: Move a date a number of months consistently by
months

Let's say we want to move a given date a numof months. We can define the following function, that uses the mondate
package:

moveNumOfMonths <- function(date, num) {
as.Date(mondate(date) + num)

}

It moves consistently the month part of the date and adjusting the day, in case the date refers to the last day of the
month.

For example:
Back one month:

> moveNumOfMonths("2017-106-30",-1)
[1] "2017-09-30"

Back two months:

> moveNumOfMonths("2017-16-30",-2)
[1] "2017-068-30"

Forward two months:

> moveNumOfMonths("2017-02-28", 2)
[1] "2017-04-30"

It moves two months from the last day of February, therefore the last day of April.

Let's se how it works for backward and forward operations when it is the last day of the month:

> moveNumOfMonths("2016-11-30", 2)
[1] "2017-81-31"
> moveNumOfMonths("2017-01-31", -2)
[1] "20816-11-38"

Because November has 30 days, we get the same date in the backward operation, but:

> moveNumOfMonths("2017-61-30", -2)
[1] "20816-11-30"
> moveNumOfMonths("2016-11-30", 2)
[1] "2017-81-31"
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Because January has 31 days, then moving two months from last day of November will get the last day of January.
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Chapter 13: The Date class

Section 13.1: Formatting Dates

To format Dates we use the format(date, format="%Y-%m-%d") function with either the POSIXct (given from
as.POSIXct()) or POSIX1t (given from as.POSIX1t())

d = as.Date("2016-07-21") #

format(d, "%a")
## [1] "Thu"

format(d, "%A")

## [1] "Thursday"

format(d, "%b")
## [1] "Jul"

format(d, "%B")
## [1] "July"

format(d, "%m")
## [1] "07"

format(d, "%d")
## [1] "21"

format(d, "%e")
## [1] "21"

format(d, "%y")
## [1] "16"

format(d, "%Y")
## [1] "2016"

Current Date Time Stamp

# Abbreviated Weekday

# Full Weekday

# Abbreviated Month

# Full Month

# 00-12 Month Format

# 00-31 Day Format

# 0-31 Day Format

# 00-99 Year

# Year with Century

For more, see ?strptime.

Section 13.2: Parsing Strings into Date Objects

R contains a Date class, which is created with as.Date( ), which takes a string or vector of strings, and if the date is
not in ISO 8601 date format YYYY-MM-DD, a formatting string of strptime-style tokens.

as.Date('2016-08-01")
## [1] "2016-08-01"

as.Date('05/23/16', format = '%m/%d/%y")

## [1] "2016-05-23"

as.Date('March 23rd, 2016', '%B %drd, %Y')

## [1] "2016-03-23"

# in ISO format, so does not require formatting string

# add separators and literals to format

as.Date(' 2016-08-81 foo') # leading whitespace and all trailing characters are ignored

## [1] "2016-08-01"

as.Date(c('2016-81-81', '2016-81-62"))

# [1] "2016-01-01"

"2016-01-02"
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Section 13.3: Dates

To coerce a variable to a date use the as.Date() function.

> X <- as.Date("2016-8-23")

> X
[1] "2016-088-23"
> class(x)
[1] "Date"

The as.Date() function allows you to provide a format argument. The default is %Y-%m-%d, which is Year-month-
day.

> as.Date("23-8-2016", format="%d-%m-%Y") # To read in an European-style date
[1] "2016-08-23"

The format string can be placed either within a pair of single quotes or double quotes. Dates are usually expressed
in a variety of forms such as: "d-m-yy" or "d-m-YYYY" or "m-d-yy" or "m-d-YYYY" or "YYYY-m-d" or "YYYY-d-m".
These formats can also be expressed by replacing "-" by "/". Furher, dates are also expressed in the forms, say,
"Nov 6, 1986" or "November 6, 1986" or "6 Nov, 1986" or "6 November, 1986" and so on. The as.Date() function
accepts all such character strings and when we mention the appropriate format of the string, it always outputs the
date in the form "YYYY-m-d".

Suppose we have a date string "9-6-1962" in the format "%d-%m-%Y".

#

# It tries to interprets the string as YYYY-m-d
#

> as.Date("9-6-1962")

[1] "0009-86-19" #interprets as "%Y-%m-%d"

>

as.Date("9/6/1962")

[1] "0009-086-19" #again interprets as "%Y-%m-%d"

>

# It has no problem in understanding, if the date is in form YYYY-m-d or YYYY/m/d
#

> as.Date("1962-6-9")

[1] "1962-06-09" # no problem
> as.Date("1962/6/9")
[1] "1962-06-09" # no problem

>

By specifying the correct format of the input string, we can get the desired results. We use the following codes for
specifying the formats to the as.Date() function.

Format Code Meaning

%d day

%M month

%y year in 2-digits

%Y year in 4-digits

%b abbreviated month in 3 chars
%B full name of the month

Consider the following example specifying the format parameter:

> as.Date("9-6-1962", format="%d-%m-%Y")
[1] "1962-06-09"
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The parameter name format can be omitted.

> as.Date("9-6-1962", "%d-%m-%Y")
[1] "1962-06-09"

>

Some times, names of the months abbreviated to the first three characters are used in the writing the dates. In
which case we use the format specifier %b.

> as.Date("6Nov1962", "%d%b%Y")
[1] "1962-11-86"

>

Note that, there are no either '-" or ' /' or white spaces between the members in the date string. The format string
should exactly match that input string. Consider the following example:

> as.Date("6 Nov, 1962","%d %b, %Y")
[1] "1962-11-06"

>

Note that, there is a comma in the date string and hence a comma in the format specification too. If comma is
omitted in the format string, it results in an NA. An example usage of %B format specifier is as follows:

> as.Date("October 12, 2016", "%B %d, %Y")
[1] "2016-10-12"

>

> as.Date("12 October, 2016", "%d %B, %Y")
[1] "2016-10-12"

>

%y format is system specific and hence, should be used with caution. Other parameters used with this function are
origin and tz( time zone).
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Chapter 14: Date-time classes (POSIXct
and POSIXIt)

R includes two date-time classes -- POSIXct and POSIXIt -- see ?DateTimeClasses.

Section 14.1: Formatting and printing date-time objects

# test date-time object
options(digits.secs = 3)
d = as.POSIXct("2016-08-30 14:18:30.58", tz = "UTC")

format(d, "%S") # 00-61 Second as integer
## [1] "30"

format(d, "%0S") # 00-60.99.. Second as fractional
## [1] "30.579"

format(d, "%M") # 00-59 Minute
## [1] "18"

format(d, "%H") # 00-23 Hours
## [1] "14"

format(d, "%I") # ©1-12 Hours
## [1] "02"

format(d, "%p") # AM/PM Indicator
## [1] "PM"

H*

format(d, "%z")
## [1] "+0000"

Signed offset

format(d, "%Z") # Time Zone Abbreviation
## [1] "UTC"

See ?strptime for details on the format strings here, as well as other formats.

Section 14.2: Date-time arithmetic

To add/subtract time, use POSIXct, since it stores times in seconds

## adding/subtracting times - 60 seconds
as.POSIXct("2016-01-01") + 60
# [1] "2016-01-01 00:01:00 AEDT"

## adding 3 hours, 14 minutes, 15 seconds
as.POSIXct("2016-081-01") + ( (3 * 60 * 60) + (14 * 60) + 15)
# [1] "2016-01-061 ©3:14:15 AEDT"

More formally, as.difftime can be used to specify time periods to add to a date or datetime object. E.g.:

as.POSIXct("2016-01-081") +
as.difftime(3, wunits="hours") +
as.difftime(14, units="mins") +
as.difftime(15, units="secs")

# [1] "2016-01-01 ©3:14:15 AEDT"
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To find the difference between dates/times use difftime() for differences in seconds, minutes, hours, days or
weeks.

# using POSIXct objects

difftime(
as.POSIXct("2016-01-81 12:00:00"),
as.POSIXct("2016-01-81 11:59:59"),
unit = "secs")

# Time difference of 1 secs

To generate sequences of date-times use seq.POSIXt() or simply seq.

Section 14.3: Parsing strings into date-time objects

The functions for parsing a string into POSIXct and POSIXIt take similar parameters and return a similar-looking
result, but there are differences in how that date-time is stored; see "Remarks."

as.POSIXct("11:38", # time string
format = "%H:%M") # formatting string
## [1] "2016-07-21 11:38:00 CDT"
strptime("11:38", # identical, but makes a POSIX1t object
format = "%H:%M")

## [1] "2016-07-21 11:38:00 CDT"
as.POSIXct("11 AM",

format = "%I %p")
## [1] "2016-07-21 11:00:00 CDT"

Note that date and timezone are imputed.

as.POSIXct("11:38:22", # time string without timezone
format = "%H:%M:%S",
tz = "America/New_York") # set time zone

## [1] "2016-07-21 11:38:22 EDT"

as.POSIXct("20616-07-21 00:00:00",
format = "%F %T") # shortcut tokens for "%Y-%m-%d" and "%H:%M:%S"

See ?strptime for details on the format strings here.

Notes
Missing elements

¢ |f a date element is not supplied, then that from the current date is used.
e If a time element is not supplied, then that from midnight is used, i.e. Os.
¢ If no timezone is supplied in either the string or the tz parameter, the local timezone is used.

Time zones

e The accepted values of tz depend on the location.

o CSTis given with "CST6CDT" or "America/Chicago”
¢ For supported locations and time zones use:

o In R: 01sonNames()

o Alternatively, try in R: system("cat $SR_HOME/share/zoneinfo/zone.tab")
¢ These locations are given by Internet Assigned Numbers Authority (IANA)

o List of tz database time zones (Wikipedia)

o |ANA TZ Data (2016e)
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Chapter 15: The character class

Characters are what other languages call 'string vectors.'

Section 15.1: Coercion

To check whether a value is a character use the is.character() function. To coerce a variable to a character use
the as.character() function.

X <- "The quick brown fox jumps over the lazy dog"
class(x)

[1] "character"

is.character(x)

[1] TRUE

Note that numerics can be coerced to characters, but attempting to coerce a character to numeric may result in NA.

as.numeric("2")

(1] 2
as.numeric("fox")
[1] NA

Warning message:
NAs introduced by coercion
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Chapter 16: Numeric classes and storage

modades

Section 16.1: Numeric

Numeric represents integers and doubles and is the default mode assigned to vectors of numbers. The function

is.numeric() will evaluate whether a vector is numeric. It is important to note that although integers and doubles

will pass is.numeric (), the function as.numeric () will always attempt to convert to type double.

X <- 12.3
y <- 12L

#confirm types
typeof (x)
[1] "double"

typeof(y)
[1] "integer"

# confirm both numeric
is.numeric(x)

[1] TRUE
is.numeric(y)
[1] TRUE

# logical to numeric
as.numeric(TRUE)
(1] 1

# While TRUE == 1, it is a double and not an integer
is.integer(as.numeric(TRUE))

[1] FALSE

Doubles are R's default numeric value. They are double precision vectors, meaning that they take up 8 bytes of

memory for each value in the vector. R has no single precision data type and so all real numbers are stored in the

double precision format.

is.double(1)
TRUE
is.double(1.0)
TRUE
is.double(1L)
FALSE

Integers are whole numbers that can be written without a fractional component. Integers are represented by a
number with an L after it. Any number without an L after it will be considered a double.

typeof (1)

[1] "double"
class(1)

[1] "numeric"
typeof (1L)
[1] "integer"
class(1L)

[1] "integer"

Though in most cases using an integer or double will not matter, sometimes replacing doubles with integers will
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consume less memory and operational time. A double vector uses 8 bytes per element while an integer vector uses
only 4 bytes per element. As the size of vectors increases, using proper types can dramatically speed up processes.

# test speed on lots of arithmetic
microbenchmark(

for( i in 1:100000)

2L * i

10L + i
o

for( i in 1:100000){

2.0 * 1

10.0 + 1
}
)
Unit: milliseconds

expr min 1q mean median uq

max neval
for (i in 1:1e+@5) { 2L % i 10L + i } 40.74775 42.34747 50.70543 42.99120 65.46864
94.11804 100

for (i in 1:1e+85) { 2 % 1 10 + 1 } 41.07807 42.38358 53.52588 44.26364 65.84971
83.00456 100
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Chapter 17: The logical class

Logical is a mode (and an implicit class) for vectors.

Section 17.1: Logical operators

There are two sorts of logical operators: those that accept and return vectors of any length (elementwise operators;
I, |, & xor()) and those that only evaluate the first element in each argument (&%, | |). The second sort is primarily
used as the cond argument to the if function.

Logical Operator Meaning Syntax
! Not Ix

& element-wise (vectorized) and X &y
&& and (single element only) X &&y
| element-wise (vectorized) or x|y

|| or (single element only) x|y
xor element-wise (vectorized) exclusive OR xor(x,y)

Note that the | | operator evaluates the left condition and if the left condition is TRUE the right side is never
evaluated. This can save time if the first is the result of a complex operation. The && operator will likewise return
FALSE without evaluation of the second argument when the first element of the first argument is FALSE.

> X <- 5

>Xx >6 || stop("X is too small")
Error: X is too small

>x >3 || stop("X is too small")
[1] TRUE

To check whether a value is a logical you can use the is.logical() function.

Section 17.2: Coercion
To coerce a variable to a logical use the as.logical() function.

> X <- 2

> 72 <- X > 4
>z

[1] FALSE

> class(x)

[1] "numeric"

> as.logical(2)
[1] TRUE

When applying as.numeric() to a logical, a double will be returned. NA is a logical value and a logical operator with
an NA will return NA if the outcome is ambiguous.

Section 17.3: Interpretation of NAs
See Missing values for details.

> TRUE & NA
[1] NA

> FALSE & NA
[1] FALSE

> TRUE || NA
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[1] TRUE
> FALSE || NA
[1] NA
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Chapter 18: Data frames

Section 18.1: Create an empty data.frame

A data.frame is a special kind of list: it is rectangular. Each element (column) of the list has same length, and where
each row has a "row name". Each column has its own class, but the class of one column can be different from the
class of another column (unlike a matrix, where all elements must have the same class).

In principle, a data.frame could have no rows and no columns:

> structure(list(character()), class = "data.frame")
NULL
<0 rows> (or 0-length row.names)

But this is unusual. It is more common for a data.frame to have many columns and many rows. Here is a
data.frame with three rows and two columns (a is numeric class and b is character class):

> structure(list(a = 1:3, b = letters[1:3]), class = "data.frame")
[1] a b
<0 rows> (or 0-length row.names)

In order for the data.frame to print, we will need to supply some row names. Here we use just the numbers 1:3:

> structure(list(a = 1:3, b = letters[1:3]), class = "data.frame", row.names = 1:3)
ab

W N =
W N =
O T o

Now it becomes obvious that we have a data.frame with 3 rows and 2 columns. You can check this using nrow(),
ncol(), and dim():

> x <- structure(list(a = numeric(3), b = character(3)), class = "data.frame", row.names = 1:3)
> nrow(x)

[1] 3

> ncol(x)

[1] 2

> dim(x)

[1] 3 2

R provides two other functions (besides structure()) that can be used to create a data.frame. The first is called,
intuitively, data.frame(). It checks to make sure that the column names you supplied are valid, that the list
elements are all the same length, and supplies some automatically generated row names. This means that the
output of data. frame() might now always be exactly what you expect:

> str(data.frame("a a a" = numeric(3), "b-b-b" = character(3)))
‘data.frame’: 3 obs. of 2 variables:

$ a.a.a: num 0 0 0

S b.b.b: Factor w/ 1 level "": 1 1 1

The other function is called as.data.frame(). This can be used to coerce an object that is not a data.frame into
being a data.frame by running it through data. frame(). As an example, consider a matrix:

> m <- matrix(letters[1:9], nrow = 3)
> m
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(.11 [,2] [,3]
[1,] "a" "d" "g"
[2,1 "b" "e" "h"
[3,1 "c¢" "f" "i"

And the result:

> as.data.frame(m)

V1 V2 V3

1T a d g

2 b e h

3 ¢ f i

> str(as.data.frame(m))

"data.frame’: 3 obs. of 3 variables:

$ V1: Factor w/ 3 levels "a","b","c": 1 2 3
$ V2: Factor w/ 3 levels "d","e","f": 1 2 3
$ V3: Factor w/ 3 levels "g","h","i": 1 2 3

Section 18.2: Subsetting rows and columns from a data frame
Syntax for accessing rows and columns: [, [[, and $§
This topic covers the most common syntax to access specific rows and columns of a data frame. These are

o Like a matrix with single brackets data[rows, columns]

o Using row and column numbers

o Using column (and row) names
e Like alist:

o With single brackets data[columns] to get a data frame

o With double brackets data[[one_column]] to get a vector
e With $ for a single column dataScolumn_name

We will use the built-in mtcars data frame to illustrate.

Like a matrix: data[rows, columns]
With numeric indexes

Using the built in data frame mtcars, we can extract rows and columns using [ ] brackets with a comma included.
Indices before the comma are rows:

# get the first row
mtcars[1, ]

# get the first five rows
mtcars([1:5, ]

Similarly, after the comma are columns:

# get the first column

mtcars[, 1]

# get the first, third and fifth columns:
mtcars[, c(1, 3, 5)]

As shown above, if either rows or columns are left blank, all will be selected. mtcars[1, ] indicates the first row
with all the columns.

With column (and row) names
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So far, this is identical to how rows and columns of matrices are accessed. With data.frames, most of the time it is
preferable to use a column name to a column index. This is done by using a character with the column name
instead of numeric with a column number:

# get the mpg column

mtcars[, "mpg"]

# get the mpg, cyl, and disp columns
mtcars[, c("mpg", "cyl", "disp")]

Though less common, row names can also be used:

mtcars["Mazda Rx4", ]

Rows and columns together

The row and column arguments can be used together:

# first four rows of the mpg column
mtcars[1:4, "mpg"]

# 2nd and 5th row of the mpg, cyl, and disp columns
mtcars[c(2, 5), c("mpg", "cyl", "disp")]

A warning about dimensions:

When using these methods, if you extract multiple columns, you will get a data frame back. However, if you extract
a single column, you will get a vector, not a data frame under the default options.

## multiple columns returns a data frame
class(mtcars[, c("mpg", "cyl")])

# [1] "data.frame"

## single column returns a vector
class(mtcars[, "mpg"])

# [1] "numeric"

There are two ways around this. One is to treat the data frame as a list (see below), the other is to add a drop =
FALSE argument. This tells R to not "drop the unused dimensions":

class(mtcars[, "mpg", drop = FALSE])
# [1] "data.frame"

Note that matrices work the same way - by default a single column or row will be a vector, but if you specify drop =
FALSE you can keep it as a one-column or one-row matrix.

Like a list

Data frames are essentially 1ists, i.e., they are a list of column vectors (that all must have the same length). Lists
can be subset using single brackets [ for a sub-list, or double brackets [[ for a single element.

With single brackets data[columns]

When you use single brackets and no commas, you will get column back because data frames are lists of columns.

mtcars|[ "mpg" ]

mtcars[c("mpg", "cyl", "disp")]
my_columns <- c("mpg", "cyl", "hp")
mtcars[my_columns]
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Single brackets like a list vs. single brackets like a matrix

The difference between data[columns] and data[, columns] is that when treating the data.frame as a list (no
comma in the brackets) the object returned will be a data. frame. If you use a comma to treat the data.frame like a
matrix then selecting a single column will return a vector but selecting multiple columns will return a data.frame.

## When selecting a single column

## like a list will return a data frame
class(mtcars["mpg"])

# [1] "data.frame"

## like a matrix will return a vector
class(mtcars[, "mpg"])

# [1] "numeric"

With double brackets data[[one_column]]

To extract a single column as a vector when treating your data.frame as a list, you can use double brackets [[.
This will only work for a single column at a time.

# extract a single column by name as a vector
mtcars([[ "mpg"]]

# extract a single column by name as a data frame (as above)
mtcars|[ "mpg" ]

Using $ to access columns

A single column can be extracted using the magical shortcut $ without using a quoted column name:

# get the column "mpg"
mtcarsSmpg

Columns accessed by $ will always be vectors, not data frames.
Drawbacks of $ for accessing columns

The $ can be a convenient shortcut, especially if you are working in an environment (such as RStudio) that will auto-
complete the column name in this case. However, $ has drawbacks as well: it uses non-standard evaluation to avoid
the need for quotes, which means it will not work if your column name is stored in a variable.

my_column <- "mpg"

# the below will not work

mtcarsSmy_column

# but these will work

mtcars[, my_column] # vector
mtcars[my_column] # one-column data frame
mtcars[[my_column]] # vector

Due to these concerns, $ is best used in interactive R sessions when your column names are constant. For
programmatic use, for example in writing a generalizable function that will be used on different data sets with
different column names, $ should be avoided.

Also note that the default behaviour is to use partial matching only when extracting from recursive objects (except
environments) by $

# give you the values of "mpg" column
# as "mtcars" has only one column having name starting with "m"
mtcarsSm
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# will give you "NULL"
# as "mtcars" has more than one columns having name starting with "d"
mtcars$d

Advanced indexing: negative and logical indices

Whenever we have the option to use numbers for a index, we can also use negative numbers to omit certain
indices or a boolean (logical) vector to indicate exactly which items to keep.

Negative indices omit elements

mtcars[1, ] # first row
mtcars|[ -1, ] # everything but the first row
mtcars[-(1:10), ] # everything except the first 10 rows

Logical vectors indicate specific elements to keep
We can use a condition such as < to generate a logical vector, and extract only the rows that meet the condition:

# logical vector indicating TRUE when a row has mpg less than 15
# FALSE when a row has mpg >= 15
test <- mtcars$mpg < 15

# extract these rows from the data frame
mtcars[test, ]

We can also bypass the step of saving the intermediate variable

# extract all columns for rows where the value of cyl is 4.
mtcars[mtcarsScyl == 4, ]

# extract the cyl, mpg, and hp columns where the value of cyl is 4
mtcars[mtcarsScyl == 4, c("cyl", "mpg", "hp")]

Section 18.3: Convenience functions to manipulate
data.frames

Some convenience functions to manipulate data.frames are subset (), transform(), with() and within().

subset

The subset () function allows you to subset a data. frame in a more convenient way (subset also works with other
classes):

subset(mtcars, subset = cyl == 6, select = c("mpg", "hp"))

mpg hp
Mazda RX4 21.0 110
Mazda RX4 Wag 21.0 110
Hornet 4 Drive 21.4 110
Valiant 18.1 185
Merc 280 19.2 123
Merc 286C 17.8 123
Ferrari Dino 19.7 175

In the code above we asking only for the lines in which cyl == 6 and for the columns mpg and hp. You could achieve
the same result using [ ] with the following code:

mtcars[mtcarsScyl == 6, c("mpg", "hp")]

transform
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The transform() function is a convenience function to change columns inside a data. frame. For instance the
following code adds another column named mpg2 with the result of mpg”2 to the mtcars data.frame:

mtcars <- transform(mtcars, mpg2 = mpg’2)

with and within

Both with() and within() let you to evaluate expressions inside the data.frame environment, allowing a
somewhat cleaner syntax, saving you the use of some $ or [].

For example, if you want to create, change and/or remove multiple columns in the airquality data. frame:

aq <- within(airquality, {
10zone <- log(Ozone) # creates new column
Month <- factor(month.abb[Month]) # changes Month Column
cTemp <- round((Temp - 32) * 5/9, 1) # creates new column
S.cT <- Solar.R / cTemp # creates new column
rm(Day, Temp) # removes columns

1)

Section 18.4: Introduction

Data frames are likely the data structure you will used most in your analyses. A data frame is a special kind of list
that stores same-length vectors of different classes. You create data frames using the data. frame function. The
example below shows this by combining a numeric and a character vector into a data frame. It uses the : operator,
which will create a vector containing all integers from 1 to 3.

df1 <- data.frame(x = 1:3, y = ¢("a", "b", "c"))
df1
#i#t y
a
b
## 3 c

class(df1)
## [1] "data.frame"

X
;
## 2 2
3
(

Data frame objects do not print with quotation marks, so the class of the columns is not always obvious.

df2 <- data.frame(x = c¢("1", "2", "3"), y = ¢("a", "b", "c"))

0O T o X

Without further investigation, the "x" columns in df1 and df2 cannot be differentiated. The str function can be
used to describe objects with more detail than class.

str(df1)

## 'data.frame': 3 obs. of 2 variables:
## S x: dint 12 3

## S y: Factor w/ 3 levels "a","b","c": 1 2 3
str(df2)

## 'data.frame': 3 obs. of 2 variables:
## § x: Factor w/ 3 levels "1","2","3":

123
## S y: Factor w/ 3 levels "a","b","c": 12 3
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Here you see that df1 is a data.frame and has 3 observations of 2 variables, "x" and "y." Then you are told that "x"
has the data type integer (not important for this class, but for our purposes it behaves like a numeric) and "y" is a
factor with three levels (another data class we are not discussing). It is important to note that, by default, data
frames coerce characters to factors. The default behavior can be changed with the stringsAsFactors parameter:

df3 <- data.frame(x = 1:3, y = c¢("a", "b", "c"), stringsAsFactors = FALSE)
str(df3)

## 'data.frame': 3 obs. of 2 variables:

## S x: int 1 2 3

## S y: chr "a" "b" "c"

Now the "y" column is a character. As mentioned above, each "column" of a data frame must have the same length.
Trying to create a data.frame from vectors with different lengths will result in an error. (Try running data. frame(x
= 1:3, y = 1:4) to see the resulting error.)

As test-cases for data frames, some data is provided by R by default. One of them is iris, loaded as follows:

mydataframe <- iris
str(mydataframe)

Section 18.5: Convert all columns of a data.frame to
character class

A common task is to convert all columns of a data.frame to character class for ease of manipulation, such as in the
cases of sending data.frames to a RDBMS or merging data.frames containing factors where levels may differ
between input data.frames.

The best time to do this is when the data is read in - almost all input methods that create data frames have an
options stringsAsFactors which can be set to FALSE.

If the data has already been created, factor columns can be converted to character columns as shown below.

bob <- data.frame(jobs = c("scientist", "analyst"),
pay = c(160000, 100000), age = c(30, 25))
str(bob)
‘data.frame’: 2 obs. of 3 variables:

$ jobs: Factor w/ 2 levels "analyst", "scientist": 2 1
$ pay : num 160000 100000
$ age : num 30 25

# Convert *all columns* to character
bob[] <- lapply(bob, as.character)
str(bob)

‘data.frame’: 2 obs. of 3 variables:
$ jobs: chr "scientist" "analyst"
S pay : chr "160000" "1e+05"
$ age : chr "30" "25"

# Convert only factor columns to character
bob[] <- lapply(bob, function(x) {
if is.factor(x) x <- as.character(x)
return(x)

)
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Chapter 19: Split function
Section 19.1: Using split in the split-apply-combine paradigm

A popular form of data analysis is split-apply-combine, in which you split your data into groups, apply some sort of
processing on each group, and then combine the results.

Let's consider a data analysis where we want to obtain the two cars with the best miles per gallon (mpg) for each
cylinder count (cyl) in the built-in mtcars dataset. First, we split the mtcars data frame by the cylinder count:

(spl <- split(mtcars, mtcars$cyl))

# S 4

# mpg cyl disp hp drat wt gsec vs am gear carb

# Datsun 710 22.8 4 108.86 93 3.85 2.320 18.61 1 1 4 1

# Merc 240D 24 .4 4 146.7 62 3.69 3.190 20.00 1 4 2

# Merc 230 22.8 4 140.8 95 3.92 3.150 22.96 1 © 4 2

# Fiat 128 32.4 4 78.7 66 4.88 2.200 19.47 1 1 4 1

# .

#

# $°6°

# mpg cyl disp hp drat wt gsec vs am gear carb

# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4

# Mazda RX4 Wag 21.06 6 160.0 110 3.90 2.875 17.02 0 1 4 4

# Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 © 3 1

# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1

# .

#

#$°8°

# mpg cyl disp hp drat wt gsec vs am gear carb
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0O 3 2
# Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 © © 3 4
# Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.406 © © 3 3
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 © © 3 3
# .

This has returned a list of data frames, one for each cylinder count. As indicated by the output, we could obtain the
relevant data frames with sp1$°4°, sp1$°6°, and spl$° 8" (some might find it more visually appealing to use
spl$8"4" or spl[["4"]] instead).

Now, we can use lapply to loop through this list, applying our function that extracts the cars with the best 2 mpg
values from each of the list elements:

(best2 <- lapply(spl, function(x) tail(x[order(xSmpg),], 2)))
$ 4
mpg cyl disp hp drat wt qgsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

#
#
#
#
#
#S$°6°

# mpg cyl disp hp drat wt (gsec vs am gear carb
# Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
# Hornet 4 Drive 21.4 6 258 110 3.088 3.215 19.44 1 © 3 1
#
#
#
#
#

$°8°

mpg cyl disp hp drat wt qgsec vs am gear carb
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 © © 3 2
Pontiac Firebird 19.2 8 400 175 3.08 3.845 17.85 © © 3 2
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Finally, we can combine everything together using rbind. We want to call rbind(best2[["4"]], best2[["6"]],
best2[["8"]]), but this would be tedious if we had a huge list. As a result, we use;

do.call(rbind, best2)

# mpg cyl disp hp drat wt gsec vs am gear carb
# 4.Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
# 4.Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# 6.Mazda RX4 Wag 21.90 6 160.0 110 3.90 2.875 17.02 0 1 4 4
# 6.Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 @ 3 1
# 8.Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0O 3 2
# 8.Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.865 © © 3 2

This returns the result of rbind (argument 1, a function) with all the elements of best2 (argument 2, a list) passed as
arguments.

With simple analyses like this one, it can be more compact (and possibly much less readable!) to do the whole split-
apply-combine in a single line of code:

do.call(rbind, lapply(split(mtcars, mtcarsScyl), function(x) tail(x[order(xSmpg),], 2)))

It is also worth noting that the lapply(split(x,f), FUN) combination can be alternatively framed using the ?by
function:

by(mtcars, mtcarsScyl, function(x) tail(x[order(x$mpg),], 2))
do.call(rbind, by(mtcars, mtcarsScyl, function(x) tail(x[order(xSmpg),], 2)))

Section 19.2: Basic usage of split

split allows to divide a vector or a data.frame into buckets with regards to a factor/group variables. This
ventilation into buckets takes the form of a list, that can then be used to apply group-wise computation (for loops
or lapply/sapply).

First example shows the usage of split on a vector:

Consider following vector of letters:

testdata <- ¢("e", "o", "r", "g", "a", "y", "w", "g", "i", "s", "b", "v", "x", "h", "u")

Objective is to separate those letters into voyels and consonants, ie split it accordingly to letter type.

Let's first create a grouping vector:

Vowels <_ c(lalllelllilllollIu','yl)
letter_type <- ifelse(testdata %in% vowels, "vowels", "consonants")

Note that letter_type has the same length that our vector testdata. Now we can split this test data in the two
groups, vowels and consonants :

split(testdata, letter_type)
#Sconsonants
#[1] "r" "g" "w" "g" "s" "b" "v" "x" "h"

#Svowels
#[1] "e" "o" "a" "y" "i" "u"
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Hence, the result is a list which names are coming from our grouping vector/factor letter_type.
split has also a method to deal with data.frames.
Consider for instance iris data:
data(iris)
By using split, one can create a list containing one data.frame per iris specie (variable: Species):
> liris <- split(iris, irisS$Species)
> names(liris)
[1] "setosa" "versicolor" "virginica"

> head(lirisSsetosa)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5) 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

(contains only data for setosa group).
One example operation would be to compute correlation matrix per iris specie; one would then use lapply:

> (lcor <- lapply(liris, FUN=function(df) cor(df[,1:4])))

$setosa
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 ©0.7425467 0.2671758 ©.2780984

Sepal.Width 0.7425467 1.0000000 0.1777000 0.2327520
Petal.Length 0.2671758 0.1777000 1.0000000 0.3316300
Petal.Width 0.2780984 0.2327520 0.3316300 1.0000000
Sversicolor

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 ©.5259107 0.7540490  0.5464611

Sepal.Width 0.5259107 1.0000000 0.5605221 0.6639987
Petal.Length 0.7540490 0.5605221 1.0000000 0.7866681
Petal.Width 0.5464611 0.6639987 0.7866681 1.0000000
Svirginica

Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length 1.0000000 0.4572278 0.8642247 0.2811077

Sepal.Width 0.4572278 1.0000000 0.4010446  ©0.5377280
Petal.Length 0.8642247 0.4010446 1.0000000 ©.3221082
Petal.Width 0.2811077 0.5377280 0.3221082 1.0000000

Then we can retrieve per group the best pair of correlated variables: (correlation matrix is reshaped/melted,
diagonal is filtered out and selecting best record is performed)

> library(reshape)

> (topcor <- lapply(lcor, FUN=function(cormat){
correlations <- melt(cormat,variable_name="correlatio);
filtered <- correlations[correlations$X1 != correlations$X2, ];
filtered[which.max(filteredScorrelation), ]

H)
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Ssetosa
X1 X2
2 Sepal.Width Sepal.Length

Sversicolor
X1 X2
12 Petal.Width Petal.Length

Svirginica
X1 X2
3 Petal.Length Sepal.lLength

correlation
0.7425467

correlation
0.7866681

correlation
0.8642247

Note that one computations are performed on such groupwise level, one may be interested in stacking the results,

which can be done with:

> (result <- do.call("rbind", topcor))

X1

X2 co

setosa Sepal.Width Sepal.Length
versicolor Petal.Width Petal.lLength
virginica Petal.Length Sepal.Length

rrelation
0.7425467
0.7866681
0.8642247

GoalKicker.com - R Notes for Professionals

64


http://goalkicker.com/

Chapter 20: Reodin? and writing tabular
data in plain-text files (CSV, TSV, etc.)

Parameter Details
file name of the CSV file to read
header logical: does the .csv file contain a header row with column names?
sep character: symbol that separates the cells on each row
quote character: symbol used to quote character strings
dec character: symbol used as decimal separator
fill logical: when TRUE, rows with unequal length are filled with blank fields.

comment.char character: character used as comment in the csv file. Lines preceded by this character are ignored.
extra arguments to be passed to read. table

Section 20.1: Importing .csv files

Importing using base R

Comma separated value files (CSVs) can be imported using read. csv, which wraps read. table, but uses sep )
to set the delimiter to a comma.

# get the file path of a CSV included in R's utils package
csv_path <- system.file("misc", "exDIF.csv", package = "utils")

# path will vary based on installation location
csv_path
## [1] "/Library/Frameworks/R.framework/Resources/library/utils/misc/exDIF.csv"

df <- read.csv(csv_path)
df

## Var1l Var2
## 1 2.70 A

## 2 3.14 B
## 3 10.00 A
## 4 -7.00 A

A user friendly option, file.choose, allows to browse through the directories:
df <- read.csv(file.choose())
Notes

¢ Unlike read.table, read.csv defaults to header = TRUE, and uses the first row as column names.

¢ All these functions will convert strings to factor class by default unless either as.is = TRUE or
stringsAsFactors = FALSE.

* The read.csv2 variant defaultsto sep = ";" and dec = ", " for use on data from countries where the
comma is used as a decimal point and the semicolon as a field separator.

Importing using packages

The readr package's read_csv function offers much faster performance, a progress bar for large files, and more
popular default options than standard read.csv, including stringsAsFactors = FALSE.

library(readr)

df <- read_csv(csv_path)
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df

## # A tibble: 4 x 2
## Var1l Var2

## <dbl> <chr>

## 1 2.70 A
## 2 3.14 B
## 3 10.00 A
## 4 -7.00 A

Section 20.2: Importing with data.table

The data.table package introduces the function fread. While it is similar to read. table, fread is usually faster and
more flexible, guessing the file's delimiter automatically.

# get the file path of a CSV included in R's utils package
csv_path <- system.file("misc", "exDIF.csv", package = "utils")

# path will vary based on R installation location
csv_path

## [1] "/Library/Frameworks/R.framework/Resources/library/utils/misc/exDIF.csv"

dt <- fread(csv_path)

dt

## Var1 Var2
## 1. 2.79 A
## 2. 3.14 B
## 3: 10.00 A
## 4. -7.00 A

Where argument input is a string representing:

¢ the filename (e.g. "filename.csv"),
¢ ashell command that acts on afile (e.g. "grep 'word' filename"), or
e theinputitself (e.g. "input1, input2 \n A, B \n C, D").

fread returns an object of class data.table that inherits from class data. frame, suitable for use with the
data.table's usage of [ ]. To return an ordinary data.frame, set the data.table parameter to FALSE:

df <- fread(csv_path, data.table = FALSE)

class(df)
## [1] "data.frame"

df
## Var1 Var2
## 1 2.70 A

## 2 3.14 B
## 3 10.00 A
## 4 -7.00 A
Notes

¢ fread does not have all same options as read. table. One missing argument is na.comment, which may lead
in unwanted behaviors if the source file contains #.

e fread uses only " for quote parameter.

¢ fread uses few (5) lines to guess variables types.
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Section 20.3: Exporting .csv files

Exporting using base R

Data can be written to a CSV file using write.csv():

write.csv(mtcars, "mtcars.csv")

Commonly-specified parameters include row.names = FALSEandna = "".

Exporting using packages

readr::write_csv is significantly faster than write.csv and does not write row names.

library(readr)

write_csv(mtcars, "mtcars.csv")

Section 20.4: Import multiple csv files

files = list.files(pattern="x.csv")
data_list = lapply(files, read.table, header = TRUE)

This read every file and adds it to a list. Afterwards, if all data.frame have the same structure they can be combined
into one big data.frame:

df <- do.call(rbind, data_list)

Section 20.5: Importing fixed-width files

Fixed-width files are text files in which columns are not separated by any character delimiter, like , or ;, but rather
have a fixed character length (width). Data is usually padded with white spaces.

An example:

Columnl Column2 Column3 Column4Column5
1647 pi "important’ 3.141596.28318
1731 euler ‘quite important' 2.718285.43656
1979 answer 'The Answer.' 42 42

Let's assume this data table exists in the local file constants. txt in the working directory.

Importing with base R
df <- read.fwf('constants.txt', widths = ¢(8,10,18,7,8), header = FALSE, skip = 1)

df

#> V1 V2 V3 V4 V5
#> 1 1647 pi "important’ 3.14159 6.28318
#> 2 1731 euler 'quite important' 2.71828 5.43656
#> 3 1979 answer 'The Answer.' 42 42 .0000
Note:

¢ Column titles don't need to be separated by a character (Column4Column5)
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e The widths parameter defines the width of each column
¢ Non-separated headers are not readable with read. fwf ()

Importing with readr
library(readr)

df <- read_fwf('constants.txt',
fwf_cols(Year = 8, Name = 10, Importance = 18, Value = 7, Doubled = 8),

skip = 1)
df
#> # A tibble: 3 x 5
#> Year Name Importance Value Doubled
#> <int> <chr> <chr> <dbl> <db1l>
#> 1 1647 pi "important' 3.14159 6.28318
#> 2 1731 euler 'quite important' 2.71828 5.43656
#> 3 1979 answer 'The Answer.' 42.00000 42.00000
Note:

e readr's fwf_* helper functions offer alternative ways of specifying column lengths, including automatic
guessing (fwf_empty)

e readr is faster than base R

¢ Column titles cannot be automatically imported from data file
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Chapter 21: Pipe operators (%>% and
others)

lhs rhs
A value or the magrittr placeholder. A function call using the magrittr semantics

Pipe operators, available in magrittr, dplyr, and other R packages, process a data-object using a sequence of
operations by passing the result of one step as input for the next step using infix-operators rather than the more
typical R method of nested function calls.

Note that the intended aim of pipe operators is to increase human readability of written code. See Remarks section
for performance considerations.

Section 21.1: Basic use and chaining

The pipe operator, %>%, is used to insert an argument into a function. It is not a base feature of the language and
can only be used after attaching a package that provides it, such as magrittr. The pipe operator takes the left-hand
side (LHS) of the pipe and uses it as the first argument of the function on the right-hand side (RHS) of the pipe. For
example:

library(magrittr)

1:10 %>% mean
# [1] 5.5

# is equivalent to
mean(1:10)
# [1] 5.5

The pipe can be used to replace a sequence of function calls. Multiple pipes allow us to read and write the
sequence from left to right, rather than from inside to out. For example, suppose we have years defined as a factor
but want to convert it to a numeric. To prevent possible information loss, we first convert to character and then to
numeric:

years <- factor(2008:2012)

# nesting
as.numeric(as.character(years))

# piping
years %>% as.character %>% as.numeric

If we don't want the LHS (Left Hand Side) used as the first argument on the RHS (Right Hand Side), there are
workarounds, such as naming the arguments or using . to indicate where the piped input goes.

# example with grepl
# its syntax:
# grepl(pattern, x, ignore.case = FALSE, perl = FALSE, fixed = FALSE, useBytes = FALSE)

# note that the “substring’ result is the *2nd* argument of grepl
grepl("Wo", substring("Hello World", 7, 11))

# piping while naming other arguments
"Hello World" %>% substring(7, 11) %>% grepl(pattern = "Wo")
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# piping with .
"Hello World" %>% substring(7, 11) %>% grepl("Wo", .)

# piping with . and curly braces
"Hello World" %>% substring(7, 11) %>% { c(paste('Hi', .)) }
#[1] "Hi World"

#using LHS multiple times in argument with curly braces and .

"Hello World" %>% substring(7, 11) %>% { c(paste(. ,'Hi', .)) }
#[1] "World Hi World"

Section 21.2: Functional sequences

Given a sequence of steps we use repeatedly, it's often handy to store it in a function. Pipes allow for saving such

functions in a readable format by starting a sequence with a dot as in:
. %>% RHS
As an example, suppose we have factor dates and want to extract the year:

library(magrittr) # needed to include the pipe operators
library(lubridate)
read_year <- . %>% as.character %>% as.Date %>% year

# Creating a dataset

df <- data.frame(now = "2015-11-11", before = "2012-081-01")
# now before

# 1 2015-11-11 2012-01-01

# Example 1: applying ‘read_year' to a single character-vector
dfSnow %>% read_year
# [1] 2015

# Example 2: applying ‘read_year' to all columns of ‘“df°’

df %>% lapply(read_year) %>% as.data.frame # implicit “lapply(df, read_year)
# now before

# 1 2015 2012

# Example 3: same as above using ‘mutate_all"
library(dplyr)

df %>% mutate_all(funs(read_year))

# if an older version of dplyr use “mutate_each®
# now before

# 1 2015 2012

We can review the composition of the function by typing its name or using functions:

read_year
Functional sequence with the following components:

#

#

# 1. as.character(.)
# 2. as.Date(.)

# 3. year(.)

#

#

Use 'functions' to extract the individual functions.

We can also access each function by its position in the sequence:

read_year[[2]]
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# function (.)
# as.Date(.)

Generally, this approach may be useful when clarity is more important than speed.

Section 21.3: Assignment with %<>%

The magrittr package contains a compound assignment infix-operator, %<>%, that updates a value by first piping it

into one or more rhs expressions and then assigning the result. This eliminates the need to type an object name
twice (once on each side of the assignment operator <-). %<>% must be the first infix-operator in a chain:

library(magrittr)
library(dplyr)

df <- mtcars

Instead of writing

df <- df %>% select(1:3) %>% filter(mpg > 20, cyl == 6)
or

df %>% select(1:3) %>% filter(mpg > 20, cyl == 6) -> df
The compound assignment operator will both pipe and reassign df:

df %<>% select(1:3) %>% filter(mpg > 20, cyl == 6)

Section 21.4: Exposing contents with %$%

The exposition pipe operator, %$%, exposes the column names as R symbols within the left-hand side object to the
right-hand side expression. This operator is handy when piping into functions that do not have a data argument
(unlike, say, 1m) and that don't take a data.frame and column names as arguments (most of the main dplyr
functions).

The exposition pipe operator %$% allows a user to avoid breaking a pipeline when needing to refer to column
names. For instance, say you want to filter a data.frame and then run a correlation test on two columns with
cor.test:

library(magrittr)
library(dplyr)
mtcars %>%
filter(wt > 2) %$%
cor.test(hp, mpg)

#> Pearson's product-moment correlation

#> data: hp and mpg

#> t = -5.9546, df = 26, p-value = 2.768e-06

#> alternative hypothesis: true correlation is not equal to ©
#> 95 percent confidence interval:

#> -0.8825498 -0.5393217

#> sample estimates:

#> cor
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#> -0.7595673

Here the standard %>% pipe passes the data.frame through to filter (), while the %$% pipe exposes the column
names to cor.test().

The exposition pipe works like a pipe-able version of the base Rwith() functions, and the same left-hand side
objects are accepted as inputs.

Section 21.5: Creating side effects with %T>%

Some functions in R produce a side effect (i.e. saving, printing, plotting, etc) and do not always return a meaningful
or desired value.

%T>% (tee operator) allows you to forward a value into a side-effect-producing function while keeping the original
1hs value intact. In other words: the tee operator works like %>%, except the return values is 1hs itself, and not the
result of the rhs function/expression.

Example: Create, pipe, write, and return an object. If %>% were used in place of %T>% in this example, then the
variable all_letters would contain NULL rather than the value of the sorted object.

all_letters <- c(letters, LETTERS) %>%
sort %T>%
write.csv(file = "all_letters.csv")

read.csv("all_letters.csv") %>% head()

H oH H B H R R

S WN =
OO0 WT >» o X

Warning: Piping an unnamed object to save() will produce an object named . when loaded into the workspace
with load(). However, a workaround using a helper function is possible (which can also be written inline as an
anonymous function).

all_letters <- c(letters, LETTERS) %>%
sort %T>%
save(file = "all_letters.RData")

load("all_letters.RData", e <- new.env())

get("all_letters", envir = e)
# Error in get("all_letters", envir = e) : object 'all_letters' not found

get(".", envir = e)

# [1] "a" "A" "b" "B" "c¢" "C" "d" "D" "e" "E" "f" "F" "g" "G" "h" "H" "i" "I" "j" "J"
# [21] "k" "K" "1" "L" "m" "M" "n" "N" "o" "O" "p" "P" "g@" "Q" "r" "R" "s" "S" "t" "T"
# [41] "u™ "U" "v'oUVT O TwtOTWT O UxMOUXT Mytotyt otz ozt

# Work-around

save2 <- function(. = ., name, file = stop("'file' must be specified")) {
assign(name, .)
call_save <- call("save", ... = name, file = file)
eval(call_save)

}
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all_letters <- c(letters, LETTERS) %>%
sort %T>%
save2("all_letters”, "all_letters.RData")

Section 21.6: Using the pipe with dplyr and ggplot2

The %>% operator can also be used to pipe the dplyr output into ggplot. This creates a unified exploratory data
analysis (EDA) pipeline that is easily customizable. This method is faster than doing the aggregations internally in
ggplot and has the added benefit of avoiding unnecessary intermediate variables.

library(dplyr)
library(ggplot)

diamonds %>%
filter(depth > 60) %>%
group_by(cut) %>%
summarize(mean_price = mean(price)) %>%
ggplot(aes(x = cut, y = mean_price)) +
geom_bar(stat = "identity")
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Chapter 22: Linear Models (Regression)

Parameter Meaning
a formula in Wilkinson-Rogers notation; response ~ ... where ... contains terms corresponding to
formula . : ; ; .
variables in the environment or in the data frame specified by the data argument
data data frame containing the response and predictor variables
subset a vector specifying a subset of observations to be used: may be expressed as a logical statement in

terms of the variables in data

weights analytical weights (see Weights section above)

na.action how to handle missing (NA) values: see ?na.action

how to perform the fitting. Only choices are "qr" or "model.frame" (the latter returns the model frame

method without fitting the model, identical to specifying mode1=TRUE)

model whether to store the model frame in the fitted object

X whether to store the model matrix in the fitted object

y whether to store the model response in the fitted object

qr whether to store the QR decomposition in the fitted object

singular.ok whether to allow singular fits, models with collinear predictors (a subset of the coefficients will

automatically be set to NA in this case

a list of contrasts to be used for particular factors in the model; see the contrasts.arg argument of
contrasts ?model.matrix.default. Contrasts can also be set with options() (see the contrasts argument) or by
assigning the contrast attributes of a factor (see ?contrasts)

used to specify an a priori known component in the model. May also be specified as part of the
formula. See ?model.offset

additional arguments to be passed to lower-level fitting functions (Im.fit() or Im.wfit())

offset

Section 22.1: Linear regression on the mtcars dataset

The built-in mtcars data frame contains information about 32 cars, including their weight, fuel efficiency (in miles-
per-gallon), speed, etc. (To find out more about the dataset, use help(mtcars)).

If we are interested in the relationship between fuel efficiency (mpg) and weight (wt) we may start plotting those
variables with:

plot(mpg ~ wt, data = mtcars, col=2)

The plots shows a (linear) relationship!. Then if we want to perform linear regression to determine the coefficients
of a linear model, we would use the 1m function:

fit <- lm(mpg ~ wt, data = mtcars)

The ~ here means "explained by", so the formula mpg ~ wt means we are predicting mpg as explained by wt. The
most helpful way to view the output is with:

summary(fit)

Which gives the output:

Call:
Im(formula = mpg ~ wt, data = mtcars)

Residuals:
Min 1Q Median 3Q Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727

Coefficients:
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Estimate Std. Error t value Pr(>|t])

(Intercept) 37.2851 1.8776 19.858 < 2e-16 ***
wt -5.3445 0.5591 -9.559 1.29e-10 **x=*
Signif. codes: © ‘***' ©.001 ‘#x' ©.01 ‘x' ©.05 ‘.’ 0.1 ' ' 1

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

This provides information about:

¢ the estimated slope of each coefficient (wt and the y-intercept), which suggests the best-fit prediction of mpg
i537.2851 + (-5.3445) * wt

¢ The p-value of each coefficient, which suggests that the intercept and weight are probably not due to chance

¢ Overall estimates of fit such as R*2 and adjusted RA2, which show how much of the variation in mpg is
explained by the model

We could add a line to our first plot to show the predicted mpg:
abline(fit,col=3, lwd=2)

It is also possible to add the equation to that plot. First, get the coefficients with coef. Then using pasted we
collapse the coefficients with appropriate variables and +/-, to built the equation. Finally, we add it to the plot using
mtext:

bs <- round(coef(fit), 3)
Imlab <- paste@("mpg = ", bs[1],

ifelse(sign(bs[2])==1, " + ", " - "), abs(bs[2]), " wt ")
mtext(1lmlab, 3, line=-2)

The result is:
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mpg = 37 285 - 5.344 wt

mpQ

Section 22.2: Using the 'predict’ function

Once a model is built predict is the main function to test with new data. Our example will use the mtcars built-in
dataset to regress miles per gallon against displacement:

my_mdl <- lm(mpg ~ disp, data=mtcars)
my_mdl

Call:
Im(formula = mpg ~ disp, data = mtcars)

Coefficients:
(Intercept) disp
29.59985 -0.04122

If I had a new data source with displacement | could see the estimated miles per gallon.

set.seed(1234)

newdata <- sample(mtcarsSdisp, 5)
newdata

[1] 258.86 71.1 75.7 145.0 400.0

newdf <- data.frame(disp=newdata)
predict(my_mdl, newdf)

1 2 3 4 5
18.96635 26.66946 26.47987 23.62366 13.11381

The most important part of the process is to create a new data frame with the same column names as the original
data. In this case, the original data had a column labeled disp, | was sure to call the new data that same name.
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Caution

Let's look at a few common pitfalls:

1. not using a data.frame in the new object:

predict(my_mdl, newdata)
Error in eval(predvars, data, env)

2. not using same names in new data frame:

newdf2 <- data.frame(newdata)
predict(my_mdl, newdf2)
Error in eval(expr, envir, enclos)

Accuracy

numeric 'envir' arg not of length one

: object 'disp' not found

To check the accuracy of the prediction you will need the actual y values of the new data. In this example, newdf will

need a column for 'mpg' and 'disp'.

newdf <- data.frame(mpg=mtcarsSmpg[1:10], disp=mtcarsS$disp[1:10])
disp

p <- predict(my_mdl, newdf)

#root mean square error
sqrt(mean((p - newdf$mpg)”2, na.rm=TRUE))

# mpg
#1 21.0
#2 21.0
#3 22.8
#4 21.4
#5 18.7
#6 18.1
#7 14.3
#8 24.4
#9 22.8
# 10 19.2

160.
160.
108.
258.
360.
225.
360.
146.
140.
167.

[1] 2.325148

Section 22.3: Weighting

Sometimes we want the model to give more weight to some data points or examples than others. This is possible
by specifying the weight for the input data while learning the model. There are generally two kinds of scenarios

0

OO NOOOOODOO

where we might use non-uniform weights over the examples:

¢ Analytic Weights: Reflect the different levels of precision of different observations. For example, if analyzing

data where each observation is the average results from a geographic area, the analytic weight is

proportional to the inverse of the estimated variance. Useful when dealing with averages in data by providing
a proportional weight given the number of observations. Source

e Sampling Weights (Inverse Probability Weights - IPW): a statistical technique for calculating statistics
standardized to a population different from that in which the data was collected. Study designs with a
disparate sampling population and population of target inference (target population) are common in
application. Useful when dealing with data that have missing values. Source
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The 1m() function does analytic weighting. For sampling weights the survey package is used to build a survey
design object and run svyglm(). By default, the survey package uses sampling weights. (NOTE: Im(), and svyglm()
with family gaussian() will all produce the same point estimates, because they both solve for the coefficients by
minimizing the weighted least squares. They differ in how standard errors are calculated.)

Test Data

data <- structure(list(lexptot = c¢(9.1595012302023, 9.86330744180814,
8.92372556833205, 8.58202430280175, 10.1133857229336), progvillm = c(1L,

1L, 1L, 1L, oL), sexhead = c¢(1L, 1L, OL, 1L, 1L), agehead = c(79L,

43L, 52L, 48L, 35L), weight = c(1.04273509979248, 1.81139605045319,
1.01139605045319, 1.01139605045319, 0.76305216550827)), .Names = c("lexptot"”,
"progvillm", "sexhead", "agehead", "weight"), class = c("tbl_df",

"tbl", "data.frame"), row.names = c(NA, -5L))

Analytic Weights

Im.analytic <- 1lm(lexptot ~ progvillm + sexhead + agehead,
data = data, weight = weight)
summary(1lm.analytic)

Output

Call:
Im(formula = lexptot ~ progvillm + sexhead + agehead, data = data,
weights = weight)

Weighted Residuals:
1 2 3 4 5
9.249e-02 5.823e-01 0.000e+00 -6.762e-01 -1.527e-16

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 10.016054 1.744293 5.742 0.110
progvillm -0.781204 1.344974 -0.581 0.665
sexhead 0.306742  1.040625 0.295 0.818
agehead -0.005983 0.032024 -0.187 0.882

Residual standard error: 0.8971 on 1 degrees of freedom

Multiple R-squared: ©0.467, Adjusted R-squared: -1.132
F-statistic: ©.2921 on 3 and 1 DF, p-value: ©0.8386

Sampling Weights (IPW)

library(survey)
dataS$X <- 1:nrow(data) # Create unique id

# Build survey design object with unique id, ipw, and data.frame
des1 <- svydesign(id = ~X, weights = ~weight, data = data)

# Run glm with survey design object
prog.lm <- svyglm(lexptot ~ progvillm + sexhead + agehead, design=des1)

Output

Call:
svyglm(formula = lexptot ~ progvillm + sexhead + agehead, design = des1)
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Survey design:

svydesign(id = ~X, weights = ~weight, data = data)

Coefficients:

Estimate Std.
0.

(Intercept) 10.016054
progvillm -0.781204
sexhead 0.306742
agehead -0.005983

‘

Signif. codes: ©

*k*

0.

(Dispersion parameter for

Error t value Pr(>|t])
183942 54.452 0.0117 *

0.640372 -1.220  0.4371
0.
0.014747 -0.406  0.7546

397089 0.772 0.5813

001 ‘*x’' 0.01 '+’ @.05 ‘.’ ©0.1 * ' 1

gaussian family taken to be 0.2078647)

Number of Fisher Scoring iterations: 2

Section 22.4: Checking for nonlinearity with polynomial

regression

Sometimes when working with linear regression we need to check for non-linearity in the data. One way to do this
is to fit a polynomial model and check whether it fits the data better than a linear model. There are other reasons,
such as theoretical, that indicate to fit a quadratic or higher order model because it is believed that the variables
relationship is inherently polynomial in nature.

Let's fit a quadratic model for the mtcars dataset. For a linear model see Linear regression on the mtcars dataset.

First we make a scatter plot of the variables mpg (Miles/gallon), disp (Displacement (cu.in.)), and wt (Weight (1000
Ibs)). The relationship among mpg and disp appears non-linear.

plot(mtcars[,c("mpg", "disp", "wt")])
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A linear fit will show that disp is not significant.

fit@ = lm(mpg ~ wt+disp, mtcars)

summary (fit0)

# Coefficients:

# Estimate Std. Error t
#(Intercept) 34.96055 2.16454
#wt -3.35082 1.16413
#disp -0.01773 0.00919
#___

#Signif. codes: ©

*%%x' 0.001 ‘*x*

value Pr(>|t])
16.151 4.91e-16 #**x*
-2.878 0.00743 **
-1.929 0.06362

' 0.01 ‘' 0.05 ‘.’

0.1 '

#Residual standard error: 2.917 on 29 degrees of freedom

#Multiple R-squared:

0.7809,

Adjusted R-squared:

0.7658

’

1

Then, to get the result of a quadratic model, we added I(disp”2). The new model appears better when looking at
R*2 and all variables are significant.

fit1l = 1lm(mpg ~ wt+disp+I(disp”2), mtcars)

summary(fit1)

# Coefficients:

# Estimate Std. Error
#(Intercept) 41.4019837 2.4266906
#wt -3.4179165 0.9545642
#disp -0.0823950 0.0182460
#I(disp”2) 0.0001277 0©0.0000328
#___

#Signif. codes: ©

‘

*%%x' 0.001 ‘*x%

t value Pr(>|t]|)
17.061

2.5e-16 **xx*

-3.581 0.001278 *x*
-4.516 0.000104 **xx*
3.892 0.0005617 **x*

' 0.01 '+’ 0.05 ‘.’

0.1 '

#Residual standard error: 2.391 on 28 degrees of freedom

’

1
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#Multiple R-squared: ©0.8578, Adjusted R-squared: 0.8426

As we have three variables, the fitted model is a surface represented by:

mpg = 41.4020-3.4179*wt-0.0824*disp+0.0001277*disp”2

Another way to specify polynomial regression is using poly with parameter raw=TRUE, otherwise orthogonal
polynomials will be considered (see the help(ploy) for more information). We get the same result using;:

summary (1m(mpg ~ wt+poly(disp, 2, raw=TRUE),mtcars))

Finally, what if we need to show a plot of the estimated surface? Well there are many options to make 3D plots in R.
Here we use Fit3d from p3dpackage.

library(p3d)
Init3d(family="serif", cex = 1)
Plot3d(mpg ~ disp+wt, mtcars)
Axes3d()

Fit3d(fit1)

mp

wt

Section 22.5: Plotting The Regression (base)

Continuing on the mtcars example, here is a simple way to produce a plot of your linear regression that is
potentially suitable for publication.

First fit the linear model and
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fit <- lm(mpg ~ wt, data = mtcars)
Then plot the two variables of interest and add the regression line within the definition domain:

plot(mtcarsSwt,mtcarsSmpg,pch=18, xlab = 'wt',ylab = 'mpg')
lines(c(min(mtcars$wt),max(mtcarsSwt)),
as.numeric(predict(fit, data.frame(wt=c(min(mtcars$wt),max(mtcarsS$wt))))))

Almost there! The last step is to add to the plot, the regression equation, the rsquare as well as the correlation
coefficient. This is done using the vector function:

rp = vector('expression',3)
rp[1] = substitute(expression(italic(y) == MYOTHERVALUE3 + MYOTHERVALUE4 %*% x),
list (MYOTHERVALUE3 = format(fitScoefficients[1], digits = 2),

MYOTHERVALUE4 = format(fitScoefficients[2], digits = 2)))[2]
rp[2] = substitute(expression(italic(R)"2 == MYVALUE),
list (MYVALUE = format(summary(fit)Sadj.r.squared,dig=3)))[2]
rp[3] = substitute(expression(Pearson-R == MYOTHERVALUE2),
list(MYOTHERVALUE2 = format(cor(mtcarsSwt,mtcarsSmpg), digits = 2)))[2]

legend("topright”, legend = rp, bty = 'n')

Note that you can add any other parameter such as the RMSE by adapting the vector function. Imagine you want a
legend with 10 elements. The vector definition would be the following:

rp = vector('expression',10)
and you will need to defined r[1].... to r[18]

Here is the output:

v, y=37+-53xx
=R R%=0.745
Pearson—-R =-0.87
To R
[N}
N
O
E o
Q-
To R
o _|
2 3 4 5
wi
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Section 22.6: Quality assessment

After building a regression model it is important to check the result and decide if the model is appropriate and
works well with the data at hand. This can be done by examining the residuals plot as well as other diagnostic plots.

# fit the model

fit <- 1lm(mpg ~ wt, data = mtcars)
#

par(mfrow=c(2,1))

# plot model object

plot(fit, which =1:2)
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Theoretical Quantiles

These plots check for two assumptions that were made while building the model:

1. That the expected value of the predicted variable (in this case mpg) is given by a linear combination of the
predictors (in this case wt). We expect this estimate to be unbiased. So the residuals should be centered
around the mean for all values of the predictors. In this case we see that the residuals tend to be positive at
the ends and negative in the middle, suggesting a non-linear relationship between the variables.

2. That the actual predicted variable is normally distributed around its estimate. Thus, the residuals should be
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normally distributed. For normally distributed data, the points in a normal Q-Q plot should lie on or close to
the diagonal. There is some amount of skew at the ends here.
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Chapter 23: data.table

Data.table is a package that extends the functionality of data frames from base R, particularly improving on their
performance and syntax. See the package's Docs area at Getting started with data.table for details.

Section 23.1: Creating a data.table

A data.table is an enhanced version of the data.frame class from base R. As such, its class() attribute is the vector
"data.table" "data.frame" and functions that work on a data.frame will also work with a data.table. There are
many ways to create, load or coerce to a data.table.

Build

Don't forget to install and activate the data.table package
library(data.table)

There is a constructor of the same name:

DT <- data.table(

x = letters[1:5],
y = 1:5,
z = (1:5) >3

)

# Xy z

# 1: a 1 FALSE

# 2: b 2 FALSE

# 3: ¢ 3 FALSE

# 4. d 4 TRUE

# 5. e 5 TRUE

Unlike data.frame, data.table will not coerce strings to factors:
sapply (DT, class)

# X y z
# "character” "integer" "logical"

Read in

We can read from a text file:

dt <- fread("my_file.csv")

Unlike read.csv, fread will read strings as strings, not as factors.
Modify a data.frame

For efficiency, data.table offers a way of altering a data.frame or list to make a data.table in-place (without making a
copy or changing its memory location):

# example data.frame

DF <- data.frame(x = letters[1:5], y = 1:5, z = (1:5) > 3)
# modification

setDT(DF)

Note that we do not <- assign the result, since the object DF has been modified in-place. The class attributes of the
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data.frame will be retained:

sapply(DF, class)
# X y z
# “"factor" "integer" "logical"

Coerce object to data.table

If you have a list, data.frame, or data.table, you should use the setDT function to convert to a data.table
because it does the conversion by reference instead of making a copy (which as.data.table does). This is
important if you are working with large datasets.

If you have another R object (such as a matrix), you must use as.data.table to coerce it to a data. table.
mat <- matrix(0, ncol = 10, nrow = 10)

DT <- as.data.table(mat)
# or
DT <- data.table(mat)

Section 23.2: Special symbols in data.table

.SD

.SD refers to the subset of the data.table for each group, excluding all columns used in by.

.SD along with lapply can be used to apply any function to multiple columns by group in a data.table

We will continue using the same built-in dataset, mtcars:
mtcars = data.table(mtcars) # Let's not include rownames to keep things simpler

Mean of all columns in the dataset by number of cylinders, cy1:

mtcars[ , lapply(.SD, mean), by = cyl]

# cyl mpg disp hp drat wt gsec Vs am gear
carb

#1: 6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143
3.428571

#2: 4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727 ©.9696909 0.7272727 4.090909
1.545455

#3: 8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714
3.500000

Apart from cyl, there are other categorical columns in the dataset such as vs, am, gear and carb. It doesn't really
make sense to take the mean of these columns. So let's exclude these columns. This is where .SDcols comes into
the picture.

.SDcols
.SDcols specifies the columns of the data.table that are included in .SD.

Mean of all columns (continuous columns) in the dataset by number of gears gear, and number of cylinders, cyl,
arranged by gear and cyl:

# All the continuous variables in the dataset
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cols_chosen <- c¢("mpg", "disp", "hp", "drat", "wt", "gsec")

mtcars[order(gear, cyl), lapply(.SD, mean), by

# gear cyl mpg disp hp drat wt gsec
#1: 3 4 21.500 120.1000 97.0000 3.700000 2.465000 20.0100
#2: 3 6 19.750 241.5000 107.5000 2.920000 3.337500 19.8300
#3: 3 8 15.050 357.6167 194.1667 3.120833 4.104083 17.1425
#4: 4 4 26.925 102.6250 76.0000 4.110000 2.378125 19.6125
#5: 4 6 19.750 163.8000 116.5000 3.910000 3.093750 17.6700
#6: 5 4 28.200 107.7000 102.0000 4.100000 1.826500 16.8000
#7: 5 6 19.700 145.0000 175.0000 3.620000 2.770000 15.5000
#8: 5 8 15.400 326.0000 299.5000 3.880000 3.370000 14.5500

.(gear, cyl), .SDcols = cols_chosen]

Maybe we don't want to calculate the mean by groups. To calculate the mean for all the cars in the dataset, we don't

specify the by variable.

mtcars[ , lapply(.SD, mean), .SDcols = cols_chosen]

# mpg disp hp drat wt gsec
#1: 20.09062 230.7219 146.6875 3.596563 3.21725 17.84875

Note:

e |tis not necessary to define cols_chosen beforehand. .SDcols can directly take column names
e .SDcols can also directly take a vector of columnnumbers. In the above example this would be mtcars|

lapply(.SD, mean), .SDcols = c(1,3:7)]

.N
.Nis shorthand for the number of rows in a group.

iris[, .(count=.N), by=Species]

# Species count
#1: setosa 50
#2: versicolor 50
#3: wvirginica 50

Section 23.3: Adding and modifying columns

DT[where, select|update|do, by] syntaxis used to work with columns of a data.table.

e The "where" partis the i argument
e The "select|update|do" partis the j argument

These two arguments are usually passed by position instead of by name.

Our example data below is

mtcars = data.table(mtcars, keep.rownames = TRUE)

Editing entire columns

Use the := operator inside j to assign new columns:

mtcars[, mpg_sq := mpg”2]
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Remove columns by setting to NULL:
mtcars[, mpg_sq := NULL]

Add multiple columns by using the := operator's multivariate format:

mtcars[, ':="(mpg_sq = mpg’2, wt_sqrt = sqrt(wt))]
# or
mtcars[, c("mpg_sq", "wt_sqrt") := .(mpg"2, sqrt(wt))]

If the columns are dependent and must be defined in sequence, one way is:
mtcars[, c("mpg_sq", "mpg2_hp") := .(templ <- mpg”*2, templ/hp)]

The . () syntax is used when the right-hand side of LHS := RHS is a list of columns.
For dynamically-determined column names, use parentheses:

vn = "mpg_sq"
mtcars[, (vn) := mpg"2]

Columns can also be modified with set, though this is rarely necessary:

set(mtcars, j = "hp_over_wt", v = mtcarsShp/mtcarsSwt)

Editing subsets of columns

Use the i argument to subset to rows "where" edits should be made:

mtcars[1:3, newvar := "Hello"]
# or
set(mtcars, j = "newvar", i = 1:3, v = "Hello")

As in a data.frame, we can subset using row numbers or logical tests. It is also possible to use a "join" in i, but that
more complicated task is covered in another example.

