O'REILLY"

Rust Atomics
and Locks

Low-Level Concurrency in Practice

Mara Bos

O'REILLY"

Rust Atomics and Locks

The Rust programming language is extremely well suited
for concurrency, and its ecosystem has many libraries that
include lots of concurrent data structures, locks, and more.

But implementing those structures correctly can be difficult.

Even in the most well-used libraries, memory ordering bugs
are not uncommon.

In this practical book, Mara Bos, team lead of the Rust
library team, helps Rust programmers of all levels gain a
clear understanding of low-level concurrency. You'll learn
everything about atomics and memory ordering and how
they're combined with basic operating system APIs to build
common primitives like mutexes and condition variables.
Once you're done, you'll have a firm grasp of how Rust's
memory model, the processor, and the role of the operating
system all fit together.

With this guide, you'll learn:

¢ How Rust's type system works exceptionally well for
programming concurrency correctly

¢ All about mutexes, condition variables, atomics, and
memory ordering

e What happens in practice with atomic operations on Intel
and ARM processors

¢ How locks are implemented with support from the
operating system

e How to write correct code that includes concurrency,
atomics, and locks

¢ How to build your own locking and synchronization
primitives correctly

“This book is incredible!
It's exactly what | wanted
The Rustonomicon to
cover on concurrency,
but far better than |
dared dream. Thorough
in all the right places.
Mara deserves a big
rest after this.”

—Aria Beingessner
Author of The Rustonomicon

Mara Bos maintains the Rust standard
library and builds real-time control
systems in Rust. As team lead of the
Rust library team, she knows all the

ins and outs of the language and the
standard library. In addition, she's been
working with concurrent real-time
systems for years as founder and CTO
at Fusion Engineering. Maintaining the
most used library in the Rust ecosystem
and working daily on safety critical
systems has given her the hands-on
experience to both understand the
theory and bring it into practice.

RUST / PROGRAMMING LANGUAGES

US $55.99 CAN $69.99
ISBN: 978-1-098-11944-7

NN i
, WAL

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Rust Atomics and Locks

Low-Level Concurrency in Practice

Mara Bos

Beijing « Boston « Farnham - Sebastopol - Tokyo KON{={|HAE

Rust Atomics and Locks
by Mara Bos

Copyright © 2023 Mara Bos. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade Indexer: Ellen Troutman-Zaig
Development Editor: Shira Evans Interior Designer: David Futato
Production Editor: Elizabeth Faerm Cover Designer: Karen Montgomery
Copyeditor: Liz Wheeler lllustrator: Kate Dullea

Proofreader: Penelope Perkins
December 2022: First Edition

Revision History for the First Edition

2022-12-14: First Release
2023-01-27: Second Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098119447 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Rust Atomics and Locks, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-11944-7
[LSI]

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098119447

To all the Rust contributors who were waiting for me to
review their code while I was busy writing this book.

And to my loved ones, too, of course. ¥

In loving memory of

Amélia Ada Louise, 1994-2021

Table of Contents

FOreword.ooovii Xi
Preface. ...ooi xiii
1. Basics of RuSt CONCUITENCY. .o v ovevete ittt e iie e eeneeennaans 1
Threads in Rust 2
Scoped Threads 5
Shared Ownership and Reference Counting 7
Statics 7
Leaking 8
Reference Counting 8
Borrowing and Data Races 11
Interior Mutability 13
Cell 14
RefCell 14
Mutex and RwLock 15
Atomics 15
UnsafeCell 16
Thread Safety: Send and Sync 16
Locking: Mutexes and RwLocks 18
Rust’s Mutex 18
Lock Poisoning 21
Reader-Writer Lock 22
Waiting: Parking and Condition Variables 24
Thread Parking 24
Condition Variables 26
Summary 29

vii

2.

(0] 1] [

Atomic Load and Store Operations
Example: Stop Flag
Example: Progress Reporting
Example: Lazy Initialization
Fetch-and-Modify Operations

Example: Progress Reporting from Multiple Threads

Example: Statistics

Example: ID Allocation
Compare-and-Exchange Operations

Example: ID Allocation Without Overflow

Example: Lazy One-Time Initialization
Summary

. Memory Ordering.oovvuiiiiiiiiiiriiiiiiiieiiirennnenns

Reordering and Optimizations
The Memory Model
Happens-Before Relationship
Spawning and Joining
Relaxed Ordering
Release and Acquire Ordering
Example: Locking
Example: Lazy Initialization with Indirection
Consume Ordering
Sequentially Consistent Ordering
Fences
Common Misconceptions
Summary

Building OurOwn SpinLock.ccovveviiiniiiiiiiiiinnnnnn

A Minimal Implementation

An Unsafe Spin Lock

A Safe Interface Using a Lock Guard
Summary

Building OurOwn Channels............cccvviiiiiiiiiiinnnnen.

