
React JS
Notes for ProfessionalsReact JS

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial React JS group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

90+ pages
of professional hints and tricks

http://goalkicker.com
http://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with React 2 ...
Section 1.1: What is ReactJS? 2 ..
Section 1.2: Installation or Setup 2 ..
Section 1.3: Hello World with Stateless Functions 4 ...
Section 1.4: Absolute Basics of Creating Reusable Components 5 ...
Section 1.5: Create React App 6 ..
Section 1.6: Hello World 7 ...
Section 1.7: Hello World Component 8 ...

Chapter 2: Components 11 ...
Section 2.1: Creating Components 11 ...
Section 2.2: Basic Component 13 ...
Section 2.3: Nesting Components 14 ..
Section 2.4: Props 16 ..
Section 2.5: Component states - Dynamic user-interface 17 ..
Section 2.6: Variations of Stateless Functional Components 19 ...
Section 2.7: setState pitfalls 20 ...

Chapter 3: Using ReactJS with TypeScript 22 ..
Section 3.1: ReactJS component written in TypeScript 22 ...
Section 3.2: Installation and Setup 22 ..
Section 3.3: Stateless React Components in TypeScript 23 ...
Section 3.4: Stateless and property-less Components 24 ..

Chapter 4: State in React 25 ..
Section 4.1: Basic State 25 ...
Section 4.2: Common Antipattern 25 ...
Section 4.3: setState() 26 ...
Section 4.4: State, Events And Managed Controls 28 ...

Chapter 5: Props in React 30 ..
Section 5.1: Introduction 30 ..
Section 5.2: Default props 30 ..
Section 5.3: PropTypes 31 ...
Section 5.4: Passing down props using spread operator 32 ...
Section 5.5: Props.children and component composition 33 ...
Section 5.6: Detecting the type of Children components 34 ..

Chapter 6: React Component Lifecycle 35 ..
Section 6.1: Component Creation 35 ...
Section 6.2: Component Removal 37 ...
Section 6.3: Component Update 38 ..
Section 6.4: Lifecycle method call in dierent states 39 ..
Section 6.5: React Component Container 40 ...

Chapter 7: Forms and User Input 41 ...
Section 7.1: Controlled Components 41 ..
Section 7.2: Uncontrolled Components 41 ...

Chapter 8: React Boilerplate [React + Babel + Webpack] 43 ...
Section 8.1: react-starter project 43 ...
Section 8.2: Setting up the project 44 ...

Chapter 9: Using ReactJS with jQuery 47 ...
Section 9.1: ReactJS with jQuery 47 ..

Chapter 10: React Routing 49 ...
Section 10.1: Example Routes.js file, followed by use of Router Link in component 49 ...
Section 10.2: React Routing Async 50 ..

Chapter 11: Communicate Between Components 51 ..
Section 11.1: Communication between Stateless Functional Components 51 ..

Chapter 12: How to setup a basic webpack, react and babel environment 53
Section 12.1: How to build a pipeline for a customized "Hello world" with images 53 ...

Chapter 13: React.createClass vs extends React.Component 57 ...
Section 13.1: Create React Component 57 ..
Section 13.2: "this" Context 57 ..
Section 13.3: Declare Default Props and PropTypes 59 ...
Section 13.4: Mixins 61 ..
Section 13.5: Set Initial State 61 ...
Section 13.6: ES6/React “this” keyword with ajax to get data from server 62 ...

Chapter 14: React AJAX call 64 ..
Section 14.1: HTTP GET request 64 ..
Section 14.2: HTTP GET request and looping through data 65 ...
Section 14.3: Ajax in React without a third party library - a.k.a with VanillaJS 65 ...

Chapter 15: Communication Between Components 67 ..
Section 15.1: Child to Parent Components 67 ...
Section 15.2: Not-related Components 67 ...
Section 15.3: Parent to Child Components 68 ..

Chapter 16: Stateless Functional Components 70 ..
Section 16.1: Stateless Functional Component 70 ..

Chapter 17: Performance 73 ..
Section 17.1: Performance measurement with ReactJS 73 ..
Section 17.2: React's di algorithm 73 ..
Section 17.3: The Basics - HTML DOM vs Virtual DOM 74 ..
Section 17.4: Tips & Tricks 75 ...

Chapter 18: Introduction to Server-Side Rendering 76 ...
Section 18.1: Rendering components 76 ...

Chapter 19: Setting Up React Environment 77 ...
Section 19.1: Simple React Component 77 ...
Section 19.2: Install all dependencies 77 ..
Section 19.3: Configure webpack 77 ...
Section 19.4: Configure babel 78 ...
Section 19.5: HTML file to use react component 78 ..
Section 19.6: Transpile and bundle your component 78 ..

Chapter 20: Using React with Flow 79 ..
Section 20.1: Using Flow to check prop types of stateless functional components 79 ...
Section 20.2: Using Flow to check prop types 79 ...

Chapter 21: JSX 80 ..
Section 21.1: Props in JSX 80 ..
Section 21.2: Children in JSX 81 ...

Chapter 22: React Forms 84 ..
Section 22.1: Controlled Components 84 ..

Chapter 23: User interface solutions 86 ..
Section 23.1: Basic Pane 86 ..
Section 23.2: Panel 86 ..
Section 23.3: Tab 87 ...
Section 23.4: PanelGroup 87 ..
Section 23.5: Example view with `PanelGroup`s 88 ...

Chapter 24: Using ReactJS in Flux way 90 ...
Section 24.1: Data Flow 90 ...

Chapter 25: React, Webpack & TypeScript installation 91 ...
Section 25.1: webpack.config.js 91 ..
Section 25.2: tsconfig.json 91 ..
Section 25.3: My First Component 92 ...

Chapter 26: How and why to use keys in React 93 ..
Section 26.1: Basic Example 93 ..

Chapter 27: Keys in react 94 ...
Section 27.1: Using the id of an element 94 ...
Section 27.2: Using the array index 94 ...

Chapter 28: Higher Order Components 96 ..
Section 28.1: Higher Order Component that checks for authentication 96 ..
Section 28.2: Simple Higher Order Component 97 ...

Chapter 29: React with Redux 98 ..
Section 29.1: Using Connect 98 ...

Appendix A: Installation 99 ...
Section A.1: Simple setup 99 ..
Section A.2: Using webpack-dev-server 100 ...

Appendix B: React Tools 102 ...
Section B.1: Links 102 ...

Credits 103 ..

You may also like 105 ..

GoalKicker.com – React JS Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

http://GoalKicker.com/ReactJSBook

This React JS Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official React JS group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective

company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

http://goalkicker.com/ReactJSBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 2

Chapter 1: Getting started with React
Version Release Date
0.3.0 2013-05-29
0.4.0 2013-07-17
0.5.0 2013-10-16
0.8.0 2013-12-19
0.9.0 2014-02-20
0.10.0 2014-03-21
0.11.0 2014-07-17
0.12.0 2014-10-28
0.13.0 2015-03-10
0.14.0 2015-10-07
15.0.0 2016-04-07
15.1.0 2016-05-20
15.2.0 2016-07-01
15.2.1 2016-07-08
15.3.0 2016-07-29
15.3.1 2016-08-19
15.3.2 2016-09-19
15.4.0 2016-11-16
15.4.1 2016-11-23
15.4.2 2017-01-06
15.5.0 2017-04-07
15.6.0 2017-06-13

Section 1.1: What is ReactJS?
ReactJS is an open-source, component based front end library responsible only for the view layer of the
application. It is maintained by Facebook.

ReactJS uses virtual DOM based mechanism to fill in data (views) in HTML DOM. The virtual DOM works fast owning
to the fact that it only changes individual DOM elements instead of reloading complete DOM every time

A React application is made up of multiple components, each responsible for outputting a small,
reusable piece of HTML. Components can be nested within other components to allow complex
applications to be built out of simple building blocks. A component may also maintain internal state - for
example, a TabList component may store a variable corresponding to the currently open tab.

React allows us to write components using a domain-specific language called JSX. JSX allows us to write our
components using HTML, whilst mixing in JavaScript events. React will internally convert this into a virtual DOM, and
will ultimately output our HTML for us.

React "reacts" to state changes in your components quickly and automatically to rerender the components in the
HTML DOM by utilizing the virtual DOM. The virtual DOM is an in-memory representation of an actual DOM. By
doing most of the processing inside the virtual DOM rather than directly in the browser's DOM, React can act
quickly and only add, update, and remove components which have changed since the last render cycle occurred.

Section 1.2: Installation or Setup
ReactJS is a JavaScript library contained in a single file react-<version>.js that can be included in any HTML page.

https://github.com/facebook/react/releases/tag/v0.3.0
https://github.com/facebook/react/releases/tag/v0.4.0
https://github.com/facebook/react/releases/tag/v0.5.0
https://github.com/facebook/react/releases/tag/v0.8.0
https://github.com/facebook/react/releases/tag/v0.9.0
https://github.com/facebook/react/releases/tag/v0.10.0
https://github.com/facebook/react/releases/tag/v0.11.0
https://github.com/facebook/react/releases/tag/v0.12.0
https://github.com/facebook/react/releases/tag/v0.13.0
https://github.com/facebook/react/releases/tag/v0.14.0
https://github.com/facebook/react/releases/tag/v15.0.0
https://github.com/facebook/react/releases/tag/v15.1.0
https://github.com/facebook/react/releases/tag/v15.2.0
https://github.com/facebook/react/releases/tag/v15.2.1
https://github.com/facebook/react/releases/tag/v15.3.0
https://github.com/facebook/react/releases/tag/v15.3.1
https://github.com/facebook/react/releases/tag/v15.3.2
https://github.com/facebook/react/releases/tag/v15.4.0
https://github.com/facebook/react/releases/tag/v15.4.1
https://github.com/facebook/react/releases/tag/v15.4.2
https://github.com/facebook/react/releases/tag/v15.5.0
https://github.com/facebook/react/releases/tag/v15.6.0
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 3

People also commonly install the React DOM library react-dom-<version>.js along with the main React file:

Basic Inclusion

<!DOCTYPE html>
<html>
 <head></head>
 <body>
 <script type="text/javascript" src="/path/to/react.js"></script>
 <script type="text/javascript" src="/path/to/react-dom.js"></script>
 <script type="text/javascript">
 // Use react JavaScript code here or in a separate file
 </script>
 </body>
</html>

To get the JavaScript files, go to the installation page of the official React documentation.

React also supports JSX syntax. JSX is an extension created by Facebook that adds XML syntax to JavaScript. In order
to use JSX you need to include the Babel library and change <script type="text/javascript"> to <script
type="text/babel"> in order to translate JSX to Javascript code.

<!DOCTYPE html>
<html>
 <head></head>
 <body>
 <script type="text/javascript" src="/path/to/react.js"></script>
 <script type="text/javascript" src="/path/to/react-dom.js"></script>
 <script src="https://npmcdn.com/babel-core@5.8.38/browser.min.js"></script>
 <script type="text/babel">
 // Use react JSX code here or in a separate file
 </script>
 </body>
</html>

Installing via npm

You can also install React using npm by doing the following:

npm install --save react react-dom

To use React in your JavaScript project, you can do the following:

var React = require('react');
var ReactDOM = require('react-dom');
ReactDOM.render(<App />, ...);

Installing via Yarn

Facebook released its own package manager named Yarn, which can also be used to install React. After installing
Yarn you just need to run this command:

yarn add react react-dom

You can then use React in your project in exactly the same way as if you had installed React via npm.

https://facebook.github.io/react/docs/installation.html
https://facebook.github.io/react/docs/jsx-in-depth.html
https://www.npmjs.com/
https://yarnpkg.com/
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 4

Section 1.3: Hello World with Stateless Functions
Stateless components are getting their philosophy from functional programming. Which implies that: A function
returns all time the same thing exactly on what is given to it.

For example:
const statelessSum = (a, b) => a + b;

let a = 0;
const statefulSum = () => a++;

As you can see from the above example that, statelessSum is always will return the same values given a and b.
However, statefulSum function will not return the same values given even no parameters. This type of function's
behaviour is also called as a side-effect. Since, the component affects somethings beyond.

So, it is advised to use stateless components more often, since they are side-effect free and will create the same
behaviour always. That is what you want to be after in your apps because fluctuating state is the worst case
scenario for a maintainable program.

The most basic type of react component is one without state. React components that are pure functions of their
props and do not require any internal state management can be written as simple JavaScript functions. These are
said to be Stateless Functional Components because they are a function only of props, without having any state
to keep track of.

Here is a simple example to illustrate the concept of a Stateless Functional Component:

// In HTML
<div id="element"></div>

// In React
const MyComponent = props => {
 return <h1>Hello, {props.name}!</h1>;
};

ReactDOM.render(<MyComponent name="Arun" />, element);
// Will render <h1>Hello, Arun!</h1>

Note that all that this component does is render an h1 element containing the name prop. This component doesn't
keep track of any state. Here's an ES6 example as well:

import React from 'react'

const HelloWorld = props => (
 <h1>Hello, {props.name}!</h1>
)

HelloWorld.propTypes = {
 name: React.PropTypes.string.isRequired
}

export default HelloWorld

Since these components do not require a backing instance to manage the state, React has more room for
optimizations. The implementation is clean, but as of yet no such optimizations for stateless components have
been implemented.

https://github.com/facebook/react/issues/5677#issuecomment-165125151
https://github.com/facebook/react/issues/5677#issuecomment-165125151
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 5

Section 1.4: Absolute Basics of Creating Reusable
Components
Components and Props

As React concerns itself only with an application's view, the bulk of development in React will be the creation of
components. A component represents a portion of the view of your application. "Props" are simply the attributes
used on a JSX node (e.g. <SomeComponent someProp="some prop's value" />), and are the primary way our
application interacts with our components. In the snippet above, inside of SomeComponent, we would have access
to this.props, whose value would be the object {someProp: "some prop's value"}.

It can be useful to think of React components as simple functions - they take input in the form of "props", and
produce output as markup. Many simple components take this a step further, making themselves "Pure Functions",
meaning they do not issue side effects, and are idempotent (given a set of inputs, the component will always
produce the same output). This goal can be formally enforced by actually creating components as functions, rather
than "classes". There are three ways of creating a React component:

Functional ("Stateless") Components

const FirstComponent = props => (
 <div>{props.content}</div>
);

React.createClass()

const SecondComponent = React.createClass({
 render: function () {
 return (
 <div>{this.props.content}</div>
);
 }
});

ES2015 Classes

class ThirdComponent extends React.Component {
 render() {
 return (
 <div>{this.props.content}</div>
);
 }
}

These components are used in exactly the same way:

const ParentComponent = function (props) {
 const someText = "FooBar";
 return (
 <FirstComponent content={someText} />
 <SecondComponent content={someText} />
 <ThirdComponent content={someText} />
);
}

The above examples will all produce identical markup.

Functional components cannot have "state" within them. So if your component needs to have a state, then go for

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 6

class based components. Refer Creating Components for more information.

As a final note, react props are immutable once they have been passed in, meaning they cannot be modified from
within a component. If the parent of a component changes the value of a prop, React handles replacing the old
props with the new, the component will rerender itself using the new values.

See Thinking In React and Reusable Components for deeper dives into the relationship of props to components.

Section 1.5: Create React App
create-react-app is a React app boilerplate generator created by Facebook. It provides a development environment
configured for ease-of-use with minimal setup, including:

ES6 and JSX transpilation
Dev server with hot module reloading
Code linting
CSS auto-prefixing
Build script with JS, CSS and image bundling, and sourcemaps
Jest testing framework

Installation

First, install create-react-app globally with node package manager (npm).

npm install -g create-react-app

Then run the generator in your chosen directory.

create-react-app my-app

Navigate to the newly created directory and run the start script.

cd my-app/
npm start

Configuration

create-react-app is intentionally non-configurable by default. If non-default usage is required, for example, to use a
compiled CSS language such as Sass, then the eject command can be used.

npm run eject

This allows editing of all configuration files. N.B. this is an irreversible process.

Alternatives

Alternative React boilerplates include:

enclave
nwb
motion
rackt-cli
bud?
rwb
quik

https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/reusable-components.html
https://github.com/facebookincubator/create-react-app
https://github.com/eanplatter/enclave
https://github.com/insin/nwb
https://github.com/motion/motion
https://github.com/mzabriskie/rackt-cli
https://github.com/mattdesl/budo
https://github.com/petehunt/rwb
https://github.com/satya164/quik
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 7

sagui
roc

Build React App

To build your app for production ready, run following command

npm run build

Section 1.6: Hello World
Without JSX

Here's a basic example that uses React's main API to create a React element and the React DOM API to render the
React element in the browser.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello React!</title>

 <!-- Include the React and ReactDOM libraries -->
 <script src="https://fb.me/react-15.2.1.js"></script>
 <script src="https://fb.me/react-dom-15.2.1.js"></script>

 </head>
 <body>
 <div id="example"></div>

 <script type="text/javascript">

 // create a React element rElement
 var rElement = React.createElement('h1', null, 'Hello, world!');

 // dElement is a DOM container
 var dElement = document.getElementById('example');

 // render the React element in the DOM container
 ReactDOM.render(rElement, dElement);

 </script>

 </body>
</html>

With JSX

Instead of creating a React element from strings one can use JSX (a Javascript extension created by Facebook for
adding XML syntax to JavaScript), which allows to write

var rElement = React.createElement('h1', null, 'Hello, world!');

as the equivalent (and easier to read for someone familiar with HTML)

var rElement = <h1>Hello, world!</h1>;

https://github.com/saguijs/sagui
https://github.com/rocjs/roc
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 8

The code containing JSX needs to be enclosed in a <script type="text/babel"> tag. Everything within this tag will
be transformed to plain Javascript using the Babel library (that needs to be included in addition to the React
libraries).