Editing column attributes

Functions that edit attributes, such as levels<- or names<-, actually replace an object with a modified copy. Even if
only used on one column in a data.table, the entire object is copied and replaced.

To modify an object without copies, use setnames to change the column names of a data.table or data.frame and
setattr to change an attribute for any object.

# Print a message to the console whenever the data.table is copied
tracemem(mtcars)
mtcars[, cyl2 := factor(cyl)]

# Neither of these statements copy the data.table
setnames(mtcars, old = "cyl2", new = "cyl_fac")
setattr(mtcars$cyl_fac, "levels", c("four", "six", "eight"))

# Each of these statements copies the data.table

names(mtcars) [names(mtcars) == "cyl_fac"] <- "cf"
levels(mtcars$cf) <- c("IV", "VI", "VIII")

Be aware that these changes are made by reference, so they are global. Changing them within one environment
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affects the object in all environments.

# This function also changes the levels in the global environment
edit_levels <- function(x) setattr(x, "levels", c("low", "med", "high"))
edit_levels(mtcarsScyl_factor)

Section 23.4: Writing code compatible with both data.frame
and data.table

Differences in subsetting syntax

A data.table is one of several two-dimensional data structures available in R, besides data.frame, matrix and (2D)
array. All of these classes use a very similar but not identical syntax for subsetting, the A[rows, cols] schema.

Consider the following data stored in a matrix, a data.frame and a data.table:

ma <- matrix(rnorm(12), nrow=4, dimnames=list(letters[1:4], c('X', 'Y', 'Z")))

df <- as.data.frame(ma)

dt <- as.data.table(ma)

ma[2:3] #---> returns the 2nd and 3rd items, as if 'ma’' were a vector (because it is!)
df[2:3] #---> returns the 2nd and 3rd columns

dt[2:3] #---> returns the 2nd and 3rd rows!

If you want to be sure of what will be returned, it is better to be explicit.

To get specific rows, just add a comma after the range:

ma[2:3, ] # \
df[2:3, 1 # }---> returns the 2nd and 3rd rows
dt[2:3, 1 # /

But, if you want to subset columns, some cases are interpreted differently. All three can be subset the same way
with integer or character indices not stored in a variable.

\
\
}---> returns the 2nd and 3rd columns
/
/
/

mal, 2
df[, 2:
dt[, 2:3
mal, ¢
df[, c(
dt[, c("

H oH H K H R

However, they differ for unquoted variable names

mycols <- 2:3

ma[, mycols] #\

df[, mycols] # }---> returns the 2nd and 3rd columns
dt[, mycols, with = FALSE] # /

dt[, mycols] # ---> Raises an error

In the last case, mycols is evaluated as the name of a column. Because dt cannot find a column named mycols, an
error is raised.

Note: For versions of the data.table package priorto 1.9.8, this behavior was slightly different. Anything in the
column index would have been evaluated using dt as an environment. So both dt[, 2:3] and dt[, mycols] would
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return the vector 2 :3. No error would be raised for the second case, because the variable mycols does exist in the
parent environment.

Strategies for maintaining compatibility with data.frame and data.table

There are many reasons to write code that is guaranteed to work with data.frame and data.table. Maybe you are
forced to use data.frame, or you may need to share some code that you don't know how will be used. So, there are
some main strategies for achieving this, in order of convenience:

Use syntax that behaves the same for both classes.

Use a common function that does the same thing as the shortest syntax.

Force data.table to behave as data. frame (ex.: call the specific method print.data.frame).
Treat them as 1list, which they ultimately are.

Convert the table to a data. frame before doing anything (bad idea if it is a huge table).
Convert the table to data. table, if dependencies are not a concern.

ok wnN-=

Subset rows. Its simple, just use the [, ] selector, with the comma:

A[1:10, ]
A[ASvar > 17, ] # A[var > 17, ] just works for data.table

Subset columns. If you want a single column, use the $ or the [[ ]] selector:

ASvar
colname <- 'var'
Al [colname]]

A[[1]]
If you want a uniform way to grab more than one column, it's necessary to appeal a bit:

B <- ‘[.data.frame (A, 2:4)

# We can give it a better name
select <- “[.data.frame’

B <- select(A, 2:4)

C <- select(A, c('foo', 'bar'))

Subset 'indexed' rows. While data.frame has row.names, data.table has its unique key feature. The best thing is
to avoid row.names entirely and take advantage of the existing optimizations in the case of data.table when
possible.

B <- A[ASvar !'= 0, ]
# or...
B <- with(A, A[var != 0, ]) # data.table will silently index A by var before subsetting

Stuff <_ c(lal' ICI' lfl)
C <- A[match(stuff, ASname), ] # really worse than: setkey(A); A[stuff, ]

Get a 1-column table, get a row as a vector. These are easy with what we have seen until now:

B <- select(A, 2) #---> a table with just the second column
C <- unlist(A[1, ]) #---> the first row as a vector (coerced if necessary)
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Section 23.5: Setting keys in data.table
Yes, you need to SETKEY pre 1.9.6

In the past (pre 1.9.6), your data.table was sped up by setting columns as keys to the table, particularly for large
tables. [See intro vignette page 5 of September 2015 version, where speed of search was 544 times better.] You
may find older code making use of this setting keys with 'setkey' or setting a 'key=' column when setting up the
table.

library(data.table)
DT <- data.table(

x = letters[1:5],

y = 5:1,

z = (1:5) >3
)
#> DT
# Xy z
#1: a 5 FALSE
#2: b 4 FALSE
#3: ¢ 3 FALSE
#4: d 2 TRUE
#5: e 1 TRUE

Set your key with the setkey command. You can have a key with multiple columns.
setkey (DT, vy)

Check your table's key in tables()

tables()
> tables()

NAME NROW NCOL MB COLS KEY
[1,] DT 5 3 1Xx,y,zy
Total: 1MB

Note this will re-sort your data.

#> DT

# Xy z
#1: e 1 TRUE
#2: d 2 TRUE
#3: ¢ 3 FALSE
#4: b 4 FALSE
#5: a 5 FALSE

Now it is unnecessary

Prior to v1.9.6 you had to have set a key for certain operations especially joining tables. The developers of
data.table have sped up and introduced a "on=" feature that can replace the dependency on keys. See SO answer
here for a detailed discussion.

InJan 2017, the developers have written a vignette around secondary indices which explains the "on" syntax and
allows for other columns to be identified for fast indexing.

Creating secondary indices?
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In a manner similar to key, you can setindex(DT, key.col) or setindexv(DT, "key.col.string"), where DT is

your data.table. Remove all indices with setindex(DT, NULL).
See your secondary indices with indices(DT).

Why secondary indices?

This does not sort the table (unlike key), but does allow for quick indexing using the "on" syntax. Note there can be
only one key, but you can use multiple secondary indices, which saves having to rekey and resort the table. This will

speed up your subsetting when changing the columns you want to subset on.

Recall, in example above y was the key for table DT:

DT

# Xy z

# 1: e 1 TRUE
#2: d 2 TRUE
# 3: ¢ 3 FALSE
# 4: b 4 FALSE
# 5: a 5 FALSE

# Let us set x as index
setindex(DT, x)

# Use indices to see what has been set
indices(DT)
# [1] "x"

# fast subset using index and not keyed column
DT["c", on ="x"]

#X y z

#1: ¢ 3 FALSE

# old way would have been rekeying DT from y to x, doing subset and
# perhaps keying back to y (now we save two sorts)

# This is a toy example above but would have been more valuable with big data sets
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Chapter 24: Pivot and unpivot with
data.table

Parameter Details
id.vars tell melt which columns to retain
variable.name tell melt what to call the column with category labels
value.name tell melt what to call the column that has values associated with category labels
value.var tell dcast where to find the values to cast in columns

tell dcast which columns to retain to form a unique record identifier (LHS) and which one holds the
category labels (RHS)

fun.aggregate specify the function to use when the casting operation generates a list of values in each cell

formula

Section 24.1: Pivot and unpivot tabular data with data.table - |

Convert from wide form to long form

Load data USArrests from datasets

data("USArrests")
head(USArrests)

Murder Assault UrbanPop Rape

Alabama 13.2 236 58 21.2
Alaska 10.0 263 48 44.5
Arizona 8.1 294 80 31.0
Arkansas 8.8 190 50 19.5
California 9.0 276 91 40.6
Colorado 7.9 204 78 38.7

Use ?USArrests to find out more. First, convert to data.table. The names of states are row names in the original
data.frame

library(data.table)
DT <- as.data.table(USArrests, keep.rownames=TRUE)

This is data in the wide form. It has a column for each variable. The data can also be stored in long form without
loss of information. The long form has one column that stores the variable names. Then, it has another column for
the variable values. The long form of USArrests looks like so.

State Crime Rate

1 Alabama Murder 13.2
2 Alaska Murder 10.0
3: Arizona Murder 8.1
4 Arkansas Murder 8.8
S California  Murder 9.0
196: Virginia Rape 20.7
197: Washington Rape 26.2
198: West Virginia Rape 9.3
199: Wisconsin Rape 10.8
200: Wyoming Rape 15.6

We use the melt function to switch from wide form to long form.

DTm <- melt(DT)
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names(DTm) <- c("State", "Crime", "Rate")

By default, melt treats all columns with numeric data as variables with values. In USArrests, the variable UrbanPop
represents the percentage urban population of a state. It is different from the other variables, Murder, Assault and
Rape, which are violent crimes reported per 100,000 people. Suppose we want to retain UrbanPop column. We
achieve this by setting id.vars as follows.

DTmu <- melt(DT, id.vars=c("rn", "UrbanPop" ),
variable.name='Crime', value.name = "Rate")
names(DTmu)[1] <- "State"

Note that we have specified the names of the column containing category names (Murder, Assault, etc.) with
variable.name and the column containing the values with value.name. Our data looks like so.

State UrbanPop Crime Rate

1: Alabama 58 Murder 13.2
2: Alaska 48 Murder 10.0
3: Arizona 80 Murder 8.1
4: Arkansas 50 Murder 8.8
S California 91 Murder 9.0

Generating summaries with with split-apply-combine style approach is a breeze. For example, to summarize violent
crimes by state?

DTmu[, .(ViolentCrime = sum(Rate)), by=State]
This gives:

State ViolentCrime

1: Alabama 270.4
2: Alaska 317.5
3: Arizona 333.1
4: Arkansas 218.3
5: California 325.6
6: Colorado 250.6

ﬁection 24.2: Pivot and unpivot tabular data with data.table -

Convert from long form to wide form

To recover data from the previous example, use dcast like so.
DTc <- dcast(DTmu, State + UrbanPop ~ Crime)
This gives the data in the original wide form.

State UrbanPop Murder Assault Rape

1: Alabama 58 13.2 236 21.2
2: Alaska 48 10.0 263 44.5
83 Arizona 80 8.1 294 31.0
4: Arkansas 50 8.8 190 19.5
5: California 91 9.0 276 40.6

Here, the formula notation is used to specify the columns that form a unique record identifier (LHS) and the column

GoalKicker.com - R Notes for Professionals 94


http://goalkicker.com/

containing category labels for new column names (RHS). Which column to use for the numeric values? By default,
dcast uses the first column with numerical values left over when from the formula specification. To make explicit,
use the parameter value.var with column name.

When the operation produces a list of values in each cell, dcast provides a fun.aggregate method to handle the
situation. Say | am interested in states with similar urban population when investigating crime rates. | add a column
Decile with computed information.

DTmu[, Decile := cut(UrbanPop, quantile(UrbanPop, probs = seq(0, 1, by=0.1)))]
levels(DTmuSDecile) <- paste@(1:10, "D")

Now, casting Decile ~ Crime produces multiple values per cell. | can use fun.aggregate to determine how these
are handled. Both text and numerical values can be handle this way.

dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=sum)
This gives:

dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=mean)

This gives:
State UrbanPop Crime Rate Decile
1: Alabama 58 Murder 13.2 4D
2: Alaska 48 Murder 10.0 2D
3 Arizona 80 Murder 8.1 8D
4: Arkansas 50 Murder 8.8 2D
5: California 91 Murder 9.0 10D

There are multiple states in each decile of the urban population. Use fun.aggregate to specify how these should be
handled.

dcast(DTmu, Decile ~ Crime, value.var="Rate", fun.aggregate=sum)
This sums over the data for like states, giving the following.

Decile Murder Assault Rape

1: 1D 39.4 808 62.6
2: 2D 35.3 815 94.3
3: 3D 22.6 451 67.7
4. 4D 54.9 898 106.0
5K 5D 42.4 758 107.6
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Chapter 25: Bar Chart

The purpose of the bar plot is to display the frequencies (or proportions) of levels of a factor variable. For example,

a bar plot is used to pictorially display the frequencies (or proportions) of individuals in various socio-economic
(factor) groups(levels-high, middle, low). Such a plot will help to provide a visual comparison among the various

factor levels.

Section 25.1: barplot() function

In barplot, factor-levels are placed on the x-axis and frequencies (or proportions) of various factor-levels are
considered on the y-axis. For each factor-level one bar of uniform width with heights being proportional to factor

level frequency (or proportion) is constructed.

The barplot() function is in the graphics package of the R's System Library. The barplot() function must be
supplied at least one argument. The R help calls this as heights, which must be either vector or a matrix. If it is

vector, its members are the various factor-levels.
To illustrate barplot (), consider the following data preparation:

> grades<-c("A+","A-","B+","B","C")

> Marks<-sample(grades, 40, replace=T,prob=c(.2, .3, .25,.15,.1))

> Marks

[1] "A+" "A-" "B+" "A-" "A+" "B" "A+" "B+" "A-" "B" "A+" "A-"
[13] "A-" "B+" "A-" "A-" "A-" "A-" "A+" "A-" "A+" "A+" "C" "C"
[25] "B" "C" "B+" "C" "B+" "B+" "B+" "A+" "B+" "A-" "A+" "A-"
[37] "A-" "B" "C" "A+"

>

A bar chart of the Marks vector is obtained from

> barplot(table(Marks),main="Mid-Marks in Algorithms")

Mid-Marks in Algorithms

12

10

6
|

B+

Notice that, the barplot() function places the factor levels on the x-axis in the lexicographical order of the levels.

Using the parameter names.arg, the bars in plot can be placed in the order as stated in the vector, grades.
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# plot to the desired horizontal axis labels
> barplot(table(Marks),names.arg=grades ,main="Mid-Marks in Algorithms")

Mid-Marks in Algorithms

- —
] -
o =

A+ A- B+ B C

10 12

8
I

6
I

Colored bars can be drawn using the col= parameter.

> barplot(table(Marks),names.arg=grades,col = c("lightblue",
"lightcyan”, "lavender", "mistyrose", "cornsilk"),
main="Mid-Marks in Algorithms")

Mid-Marks in Algorithms

10 12

8
I

6
1

A bar chart with horizontal bars can be obtained as follows:

> barplot(table(Marks),names.arg=grades,horiz=TRUE,col = c("lightblue",
"lightcyan", "lavender", "mistyrose", ‘"cornsilk"),
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main="Mid-Marks in Algorithms")

Mid-Marks in Algorithms

B

B+

A-

A+

A bar chart with proportions on the y-axis can be obtained as follows:

> barplot(prop.table(table(Marks)),names.arg=grades,col = c("lightblue",
"lightcyan", "lavender", "mistyrose", ‘"cornsilk")
main="Mid-Marks in Algorithms")

Mid-Marks in Algorithms

0.30
|

0.20
|

12

0.00
|

The sizes of the factor-level names on the x-axis can be increased using cex.names parameter.

> barplot(prop.table(table(Marks)),names.arg=grades,col = c("lightblue",
"lightcyan”, "lavender", "mistyrose", "cornsilk"),
main="Mid-Marks in Algorithms", cex.names=2)
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The heights parameter of the barplot() could be a matrix. For example it could be matrix, where the columns are
the various subjects taken in a course, the rows could be the labels of the grades. Consider the following matrix:

> gradTab
Algorithms Operating Systems Discrete Math
A- 13 10 7
A+ 10 7 2
B 4 2 14
B+ 8 19 12
c 5 2 5

To draw a stacked bar, simply use the command:

> barplot(gradTab,col = c("lightblue", "lightcyan",
"lavender”, "mistyrose", "cornsilk"), legend.text = grades,
main="Mid-Marks in Algorithms")
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To draw a juxtaposed bars, use the besides parameter, as given under:
> barplot(gradTab,beside = T,col = c("lightblue", "lightcyan",
"lavender”, "mistyrose", "cornsilk"), legend.text = grades,
main="Mid-Marks in Algorithms")
Mid-Marks in Algorithms
0O A+
o A-
O B+
- & O B
O C
o _
m —
[ Qe

Algorithms Operating Systems Discrete Math

A horizontal bar chart can be obtained using horiz=T parameter:
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> barplot(gradTab,beside = T,horiz=T,col = c("lightblue”, "lightcyan",
"lavender", "mistyrose", "cornsilk"), legend.text = grades,
cex.names=.75,main="Mid-Marks in Algorithms")

Mid-Marks in Algorithms

B+
A-
A+

oooon

Operating Systems  Discrete Math

Algorithms
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Chapter 26: Base Plotting

Parameter Details
X x-axis variable. May supply either dataSvariablex or datal[, x]
y y-axis variable. May supply either dataSvariabley or data[,y]
main Main title of plot
sub Optional subtitle of plot
x1lab Label for x-axis
ylab Label for y-axis
pch Integer or character indicating plotting symbol
col Integer or string indicating color
Type of plot. "p" for points, "1" for lines, "b" for both, "c" for the lines part alone of "b", "o" for both
type ‘overplotted’, "h" for ‘histogram’-like (or ‘high-density’) vertical lines, "s" for stair steps, "S" for other

steps, "n" for no plotting

Section 26.1: Density plot

A very useful and logical follow-up to histograms would be to plot the smoothed density function of a random
variable. A basic plot produced by the command

plot(density(rnorm(100)),main="Normal density", xlab="x")

would look like

Normal density

Density
0.2 0.3 04
| |

0.1

0.0

You can overlay a histogram and a density curve with

x=rnorm(100)
hist(x, prob=TRUE,main="Normal density + histogram")
lines(density(x),lty="dotted",col="red")

which gives
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Normal density + histogram
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Section 26.2: Combining Plots

It's often useful to combine multiple plot types in one graph (for example a Barplot next to a Scatterplot.) R makes
this easy with the help of the functions par() and layout().

par()

par uses the arguments mfrow or mfcol to create a matrix of nrows and ncols e(nrows, ncols) which will serve as
a grid for your plots. The following example shows how to combine four plots in one graph:

par(mfrow=c(2,2))

plot(cars, main="Speed vs. Distance")
hist(carsSspeed, main="Histogram of Speed")
boxplot(cars$Sdist, main="Boxplot of Distance")
boxplot(carsSspeed, main="Boxplot of Speed")
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The layout() is more flexible and allows you to specify the location and the extent of each plot within the final
combined graph. This function expects a matrix object as an input:

layout(matrix(c(1,1,2,3), 2,2, byrow=T))
hist(carsS$speed, main="Histogram of Speed")
boxplot(cars$dist, main="Boxplot of Distance")
boxplot(cars$Sspeed, main="Boxplot of Speed")
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Section 26.3: Getting Started with R_Plots

¢ Scatterplot

You have two vectors and you want to plot them.

x_values <- rnorm(n = 20 , mean = 5 , sd = 8) #20 values generated from Normal(5,8)
y_values <- rbeta(n = 20 , shapel = 500 , shape2 = 10) #20 values generated from Beta(560,10)

If you want to make a plot which has the y_values in vertical axis and the x_valuesin horizontal axis, you can use
the following commands:

) #standard scatter-plot
") # plot with lines

y_values, type
y_values, type

plot(x x_values, vy

"o
plot(x = x_values, y 1
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plot(x = x_values, y = y_values, type = "n") # empty plot
You can type ?plot() in the console to read about more options.
¢ Boxplot
You have some variables and you want to examine their Distributions

#boxplot is an easy way to see if we have some outliers in the data.

z<- rbeta(20 , 500 , 10) #generating values from beta distribution
z[c(19 , 20)] <- ¢(©.97 , 1.85) # replace the two last values with outliers
boxplot(z) # the two points are the outliers of variable z.

¢ Histograms
Easy way to draw histograms

hist(x = x_values) # Histogram for x vector
hist(x = x_values, breaks = 3) #use breaks to set the numbers of bars you want

¢ Pie_charts
If you want to visualize the frequencies of a variable just draw pie

First we have to generate data with frequencies, for example :

P <- c(rep('A" , 3) , rep('B" , 10) , rep('C' , 7))
t <- table(P) # this is a frequency matrix of variable P
pie(t) # And this is a visual version of the matrix above

Section 26.4: Basic Plot

A basic plot is created by calling plot(). Here we use the built-in cars data frame that contains the speed of cars
and the distances taken to stop in the 1920s. (To find out more about the dataset, use help(cars)).

plot(x = carsSspeed, y = carsS8dist, pch = 1, col = 1,
main = "Distance vs Speed of Cars",
xlab = "Speed", ylab = "Distance")

GoalKicker.com - R Notes for Professionals 106


http://goalkicker.com/

Distance to stop vs Speed of Cars

120
|

100
i

Distance
B0
1

40

5 10 15 20 25

Speed

We can use many other variations in the code to get the same result. We can also change the parameters to obtain
different results.

with(cars, plot(dist~speed, pch = 2, col = 3,
main = "Distance to stop vs Speed of Cars"”,
xlab = "Speed", ylab = "Distance"))
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Additional features can be added to this plot by calling points(), text(), mtext(), lines(), grid(), etc.

plot(dist~speed, pch = "%*", col = "magenta", data=cars,
main = "Distance to stop vs Speed of Cars",
xlab = "Speed", ylab = "Distance")

mtext("In the 1920s.")

grid(,col="1lightblue")
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Section 26.5: Histograms

Histograms allow for a pseudo-plot of the underlying distribution of the data.

hist(ldeaths)

25
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hist(ldeaths, breaks = 208, freq = F, col = 3)

GoalKicker.com - R Notes for Professionals 10


http://i.stack.imgur.com/4v3fc.png
http://goalkicker.com/

0.0012
I

0.0008
|

Density

0.0004
l

Histogram of Ideaths

0.0000
I

1500

2000

Section 26.6: Matplot

2500

|Ideaths

[ | |
3000 3500 4000

matplot is useful for quickly plotting multiple sets of observations from the same object, particularly from a matrix,

on the same graph.

Here is an example of a matrix containing four sets of random draws, each with a different mean.

xmat <- cbind(rnorm(160,

head(xmat)

# [,1]

# [1,] -3.072793 -2.
# [2,] -3.702545 -1.
# [3,] -2.890698 -1.
# [4,] -3.431133 -2.
# [5,] -4.532925 0.
# [6,] -2.169391 -1.

[,2]

53111494 @.
42789347 -0.
.9586467
1.1153643
0.

0.3214854

88476126
02626870
02164187
42699116

1

-3), rnorm(100,

[,3]
6168063
2197196

9783948

A WWOIN®

[

.780465
.478416
.268474
.170689
.162121
.480305

-1), rnorm(100, 1), rnorm(100, 3))

One way to plot all of these observations on the same graph is to do one plot call followed by three more points

or lines calls.

plot(xmat[,1], type
lines(xmat[,2], col
lines(xmat[,3], col
lines(xmat[,4], col

1)
‘red')

‘green')
"blue')
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However, this is both tedious, and causes problems because, among other things, by default the axis limits are
fixed by plot to fit only the first column.

Much more convenient in this situation is to use the matplot function, which only requires one call and
automatically takes care of axis limits and changing the aesthetics for each column to make them distinguishable.

matplot(xmat, type = '1")
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Note that, by default, matplot varies both color (col) and linetype (1ty) because this increases the number of
possible combinations before they get repeated. However, any (or both) of these aesthetics can be fixed to a single
value...

matplot(xmat, type = '1', col = 'black"')
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...or a custom vector (which will recycle to the number of columns, following standard R vector recycling rules).

‘orange'))

‘1", col = ¢('red', 'green', 'blue’,

matplot(xmat, type

14
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Standard graphical parameters, including main, x1ab, xmin, work exactly the same way as for plot. For more on

those, see ?par.

Like plot, if given only one object, matplot assumes it's the y variable and uses the indices for x. However, x and y

can be specified explicitly.

matplot(x = seq(@, 10, length.out = 100), y

xmat, type='1l")
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In fact, both x and y can be matrices.

xes <- cbind(seq(0, 10, length.out = 100),
seq(2.5, 12.5, length.out = 100),
seq(5, 15, length.out = 100),
seq(7.5, 17.5, length.out = 100))

matplot(x = xes, y = xmat, type = '1l')
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Section 26.7: Empirical Cumulative Distribution Function

A very useful and logical follow-up to histograms and density plots would be the Empirical Cumulative Distribution
Function. We can use the function ecdf () for this purpose. A basic plot produced by the command

plot(ecdf(rnorm(100)),main="Cumulative distribution"”, xlab="x")

would look like
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Chapter 27: boxplot

Parameters

formula

data
subset

na.action
boxwex
plot

col

Details (source R Documentation)

a formula, such asy ~ grp, where y is a numeric vector of data values to be split into groups according
to the grouping variable grp (usually a factor).

a data.frame (or list) from which the variables in formula should be taken.

an optional vector specifying a subset of observations to be used for plotting.

a function which indicates what should happen when the data contain NAs. The default is to ignore
missing values in either the response or the group.

a scale factor to be applied to all boxes. When there are only a few groups, the appearance of the plot
can be improved by making the boxes narrower.

if TRUE (the default) then a boxplot is produced. If not, the summaries which the boxplots are based
on are returned.

if col is non-null it is assumed to contain colors to be used to colour the bodies of the box plots. By
default they are in the background colour.

Section 27.1: Create a box-and-whisker plot with boxplot()
{graphics}

This example use the default boxplot() function and the irisdata frame.

> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

gk WN =

5.1 .8 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

Simple boxplot (Sepal.Length)

Create a box-and-whisker graph of a numerical variable

boxplot(iris[,1],xlab="Sepal.Length",ylab="Length(in centemeters)",

main="Summary Charateristics of Sepal.Length(Iris Data)")
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Boxplot of sepal length grouped by species
Create a boxplot of a numerical variable grouped by a categorical variable

boxplot(Sepal.Length~Species,data = iris)
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Bring order

To change order of the box in the plot you have to change the order of the categorical variable's levels.
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For example if we want to have the order virginica - versicolor - setosa

newSpeciesOrder <- factor(irisS$Species, levels=c("virginica", "versicolor", "setosa"))
boxplot(Sepal.Length~newSpeciesOrder,data = iris)
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Change groups names

If you want to specifie a better name to your groups you can use the Names parameter. It take a vector of the size of
the levels of categorical variable

boxplot(Sepal.Length~newSpeciesOrder,data = iris,names= c('"namel", "name2", "name3"))
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Small improvements
Color

col : add a vector of the size of the levels of categorical variable

boxplot(Sepal.Length~Species,data = iris,col=c("green", "yellow", "orange"))
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Proximity of the box
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boxwex: set the margin between boxes.
Left boxplot(Sepal.Length~Species,data = iris,boxwex = 0.1)
Right boxplot(Sepal.Length~Species,data = iris,boxwex = 1)
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See the summaries which the boxplots are based plot=FALSE

To see a summary you have to put the paramater plot to FALSE.
Various results are given

> boxplot(Sepal.Length~newSpeciesOrder,data = iris, plot=FALSE)
Sstats #summary of the numerical variable for the 3 groups

L 21 13

[1,] 5.6 4.9 4.3 # extreme value

[2,] 6.2 5.6 4.8 # first quartile limit
[3,] 6.5 5.9 5.0 # median limit

[4,] 6.9 6.3 5.2 # third quartile limit
[5,] 7.9 7.0 5.8 # extreme value

$n #number of observations in each groups
[1] 50 50 50

Sconf #extreme value of the notchs
[,1] [,2] [,3]

[1,] 6.343588 5.743588 4.910622

[2,] 6.656412 6.056412 5.089378

Sout #extreme value
[1] 4.9

Sgroup #group in which are the extreme value

(11 1

Snames #groups names
[1] "virginica" "versicolor" "setosa"

Section 27.2: Additional boxplot style parameters

Box
¢ boxlty - box line type
¢ boxlwd - box line width
* boxcol - box line color
o boxfill - box fill colors
Median
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e medity - median line type ("blank" for no line)
e medlwd - median line widht

e medcol - median line color

e medpch - median point (NA for no symbol)

e medcex - median point size

¢ medbg - median point background color

Whisker

o whisklty - whisker line type
o whisklwd - whisker line width
¢ whiskcol - whisker line color

Staple

¢ staplelty - staple line type
¢ staplelwd - staple line width
e staplecol - staple line color

Outliers

¢ outlty - outlier line type ("blank" for no line)

¢ outlwd - outlier line width

e outcol - outlier line color

¢ outpch - outlier point type (NA for no symbol)
e outcex - outlier point size

¢ outbg - outlier point background color

Example

Default and heavily modified plots side by side

par(mfrow=c(1,2))

# Default

boxplot(Sepal.Length ~ Species, data=iris)

# Modified

boxplot(Sepal.Length ~ Species, data=iris,
box1lty=2, boxlwd=3, boxfill="cornflowerblue", boxcol="darkblue",
medlty=2, medlwd=2, medcol="red", medpch=21, medcex=1, medbg="white",
whisklty=2, whisklwd=3, whiskcol="darkblue",
staplelty=2, staplelwd=2, staplecol="red",
outlty=3, outlwd=3, outcol="grey", outpch=NA
)
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Chapter 28: ggplot2

Section 28.1: Displaying multiple plots

Display multiple plots in one image with the different facet functions. An advantage of this method is that all axes
share the same scale across charts, making it easy to compare them at a glance. We'll use the mpg dataset included

in ggplot2.

Wrap charts line by line (attempts to create a square layout):

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_wrap(~class)
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Display multiple charts on one row, multiple columns:

ggplot(mpg, aes(x = displ, y = hwy)) +

midsize

subcompact

—~f -
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geom_point() +
facet_grid(.~class)
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Display multiple charts on one column, multiple rows:

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
facet_grid(class~.)
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Display multiple charts in a grid by 2 variables:

ggplot(mpg, aes(x
geom_point() +

facet_grid(trans~class) #"row" parameter, then "column" parameter

= displ, y = hwy)) +
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Section 28.2: Prepare your data for plotting

ggplot2 works best with a long data frame. The following sample data which represents the prices for sweets on 20
different days, in a format described as wide, because each category has a column.

set.seed(47)

sweetsWide <- data.frame(date = 1:20,
chocolate = runif(20, min = 2, max = 4),
iceCream = runif(20, min = 0.5, max = 1),
candy = runif (20, min = 1, max = 3))

head(sweetsWide)

##  date chocolate iceCream candy

## 1 1 3.953924 0.5890727 1.117311

#i#t 2 2 2.747832 ©.7783982 1.740851

## 3 3 3.523004 0.7578975 2.196754

## 4 4 3.644983 0.5667152 2.875028

## 5 5 3.147089 0.8446417 1.733543

## 6 6 3.382825 0.6900125 1.405674

To convert sweetsWide to long format for use with ggplot2, several useful functions from base R, and the packages
reshape2, data.table and tidyr (in chronological order) can be used:

# reshape from base R
sweetsLong <- reshape(sweetsWide, idvar = 'date', direction = 'long',
varying = list(2:4), new.row.names = NULL, times = names(sweetsWide)[-1])

# melt from 'reshape2’
library(reshape2)
sweetsLong <- melt(sweetsWide, id.vars = 'date’)
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# melt from 'data.table’

# which is an optimized & extended version of 'melt' from 'reshape2’
library(data.table)

sweetsLong <- melt(setDT(sweetsWide), id.vars = 'date')

# gather from 'tidyr'

library(tidyr)
sweetsLong <- gather(sweetsWide, sweet, price, chocolate:candy)

The all give a similar result;

head(sweetslLong)

#i# date sweet price
## 1 1 chocolate 3.953924
## 2 2 chocolate 2.747832
## 3 3 chocolate 3.523004
## 4 4 chocolate 3.644983
## 5 5 chocolate 3.147089
## 6 6 chocolate 3.382825

See also Reshaping data between long and wide forms for details on converting data between long and wide format.

The resulting sweetsLong has one column of prices and one column describing the type of sweet. Now plotting is
much simpler:

library(ggplot2)
ggplot(sweetsLong, aes(x = date, y = price, colour = sweet)) + geom_line()

4 -
3 -
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o) — candy
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2- — iceCream

date
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Section 28.3: Add horizontal and vertical lines to plot

Add one common horizontal line for all categorical variables

# sample data
df <- data.frame(x=('A', 'B'), y = ¢(3, 4))

p1 <- ggplot(df, aes(x=x, y=y))
+ geom_bar(position = "dodge", stat = 'identity')

+ theme_bw()

p1 + geom_hline(aes(yintercept=5), colour="#990000", linetype="dashed")

ﬂ._

T
m

X

Add one horizontal line for each categorical variable

# sample data
df <- data.frame(x=('A', 'B'), y = ¢c(3, 4))

# add horizontal levels for drawing lines
df$hval <- dfSy + 2

p1 <- ggplot(df, aes(x=x, y=y))
+ geom_bar(position = "dodge", stat = 'identity')
+ theme_bw()

p1 + geom_errorbar(aes(y=hval, ymax=hval, ymin=hval), colour="#990000", width=0.75)

GoalKicker.com - R Notes for Professionals

131


http://i.stack.imgur.com/HxBMW.png
http://goalkicker.com/

0_

Add horizontal line over grouped bars

# sample data

df <- data.frame(x = rep(c('A', 'B'), times=2),
group = rep(c('G1', 'G2'), each=2),
y = c(3, 4, 5, 6),
hval = ¢(5, 6, 7, 8))

p1 <- ggplot(df, aes(x=x, y=y, fill=group))
+ geom_bar(position="dodge", stat="identity")

p1 + geom_errorbar(aes(y=hval, ymax=hval, ymin=hval),
colour="#990000",
position = "dodge",
linetype = "dashed")
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Add vertical line

# sample data

df <- data.frame(group=rep(c('A', 'B'), each=20),
X = rnorm(40, 5, 2),
y = rnorm(40, 10, 2))

p1 <- ggplot(df, aes(x=x, y=y, colour=group)) + geom_point()

p1 + geom_vline(aes(xintercept=5), color="#990000", linetype="dashed")
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Section 28.4: Scatter Plots
We plot a simple scatter plot using the builtin iris data set as follows:

library(ggplot2)
ggplot(iris, aes(x = Petal.Width, y = Petal.Length, color = Species)) +
geom_point()

This gives:
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Section 28.5: Produce basic plots with gplot

gplot is intended to be similar to base r plot() function, trying to always plot out your data without requiring too
much specifications.

basic gplot

gplot(x = disp, y = mpg, data = mtcars)
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adding a smoother

gplot(x = disp, y = mpg, geom = c("point", "smooth"), data = mtcars)
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Section 28.6: Vertical and Horizontal Bar Chart

ggplot(data = diamonds, aes(x = cut, fill =color)) +
geom_bar(stat = "count", position = "dodge")
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it is possible to obtain an horizontal bar chart simply adding coord_flip() aesthetic to the ggplot object:

ggplot(data = diamonds, aes(x = cut, fill =color)) +
geom_bar(stat = "count", position = "dodge")+
coord_flip()
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Section 28.7: Violin plot

Violin plots are kernel density estimates mirrored in the vertical plane. They can be used to visualize several
distributions side-by-side, with the mirroring helping to highlight any differences.

ggplot(diamonds, aes(cut, price)) +
geom_violin()
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Violin plots are named for their resemblance to the musical instrument, this is particularly visible when they are
coupled with an overlaid boxplot. This visualisation then describes the underlying distributions both in terms of
Tukey's 5 number summary (as boxplots) and full continuous density estimates (violins).

ggplot(diamonds, aes(cut, price)) +
geom_violin() +
geom_boxplot(width .1, fill = "black", outlier.shape = NA) +
stat_summary(fun.y = "median", geom = "point", col = "white")
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Chapter 29: Factors

Section 29.1: Consolidating Factor Levels with a List

There are times in which it is desirable to consolidate factor levels into fewer groups, perhaps because of sparse
data in one of the categories. It may also occur when you have varying spellings or capitalization of the category
names. Consider as an example the factor

set.seed(1)

colorful <- sample(c("red", "Red", "RED", "blue", "Blue", "BLUE", "green", "gren"),
size = 20,
replace = TRUE)

colorful <- factor(colorful)

Since R is case-sensitive, a frequency table of this vector would appear as below.

table(colorful)
colorful
blue Blue BLUE green gren red Red RED
3 1 4 2 4 1 3 2

This table, however, doesn't represent the true distribution of the data, and the categories may effectively be
reduced to three types: Blue, Green, and Red. Three examples are provided. The first illustrates what seems like an
obvious solution, but won't actually provide a solution. The second gives a working solution, but is verbose and
computationally expensive. The third is not an obvious solution, but is relatively compact and computationally
efficient.

Consolidating levels using factor (factor_approach)

factor(as.character(colorful),
levels = c("blue", "Blue", "BLUE", "green", "gren", "red", "Red", "RED")
labels = c("Blue", "Blue", "Blue", "Green", "Green", "Red", "Red", "Red"))

[1] Green Blue Red Red Blue Red Red Red Blue Red Green Green Green Blue
Red Green

[17] Red Green Green Red

Levels: Blue Blue Blue Green Green Red Red Red

Warning message:

In “levels<-"( *tmp*", value = if (nl == nL) as.character(labels) else paste0(labels,

duplicated levels in factors are deprecated

Notice that there are duplicated levels. We still have three categories for "Blue", which doesn't complete our task of
consolidating levels. Additionally, there is a warning that duplicated levels are deprecated, meaning that this code
may generate an error in the future.

Consolidating levels using ifelse (ifelse_approach)

factor(ifelse(colorful %in% c("blue", "Blue", "BLUE")
"Blue",
ifelse(colorful %in% c("green", "gren"),
"Green",
"Red")))

[1] Green Blue Red Red Blue Red Red Red Blue Red Green Green Green Blue
Red Green
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[17] Red Green Green Red
Levels: Blue Green Red

This code generates the desired result, but requires the use of nested ifelse statements. While there is nothing
wrong with this approach, managing nested ifelse statements can be a tedious task and must be done carefully.

Consolidating Factors Levels with a List (1ist_approach)

A less obvious way of consolidating levels is to use a list where the name of each element is the desired category
name, and the element is a character vector of the levels in the factor that should map to the desired category. This
has the added advantage of working directly on the 1levels attribute of the factor, without having to assign new

objects.

levels(colorful) <-
list("Blue" = c("blue", "Blue", "BLUE"),
"Green" = c("green", "gren"),
"Red" = c¢("red", "Red", "RED"))

[1] Green Blue Red Red Blue Red Red
Red Green

[17] Red Green Green Red
Levels: Blue Green Red

Benchmarking each approach

Red Blue Red Green Green Green Blue

The time required to execute each of these approaches is summarized below. (For the sake of space, the code to

generate this summary is not shown)

Unit: microseconds

expr min 1q mean median uq max neval

factor 78.725 83.256 93.26023 87.5030 97.131 218.899 100

ifelse 104.494 107.609 123.53793 113.4145 128.281 254.580 100
list_approach 49.557 52.955 60.50756 54.9370 65.132 138.193 100

cld

The list approach runs about twice as fast as the ifelse approach. However, except in times of very, very large
amounts of data, the differences in execution time will likely be measured in either microseconds or milliseconds.
With such small time differences, efficiency need not guide the decision of which approach to use. Instead, use an
approach that is familiar and comfortable, and which you and your collaborators will understand on future review.

Section 29.2: Basic creation of factors

Factors are one way to represent categorical variables in R. A factor is stored internally as a vector of integers. The

unique elements of the supplied character vector are known as the /evels of the factor. By default, if the levels are
not supplied by the user, then R will generate the set of unique values in the vector, sort these values

alphanumerically, and use them as the levels.

charvar <- rep(c("n", "c"), each = 3)
f <- factor(charvar)

f

levels(f)
> f

[Tl nnnecece
Levels: ¢ n
> levels(f)
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[1] "¢" "n"
If you want to change the ordering of the levels, then one option to to specify the levels manually:

levels(factor(charvar, levels = c("n","c")))

> levels(factor(charvar, levels = c("n","c")))
[1] "n" "c"

Factors have a number of properties. For example, levels can be given labels:

> f <- factor(charvar, levels=c("'n", "c"), labels=c("Newt", "Capybara"))
> f
[1] Newt Newt Newt Capybara Capybara Capybara

Levels: Newt Capybara

Another property that can be assigned is whether the factor is ordered:

> Weekdays <- factor(c("Monday", "Wednesday", "Thursday", "Tuesday", "Friday", "Sunday",
"Saturday"))

> Weekdays

[1] Monday Wednesday Thursday Tuesday Friday Sunday Saturday

Levels: Friday Monday Saturday Sunday Thursday Tuesday Wednesday

> Weekdays <- factor(Weekdays, levels=c("Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday”, "Sunday"), ordered=TRUE)

> Weekdays

[1] Monday Wednesday Thursday Tuesday Friday Sunday Saturday

Levels: Monday < Tuesday < Wednesday < Thursday < Friday < Saturday < Sunday

When a level of the factor is no longer used, you can drop it using the droplevels() function:

> Weekend <- subset(Weekdays, Weekdays == "Saturday" | Weekdays == "Sunday")
> Weekend

[1] Sunday Saturday

Levels: Monday < Tuesday < Wednesday < Thursday < Friday < Saturday < Sunday
> Weekend <- droplevels(Weekend)

> Weekend

[1] Sunday Saturday

Levels: Saturday < Sunday

Section 29.3: Changing and reordering factors

When factors are created with defaults, levels are formed by as.character applied to the inputs and are ordered
alphabetically.

charvar <- rep(c("W", "n", "c"), times=c(17,20,14))
f <- factor(charvar)

levels(f)

# [1] "c¢c" "n" "W"

In some situations the treatment of the default ordering of levels (alphabetic/lexical order) will be acceptable. For
example, if one justs want to plot the frequencies, this will be the result:

plot(f,col=1:1length(levels(f)))
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20

15

But if we want a different ordering of 1levels, we need to specify this in the levels or labels parameter (taking
care that the meaning of "order" here is different from ordered factors, see below). There are many alternatives to
accomplish that task depending on the situation.

1. Redefine the factor

When it is possible, we can recreate the factor using the levels parameter with the order we want.

ff <- factor(charvar, levels = c("n", "W", "c"))
levels(ff)

# [1] "n" "W" "c"

gg <- factor(charvar, levels = c("W", "c", "n"))

levels(gg)
# [1] "w" "c¢" "n"

When the input levels are different than the desired output levels, we use the labels parameter which causes the
levels parameter to become a "filter" for acceptable input values, but leaves the final values of "levels" for the
factor vector as the argument to labels:

fm <- factor(as.numeric(f), levels = ¢(2,3,1),
labels = c("nn", "WW", "cc"))

levels(fm)

# [1] "nn" "WW" "cc"

fm <- factor(LETTERS[1:6], levels = LETTERS[1:4], # only 'A'-'D' as input

labels = letters[1:4]) # but assigned to 'a'-'d’
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fm
#[1] a b € d <NA> <NA>
#levels: abcd

2. Use relevel function

When there is one specific 1evel that needs to be the first we can use relevel. This happens, for example, in the
context of statistical analysis, when a base category is necessary for testing hypothesis.

g<-relevel(f, "n") # moves n to be the first level
levels(g)
# [1] llnll IICII IIWII

As can be verified f and g are the same

all.equal(f, g)

# [1] "Attributes: < Component “levels”: 2 string mismatches >"
all.equal(f, g, check.attributes = F)

# [1] TRUE

3. Reordering factors

There are cases when we need to reorder the levels based on a number, a partial result, a computed statistic, or
previous calculations. Let's reorder based on the frequencies of the levels

table(qg)
#g

# n c W
# 20 14 17

The reorder function is generic (see help(reorder)), but in this context needs: x, in this case the factor; X, a
numeric value of the same length as x; and FUN, a function to be applied to X and computed by level of the x, which
determines the levels order, by default increasing. The result is the same factor with its levels reordered.

g.ord <- reorder(g,rep(1,length(g)), FUN=sum) #increasing
levels(g.ord)
# [1] "c¢c" "W" "n"

To get de decreasing order we consider negative values (-1)

g.ord.d <- reorder(g,rep(-1,length(g)), FUN=sum)
levels(g.ord.d)
# [-I] Ilnll Ilwll IICII

Again the factor is the same as the others.

data.frame(f,g,g.ord,g.ord.d)[seq(1,length(g),by=5),] #just same lines

# f g g.ord g.ord.d
#1 WW W W
#6 WW W W
#11T W W W W
# 16 W W W W
# 21 nn n n
# 26 nn n n
# 31 nn n n
# 36 nn n n
# 41 c ¢ c ©
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# 46 c c c c
# 51 c ¢ c c

When there is a quantitative variable related to the factor variable, we could use other functions to reorder the
levels. Lets take the iris data (help("iris") for more information), for reordering the Species factor by using its
mean Sepal.Width.

miris <- iris #help("iris") # copy the data
with(miris, tapply(Sepal.Width, Species,mean))
# setosa versicolor virginica
# 3.428 2.770 2.974

mirisSSpecies.o<-with(miris, reorder(Species, -Sepal.Width))
levels(miris$Species.o)
# [1] "setosa" "virginica" "versicolor"

The usual boxplot (say: with(miris, boxplot(Petal.Width~Species)) will show the especies in this order: setosa,
versicolor, and virginica. But using the ordered factor we get the species ordered by its mean Sepal.Width:

boxplot(Petal.Width~Species.o, data = miris,
xlab = "Species", ylab = "Petal Width",
main = "Iris Data, ordered by mean sepal width", varwidth = TRUE,
col = 2:4)
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Iris Data, ordered by mean sepal width
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Additionally, it is also possible to change the names of levels, combine them into groups, or add new levels. For
that we use the function of the same name levels.

f1<-f

levels(f1)

# [1] "c¢c" "n" "W"

levels(f1) <- c("upper","upper","CAP") #rename and grouping
levels(f1)

# [1] "upper" "CAP"

f2<-f1

levels(f2) <- c("upper","CAP", "Number") #add Number level, which is empty
levels(f2)

# [1] "upper"” "CAP" "Number"

f2[length(f2) : (length(f2)+5)]<-"Number" # add cases for the new level
table(f2)

# f2

# upper CAP Number

# 33 17 6
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f3<-f1

levels(f3) <- 1list(G1 = "upper", G2 = "CAP", G3 = "Number") # The same using list
levels(f3)

# [1] "6G1" "G2" "G3"

f3[length(f3):(length(f3)+6)]<-"G3" ## add cases for the new level

table(f3)

# 3

# G1 G2 G3

# 33 17 7

- Ordered factors

Finally, we know that ordered factors are different from factors, the first one are used to represent ordinal data,
and the second one to work with nominal data. At first, it does not make sense to change the order of levels for
ordered factors, but we can change its labels.

ordvar<-rep(c("Low", "Medium", "High"), times=c(7,2,4))

of<-ordered(ordvar, levels=c("Low", "Medium", "High"))
levels(of)

# [1] "Low" "Medium" "High"

of1<-of

levels(of1)<- c¢("LOW", "MEDIUM", "HIGH")
levels(of1)

# [1] "LOW" "MEDIUM" "HIGH"
is.ordered(of1)

# [1] TRUE

of1

# [1] LOW LOW LOW LOW LOW LOW LOW MEDIUM MEDIUM HIGH HIGH HIGH HIGH
# Levels: LOW < MEDIUM < HIGH

Section 29.4: Rebuilding factors from zero

Problem

Factors are used to represent variables that take values from a set of categories, known as Levels in R. For example,
some experiment could be characterized by the energy level of a battery, with four levels: empty, low, normal, and
full. Then, for 5 different sampling sites, those levels could be identified, in those terms, as follows:

full, full, normal, empty, low

Typically, in databases or other information sources, the handling of these data is by arbitrary integer indices
associated with the categories or levels. If we assume that, for the given example, we would assign, the indices as
follows: 1 = empty, 2 = low, 3 = normal, 4 = full, then the 5 samples could be coded as:

4,43,1,2

It could happen that, from your source of information, e.g. a database, you only have the encoded list of integers,
and the catalog associating each integer with each level-keyword. How can a factor of R be reconstructed from that
information?

Solution
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We will simulate a vector of 20 integers that represents the samples, each of which may have one of four different
values:

set.seed(18)
ii <- sample(1:4, 20, replace=T)
ii

[1143411323213412413141

The first step is to make a factor, from the previous sequence, in which the levels or categories are exactly the
numbers from 1 to 4.

fii <- factor(ii, levels=1:4) # it is necessary to indicate the numeric levels

fii

[1143411323213412413141
Levels: 1234

Now simply, you have to dress the factor already created with the index tags:

levels(fii) <- c("empty", "low", "normal", "full")
fii

[1] full normal full empty empty normal low normal low empty
[11] normal full empty low full empty normal empty full empty
Levels: empty low normal full
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Chapter 30: Pattern Matching and
Replacement

This topic covers matching string patterns, as well as extracting or replacing them. For details on defining
complicated patterns see Regular Expressions.

Section 30.1: Finding Matches

# example data
test_sentences <- c¢("The quick brown fox", "jumps over the lazy dog")

Is there a match?

grepl() is used to check whether a word or regular expression exists in a string or character vector. The function
returns a TRUE/FALSE (or "Boolean") vector.

Notice that we can check each string for the word "fox" and receive a Boolean vector in return.

grepl("fox", test_sentences)
#[1] TRUE FALSE

Match locations

grep takes in a character string and a regular expression. It returns a numeric vector of indexes.This will return
which sentence contains the word "fox" in it.

grep("fox", test_sentences)
#[1] 1

Matched values
To select sentences that match a pattern:

# each of the following lines does the job:
test_sentences[grep("fox", test_sentences)]
test_sentences[grepl("fox", test_sentences)]
grep("fox", test_sentences, value = TRUE)

# [1] "The quick brown fox"

Details

Since the "fox" pattern is just a word, rather than a regular expression, we could improve performance (with either
grep or grepl) by specifying fixed = TRUE.

grep("fox", test_sentences, fixed = TRUE)
#[1] 1

To select sentences that don't match a pattern, one can use grep with invert = TRUE; or follow subsetting rules
with -grep(...) or !grepl(...).

In both grepl(pattern, x) and grep(pattern, x),the x parameter is vectorized, the pattern parameter is not. As
a result, you cannot use these directly to match pattern[1] against x[1], pattern[2] against x[2], and so on.

Summary of matches

After performing the e.g. the grepl command, maybe you want to get an overview about how many matches where
TRUE or FALSE. This is useful e.g. in case of big data sets. In order to do so run the summary command:
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# example data
test_sentences <- c¢("The quick brown fox", "jumps over the lazy dog")

# find matches
matches <- grepl("fox", test_sentences)

# overview
summary(matches)

Section 30.2: Single and Global match

When working with regular expressions one modifier for PCRE is g for global match.

In R matching and replacement functions have two version: first match and global match:
e sub(pattern, replacement, text) will replace the first occurrence of pattern by replacement in text
¢ gsub(pattern, replacement, text) will do the same as sub but for each occurrence of pattern

¢ regexpr(pattern, text) will return the position of match for the first instance of pattern

e gregexpr(pattern, text) will return all matches

Some random data:

set.seed(123)
teststring <- paste@(sample(letters,20),collapse="")

# teststring
#[1] "htjuwakgxzpgrsbncvyo"

Let's see how this works if we want to replace vowels by something else:

sub("[aeiouy]"," ** HERE WAS A VOWEL** ", 6 teststring)
#[1] "htj **x HERE WAS A VOWEL** wakgxzpgrsbncvyo"

gsub("[aeiouy]"," ** HERE WAS A VOWEL** ",6 teststring)
#[1] "htj ** HERE WAS A VOWEL** w ** HERE WAS A VOWEL** kqxzpgrsbncv ** HERE WAS A VOWEL** %% HERE
WAS A VOWEL#** "

Now let's see how we can find a consonant immediately followed by one or more vowel:

regexpr("[*aeiou][aeiou]+", teststring)

#[1] 3

#attr(, "match.length")
#[1] 2

#attr(, "useBytes")
#[1] TRUE

We have a match on position 3 of the string of length 2, i.e: ju

Now if we want to get all matches:

gregexpr("[*aeiou][aeiou]+", teststring)
#[[1]]

#[1] 3 5 19

#attr(, "match.length")

#[1] 2 2 2
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#attr(, "useBytes")
#[1] TRUE

All this is really great, but this only give use positions of match and that's not so easy to get what is matched, and
here comes regmatches it's sole purpose is to extract the string matched from regexpr, but it has a different syntax.

Let's save our matches in a variable and then extract them from original string:

matches <- gregexpr('[“aeiou][aeiou]+", teststring)
regmatches(teststring, matches)

#[[1]]
#[1] "ju" "wa" "yo"

This may sound strange to not have a shortcut, but this allow extraction from another string by the matches of our
first one (think comparing two long vector where you know there's is a common pattern for the first but not for the
second, this allow an easy comparison):

teststring2 <- "this is another string to match against”
regmatches(teststring2, matches)

#[[1]]

#[1] ”iS” n iu ”ri”

Attention note: by default the pattern is not Perl Compatible Regular Expression, some things like lookarounds are
not supported, but each function presented here allow for per1=TRUE argument to enable them.

Section 30.3: Making substitutions

# example data
test_sentences <- c("The quick brown fox quickly", "jumps over the lazy dog")

Let's make the brown fox red:

sub("brown", "red", test_sentences)
#[1] "The quick red fox quickly" "jumps over the lazy dog"

Now, let's make the "fast" fox act "fastly". This won't do it:

sub("quick", "fast", test_sentences)
#[1] "The fast red fox quickly" "jumps over the lazy dog"

sub only makes the first available replacement, we need gsub for global replacement:

gsub("quick", "fast", test_sentences)
#[1] "The fast red fox fastly" "jumps over the lazy dog"

See Modifying strings by substitution for more examples.

Section 30.4: Find matches in big data sets

In case of big data sets, the call of grepl("fox", test_sentences) does not perform well. Big data sets are e.g.
crawled websites or million of Tweets, etc.

The first acceleration is the usage of the perl = TRUE option. Even faster is the option fixed = TRUE. A complete
example would be:
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# example data
test_sentences <- c¢("The quick brown fox", "jumps over the lazy dog")

grepl("fox", test_sentences, perl = TRUE)
#[1] TRUE FALSE

In case of text mining, often a corpus gets used. A corpus cannot be used directly with grepl. Therefore, consider
this function:

searchCorpus <- function(corpus, pattern) {
return(tm_index(corpus, FUN = function(x) {
grepl(pattern, x, ignore.case = TRUE, perl = TRUE)
1))
}
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Chapter 31: Run-length encoding
Section 31.1: Run-length Encoding with ‘rle’

Run-length encoding captures the lengths of runs of consecutive elements in a vector. Consider an example vector:
dat <- ¢(1, 2, 2, 2, 3, 1, 4, 4, 1, 1)
The rle function extracts each run and its length:

r <- rle(dat)

-

# Run Length Encoding

# lengths: int [1:6] 1
# values : num [1:6] 1

N W
w =

The values for each run are captured in r$values:

rSvalues
#[11 123141

This captures that we first saw a run of 1's, then a run of 2's, then a run of 3's, then a run of 1's, and so on.
The lengths of each run are captured in r$lengths:

rSlengths
#[11 131122

We see that the initial run of 1's was of length 1, the run of 2's that followed was of length 3, and so on.

Section 31.2: Identifying and grouping by runs in base R

One might want to group their data by the runs of a variable and perform some sort of analysis. Consider the
following simple dataset:

(dat <- data.frame(x = c(1, 1, 2, 2, 2, 1), y = 1:6))

# Xy
#1 11
#2 12
#3 23
#4 2 4
#525
#6 16

The variable x has three runs: a run of length 2 with value 1, a run of length 3 with value 2, and a run of length 1
with value 1. We might want to compute the mean value of variable y in each of the runs of variable x (these mean
values are 1.5, 4, and 6).

In base R, we would first compute the run-length encoding of the x variable using rle:

(r <- rle(dat$x))
# Run Length Encoding
# lengths: int [1:3] 2 3

.
# values : num [1:3] 21
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The next step is to compute the run number of each row of our dataset. We know that the total number of runs is
length(r$lengths), and the length of each run is r§lengths, so we can compute the run number of each of our
runs with rep:

(run.id <- rep(seq_along(rS$lengths), rSlengths))
#[1]1 112223

Now we can use tapply to compute the mean y value for each run by grouping on the run id:

data.frame(x=r$values, meanY=tapply(datSy, run.id, mean))
# X meanY
#1 1 1.5
#2 2 4.0
# 31 6.0

Section 31.3: Run-length encoding to compress and
decompress vectors

Long vectors with long runs of the same value can be significantly compressed by storing them in their run-length
encoding (the value of each run and the number of times that value is repeated). As an example, consider a vector
of length 10 million with a huge number of 1's and only a small number of O's:

set.seed(144)
dat <- sample(rep(0:1, c(1, 1e5)), 1e7, replace=TRUE)

table(dat)
# 0 1
# 103 9999897

Storing 10 million entries will require significant space, but we can instead create a data frame with the run-length
encoding of this vector:

rle.df <- with(rle(dat), data.frame(values, lengths))
dim(rle.df)

# [1] 207 2

head(rle.df)

# values lengths
# 1 1 52818
# 2 0 1
# 3 1 219329
# 4 (9] 1
# 5 1 318306
# 6 0 1

From the run-length encoding, we see that the first 52,818 values in the vector are 1's, followed by a single O,
followed by 219,329 consecutive 1's, followed by a 0, and so on. The run-length encoding only has 207 entries,
requiring us to store only 414 values instead of 10 million values. As rle.df is a data frame, it can be stored using
standard functions like write.csv.

Decompressing a vector in run-length encoding can be accomplished in two ways. The first method is to simply call
rep, passing the values element of the run-length encoding as the first argument and the lengths element of the
run-length encoding as the second argument:

decompressed <- rep(rle.dfSvalues, rle.df$lengths)

We can confirm that our decompressed data is identical to our original data:
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identical(decompressed, dat)
# [1] TRUE

The second method is to use R's built-in inverse. rle function on the rle object, for instance:

rle.obj <- rle(dat) # create a rle object here
class(rle.obj)

# [1] "rle"

dat.inv <- inverse.rle(rle.obj) # apply the inverse.rle on the rle object

We can confirm again that this produces exactly the original dat:

identical(dat.inv, dat)
# [1] TRUE

Section 31.4: Identifying and grouping by runs in data.table

The data.table package provides a convenient way to group by runs in data. Consider the following example data:

library(data.table)
(DT <- data.table(x = ¢(1, 1, 2, 2, 2, 1), y = 1:6))

# Xy
#1: 11
#2:12
#3: 23
#4: 2 4
#5: 25
#6: 16

The variable x has three runs: a run of length 2 with value 1, a run of length 3 with value 2, and a run of length 1
with value 1. We might want to compute the mean value of variable y in each of the runs of variable x (these mean
values are 1.5, 4, and 6).

The data.table rleid function provides an id indicating the run id of each element of a vector:

rleid(DT$x)
#[1] 112223

One can then easily group on this run ID and summarize the y data:

DT[,mean(y),by=.(x, rleid(x))]

# x rleid Vi
#1: 1 11.5
#2: 2 2 4.0
# 3: 1 3 6.0
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Chapter 32: Speeding up tough-to-
vectorize code

Section 32.1: Speeding tough-to-vectorize for loops with Rcpp

Consider the following tough-to-vectorize for loop, which creates a vector of length 1en where the first element is
specified (first) and each element x_i is equal to cos(x_{i-1} + 1):

repeatedCosPlusOne <- function(first, len) {
X <- numeric(len)
x[1] <- first
for (i in 2:1len) {
x[1i] <- cos(x[i-1] + 1)
}

return(x)

This code involves a for loop with a fast operation (cos(x[1-1]+1)), which often benefit from vectorization.
However, it is not trivial to vectorize this operation with base R, since R does not have a "cumulative cosine of x+1"
function.

One possible approach to speeding this function would be to implement it in C++, using the Rcpp package:

library(Rcpp)
cppFunction("NumericVector repeatedCosPlusOneRcpp(double first, int len) {
NumericVector x(len);
x[0] = first;
for (int i=1; i < len; ++i) {
x[1i] = cos(x[i-1]+1);
}

return x;

)
This often provides significant speedups for large computations while yielding the exact same results:

all.equal(repeatedCosPlusOne(1, 1e6), repeatedCosPlusOneRcpp(1, 1e6))

# [1] TRUE
system.time(repeatedCosPlusOne(1, 1e6))
# user system elapsed

# 1.274 0.015 1.310
system.time(repeatedCosPlusOneRcpp(1, 1e6))
# user system elapsed
# 0.028 0.001 0.030

In this case, the Rcpp code generates a vector of length 1 million in 0.03 seconds instead of 1.31 seconds with the
base R approach.

Section 32.2: Speeding tough-to-vectorize for loops by byte
compiling

Following the Rcpp example in this documentation entry, consider the following tough-to-vectorize function, which
creates a vector of length 1en where the first element is specified (first) and each element x_1i is equal to
cos(x_{i-1} + 1):

repeatedCosPlusOne <- function(first, len) {
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X <- numeric(len)
x[1] <- first
for (i in 2:1len) {
x[1i] <- cos(x[i-1] + 1)
}

return(x)

One simple approach to speeding up such a function without rewriting a single line of code is byte compiling the
code using the R compile package:

library(compiler)
repeatedCosPlusOneCompiled <- cmpfun(repeatedCosPlusOne)

The resulting function will often be significantly faster while still returning the same results:

all.equal(repeatedCosPlusOne(1, 1e6), repeatedCosPlusOneCompiled(1, 1e6))
# [1] TRUE

system.time(repeatedCosPlusOne(1, 1e6))

# user system elapsed

# 1.175 0.014 1.201

system.time(repeatedCosPlusOneCompiled(1, 1e6))

# user system elapsed

# 0.339 0.002 0.341

In this case, byte compiling sped up the tough-to-vectorize operation on a vector of length 1 million from 1.20
seconds to 0.34 seconds.

Remark

The essence of repeatedCosPlusOne, as the cumulative application of a single function, can be expressed more
transparently with Reduce:

iterFunc <- function(init, n, func) {

funcs <- replicate(n, func)

Reduce(function(., f) f(.), funcs, init = init, accumulate = TRUE)
}
repeatedCosPlusOne_vec <- function(first, len) {

iterFunc(first, len - 1, function(.) cos(. + 1))

}

repeatedCosPlusOne_vec may be regarded as a "vectorization" of repeatedCosPlusOne. However, it can be
expected to be slower by a factor of 2:

library(microbenchmark)

microbenchmark(
repeatedCosPlusOne(1, 1e4),
repeatedCosPlusOne_vec(1, 1e4)

)

#> Unit: milliseconds

#> expr min 1q mean median uq max neval

cld

#> repeatedCosPlusOne(1, 10000) 8.349261 9.216724 10.22715 10.23095 11.10817 14.33763 100
a

#> repeatedCosPlusOne_vec(1, 10000) 14.4066291 16.236153 17.55571 17.22295 18.59085 24.376059 100
b
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Chapter 33: Introduction to Geographical
Maps

See also I/0 for geographic data

Section 33.1: Basic map-making with map() from the package
maps

The function map () from the package maps provides a simple starting point for creating maps with R.

A basic world map can be drawn as follows:

require(maps)
map ()

The color of the outline can be changed by setting the color parameter, col, to either the character name or hex
value of a color:

require(maps)
map(col = "cornflowerblue")
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To fill land masses with the color in col we can set fill = TRUE:

require(maps)
map(fill = TRUE, col = c("cornflowerblue"))
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A vector of any length may be supplied to col when fill = TRUE is also set:

require(maps)
map(fill = TRUE, col = c("cornflowerblue", "limegreen", "hotpink"))

In the example above colors from col are assigned arbitrarily to polygons in the map representing regions and
colors are recycled if there are fewer colors than polygons.

We can also use color coding to represent a statistical variable, which may optionally be described in a legend. A
map created as such is known as a "choropleth".

The following choropleth example sets the first argument of map (), which is database to "county" and "state" to
color code unemployment using data from the built-in datasets unemp and county.fips while overlaying state lines
in white:

require(maps)
if(require(mapproj)) # mapproj is used for projection="polyconic"
# color US county map by 2009 unemployment rate

# match counties to map using FIPS county codes

# Based on J's solution to the "Choropleth Challenge"

# Code improvements by Hack-R (hack-r.github.io)

# load data

# unemp includes data for some counties not on the "lower 48 states" county
# map, such as those in Alaska, Hawaii, Puerto Rico, and some tiny Virginia
# cities

data(unemp)

data(county.fips)

# define color buckets
colors = c("paleturquoise”, "skyblue", "cornflowerblue", "blueviolet", "hotpink", "darkgrey")
unemp$colorBuckets <- as.numeric(cut(unempSunemp, c(0, 2, 4, 6, 8, 10, 100)))
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leg.txt <- ¢("<2%", "2-4%", "4-6%", "6-8%", "8-10%", ">10%")

# align data with map definitions by (partial) matching state, county

# names, which include multiple polygons for some counties

cnty.fips <- county.fipsS$fips[match(map("county", plot=FALSE)Snames,
county.fips$polyname) ]

colorsmatched <- unempScolorBuckets[match(cnty.fips, unempS$fips)]

# draw map

par(mar=c(1, 1, 2, 1) + 0.1)

map("county", col = colors[colorsmatched], fill = TRUE, resolution
1ty = 0, projection = "polyconic")

map("state", col = "white", fill = FALSE, add = TRUE, 1ty = 1, 1lwd = 0.1,
projection="polyconic")

title("unemployment by county, 20609")

legend("topright”, leg.txt, horiz = TRUE, fill = colors, cex=0.6)

I}
(o]

unemployment by county, 2009

|D <2% 0@ 24% @ 446% B 68% B B-10% B =10%

Section 33.2: 50 State Maps and Advanced Choropleths with
Google Viz

A common guestion is how to juxtapose (combine) physically separate geographical regions on the same map, such
as in the case of a choropleth describing all 50 American states (The mainland with Alaska and Hawaii juxtaposed).

Creating an attractive 50 state map is simple when leveraging Google Maps. Interfaces to Google's APl include the
packages googleVis, ggmap, and RgoogleMaps.

require(googleVis)

G4 <- gvisGeoChart(CityPopularity, locationvar='City', colorvar='Popularity’,
options=1list(region='US', height=350,
displayMode="'markers",
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colorAxis="{values:[200, 400,600, 800],
colors:[\'red', \'pink\', \'orange',6\'green']}")

)

plot(G4)
&
-
200 1IN B GO0
Data: CityPopularity = Chart ID: GeoCharllD25504adb439a = googleVis-0.5.2

Rversion 3.1.0 (2014-04-10) » Google Terms of Use » Documentation and Data Policy

The function gvisGeoChart() requires far less coding to create a choropleth compared to older mapping methods,
such as map() from the package maps. The colorvar parameter allows easy coloring of a statistical variable, at a
level specified by the locationvar parameter. The various options passed to options as a list allow customization
of the map's details such as size (height), shape (markers), and color coding (colorAxis and colors).

Section 33.3: Interactive plotly maps

The plotly package allows many kind of interactive plots, including maps. There are a few ways to create a map in
plotly. Either supply the map data yourself (via plot_ly() or ggplotly()), use plotly's "native" mapping

capabilities (via plot_geo() or plot_mapbox()), or even a combination of both. An example of supplying the map
yourself would be:

library(plotly)

map_data("county") %>%
group_by(group) %>%
plot_ly(x = ~long, y = ~lat) %>%
add_polygons() %>%

layout(
xaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE),
yaxis = list(title = "", showgrid = FALSE, showticklabels = FALSE)
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For a combination of both approaches, swap plot_ly() for plot_geo() or plot_mapbox() in the above example.
See the plotly book for more examples.