A Simple Mutex-Based Channel
An Unsafe One-Shot Channel
Safety Through Runtime Checks
Safety Through Types
Borrowing to Avoid Allocation

32
32
33
35
36
38
39
41
42
44
45
47

49
49
51
51
53
54
57
60
62
65
66
67
71
73

75
75
78
80
83

85
85
87
90
94
98

viii

| Table of Contents

Blocking
Summary

. Building Our OWn “Arc”. ...ttt ie it

Basic Reference Counting
Testing It
Mutation

Weak Pointers
Testing It

Optimizing

Summary

. Understanding the Processor...........c.covvviiiiiiiiiiiiiiirinereneeennnnns

Processor Instructions
Load and Store
Read-Modify-Write Operations
Load-Linked and Store-Conditional Instructions
Caching
Cache Coherence
Impact on Performance
Reordering
Memory Ordering
x86-64: Strongly Ordered
ARM64: Weakly Ordered
An Experiment
Memory Fences
Summary

. Operating System Primitives............coviiiiiiiiiiiiiiiiii i

Interfacing with the Kernel
POSIX
Wrapping in Rust
Linux
Futex
Futex Operations
Priority Inheritance Futex Operations
macOS
os_unfair_lock
Windows
Heavyweight Kernel Objects
Lighter-Weight Objects

101
104

105
105
109
110
111
117
118
125

127
128
132
133
137
141
142
144
149
150
151
153
155
158
159

161
161
163
164
166
167
169
173
174
175
175
175
176

Table of Contents

ix

10.

Address-Based Waiting
Summary

Building OurOwn Locks.covvvviiiniiinnnenn.

Mutex
Avoiding Syscalls
Optimizing Further
Benchmarking
Condition Variable
Avoiding Syscalls
Avoiding Spurious Wake-ups
Reader-Writer Lock
Avoiding Busy-Looping Writers
Avoiding Writer Starvation
Summary

Ideas and Inspiration..............ccooveiiiiiiiiinen..

Semaphore

RCU

Lock-Free Linked List
Queue-Based Locks
Parking Lot-Based Locks
Sequence Lock

Teaching Materials

177
179

181
183
186
188
191
193
198
200
203
206
208
211

213
213
214
215
217
218
218
219

X

| Table of Contents

Foreword

This book provides an excellent overview of low-level concurrency in the Rust
language, including threads, locks, reference counts, atomics, mailboxes/channels,
and much else besides. It digs into issues with CPUs and operating systems, the
latter summarizing challenges inherent in making concurrent code work correctly on
Linux, macOS, and Windows. I was particularly happy to see that Mara illustrates
these topics with working Rust code. It wraps up by discussing semaphores, lock-free
linked lists, queued locks, sequence locks, and even RCU.

So what does this book offer someone like myself, who has been slinging C code for
almost 40 years, most recently in the nether depths of the Linux kernel?

I first learned of Rust from any number of enthusiasts and Linux-related conferences.
Nevertheless, I was happily minding my own business until I was called out by name
in a Rust-related LWN article, “Using Rust for Kernel Development”. Thus prodded, I
wrote a blog series entitled “So You Want to Rust the Linux Kernel?”. This blog series
sparked a number of spirited discussions, a few of which are visible in the series’
comments.

In one such discussion, a long-time Linux-kernel developer who has also written a
lot of Rust code told me that when writing concurrent code in Rust, you should write
it the way Rust wants you to. I have since learned that although this is great advice,
it leaves open the question of exactly what Rust wants. This book gives excellent
answers to this question, and is thus valuable both to Rust developers wishing to learn
concurrency and to developers of concurrent code in other languages who would like
to learn how best to do so in Rust.

I of course fall into this latter category. However, I must confess that many of the
spirited discussions about Rust concurrency remind me of my parents’ and grand-
parents’ long-ago complaints about the inconvenient safety features that were being
added to power tools such as saws and drills. Some of those safety features are now
ubiquitous, but hammers, chisels, and chainsaws have not changed all that much. It
was not at all easy to work out which mechanical safety features would stand the

Xi

https://oreil.ly/OnlX8
https://oreil.ly/eiedc

test of time, so I recommend approaching software safety features with an attitude
of profound humility. And please understand that I am addressing the proponents of
such features as well as their detractors.