So finally the above example becomes:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello React!</title>

 <!-- Include the React and ReactDOM libraries -->
 <script src="https://fb.me/react-15.2.1.js"></script>
 <script src="https://fb.me/react-dom-15.2.1.js"></script>
 <!-- Include the Babel library -->
 <script src="https://npmcdn.com/babel-core@5.8.38/browser.min.js"></script>

 </head>
 <body>
 <div id="example"></div>

 <script type="text/babel">

 // create a React element rElement using JSX
 var rElement = <h1>Hello, world!</h1>;

 // dElement is a DOM container
 var dElement = document.getElementById('example');

 // render the React element in the DOM container
 ReactDOM.render(rElement, dElement);

 </script>

 </body>
</html>

Section 1.7: Hello World Component
A React component can be defined as an ES6 class that extends the base React.Component class. In its minimal
form, a component must define a render method that specifies how the component renders to the DOM. The
render method returns React nodes, which can be defined using JSX syntax as HTML-like tags. The following
example shows how to define a minimal Component:

import React from 'react'

class HelloWorld extends React.Component {
 render() {
 return <h1>Hello, World!</h1>
 }
}

export default HelloWorld

A Component can also receive props. These are properties passed by its parent in order to specify some values the
component cannot know by itself; a property can also contain a function that can be called by the component after
certain events occur - for example, a button could receive a function for its onClick property and call it whenever it

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 9

is clicked. When writing a component, its props can be accessed through the props object on the Component itself:

import React from 'react'

class Hello extends React.Component {
 render() {
 return <h1>Hello, {this.props.name}!</h1>
 }
}

export default Hello

The example above shows how the component can render an arbitrary string passed into the name prop by its
parent. Note that a component cannot modify the props it receives.

A component can be rendered within any other component, or directly into the DOM if it's the topmost component,
using ReactDOM.render and providing it with both the component and the DOM Node where you want the React
tree to be rendered:

import React from 'react'
import ReactDOM from 'react-dom'
import Hello from './Hello'

ReactDOM.render(<Hello name="Billy James" />, document.getElementById('main'))

By now you know how to make a basic component and accept props. Lets take this a step further and introduce
state.

For demo sake, let's make our Hello World app, display only the first name if a full name is given.

import React from 'react'

class Hello extends React.Component {

 constructor(props){

 //Since we are extending the default constructor,
 //handle default activities first.
 super(props);

 //Extract the first-name from the prop
 let firstName = this.props.name.split(" ")[0];

 //In the constructor, feel free to modify the
 //state property on the current context.
 this.state = {
 name: firstName
 }

 } //Look maa, no comma required in JSX based class defs!

 render() {
 return <h1>Hello, {this.state.name}!</h1>
 }
}

export default Hello

Note: Each component can have it's own state or accept it's parent's state as a prop.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 10

Codepen Link to Example.

https://codepen.io/sunnykgupta/pen/mRPxdo?editors=1010
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 11

Chapter 2: Components
Section 2.1: Creating Components
This is an extension of Basic Example:

Basic Structure
import React, { Component } from 'react';
import { render } from 'react-dom';

class FirstComponent extends Component {
 render() {
 return (
 <div>
 Hello, {this.props.name}! I am a FirstComponent.
 </div>
);
 }
}

render(
 <FirstComponent name={ 'User' } />,
 document.getElementById('content')
);

The above example is called a stateless component as it does not contain state (in the React sense of the word).

In such a case, some people find it preferable to use Stateless Functional Components, which are based on ES6
arrow functions.

Stateless Functional Components

In many applications there are smart components that hold state but render dumb components that simply receive
props and return HTML as JSX. Stateless functional components are much more reusable and have a positive
performance impact on your application.

They have 2 main characteristics:

When rendered they receive an object with all the props that were passed down1.
They must return the JSX to be rendered2.

// When using JSX inside a module you must import React
import React from 'react';
import PropTypes from 'prop-types';

const FirstComponent = props => (
 <div>
 Hello, {props.name}! I am a FirstComponent.
 </div>
);

//arrow components also may have props validation
FirstComponent.propTypes = {
 name: PropTypes.string.isRequired,
}

// To use FirstComponent in another file it must be exposed through an export call:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 12

export default FirstComponent;

Stateful Components

In contrast to the 'stateless' components shown above, 'stateful' components have a state object that can be
updated with the setState method. The state must be initialized in the constructor before it can be set:

import React, { Component } from 'react';

class SecondComponent extends Component {
 constructor(props) {
 super(props);

 this.state = {
 toggle: true
 };

 // This is to bind context when passing onClick as a callback
 this.onClick = this.onClick.bind(this);
 }

 onClick() {
 this.setState((prevState, props) => ({
 toggle: !prevState.toggle
 }));
 }

 render() {
 return (
 <div onClick={this.onClick}>
 Hello, {this.props.name}! I am a SecondComponent.

 Toggle is: {this.state.toggle}
 </div>
);
 }
}

Extending a component with PureComponent instead of Component will automatically implement the
shouldComponentUpdate() lifecycle method with shallow prop and state comparison. This keeps your application
more performant by reducing the amount of un-necessary renders that occur. This assumes your components are
'Pure' and always render the same output with the same state and props input.

Higher Order Components

Higher order components (HOC) allow to share component functionality.

import React, { Component } from 'react';

const PrintHello = ComposedComponent => class extends Component {
 onClick() {
 console.log('hello');
 }

 /* The higher order component takes another component as a parameter
 and then renders it with additional props */
 render() {
 return <ComposedComponent {...this.props } onClick={this.onClick} />
 }
}

https://facebook.github.io/react/docs/react-api.html#react.purecomponent
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 13

const FirstComponent = props => (
 <div onClick={ props.onClick }>
 Hello, {props.name}! I am a FirstComponent.
 </div>
);

const ExtendedComponent = PrintHello(FirstComponent);

Higher order components are used when you want to share logic across several components regardless of how
different they render.

Section 2.2: Basic Component
Given the following HTML file:

index.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>React Tutorial</title>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.34/browser.min.js"></script>
 </head>
 <body>
 <div id="content"></div>
 <script type="text/babel" src="scripts/example.js"></script>
 </body>
</html>

You can create a basic component using the following code in a separate file:

scripts/example.js

import React, { Component } from 'react';
import ReactDOM from 'react-dom';

class FirstComponent extends Component {
 render() {
 return (
 <div className="firstComponent">
 Hello, world! I am a FirstComponent.
 </div>
);
 }
}
ReactDOM.render(
 <FirstComponent />, // Note that this is the same as the variable you stored above
 document.getElementById('content')
);

You will get the following result (note what is inside of div#content):

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 14

 <title>React Tutorial</title>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.34/browser.min.js"></script>
 </head>
 <body>
 <div id="content">
 <div className="firstComponent">
 Hello, world! I am a FirstComponent.
 </div>
 </div>
 <script type="text/babel" src="scripts/example.js"></script>
 </body>
</html>

Section 2.3: Nesting Components
A lot of the power of ReactJS is its ability to allow nesting of components. Take the following two components:

var React = require('react');
var createReactClass = require('create-react-class');

var CommentList = reactCreateClass({
 render: function() {
 return (
 <div className="commentList">
 Hello, world! I am a CommentList.
 </div>
);
 }
});

var CommentForm = reactCreateClass({
 render: function() {
 return (
 <div className="commentForm">
 Hello, world! I am a CommentForm.
 </div>
);
 }
});

You can nest and refer to those components in the definition of a different component:

var React = require('react');
var createReactClass = require('create-react-class');

var CommentBox = reactCreateClass({
 render: function() {
 return (
 <div className="commentBox">
 <h1>Comments</h1>
 <CommentList /> // Which was defined above and can be reused
 <CommentForm /> // Same here
 </div>
);
 }
});

Further nesting can be done in three ways, which all have their own places to be used.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 15

1. Nesting without using children

(continued from above)

var CommentList = reactCreateClass({
 render: function() {
 return (
 <div className="commentList">
 <ListTitle/>
 Hello, world! I am a CommentList.
 </div>
);
 }
});

This is the style where A composes B and B composes C.

Pros

Easy and fast to separate UI elements
Easy to inject props down to children based on the parent component's state

Cons

Less visibility into the composition architecture
Less reusability

Good if

B and C are just presentational components
B should be responsible for C's lifecycle

2. Nesting using children

(continued from above)

var CommentBox = reactCreateClass({
 render: function() {
 return (
 <div className="commentBox">
 <h1>Comments</h1>
 <CommentList>
 <ListTitle/> // child
 </CommentList>
 <CommentForm />
 </div>
);
 }
});

This is the style where A composes B and A tells B to compose C. More power to parent components.

Pros

Better components lifecycle management
Better visibility into the composition architecture
Better reusuability

Cons

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 16

Injecting props can become a little expensive
Less flexibility and power in child components

Good if

B should accept to compose something different than C in the future or somewhere else
A should control the lifecycle of C

B would render C using this.props.children, and there isn't a structured way for B to know what those children
are for. So, B may enrich the child components by giving additional props down, but if B needs to know exactly
what they are, #3 might be a better option.

3. Nesting using props

(continued from above)

var CommentBox = reactCreateClass({
 render: function() {
 return (
 <div className="commentBox">
 <h1>Comments</h1>
 <CommentList title={ListTitle}/> //prop
 <CommentForm />
 </div>
);
 }
});

This is the style where A composes B and B provides an option for A to pass something to compose for a specific
purpose. More structured composition.

Pros

Composition as a feature
Easy validation
Better composaiblility

Cons

Injecting props can become a little expensive
Less flexibility and power in child components

Good if

B has specific features defined to compose something
B should only know how to render not what to render

#3 is usually a must for making a public library of components but also a good practice in general to make
composable components and clearly define the composition features. #1 is the easiest and fastest to make
something that works, but #2 and #3 should provide certain benefits in various use cases.

Section 2.4: Props
Props are a way to pass information into a React component, they can have any type including functions -
sometimes referred to as callbacks.

In JSX props are passed with the attribute syntax

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 17

<MyComponent userID={123} />

Inside the definition for MyComponent userID will now be accessible from the props object

// The render function inside MyComponent
render() {
 return (
 The user's ID is {this.props.userID}
)
}

It's important to define all props, their types, and where applicable, their default value:

// defined at the bottom of MyComponent
MyComponent.propTypes = {
 someObject: React.PropTypes.object,
 userID: React.PropTypes.number.isRequired,
 title: React.PropTypes.string
};

MyComponent.defaultProps = {
 someObject: {},
 title: 'My Default Title'
}

In this example the prop someObject is optional, but the prop userID is required. If you fail to provide userID to
MyComponent, at runtime the React engine will show a console warning you that the required prop was not
provided. Beware though, this warning is only shown in the development version of the React library, the
production version will not log any warnings.

Using defaultProps allows you to simplify

const { title = 'My Default Title' } = this.props;
console.log(title);

to

console.log(this.props.title);

It's also a safeguard for use of object array and functions. If you do not provide a default prop for an object, the
following will throw an error if the prop is not passed:

if (this.props.someObject.someKey)

In example above, this.props.someObject is undefined and therefore the check of someKey will throw an error and
the code will break. With the use of defaultProps you can safely use the above check.

Section 2.5: Component states - Dynamic user-interface
Suppose we want to have the following behaviour - We have a heading (say h3 element) and on clicking it, we want
it to become an input box so that we can modify heading name. React makes this highly simple and intuitive using
component states and if else statements. (Code explanation below)

// I have used ReactBootstrap elements. But the code works with regular html elements also
var Button = ReactBootstrap.Button;
var Form = ReactBootstrap.Form;

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 18

var FormGroup = ReactBootstrap.FormGroup;
var FormControl = ReactBootstrap.FormControl;

var Comment = reactCreateClass({
 getInitialState: function() {
 return {show: false, newTitle: ''};
 },

 handleTitleSubmit: function() {
 //code to handle input box submit - for example, issue an ajax request to change name in
database
 },

 handleTitleChange: function(e) {
 //code to change the name in form input box. newTitle is initialized as empty string. We need to
update it with the string currently entered by user in the form
 this.setState({newTitle: e.target.value});
 },

 changeComponent: function() {
 // this toggles the show variable which is used for dynamic UI
 this.setState({show: !this.state.show)};
 },

 render: function() {

 var clickableTitle;

 if(this.state.show) {
 clickableTitle = <Form inline onSubmit={this.handleTitleSubmit}>
 <FormGroup controlId="formInlineTitle">
 <FormControl type="text" onChange={this.handleTitleChange}>
 </FormGroup>
 </Form>;
 } else {
 clickabletitle = <div>
 <Button bsStyle="link" onClick={this.changeComponent}>
 <h3> Default Text </h3>
 </Button>
 </div>;
 }

 return (
 <div className="comment">
 {clickableTitle}
 </div>
);
 }
});

ReactDOM.render(
 <Comment />, document.getElementById('content')
);

The main part of the code is the clickableTitle variable. Based on the state variable show, it can be either be a
Form element or a Button element. React allows nesting of components.

So we can add a {clickableTitle} element in the render function. It looks for the clickableTitle variable. Based on the
value 'this.state.show', it displays the corresponding element.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 19

Section 2.6: Variations of Stateless Functional Components
const languages = [
 'JavaScript',
 'Python',
 'Java',
 'Elm',
 'TypeScript',
 'C#',
 'F#'
]

// one liner
const Language = ({language}) => {language}

Language.propTypes = {
 message: React.PropTypes.string.isRequired
}

/**
* If there are more than one line.
* Please notice that round brackets are optional here,
* However it's better to use them for readability
*/
const LanguagesList = ({languages}) => {

 {languages.map(language => <Language language={language} />)}

}

LanguagesList.PropTypes = {
 languages: React.PropTypes.array.isRequired
}

/**
 * This syntax is used if there are more work beside just JSX presentation
 * For instance some data manipulations needs to be done.
 * Please notice that round brackets after return are required,
 * Otherwise return will return nothing (undefined)
 */
const LanguageSection = ({header, languages}) => {
 // do some work
 const formattedLanguages = languages.map(language => language.toUpperCase())
 return (
 <fieldset>
 <legend>{header}</legend>
 <LanguagesList languages={formattedLanguages} />
 </fieldset>
)
}

LanguageSection.PropTypes = {
 header: React.PropTypes.string.isRequired,
 languages: React.PropTypes.array.isRequired
}

ReactDOM.render(
 <LanguageSection
 header="Languages"
 languages={languages} />,
 document.getElementById('app')
)

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 20

Here you can find working example of it.

Section 2.7: setState pitfalls
You should use caution when using setState in an asynchronous context. For example, you might try to call
setState in the callback of a get request:

class MyClass extends React.Component {
 constructor() {
 super();

 this.state = {
 user: {}
 };
 }

 componentDidMount() {
 this.fetchUser();
 }

 fetchUser() {
 $.get('/api/users/self')
 .then((user) => {
 this.setState({user: user});
 });
 }

 render() {
 return <h1>{this.state.user}</h1>;
 }
}

This could call problems - if the callback is called after the Component is dismounted, then this.setState won't be a
function. Whenever this is the case, you should be careful to ensure your usage of setState is cancellable.

In this example, you might wish to cancel the XHR request when the component dismounts:

class MyClass extends React.Component {
 constructor() {
 super();

 this.state = {
 user: {},
 xhr: null
 };
 }

 componentWillUnmount() {
 let xhr = this.state.xhr;

 // Cancel the xhr request, so the callback is never called
 if (xhr && xhr.readyState != 4) {
 xhr.abort();
 }
 }

 componentDidMount() {
 this.fetchUser();
 }

http://codepen.io/vlad-bezden/pen/qrVjmW
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 21

 fetchUser() {
 let xhr = $.get('/api/users/self')
 .then((user) => {
 this.setState({user: user});
 });

 this.setState({xhr: xhr});
 }
}

The async method is saved as a state. In the componentWillUnmount you perform all your cleanup - including
canceling the XHR request.