The next example is a "strictly native" approach that leverages the layout.geo attribute to set the aesthetics and
zoom level of the map. It also uses the database world.cities from maps to filter the Brazilian cities and plot them
on top of the "native" map.

The main variables: pophis a text with the city and its population (which is shown upon mouse hover); gis a ordered
factor from the population's quantile. ge has information for the layout of the maps. See the package
documentation for more information.

library(maps)

dfb <- world.cities[world.citiesScountry.etc=="Brazil", ]
library(plotly)

dfb$poph <- paste(dfbSname, "Pop", round(dfbSpop/1e6,2), " millions")
dfb8q <- with(dfb, cut(pop, quantile(pop), include.lowest = T))
levels(dfbSq) <- paste(c("1st", "2nd", "3rd", "4th"), "Quantile")
dfbSq <- as.ordered(dfb$q)

ge <- list(
scope = 'south america',
showland = TRUE,
landcolor = toRGB("gray85")
subunitwidth = 1,
countrywidth = 1,
subunitcolor = toRGB('"white"),
countrycolor = toRGB("white")

)

plot_geo(dfb, lon = ~long, lat = ~lat, text = ~poph,
marker = ~list(size = sqrt(pop/10000) + 1, line = list(width = 0)),
color = ~q, locationmode = 'country names') %>%

layout(geo = ge, title = 'Populations<br>(Click legend to toggle)')
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Section 33.4: Making Dynamic HTML Maps with Leaflet

Leaflet is an open-source JavaScript library for making dynamic maps for the web. RStudio wrote R bindings for
Leaflet, available through its leaflet package, built with htmlwidgets. Leaflet maps integrate well with the
RMarkdown and Shiny ecosystems.

The interface is piped, using a leaflet() function to initialize a map and subsequent functions adding (or
removing) map layers. Many kinds of layers are available, from markers with popups to polygons for creating
choropleth maps. Variables in the data.frame passed to leaflet() are accessed via function-style ~ quotation.

To map the state.name and state.center datasets:

library(leaflet)

data.frame(state.name, state.center) %>%
leaflet() %>%
addProviderTiles('Stamen.Watercolor') %>%
addMarkers(lng = ~x, lat = ~y,
popup = ~state.name,
clusterOptions = markerClusterOptions())
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Leaflet | Map tiles by Stamen Dasign, CC BY 3.0 — Map data @ OpenStraatMap

(Screenshot; click for dynamic version.)

Section 33.5: Dynamic Leaflet maps in Shiny applications

The Leaflet package is designed to integerate with Shiny
In the ui you call leafletOutput() and in the server you call renderLeaflet()

library(shiny)
library(leaflet)

ui <- fluidPage(
leafletOutput("my_leaf")
)
server <- function(input, output, session){
outputSmy_leaf <- renderLeaflet({
leaflet() %>%
addProviderTiles( 'Hydda.Full') %>%
setView(lat = -37.8, 1lng = 144.8, zoom = 10)
})
}

shinyApp(ui, server)

However, reactive inputs that affect the renderLeaflet expression will cause the entire map to be redrawn each
time the reactive element is updated.
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Therefore, to modify a map that's already running you should use the leafletProxy() function.

Normally you use leaflet to create the static aspects of the map, and leafletProxy to manage the dynamic
elements, for example:

library(shiny)
library(leaflet)

ui <- fluidPage(
sliderInput(inputId = "slider",
label = "values",
min = 0,
max = 100,
value = 0,
step = 1),
leafletOutput("my_leaf")
)

server <- function(input, output, session){
set.seed(123456)
df <- data.frame(latitude = sample(seq(-38.5, -37.5, by = 0.01), 1600),
longitude = sample(seq(144.0, 145.0, by = 0.01), 100),
value = seq(1,100))

## create static element
outputSmy_leaf <- renderLeaflet({

leaflet() %>%
addProviderTiles('Hydda.Full') %>%
setView(lat = -37.8, 1ng = 144.8, zoom = 8)

)

## filter data

df _filtered <- reactive({
df[dfSvalue >= input$slider, |

1)

## respond to the filtered data
observe({

leafletProxy(mapId = "my_leaf", data = df_filtered()) %>%

clearMarkers() %>% ## clear previous markers
addMarkers()

)
}

shinyApp(ui, server)
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Chapter 34: Set operations

Section 34.1: Set operators for pairs of vectors
Comparing sets

In R, a vector may contain duplicated elements:

w=c("A", "A")

However, a set contains only one copy of each element. R treats a vector like a set by taking only its distinct
elements, so the two vectors above are regarded as the same:

setequal(v, w)
# TRUE

Combining sets

The key functions have natural names:

X
y

c(1, 2, 3)
c(2, 4)

union(x, vy)
#1234

intersect(x, y)
# 2

setdiff(x, y)
#1 3

These are all documented on the same page, ?union.

Section 34.2: Cartesian or ""cross” products of vectors

To find every vector of the form (x, y) where x is drawn from vector X and y from Y, we use expand.grid:

X
Y

c(1, 1, 2)
c(4, 5)

expand.grid(X, YY)

# Var1l Var2
# 1 1 4
# 2 1 4
# 3 2 4
# 4 1 5]
# 5 1 5
# 6 2 5)

The result is a data.frame with one column for each vector passed to it. Often, we want to take the Cartesian
product of sets rather than to expand a "grid" of vectors. We can use unique, lapply and do.call:

m = do.call(expand.grid, lapply(list(X, Y), unique))
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# Var1 Var2
# 1 1 4
# 2 2 4
# 3 1 5)
# 4 2 5)

Applying functions to combinations
If you then want to apply a function to each resulting combination f(x, y), it can be added as another column:

m$p = with(m, VarixVar2)
# Var1l Var2 p
# 1 1 4 4
# 2 2 4 8
# 3 1 SIS
# 4 2 5 10

This approach works for as many vectors as we need, but in the special case of two, it is sometimes a better fit to
have the result in a matrix, which can be achieved with outer:

uX
uY

unique(X)
unique(Y)

outer(setNames(uX, uX), setNames(uY, uY), “*°)

H B H
N =

(o T S
S o1 ;g

For related concepts and tools, see the combinatorics topic.

Section 34.3: Set membership for vectors
The %in% operator compares a vector with a set.

v oo
W= c("A", "A")

w %in% v
# TRUE TRUE

Vv %in% w
# TRUE

Each element on the left is treated individually and tested for membership in the set associated with the vector on
the right (consisting of all its distinct elements).

Unlike equality tests, %in% always returns TRUE or FALSE:

c(1, NA) %in% c(1, 2, 3, 4)
# TRUE FALSE

The documentation is at 2 %in%".

Section 34.4: Make unique / drop duplicates / select distinct
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elements from a vector
unique drops duplicates so that each element in the result is unique (only appears once):
x=c(2, 1,1, 2, 1)

unique(x)
# 21

Values are returned in the order they first appeared.
duplicated tags each duplicated element:

duplicated(x)
# FALSE FALSE TRUE TRUE TRUE

anyDuplicated(x) > 6L is a quick way of checking whether a vector contains any duplicates.

Section 34.5: Measuring set overlaps / Venn diagrams for
vectors

To count how many elements of two sets overlap, one could write a custom function:

xtab_set <- function(A, B){
both <- union(A, B)

inA <- both %in% A
inB <- both %in% B
return(table(inA, inB))

}

A= 1:20

B = 10:30

xtab_set(A, B)

# inB

# inA FALSE TRUE
# FALSE 0 10
# TRUE 9 11

A Venn diagram, offered by various packages, can be used to visualize overlap counts across multiple sets.
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Chapter 35: tidyverse

Section 35.1: tidyverse: an overview

What is tidyverse?

tidyverse is the fast and elegant way to turn basic R into an enhanced tool, redesigned by Hadley/Rstudio. The

development of all packages included in tidyverse follow the principle rules of The tidy tools manifesto. But first,

let the authors describe their masterpiece:

The tidyverse is a set of packages that work in harmony because they share common data

packages from the tidyverse in a single command.

The best place to learn about all the packages in the tidyverse and how they fit together is R for Data
Science. Expect to hear more about the tidyverse in the coming months as | work on improved package

the tidyverse.

(source))

How to use it?
Just with the ordinary R packages, you need to install and load the package.

install.package("tidyverse")
library("tidyverse")

representations and API design. The tidyverse package is designed to make it easy to install and load core

websites, making citation easier, and providing a common home for discussions about data analysis with

The difference is, on a single command a couple of dozens of packages are installed/loaded. As a bonus, one may

rest assured that all the installed/loaded packages are of compatible versions.
What are those packages?
The commonly known and widely used packages:

e ggplot2: advanced data visualisation SO_doc

dplyr: fast (Rcpp) and coherent approach to data manipulation SO_doc

tidyr: tools for data tidying SO_doc

readr: for data import.

e purrr: makes your pure functions purr by completing R's functional programming tools with important
features from other languages, in the style of the JS packages underscore.js, lodash and lazy.js.

tibble: a modern re-imagining of data frames.

magrittr: piping to make code more readable SO_doc

Packages for manipulating specific data formats:

hms: easily read times

e stringr: provide a cohesive set of functions designed to make working with strings as easy as posssible
lubridate: advanced date/times manipulations SO_doc

forcats: advanced work with factors.

Data import:
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¢ DBI: defines a common interface between the R and database management systems (DBMS)

e haven: easily import SPSS, SAS and Stata files SO_doc

httr: the aim of httr is to provide a wrapper for the curl package, customised to the demands of modern web
APIs

jsonlite: a fast JSON parser and generator optimized for statistical data and the web

readxl: read.xls and .xIsx files without need for dependency packages SO_doc

e rvest: rvest helps you scrape information from web pages SO_doc

xml2: for XML

And modelling:

e modelr: provides functions that help you create elegant pipelines when modelling
e broom: easily extract the models into tidy data

Finally, tidyverse suggest the use of:

¢ knitr: the amazing general-purpose literate programming engine, with lightweight API's designed to give
users full control of the output without heavy coding work. SO_docs: one, two
e rmarkdown: Rstudio's package for reproducible programming. SO_docs: one, two, three, four

Section 35.2: Creating tbl_df’s

A tbl_df (pronounced tibble diff) is a variation of a data frame that is often used in tidyverse packages. It is
implemented in the tibble package.

Use the as_data_frame function to turn a data frame into a tbl_df:

library(tibble)
mtcars_tbl <- as_data_frame(mtcars)

One of the most notable differences between data.frames and tbl_dfs is how they print:

# A tibble: 32 x 11

mpg cyl disp hp drat wt gsec Vs am gear carb
* <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21.90 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
4  21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
5 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
6 18.1 6 225.0 1805 2.76 3.460 20.22 1 0 3 1
7 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
8 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
9 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
10 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
# . with 22 more rows

¢ The printed output includes a summary of the dimensions of the table (32 x 11)
e Itincludes the type of each column (dbl)
e |t prints a limited number of rows. (To change this use options(tibble.print_max = [number])).

Many functions in the dplyr package work naturally with tbl_dfs, such as group_by ().
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Chapter 36: Rcpp
Section 36.1: Extending Rcpp with Plugins

Within C++, one can set different compilation flags using:
// [[Rcpp::plugins(name)]]
List of the built-in plugins:

// built-in C++11 plugin
// [[Rcpp::plugins(cpp11)]]

// built-in C++11 plugin for older g++ compiler
// [[Rcpp::plugins(cpp®x)]]

// built-in C++14 plugin for C++14 standard
// [[Repp::plugins(cpp14)]]

// built-in C++1y plugin for C++14 and C++17 standard under development
// [[Rcpp::plugins(cpply)]]

// built-in OpenMP++11 plugin
// [[Rcpp::plugins(openmp)]]

Section 36.2: Inline Code Compile

Rcpp features two functions that enable code compilation inline and exportation directly into R: cppFunction() and
evalCpp(). A third function called sourceCpp() exists to read in C++ code in a separate file though can be used akin
to cppFunction().

Below is an example of compiling a C++ function within R. Note the use of "" to surround the source.

# Note - This is R code.
# cppFunction in Rcpp allows for rapid testing.
require(Rcpp)

# Creates a function that multiples each element in a vector
# Returns the modified vector.

cppFunction(”

NumericVector exfun(NumericVector x, int i){

X = X*1;

return x;

)
# Calling function in R
exfun(1:5, 3)

To quickly understand a C++ expression use:

# Use evalCpp to evaluate C++ expressions
evalCpp("std::numeric_limits<double>::max()")
## [1] 1.797693e+308
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Section 36.3: Rcpp Attributes

Rcpp Attributes makes the process of working with R and C++ straightforward. The form of attributes take:

// [[Rcpp::attribute]]
The use of attributes is typically associated with:

// [[Rcpp::export]]

that is placed directly above a declared function header when reading in a C++ file via sourceCpp().

Below is an example of an external C++ file that uses attributes.

// Add code below into C++ file Rcpp_example.cpp

#include <Rcpp.h>
using namespace Rcpp;

// Place the export tag right above function declaration.

// [[Rcpp::export]]
double muRcpp(NumericVector x)({

int n = x.size(); // Size of vector
double sum = @; // Sum value

// For loop, note cpp index shift to ©
for(int 1 = 0; i < n; i++){
// Shorthand for sum = sum + x[i]
sum += x[i];

}

return sum/n; // Obtain and return the Mean

}
// Place dependent functions above call or

// declare the function definition with:
double muRcpp(NumericVector x);

// [[Rcpp::export]]
double varRcpp(NumericVector x, bool bias = true){

// Calculate the mean using C++ function
double mean = muRcpp(x);

double sum = 9;

int n = x.size();

for(int 1 = @; 1 < n; i++){

sum += pow(x[i] - mean, 2.0); // Square

}

return sum/(n-bias); // Return variance

To use this external C++ file within R, we do the following:

require(Rcpp)
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# Compile File
sourceCpp("path/to/file/Rcpp_example.cpp")

# Make some sample data
X = 1:5

all.equal(muRcpp(x), mean(x))
## TRUE

all.equal(varRcpp(x), var(x))
## TRUE

Section 36.4: Specifying Additional Build Dependencies

To use additional packages within the Rcpp ecosystem, the correct header file may not be Repp.h but
Rcpp<PACKAGE> . h (as e.g. for RcppArmadillo). It typically needs to be imported and then the dependency is stated
within

// [[Rcpp: :depends(Rcpp<PACKAGE>)]]
Examples:

// Use the RcppArmadillo package

// Requires different header file from Rcpp.h
#include <RcppArmadillo.h>

// [[Rcpp::depends(RcppArmadillo)]]

// Use the RcppEigen package

// Requires different header file from Rcpp.h
#include <RcppEigen.h>

// [[Rcpp::depends(RcppEigen)]]
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Chapter 37: Random Numbers Generator

Section 37.1: Random permutations

To generate random permutation of 5 numbers:

sample(5)
#[1] 45312

To generate random permutation of any vector:

sample(10:15)
# [1] 11 15 12 10 14 13

One could also use the package pracma

randperm(a, k)

# Generates one random permutation of k of the elements a, if a is a vector,
# or of 1:a if a is a single integer.

# a: integer or numeric vector of some length n.

# k: integer, smaller as a or length(a).

# Examples
library(pracma)
randperm(1:10, 3)
[1] 37 9

randperm(10, 10)
[1] 4 510 8 2 7 6 9 3 1

randperm(seq(2, 10, by=2))
[1] 6 4106 2 8

Section 37.2: Generating random numbers using various
density functions

Below are examples of generating 5 random numbers using various probability distributions.

Uniform distribution between 0 and 10

runif(5, min=0, max=10)

[1] 2.1724399 8.9209930 6.1969249 9.3303321 2.4054102

Normal distribution with 0 mean and standard deviation of 1
rnorm(5, mean=0, sd=1)

[1] -0.97414402 -0.85722281 -0.08555494 -0.37444299 1.20032409
Binomial distribution with 10 trials and success probability of 0.5
rbinom(5, size=10, prob=0.5)

[1] 43523
Geometric distribution with 0.2 success probability

rgeom(5, prob=0.2)

[1] 14 811 1 3

Hypergeometric distribution with 3 white balls, 10 black balls and 5 draws

rhyper(5, m=3, n=10, k=5)
[11 20 111
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Negative Binomial distribution with 10 trials and success probability of 0.8

rnbinom(5, size=10, prob=0.8)
[1] 31342

Poisson distribution with mean and variance (lambda) of 2

rpois(5, lambda=2)
[1] 212 3 4

Exponential distribution with the rate of 1.5

rexp(5, rate=1.5)
[1] 1.8993303 ©.4799358 0.5578280 1.5630711 0.6228000

Logistic distribution with 0 location and scale of 1

rlogis(5, location=0, scale=1)
[1] ©.9498992 -1.0287433 -0.4192311 ©.7028510 -1.2095458

Chi-squared distribution with 15 degrees of freedom

rchisq(5, df=15)
[1] 14.89209 19.36947 10.27745 19.48376 23.32898

Beta distribution with shape parameters a=1 and b=0.5

rbeta(5, shapel=1, shape2=0.5)
[1] ©.1670306 ©.5321586 ©.9869520 0.9548993 ©.9999737

Gamma distribution with shape parameter of 3 and scale=0.5

rgamma(5, shape=3, scale=0.5)

[1] 2.2445984 0.7934152 3.2366673 2.2897537 0.8573059
Cauchy distribution with 0 location and scale of 1

rcauchy(5, location=0, scale=1)

[1] -0.01285116 -0.38918446 8.71016696 10.60293284 -0.68017185
Log-normal distribution with 0 mean and standard deviation of 1 (on log scale)
rlnorm(5, meanlog=0, sdlog=1)

[1] ©.8725009 2.9433779 ©.3329107 2.5976206 2.8171894
Weibull distribution with shape parameter of 0.5 and scale of 1

rweibull(5, shape=0.5, scale=1)

[1] ©.337599112 1.307774557 7.233985075 5.840429942 0.005751181
Wilcoxon distribution with 10 observations in the first sample and 20 in second.
rwilcox(5, 10, 20)

[1] 111 88 93 100 124

Multinomial distribution with 5 object and 3 boxes using the specified probabilities

rmultinom(5, size=5, prob=c(0.1,0.1,0.8))
(.11 [,2] [,3] [,4] [,5]

[1,] 0 0 1 1 0

[2,] 2 0 1 1 0

[3,] 3 5 3 3 5

Section 37.3: Random number generator’s reproducibility

When expecting someone to reproduce an R code that has random elements in it, the set.seed() function
becomes very handy. For example, these two lines will always produce different output (because that is the whole
point of random number generators):

> sample(1:10,5)
[1] 6 9 2 7 10
> sample(1:10,5)
[1] 7 6 1 2 1@
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These two will also produce different outputs:

> rnorm(5)
[1] ©.4874291 ©.7383247 ©0.5757814 -0.3053884 1.5117812
> rnorm(5)

[1] ©.38984324 -0.62124058 -2.21469989 1.12493092 -0.04493361

However, if we set the seed to something identical in both cases (most people use 1 for simplicity), we get two
identical samples:

> set.seed(1)

> sample(letters,?2)
(1] "g" "j"

> set.seed(1)

> sample(letters,?2)
(1] "g" "j"

and same with, say, rexp() draws:

> set.seed(1)

> rexp(5)

[1] ©.7551818 1.1816428 ©.1457067 0.1397953 0.4360686
> set.seed(1)

> rexp(5)

[1] ©.7551818 1.1816428 ©.1457067 0.1397953 0.4360686
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Chapter 38: Parallel processing

Section 38.1: Parallel processing with parallel package
The base package parallel allows parallel computation through forking, sockets, and random-number generation.

Detect the number of cores present on the localhost:

parallel::detectCores(all.tests = FALSE, logical = TRUE)

Create a cluster of the cores on the localhost:

parallelCluster <- parallel::makeCluster(parallel::detectCores())

First, a function appropriate for parallelization must be created. Consider the mtcars dataset. A regression on mpg
could be improved by creating a separate regression model for each level of cyl.

data <- mtcars

yfactor <- 'cyl'

zlevels <- sort(unique(data[[yfactor]]))
datay <- datal[,1]

dataz <- datal,2]

datax <- data[,3:11]

fitmodel <- function(zlevel, datax, datay, dataz) {
glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevell])

}

Create a function that can loop through all the possible iterations of zlevels. This is still in serial, but is an
important step as it determines the exact process that will be parallelized.

fitmodel <- function(zlevel, datax, datay, dataz) {
glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevel])

}

for (zlevel in zlevels) {
print("***xx")
print(zlevel)
print(fitmodel(zlevel, datax, datay, dataz))

}
Curry this function:

worker <- function(zlevel) {
fitmodel(zlevel,datax, datay, dataz)
}

Parallel computing using parallel cannot access the global environment. Luckily, each function creates a local
environment parallel can access. Creation of a wrapper function allows for parallelization. The function to be
applied also needs to be placed within the environment.

wrapper <- function(datax, datay, dataz) {
# force evaluation of all parameters not supplied by parallelization apply
force(datax)
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force(datay)
force(dataz)
# these variables are now in an enviroment accessible by parallel function

# function to be applied also in the environment
fitmodel <- function(zlevel, datax, datay, dataz) {

glm.fit(x = datax[dataz == zlevel,], y = datay[dataz == zlevell])
}

# calling in this environment iterating over single parameter zlevel
worker <- function(zlevel) {

fitmodel(zlevel, datax, datay, dataz)
}

return(worker)

Now create a cluster and run the wrapper function.

parallelcluster <- parallel::makeCluster(parallel::detectCores())
models <- parallel::parLapply(parallelcluster,zlevels,
wrapper(datax, datay, dataz))

Always stop the cluster when finished.

parallel::stopCluster(parallelcluster)

The parallel package includes the entire apply() family, prefixed with par.

Section 38.2: Parallel processing with foreach package

The foreach package brings the power of parallel processing to R. But before you want to use multi core CPUs you
have to assign a multi core cluster. The doSNOW package is one possibility.

A simple use of the foreach loop is to calculate the sum of the square root and the square of all numbers from 1 to
100000.

library(foreach)
library(doSNOW)

cl <- makeCluster(5, type = "SOCK")
registerDoSNOW(cl)

f <- foreach(i = 1:100000, .combine = ¢, .inorder = F) %dopar% {
k <- 1 #%x 2 + sqrt(i)
k

The structure of the output of foreach is controlled by the .combine argument. The default output structure is a
list. In the code above, c is used to return a vector instead. Note that a calculation function (or operator) such as "+"
may also be used to perform a calculation and return a further processed object.

It is important to mention that the result of each foreach-loop is the last call. Thus, in this example k will be added
to the result.

Parameter Details
combine Function. Determines how the results of the loop are combined. Possible values are c, cbind,

.combine . P [
rbind, "+", "*"...
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if TRUE the result is ordered according to the order of the iteration vairable (here i). If FALSE the result
is not ordered. This can have postive effects on computation time.
for functions which are provided by any package except base, like e.g. mass, randomForest or else, you
have to provide these packages with c("mass", "randomForest")

.inorder

.packages

Section 38.3: Random Number Generation

A major problem with parallelization is the used of RNG as seeds. Random numbers by the number are iterated by
the number of operations from either the start of the session or the most recent set.seed(). Since parallel
processes arise from the same function, it can use the same seed, possibly causing identical results! Calls will run in
serial on the different cores, provide no advantage.

A set of seeds must be generated and sent to each parallel process. This is automatically done in some packages
(parallel, snow, etc.), but must be explicitly addressed in others.

s <- seed
for (i in 1:numofcores) {
s <- nextRNGStream(s)
# send s to worker i as .Random.seed

Seeds can be also be set for reproducibility.

clusterSetRNGStream(cl = parallelcluster, iseed)

Section 38.4: mcparallelDo

The mcparallelDo package allows for the evaluation of R code asynchronously on Unix-alike (e.g. Linux and
MacOSX) operating systems. The underlying philosophy of the package is aligned with the needs of exploratory
data analysis rather than coding. For coding asynchrony, consider the future package.

Example

Create data
data(ToothGrowth)

Trigger mcparallelDo to perform analysis on a fork

mcparallelDo({glm(len ~ supp * dose, data=ToothGrowth)}, "interactionPredictorModel")

Do other things, e.g.

binaryPredictorModel <- glm(len ~ supp, data=ToothGrowth)
gaussianPredictorModel <- glm(len ~ dose, data=ToothGrowth)

The result from mcparallelDo returns in your targetEnvironment, e.g. .GlobalEnv, when it is complete with a
message (by default)

summary(interactionPredictorModel)

Other Examples
# Example of not returning a value until we return to the top level
for (i in 1:10) {

if (1 == 1) {
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mcparallelDo({2+2}, targetValue = "output")
}
if (exists("output")) print(i)
}

# Example of getting a value without returning to the top level
for (i in 1:18) {

if (1 == 1) {

mcparallelDo({2+2}, targetValue = "output")

}

mcparallelDoCheck()

if (exists("output")) print(i)
}
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Chapter 39: Subsetting

Given an R object, we may require separate analysis for one or more parts of the data contained in it. The process

of obtaining these parts of the data from a given object is called subsetting.

Section 39.1: Data frames

Subsetting a data frame into a smaller data frame can be accomplished the same as subsetting a list.

> df3 <- data.frame(x = 1:3, y = c("a",

> df3
##

H oH R
H* X H
W N =
W N = X
0O T o X<

> df3[1] # Subset a variable by number
## X
## 1 1
## 2 2
## 3 3

> df3["x"] # Subset a variable by name
## X

## 1 1
## 2 2
## 3 3

> is.data.frame(df3[1])
## TRUE

> is.list(df3[1])
## TRUE

), stringsAsFactors

Subsetting a dataframe into a column vector can be accomplished using double brackets [[ 1] or the dollar sign

operator $.

> df3[[2]] # Subset a variable by number using [[ 1]

## [1] "a" "b" "c"

> df3[["y"]] # Subset a variable by name using [[ ]]

## [1] "a" "b" "c"

> df38x # Subset a variable by name using $

## [1] 1 2 3

> typeof(df3S$x)
## "integer"

> is.vector(df3$x)
## TRUE

Subsetting a data as a two dimensional matrix can be accomplished using i and j terms.

> df3[1, 2] # Subset row and column by number

## [1] "a"
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> df3[1, "y"] # Subset row by number and column by name
## [1] "a"

> df3[2, | # Subset entire row by number
## Xy
## 2 2 b

> df3[ , 1] # Subset all first variables
## [1]1 1 2 3

> df3[ , 1, drop = FALSE]

## X
## 1 1
## 2 2
## 3 3

Note: Subsetting by j (column) alone simplifies to the variable's own type, but subsetting by i alone returns a
data.frame, as the different variables may have different types and classes. Setting the drop parameter to FALSE
keeps the data frame.

> is.vector(df3[, 2])
## TRUE

> is.data.frame(df3[2, ])
## TRUE

> is.data.frame(df3[, 2, drop = FALSE])
## TRUE

Section 39.2: Atomic vectors

Atomic vectors (which excludes lists and expressions, which are also vectors) are subset using the [ operator:
# create an example vector
V1 <- c(llall, IIbII' “C“, IIdII)

# select the third element
v1[3]
## [1] "c"

The [ operator can also take a vector as the argument. For example, to select the first and third elements:
V-I <- c(”a”, |lb||' uCu' |ld||)

vi[e(1, 3)]
## [1] "a" "c"

Some times we may require to omit a particular value from the vector. This can be achieved using a negative sign(-)
before the index of that value. For example, to omit to omit the first value from v1, use v1[-1]. This can be
extended to more than one value in a straight forward way. For example, v1[-c(1,3)1].

> vi[-1]

[-I] Ilbll IICII Ildll
> vi[-¢(1,3)]
[1] Ilbll Ildll

On some occasions, we would like to know, especially, when the length of the vector is large, index of a particular
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value, if it exists:

> vl=="c¢"

[1] FALSE FALSE TRUE FALSE
> which(v1=="c"

(1] 3

If the atomic vector has names (a names attribute), it can be subset using a character vector of names:

v <- 1:3
names(v) <- c("one", "two", "three")

v
## one two three
## 1 2 3

V[“tWO“]
## two
## 2

The [[ operator can also be used to index atomic vectors, with differences in that it accepts a indexing vector with a
length of one and strips any names present:

vile(1, 2)]]
## Error in v[[c(1, 2)]]
## attempt to select more than one element in vectorIndex

v[["two"]]
# [1] 2

Vectors can also be subset using a logical vector. In contrast to subsetting with numeric and character vectors, the
logical vector used to subset has to be equal to the length of the vector whose elements are extracted, so if a logical
vector y is used to subset x, i.e. x[y], if length(y) < length(x) then y will be recycled to match length(x):

v[c(TRUE, FALSE, TRUE)]
## one three
#i# 1 3

v[c(FALSE, TRUE)] # recycled to 'c(FALSE, TRUE, FALSE)'
## two
## 2

v[TRUE] # recycled to 'c(TRUE, TRUE, TRUE)'
## one two three
#i# 1 2 3

v[FALSE] # handy to discard elements but save the vector's type and basic structure
## named integer(0)

Section 39.3: Matrices

For each dimension of an object, the [ operator takes one argument. Vectors have one dimension and take one
argument. Matrices and data frames have two dimensions and take two arguments, given as [1, j] where i isthe
row and j is the column. Indexing starts at 1.

## a sample matrix
mat <- matrix(1:6, nrow = 2, dimnames = list(c("rowl", "row2"), c("coll", "col2", "col3")))
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mat

# coll col2 col3
# rowl 1 3 5)
# row2 2 4 6

mat[i, j] is the element in the i-th row, j-th column of the matrix mat. For example, an i value of 2 and a j value of
1 gives the number in the second row and the first column of the matrix. Omitting i or j returns all values in that
dimension.

mat[ , 3]
## rowl row2
## 5 6
mat[1, ]

# coll col2 col3
# 1 3 5

When the matrix has row or column names (not required), these can be used for subsetting:

mat[ , 'coll']
# rowl row?2
# 1 2

By default, the result of a subset will be simplified if possible. If the subset only has one dimension, as in the
examples above, the result will be a one-dimensional vector rather than a two-dimensional matrix. This default can
be overridden with the drop = FALSE argumentto [:

## This selects the first row as a vector
class(mat[1, ])
# [1] "integer"

## Whereas this selects the first row as a 1x3 matrix:
class(mat[1, , drop = F])
# [1] "matrix"

Of course, dimensions cannot be dropped if the selection itself has two dimensions:

mat[1:2, 2:3] ## A 2x2 matrix
# col2 col3
# rowl 3 5
# row2 4 6

Selecting individual matrix entries by their positions

It is also possible to use a Nx2 matrix to select N individual elements from a matrix (like how a coordinate system
works). If you wanted to extract, in a vector, the entries of a matrix in the (1st row, 1st column), (1st row, 3rd
column), (2nd row, 3rd column), (2nd row, 1st column) this can be done easily by creating a index matrix
with those coordinates and using that to subset the matrix:

mat

# coll col2 col3
# rowl 1 3 5)
# row2 2 4 6

ind = rbind(c(1, 1), c(1, 3), ¢(2, 3), c(2, 1))
ind

# [,11 [,2]

# [1,] 1 1
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mat[ind]
# [1]1 156 2

In the above example, the 1st column of the ind matrix refers to rows in mat, the 2nd column of ind refers to
columns in mat.

Section 39.4: Lists

A list can be subset with [:

11 <- list(c(1, 2, 3), 'two' = c("a", "b", "c"), list(10, 20))
11

## [[1]]

## [1]1 1 2 3

#i#

## Stwo

## [1] "a" "b" "c"
#i#

## [[3]]

## [[3]1[[1]]

## [1] 10

H#i#

## [[3]1[[2]]

## [1] 20

11[1]
## [[1]]
# [1]1 123

11['two']
## Stwo
## [-I] IIaII IIbII IICII

11[[2]]
## [1] "a" "b" "c"

11[['two']]
## [1] "a" "b" "c"

Note the result of 11[2] is still a list, as the [ operator selects elements of a list, returning a smaller list. The [[
operator extracts list elements, returning an object of the type of the list element.

Elements can be indexed by number or a character string of the name (if it exists). Multiple elements can be
selected with [ by passing a vector of numbers or strings of names. Indexing with a vector of 1ength > 1in [ and
[ [ returns a "list" with the specified elements and a recursive subset (if available), respectively:

11[e(3, 1)]
## [[1]]

## [[1]10[1]]
## [1] 10
##

## [[1]10[2]]
## [1] 20
##

##

H
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## [[2]]
# [1]1 123

Compared to:

11[[e(3, 1)]]
## [1] 10

which is equivalent to:

1[[3]1[[1]]
## [1] 10

The $ operator allows you to select list elements solely by name, but unlike [ and [ [, does not require quotes. As an
infix operator, $ can only take a single name:

118two
## [1] "a" "b" "c"

Also, the $ operator allows for partial matching by default:

118t
## [1] "a" "b" "c"

in contrast with [[ where it needs to be specified whether partial matching is allowed:

1[["t"11]

## NULL

11[["t", exact = FALSE]]
## [1] "a" "b" "c"

Setting options(warnPartialMatchDollar = TRUE), a "warning" is given when partial matching happens with $:
118t
## [1] "a" "b" "c"

## Warning message:
## In 118t : partial match of 't' to 'two'

Section 39.5: Vector indexing
For this example, we will use the vector:

> X <- 11:20
> X
[1] 11 12 13 14 15 16 17 18 19 20

R vectors are 1-indexed, so for example x[ 1] will return 11. We can also extract a sub-vector of x by passing a
vector of indices to the bracket operator:

> x[c(2,4,6)]
[1] 12 14 16

If we pass a vector of negative indices, R will return a sub-vector with the specified indices excluded:

> x[e(-1,-3)]
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[1] 12 14 15 16 17 18 19 20

We can also pass a boolean vector to the bracket operator, in which case it returns a sub-vector corresponding to
the coordinates where the indexing vector is TRUE:

> x[c(rep(TRUE,5), rep(FALSE,5))]
[1] 11 12 13 14 15 16

If the indexing vector is shorter than the length of the array, then it will be repeated, as in:

> x[¢(TRUE, FALSE) ]

[1] 11 13 15 17 19

> x[c(TRUE, FALSE, FALSE) ]
[1] 11 14 17 20

Section 39.6: Other objects

The [ and [[ operators are primitive functions that are generic. This means that any object in R (specifically
isTRUE(is.object(x)) --i.e. has an explicit "class" attribute) can have its own specified behaviour when subsetted;
i.e. has its own methods for [ and/or [[.

For example, this is the case with "data.frame" (is.object(iris)) objects where [ .data.frame and [[ .data.frame
methods are defined and they are made to exhibit both "matrix"-like and "list"-like subsetting. With forcing an error
when subsetting a "data.frame", we see that, actually, a function [ .data.frame was called when we -just- used [.

iris[invalidArgument, ]
## Error in “[.data.frame’ (iris, invalidArgument, )
##  object 'invalidArgument' not found

Without further details on the current topic, an example[ method:

x = structure(1:5, class = "myClass")

x[c(3, 2, 4)]

## [1] 3 2 4

"[.myClass' = function(x, i) cat(sprintf("We'd expect '%s[%s]' to be returned but this a custom ‘[~

method and should have a “?[.myClass’ help page for its behaviour\n", deparse(substitute(x)),
deparse(substitute(i))))

x[e(3, 2, 4)]

## We'd expect 'x[c(3, 2, 4)]' to be returned but this a custom ‘[’ method and should have a
*?[.myClass’ help page for its behaviour

## NULL

We can overcome the method dispatching of [ by using the equivalent non-generic .subset (and .subset2 for [[).
This is especially useful and efficient when programming our own "class"es and want to avoid work-arounds (like
unclass(x)) when computing on our "class"es efficiently (avoiding method dispatch and copying objects):

.subset(x, ¢(3, 2, 4))
## [1] 3 2 4

Section 39.7: Elementwise Matrix Operations

Let A and B be two matrices of same dimension. The operators +,-,/,%,* when used with matrices of same
dimension perform the required operations on the corresponding elements of the matrices and return a new
matrix of the same dimension. These operations are usually referred to as element-wise operations.
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Operator A op B Meaning

+ A+ B Addition of corresponding elements of Aand B

- A-B Subtracts the elements of B from the corresponding elements of A
A /B Divides the elements of A by the corresponding elements of B

A* B Multiplies the elements of A by the corresponding elements of B
AN-1) For example, gives a matrix whose elements are reciprocals of A

> ok~

For "true" matrix multiplication, as seen in Linear Algebra, use %*%. For example, multiplication of A with B is: A %x%
B. The dimensional requirements are that the ncol() of A be the same as nrow() of B

Some Functions used with Matrices

Function Example Purpose
nrow() nrow(A) determines the number of rows of A
ncol() ncol(A) determines the number of columns of A

rownames() rownames(A) prints out the row names of the matrix A

colnames() colnames(A) prints out the column names of the matrix A

rowMeans() rowMeans(A) computes means of each row of the matrix A

colMeans() colMeans(A) computes means of each column of the matrix A

upper.tri() upper.tri(A) returns a vector whose elements are the upper
triangular matrix of square matrix A

lower.tri() lower.tri(A) returns a vector whose elements are the lower
triangular matrix of square matrix A

det() det(A) results in the determinant of the matrix A

solve() solve(A) results in the inverse of the non-singular matrix A

diag() diag(A) returns a diagonal matrix whose off-diagnal elemts are zeros and
diagonals are the same as that of the square matrix A

t() t(A) returns the the transpose of the matrix A

eigen() eigen(A) retuens the eigenvalues and eigenvectors of the matrix A

is.matrix() is.matrix(A) returns TRUE or FALSE depending on whether A is a matrix or not.
as.matrix() as.matrix(x) creates a matrix out of the vector x
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Chapter 40: Debugging
Section 40.1: Using debug

You can set any function for debugging with debug.

debug(mean)
mean(1:3)

All subsequent calls to the function will enter debugging mode. You can disable this behavior with undebug.

undebug(mean)
mean(1:3)

If you know you only want to enter the debugging mode of a function once, consider the use of debugonce.
debugonce(mean)

mean(1:3)
mean(1:3)

Section 40.2: Using browser

The browser function can be used like a breakpoint: code execution will pause at the point it is called. Then user can
then inspect variable values, execute arbitrary R code and step through the code line by line.

Once browser () is hit in the code the interactive interpreter will start. Any R code can be run as normal, and in
addition the following commands are present,

Command Meaning

c Exit browser and continue program

f Finish current loop or function \

n Step Over (evaluate next statement, stepping over function calls)
S Step Into (evaluate next statement, stepping into function calls)
where Print stack trace

r Invoke "resume" restart

Q Exit browser and quit

For example we might have a script like,

toDebug <- function() {

a=1
b =2
browser()

for(i in 1:100) {
a=a=*b
}
}

toDebug ()

When running the above script we initially see something like,

Called from: toDebug
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Browser[1]>

We could then interact with the prompt as so,

Called from: toDebug

Browser[1]> a

[1] 1

Browser[1]> b

[1] 2

Browse[1]> n

debug at #7: for (i in 1:108) {
a=a=+*hb

}

Browse[2]> n

debug at #8: a = a * b

Browse[2]> a

[1] 1

Browse[2]> n

debug at #8: a = a * b

Browse[2]> a

[1] 2

Browse[2]> Q

browser () can also be used as part of a functional chain, like so:

mtcars %>% group_by(cyl) %>% {browser()}
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Chapter 41: Installing packages

Parameter Details
pkgs character vector of the names of packages. If repos = NULL, a character vector of file paths.
lib character vector giving the library directories where to install the packages.
repos character vector, the base URL(s) of the repositories to use, can be NULL to install from local files
method  download method
destdir  directory where downloaded packages are stored

logical indicating whether to also install uninstalled packages which these packages depend on/link
to/import/suggest (and so on recursively). Not used if repos = NULL.

Arguments to be passed to ‘download.file' or to the functions for binary installs on OS X and
Windows.

dependencies

Section 41.1: Install packages from GitHub

To install packages directly from GitHub use the devtools package:

library(devtools)
install_github("authorName/repositoryName")

To install ggplot2 from github:
devtools::install_github("tidyverse/ggplot2")

The above command will install the version of ggplot2 that corresponds to the master branch. To install from a
different branch of a repository use the ref argument to provide the name of the branch. For example, the
following command will install the dev_general branch of the googleway package.

devtools::install_github("SymbolixAU/googleway", ref = "dev_general")
Another option is to use the ghit package. It provides a lightweight alternative for installing packages from github:

install.packages("ghit")
ghit::install_github("google/CausalImpact")

To install a package that is in a private repository on Github, generate a personal access token at
http://www.github.com/settings/tokens/ (See ?install_github for documentation on the same). Follow these steps:

1. install.packages(c("curl”, "httr"))
2. config = httr::config(ssl_verifypeer = FALSE)

3. install.packages("RCurl")
options(RCurlOptions = c(getOption("RCurlOptions"),ssl.verifypeer = FALSE, ssl.verifyhost =

FALSE ) )

4. getOption("RCurlOptions")
You should see the following:

ssl.verifypeer ssl.verifyhost

FALSE FALSE

5. library(httr)
set_config(config(ssl_verifypeer = 0L))
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This prevents the common error: "Peer certificate cannot be authenticated with given CA certificates"

6. Finally, use the following command to install your package seamlessly

install_github("username/package_name", auth_token="abc")

Alternatively, set an environment variable GITHUB_PAT, using

Sys.setenv(GITHUB_PAT = "access_token")
devtools::install_github("organisation/package_name")

The PAT generated in Github is only visible once, i.e., when created initially, so its prudent to save that token in
.Rprofile. This is also helpful if the organisation has many private repositories.

Section 41.2: Download and install packages from
repositories

Packages are collections of R functions, data, and compiled code in a well-defined format. Public (and private)
repositories are used to host collections of R packages. The largest collection of R packages is available from CRAN.

Using CRAN

A package can be installed from CRAN using following code:
install.packages("dplyr")

Where "dplyr" is referred to as a character vector.

More than one packages can be installed in one go by using the combine function ¢ () and passing a series of
character vector of package names:

install.packages(c("dplyr", "tidyr", "ggplot2"))

In some cases, install.packages may prompt for a CRAN mirror or fail, depending on the value of
getOption("repos"). To prevent this, specify a CRAN mirror as repos argument:

install.packages("dplyr", repos = "https://cloud.r-project.org/")

Using the repos argument it is also possible to install from other repositories. For complete information about all
the available options, run ?install.packages.

Most packages require functions, which were implemented in other packages (e.g. the package data.table). In
order to install a package (or multiple packages) with all the packages, which are used by this given package, the
argument dependencies should be set to TRUE):

install.packages("data.table", dependencies = TRUE)

Using Bioconductor

Bioconductor hosts a substantial collection of packages related to Bioinformatics. They provide their own package
management centred around the biocLite function:

## Try http:// if https:// URLs are not supported
source( "https://bioconductor.org/biocLite.R")
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biocLite()

By default this installs a subset of packages that provide the most commonly used functionality. Specific packages
can be installed by passing a vector of package names. For example, to install RImmPort from Bioconductor:

source( "https://bioconductor.org/biocLite.R")
biocLite("RImmPort")

Section 41.3: Install package from local source
To install package from local source file:
install.packages(path_to_source, repos = NULL, type="source")
install.packages("~/Downloads/dplyr-master.zip", repos=NULL, type="source")
Here, path_to_source is absolute path of local source file.
Another command that opens a window to choose downloaded zip or tar.gz source files is:

install.packages(file.choose(), repos=NULL)

Another possible way is using the GUI based RStudio:

Step 1: Go to Tools.

Step 2: Go to Install Packages.

Step 3: In the Install From set it as Package Archive File (.zip; .tar.gz)

Step 4: Then Browse find your package file (say crayon_1.3.1.zip) and after some time (after it shows the Package path
and file name in the Package Archive tab)

Another way to install R package from local source is using install_local() function from devtools package.

library(devtools)
install_local("~/Downloads/dplyr-master.zip")

Section 41.4: Install local development version of a package

While working on the development of an R package it is often necessary to install the latest version of the package.
This can be achieved by first building a source distribution of the package (on the command line)

R CMD build my_package
and then installing it in R. Any running R sessions with previous version of the package loaded will need to reload it.

unloadNamespace( "my_package")
library(my_package)

A more convenient approach uses the devtools package to simplify the process. In an R session with the working
directory set to the package directory

devtools::install()
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will build, install and reload the package.

Section 41.5: Using a CLI package manager -- basic pacman
usage

pacman is a simple package manager for R.

pacman allows a user to compactly load all desired packages, installing any which are missing (and their
dependencies), with a single command, p_load. pacman does not require the user to type quotation marks around a
package name. Basic usage is as follows:

p_load(data.table, dplyr, ggplot2)
The only package requiring a library, require, or install.packages statement with this approach is pacman itself:

library(pacman)
p_load(data.table, dplyr, ggplot2)

or, equally valid:
pacman: :p_load(data.table, dplyr, ggplot2)

In addition to saving time by requiring less code to manage packages, pacman also facilitates the construction of
reproducible code by installing any needed packages if and only if they are not already installed.

Since you may not be sure if pacman is installed in the library of a user who will use your code (or by yourself in
future uses of your own code) a best practice is to include a conditional statement to install pacman if it is not
already loaded:

if(!(require(pacman)) install.packages("pacman")
pacman: :p_load(data.table, dplyr, ggplot2)
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Chapter 42: Inspecting packages

Packages build on base R. This document explains how to inspect installed packages and their functionality. Related

Docs: Installing packages

Section 42.1: View Package Version

Conditions: package should be at least installed. If not loaded in the current session, not a problem.

## Checking package version which was installed at past or
## installed currently but not loaded in the current session

packageVersion("seqginr")
# [1] '3.3.3'
packageVersion("RWeka")
# [1] ‘@.4.29’

Section 42.2: View Loaded packages in Current Session

To check the list of loaded packages
search()
OR

(.packages())

Section 42.3: View package information

To retrieve information about dplyr package and its functions' descriptions:

help(package = "dplyr")

No need to load the package first.

Section 42.4: View package’s built-in data sets
To see built-in data sets from package dplyr

data(package = "dplyr")

No need to load the package first.

Section 42.5: List a package's exported functions
To get the list of functions within package dplyr, we first must load the package:

library(dplyr)
1s("package:dplyr")
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Chapter 43: Creating packages with
devtools

This topic will cover the creation of R packages from scratch with the devtools package.

Section 43.1: Creating and distributing packages

This is a compact guide about how to quickly create an R package from your code. Exhaustive documentations will
be linked when available and should be read if you want a deeper knowledge of the situation. See Remarks for more
resources.

The directory where your code stands will be referred as ./, and all the commands are meant to be executed from
a R prompt in this folder.

Creation of the documentation
The documentation for your code has to be in a format which is very similar to LaTeX.

However, we will use a tool named roxygen in order to simplify the process:

install.packages("devtools")
library("devtools")
install.packages("roxygen2")
library("roxygen2")

The full man page for roxygen is available here. It is very similar to doxygen.

Here is a practical sample about how to document a function with roxygen:

#' Increment a variable.

#

#' Note that the behavior of this function
#' is undefined if “x° is not of class "numeric’.
#

#' @export

#' @author another guy

#' @name Increment Function

#' 0@title increment

#

#' @param x Variable to increment

#' @return “x* incremented of 1

#

#' @seealso ‘other_function®

#

#' @examples

#' increment(3)

#' > 4

increment <- function(x) {
return (x+1)

}

And here will be the result.

It is also recommanded to create a vignette (see the topic Creating vignettes), which is a full guide about your
package.
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Construction of the package skeleton

Assuming that your code is written for instance in files . /script1.Rand ./script2.R, launch the following
command in order to create the file tree of your package:

package.skeleton(name="MyPackage", code_files=c("script1.R", "script2.R"))
Then delete all the files in . /MyPackage/man/. You have now to compile the documentation:
roxygenize("MyPackage")

You should also generate a reference manual from your documentation using R CMD Rd2pdf MyPackage from a
command prompt started in . /.

Edition of the package properties
1. Package description

Modify . /MyPackage/DESCRIPTION according to your needs. The fields Package, Version, License, Description,
Title, Author and Maintainer are mandatory, the other are optional.

If your package depends on others packages, specify them in a field named Depends (R version < 3.2.0) or Imports (R
version > 3.2.0).

2. Optional folders

Once you launched the skeleton build, . /MyPackage/ only had R/ and man/ subfolders. However, it can have some
others:

e data/: here you can place the data that your library needs and that isn't code. It must be saved as dataset
with the .RData extension, and you can load it at runtime with data() and load()

e tests/: all the code files in this folder will be ran at install time. If there is any error, the installation will fail.

e src/: for C/C++/Fortran source files you need (using Rcpp...).

e exec/: for other executables.

e misc/: for barely everything else.

Finalization and build

You can delete . /MyPackage/Read-and-delete-me.

As it is now, your package is ready to be installed.

You can install it with devtools: :install("MyPackage").

To build your package as a source tarball, you need to execute the following command, from a command prompt in
./ R CMD build MyPackage

Distribution of your package
Through Github

Simply create a new repository called MyPackage and upload everything in MyPackage/ to the master branch. Here
is an example.

Then anyone can install your package from github with devtools:

install_package("MyPackage", "your_github_usename")
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Through CRAN

Your package needs to comply to the CRAN Repository Policy. Including but not limited to: your package must be
cross-platforms (except some very special cases), it should pass the R CMD check test.

Here is the submission form. You must upload the source tarball.

Section 43.2: Creating vighettes

Avignette is a long-form guide to your package. Function documentation is great if you know the name of
the function you need, but it's useless otherwise. A vignette is like a book chapter or an academic paper: it
can describe the problem that your package is designed to solve, and then show the reader how to solve
it.

Vignettes will be created entirely in markdown.

Requirements

e Rmarkdown: install.packages("rmarkdown")
¢ Pandoc

Vignette creation

devtools: :use_vignette("MyVignette", "MyPackage")

You can now edit your vignette at . /vignettes/MyVignette.Rmd.
The text in your vignette is formatted as Markdown.

The only addition to the original Markdown, is a tag that takes R code, runs it, captures the output, and translates it
into formatted Markdown:

oA}

# Add two numbers together
add <- function(a, b) a + b
add(108, 20)

Will display as:

# Add two numbers together
add <- function(a, b) a + b
add(10, 20)

## [1] 30

Thus, all the packages you will use in your vignettes must be listed as dependencies in . /DESCRIPTION.
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Chapter 44: Using pipe assignment in your
own package %<>‘£ Elow to?

In order to use the pipe in a user-created package, it must be listed in the NAMESPACE like any other function you
choose to import.

Section 44.1: Putting the pipe in a utility-functions file

One option for doing this is to export the pipe from within the package itself. This may be done in the 'traditional'
zzz.Ror utils.R files that many packages utilise for useful little functions that are not exported as part of the
package. For example, putting:

' Pipe operator

#
#
#' @name %>%

#' @rdname pipe

#' @keywords internal

#' @export

#' @importFrom magrittr %>%
#' @usage lhs \%>\% rhs
NULL
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Chapter 45: Arima Models

Section 45.1: Modeling an AR1 Process with Arima

We will model the process
= .Trp 1+ € e~ N(0,1)

#lLoad the forecast package
library(forecast)

#Generate an AR1 process of length n (from Cowpertwait & Meltcalfe)
# Set up variables

set.seed(1234)

n <- 1000

X <- matrix(0,1000,1)

W <- rnorm(n)

# loop to create x
for (t in 2:n) x[t] <- 0.7 * x[t-1] + w[t]
plot(x, type="1")
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We will fit an Arima model with autoregressive order 1, 0 degrees of differencing, and an MA order of 0.

0 200 400 600 800

Index

#Fit an AR1 model using Arima
fit <- Arima(x, order = c(1, 0, 9))

summary(fit)

# Series: x

# ARIMA(1,0,0) with non-zero mean

#

# Coefficients:

# ar1l intercept

# 0.7040 -0.0842

# s.e. 0.0224 0.1062

#

# sigma”2 estimated as 0.9923: 1log likelihood=-1415.39

# AIC=2836.79  AICc=2836.81 BIC=2851.51

#

# Training set error measures:

# ME RMSE MAE MPE MAPE MASE ACF1
# Training set -8.369365e-05 0.9961194 0.7835914 Inf Inf 0.91488 0.02263595
# Verify that the model captured the true AR parameter

Notice that our coefficient is close to the true value from the generated data

1000
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fitScoef[1]
# ari
# 0.7040085

#Verify that the model eliminates the autocorrelation

acf(x)

Series 1

1.0

0.8

0.6
l

ACF

0.4

0.2

0.0
—

acf(fitSresid)

Lag
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Series fit$resid

1.0

0.8

0.6

ACF

0.4

0.2

0.0

0 5 10 15
Lag
#Forecast 10 periods
fcst <- forecast(fit, h = 100)
fecst
Point Forecast Lo 80 Hi 86 Lo 95 Hi 95
1001 0.282529070 -0.9940493 1.559107 -1.669829 2.234887
1002 0.173976408 -1.3872262 1.735179 -2.213677 2.561630
1003 0.097554408 -1.5869850 1.782094 -2.478726 2.673835
1004 0.043752667 -1.6986831 1.786188 -2.621073 2.708578
1005 0.005875783 -1.7645535 1.776305 -2.701762 2.713514
#Call the point predictions
fcstSmean
# Time Series:
# Start = 1001
# End = 1100

# Frequency = 1
[1]
-0.052778954

[9] -0.062083302

0.282529070 0.173976408 0.097554408 0.043752667 0.005875783 -0.020789866 -0.039562711
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#Plot the forecast
plot(fcst)

Forecasts from ARIMA(1,0,0) with non-zero mean

0 200 400 600 800 1000
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Chapter 46: Distribution Functions

R has many built-in functions to work with probability distributions, with official docs starting at ?Distributions.

Section 46.1: Normal distribution

Let's use *norm as an example. From the documentation:

dnorm(x, mean = 0, sd = 1, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
gnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)

So if | wanted to know the value of a standard normal distribution at 0, | would do
dnorm(0)

Which gives us ©.3989423, a reasonable answer.
In the same way pnorm(0) gives .5. Again, this makes sense, because half of the distribution is to the left of 0.
gnorm will essentially do the opposite of pnorm. gnorm(.5) gives 0.

Finally, there's the rnorm function:
rnorm(10)

Will generate 10 samples from standard normal.

If you want to change the parameters of a given distribution, simply change them like so

rnorm(10, mean=4, sd= 3)

Section 46.2: Binomial Distribution

We now illustrate the functions dbinom,pbinom,gbinom and rbinom defined for Binomial distribution.

The dbinom() function gives the probabilities for various values of the binomial variable. Minimally it requires three
arguments. The first argument for this function must be a vector of quantiles(the possible values of the random
variable X). The second and third arguments are the defining parameters of the distribution, namely, n(the
number of independent trials) and p(the probability of success in each trial). For example, for a binomial
distribution withn = 5,p = 0.5, the possible values for Xare 8,1,2,3,4, 5. That is, the dbinom(x, n, p) function
gives the probability valuesP( X = x )forx = 0, 1, 2, 3, 4, 5.

#Binom(n = 5, p = 0.5) probabilities

>n <-5; p<- 0.5; x <- 0:n

> dbinom(x,n,p)

[1] ©.083125 ©.15625 ©.31250 0.31250 0.15625 0.03125
#To verify the total probability is 1

> sum(dbinom(x,n,p))

(1] 1

>

The binomial probability distribution plot can be displayed as in the following figure:
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> X <- 0:12
> prob <- dbinom(x,12, .5)
> barplot(prob,col = "red",ylim = ¢(©, .2),names.arg=x,
main="Binomial Distribution\n(n=12,p=0.5)")

Binomial Distribution
(n=12&~0.5)

0 1 2 3 4 86 6 7 & 9 10 11 12

0.00: os QMg 046 D20
I

Note that the binomial distribution is symmetric when p = 6.5. To demonstrate that the binomial distribution is
negatively skewed when p is larger than 0.5, consider the following example:

> n=9; p=.7; x=0:n; prob=dbinom(x,n,p);

> barplot(prob,names.arg = x,main="Binomial Distribution\n(n=9, p=0.7)",col="1lightblue")

Binomial Distribution
(n=9, p=0.7)

0.20
I

0.10
|

|
i

When p is smaller than 0.5 the binomial distribution is positively skewed as shown below.
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> n=9; p=.3; x=0:n; prob=dbinom(x,n,p);
> barplot(prob,names.arg = x,main="Binomial Distribution\n(n=9, p=0.3)",col="cyan")

Binomial Distribution
(n=9, p=0.3)

0.20
I

0.10
I

i
|

We will now illustrate the usage of the cumulative distribution function pbinom( ). This function can be used to
calculate probabilities such as P( X <= x ). The first argument to this function is a vector of quantiles(values of x).

# Calculating Probabilities

# P(X <= 2) in a Bin(n=5,p=0.5) distribution
> pbinom(2,5,0.5)

[1] ©.5

The above probability can also be obtained as follows:

# P(X <= 2) = P(X=0) + P(X=1) + P(X=2)

> sum(dbinom(0:2,5,0.5))

[1] ©.5
To compute, probabilities of the type: P( a <= X <= b )

# P(3<= X <= 5) = P(X=3) + P(X=4) + P(X=5) in a Bin(n=9,p=0.6) dist
> sum(dbinom(c(3,4,5),9,0.6))

[1] ©.4923556

>

Presenting the binomial distribution in the form of a table:

>n=710; p=06.4;, x =0:n;
> prob = dbinom(x,n,p)
> cdf = pbinom(x,n,p)
> distTable = cbind(x, prob, cdf)
> distTable
X prob cdf

[1,] © 0.0060466176 0.006046618
[2,] 1 0.84083107840 0.046357402
[3,] 2 08.1209323520 0.167289754
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.2149908480
.2508226560
.2006581248
.1114767360
.0424673280
.0106168320
.0015728640
.0001048576

O OO OO

The rbinom() is used to generate random samples of specified sizes with a given parameter values.

# Simulation

00O OO OO

.3822860602
.633103258
.833761382
.945238118
.987765446
.998322278
.999895142
.000000000

> xVal<-names(table(rbinom(10600,8,.5)))
> barplot(as.vector(table(rbinom(1000,8,.5))),names.arg =xVal,

main="Simulated Binomial Distribution\n (n=8,p=0.5)")

Simulated Binomial Distribution

150 250
I |

50

(n=8,p=0.5)
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Chapter 47: Shiny

Section 47.1: Create an app

Shiny is an R package developed by RStudio that allows the creation of web pages to interactively display the results
of an analysisin R.

There are two simple ways to create a Shiny app:

* in one .Rfile, or
e in two files: ui.R and server.R.

A Shiny app is divided into two parts:

¢ ui: A user interface script, controlling the layout and appearance of the application.
¢ server: A server script which contains code to allow the application to react.

One file
library(shiny)

# Create the UI

ui <- shinyUI(fluidPage(
# Application title
titlePanel("Hello World!")

))

# Create the server function
server <- shinyServer(function(input, output){})

# Run the app
shinyApp(ui = ui, server = server)

Two files
Create ui.Rfile
library(shiny)

# Define UI for application
shinyUI(fluidPage(
# Application title
titlePanel("Hello World!")

))
Create server.Rfile
library(shiny)

# Define server logic
shinyServer(function(input, output){})

Section 47.2: Checkbox Group

Create a group of checkboxes that can be used to toggle multiple choices independently. The server will receive the
input as a character vector of the selected values.

library(shiny)

ui <- fluidPage(
checkboxGroupInput(“checkGroup1", label = h3("This is a Checkbox group"),
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choices = list("1" =1, "2" =2, "3" = 3),
selected = 1),
fluidRow(column(3, verbatimTextOutput("text_choice")))

)

server <- function(input, output){
output$text_choice <- renderPrint({
return(pasted("You have chosen the choice ", inputS$ScheckGroup1))})

}

shinyApp(ui = ui, server = server)

This is a Checkbox group
# 1

2

3

[1] "You hawve chosen the choice 1"

It's possible to change the settings :

label : title

¢ choices : selected values

selected : The initially selected value (NULL for no selection)
inline : horizontal or vertical

width

It is also possible to add HTML.

Section 47.3: Radio Button

You can create a set of radio buttons used to select an item from a list.
It's possible to change the settings :

e selected : The initially selected value (character(0) for no selection)
¢ inline : horizontal or vertical
e width

It is also possible to add HTML.

library(shiny)

ui <- fluidPage(
radioButtons("radio",
label = HTML('<FONT color="red"><FONT size="5pt">Welcome</FONT></FONT><br> <b>Your
favorite color is red ?</b>"),
choices = 1list("TRUE" = 1, "FALSE" = 2),
selected = 1,
inline =T,
width = "180%"),
fluidRow(column(3, textOutput('value"))))
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server <- function(input, output){
outputSvalue <- renderPrint({
if(input$radio == 1){return('Great !')}
else{return("Sorry !'")}})}

shinyApp(ui = ui, server = server)

Welcome

Your favorite coloris red ?
s TRUE FALSE

[1] "Great I"

Section 47.4: Debugging

debug() and debugonce() won't work well in the context of most Shiny debugging. However, browser () statements
inserted in critical places can give you a lot of insight into how your Shiny code is (not) working. See also: Debugging
using browser ()

Showcase mode

Showcase mode displays your app alongside the code that generates it and highlights lines of code in server.R as it
runs them.

There are two ways to enable Showcase mode:

¢ Launch Shiny app with the argument display.mode = "showcase", e.g., runApp("MyApp", display.mode =
"showcase").
e Create file called DESCRIPTION in your Shiny app folder and add this line in it: DisplayMode: Showcase.

Reactive Log Visualizer

Reactive Log Visualizer provides an interactive browser-based tool for visualizing reactive dependencies and
execution in your application. To enable Reactive Log Visualizer, execute options(shiny.reactlog=TRUE) in R
console and or add that line of code in your server.R file. To start Reactive Log Visualizer, hit Ctrl+F3 on Windows or
Command+F3 on Mac when your app is running. Use left and right arrow keys to navigate in Reactive Log Visualizer.

Section 47.5: Select box

Create a select list that can be used to choose a single or multiple items from a list of values.

library(shiny)

ui <- fluidPage(
selectInput("id_selectInput",
label = HTML('<B><FONT size="3">What is your favorite color ?</FONT></B>'"),
multiple = TRUE,

choices = list("red" = "red", "green" = "green", "blue" = "blue", "yellow" = "yellow"),
selected = NULL),
br(), br(),

fluidRow(column(3, textOutput("text_choice"))))

server <- function(input, output)({
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output$text_choice <- renderPrint({
return(inputS$id_selectInput)})
}

shinyApp(ui = ui, server = server)

What is your favorite color ?

red green blue

yelow
[1] "red" "green” "bluc”

It's possible to change the settings :

¢ |abel : title
e choices : selected values

¢ selected : The initially selected value (NULL for no selection)

e multiple : TRUE or FALSE
e width
e size

¢ selectize: TRUE or FALSE (for use or not selectize.js, change the display)

It is also possible to add HTML.

Section 47.6: Launch a Shiny app

You can launch an application in several ways, depending on how you create you app. If your app is divided in two

files ui.R and server.R or if all of your app is in one file.

1. Two files app

Your two files ui.R and server.Rhave to be in the same folder. You could then launch your app by running in the
console the shinyApp() function and by passing the path of the directory that contains the Shiny app.

shinyApp("path_to_the_folder_containing_the_files")

You can also launch the app directly from Rstudio by pressing the Run App button that appear on Rstudio when

you an ui.R or server.R file open.

Pl uiR ¥ | B serverR

i1 Q& 7~~~ 3

-

Addins -

Bun &pp =

Or you can simply write runApp() on the console if your working directory is Shiny App directory.

2. One file app

If you create your in one R file you can also launch it with the shinyApp() function.

e inside of your code :

library(shiny)
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ui <- fluidPage() #Create the ui
server <- function(input, output){} #create the server

shinyApp(ui = ui, server = server) #run the App

e in the console by adding path to a .R file containing the Shiny application with the parameter appFile:

shinyApp(appFile="path_to_my_R_file_containig_the_app")

Section 47.7: Control widgets

Function Widget
actionButton Action Button
checkboxGrouplnput A group of check boxes
checkboxInput A single check box
datelnput A calendar to aid date selection
dateRangelnput A pair of calendars for selecting a date range
filelnput A file upload control wizard
helpText Help text that can be added to an input form
numericlnput A field to enter numbers
radioButtons A set of radio buttons
selectinput A box with choices to select from
sliderinput A slider bar
submitButton A submit button
textinput Afield to enter text
library(shiny)

# Create the UI
ui <- shinyUI(fluidPage(
titlePanel("Basic widgets")

fluidRow(

column(3,
h3("Buttons"),
actionButton("action", label = "Action"),
br(),
br(),
submitButton("Submit")),

column(3,
h3("Single checkbox"),

checkboxInput("checkbox", label = "Choice A", value = TRUE)),

column(3,
checkboxGroupInput("checkGroup",
label = h3("Checkbox group"),
choices = list("Choice 1" = 1,
“Choice 2" = 2,
selected = 1)),

column(3,
dateInput("date",
label = h3("Date input"),
value = "2014-81-01"))

),

fluidRow(

"Choice 3"

3),

GoalKicker.com - R Notes for Professionals

216


http://goalkicker.com/

column(3,
dateRangeInput('dates", label = h3("Date range")))

column(3,
fileInput("file", label = h3("File input"))),

column(3,
h3("Help text"),
helpText("Note: help text isn't a true widget,",
"but it provides an easy way to add text to",
"accompany other widgets.")),

column(3,
numericInput("num",
label = h3("Numeric input"),
value = 1))
),
fluidRow(
column(3,
radioButtons("radio", label = h3("Radio buttons"),
choices = list("Choice 1" = 1, "Choice 2" = 2,
"Choice 3" = 3),selected = 1))
column(3,
selectInput("select”, label = h3("Select box"),
choices = list("Choice 1" = 1, "Choice 2" = 2,
"Choice 3" = 3), selected = 1)),
column(3,

sliderInput("slider1", label = h3("Sliders")
min = 0, max = 100, value = 50),
sliderInput("slider2", "",
min = 6, max = 100, value = c(25, 75))
Do

column(3,
textInput("text", label = h3("Text input"),
value = "Enter text..."))

))

# Create the server function
server <- shinyServer(function(input, output){})

# Run the app
shinyApp(ui = ui, server = server)
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Chapter 48: spatial analysis

Section 48.1: Create spatial points from XY data set

When it comes to geographic data, R shows to be a powerful tool for data handling, analysis and visualisation.

Often, spatial data is avaliable as an XY coordinate data set in tabular form. This example will show how to create a
spatial data set from an XY data set.

The packages rgdal and sp provide powerful functions. Spatial data in R can be stored as Spatialx*DataFrame
(where * can be Points, Lines or Polygons).

This example uses data which can be downloaded at OpenGeocode.

At first, the working directory has to be set to the folder of the downloaded CSV data set. Furthermore, the package
rgdal has to be loaded.

setwd("D:/GeocodeExample/")
library(rgdal)

Afterwards, the CSV file storing cities and their geographical coordinates is loaded into R as a data.frame
Xy <- read.csv('"worldcities.csv", stringsAsFactors = FALSE)
Often, it is useful to get a glimpse of the data and its structure (e.g. column names, data types etc.).

head(xy)
str(xy)

This shows that the latitude and longitude columns are interpreted as character values, since they hold entries like
"-33.532". Yet, the later used function SpatialPointsDataFrame() which creates the spatial data set requires the
coordinate values to be of the data type numeric. Thus the two columns have to be converted.

xy$Slatitude <- as.numeric(xy$latitude)
xy$8longitude <- as.numeric(xy$longitude)

Few of the values cannot be converted into numeric data and thus, NA values are created. They have to be removed.
xy <- xy['!is.na(xyS$longitude), ]

Finally, the XY data set can be converted into a spatial data set. This requires the coordinates and the specification
of the Coordinate Refrence System (CRS) in which the coordinates are stored.

xySPoints <- SpatialPointsDataFrame(coords = c(xy[,c("longitude"”, "latitude")])
proj4string = CRS("+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs"),
data = xy

)
The basic plot function can easily be used to sneak peak the produced spatial points.

plot(xySPoints, pch = ".")
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Section 48.2: Importing a shape file (.shp)
rgdal
ESRI shape files can easily be imported into R by using the function read0GR() from the rgdal package.

library(rgdal)
shp <- readORG(dsn = "/path/to/your/file", layer = "filename")

It is important to know, that the dsn must not end with / and the layer does not allow the file ending (e.g. . shp)
raster
Another possible way of importing shapefiles is via the raster library and the shapefile function:

library(raster)
shp <- shapefile("path/to/your/file.shp")

Note how the path definition is different from the rgdal import statement.
tmap
tmap package provides a nice wrapper for the rgdal: : readORG function.

library(tmap)
sph <- read_shape("path/to/your/file.shp")
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Chapter 49: sqldf

Section 49.1: Basic Usage Examples

sqldf() from the package sqldf allows the use of SQLite queries to select and manipulate data in R. SQL queries
are entered as character strings.