Which brings us to another group of potential readers, the Rust skeptics. While I
do believe that most Rust skeptics are doing the community a valuable service by
pointing out opportunities for improvement, all but the most Rust-savvy of skeptics
would benefit from reading this book. If nothing else, doing so would enable them to
provide sharper and better-targeted criticisms.

Then there are those dyed-in-the-wool non-Rust developers who would prefer to
implement Rust’s concurrency-related safety mechanisms in their own favorite lan-
guage. This book will give them a deeper understanding of the Rust mechanisms that
they would like to replicate, or, better yet, improve upon.

Finally, any number of Linux-kernel developers are noting the progress that Rust
is making toward being included in the Linux kernel; for example, see Jonathan
Corbet’s article, “Next Steps for Rust in the Kernel”. As of October 2022, this is still
an experiment, but one that is being taken increasingly seriously. In fact, seriously
enough that Linus Torvalds has accepted the first bits of Rust-language support into
version 6.1 of the Linux kernel.

Whether you are reading this book to expand your Rust repertoire to include con-
currency, to expand your concurrency repertoire to include Rust, to improve your
existing non-Rust environment, or just to look at concurrency from a different
viewpoint, I wish you the very best on your journey!

— Paul E. McKenney

Meta Platforms Kernel Team
Meta

October 2022

xi | Foreword

https://oreil.ly/MLrT5

Preface

Rust has played, and keeps playing, a significant role in making systems program-
ming more accessible. However, low-level concurrency topics such as atomics and
memory ordering are still often thought of as somewhat mystical subjects that are
best left to a very small group of experts.

While working on Rust-based real-time control systems and the Rust standard library
over the past few years, I found that many of the available resources on atomics
and related topics only cover a small part of the information I was looking for.
Many resources focus entirely on C and C++, which can make it hard to form the
connection with Rust’s concept of (memory and thread) safety and type system. The
resources that cover the details of the abstract theory, like C++’s memory model,
often only vaguely explain how it relates to actual hardware, if at all. There are many
resources that cover every detail of the actual hardware, such as processor instruc-
tions and cache coherency, but forming a holistic understanding often requires col-
lecting bits and pieces of information from many different places.

This book is an attempt to put relevant information in one place, connecting it all
together, providing everything you need to build your own correct, safe, and ergo-
nomic concurrency primitives, while understanding enough about the underlying
hardware and the role of the operating system to be able to make design decisions
and basic optimization trade-offs.

Who This Book Is For

The primary audience for this book is Rust developers who want to learn more about
low-level concurrency. Additionally, this book can also be suitable for those who are
not very familiar with Rust yet, but would like to know what low-level concurrency
looks like from a Rust perspective.

It is assumed you know the basics of Rust, have a recent Rust compiler installed, and
know how to compile and run Rust code using cargo. Rust concepts that are impor-
tant for concurrency are briefly explained when relevant, so no prior knowledge
about Rust concurrency is necessary.

xXiii

Overview of the Chapters

This book consists of ten chapters. Here’s what to expect from each chapter, and what
to look forward to:

Chapter 1 — Basics of Rust Concurrency

This chapter introduces all the tools and concepts we need for basic concurrency
in Rust, such as threads, mutexes, thread safety, shared and exclusive references,
interior mutability, and so on, which are foundational to the rest of the book.

For experienced Rust programmers who are familiar with these concepts, this
chapter can serve as a quick refresher. For those who know these concepts from
other languages but aren’t very familiar with Rust yet, this chapter will quickly fill
you in on any Rust-specific knowledge you might need for the rest of the book.

Chapter 2 — Atomics

In the second chapter we'll learn about Rust’s atomic types and all their opera-
tions. We start with simple load and store operations, and build our way up to
more advanced compare-and-exchange loops, exploring each new concept with
several real-world use cases as usable examples.

While memory ordering is relevant for every atomic operation, that topic is left
for the next chapter. This chapter only covers situations where relaxed memory
ordering suffices, which is the case more often than one might expect.

Chapter 3 — Memory Ordering

After learning about the various atomic operations and how to use them, the
third chapter introduces the most complicated topic of the book: memory
ordering.

We'll explore how the memory model works, what happens-before relationships
are and how to create them, what all the different memory orderings mean, and
why sequentially consistent ordering might not be the answer to everything.