You could also do something more complex. In this example, I'm creating a 'stateSetter' function that accepts the
this object as an argument and prevents this.setState when the function cancel has been called:

function stateSetter(context) {
 var cancelled = false;
 return {
 cancel: function () {
 cancelled = true;
 },
 setState(newState) {
 if (!cancelled) {
 context.setState(newState);
 }
 }
 }
}

class Component extends React.Component {
 constructor(props) {
 super(props);
 this.setter = stateSetter(this);
 this.state = {
 user: 'loading'
 };
 }
 componentWillUnmount() {
 this.setter.cancel();
 }
 componentDidMount() {
 this.fetchUser();
 }
 fetchUser() {
 $.get('/api/users/self')
 .then((user) => {
 this.setter.setState({user: user});
 });
 }
 render() {
 return <h1>{this.state.user}</h1>
 }
}

This works because the cancelled variable is visible in the setState closure we created.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 22

Chapter 3: Using ReactJS with TypeScript
Section 3.1: ReactJS component written in TypeScript
Actually you can use ReactJS's components in Typescript as in facebook's example. Just replace 'jsx' file's extension
to 'tsx':

//helloMessage.tsx:
var HelloMessage = React.createClass({
 render: function() {
 return <div>Hello {this.props.name}</div>;
 }
});
ReactDOM.render(<HelloMessage name="John" />, mountNode);

But in order to make full use of Typescript's main feature (static type checking) should be done couple things:

1) convert React.createClass example to ES6 Class:

//helloMessage.tsx:
class HelloMessage extends React.Component {
 render() {
 return <div>Hello {this.props.name}</div>;
 }
}
ReactDOM.render(<HelloMessage name="John" />, mountNode);

2) next add Props and State interfaces:

interface IHelloMessageProps {
 name:string;
}

interface IHelloMessageState {
 //empty in our case
}

class HelloMessage extends React.Component<IHelloMessageProps, IHelloMessageState> {
 constructor(){
 super();
 }
 render() {
 return <div>Hello {this.props.name}</div>;
 }
}
ReactDOM.render(<HelloMessage name="Sebastian" />, mountNode);

Now Typescript will display an error if the programmer forgets to pass props. Or if they added props that are not
defined in the interface.

Section 3.2: Installation and Setup
To use typescript with react in a node project, you must first have a project directory initialized with npm. To
initialize the directory with npm init

Installing via npm or yarn

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 23

You can install React using npm by doing the following:

npm install --save react react-dom

Facebook released its own package manager named Yarn, which can also be used to install React. After installing
Yarn you just need to run this command:

yarn add react react-dom

You can then use React in your project in exactly the same way as if you had installed React via npm.

Installing react type definitions in Typescript 2.0+

To compile your code using typescript, add/install type definition files using npm or yarn.

npm install --save-dev @types/react @types/react-dom

or, using yarn

yarn add --dev @types/react @types/react-dom

Installing react type definitions in older versions of Typescript

You have to use a separate package called tsd

tsd install react react-dom --save

Adding or Changing the Typescript configuration

To use JSX, a language mixing javascript with html/xml, you have to change the typescript compiler configuration. In
the project's typescript configuration file (usually named tsconfig.json), you will need to add the JSX option as:

"compilerOptions": { "jsx": "react" },

That compiler option basically tells the typescript compiler to translate the JSX tags in code to javascript function
calls.

To avoid typescript compiler converting JSX to plain javascript function calls, use

"compilerOptions": {
 "jsx": "preserve"
},

Section 3.3: Stateless React Components in TypeScript
React components that are pure functions of their props and do not require any internal state can be written as
JavaScript functions instead of using the standard class syntax, as:

import React from 'react'

const HelloWorld = (props) => (
 <h1>Hello, {props.name}!</h1>
);

The same can be achieved in Typescript using the React.SFC class:

https://www.npmjs.com/
https://yarnpkg.com/
https://www.npmjs.com/package/tsd
https://www.typescriptlang.org/docs/handbook/jsx.html
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 24

import * as React from 'react';

class GreeterProps {
 name: string
}

const Greeter : React.SFC<GreeterProps> = props =>
 <h1>Hello, {props.name}!</h1>;

Note that, the name React.SFC is an alias for React.StatelessComponent So, either can be used.

Section 3.4: Stateless and property-less Components
The simplest react component without a state and no properties can be written as:

import * as React from 'react';

const Greeter = () => Hello, World!

That component, however, can't access this.props since typescript can't tell if it is a react component. To access its
props, use:

import * as React from 'react';

const Greeter: React.SFC<{}> = props => () => Hello, World!

Even if the component doesn't have explicitly defined properties, it can now access props.children since all
components inherently have children.

Another similar good use of stateless and property-less components is in simple page templating. The following is
an examplinary simple Page component, assuming there are hypothetical Container, NavTop and NavBottom
components already in the project:

import * as React from 'react';

const Page: React.SFC<{}> = props => () =>
 <Container>
 <NavTop />
 {props.children}
 <NavBottom />
 </Container>

const LoginPage: React.SFC<{}> = props => () =>
 <Page>
 Login Pass: <input type="password" />
 </Page>

In this example, the Page component can later be used by any other actual page as a base template.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 25

Chapter 4: State in React
Section 4.1: Basic State
State in React components is essential to manage and communicate data in your application. It is represented as a
JavaScript object and has component level scope, it can be thought of as the private data of your component.

In the example below we are defining some initial state in the constructor function of our component and make
use of it in the render function.

class ExampleComponent extends React.Component {
 constructor(props){
 super(props);

 // Set-up our initial state
 this.state = {
 greeting: 'Hiya Buddy!'
 };
 }

 render() {
 // We can access the greeting property through this.state
 return(
 <div>{this.state.greeting}</div>
);
 }
}

Section 4.2: Common Antipattern
You should not save props into state. It is considered an anti-pattern. For example:

export default class MyComponent extends React.Component {
 constructor() {
 super();

 this.state = {
 url: ''
 }

 this.onChange = this.onChange.bind(this);
 }

 onChange(e) {
 this.setState({
 url: this.props.url + '/days=?' + e.target.value
 });
 }

 componentWillMount() {
 this.setState({url: this.props.url});
 }

 render() {
 return (
 <div>
 <input defaultValue={2} onChange={this.onChange} />

https://facebook.github.io/react/tips/props-in-getInitialState-as-anti-pattern.html
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 26

 URL: {this.state.url}
 </div>
)
 }
}

The prop url is saved on state and then modified. Instead, choose to save the changes to a state, and then build
the full path using both state and props:

export default class MyComponent extends React.Component {
 constructor() {
 super();

 this.state = {
 days: ''
 }

 this.onChange = this.onChange.bind(this);
 }

 onChange(e) {
 this.setState({
 days: e.target.value
 });
 }

 render() {
 return (
 <div>
 <input defaultValue={2} onChange={this.onChange} />

 URL: {this.props.url + '/days?=' + this.state.days}
 </div>
)
 }
}

This is because in a React application we want to have a single source of truth - i.e. all data is the responsibility of
one single component, and only one component. It is the responsibility of this component to store the data within
its state, and distribute the data to other components via props.

In the first example, both the MyComponent class and its parent are maintaining 'url' within their state. If we
update state.url in MyComponent, these changes are not reflected in the parent. We have lost our single source of
truth, and it becomes increasingly difficult to track the flow of data through our application. Contrast this with the
second example - url is only maintained in the state of the parent component, and utilised as a prop in
MyComponent - we therefore maintain a single source of truth.

Section 4.3: setState()
The primary way that you make UI updates to your React applications is through a call to the setState() function.
This function will perform a shallow merge between the new state that you provide and the previous state, and will
trigger a re-render of your component and all decedents.

Parameters

updater: It can be an object with a number of key-value pairs that should be merged into the state or a1.
function that returns such an object.

https://github.com/kolodny/immutability-helper#shallow-merge
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 27

callback (optional): a function which will be executed after setState() has been executed successfully.2.
Due to the fact that calls to setState() are not guaranteed by React to be atomic, this can sometimes be
useful if you want to perform some action after you are positive that setState() has been executed
successfully.

Usage:

The setState method accepts an updater argument that can either be an object with a number of key-value-pairs
that should be merged into the state, or a function that returns such an object computed from prevState and
props.

Using setState() with an Object as updater
//
// An example ES6 style component, updating the state on a simple button click.
// Also demonstrates where the state can be set directly and where setState should be used.
//
class Greeting extends React.Component {
 constructor(props) {
 super(props);
 this.click = this.click.bind(this);
 // Set initial state (ONLY ALLOWED IN CONSTRUCTOR)
 this.state = {
 greeting: 'Hello!'
 };
 }
 click(e) {
 this.setState({
 greeting: 'Hello World!'
 });
 }
 render() {
 return(
 <div>
 <p>{this.state.greeting}</p>
 <button onClick={this.click}>Click me</button>
 </div>
);
 }

}

Using setState() with a Function as updater
//
// This is most often used when you want to check or make use
// of previous state before updating any values.
//

this.setState(function(previousState, currentProps) {
 return {
 counter: previousState.counter + 1
 };
});

This can be safer than using an object argument where multiple calls to setState() are used, as multiple calls may
be batched together by React and executed at once, and is the preferred approach when using current props to set
state.

this.setState({ counter: this.state.counter + 1 });
this.setState({ counter: this.state.counter + 1 });

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 28

this.setState({ counter: this.state.counter + 1 });

These calls may be batched together by React using Object.assign(), resulting in the counter being incremented
by 1 rather than 3.

The functional approach can also be used to move state setting logic outside of components. This allows for
isolation and re-use of state logic.

// Outside of component class, potentially in another file/module

function incrementCounter(previousState, currentProps) {
 return {
 counter: previousState.counter + 1
 };
}

// Within component

this.setState(incrementCounter);

Calling setState() with an Object and a callback function
//
// 'Hi There' will be logged to the console after setState completes
//

this.setState({ name: 'John Doe' }, console.log('Hi there'));

Section 4.4: State, Events And Managed Controls
Here's an example of a React component with a "managed" input field. Whenever the value of the input field
changes, an event handler is called which updates the state of the component with the new value of the input field.
The call to setState in the event handler will trigger a call to render updating the component in the dom.

import React from 'react';
import {render} from 'react-dom';

class ManagedControlDemo extends React.Component {

 constructor(props){
 super(props);
 this.state = {message: ""};
 }

 handleChange(e){
 this.setState({message: e.target.value});
 }

 render() {
 return (
 <div>
 <legend>Type something here</legend>
 <input
 onChange={this.handleChange.bind(this)}
 value={this.state.message}
 autoFocus />
 <h1>{this.state.message}</h1>
 </div>
);

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 29

 }
}

render(<ManagedControlDemo/>, document.querySelector('#app'));

Its very important to note the runtime behavior. Every time a user changes the value in the input field

handleChange will be called and so
setState will be called and so
render will be called

Pop quiz, after you type a character in the input field, which DOM elements change

all of these - the top level div, legend, input, h11.
only the input and h12.
nothing3.
whats a DOM?4.

You can experiment with this more here to find the answer

http://www.webpackbin.com/Vy_PgAeWz
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 30

Chapter 5: Props in React
Section 5.1: Introduction
props are used to pass data and methods from a parent component to a child component.

Interesting things about props

They are immutable.1.
They allow us to create reusable components.2.

Basic example

class Parent extends React.Component{
 doSomething(){
 console.log("Parent component");
 }
 render() {
 return <div>
 <Child
 text="This is the child number 1"
 title="Title 1"
 onClick={this.doSomething} />
 <Child
 text="This is the child number 2"
 title="Title 2"
 onClick={this.doSomething} />
 </div>
 }
}

class Child extends React.Component{
 render() {
 return <div>
 <h1>{this.props.title}</h1>
 <h2>{this.props.text}</h2>
 </div>
 }
}

As you can see in the example, thanks to props we can create reusable components.

Section 5.2: Default props
defaultProps allows you to set default, or fallback, values for your component props. defaultProps are useful
when you call components from different views with fixed props, but in some views you need to pass different
value.

Syntax

ES5

var MyClass = React.createClass({
 getDefaultProps: function() {
 return {
 randomObject: {},
 ...

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 31

 };
 }
}

ES6

class MyClass extends React.Component {...}

MyClass.defaultProps = {
 randomObject: {},
 ...
}

ES7

class MyClass extends React.Component {
 static defaultProps = {
 randomObject: {},
 ...
 };
}

The result of getDefaultProps() or defaultProps will be cached and used to ensure that
this.props.randomObject will have a value if it was not specified by the parent component.

Section 5.3: PropTypes
propTypes allows you to specify what props your component needs and the type they should be. Your component
will work without setting propTypes, but it is good practice to define these as it will make your component more
readable, act as documentation to other developers who are reading your component, and during development,
React will warn you if you you try to set a prop which is a different type to the definition you have set for it.

Some primitive propTypes and commonly useable propTypes are -

 optionalArray: React.PropTypes.array,
 optionalBool: React.PropTypes.bool,
 optionalFunc: React.PropTypes.func,
 optionalNumber: React.PropTypes.number,
 optionalObject: React.PropTypes.object,
 optionalString: React.PropTypes.string,
 optionalSymbol: React.PropTypes.symbol

If you attach isRequired to any propType then that prop must be supplied while creating the instance of that
component. If you don't provide the required propTypes then component instance can not be created.

Syntax

ES5

var MyClass = React.createClass({
 propTypes: {
 randomObject: React.PropTypes.object,
 callback: React.PropTypes.func.isRequired,
 ...
 }
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 32

ES6

class MyClass extends React.Component {...}

MyClass.propTypes = {
 randomObject: React.PropTypes.object,
 callback: React.PropTypes.func.isRequired,
 ...
};

ES7

class MyClass extends React.Component {
 static propTypes = {
 randomObject: React.PropTypes.object,
 callback: React.PropTypes.func.isRequired,
 ...
 };
}

More complex props validation

In the same way, PropTypes allows you to specify more complex validation

Validating an object

...
 randomObject: React.PropTypes.shape({
 id: React.PropTypes.number.isRequired,
 text: React.PropTypes.string,
 }).isRequired,
...

Validating on array of objects

...
 arrayOfObjects: React.PropTypes.arrayOf(React.PropTypes.shape({
 id: React.PropTypes.number.isRequired,
 text: React.PropTypes.string,
 })).isRequired,
...

Section 5.4: Passing down props using spread operator
Instead of

var component = <Component foo={this.props.x} bar={this.props.y} />;

Where each property needs to be passed as a single prop value you could use the spread operator ... supported
for arrays in ES6 to pass down all your values. The component will now look like this.

var component = <Component {...props} />;

Remember that the properties of the object that you pass in are copied onto the component's props.

The order is important. Later attributes override previous ones.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 33

 var props = { foo: 'default' };
 var component = <Component {...props} foo={'override'} />;
 console.log(component.props.foo); // 'override'

Another case is that you also can use spread operator to pass only parts of props to children components, then you
can use destructuring syntax from props again.

It's very useful when children components need lots of props but not want pass them one by one.

 const { foo, bar, other } = this.props // { foo: 'foo', bar: 'bar', other: 'other' };
 var component = <Component {...{foo, bar}} />;
 const { foo, bar } = component.props
 console.log(foo, bar); // 'foo bar'

Section 5.5: Props.children and component composition
The "child" components of a component are available on a special prop, props.children. This prop is very useful
for "Compositing" components together, and can make JSX markup more intuitive or reflective of the intended final
structure of the DOM:

var SomeComponent = function () {
 return (
 <article className="textBox">
 <header>{this.props.heading}</header>
 <div className="paragraphs">
 {this.props.children}
 </div>
 </article>
);
}

Which allows us to include an arbitrary number of sub-elements when using the component later:

var ParentComponent = function () {
 return (
 <SomeComponent heading="Amazing Article Box" >
 <p className="first"> Lots of content </p>
 <p> Or not </p>
 </SomeComponent>
);
}

Props.children can also be manipulated by the component. Because props.children may or may not be an array,
React provides utility functions for them as React.Children. Consider in the previous example if we had wanted to
wrap each paragraph in its own <section> element:

var SomeComponent = function () {
 return (
 <article className="textBox">
 <header>{this.props.heading}</header>
 <div className="paragraphs">
 {React.Children.map(this.props.children, function (child) {
 return (
 <section className={child.props.className}>
 React.cloneElement(child)
 </section>
);

https://facebook.github.io/react/tips/children-props-type.html
https://facebook.github.io/react/docs/top-level-api.html#react.children
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 34

 })}
 </div>
 </article>
);
}

Note the use of React.cloneElement to remove the props from the child <p> tag - because props are immutable,
these values cannot be changed directly. Instead, a clone without these props must be used.

Additionally, when adding elements in loops, be aware of how React reconciles children during a rerender, and
strongly consider including a globally unique key prop on child elements added in a loop.

Section 5.6: Detecting the type of Children components
Sometimes it's really useful to know the type of child component when iterating through them. In order to iterate
through the children components you can use React Children.map util function:

React.Children.map(this.props.children, (child) => {
 if (child.type === MyComponentType) {
 ...
 }
});

The child object exposes the type property which you can compare to a specific component.

https://facebook.github.io/react/docs/multiple-components.html
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 35

Chapter 6: React Component Lifecycle
Lifecycle methods are to be used to run code and interact with your component at different points in the
components life. These methods are based around a component Mounting, Updating, and Unmounting.

Section 6.1: Component Creation
When a React component is created, a number of functions are called:

If you are using React.createClass (ES5), 5 user defined functions are called
If you are using class Component extends React.Component (ES6), 3 user defined functions are called

getDefaultProps() (ES5 only)

This is the first method called.

Prop values returned by this function will be used as defaults if they are not defined when the component is
instantiated.

In the following example, this.props.name will be defaulted to Bob if not specified otherwise:

getDefaultProps() {
 return {
 initialCount: 0,
 name: 'Bob'
 };
}

getInitialState() (ES5 only)

This is the second method called.

The return value of getInitialState() defines the initial state of the React component. The React framework will
call this function and assign the return value to this.state.

In the following example, this.state.count will be intialized with the value of this.props.initialCount:

getInitialState() {
 return {
 count : this.props.initialCount
 };
}

componentWillMount() (ES5 and ES6)

This is the third method called.