To select the first 10 rows of the "diamonds" dataset from the package ggplot2, for example:

data("diamonds")
head(diamonds)

# A tibble: 6 x 10

carat cut color clarity depth table price X y z

<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1T 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.5 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 08.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

require(sqldf)
sqldf("select * from diamonds limit 10")

carat cut color clarity depth table price X y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5) 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 5V 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4.00 4.05 2.39

To select the first 10 rows where for the color "E":
sqldf("select * from diamonds where color = 'E' limit 10")

carat cut color clarity depth table price X y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1T 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
5) 0.20 Premium E SI2 60.2 62 345 3.79 3.75 2.27
6 0.32 Premium E I1 60.9 58 345 4.38 4.42 2.68
7 0.23 Very Good E VS2 63.8 55 352 3.85 3.92 2.48
8 0.23 Very Good E VS1 60.7 59 402 3.97 4.01 2.42
9 0.23 Very Good E VS1 59.5 58 402 4.01 4.06 2.40
10 0.23 Good E VS1 64.1 59 402 3.83 3.85 2.46

Notice in the example above that quoted strings within the SQL query are quoted using " if the overall query is
quoted with "" (this also works in reverse).
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Suppose that we wish to add a new column to count the number of Premium cut diamonds over 1 carat:

sqldf("select count(*) from diamonds where carat > 1 and color = 'E'")

count(*)
1 1892

Results of created values can also be returned as new columns:

sqldf("select *, count(*) as cnt_big_E_colored_stones from diamonds where carat > 1 and color = 'E'
group by clarity")

carat cut color clarity depth table price X y z cnt_big_E_colored_stones
1 1.30 Fair E I1 66.5 58 2571 6.79 6.75 4.50 65
2 1.28 Ideal E IF 60.7 57 18700 7.09 6.99 4.27 28
3 2.02 Very Good E SI1T 59.8 59 18731 8.11 8.20 4.88 499
4 2.03  Premium E SI2 61.5 59 18477 8.24 8.16 5.04 666
5 1.51 Ideal E VS1 61.5 57 18729 7.34 7.40 4.53 158
6 1.72 Very Good E VS2 63.4 56 18557 7.65 7.55 4.82 318
7 1.20 Ideal E VVS1 61.8 56 16256 6.78 6.87 4.22 52
8 1.55 Ideal E VVS2 62.5 55 18188 7.38 7.40 4.62 106

If one would be interested what is the max price of the diamond according to the cut:

sqldf("select cut, max(price) from diamonds group by cut")

cut max(price)

1 Fair 18574
2 Good 18788
3 Ideal 18806
4 Premium 18823
5 Very Good 18818
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Chapter 50: Code profiling

Section 50.1: Benchmarking using microbenchmark

You can use the microbenchmark package to conduct "sub-millisecond accurate timing of expression evaluation".

In this example we are comparing the speeds of six equivalent data.table expressions for updating elements in a
group, based on a certain condition.

More specifically:

A data.table with 3 columns: id, time and status. For each id, | want to find the record with the
maximum time - then if for that record if the status is true, | want to set it to false if the time is>7

library(microbenchmark)
library(data.table)

set.seed(20160723)
dt <- data.table(id = c(rep(seq(1:10000), each = 10)),
time = c(rep(seq(1:10000), 10)),
status = c(sample(c(TRUE, FALSE), 10000%10, replace = TRUE)))
setkey(dt, id, time) ## create copies of the data so the 'updates-by-reference' don't affect other
expressions

dt1 <- copy(dt)
dt2 <- copy(dt)
dt3 <- copy(dt)
dt4 <- copy(dt)
dt5 <- copy(dt)
dt6 <- copy(dt)
microbenchmark(

expression_1 = {
dt1[ dt1[order(time), .I[.N], by = id]$V1, status := status * time < 7 ]
H

expression_2 = {
dt2[,status := ¢(.SD[-.N, status], .SD[.N, status * time > 7]), by = id]
P

expression_3 = {
dt3[dt3[, .N, by = id][,cumsum(N)], status :
}!

status * time > 7]

expression_4 = {

y <- dt4[, .SD[.N],by=id]

dt4[y, status := status & time > 7]
H

expression_5 = {
y <- dt5[, .SD[.N, .(time, status)], by = id][time > 7 & status]
dt5[y, status := FALSE]

}'

expression_6 = {
dt6[ dt6[, .I == .I[which.max(time)], by = id]$V1 & time > 7, status := FALSE]
H
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times = 10L ## specify the number of times each expression is evaluated

)

# Unit: milliseconds

# expr min 1q

# expression_1 11.646149 13.201670 16.
# expression_2 8051.898126 8777.016935 9238.
# expression_3 3.208773 3.385841 4
# expression_4 15.758441 16.247833 20.
# expression_5 7552.9760295 86051.080753 8702.
# expression_6 18.403105 18.812785 22

mean
808399
323459

.207903

677038
064620

.427984

15
8979.

19.
8861.
21

The output shows that in this test expression_3 is the fastest.

References

data.table - Adding and modifying columns

data.table - special grouping symbols in data.table

Section 50.2: proc.time()

median

.643384

553856

.089515

028982
608629

.966764

18.
9281.

21
9308.
24.

uq
78640
93377

.70146
.04170

62842
66930

26.
12610.

36.
9722.
28.

max neval
321346 10
869058 10
.654702 10
373153 10
234921 10
607064 10

At its simplest, proc.time() gives the total elapsed CPU time in seconds for the current process. Executing it in the

console gives the following type of output:

proc.time()

# user system elapsed
# 284 .507 120.397 515029.305

This is particularly useful for benchmarking specific lines of code. For example:

t1 <- proc.time()
fibb <- function (n) {

if (n < 3) {
return(c(0,1)[n])
} else {

return(fibb(n - 2) + fibb(n -1))

}
}
print("Time one")
print(proc.time() - t1)

t2 <- proc.time()
fibb(30)

print("Time two")
print(proc.time() - t2)

This gives the following output:

source('~/.active-rstudio-document')

# [1] "Time one"
# user system elapsed
# 0 0 0

# [1] "Time two"
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# user system elapsed
# 1.534 0.012 1.572

system.time() is a wrapper for proc.time() that returns the elapsed time for a particular command/expression.

print(t1 <- system.time(replicate(1000,122)))
## user system elapsed
## 0.000 0.000 0.002

Note that the returned object, of class proc. time, is slightly more complicated than it appears on the surface:

str(t1)
## Class 'proc_time' Named num [1:5] © 0 ©0.002 0 ©
## ..- attr(*, "names")= chr [1:5] "user.self" "sys.self" "elapsed" "user.child"

Section 50.3: Microbenchmark

Microbenchmark is useful for estimating the time taking for otherwise fast procedures. For example, consider
estimating the time taken to print hello world.

system.time(print("hello world"))

# [1] "hello world"
# user system elapsed
# 0 0 0

This is because system. time is essentially a wrapper function for proc. time, which measures in seconds. As
printing "hello world" takes less than a second it appears that the time taken is less than a second, however this is
not true. To see this we can use the package microbenchmark:

library(microbenchmark)
microbenchmark(print("hello world"))

# Unit: microseconds

# expr min 1q mean median uq max neval
# print("hello world") 26.336 29.984 44.11637 44.6835 45.415 158.824 100

Here we can see after running print("hello world") 100 times, the average time taken was in fact 44
microseconds. (Note that running this code will print "hello world" 100 times onto the console.)

We can compare this against an equivalent procedure, cat("hello world\n"), to see if it is faster than
print("hello world"):

microbenchmark(cat("hello world\n"))
# Unit: microseconds

# expr min 1q mean median uq max neval
# cat("hello world\\n") 14.093 17.6975 23.73829 19.319 20.996 119.382 100

In this case cat() is almost twice as fast as print().

Alternatively one can compare two procedures within the same microbenchmark call:

microbenchmark(print("hello world"), cat("hello world\n"))
# Unit: microseconds
# expr min 1q mean median uq max neval
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# print("hello world") 29.122 31.654 39.64255 34.5275 38.852 192.779 100
# cat("hello world\\n") 9.381 12.356 13.83820 12.9930 13.715 52.564 100

Section 50.4: System.time
System time gives you the CPU time required to execute a R expression, for example:

system.time(print("hello world"))

# [1] "hello world"
# user system elapsed
# 0 0 0

You can add larger pieces of code through use of braces:

system.time( {
library(numbers)
Primes(1,16"5)
1))

Or use it to test functions:

fibb <- function (n) {

if (n < 3) {
return(c(9,1)[n])
} else {

return(fibb(n - 2) + fibb(n -1))
}
}

system.time(fibb(30))

Section 50.5: Line Profiling

One package for line profiling is lineprof which is written and maintained by Hadley Wickham. Here is a quick
demonstration of how it works with auto.arima in the forecast package:

library(lineprof)
library(forecast)

1 <- lineprof(auto.arima(AirPassengers))
shine(1)

This will provide you with a shiny app, which allows you to delve deeper into every function call. This enables you to
see with ease what is causing your R code to slow down. There is a screenshot of the shiny app below:
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Line profiling e
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Chapter 51: Control flow structures

Section 51.1: Optimal Construction of a For Loop

To illustrate the effect of good for loop construction, we will calculate the mean of each column in four different
ways:

Using a poorly optimized for loop
Using a well optimized for for loop
Using an xapply family of functions
Using the colMeans function

APwnN -

Each of these options will be shown in code; a comparison of the computational time to execute each option will be
shown; and lastly a discussion of the differences will be given.

Poorly optimized for loop

column_mean_poor <- NULL
for (i in 1:length(mtcars)){
column_mean_poor[i] <- mean(mtcars[[i]])

}
Well optimized for loop

column_mean_optimal <- vector("numeric", length(mtcars))
for (i in seq_along(mtcars)){
column_mean_optimal <- mean(mtcars[[i]])

}

vapply Function

column_mean_vapply <- vapply(mtcars, mean, numeric(1))
colMeans Function

column_mean_colMeans <- colMeans(mtcars)

Efficiency comparison
The results of benchmarking these four approaches is shown below (code not displayed)

Unit: microseconds
expr min 1q mean median uq max neval cld
poor 240.986 262.0820 287.1125 275.8160 307.2485 442.609 100 d
optimal 220.313 237.4455 258.8426 247.0735 280.9130 362.469 100 c
vapply 107.042 109.7320 124.4715 113.4130 132.6695 202.473 100 a
colMeans 155.183 161.6955 180.2067 175.0045 194.2605 259.958 100 b

Notice that the optimized for loop edged out the poorly constructed for loop. The poorly constructed for loop is
constantly increasing the length of the output object, and at each change of the length, R is reevaluating the class of
the object.

Some of this overhead burden is removed by the optimized for loop by declaring the type of output object and its
length before starting the loop.

In this example, however, the use of an vapply function doubles the computational efficiency, largely because we
told R that the result had to be numeric (if any one result were not numeric, an error would be returned).

Use of the colMeans function is a touch slower than the vapply function. This difference is attributable to some
error checks performed in colMeans and mainly to the as.matrix conversion (because mtcars is a data.frame) that
weren't performed in the vapply function.
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Section 51.2: Basic For Loop Construction

In this example we will calculate the squared deviance for each column in a data frame, in this case the mtcars.

Option A: integer index

squared_deviance <- vector("list", length(mtcars))
for (i in seq_along(mtcars)){
squared_deviance[[i]] <- (mtcars[[i]] - mean(mtcars[[i]]))"2

}
squared_deviance is an 11 elements list, as expected.

class(squared_deviance)
length(squared_deviance)

Option B: character index

squared_deviance <- vector("list", length(mtcars))
Squared_deviance <- setNames(squared_deviance, names(mtcars))
for (k in names(mtcars)){

squared_deviance[[k]] <- (mtcars[[k]] - mean(mtcars[[k]]))"2

}

What if we want a data.frame as a result? Well, there are many options for transforming a list into other objects.
However, and maybe the simplest in this case, will be to store the for results in a data. frame.

squared_deviance <- mtcars #copy the original
squared_deviance[TRUE]<-NA #replace with NA or do squared_deviance[, ]<-NA
for (i in seq_along(mtcars)){

squared_deviance[[i]] <- (mtcars[[i]] - mean(mtcars[[i]]))"2

}

dim(squared_deviance)
[1] 32 11

The result will be the same event though we use the character option (B).

Section 51.3: The Other Looping Constructs: while and repeat

R provides two additional looping constructs, while and repeat, which are typically used in situations where the
number of iterations required is indeterminate.

The while loop
The general form of a while loop is as follows,

while (condition) {
## do something
## in loop body

where condition is evaluated prior to entering the loop body. If condition evaluates to TRUE, the code inside of the
loop body is executed, and this process repeats until condition evaluates to FALSE (or a break statement is
reached; see below). Unlike the for loop, if a while loop uses a variable to perform incremental iterations, the
variable must be declared and initialized ahead of time, and must be updated within the loop body. For example,
the following loops accomplish the same task:
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for (i in 0:4) {
cat(i, "\n")

H OH H H H
A OWON-_2O©

i<-20

while (i < 5) {
cat(i, "\n")
i<-1+1

HoH H H H
A OWON-=_2O©

In the while loop above, the linei <- i + 1 is necessary to prevent an infinite loop.

Additionally, it is possible to terminate a while loop with a call to break from inside the loop body:

iter <- 0
while (TRUE) {
if (runif(1) < 0.25) {

break
} else {
iter <- iter + 1
}
}
iter
#(1] 4

In this example, condition is always TRUE, so the only way to terminate the loop is with a call to break inside the
body. Note that the final value of iter will depend on the state of your PRNG when this example is run, and should
produce different results (essentially) each time the code is executed.

The repeat loop

The repeat construct is essentially the same as while (TRUE) { ## something }, and has the following form:

repeat ({
## do something
## in loop body

3]
The extra {} are not required, but the () are. Rewriting the previous example using repeat,

iter <- @
repeat ({
if (runif(1) < 0.25) {
break
} else {
iter <- iter + 1
}
1)

iter
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#[1] 2

More on break

It's important to note that break will only terminate the immediately enclosing loop. That is, the following is an infinite
loop:

while (TRUE) {
while (TRUE) {
cat("inner loop\n")
break

¥

cat("outer loop\n")

With a little creativity, however, it is possible to break entirely from within a nested loop. As an example, consider
the following expression, which, in its current state, will loop infinitely:

while (TRUE) {
cat("outer loop body\n")
while (TRUE)
cat("inner loop body\n")
X <- runif(1)

if (x < .3) {
break
} else {

cat(sprintf("x is %.5f\n", x))
}

One possibility is to recognize that, unlike break, the return expression does have the ability to return control
across multiple levels of enclosing loops. However, since return is only valid when used within a function, we

cannot simply replace break with return() above, but also need to wrap the entire expression as an anonymous
function:

(function()
while (TRUE) {
cat("outer loop body\n")
while (TRUE) {
cat("inner loop body\n")
X <- runif(1)

if (x < .3) {
return()

} else {
cat(sprintf("x is %.5f\n", x))

}

}
}
HO

Alternatively, we can create a dummy variable (exit) prior to the expression, and activate it via <<- from the inner
loop when we are ready to terminate:

exit <- FALSE
while (TRUE) {
cat("outer loop body\n")
while (TRUE) {
cat("inner loop body\n")
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X <- runif(1)

if (x < .3) {
exit <<- TRUE
break

} else {

cat(sprintf("x is %.5f\n", x))
}
}
if (exit) break

GoalKicker.com - R Notes for Professionals 231


http://goalkicker.com/

Chapter 52: Column wise operation

Section 52.1: sum of each column

Suppose we need to do the sum of each column in a dataset

set.seed(20)
df1 <- data.frame(ID = rep(c("A", "B", "C"), each = 3), V1 = rnorm(9), V2 = rnorm(9))
m1 <- as.matrix(df1[-1])

There are many ways to do this. Using base R, the best option would be colSums
colSums(df1[-1], na.rm = TRUE)

Here, we removed the first column as it is non-numeric and did the sum of each column, specifying the na.rm =
TRUE (in case there are any NAs in the dataset)

This also works with matrix

colSums(m1, na.rm = TRUE)

This can be done in a loop with lapply/sapply/vapply
lapply(df1[-1], sum, na.rm = TRUE)

It should be noted that the output is a 1ist. If we need a vector output
sapply(df1[-1], sum, na.rm = TRUE)

Or

TRUE, numeric(1))

vapply(df1[-1], sum, na.rm
For matrices, if we want to loop through columns, then use apply with MARGIN = 1
apply(m1, 2, FUN = sum, na.rm = TRUE)
There are ways to do this with packages like dplyr or data.table

library(dplyr)
df1 %>%
summarise_at(vars(matches("AV\\d+")), sum, na.rm = TRUE)

Here, we are passing a regular expression to match the column names that we need to get the sum in
summarise_at. The regex will match all columns that start with v followed by one or more numbers (\\d+).

A data.table option is

library(data.table)
setDT(df1)[, lapply(.SD, sum, na.rm = TRUE), .SDcols = 2:ncol(df1)]

We convert the 'data.frame’ to 'data.table’ (setDT(df1)), specified the columns to be applied the function in
.SDcols and loop through the Subset of Data.table (.SD) and get the sum.
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If we need to use a group by operation, we can do this easily by specifying the group by column/columns
df1 %>%

group_by(ID) %>%
summarise_at(vars(matches("AV\\d+")), sum, na.rm = TRUE)

In cases where we need the sum of all the columns, summarise_each can be used instead of summarise_at
df1 %>%

group_by(ID) %>%
summarise_each(funs(sum(., na.rm = TRUE)))

The data.table option is

setDT(df1)[, lapply(.SD, sum, na.rm = TRUE), by = ID]
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Chapter 53: JSON
Section 53.1: JSON to / from R objects

The jsonlite package is a fast JSON parser and generator optimized for statistical data and the web. The two main
functions used to read and write JSON are fromJSON() and toJSON() respecitively, and are designed to work with
vectors, matrices and data.frames, and streams of J[SON from the web.

Create a JSON array from a vector, and vice versa

library(jsonlite)
## vector to JSON
toJSON(c(1,2,3))
# [1,2,3]

fromJSON('[1,2,3]")
#[1]1 123

Create a named JSON array from a list, and vice versa

toJSON(1list(myVec = ¢(1,2,3)))
# {"myVec":[1,2,3]}

fromJSON(' {"myVec":[1,2,3]}")

# SmyVec
#[1] 123

More complex list structures

## list structures
1st <- list(a = c¢(1,2,3),
b = list(letters[1:6]))

toJSON(1st)
# {"a":[1,2,3],"b":[["a","b","c","d", "e","f"]1}

fromJSON('{"a":[1,2,3],"b":[["a","b","c","d","e","f"]]1} ")

# Sa

#[1]1 123

#

# Sb

# [,1] [,2] [,3] [,4] [,5] [,6]

# [1,] "a" "b" "c" "d" "e" "f"

Create JSON from a data.frame, and vice versa

## converting a data.frame to JSON
df <- data.frame(id = seq_along(1:10),
val = letters[1:10])

toJSON(df)

#

[{"id" 1 ) "val" :"a"}, {"id" 32, "val" Z"b"}, {"idII 13, "val" Z"C"}, {"id" 34, "val" Z"d"}, {"idII 15, "val" :"e"}, {"i
d":6,"val":"f"}, {"id":7, "val":"g"},{"id":8, "val":"h"}, {"id":9, "val":"i"}, {"id":1@, "val":"j"}]
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## reading a JSON string
fromJSON( ' [{"1d":1,"val":"a"}, {"id":2,"val":"b"}, {"id":3,"val":"c¢"}, {"id":4,"val":"d"}, {"id":5, "val
“:"e"},{"id":6, "val":"f"}, {"id":7,"val":"g"}, {"id":8,"val":"h"}, {"id":9, "val":"i"}, {"id":10, "val" :"

")

# id val
# 1 1 a
# 2 2 b
# 3 3 G
# 4 4 d
# 5 5 e
# 6 6 f
# 7 7 g
# 8 8 h
# 9 9 i
# 10 10 j

Read JSON direct from the internet

## Reading JSON from URL
googleway_issues <- fromJSON("https://api.github.com/repos/SymbolixAU/googleway/issues")

googleway_issuesSurl

# [1] "https://api.github.com/repos/SymbolixAU/googleway/issues/20"
"https://api.github.com/repos/SymbolixAU/googleway/issues/19"

# [3] "https://api.github.com/repos/SymbolixAU/googleway/issues/14"
"https://api.github.com/repos/SymbolixAU/googleway/issues/11"

# [5] "https://api.github.com/repos/SymbolixAU/googleway/issues/9"
"https://api.github.com/repos/SymbolixAU/googleway/issues/5"

# [7] "https://api.github.com/repos/SymbolixAU/googleway/issues/2"
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Chapter 54: RODBC

Section 54.1: Connecting to Excel Files via RODBC

While RODBC is restricted to Windows computers with compatible architecture between R and any target RDMS, one
of its key flexibilities is to work with Excel files as if they were SQL databases.

require(RODBC)

con = odbcConnectExcel("myfile.x1lsx") # open a connection to the Excel file
sqlTables(con)STABLE_NAME # show all sheets

df = sqlFetch(con, "Sheet1") # read a sheet

df = sqlQuery(con, "select x from [Sheet1l $]") # read a sheet (alternative SQL syntax)
close(con) # close the connection to the file

Section 54.2: SQL Server Management Database connection
to get individual table

Another use of RODBC is in connecting with SQL Server Management Database. We need to specify the 'Driver' i.e.
SQL Server here, the database name "Atilla" and then use the sqlQuery to extract either the full table or a fraction
of it.

library(RODBC)

cn <- odbcDriverConnect(connection="Driver={SQL
Server};server=localhost;database=Atilla;trusted_connection=yes;")
tbl <- sqlQuery(cn, 'select top 10 * from table_1")

Section 54.3: Connecting to relational databases

library(RODBC)

con <- odbcDriverConnect("driver={Sql Server};server=servername;trusted connection=true")
dat <- sqlQuery(con, "select * from table");

close(con)

This will connect to a SQL Server instance. For more information on what your connection string should look like,
visit connectionstrings.com

Also, since there's no database specified, you should make sure you fully qualify the object you're wanting to query
like this databasename.schema.objectname
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Chapter 55: lubridate

Section 55.1: Parsing dates and datetimes from strings with
lubridate

The lubridate package provides convenient functions to format date and datetime objects from character strings.
The functions are permutations of

Letter Element to parse Base R equivalent
y year %Y, %Y
m (with y and d) month %m, %b, %h, %B
d day %d, %e
h hour %H, %I%p
m (with h and s) minute %M
S seconds %S

e.g. ymd() for parsing a date with the year followed by the month followed by the day, e.g. "2616-087-22", or
ymd_hms () for parsing a datetime in the order year, month, day, hours, minutes, seconds, e.g. "2816-07-22
13:04:47".

The functions are able to recognize most separators (such as /, -, and whitespace) without additional arguments.
They also work with inconsistent separators.

Dates

The date functions return an object of class Date.

library(lubridate)

mdy(c(' ©7/62/2016 ', '7 / @3 / 2816', ' 7 / 4 / 16 '))
## [1] "2016-07-02" "2016-87-03" "2016-07-04"

ymd(c("20160724","2016/07/23","2016-07-25")) # inconsistent separators
## [1] "2016-07-24" "2016-07-23" "2016-07-25"

Datetimes
Utility functions

Datetimes can be parsed using ymd_hms variants including ymd_hm and ymd_h. All datetime functions can accept a tz
timezone argument akin to that of as.POSIXct or strptime, but which defaults to "UTC" instead of the local
timezone.

The datetime functions return an object of class POSIXct.

X <- ¢("20160724 130102","2016/07/23 14:02:01","2016-07-25 15:03:00")
ymd_hms(x, tz="EST")

## [1] "2016-07-24 13:01:02 EST" "2016-07-23 14:02:01 EST"

## [3] "2016-07-25 15:03:00 EST"

ymd_hms (x)
## [1] "2016-07-24 13:01:02 UTC" "2016-07-23 14:02:01 UTC"
## [3] "2016-07-25 15:03:00 UTC"

Parser functions

lubridate also includes three functions for parsing datetimes with a formatting string like as.POSIXct or strptime:
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Function Output Class Formatting strings accepted
Flexible. Will accept strptime-style with % or lubridate datetime
parse_date_time POSIXct function name style, e.g "ymd hms". Will accept a vector of orders for
heterogeneous data and guess which is appropriate.

. Default POSIXct; if 1t Strict. Accepts only strptime tokens (with or without %) from a limited
parse_date_time2

= TRUE, POSIXIt set.
fast_strptime Default POSIXIt; if 1t = Strict. Accepts only %-delimited strptime tokens with delimiters (-, /, :,
- FALSE, POSIXct etc.) from a limited set.

X <- ¢('2016-07-22 13:04:47', '07/22/2016 1:04:47 pm')

parse_date_time(x, orders = c('mdy Imsp', 'ymd hms'))
## [1] "2016-07-22 13:04:47 UTC" "2016-07-22 13:04:47 UTC"

X <- ¢('2016-07-22 13:04:47', '2016-07-22 14:47:58")

parse_date_time2(x, orders = 'Ymd HMS')
## [1] "2016-07-22 13:04:47 UTC" "2016-07-22 14:47:58 UTC"

fast_strptime(x, format = '%Y-%m-%d %H:%M:%S")
## [1] "2016-87-22 13:04:47 UTC" "2016-07-22 14:47:58 UTC"

parse_date_time2 and fast_strptime use a fast C parser for efficiency.

See ?parse_date_time for formatting tokens.

Section 55.2: Difference between period and duration

Unlike durations, periods can be used to accurately model clock times without knowing when events such as leap
seconds, leap days, and DST changes occur.

start_2012 <- ymd_hms("2012-01-01 12:00:00")
## [1] "2012-01-01 12:00:00 UTC"

# period() considers leap year calculations.
start_2012 + period(1, "years")
## [1] "2013-01-01 12:00:00 UTC"

# Here duration() doesn't consider leap year calculations.
start_2012 + duration(1)
## [1] "2012-12-31 12:00:00 UTC"

Section 55.3: Instants

An instant is a specific moment in time. Any date-time object that refers to a moment of time is recognized as an
instant. To test if an object is an instant, use is.instant.

library(lubridate)

today_start <- dmy_hms("22.087.2016 12:00:00", tz = "IST") # default tz="UTC"
today_start

## [1] "2016-07-22 12:00:00 IST"

is.instant(today_start)

## [1] TRUE

now_dt <- ymd_hms(now(), tz="IST")
now_dt

## [1] "2016-87-22 13:53:09 IST"
is.instant(now_dt)

GoalKicker.com - R Notes for Professionals 238


http://goalkicker.com/

## [1] TRUE

is.instant("helloworld")
## [1] FALSE
is.instant(60)

## [1] FALSE

Section 55.4: Intervals, Durations and Periods

Intervals are simplest way of recording timespans in lubridate. An interval is a span of time that occurs between

two specific instants.

# create interval by subtracting two instants
today_start <- ymd_hms("2016-07-22 12-00-00", tz="IST")
today_start

## [1] "2016-07-22 12:00:00 IST"

today_end <- ymd_hms("2016-07-22 23-59-59", tz="IST")
today_end

## [1] "2016-07-22 23:59:59 IST"

span <- today_end - today_start

span

## Time difference of 11.99972 hours

as.interval(span, today_start)

## [1] 2016-07-22 12:00:00 IST--2016-07-22 23:59:59 IST

# create interval using interval() function

span <- interval(today_start, today_end)
[1] 2016-087-22 12:00:00 IST--2016-07-22 23:59:59 IST

Durations measure the exact amount of time that occurs between two instants.

duration(60, "seconds")
## [1] "60s"

duration(2, "minutes")
## [1] "120s (~2 minutes)"

Note: Units larger than weeks are not used due to their variability.

Durations can be created using dseconds, dninutes and other duration helper functions.

Run ?quick_durations for complete list.

dseconds(60)
## [1] "60s"

dhours(2)
## [1] "7200s (~2 hours)"

dyears(1)
## [1] "31536000s (~365 days)"

Durations can be subtracted and added to instants to get new instants.

today_start + dhours(5)
## [1] "2016-07-22 17:00:00 IST"

today_start + dhours(5) + dminutes(30) + dseconds(15)
## [1] "2016-07-22 17:30:15 IST"
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Durations can be created from intervals.

as.duration(span)
[1] "43199s (~12 hours)"

Periods measure the change in clock time that occurs between two instants.

Periods can be created using period function as well other helper functions like seconds, hours, etc. To get a

complete list of period helper functions, Run ?quick_periods.

period(1, "hour")
## [1] "1H M @S"

hours(1)
## [1] "1H @M eS"

period(6, "months")
## [1] "ém ©d @H oM @S"

months(6)
## [1] "ém ©d @H oM @S"

years(1)
## [1] "1y om ©d OH oM es"

is.period function can be used to check if an object is a period.

is.period(years(1))
## [1] TRUE

is.period(dyears(1))
## [1] FALSE

Section 55.5: Manipulating date and time in lubridate

date <- now()
date
## "2016-07-22 03:42:35 IST"

year (date)
## 2016

minute(date)
## 42

wday(date, label = T, abbr = T)
# [1] Fri
# Levels: Sun < Mon < Tues < Wed < Thurs < Fri < Sat

day(date) <- 31
## "2016-07-31 03:42:35 IST"

# If an element is set to a larger value than it supports, the difference
# will roll over into the next higher element

day(date) <- 32

## "2016-08-01 ©3:42:35 IST"
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Section 55.6: Time Zones

with_tz returns a date-time as it would appear in a different time zone.

nyc_time <- now("America/New_York")
nyc_time

## [1] "2016-07-22 ©5:49:08 EDT"

# corresponding Europe/Moscow time

with_tz(nyc_time, tzone = "Europe/Moscow")
## [1] "2016-07-22 12:49:08 MSK"

force_tz returns a the date-time that has the same clock time as x in the new time zone.

nyc_time <- now("America/New_York")
nyc_time
## [1] "2016-87-22 05:49:08 EDT"

force_tz(nyc_time, tzone = "Europe/Moscow") # only timezone changes
## [1] "2016-07-22 05:49:08 MSK"

Section 55.7: Parsing date and time in lubridate

Lubridate provides ymd() series of functions for parsing character strings into dates. The lettersy, m, and d
correspond to the year, month, and day elements of a date-time.

mdy ("07-21-2016") # Returns Date

## [1] "2016-07-21"

mdy ("07-21-2016", tz = "UTC") # Returns a vector of class POSIXt
## "2016-07-21 UTC"

dmy("21-07-2016") # Returns Date

## [1] "2016-07-21"

dmy(c("21.07.2016", "22.07.2016")) # Returns vector of class Date

## [1] "2016-07-21" "2016-07-22"

Section 55.8: Rounding dates

now_dt <- ymd_hms(now(), tz="IST")
now_dt
## [1] "2016-07-22 13:53:09 IST"

round_date() takes a date-time object and rounds it to the nearest integer value of the specified time unit.

round_date(now_dt, "minute")
## [1] "2016-07-22 13:53:00 IST"

round_date(now_dt, "hour")
## [1] "2016-07-22 14:00:00 IST"

round_date(now_dt, "year")
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## [1] "2017-01-01 IST"

floor_date() takes a date-time object and rounds it down to the nearest integer value of the specified time unit.

floor_date(now_dt, "minute")
## [1] "2016-07-22 13:53:00 IST"

floor_date(now_dt, "hour")
## [1] "2016-07-22 13:00:00 IST"

floor_date(now_dt, "year")
## [1] "2016-81-01 IST"

ceiling_date() takes a date-time object and rounds it up to the nearest integer value of the specified time unit.

ceiling_date(now_dt, "minute")
## [1] "2016-07-22 13:54:00 IST"

ceiling_date(now_dt, "hour")
## [1] "2016-07-22 14:00:00 IST"

ceiling_date(now_dt, "year")
## [1] "2017-01-01 IST"
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Chapter 56: Time Series and Forecasting

Section 56.1: Creating a ts object

Time series data can be stored as a ts object. ts objects contain information about seasonal frequency that is used
by ARIMA functions. It also allows for calling of elements in the series by date using the window command.

#Create a dummy dataset of 100 observations
X <- rnorm(100)

#Convert this vector to a ts object with 100 annual observations
x <- ts(x, start = c(1900), freq = 1)

#Convert this vector to a ts object with 100 monthly observations starting in July
X <- ts(x, start = c(1900, 7), freq = 12)

#Alternatively, the starting observation can be a number:
X <- ts(x, start = 1900.5, freq = 12)

#Convert this vector to a ts object with 100 daily observations and weekly frequency starting in
the first week of 1900
x <- ts(x, start = c(1900, 1), freq = 7)

#The default plot for a ts object is a line plot
plot(x)

#The window function can call elements or sets of elements by date

#Call the first 4 weeks of 1900
window(x, start = c(1960, 1), end = (1900, 4))

#Call only the 10th week in 19600
window(x, start = c(1960, 10), end = (1900, 10))

#Call all weeks including and after the 10th week of 1900
window(x, start = c(1960, 10))

It is possible to create ts objects with multiple series:

#Create a dummy matrix of 3 series with 180 observations each
X <- cbind(rnorm(100), rnorm(100), rnorm(160))

#Create a multi-series ts with annual observation starting in 1900
x <- ts(x, start = 1900, freq = 1)

#R will draw a plot for each series in the object
plot(x)

Section 56.2: Exploratory Data Analysis with time-series data

data(AirPassengers)
class(AirPassengers)

1 IItsll

In the spirit of Exploratory Data Analysis (EDA) a good first step is to look at a plot of your time-series data:
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plot(AirPassengers) # plot the raw data
abline(reg=1lm(AirPassengers~time(AirPassengers))) # fit a trend line

AlrPassengers
400 500 600
1 | |

200
1

200
1

100
I

For further EDA we examine cycles across years:

1950

cycle(AirPassengers)

1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960

boxplot(AirPassengers~cycle(AirPassengers)) #Box plot across months to explore seasonal effects

1952

Jan Feb Mar Apr May Jun Jul Aug

1

U WU (U UL (U UL G ¥

2

NNNNNNNNMNNDNDDN

3

W WWwWwWwwWwwwwww

4

B IR T i i i e e s

5

(G210 S) NG, IS, BN, IS, BNE, IS, IS, NS N4,

6

[o) o)« ) e e ) I e) I e)Iie) I o) I e) N o)}

7

NN N NN N NN N NN

O 00 0O 0O 00O 00 0 0 O 0O 0O 0o

1954

Time

Sep Oct Nov Dec

9

O O OV OV OV OV OV OV OV O O

10
10
10
10
10
10
10
10
10
10
10
10

11
11
11
11
11
11
11
11
11
11
11
11

12
12
12
12
12
12
12
12
12
12
12
12

1956

1958

1960

R
A T
© ' ;
i i
: i
L= | H |
37 | : : =
— | i
R B : I ] T
: : . ! : _—
g — — ! | : : !
o - ! ! 1 ] ' !
= i - 1 ! : i T '
1 H i \ H H | 1
[ 1 I | E
! '
L | i
o | |
S
2
(=] T [
= i -
(] + I 1 ] 1 .
1 T T ! ! L : T 1
i ! 1 ! i | —E —_ | 1 T i
: ' i | —_ —_— H ! ;
8" —_ == ==t — | it
= T T T T T T T T T T T T
1 2 3 4 5 B 7 8 9 10 11 12

GoalKicker.com - R Notes for Professionals

244


http://i.stack.imgur.com/LnYZb.png
http://i.stack.imgur.com/5ZvRj.png
http://goalkicker.com/

Chapter 57: strsplit function

Section 57.1: Introduction

strsplit is a useful function for breaking up a vector into an list on some character pattern. With typical R tools,
the whole list can be reincorporated to a data.frame or part of the list might be used in a graphing exercise.

Here is a common usage of strsplit: break a character vector along a comma separator:

temp <- c¢("this, that,other”, "hat,scarf,food", "woman,man,child")
# get a list split by commas

myList <- strsplit(temp, split=",6")

# print mylList

myList

[[1]]

[1] "this" "that" "other"

[[2]]
[1] "hat" "scarf" "food"

[[3]]

[1] "woman" "man" "child"

As hinted above, the split argument is not limited to characters, but may follow a pattern dictated by a regular
expression. For example, temp2 is identical to temp above except that the separators have been altered for each

item. We can take advantage of the fact that the split argument accepts regular expressions to alleviate the
irregularity in the vector.

temp2 <- c("this, that, other", "hat,scarf ,food", "woman; man ; child")
myList2 <- strsplit(temp2, split=" ?[,;] ?")

myList2

[[11]

[1] "this" "that" ‘"other"

([21]]

[1] "hat" "scarf" "food"
[[3]]

[1] "woman" "man" "child"
Notes:

1. breaking down the regular expression syntax is out of scope for this example.
2. Sometimes matching regular expressions can slow down a process. As with many R functions that allow the
use of regular expressions, the fixed argument is available to tell R to match on the split characters literally.
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Chapter 58: Web scraping and parsing

Section 58.1: Basic scraping with rvest

rvest is a package for web scraping and parsing by Hadley Wickham inspired by Python's Beautiful Soup. It
leverages Hadley's xm12 package's 1ibxml2 bindings for HTML parsing.

As part of the tidyverse, rvest is piped. It uses

e xml2::read_html to scrape the HTML of a webpage,
¢ which can then be subset with its html_node and html_nodes functions using CSS or XPath selectors, and
¢ parsed to R objects with functions like html_text and html_table.

To scrape the table of milestones from the Wikipedia page on R, the code would look like

library(rvest)
url <- 'https://en.wikipedia.org/wiki/R_(programming_language)'

# scrape HTML from website
url %>% read_html() %>%
# select HTML tag with class="wikitable"
html_node(css = '.wikitable') %>%
# parse table into data.frame
html_table() %>%
# trim for printing

dplyr::mutate(Description = substr(Description, 1, 70))

#i#t Release Date Description
## 1 0.16 This is the last alpha version developed primarily by Ihaka

## 2 0.49 1997-04-23 This is the oldest source release which is currently availab
## 3 0.60 1997-12-05 R becomes an official part of the GNU Project. The code is h
## 4 0.65.1 1999-10-07 First versions of update.packages and install.packages funct
## 5 1.0 2000-02-29 Considered by its developers stable enough for production us
## 6 1.4 2001-12-19 S4 methods are introduced and the first version for Mac 0S X
## 7 2.0 2004-10-04 Introduced lazy loading, which enables fast loading of data

## 8 2.1 2005-084-18 Support for UTF-8 encoding, and the beginnings of internatio
## 9 2.11 2010-04-22 Support for Windows 64 bit systems.
## 10 2.13 2011-04-14 Adding a new compiler function that allows speeding up funct
## 11 2.14 2011-10-31 Added mandatory namespaces for packages. Added a new paralle
## 12 2.15 2012-03-30 New load balancing functions. Improved serialization speed f
## 13 3.0 2013-04-03 Support for numeric index values 231 and larger on 64 bit sy

While this returns a data.frame, note that as is typical for scraped data, there is still further data cleaning to be
done: here, formatting dates, inserting NAs, and so on.

Note that data in a less consistently rectangular format may take looping or other further munging to successfully
parse. If the website makes use of jQuery or other means to insert content, read_html may be insufficient to
scrape, and a more robust scraper like RSelenium may be necessary.

Section 58.2: Using rvest when login is required

| common problem encounter when scrapping a web is how to enter a userid and password to log into a web site.

In this example which | created to track my answers posted here to stack overflow. The overall flow is to login, go to
a web page collect information, add it a dataframe and then move to the next page.

GoalKicker.com - R Notes for Professionals 246


https://github.com/hadley/rvest
https://www.crummy.com/software/BeautifulSoup/
https://github.com/hadley/xml2
http://xmlsoft.org/
https://en.wikipedia.org/wiki/R_(programming_language)
http://goalkicker.com/

library(rvest)

#Address of the login webpage
login<-

"https://stackoverflow.com/users/login?ssrc=head&returnurl=http%3a%2f%2fstackoverflow.com%2f"

#create a web session with the desired login address
pgsession<-html_session(login)

pgform<-html_form(pgsession)[[2]] #in this case the submit is the 2nd form
filled_form<-set_values(pgform, email="#xx**" 6 password="x*%xx*"
submit_form(pgsession, filled_form)

#pre allocate the final results dataframe.
results<-data.frame()

#loop through all of the pages with the desired info
for (i in 1:5)
{

#base address of the pages to extract information from

url<-"http://stackoverflow.com/users/**xxxxxxxxx?tab=answers&sort=activity&page="

url<-paste@(url, i)
page<-jump_to(pgsession, url)

#collect info on the question votes and question title
summary<-html_nodes(page, "div .answer-summary")

question<-matrix(html_text(html_nodes(summary, "div"), trim=TRUE), ncol=2, byrow

#find date answered, hyperlink and whether it was accepted
dateans<-html_node(summary, "span") %>% html_attr("title")
hyperlink<-html_node(summary, "div a") %>% html_attr("href")
accepted<-html_node(summary, "div") %>% html_attr("class")

#create temp results then bind to final results
rtemp<-cbind(question, dateans, accepted, hyperlink)
results<-rbind(results, rtemp)

}

#Dataframe Clean-up

names(results)<-c("Votes", "Answer", "Date", "Accepted", "HyperLink")
results$Votes<-as.integer(as.character(results$Votes))
results$Accepted<-ifelse(results$SAccepted=="answer-votes default”, 0, 1)

The loop in this case is limited to only 5 pages, this needs to change to fit your application. | replaced the user

specific values with ****** hopefully this will provide some guidance for you problem.
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Chapter 59: Generalized linear models

Section 59.1: Logistic regression on Titanic dataset

Logistic regression is a particular case of the generalized linear model, used to model dichotomous outcomes (probit
and complementary log-log models are closely related).

The name comes from the link function used, the /ogit or log-odds function. The inverse function of the /ogit is called
the logistic function and is given by:

et 1

et 1 1+et

a(t) =

This function takes a value between J-Inf;+Inf[ and returns a value between 0 and 7; i.e the /ogistic function takes a
linear predictor and returns a probability.

Logistic regression can be performed using the glm function with the option family = binomial (shortcut for
family = binomial(link="logit"); the logit being the default link function for the binomial family).

In this example, we try to predict the fate of the passengers aboard the RMS Titanic.

Read the data:

url <- "http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt"
titanic <- read.csv(file = url, stringsAsFactors = FALSE)

Clean the missing values:

In that case, we replace the missing values by an approximation, the average.
titanicSage[is.na(titanicSage)] <- mean(titanicSage, na.rm = TRUE)

Train the model:

titanic.train <- glm(survived ~ pclass + sex + age,
family = binomial, data = titanic)

Summary of the model:

summary(titanic.train)

The output:

Call:
glm(formula = survived ~ pclass + sex + age, family = binomial, data = titanic)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.6452 -0.6641 -0.3679 0.6123 2.5615

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 3.552261 0.342188 10.381 < 2e-16 #*#*%*
pclass2nd -1.170777 0.211559 -5.534 3.13e-08 ***
pclass3rd -2.430672 0.195157 -12.455 < 2e-16 #*#*%*
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sexmale -2.463377 0.154587 -15.935 < 2e-16 #**%
age -0.042235 0.007415 -5.696 1.23e-08 #***

‘

Signif. codes: © ‘#*x’' 0.001 ‘**' ©0.81 ‘*' ©0.05 ‘.’ 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1686.8 on 1312 degrees of freedom
Residual deviance: 1165.7 on 1308 degrees of freedom
AIC: 1175.7

Number of Fisher Scoring iterations: 5

¢ The first thing displayed is the call. It is a reminder of the model and the options specified.

¢ Next we see the deviance residuals, which are a measure of model fit. This part of output shows the
distribution of the deviance residuals for individual cases used in the model.

¢ The next part of the output shows the coefficients, their standard errors, the z-statistic (sometimes called a
Wald z-statistic), and the associated p-values.

o The qualitative variables are "dummified". A modality is considered as the reference. The reference
modality can be change with I in the formula.

o All four predictors are statistically significant at a 0.1 % level.

o The logistic regression coefficients give the change in the log odds of the outcome for a one unit
increase in the predictor variable.

o To see the odds ratio (multiplicative change in the odds of survival per unit increase in a predictor
variable), exponentiate the parameter.

o To see the confidence interval (Cl) of the parameter, use confint.

* Below the table of coefficients are fit indices, including the null and deviance residuals and the Akaike
Information Criterion (AIC), which can be used for comparing model performance.

o When comparing models fitted by maximum likelihood to the same data, the smaller the AIC, the
better the fit.

o One measure of model fit is the significance of the overall model. This test asks whether the model
with predictors fits significantly better than a model with just an intercept (i.e., a null model).

Example of odds ratios:

exp(coef(titanic.train)[3])

pclass3rd
0.08797765

With this model, compared to the first class, the 3rd class passengers have about a tenth of the odds of survival.

Example of confidence interval for the parameters:

confint(titanic.train)

Waiting for profiling to be done...

2.5 % 97.5 %
(Intercept) 2.89486872 4.23734280
pclass2nd -1.58986065 -0.75987230
pclass3rd -2.81987935 -2.085419500
sexmale -2.77180962 -2.16528316

GoalKicker.com - R Notes for Professionals 249


http://goalkicker.com/

age -0.05695894 -0.02786211

Exemple of calculating the significance of the overall model:

The test statistic is distributed chi-squared with degrees of freedom equal to the differences in degrees of freedom
between the current and the null model (i.e., the number of predictor variables in the model).

with(titanic.train, pchisq(null.deviance - deviance, df.null - df.residual
, lower.tail = FALSE))
[1] 1.892539e-111

The p-value is near 0, showing a strongly significant model.
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Chapter 60: Reshaping data between long
and wide forms

In R, tabular data is stored in data frames. This topic covers the various ways of transforming a single table.

Section 60.1: Reshaping data

Often data comes in tables. Generally one can divide this tabular data in wide and long formats. In a wide format,
each variable has its own column.

Person Height [cm] Age [yr]

Alison 178 20
Bob 174 45
Carl 182 31

However, sometimes it is more convenient to have a long format, in which all variables are in one column and the
values are in a second column.

Person Variable Value
Alison Height [cm] 178
Bob Height [cm] 174
Carl Height [cm] 182
Alison Age [yr] 20
Bob  Age [yr] 45
Carl Age [yr] 31

Base R, as well as third party packages can be used to simplify this process. For each of the options, the mtcars
dataset will be used. By default, this dataset is in a long format. In order for the packages to work, we will insert the
row names as the first column.

mtcars # shows the dataset
data <- data.frame(observation=row.names(mtcars),mtcars)

Base R

There are two functions in base R that can be used to convert between wide and long format: stack() and
unstack().

long <- stack(data)

long # this shows the long format
wide <- unstack(long)

wide # this shows the wide format

However, these functions can become very complex for more advanced use cases. Luckily, there are other options
using third party packages.

The tidyr package
This package uses gather () to convert from wide to long and spread() to convert from long to wide.

library(tidyr)

long <- gather(data, variable, value, 2:12) # where variable is the name of the

# variable column, value indicates the name of the value column and 2:12 refers to
# the columns to be converted.

long # shows the long result
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wide <- spread(long,variable,value)
wide # shows the wide result (~data)

The data.table package

The data.table package extends the reshape2 functions and uses the function melt() to go from wide to long and

dcast() to go from long to wide.

library(data.table)

long <- melt(data, 'observation',2:12, 'variable"’,

long # shows the long result

wide <- dcast(long, observation ~ variable)

wide # shows the wide result (~data)

‘value')

Section 60.2: The reshape function

The most flexible base R function for reshaping data is reshape. See ?reshape for its syntax.

# create unbalanced longitudinal (panel) data set

set.seed(1234)

df <- data.frame(identifier=rep(1:5, each=3),

location=rep(c("up",

period=rep(1:3, 5),

values=runif(15, 5,
df

identifier location period counts

1 1 up 1 4
2 1 up 2 22
3 1 up 3 22
5] 2 down 2 31
6 2 down 3 23
7 3 left 1 1
9 3 left 3 24
10 4 up 1 18
12 4 up 3 20
13 5) center 1 10
14 5) center 2 33
15 S center 3 11

"down", "left",

"up”,

"center"), each=3),

counts=sample(35, 15, replace=TRUE),
19))[_c(418111)l]

g O O NN O o1 OO0 O O O

values
.186478
.431116
.334104
.161130
.583062
.513467
.199980
.093998
.628488
.573291
.156725
.228851

Note that the data.frame is unbalanced, that is, unit 2 is missing an observation in the first period, while units 3 and
4 are missing observations in the second period. Also, note that there are two variables that vary over the periods:
counts and values, and two that do not vary: identifier and location.

Long to Wide
To reshape the data.frame to wide format,

# reshape wide on time variable

df.wide <- reshape(df, idvar="identifier", timevar="period",
"counts"), direction="wide")

v.names=c("values"

df .wide

identifier location values.1 counts.1 values.2 counts.2
1 1 up 9.186478 4 6.431116 22
5 2 down NA NA 6.161130 31
7 3 left 6.513467 1 NA NA
10 4 up 6.093998 18 NA NA
13 5) center 9.573291 10 9.156725 33

values.3
6.334104
6.583062
5.199980
7.628488
5.228851

counts.3
22
23
24
20
11

GoalKicker.com - R Notes for Professionals

252


http://goalkicker.com/

Notice that the missing time periods are filled in with NAs.

In reshaping wide, the "v.names" argument specifies the columns that vary over time. If the location variable is not
necessary, it can be dropped prior to reshaping with the "drop" argument. In dropping the only non-varying / non-
id column from the data.frame, the v.names argument becomes unnecessary.

reshape(df, idvar="identifier", timevar="period", direction="wide",
drop="1location")

Wide to Long
To reshape long with the current df.wide, a minimal syntax is

reshape(df.wide, direction="long")

However, this is typically trickier:

# remove "." separator in df.wide names for counts and values
names (df.wide) [grep("\\.", names(df.wide))] <-
gsub("\\.", "", names(df.wide)[grep("\\.", names(df.wide))])

Now the simple syntax will produce an error about undefined columns.

With column names that are more difficult for the reshape function to automatically parse, it is sometimes
necessary to add the "varying" argument which tells reshape to group particular variables in wide format for the
transformation into long format. This argument takes a list of vectors of variable names or indices.

reshape(df.wide, idvar="identifier",
varying=1list(c(3,5,7), ¢(4,6,8)), direction="1long")

In reshaping long, the "v.names" argument can be provided to rename the resulting varying variables.

Sometimes the specification of "varying" can be avoided by use of the "sep" argument which tells reshape what part
of the variable name specifies the value argument and which specifies the time argument.
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Chapter 61. RMarkdown and knitr
presentation

Parameter definition

title the title of the document

author The author of the document

date The date of the document: Can be "r format(Sys.time(), '%d %B, %Y')"
author The author of the document

The output format of the document: at least 10 format available. For html document, html_output. For

output PDF document, pdf_document, ..

Section 61.1: Adding a footer to an ioslides presentation

Adding a footer is not natively possible. Luckily, we can make use of jQuery and CSS to add a footer to the slides of
an ioslides presentation rendered with knitr. First of all we have to include the jQuery plugin. This is done by the
line

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.12.2/jquery.min.js"></script>

Now we can use jQuery to alter the DOM (document object model) of our presentation. In other words: we alter the
HTML structure of the document. As soon as the presentation is loaded ($(document) . ready (function() { ...
})), we select all slides, that do not have the class attributes .title-slide, .backdrop, or .segue and add the tag
<footer></footer> right before each slide is 'closed' (so before </slide>). The attribute label carries the content
that will be displayed later on.

All we have to do now is to layout our footer with CSS:
After each <footer> (footer: :after):

e display the content of the attribute label
e use font size 12
¢ position the footer (20 pixels from the bottom of the slide and 60 pxs from the left)

(the other properties can be ignored but might have to be modified if the presentation uses a different style
template).

title: "Adding a footer to presentaion slides"
author: "Martin Schmelzer"

date: "26 Juli 2016"

output: ioslides presentation

" {r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)

## Slide 1
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This is slide 1.
## Slide 2

This is slide 2
# Test

## Slide 3

And slide 3.

The result will look like this:

Slide 1

This is slide 1.

o]
S
(S5

My amazing footer

Section 61.2: Rstudio example

This is a script saved as .Rmd, on the contrary of r scripts saved as .R.

To knit the script, either use the render function or use the shortcut button in Rstudio.

title: "Rstudio exemple of a rmd file"
author: 'stack user'
date: "22 July 2016"
output: html document
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The header is used to define the general parameters and the metadata.

## R Markdown

This is an R Markdown document.

It is a script written in markdown with the possibility to insert chunk of R code in it.
To insert R code, it needs to be encapsulated into inverted quote.

Like that for a long piece of code:

" {r cars}

summary(cars)

And like "“r cat("that") = for small piece of code.

## Including Plots

You can also embed plots, for example:

" {r echo=FALSE}
plot(pressure)
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Chapter 62: Scope of variables

Section 62.1: Environments and Functions
Variables declared inside a function only exist (unless passed) inside that function.
X <- 1

foo <- function(x) {

y <- 3
Z <-X+y
return(z)

}

y

Error: object 'y' not found

Variables passed into a function and then reassigned are overwritten, but only inside the function.

foo <- function(x) {

X <- 2
y <3
zZ <-XxX+y
return(z)
}
foo(1)
X
5
1

Variables assigned in a higher environment than a function exist within that function, without being passed.

foo <- function() {

y <- 3
Z <- X +Yy
return(z)
}
foo()
4

Section 62.2: Function Exit

The on.exit() function is handy for variable clean up if global variables must be assigned.

Some parameters, especially those for graphics, can only be set globally. This small function is common when
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creating more specialized plots.

new_plot <- function(...) {
old_pars <- par(mar = ¢(5,4,4,2) + .1, mfrow = ¢(1,1))

on.exit(par(old_pars))
plot(...)

Section 62.3: Sub functions

Functions called within a function (ie subfunctions) must be defined within that function to access any variables
defined in the local environment without being passed.

This fails:

bar <- function() {
Z <- Xty

return(z)
}
foo <- function() {
y <=3
z <- bar()
return(z)
}
foo()
Error in bar() : object 'y’ not found
This works:

foo <- function() {

bar <- function() {
Z <- Xty

return(z)
}
y <3
z <- bar()
return(z)
}
foo()
4

Section 62.4: Global Assignment

Variables can be assigned globally from any environment using <<-. bar () can now accessy.

bar <- function() {
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zZ <-Xx+y

return(z)

}

foo <- function() {
y <<- 3
z <- bar()
return(z)

}

foo()
4

Global assignment is highly discouraged. Use of a wrapper function or explicitly calling variables from another local
environment is greatly preferred.

Section 62.5: Explicit Assignment of Environments and
Variables

Environments in R can be explicitly call and named. Variables can be explicitly assigned and call to or from those
environments.

A commonly created environment is one which encloses package :base or a subenvironment within package :base.

baseenv())
el)

el <- new.env(parent
e2 <- new.env(parent

Variables can be explicitly assigned and call to or from those environments.

assign("a", 3, envir = el)
get("a", envir = el)
get("a", envir = e2)

Since e2 inherits from e1, ais 3 in both e1 and e2. However, assigning a within e2 does not change the value of a in
el.

assign("a", 2, envir = e2)
get("a", envir = e2)
get("a", envir = el)
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Chapter 63: Performing a Permutation
Test

Section 63.1: A fairly general function

We will use the built in tooth growth dataset. We are interested in whether there is a statistically significant
difference in tooth growth when the guinea pigs are given vitamin C vs orange juice.

Here's the full example:

teethVC
teeth0J

ToothGrowth[ToothGrowthSsupp == 'VC', ]
ToothGrowth[ToothGrowthSsupp == '0J', ]

permutationTest = function(vectorA, vectorB, testStat){
N = 1075
fullSet = c(vectorA, vectorB)
lengthA = length(vectorA)
lengthB = length(vectorB)
trials <- replicate(N,
{index <- sample(lengthB + lengthA, size = lengthA, replace = FALSE)
testStat((fullSet[index]), fullSet[-index]) } )
trials
}
vecl =teethVCS$len;
vec?2 =teeth0JS$len;
subtractMeans = function(a, b){ return (mean(a) - mean(b))}
result = permutationTest(vecl, vec2, subtractMeans)
observedMeanDifference = subtractMeans(vecl, vec2)
result = c(result, observedMeanDifference)

hist(result)

abline(v=observedMeanDifference, col = "blue")
pValue = 2*mean(result <= (observedMeanDifference))
pValue

After we read in the CSV, we define the function

permutationTest = function(vectorA, vectorB, testStat){

N = 1075

fullSet = c(vectorA, vectorB)
lengthA = length(vectorA)
lengthB = length(vectorB)

trials <- replicate(N,
{index <- sample(lengthB + lengthA, size = lengthA, replace = FALSE)
testStat((fullSet[index]), fullSet[-index]) } )

trials

This function takes two vectors, and shuffles their contents together, then performs the function testStat on the
shuffled vectors. The result of teststat is added to trials, which is the return value.

It does this N = 1075 times. Note that the value N could very well have been a parameter to the function.

This leaves us with a new set of data, trials, the set of means that might result if there truly is no relationship
between the two variables.

Now to define our test statistic:

GoalKicker.com - R Notes for Professionals 260


https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/ToothGrowth.html
http://goalkicker.com/

subtractMeans = function(a, b){ return (mean(a) - mean(b))}
Perform the test:

result = permutationTest(vecl, vec2, subtractMeans)
Calculate our actual observed mean difference:

observedMeanDifference = subtractMeans(vecl, vec2)
Let's see what our observation looks like on a histogram of our test statistic.

hist(result)
abline(v=observedMeanDifference, col = "blue")

Histogram of result

Frequency
10000
|

L
=
F

result

It doesn't look like our observed result is very likely to occur by random chance...

We want to calculate the p-value, the likeliehood of the original observed result if their is no relationship between
the two variables.

pValue = 2*mean(result >= (observedMeanDifference))
Let's break that down a bit:

result >= (observedMeanDifference)

Will create a boolean vector, like:

FALSE TRUE FALSE FALSE TRUE FALSE ...

With TRUE every time the value of result is greater than or equal to the observedMean.

The function mean will interpret this vector as 1 for TRUE and @ for FALSE, and give us the percentage of 1's in the
mix, ie the number of times our shuffled vector mean difference surpassed or equalled what we observed.

Finally, we multiply by 2 because the distribution of our test statistic is highly symmetric, and we really want to
know which results are "more extreme" than our observed result.
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All that's left is to output the p-value, which turns out to be 8.06093939. Interpretation of this value is subjective,
but | would say that it looks like Vitamin C promotes tooth growth quite a lot more than Orange Juice does.
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Chapter 64: xgboost

Section 64.1: Cross Validation and Tuning with xgboost

library
library
library
library

caret) # for dummyVars
RCurl) # download https data
Metrics) # calculate errors
xgboost) # model

—~ o~ o~ o~

HAH R

# Load data from UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/datasets.html)
urlfile <- 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data’

X <- getURL(urlfile, ssl.verifypeer = FALSE)

adults <- read.csv(textConnection(x), header=F)

# adults <-read.csv('https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data’,
header=F)
names(adults)=c('age', 'workclass', 'fnlwgt', 'education’, 'educationNum',
‘maritalStatus', 'occupation', 'relationship’, 'race’,
‘sex', 'capitalGain', 'capitallLoss’', 'hoursWeek',
'nativeCountry', "income")
# clean up data

adults$8income <- ifelse(adultsSincome==' <=50K',0,1)
# binarize all factors

library(caret)

dmy <- dummyVars(" ~ .", data = adults)

adultsTrsf <- data.frame(predict(dmy, newdata = adults))
BHHHHBHBHRHHHHBHBH AR HBHBH AR HBHHH AR HBHBH AR HBHHH AR HBHRH AR HBHHH AR HBHRHHRHBH R HRHHRH

# what we're trying to predict adults that make more than 50k
outcomeName <- c¢('income')

# list of features

predictors <- names(adultsTrsf)[!names(adultsTrsf) %in% outcomeName]

# play around with settings of xgboost - eXtreme Gradient Boosting (Tree) library
# https://github.com/tqchen/xgboost/wiki/Parameters

# max.depth - maximum depth of the tree

# nrounds - the max number of iterations

# take first 10% of the data only!
trainPortion <- floor(nrow(adultsTrsf)=*0.1)

trainSet <- adultsTrsf[ 1:floor(trainPortion/2), ]
testSet <- adultsTrsf[(floor(trainPortion/2)+1) :trainPortion, ]

smallestError <- 100
for (depth in seq(1,10,1)) {
for (rounds in seq(1,20,1)) {

# train

bst <- xgboost(data = as.matrix(trainSet[,predictors]),
label = trainSet[, outcomeName],
max .depth=depth, nround=rounds,
objective = "reg:linear", verbose=0)

gc()

# predict
predictions <- predict(bst, as.matrix(testSet[,predictors]), outputmargin=TRUE)
err <- rmse(as.numeric(testSet[,outcomeName]), as.numeric(predictions))
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if (err < smallestError) {
smallestError = err
print(paste(depth, rounds,err))

cv <- 30
trainSet <- adultsTrsf[1:trainPortion, ]
cvDivider <- floor(nrow(trainSet) / (cv+1))

smallestError <- 100
for (depth in seq(1,10,1)) {
for (rounds in seq(1,20,1)) {
totalError <- c()
indexCount <- 1
for (cv in seq(1:cv)) {
# assign chunk to data test
dataTestIndex <- c((cv * cvDivider):(cv * cvDivider + cvDivider))
dataTest <- trainSet[dataTestIndex, ]
# everything else to train
dataTrain <- trainSet[-dataTestIndex, ]

bst <- xgboost(data = as.matrix(dataTrain[,predictors])
label = dataTrain[, outcomeName],
max.depth=depth, nround=rounds,
objective = "reg:linear", verbose=0)
ge()
predictions <- predict(bst, as.matrix(dataTest[,predictors]),
outputmargin=TRUE)

err <- rmse(as.numeric(dataTest[,outcomeName]), as.numeric(predictions))
totalError <- c(totalError, err)

}

if (mean(totalError) < smallestError) {
smallestError = mean(totalError)
print(paste(depth, rounds, smallestError))

HHH BB RBHHHHHHH B H BB BB HHHHHHHH B R BB BB HHHHHH R BB B BB HHHHHHH BB BB HHHHHH BB BB RHH
# Test both models out on full data set

trainSet <- adultsTrsf[ 1:trainPortion, ]

# assign everything else to test
testSet <- adultsTrsf[(trainPortion+1) :nrow(adultsTrsf), ]

bst <- xgboost(data = as.matrix(trainSet[,predictors]),

label = trainSet[, outcomeName],

max.depth=4, nround=19, objective = "reg:linear", verbose=0)
pred <- predict(bst, as.matrix(testSet[,predictors]), outputmargin=TRUE)
rmse(as.numeric(testSet[,outcomeName]), as.numeric(pred))

bst <- xgboost(data = as.matrix(trainSet[,predictors]),

label = trainSet[, outcomeName],

max.depth=3, nround=20, objective = "reg:linear", verbose=0)
pred <- predict(bst, as.matrix(testSet[,predictors]), outputmargin=TRUE)
rmse(as.numeric(testSet[,outcomeName]), as.numeric(pred))
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Chapter 65: R code vectorization best
practices

Section 65.1: By row operations
The key in vectorizing R code, is to reduce or eliminate "by row operations" or method dispatching of R functions.

That means that when approaching a problem that at first glance requires "by row operations", such as calculating

the means of each row, one needs to ask themselves:

functions?

What are the classes of the data sets I'm dealing with?
Is there an existing compiled code that can achieve this without the need of repetitive evaluation of R

If not, can | do these operation by columns instead by row?
Finally, is it worth spending a lot of time on developing complicated vectorized code instead of just running a

simple apply loop? In other words, is the data big/sophisticated enough that R can't handle it efficiently using

a simple loop?

Putting aside the memory pre-allocation issue and growing object in loops, we will focus in this example on how to
possibly avoid apply loops, method dispatching or re-evaluating R functions within loops.

A standard/easy way of calculating mean by row would be:

apply(mtcars, 1, mean)

Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive  Hornet Sportabout
Valiant Duster 360
29.90727 29.98136 23.59818 38.73955 53.66455
35.04909 59.72000
Merc 240D Merc 230 Merc 280 Merc 280C Merc 450SE
Merc 450SL Merc 450SLC
24 .63455 27.23364 31.86000 31.78727 46.43091
46 .50000 46 .35000
Cadillac Fleetwood Lincoln Continental Chrysler Imperial Fiat 128 Honda Civic
Toyota Corolla Toyota Corona
66.23273 66.05855 65.97227 19.44091 17.74227
18.81409 24.88864
Dodge Challenger AMC Javelin Camaro Z28 Pontiac Firebird Fiat X1-9
Porsche 914-2 Lotus Europa
47 .24091 46.00773 58.75273 57.37955 18.92864
24.77909 24 .88027
Ford Pantera L Ferrari Dino Maserati Bora Volvo 142E
60.97182 34.50818 63.15545 26.26273

But can we do better? Lets's see what happened here:

1. First, we converted a data.frame to a matrix. (Note that his happens within the apply function.) This is both
inefficient and dangerous. a matrix can't hold several column types at a time. Hence, such conversion will
probably lead to loss of information and some times to misleading results (compare apply(iris, 2, class)

with str(iris) or with sapply(iris, class)).
2. Second of all, we performed an operation repetitively, one time for each row. Meaning, we had to evaluate
some R function nrow(mtcars) times. In this specific case, mean is not a computationally expensive function,
hence R could likely easily handle it even for a big data set, but what would happen if we need to calculate
the standard deviation by row (which involves an expensive square root operation)? Which brings us to the

next point:
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3. We evaluated the R function many times, but maybe there already is a compiled version of this operation?

Indeed we could simply do:

rowMeans (mtcars)
Mazda RX4
Valiant
29.90727
35.04909
Merc 246D
Merc 450SL
24 .63455
46 .50000
Cadillac Fleetwood
Toyota Corolla
66.23273
18.81409
Dodge Challenger
Porsche 914-2
47 .24091
24.77909
Ford Pantera L
60.97182

Mazda RX4 Wag
Duster 360
29.98136
59.72000

Merc 230

Merc 4506SLC
27.23364
46.35000
Lincoln Continental
Toyota Corona
66.05855

24 .88864

AMC Javelin
Lotus Europa
46.00773
24.88027
Ferrari Dino
34.50818

Datsun 710
23.59818

Merc 280

31.86000

Chrysler Imperial
65.97227

Camaro 728
58.75273

Maserati Bora
63.15545

Hornet 4 Drive

38.73955

Merc 286C

31.78727

Fiat 128

19.44091

Pontiac Firebird

57.37955

Volvo 142E
26.26273

Hornet Sportabout
53.66455

Merc 450SE
46.43091

Honda Civic
17.74227

Fiat X1-9

18.92864

This involves no by row operations and therefore no repetitive evaluation of R functions. However, we still

converted a data.frame to a matrix. Though rowMeans has an error handling mechanism and it won't run on a data
set that it can't handle, it's still has an efficiency cost.

rowMeans(iris)

Error in rowMeans(iris) : 'x'

must be numeric

But still, can we do better? We could try instead of a matrix conversion with error handling, a different method that
will allow us to use mtcars as a vector (because a data. frame is essentially a 1ist and a list is a vector).