Chapter 4 — Building Our Own Spin Lock

After learning the theory, we put it to practice in the next three chapters by
building our own versions of several common concurrency primitives. The first
of these chapters is a short one, in which we implement a spin lock.

We'll start with a very minimal version to put release and acquire memory order-
ing to practice, and then we'll explore Rust’s concept of safety to turn it into an
ergonomic and hard-to-misuse Rust data type.

Chapter 5 — Building Our Own Channels

In Chapter 5, we'll implement from scratch a handful of variations of a one-shot
channel, a primitive that can be used to send data from one thread to another.

Xiv

| Preface

Starting with a very minimal but entirely unsafe version, we’ll work our way
through several ways to design a safe interface, while considering design deci-
sions and their consequences.

Chapter 6 — Building Our Own “Arc”
For the sixth chapter, well take on a more challenging memory ordering puzzle.
We're going to implement our own version of atomic reference counting from
scratch.

After adding support for weak pointers and optimizing it for performance, our
final version will be practically identical to Rust’s standard std: :sync: :Arc type.

Chapter 7 — Understanding the Processor
The seventh chapter is a deep dive into all the low-level details. We'll explore
what happens at the processor level, what the assembly instructions behind the
atomic operations look like on the two most popular processor architectures,
what caching is and how it affects the performance of our code, and we'll find out
what remains of the memory model at the hardware level.

Chapter 8 — Operating System Primitives
In Chapter 8 we acknowledge that there are things we can’t do without the help
of the operating system’s kernel and learn what functionality is available on Linux,
macOS, and Windows.

We'll discuss the concurrency primitives that are available through pthreads on
POSIX systems, find out what we can do with the Windows API, and learn what
the Linux futex syscall does.

Chapter 9 — Building Our Own Locks
Using what we've learned in the previous chapters, in Chapter 9 we’re going to
build several implementations of a mutex, condition variable, and reader-writer
lock from scratch.

For each of these, we'll start with a minimal but complete version, which we’ll
then attempt to optimize in various ways. Using some simple benchmark tests,
we'll find out that our attempts at optimization don't always increase perfor-
mance, while we discuss various design trade-offs.

Chapter 10 — Ideas and Inspiration
The final chapter makes sure you don't fall into a void after finishing the book,
but are instead left with ideas and inspiration for things to build and explore with
your new knowledge and skills, perhaps kicking off an exciting journey further
into the depths of low-level concurrency.

Preface | xv

Code Examples

All code in this book is written for and tested using Rust 1.66.0, which was released
on December 15, 2022. Earlier versions do not include all features used in this book.
Later versions, however, should work just fine.

For brevity, the code examples do not include use statements, except for the first time
a new item from the standard library is introduced. As a convenience, the following
prelude can be used to import everything necessary to compile any of the code
examples in this book:

#[allow(unused)]
use std::{
cell::{Cell, RefCell, UnsafeCell},
collections: :VecDeque,
marker: :PhantomData,
mem: : {ManuallyDrop, MaybeUninit},
ops::{Deref, DerefMut},
ptr::NonNull,
rc::Rc,
sync::{*, atomic::{*, Ordering::*}},
thread::{self, Thread},
b
Supplemental material, including complete versions of all code examples, is available
at https://marabos.nl/atomics/.

You may use all example code offered with this book for any purpose.

Attribution is appreciated, but not required. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Rust Atomics and Locks by Mara Bos
(O’Reilly). Copyright 2023 Mara Bos, 978-1-098-11944-77

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Used for new terms, URLs, and emphasis.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, data types, statements, and keywords.

xvi | Preface

https://marabos.nl/atomics/

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

\

Contact Information

O’Reilly has a web page for this book, where errata, examples, and any additional
information are listed. It is available at https://oreil.ly/rust-atomics-and-locks.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book. If you wish to reuse content from this book, and you feel your reuse falls
outside fair use or the permission given in this Preface, feel free to contact O’Reilly at
permissions@oreilly.com.

For news and information about O'Reilly, visit https://oreilly.com.
Follow O’Reilly on Twitter: https://twitter.com/oreillymedia.

Follow the author on Twitter: https://twitter.com/m_ou_se.

Acknowledgments

I'd like to thank everyone who had a part in the creation this book. Many people
provided support and useful input, which has been incredibly helpful. In particular,
I'd like to thank Amanieu d’Antras, Aria Beingessner, Paul McKenney, Carol Nichols,
and Miguel Raz Guzman Macedo for their invaluable and thoughtful feedback on the
early drafts. Id also like to thank everyone at O'Reilly, and in particular my editors,
Shira Evans and Zan McQuade, for their inexhaustible enthusiasm and support.