This function can be used to make final changes to the component before it will be added to the DOM.

componentWillMount() {
 ...
}

render() (ES5 and ES6)

This is the fourth method called.

The render() function should be a pure function of the component's state and props. It returns a single element

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 36

which represents the component during the rendering process and should either be a representation of a native
DOM component (e.g. <p />) or a composite component. If nothing should be rendered, it can return null or
undefined.

This function will be recalled after any change to the component's props or state.

render() {
 return (
 <div>
 Hello, {this.props.name}!
 </div>
);
}

componentDidMount() (ES5 and ES6)

This is the fifth method called.

The component has been mounted and you are now able to access the component's DOM nodes, e.g. via refs.

This method should be used for:

Preparing timers
Fetching data
Adding event listeners
Manipulating DOM elements

componentDidMount() {
 ...
}

ES6 Syntax

If the component is defined using ES6 class syntax, the functions getDefaultProps() and getInitialState()
cannot be used.

Instead, we declare our defaultProps as a static property on the class, and declare the state shape and initial state
in the constructor of our class. These are both set on the instance of the class at construction time, before any
other React lifecycle function is called.

The following example demonstrates this alternative approach:

class MyReactClass extends React.Component {
 constructor(props){
 super(props);

 this.state = {
 count: this.props.initialCount
 };
 }

 upCount() {
 this.setState((prevState) => ({
 count: prevState.count + 1
 }));
 }

 render() {
 return (
 <div>

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 37

 Hello, {this.props.name}!

 You clicked the button {this.state.count} times.

 <button onClick={this.upCount}>Click here!</button>
 </div>
);
 }
}

MyReactClass.defaultProps = {
 name: 'Bob',
 initialCount: 0
};

Replacing getDefaultProps()

Default values for the component props are specified by setting the defaultProps property of the class:

MyReactClass.defaultProps = {
 name: 'Bob',
 initialCount: 0
};

Replacing getInitialState()

The idiomatic way to set up the initial state of the component is to set this.state in the constructor:

constructor(props){
 super(props);

 this.state = {
 count: this.props.initialCount
 };
}

Section 6.2: Component Removal
componentWillUnmount()

This method is called before a component is unmounted from the DOM.

It is a good place to perform cleaning operations like:

Removing event listeners.
Clearing timers.
Stopping sockets.
Cleaning up redux states.

componentWillUnmount(){
 ...
}

An example of removing attached event listener in componentWillUnMount

import React, { Component } from 'react';

export default class SideMenu extends Component {

 constructor(props) {
 super(props);
 this.state = {

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 38

 ...
 };
 this.openMenu = this.openMenu.bind(this);
 this.closeMenu = this.closeMenu.bind(this);
 }

 componentDidMount() {
 document.addEventListener("click", this.closeMenu);
 }

 componentWillUnmount() {
 document.removeEventListener("click", this.closeMenu);
 }

 openMenu() {
 ...
 }

 closeMenu() {
 ...
 }

 render() {
 return (
 <div>
 <a
 href = "javascript:void(0)"
 className = "closebtn"
 onClick = {this.closeMenu}
 >
 ×

 <div>
 Some other structure
 </div>
 </div>
);
 }
}

Section 6.3: Component Update
componentWillReceiveProps(nextProps)

This is the first function called on properties changes.

When component's properties change, React will call this function with the new properties. You can access to
the old props with this.props and to the new props with nextProps.

With these variables, you can do some comparison operations between old and new props, or call function because
a property change, etc.

componentWillReceiveProps(nextProps){
 if (nextProps.initialCount && nextProps.initialCount > this.state.count){
 this.setState({
 count : nextProps.initialCount
 });
 }
}

shouldComponentUpdate(nextProps, nextState)

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 39

This is the second function called on properties changes and the first on state changes.

By default, if another component / your component change a property / a state of your component, React will
render a new version of your component. In this case, this function always return true.

You can override this function and choose more precisely if your component must update or not.

This function is mostly used for optimization.

In case of the function returns false, the update pipeline stops immediately.

componentShouldUpdate(nextProps, nextState){
 return this.props.name !== nextProps.name ||
 this.state.count !== nextState.count;
}

componentWillUpdate(nextProps, nextState)

This function works like componentWillMount(). Changes aren't in DOM, so you can do some changes just before
the update will perform.

/!\ : you cannot use this.setState().

componentWillUpdate(nextProps, nextState){}

render()

There's some changes, so re-render the component.

componentDidUpdate(prevProps, prevState)

Same stuff as componentDidMount() : DOM is refreshed, so you can do some work on the DOM here.

componentDidUpdate(prevProps, prevState){}

Section 6.4: Lifecycle method call in dierent states
This example serves as a complement to other examples which talk about how to use the lifecycle methods and
when the method will be called.

This example summarize Which methods (componentWillMount, componentWillReceiveProps, etc) will be called
and in which sequence will be different for a component in different states:

When a component is initialized:

getDefaultProps1.
getInitialState2.
componentWillMount3.
render4.
componentDidMount5.

When a component has state changed:

shouldComponentUpdate1.
componentWillUpdate2.
render3.
componentDidUpdate4.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 40

When a component has props changed:

componentWillReceiveProps1.
shouldComponentUpdate2.
componentWillUpdate3.
render4.
componentDidUpdate5.

When a component is unmounting:

componentWillUnmount1.

Section 6.5: React Component Container
When building a React application, it is often desirable to divide components based on their primary responsibility,
into Presentational and Container components.
Presentational components are concerned only with displaying data - they can be regarded as, and are often
implemented as, functions that convert a model to a view. Typically they do not maintain any internal state.
Container components are concerned with managing data. This may be done internally through their own state, or
by acting as intermediaries with a state-management library such as Redux. The container component will not
directly display data, rather it will pass the data to a presentational component.

// Container component
import React, { Component } from 'react';
import Api from 'path/to/api';

class CommentsListContainer extends Component {
 constructor() {
 super();
 // Set initial state
 this.state = { comments: [] }
 }

 componentDidMount() {
 // Make API call and update state with returned comments
 Api.getComments().then(comments => this.setState({ comments }));
 }

 render() {
 // Pass our state comments to the presentational component
 return (
 <CommentsList comments={this.state.comments} />;
);
 }
}

// Presentational Component
const CommentsList = ({ comments }) => (
 <div>
 {comments.map(comment => (
 <div>{comment}</div>
)}
 </div>
);

CommentsList.propTypes = {
 comments: React.PropTypes.arrayOf(React.PropTypes.string)
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 41

Chapter 7: Forms and User Input
Section 7.1: Controlled Components
Controlled form components are defined with a value property. The value of controlled inputs is managed by
React, user inputs will not have any direct influence on the rendered input. Instead, a change to the value property
needs to reflect this change.

class Form extends React.Component {
 constructor(props) {
 super(props);

 this.onChange = this.onChange.bind(this);

 this.state = {
 name: ''
 };
 }

 onChange(e) {
 this.setState({
 name: e.target.value
 });
 }

 render() {
 return (
 <div>
 <label for='name-input'>Name: </label>
 <input
 id='name-input'
 onChange={this.onChange}
 value={this.state.name} />
 </div>
)
 }
}

The above example demonstrates how the value property defines the current value of the input and the onChange
event handler updates the component's state with the user's input.

Form inputs should be defined as controlled components where possible. This ensures that the component state
and the input value is in sync at all times, even if the value is changed by a trigger other than a user input.

Section 7.2: Uncontrolled Components
Uncontrolled components are inputs that do not have a value property. In opposite to controlled components, it is
the application's responsibility to keep the component state and the input value in sync.

class Form extends React.Component {
 constructor(props) {
 super(props);

 this.onChange = this.onChange.bind(this);

 this.state = {
 name: 'John'

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 42

 };
 }

 onChange(e) {
 this.setState({
 name: e.target.value
 });
 }

 render() {
 return (
 <div>
 <label for='name-input'>Name: </label>
 <input
 id='name-input'
 onChange={this.onChange}
 defaultValue={this.state.name} />
 </div>
)
 }
}

Here, the component's state is updated via the onChange event handler, just as for controlled components.
However, instead of a value property, a defaultValue property is supplied. This determines the initial value of the
input during the first render. Any subsequent changes to the component's state are not automatically reflected by
the input value; If this is required, a controlled component should be used instead.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 43

Chapter 8: React Boilerplate [React +
Babel + Webpack]
Section 8.1: react-starter project
About this Project

This is simple boilerplate project. This post will guide you to set up the environment for ReactJs + Webpack + Bable.

Lets get Started

we will need node package manager for fire up express server and manage dependencies throughout the project. if
you are new to node package manager, you can check here. Note : Installing node package manager is require
here.

Create a folder with suitable name and navigate into it from terminal or by GUI.Then go to terminal and type npm
init this will create a package.json file, Nothing scary , it will ask you few question like name of your project
,version, description, entry point, git repository, author, license etc. Here entry point is important because node will
initially look for it when you run the project. At the end it will ask you to verify the information you provide. You can
type yes or modify it. Well that's it , our package.json file is ready.

Express server setup run npm install express@4 --save. This is all the dependencies we needed for this project.Here
save flag is important, without it package.js file will not be updated. Main task of package.json is to store list of
dependencies. It will add express version 4. Your package.json will look like "dependencies": { "express":
"^4.13.4", },

After complete download you can see there is node_modules folder and sub folder of our dependencies. Now on the
root of project create new file server.js file. Now we are setting express server. I am going to past all the code and
explain it later.

var express = require('express');
// Create our app
var app = express();

app.use(express.static('public'));

app.listen(3000, function () {
 console.log('Express server is using port:3000');
});

var express = require('express'); this will gave you the access of entire express api.

var app = express(); will call express library as function. app.use(); let the add the functionality to your express
application. app.use(express.static('public')); will specify the folder name that will be expose in our web server.
app.listen(port, function(){}) will here our port will be 3000 and function we are calling will verify that out web server
is running properly. That's it express server is set up.

Now go to our project and create a new folder public and create index.html file. index.html is the default file for you
application and Express server will look for this file. The index.html is simple html file which looks like

<!DOCTYPE html>
<html>

<head>

https://docs.npmjs.com/getting-started/what-is-npm
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 44

 <meta charset="UTF-8"/>
</head>

<body>
 <h1>hello World</h1>
</body>

</html>

And go to the project path through the terminal and type node server.js. Then you will see * console.log('Express
server is using port:3000');*.

Go to the browser and type http://localhost:3000 in nav bar you will see hello World.

Now go inside the public folder and create a new file app.jsx. JSX is a preprocessor step that adds XML syntax to
your JavaScript.You can definitely use React without JSX but JSX makes React a lot more elegant. Here is the sample
code for app.jsx

ReactDOM.render(
 <h1>Hello World!!!</h1>,
 document.getElementById('app')
);

Now go to index.html and modify the code , it should looks like this

<!DOCTYPE html>
<html>

<head>
 <meta charset="UTF-8"/>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23
 /browser.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.7/react.js">
 </script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.7/react-dom.js"> </script>
</head>

<body>
 <div id="app"></div>

 <script type="text/babel" src="app.jsx"></script>
</body>

</html>

With this in place you are all done, I hope you find it simple.

Section 8.2: Setting up the project
You need Node Package Manager to install the project dependencies. Download node for your operating system
from Nodejs.org. Node Package Manager comes with node.

You can also use Node Version Manager to better manage your node and npm versions. It is great for testing your
project on different node versions. However, it is not recommended for production environment.

Once you have installed node on your system, go ahead and install some essential packages to blast off your first
React project using Babel and Webpack.

https://nodejs.org/en/download/
https://github.com/creationix/nvm
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 45

Before we actually start hitting commands in the terminal. Take a look at what Babel and Webpack are used for.

You can start your project by running npm init in your terminal. Follow the initial setup. After that, run following
commands in your terminal-

Dependencies:

npm install react react-dom --save

Dev Dependecies:

npm install babel-core babel-loader babel-preset-es2015 babel-preset-react babel-preset-stage-0
webpack webpack-dev-server react-hot-loader --save-dev

Optional Dev Dependencies:

npm install eslint eslint-plugin-react babel-eslint --save-dev

You may refer to this sample package.json

Create .babelrc in your project root with following contents:

{
 "presets": ["es2015", "stage-0", "react"]
}

Optionally create .eslintrc in your project root with following contents:

{
 "ecmaFeatures": {
 "jsx": true,
 "modules": true
 },
 "env": {
 "browser": true,
 "node": true
 },
 "parser": "babel-eslint",
 "rules": {
 "quotes": [2, "single"],
 "strict": [2, "never"],
 },
 "plugins": [
 "react"
]
}

Create a .gitignore file to prevent uploading generated files to your git repo.

node_modules
npm-debug.log
.DS_Store
dist

Create webpack.config.js file with following minimum contents.

var path = require('path');
var webpack = require('webpack');

https://babeljs.io/
https://webpack.github.io/
https://gist.github.com/KarandikarMihir/9ec0ee3ab189c98b6629a52533b54c70
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 46

module.exports = {
 devtool: 'eval',
 entry: [
 'webpack-dev-server/client?http://localhost:3000',
 'webpack/hot/only-dev-server',
 './src/index'
],
 output: {
 path: path.join(__dirname, 'dist'),
 filename: 'bundle.js',
 publicPath: '/static/'
 },
 plugins: [
 new webpack.HotModuleReplacementPlugin()
],
 module: {
 loaders: [{
 test: /\.js$/,
 loaders: ['react-hot', 'babel'],
 include: path.join(__dirname, 'src')
 }]
 }
};

And finally, create a sever.js file to be able to run npm start, with following contents:

var webpack = require('webpack');
var WebpackDevServer = require('webpack-dev-server');
var config = require('./webpack.config');

new WebpackDevServer(webpack(config), {
 publicPath: config.output.publicPath,
 hot: true,
 historyApiFallback: true
}).listen(3000, 'localhost', function (err, result) {
 if (err) {
 return console.log(err);
 }

 console.log('Serving your awesome project at http://localhost:3000/');
});

Create src/app.js file to see your React project do something.

import React, { Component } from 'react';

export default class App extends Component {
 render() {
 return (
 <h1>Hello, world.</h1>
);
 }
}

Run node server.js or npm start in the terminal, if you have defined what start stands for in your package.json

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 47

Chapter 9: Using ReactJS with jQuery
Section 9.1: ReactJS with jQuery
Firstly, you have to import jquery library . We also need to import findDOmNode as we’re going to manipulate the
dom. And obviously we are importing React as well.

import React from 'react';
import { findDOMNode } from ‘react-dom’;
import $ from ‘jquery’;

We are setting an arrow function ‘handleToggle’ that will fire when an icon will be clicked. We’re just showing and
hiding a div with a reference naming ‘toggle’ onClick over an icon.

handleToggle = () => {
 const el = findDOMNode(this.refs.toggle);
 $(el).slideToggle();
};

Let’s now set the reference naming ‘toggle’

<ul className=”profile-info additional-profile-info-list” ref=”toggle”>

 Office Email me@shuvohabib.com

The div element where we will fire the ‘handleToggle’ on onClick.

 <div className=”ellipsis-click” onClick={this.handleToggle}>
 <i className=”fa-ellipsis-h”/>
 </div>

Let review the full code below, how it looks like .

import React from ‘react’;
import { findDOMNode } from ‘react-dom’;
import $ from ‘jquery’;

export default class FullDesc extends React.Component {
 constructor() {
 super();
 }

 handleToggle = () => {
 const el = findDOMNode(this.refs.toggle);
 $(el).slideToggle();
 };

 render() {
 return (
 <div className=”long-desc”>
 <ul className=”profile-info”>

 User Name : Shuvo Habib

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 48

 <ul className=”profile-info additional-profile-info-list” ref=”toggle”>

 Office Email me@shuvohabib.com

 <div className=”ellipsis-click” onClick={this.handleToggle}>
 <i className=”fa-ellipsis-h”/>
 </div>
 </div>
);
 }
}

We are done! This is the way, how we can use jQuery in React component.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 49

Chapter 10: React Routing
Section 10.1: Example Routes.js file, followed by use of Router
Link in component
Place a file like the following in your top level directory. It defines which components to render for which
paths

import React from 'react';
import { Route, IndexRoute } from 'react-router';
import New from './containers/new-post';
import Show from './containers/show';

import Index from './containers/home';
import App from './components/app';

export default(
 <Route path="/" component={App}>
 <IndexRoute component={Index} />
 <Route path="posts/new" component={New} />
 <Route path="posts/:id" component={Show} />

 </Route>
);

Now in your top level index.js that is your entry point to the app, you need only render this Router
component like so:

import React from 'react';
import ReactDOM from 'react-dom';
import { Router, browserHistory } from 'react-router';
// import the routes component we created in routes.js
import routes from './routes';

// entry point
ReactDOM.render(
 <Router history={browserHistory} routes={routes} />
 , document.getElementById('main'));

Now it is simply a matter of using Link instead of <a> tags throughout your application. Using Link will
communicate with React Router to change the React Router route to the specified link, which will in turn
render the correct component as defined in routes.js

import React from 'react';
import { Link } from 'react-router';

export default function PostButton(props) {
 return (
 <Link to={`posts/${props.postId}`}>
 <div className="post-button" >
 {props.title}
 {props.tags}
 </div>
 </Link>
);
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 50

Section 10.2: React Routing Async
import React from 'react';
import { Route, IndexRoute } from 'react-router';

import Index from './containers/home';
import App from './components/app';

//for single Component lazy load use this
const ContactComponent = () => {
 return {
 getComponent: (location, callback)=> {
 require.ensure([], require => {
 callback(null, require('./components/Contact')["default"]);
 }, 'Contact');
 }
 }
};

//for multiple componnets
 const groupedComponents = (pageName) => {
 return {
 getComponent: (location, callback)=> {
 require.ensure([], require => {
 switch(pageName){
 case 'about' :
 callback(null, require("./components/about")["default"]);
 break ;
 case 'tos' :
 callback(null, require("./components/tos")["default"]);
 break ;
 }
 }, "groupedComponents");
 }
 }
};
export default(
 <Route path="/" component={App}>
 <IndexRoute component={Index} />
 <Route path="/contact" {...ContactComponent()} />
 <Route path="/about" {...groupedComponents('about')} />
 <Route path="/tos" {...groupedComponents('tos')} />
 </Route>
);

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 51

Chapter 11: Communicate Between
Components
Section 11.1: Communication between Stateless Functional
Components
In this example we will make use of Redux and React Redux modules to handle our application state and for auto
re-render of our functional components., And ofcourse React and React Dom

You can checkout the completed demo here

In the example below we have three different components and one connected component

UserInputForm: This component display an input field And when the field value changes, it calls
inputChange method on props (which is provided by the parent component) and if the data is provided as
well, it displays that in the input field.