Reduce( "+', mtcars)/ncol(mtcars)

[1] 29.90727 29.98136 23.59818 38.73955 53.66455 35.04909 59.72000 24.63455 27.23364 31.86000
31.78727 46.43091 46.50000 46.35000 66.23273 66.05855
[17] 65.97227 19.44091 17.74227 18.81409 24.88864 47.24091 46.00773 58.75273 57.37955 18.92864
24.77909 24.88027 60.97182 34.50818 63.15545 26.26273

Now for possible speed gain, we lost column names and error handling (including NA handling).

Another example would be calculating mean by group, using base R we could try

aggregate(. ~ cyl, mtcars, mean)

cyl mpg

disp hp

drat

wt gsec

A am

gear carb

1 4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727 06.9090909 0.7272727 4.090909 1.545455
2 6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143 3.428571
3 8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714 3.500000

Still, we are basically evaluating an R function in a loop, but the loop is now hidden in an internal C function (it
matters little whether it is a C or an R loop).

Could we avoid it? Well there is a compiled function in R called rowsum, hence we could do:

rowsum(mtcars[-2], mtcarsScyl)/table(mtcarsScyl)

mpg disp

hp drat wt

gsec Vs

am gear

carb

4 26.66364 105.1364 82.63636 4.070909 2.285727 19.13727 0.9090909 0.7272727 4.090909 1.545455
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6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714 0.5714286 0.4285714 3.857143 3.428571
8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214 0.0000000 0.1428571 3.285714 3.500000

Though we had to convert to a matrix first too.

A this point we may question whether our current data structure is the most appropriate one. Is a data. frame is the
best practice? Or should one just switch to a matrix data structure in order to gain efficiency?

By row operations will get more and more expensive (even in matrices) as we start to evaluate expensive functions
each time. Lets us consider a variance calculation by row example.

Lets say we have a matrix m:

set.seed(100)

m <- matrix(sample(1e2), 10)

m

(,11 [,2]1 [,3] [,4] [,5] [,e] [,7] [,8] [,9] [,18]

[1,] 8 33 39 86 71 100 81 68 89 84
[2,] 12 16 57 80 32 82 69 11 41 92
[3,] 62 91 53 13 42 31 60 70 98 79
[4,] 66 94 29 67 45 59 20 96 64 1
[5,] 36 63 76 6 10 48 85 75 99 2
[6,] 18 4 27 19 44 56 37 95 26 40
[7,] 3 24 21 25 52 51 83 28 49 17
[8,] 46 ) 22 43 47 74 35 97 77 65
[9,] 55 54 78 34 50 90 30 61 14 58

[10,] 88 73 38 15 9 72 7 93 23 87

One could simply do:

apply(m, 1, var)
[1]1 871.6556 957.5111 699.2111 941.4333 1237.3333 641.8222 539.7889 759.4333 500.4889
1255.6111

On the other hand, one could also completely vectorize this operation by following the formula of variance

RowVar <- function(x) {

rowSums((x - rowMeans(x))"2)/(dim(x)[2] - 1)
}
RowVar (m)

[1] 871.6556 957.5111 699.2111 941.4333 1237.3333 641.8222 539.7889 759.4333 500.4889
1255.6111
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Chapter 66: Missing values

When we don't know the value a variable takes, we say its value is missing, indicated by NA.

Section 66.1: Examining missing data

anyNA reports whether any missing values are present; while is.na reports missing values elementwise:
vec <- ¢(1, 2, 3, NA, 5)

anyNA(vec)

# [1] TRUE

is.na(vec)
# [1] FALSE FALSE FALSE TRUE FALSE

is.na returns a logical vector that is coerced to integer values under arithmetic operations (with FALSE=0, TRUE=1).
We can use this to find out how many missing values there are:

sum(is.na(vec))
# [1] 1

Extending this approach, we can use colSums and is.na on a data frame to count NAs per column:

colSums(is.na(airquality))
# Ozone Solar.R Wind Temp Month Day
# 87 7 0 0 0 0

The naniar package (currently on github but not CRAN) offers further tools for exploring missing values.

Section 66.2: Reading and writing data with NA values

When reading tabular datasets with the read. * functions, R automatically looks for missing values that look like
"NA". However, missing values are not always represented by NA. Sometimes a dot (.), a hyphen(-) or a character-
value (e.g.: empty) indicates that a value is NA. The na.strings parameter of the read.* function can be used to tell
R which symbols/characters need to be treated as NA values:

read.csv("name_of_csv_file.csv", na.strings = "-")
It is also possible to indicate that more than one symbol needs to be read as NA:
read.csv('missing.csv', na.strings = c('.','-"))

Similarly, NAs can be written with customized strings using the na argument to write.csv. Other tools for reading
and writing tables have similar options.

Section 66.3: Using NAs of different classes
The symbol NA is for a logical missing value:

class(NA)
#[1] "logical"

This is convenient, since it can easily be coerced to other atomic vector types, and is therefore usually the only NA
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you will need:

x <- ¢(1, NA, 1)
class(x[2])

#[1]

"numeric"

If you do need a single NA value of another type, use NA_character_, NA_integer_, NA_real_ or NA_complex_. For

missing values of fancy classes, subsetting with NA_integer_ usually works; for example, to get a missing-value

Date:

class(Sys.Date()[NA_integer_])

# [1

Section 66.4: TRUE/FALSE and/or NA

]

"Date”

NA is a logical type and a logical operator with an NA will return NA if the outcome is ambiguous. Below, NA OR TRUE
evaluates to TRUE because at least one side evaluates to TRUE, however NA OR FALSE returns NA because we do not
know whether NA would have been TRUE or FALSE

NA | TRUE
# [1] TRUE

# TRUE | TRUE is TRUE and FALSE | TRUE is also TRUE.

NA |

FALSE

# [1] NA

# TRUE | FALSE is TRUE but FALSE

NA & TRUE
# [1] NA
# TRUE & TRUE is TRUE but FALSE & TRUE is FALSE.

NA & FALSE
# [1] FALSE

# TRUE & FALSE is FALSE and FALSE & FALSE is also FALSE.

These properties are helpful if you want to subset a data set based on some columns that contain NA.

df <- data.frame(v1=0:9,
v2=c(rep(1:2, each=4), NA, NA),
v3=c(NA, letters[2:10]))

df[dfSv2 == 1 & !is.na(df$v2),

# v1 v2 v3
#1 0 1 <NA>
#2 1 1 b
#3 2 1 c
#4 3 1 d
df[dfSv2 == 1, 1]
vl v2 v3
#1 0 1 <NA>
#2 1 1 b
#3 2 1 c
#4 3 1 d
#NA NA NA <NA>

#NA.1 NA NA <NA>

]

FALSE is FALSE.
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Chapter 67: Hierarchical Linear Modeling

Section 67.1: basic model fitting

apologies: since | don't know of a channel for discussing/providing feedback on requests for improvement, I'm going to
put my question here. Please feel free to point out a better place for this! @DataTx states that this is "completely
unclear, incomplete, or has severe formatting problems". Since | don't see any big formatting problems (:-) ), a little
bit more guidance about what's expected here for improving clarity or completeness, and why what's here is
unsalvageable, would be useful.

The primary packages for fitting hierarchical (alternatively "mixed" or "multilevel") linear models in R are nlme
(older) and 1me4 (newer). These packages differ in many minor ways but should generally result in very similar fitted
models.

library(nlme)

library(1lme4)

m1.nlme <- lme(Reaction~Days, random=~Days|Subject,data=sleepstudy,method="REML")
m1.1lme4 <- lmer(Reaction~Days+(Days|Subject),data=sleepstudy, REML=TRUE)
all.equal(fixef(m1.nlme), fixef(m1.1me4d))

## [1] TRUE

Differences to consider:

e formula syntax is slightly different

¢ nlme is (still) somewhat better documented (e.g. Pinheiro and Bates 2000 Mixed-effects models in S-PLUS;
however, see Bates et al. 2015 Journal of Statistical Software/vignette("1lmer", package="1me4") for 1lme4)

¢ 1me4 is faster and allows easier fitting of crossed random effects

¢ nlme provides p-values for linear mixed models out of the box, 1me4 requires add-on packages such as
ImerTest or afex

¢ nlme allows modeling of heteroscedasticity or residual correlations (in space/time/phylogeny)

The unofficial GLMM FAQ provides more information, although it is focused on generalized linear mixed models
(GLMMs).
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Chapter 68: *apply family of functions
(functionals)

Section 68.1: Using built-in functionals
Built-in functionals: lapply(), sapply(), and mapply()

R comes with built-in functionals, of which perhaps the most well-known are the apply family of functions. Here is a
description of some of the most common apply functions:

e lapply() =takes a list as an argument and applies the specified function to the list.
¢ sapply() =the same as lapply() but attempts to simplify the output to a vector or a matrix.
o vapply() = avariant of sapply() in which the output object's type must be specified.
e mapply() = like lapply() but can pass multiple vectors as input to the specified function. Can be simplified
like sapply().
o Map() is an alias to mapply() with SIMPLIFY = FALSE.

lapply()
lapply() can be used with two different iterations:

e lapply(variable, FUN)
e lapply(seq_along(variable), FUN)

# Two ways of finding the mean of x

set.seed(1)

df <- data.frame(x = rnorm(25), y = rnorm(25))
lapply(df, mean)

lapply(seq_along(df), function(x) mean(df[[x]))

sapply()

sapply() will attempt to resolve its output to either a vector or a matrix.

# Two examples to show the different outputs of sapply()
sapply(letters, print) ## produces a vector

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE, FALSE, TRUE))
sapply(x, quantile) ## produces a matrix

mapply()

mapply () works much like lapply() except it can take multiple vectors as input (hence the m for multivariate).

mapply(sum, 1:5, 10:6, 3) # 3 will be "recycled" by mapply

Section 68.2: Combining multiple "data.frames’ (lapply’,
mapply)

In this exercise, we will generate four bootstrap linear regression models and combine the summaries of these
models into a single data frame.

library(broom)

#x Create the bootstrap data sets
BootData <- lapply(1:4,
function(i) mtcars[sample(1:nrow(mtcars),
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size = nrow(mtcars),
replace = TRUE), 1)

#*x Fit the models
Models <- lapply(BootData,
function(BD) 1lm(mpg ~ gsec + wt + factor(am),
data = BD))

#x Tidy the output into a data.frame
Tidied <- lapply(Models,
tidy)

#* Give each element in the Tidied list a name
Tidied <- setNames(Tidied, paste@("Boot", seq_along(Tidied)))

At this point, we can take two approaches to inserting the names into the data.frame.

#x Insert the element name into the summary with “lapply"
#x Requires passing the names attribute to “lapply’ and referencing ‘Tidied ™ within
#x the applied function.
Described_lapply <-
lapply(names(Tidied),
function(nm) cbind(nm, Tidied[[nm]]))

Combined_lapply <- do.call("rbind", Described_lapply)

#x Insert the element name into the summary with “mapply"
#*x Allows us to pass the names and the elements as separate arguments.
Described_mapply <-
mapply (
function(nm, dframe) cbind(nm, dframe),
names(Tidied),
Tidied,
SIMPLIFY = FALSE)

Combined_mapply <- do.call("rbind", Described_mapply)

If you're a fan of magrittr style pipes, you can accomplish the entire task in a single chain (though it may not be
prudent to do so if you need any of the intermediary objects, such as the model objects themselves):

library(magrittr)
library(broom)
Combined <- lapply(1:4,
function(i) mtcars[sample(1:nrow(mtcars),
size = nrow(mtcars),
replace = TRUE), 1) %>%
lapply(function(BD) 1lm( mpg ~ gsec + wt + factor(am), data = BD)) %>%
lapply(tidy) %>%
setNames (paste@("Boot", seq_along(.))) %>%
mapply(function(nm, dframe) cbind(nm, dframe),
nm = names(.),
dframe = .,
SIMPLIFY = FALSE) %>%
do.call("rbind", .)

Section 68.3: Bulk File Loading

for a large number of files which may need to be operated on in a similar process and with well structured file
names.
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firstly a vector of the file names to be accessed must be created, there are multiple options for this:

¢ Creating the vector manually with paste@()

files <- paste@("file_", 1:100, ".rds")

e Using list.files() with a regex search term for the file type, requires knowledge of regular expressions
(regex) if other files of same type are in the directory.

files <- list.files("./", pattern = "\\.rds$", full.names = TRUE)

where X is a vector of part of the files naming format used.
lapply will output each response as element of a list.
readRDS is specific to . rds files and will change depending on the application of the process.

my_file_list <- lapply(files, readRDS)

This is not necessarily faster than a for loop from testing but allows all files to be an element of a list without
assigning them explicitly.

Finally, we often need to load multiple packages at once. This trick can do it quite easily by applying 1ibrary() to all
libraries that we wish to import:

lapply(c("jsonlite", "stringr", "igraph"),library, character.only=TRUE)

Section 68.4: Using user-defined functionals
User-defined functionals

Users can create their own functionals to varying degrees of complexity. The following examples are from
Functionals by Hadley Wickham:

randomise <- function(f) f(runif(1e3))

lapply2 <- function(x, f, ...) {
out <- vector("list", length(x))
for (i in seqg_along(x)) {
out[[i]] <- f(x[[i]l], ...)
}

out

In the first case, randomise accepts a single argument f, and calls it on a sample of Uniform random variables. To
demonstrate equivalence, we call set.seed below:

set.seed(123)
randomise(mean)
#[1] 0.4972778

set.seed(123)
mean(runif(1e3))
#[1] 0.4972778
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set.seed(123)
randomise(max)
#[1] 0.9994045

set.seed(123)
max(runif(1e3))
#[1] 0.9994045

The second example is a re-implementation of base: : 1lapply, which uses functionals to apply an operation (f) to
each elementin a list (x). The ... parameter allows the user to pass additional arguments to f, such as the na.rm
option in the mean function:

lapply(list(c(1, 3, 5), c(2, NA, 6)), mean)
[[1]]
[1] 3

[[2]]
[1] NA

HoH H B

lapply2(list(c(1, 3, 5), c(2, NA, 6)), mean)
[[1]]
[1] 3

[[2]]
[1] NA

H OB H B

lapply(list(c(1, 3, 5), c(2, NA, 6)), mean, na.rm = TRUE)
[[1]1]
[1] 3

[[2]]
[1] 4

H B H B

lapply2(list(c(1, 3, 5), c(2, NA, 6)), mean, na.rm = TRUE)
[[1]]
[1] 3

[[2]]
[1] 4

H oH H B
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Chapter 69: Text mining
Section 69.1: Scraping Data to build N-gram Word Clouds

The following example utilizes the tm text mining package to scrape and mine text data from the web to build word
clouds with symbolic shading and ordering.

require(RWeka)

require(tau)

require(tm)
require(tm.plugin.webmining)
require(wordcloud)

% Prepe @eeElle FiMER srereesrrsrreosssrmoresrosmorosssoreromsmooooooooo=
googlefinance <- WebCorpus(GoogleFinanceSource("NASDAQ:LFVN"))

S clira P G e OGNl e W S I R e Ll
lv.googlenews <- WebCorpus(GoogleNewsSource("LifeVantage"))

p.googlenews <- WebCorpus(GoogleNewsSource("Protandim"))

ts.googlenews <- WebCorpus(GoogleNewsSource("TrueScience"))

S clira P N M € S I e e e e e L L e C et
lv.nytimes <- WebCorpus(NYTimesSource(query = "LifeVantage", appid = nytimes_appid))
p.nytimes <- WebCorpus(NYTimesSource("Protandim", appid = nytimes_appid))
ts.nytimes <- WebCorpus(NYTimesSource("TrueScience", appid = nytimes_appid))

S Cliga IR € Ul e I S I e e e e
lv.reutersnews <- WebCorpus(ReutersNewsSource("LifeVantage"))

p.reutersnews <- WebCorpus(ReutersNewsSource("Protandim"))

ts.reutersnews <- WebCorpus(ReutersNewsSource("TrueScience"))

% Serepe Yaheel [Pt —sssssscsssossoossoossoosooosomosooossoossoossoonsos
lv.yahoofinance <- WebCorpus(YahooFinanceSource("LFVN"))

2 Serepe Veeol! ES sso-sssossosocsossosacssconssosaconooosoosacanconsocss
lv.yahoonews <- WebCorpus(YahooNewsSource("LifeVantage"))

p.yahoonews <- WebCorpus(YahooNewsSource("Protandim"))

ts.yahoonews <- WebCorpus(YahooNewsSource("TrueScience"))

@ Serepe Yaheel IMPIEY ssccsssossoossoossooosooossosssososossoossonasonnsos
lv.yahooinplay <- WebCorpus(YahooInplaySource("LifeVantage"))

# Text Mining the Results -------------commm -

corpus <- c(googlefinance, 1lv.googlenews, p.googlenews, ts.googlenews, lv.yahoofinance,
lv.yahoonews, p.yahoonews,

ts.yahoonews, 1lv.yahooinplay) #lv.nytimes, p.nytimes, ts.nytimes,lv.reutersnews, p.reutersnews,
ts.reutersnews,

inspect(corpus)
wordlist <- c¢("1lfvn", "lifevantage", "protandim", "truescience", "company", "fiscal", "nasdaq")

ds@.1g <- tm_map(corpus, content_transformer(tolower))

ds1.1g <- tm_map(ds@.1g, content_transformer(removeWords), wordlist)

ds1.1g <- tm_map(ds1.1g, content_transformer(removeWords), stopwords("english"))
ds2.1g <- tm_map(ds1.1g, stripWhitespace)

ds3.1g <- tm_map(ds2.1g, removePunctuation)

ds4.1g <- tm_map(ds3.1g, stemDocument)

tdm.1g <- TermDocumentMatrix(ds4.1g)
dtm.1g <- DocumentTermMatrix(ds4.1g)
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findFreqTerms(tdm.1g, 40)
findFreqTerms(tdm.1g, 60)
findFreqTerms(tdm.1g, 80)
findFreqTerms(tdm.1g, 100)

findAssocs(dtm.1g, "skin", .75)
findAssocs(dtm.1g, "scienc", .5)
findAssocs(dtm.1g, "product", .75)

tdm89.1g <- removeSparseTerms(tdm.1g, 0.89)
tdm9.1g <- removeSparseTerms(tdm.1g, 0.9)
tdm91.1g <- removeSparseTerms(tdm.1g, 0.91)
tdm92.1g <- removeSparseTerms(tdm.1g, 0.92)

tdm2.1g <- tdm92.1g

# Creates a Boolean matrix (counts # docs w/terms, not raw # terms)
tdm3.1g <- inspect(tdm2.1g)
tdm3.1g[tdm3.1g>=1] <- 1

# Transform into a term-term adjacency matrix
termMatrix.lgram <- tdm3.1g %*% t(tdm3.1g)

# inspect terms numbered 5 to 10
termMatrix.l1gram[5:10,5:10]
termMatrix.l1gram[1:10,1:10]

# Create a WordCloud to Visualize the Text Data ---------------------"-—-—-——-
notsparse <- tdm2.1g

m = as.matrix(notsparse)

v = sort(rowSums(m),decreasing=TRUE)

d = data.frame(word = names(v), freq=v)

# Create the word cloud

pal = brewer.pal(9, "BuPu")

wordcloud(words = dSword,
freq = dSfreq,
scale = c¢(3,.8),
random.order = F,
colors = pal)
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Note the use of random.order and a sequential pallet from RColorBrewer, which allows the programmer to capture
more information in the cloud by assigning meaning to the order and coloring of terms.

Above is the 1-gram case.

We can make a major leap to n-gram word clouds and in doing so we'll see how to make almost any text-mining
analysis flexible enough to handle n-grams by transforming our TDM.

The initial difficulty you run into with n-grams in R is that tm, the most popular package for text mining, does not
inherently support tokenization of bi-grams or n-grams. Tokenization is the process of representing a word, part of
a word, or group of words (or symbols) as a single data element called a token.

Fortunately, we have some hacks which allow us to continue using tm with an upgraded tokenizer. There's more
than one way to achieve this. We can write our own simple tokenizer using the textcnt() function from tau:

tokenize_ngrams <- function(x, n=3)
return(rownames(as.data.frame(unclass(textcnt(x,method="string",n=n)))))

or we can invoke RWeka's tokenizer within tm:

# BigramTokenize
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))

From this point you can proceed much as in the 1-gram case:

# Create an n-gram Word Cloud --------------oooommmm o
tdm.ng <- TermDocumentMatrix(ds5.1g, control = list(tokenize = BigramTokenizer))
dtm.ng <- DocumentTermMatrix(ds5.1g, control = list(tokenize BigramTokenizer))

# Try removing sparse terms at a few different levels
tdm89.ng <- removeSparseTerms(tdm.ng, 0.89)
tdm9.ng <- removeSparseTerms(tdm.ng, 0.9)
tdm91.ng <- removeSparseTerms(tdm.ng, 0.91)
tdm92.ng <- removeSparseTerms(tdm.ng, 0.92)
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notsparse <- tdm91l.ng

m = as.matrix(notsparse)
v = sort(rowSums(m),decreasing=TRUE)
d = data.frame(word = names(v), freq=v)

# Create the word cloud
pal = brewer.pal(9, "BuPu")
wordcloud(words = d$word,
freq = d$freq,

scale = c(3,.8),
random.order = F,

colors = pal)

care regimen

end june

salt lake
full year

june 30

lake citi
skin care
busi opportun

The example above is reproduced with permission from Hack-R's data science blog. Additional commentary may be

found in the original article.
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Chapter 70: ANOVA

Section 70.1: Basic usage of aov()

Analysis of Variance (aov) is used to determine if the means of two or more groups differ significantly from each
other. Responses are assumed to be independent of each other, Normally distributed (within each group), and the
within-group variances are assumed equal.

In order to complete the analysis data must be in long format (see reshaping data topic). aov() is a wrapper around
the 1m() function, using Wilkinson-Rogers formula notation y~f where y is the response (independent) variable and
f is a factor (categorical) variable representing group membership. If f is numeric rather than a factor variable, aov ()

will report the results of a linear regression in ANOVA format, which may surprise inexperienced users.

The aov() function uses Type | (sequential) Sum of Squares. This type of Sum of Squares tests all of the (main and
interaction) effects sequentially. The result is that the first effect tested is also assigned shared variance between it
and other effects in the model. For the results from such a model to be reliable, data should be balanced (all groups
are of the same size).

When the assumptions for Type | Sum of Squares do not hold, Type Il or Type Ill Sum of Squares may be applicable.
Type Il Sum of Squares test each main effect after every other main effect, and thus controls for any overlapping
variance. However, Type Il Sum of Squares assumes no interaction between the main effects.

Lastly, Type lll Sum of Squares tests each main effect after every other main effect and every interaction. This
makes Type Ill Sum of Squares a necessity when an interaction is present.

Type Il and Type Il Sums of Squares are implemented in the Anova() function.
Using the mtcars data set as an example.

mtCarsAnovaModel <- aov(wt ~ factor(cyl), data=mtcars)

To view summary of ANOVA model:

summary (mtCarsAnovaModel)

One can also extract the coefficients of the underlying 1m() model:

coefficients(mtCarsAnovaModel)

Section 70.2: Basic usage of Anova()

When dealing with an unbalanced design and/or non-orthogonal contrasts, Type Il or Type Il Sum of Squares are
necessary. The Anova() function from the car package implements these. Type Il Sum of Squares assumes no
interaction between main effects. If interactions are assumed, Type Il Sum of Squares is appropriate.

The Anova() function wraps around the 1m() function.

Using the mtcars data sets as an example, demonstrating the difference between Type Il and Type Ill when an
interaction is tested.

> Anova(lm(wt ~ factor(cyl)*factor(am), data=mtcars), type = 2)
Anova Table (Type II tests)
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Response: wt
Sum Sq Df F value Pr(>F)

factor(cyl) 7.2278 2 11.5266 0.0002606 #**=*
factor(am) 3.2845 1 10.4758 0.0032895 **
factor(cyl) :factor(am) 0.0668 2 ©.1065 0.8993714
Residuals 8.1517 26

‘

Signif. codes: 0 ‘***' 0.001 ‘**’' 0.01 ‘%' 0.5 ‘.’ 0.1 ' ' 1

> Anova(lm(wt ~ factor(cyl)=*factor(am), data=mtcars), type = 3)
Anova Table (Type III tests)

Response: wt
Sum Sq Df F value Pr(>F)
1

(Intercept) 25.8427 82.4254 1.524e-09 #***
factor(cyl) 4.0124 2 6.3988 0.005498 *=*
factor(am) 1.7389 1 5.5463 0.026346 *
factor(cyl) :factor(am) ©0.0668 2 ©.1065 ©.899371

Residuals 8.1517 26

Signif. codes: 0 ‘***' 0.001 ‘**' 0.01 ‘%' ©.65 ‘.’ 0.1 ' ' 1
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Chapter 71: Raster and Image Analysis

See also I/0 for Raster Images

Section 71.1: Calculating GLCM Texture

Gray Level Co-Occurrence Matrix (Haralick et al. 1973) texture is a powerful image feature for image analysis. The
glcm package provides a easy-to-use function to calculate such texutral features for RasterLayer objects in R.

library(glcm)
library(raster)

r <- raster("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg")

plot(r)
o
-
o
W
230
o
0 200
[}
% 150
g _ 100
a0
& 0
o
D —
0 20 40 60 80 100
Calculating GLCM textures in one direction
rglcm <- glcm(r,
window = ¢(9,9),
shift = ¢(1,1),
statistics = c("mean", "variance", "homogeneity", "contrast",
"dissimilarity", "entropy", "second_moment")

)

plot(rglcm)
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Calculation rotation-invariant texture features

The textural features can also be calculated in all 4 directions (0°, 45°, 90° and 135°) and then combined to one

rotation-invariant texture. The key for this is the shift parameter:

rglem1 <- glem(r,

window = ¢(9,9),
shift=1ist(c(0,1), c(1,1), c(1,08), c(1,-1)),

statistics = c("mean",

plot(rglcml)

"dissimilarity"”,

"variance", "homogeneity",

glecm_homogeneity

glem_entropy

"contrast",

"entropy", "second_moment")
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Section 71.2: Mathematical Morphologies
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The package mmand provides functions for the calculation of Mathematical Morphologies for n-dimensional arrays.

With a little workaround, these can also be calculated for raster images.

library(raster)
library(mmand)

r <- raster("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg")

plot(r)
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At first, a kernel (moving window) has to be set with a size (e.g. 9x9) and a shape type (e.g. disc, box or diamond)

sk <- shapeKernel(c(9,9), type="disc")

Afterwards, the raster layer has to be converted into an array wich is used as input for the erode() function.

rArr <- as.array(r, transpose = TRUE)
rErode <- erode(rArr, sk)

rErode <- setValues(r, as.vector(aperm(rErode)))

Besides erode(), also the morphological functions dilate(), opening() and closing() can be applied like this.

plot(rErode)
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Chapter 72: Survival analysis

Section 72.1: Random Forest Survival Analysis with
randomForestSRC

Just as the random forest algorithm may be applied to regression and classification tasks, it can also be extended to
survival analysis.

In the example below a survival model is fit and used for prediction, scoring, and performance analysis using the
package randomForestSRC from CRAN.

require(randomForestSRC)

set.seed(130948) #0ther seeds give similar comparative results
x1 <- runif(1000)

y <- rnorm(1000, mean = x1, sd = .3)
data <- data.frame(x1 = x1, y =vy)
head(data)
x1 y

1 0.9604353 1.3549648

2 0.3771234 0.2961592

3 0.7844242 0.6942191

4 0.9860443 1.5348900

5 0.1942237 0.4629535

6 0.7442532 -0.0672639

(modRFSRC <- rfsrc(y ~ x1, data = data, ntree=500, nodesize = 5))

Sample size: 1000
Number of trees: 500
Minimum terminal node size: 5
Average no. of terminal nodes: 208.258
No. of variables tried at each split: 1
Total no. of variables: 1
Analysis: RF-R
Family: regr
Splitting rule: mse
% variance explained: 32.08
Error rate: 0.11

xTnew <- runif(10000)
ynew <- rnorm(10000, mean = x1new, sd = .3)
newdata <- data.frame(x1 = x1new, y = ynew)

survival.results <- predict(modRFSRC, newdata = newdata)
survival.results

Sample size of test (predict) data: 10000
Number of grow trees: 500
Average no. of grow terminal nodes: 208.258
Total no. of grow variables: 1

Analysis: RF-R

Family: regr

% variance explained: 34.97

Test set error rate: 0.11
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Section 72.2: Introduction - basic fitting and plotting of
parametric survival models with the survival package

survival is the most commonly used package for survival analysis in R. Using the built-in lung dataset we can get
started with Survival Analysis by fitting a regression model with the survreg() function, creating a curve with
survfit(), and plotting predicted survival curves by calling the predict method for this package with new data.

In the example below we plot 2 predicted curves and vary sex between the 2 sets of new data, to visualize its effect:

require(survival)
s <- with(lung,Surv(time, status))

sWei <- survreg(s ~ as.factor(sex)+age+ph.ecog+wt.loss+ph.karno,dist="weibull', data=1lung)

fitkKM <- survfit(s ~ sex,data=1lung)

plot(fitKM)
lines(predict(sWei, newdata = list(sex = 1,
age = 1,
ph.ecog =1,
ph.karno = 90,
wt.loss = 2),
type = "quantile",
p = seq(.01, .99, by = .01)),
seq(.99, .01, by =-.01),
col = "blue")
lines(predict(sWei, newdata = list(sex = 2,
age = 1,
ph.ecog =1,
ph.karno = 90,

wt.loss = 2),
type = "quantile”

p = seq(.01, .99, by = .01)),
seq(.99, .01, by =-.01),
col = "red")
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Section 72.3: Kaplan Meier estimates of survival curves and
risk set tables with survminer

Base plot

install.packages('survminer")
source( "https://bioconductor.org/biocLite.R")
biocLite("RTCGA.clinical") # data for examples
library(RTCGA.clinical)
survivalTCGA(BRCA.clinical, OV.clinical,

extract.cols = "admin.disease_code") -> BRCAOV.survInfo
library(survival)
fit <- survfit(Surv(times, patient.vital_status) ~ admin.disease_code,

data = BRCAOV.survInfo)

library(survminer)
ggsurvplot(fit, risk.table = TRUE)
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Strata = admin.disease code=brca == admin.disease_code=ov
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More advanced
ggsurvplot(
fit, # survfit object with calculated statistics.
risk.table = TRUE, # show risk table.
pval = TRUE, # show p-value of log-rank test.
conf.int = TRUE, # show confidence intervals for
# point estimaes of survival curves.
xlim = c(0,26000), # present narrower X axis, but not affect
# survival estimates.
break.time.by = 500, # break X axis in time intervals by 560.
ggtheme = theme_RTCGA(), # customize plot and risk table with a theme.
risk.table.y.text.col = T, # colour risk table text annotations.
risk.table.y.text = FALSE # show bars instead of names in text annotations
# in legend of risk table
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Chapter 73: Fault-tolerant/resilient code

Parameter Details

expr

In case the "try part" was completed successfully tryCatch will return the last evaluated
expression. Hence, the actual value being returned in case everything went well and there is no
condition (i.e. a warning or an error) is the return value of readLines. Note that you don't need to
explicilty state the return value via return as code in the "try part" is not wrapped insided a
function environment (unlike that for the condition handlers for warnings and error below)

Provide/define a handler function for all the conditions that you want to handle explicitly. AFAIU,
you can provide handlers for any type of conditions (not just warnings and errors, but also custom

warning/error/etc conditions; see simpleCondition and friends for that) as long as the name of the respective

finally

handler function matches the class of the respective condition (see the Details part of the
doc for tryCatch).

Here goes everything that should be executed at the very end, regardless if the expression in
the "try part" succeeded or if there was any condition. If you want more than one expression to
be executed, then you need to wrap them in curly brackets, otherwise you could just have
written finally = <expression> (i.e. the same logic as for "try part".

Section 73.1: Using tryCatch()

We're defining a robust version of a function that reads the HTML code from a given URL. Robust in the sense that
we want it to handle situations where something either goes wrong (error) or not quite the way we planned it to
(warning). The umbrella term for errors and warnings is condition

Function definition using tryCatch

readUrl <- function(url) {
out <- tryCatch(

HAH SRR
# Try part: define the expression(s) you want to "try" #
BHHHHBHBHRH AR HBHBH AR HBHHH AR HBHHH AR HBHHE AR HBHHHH R H B R AR

# Just to highlight:

# If you want to use more than one R expression in the "try part"”
# then you'll have to use curly brackets.

# Otherwise, just write the single expression you want to try and

message( 'This is the 'try' part")
readLines(con = url, warn = FALSE)

}

G e g
# Condition handler part: define how you want conditions to be handled #
e e e e e e

# Handler when a warning occurs:
warning = function(cond) {

message(paste("Reading the URL caused a warning:", url))
message( 'Here's the original warning message:")
message(cond)

# Choose a return value when such a type of condition occurs
return(NULL)
}

# Handler when an error occurs:
error = function(cond) {
message(paste("This seems to be an invalid URL:", url))
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message( 'Here's the original error message:")
message(cond)

# Choose a return value when such a type of condition occurs
return(NA)
}

HAH R AR
# Final part: define what should happen AFTER #
# everything has been tried and/or handled #
HAH A

finally = {
message(paste("Processed URL:", url))
message( 'Some message at the end\n")
}
)
return(out)
}
Testing things out

Let's define a vector of URLs where one element isn't a valid URL

urls <- ¢

"http://stat.ethz.ch/R-manual/R-devel/library/base/html/connections.html",
"http://en.wikipedia.org/wiki/Xz",
"I'm no URL"

And pass this as input to the function we defined above

HoH FH OB H OB H B H R R R

H*

<- lapply(urls, readurl)
Processed URL: http://stat.ethz.ch/R-manual/R-devel/library/base/html/connections.html
Some message at the end

Processed URL: http://en.wikipedia.org/wiki/Xz
Some message at the end

URL does not seem to exist: I'm no URL
Here's the original error message:
cannot open the connection

Processed URL: I'm no URL

Some message at the end

Warning message:
In file(con, "r") : cannot open file 'I'm no URL': No such file or directory

Investigating the output

length(y)

#

[1] 3

head(y[[1]])

# [1] "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\">"

# [2] "<html><head><title>R: Functions to Manipulate Connections</title>"

# [3] "<meta http-equiv=\"Content-Type\" content=\"text/html; charset=utf-8\">"
# [4] "<link rel=\"stylesheet\" type=\"text/css\" href=\"R.css\">"

# [5] "</head><body>"

# [6] ""

y[[3]]
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# [1] NA
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Chapter 74: Reproducible R

With 'Reproducibility' we mean that someone else (perhaps you in the future) can repeat the steps you performed
and get the same result. See the Reproducible Research Task View.

Section 74.1: Data reproducibility
dput() and dget()

The easiest way to share a (preferable small) data frame is to use a basic function dput (). It will export an R object
in a plain text form.

Note: Before making the example data below, make sure you're in an empty folder you can write to. Run getwd() and
read ?setwd if you need to change folders.

dput(mtcars, file = 'df.txt")
Then, anyone can load the precise R object to their GlobalEnvironment using the dget () function.
df <- dget('df.txt')

For larger R objects, there are a number of ways of saving them reproducibly. See Input and output .

Section 74.2: Package reproducibility

Package reproducibility is a very common issue in reproducing some R code. When various packages get updated,
some interconnections between them may break. The ideal solution for the problem is to reproduce the image of
the R code writer's machine on your computer at the date when the code was written. And here comes checkpoint
package.

Starting from 2014-09-17, the authors of the package make daily copies of the whole CRAN package repository to
their own mirror repository -- Microsoft R Archived Network. So, to avoid package reproduciblity issues when
creating a reproducible R project, all you need is to:

1. Make sure that all your packages (and R version) are up-to-date.
2. Include checkpoint: :checkpoint('YYYY-MM-DD') line in your code.

checkpoint will create a directory .checkpoint in your R_home directory ("~/"). To this technical directory it will
install all the packages, that are used in your project. That means, checkpoint looks through all the .R files in your
project directory to pick up all the 1library() or require() calls and install all the required packages in the form
they existed at CRAN on the specified date.

PRO You are freed from the package reproducibility issue.
CONTRA For each specified date you have to download and install all the packages that are used in a certain
project that you aim to reproduce. That may take quite a while.
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Chapter 75: Fourier Series and
Transformations

Section 75.1: Fourier Series

Joseph Fourier showed that any periodic wave can be represented by a sum of simple sine waves. This sum is called
the Fourier Series. The Fourier Series only holds while the system is linear. If there is, eg, some overflow effect (a
threshold where the output remains the same no matter how much input is given), a non-linear effect enters the
picture, breaking the sinusoidal wave and the superposition principle.

# Sine waves

Xs <- seq(-2+*pi,2*pi,pi/100)

wave.l <- sin(3#*xs)

wave.2 <- sin(10%*xs)

par(mfrow = c(1, 2))
plot(xs,wave.1,type="1",ylim=c(-1,1)); abline(h=0,1ty=3)
plot(xs,wave.2, type="1",ylim=c(-1,1)); abline(h=0,1

# Complex Wave
wave.3 <- 0.5 * wave.1l + 0.25 * wave.2
plot(xs,wave.3,type="1"); title("Eg complex wave"); abline(h=0,1ty=3)

GoalKicker.com - R Notes for Professionals 294


http://goalkicker.com/

Eg complex wave

L
i
o
o o
o e T () T
=z
o)
C!]. —
I I I I | I I
6 | 2 0 2 4 6
X5

wave.4 <- wave.3
wave.4[wave.3>0.5] <- 0.5
plot(xs,wave.4, type="1",ylim=c(-1.25,1.25))

title("overflowed, non-linear complex wave")
abline(h=0, 1ty=3)
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Also, the Fourier Series only holds if the waves are periodic, ie, they have a repeating pattern (non periodic waves
are dealt by the Fourier Transform, see below). A periodic wave has a frequency f and a wavelength ? (a wavelength
is the distance in the medium between the beginning and end of a cycle, ?=v/f0, where v is the wave velocity) that
are defined by the repeating pattern. A non-periodic wave does not have a frequency or wavelength.

Some concepts:

¢ The fundamental period, T, is the period of all the samples taken, the time between the first sample and the
last

e The sampling rate, sr, is the number of samples taken over a time period (aka acquisition frequency). For
simplicity we will make the time interval between samples equal. This time interval is called the sample
interval, si, which is the fundamental period time divided by the number of samples N. So, si=TN

¢ The fundamental frequency, fO, which is 1T. The fundamental frequency is the frequency of the repeating
pattern or how long the wavelength is. In the previous waves, the fundamental frequency was 12?. The
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frequencies of the wave components must be integer multiples of the fundamental frequency. f0 is called the
first harmonic, the second harmonic is 2?f0, the third is 3?f0, etc.

repeat.xs <- seq(-2*pi,0,pi/100)
wave.3.repeat <- 0.5*sin(3*repeat.xs) + 0.25*sin(10*repeat.xs)
plot(xs,wave.3, type="1")

title("Repeating pattern")

points(repeat.xs,wave.3.repeat, type="1",col="red");
abline(h=0,v=c(-2*pi,0), 1ty=3)

Repeating pattern

05

0.0

wave.3

-0.5

XS
Here's a R function for plotting trajectories given a fourier series:

plot.fourier <- function(fourier.series, .0, ts) {
w <- 2xpi*f.0 trajectory <- sapply(ts, function(t) fourier.series(t,w))
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plot(ts, trajectory, type="1", xlab="time", ylab="f(t)");
abline(h=0,1ty=3)}
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Chapter 76: .Rprofile

Section 76.1: .Rprofile - the first chunk of code executed

.Rprofile is a file containing R code that is executed when you launch R from the directory containing the
.Rprofile file. The similarly named Rprofile.site, located in R's home directory, is executed by default every time
you load R from any directory. Rprofile.site and to a greater extend .Rprofile can be used to initialize an R
session with personal preferences and various utility functions that you have defined.

Important note: if you use RStudio, you can have a separate .Rprofile in every RStudio project directory.

Here are some examples of code that you might include in an .Rprofile file.

Setting your R home directory

# set R_home
Sys.setenv(R_USER="c:/R_home") # just an example directory
# but don't confuse this with the $R_HOME environment variable.

Setting page size options

options(papersize="a4")
options(editor="notepad")
options(pager="internal")

set the default help type
options(help_type="html")
set a site library
.Library.site <- file.path(chartr("\\", "/", R.home()), "site-library")
Set a CRAN mirror

local({r <- getOption("repos")
r["CRAN"] <- "http://my.local.cran"
options(repos=r)})

Setting the location of your library

This will allow you to not have to install all the packages again with each R version update.

# library location
.libPaths("c:/R_home/Rpackages/win")

Custom shortcuts or functions

Sometimes it is useful to have a shortcut for a long R expression. A common example of this setting an active
binding to access the last top-level expression result without having to type out .Last.value:

makeActiveBinding(".", function(){.Last.value}, .GlobalEnv)

Because .Rprofile is just an R file, it can contain any arbitrary R code.
Pre-loading the most useful packages

This is bad practice and should generally be avoided because it separates package loading code from the scripts
where those packages are actually used.

See Also
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See help(Startup) for all the different startup scripts, and further aspects. In particular, two system-wide Profile
files can be loaded as well. The first, Rprofile, may contain global settings, the other file Profile.site may contain
local choices the system administrator can make for all users. Both files are found in the ${RHOME} /etc directory of
the R installation. This directory also contains global files Renviron and Renviron.site which both can be
completemented with a local file ~/ .Renviron in the user's home directory.

Section 76.2: .Rprofile example

Startup

# Load library setwidth on start - to set the width automatically.
.First <- function() {

library(setwidth)

# If 256 color terminal - use library colorout.

if (Sys.getenv("TERM") %in% c("xterm-256color", "screen-256color")) {

library("colorout")

}

}

Options
# Select default CRAN mirror for package installation.
options(repos=c(CRAN="https://cran.gis-lab.info/"))

# Print maximum 1000 elements.
options(max.print=1000)

# No scientific notation.
options(scipen=10)

# No graphics in menus.
options(menu.graphics=FALSE)

# Auto-completion for package names.
utils::rc.settings(ipck=TRUE)

Custom Functions

# Invisible environment to mask defined functions
.env = new.env()

# Quit R without asking to save.
.env8q <- function (save="no", ...) {
quit(save=save, ...)

}

# Attach the environment to enable functions.
attach(.env, warn.conflicts=FALSE)
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Chapter 77: dplyr

Section 77.1: dplyr's single table verbs

dplyr introduces a grammar of data manipulation in R. It provides a consistent interface to work with data no
matter where it is stored: data.frame, data.table, or a database. The key pieces of dplyr are written using Rcpp,
which makes it very fast for working with in-memory data.

dplyr's philosophy is to have small functions that do one thing well. The five simple functions (filter, arrange,
SELECT, mutate, and summarise) can be used to reveal new ways to describe data. When combined with group_by,
these functions can be used to calculate group wise summary statistics.

Syntax commonalities
All these functions have a similar syntax:

¢ The first argument to all these functions is always a data frame

¢ Columns can be referred directly using bare variable names (i.e., without using $)

¢ These functions do not modify the original data itself, i.e., they don't have side effects. Hence, the results
should always be saved to an object.

We will use the built-in mtcars dataset to explore dplyr's single table verbs. Before converting the type of mtcars to
tbl_df (since it makes printing cleaner), we add the rownames of the dataset as a column using rownames_to_column
function from the tibble package.

library(dplyr) # This documentation was written using version 0.5.0
mtcars_tbl <- as_data_frame(tibble::rownames_to_column(mtcars, "cars"))

# examine the structure of data
head(mtcars_tbl)

# A tibble: 6 x 12

# cars mpg cyl disp hp drat wt qgsec Vs am gear carb
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#2 Mazda RX4 Wag 21.0 6 160 116 3.90 2.875 17.02 (9] 1 4 4
#3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#6 Valiant 18.1 6 225 1805 2.76 3.460 20.22 1 0 3 1
filter

filter helps subset rows that match certain criteria. The first argument is the name of the data.frame and the
second (and subsequent) arguments are the criteria that filter the data (these criteria should evaluate to either TRUE
or FALSE)

Subset all cars that have 4 cylinders - cyl:

filter(mtcars_tbl, cyl == 4)

# A tibble: 11 x 12

# cars  mpg cyl disp hp drat wt gsec Vs am gear carb
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#2 Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
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#3 Merc 230 22.8
#4 Fiat 128 32.4
#5 Honda Civic 30.4
# ... with 6 more rows

4
4
4

140.

8

78.7
V8.7

95 3.92 3.150 22.90
66 4.08 2.200 19.47
52 4.93 1.615 18.52

N

—_

We can pass multiple criteria separated by a comma. To subset the cars which have either 4 or 6 cylinders - cyl and

have 5 gears - gear:

filter(mtcars_tbl, cyl == 4 | cyl == 6, gear == 5)

# A tibble: 3 x 12

# cars mpg cyl disp hp drat wt gsec Vs am gear carb
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.7 0 1 5 2
#2 Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
#3 Ferrari Dino 19.7 6 145.90 175 3.62 2.776 15.5 0 1 5 6

filter selects rows based on criteria, to select rows by position, use slice. slice takes only 2 arguments: the first

one is a data.frame and the second is integer row values.

To select rows 6 through 9:

slice(mtcars_tbl, 6:9)

# A tibble: 4 x 12

# cars mpg cyl disp hp drat
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Valiant 18.1 6 225.0 105 2.76
#2 Duster 360 14.3 8 360.0 245 3.21
#3 Merc 240D 24.4 4 146.7 62 3.69
#4  Merc 230 22.8 4 140.8 95 3.92

Or:

slice(mtcars_tbl, -c(1:5, 10:n()))

car

b

1

wt gsec Vs am gear
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
3.46 20.22 1 0 3
3.57 15.84 0 0 3
3.19 20.00 1 0 4
3.15 22.90 1 0 4

This results in the same output as slice(mtcars_tbl, 6:9)

n() represents the number of observations in the current group

arrange

arrange is used to sort the data by a specified variable(s). Just like the previous verb (and all other functions in

4
2
2

dplyr), the first argument is a data. frame, and consequent arguments are used to sort the data. If more than one

variable is passed, the data is first sorted by the first variable, and then by the second variable, and so on..

To order the data by horsepower - hp

arrange(mtcars_tbl, hp)

# A tibble: 32 x 12

# cars
# <chr>
#1 Honda Civic
#2 Merc 240D
#3 Toyota Corolla
#4 Fiat 128
#5 Fiat X1-9

m

Pg

cyl

<dbl> <dbl>
30.4
24 .4

w
w

w
N
w b~ O

N
~

4
4
4
4
4

disp hp
<dbl> <dbl>
75.7 52
146.7 62
71.1 65
78.7 66
79.0 66

drat
<dbl>
4.93
3.69
4.22
4.08
4.08

wt
<dbl>
1.615
3.190
1.835
2.200
1.935

gsec
<dbl>
18.52
20.00
19.90
19.47
18.90

VS

am

<dbl> <dbl>

1

_ A A

R S N O e o JE §

gear

carb

<dbl> <dbl>

4

R

_ A a NN
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#6

# ...

To arrange the data by miles per gallon - mpg in descending order, followed by number of cylinders - cy1.:

Porsche 914-2 26.0

with 26 more rows

4 120

.3

arrange(mtcars_tbl, desc(mpg), cyl)

# A tibble: 32 x 12

# cars mpg
# <chr> <dbl>
#1 Toyota Corolla 33.9
#2 Fiat 128 32.4
#3 Honda Civic 30.4
#4 Lotus Europa 30.4
#5 Fiat X1-9 27.3
#6 Porsche 914-2 26.0
# ... with 26 more rows
select

SELECT is used to select only a subset of variables

SELECT (mtcars_tbl

<d

cyl di
bl> <db

4
4
4 75
4
4
4

71.
78.

95.
79.
120.

sp
1>

1
7
.7
1
0
3

<d

mpg. disp wt (gsec

# A tibble: 32 x 5

# mpg disp wt qgsec
# dbl- -dbl- -dbl- -dbl
#1 21.0 160.0 2.620 16.46
#2 21.0 160.0 2.875 17.02
#3 22.8 108.0 2.320 18.61
#4 21.4 258.0 3.215 19.44
#5 18.7 360.0 3.440 17.02
#6 18.1 225.0 3.460 20.22
# WITH 26 more ROWS

Vs
dbl

S U S S S, » Bl e v}

91 4.43 2.140 16.70

hp d
bl> <d
65 4
66
52
113
66
91

A DA OWHN

VS

rat
bl>
.22
.08
.93
77
.08
.43

<d

1
2
1
1.
1
2

wt
bl>

.835
.200
.615

513

.935
.140

gsec
<dbl>

19.

19

18.
16.
18.
.70

16

90

.47

52
90
90

0

VS

<dbl>

® = = A A

am

gear

carb

<dbl> <dbl> <dbl>

1

_

4

a b~ oo b~ b

1
1
2
2
1
2

. To select only mpg, disp, wt, gsec, and vs from mtcars_tb1:

: notation can be used to select consecutive columns. To select columns from cars through disp and vs through

carb:

SELECT (mtcars_tbl cars:disp, vs:c
# A tibble: 32 x 8

# cars mpg cyl
# chr- -dbl- -dbl
#1 Mazda RX4 21.90 6
#2 Mazda RX4 Wag 21.0 6
#3 Datsun 710 22.8 4
#4 Hornet 4 Drive 21.4 6
#5 Hornet Sportabout 18.7 8
#6 Valiant 18.1 6
# WITH 26 more ROWS

Oor SELECT (mtcars_tbl hp:gsec

arb

di
db

160.
160.
108.
258.
360.
225.

sp
1

OO OO

Vs
dbl

(SR JE G Sy, » Mo v )

am gear

dbl

OO ® 2 A A

dbl

W wWwwhr~hhbh>b

carb
dbl

=2 N2 a2 NN

For datasets that contain several columns, it can be tedious to select several columns by name. To make life easier,

there are a number of helper functions (such as starts_with(), ends_with(), contains(), matches(),

num_range( ), one_of (), and everything()) that can be used in SELECT. To learn more about how to use them, see
?select_helpers and ?select

Note: While referring to columns directly in SELECT

, We use bare column names, but quotes should be used while
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referring to columns in helper functions.

To rename columns while selecting:

SELECT (mtcars_tbl

# A tibble: 32 x 2
cylinders displacement

#
#
#1
#2
#3
#4
#5
#6
#

dbl

o o OO

6
WITH 26 more RO

dbl
160.
160.
108.
258.
360.
225.
WS

cylinders

OO OO0

cyl displacement

As expected, this drops all other variables.

disp

To rename columns without dropping other variables, use rename;

disp)

hp
<dbl>
110
110
93
110
175
105

rename(mtcars_tbl, cylinders = cyl, displacement =
# A tibble: 32 x 12

# cars mpg cylinders displacement
# <chr> <dbl> <dbl> <dbl>
#1 Mazda RX4 21.0 6 160.0
#2 Mazda RX4 Wag 21.0 6 160.0
#3 Datsun 710 22.8 4 108.0
#4 Hornet 4 Drive 21.4 6 258.0
#5 Hornet Sportabout 18.7 8 360.0
#6 Valiant 18.1 6 225.0
# ... with 26 more rows, and 3 more variables: am <dbl>,
mutate

drat wt
<dbl> <dbl>
3.90 2.620
3.90 2.875
3.85 2.320
3.08 3.215
3.15 3.440
2.76 3.460
gear <dbl>,

gsec
<dbl>

16

17.
18.
.44

19

17.
.22

20

.46

02
61

02

Vs
<dbl>

L U JINSEE S S, » Bl o v )

carb <dbl>

mutate can be used to add new columns to the data. Like all other functions in dplyr, mutate doesn't add the newly
created columns to the original data. Columns are added at the end of the data.frame.

mutate(mtcars_tbl, weight_ton

# A tibble: 32 x 14

#

cars

weight_pounds

#

#1

#2

#3

#4

#5

#6

<chr> <dbl> <dbl>

<dbl>
Mazda RX4

2620
Mazda RX4 Wag

2875
Datsun 710

2320
Hornet 4 Drive

3215
Hornet Sportabout

3440
Valiant

3460

m

21

21

22.

21

18.

18.

. with 26 more rows

Pg

.0

.0

8

.4

7

1

= wt/2, weight_pounds

cyl disp

6 160.0
6 160.0
4 108.0
6 258.0
8 360.0

6 225.0

hp

110
110

93
110
175

105

drat

<dbl> <dbl> <dbl>

3.90

3.90

3.85

3.08

.18

2.76

= weight_ton * 2000)

wt gsec

VS

am gear

<dbl> <dbl> <dbl> <dbl> <dbl>

2.620 16.46

2.875

2.320

3.215

3.440

3.460

17.02

18.61

19.44

17 .02

20.22

4

carb weight_ton

<dbl>

4

<dbl>

1.3100

1.4375

1.1600

1.6075

1.7200

1.7300
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Note the use of weight_ton while creating weight_pounds. Unlike base R, mutate allows us to refer to columns that
we just created to be used for a subsequent operation.

To retain only the newly created columns, use transmute instead of mutate:

transmute(mtcars_tbl, weight_ton = wt/2, weight_pounds = weight_ton * 2000)

# A tibble: 32 x 2
# weight_ton weight_pounds

# <dbl> <dbl>
#1 1.3100 2620
#2 1.4375 2875
#3 1.1600 2320
#4 1.6075 3215
#5 1.7200 3440
#6 1.7300 3460
# ... with 26 more rows
summarise

summarise calculates summary statistics of variables by collapsing multiple values to a single value. It can calculate
multiple statistics and we can name these summary columns in the same statement.

To calculate the mean and standard deviation of mpg and disp of all cars in the dataset:

summarise(mtcars_tbl, mean_mpg = mean(mpg), sd_mpg = sd(mpg),
mean_disp = mean(disp), sd_disp = sd(disp))

# A tibble: 1 x 4
# mean_mpg sd_mpg mean_disp sd_disp

# <dbl> <dbl> <dbl> <dbl>
#1 20.09062 6.026948 230.7219 123.9387
group_by

group_by can be used to perform group wise operations on data. When the verbs defined above are applied on this
grouped data, they are automatically applied to each group separately.

To find mean and sd of mpg by cyI:

by_cyl <- group_by(mtcars_tbl, cyl)
summarise(by_cyl, mean_mpg = mean(mpg), sd_mpg = sd(mpg))

# A tibble: 3 x 3
# cyl mean_mpg sd_mpg
# <dbl> <db1l> <dbl>

#1 4 26.66364 4.509828
#2 6 19.74286 1.453567
#3 8 15.10000 2.560048

Putting it all togther

We select columns from cars through hp and gear, order the rows by cyl and from highest to lowest mpg, group the
data by gear, and finally subset only those cars have mpg > 20 and hp > 75

selected SELECT (mtcars_tbl cars:hp gear
ordered arrange(selected cyl DESC(mpg
by_cyl group_by(ordered gear
FILTER(by_cyl mpg - 20, hp - 75
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SOURCE: LOCAL DATA frame [9 x 6
Groups: gear |3

# cars mpg cyl disp hp gear
# chr- -dbl- -dbl- -dbl- -dbl- -dbl
#1 Lotus Europa 30.4 4 95.1 113 )
#2 Porsche 914 2 26.0 4 120.3 91 5
#3 Datsun 710 22.8 4 108.0 93 4
#4 Merc 230 22.8 4 140.8 95 4
#5 Toyota Corona 21.5 4 120.1 97 3
# WITH 4 more ROWS

Maybe we are not interested the intermediate results, we can achieve the same result as above by wrapping the

function calls:

filter(
group_by(
arrange(
select(
mtcars_tbl, cars:hp
), cyl, desc(mpg)
), cyl
),mpg > 20, hp > 75

This can be a little difficult to read. So, dplyr operations can be chained using the pipe %>% operator. The above

code transalates to:

mtcars_tbl %>%
select(cars:hp) %>%
arrange(cyl, desc(mpg)) %>%
group_by(cyl) %>%
filter(mpg > 20, hp > 75)

summarise multiple columns
dplyr provides summarise_all() to apply functions to all (non-grouping) columns.

To find the number of distinct values for each column:

mtcars_tbl %>%
summarise_all(n_distinct)

# A tibble: 1 x 12

# cars mpg cyl disp hp drat wt qgsec Vs am gear carb
# <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#1 32 25 3 27 22 22 29 30 2 2 3 6

To find the number of distinct values for each column by cy1l:

mtcars_tbl %>%
group_by(cyl) %>%
summarise_all(n_distinct)

# A tibble: 3 x 12

# cyl cars mpg disp hp drat wt gsec Vs am gear carb
# <dbl> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#1 4 11 9 11 10 10 11 11 2 2 3 2
#2 6 7 6 5 4 5 6 7 2 2 3 3
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#3 8 14 12 11 9 11 18

14

Note that we just had to add the group_by statement and the rest of the code is the same. The output now consists

of three rows - one for each unique value of cyl.

To summarise specific multiple columns, use summarise_at

mtcars_tbl %>%
group_by(cyl) %>%
summarise_at(c("mpg", "disp", "hp"), mean)

# A tibble: 3 x 4

# cyl mpg disp hp
# <dbl> <db1l> <dbl> <dbl>
#1 4 26.66364 105.1364 82.63636
#2 6 19.74286 183.3143 122.28571
#3 8 15.10000 353.1000 209.21429

helper functions (?select_helpers) can be used in place of column names to select specific columns

To apply multiple functions, either pass the function names as a character vector:

mtcars_tbl %>%
group_by(cyl) %>%
summarise_at(c("mpg", "disp", "hp"),
c("mean", "sd"))

or wrap them inside funs:

mtcars_tbl %>%
group_by(cyl) %%
summarise_at(c("mpg", "disp", "hp"),
funs(mean, sd))

# A tibble: 3 x 7

# cyl mpg_mean disp_mean hp_mean mpg_sd disp_sd
# <dbl> <db1l> <dbl> <db1l> <dbl> <db1l>
#1 4 26.66364 105.1364 82.63636 4.509828 26.87159
#2 6 19.74286 183.3143 122.28571 1.453567 41.56246
#3 8 15.10000 353.1000 209.21429 2.560048 67.77132

hp_sd
<dbl>
20.93453
24.26049
50.97689

Column names are now be appended with function names to keep them distinct. In order to change this, pass the

name to be appended with the function:

mtcars_tbl %>%
group_by(cyl) %>%
summarise_at(c("mpg", "disp", "hp"),
c(Mean = "mean", SD = "sd"))

mtcars_tbl %>%
group_by(cyl) %>%
summarise_at(c("mpg", "disp", "hp"),
funs(Mean = mean, SD = sd))

# A tibble: 3 x 7

# cyl mpg_Mean disp_Mean hp_Mean mpg_SD disp_SD hp_SD
# <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 4 26.66364 105.1364 82.63636 4.509828 26.87159 20.93453
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#2 6 19.74286
#3 8 15.10000

183.3143 122.28571 1.453567 41.56246 24.26049
353.1000 209.21429 2.560048 67.77132 50.97689

To select columns conditionally, use summarise_if:

Take the mean of all columns that are numeric grouped by cyl:

mtcars_tbl %>%
group_by(cyl)

%>%

summarise_if(is.numeric, mean)

# A tibble: 3 x 11

# cyl mpg
# <dbl> <dbl>
#1 4 26.66364
#2 6 19.74286
#3 8 15.10000
# ... with 4 more

# carb <dbl>

disp hp drat wt gsec

<dbl> <dbl> <dbl> <dbl> <dbl>
105.1364 82.63636 4.070909 2.285727 19.13727
183.3143 122.28571 3.585714 3.117143 17.97714
353.1000 209.21429 3.229286 3.999214 16.77214
variables: vs <dbl>, am <dbl>, gear <dbl>,

However, some variables are discrete, and mean of these variables doesn't make sense.

To take the mean of only continuous variables by cy1:

mtcars_tbl %>%
group_by(cyl)

%>%

summarise_if(function(x) is.numeric(x) & n_distinct(x) > 6, mean)

# A tibble: 3 x 7

# cyl mpg
# <dbl> <dbl>
#1 4 26.66364
#2 6 19.74286
#3 8 15.10000

disp hp drat wt gsec
<dbl> <dbl> <dbl> <dbl> <dbl>
105.1364 82.63636 4.070909 2.285727 19.13727
183.3143 122.28571 3.585714 3.117143 17.97714
353.1000 209.21429 3.229286 3.999214 16.77214

Section 77.2: Aggregating with %>% (pipe) operator

The pipe (%>%) operator could be used in combination with dplyr functions. In this example we use the mtcars
dataset (see help("mtcars") for more information) to show how to sumarize a data frame, and to add variables to
the data with the result of the application of a function.

library(dplyr)
library(magrittr)
df <- mtcars

df8cars <- rownames(df) #just add the cars names to the df
df <- df[,c(ncol(df),1:(ncol(df)-1))] # and place the names in the first column

1. Sumarize the data

To compute statistics we use summarize and the appropriate functions. In this case n() is used for counting the

number of cases.

df %>%

summarize(count=

n(),mean_mpg = mean(mpg, na.rm = TRUE),

min_weight = min(wt),max_weight = max(wt))

# count mean_mpg

min_weight max_weight
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#1

32 20.09062

1818

2. Compute statistics by group

It is possible to compute the statistics by groups of the data. In this case by Number of cylinders and Number of

forward gears

df

%>%

group_by(cyl, gear) %>%
summarize(count=n(),mean_mpg

5.424

mean(mpg, na.rm = TRUE),
min_weight = min(wt),max_weight = max(wt))

# Source: local data frame [8 x 6]
# Groups: cyl [?]

#

#

#

#1
#2
#3
#4
#5
#6
#7
#8

cyl gear count mean_mpg min_weight max_weight
<dbl> <dbl> <int>

4
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.465
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.424
.570

Section 77.3: Subset Observation (Rows)

dplyr::filter() - Select a subset of rows in a data frame that meet a logical criteria:

############%
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::filter(iris, Sepal.Length>7)
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dplyr: :distinct() - Remove duplicate rows:

distinct(iris, Sepal.Length,
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setosa
setosa
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14
15
16
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20
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Section 77.4: Examples of NSE and string variables in dpyir
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setosa
setosa
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
versicolor
virginica
virginica
virginica
virginica
virginica
virginica
virginica

dplyr uses Non-Standard Evaluation(NSE), which is why we normally can use the variable names without quotes.

However, sometimes during the data pipeline, we need to get our variable names from other sources such as a
Shiny selection box. In case of functions like SELECT, we can just use select_ to use a string variable to select

variablel <- "Sepal.Length"
variable2 <- "Sepal.Width"

iris %>%

select_(variablel, variable2) %>%

head(n=5)
Sepal.lLength

HoH H H H R
a b wN =
a b b b~ o
® O N v =

But if we want to use other features such as summarize or filter we need to use interp function from lazyeval

package

Sepal.Width

W wwww
o= N U

variablel <- "Sepal.lLength"
variable?2 <- "Sepal.Width"
variable3 <- "Species"

iris %>%

select_(variablel, variable2, variable3) %>%
group_by_(variable3) %>%

summarize_(mean1 = lazyeval::interp(~mean(var), var
lazyeval: :interp(~mean(var), var
mean1 mean2
<dbl> <dbl>
5.006 3.428
5.936 2.770
6.588 2.974

# Species
# <fctr>
# 1 setosa
# 2 versicolor
# 3 virginica

as.name(variablel)), mean2
as.name(variable2)))
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Chapter 78: caret

caret is an R package that aids in data processing needed for machine learning problems. It stands for

classification and regression training. When building models for a real dataset, there are some tasks other than the

actual learning algorithm that need to be performed, such as cleaning the data, dealing with incomplete
observations, validating our model on a test set, and compare different models.

caret helps in these scenarios, independent of the actual learning algorithms used.

Section 78.1: Preprocessing

Pre-processing in caret is done through the preProcess() function. Given a matrix or data frame type object x,
preProcess() applies transformations on the training data which can then be applied to testing data.

The heart of the preProcess() function is the method argument. Method operations are applied in this order:

Zero-variance filter

Near-zero variance filter
Box-Cox/Yeo-Johnson/exponential transformation
Centering

Scaling

Range

Imputation

PCA

ICA

Spatial Sign

©CWVWoxXNOUA~WN=

—_

Below, we take the mtcars data set and perform centering, scaling, and a spatial sign transform.

auto_index <- createDataPartition(mtcarsSmpg, p = .8,
list = FALSE,
times = 1)

mt_train <- mtcars[auto_index, ]
mt_test <- mtcars[-auto_index, ]

process_mtcars <- preProcess(mt_train, method = c("center", "scale", "spatialSign"))

mtcars_train_transf <- predict(process_mtcars, mt_train)
mtcars_test_tranf <- predict(process_mtcars,mt_test)
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Chapter 79: Extracting and Listing Files in
Compressed Archives

Section 79.1: Extracting files from a .zip archive

Unzipping a zip archive is done with unzip function from the utils package (which is included in base R).
unzip(zipfile = "bar.zip", exdir = "./foo")

This will extract all files in "bar.zip" to the "foo" directory, which will be created if necessary. Tilde expansion is
done automatically from your working directory. Alternatively, you can pass the whole path name to the zipfile.
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ghopter 80: Probability Distributions with

Section 80.1: PDF and PMF for different distributions in R

PMF FOR THE BINOMIAL DISTRIBUTION
Suppose that a fair die is rolled 10 times. What is the probability of throwing exactly two sixes?

You can answer the question using the dbinom function:

> dbinom(2, 10, 1/6)
[1] 8.29071

PMF FOR THE POISSON DISTRIBUTION

The number of sandwhich ordered in a restaurant on a given day is known to follow a Poisson distribution with a
mean of 20. What is the probability that exactly eighteen sandwhich will be ordered tomorrow?

You can answer the question with the dpois function:

> dpois(18, 20)
[1] ©.08439355

PDF FOR THE NORMAL DISTRIBUTION

To find the value of the pdf at x=2.5 for a normal distribution with a mean of 5 and a standard deviation of 2, use
the command:

> dnorm(2.5, mean=5, sd=2)
[1] ©.09132454
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Chapter 81: R in LaTeX with knitr

Option Details
echo (TRUE/FALSE) - whether to include R source code in the output file
message (TRUE/FALSE) - whether to include messages from the R source execution in the output file
warning (TRUE/FALSE) - whether to include warnings from the R source execution in the output file
error (TRUE/FALSE) - whether to include errors from the R source execution in the output file
cache  (TRUE/FALSE) - whether to cache the results of the R source execution
fig.width (numeric) - width of the plot generated by the R source execution
fig.height (numeric) - height of the plot generated by the R source execution

Section 81.1: R in LaTeX with Knitr and Code Externalization

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve this is external code
chunks. External code chunks allow us to develop/test R Scripts in an R development environment and then include
the results in a report. It is a powerful organizational technique. This approach is demonstrated below.

# r-noweb-file.Rnw
\documentclass{article}

<<echo=FALSE, cache=FALSE>>=
knitr::opts_chunk$set(echo=FALSE, cache=TRUE)
knitr::read_chunk('r-file.R")

@

\begin{document}
This is an Rnw file (R noweb). It contains a combination of LateX and R.

One we have called the read\_chunk command above we can reference sections of code in the r-file.R
script.

<<Chunk1>>=

@
\end{document}

When using this approach we keep our code in a separate R file as shown below.

## r-file.R
## note the specific comment style of a single pound sign followed by four dashes

# ---- Chunkl ----
print("This is R Code in an external file")
x <- seq(1:10)

y <- rev(seq(1:10))
plot(x,y)

Section 81.2: R in LaTeX with Knitr and Inline Code Chunks

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve this is inline code
chunks. This apporach is demonstrated below.