Preface | xvii

https://oreil.ly/rust-atomics-and-locks
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://twitter.com/oreillymedia
https://twitter.com/m_ou_se

CHAPTER 1
Basics of Rust Concurrency

Long before multi-core processors were commonplace, operating systems allowed for
a single computer to run many programs concurrently. This is achieved by rapidly
switching between processes, allowing each to repeatedly make a little bit of progress,
one by one. Nowadays, virtually all our computers and even our phones and watches
have processors with multiple cores, which can truly execute multiple processes
in parallel.

Operating systems isolate processes from each other as much as possible, allowing
a program to do its thing while completely unaware of what any other processes
are doing. For example, a process cannot normally access the memory of another
process, or communicate with it in any way, without asking the operating system’s
kernel first.

However, a program can spawn extra threads of execution, as part of the same process.
Threads within the same process are not isolated from each other. Threads share
memory and can interact with each other through that memory.

This chapter will explain how threads are spawned in Rust, and all the basic concepts
around them, such as how to safely share data between multiple threads. The con-
cepts explained in this chapter are foundational to the rest of the book.

If you're already familiar with these parts of Rust, feel free to skip
ahead. However, before you continue to the next chapters, make
sure you have a good understanding of threads, interior mutability,
Send and Sync, and know what a mutex, a condition variable, and
thread parking are.

Threads in Rust

Every program starts with exactly one thread: the main thread. This thread will
execute your main function and can be used to spawn more threads if necessary.

In Rust, new threads are spawned using the std: :thread: : spawn function from the
standard library. It takes a single argument: the function the new thread will execute.
The thread stops once this function returns.

Let’s take a look at an example:

use std::thread;

fn main() {
thread: :spawn(f);
thread: :spawn(f);

println!("Hello from the main thread.");

}

fn f() {
println!("Hello from another thread!");
let id = thread::current().id();
println!("This is my thread id: {id:?}");

}

We spawn two threads that will both execute f as their main function. Both of these
threads will print a message and show their thread id, while the main thread will also
print its own message.

Thread ID

The Rust standard library assigns every thread a unique identifier. This identifier is
accessible through Thread: :1d() and is of the type ThreadId. There’s not much you
can do with a ThreadId other than copying it around and checking for equality. There
is no guarantee that these IDs will be assigned consecutively, only that they will be
different for each thread.

If you run our example program above several times, you might notice the out-
put varies between runs. This is the output I got on my machine during one
particular run:

Hello from the main thread.
Hello from another thread!
This is my thread id:

Surprisingly, part of the output seems to be missing.

2 | Chapter 1:Basics of Rust Concurrency

What happened here is that the main thread finished executing the main function
before the newly spawned threads finished executing their functions.

Returning from main will exit the entire program, even if other threads are still
running.

In this particular example, one of the newly spawned threads had just enough time to
get to halfway through the second message, before the program was shut down by the
main thread.

If we want to make sure the threads are finished before we return from main, we can
wait for them by joining them. To do so, we have to use the JoinHandle returned by
the spawn function:

fn main() {
let t1 = thread::spawn(f);
let t2 = thread::spawn(f);

println!("Hello from the main thread.");

t1.join().unwrap();
t2.join().unwrap();
}

The .join() method waits until the thread has finished executing and returns a
std::thread::Result. If the thread did not successfully finish its function because
it panicked, this will contain the panic message. We could attempt to handle that
situation, or just call .unwrap() to panic when joining a panicked thread.

Running this version of our program will no longer result in truncated output:

Hello from the main thread.

Hello from another thread!

This 1s my thread id: ThreadId(3)
Hello from another thread!

This 1s my thread id: ThreadId(2)

The only thing that still changes between runs is the order in which the messages
are printed:

Hello from the main thread.
Hello from another thread!
Hello from another thread!
This 1s my thread id: ThreadId(2)
This is my thread id: ThreadId(3)

ThreadsinRust | 3

Output Locking

The println macro uses std::10::Stdout: :lock() to make sure its output does not
get interrupted. A println!() expression will wait until any concurrently running
one is finished before writing any output. If this was not the case, we could’ve gotten
more interleaved output such as:

Hello fromHello from another thread!

another This is my threthreadHello fromthread id: ThreadId!
(the main thread.