UserDashboard: This component displays a simple message and also nests UserInputForm component, It
also passes inputChange method to UserInputForm component, UserInputForm component inturn makes
use of this method to communicate with the parent component.

UserDashboardConnected: This component just wraps the UserDashboard component using
ReactRedux connect method., This makes it easier for us to manage the component state and update
the component when the state changes.

App: This component just renders the UserDashboardConnected component.

const UserInputForm = (props) => {

 let handleSubmit = (e) => {
 e.preventDefault();
 }

 return(
 <form action="" onSubmit={handleSubmit}>
 <label htmlFor="name">Please enter your name</label>

 <input type="text" id="name" defaultValue={props.data.name || ''} onChange={
props.inputChange } />
 </form>
)

}

const UserDashboard = (props) => {

 let inputChangeHandler = (event) => {
 props.updateName(event.target.value);
 }

 return(
 <div>
 <h1>Hi { props.user.name || 'User' }</h1>
 <UserInputForm data={props.user} inputChange={inputChangeHandler} />
 </div>

https://jsbin.com/depavejudi/1/edit?js,output
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 52

)

}

const mapStateToProps = (state) => {
 return {
 user: state
 };
}
const mapDispatchToProps = (dispatch) => {
 return {
 updateName: (data) => dispatch(Action.updateName(data)),
 };
};

const { connect, Provider } = ReactRedux;
const UserDashboardConnected = connect(
 mapStateToProps,
 mapDispatchToProps
)(UserDashboard);

const App = (props) => {
 return(
 <div>
 <h1>Communication between Stateless Functional Components</h1>
 <UserDashboardConnected />
 </div>
)
}

const user = (state={name: 'John'}, action) => {
 switch (action.type) {
 case 'UPDATE_NAME':
 return Object.assign({}, state, {name: action.payload});

 default:
 return state;
 }
};

const { createStore } = Redux;
const store = createStore(user);
const Action = {
 updateName: (data) => {
 return { type : 'UPDATE_NAME', payload: data }
 },
}

ReactDOM.render(
 <Provider store={ store }>
 <App />
 </Provider>,
 document.getElementById('application')
);

JS Bin URL

https://jsbin.com/depavejudi/1/edit?js,output
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 53

Chapter 12: How to setup a basic webpack,
react and babel environment
Section 12.1: How to build a pipeline for a customized "Hello
world" with images
Step 1: Install Node.js

The build pipeline you will be building is based in Node.js so you must ensure in the first instance that you have this
installed. For instructions on how to install Node.js you can checkout the SO docs for that here

Step 2: Initialise your project as an node module

Open your project folder on the command line and use the following command:

npm init

For the purposes of this example you can feel free to take the defaults or if you'd like more info on what all this
means you can check out this SO doc on setting up package configuration.

Step 3: Install necessary npm packages

Run the following command on the command line to install the packages necessary for this example:

npm install --save react react-dom

Then for the dev dependencies run this command:

npm install --save-dev babel-core babel-preset-react babel-preset-es2015 webpack babel-loader css-
loader style-loader file-loader image-webpack-loader

Finally webpack and webpack-dev-server are things that are worth installing globally rather than as a dependency
of your project, if you'd prefer to add it as a dependency then that will work to, I don't. Here is the command to run:

npm install --global webpack webpack-dev-server

Step 3: Add a .babelrc file to the root of your project

This will setup babel to use the presets you've just installed. Your .babelrc file should look like this:

{
 "presets": ["react", "es2015"]
}

Step 4: Setup project directory structure

Set yourself up a directory stucture that looks like the below in the root of your directory:

|- node_modules
|- src/
 |- components/
 |- images/
 |- styles/
 |- index.html

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 54

 |- index.jsx
|- .babelrc
|- package.json

NOTE: The node_modules, .babelrc and package.json should all have already been there from previous steps I just
included them so you can see where they fit.

Step 5: Populate the project with the Hello World project files

This isn't really important to the process of building a pipeline so I'll just give you the code for these and you can
copy paste them in:

src/components/HelloWorldComponent.jsx

import React, { Component } from 'react';

class HelloWorldComponent extends Component {
 constructor(props) {
 super(props);
 this.state = {name: 'Student'};
 this.handleChange = this.handleChange.bind(this);
 }

 handleChange(e) {
 this.setState({name: e.target.value});
 }

 render() {
 return (
 <div>
 <div className="image-container">

 </div>
 <div className="form">
 <input type="text" onChange={this.handleChange} />
 <div>
 My name is {this.state.name} and I'm a clever cloggs because I built a React build
pipeline
 </div>
 </div>
 </div>
);
 }
}

export default HelloWorldComponent;

src/images/myImage.gif

Feel free to substitute this with any image you'd like it's simply there to prove the point that we can bundle up
images as well. If you provide your own image and you name it something different then you'll have to update the
HelloWorldComponent.jsx to reflect your changes. Equally if you choose an image with a different file extension
then you need to modify the test property of the image loader in the webpack.config.js with appropriate regex to
match your new file extension..

src/styles/styles.css

.form {
 margin: 25px;

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 55

 padding: 25px;
 border: 1px solid #ddd;
 background-color: #eaeaea;
 border-radius: 10px;
}

.form div {
 padding-top: 25px;
}

.image-container {
 display: flex;
 justify-content: center;
}

index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Learning to build a react pipeline</title>
</head>
<body>
 <div id="content"></div>
 <script src="app.js"></script>
</body>
</html>

index.jsx

import React from 'react';
import { render } from 'react-dom';
import HelloWorldComponent from './components/HelloWorldComponent.jsx';

require('./images/myImage.gif');
require('./styles/styles.css');
require('./index.html');

render(<HelloWorldComponent />, document.getElementById('content'));

Step 6: Create webpack configuration

Create a file called webpack.config.js in the root of your project and copy this code into it:

webpack.config.js

var path = require('path');

var config = {
 context: path.resolve(__dirname + '/src'),
 entry: './index.jsx',
 output: {
 filename: 'app.js',
 path: path.resolve(__dirname + '/dist'),
 },
 devServer: {
 contentBase: path.join(__dirname + '/dist'),
 port: 3000,
 open: true,

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 56

 },
 module: {
 loaders: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 loader: 'babel-loader'
 },
 {
 test: /\.css$/,
 loader: "style!css"
 },
 {
 test: /\.gif$/,
 loaders: [
 'file?name=[path][name].[ext]',
 'image-webpack',
]
 },
 { test: /\.(html)$/,
 loader: "file?name=[path][name].[ext]"
 }
],
 },
};

module.exports = config;

Step 7: Create npm tasks for your pipeline

To do this you will need to add two properties to the scripts key of the JSON defined in the package.json file in the
root of your project. Make your scripts key look like this:

 "scripts": {
 "start": "webpack-dev-server",
 "build": "webpack",
 "test": "echo \"Error: no test specified\" && exit 1"
 },

The test script will have already been there and you can choose whether to keep it or not, it's not important to this
example.

Step 8: Use the pipeline

From the command line, if you are in the project root directory you should now be able to run the command:

npm run build

This will bundle up the little application you've built and place it in the dist/ directory that it will create in the root
of your project folder.

If you run the command:

npm start

Then the application you've built will be served up in your default web browser inside of a webpack dev server
instance.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 57

Chapter 13: React.createClass vs extends
React.Component
Section 13.1: Create React Component
Let's explore the syntax differences by comparing two code examples.

React.createClass (deprecated)

Here we have a const with a React class assigned, with the render function following on to complete a typical base
component definition.

import React from 'react';

const MyComponent = React.createClass({
 render() {
 return (
 <div></div>
);
 }
});

export default MyComponent;

React.Component

Let's take the above React.createClass definition and convert it to use an ES6 class.

import React from 'react';

class MyComponent extends React.Component {
 render() {
 return (
 <div></div>
);
 }
}

export default MyComponent;

In this example we're now using ES6 classes. For the React changes, we now create a class called MyComponent
and extend from React.Component instead of accessing React.createClass directly. This way, we use less React
boilerplate and more JavaScript.

PS: Typically this would be used with something like Babel to compile the ES6 to ES5 to work in other browsers.

Section 13.2: "this" Context
Using React.createClass will automatically bind this context (values) correctly, but that is not the case when using
ES6 classes.

React.createClass

Note the onClick declaration with the this.handleClick method bound. When this method gets called React will
apply the right execution context to the handleClick.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 58

import React from 'react';

const MyComponent = React.createClass({
 handleClick() {
 console.log(this); // the React Component instance
 },
 render() {
 return (
 <div onClick={this.handleClick}></div>
);
 }
});

export default MyComponent;

React.Component

With ES6 classes this is null by default, properties of the class do not automatically bind to the React class
(component) instance.

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 }
 handleClick() {
 console.log(this); // null
 }
 render() {
 return (
 <div onClick={this.handleClick}></div>
);
 }
}

export default MyComponent;

There are a few ways we could bind the right this context.

Case 1: Bind inline:
import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 }
 handleClick() {
 console.log(this); // the React Component instance
 }
 render() {
 return (
 <div onClick={this.handleClick.bind(this)}></div>
);
 }
}

export default MyComponent;

Case 2: Bind in the class constructor

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 59

Another approach is changing the context of this.handleClick inside the constructor. This way we avoid inline
repetition. Considered by many as a better approach that avoids touching JSX at all:

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 this.handleClick = this.handleClick.bind(this);
 }
 handleClick() {
 console.log(this); // the React Component instance
 }
 render() {
 return (
 <div onClick={this.handleClick}></div>
);
 }
}

export default MyComponent;

Case 3: Use ES6 anonymous function

You can also use ES6 anonymous function without having to bind explicitly:

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 }
 handleClick = () => {
 console.log(this); // the React Component instance
 }
 render() {
 return (
 <div onClick={this.handleClick}></div>
);
 }
}

export default MyComponent;

Section 13.3: Declare Default Props and PropTypes
There are important changes in how we use and declare default props and their types.

React.createClass

In this version, the propTypes property is an Object in which we can declare the type for each prop. The
getDefaultProps property is a function that returns an Object to create the initial props.

import React from 'react';

const MyComponent = React.createClass({
 propTypes: {
 name: React.PropTypes.string,
 position: React.PropTypes.number
 },

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 60

 getDefaultProps() {
 return {
 name: 'Home',
 position: 1
 };
 },
 render() {
 return (
 <div></div>
);
 }
});

export default MyComponent;

React.Component

This version uses propTypes as a property on the actual MyComponent class instead of a property as part of the
createClass definition Object.

The getDefaultProps has now changed to just an Object property on the class called defaultProps, as it's no longer
a "get" function, it's just an Object. It avoids more React boilerplate, this is just plain JavaScript.

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 }
 render() {
 return (
 <div></div>
);
 }
}
MyComponent.propTypes = {
 name: React.PropTypes.string,
 position: React.PropTypes.number
};
MyComponent.defaultProps = {
 name: 'Home',
 position: 1
};

export default MyComponent;

Additionally, there is another syntax for propTypes and defaultProps. This is a shortcut if your build has ES7
property initializers turned on:

import React from 'react';

class MyComponent extends React.Component {
 static propTypes = {
 name: React.PropTypes.string,
 position: React.PropTypes.number
 };
 static defaultProps = {
 name: 'Home',
 position: 1
 };
 constructor(props) {

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 61

 super(props);
 }
 render() {
 return (
 <div></div>
);
 }
}

export default MyComponent;

Section 13.4: Mixins
We can use mixins only with the React.createClass way.

React.createClass

In this version we can add mixins to components using the mixins property which takes an Array of available
mixins. These then extend the component class.

import React from 'react';

var MyMixin = {
 doSomething() {

 }
};
const MyComponent = React.createClass({
 mixins: [MyMixin],
 handleClick() {
 this.doSomething(); // invoke mixin's method
 },
 render() {
 return (
 <button onClick={this.handleClick}>Do Something</button>
);
 }
});

export default MyComponent;

React.Component

React mixins are not supported when using React components written in ES6. Moreover, they will not have support
for ES6 classes in React. The reason is that they are considered harmful.

Section 13.5: Set Initial State
There are changes in how we are setting the initial states.

React.createClass

We have a getInitialState function, which simply returns an Object of initial states.

import React from 'react';

const MyComponent = React.createClass({
 getInitialState () {
 return {

https://facebook.github.io/react/blog/2016/07/13/mixins-considered-harmful.html
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 62

 activePage: 1
 };
 },
 render() {
 return (
 <div></div>
);
 }
});

export default MyComponent;

React.Component

In this version we declare all state as a simple initialisation property in the constructor, instead of using the
getInitialState function. It feels less "React API" driven since this is just plain JavaScript.

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 activePage: 1
 };
 }
 render() {
 return (
 <div></div>
);
 }
}

export default MyComponent;

Section 13.6: ES6/React “this” keyword with ajax to get data
from server
import React from 'react';

class SearchEs6 extends React.Component{
 constructor(props) {
 super(props);
 this.state = {
 searchResults: []
 };
 }

 showResults(response){
 this.setState({
 searchResults: response.results
 })
 }

 search(url){
 $.ajax({
 type: "GET",
 dataType: 'jsonp',
 url: url,
 success: (data) => {
 this.showResults(data);

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 63

 },
 error: (xhr, status, err) => {
 console.error(url, status, err.toString());
 }
 });
 }

 render() {
 return (
 <div>
 <SearchBox search={this.search.bind(this)} />
 <Results searchResults={this.state.searchResults} />
 </div>
);
 }
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 64

Chapter 14: React AJAX call
Section 14.1: HTTP GET request
Sometimes a component needs to render some data from a remote endpoint (e.g. a REST API). A standard practice
is to make such calls in componentDidMount method.

Here is an example, using superagent as AJAX helper:

import React from 'react'
import request from 'superagent'

class App extends React.Component {
 constructor () {
 super()
 this.state = {}
 }
 componentDidMount () {
 request
 .get('/search')
 .query({ query: 'Manny' })
 .query({ range: '1..5' })
 .query({ order: 'desc' })
 .set('API-Key', 'foobar')
 .set('Accept', 'application/json')
 .end((err, resp) => {
 if (!err) {
 this.setState({someData: resp.text})
 }
 })
 },
 render() {
 return (
 <div>{this.state.someData || 'waiting for response...'}</div>
)
 }
}

React.render(<App />, document.getElementById('root'))

A request can be initiated by invoking the appropriate method on the request object, then calling .end() to send
the request. Setting header fields is simple, invoke .set() with a field name and value.

The .query() method accepts objects, which when used with the GET method will form a query-string. The
following will produce the path /search?query=Manny&range=1..5&order=desc.

POST requests

request.post('/user')
 .set('Content-Type', 'application/json')
 .send('{"name":"tj","pet":"tobi"}')
 .end(callback)

See Superagent docs for more details.

https://facebook.github.io/react/docs/react-component.html#componentdidmount
https://www.npmjs.com/package/superagent
http://visionmedia.github.io/superagent/
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 65

Section 14.2: HTTP GET request and looping through data
The following example shows how a set of data obtained from a remote source can be rendered into a component.

We make an AJAX request using fetch, which is build into most browsers. Use a fetch polyfill in production to
support older browsers. You can also use any other library for making requests (e.g. axios, SuperAgent, or even
plain Javascript).

We set the data we receive as component state, so we can access it inside the render method. There, we loop
through the data using map. Don't forget to always add a unique key attribute (or prop) to the looped element,
which is important for React's rendering performance.

import React from 'react';

class Users extends React.Component {
 constructor() {
 super();
 this.state = { users: [] };
 }

 componentDidMount() {
 fetch('/api/users')
 .then(response => response.json())
 .then(json => this.setState({ users: json.data }));
 }

 render() {
 return (
 <div>
 <h1>Users</h1>
 {
 this.state.users.length == 0
 ? 'Loading users...'
 : this.state.users.map(user => (
 <figure key={user.id}>

 <figcaption>
 {user.name}
 </figcaption>
 </figure>
))
 }
 </div>
);
 }
}

ReactDOM.render(<Users />, document.getElementById('root'));

Working example on JSBin.