# r-noweb-file.Rnw
\documentclass{article}
\begin{document}

GoalKicker.com - R Notes for Professionals 314


http://goalkicker.com/

This is an Rnw file (R noweb). It contains a combination of LateX and R.

<<my-label>>=

print("This is an R Code Chunk")
x <- seq(1:10)

@

Above is an internal code chunk.
We can access data created in any code chunk inline with our LaTeX code like this.
The length of array x is \Sexpr{length(x)}.

\end{document}

Section 81.3: R in LaTex with Knitr and Internal Code Chunks

Knitr is an R package that allows us to intermingle R code with LaTeX code. One way to achieve this is internal code
chunks. This apporach is demonstrated below.

# r-noweb-file.Rnw

\documentclass{article}

\begin{document}

This is an Rnw file (R noweb). It contains a combination of LateX and R.

<<code-chunk-label>>=
print("This is an R Code Chunk")
x <- seq(1:10)

y <- seq(1:10)

plot(x,y) # Brownian motion

@

\end{document}
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Chapter 82: Web Crawling in R

Section 82.1: Standard scraping approach using the RCurl

package

We try to extract imdb top chart movies and ratings

R>
R>
R>
R>
R>
R>
R>

library(RCurl)

library(XML)

url <- "http://www.imdb.com/chart/top"

top <- getURL(url)

parsed_top <- htmlParse(top, encoding = "UTF-8")
top_table <- readHTMLTable(parsed_top)[[1]]
head(top_table[1:10, 1:3])

Rank & Title IMDb Rating
1.

]
2
3
4
5
6
7
8
9
1

O 0N ol WN

0 1

The Shawshank Redemption (1994) 9.2

. The Godfather (1972) 9.2
. The Godfather: Part II (1974) 9.0

The Dark Knight (2008) 8.9
Pulp Fiction (1994) 8.9

. The Good, the Bad and the Ugly (1966) 8.9
. Schindler’s List (1993) 8.9
. 12 Angry Men (1957) 8.9

The Lord of the Rings: The Return of the King (2003) 8.9
. Fight Club (1999) 8.8
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Chapter 83: Creating reports with
RMarkdown

Section 83.1: Including bibliographies

A bibtex catalogue cna easily be included with the YAML option bibliography:. A certain style for the bibliography
can be added with biblio-style:. The references are added at the end of the document.

title: "Including Bibliography"
author: "John Doe"

output: pdf document
bibliography: references.bib

# Abstract
@R _Core_Team 2016

# References

Inclhuding Bibliogrpate

Abstract

Raeferences

ni Teaiii NI N A Lasiges i . My Kirni LYPeEY
Fosalain saiseiical Lompsi T il-gu

Section 83.2: Including LaTeX Preample Commands

There are two possible ways of including LaTeX preamble commands (e.g. \usepackage) in a RMarkdown
document.

1. Using the YAML option header-includes:

title: "Including LaTeX Preample Commands in RMarkdown"
header-includes:

- \renewcommand{\familydefault}{cmss}

- \usepackage[cm, slantedGreek]{sfmath}

- \usepackage[T1l]{fontenc}

output: pdf document

" {r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, external=T)

# Section 1

As you can see, this text uses the Computer Moden Font!
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Including LaTeX Preample Commands in RMarkdown

Section 1

A5 yire c3m wee. thaa bt v the Cpmguier Moder

2. Including External Commands with includes, in_header

title: "Including LaTeX Preample Commands in RMarkdown"
output:

pdf document:

includes:

in header: includes.tex

" {r setup, include=FALSE}
knitr::opts chunk$set(echo = TRUE, external=T)

# Section 1

As you can see, this text uses the Computer Modern Font!

Here, the content of includes.tex are the same three commands we included with header-includes.

Writing a whole new template

A possible third option is to write your own LaTex template and include it with template. But this covers a lot more

of the structure than only the preamble.

title: "My Template"
author: "Martin Schmelzer"
output:

pdf document:

template: myTemplate.tex

Section 83.3: Printing tables

There are several packages that allow the output of data structures in form of HTML or LaTeX tables. They mostly

differ in flexibility.
Here | use the packages:

o knitr
e xtable
e pander

For HTML documents
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title: "Printing Tables"
author: "Martin Schmelzer"
date: "29 Juli 2016"
output: html document

" {r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(knitr)

library(xtable)

library(pander)

df <- mtcars[1:4,1:4]

# Print tables using “kable®
Y {r, 'kable'}
kable(df)

# Print tables using “xtable’
“““{r, 'xtable', results='asis'}
print(xtable(df), type="html")

# Print tables using "pander’
“*{r, 'pander'}
pander (df)

Printing Tables
delmn Sorvnesser
VAl 2008

Print tables using kable

Print tables using xtable

2

a3f 15|

§rm e
| 5 I.

- —- L
Print tables using pander

g e Bl

aazaw KT ag

For PDF documents

title: "Printing Tables"
author: "Martin Schmelzer"
date: "29 Juli 2016"
output: pdf document

" {r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
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library(knitr)
library(xtable)
library(pander)
df <- mtcars[1:4,1:4]

# Print tables using “kable®
U {r, ‘'kable'}
kable(df)

# Print tables using “xtable®
" *{r, 'xtable', results='asis'}
print(xtable(df, caption="My Table"))

# Print tables using “pander’
7 {r, 'pander'}
pander(df)

Pring tabilos mshng kakls

Print taliles wsing stabls

Fring takiles iming paadar

Blassks EA
blaia W Wy
[T

k. Pt

How can | stop xtable printing the comment ahead of each table?

options(xtable.comment = FALSE)

Section 83.4: Basic R-markdown document structure

R-markdown code chunks

R-markdown is a markdown file with embedded blocks of R code called chunks. There are two types of R code

chunks: inline and block.

Inline chunks are added using the following syntax:

ro2%2°

They are evaluated and inserted their output answer in place.

Block chunks have a different syntax:
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***{r name, echo=TRUE, include=TRUE, ...}

2%2

And they come with several possible options. Here are the main ones (but there are many others):

fig.width (numeric) sets the width of the output figures
fig.height (numeric) sets the height of the output figures
fig.cap (character) sets the figure captions

echo (boolean) controls wether the code inside chunk will be included in the document
include (boolean) controls wether the output should be included in the document

They are written in a simple tag=value format like in the example above.

R-markdown document example

Below is a basic example of R-markdown file illustrating the way R code chunks are embedded inside r-markdown.

# Title #

This is **plain markdownx* text.

' {r code, include=FALSE, echo=FALSE}
# Just declare variables

income <- 1000
taxes <- 125

My income is: 'r income °
Below is the sum of money I will have left:
***{r gain, include=TRUE, echo=FALSE}

gain <- income-taxes

gain

dollars and I payed 'r taxes °

dollars in taxes.

7 {r plotOutput, include=TRUE, echo=FALSE, fig.width=6, fig.height=6}

pie(c(income, taxes), label=c("income", "taxes"))

Converting R-markdown to other formats

The R knitr package can be used to evaluate R chunks inside R-markdown file and turn it into a regular markdown

file.

The following steps are needed in order to turn R-markdown file into pdf/html:

1. Convert R-markdown file to markdown file using knitr.
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2. Convert the obtained markdown file to pdf/html using specialized tools like pandoc.

In addition to the above knitr package has wrapper functions knit2html() and knit2pdf() that can be used to
produce the final document without the intermediate step of manually converting it to the markdown format:

If the above example file was saved as income.Rmd it can be converted to a pdf file using the following R commands:

library(knitr)
knit2pdf("income.Rmd", "income.pdf")

The final document will be similar to the one below.

Title

This is plain markdown text.
My income is: 1000 dollars and 1 payed 125 dollars in taxes.

Below is the sum of money 1 will have left:

## [1] B7E

\ taxes
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Chapter 84: GPU-accelerated computing
Section 84.1: gpuR gpuMatrix objects

library(gpuR) # gpuMatrix objects X <- gpuMatrix(rnorm(100), 10, 10) Y <- gpuMatrix(rnorm(100), 10, 10) # transfer
data to GPU when operation called # automatically copied back to CPU Z <- X %*% Y

Section 84.2: gpuR vcIiMatrix objects

library(gpuR) # vcIMatrix objects X <- vcIMatrix(rnorm(100), 10, 10) Y <- vcIMatrix(rnorm(100), 10, 10) # data always
on GPU # no data transfer Z <- X %*% Y
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Chapter 85: heatmap and heatmap.2

Section 85.1: Examples from the official documentation

stats:theatmap
Example 1 (Basic usage)

require(graphics); require(grDevices)
X <- as.matrix(mtcars)

rc <- rainbow(nrow(x), start = 0, end = .3)

cc <- rainbow(ncol(x), start = 0, end = .3)

hv <- heatmap(x, col = cm.colors(256), scale = "column",
RowSideColors = rc, ColSideColors = cc, margins = c¢(5,10),
xlab = "specification variables", ylab = "Car Models",
main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

heatmap(<Mtcars data>, ..., scale = "column")

Tayota Conona
Porscie 914-2
Darsaun 710
Walws 142
Marc 230
Lotus [Europs
Marc 250
Marc ZE0C
Magrls RIC4 Wag
Mazdls R34
Rarc 2400
Femar Ding
Flat 128

Flat X132
Tayota Conolla
Honda Civic

Marc 45050
Marc 4S0SE
Marc 450500
Dodge Challenger
AT Jaslin

I Homeas: 4 Criwe

CarModels

Wl

Dwstar 260
Camans I35

Fomd Pamers L
Pontiac Firziing
[Homes? Sporsaino
Tt Flasaawood
Uincoln Continental
Chrysler Imperia
Mamerat] Sora

oyl
am

e

carb

t E
-

gear
qsec
mpg
hp
disp

specification variables

utils::str(hv) # the two re-ordering index vectors

# List of 4

# $ rowInd: int [1:32] 31 17 16 15 5 25 29 24 7 6 ...
# § colInd: int [1:11] 29811 651067 1 4 ...

# S Rowv : NULL

# S Colv : NULL

Example 2 (no column dendrogram (nor reordering) at all)

heatmap(x, Colv = NA, col = cm.colors(256), scale = "column",
RowSideColors = rc, margins = c¢(5,10),
xlab = "specification variables", ylab = "Car Models",
main = "heatmap(<Mtcars data>, ..., scale = \"column\")")
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heatmap(<Mtcars data>, ..., scale = "column")

Toyota Corons
Forsone F14T
|| Dmmun TA0
Voo 1428
|| Merz 230
Hherz 220
Hers 2500

Mazia Foc4 ag
Mazds Ficd
Karc 2400
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Flat 125

Flat X139

Topota Corolls
Honda Civic
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Marc 4S0SE

Merc 450500
Dodge Chalianger
ARG Janelin

Homeet 4 Drige
Waillanz
Dussar 250

Camano 35
Fom Partera L
Pontlac Finsoind

- Homiet Sporsaibout
Cadiliac Fleswood
Linoaln Continentsl
Chrysler Imperis

e e

Mamarac] Bors
EFEEE RS OE LS
specification variables
Example 3 ("no nothing")
heatmap(x, Rowv = NA, Colv = NA, scale = "column",

main = "heatmap(*, NA, NA) ~= image(t(x))")

CarModels
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heatmap(*, NA, NA) ~= image(t(x))

oyl

o
o
E

Example 4 (with reorder())

disp

hp

drat

round(Ca <- cor(attitude), 2)
rating complaints privileges learning
.00

H OB H B H B B R

HoH o H o B H B H R

rating
complaints
privileges
learning
raises
critical
advance

rating
complaints

1
+

privileges .

learning
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critical
advance

1

0.
symnum(Ca) # simple graphic
rt cmplrscra

1

attr(,"legend")

[1] @ *

heatmap(Ca,

0.3

‘
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9
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.16
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’
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‘
)
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.00
.56
.60
.67
.19
.22
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.43
.56
.00
.49
.45
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’
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N voivo 1428

Mas=rati Bora
Ferrari Dino
Ford Pantera L
Lotus Ewrcpa
Parsche 914-2
Fiat X1-8
Pontiac Firebird
Camaro Z28
AMG Javelin
Dodge Challeng
Toyota Corona
Toyota Corolla
Honda Civic
Fiat 128
Chinysler Imperi
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Cadillac Flestax
Merc 4505LC
Merc 45050
Merc 4505E
Merc 28DC
Merc 28D

Merc 230

Merc 2400
Duster 380
Waliant

Hormet Sportabe
Harnet 4 Drive
Ciatsun 710
Mazda RX4 Wag
Mazda R4

raises critical

0.62 0.59 0.16
0.60 0.67 0.19
0.49 0.45 0.15
1.00  ©.64 8.12
0.64 1.00 0.38
0.12 0.38 1.00
0.53 0.57 0.28

0.95 ‘B’ 1

c(6,6))

symm = TRUE, margins

advance

0.
.22
.34
453
.57
.28
.00

0O 00O

16
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Example 5 (NO reorder())
heatmap(Ca, Rowv = FALSE, symm = TRUE, margins = c¢(6,6))
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Example 6 (slightly artificial with color bar, without ordering)

cc <- rainbow(nrow(Ca))
heatmap(Ca, Rowv = FALSE, symm = TRUE, RowSideColors = cc, ColSideColors = cc,
margins = c¢(6,6))

GoalKicker.com - R Notes for Professionals 328


http://i.stack.imgur.com/V4BQv.png
http://goalkicker.com/

|ﬁ

privieges

rating

“ul

complaints

learning

raises

critical

adwvance

w om n om w = o
o = = p= o o a
=1} = n = [
o 'E o E o i= @
= O @ & G =
= @ h=!
C E = bl
=1 o

5]

Example 7 (slightly artificial with color bar, with ordering)

heatmap(Ca, symm = TRUE, RowSideColors = cc, ColSideColors = cc,
margins = c¢(6,6))
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Example 8 (For variable clustering, rather use distance based on cor())

critical
advance
privileges
rating
learming
raises

complaints

symnum( cU <- cor(USJudgeRatings) )
CO I DM DI CF DE PR F O W PH R
CONT 1
INTG
DMNR
DILG
CFMG
DECI
PREP
FAMI
ORAL
WRIT
PHYS .
RTEN * k%
attr(, "legend")
[11 6 " 8.3 '.” 0.6 ,” 8.8 '+’ 0.9 ‘" 0.95 ‘B’ 1

* % + + 4+ + + W
+ * 4+ + + 4+ + -
+ W W W W W W =
* 4+ % T * W W =
* 4+ ok ok ok T o
* + W @ =
W + @ =
w + =

* =
—_

H oH FH B H O B H B HOH B R B
T+ W W W™=

hU <- heatmap(cU, Rowv = FALSE, symm = TRUE, col = topo.colors(16),
distfun = function(c) as.dist(1 - c¢), keep.dendro = TRUE)
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s 2222 2:2¢&e¢
= s :3;:85F 8 E¢

COMT

## The Correlation matrix with same reordering:
round(160 * cU[hU[[1]], hu[[2]]1])

CONT

INTG

DMNR

PHYS

DILG

CFMG

DEC

RTEN

ORAL

WRIT

PREFP

FAaMI

F Ahd|

CONT INTG DMNR PHYS DILG CFMG DECI RTEN ORAL WRIT PREP FAMI

0.0438]

#

# CONT 100 -13 -15 5 1 14 9 -3 -1 -4 1 -3
# INTG -13 100 96 74 87 81 80 94 91 91 88 87
# DMNR -15 96 100 79 84 81 80 94 91 89 86 84
# PHYS 5 74 79 100 81 88 87 91 89 86 85 84
# DILG 1 87 84 81 100 96 96 93 95 96 98 96
# CFMG 14 81 81 88 96 100 98 93 95 94 96 94
# DECI 9 80 80 87 96 98 100 92 95 95 96 94
# RTEN -3 94 94 91 93 93 92 100 98 97 95 94
# ORAL -1 91 91 89 95 95 95 98 100 99 98 98
# WRIT -4 91 89 86 96 94 95 97 99 100 99 99
# PREP 1 88 86 85 98 96 96 95 98 99 100 99
# FAMI -3 87 84 84 96 94 94 94 98 99 99 100
## The column dendrogram:

utils::str(hUSColv)

# --[dendrogram w/ 2 branches and 12 members at h = 1.15]

# |--leaf "CONT"

# ‘--[dendrogram w/ 2 branches and 11 members at h = 0.258]

# |--[dendrogram w/ 2 branches and 2 members at h = 0.0354]

# | |--leaf "INTG"

# | “--leaf "DMNR"

# ‘--[dendrogram w/ 2 branches and 9 members at h = 0.187]

# |--leaf "PHYS"

# ‘--[dendrogram w/ 2 branches and 8 members at h = 0.075]
# |--[dendrogram w/ 2 branches and 3 members at h =

# | |--leaf "DILG"

# | “--[dendrogram w/ 2 branches and 2 members at h =

# | |--leaf "CFMG"

# | “--leaf "DECI"

0.0189]
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‘--[dendrogram w/ 2 branches and 5 members at h = 0.0584]

| --leaf "RTEN"
‘--[dendrogram w/ 2 branches and 4 members at h = 0.0187]
|--[dendrogram w/ 2 branches and 2 members at h = 0.00657]

| |--leaf "ORAL"

| “--leaf "WRIT"

‘--[dendrogram w/ 2 branches and 2 members at h = 0.08101]
| --leaf "PREP"
‘--leaf "FAMI"

Section 85.2: Tuning parameters in heatmap.2

Given:

X <- as.matrix(mtcars)

One can use heatmap.2 - a more recent optimized version of heatmap, by loading the following library:

require(gplots)

heatmap.2(x)

Color Key

Camird

0 100 250

Toyola Carg
Paracha 914
Dadsun 710
Walva 142E
Merc 230
Lobus Ewrop:
hers 2BD
bAere ZEBDC
hazda RXd4
bazda R4
Merc 240D
Ferari Dina
Fiat 128
Flat X1-8
Toyola Cara
Honda Civie
Merc 450SL
berc 4S0SE
Blerc 450GL
Dodge Chall
AMC Javelin
Homet 4 Drir
Waliam
Dussbar 360
Camang Z28
Ford Panler:
Panliac Fired
Homeal Spor
Cadillac Fles

heatmap.2(x, main = "My main title: Overview of car features", xlab="Car features", ylab = "Car

brands")

If you wish to define your own color palette for your heatmap, you can set the col parameter by using the

Lincaln Cont
Chirgsler lirg
Maserati Bes

= w o
352§ %E 3
o T ™

To add a title, x- or y-label to your heatmap, you need to set the main, x1ab and ylab:

mpg
hp
disp

gsec

colorRampPalette function:
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heatmap.2(x, trace="none", key=TRUE, Colv=FALSE,dendrogram = "row",col =
colorRampPalette(c("darkblue", "white", "darkred"))(160))

Color Key

] 200 400
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[ Frecy. S

200

Cound
100

Towola Carg
Parachea 314
Datsun 710
Walva 142E
Merc 230
Laotus Ewrop:
Mesc ZEBD
Mere 2BDC
Mazida RX4d
BMazda RX4
Merc 240D
Ferrari Dino
Fisl 128

Filat X1-8
Towola Cara
Honda Civie
Merc 4 50EL
Merc 450SE
Merc 45SDSLI
Coadge Chall
AMC Javalin
Hoemeal 4 Dri
Waliant
Disster 360
Camaro 228
Ford Panler:
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[T P
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As you can notice, the labels on the y axis (the car names) don't fit in the figure. In order to fix this, the user can
tune the margins parameter:

heatmap.2(x, trace="none", key=TRUE,col = colorRampPalette(c("darkblue", "white", "darkred"))(100),
margins=c(5,8))
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Further, we can change the dimensions of each section of our heatmap (the key histogram, the dendograms and

the heatmap itself), by tuning 1hei and 1wid:

Toyola Conana
Parache B14-2
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If we only want to show a row(or column) dendogram, we need to set Colv=FALSE (or Rowv=FALSE) and adjust the
dendogram parameter:

heatmap.2(x, trace="none", key=TRUE, Colv=FALSE, dendrogram = "row", col =
colorRampPalette(c("darkblue”, "white", "darkred"))(100), margins=c(5,8), lwid = ¢(5,15), lhei =
c(3,15))
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For changing the font size of the legend title,labels and axis, the user needs to set cex.main, cex.lab, cex.axisin
the par list:

par(cex.main=1, cex.lab=0.7, cex.axis=0.7)

heatmap.2(x, trace="none", key=TRUE, Colv=FALSE, dendrogram = "row", col =
colorRampPalette(c("darkblue", "white", "darkred"))(100), margins=c(5,8), lwid = ¢(5,15), lhei =
c(5,15))
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Chapter 86: Network analysis with the
igraph package

Section 86.1: Simple Directed and Non-directed Network
Graphing

The igraph package for R is a wonderful tool that can be used to model networks, both real and virtual, with
simplicity. This example is meant to demonstrate how to create two simple network graphs using the igraph
package within R v.3.2.3.

Non-Directed Network
The network is created with this piece of code:

g<-graph.formula(Node1-Node2, Nodel1-Node3, Node4-Nodel)
plot(g)

g<-graph.formula(Nodel-Node2, Nodel-Node3, Noded-Nodel)
> Elot{g}

Directed Network

dg<-graph.formula(Tom-+Mary, Tom-+Bill, Tom-+Sam, Sue+-Mary, Bill-+Sue)
plot(dg)

This code will then generate a network with arrows:
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dg<-graph.formula(Tom-+Mary, Tom-+Bill, Tom-+Sam, Sue+-Mary, Bill-+Sue)
Elnt{dg)

ﬂﬂh

Code example of how to make a double sided arrow:

dg<-graph.formula(Tom-+Mary, Tom-+Bill, Tom-+Sam, Sue+-Mary, Bill++Sue)
plot(dg)

dg<-graph.formula(Tom-+Mary, Tom-+Bill, Tom-+Sam, Sue+-Mary, Bill++Sue)
- ilnt{dg)
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Chapter 87: Functional programming

Section 87.1: Built-in Higher Order Functions

R has a set of built in higher order functions: Map, Reduce, Filter, Find, Position, Negate.

Map applies a given function to a list of values:

words <- list("this", "is", "an", "example")
Map (toupper, words)

Reduce successively applies a binary function to a list of values in a recursive fashion.
Reduce( *', 1:10)

Filter given a predicate function and a list of values returns a filtered list containing only values for whom
predicate function is TRUE.

Filter(is.character, list(1,"a",2,"b",3,"c"))
Find given a predicate function and a list of values returns the first value for which the predicate function is TRUE.
Find(is.character, list(1,"a",2,"b",3,"c"))

Position given a predicate function and a list of values returns the position of the first value in the list for which the
predicate function is TRUE.

Position(is.character, list(1,"a",2,"b",3,"c"))
Negate inverts a predicate function making it return FALSE for values where it returned TRUE and vice versa.

is.noncharacter <- Negate(is.character)
is.noncharacter("a")
is.noncharacter(mean)
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Chapter 88: Get user input

Section 88.1: User input in R

Sometimes it can be interesting to have a cross-talk between the user and the program, one example being the
swirl package that had been designed to teach Rin R.

One can ask for user input using the readline command:
name <- readline(prompt = "What is your name?")

The user can then give any answer, such as a number, a character, vectors, and scanning the result is here to make
sure that the user has given a proper answer. For example:

result <- readline(prompt = "What is the result of 1+1?")
while(result!=2){

readline(prompt = "Wrong answer. What is the result of 1+1?")

}

However, it is to be noted that this code be stuck in a never-ending loop, as user input is saved as a character.

We have to coerce it to a number, using as.numeric:

result <- as.numeric(readline(prompt = "What is the result of 1+1?"))
while(result!=2){

readline(prompt = "Wrong answer. What is the result of 1+1?")
}
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Chapter 89: Spark API (SparkR)

Section 89.1: Setup Spark context

Setup Spark context in R

To start working with Sparks distributed dataframes, you must connect your R program with an existing Spark
Cluster.

library(SparkR)
sc <- sparkR.init() # connection to Spark context
sqlContext <- sparkRSQL.init(sc) # connection to SQL context

Here are infos how to connect your IDE to a Spark cluster.
Get Spark Cluster

There is an Apache Spark introduction topic with install instructions. Basically, you can employ a Spark Cluster
locally via java (see instructions) or use (non-free) cloud applications (e.g. Microsoft Azure [topic site], IBM).

Section 89.2: Cache data
What:

Caching can optimize computation in Spark. Caching stores data in memory and is a special case of persistence.
Here is explained what happens when you cache an RDD in Spark.

Why:

Basically, caching saves an interim partial result - usually after transformations - of your original data. So, when you
use the cached RDD, the already transformed data from memory is accessed without recomputing the earlier
transformations.

How:

Here is an example how to quickly access large data (here 3 GB big csv) from in-memory storage when accessing it
more then once:

library(SparkR)

# next line is needed for direct csv import:

Sys.setenv('SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.4.0" "sparkr-
shell"")

sc <- sparkR.init()
sqlContext <- sparkRSQL.init(sc)

# loading 3 GB big csv file:

train <- read.df(sqlContext, "/train.csv", source = "com.databricks.spark.csv", inferSchema =
"true")
cache(train)

system. time(head(train))

# output: time elapsed: 125 s. This action invokes the caching at this point.
system.time(head(train))

# output: time elapsed: 6.2 s (!!)
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Section 89.3: Create RDDs (Resilient Distributed Datasets)

From dataframe:
mtrdd <- createDataFrame(sqlContext, mtcars)

From csv:
For csv's, you need to add the csv package to the environment before initiating the Spark context:

Sys.setenv (' SPARKR_SUBMIT_ARGS'='"--packages" "com.databricks:spark-csv_2.10:1.4.0" "sparkr-
shell"') # context for csv import read csv ->

sc <- sparkR.init()

sqlContext <- sparkRSQL.init(sc)

Then, you can load the csv either by infering the data schema of the data in the columns:

train <- read.df(sqlContext, "/train.csv", header= "true", source = "com.databricks.spark.csv",

inferSchema = "true")

Or by specifying the data schema beforehand:

customSchema <- structType(

structField("margin", "integer"),
structField("gross", "integer")
structField("name", "string"))
train <- read.df(sqlContext, "/train.csv", header= "true", source = "com.databricks.spark.csv"

schema = customSchema)
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Chapter 90: Meta: Documentation
Guidelines

Section 90.1: Style

Prompts

If you want your code to be copy-pastable, remove prompts such as R>, >, or + at the beginning of each new line.
Some Docs authors prefer to not make copy-pasting easy, and that is okay.

Console output

Console output should be clearly distinguished from code. Common approaches include:

Include prompts on input (as seen when using the console).

Comment out all output, with # or ## starting each line.

Print as-is, trusting the leading [ 1] to make the output stand out from the input.
Add a blank line between code and console output.

Assignment

= and <- are fine for assigning R objects. Use white space appropriately to avoid writing code that is difficult to
parse, such as x<-1 (ambiguous between x <- 1Tand x < -1)

Code comments

Be sure to explain the purpose and function of the code itself. There isn't any hard-and-fast rule on whether this
explanation should be in prose or in code comments. Prose may be more readable and allows for longer
explanations, but code comments make for easier copy-pasting. Keep both options in mind.

Sections

Many examples are short enough to not need sections, but if you use them, start with H1.

Section 90.2: Making good examples

Most of the guidance for creating good examples for Q&A carries over into the documentation.

¢ Make it minimal and get to the point. Complications and digressions are counterproductive.
¢ Include both working code and prose explaining it. Neither one is sufficient on its own.

¢ Don't rely on external sources for data. Generate data or use the datasets library if possible:

library(help = "datasets")

There are some additional considerations in the context of Docs:

¢ Refer to built-in docs like ?data. frame whenever relevant. The SO Docs are not an attempt to replace the
built-in docs. It is important to make sure new R users know that the built-in docs exist as well as how to find
them.

e Move content that applies to multiple examples to the Remarks section.
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Chapter 91: Input and output

Section 91.1: Reading and writing data frames

Data frames are R's tabular data structure. They can be written to or read from in a variety of ways.
This example illustrates a couple common situations. See the links at the end for other resources.
Writing

Before making the example data below, make sure you're in a folder you want to write to. Run getwd( ) to verify the folder
you're in and read ?setwd if you need to change folders.

set.seed(1)
for (i in 1:3)
write.table(
data.frame(id = 1:2, v = sample(letters, 2)),
file = sprintf("file201%s.csv", i)

)

Now, we have three similarly-formatted CSV files on disk.
Reading

We have three similarly-formatted files (from the last section) to read in. Since these files are related, we should
store them together after reading in, in a 1ist:

file_names = c("file2011.csv", "file2812.csv", "file2813.csv")
file_contents = lapply(setNames(file_names, file_names), read.table)

# $file2011.csv
# id v

#1 1g

#2 29

#

# $file2012.csv
# id v

#1 1o
#2 2w
#
#
#
#
#

$file2013.csv

To work with this list of files, first examine the structure with str(file_contents), then read about stacking the list
with ?rbind or iterating over the list with ?1apply.

Further resources
Check out ?read.table and ?write.table to extend this example. Also:

¢ R binary formats (for tables and other objects)
¢ Plain-text table formats

o comma-delimited CSVs

o tab-delimited TSVs
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o Fixed-width formats
¢ Language-agnostic binary table formats
o Feather
¢ Foreign table and spreadsheet formats
o SAS
o SPSS
o Stata
o Excel
¢ Relational database table formats
o MySQL
o SQLite
o PostgreSQL
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Chapter 92: 1/0 for foreign tables (Excel,
SAS, SPSS, Stata)

Section 92.1: Importing data with rio

Avery simple way to import data from many common file formats is with rio. This package provides a function
import() that wraps many commonly used data import functions, thereby providing a standard interface. It works
simply by passing a file name or URL to import():

import("example.csv") # comma-separated values
import("example.tsv") # tab-separated values
import("example.dta") # Stata
import("example.sav") # SPSS
import("example.sas7bdat") # SAS
import("example.xlsx") # Excel

import() can also read from compressed directories, URLs (HTTP or HTTPS), and the clipboard. A comprehensive
list of all supported file formats is available on the rio package github repository.

It is even possible to specify some further parameters related to the specific file format you are trying to read,
passing them directly within the import() function:

import("example.csv", format = ",") #for csv file where comma is used as separator

import("example.csv", format = ";") #for csv file where semicolon is used as separator

Section 92.2: Read and write Stata, SPSS and SAS files

The packages foreign and haven can be used to import and export files from a variety of other statistical packages
like Stata, SPSS and SAS and related software. There is a read function for each of the supported data types to
import the files.

# loading the packages
library(foreign)
library(haven)
library(readstatai3)
library(Hmisc)

Some examples for the most common data types:

# reading Stata files with “foreign®
read.dta("path\to\your\data")

# reading Stata files with “haven
read_dta("path\to\your\data")

The foreign package can read in stata (.dta) files for versions of Stata 7-12. According to the development page, the
read.dta is more or less frozen and will not be updated for reading in versions 13+. For more recent versions of
Stata, you can use either the readstata13 package or haven. For readstata13, the files are

# reading recent Stata (13+) files with ‘readstatal3’
read.dta13("path\to\your\data")

For reading in SPSS and SAS files
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# reading SPSS files with “foreign®
read.spss("path\to\your\data.sav", to.data.frame = TRUE)
# reading SPSS files with “haven®
read_spss("path\to\your\data.sav")
read_sav("path\to\your\data.sav")
read_por("path\to\your\data.por")

# reading SAS files with “foreign®

read.ssd("path\to\your\data")

# reading SAS files with “haven®

read_sas("path\to\your\data")

# reading native SAS files with “Hmisc®

sas.get("path\to\your\data") #requires access to saslib

# Reading SA XPORT format ( *.XPT ) files

sasxport.get("path\to\your\data.xpt") # does not require access to SAS executable

The SAScii package provides functions that will accept SAS SET import code and construct a text file that can be
processed with read. fwf. It has proved very robust for import of large public-released datasets. Support is at
https://github.com/ajdamico/SAScii

To export data frames to other statistical packages you can use the write functions write.foreign(). This will write
2 files, one containing the data and one containing instructions the other package needs to read the data.

# writing to Stata, SPSS or SAS files with “foreign®
write.foreign(dataframe, datafile, codefile,
package = c("SPSS", "Stata", "SAS"), ...)
write.foreign(dataframe, "path\tol\data\file", "path\tolinstruction\file", package = "Stata")

# writing to Stata files with “foreign®
write.dta(dataframe, "file", version = 7L,
convert.dates = TRUE, tz = "GMT",
convert.factors = c("labels", "string", "numeric", "codes"))

# writing to Stata files with ‘“haven
write_dta(dataframe, "path\to\your\data")

# writing to Stata files with “readstatal3

save.dtal3(dataframe, file, data.label = NULL, time.stamp = TRUE,
convert.factors = TRUE, convert.dates = TRUE, tz = "GMT",
add.rownames = FALSE, compress = FALSE, version = 117,
convert.underscore = FALSE)

# writing to SPSS files with “haven’
write_sav(dataframe, "path\to\your\data")

File stored by the SPSS can also be read with read. spss in this way:

foreign::read.spss('data.sav', to.data.frame=TRUE, use.value.labels=FALSE,
use.missings=TRUE, reencode='UTF-8")

# to.data.frame if TRUE: return a data frame
# use.value.labels if TRUE: convert variables with value labels into R factors with those levels
# use.missings if TRUE: information on user-defined missing values will used to set the
corresponding values to NA.
# reencode character strings will be re-encoded to the current locale. The default, NA, means to do
so in a UTF-8 locale, only.

Section 92.3: Importing Excel files

There are several R packages to read excel files, each of which using different languages or resources, as
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summarized in the following table:

R package Uses
xlsx Java
XLconnect Java
openxlsx C++

readxl C++
RODBC  ODBC
gdata Perl

For the packages that use Java or ODBC it is important to know details about your system because you may have
compatibility issues depending on your R version and OS. For instance, if you are using R 64 bits then you also must
have Java 64 bits to use x1sx or XLconnect.

Some examples of reading excel files with each package are provided below. Note that many of the packages have
the same or very similar function names. Therefore, it is useful to state the package explicitly, like
package: : function. The package openxlsx requires prior installation of RTools.

Reading excel files with the xIsx package

library(x1lsx)
The index or name of the sheet is required to import.

x1lsx::read.xlsx("Book1.x1lsx", sheetIndex=1)

xlsx::read.xlsx("Book1.x1lsx", sheetName="Sheet1")

Reading Excel files with the XLconnect package

library(XLConnect)
wb <- XLConnect: :loadWorkbook("Book1.x1lsx")

# Either, if Book1.xlsx has a sheet called "Sheetl1":

sheet1 <- XLConnect: :readWorksheet(wb, "Sheet1")

# Or, more generally, just get the first sheet in Book1.xlsx:
sheet1 <- XLConnect::readWorksheet(wb, getSheets(wb)[1])

XLConnect automatically imports the pre-defined Excel cell-styles embedded in Book1.x1sx. This is useful when you
wish to format your workbook object and export a perfectly formatted Excel document. Firstly, you will need to
create the desired cell formats in Book1.x1sx and save them, for example, as myHeader, myBody and myPcts. Then,
after loading the workbook in R (see above):

Headerstyle <- XLConnect::getCellStyle(wb, "myHeader")
Bodystyle <- XLConnect::getCellStyle(wb, "myBody")
Pctsstyle <- XLConnect::getCellStyle(wb, "myPcts")

The cell styles are now saved in your R environment. In order to assign the cell styles to certain ranges of your data,
you need to define the range and then assign the style:

Headerrange <- expand.grid(row = 1, col 1:8)
Bodyrange <- expand.grid(row = 2:6, col = c¢(1:5, 8))
Pctrange <- expand.grid(row = 2:6, col = c(6, 7))

XLConnect: :setCellStyle(wb, sheet = "sheet1", row = HeaderrangeSrow,
col = HeaderrangeScol, cellstyle = Headerstyle)

XLConnect: :setCellStyle(wb, sheet = "sheet1", row = BodyrangeSrow,
col = Bodyrange$col, cellstyle = Bodystyle)

XLConnect: :setCellStyle(wb, sheet = "sheet1", row = PctrangeSrow,
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col = PctrangeScol, cellstyle = Pctsstyle)

Note that XLConnect is easy, but can become extremely slow in formatting. A much faster, but more cumbersome
formatting option is offered by openx1lsx.

Reading excel files with the openxlsx package
Excel files can be imported with package openxlsx
library(openxlsx)

openxlsx::read.xlsx("spreadsheetl1.xlsx", colNames=TRUE, rowNames=TRUE)

#colNames: If TRUE, the first row of data will be used as column names.
#rowNames: If TRUE, first column of data will be used as row names.

The sheet, which should be read into R can be selected either by providing its position in the sheet argument:

openxlsx::read.xlsx("spreadsheetl1.xlsx", sheet

1)

or by declaring its name:

openxlsx::read.xlsx("spreadsheetl1.xlsx", sheet "Sheet1")

Additionally, openx1sx can detect date columns in a read sheet. In order to allow automatic detection of dates, an
argument detectDates should be set to TRUE:

openxlsx::read.xlsx("spreadsheetl1.xlsx", sheet = "Sheet1", detectDates= TRUE)

Reading excel files with the readxl package

Excel files can be imported as a data frame into R using the readx1 package.
library(readxl)

It can read both .x1s and .x1sx files.

readxl::read_excel("spreadsheetl1.x1ls")
readxl: :read_excel("spreadsheet2.xlsx")

The sheet to be imported can be specified by number or name.

readxl::read_excel("spreadsheet.x1ls", sheet = 1)
readxl: :read_excel("spreadsheet.xls", sheet = "summary")

The argument col_names = TRUE sets the first row as the column names.
readxl: :read_excel("spreadsheet.xls", sheet = 1, col_names = TRUE)

The argument col_types can be used to specify the column types in the data as a vector.

readxl: :read_excel("spreadsheet.xls", sheet = 1, col_names = TRUE,
col_types = c("text", "date", "numeric", "numeric"))

Reading excel files with the RODBC package

Excel files can be read using the ODBC Excel Driver that interfaces with Windows' Access Database Engine (ACE),
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formerly JET. With the RODBC package, R can connect to this driver and directly query workbooks. Worksheets are
assumed to maintain column headers in first row with data in organized columns of similar types. NOTE: This
approach is limited to only Windows/PC machines as JET/ACE are installed .dll files and not available on other
operating systems.

library(RODBC)

xlconn <- odbcDriverConnect('Driver={Microsoft Excel Driver (#*.xls, *.xlsx, #*.xlsm, #*.xlsb)};
DBQ=C:\\Path\\To\\Workbook.x1sx")

df <- sqlQuery(xlconn, "SELECT * FROM [SheetName$]")
close(xlconn)

Connecting with an SQL engine in this approach, Excel worksheets can be queried similar to database tables
including JOIN and UNION operations. Syntax follows the JET/ACE SQL dialect. NOTE: Only data access DML
statements, specifically SELECT can be run on workbooks, considered not updateable queries.

joindf <- sqglQuery(xlconn, "SELECT t1.*, t2.%* FROM [Sheet1S] t1
INNER JOIN [Sheet2$8] t2
ON t1.[ID] = t2.[ID]")

uniondf <- sqlQuery(xlconn, "SELECT % FROM [Sheet1$]

UNION
SELECT * FROM [Sheet2$]")

Even other workbooks can be queried from the same ODBC channel pointing to a current workbook:

otherwkbkdf <- sqlQuery(xlconn, "SELECT * FROM
[Excel 12.0 Xml;HDR=Yes;
Database=C:\\Path\\To\\0Other\\Workbook.x1lsx].[Sheet1S8];")

Reading excel files with the gdata package

example here

Section 92.4: Import or Export of Feather file

Feather is an implementation of Apache Arrow designed to store data frames in a language agnostic manner while
maintaining metadata (e.g. date classes), increasing interoperability between Python and R. Reading a feather file
will produce a tibble, not a standard data.frame.

library(feather)

path <- "filename.feather"
df <- mtcars

write_feather(df, path)

df2 <- read_feather(path)

head(df2)

## A tibble: 6 x 11

## mpg cyl disp hp drat wt gsec Vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## 2 21.0 6 160 116 3.90 2.875 17.02 0 1 4 4
## 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## 4 21.4 6 258 116 3.8 3.215 19.44 1 (9] 3 1
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## 5 18.7 8 360 175 3.15
## 6 18.1 6 225 185 2.76
head(df)

## mpg cyl disp
## Mazda RX4 21.0 6 160
## Mazda RX4 Wag 21.6 6 160
## Datsun 710 22.8 4 108
## Hornet 4 Drive 21.4 6 258
## Hornet Sportabout 18.7 8 360
## Valiant 18.1 6 225

3.440 17.
3.460 20.
hp drat
110 3.90
110 3.90
93 3.85
110 3.08
175 3.15
185 2.76

The current documentation contains this warning;:

Note to users: Feather should be treated as alpha software. In particular, the file format is likely to evolve
over the coming year. Do not use Feather for long-term data storage.
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Chapter 93: 1/0 for database tables
Section 93.1: Reading Data from MySQL Databases

General

Using the package RMySQL we can easily query MySQL as well as MariaDB databases and store the result in an R
dataframe:

library(RMySQL)
mydb <- dbConnect(MySQL(), user='user', password='password', dbname='dbname',host="'127.0.06.1")

queryString <- "SELECT * FROM tablel t1 JOIN table2 t2 on t1.id=t2.id"
query <- dbSendQuery(mydb, queryString)
data <- fetch(query, n=-1) # n=-1 to return all results

Using limits

It is also possible to define a limit, e.g. getting only the first 100,000 rows. In order to do so, just change the SQL
query regarding the desired limit. The mentioned package will consider these options. Example:

queryString <- "SELECT * FROM tablel limit 100000"

Section 93.2: Reading Data from MongoDB Databases

In order to load data from a MongoDB database into an R dataframe, use the library Mongolite:

# Use MongoLite library:
#install.packages("mongolite")
library(jsonlite)
library(mongolite)

# Connect to the database and the desired collection as root:
db <- mongo(collection = "Tweets", db = "TweetCollector", url =
"mongodb://USERNAME:PASSWORD@HOSTNAME”)

# Read the desired documents i.e. Tweets inside one dataframe:
documents <- db$find(limit = 100000, skip = @, fields = '{ "_id" : false, "Text" : true }')

The code connects to the server HOSTNAME as USERNAME with PASSWORD, tries to open the database TweetCollector
and read the collection Tweets. The query tries to read the field i.e. column Text.

The results is a dataframe with columns as the yielded data set. In case of this example, the dataframe contains the
column Text, e.g. documents$Text.
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Chapter 94: 1/0 for geographic data
(shapefiles, etc.)

See also Introduction to Geographical Maps and Input and Output

Section 94.1: Import and Export Shapefiles

With the rgdal package it is possible to import and export shapfiles with R. The function read0OGR can be used to
imports shapfiles. If you want to import a file from e.g. ArcGIS the first argument dsn is the path to the folder which
contains the shapefile. layer is the name of the shapefile without the file ending (just map and not map . shp).

library(rgdal)
readOGR(dsn = "path\to\the\folder\containing\the\shapefile", layer = "map")

To export a shapefile use thewriteOGR function. The first argument is the spatial object produced in R. dsn and
layer are the same as above. The obligatory 4. argument is the driver used to generate the shapefile. The function
ogrDrivers() lists all available drivers. If you want to export a shapfile to ArcGis or QGis you could use driver =
"ESRI Shapefile"”.

writeOGR(Rmap, dsn = "path\to\the\folder\containing\the\shapefile", layer = "map",
driver = "ESRI Shapefile" )

tmap package has a very convenient function read_shape( ), which is a wrapper for rgdal: :reag0GR(). The
read_shape () function simplifies the process of importing a shapefile a lot. On the downside, tmap is quite heavy.
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Chapter 95: 1/0 for raster images

See also Raster and Image Analysis and Input and Output

Section 95.1: Load a multilayer raster

The R-Logo is a multilayer raster file (red, green, blue)

library(raster)
r <- stack("C:/Program Files/R/R-3.2.3/doc/html/logo.jpg")
plot(r)
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The individual layers of the RasterStack object can be addressed by [ [.

plot(r[[1]])

GoalKicker.com - R Notes for Professionals 355


http://i.stack.imgur.com/9jVrN.png
http://goalkicker.com/

GoalKicker.com - R Notes for Professionals 356


http://i.stack.imgur.com/tOgqL.png
http://goalkicker.com/

Chapter 96: 1/0 for R’s binary format

Section 96.1: Rds and RData (Rda) files

.rds and .Rdata (also known as .rda) files can be used to store R objects in a format native to R. There are multiple

advantages of saving this way when contrasted with non-native storage approaches, e.g. write.table:

e Itis faster to restore the data to R
o It keeps R specific information encoded in the data (e.g., attributes, variable types, etc).

saveRDS/readRDS only handle a single R object. However, they are more flexible than the multi-object storage

approach in that the object name of the restored object need not be the same as the object name when the object

was stored.

Using an .rds file, for example, saving the iris dataset we would use:
saveRDS(object = iris, file = "my_data_frame.rds")

To load it data back in:

iris2 <- readRDS(file = "my_data_frame.rds")

To save a multiple objects we can use save() and output as .Rdata.

Example, to save 2 dataframes: iris and cars

save(iris, cars, file = "myIrisAndCarsData.Rdata")

To load:

load("myIrisAndCarsData.Rdata")

Section 96.2: Enviromments

The functions save and load allow us to specify the environment where the object will be hosted:

save(iris, cars, file = "myIrisAndCarsData.Rdata", envir = foo <- new.env())
load("myIrisAndCarsData.Rdata", envir = foo)

fooScars

save(iris, cars, file = "myIrisAndCarsData.Rdata", envir = foo <- new.env())
load("myIrisAndCarsData.Rdata", envir = foo)

fooScars
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Chapter 97: Recycling

Section 97.1: Recycling use in subsetting

Recycling can be used in a clever way to simplify code.

Subsetting

If we want to keep every third element of a vector we can do the following:

my_vec <- c(1,2,3,4,5,6,7,8,9,10)
my_vec[c(TRUE, FALSE)]

[1]1 13579
Here the logical expression was expanded to the length of the vector.
We can also perform comparisons using recycling:

my_vec <- c¢("foo", "bar", "soap", "mix")
my_vec == "bar"

[1] FALSE TRUE FALSE FALSE

Here "bar" gets recycled.
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Chapter 98: Expression: parse + eval

Section 98.1: Execute code in string format
In this exemple, we want to execute code which is stored in a string format.

# the string
str <- "1+1"

# A string is not an expression.
is.expression(str)
[1] FALSE

eval(str)
[1] "1+1"

# parse convert string into expressions
parsed.Str Fo parse(text="1+1 n)

is.expression(parsed.str)
[1] TRUE

eval(parsed.str)
(1] 2
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Chapter 99: Regular Expression Syntax in R

This document introduces the basics of regular expressions as used in R. For more information about R's regular
expression syntax, see ?regex. For a comprehensive list of regular expression operators, see this ICU guide on

regular expressions.

Section 99.1: Use ‘grep to find a string in a character vector

# General syntax:
# grep(<pattern>, <character vector>)

mystring <- c¢('The number 5',
'The number 8',
"1 is the loneliest number',
‘Company, 3 is',
'Git SSH tag is git@github.com',
‘My personal site is www.personal.org',
"path/to/my/file")

grep('5', mystring)

# [1] 1

grep('@', mystring)

# [1] 5

grep('number', mystring)
#[1] 123

x|y means look for "x" or "y"

grep('5|8', mystring)
#[1]1 12

grep('com|org', mystring)
# [1] 56

. is a special character in Regex. It means "match any character"

grep('The number .', mystring)
# [1] 12

Be careful when trying to match dots!

tricky <- c('www.personal.org', 'My friend is a cyborg')
grep('.org', tricky)
# [1] 12

To match a literal character, you have to escape the string with a backslash (\). However, R tries to look for escape
characters when creating strings, so you actually need to escape the backslash itself (i.e. you need to double escape
regular expression characters.)

grep('\.org', tricky)

# Error: '\.' is an unrecognized escape in character string starting "'\."
grep('\\.org', tricky)

# [1] 1

If you want to match one of several characters, you can wrap those characters in brackets ([ ])

grep('[13]', mystring)
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# [1] 3 4
grep('[@/]"', mystring)
# [1] 57

It may be useful to indicate character sequences. E.g. [8-4] will match O, 1, 2, 3, or 4, [A-Z] will match any
uppercase letter, [A-z] will match any uppercase or lowercase letter, and [A-z0-9] will match any letter or number
(i.e. all alphanumeric characters)

grep('[0-4]", mystring)
# [1] 3 4
grep('[A-Z]', mystring)
#[11 12456

R also has several shortcut classes that can be used in brackets. For instance, [ :lower:] is short for a-z, [ :upper:]
is short for A-Z, [ :alpha:]is A-z, [ :digit:]is ©-9,and [ :alnum:] is A-z8-9. Note that these whole expressions
must be used inside brackets; for instance, to match a single digit, you can use [[ :digit:]] (note the double
brackets). As another example, [@[ :digit:]/] will match the characters @, / or 6-9.

grep('[[:digit:]]"', mystring)
#[1]1 1234
grep('[@[:digit:]/]"', mystring)
#[1]1 123457

Brackets can also be used to negate a match with a carat (*). For instance, [*5] will match any character other than
Il5ll-

grep('The number [725]', mystring)
#[1] 2
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Chapter 100: Regular Expressions (regex)

Regular expressions (also called "regex" or "regexp") define patterns that can be matched against a string. Type
?regex for the official R documentation and see the Regex Docs for more details. The most important 'gotcha’ that
will not be learned in the SO regex/topics is that most R-regex functions need the use of paired backslashes to
escape in a pattern parameter.

Section 100.1: Differences between Perl and POSIX regex

There are two ever-so-slightly different engines of regular expressions implemented in R. The default is called
POSIX-consistent; all regex functions in R are also equipped with an option to turn on the latter type: perl = TRUE.

Look-ahead/look-behind
perl = TRUE enables look-ahead and look-behind in regular expressions.

e "(?<=A)B" matches an appearance of the letter B only if it's preceded by A, i.e. "ABACADABRA" would be
matched, but "abacadabra" and "aBacadabra" would not.

Section 100.2: Validate a date in a "YYYYMMDD” format

It is a common practice to name files using the date as prefix in the following format; YYYYMMDD, for example:
20170101_results.csv. A date in such string format can be verified using the following regular expression:

\\d{4}(@[1-9]|1[012])(8[1-9]|[12][0-9]|3[01])
The above expression considers dates from year: 8800-9999, months between: 81-12 and days 01-31.
For example:

> grepl("\\d{4}(e[1-9]|1[@12])(0[1-9]|[12][6-9]|3[01])", "2B170101")

[1] TRUE
> grepl("\\d{4}(@e[1-9]|1[012])(0[1-9]|[12][B8-9]|3[01])", "28171286")
[1] TRUE
> grepl("\\d{4}(0[1-9]|1[812])(0[1-9]|[12]1[0-9]|3[01])", "29991231")
[1] TRUE

Note: It validates the date syntax, but we can have a wrong date with a valid syntax, for example: 26170229 (2017 it
is not a leap year).

> grepl("\\d{4}(0[1-9]|1[@12])(0[1-9]|[12][8-9]|3[01])", "20170229")
[1] TRUE

If you want to validate a date, it can be done via this user defined function:
is.Date <- function(x) {return(!is.na(as.Date(as.character(x), format = '%Y%m%d')))}
Then

> is.Date(c("20170229", "20170101", 20170101))
[1] FALSE TRUE TRUE
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Section 100.3: Escaping characters in R regex patterns

Since both R and regex share the escape character,"\", building correct patterns for grep, sub, gsub or any other
function that accepts a pattern argument will often need pairing of backslashes. If you build a three item character
vector in which one items has a linefeed, another a tab character and one neither, and hte desire is to turn either
the linefeed or the tab into 4-spaces then a single backslash is need for the construction, but tpaired backslashes
for matching:

x <- ¢( "a\nb", "c\td", "e ")
X # how it's stored

# [1] "a\nb" "c\td" "e f"
cat(x) # how it will be seen with cat
#a
#b c de f

gsub(patt="\\n|\\t", repl=" ",X)
#[1] "a b" "c d" "e f"

Note that the pattern argument (which is optional if it appears first and only needs partial spelling) is the only
argument to require this doubling or pairing. The replacement argument does not require the doubling of
characters needing to be escaped. If you wanted all the linefeeds and 4-space occurrences replaces with tabs it
would be:

gsub("\\n| "\, x)
#[1] "a\tb" "c\td" "e\tf"

Section 100.4: Validate US States postal abbreviations

The following regex includes 50 states and also Commonwealth/Territory (see www.50states.com):

regex <-
"(A[LKSZR]) | (C[AOT]) | (D[EC]) | (F[ML])|(G[AU])|(HI)|(I[DLNA])|(K[SY])|(LA)|(M[EHDAINSOT])|(N[EVHJMYCD
1)1 (MP) | (O[HKR]) | (P[WAR]) | (RI) [ (S[CD]) | (TINX]) | (UT) [ (VITIA])|(W[AVIY])"

For example:
S test <- c(llALII' ”AZ”' IIARII' IIAJII' ”AS”' IchlI' IIFMII' "GU”'”PW”, ”FL”, ”AJ”, IIAPII)
> grepl(us.states.pattern, test)

[1] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

>

Note:

If you want to verify only the 50 States, then we recommend to use the R-dataset: state.abb from state, for
example:

> data(state)
> test %in% state.abb
[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

We get TRUE only for 50-States abbreviations: AL, AZ, AR, FL.

Section 100.5: Validate US phone numbers

The following regular expression:
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us.phones.regex <- "A\\s*x(\\+\\s*1(-?|\\s+))*[0-9]{3}\\s*-?\\s*[0-9]{3}\\s*-?2\\s*[0-9]{4}S$"

Validates a phone number in the form of: +1-xxx-xxx-xxxx, including optional leading/trailing blanks at the
beginning/end of each group of numbers, but not in the middle, for example: +1-xxx-xxx-xx xx is not valid. The -
delimiter can be replaced by blanks: xxx xxx xxx or without delimiter: xxxxxxxxxx. The +1 prefix is optional.

Let's check it:

us.phones.regex <- "A\\sx(\\+\\s*1(-?|\\s+))*[0-9]{3}\\s*-?\\s*[0-9]{3}\\s*-?2\\s*[0-9]{4}S$"

phones.OK <- ¢("305-123-4567", "305 123 4567", "+1-786-123-4567",
"+1 786 123 4567", "7861234567", "786 - 123  4567", "+ 1 786 - 123  4567")

phones.NOK <- c("124-456-78901", "124-456-789", "124-456-78 90",
"124-45 6-7890", "12 4-456-7890")

Valid cases:

> grepl(us.phones.regex, phones.OK)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

>
Invalid cases:

> grepl(us.phones.regex, phones.NOK)
[1] FALSE FALSE FALSE FALSE FALSE

>

Note:

* \\s Matches any space, tab or newline character
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Chapter 101: Combinatorics

Section 101.1: Enumerating combinations of a specified length

Without replacement
With combn, each vector appears in a column:

combn(LETTERS, 3)

# Showing only first 160.

(.11 [,2] [,31 [,4] [,5] [,e] [.7] [,8] [,9] [,18@]

[1,] uAu nAn uAu nAn uAu nAn uAu nAn uAu nAn
[2'] an an an an an an an an an an
[3'] llcll IIDII IIEII IIFII IIGII IIHII IIIII ”J” IIKII IILII

With replacement

With expand.grid, each vector appears in a row:

expand.grid (LETTERS, LETTERS, LETTERS)

# or

do.call(expand.grid, rep(list(LETTERS), 3))

# Showing only first 1@.
Var1 Var2 Var3

For the special case of pairs, outer can be used, putting each vector into a cell:

# FUN here is used as a function executed on each resulting pair.
# in this case it's string concatenation.

1 A A A
2 B A A
3 c A A
4 D A A
5 E A A
6 P A A
7 G A A
8 H A A
9 I A A
10 J A A

outer(LETTERS, LETTERS, FUN=paste0)

# Showing only first 10 rows and columns

(,11 [,2] [,3] [.,4] [,5]1 [,6] [,7] [,8] [,9] [,18@]
[1,1 "AA" "AB" "AC" "AD" "AE" "AF" "AG" "AH" "AI" "AJ"
[2,] "BA" "BB" "BC" "BD" "BE" "BF" "BG" "BH" "BI" "BJ"
[3,] "CA" "cB" "CcC" "CD" "CE" "CF" "CG" "CH" "CI" "CJ"
[4,1 "DA" "DB" "DC" "DD" "DE" "DF" "DG" "DH" "DI" "DJ"
[5,] "EA" "EB" "EC" "ED" "EE" "EF" "EG" "EH" "EI" "EJ"
[6,] "FA" "FB" "FC" "FD" "FE" "FF" "FG" "FH" "FI" "FJ"
[7,] "GA" "GB" "GC" "GD" "GE" "GF" "GG" "GH" "GI" "GJ"
[8,] "HA" "HB" "HC" "HD" "HE" "HF" "HG" "HH" "HI" "HJ"
[9,]1 "IA" "IB" "IC" "ID" "IE" "IF" "IG" "IH" "II" "IJ"

[16,] "JA" "JB" "JC" "JD" "JE" "JF" "JG" "JH" "JI" "JJ"
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Section 101.2: Counting combinations of a specified length

Without replacement

choose(length(LETTERS), 5)
[1] 657886

With replacement

length(letters)”5
[1] 11881376
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Chapter 102: Solving ODEs in R

Parameter Details
y (named) numeric vector: the initial (state) values for the ODE system
times  time sequence for which output is wanted; the first value of times must be the initial time
func  name of the function that computes the values of the derivatives in the ODE system
parms (named) numeric vector: parameters passed to func
method the integrator to use, by default: Isoda

Section 102.1: The Lorenz model

The Lorenz model describes the dynamics of three state variables, X, Y and Z. The model equations are:

(0 et 1
7 Cet+1l 14t
et 1
i = =
o(t) et + 1 1 +et
et 1

al(t) = =

et + 1 14 et
The initial conditions are:

et 1

Et_|_1:1_|_,5—t

ol(t) =

and a, b and c are three parameters with

(0 et 1
o\ = et +1  1+et
et 1

et 1l 1 4ett

library(deSolve)

T
## Define R-function
. e

Lorenz <- function (t, y, parms) {
with(as.list(c(y, parms)), {

dX <- a * X +Y * Z

dY <- b * (Y - 2)

dZ <- X *Y +c*Y - Z

return(list(c(dX, dY, dZ)))
1)
}

b R
## Define parameters and variables
A e L T R R
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parms <- c(a = -8/3, b = -10, c = 28)
yini <- ¢(X =1, Y=1, Z=1)
times <- seq(from = 0, to = 100, by = 0.01)

e

## Solve the ODEs

2 L T P
out <- ode(y = yini, times = times, func = Lorenz, parms = parms)

BB - - o m s m e oo

## Plot the results

e

plot(out, lwd = 2)
plot(out[,"X"], out[,"Y"],

type = "1", xlab = "X",

ylab = "Y", main = "butterfly")
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Section 102.2: Lotka-Volterra or: Prey vs. predator

library(deSolve)

e

## Define R-function

o i S s s e e e o o o s 3 e 3 e 3 o e o S 3 o o

LV <- function(t, y, parms) {
with(as.list(c(y, parms)), {

100
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dP <- rG * P * (1 - P/K) - rI * P * C
dC <- rI * P * C * AE - rM * C

return(list(c(dP, dC), sum = C+P))
1)
}

7B S S S
## Define parameters and variables
I e L T T LT e R R T T ETEE

parms <- c(rI = 0.2, rG=1.0, rM = 0.2, AE = 0.5, K = 10)
yini <- ¢(P =1, C = 2)
times <- seq(from = 0, to = 200, by = 1)

2 T T L LT
## Solve the ODEs
R L

out <- ode(y = yini, times = times, func = LV, parms

1}
©
Q
=)
3
(0]
-~

A e
## Plot the results
T

matplot(out[ ,1], out[ ,2:4], type = "1", xlab = "time", ylab = "Conc",
main = "Lotka-Volterra", lwd = 2)
legend("topright", c("prey", "predator", "sum"), col = 1:3, lty = 1:3)

Lotka-Volterra

— prey
‘i predator
e sum

Conc

0 50 100 150 200

time

GoalKicker.com - R Notes for Professionals 369


https://i.stack.imgur.com/inQWC.png
http://goalkicker.com/

Section 102.3: ODEs in compiled languages - definition in R

library(deSolve)

A b R e R R
## Define parameters and variables
A e e R TR

eps <- 0.01;

M <- 10

k <- M * eps™2/2
L <-1

LO <- 0.5

r <- 0.1

w <- 10

g<-1

parameter <- c(eps = eps, M=M, k=k, L=1L, LO=LO, r=r, w=w, g=0)

yini <- c¢(xl =0, yl =10, xr =L, yr = LO,
ul = -Lo/L, vl
ur = -LO/L, vr
laml = 0, lam2

I}
o oMo

)

times <- seq(from = 0, to = 3, by = 0.01)

e I T
## Define R-function
. e I e

caraxis R <- function(t, y, parms) {
with(as.list(c(y, parms)), {

yb <- r * sin(w * t)

xb <- sqrt(L * L - yb * yb)

LT <- sqrt(x172 + yl172)

Lr <- sqrt((xr - xb)*2 + (yr - yb)"2)

dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr

dul <- (LO-L1) * x1/L1 + 2 * lam2 * (x1l-xr) + laml*xb
dvl <- (LO-L1) * yl/L1 + 2 lam2 * (yl-yr) + laml*yb - k * g

*

dur <- (LO-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr <- (LO-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g

*

cl <- xb * xU + yb * yl
c2 <- (XU - xr)”™2 + (yU - yr)®2 - L * L

return(list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, cl, c2)))

}
}

Section 102.4: ODEs in compiled languages - definition in C

sink("caraxis_C.c")
cat("
/* suitable names for parameters and state variables =*/

#include <R.h>
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#include <math.h>
static double parms[8];

#define eps parms[0]
#define m  parms[1]
#define k parms[2]
#define L parms[3]
#define LO parms[4]
#define r  parms[5]
#define w  parms[6]
#define g parms[7]

*/

void init_C(void (* daeparms)(int *, double *)) {
int N = 8;
daeparms (&N, parms);

}

/* Compartments =*/

#define x1 y[0]
#define yl y[1]
#define xr y[2]
#define yr y[3]
#define lam1 y[8]
#define lam2 y[9]

*/
void caraxis_C (int *neq, double *t, double *y, double *ydot,
double *yout, int* ip)

{
double yb, xb, Lr, LI1;
yb = r * sin(w * *t) ;
xb = sqrt(L * L - yb * yb);
L1 = sqrt(xl * x1 + yl * yl) ;
Lr = sqrt((xr-xb)*(xr-xb) + (yr-yb)x(yr-yb));
ydot[@] = y[4];
ydot[1] = y[5];
ydot[2] = y[6];
ydot[3] = y[7];
ydot[4] = (L@-L1) * x1/L1 + laml*xb + 2*lam2*(x1-xr) :
ydot[5] = (L@-L1) * yl/L1 + laml*yb + 2*lam2*(yl-yr) - kxg;
ydot[6] = (L@-Lr) * (xr-xb)/Lr - 2%lam2*(x1-xr) :
ydot[7] = (L@-Lr) * (yr-yb)/Lr - 2xlam2x(yl-yr) - kxg ;
ydot[8] = xb * x1 + yb * yl;
ydot[9] = (x1-xr) % (x1-xr) + (yl-yr) * (yl-yr) - L=*L;
}
", fill = TRUE)
sink()
system("R CMD SHLIB caraxis_C.c")
dyn.load(paste("caraxis_C", .Platform8dynlib.ext, sep = ""))
dllname_C <- dyn.load(paste("caraxis_C", .Platform$8dynlib.ext, sep = ""))[[1]]
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Section 102.5: ODEs in compiled languages - definition in

fortran

sink("caraxis fortran.f")
cat("

subroutine init fortran(daeparms)

external daeparms

integer, parameter :: N =8
double precision parms(N)
common /myparms/parms

call daeparms(N, parms)
return
end

subroutine caraxis fortran(neq, t, y, ydot, out, ip)
implicit none

integer neq, IP(*)

double precision t, y(neq), ydot(neq), out(*)

double precision eps, M, k, L, LO, r, w, g

common /myparms/ eps, M, k, L, LO, r, w, ¢

double precision x1, yl, xr, yr, ul, vl, ur, vr, laml, lam2
double precision yb, xb, L1, Lr, dx1l, dyl, dxr, dyr
double precision dul, dvl, dur, dvr, cl, c2

c expand state variables
xL = y(1
yl =y
Xr =
yr =
ul =
vl =
ur =
vr =
laml
lam2

I ¥ ¥ <K <K<

)
2)
3)
4)
5)
6)
7)
8)
y(9
y(1

)
0)

yb = r * sin(w * t)

xb = sqrt(L * L - yb * yb)

LT = sqrt(x1**2 + yl**2)

Lr = sqrt((xr - xb)**2 + (yr - yb)**2)

dx1l = ul

dyl = vl

dxr = ur

dyr = vr

dul = (LO-L1) * x1/L1 + 2 * lam2 * (xl-xr) + laml*xb

dvl = (LO-L1) * yl/L1 + 2 * 1lam2 * (yl-yr) + laml*yb - k*g
dur = (LO-Lr) * (xr-xb)/Lr - 2 * lam2 * (x1l-xr)

dvr = (LO-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k*g

cl = xb * xU + yb * yl
c2 = (xU - xr)**2 + (yl - yr)**2 - L * L
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¢ function values in ydot
ydot(1l) = dxl
ydot(2) = dyl
ydot(3) = dxr
ydot(4) = dyr
ydot(5) = dul
ydot(6) = dvl
ydot(7) = dur
ydot(8) = dvr

ydot(9) = cl

ydot(10) = c2

return

end

", fill = TRUE)

sink()

system("R CMD SHLIB caraxis fortran.f")

dyn.load(paste("caraxis_ fortran", .Platform$dynlib.ext, sep = ""))

dllname fortran <- dyn.load(paste("caraxis_ fortran", .Platform$dynlib.ext, sep = ""))[[1]]

Section 102.6: ODEs in compiled languages - a benchmark test

When you compiled and loaded the code in the three examples before (ODEs in compiled languages - definition in
R, ODEs in compiled languages - definition in C and ODEs in compiled languages - definition in fortran) you are able

to run a benchmark test.

library(microbenchmark)
R <- function(){

out <- ode(y = yini, times = times, func = caraxis_R,
parms = parameter)

C <- function(){

out <- ode(y = yini, times = times, func = "caraxis_C",
initfunc = "init_C", parms = parameter,
dllname = dllname_C)
}
fortran <- function(){
out <- ode(y = yini, times = times, func = "caraxis_fortran",
initfunc = "init_fortran", parms = parameter,

dllname = dllname_fortran)

Check if results are equal:

all.equal(tail(R()), tail(fortran()))
all.equal(R()[,2], fortran()[,2])
all.equal(R()[,2], c()[.,2])

Make a benchmark (Note: On your machine the times are, of course, different):

bench <- microbenchmark: :microbenchmark(

RO,

fortran(),

c(),
times = 1000
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)

summary (bench)

expr min 1q mean median uq max
R() 31508.928 33651.541 36747.8733 36062.2475 37546.8025 132996.564
fortran() 570.674 596.700 686.1084 637.4605 730.1775  4256.555
c() 562.163 590.377 673.6124 625.0700 723.8460  5914.347

Time [microseconds]

12+03 1e+04 1e+05

i

= farrand]

neval cld

1000
1000
1000

a
a

b

We see clearly, that R is slow in contrast to the definition in C and fortran. For big models it's worth to translate the
problem in a compiled language. The package cOde is one possibility to translate ODEs from R to C.
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Chapter 103: Feature Selection in R --
Removing Extraneous Features

Section 103.1: Removing features with zero or near-zero
variance

A feature that has near zero variance is a good candidate for removal.

