
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Jurg van Vliet, Flavia Paganelli, and Jasper Geurtsen

Resilience and Reliability on AWS

www.allitebooks.com

http://www.allitebooks.org

ISBN: 978-1-449-33919-7

[LSI]

Resilience and Reliability on AWS

by Jurg van Vliet, Flavia Paganelli, and Jasper Geurtsen

Copyright © 2013 9apps B.V. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Meghan Blanchette

Production Editor: Rachel Steely

Proofreader: Mary Ellen Smith

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrator: Rebecca Demarest

January 2013: First Edition

Revision History for the First Edition:

2012-12-21 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449339197 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Resilience and Reliability on AWS, the image of a black retriever, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

www.allitebooks.com

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449339197
http://www.allitebooks.org

Table of Contents

Foreword. vii
Preface. xi

1. Introduction. 1

2. The Road to Resilience and Reliability. 3
Once Upon a Time, There Was a Mason 3
Rip. Mix. Burn. 4
Cradle to Cradle 5
In Short 5

3. Crash Course in AWS. 7
Regions and Availability Zones 7

Route 53: Domain Name System Service 8
IAM (Identity and Access Management) 9

The Basics: EC2, RDS, ElastiCache, S3, CloudFront, SES, and CloudWatch 11
CloudWatch 11
EC2 (et al.) 12
RDS 16
ElastiCache 17
S3/CloudFront 17
SES 18

Growing Up: ELB, Auto Scaling 18
ELB (Elastic Load Balancer) 18
Auto Scaling 19

Decoupling: SQS, SimpleDB & DynamoDB, SNS, SWF 20
SQS (Simple Queue Service) 21
SimpleDB 22
SNS (Simple Notification Service) 23

iii

www.allitebooks.com

http://www.allitebooks.org

SWF (Simple Workflow Service) 24

4. Top 10 Survival Tips. 25
Make a Choice 25
Embrace Change 26
Everything Will Break 26
Know Your Enemy 27
Know Yourself 27
Engineer for Today 27
Question Everything 28
Don’t Waste 28
Learn from Others 28
You Are Not Alone 29

5. elasticsearch. 31
Introduction 31
EC2 Plug-in 33
Missing Features 33
Conclusion 37

6. Postgres. 39
Pragmatism First 40
The Challenge 40

Tablespaces 41
Building Blocks 41

Configuration with userdata 41
IAM Policies (Identity and Access Management) 46
Postgres Persistence (backup/restore) 49
Self Reliance 53

Monitoring 54
Conclusion 63

7. MongoDB. 65
How It Works 65

Replica Set 65
Backups 71

Auto Scaling 72
Monitoring 74
Conclusion 81

8. Redis. 83
The Problem 83

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Our Approach 84
Implementation 84

userdata 85
Redis 86
Chaining (Replication) 99

In Practice 113

9. Logstash. 115
Build 115
Shipper 116

Output Plug-in 117
Reader 118

Input Plug-in 119
Grok 120

Kibana 120

10. Global (Content) Delivery. 123
CloudFront 123

(Live) Streaming 123
CloudFormation 128
Orchestration 142

Route 53 143
Global Database 143

11. Conclusion. 145

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

In mid-2008, I was handling operations for reddit.com, an online community for sharing
and discussing links, serving a few tens of millions of page views per month. At the time,
we were hosting the whole site on 21 1U HP servers (in addition to four of the original
servers for the site) in two racks in a San Francisco data center. Around that time, Steve,
one of the founders of reddit, came to me and suggested I check out this AWS thing that
his buddies at Justin.tv had been using with some success; he thought it might be good
for us, too. I set up a VPN; we copied over a set of our data, and started using it for batch
processing.

In early 2009, we had a problem: we needed more servers for live traffic, so we had to
make a choice—build out another rack of servers, or move to AWS. We chose the latter,
partly because we didn’t know what our growth was going to look like, and partly because
it gave us enormous flexibility for resiliency and redundancy by offering multiple avail‐
ability zones, as well as multiple regions if we ever got to that point. Also, I was tired of
running to the data center every time a disk failed, a fan died, a CPU melted, etc.

When designing any architecture, one of the first assumptions one should make is that
any part of the system can break at any time. AWS is no exception. Instead of fearing
this failure, one must embrace it. At reddit, one of the things we got right with AWS
from the start was making sure that we had copies of our data in at least two zones. This
proved handy during the great EBS outage of 2011. While we were down for a while, it
was for a lot less time than most sites, in large part because we were able to spin up our
databases in the other zone, where we kept a second copy of all of our data. If not for
that, we would have been down for over a day, like all the other sites in the same situation.

vii

www.allitebooks.com

http://reddit.com
http://www.justin.tv
http://www.allitebooks.org

During that EBS outage, I, like many others, watched Netflix, also hosted on AWS. It is
said that if you’re on AWS and your site is down, but Netflix is up, it’s probably your
fault you are down. It was that reputation, among other things, that drew me to move
from reddit to Netflix, which I did in July 2011. Now that I’m responsible for Netflix’s
uptime, it is my job to help the company maintain that reputation.