Section 14.3: Ajax in React without a third party library - a.k.a
with VanillaJS
The following would work in IE9+

import React from 'react'

https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/mzabriskie/axios
https://github.com/visionmedia/superagent
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://facebook.github.io/react/docs/lists-and-keys.html#keys
https://facebook.github.io/react/docs/lists-and-keys.html#keys
http://jsbin.com/varigiw/edit?js,output
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 66

class App extends React.Component {
 constructor () {
 super()
 this.state = {someData: null}
 }
 componentDidMount () {
 var request = new XMLHttpRequest();
 request.open('GET', '/my/url', true);

 request.onload = () => {
 if (request.status >= 200 && request.status < 400) {
 // Success!
 this.setState({someData: request.responseText})
 } else {
 // We reached our target server, but it returned an error
 // Possibly handle the error by changing your state.
 }
 };

 request.onerror = () => {
 // There was a connection error of some sort.
 // Possibly handle the error by changing your state.
 };

 request.send();
 },
 render() {
 return (
 <div>{this.state.someData || 'waiting for response...'}</div>
)
 }
}

React.render(<App />, document.getElementById('root'))

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 67

Chapter 15: Communication Between
Components
Section 15.1: Child to Parent Components
Sending data back to the parent, to do this we simply pass a function as a prop from the parent component to
the child component, and the child component calls that function.

In this example, we will change the Parent state by passing a function to the Child component and invoking that
function inside the Child component.

import React from 'react';

class Parent extends React.Component {
 constructor(props) {
 super(props);
 this.state = { count: 0 };

 this.outputEvent = this.outputEvent.bind(this);
 }
 outputEvent(event) {
 // the event context comes from the Child
 this.setState({ count: this.state.count++ });
 }

 render() {
 const variable = 5;
 return (
 <div>
 Count: { this.state.count }
 <Child clickHandler={this.outputEvent} />
 </div>
);
 }
}

class Child extends React.Component {
 render() {
 return (
 <button onClick={this.props.clickHandler}>
 Add One More
 </button>
);
 }
}

export default Parent;

Note that the Parent's outputEvent method (that changes the Parent state) is invoked by the Child's button onClick
event.

Section 15.2: Not-related Components
The only way if your components does not have a parent-child relationship (or are related but too further such as a
grand grand grand son) is to have some kind of a signal that one component subscribes to, and the other writes
into.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 68

Those are the 2 basic operations of any event system: subscribe/listen to an event to be notify, and
send/trigger/publish/dispatch a event to notify the ones who wants.

There are at least 3 patterns to do that. You can find a comparison here.

Here is a brief summary:

Pattern 1: Event Emitter/Target/Dispatcher: the listeners need to reference the source to subscribe.

to subscribe: otherObject.addEventListener('click', () => { alert('click!'); });
to dispatch: this.dispatchEvent('click');

Pattern 2: Publish/Subscribe: you don't need a specific reference to the source that triggers the event, there
is a global object accessible everywhere that handles all the events.

to subscribe: globalBroadcaster.subscribe('click', () => { alert('click!'); });
to dispatch: globalBroadcaster.publish('click');

Pattern 3: Signals: similar to Event Emitter/Target/Dispatcher but you don't use any random strings here.
Each object that could emit events needs to have a specific property with that name. This way, you know
exactly what events can an object emit.

to subscribe: otherObject.clicked.add(() => { alert('click'); });
to dispatch: this.clicked.dispatch();

Section 15.3: Parent to Child Components
That the easiest case actually, very natural in the React world and the chances are - you are already using it.

You can pass props down to child components. In this example message is the prop that we pass down to the
child component, the name message is chosen arbitrarily, you can name it anything you want.

import React from 'react';

class Parent extends React.Component {
 render() {
 const variable = 5;
 return (
 <div>
 <Child message="message for child" />
 <Child message={variable} />
 </div>
);
 }
}

class Child extends React.Component {
 render() {
 return <h1>{this.props.message}</h1>
 }
}

export default Parent;

Here, the <Parent /> component renders two <Child /> components, passing message for child inside the first
component and 5 inside the second one.

https://github.com/millermedeiros/js-signals/wiki/Comparison-between-different-Observer-Pattern-implementations
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 69

In summary, you have a component (parent) that renders another one (child) and passes to it some props.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 70

Chapter 16: Stateless Functional
Components
Section 16.1: Stateless Functional Component
Components let you split the UI into independent, reusable pieces. This is the beauty of React; we can separate a
page into many small reusable components.

Prior to React v14 we could create a stateful React component using React.Component (in ES6), or
React.createClass (in ES5), irrespective of whether it requires any state to manage data or not.

React v14 introduced a simpler way to define components, usually referred to as stateless functional
components. These components use plain JavaScript functions.

For example:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

This function is a valid React component because it accepts a single props object argument with data and returns a
React element. We call such components functional because they are literally JavaScript functions.

Stateless functional components typically focus on UI; state should be managed by higher-level “container”
components, or via Flux/Redux etc. Stateless functional components don’t support state or lifecycle methods.

Benefits:

No class overhead1.
Don't have to worry about this keyword2.
Easy to write and easy to understand3.
Don't have to worry about managing state values4.
Performance improvement5.

Summary: If you are writing a React component that doesn't require state and would like to create a reusable UI,
instead of creating a standard React Component you can write it as a stateless functional component.

Let's take a simple example :

Let's say we have a page that can register a user, search for registered users, or display a list of all the registered
users.

This is entry point of the application, index.js:

import React from 'react';
import ReactDOM from 'react-dom';

import HomePage from './homepage'

ReactDOM.render(
 <HomePage/>,
 document.getElementById('app')
);

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 71

The HomePage component provides the UI to register and search for users. Note that it is a typical React component
including state, UI, and behavioral code. The data for the list of registered users is stored in the state variable, but
our reusable List (shown below) encapsulates the UI code for the list.

homepage.js:

import React from 'react'
import {Component} from 'react';

import List from './list';

export default class Temp extends Component{

 constructor(props) {
 super();
 this.state={users:[], showSearchResult: false, searchResult: []};
 }

 registerClick(){
 let users = this.state.users.slice();
 if(users.indexOf(this.refs.mail_id.value) == -1){
 users.push(this.refs.mail_id.value);
 this.refs.mail_id.value = '';
 this.setState({users});
 }else{
 alert('user already registered');
 }
 }

 searchClick(){
 let users = this.state.users;
 let index = users.indexOf(this.refs.search.value);
 if(index >= 0){
 this.setState({searchResult: users[index], showSearchResult: true});
 }else{
 alert('no user found with this mail id');
 }
 }

 hideSearchResult(){
 this.setState({showSearchResult: false});
 }

 render() {
 return (
 <div>
 <input placeholder='email-id' ref='mail_id'/>
 <input type='submit' value='Click here to register'
onClick={this.registerClick.bind(this)}/>
 <input style={{marginLeft: '100px'}} placeholder='search' ref='search'/>
 <input type='submit' value='Click here to register'
onClick={this.searchClick.bind(this)}/>
 {this.state.showSearchResult ?
 <div>
 Search Result:
 <List users={[this.state.searchResult]}/>
 <p onClick={this.hideSearchResult.bind(this)}>Close this</p>
 </div>
 :
 <div>
 Registered users:

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 72

 {this.state.users.length ?
 <List users={this.state.users}/>
 :
 "no user is registered"
 }
 </div>
 }
 </div>
);
 }
}

Finally, our stateless functional component List, which is used display both the list of registered users and the
search results, but without maintaining any state itself.

list.js:

import React from 'react';
var colors = ['#6A1B9A', '#76FF03', '#4527A0'];

var List = (props) => {
 return(
 <div>
 {
 props.users.map((user, i)=>{
 return(
 <div key={i} style={{color: colors[i%3]}}>
 {user}
 </div>
);
 })
 }
 </div>
);
}

export default List;

Reference: https://facebook.github.io/react/docs/components-and-props.html

https://facebook.github.io/react/docs/components-and-props.html
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 73

Chapter 17: Performance
Section 17.1: Performance measurement with ReactJS
You can't improve something you can't measure. To improve the performance of React components, you should
be able to measure it. ReactJS provides with addon tools to measure performance. Import the react-addons-perf
module to measure the performance

import Perf from 'react-addons-perf' // ES6 var Perf = require('react-addons-perf') // ES5 with npm var Perf =
React.addons.Perf; // ES5 with react-with-addons.js

You can use below methods from the imported Perf module:

Perf.printInclusive()
Perf.printExclusive()
Perf.printWasted()
Perf.printOperations()
Perf.printDOM()

The most important one which you will need most of the time is Perf.printWasted() which gives you the tabular
representation of your individual component's wasted time

You can note the Wasted time column in the table and improve Component's performance using Tips & Tricks
section above

Refer the React Official Guide and excellent article by Benchling Engg. on React Performance

Section 17.2: React's di algorithm
Generating the minimum number of operations to transform one tree into another have a complexity in the order
of O(n^3) where n is the number of nodes in the tree. React relies on two assumptions to solve this problem in a
linear time - O(n)

Two components of the same class will generate similar trees and tw components of different1.
classes will generate different trees.

It is possible to provide a unique key for elements that is stable across different renders.2.

In order to decide if two nodes are different, React differentiates 3 cases

Two nodes are different, if they have different types.1.

for example, <div>...</div> is different from ...

Whenever two nodes have different keys2.

https://i.stack.imgur.com/rCKLY.png
https://facebook.github.io/react/docs/perf.html
http://benchling.engineering/deep-dive-react-perf-debugging/
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 74

for example, <div key="1">...</div> is different from <div key="2">...</div>

Moreover, what follows is crucial and extremely important to understand if you want to optimise performance

If they [two nodes] are not of the same type, React is not going to even try at matching what they render.
It is just going to remove the first one from the DOM and insert the second one.

Here's why

It is very unlikely that a element is going to generate a DOM that is going to look like what a would
generate. Instead of spending time trying to match those two structures, React just re-builds the tree
from scratch.

Section 17.3: The Basics - HTML DOM vs Virtual DOM
HTML DOM is Expensive

Each web page is represented internally as a tree of objects. This representation is called Document Object Model.
Moreover, it is a language-neutral interface that allows programming languages (such as JavaScript) to access the
HTML elements.

In other words

The HTML DOM is a standard for how to get, change, add, or delete HTML elements.

However, those DOM operations are extremely expensive.

Virtual DOM is a Solution

So React's team came up with the idea to abstract the HTML DOM and create its own Virtual DOM in order to
compute the minimum number of operations we need to apply on the HTML DOM to replicate current state of our
application.

The Virtual DOM saves time from unnecessary DOM modifications.

How Exactly?

At each point of time, React has the application state represented as a Virtual DOM. Whenever application state
changes, these are the steps that React performs in order to optimise performance

Generate a new Virtual DOM that represents the new state of our application1.

Compare the old Virtual DOM (which represents the current HTML DOM) vs the new Virtual DOM2.

Based on 2. find the minimum number of operations to transform the old Virtual DOM (which represents the3.
current HTML DOM) into the new Virtual DOM

to learn more about that - read React's Diff Algorithm

After those operations are found, they are mapped into their equivalent HTML DOM operations4.

remember, the Virtual DOM is only an abstraction of the HTML DOM and there is a isomorphic relation

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 75

between them

Now the minimum number of operations that have been found and transferred to their equivalent HTML5.
DOM operations are now applied directly onto the application's HTML DOM, which saves time from modifying
the HTML DOM unnecessarily.

Note: Operations applied on the Virtual DOM are cheap, because the Virtual DOM is a JavaScript Object.

Section 17.4: Tips & Tricks
When two nodes are not of the same type, React doesn't try to match them - it just removes the first node from the
DOM and inserts the second one. This is why the first tip says

If you see yourself alternating between two components classes with very similar output, you may want to1.
make it the same class.

Use shouldComponentUpdate to prevent component from rerender, if you know it is not going to change,2.
for example

shouldComponentUpdate: function(nextProps, nextState) {
 return nextProps.id !== this.props.id;
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 76

Chapter 18: Introduction to Server-Side
Rendering
Section 18.1: Rendering components
There are two options to render components on server: renderToString and renderToStaticMarkup.

renderToString

This will render React components to HTML on server. This function will also add data-react- properties to HTML
elements so React on client won't have to render elements again.

import { renderToString } from "react-dom/server";
renderToString(<App />);

renderToStaticMarkup

This will render React components to HTML, but without data-react- properties, it is not recommended to use
components that will be rendered on client, because components will rerender.

import { renderToStaticMarkup } from "react-dom/server";
renderToStaticMarkup(<App />);

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 77

Chapter 19: Setting Up React Environment
Section 19.1: Simple React Component
We want to be able to compile below component and render it in our webpage

Filename: src/index.jsx

import React from 'react';
import ReactDOM from 'react-dom';

class ToDo extends React.Component {
 render() {
 return (<div>I am working</div>);
 }
}

ReactDOM.render(<ToDo />, document.getElementById('App'));

Section 19.2: Install all dependencies
install react and react-dom
$ npm i react react-dom --save

install webpack for bundling
$ npm i webpack -g

install babel for module loading, bundling and transpiling
$ npm i babel-core babel-loader --save

install babel presets for react and es6
$ npm i babel-preset-react babel-preset-es2015 --save

Section 19.3: Configure webpack
Create a file webpack.config.js in the root of your working directory

Filename: webpack.config.js

module.exports = {
 entry: __dirname + "/src/index.jsx",
 devtool: "source-map",
 output: {
 path: __dirname + "/build",
 filename: "bundle.js"
 },
 module: {
 loaders: [
 {test: /\.jsx?$/, exclude: /node_modules/, loader: "babel-loader"}
]
 }
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 78

Section 19.4: Configure babel
Create a file .babelrc in the root of our working directory

Filename: .babelrc

{
 "presets": ["es2015","react"]
}

Section 19.5: HTML file to use react component
Setup a simple html file in the root of the project directory

Filename: index.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="App"></div>
 <script src="build/bundle.js" charset="utf-8"></script>
 </body>
</html>

Section 19.6: Transpile and bundle your component
Using webpack, you can bundle your component:

$ webpack

This will create our output file in build directory.

Open the HTML page in a browser to see component in action

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 79

Chapter 20: Using React with Flow
How to use the Flow type checker to check types in React components.

Section 20.1: Using Flow to check prop types of stateless
functional components
type Props = {
 posts: Array<Article>,
 dispatch: Function,
 children: ReactElement
}

const AppContainer =
 ({ posts, dispatch, children }: Props) => (
 <div className="main-app">
 <Header {...{ posts, dispatch }} />
 {children}
 </div>
)

Section 20.2: Using Flow to check prop types
import React, { Component } from 'react';

type Props = {
 posts: Array<Article>,
 dispatch: Function,
 children: ReactElement
}

class Posts extends Component {
 props: Props;

 render () {
 // rest of the code goes here
 }
}

https://flow.org/
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 80

Chapter 21: JSX
Section 21.1: Props in JSX
There are several different ways to specify props in JSX.

JavaScript Expressions

You can pass any JavaScript expression as a prop, by surrounding it with {}. For example, in this JSX:

<MyComponent count={1 + 2 + 3 + 4} />

Inside the MyComponent, the value of props.count will be 10, because the expression 1 + 2 + 3 + 4 gets evaluated.

If statements and for loops are not expressions in JavaScript, so they can't be used in JSX directly.

String Literals

Of course, you can just pass any string literal as a prop too. These two JSX expressions are equivalent:

<MyComponent message="hello world" />

<MyComponent message={'hello world'} />

When you pass a string literal, its value is HTML-unescaped. So these two JSX expressions are equivalent:

<MyComponent message="<3" />

<MyComponent message={'<3'} />

This behavior is usually not relevant. It's only mentioned here for completeness.

Props Default Value

If you pass no value for a prop, it defaults to true. These two JSX expressions are equivalent:

<MyTextBox autocomplete />

<MyTextBox autocomplete={true} />

However, the React team says in their docs using this approach is not recommended, because it can be confused
with the ES6 object shorthand {foo} which is short for {foo: foo} rather than {foo: true}. They say this behavior
is just there so that it matches the behavior of HTML.

Spread Attributes

If you already have props as an object, and you want to pass it in JSX, you can use ... as a spread operator to pass
the whole props object. These two components are equivalent:

function Case1() {
 return <Greeting firstName="Kaloyab" lastName="Kosev" />;
}

function Case2() {
 const person = {firstName: 'Kaloyan', lastName: 'Kosev'};

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 81

 return <Greeting {...person} />;
}

Section 21.2: Children in JSX
In JSX expressions that contain both an opening tag and a closing tag, the content between those tags is passed as a
special prop: props.children. There are several different ways to pass children:

String Literals

You can put a string between the opening and closing tags and props.children will just be that string. This is useful
for many of the built-in HTML elements. For example:

<MyComponent>
 <h1>Hello world!</h1>
</MyComponent>

This is valid JSX, and props.children in MyComponent will simply be <h1>Hello world!</h1>.

Note that the HTML is unescaped, so you can generally write JSX just like you would write HTML.