You can manually detect numerical variance below your own threshold:

data("GermanCredit")
variances<-apply(GermanCredit, 2, var)
variances[which(variances<=0.0025)]

Or, you can use the caret package to find near zero variance. An advantage here is that is defines near zero
variance not in the numerical calculation of variance, but rather as a function of rarity:

"nearZeroVar diagnoses predictors that have one unique value (i.e. are zero variance predictors) or
predictors that are have both of the following characteristics: they have very few unique values relative to
the number of samples and the ratio of the frequency of the most common value to the frequency of the
second most common value is large..."

library(caret)
names (GermanCredit) [nearZeroVar(GermanCredit) ]

Section 103.2: Removing features with high numbers of NA

If a feature is largely lacking data, it is a good candidate for removal:

library(VIM)
data(sleep)
colMeans(is.na(sleep))

BodyWgt BrainWgt NonD Dream Sleep Span Gest
0.00000000 0.00000000 0.22580645 ©.19354839 0.06451613 0.06451613 0.06451613
Pred Exp Danger

0.00000000 0.00000000 0.00000000

In this case, we may want to remove NonD and Dream, which each have around 20% missing values (your cutoff
may vary)

Section 103.3: Removing closely correlated features

Closely correlated features may add variance to your model, and removing one of a correlated pair might help
reduce that. There are lots of ways to detect correlation. Here's one:

library(purrr) # in order to use keep()

# select correlatable vars
toCorrelate<-mtcars %>% keep(is.numeric)

# calculate correlation matrix
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correlationMatrix <- cor(toCorrelate)

# pick only one out of each highly correlated pair's mirror image
correlationMatrix[upper.tri(correlationMatrix)]<-0

# and I don't remove the highly-correlated-with-itself group
diag(correlationMatrix)<-0

# find features that are highly correlated with another feature at the +- 0.85 level
apply(correlationMatrix,2, function(x) any(abs(x)>=0.85))

mpg cyl disp hp drat wt gsec Vs am gear carb
TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

I'll want to look at what MPG is correlated to so strongly, and decide what to keep and what to toss. Same for cyl
and disp. Alternatively, | might need to combine some strongly correlated features.
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Chapter 104: Bibliography in RMD

Parameter in YAML header Detail

toc table of contents

number_sections numbering the sections automatically
bibliography path to the bibliography file

csl path to the style file

Section 104.1: Specifying a bibliography and cite authors

The most important part of your RMD file is the YAML header. For writing an academic paper, | suggest to use PDF

output, numbered sections and a table of content (toc).

title: "Writing an academic paper in R"
author: "Author"

date: "Date"

output:

pdf document:

number sections: yes

toc: yes

bibliography: bibliography.bib

In this example, our file bibliography.bib looks like this:

@ARTICLE{Meyer2000,
AUTHOR="Bernd Meyer",
TITLE="A constraint-based framework for diagrammatic reasoning",
JOURNAL="Applied Artificial Intelligence",
VOLUME= "14",
ISSUE = "4",
PAGES= "327--344",
YEAR=2000

To cite an author mentioned in your .bib file write @ and the bibkey, e.g. Meyer20080.

# Introduction

"@Meyer2000° results in @Meyer2000.

‘@Meyer2000 [p. 328]° results in @Meyer2000 [p. 328]
‘[@Meyer2000]° results in [@Meyer2000]
‘[-@Meyer2000]° results in [-@Meyer2000]

# Summary

# References

Rendering the RMD file via RStudio (Ctrl+Shift+K) or via console rmarkdown: : render ("<path-to-your-RMD-file">)

results in the following output:
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Writing an academic paper in R

Contents
1 Introduction
2 Summary

References

1 Introduction

@Meyer2000 results in Meyer (2000).

@Meyer2000 [p. 328] results in Meyer (2000, 328)

[@Meyer2000] results in (Meyer 2000)
[-@Meyer2000] results in (2000)

2 Summary

References

Meyer, Bernd. 2000. “A Constraint-Based Framework for Diagrammatic Reasoning” Applied Artificial

Intelligence 14 (4): 32744,

Section 104.2: Inline references

If you have no *.bib file, you can use a references field in the document's YAML metadata. This should include an

array of YAML-encoded references, for example:
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title: "Writing an academic paper in R"

author: "Author"
date: "Date"

output:

pdf document:

number sections: yes
toc: yes

references:

- id: Meyer2000

title: A Constraint-Based Framework for Diagrammatic Reasoning

author:

- family: Meyer
given: Bernd
volume: 14
issue: 4

publisher: Applied Artificial Intelligence

page: 327-344

type: article-journal
issued:

year: 2000

# Introduction

"@Meyer2000° results in @Meyer2000.

"@Meyer2000 [p. 328]° results in @Meyer2000 [p. 328]
" [@Meyer2000]° results in [@Meyer2000]

" [-@Meyer2000]° results in [-@Meyer2000]

# Summary

# References

Rendering this file results in the same output as in example "Specifying a bibliography".

Section 104.3: Citation styles

By default, pandoc will use a Chicago author-date format for citations and references. To use another style, you will
need to specify a CSL 1.0 style file in the cs| metadata field. In the following a often used citation style, the elsevier
style, is presented (download at https://github.com/citation-style-language/styles ). The style-file has to be stored in

the same directory as the RMD file OR the absolute path to the file has to be submitted.

To use another style then the default one, the following code is used:

title: "Writing an academic paper in R"

author: "Author"

date: "Date"

output:

pdf document:

number sections: yes

toc: yes

bibliography: bibliography.bib
csl: elsevier-harvard.csl

GoalKicker.com - R Notes for Professionals

379


https://github.com/citation-style-language/styles
http://goalkicker.com/

# Introduction

"@Meyer2000° results in @Meyer2000.

"@Meyer2000 [p. 328]  results in @Meyer2000 [p. 328]
" [@Meyer2000]° results in [@Meyer2000]

" [-@Meyer2000]° results in [-@Meyer2000]

# Summary

# Reference
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Writing an academic paper in R

Aunthor

Date
Contents
1 Introduction 1
2 Sumimary 1
Foefere e 1

1 Introduction

OMeyer2000 results in Meyver [ 2.

OMeyer2000 [p. 328] vesults In Meyer (2K, p.o 328)
[mMe yer 2000] resuliz in (Meyer, S0
[-tMeyer2000] resulis in [HNH)

2  Summary

Reference

Mever, B., HMM. A constraint-based famework for dingrammatie veasoning. Applied Arvtificial Intellgenos
14, k2T k4.

Notice the differences to the output of example "Specifying a bibliography and cite authors"
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Chapter 105: Writing functions in R

Section 105.1: Anonymous functions

An anonymous function is, as the name implies, not assigned a name. This can be useful when the function is a part
of a larger operation, but in itself does not take much place. One frequent use-case for anonymous functions is
within the *apply family of Base functions.

Calculate the root mean square for each column in a data. frame:
df <- data.frame(first=5:9, second=(0:4)"2, third=-1:3)
apply(df, 2, function(x) { sqrt(sum(x"2)) })

first second third
15.968719 18.814888 3.872983

Create a sequence of step-length one from the smallest to the largest value for each row in a matrix.

X <- sample(1:6, 12, replace=TRUE)
mat <- matrix(x, nrow=3)

apply(mat, 1, function(x) { seq(min(x), max(x)) })
An anonymous function can also stand on its own:

(function() { 1 })()
[1] 1

is equivalent to
f <- function() { 1 })

()
(1] 1

Section 105.2: RStudio code snippets

This is just a small hack for those who use self-defined functions often.
Type "fun" RStudio IDE and hit TAB.

«» functionBody {methods}
| @ functionBody<-  {methods}

1

2 fun

i |fun {00 | ${1:name} <- function (${2:variables}) {
s | ¢ function {base} ) ${3:code}

6

7

8

The result will be a skeleton of a new function.

name <- function(variables) {
}

One can easily define their own snippet template, i.e. like the one below
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name <- function(df, x, y) {
require(tidyverse)
out <-
return(out)

The option is Edit Snippets in the Global Options -> Code menu.

Section 105.3: Named functions

Ris full of functions, it is after all a functional programming language, but sometimes the precise function you need
isn't provided in the Base resources. You could conceivably install a package containing the function, but maybe
your requirements are just so specific that no pre-made function fits the bill? Then you're left with the option of
making your own.

A function can be very simple, to the point of being being pretty much pointless. It doesn't even need to take an
argument:

one <- function() { 1 }
one()
[1] 1

two <- function() { 1 + 1 }
two()
[1] 2

What's between the curly braces { } is the function proper. As long as you can fit everything on a single line they
aren't strictly needed, but can be useful to keep things organized.

A function can be very simple, yet highly specific. This function takes as input a vector (vec in this example) and
outputs the same vector with the vector's length (6 in this case) subtracted from each of the vector's elements.

vec <- 4:9

subtract.length <- function(x) { x - length(x) }
subtract.length(vec)

[1] -2 -1 @ 1 2 3

Notice that 1ength() is in itself a pre-supplied (i.e. Base) function. You can of course use a previously self-made
function within another self-made function, as well as assign variables and perform other operations while
spanning several lines:

vec2 <- (4:7)/2

msdf <- function(x, multiplier=4) {
mult <- x * multiplier
subl <- subtract.length(x)
data.frame(mult, subl)

}

msdf (vec2, 5)
mult subl

1 10.0 -2.0

2 12.5 -1.5

3 15.0 -1.0

4 17.5 -0.5

multiplier=4 makes sure that 4 is the default value of the argument multiplier, if no value is given when calling
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the function 4 is what will be used.

The above are all examples of named functions, so called simply because they have been given names (one, two,
subtract.length etc.)
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Chapter 106: Color schemes for graphics

Section 106.1: viridis - print and colorblind friendly palettes

Viridis (named after the chromis viridis fish) is a recently developed color scheme for the Python library matplotlib
(the video presentation by the link explains how the color scheme was developed and what are its main
advantages). It is seamlessly ported to R.

There are 4 variants of color schemes: magma, plasma, inferno, and viridis (default). They are chosen with the
option parameter and are coded as A, B, C, and D, correspondingly. To have an impression of the 4 color schemes,
look at the maps:

US unemployment rate by county

option A aka 'magma’ option B aka 'inferno'

an

option C aka 'plasma’ option D aka "viridis'

an

20

(image souce)
The package can be installed from CRAN or github.
The vignette for viridis package is just brilliant.

Nice feature of the viridis color scheme is integration with ggplot2. Within the package two ggplot2-specific
functions are defined: scale_color_viridis() and scale_fill_viridis(). See the example below:

library(viridis)
library(ggplot2)

gg1l <- ggplot(mtcars)+
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geom_point(aes(x = mpg, y = hp, co
scale_color_viridis(option = "B")+
theme_minimal()+
theme(legend.position = ¢(.8,.8))

gg2 <- ggplot(mtcars)+

geom_violin(aes(x = factor(cyl), y = hp, fill = factor(cyl)))+

lor = disp), size = 3)+

scale_fill viridis(discrete = T)+

theme_minimal()+
theme(legend.position = 'none’

library(cowplot)

output <- plot_grid(ggl,gg2, labels =
print(output)

B ® d

300
@
e
a 200
£y
000 .o
@
o0
e ©
100
o9 ®
e ©
10 15 20 25
mpg

Section 106.2: A handy function to glimse a vector of colors

)

c('B','D"),label_size =

isp D
400
300
300
200

100

200

hp

30 35

20)

6
factor(cyl)

Quite often there is a need to glimpse the chosen color palette. One elegant solution is the following self defined

function:

color_glimpse <- function(colors_strin
n <- length(colors_string)
hist(1:n,breaks=0:n,col=colors

An example of use

color_glimpse(blues9)

g){

_string)
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Histogram of 1:n

1.0

0.8

Frequency

0.4

0.2

0.0

1n

Section 106.3: colorspace - click&drag interface for colors

The package colorspace provides GUI for selecting a palette. On the call of choose_palette() function the
following window pops-up:
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Choose Color Palette
File |

The nature of your data |Diuerg'ing =

Default color schemes

EEEEEEEE™
EEEEEEE -

Palette description: Hue, Chroma, Luminance, Power

H1 | Sl 260
H2 | EE o
a | =ils B0
c2 1] |
1| i 30
L2 | I [e0
P1 | i 1.5
2 1] |

W Correct all colors to valid RGE color model values

Number of colors in palette

.|| 7

Show example

Plot type| ~| [~ Reverse colors

[~ Desaturation [~ Color blindness: ¢ deutan - protan ™ tritan

oK | Cancel |

When the palette is chosen, just hit 0K and do not forget to store the output in a variable, e.g. pal.

pal <- choose_palette()

The output is a function that takes n (number) as input and produces a color vector of length n according to the
selected palette.

pal(10)

[1] "#823FA5" "#6371AF" "#959CC3" "#BEC1D4" "#DBDCE@" "#EGDBDC" "#D6BCCO" "#C6909A" "#AES5A6D"
"#8E0G63B"

Section 106.4: Colorblind-friendly palettes

Even though colorblind people can recognize a wide range of colors, it might be hard to differentiate between
certain colors.

RColorBrewer provides colorblind-friendly palettes:
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library(RColorBrewer)
display.brewer.all(colorblindFriendly = T)

YIOrRd [ I A N A
YIOrBr e
YIGnBu [ I I
YiGn ]
Reds ]
RdPu ]
Purples [ I I
PuRd [T S S R R
PuBuGn ]
PuBu ]
OrRd [ I N
Oranges e
Greys e
Greens e
GnBu - I
BuPu ]
BuGn ]
Blues [T N I R N
Setz [ L
Paired I I I I I —/—
Dark2 | I N O . — I
RaviBu I N [T I
RaBu I [ I
Puor I I . e !
PRGn I [T P —
PivG I I [ e —_—
Ghcle | [ P —

The Color Universal Design from the University of Tokyo proposes the following palettes:

#palette using grey

cbPalette <- c("#999999", "#E69F00", "#56B4E9", "#O0O9E73", "#FOE442", "#0072B2", "#D55E00",
"#CC79A7")

#palette using black

cbbPalette <- c("#800000", "#E69F08", "#56BAEQ", "#BO9E73", "#FOE442", "#0072B2", "#D55E00",
"#CC79A7")

Section 106.5: RColorBrewer

ColorBrewer project is a very popular tool to select harmoniously matching color palettes. RColorBrewer is a port of
the project for R and provides also colorblind-friendly palettes.

An example of use

colors_vec <- brewer.pal(5, name = 'BrBG')
print(colors_vec)
[1] "#A6611A" "#DFC27D" "#F5F5F5" "#80CDC1" "#018571"

RColorBrewer creates coloring options for ggplot2: scale_color_brewer and scale_fill_brewer.

library(ggplot2)
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ggplot(mtcars)+
geom_point(aes(x = mpg, y = hp, color = factor(cyl)), size = 3)+
scale_color_brewer(palette = 'Greens')+
theme_minimal()+
theme(legend.position = ¢(.8,.8))

G factor(cyl)
300 4
° 6
® @ ® 8
@
Q. 200 o
® 00 gg
Lo
100
10 15 20 25 30

mpg

Section 106.6: basic R color functions

35

Function colors() lists all the color names that are recognized by R. There is a nice PDF where one can actually see

those colors.

colorRampPalette creates a function that interpolate a set of given colors to create new color palettes. This output

function takes n (number) as input and produces a color vector of length n interpolating the initial colors.

pal <- colorRampPalette(c('white', 'red'))
pal(5)
[1] "#FFFFFF" "#FFBFBF" "#FF7F7F" "#FF3F3F" "#FF0000"

Any specific color may be produced with an rgb() function:
rgb(e,1,0)

produces green color.
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Chapter 107: Hierarchical clustering with
hclust

The stats package provides the helust function to perform hierarchical clustering.

Section 107.1: Example 1 - Basic use of hclust, display of
dendrogram, plot clusters

The cluster library contains the ruspini data - a standard set of data for illustrating cluster analysis.

library(cluster) ## to get the ruspini data
plot(ruspini, asp=1, pch=20) ## take a look at the data

o] "",. * ll-
W — . *au
L]
D p—
=
* . : -if
o | . e
L -
o _ .
[ [ [ [
0 50 100 150
X

hclust expects a distance matrix, not the original data. We compute the tree using the default parameters and
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display it. The hang parameter lines up all of the leaves of the tree along the baseline.

ruspini_hc_defaults <- hclust(dist(ruspini))

dend <- as.dendrogram(ruspini_hc_defaults)

if(!require(dendextend)) install.packages("dendextend"); library(dendextend)
dend <- color_branches(dend, k = 4)

plot(dend)

150
|

100
|

50
|

) %Emﬁ{ e, B T
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[ 10 o & AT ATATLH IS & LN ol of of ablol o o8 LF N AN RN RN RN R RN RN ITRITS TE Ve i N Tolinte o Te (o (o (al(e (o (0 pr pr(u (0100 o p it il o e

Cut the tree to give four clusters and replot the data coloring the points by cluster. k is the desired number of
clusters.

rhc_def_4 = cutree(ruspini_hc_defaults, k=4)
plot(ruspini, pch=20, asp=1, col=rhc_def_4)
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This clustering is a little odd. We can get a better clustering by scaling the data first.

scaled_ruspini_hc_defaults = hclust(dist(scale(ruspini)))
srhc_def_4 = cutree(scaled_ruspini_hc_defaults,4)
plot(ruspini, pch=20, asp=1, col=srhc_def_4)
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The default dissimilarity measure for comparing clusters is "complete”. You can specify a different measure with

the method parameter.

ruspini_hc_single = hclust(dist(ruspini), method="single")

Section 107.2: Example 2 - hclust and outliers

With hierarchical clustering, outliers often show up as one-point clusters.

Generate three Gaussian distributions to illustrate the effect of outliers.

set.seed(656)

x = c¢(rnorm(150, ©, 1), rnorm(150,9,1), rnorm(150,4.5,1))
y = c¢(rnorm(156, 0, 1), rnorm(150,0,1), rnorm(150,5,1))
XYdf = data.frame(x,y)

plot(XYdf, pch=20)
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Build the cluster structure, split it into three cluster.

XY_sing = hclust(dist(XYdf), method="single")
XYs3 = cutree(XY_sing, k=3)

table(XYs3)
XYs3

1 2 3
448 1 1

hclust found two outliers and put everything else into one big cluster. To get the "real" clusters, you may need to set
k higher.

XYs6 = cutree(XY_sing, k=6)
table(XYs6)
XYs6

1 2 3 4 5 6
148 150 1 149 1 1
plot(XYdf, pch=20, col=XYs6)

GoalKicker.com - R Notes for Professionals 395


https://i.stack.imgur.com/c5uMw.png
http://goalkicker.com/

o - . *
e .:. ""'-ln . @
s Bag »
© -ﬂ-.‘"i’.--!
- l'. -‘-.‘ﬁ? >
Y L R
. et my e
< - #-:.". s "
=l .,.- L] - " L]
™ — s = . - .
. -l-- :-i::::'{- . " : -.:' .
. .': L .:'l‘-l ot .,. .*r ':i' .:f-
L] g & .‘: = - -1. o »
O — L] |- - L) " - ™ - 3-'.. L
. [ 4 ,‘:; - a* . ® . » . 5
. . LI ™ - . [ ] * .T.‘I -
. ™ '. - - ’;- ™ . - {:.: ,.- .
{\l\'I — ot = 2 ot
| | [ [ [ [ [
-2 0 2 4 6 8 10 12
X

This StackOverflow post has some guidance on how to pick the number of clusters, but be aware of this behavior in
hierarchical clustering.
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Chapter 108: Random Forest Algorithm

RandomForest is an ensemble method for classification or regression that reduces the chance of overfitting the
data. Details of the method can be found in the Wikipedia article on Random Forests. The main implementation for
Ris in the randomForest package, but there are other implementations. See the CRAN view on Machine Learning.

Section 108.1: Basic examples - Classification and Regression

###### Used for both Classification and Regression examples
library(randomForest)

library(car) ## For the Soils data

data(Soils)

HHHHBHHRHH AR H AR AR H AR AR AR H R AR H R AR AR RS
## RF Classification Example

set.seed(656) ## for reproducibility
S_RF_Class = randomForest(Gp ~ ., data=Soils[,c(4,6:14)])
Gp_RF = predict(S_RF_Class, Soils[,6:14])
length(which(Gp_RF '= So0ils$Gp)) ## No Errors

## Naive Bayes for comparison

library(e1671)

S_NB = naiveBayes(Soils[,6:14], Soils[,4])

Gp_NB = predict(S_NB, Soils[,6:14], type="class")
length(which(Gp_NB !'= So0ils$Gp)) ## 6 Errors

This example tested on the training data, but illustrates that RF can make very good models.

HHHHRHH AR H AR H AR F AR H AR AR AR H AR AR H AR AR AR H AR
## RF Regression Example

set.seed(656) ## for reproducibility
S_RF_Reg = randomForest(pH ~ ., data=Soils[,6:14])
pH_RF = predict(S_RF_Reg, Soils[,6:14])

## Compare Predictions with Actual values for RF and Linear Model
S_LM = 1m(pH ~ ., data=Soils[,6:14])

pH_LM = predict(S_LM, Soils[,6:14])

par(mfrow=c(1,2))

plot(Soils$pH, pH_RF, pch=20, ylab="Predicted", main="Random Forest")
abline(0,1)

plot(SoilsSpH, pH_LM, pch=20, ylab="Predicted", main="Linear Model")
abline(0,1)
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Chapter 109: RESTful R Services

OpenCPU uses standard R packaging to develop, ship and deploy web applications.

Section 109.1: opencpu Apps

The official website contain good exemple of apps: https://www.opencpu.org/apps.html

The following code is used to serve a R session:

library(opencpu)
opencpu$start(port = 5936)

After this code is executed, you can use URLs to access the functions of the R session. The result could be XML,
html, JSON or some other defined formats.

For exemple, the previous R session can be accessed by a cURL call:

#curl uses http post method for -X POST or -d "arg=value"
curl http://localhost:5936/ocpu/library/MASS/scripts/ch@1.R -X POST
curl http://localhost:5936/ocpu/library/stats/R/rnorm -d "n=10&mean=5"

The call is asynchronous, meaning that the R session is not blocked while waiting for the call to finish (contrary to

shiny).
The call result is kept in a temporary session stored in /ocpu/tmp/

An exemple of how to retrieve the temporary session:

curl https://public.opencpu.org/ocpu/library/stats/R/rnorm -d n=5
/ocpu/tmp/x009f9e7630/R/.val

/ocpu/tmp/x009f9e7630/stdout

/ocpu/tmp/x009f9e7630/source

/ocpu/tmp/x009f9e7630/console

/ocpu/tmp/x009f9e7630/info

x009f9e7630 is the name of the session.

Pointing to /ocpu/tmp/x0089f9e7638/R/.val will return the value resulting of rnorm(5),
/ocpu/tmp/x809f9e7630/R/console will return the content of the console of rnorm(5), etc..
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Chapter 110: Machine learning

Section 110.1: Creating a Random Forest model

One example of machine learning algorithms is the Random Forest alogrithm (Breiman, L. (2001). Random Forests.
Machine Learning 45(5), p. 5-32). This algorithm is implemented in R according to Breiman's original Fortran
implementation in the randomForest package.

Random Forest classifier objects can be created in R by preparing the class variable as factor, which is already
apparent in the iris data set. Therefore we can easily create a Random Forest by:

library(randomForest)

rf <- randomForest(x iris[, 1:4],
y = irisS$Species,
ntree = 500,
do.trace = 100)

rf

# Call:

# randomForest(x = iris[, 1:4], y = irisSSpecies, ntree = 500, do.trace = 100)
# Type of random forest: classification

# Number of trees: 500

# No. of variables tried at each split: 2

#

# 00B estimate of error rate: 4%

# Confusion matrix:

# setosa versicolor virginica class.error

# setosa 50 0 0 0.00
# versicolor 0 47 3 0.06
# virginica (%] 3 47 0.06

parameters Description
X a data frame holding the describing variables of the classes

the classes of the individual obserbations. If this vector is factor, a classification model is created, if
y not a regression model is created.

ntree The number of individual CART trees built
do.trace every ith step, the out-of-the-box errors overall and for each class are returned
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Chapter 111: Using texreg to export models
in a paper-ready way

The texreg package helps to export a model (or several models) in a neat paper-ready way. The result may be
exported as HTML or .doc (MS Office Word).

Section 111.1: Printing linear regression results

# models

fit1l <- 1lm(mpg ~ wt, data = mtcars)

fit2 <- 1m(mpg ~ wt+hp, data = mtcars)
fit3 <- 1m(mpg ~ wt+hp+cyl, data = mtcars)

# export to html
texreg: :htmlreg(list(fit1,fit2,fit3), file="models.html")

# export to doc
texreg: :htmlreg(list(fit1,fit2,fit3),file="models.doc")

The result looks like a table in a paper.

Model 1 Model2 DModel 2
(Intercept) 37.29+*= 37 23+=x 3§ TS++=
(1.88) (1.60) (1.79)

wt -5 34 3 BRewx J | Tee=
(0.56) (0.63) (0.74)
hp -0.03= 002
(0.01) (0.01)
cyl -094
(0.535)
R2 0.75 0.83 0.84
Ady. R2 0.74 0.81 0.83
Num. obs. 32 32 32

RMSE 3.05 2.59 251
+oop < 0.001, ++p<0.01, +p <005

Statistical models

There are several additional handy parameters in texreg: :htmlreg() function. Here is a use case for the most
helpful parameters.

# export to html

texreg: :htmlreg(list(fit1,fit2,fit3),file="'models.html’,
single.row = T,
custom.model.names = LETTERS[1:3],
leading.zero = F,
digits = 3)

Which result in a table like this
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A B C
(Intercept) 37.285 (1.878)*=+ 37227 (1.399)*++ 38752 (1.787)%+=
wt -3344 (0.559)=+= -3 878 (0.633)=*= -3.167 (0.741)*=
hp -0.032 (0.009)=+ -0.018 (0.012)
cyl -0.942 (0.551)
R2 0.753 0.827 0.843
Ad) R2 0.745 0.815 0.826
Num. obs. 32 32 32
RMSE 3.046 2.593 2512

seep < 0.001, ++p = 0.01, *p < 0.03

Statistical models
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Chapter 112: Publishing

There are many ways of formatting R code, tables and graphs for publishing.

Section 112.1: Formatting tables

Here, "table" is meant broadly (covering data.frame, table,
Printing to plain text
Printing (as seen in the console) might suffice for a plain-text document to be viewed in monospaced font:

Note: Before making the example data below, make sure you're in an empty folder you can write to. Run getwd() and
read ?setwd if you need to change folders.

..w = options()Swidth
options(width = 500) # reduce text wrapping
sink(file = "mytab.txt")
summary(mtcars)
sink()
options(width = ..w)
rm(..w)

Printing delimited tables

Writing to CSV (or another common format) and then opening in a spreadsheet editor to apply finishing touches is
another option:

Note: Before making the example data below, make sure you're in an empty folder you can write to. Run getwd() and
read ?setwd if you need to change folders.

write.csv(mtcars, file="mytab.csv")

Further resources

e knitr::kable
stargazer
tables: :tabular
texreg

xtable

Section 112.2: Formatting entire documents
Sweave from the utils package allows for formatting code, prose, graphs and tables together in a LaTeX document.

Further Resources

e Knitr and RMarkdown
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Chapter 113. Implement State Machine
Pattern using S4 Class

Finite States Machine concepts are usually implemented under Object Oriented Programming (OOP) languages, for
example using Java language, based on the State pattern defined in GOF (refers to the book: "Design Patterns").

R provides several mechanisms to simulate the OO paradigm, let's apply S4 Object System for implementing this
pattern.

Section 113.1: Parsing Lines using State Machine

Let's apply the State Machine pattern for parsing lines with the specific pattern using S4 Class feature from R.
PROBLEM ENUNCIATION

We need to parse a file where each line provides information about a person, using a delimiter (" ; "), but some
information provided is optional, and instead of providing an empty field, it is missing. On each line we can have the
following information: Name ; [Address; ]Phone. Where the address information is optional, sometimes we have it
and sometimes don't, for example:

GREGORY BROWN; 25 NE 25TH; +1-786-987-6543
DAVID SMITH;786-123-4567
ALAN PEREZ; 25 SE 50TH; +1-786-987-5553

The second line does not provide address information. Therefore the number of delimiters may be deferent like in
this case with one delimiter and for the other lines two delimiters. Because the number of delimiters may vary, one
way to atack this problem is to recognize the presence or not of a given field based on its pattern. In such case we
can use a regular expression for identifying such patterns. For example:

e Name: "A([A-Z]"'2\\s+)* *[A-Z]+(\\s+[A-Z]{1,2}\\.?,? +)*[A-Z]+((-|\\s+)[A-Z]+)*$". For example:
RAFAEL REAL, DAVID R. SMITH, ERNESTO PEREZ GONZALEZ, ©' CONNOR BROWN, LUIS PEREZ-MENA, etc.

o Address: "A\\s[0-9]{1,4}(\\s+[A-Z]{1,2}[0-9]1{1,2}[A-Z]{1,2}|[A-Z\\s0-9]+)$". For example: 11020
LE JEUNE ROAD, 87 SW 27TH. For the sake of simplicity we don't include here the zipcode, city, state, but | can
be included in this field or adding additional fields.

e Phone: ""\\s*(\\+1(-|\\s+))*[0-9]1{3}(-|\\s+)[08-9]{3}(-|\\s+)[08-9]1{4}$". For example:
305-123-4567, 305 123 4567, +1-786-123-4567.

Notes:

¢ | am considering the most common pattern of US addresses and phones, it can be easy extended to consider
more general situations.

e In R the sign "\" has special meaning for character variables, therefore we need to escape it.

¢ In order to simplify the process of defining regular expressions a good recommendation is to use the
following web page: regex101.com, so you can play with it, with a given example, until you get the expected
result for all possible combinations.

The idea is to identify each line field based on previously defined patterns. The State pattern define the following
entities (classes) that collaborate to control the specific behavior (The State Pattern is a behavior pattern):
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Context State

+request() +handlel)
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state.handleﬂb] ConcreteStateA ConcreteStateB
+handle() +handlel)

Let's describe each element considering the context of our problem:

¢ Context: Stores the context information of the parsing process, i.e. the current state and handles the entire
State Machine Process. For each state, an action is executed (handle()), but the context delegates it, based
on the state, on the action method defined for a particular state (handle() from State class). It defines the
interface of interest to clients. Our Context class can be defined like this:

o Attributes: state
o Methods: handle(), ...
e State: The abstract class that represents any state of the State Machine. It defines an interface for
encapsulating the behavior associated with a particular state of the context. It can be defined like this:
o Attributes: name, pattern
o Methods: doAction(), isState (using pattern attribute verify whether the input argument belong to
this state pattern or not), ...

e Concrete States (state sub-classes): Each subclass of the class State that implements a behavior associated
with a state of the Context. Our sub-classes are: InitState, NameState, AddressState, PhoneState. Such
classes just implements the generic method using the specific logic for such states. No additional attributes
are required.

Note: It is a matter of preference how to name the method that carries out the action, handle(), doAction() or
goNext (). The method name doAction() can be the same for both classes (Stateor Context) we preferred to name
as handle() in the Context class for avoiding a confusion when defining two generic methods with the same input
arguments, but different class.

PERSON CLASS
Using the S4 syntax we can define a Person class like this:

setClass(Class = "Person",
slots = c(name = "character", address = "character", phone = "character")

)

It is a good recommendation to initialize the class attributes. The setClass documentation suggests using a generic
method labeled as "initialize", instead of using deprecated attributes such as: prototype, representation.

setMethod("initialize", "Person",
definition = function(.Object, name = NA_character_,
address = NA_character_, phone = NA_character_) {
.Object@name <- name
.Object@address <- address
.Object@phone <- phone
.Object

Because the initialize method is already a standard generic method of package methods, we need to respect the
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original argument definition. We can verify it typing on R prompt:
> initialize
It returns the entire function definition, you can see at the top who the function is defined like:

function (.Object, ...) {...}

Therefore when we use setMethod we need to follow exaclty the same syntax (.Object).

Another existing generic method is show, it is equivalent toString() method from Java and it is a good idea to have
a specific implementation for class domain:

setMethod("show", signature = "Person",
definition = function(object) {
info <- sprintf("%s@[name='%s', address='%s', phone="'%s']",
class(object), object@name, object@address, object@phone)
cat(info)
invisible(NULL)

Note: We use the same convention as in the default toString() Java implementation.

Let's say we want to save the parsed information (a list of Person objects) into a dataset, then we should be able
first to convert a list of objects to into something the R can transform (for example coerce the object as a list). We
can define the following additional method (for more detail about this see the post)

setGeneric(name = "as.list", signature = c('x"'),
def = function(x) standardGeneric("as.list"))

# Suggestion taken from here:
#
http://stackoverflow.com/questions/30386009/how-to-extend-as-list-in-a-canonical-way-to-s4-objects
setMethod("as.list", signature = "Person",
definition = function(x) {
mapply(function(y) {
#apply as.list if the slot is again an user-defined object
#therefore, as.list gets applied recursively
if (inherits(slot(x,y), "Person”)) {
as.list(slot(x,y))
} else {
#otherwise just return the slot
slot(x,y)
}
o
slotNames(class(x)),
SIMPLIFY=FALSE)

R does not provide a sugar syntax for OO because the language was initially conceived to provide valuable
functions for Statisticians. Therefore each user method requires two parts: 1) the Definition part (via setGeneric)
and 2) the implementation part (via setMethod). Like in the above example.

STATE CLASS

Following S4 syntax, let's define the abstract State class.
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setClass(Class = "State", slots = c(name = "character", pattern = "character"))

setMethod("initialize", "State",
definition = function(.0Object, name = NA_character_, pattern = NA_character_) {
.Object@name <- name
.Object@pattern <- pattern
.Object
}
)

setMethod("show", signature = "State",
definition = function(object) {
info <- sprintf("%s@[name='%s', pattern='%s']", class(object),
object@name, object@pattern)

cat(info)
invisible(NULL)
}
)
setGeneric(name = "isState", signature = c('obj', 'input'),

def = function(obj, input) standardGeneric("isState"))

setGeneric(name = "doAction", signature = c('obj', 'input', 'context'),
def = function(obj, input, context) standardGeneric("doAction"))

Every sub-class from State will have associated a name and pattern, but also a way to identify whether a given
input belongs to this state or not (isState() method), and also implement the corresponding actions for this state
(doAction() method).

In order to understand the process, let's define the transition matrix for each state based on the input received:

Input/Current State Init Name Address Phone

Name Name

Address Address

Phone Phone Phone

End End

Note: The cell [row, col]=[1,j] represents the destination state for the current state j, when it receives the input

i

It means that under the state Name it can receive two inputs: an address or a phone number. Another way to
represents the transaction table is using the following UML State Machine diagram:
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is error: when the input argument has an invalid pattern

Let's implement each particular state as a sub-state of the class State
STATE SUB-CLASSES
Init State:
The initial state will be implemented via the following class:
setClass("InitState", contains = "State")
setMethod("initialize", "InitState",
definition = function(.Object, name = "init", pattern = NA_character_) {

.Object@name <- name
.Object@pattern <- pattern

.Object
}
)
setMethod("show", signature = "InitState",
definition = function(object) {
callNextMethod()
}

In R to indicate a class is a sub-class of other class is using the attribute contains and indicating the class name of
the parent class.
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Because the sub-classes just implement the generic methods, without adding additional attributes, then the show
method, just call the equivalent method from the upper class (via method: callNextMethod())

The initial state does not have associated a pattern, it just represents the beginning of the process, then we initialize
the class with an NA value.

Now lets to implement the generic methods from the State class:

setMethod(f = "isState", signature = "InitState",
definition = function(obj, input) {
nameState <- new("NameState")
result <- isState(nameState, input)
return(result)

For this particular state (without pattern), the idea it just initializes the parsing process expecting the first field will
be a name, otherwise it will be an error.

setMethod(f = "doAction", signature = "InitState",
definition = function(obj, input, context) {

nameState <- new("NameState")

if (isState(nameState, input)) {
person <- context@person
person@name <- trimws(input)
context@person <- person
context@state <- nameState

} else {
msg <- sprintf("The input argument: '%s' cannot be identified", input)
stop(msg)

}

return(context)

The doAction method provides the transition and updates the context with the information extracted. Here we are
accessing to context information via the @-operator. Instead, we can define get/set methods, to encapsulate this
process (as it is mandated in OO best practices: encapsulation), but that would add four more methods per get-set
without adding value for the purpose of this example.

It is a good recommendation in all doAction implementation, to add a safeguard when the input argument is not
properly identified.

Name State

Here is the definition of this class definition:

setClass ("NameState", contains = "State")

setMethod("initialize", "NameState",
definition=function(.0Object, name="name",
pattern = "A([A-Z]'?2\\s+)* *[A-Z]+(\\s+[A-Z]{1,2}\\.?2,? +)*[A-Z]+((-|\\s+)[A-Z]+)*S$") {
.Object@pattern <- pattern
.Object@name <- name
.Object
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setMethod("show", signature = "NameState",
definition = function(object) {
callNextMethod()
}
)

We use the function grepl for verifying the input belongs to a given pattern.

setMethod(f="isState", signature="NameState",
definition=function(obj, input) {
result <- grepl(obj@pattern, input, perl=TRUE)
return(result)

Now we define the action to carry out for a given state:

setMethod(f = "doAction", signature = "NameState",
definition=function(obj, input, context) {

addressState <- new("AddressState")

phoneState <- new("PhoneState")

person <- context@person

if (isState(addressState, input)) {
person@address <- trimws(input)
context@person <- person
context@state <- addressState

} else if (isState(phoneState, input)) {
person@phone <- trimws(input)
context@person <- person
context@state <- phoneState

} else {

msg <- sprintf("The input argument: '%s' cannot be identified", input)

stop(msg)
}

return(context)

Here we consider to possible transitions: one for Address state and the other one for Phone state. In all cases we

update the context information:

¢ The person information: address or phone with the input argument.
¢ The state of the process

The way to identify the state is to invoke the method: isState() for a particular state. We create a default specific

states (addressState, phoneState)and then ask for a particular validation.

The logic for the other sub-classes (one per state) implementation is very similar.

Address State

setClass("AddressState", contains = "State")

setMethod("initialize", "AddressState",
definition = function(.Object, name="address",

pattern = "M\\s[0-9]{1,4}(\\s+[A-Z]{1,2}[0-9]{1,2}[A-Z]{1,2} | [A-Z\\s0-9]+)$") {

.Object@pattern <- pattern
.Object@name <- name
.Object
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)

setMethod("show", signature = "AddressState",
definition = function(object) {
callNextMethod()
}
)

setMethod(f="isState", signature="AddressState",
definition=function(obj, input) {
result <- grepl(obj@pattern, input, perl=TRUE)
return(result)

)

setMethod(f = "doAction", "AddressState",
definition=function(obj, input, context) {

phoneState <- new("PhoneState")

if (isState(phoneState, input))
person <- context@person
person@phone <- trimws(input)
context@person <- person
context@state <- phoneState

} else {
msg <- sprintf("The input argument: '%s' cannot be identified", input)
stop(msg)

}

return(context)

Phone State

setClass("PhoneState", contains = "State")
setMethod("initialize", "PhoneState",
definition = function(.0Object, name = "phone",

pattern = "A\\s*(\\+1(-|\\s+))*[0-9]{3}(-|\\s+)[0-9]{3}(-|\\s+)[0-9]{4}S$") {
.Object@pattern <- pattern
.Object@name <- name

.Object
}
)
setMethod("show", signature = "PhoneState",
definition = function(object) {
callNextMethod()

}
)

setMethod(f = "isState", signature = "PhoneState",
definition = function(obj, input) {
result <- grepl(obj@pattern, input, perl = TRUE)
return(result)

Here is where we add the person information into the list of persons of the context.

setMethod(f = "doAction", "PhoneState",
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definition = function(obj, input, context) {
context <- addPerson(context, context@person)
context@state <- new("InitState")
return(context)

CONTEXT CLASS
Now the lets to explain the Context class implementation. We can define it considering the following attributes:

setClass(Class = "Context",
slots = c(state = "State", persons = "list", person = "Person")

)
Where

¢ state: The current state of the process
¢ person: The current person, it represents the information we have already parsed from the current line.
¢ persons: The list of parsed persons processed.

Note: Optionally, we can add a name to identify the context by name in case we are working with more than one
parser type.

setMethod(f="initialize", signature="Context",
definition = function(.Object) {
.Object@state <- new("InitState")
.Object@persons <- list()
.Object@person <- new("Person")
return(.0Object)

)

setMethod("show", signature = "Context",
definition = function(object) {
cat("An object of class ", class(object), "\n", sep = "")
info <- sprintf("[state='%s', persons='%s', person='%s']", object@state,
toString(object@persons), object@person)

cat(info)
invisible(NULL)
}
)
setGeneric(name = "handle", signature = c('obj', 'input', 'context'),

def = function(obj, input, context) standardGeneric("handle"))

setGeneric(name = "addPerson", signature = c('obj', 'person')
def = function(obj, person) standardGeneric("addPerson"))
setGeneric(name = "parselLine", signature = c('obj', 's'),
def = function(obj, s) standardGeneric("parseLine"))
setGeneric(name = "parselLines", signature = c('obj', 's")
def = function(obj, s) standardGeneric("parselLines"))

setGeneric(name = "as.df", signature = c('obj")
def = function(obj) standardGeneric("as.df"))

With such generic methods, we control the entire behavior of the parsing process:
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handle(): Will invoke the particular doAction() method of the current state.

addPerson: Once we reach the end state, we need to add a person to the list of persons we have parsed.

parseLine(): Parse a single line
parseLines(): Parse multiple lines (an array of lines)
as.df(): Extract the information from persons list into a data frame object.

Let's go on now with the corresponding implementations:

handle() method, delegates on doAction() method from the current state of the context:

setMethod(f = "handle", signature = "Context",
definition = function(obj, input) {
obj <- doAction(obj@state, input, obj)
return(obj)

)

setMethod(f = "addPerson", signature = "Context",
definition = function(obj, person) {
obj@persons <- c(obj@persons, person)
return(obj)

First, we split the original line in an array using the delimiter to identify each element via the R-function strsplit(),
then iterate for each element as an input value for a given state. The handle() method returns again the context
with the updated information (state, person, persons attribute).

setMethod(f = "parselLine", signature = "Context",
definition = function(obj, s) {
elements <- strsplit(s, ";")[[1]]
# Adding an empty field for considering the end state.
elements <- c(elements, "")
n <- length(elements)
input <- NULL
for (i in (1:n)) {
input <- elements[i]
obj <- handle(obj, input)
}

return(obj@person)

Becuase R makes a copy of the input argument, we need to return the context (obj):

setMethod(f = "parselLines", signature = "Context",
definition = function(obj, s) {

n <- length(s)

listOfPersons <- list()

for (i in (1:n)) {
ipersons <- parselLine(obj, s[i])
listOfPersons[[i]] <- ipersons

}

obj@persons <- listOfPersons

return(obj)

GoalKicker.com - R Notes for Professionals 413


http://goalkicker.com/

The attribute persons is a list of instance of S4 Person class. This something cannot be coerced to any standard type
because R does not know of to treat an instance of a user defined class. The solution is to convert a Person into a
list, using the as.list method previously defined. Then we can apply this function to each element of the list
persons, via the lapply() function. Then in the next invocation to lappy() function, now applies the data.frame
function for converting each element of the persons.list into a data frame. Finally, the rbind() function is called
for adding each element converted as a new row of the data frame generated (for more detail about this see this

post)

# Sugestion taken from this post:

# http://stackoverflow.com/questions/4227223/r-1list-to-data-frame

setMethod(f = "as.df", signature = "Context",

definition = function(obj) {

persons <- obj@persons
persons.list <- lapply(persons, as.list)
persons.ds <- do.call(rbind, lapply(persons.list, data.frame, stringsAsFactors = FALSE))
return(persons.ds)

PUTTING ALL TOGETHER

Finally, lets to test the entire solution. Define the lines to parse where for the second line the address information is
missing.

s <- ¢
"GREGORY BROWN; 25 NE 25TH; +1-786-987-6543",
"DAVID SMITH;786-123-4567",
"ALAN PEREZ; 25 SE 50TH; +1-786-987-5553"

Now we initialize the context, and parse the lines:

context <- new("Context")
context <- parselLines(context, s)

Finally obtain the corresponding dataset and print it:

df <- as.df(context)

> df

name address phone
1 GREGORY BROWN 25 NE 25TH +1-786-987-6543
2 DAVID SMITH <NA> 786-123-4567

3 ALAN PEREZ 25 SE 50TH +1-786-987-5553

Let's test now the show methods:

> show(context@persons[[1]])
Person@[name="GREGORY BROWN', address='25 NE 25TH', phone='+1-786-987-6543"]

And for some sub-state:

>show(new( "PhoneState"))
PhoneState@[name="phone', pattern='A\s*(\+1(-|\s+))*[0-9]{3}(-|\s+)[0-9]{3}(-|\s+)[0-9]{4}S"]

Finally, test the as.list() method:
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> as.list(context@persons[[1]])
Sname
[1] "GREGORY BROWN"

Saddress
[1] "25 NE 25TH"

Sphone
[1] "+1-786-987-6543"

CONCLUSION

This example shows how to implement the State pattern, using one of the available mechanisms from R for using
the OO paradigm. Nevertheless, the R OO solution is not user-friendly and differs so much from other OOP
languages. You need to switch your mindset because the syntax is completely different, it reminds more the
functional programming paradigm. For example instead of: object.setID("A1") as in Java/C#, for R you have to
invoke the method in this way: setID(object, "A1"). Therefore you always have to include the object as an input
argument to provide the context of the function. On the same way, there is no special this class attribute and
either a ". " notation for accessing methods or attributes of the given class. It is more error prompt because to
refer a class or methods is done via attribute value ("Person", "isState", etc.).

Said the above, S4 class solution, requires much more lines of codes than a traditional Java/C# languages for doing
simple tasks. Anyway, the State Pattern is a good and generic solution for such kind of problems. It simplifies the
process delegating the logic into a particular state. Instead of having a big if-else block for controlling all
situations, we have smaller if-else blocks inside on each State sub-class implementation for implementing the
action to carry out in each state.

Attachment: Here you can download the entire script.

Any suggestion is welcome.
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Chapter 114: Reshape using tidyr

tidyr has two tools for reshaping data: gather (wide to long) and spread (long to wide).

See Reshaping data for other options.

Section 114.1: Reshape from long to wide format with spread()

library(tidyr)

## example data

set.seed(123)

df <- data.frame(
name = rep(c("firstName", "secondName"), each=4),
numbers = rep(1:4, 2),
value = rnorm(8)

)

df

# name numbers value
# 1 firstName 1 -0.56047565
# 2 firstName 2 -0.23017749
# 3 firstName 3 1.55870831
# 4 firstName 4 0.07050839
# 5 secondName 1 0.12928774
# 6 secondName 2 1.71506499
# 7 secondName 3 0.46091621
# 8 secondName 4 -1.26506123

We can "spread" the 'numbers' column, into separate columns:

spread(data = df,
key = numbers,
value = value)
# name 1 2 3 4
# 1 firstName -0.5604756 -0.2301775 1.5587083 0.07050839
# 2 secondName ©.1292877 1.7150650 0.4609162 -1.26506123

Or spread the 'name' column into separate columns:

spread(data = df,

key = name,

value = value)
# numbers firstName secondName
# 1 1 -0.56047565 0.1292877
# 2 2 -0.23017749 1.7150650
# 3 3 1.55870831 0.4609162
# 4 4 0.07050839 -1.2650612

Section 114.2: Reshape from wide to long format with gather()

library(tidyr)

## example data

df <- read.table(text
1 1 1.5862639

2 2 0.1499581

numbers firstName secondName
.4087477
.9963923

O O 1

GoalKicker.com - R Notes for Professionals 416


http://goalkicker.com/

3 0.4117353 ©.37406009
4 -0.4926862 0.4437916", header = T)

4

df

# numbers firstName secondName
# 1 1 1.5862639 0.4087477
# 2 2 0.1499581 0.9963923
# 3 3 0.4117353 ©.3740009
# 4 4 -0.4926862 0.4437916

We can gather the columns together using 'numbers' as the key column:

gather(data = df,
key = numbers,
value = myValue)

# numbers numbers myValue
# 1 1 firstName 1.5862639
# 2 2 firstName ©0.1499581
# 3 3 firstName ©0.4117353
# 4 4 firstName -0.4926862
# 5 1 secondName ©.4087477
# 6 2 secondName 0.9963923
# 7 3 secondName ©.3740009
# 8 4 secondName 0.4437916
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Chapter 115: Modifying strings by
substitution

sub and gsub are used to edit strings using patterns. See Pattern Matching and Replacement for more on related
functions and Regular Expressions for how to build a pattern.

Section 115.1: Rearrange character strings using capture
groups

If you want to change the order of a character strings you can use parentheses in the pattern to group parts of the
string together. These groups can in the replacement argument be addresed using consecutive numbers.

The following example shows how you can reorder a vector of names of the form "surname, forename" into a
vector of the form "forename surname".

library(randomNames)
set.seed(1)

strings <- randomNames(5)

strings

# [1] "Sigg, Zachary" "Holt, Jake" "Ortega, Sandra" "De La Torre, Nichole
# [5] "Perkins, Donovon"

sub("A(.+),\\s(.+)$", "\\2 \\1", strings)
# [1] "Zachary Sigg" "Jake Holt" "Sandra Ortega" "Nichole De La Torre"
# [5] "Donovon Perkins"

If you only need the surname you could just address the first pairs of parentheses.

Sub("A(.+).\\S(.+)", ”\\1”, Strings)
# [1] "Sigg" "Holt" "Ortega" "De La Torre" "Perkins"

Section 115.2: Eliminate duplicated consecutive elements

Let's say we want to eliminate duplicated subsequence element from a string (it can be more than one). For
example:

2,14,14,14,19

and convert it into:

2,14,19

Using gsub, we can achieve it:

gsub (" (\\d+) (,\\1)+","\\1", "2,14,14,14,19")
[11 "2,14,19"

It works also for more than one different repetition, for example:

> gsub (" (\\d+) (,\\1)+", "\\1", "2,14,14,14,19,19,20,21")
[1] "2,14,19,20,21"
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Let's explain the regular expression:

1. (\\d+): A group 1 delimited by () and finds any digit (at least one). Remember we need to use the double
backslash (\\) here because for a character variable a backslash represents special escape character for
literal string delimiters (\" or \'). \d\ is equivalent to: [0-9].

2. ,:Apunctuation sign: , (we can include spaces or any other delimiter)

3. \\1: An identical string to the group 1, i.e.: the repeated number. If that doesn't happen, then the pattern

doesn't match.

Let's try a similar situation: eliminate consecutive repeated words:
one, two, two, three, four, four, five, six

Then, just replace \d by \w, where \w matches any word character, including: any letter, digit or underscore. It is
equivalent to [a-zA-Z0-9_]:

> gsub("(\\w+)(,\\1)+", "\\1", "one, two, two, three, four, four, five, six")

[1] "one, two, three, four, five, six"

>

Then, the above pattern includes as a particular case duplicated digits case.
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Chapter 116: Non-standard evaluation and
standard evaluation

Dplyr and many modern libraries in R use non-standard evaluation (NSE) for interactive programming and standard
evaluation (SE) for programming1.

For instance, the summarise() function use non-standard evaluation but relies on the summarise_() which uses
standard evaluation.

The lazyeval library makes it easy to turn standard evaluation function into NSE functions.

Section 116.1: Examples with standard dplyr verbs

NSE functions should be used in interactive programming. However, when developping new functions in a new
package, it's better to use SE version.

Load dplyr and lazyeval :

library(dplyr)
library(lazyeval)

Filtering
NSE version

filter(mtcars, cyl == 8)
filter(mtcars, cyl < 6)
filter(mtcars, cyl < 6 & vs == 1)

SE version (to be use when programming functions in a new package)

list(~ cyl == 8))
list(~ cyl < 6))
list(~ cyl < 6, ~ vs == 1))

filter_(mtcars, .dots
filter_(mtcars, .dots
filter_(mtcars, .dots

Summarise
NSE version

summarise(mtcars, mean(disp))
summarise(mtcars, mean_disp = mean(disp))

SE version

lazyeval::interp(~ mean(x), x = quote(disp)))
setNames(list(lazyeval::interp(~ mean(x), x = quote(disp))),

summarise_(mtcars, .dots
summarise_(mtcars, .dots
"mean_disp"))

summarise_(mtcars, .dots = list("mean_disp" = lazyeval::interp(~ mean(x), x = quote(disp))))

Mutate

NSE version

mutate(mtcars, displ_1l = disp / 61.0237)
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SE version

mutate_(
.data = mtcars,
.dots = list(
"displ_1" = lazyeval::interp(

~ X / 61.8237, x = quote(disp)

)
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Chapter 117: Randomization

The R language is commonly used for statistical analysis. As such, it contains a robust set of options for
randomization. For specific information on sampling from probability distributions, see the documentation for
distribution functions.

Section 117.1: Random draws and permutations

The sample command can be used to simulate classic probability problems like drawing from an urn with and
without replacement, or creating random permutations.

Note that throughout this example, set.seed is used to ensure that the example code is reproducible. However,
sample will work without explicitly calling set. seed.

Random permutation

In the simplest form, sample creates a random permutation of a vector of integers. This can be accomplished with:

set.seed(1251)
sample(x = 10)

[1] 7 1 4 8 6 3190 5 2 9

When given no other arguments, sample returns a random permutation of the vector from 1 to x. This can be useful
when trying to randomize the order of the rows in a data frame. This is a common task when creating
randomization tables for trials, or when selecting a random subset of rows for analysis.

library(datasets)
set.seed(1171)
iris_rand <- iris[sample(x = 1:nrow(iris)), ]

> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 .8 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5) 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

> head(iris_rand)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

145 6.7 33 5.7 2.5 wvirginica
5) 5.0 3.6 1.4 0.2 setosa
85 5.4 3.0 4.5 1.5 versicolor
137 6.3 3.4 5.6 2.4 wvirginica
128 6.1 3.0 4.9 1.8 wvirginica
105 6.5 3.0 5.8 2.2 wvirginica

Draws without Replacement

Using sample, we can also simulate drawing from a set with and without replacement. To sample without
replacement (the default), you must provide sample with a set to be drawn from and the number of draws. The set
to be drawn from is given as a vector.

set.seed(7043)
sample(x = LETTERS, size = 7)
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[1] "s" "p" "J" "F" "Z" "G" "R"

Note that if the argument to size is the same as the length of the argument to x, you are creating a random
permutation. Also note that you cannot specify a size greater than the length of x when doing sampling without
replacement.

set.seed(7305)
sample(x = letters,size = 26)

(1] "’

q p

N
<
=
=
-4
a
%)
)
<
—
le)
o
3
>
=
C
)
o
[
=
=
+

sample(x = letters,size = 30)
Error in sample.int(length(x), size, replace, prob)
cannot take a sample larger than the population when 'replace = FALSE'

This brings us to drawing with replacement.
Draws with Replacement

To make random draws from a set with replacement, you use the replace argument to sample. By default, replace
is FALSE. Setting it to TRUE means that each element of the set being drawn from may appear more than once in the
final result.

set.seed(5062)
sample(x = c("A","B","C","D"),size = 8,replace = TRUE)

[1] "D" "C" "D" "B" "A" "A" "A" "A"
Changing Draw Probabilities

By default, when you use sample, it assumes that the probability of picking each element is the same. Consider it as
a basic "urn" problem. The code below is equivalent to drawing a colored marble out of an urn 20 times, writing
down the color, and then putting the marble back in the urn. The urn contains one red, one blue, and one green
marble, meaning that the probability of drawing each color is 1/3.

set.seed(6472)

sample(x = c("Red", "Blue", "Green"),
size = 20,
replace = TRUE)

Suppose that, instead, we wanted to perform the same task, but our urn contains 2 red marbles, 1 blue marble, and
1 green marble. One option would be to change the argument we send to x to add an additional Red. However, a
better choice is to use the prob argument to sample.

The prob argument accepts a vector with the probability of drawing each element. In our example above, the
probability of drawing a red marble would be 1/2, while the probability of drawing a blue or a green marble would
be 1/4.

set.seed(28432)

sample(x = c("Red", "Blue", "Green"),
size = 20,
replace = TRUE,
prob = ¢(0.50,0.25,0.25))

Counter-intuitively, the argument given to prob does not need to sum to 1. R will always transform the given
arguments into probabilities that total to 1. For instance, consider our above example of 2 Red, 1 Blue, and 1 Green.
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You can achieve the same results as our previous code using those numbers:

set.seed(28432)

frac_prob_example <- sample(x = c("Red","Blue", "Green"),
size = 200,
replace = TRUE,
prob = ¢(0.50,0.25,0.25))

set.seed(28432)

numeric_prob_example <- sample(x = c("Red","Blue", "Green"),
size = 200,
replace = TRUE,
prob = ¢(2,1,1))

> identical(frac_prob_example, numeric_prob_example)
[1] TRUE

The major restriction is that you cannot set all the probabilities to be zero, and none of them can be less than zero.

You can also utilize prob when replace is set to FALSE. In that situation, after each element is drawn, the
proportions of the prob values for the remaining elements give the probability for the next draw. In this situation,
you must have enough non-zero probabilities to reach the size of the sample you are drawing. For example:

set.seed(21741)

sample(x = c("Red", "Blue", "Green"),
size = 2,
replace = FALSE,
prob = ¢(0.8,0.19,0.01))

In this example, Red is drawn in the first draw (as the first element). There was an 80% chance of Red being drawn,
a 19% chance of Blue being drawn, and a 1% chance of Green being drawn.

For the next draw, Red is no longer in the urn. The total of the probabilities among the remaining items is 20% (19%
for Blue and 1% for Green). For that draw, there is a 95% chance the item will be Blue (19/20) and a 5% chance it will
be Green (1/20).

Section 117.2: Setting the seed

The set.seed function is used to set the random seed for all randomization functions. If you are using R to create a
randomization that you want to be able to reproduce, you should use set.seed first.

set.seed(1643)

samp1 <- sample(x = 1:5,size = 200, replace = TRUE)
set.seed(1643)
samp2 <- sample(x = 1:5,size = 200, replace = TRUE)

> identical(x = sampl,y = samp2)
[1] TRUE

Note that parallel processing requires special treatment of the random seed, described more elsewhere.
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Chapter 118: Object-Oriented
Programming in R

This documentation page describes the four object systems in R and their high-level similarities and differences.
Greater detail on each individual system can be found on its own topic page.

The four systems are: S3, S4, Reference Classes, and S6.

Section 118.1: S3

The S3 object system is a very simple OO system in R.

Every object has an S3 class. It can be get (got?) with the function class.

> class(3)
[1] "numeric"

It can also be set with the function class:
> bicycle <- 2
> class(bicycle) <- 'vehicle'

> class(bicycle)
[1] "vehicle"

It can also be set with the function attr:

> velocipede <- 2

> attr(velocipede, 'class') <- 'vehicle'
> class(velocipede)

[1] "vehicle"

An object can have many classes:

> class(x = bicycle) <- c('human-powered vehicle', class(x = bicycle))
> class(x = bicycle)
[1] "human-powered vehicle" "vehicle"

When using a generic function, R uses the first element of the class that has an available generic.

For example:

> summary.vehicle <- function(object, ...) {
+ message('this is a vehicle')
+ }

> summary(object = my_bike)
this is a vehicle

But if we now define a summary.bicycle:

\%

summary.bicycle <- function(object, ...) {
+ message('this is a bicycle')

+ }

> summary(object = my_bike)

this is a bicycle
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Chapter 119: Coercion

Coercion happens in R when the type of objects are changed during computation either implicitly or by using
functions for explicit coercion (such as as.numeric, as.data.frame, etc.).

Section 119.1: Implicit Coercion

Coercion happens with data types in R, often implicitly, so that the data can accommodate all the values. For
example,

X = 1:3

X
[1]1 1 2 3
typeof (x)

#[1] "integer"

x[2] = "hi"

X

#[1] "1" "hi" "3"
typeof (x)

#[1] "character"

Notice that at first, x is of type integer. But when we assigned x[2] = "hi", all the elements of x were coerced into
character as vectors in R can only hold data of single type.
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Chapter 120: Standardize analyses by
writing standalone R scripts

If you want to routinely apply an R analysis to a lot of separate data files, or provide a repeatable analysis method
to other people, an executable R script is a user-friendly way to do so. Instead of you or your user having to call R
and execute your script inside R via source( .) or a function call, your user may simply call the script itself as if it
was a program.

Section 120.1: The basic structure of standalone R program
and how to call it

The first standalone R script

Standalone R scripts are not executed by the program R (R.exe under Windows), but by a program called Rscript
(Rscript.exe), which is included in your R installation by default.

To hint at this fact, standalone R scripts start with a special line called Shebang line, which holds the following
content: #! /usr/bin/env Rscript. Under Windows, an additional measure is needed, which is detailled later.

The following simple standalone R script saves a histogram under the file name "hist.png" from numbers it receives
as input:

#!/usr/bin/env Rscript

# User message (\n = end the line)

cat("Input numbers, separated by space:\n")

# Read user input as one string (n=1 -> Read only one line)
input <- readlLines(file('stdin'), n=1)

# Split the string at each space (\\s == any space)

input <- strsplit(input, "\\s")[[1]]

# convert the obtained vector of strings to numbers

input <- as.numeric(input)

# Open the output picture file
png("hist.png",width=400, height=3600)
# Draw the histogram

hist(input)

# Close the output file

dev.off()

You can see several key elements of a standalone R script. In the first line, you see the Shebang line. Followed by
that, cat("....\n") is used to print a message to the user. Use file("stdin") whenever you want to specify "User
input on console" as a data origin. This can be used instead of a file name in several data reading functions (scan,
read.table, read.csv,...). After the user input is converted from strings to numbers, the plotting begins. There, it
can be seen, that plotting commands which are meant to be written to a file must be enclosed in two commands.
These are in this case png( .) and dev.off(). The first function depends on the desired output file format (other
common choices being jpeg(.) and pdf(.)). The second function, dev.off() is always required. It writes the plot
to the file and ends the plotting process.

Preparing a standalone R script
Linux/Mac

The standalone script's file must first be made executable. This can happen by right-clicking the file, opening
"Properties" in the opening menu and checking the "Executable" checkbox in the "Permissions" tab. Alternatively,
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the command
chmod +x PATH/TO/SCRIPT/SCRIPTNAME.R

can be called in a Terminal.
Windows
For each standalone script, a batch file must be written with the following contents:

"C:\Program Files\R-XXXXXXX\bin\Rscript.exe" "%~dp@\XXXXXXX.R" %*

A batch file is a normal text file, but which has a *.bat extension except a *.txt extension. Create it using a text
editor like notepad (not Word) or similar and put the file name into quotation marks "FILENAME .bat") in the save
dialog. To edit an existing batch file, right-click on it and select "Edit".

You have to adapt the code shown above everywhere XXX. . . is written:

¢ Insert the correct folder where your R installation resides
e Insert the correct name of your script and place it into the same directory as this batch file.

Explanation of the elements in the code: The first part "C:\...\Rscript.exe" tells Windows where to find the
Rscript.exe program. The second part "%~dp@\XXX.R" tells Rscript to execute the R script you've written which
resides in the same folder as the batch file (%»~dp@ stands for the batch file folder). Finally, %* forwards any
command line arguments you give to the batch file to the R script.

If you double-click on the batch file, the R script is executed. If you drag files on the batch file, the corresponding file
names are given to the R script as command line arguments.

Section 120.2: Using littler to execute R scripts

littler (pronounced little r) (cran) provides, besides other features, two possibilities to run R scripts from the
command line with littler's r command (when one works with Linux or MacOS).

Installing littler
From R:

install.packages("littler")

The path of r is printed in the terminal, like

You could link to the 'r' binary installed in
' /home/*USER*/R/x86_64-pc-linux-gnu-library/3.4/1littler/bin/r'

from '/usr/local/bin' in order to use 'r' for scripting.
To be able to call r from the system's command line, a symlink is needed:

In -s /home/*USER*/R/x86_64-pc-1linux-gnu-library/3.4/1ittler/bin/r /usr/local/bin/r
Using apt-get (Debian, Ubuntu):
sudo apt-get install littler

Using littler with standard .r scripts

With r from littler it is possible to execute standalone R scripts without any changes to the script. Example script:
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# User message (\n = end the line)

cat("Input numbers, separated by space:\n")

# Read user input as one string (n=1 -> Read only one line)
input <- readLines(file('stdin'), n=1)

# Split the string at each space (\\s == any space)

input <- strsplit(input, "\\s")[[1]]

# convert the obtained vector of strings to numbers

input <- as.numeric(input)

# Open the output picture file
png("hist.png",width=400, height=360)
# Draw the histogram

hist(input)

# Close the output file

dev.off()

Note that no shebang is at the top of the scripts. When saved as for example hist.r, it is directly callable from the
system command:

r hist.r

Using littler on shebanged scripts

It is also possible to create executable R scripts with littler, with the use of the shebang

#!/usr/bin/env r

at the top of the script. The corresponding R script has to be made executable with chmod +X /path/to/script.r
and is directly callable from the system terminal.
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Chapter 121: Analyze tweets with R

(Optional) Every topic has a focus. Tell the readers what they will find here and let future contributors know what
belongs.

Section 121.1: Download Tweets

The first think you need to do is to download tweets. You need to Setup your tweeter account. Much Information
can be found in Internet on how to do it. The following two links were useful for my Setup (last checked in May
2017)

In particular | found the following two links useful (last checked in May 2017):

Link 1

Link 2
R Libraries
You will need the following R packages

library("devtools")
library("twitteR")
library("ROAuth")

Supposing you have your keys You have to run the following code

api_key <- XXXXXXXXXXXXXXXXXXXXXX

api_secret <- XXXXXXXXXXXXXXXXXXXXXX
access_token <- XXXXXXXXXXXXXXXXXXXXXX
access_token_secret <- XXXXXXXXXXXXXXXXXXXXXX

setup_twitter_oauth(api_key, api_secret)

Change XXXXXXXXXXXXXXXXXXXXXX to your keys (if you have Setup your tweeter account you know which keys |
mean).

Let's now suppose we want to download tweets on coffee. The following code will do it

search.string <- "#coffee"
no.of.tweets <- 1000

c_tweets <- searchTwitter(search.string, n=no.of.tweets, lang="en")
You will get 1000 tweets on "coffee".

Section 121.2;: Get text of tweets

Now we need to access the text of the tweets. So we do it in this way (we also need to clean up the tweets from
special characters that for now we don't need, like emoticons with the sapply function.)

coffee_tweets = sapply(c_tweets, function(t) tSgetText())
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coffee_tweets <- sapply(coffee_tweets, function(row) iconv(row, "latin1", "ASCII", sub=""))

and you can check your tweets with the head function.

head(coffee_tweets)
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Chapter 122: Natural language processing

Natural language processing (NLP) is the field of computer sciences focused on retrieving information from textual
input generated by human beings.

Section 122.1: Create a term frequency matrix

The simplest approach to the problem (and the most commonly used so far) is to split sentences into tokens.
Simplifying, words have abstract and subjective meanings to the people using and receiving them, tokens have an
objective interpretation: an ordered sequence of characters (or bytes). Once sentences are split, the order of the
token is disregarded. This approach to the problem in known as bag of words model.