Netflix requires a superior level of reliability. With tens of thousands of instances and
30 million plus paying customers, reliability is absolutely critical. So how do we do it?
We expect the inevitable failure, plan for it, and even cause it sometimes. At Netflix, we
follow our monkey theory—we simulate things that go wrong and find things that are
different. And thus was born the Simian Army, our collection of agents that construc‐
tively muck with our AWS environment to make us more resilient to failure.

The most famous of these is the Chaos Monkey, which kills random instances in our
production account—the same account that serves actual, live customers. Why wait for
Amazon to fail when you can induce the failure yourself, right? We also have the Latency
Monkey, which induces latency on connections between services to simulate network
issues. We have a whole host of other monkeys too (most of them available on Github).

The point of the Monkeys is to make sure we are ready for any failure modes. Sometimes
it works, and we avoid outages, and sometimes new failures come up that we haven’t
planned for. In those cases, our resiliency systems are truly tested, making sure they are
generic and broad enough to handle the situation.

One failure that we weren’t prepared for was in June 2012. A severe storm hit Amazon’s
complex in Virginia, and they lost power to one of their data centers (a.k.a. Availability
Zones). Due to a bug in the mid-tier load balancer that we wrote, we did not route traffic
away from the affected zone, which caused a cascading failure. This failure, however,
was our fault, and we learned an important lesson. This incident also highlighted the
need for the Chaos Gorilla, which we successfully ran just a month later, intentionally
taking out an entire zone’s worth of servers to see what would happen (everything went
smoothly). We ran another test of the Chaos Gorilla a few months later and learned
even more about what were are doing right and where we could do better.

A few months later, there was another zone outage, this time due to the Elastic Block
Store. Although we generally don’t use EBS, many of our instances use EBS root volumes.
As such, we had to abandon an availability zone. Luckily for us, our previous run of
Chaos Gorilla gave us not only the confidence to make the call to abandon a zone, but
also the tools to make it quick and relatively painless.

Looking back, there are plenty of other things we could have done to make reddit more
resilient to failure, many of which I have learned through ad hoc trial and error, as well
as from working at Netflix. Unfortunately, I didn’t have a book like this one to guide me.
This book outlines in excellent detail exactly how to build resilient systems in the cloud.
From the crash course in systems to the detailed instructions on specific technologies,

viii | Foreword

www.allitebooks.com

http://www.netflix.com
http://www.allitebooks.org

this book includes many of the very same things we stumbled upon as we flailed wildly,
discovering solutions to problems. If I had had this book when I was first starting on
AWS, I would have saved myself a lot of time and headache, and hopefully you will
benefit from its knowledge after reading it.

This book also teaches a very important lesson: to embrace and expect failure, and if
you do, you will be much better off.

—Jeremy Edberg, Information Cowboy, December 2012

Foreword | ix

Preface

Thank you (again) for picking up one of our books! If you have read Programming
Amazon EC2, you probably have some expectations about this book.

The idea behind this book came from Mike Loukides, one of our editors. He was fasci‐
nated with the idea of resilience and reliability in engineering. At the same time, Amazon
Web Services (AWS) had been growing and growing.

As is the case for other systems, AWS does not go without service interruptions. The
underlying architecture and available services are designed to help you deal with this.
But as outages have shown, this is difficult, especially when you are powering the ma‐
jority of the popular web services.

So how do we help people prepare? We already have a good book on the basics of
engineering on AWS. But it deals with relatively simple applications, solely comprised
of AWS’s infrastructural components. What we wanted to show is how to build service
components yourself and make them resilient and reliable.

The heart of this book is a collection of services we run in our infrastructures. We’ll
show things like Postgres and Redis, but also elasticsearch and MongoDB. But before
we talk about these, we will introduce AWS and our approach to Resilience and
Reliability.

We want to help you weather the next (AWS) outage!

Audience
If Amazon Web Services is new to you, we encourage you to pick up a copy of Program‐
ming Amazon EC2. Familiarize yourself with the many services AWS offers. It certainly
helps to have worked (or played) with many of them.

xi

http://oreil.ly/Amazon_EC2
http://oreil.ly/Amazon_EC2

Even though many of our components are nothing more than a collection of scripts
(bash, Python, Ruby, PHP) don’t be fooled. The lack of a development environment does
not make it easier to engineer your way out of many problems.