Bare in mind, that in this case JSX:

removes whitespace at the beginning and ending of a line;
removes blank lines;
new lines adjacent to tags are removed;
new lines that occur in the middle of string literals are condensed into a single space.

JSX Children

You can provide more JSX elements as the children. This is useful for displaying nested components:

<MyContainer>
 <MyFirstComponent />
 <MySecondComponent />
</MyContainer>

You can mix together different types of children, so you can use string literals together with JSX children.
This is another way in which JSX is like HTML, so that this is both valid JSX and valid HTML:

<div>
 <h2>Here is a list</h2>

 Item 1
 Item 2

</div>

Note that a React component can't return multiple React elements, but a single JSX expression can have
multiple children. So if you want a component to render multiple things you can wrap them in a div like the
example above.

JavaScript Expressions

You can pass any JavaScript expression as children, by enclosing it within {}. For example, these expressions are
equivalent:

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 82

<MyComponent>foo</MyComponent>

<MyComponent>{'foo'}</MyComponent>

This is often useful for rendering a list of JSX expressions of arbitrary length. For example, this renders an HTML list:

const Item = ({ message }) => (
 { message }
);

const TodoList = () => {
 const todos = ['finish doc', 'submit review', 'wait stackoverflow review'];
 return (

 { todos.map(message => (<Item key={message} message={message} />)) }

);
};

Note that JavaScript expressions can be mixed with other types of children.

Functions as Children

Normally, JavaScript expressions inserted in JSX will evaluate to a string, a React element, or a list of those things.
However, props.children works just like any other prop in that it can pass any sort of data, not just the sorts that
React knows how to render. For example, if you have a custom component, you could have it take a callback as
props.children:

const ListOfTenThings = () => (
 <Repeat numTimes={10}>
 {(index) => <div key={index}>This is item {index} in the list</div>}
 </Repeat>
);

// Calls the children callback numTimes to produce a repeated component
const Repeat = ({ numTimes, children }) => {
 let items = [];
 for (let i = 0; i < numTimes; i++) {
 items.push(children(i));
 }
 return <div>{items}</div>;
};

Children passed to a custom component can be anything, as long as that component transforms them into
something React can understand before rendering. This usage is not common, but it works if you want to stretch
what JSX is capable of.

Ignored Values

Note that false, null, undefined, and true are valid children. But they simply don't render. These JSX expressions
will all render to the same thing:

<MyComponent />

<MyComponent></MyComponent>

<MyComponent>{false}</MyComponent>

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 83

<MyComponent>{null}</MyComponent>

<MyComponent>{true}</MyComponent>

This is extremely useful to conditionally render React elements. This JSX only renders a if showHeader is true:

<div>
 {showHeader && <Header />}
 <Content />
</div>

One important caveat is that some "falsy" values, such as the 0 number, are still rendered by React. For example,
this code will not behave as you might expect because 0 will be printed when props.messages is an empty array:

<div>
 {props.messages.length &&
 <MessageList messages={props.messages} />
 }
</div>

One approach to fix this is to make sure that the expression before the && is always boolean:

<div>
 {props.messages.length > 0 &&
 <MessageList messages={props.messages} />
 }
</div>

Lastly, bare in mind that if you want a value like false, true, null, or undefined to appear in the output, you have
to convert it to a string first:

<div>
 My JavaScript variable is {String(myVariable)}.
</div>

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 84

Chapter 22: React Forms
Section 22.1: Controlled Components
A controlled component is bound to a value and its changes get handled in code using event based callbacks.

class CustomForm extends React.Component {
constructor() {
 super();
 this.state = {
 person: {
 firstName: '',
 lastName: ''
 }
 }
}

handleChange(event) {
 let person = this.state.person;
 person[event.target.name] = event.target.value;
 this.setState({person});
}

render() {
 return (
 <form>
 <input
 type="text"
 name="firstName"
 value={this.state.firstName}
 onChange={this.handleChange.bind(this)} />

 <input
 type="text"
 name="lastName"
 value={this.state.lastName}
 onChange={this.handleChange.bind(this)} />
 </form>
)
}

}

In this example we initialize state with an empty person object. We then bind the values of the 2 inputs to the
individual keys of the person object. Then as the user types, we capture each value in the handleChange function.
Since the values of the components are bound to state we can rerender as the user types by calling setState().

NOTE: Not calling setState() when dealing with controlled components, will cause the user to type, but not see
the input because React only renders changes when it is told to do so.

It's also important to note that the names of the inputs are same as the names of the keys in the person object.
This allows us to capture the value in dictionary form as seen here.

handleChange(event) {
 let person = this.state.person;
 person[event.target.name] = event.target.value;
 this.setState({person});

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 85

}

person[event.target.name] is the same is a person.firstName || person.lastName. Of course this would
depend on which input is currently being typed in. Since we don't know where the user will be typing, using a
dictionary and matching the input names to the names of the keys, allows us to capture the user input no matter
where the onChange is being called from.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 86

Chapter 23: User interface solutions
Let's say we get inspired of some ideas from modern user interfaces used in programs and convert them to React
components. That's what "User interface solutions" topic consists of. Attribution is appretiated.

Section 23.1: Basic Pane
import React from 'react';

class Pane extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {
 return React.createElement(
 'section', this.props
);
 }
}

Section 23.2: Panel
import React from 'react';

class Panel extends React.Component {
 constructor(props) {
 super(props);
 }

 render(...elements) {
 var props = Object.assign({
 className: this.props.active ? 'active' : '',
 tabIndex: -1
 }, this.props);

 var css = this.css();
 if (css != '') {
 elements.unshift(React.createElement(
 'style', null,
 css
));
 }

 return React.createElement(
 'div', props,
 ...elements
);
 }

 static title() {
 return '';
 }
 static css() {
 return '';
 }
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 87

Major differences from simple pane are:

panel has focus in instance when it is called by script or clicked by mouse;
panel has title static method per component, so it may be extended by other panel component with
overridden title (reason here is that function can be then called again on rendering for localization
purposes, but in bounds of this example title doesn't make sense);
it can contain individual stylesheet declared in css static method (you can pre-load file contents from
PANEL.css).

Section 23.3: Tab
import React from 'react';

class Tab extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {
 var props = Object.assign({
 className: this.props.active ? 'active' : ''
 }, this.props);
 return React.createElement(
 'li', props,
 React.createElement(
 'span', props,
 props.panelClass.title()
)
);
 }
}

panelClass property of Tab instance must contain class of panel used for description.

Section 23.4: PanelGroup
import React from 'react';
import Tab from './Tab.js';

class PanelGroup extends React.Component {
 constructor(props) {
 super(props);
 this.setState({
 panels: props.panels
 });
 }

 render() {
 this.tabSet = [];
 this.panelSet = [];
 for (let panelData of this.state.panels) {
 var tabIsActive = this.state.activeTab == panelData.name;
 this.tabSet.push(React.createElement(
 Tab, {
 name: panelData.name,
 active: tabIsActive,
 panelClass: panelData.class,
 onMouseDown: () => this.openTab(panelData.name)
 }

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 88

));
 this.panelSet.push(React.createElement(
 panelData.class, {
 id: panelData.name,
 active: tabIsActive,
 ref: tabIsActive ? 'activePanel' : null
 }
));
 }
 return React.createElement(
 'div', { className: 'PanelGroup' },
 React.createElement(
 'nav', null,
 React.createElement(
 'ul', null,
 ...this.tabSet
)
),
 ...this.panelSet
);
 }

 openTab(name) {
 this.setState({ activeTab: name });
 this.findDOMNode(this.refs.activePanel).focus();
 }
}

panels property of PanelGroup instance must contain array with objects. Every object there declares important
data about panels:

name - identifier of panel used by controller script;
class - panel's class.

Don't forget to set property activeTab to name of needed tab.

Clarification

When tab is down, needed panel is getting class name active on DOM element (means that it gonna be visible) and
it's focused now.

Section 23.5: Example view with `PanelGroup`s
import React from 'react';
import Pane from './components/Pane.js';
import Panel from './components/Panel.js';
import PanelGroup from './components/PanelGroup.js';

class MainView extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {
 return React.createElement(
 'main', null,
 React.createElement(
 Pane, { id: 'common' },
 React.createElement(
 PanelGroup, {

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 89

 panels: [
 {
 name: 'console',
 panelClass: ConsolePanel
 },
 {
 name: 'figures',
 panelClass: FiguresPanel
 }
],
 activeTab: 'console'
 }
)
),
 React.createElement(
 Pane, { id: 'side' },
 React.createElement(
 PanelGroup, {
 panels: [
 {
 name: 'properties',
 panelClass: PropertiesPanel
 }
],
 activeTab: 'properties'
 }
)
)
);
 }
}

class ConsolePanel extends Panel {
 constructor(props) {
 super(props);
 }

 static title() {
 return 'Console';
 }
}

class FiguresPanel extends Panel {
 constructor(props) {
 super(props);
 }

 static title() {
 return 'Figures';
 }
}

class PropertiesPanel extends Panel {
 constructor(props) {
 super(props);
 }

 static title() {
 return 'Properties';
 }
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 90

Chapter 24: Using ReactJS in Flux way
It comes very handy to use Flux approach, when your application with ReactJS on frontend is planned to grow,
because of limited structures and a little bit of new code to make state changes in runtime more easing.

Section 24.1: Data Flow

This is outline of comprehensive Overview.

Flux pattern assumes the use of unidirectional data flow.

Action — simple object describing action type and other input data.1.

Dispatcher — single action receiver and callbacks controller. Imagine it is central hub of your application.2.

Store — contains the application state and logic. It registers callback in dispatcher and emits event to view3.
when change to the data layer has occurred.

View — React component that receives change event and data from store. It causes re-rendering when4.
something is changed.

As of Flux data flow, views may also create actions and pass them to dispatcher for user
interactions.

Reverted

To make it more clearer, we can start from the end.

Different React components (views) get data from different stores about made changes.

Few components may be called controller-views, cause they provide the glue code to get the data
from the stores and to pass data down the chain of their descendants. Controller-views represent
any significant section of the page.

Stores can be remarked as callbacks that compare action type and other input data for business logic of your
application.

Dispatcher is common actions receiver and callbacks container.

Actions are nothing than simple objects with required type property.

Formerly, you'll want to use constants for action types and helper methods (called action
creators).

https://facebook.github.io/flux/docs/overview.html
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 91

Chapter 25: React, Webpack & TypeScript
installation
Section 25.1: webpack.config.js
module.exports = {
 entry: './src/index',
 output: {
 path: __dirname + '/build',
 filename: 'bundle.js'
 },
 module: {
 rules: [{
 test: /\.tsx?$/,
 loader: 'ts-loader',
 exclude: /node_modules/
 }]
 },
 resolve: {
 extensions: ['.ts', '.tsx']
 }
};

The main components are (in addition to the standard entry, output and other webpack properties):

The loader

For this you need to create a rule that tests for the .ts and .tsx file extensions, specify ts-loader as the loader.

Resolve TS extensions

You also need to add the .ts and .tsx extensions in the resolve array, or webpack won't see them.

Section 25.2: tsconfig.json
This is a minimal tsconfig to get you up and running.

{
 "include": [
 "src/*"
],
 "compilerOptions": {
 "target": "es5",
 "jsx": "react",
 "allowSyntheticDefaultImports": true
 }
}

Let's go through the properties one by one:

include

This is an array of source code. Here we have only one entry, src/*, which specifies that everything in the src
directory is to be included in compilation.

compilerOptions.target

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 92

Specifies that we want to compile to ES5 target

compilerOptions.jsx

Setting this to true will make TypeScript automatically compile your tsx syntax from <div /> to
React.createElement("div").

compilerOptions.allowSyntheticDefaultImports

Handy property which will allow you to import node modules as if they are ES6 modules, so instead of doing

import * as React from 'react'
const { Component } = React

you can just do

import React, { Component } from 'react'

without any errors telling you that React has no default export.

Section 25.3: My First Component
import React, { Component } from 'react';
import ReactDOM from 'react-dom';

interface AppProps {
 name: string;
}
interface AppState {
 words: string[];
}

class App extends Component<AppProps, AppState> {
 constructor() {
 super();
 this.state = {
 words: ['foo', 'bar']
 };
 }

 render() {
 const { name } = this.props;
 return (<h1>Hello {name}!</h1>);
 }
}

const root = document.getElementById('root');
ReactDOM.render(<App name="Foo Bar" />, root);

When using TypeScript with React, once you've downloaded the React DefinitelyTyped type definitions (npm
install --save @types/react), every component will require you to add type annotations.

You do this like so:

class App extends Component<AppProps, AppState> { }

where AppProps and AppState are interfaces (or type aliases) for your components' props and state respectively.

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 93

Chapter 26: How and why to use keys in
React
Whenever you are rendering a list of React components, each component needs to have a key attribute. The key
can be any value, but it does need to be unique to that list.

When React has to render changes on a list of items, React just iterates over both lists of children at the same time
and generates a mutation whenever there's a difference. If there are no keys set for the children, React scans each
child. Otherwise, React compares the keys to know which were added or removed from the list

Section 26.1: Basic Example
For a class-less React component:

function SomeComponent(props){

 const ITEMS = ['cat', 'dog', 'rat']
 function getItemsList(){
 return ITEMS.map(item => <li key={item}>{item}</i>);
 }

 return (

 {getItemsList()}

);
}

For this example, the above component resolves to:

 <li key='cat'>cat
 <li key='dog'>dog
 <li key='rat'>rat

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 94

Chapter 27: Keys in react
Keys in react are used to identify a list of DOM elements from the same hierarchy internally.

So if you are iterating over an array to show a list of li elements, each of the li elements needs a unique identifier
specified by the key property. This usually can be the id of your database item or the index of the array.

Section 27.1: Using the id of an element
Here we are having a list of todo items that is passed to the props of our component.

Each todo item has a text and id property. Imagine that the id property comes from a backend datastore and is a
unique numeric value:

todos = [
 {
 id: 1,
 text: 'value 1'
 },
 {
 id: 2,
 text: 'value 2'
 },
 {
 id: 3,
 text: 'value 3'
 },
 {
 id: 4,
 text: 'value 4'
 },
];

We set the key attribute of each iterated list element to todo-${todo.id} so that react can identify it internally:

render() {
 const { todos } = this.props;
 return (

 { todos.map((todo) =>
 <li key={ `todo-${todo.id}` }>
 { todo.text }

 }

);
}

Section 27.2: Using the array index
If you don't have unique database ids at hand, you could also use the numeric index of your array like this:

render() {
 const { todos } = this.props;
 return (

 { todos.map((todo, index) =>

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 95

 <li key={ `todo-${index}` }>
 { todo.text }

 }

);
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 96

Chapter 28: Higher Order Components
Higher Order Components ("HOC" in short) is a react application design pattern that is used to enhance
components with reusable code. They enable to add functionality and behaviors to existing component classes.

A HOC is a pure javascript function that accepts a component as it's argument and returns a new component with
the extended functionality.

Section 28.1: Higher Order Component that checks for
authentication
Let's say we have a component that should only be displayed if the user is logged in.

So we create a HOC that checks for the authentication on each render():

AuthenticatedComponent.js

import React from "react";

export function requireAuthentication(Component) {
 return class AuthenticatedComponent extends React.Component {

 /**
 * Check if the user is authenticated, this.props.isAuthenticated
 * has to be set from your application logic (or use react-redux to retrieve it from global
state).
 */
 isAuthenticated() {
 return this.props.isAuthenticated;
 }

 /**
 * Render
 */
 render() {
 const loginErrorMessage = (
 <div>
 Please login in order to view this part of the
application.
 </div>
);

 return (
 <div>
 { this.isAuthenticated === true ? <Component {...this.props} /> :
loginErrorMessage }
 </div>
);
 }
 };
}

export default requireAuthentication;

We then just use this Higher Order Component in our components that should be hidden from anonymous users:

MyPrivateComponent.js

http://stackoverflow.com/questions/22268851/what-is-a-pure-function
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 97

import React from "react";
import {requireAuthentication} from "./AuthenticatedComponent";

export class MyPrivateComponent extends React.Component {
 /**
 * Render
 */
 render() {
 return (
 <div>
 My secret search, that is only viewable by authenticated users.
 </div>
);
 }
}

// Now wrap MyPrivateComponent with the requireAuthentication function
export default requireAuthentication(MyPrivateComponent);

This example is described in more detail here.

Section 28.2: Simple Higher Order Component
Let's say we want to console.log each time the component mounts:

hocLogger.js

export default function hocLogger(Component) {
 return class extends React.Component {
 componentDidMount() {
 console.log('Hey, we are mounted!');
 }
 render() {
 return <Component {...this.props} />;
 }
 }
}

Use this HOC in your code:

MyLoggedComponent.js

import React from "react";
import {hocLogger} from "./hocLogger";

export class MyLoggedComponent extends React.Component {
 render() {
 return (
 <div>
 This component get's logged to console on each mount.
 </div>
);
 }
}

// Now wrap MyLoggedComponent with the hocLogger function
export default hocLogger(MyLoggedComponent);

https://github.com/aspirantic/AuthenticatedComponent
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 98

Chapter 29: React with Redux
Redux has come to be the status quo for managing application-level state on the front-end these days, and those
who work on "large-scale applications" often swear by it. This topic covers why and how you should use the state
management library, Redux, in your React applications.