A term frequency is a dictionary, in which to each token is assigned a weight. In the first example, we construct a
term frequency matrix from a corpus corpus (a collection of documents) with the R package tm.

require(tm)

doc1 <- "drugs hospitals doctors”

doc2 <- "smog pollution environment"

doc3 <- "doctors hospitals healthcare"
doc4 <- "pollution environment water"
corpus <- c(doc1, doc2, doc3, doc4)
tm_corpus <- Corpus(VectorSource(corpus))

In this example, we created a corpus of class Corpus defined by the package tm with two functions Corpus and
VectorSource, which returns a VectorSource object from a character vector. The object tm_corpus is a list our
documents with additional (and optional) metadata to describe each document.

str(tm_corpus)
List of 4
$ 1:List of 2
..$ content: chr "drugs hospitals doctors"
..$ meta  :List of 7

..$ author : chr(0)

..S datetimestamp: POSIX1t[1:1], format: "2017-06-03 00:31:34"
..$ description : chr(0)

..$ heading : chr(0)

..$ id : chr "1"

..$ language : chr "en"

..$ origin : chr(0)

.. ..- attr(*, "class")= chr "TextDocumentMeta"
..- attr(*, "class")= chr [1:2] "PlainTextDocument" "TextDocument"
[truncated]

Once we have a Corpus, we can proceed to preprocess the tokens contained in the Corpus to improve the quality of
the final output (the term frequency matrix). To do this we use the tm function tm_map, which similarly to the apply
family of functions, transform the documents in the corpus by applying a function to each document.

tm_corpus <- tm_map(tm_corpus, tolower)

tm_corpus <- tm_map(tm_corpus, removeWords, stopwords("english"))
tm_corpus <- tm_map(tm_corpus, removeNumbers)

tm_corpus <- tm_map(tm_corpus, PlainTextDocument)

tm_corpus <- tm_map(tm_corpus, stemDocument, language="english")
tm_corpus <- tm_map(tm_corpus, stripWhitespace)

tm_corpus <- tm_map(tm_corpus, PlainTextDocument)

Following these transformations, we finally create the term frequency matrix with
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tdm <- TermDocumentMatrix(tm_corpus)
which gives a

<<TermDocumentMatrix (terms: 8, documents: 4)>>
Non-/sparse entries: 12/20

Sparsity T 62%
Maximal term length: 9
Weighting : term frequency (tf)

that we can view by transforming it to a matrix

as.matrix(tdm)

Docs
Terms character(0) character(0
doctor 1
drug
environ
healthcar
hospit
pollut
smog
water

O 00—~ 00 -
[ JIE W Y,  Bie » SRS WY . » M o NS

character(0) character(0

1

OO, )00

_ 0 N 00O N 0O 0O

Each row represents the frequency of each token - that as you noticed have been stemmed (e.g. environment to

environ) - in each document (4 documents, 4 columns).

In the previous lines, we have weighted each pair token/document with the absolute frequency (i.e. the number of

instances of the token that appear in the document).
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Chapter 123:. R Markdown Notebooks (from
RStudio)

An R Notebook is an R Markdown document with chunks that can be executed independently and interactively,
with output visible immediately beneath the input. They are similar to R Markdown documents with the exception
of results being displayed in the R Notebook creation/edit mode rather than in the rendered output. Note: R
Notebooks are new feature of RStudio and are only available in version 1.0 or higher of RStudio.

Section 123.1: Creating a Notebook

You can create a new notebook in RStudio with the menu command File -> New File -> R Notebook
If you don't see the option for R Notebook, then you need to update your version of RStudio. For installation of
RStudio follow this guide

8 RStudio = X
File Edit Code View Plots Session Build Debug Profile Tools Help
New File x R Script Ctrl+Shift-N K] project: (None) ~

MNew Project...

R Motebook Environment  History

4 [ | 3 import Dataset = | & List =

Open File... Ctrl+ O
R Markdown...
Recent Files & Shiny Web App... % Global Environment ~
Open Project...
Text File
Open Project in New Session...
C++ File
Recent Projects LS
R Sweave
Import Dataset i3

RHTML
R o Ctrl+S R Presentation
R Documentation

Save All Ctrl+Alt+5
Files Plots Packages Help Viewer

Close Chrl+W
Close All Ctrl+Shift+W

Close All Except Current Ctrl+Alt+Shift+W
Close Project

Quit Session...

Section 123.2: Inserting Chunks

Chunks are pieces of code that can be executed interactively. In-order to insert a new chunk by clicking on the
insert button present on the notebook toolbar and select your desired code platform (R in this case, since we want
to write R code). Alternatively we can use keyboard shortcuts to insert a new chunk Ctrl + Alt + 1 (OS X: Cmd +
Option +1)
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Section 123.3: Executing Chunk Code

Environment

28

X

E| Project: (None)

_* Import Dataset -

% Global Environment ~

Files Plots

Gl install | @ Update

Name
User Library
Amelia

arules
arulesViz

assertthat
backports

basefdenc
BH

bindr
bindrcpp
bitops

broom

caTools

O Qoo 4o 4 gja

Packages = Help

Viewer

Description

A Program for Missing Data

Association Rules and Frequent

ng Association Rules and Frequent

Easy Pre and Post Assertions

Reimplementations of Functions
Introduced Since R-3.0.0

Tools for basefd encod
Boast C++ Header Files
Parametrized Active Bindings

An 'Repp' Interface to Active Bindings

Tools: moving window s
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List =

Version

You can run the current chunk by clicking Run current Chunk (green play button) present on the right side of the
chunk. Alternatively we can use keyboard shortcut Ctrl + Shift + Enter (OS X: Cmd + Shift + Enter)

The output from all the lines in the chunk will appear beneath the chunk.

Splitting Code into Chunks

Since a chunk produces its output beneath the chunk, when having multiple lines of code in a single chunk that
produces multiples outputs it is often helpful to split into multiple chunks such that each chunk produces one

output.

To do this, select the code to you want to splitinto a new chunk and press Ctrl + Alt + 1 (OS X: Cmd + Option + 1)
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Section 123.4: Execution Progress

When you execute code in a hotebook, an indicator will appear in the gutter to show you execution progress. Lines
of code which have been sent to R are marked with dark green; lines which have not yet been sent to R are marked
with light green.

Executing Multiple Chunks

Running or Re-Running individual chunks by pressing Run for all the chunks present in a document can be painful.
We can use Run All from the Insert menu in the toolbar to Run all the chunks present in the notebook. Keyboard
shortcut is Ctrl + Alt + R (OS X: Cmd + Option + R)

There's also a option Restart R and Run All Chunks command (available in the Run menu on the editor toolbar),
which gives you a fresh R session prior to running all the chunks.

We also have options like Run All Chunks Above and Run All Chunks Below to run chunks Above or Below from a
selected chunk.
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Section 123.5: Preview Output
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Before rendering the final version of a notebook we can preview the output. Click on the Preview button on the

toolbar and select the desired output format.

You can change the type of output by using the output options as "pdf_document" or "html_notebook"
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Section 123.6: Saving and Sharing

History

Zmi " e ® @ - *3 insert - ~HRun v | G v | = =% [ | [#*Import Dataset » | 3 List =

) Global Enviranment ~

& project: (Mone) -

Packages = Help \Viewer
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Itemsets
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When a notebook .Rmd is saved, an .nb.html file is created alongside it. This file is a self-contained HTML file which
contains both a rendered copy of the notebook with all current chunk outputs (suitable for display on a website)

and a copy of the notebook .Rmd itself.
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More info can be found at RStudio docs
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Chapter 124: Aggregating data frames

Aggregation is one of the most common uses for R. There are several ways to do so in R, which we will illustrate
here.

Section 124.1: Aggregating with data.table

Grouping with the data.table package is done using the syntax dt[i, j, by] Which can be read out loud as: "Take
dt, subset rows using i, then calculate j, grouped by by." Within the dt statement, multiple calculations or groups
should be putin a list. Since an alias for 1ist() is . (), both can be used interchangeably. In the examples below we
use . ().

CODE:

# Aggregating with data.table

library(data.table)

dt = data.table(group=c("Group 1","Group 1", "Group 2","
c("A","A","A","A","B"),value = ¢(2,2.5,1,2,1.5))
print(dt)

Group 2","Group 2"), subgroup =

# sum, grouping by one column
dt[, .(value=sum(value)),group]

# mean, grouping by one column
dt[, . (value=mean(value)),group]

# sum, grouping by multiple columns
dt[, . (value=sum(value)), .(group, subgroup)]

# custom function, grouping by one column
# in this example we want the sum of all values larger than 2 per group.
dt[, . (value=sum(value[value>2])),group]

OUTPUT:

# Aggregating with data.table
library(data.table)

>

>

>

> dt = data.table(group=c("Group 1","Group 1","Group 2","Group 2", "Group 2"), subgroup =
c

>

("A","A","A","A","B"),value = ¢(2,2.5,1,2,1.5))

print(dt)

group subgroup value

1: Group 1 A 2.0

2: Group 1 A 2.5

3: Group 2 A 1.0

4: Group 2 A 2.0

5: Group 2 B 1.5

>

> # sum, grouping by one column

> dt[, . (value=sum(value)), group]
group value

1: Group 1 4.5

2: Group 2 4.5

>

> # mean, grouping by one column

> dt[, . (value=mean(value)), group]

group value
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: Group 1 2.25
: Group 2 1.50

# sum, grouping by multiple columns
dt[, .(value=sum(value)), .(group, subgroup) ]
group subgroup value

V V. V. N =

1: Group 1 A 4.5
2: Group 2 A 3.0
3: Group 2 B 1.5
>
> # custom function, grouping by one column
> # in this example we want the sum of all values larger than 2 per group.
> dt[, . (value=sum(value[value>2])),group]
group value
1: Group 1 2.5
2: Group 2 0.0

Section 124.2: Aggregating with base R

For this, we will use the function aggregate, which can be used as follows:

aggregate(formula, function, data)

The following code shows various ways of using the aggregate function.

CODE:

data.frame(group=c("Group 1", "Group 1", "Group 2

= ,"Group 2","Group 2"), subgroup =
AT, AT, AT, AT, "B, value = c(2,2.5,1,2,1.5))

df
c(’

# sum, grouping by one column
aggregate(value~group, FUN=sum, data=df)

# mean, grouping by one column
aggregate(value~group, FUN=mean, data=df)

# sum, grouping by multiple columns
aggregate(value~group+subgroup, FUN=sum, data=df)

# custom function, grouping by one column
# in this example we want the sum of all values larger than 2 per group.
aggregate(value~group, FUN=function(x) sum(x[x>2]), data=df)

OUTPUT:

> df = data.frame(group=c("Group 1 Group 1 Group 2
c("A","A", "A", "A","B"),value = ¢(2,2.5,1,2,1.5))
> print(df)

group subgroup value

Group 2","Group 2"), subgroup =

1 Group 1 A 2.0

2 Group 1 A 2.5

3 Group 2 A 1.0

4 Group 2 A 2.0

5 Group 2 B 1.5

>

> # sum, grouping by one column

> aggregate(value~group, FUN=sum, data=df)

group value
1 Group 1 4.5
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2 Group 2 4.5
>
> # mean, grouping by one column
> aggregate(value~group, FUN=mean, data=df)
group value
1 Group 1 2.25
2 Group 2 1.50
>
> # sum, grouping by multiple columns
> aggregate(value~group+subgroup, FUN=sum, data=df)
group subgroup value
1 Group 1 A 4.5
2 Group 2 A 3.0
3 Group 2 B 1.5
>
> # custom function, grouping by one column
> # in this example we want the sum of all values larger than 2 per group.
> aggregate(value~group, FUN=function(x) sum(x[x>2]), data=df)

group value
Group 1 2.5
2 Group 2 0.0

—_

Section 124.3: Aggregating with dplyr

Aggregating with dplyr is easy! You can use the group_by() and the summarize() functions for this. Some examples
are given below.

CODE:

# Aggregating with dplyr
library(dplyr)

df = data.frame(group=c("Group 1","Group 1","Group 2", "Group 2","Group 2"), subgroup =
c("A","A","A","A","B"),value = ¢(2,2.5,1,2,1.5))
print(df)

# sum, grouping by one column
df %>% group_by(group) %>% summarize(value = sum(value)) %>% as.data.frame()

# mean, grouping by one column
df %>% group_by(group) %>% summarize(value = mean(value)) %>% as.data.frame()

# sum, grouping by multiple columns
df %>% group_by(group, subgroup) %>% summarize(value = sum(value)) %>% as.data.frame()

# custom function, grouping by one column
# in this example we want the sum of all values larger than 2 per group.
df %>% group_by(group) %>% summarize(value = sum(value[value>2])) %>% as.data.frame()

OUTPUT:

> library(dplyr)
>
> df = data.frame(group=c("Group 1","Group 1", "Group 2","
c("A","A","A","A","B"),value = ¢(2,2.5,1,2,1.5))
> print(df)
group subgroup value

Group 2","Group 2"), subgroup =

1 Group 1 A 2.0
2 Group 1 A 2.5
3 Group 2 A 1.0
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Group 2 A
Group 2 B

- N
a o

# sum, grouping by one column

df %>% group_by(group) %>% summarize(value
group value

Group 1 4.5

Group 2 4.5

vV VvV Vv o b

sum(value)) %>% as.data.frame()

# mean, grouping by one column

df %>% group_by(group) %>% summarize(value = mean(value)) %>% as.data.frame()
group value

Group 1 2.25

Group 2 1.50

V V. V. N =

# sum, grouping by multiple columns
df %>% group_by(group, subgroup) %>% summarize(value = sum(value)) %>% as.data.frame()
group subgroup value

vV V. V. N =

Group 1 A 4.5
Group 2 A 3.0
Group 2 B 1.5

# custom function, grouping by one column

# in this example we want the sum of all values larger than 2 per group.

df %>% group_by(group) %>% summarize(value = sum(value[value>2])) %>% as.data.frame()
group value

Group 1 2.5

2 Group 2 0.0

V V.V V WN =

—_
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Chapter 125: Data acquisition

Get data directly into an R session. One of the nice features of R is the ease of data acquisition. There are several
ways data dissemination using R packages.

Section 125.1: Built-in datasets

Rhas a vast collection of built-in datasets. Usually, they are used for teaching purposes to create quick and easily
reproducible examples. There is a nice web-page listing the built-in datasets:

https://vincentarelbundock.github.io/Rdatasets/datasets.html

Example

Swiss Fertility and Socioeconomic Indicators (1888) Data. Let's check the difference in fertility based of rurality and
domination of Catholic population.

library(tidyverse)

swiss %>%
ggplot(aes(x = Agriculture, y = Fertility,
color = Catholic > 50))+
geom_point()+
stat_ellipse()

110

90
> Catholic > 50
-g -0 —e— FALSE
(s —e— TRUE

50

0 30 60 90
Agriculture

Section 125.2: Packages to access open databases

Numerous packages are created specifically to access some databases. Using them can save a bunch of time on
reading/formatting the data.
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Eurostat

Even though eurostat package has a function search_eurostat(), it does not find all the relevant datasets
available. This, it's more convenient to browse the code of a dataset manually at the Eurostat website: Countries
Database, or Regional Database. If the automated download does not work, the data can be grabbed manually at
via Bulk Download Facility.

tidyverse)
lubridate)
forcats)
eurostat)
geofacet)
viridis)
ggthemes)
extrafont)

library
library
library
library
library
library
library
library

.~ .~~~ o~ o~ =~

# download NEET data for countries
neet <- get_eurostat("edat_lfse_22")

neet %>%
filter(geo %>% paste %>% nchar == 2,
sex == "T", age == "Y18-24") %>%
group_by(geo) %>%
mutate(avg = values %>% mean()) %>%
ungroup() %>%
ggplot(aes(x = time %>% year(),
y = values))+
geom_path(aes(group = 1))+
geom_point(aes(fill = values), pch = 21)+
scale_x_continuous(breaks = seq(2000, 2015, 5),
labels = c("2008", "'©5", "'10", "'15"))+
scale_y_continuous(expand = ¢(0, 0), limits = c(@, 40))+
scale_fill_viridis("NEET, %", option = "B")+

facet_geo(~ geo, grid = "eu_gridi1")+
labs(x = "Year"
y = "NEET, %",
title = "Young people neither in employment nor in education and training in Europe",
subtitle = "Data: Eurostat Regional Database, 2000-2016",
caption = "ikashnitsky.github.io")+
theme_few(base_family = "Roboto Condensed", base_size = 15)+

theme(axis.text = element_text(size = 10),
panel.spacing.x = unit(1, "lines"),
legend.position = c(0, 0),
legend.justification = c(0, 0))
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Young people neither in employment nor in education and training in Europe
Data: Eurostat Regional Database, 2000-2016
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Section 125.3: Packages to access restricted data

Human Mortality Database

Human Mortality Database is a project of the Max Planck Institute for Demographic Research that gathers and pre-
process human mortality data for those countries, where more or less reliable statistics is available.

# load required packages
library(tidyverse)
library(extrafont)
library(HMDHFDplus)

country <- getHMDcountries()

exposures <- list()
for (i in 1: length(country)) {
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cnt <- country[i]
exposures[[cnt]] <- readHMDweb(cnt, "Exposures_1x1", user_hmd, pass_hmd)
# let's print the progress
paste(i, 'out of', length(country))
} # this will take quite a lot of time

Please note, the arguments user_hmd and pass_hmd are the login credentials at the website of Human Mortality
Database. In order to access the data, one needs to create an account at http://www.mortality.org/ and provide

their own credentials to the readHMDweb () function.

sr_age <- list()

for (i in 1:length(exposures)) {
di <- exposures[[i]]
sr_agei <- di %>% select(Year, Age,Female,Male) %>%
filter(Year %in% 2012) %>%
select(-Year) %>%
transmute(country = names(exposures)[i],
age = Age, sr_age = Male / Female * 100)
sr_age[[i]] <- sr_agei
}

sr_age <- bind_rows(sr_age)

# remove optional populations
sr_age <- sr_age %>% filter(!country %in% c("FRACNP", "DEUTE", "DEUTW", "GBRCENW", "GBR_NP"))

# summarize all ages older than 90 (too jerky)

sr_age_90 <- sr_age %>% filter(age %in% 90:110) %>%
group_by(country) %>% summarise(sr_age = mean(sr_age, na.rm = T)) %>%
ungroup() %>% transmute(country, age=90, sr_age)

df_plot <- bind_rows(sr_age %>% filter(!age %in% 90:110), sr_age_990)

# finaly - plot

df_plot %>%
ggplot(aes(age, sr_age, color = country, group = country))+
geom_hline(yintercept = 100, color = 'grey50', size = 1)+
geom_line(size = 1)+
scale_y_continuous(limits
scale_x_continuous(limits
xlab('Age')+
ylab('Sex ratio, males per 100 females')+
facet_wrap(~country, ncol=6)+
theme_minimal(base_family = "Roboto Condensed", base_size = 15)+
theme(legend.position="none",

panel.border = element_rect(size = .5, fill = NA))

c(0, 90), expand = c(0, 0), breaks = seq(0, 80, 20))+

c(0, 120), expand = c(0, 0), breaks = seq(@, 120, 20))+
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Section 125.4: Datasets within packages

There are packages that include data or are created specifically to disseminate datasets. When such a package is
loaded (library(pkg)), the attached datasets become available either as R objects; or they need to be called with

the data() function.
Gapminder

A nice dataset on the development of countries.

library(tidyverse)
library(gapminder)

gapminder %>%
ggplot(aes(x = year, y = lifeExp,
color = continent))+
geom_jitter(size = 1, alpha = .2, width = .75)+

stat_summary(geom = "path", fun.y = mean, size = 1)+
theme_minimal()

80
continent
60 :
=== Africa
% === Americas
LIJ -
e — Asia
== Europe
— Qceania
40

1980 1990 2000 2010
year

1950 1960 1970

World Population Prospects 2015 - United Nations Population Department

Let's see how the world has converged in male life expectancy at birth over 1950-2015.

library(tidyverse)
library(forcats)
library(wpp2015)
library(ggjoy)
library(viridis)
library(extrafont)
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data(UNlocations)

countries <- UNlocations %>%
filter(location_type == 4) %>%
transmute(name = name %>% paste()) %>%
as_vector ()

data(edM)

eOM %>%
filter(country %in% countries) %>%
select(-last.observed) %>%
gather(period, value, 3:15) %>%
ggplot(aes(x = value, y = period %>% fct_rev()))+
geom_joy(aes(fill = period))+
scale_fill_viridis(discrete = T, option = "B", direction = -1,
begin = .1, end = .9)+

labs(x = "Male life expectancy at birth",
y = "Period",
title = "The world convergence in male life expectancy at birth since 1950",
subtitle = "Data: UNPD World Population Prospects 20615 Revision",
caption = "ikashnitsky.github.io")+
theme_minimal(base_family = "Roboto Condensed", base_size = 15)+
theme(legend.position = "none")

The world convergence in male life expectancy at birth since 1950
Data: UNPD World Population Prospects 2015 Revision

1955-1960 A
1960-1965

1965-1970

1970-1975

1975-1980

1980-1985

Period

1985-1990
1990-1995

1995-2000

2000-2005

2005-2010

2010-2015

0 25 50 75
Male life expectancy at birth

ikashnitsky.github.io

GoalKicker.com - R Notes for Professionals

450


https://i.stack.imgur.com/aQtWn.png
http://goalkicker.com/

Chapter 126: R memento by examples

This topic is meant to be a memento about the R language without any text, with self-explanatory examples.

Each example is meant to be as succint as possible.

Section 126.1: Plotting (using plot)

# Creates a 1 row - 2 columns format
par(mfrow=c(1,2))

plot(rnorm(160), main = "Graph 1", ylab = "Normal distribution")

grid()
legend(x = 40, y = -1, legend = "A legend")

plot(rnorm(1060), main = "Graph 2", type = "1")
abline(v = 50)

Result:
Graph 1 Graph 2
o™ — o s
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%% o 2062 %3 FotP % Ei =
= o 8 Gy ol =
— a9 o = 5 D5 & — _|
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I | | | | I ' T I I T | I
0 20 40 60 80 100 0 20 40 60 80 100
Index Index

Section 126.2: Commonly used functions

# Create 100 standard normals in a vector
X <- rnorm(100, mean = 0, sd = 1)

# Find the lenght of a vector
length(x)

# Compute the mean
mean(x)

# Compute the standard deviation
sd(x)

# Compute the median value
median(x)
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# Compute the range (min, max)

range(x)

# Sum an iterable

sum(x)

# Cumulative sum (x[1], x[1]+x[2], ...)

cumsum(x)

# Display the first 3 elements

head(3, x)

# Display min,

summary (x)

# Compute successive difference between elements

diff(x)

# Create a
1:10

# Create a
seq(1, 10,

range from 1 to 10 step 1

range from 1 to 10 step 0.1
0.1)

# Print a string
print("hello world")

Section 126.3: Data types

Vectors

a <- ¢(1, 2, 3)
b <- ¢c(4, 5, 6)

mean_ab <-

d <-c(1, ©

(a+b) /2

o 1)

only_1_3 <- a[d == 1]

Matrices

mat <- matrix(c(1,2,3,4), nrow = 2, ncol = 2)
dimnames(mat) <- list(c(), c("a", "b", "c"))
mat[,] == mat

Dataframes
df <- data.

df$symbols
df$symbols
df[[2, 1]]

Lists

1 <- list(a

length(1)
class(1[1])
class(1[[1]
class(1$a)

frame(qualifiers = c("Buy", "Sell", "Sell"),
symbols = c("AAPL", "MSFT", "GOOGL"),

values = ¢(326.0, 598.3, 201.5))
== df[[2]]
== df[["symbols"]]
== "AAPL"

= 500, "aaa", 98.2)
== "list"

1) == "numeric"
== "numeric"

Environments

env <- new.
env[["foo"]

env2 <- env

env()
] = "bar"

1st quartile, median, mean, 3rd quartile, max

GoalKicker.com - R Notes for Professionals

452


http://goalkicker.com/

env2[["foo"]] = "BAR"

env[["foo"]] == "BAR"

get("foo", envir = env) == "BAR"
rm("foo", envir = env)
env[["foo"]] == NULL
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Chapter 127: Updating R version

Installing or Updating your Software will give access to new features and bug fixes. Updating your R installation can
be done in a couple of ways. One Simple way is go to R website and download the latest version for your system.

Section 127.1: Installing from R Website

To get the latest release go to https://cran.r-project.org/ and download the file for your operating system. Open the
downloaded file and follow the on-screen installation steps. All the settings can be left on default unless you want
to change a certain behaviour.

Section 127.2: Updating from within R using installr Package
You can also update R from within R by using a handy package called installr.

Open R Console (NOT RStudio, this doesn't work from RStudio) and run the following code to install the package
and initiate update.

install.packages("installr")
library("installr")
updateR()

R RGui (64-bit) - w0
File Edit View Misc Packages Windows Help installr

-

Q R Console EE@

» library(installr)
Loading required package: stringr

Welcome to installr version 0.1%.0

More information is available on the installr project website:
hteps://github.com/talgalili/installxr/

Contact: <tal.galili@gmail.com>
Suggestions and bug-reports can be submitted at: hrrps://github.com/talgalili/is

To suppress this message use: Select Setup Language >
suppressPackageStartupMessages (library(in)

Warning message:
package ‘installr’ was built under R wersion 3.4.1

> updateR()

Installing the newest version of R,

please wait for the installer file to be download and executed.
Be sure to click "next' as needed...

trying URL 'https://cran.rstudio.com/bin/windows/base/R-3.4.1-win.exe’
Content type 'application/x-msdos-program' length 78086510 bytes (74.5 MB)
downloaded 74.5 MB

Section 127.3: Deciding on the old packages

Once the installation is finished click the Finish button.

Now it asks if you want to copy your packages fro the older version of R to Newer version of R. Once you choose yes
all the package are copied to the newer version of R.
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R RGui (B4-bit) _ X
File Edit View Misc Packages Windows Help installr

> library(installr)
Loading required package: stringr

Welcome to installr version 0.19.0

More information is available on the installr project website:
https://github.com/talgalili/installx/

Contact: <tal.galili@gmail.com>
Suggestions and bug-reports can be submitted at: https://github.com/talgalili/i%

To suppress this message use:
suppressPackageStartupMessages g caion

Warning message:
package ‘installr’ was built under R version 3.4.1 Do you wish to copy your packages from the older version of R to the
> updateR () o newer version of R?

Installing the newest wersion of R,

please wait for the installer file to be download and
Be sure to click "next' as needed...

trying URL 'https://cran.rstudio.com/bin/windows/base/H
Content type 'application/x-msdos-program' length 7808
downloaded 74.5 MB

<

After that you can choose if you still want to keep the old packages or delete.

R RGui (B4-bit) _ X
File Edit View Misc Packages Windows Help installr

> library(installr)
Loading required package: stringr

Welcome to installr version 0.19.0

More information is available on the installr project website:
https://github.com/talgalili/installx/

Contact: <tal.galili@gmail.com>
Suggestions and bug-reports can be submitted at: https://github.com/talgalili/i%

To suppress this message use: Question
suppressPackageStartupMessages

Warning message: Once your packages are copied to the new R,

package ‘installr’ was bullt under R wversion 3.4.1 0 do you wish to KEEP the packages from the library in the OLD R

> updateR() installation?

Installing the newest version of R, (if you choose 'NO' - you will erase your packages in the old R version)

please wait for the installer file to be download and
Be sure to click "next' as needed...

trying URL 'https://cran.rstudio.com/bin/windows/base/
Content type 'application/x-msdos-program' length 7808
downloaded 74.5 MB

<

You can even move your Rprofile.site from older version to keep all your customised settings.
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R RGui (B4-bit) _ X
File Edit View Misc Packages Windows Help installr

> library(installr)
Loading required package: stringr

Welcome to installr version 0.19.0

More information is available on the installr project website:
https://github.com/talgalili/installx/

Contact: <tal.galili@gmail.com>
Suggestions and bug-reports can be submitted at: https://github.com/talgalili/i%

To suppress this message use:
suppressPackageStartupMessages {gection

Warning message:
package ‘installr’ was built under R wersion 3.4.1

> updateR() o
Installing the newest wersion of R,

please wait for the installer file to be download and
Be sure to click "next' as needed...

trying URL 'https://cran.rstudio.com/bin/windows/base/H
Content type 'application/x-msdos-program' length 78034
downloaded 74.5 MB

Do you wish to copy your 'Rprofile.site’ from the older version of Rto
the newer version of R?

<

Section 127.4: Updating Packages

You can update your installed packages once the updating of R is done.

G RGui (64-bit) - X
File Edit View Misc Packages Windows Help installr

> library(installr)
Loading required package: stringr

Welcome to installr version 0.19.0

More information is available on the installr project website:
https://github.com/talgalili/installx/

Contact: <tal.galilifgmail.com>
Suggestions and bug-reports can be submitted at: https://github.com/talgalili/i$

To suppress this message use:
suppressPackageStartupMessages (11 Question

Warning message:

package ‘installr’ was built under R wersion 3.4.1
> updateR () o Do you wish to update your packages in the newly installed R?
Installing the newest version of R,

please wait for the installer file to be download and e
Be sure to click '"next' as needed...

trying URL 'https://cran.rstudio.com/bin/windows/base/R-3|
Content type 'application/x-msdos-program' length 7808651
downloaded 74.5 MB

9 |

Once its done Restart R and enjoy exploring.

Section 127.5: Check R Version

You can check R Version using the console

version
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Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,
more changes can be sent to web@petercv.com for new content to be published or updated

42

Aaghaz Hussain
Abdou
abhiieor
Agriculturist
akraf

akrun

AkselA

Ale

Alex

Alexandru Papiu

Alexey Shiklomanov

alexis_laz
Alihan Zihna
alistaire
alko989

Allen Wang
Amstell
Andrea Cirillo
Andrea lanni [
Andrew Bréza

Andrew Bryk
AndreyAkinshin

Angelo

Artem Klevtsov
Arun Balakrishnan
Ashish

Atish

Axeman

baptiste

BarkleyBG
bartektartanus

Batanichek
Ben Bolker
Benjamin
blmoore
Boysenb3rry
Carl

Carl Witthoft
Carlos Cinelli
Carson
catastrophic
CClaire
cdeterman

Charmgoggles

Christophe D.
CL.

CMichael
coatless

Chapters 1, 21, 5, 29, 26, 39, 8, 76, 92, 6, 100, 2 and 17

Chapter 20

Chapter 30

Chapter 6

Chapter 39

Chapters 1, 28 and 120
Chapters 23, 52 and 54
Chapters 33, 105 and 14
Chapter 2

Chapters 18, 28,92, 94 and 115
Chapter 21

Chapters 26 and 99
Chapter 39

Chapter 77

Chapters 20, 21, 12, 33, 55, 58, 13 and 14

Chapter 41

Chapter 23

Chapter 22

Chapters 1, 28 and 92
Chapters 18 and 9

Chapter 1

Chapters 45 and 56
Chapters 21 and 85
Chapter 55

Chapters 36 and 38
Chapter 41

Chapter 88

Chapter 21

Chapters 21, 5, 65, 66 and 2
Chapter 28

Chapter 9

Chapters 11,37 and 7
Chapters 18 and 3
Chapters 22, 50, 59, 67 and 70
Chapters 21, 29, 51, 68 and 100
Chapter 28

Chapter 86

Chapter 22

Chapter 20

Chapters 18, 20, 21, 22, 27 and 92
Chapter 33

Chapters 20 and 79
Chapter 47

Chapter 84

Chapters 92 and 114
Chapters 18, 27 and 47
Chapter 41

Chapter 21

Chapters 12,36, 13 and 14

GoalKicker.com - R Notes for Professionals

457


mailto:web@petercv.com
https://stackoverflow.com/users/1855677/
https://stackoverflow.com/users/4089949/
https://stackoverflow.com/users/3135417/
https://stackoverflow.com/users/1582413/
https://stackoverflow.com/users/4052161/
https://stackoverflow.com/users/3082472/
https://stackoverflow.com/users/3732271/
https://stackoverflow.com/users/4272725/
https://stackoverflow.com/users/5101926/
https://stackoverflow.com/users/5143048/
https://stackoverflow.com/users/2759654/
https://stackoverflow.com/users/2477097/
https://stackoverflow.com/users/2414948/
https://stackoverflow.com/users/4831458/
https://stackoverflow.com/users/4497050/
https://stackoverflow.com/users/2195555/
https://stackoverflow.com/users/4408787/
https://stackoverflow.com/users/4104728/
https://stackoverflow.com/users/4186427/
https://stackoverflow.com/users/5097722/
https://stackoverflow.com/users/1472253/
https://stackoverflow.com/users/3911324/
https://stackoverflow.com/users/184842/
https://stackoverflow.com/users/120440/
https://stackoverflow.com/users/1863950/
https://stackoverflow.com/users/5101752/
https://stackoverflow.com/users/4149615/
https://stackoverflow.com/users/1681641/
https://stackoverflow.com/users/4341440/
https://stackoverflow.com/users/471093/
https://stackoverflow.com/users/6263364/
https://stackoverflow.com/users/2125442/
https://stackoverflow.com/users/5018792/
https://stackoverflow.com/users/190277/
https://stackoverflow.com/users/1017276/
https://stackoverflow.com/users/1274516/
https://stackoverflow.com/users/6049524/
https://stackoverflow.com/users/4564432/
https://stackoverflow.com/users/884372/
https://stackoverflow.com/users/3216713/
https://stackoverflow.com/users/1583084/
https://stackoverflow.com/users/2874779/
https://stackoverflow.com/users/5545837/
https://stackoverflow.com/users/3204250/
https://stackoverflow.com/users/5573955/
https://stackoverflow.com/users/5002186/
https://stackoverflow.com/users/2706569/
https://stackoverflow.com/users/3124909/
https://stackoverflow.com/users/1345455/
http://goalkicker.com/

CptNemo
Craig Vermeer
Crops

Dave2e
DaveRGP
David

David Arenburg
David Leal
David Robinson

Dawny33

dayne

Dean MacGregor
Derwin McGeary
DeveauP

Dirk Eddelbuettel
dmail
dotancohen
DrPositron

EDi

egnha
Eric Lecoutre

FisherDisinformation
Florian
FoldedChromatin

fortune_p

Frank

G5W

Gavin Simpson
George Bonebright
Giorgos K

gitblame

Glen Moutrie

Gregor

Hack

Hairizuan Noorazman

herbaman
highBandWidth

ikashnitsky
Jaap

James Elderfield
jameselmore
Jav

jcb

Jeff

eromy Anglim
HowlX
josliber

Joy

ulioSergio
JvH

LF

Chapter 122

Chapter 2

Chapter 92

Chapters 1 and 119

Chapter 29

Chapters 18 and 70

Chapter 58

Chapter 20

Chapter 23

Chapters 18, 23, 30, 51 and 65
Chapters 12,100, 113 and 115
Chapters 18, 22 and 35
Chapter 20

Chapters 18,9,39,8and 4
Chapters 23 and 12

Chapter 20

Chapters 34 and 88

Chapters 36 and 76

Chapters 123 and 127

Chapter 6

Chapter 21

Chapter 20

Chapter 32

Chapters 20, 19 and 66
Chapters 26, 34,37, 7,68 and 3
Chapter 124

Chapter 20

Chapter 22

Chapters 1, 20, 21, 23, 30, 31, 12, 34, 41, 46, 60, 66, 8, 74, 90, 92, 93, 94, 95, 96, 6,
91,101, 42,107,2,13,17,15,16,4, 14,111,112, 114 and 115
Chapters 107 and 108
Chapters 29, 39 and 68
Chapter 1

Chapter 26

Chapters 28, 41 and 55
Chapter 50

Chapters 18, 21,39, 6 and 17
Chapters 18, 9, 33, 41, 49, 54, 56, 64, 69, 72 and 75
Chapter 9

Chapters 20 and 120

Chapter 22

Chapters 21, 28, 35, 48, 74, 76, 94, 96, 105, 106, 111 and 125
Chapters 23, 11, 28, 41, 66, 8 and 92
Chapter 40

Chapter 38

Chapter 50

Chapter 68

Chapter 79

Chapters 92 and 114

Chapters 81 and 93

Chapters 19, 31 and 32
Chapter 103

Chapter 29

Chapter 47

Chapters 102 and 104

GoalKicker.com - R Notes for Professionals

458


https://stackoverflow.com/users/1707938/
https://stackoverflow.com/users/8802/
https://stackoverflow.com/users/3223138/
https://stackoverflow.com/users/7128934/
https://stackoverflow.com/users/3603486/
https://stackoverflow.com/users/2962786/
https://stackoverflow.com/users/5792244/
https://stackoverflow.com/users/2902740/
https://stackoverflow.com/users/3048453/
https://stackoverflow.com/users/3001626/
https://stackoverflow.com/users/6237093/
https://stackoverflow.com/users/712603/
https://stackoverflow.com/users/4993513/
https://stackoverflow.com/users/1623354/
https://stackoverflow.com/users/1818713/
https://stackoverflow.com/users/5230146/
https://stackoverflow.com/users/5779570/
https://stackoverflow.com/users/143305/
https://stackoverflow.com/users/8160248/
https://stackoverflow.com/users/343302/
https://stackoverflow.com/users/4257137/
https://stackoverflow.com/users/511399/
https://stackoverflow.com/users/5768077/
https://stackoverflow.com/users/5558861/
https://stackoverflow.com/users/3272279/
https://stackoverflow.com/users/8037249/
https://stackoverflow.com/users/1390752/
https://stackoverflow.com/users/4564247/
https://stackoverflow.com/users/1191259/
https://stackoverflow.com/users/4752675/
https://stackoverflow.com/users/429846/
https://stackoverflow.com/users/5113617/
https://stackoverflow.com/users/7175779/
https://stackoverflow.com/users/3679857/
https://stackoverflow.com/users/4303504/
https://stackoverflow.com/users/903061/
https://stackoverflow.com/users/3604745/
https://stackoverflow.com/users/6621237/
https://stackoverflow.com/users/4101927/
https://stackoverflow.com/users/429850/
https://stackoverflow.com/users/4638884/
https://stackoverflow.com/users/2204410/
https://stackoverflow.com/users/1488801/
https://stackoverflow.com/users/2584876/
https://stackoverflow.com/users/5913922/
https://stackoverflow.com/users/4024810/
https://stackoverflow.com/users/7071093/
https://stackoverflow.com/users/180892/
https://stackoverflow.com/users/993882/
https://stackoverflow.com/users/3093387/
https://stackoverflow.com/users/3361900/
https://stackoverflow.com/users/1873888/
https://stackoverflow.com/users/4401741/
https://stackoverflow.com/users/6045390/
http://goalkicker.com/

K.Daisey
kaksat

Karolis Koncevicius
Karsten W.
kartoffelsalat

Kay Brodersen

kdopen
Ken S.

kitman0804
kneijenhuijs
L.V.Rao
leogama

Imckeogh
Im

loki

Lovy

Mallick Hossain
Marcin Kosinski
Mario

maRtin

Martin Schmelzer
Maximilian Kohl
MichaelChirico
micstr

Miha

mrip
munirbe

Nanami
Nathan Werth
nrussell
NWaters

omar

oshun

PAC

Pankaj Sharma
Parfait

Peter Humburg

polka
Pragyaditya Das

Psidom

Qaswed

Rahul Saini

Raj Padmanabhan

Rappster

rcorty
RetractedAndRetired

(o]

Robert

RobertMc

Robin Gertenbach
russellpierce

Sam Firke

Sathish

SCoa

seasmith

Shawn Mehan

Chapters 20, 26, 38 and 62
Chapters 18, 41,92 and 105
Chapters 27, 37, 76, 83, 87 and 101
Chapter 11

Chapter 1

Chapter 21

Chapters 1 and 6

Chapter 92

Chapters 66 and 92

Chapters 29,12, 41,8 and 70
Chapters 1, 27, 39, 46, 25, 2,13 and 17
Chapter 23

Chapters 41 and 2

Chapters 11, 38, 57, 60, 66 and 92
Chapters 28, 38, 48, 71,95 and 110
Chapters 1, 126 and 43

Chapter 23

Chapter 72

Chapter 96

Chapters 26 and 48

Chapters 61 and 83

Chapter 89

Chapters 12,100, 13 and 14
Chapter 23

Chapters 37, 49 and 92

Chapter 39

Chapter 106

Chapter 85

Chapters 23 and 29

Chapters 51, 68 and 10

Chapter 30

Chapters 29 and 68

Chapter 23

Chapters 20, 100 and 116
Chapters 80 and 82

Chapter 92

Chapters 9 and 41

Chapters 1, 21 and 92

Chapter 41

Chapter 31

Chapter 5

Chapter 1

Chapter 41

Chapter 73

Chapter 118

Chapter 1

Chapters 22, 11, 29, 33, 26, 51, 77 and 3
Chapter 44

Chapter 11

Chapters 1, 38, 40,47, 3,10 and 96
Chapters 20 and 21

Chapter 5

Chapters 18 and 55

Chapters 21, 66 and 68
Chapter 21

GoalKicker.com - R Notes for Professionals


https://stackoverflow.com/users/5869104/
https://stackoverflow.com/users/4931020/
https://stackoverflow.com/users/1953718/
https://stackoverflow.com/users/216064/
https://stackoverflow.com/users/2082782/
https://stackoverflow.com/users/1042406/
https://stackoverflow.com/users/943010/
https://stackoverflow.com/users/6256482/
https://stackoverflow.com/users/3494669/
https://stackoverflow.com/users/3578190/
https://stackoverflow.com/users/6911592/
https://stackoverflow.com/users/3738764/
https://stackoverflow.com/users/6864606/
https://stackoverflow.com/users/4895725/
https://stackoverflow.com/users/3250126/
https://stackoverflow.com/users/3250340/
https://stackoverflow.com/users/5056851/
https://stackoverflow.com/users/3857701/
https://stackoverflow.com/users/3412012/
https://stackoverflow.com/users/3491151/
https://stackoverflow.com/users/1777111/
https://stackoverflow.com/users/3889242/
https://stackoverflow.com/users/3576984/
https://stackoverflow.com/users/4606130/
https://stackoverflow.com/users/4623381/
https://stackoverflow.com/users/2588184/
https://stackoverflow.com/users/7462968/
https://stackoverflow.com/users/787279/
https://stackoverflow.com/users/4912229/
https://stackoverflow.com/users/1869097/
https://stackoverflow.com/users/4561056/
https://stackoverflow.com/users/1040498/
https://stackoverflow.com/users/4718512/
https://stackoverflow.com/users/1967500/
https://stackoverflow.com/users/5487987/
https://stackoverflow.com/users/1422451/
https://stackoverflow.com/users/3990677/
https://stackoverflow.com/users/4165272/
https://stackoverflow.com/users/3564318/
https://stackoverflow.com/users/4983450/
https://stackoverflow.com/users/6256241/
https://stackoverflow.com/users/827921/
https://stackoverflow.com/users/8167209/
https://stackoverflow.com/users/989691/
https://stackoverflow.com/users/1150080/
https://stackoverflow.com/users/4117603/
https://stackoverflow.com/users/2824732/
https://stackoverflow.com/users/4296028/
https://stackoverflow.com/users/5426909/
https://stackoverflow.com/users/169095/
https://stackoverflow.com/users/4470365/
https://stackoverflow.com/users/1691723/
https://stackoverflow.com/users/4132844/
https://stackoverflow.com/users/5228718/
https://stackoverflow.com/users/5113071/
http://goalkicker.com/

smci

SommerEngineering

Sowmya S. Manian

Spacedman
stanekam

Stedy
Steve_Corrin
Sumedh

Sun Bee

SymbolixAU
symbolrush
takje

Tal Galili
TARehman

tenCupMaximum

Tensibai
theArun
thelatemail
Thomas
Tim Coker
Triskal|M
tuomastik
Umberto

user2100721

user890739
USER_1

Zx8754

Chapter 11

Chapters 30 and 93
Chapter 42

Chapter 21

Chapter 23

Chapter 76

Chapters 1, 23, 29, 30, 45, 66, 8, 78,90, 13,17, 15and 16
Chapters 18, 23 and 77
Chapter 24

Chapters 12, 33, 41, 47,50, 53, 60, 14 and 114
Chapters 33 and 26
Chapters 11 and 60
Chapter 107

Chapter 117

Chapters 46 and 63
Chapters 19,30 and 3
Chapters 1, 12, 28, 66 and 77
Chapters 19 and 14
Chapters 18, 76,92 and 6
Chapter 54

Chapter 21

Chapter 47

Chapter 121

Chapters 18,21 and 114
Chapter 41

Chapters 22 and 97
Chapter 6

Chapter 22

Chapter 1

Chapters 59, 61, 98 and 109
Chapter 28

Chapters 68 and 96
Chapter 20

Chapters 41 and 96

GoalKicker.com - R Notes for Professionals

460


https://stackoverflow.com/users/202229/
https://stackoverflow.com/users/2258393/
https://stackoverflow.com/users/5371744/
https://stackoverflow.com/users/211116/
https://stackoverflow.com/users/3006597/
https://stackoverflow.com/users/163809/
https://stackoverflow.com/users/2269255/
https://stackoverflow.com/users/5338586/
https://stackoverflow.com/users/2998993/
https://stackoverflow.com/users/5977215/
https://stackoverflow.com/users/4706952/
https://stackoverflow.com/users/3768552/
https://stackoverflow.com/users/256662/
https://stackoverflow.com/users/1332389/
https://stackoverflow.com/users/2896857/
https://stackoverflow.com/users/3627607/
https://stackoverflow.com/users/4662189/
https://stackoverflow.com/users/496803/
https://stackoverflow.com/users/2338862/
https://stackoverflow.com/users/88066/
https://stackoverflow.com/users/4433546/
https://stackoverflow.com/users/5524090/
https://stackoverflow.com/users/556014/
https://stackoverflow.com/users/2100721/
https://stackoverflow.com/users/890739/
https://stackoverflow.com/users/3851145/
https://stackoverflow.com/users/3817004/
https://stackoverflow.com/users/1948347/
https://stackoverflow.com/users/919800/
https://stackoverflow.com/users/4911229/
https://stackoverflow.com/users/3741048/
https://stackoverflow.com/users/4604054/
https://stackoverflow.com/users/1952996/
https://stackoverflow.com/users/680068/
http://goalkicker.com/

You may also like

CH# C++

Notes for Professionals Notes for Professionals Notes for Professionals

300+ pages 700+ pages 600+ pages

GoalKicker. i 1 sk e o
Free P!I:t‘urumningﬁm:u ““ﬁr‘aﬁ.‘fﬂ.

JavaScript MATLAB

Notes for Professionals Notes for Professionals Notes for Professionals

900+ pages 400+ pages

i

Per| Python

Notes for Professionals Notes for Professionals Notes for Professionals

100+ pages

GoalKicker.com - Gl:n:llKI|:l(ar.|:o“t?;!_‘l i i s oy o GoalKicker.com -

Free Frogromming Books Free Frogromming 8 Free Frogromméng Books


http://goalkicker.com/CBook
http://goalkicker.com/CSharpBook
http://goalkicker.com/CPlusPlusBook
http://goalkicker.com/JavaBook
http://goalkicker.com/JavaScriptBook
http://goalkicker.com/MATLABBook
http://goalkicker.com/PerlBook
http://goalkicker.com/PythonBook
http://goalkicker.com/SQLBook

	Content list
	About
	Chapter 1: Getting started with R Language
	Section 1.1: Installing R
	Section 1.2: Hello World!
	Section 1.3: Getting Help
	Section 1.4: Interactive mode and R scripts

	Chapter 2: Variables
	Section 2.1: Variables, data structures and basic Operations

	Chapter 3: Arithmetic Operators
	Section 3.1: Range and addition
	Section 3.2: Addition and subtraction

	Chapter 4: Matrices
	Section 4.1: Creating matrices

	Chapter 5: Formula
	Section 5.1: The basics of formula

	Chapter 6: Reading and writing strings
	Section 6.1: Printing and displaying strings
	Section 6.2: Capture output of operating system command
	Section 6.3: Reading from or writing to a ﬁle connection

	Chapter 7: String manipulation with stringi package
	Section 7.1: Count pattern inside string
	Section 7.2: Duplicating strings
	Section 7.3: Paste vectors
	Section 7.4: Splitting text by some ﬁxed pattern

	Chapter 8: Classes
	Section 8.1: Inspect classes
	Section 8.2: Vectors and lists
	Section 8.3: Vectors

	Chapter 9: Lists
	Section 9.1: Introduction to lists
	Section 9.2: Quick Introduction to Lists
	Section 9.3: Serialization: using lists to pass information

	Chapter 10: Hashmaps
	Section 10.1: Environments as hash maps 
	Section 10.2: package:hash
	Section 10.3: package:listenv

	Chapter 11: Creating vectors
	Section 11.1: Vectors from build in constants: Sequences of letters & month names
	Section 11.2: Creating named vectors
	Section 11.3: Sequence of numbers
	Section 11.4: seq()
	Section 11.5: Vectors
	Section 11.6: Expanding a vector with the rep() function

	Chapter 12: Date and Time
	Section 12.1: Current Date and Time
	Section 12.2: Go to the End of the Month
	Section 12.3: Go to First Day of the Month
	Section 12.4: Move a date a number of months consistently by months

	Chapter 13: The Date class
	Section 13.1: Formatting Dates
	Section 13.2: Parsing Strings into Date Objects
	Section 13.3: Dates

	Chapter 14: Date-time classes (POSIXct and POSIXlt)
	Section 14.1: Formatting and printing date-time objects
	Section 14.2: Date-time arithmetic
	Section 14.3: Parsing strings into date-time objects

	Chapter 15: The character class
	Section 15.1: Coercion

	Chapter 16: Numeric classes and storage modes
	Section 16.1: Numeric

	Chapter 17: The logical class
	Section 17.1: Logical operators
	Section 17.2: Coercion
	Section 17.3: Interpretation of NAs

	Chapter 18: Data frames
	Section 18.1: Create an empty data.frame
	Section 18.2: Subsetting rows and columns from a data frame
	Section 18.3: Convenience functions to manipulate data.frames
	Section 18.4: Introduction
	Section 18.5: Convert all columns of a data.frame to character class

	Chapter 19: Split function
	Section 19.1: Using split in the split-apply-combine paradigm
	Section 19.2: Basic usage of split

	Chapter 20: Reading and writing tabular data in plain-text ﬁles (CSV, TSV, etc.)
	Section 20.1: Importing .csv ﬁles
	Section 20.2: Importing with data.table
	Section 20.3: Exporting .csv ﬁles
	Section 20.4: Import multiple csv ﬁles
	Section 20.5: Importing ﬁxed-width ﬁles

	Chapter 21: Pipe operators (%>% and others)
	Section 21.1: Basic use and chaining
	Section 21.2: Functional sequences
	Section 21.3: Assignment with %<>%
	Section 21.4: Exposing contents with %$%
	Section 21.5: Creating side eects with %T>%
	Section 21.6: Using the pipe with dplyr and ggplot2

	Chapter 22: Linear Models (Regression)
	Section 22.1: Linear regression on the mtcars dataset
	Section 22.2: Using the 'predict' function
	Section 22.3: Weighting
	Section 22.4: Checking for nonlinearity with polynomial regression
	Section 22.5: Plotting The Regression (base)
	Section 22.6: Quality assessment

	Chapter 23: data.table
	Section 23.1: Creating a data.table
	Section 23.2: Special symbols in data.table
	Section 23.3: Adding and modifying columns
	Section 23.4: Writing code compatible with both data.frame and data.table
	Section 23.5: Setting keys in data.table

	Chapter 24: Pivot and unpivot with data.table
	Section 24.1: Pivot and unpivot tabular data with data.table - I
	Section 24.2: Pivot and unpivot tabular data with data.table - II

	Chapter 25: Bar Chart
	Section 25.1: barplot() function

	Chapter 26: Base Plotting
	Section 26.1: Density plot
	Section 26.2: Combining Plots
	Section 26.3: Getting Started with R_Plots
	Section 26.4: Basic Plot
	Section 26.5: Histograms
	Section 26.6: Matplot
	Section 26.7: Empirical Cumulative Distribution Function

	Chapter 27: boxplot
	Section 27.1: Create a box-and-whisker plot with boxplot() {graphics}
	Section 27.2: Additional boxplot style parameters

	Chapter 28: ggplot2
	Section 28.1: Displaying multiple plots
	Section 28.2: Prepare your data for plotting
	Section 28.3: Add horizontal and vertical lines to plot
	Section 28.4: Scatter Plots
	Section 28.5: Produce basic plots with qplot
	Section 28.6: Vertical and Horizontal Bar Chart
	Section 28.7: Violin plot

	Chapter 29: Factors
	Section 29.1: Consolidating Factor Levels with a List
	Section 29.2: Basic creation of factors
	Section 29.3: Changing and reordering factors
	Section 29.4: Rebuilding factors from zero

	Chapter 30: Pattern Matching and Replacement
	Section 30.1: Finding Matches
	Section 30.2: Single and Global match
	Section 30.3: Making substitutions
	Section 30.4: Find matches in big data sets

	Chapter 31: Run-length encoding
	Section 31.1: Run-length Encoding with `rle`
	Section 31.2: Identifying and grouping by runs in base R
	Section 31.3: Run-length encoding to compress and decompress vectors
	Section 31.4: Identifying and grouping by runs in data.table

	Chapter 32: Speeding up tough-to-vectorize code
	Section 32.1: Speeding tough-to-vectorize for loops with Rcpp
	Section 32.2: Speeding tough-to-vectorize for loops by byte compiling

	Chapter 33: Introduction to Geographical Maps
	Section 33.1: Basic map-making with map() from the package maps
	Section 33.2: 50 State Maps and Advanced Choropleths with Google Viz
	Section 33.3: Interactive plotly maps
	Section 33.4: Making Dynamic HTML Maps with Leaﬂet
	Section 33.5: Dynamic Leaﬂet maps in Shiny applications

	Chapter 34: Set operations
	Section 34.1: Set operators for pairs of vectors
	Section 34.2: Cartesian or "cross" products of vectors
	Section 34.3: Set membership for vectors
	Section 34.4: Make unique / drop duplicates / select distinct elements from a vector
	Section 34.5: Measuring set overlaps / Venn diagrams for vectors

	Chapter 35: tidyverse
	Section 35.1: tidyverse: an overview
	Section 35.2: Creating tbl_df’s

	Chapter 36: Rcpp
	Section 36.1: Extending Rcpp with Plugins
	Section 36.2: Inline Code Compile
	Section 36.3: Rcpp Attributes
	Section 36.4: Specifying Additional Build Dependencies

	Chapter 37: Random Numbers Generator
	Section 37.1: Random permutations
	Section 37.2: Generating random numbers using various density functions
	Section 37.3: Random number generator's reproducibility

	Chapter 38: Parallel processing
	Section 38.1: Parallel processing with parallel package
	Section 38.2: Parallel processing with foreach package
	Section 38.3: Random Number Generation
	Section 38.4: mcparallelDo

	Chapter 39: Subsetting
	Section 39.1: Data frames
	Section 39.2: Atomic vectors
	Section 39.3: Matrices
	Section 39.4: Lists
	Section 39.5: Vector indexing
	Section 39.6: Other objects
	Section 39.7: Elementwise Matrix Operations

	Chapter 40: Debugging
	Section 40.1: Using debug
	Section 40.2: Using browser

	Chapter 41: Installing packages
	Section 41.1: Install packages from GitHub
	Section 41.2: Download and install packages from repositories
	Section 41.3: Install package from local source
	Section 41.4: Install local development version of a package
	Section 41.5: Using a CLI package manager -- basic pacman usage

	Chapter 42: Inspecting packages
	Section 42.1: View Package Version
	Section 42.2: View Loaded packages in Current Session
	Section 42.3: View package information
	Section 42.4: View package's built-in data sets
	Section 42.5: List a package's exported functions

	Chapter 43: Creating packages with devtools
	Section 43.1: Creating and distributing packages
	Section 43.2: Creating vignettes

	Chapter 44: Using pipe assignment in your own package %<>%: How to ?
	Section 44.1: Putting the pipe in a utility-functions ﬁle

	Chapter 45: Arima Models
	Section 45.1: Modeling an AR1 Process with Arima

	Chapter 46: Distribution Functions
	Section 46.1: Normal distribution
	Section 46.2: Binomial Distribution

	Chapter 47: Shiny
	Section 47.1: Create an app
	Section 47.2: Checkbox Group
	Section 47.3: Radio Button
	Section 47.4: Debugging
	Section 47.5: Select box
	Section 47.6: Launch a Shiny app
	Section 47.7: Control widgets

	Chapter 48: spatial analysis
	Section 48.1: Create spatial points from XY data set
	Section 48.2: Importing a shape ﬁle (.shp)

	Chapter 49: sqldf
	Section 49.1: Basic Usage Examples

	Chapter 50: Code proﬁling
	Section 50.1: Benchmarking using microbenchmark
	Section 50.2: proc.time()
	Section 50.3: Microbenchmark
	Section 50.4: System.time
	Section 50.5: Line Proﬁling

	Chapter 51: Control ﬂow structures
	Section 51.1: Optimal Construction of a For Loop
	Section 51.2: Basic For Loop Construction
	Section 51.3: The Other Looping Constructs: while and repeat

	Chapter 52: Column wise operation
	Section 52.1: sum of each column

	Chapter 53: JSON
	Section 53.1: JSON to / from R objects

	Chapter 54: RODBC
	Section 54.1: Connecting to Excel Files via RODBC
	Section 54.2: SQL Server Management Database connection to get individual table
	Section 54.3: Connecting to relational databases

	Chapter 55: lubridate
	Section 55.1: Parsing dates and datetimes from strings with lubridate
	Section 55.2: Dierence between period and duration
	Section 55.3: Instants
	Section 55.4: Intervals, Durations and Periods
	Section 55.5: Manipulating date and time in lubridate
	Section 55.6: Time Zones
	Section 55.7: Parsing date and time in lubridate
	Section 55.8: Rounding dates

	Chapter 56: Time Series and Forecasting
	Section 56.1: Creating a ts object
	Section 56.2: Exploratory Data Analysis with time-series data

	Chapter 57: strsplit function
	Section 57.1: Introduction

	Chapter 58: Web scraping and parsing
	Section 58.1: Basic scraping with rvest
	Section 58.2: Using rvest when login is required

	Chapter 59: Generalized linear models
	Section 59.1: Logistic regression on Titanic dataset

	Chapter 60: Reshaping data between long and wide forms
	Section 60.1: Reshaping data
	Section 60.2: The reshape function

	Chapter 61: RMarkdown and knitr presentation
	Section 61.1: Adding a footer to an ioslides presentation
	Section 61.2: Rstudio example

	Chapter 62: Scope of variables
	Section 62.1: Environments and Functions
	Section 62.2: Function Exit
	Section 62.3: Sub functions
	Section 62.4: Global Assignment
	Section 62.5: Explicit Assignment of Environments and Variables

	Chapter 63: Performing a Permutation Test
	Section 63.1: A fairly general function

	Chapter 64: xgboost
	Section 64.1: Cross Validation and Tuning with xgboost

	Chapter 65: R code vectorization best practices
	Section 65.1: By row operations

	Chapter 66: Missing values
	Section 66.1: Examining missing data
	Section 66.2: Reading and writing data with NA values
	Section 66.3: Using NAs of dierent classes
	Section 66.4: TRUE/FALSE and/or NA

	Chapter 67: Hierarchical Linear Modeling
	Section 67.1: basic model ﬁtting

	Chapter 68: *apply family of functions (functionals)
	Section 68.1: Using built-in functionals
	Section 68.2: Combining multiple `data.frames` (`lapply`, `mapply`)
	Section 68.3: Bulk File Loading
	Section 68.4: Using user-deﬁned functionals

	Chapter 69: Text mining
	Section 69.1: Scraping Data to build N-gram Word Clouds

	Chapter 70: ANOVA
	Section 70.1: Basic usage of aov()
	Section 70.2: Basic usage of Anova()

	Chapter 71: Raster and Image Analysis
	Section 71.1: Calculating GLCM Texture
	Section 71.2: Mathematical Morphologies

	Chapter 72: Survival analysis
	Section 72.1: Random Forest Survival Analysis with randomForestSRC
	Section 72.2: Introduction - basic ﬁtting and plotting of parametric survival models with the survival package
	Section 72.3: Kaplan Meier estimates of survival curves and risk set tables with survminer

	Chapter 73: Fault-tolerant/resilient code
	Section 73.1: Using tryCatch()

	Chapter 74: Reproducible R
	Section 74.1: Data reproducibility
	Section 74.2: Package reproducibility

	Chapter 75: Fourier Series and Transformations
	Section 75.1: Fourier Series

	Chapter 76: .Rproﬁle
	Section 76.1: .Rproﬁle - the ﬁrst chunk of code executed
	Section 76.2: .Rproﬁle example

	Chapter 77: dplyr
	Section 77.1: dplyr's single table verbs
	Section 77.2: Aggregating with %>% (pipe) operator
	Section 77.3: Subset Observation (Rows)
	Section 77.4: Examples of NSE and string variables in dpylr

	Chapter 78: caret
	Section 78.1: Preprocessing

	Chapter 79: Extracting and Listing Files in Compressed Archives
	Section 79.1: Extracting ﬁles from a .zip archive

	Chapter 80: Probability Distributions with R
	Section 80.1: PDF and PMF for dierent distributions in R

	Chapter 81: R in LaTeX with knitr
	Section 81.1: R in LaTeX with Knitr and Code Externalization
	Section 81.2: R in LaTeX with Knitr and Inline Code Chunks
	Section 81.3: R in LaTex with Knitr and Internal Code Chunks

	Chapter 82: Web Crawling in R
	Section 82.1: Standard scraping approach using the RCurl package

	Chapter 83: Creating reports with RMarkdown
	Section 83.1: Including bibliographies
	Section 83.2: Including LaTeX Preample Commands 
	Section 83.3: Printing tables
	Section 83.4: Basic R-markdown document structure

	Chapter 84: GPU-accelerated computing
	Section 84.1: gpuR gpuMatrix objects
	Section 84.2: gpuR vclMatrix objects

	Chapter 85: heatmap and heatmap.2
	Section 85.1: Examples from the ocial documentation
	Section 85.2: Tuning parameters in heatmap.2

	Chapter 86: Network analysis with the igraph package
	Section 86.1: Simple Directed and Non-directed Network Graphing

	Chapter 87: Functional programming
	Section 87.1: Built-in Higher Order Functions

	Chapter 88: Get user input
	Section 88.1: User input in R

	Chapter 89: Spark API (SparkR)
	Section 89.1: Setup Spark context
	Section 89.2: Cache data
	Section 89.3: Create RDDs (Resilient Distributed Datasets)

	Chapter 90: Meta: Documentation Guidelines
	Section 90.1: Style
	Section 90.2: Making good examples

	Chapter 91: Input and output
	Section 91.1: Reading and writing data frames

	Chapter 92: I/O for foreign tables (Excel, SAS, SPSS, Stata)
	Section 92.1: Importing data with rio
	Section 92.2: Read and write Stata, SPSS and SAS ﬁles
	Section 92.3: Importing Excel ﬁles
	Section 92.4: Import or Export of Feather ﬁle

	Chapter 93: I/O for database tables
	Section 93.1: Reading Data from MySQL Databases
	Section 93.2: Reading Data from MongoDB Databases

	Chapter 94: I/O for geographic data (shapeﬁles, etc.)
	Section 94.1: Import and Export Shapeﬁles

	Chapter 95: I/O for raster images
	Section 95.1: Load a multilayer raster

	Chapter 96: I/O for R's binary format
	Section 96.1: Rds and RData (Rda) ﬁles
	Section 96.2: Enviromments

	Chapter 97: Recycling
	Section 97.1: Recycling use in subsetting

	Chapter 98: Expression: parse + eval
	Section 98.1: Execute code in string format

	Chapter 99: Regular Expression Syntax in R
	Section 99.1: Use `grep` to ﬁnd a string in a character vector

	Chapter 100: Regular Expressions (regex)
	Section 100.1: Dierences between Perl and POSIX regex
	Section 100.2: Validate a date in a "YYYYMMDD" format
	Section 100.3: Escaping characters in R regex patterns
	Section 100.4: Validate US States postal abbreviations
	Section 100.5: Validate US phone numbers

	Chapter 101: Combinatorics
	Section 101.1: Enumerating combinations of a speciﬁed length
	Section 101.2: Counting combinations of a speciﬁed length

	Chapter 102: Solving ODEs in R
	Section 102.1: The Lorenz model
	Section 102.2: Lotka-Volterra or: Prey vs. predator
	Section 102.3: ODEs in compiled languages - deﬁnition in R
	Section 102.4: ODEs in compiled languages - deﬁnition in C
	Section 102.5: ODEs in compiled languages - deﬁnition in fortran
	Section 102.6: ODEs in compiled languages - a benchmark test

	Chapter 103: Feature Selection in R -- Removing Extraneous Features
	Section 103.1: Removing features with zero or near-zero variance
	Section 103.2: Removing features with high numbers of NA
	Section 103.3: Removing closely correlated features

	Chapter 104: Bibliography in RMD
	Section 104.1: Specifying a bibliography and cite authors
	Section 104.2: Inline references
	Section 104.3: Citation styles

	Chapter 105: Writing functions in R
	Section 105.1: Anonymous functions
	Section 105.2: RStudio code snippets
	Section 105.3: Named functions

	Chapter 106: Color schemes for graphics
	Section 106.1: viridis - print and colorblind friendly palettes
	Section 106.2: A handy function to glimse a vector of colors
	Section 106.3: colorspace - click&drag interface for colors
	Section 106.4: Colorblind-friendly palettes
	Section 106.5: RColorBrewer
	Section 106.6: basic R color functions

	Chapter 107: Hierarchical clustering with hclust
	Section 107.1: Example 1 - Basic use of hclust, display of dendrogram, plot clusters
	Section 107.2: Example 2 - hclust and outliers

	Chapter 108: Random Forest Algorithm
	Section 108.1: Basic examples - Classiﬁcation and Regression

	Chapter 109: RESTful R Services
	Section 109.1: opencpu Apps

	Chapter 110: Machine learning
	Section 110.1: Creating a Random Forest model

	Chapter 111: Using texreg to export models in a paper-ready way
	Section 111.1: Printing linear regression results

	Chapter 112: Publishing
	Section 112.1: Formatting tables
	Section 112.2: Formatting entire documents

	Chapter 113: Implement State Machine Pattern using S4 Class
	Section 113.1: Parsing Lines using State Machine

	Chapter 114: Reshape using tidyr
	Section 114.1: Reshape from long to wide format with spread()
	Section 114.2: Reshape from wide to long format with gather()

	Chapter 115: Modifying strings by substitution
	Section 115.1: Rearrange character strings using capture groups
	Section 115.2: Eliminate duplicated consecutive elements

	Chapter 116: Non-standard evaluation and standard evaluation
	Section 116.1: Examples with standard dplyr verbs

	Chapter 117: Randomization
	Section 117.1: Random draws and permutations
	Section 117.2: Setting the seed

	Chapter 118: Object-Oriented Programming in R
	Section 118.1: S3

	Chapter 119: Coercion
	Section 119.1: Implicit Coercion

	Chapter 120: Standardize analyses by writing standalone R scripts
	Section 120.1: The basic structure of standalone R program and how to call it
	Section 120.2: Using littler to execute R scripts

	Chapter 121: Analyze tweets with R
	Section 121.1: Download Tweets
	Section 121.2: Get text of tweets

	Chapter 122: Natural language processing
	Section 122.1: Create a term frequency matrix

	Chapter 123: R Markdown Notebooks (from RStudio)
	Section 123.1: Creating a Notebook
	Section 123.2: Inserting Chunks
	Section 123.3: Executing Chunk Code
	Section 123.4: Execution Progress
	Section 123.5: Preview Output
	Section 123.6: Saving and Sharing

	Chapter 124: Aggregating data frames
	Section 124.1: Aggregating with data.table
	Section 124.2: Aggregating with base R
	Section 124.3: Aggregating with dplyr

	Chapter 125: Data acquisition
	Section 125.1: Built-in datasets
	Section 125.2: Packages to access open databases
	Section 125.3: Packages to access restricted data
	Section 125.4: Datasets within packages

	Chapter 126: R memento by examples
	Section 126.1: Plotting (using plot)
	Section 126.2: Commonly used functions
	Section 126.3: Data types

	Chapter 127: Updating R version
	Section 127.1: Installing from R Website
	Section 127.2: Updating from within R using installr Package
	Section 127.3: Deciding on the old packages
	Section 127.4: Updating Packages
	Section 127.5: Check R Version

	Credits
	You may also like