Therefore, we feel this book is probably well-suited for software engineers. We use this
term inclusively—not every programmer is a software engineer, and many system ad‐
ministrators are software engineers. But you at least need some experience building
complex systems. It helps to have seen more than one programming language. And it
certainly helps to have been responsible for operations.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from

xii | Preface

O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount
of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Resilience and Reliability on AWS (O’Reilly).
Copyright 2013 9apps B.V., 978-1-449-33919-7.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers ex‐
pert content in both book and video form from the world’s leading
authors in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem
solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Resilience_Reliability_AWS.

Preface | xiii

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/Resilience_Reliability_AWS

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
There are many people we would like to thank for making this book into what it is now.
But first of all, it would never have been possible without our parents, Franny Geurtsen,
Jos Geurtsen, Aurora Gómez, Hans van Vliet, Marry van Vliet, and Ricardo Paganelli.

The work in this book is not ours alone. Our list will probably not be complete, and we
apologize in advance if we forgot you, but we could not have written this book without
the people from Publitas (Ali, Khalil, Guillermo, Dieudon, Dax, Felix), Qelp (Justin,
Pascal, Martijn, Bas, Jasper), Olery (Wilco, Wijnand, Kim, Peter), Buzzer (Pim), Fa‐
shiolista (Thierry, Tomasso, Mike, Joost), Usabilla (Marc, Gijs, Paul), inSided (Wouter,
Jochem, Maik), Poikos (Elleanor, David), Directness (Roy, Alessio, Adam), Marvia
(Jons, Arnoud, Edwin, Tom), and Videodock (Bauke, Nick).

Of course, you need a fresh pair of eyes going over every detail and meticulously trying
out examples to find errors. Our technical reviewers, Dave Ward and Mitch Garnaat,
did just that.

And finally, there is the wonderful and extremely professional team at O’Reilly. Without
Mike, Meghan, and all the others there wouldn’t even have been a book. Thank you!

xiv | Preface

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introduction

The Cloud is new, in whatever guise it chooses to show itself. All the clouds we know
today are relatively young. But more importantly, they introduce a new paradigm.

The cloud we talk about in this book is Amazon Web Services (or AWS). AWS is infra‐
structure as a service (IaaS), but it does not respect these cloud qualifications very much.
You can find different AWS services in other types of cloud like PaaS (platform as a
service) or even SaaS (software as a service).

In our Programming Amazon EC2 book, we introduced Amazon AWS. We tried to help
people get from one side of the chasm to the other. From the traditional viewpoint of
administration, this is nearly impossible to do. From the perspective of the developer,
it is just as problematic, but reintroducing the discipline of software engineering makes
it easier.

Programming Amazon EC2 covers AWS in its full breadth. If you want to know how to
design your app, build your infrastructure, and run your AWS-based operations, that
book will certainly get you up to speed. What it doesn’t do, however, is explicitly deal
with Resilience and Reliability.

That is what this book aims to do. For us, Resilience means the ability to recover. And
Reliable means that the recovery is not luck but rather something you can really trust.

First, we will explain how we look at infrastructures and infrastructural components. It
is remarkably similar to building in the physical world. Perhaps the main difference is
flexibility, but that might be just as much a curse as a blessing. It will require you to take
a holistic view of your application and its use of resources.

We will also do an overview of AWS, but beware that this is extremely concise. However,
if you are pressed for time, it will familiarize you with the basic concepts. If you need
more in-depth knowledge of AWS, there are other books…

1

A “top 10” of something is always very popular. Memorize them and you can hold your
own in any conversation. Our Top 10 Survival Tips are our best practices. You can overlay
them on your current (cloud) infrastructure, and see where the holes are.

The rest of the book is devoted to examples and stories of how we approach and engineer
our solutions using:

• elasticsearch

• Postgres

• MongoDB

• Redis

• Logstash

• Global Delivery

These examples are meant to illustrate certain concepts. But, most importantly, we hope
they inspire you to build your own solutions.

2 | Chapter 1: Introduction

CHAPTER 2

The Road to Resilience and Reliability

If you build and/or operate an important application, it doesn’t matter if it is large or
small. The thing you care about is that it works. Under ideal circumstances, this is not
very difficult. But those kinds of circumstances are a dream. In every environment there
is failure. The question is how to deal with it.

This problem is not new. The traditional point of resolution used to be the IT depart‐
ment. Due to several factors, that is changing. Operations is more and more part of
software, and building infrastructures is software engineering.

To introduce the book, we’ll first discuss our strategy. If infrastructure is software, we
can apply our software engineering principles.