Section 29.1: Using Connect
Create a Redux store with createStore.

import { createStore } from 'redux'
import todoApp from './reducers'
let store = createStore(todoApp, { inistialStateVariable: "derp"})

Use connect to connect component to Redux store and pull props from store to component.

import { connect } from 'react-redux'

const VisibleTodoList = connect(
 mapStateToProps,
 mapDispatchToProps
)(TodoList)

export default VisibleTodoList

Define actions that allow your components to send messages to the Redux store.

/*
 * action types
 */

export const ADD_TODO = 'ADD_TODO'

export function addTodo(text) {
 return { type: ADD_TODO, text }
}

Handle these messages and create a new state for the store in reducer functions.

function todoApp(state = initialState, action) {
 switch (action.type) {
 case SET_VISIBILITY_FILTER:
 return Object.assign({}, state, {
 visibilityFilter: action.filter
 })
 default:
 return state
 }
}

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 99

Appendix A: Installation
Section A.1: Simple setup
Setting up the folders

This example assumes code to be in src/ and the output to be put into out/. As such the folder structure should
look something like

example/
|-- src/
| |-- index.js
| `-- ...
|-- out/
`-- package.json

Setting up the packages

Assuming a setup npm environment, we first need to setup babel in order to transpile the React code into es5
compliant code.

$npm install --save-dev babel-core babel-loader babel-preset-es2015 babel-preset-react

The above command will instruct npm to install the core babel libraries as well as the loader module for use with
webpack. We also install the es6 and react presets for babel to understand JSX and es6 module code. (More
information about the presets can be found here Babel presets)

$npm i -D webpack

This command will install webpack as a development dependency. (i is the shorthand for install and -D the
shorthand for --save-dev)

You might also want to install any additional webpack packages (such as additional loaders or the webpack-dev-
server extension)

Lastly we will need the actual react code

$npm i -D react react-dom

Setting up webpack

With the dependencies setup we will need a webpack.config.js file to tell webpack what to do

simple webpack.config.js:

var path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'out'),
 filename: 'bundle.js'
 },
 module: {
 loaders: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,

http://babeljs.io/docs/plugins/
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 100

 loader: 'babel-loader',
 query: {
 presets: ['es2015', 'react']
 }
 }
]
 }
};

This file tells webpack to start with the index.js file (assumed to be in src/) and convert it into a single bundle.js file
in the out directory.

The module block tells webpack to test all files encountered against the regular expression and if they match, will
invoke the specified loader. (babel-loader in this case) Furthermore, the exclude regex tells webpack to ignore this
special loader for all modules in the node_modules folder, this helps speed up the transpilation process. Lastly, the
query option tells webpack what parameters to pass to babel and is used to pass along the presets we installed
earlier.

Testing the setup

All that is left now is to create the src/index.js file and try packing the application

src/index.js:

'use strict'

import React from 'react'
import { render } from 'react-dom'

const App = () => {
 return <h1>Hello world!</h1>
}

render(
 <App />,
 document. getElementById('app')
)

This file would normally render a simple <h1>Hello world!</h1> Header into the html tag with the id 'app', but for
now it should be enough to transpile the code once.

$./node_modules/.bin/webpack . Will execute the locally installed version of webpack (use $webpack if you
installed webpack globally with -g)

This should create the file out/bundle.js with the transpiled code inside and concludes the example.

Section A.2: Using webpack-dev-server
Setup

After setting up a simple project to use webpack, babel and react issuing $npm i -g webpack-dev-server will install
the development http server for quicker development.

Modifying webpack.config.js
var path = require('path');

module.exports = {

http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 101

 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'out'),
 publicPath: '/public/',
 filename: 'bundle.js'
 },
 module: {
 loaders: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,
 loader: 'babel',
 query: {
 presets: ['es2015', 'react']
 }
 }
]
 },
 devServer: {
 contentBase: path.resolve(__dirname, 'public'),
 hot: true
 }
};

The modifications are in

output.publicPath which sets up a path to have our bundle be served from (see Webpack configuration files
for more info)

devServer

contentBase the base path to serve static files from (for example index.html)
hot sets the webpack-dev-server to hot reload when changes get made to files on disk

And finally we just need a simple index.html to test our app in.

index.html:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>React Sandbox</title>
 </head>
 <body>

 <div id="app" />

 <script src="public/bundle.js"></script>
 </body>
</html>

With this setup running $webpack-dev-server should start a local http server on port 8080 and upon connecting
should render a page containing a <h1>Hello world!</h1>.

https://github.com/webpack/docs/wiki/Configuration#outputpublicpath
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 102

Appendix B: React Tools
Section B.1: Links
Places to find React components and libraries;

Catalog of React Components
JS.coach

https://github.com/brillout/awesome-react-components
https://js.coach
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 103

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

abhirathore2006 Chapter 10
Adam Chapter 16
Aditya Singh Chapter 17
Adrián Daraš Chapter 18
Ahmad Chapter 5
akashrajkn Chapter 2
Alex Young Chapters 1 and 4
Alexander Chapter 4
Alexg2195 Chapter 6
Anuj Chapters 1, 5 and 6
Aron Chapter 25
Bart Riordan Chapters 1, 2 and 12
Bond Chapter 2
Brad Colthurst Chapter 4
Brandon Roberts Chapter 2
brillout Chapter 31
Daksh Gupta Chapter 1
Danillo Corvalan Chapter 5
David Chapter 15
Dennis Stücken Chapters 27 and 28
F. Kauder Chapter 6
Fabian Schultz Chapter 14
Faktor 10 Chapter 5
ghostffcode Chapter 19
Gianluca Esposito Chapter 1
goldbullet Chapter 2
GordyD Chapter 2
hmnzr Chapter 2
Inanc Gumus Chapter 1
ivarni Chapter 2
Jack7 Chapter 5
Jagadish Upadhyay Chapter 5
Jason Bourne Chapter 14
Jim Chapter 29
JimmyLv Chapters 5 and 20
John Ruddell Chapters 3 and 6
jolyonruss Chapters 1 and 2
Jon Chan Chapters 1 and 2
jonathangoodman Chapter 2
JordanHendrix Chapters 1 and 2
juandemarco Chapter 1
justabuzz Chapter 2
Kaloyan Kosev Chapters 13, 15 and 21
Kousha Chapters 2 and 4
leonardoborges Chapter 13
Leone Chapter 3
lustoykov Chapter 17
Maayan Glikser Chapter 2
Mark Lapierre Chapter 16

mailto:web@petercv.com
https://stackoverflow.com/users/1785635/
https://stackoverflow.com/users/1472764/
https://stackoverflow.com/users/3878940/
https://stackoverflow.com/users/6812877/
https://stackoverflow.com/users/3104969/
https://stackoverflow.com/users/3449335/
https://stackoverflow.com/users/5932623/
https://stackoverflow.com/users/2212431/
https://stackoverflow.com/users/5510695/
https://stackoverflow.com/users/1759688/
https://stackoverflow.com/users/3229534/
https://stackoverflow.com/users/1335264/
https://stackoverflow.com/users/2474246/
https://stackoverflow.com/users/6111271/
https://stackoverflow.com/users/2671303/
https://stackoverflow.com/users/270274/
https://stackoverflow.com/users/5662469/
https://stackoverflow.com/users/1001745/
https://stackoverflow.com/users/1254856/
https://stackoverflow.com/users/3890611/
https://stackoverflow.com/users/6608382/
https://stackoverflow.com/users/6941627/
https://stackoverflow.com/users/4109124/
https://stackoverflow.com/users/5266158/
https://stackoverflow.com/users/843493/
https://stackoverflow.com/users/5924322/
https://stackoverflow.com/users/713425/
https://stackoverflow.com/users/907844/
https://stackoverflow.com/users/115363/
https://stackoverflow.com/users/957731/
https://stackoverflow.com/users/795372/
https://stackoverflow.com/users/4700360/
https://stackoverflow.com/users/5408958/
https://stackoverflow.com/users/1910355/
https://stackoverflow.com/users/5871340/
https://stackoverflow.com/users/2733506/
https://stackoverflow.com/users/313990/
https://stackoverflow.com/users/1043674/
https://stackoverflow.com/users/3472247/
https://stackoverflow.com/users/4996204/
https://stackoverflow.com/users/1053772/
https://stackoverflow.com/users/124132/
https://stackoverflow.com/users/1333836/
https://stackoverflow.com/users/834045/
https://stackoverflow.com/users/1358674/
https://stackoverflow.com/users/7199720/
https://stackoverflow.com/users/2762747/
https://stackoverflow.com/users/581620/
https://stackoverflow.com/users/604131/
http://goalkicker.com/

GoalKicker.com – React JS Notes for Professionals 104

MaxPRafferty Chapters 1 and 5
Mayank Shukla Chapter 16
McGrady Chapter 14
Md. Nahiduzzaman
Rose Chapter 1

Md.Sifatul Islam Chapter 1
Michael Peyper Chapters 2 and 13
Mihir Chapter 8
MMachinegun Chapter 1
m_callens Chapter 2
Nick Bartlett Chapter 1
orvi Chapter 1
parlad neupane Chapter 8
promisified Chapter 22
Qianyue Chapter 13
QoP Chapters 4, 5 and 6
Rajab Shakirov Chapter 3
Random User Chapter 11
Rene R Chapter 30
Rifat Chapter 20
Robeen Chapter 10
rossipedia Chapter 1
Salman Saleem Chapter 6
Sammy I. Chapter 26
Sergii Bishyr Chapter 5
Shabin Hashim Chapter 1
Shuvo Habib Chapter 9
Simplans Chapter 1
sjmarshy Chapter 2
skav Chapters 4 and 6
sqzaman Chapter 13
Sunny R Gupta Chapters 1 and 14
thibmaek Chapter 27
Timo Chapters 1, 4, 6 and 7
user2314737 Chapter 1
vintproykt Chapters 23 and 24
Vivian Chapter 6
Vlad Bezden Chapter 2
WitVault Chapters 5 and 6
Zac Braddy Chapter 12
Zakaria Ridouh Chapter 2

https://stackoverflow.com/users/1612869/
https://stackoverflow.com/users/5185595/
https://stackoverflow.com/users/6760995/
https://stackoverflow.com/users/3649961/
https://stackoverflow.com/users/3649961/
https://stackoverflow.com/users/6840615/
https://stackoverflow.com/users/6902543/
https://stackoverflow.com/users/5241520/
https://stackoverflow.com/users/2102463/
https://stackoverflow.com/users/5270744/
https://stackoverflow.com/users/1759514/
https://stackoverflow.com/users/3654356/
https://stackoverflow.com/users/4719725/
https://stackoverflow.com/users/6356919/
https://stackoverflow.com/users/1165178/
https://stackoverflow.com/users/4484822/
https://stackoverflow.com/users/3914072/
https://stackoverflow.com/users/414002/
https://stackoverflow.com/users/6671969/
https://stackoverflow.com/users/262456/
https://stackoverflow.com/users/4352287/
https://stackoverflow.com/users/115049/
https://stackoverflow.com/users/4060385/
https://stackoverflow.com/users/3413536/
https://stackoverflow.com/users/5604676/
https://stackoverflow.com/users/1109178/
https://stackoverflow.com/users/2993242/
https://stackoverflow.com/users/2806499/
https://stackoverflow.com/users/293465/
https://stackoverflow.com/users/1246018/
https://stackoverflow.com/users/518428/
https://stackoverflow.com/users/1477051/
https://stackoverflow.com/users/3029016/
https://stackoverflow.com/users/3836229/
https://stackoverflow.com/users/2314737/
https://stackoverflow.com/users/2396907/
https://stackoverflow.com/users/2579308/
https://stackoverflow.com/users/30038/
https://stackoverflow.com/users/1745409/
https://stackoverflow.com/users/5188846/
https://stackoverflow.com/users/6457567/
http://goalkicker.com/

You may also like

http://goalkicker.com/AndroidBook
http://goalkicker.com/CSSBook
http://goalkicker.com/iOSBook
http://goalkicker.com/JavaScriptBook
http://goalkicker.com/HTML5Book
http://goalkicker.com/HTML5CanvasBook
http://goalkicker.com/ReactNativeBook
http://goalkicker.com/ObjectiveCBook
http://goalkicker.com/SwiftBook

	Content list
	About
	Chapter 1: Getting started with React
	Section 1.1: What is ReactJS?
	Section 1.2: Installation or Setup
	Section 1.3: Hello World with Stateless Functions
	Section 1.4: Absolute Basics of Creating Reusable Components
	Section 1.5: Create React App
	Section 1.6: Hello World
	Section 1.7: Hello World Component

	Chapter 2: Components
	Section 2.1: Creating Components
	Section 2.2: Basic Component
	Section 2.3: Nesting Components
	Section 2.4: Props
	Section 2.5: Component states - Dynamic user-interface
	Section 2.6: Variations of Stateless Functional Components
	Section 2.7: setState pitfalls

	Chapter 3: Using ReactJS with TypeScript
	Section 3.1: ReactJS component written in TypeScript
	Section 3.2: Installation and Setup
	Section 3.3: Stateless React Components in TypeScript
	Section 3.4: Stateless and property-less Components

	Chapter 4: State in React
	Section 4.1: Basic State
	Section 4.2: Common Antipattern
	Section 4.3: setState()
	Section 4.4: State, Events And Managed Controls

	Chapter 5: Props in React
	Section 5.1: Introduction
	Section 5.2: Default props
	Section 5.3: PropTypes
	Section 5.4: Passing down props using spread operator
	Section 5.5: Props.children and component composition
	Section 5.6: Detecting the type of Children components

	Chapter 6: React Component Lifecycle
	Section 6.1: Component Creation
	Section 6.2: Component Removal
	Section 6.3: Component Update
	Section 6.4: Lifecycle method call in dierent states
	Section 6.5: React Component Container

	Chapter 7: Forms and User Input
	Section 7.1: Controlled Components
	Section 7.2: Uncontrolled Components

	Chapter 8: React Boilerplate [React + Babel + Webpack]
	Section 8.1: react-starter project
	Section 8.2: Setting up the project

	Chapter 9: Using ReactJS with jQuery
	Section 9.1: ReactJS with jQuery

	Chapter 10: React Routing
	Section 10.1: Example Routes.js ﬁle, followed by use of Router Link in component
	Section 10.2: React Routing Async

	Chapter 11: Communicate Between Components
	Section 11.1: Communication between Stateless Functional Components

	Chapter 12: How to setup a basic webpack, react and babel environment
	Section 12.1: How to build a pipeline for a customized "Hello world" with images

	Chapter 13: React.createClass vs extends React.Component
	Section 13.1: Create React Component
	Section 13.2: "this" Context
	Section 13.3: Declare Default Props and PropTypes
	Section 13.4: Mixins
	Section 13.5: Set Initial State
	Section 13.6: ES6/React “this” keyword with ajax to get data from server

	Chapter 14: React AJAX call
	Section 14.1: HTTP GET request
	Section 14.2: HTTP GET request and looping through data
	Section 14.3: Ajax in React without a third party library - a.k.a with VanillaJS

	Chapter 15: Communication Between Components
	Section 15.1: Child to Parent Components
	Section 15.2: Not-related Components
	Section 15.3: Parent to Child Components

	Chapter 16: Stateless Functional Components
	Section 16.1: Stateless Functional Component

	Chapter 17: Performance
	Section 17.1: Performance measurement with ReactJS
	Section 17.2: React's di algorithm
	Section 17.3: The Basics - HTML DOM vs Virtual DOM
	Section 17.4: Tips & Tricks

	Chapter 18: Introduction to Server-Side Rendering
	Section 18.1: Rendering components

	Chapter 19: Setting Up React Environment
	Section 19.1: Simple React Component
	Section 19.2: Install all dependencies
	Section 19.3: Conﬁgure webpack
	Section 19.4: Conﬁgure babel
	Section 19.5: HTML ﬁle to use react component
	Section 19.6: Transpile and bundle your component

	Chapter 20: Using React with Flow
	Section 20.1: Using Flow to check prop types of stateless functional components
	Section 20.2: Using Flow to check prop types

	Chapter 21: JSX
	Section 21.1: Props in JSX
	Section 21.2: Children in JSX

	Chapter 22: React Forms
	Section 22.1: Controlled Components

	Chapter 23: User interface solutions
	Section 23.1: Basic Pane
	Section 23.2: Panel
	Section 23.3: Tab
	Section 23.4: PanelGroup
	Section 23.5: Example view with `PanelGroup`s

	Chapter 24: Using ReactJS in Flux way
	Section 24.1: Data Flow

	Chapter 25: React, Webpack & TypeScript installation
	Section 25.1: webpack.conﬁg.js
	Section 25.2: tsconﬁg.json
	Section 25.3: My First Component

	Chapter 26: How and why to use keys in React
	Section 26.1: Basic Example

	Chapter 27: Keys in react
	Section 27.1: Using the id of an element
	Section 27.2: Using the array index

	Chapter 28: Higher Order Components
	Section 28.1: Higher Order Component that checks for authentication
	Section 28.2: Simple Higher Order Component

	Chapter 29: React with Redux
	Section 29.1: Using Connect

	Appendix A: Installation
	Section A.1: Simple setup
	Section A.2: Using webpack-dev-server

	Appendix B: React Tools
	Section B.1: Links

	Credits
	You may also like