2)This is my thread

id: ThreadId(3)

Rather than passing the name of a function to std: : thread: : spawn, as in our exam-
ple above, it’s far more common to pass it a closure. This allows us to capture values to
move into the new thread:

let numbers = vec![1, 2, 3];

thread: :spawn(move || {
for n in &numbers {
println!("{n}");
}
}).join().unwrap();

Here, ownership of numbers is transferred to the newly spawned thread, since we
used a move closure. If we had not used the move keyword, the closure would have

captured numbers by reference. This would have resulted in a compiler error, since
the new thread might outlive that variable.

Since a thread might run until the very end of the program’s execution, the spawn
function has a 'static lifetime bound on its argument type. In other words, it
only accepts functions that may be kept around forever. A closure capturing a local
variable by reference may not be kept around forever, since that reference would
become invalid the moment the local variable ceases to exist.

Getting a value back out of the thread is done by returning it from the closure. This
return value can be obtained from the Result returned by the join method:

let numbers = Vec::from_iter(0..=1000);

let t = thread::spawn(move || {
let len = numbers.len();
let sum = numbers.iter().sum::<usize>();
sum / len

s

let average = t.join().unwrap(); (2]

4 | Chapter 1:Basics of Rust Concurrency

println!("average: {average}");

Here, the value returned by the thread’s closure (@) is sent back to the main thread
through the join method (@).

If numbers had been empty, the thread would’ve panicked while trying to divide by
zero (@), and join would've returned that panic message instead, causing the main
thread to panic too because of unwrap (0).

Thread Builder

The std::thread::spawn function is actually just a convenient shorthand for
std::thread: :Builder::new().spawn().unwrap().

A std::thread: :Builder allows you to set some settings for the new thread before
spawning it. You can use it to configure the stack size for the new thread and to give
the new thread a name. The name of a thread is available through std: : thread: : cur
rent().name(), will be used in panic messages, and will be visible in monitoring and
debugging tools on most platforms.

Additionally, Builder’s spawn function returns an std::io::Result, allowing you
to handle situations where spawning a new thread fails. This might happen if the
operating system runs out of memory, or if resource limits have been applied to your
program. The std: :thread: :spawn function simply panics if it is unable to spawn a
new thread.

Scoped Threads

If we know for sure that a spawned thread will definitely not outlive a certain scope,
that thread could safely borrow things that do not live forever, such as local variables,
as long as they outlive that scope.

The Rust standard library provides the std: : thread: : scope function to spawn such
scoped threads. It allows us to spawn threads that cannot outlive the scope of the
closure we pass to that function, making it possible to safely borrow local variables.

How it works is best shown with an example:

let numbers = vec![1, 2, 3];

thread: :scope(|s| { (1]

s.spawn(|| { (2]

println!("length: {}", numbers.len());
H;
s.spawn(|| { (2]

for n in &numbers {

Scoped Threads | 5

println!("{n}");
}

19K
H; ©

© We call the std::thread: :scope function with a closure. Our closure is directly
executed and gets an argument, s, representing the scope.

We use s to spawn threads. The closures can borrow local variables like numbers.

When the scope ends, all threads that haven't been joined yet are automatically
joined.

This pattern guarantees that none of the threads spawned in the scope can outlive the
scope. Because of that, this scoped spawn method does not have a 'static bound on
its argument type, allowing us to reference anything as long as it outlives the scope,
such as numbers.

In the example above, both of the new threads are concurrently accessing numbers.
This is fine, because neither of them (nor the main thread) modifies it. If we were
to change the first thread to modify numbers, as shown below, the compiler wouldn't
allow us to spawn another thread that also uses numbers:

let mut numbers = vec![1, 2, 3];

thread: :scope(|s| {
s.spawn(|| {
numbers.push(1);
H;
s.spawn(|| {
numbers.push(2); // Error!
s
H;

The exact error message depends on the version of the Rust compiler, since it’s often
improved to produce better diagnostics, but attempting to compile the code above
will result in something like this:

error[EQ499]: cannot borrow ‘numbers® as mutable more than once at a time
--> example.rs:7:13

------- second borrow occurs due to use of ‘numbers® in closure

4 | s.spawn(|] {
| -- first mutable borrow occurs here
5 numbers.push(1);
| e first borrow occurs due to use of ‘numbers’ in closure
[
7| s.spawn(|| {
| A second mutable borrow occurs here
8 | numbers.push(2);
[

6 | Chapter 1:Basics of Rust Concurrency