Once Upon a Time, There Was a Mason
One of the most important problems that software engineers have to solve is how to
reuse work (code). Reusing code means you reduce the size of the code base, and as a
consequence, there is less work in development and testing. Maintenance is also much
more effective; multiple projects can benefit from improvements in one piece of code.

There are many solutions to this problem of how to reuse code. First, with structured
programming, there were methods (functions/procedures). Later on, object-oriented
programming introduced even more tools to handle this challenge, with objects, classes,
and inheritance, for example.

There are also domain-specific tools and environments, often called frameworks. These
frameworks offer a structure (think of the Model View Controller design pattern for
user interfaces) and building blocks (such as classes to interface with a database).

3

At this stage we are basically like masons. We have our tools and materials and our body
of knowledge on how to use them. With this, we can build the most amazing (in‐
fra)structures, which happen to be resilient and reliable (most of the time). But, as
Wikipedia states, we need something else as well:

Masonry is generally a highly durable form of construction. However, the materials used,
the quality of the mortar and workmanship, and the pattern in which the units are
assembled can significantly affect the durability of the overall masonry construction.

In this analogy we choose IaaS (Infrastructure as a Service) as our framework. The basic
building blocks for IaaS are compute (servers) and storage (not only in the form of disks).
The defining features of IaaS are on-demand and pay-as-you-go. Many IaaS platforms
(or providers) offer one or more layers of service on top of this. Most of the time these
are built with the basic building blocks.

Our IaaS is Amazon Web Services. AWS comes with Elastic Compute Cloud (EC2) and
Elastic Block Store (EBS), for computing and storage, respectively. AWS also provides
Simple Storage Service (S3) as a virtually infinite storage web service which does not
follow the disk paradigm. AWS offers more sophisticated services, like Relational Da‐
tabase Service (RDS) providing turnkey Oracle/MySQL/SQLServer, and ElastiCache
for memcached, a popular caching technology. We will extend the framework with our
own solutions.

Now, we have everything to build those amazing (infra)structures, but, unlike in the
physical world, we can construct and tear down our cathedrals in minutes. And this
enables us to work in different ways than a mason. You can host 26,000 people on Sunday,
but literally scale down to a church fitting a more modest group of people during the
week.

Rip. Mix. Burn.
With the flexibility given by being able to construct and destroy components whenever
we want, we gain enormous freedom. We can literally play with infrastructures whose
underlying hardware is worth tens or hundreds of thousands of dollars—not for free, of
course, but relatively affordably.

The multitude of freely available—often open source—technologies gives us lots of
building blocks (“rip”). Some examples we will use are MongoDB and Redis. These
building blocks can be turned into application infrastructures with the resources of AWS
(“mix”). We can keep these infrastructures while we need them, and just discard them
when we don’t. And we can easily reproduce and recreate the infrastructure or some of
its components again (“burn”), for example, in case of failures, or for creating pipelines
in development, testing, staging, and production environments.

4 | Chapter 2: The Road to Resilience and Reliability

www.allitebooks.com

http://www.allitebooks.org

Cradle to Cradle
The dynamic nature of our application infrastructures has another interesting conse‐
quence. The lifecycle of individual components has changed. Before, we would be meas‐
uring the uptime of a server, trying to get it to live as long as possible. Now, we strive to
renew individual components as often as possible; decomposing has become just as
important as constructing.

Systems have to stay healthy. They have to do their fair share of work. If they don’t, we
have to intervene, preferably in an automated way. We might have to change parts, like
replacing an EC2 instance for a bigger one if computing power is not enough. Sometimes
replacing is enough to get our health back.

And, in the end, we return the unused resources for future use.

This way of working in the material world is called Cradle to Cradle. The benefits are
not only environmental. Organizations restructuring their way of doing business
according to this methodology will:

• Use fewer resources (on-demand, pay-as-you-go)

• Use cheaper resources (off-hours at lower rates)

Because of this it is often reported that these organizations have a lower financial cost
of systems.

In Short
In this chapter we introduced our general approach to building resilient and reliable
applications. This approach might sound a bit abstract at this point, but we will be using
this philosophy the rest of the book. It can be compared with the work of a mason, where
you have a set of building blocks, and you put them together to build a structure. In our
case we can also easily decompose, destroy, and rebuild our components and infra‐
structures, by switching AWS resources on and off.

Cradle to Cradle | 5

CHAPTER 3

Crash Course in AWS

Amazon AWS at the time of writing offers 33 services. We will not talk about all of them,
mostly because they are not relevant to the theme of this book.

In this chapter we will highlight the core AWS services we use to build the components
we talked about in the previous chapter. For those of you who have read Programming
Amazon EC2, you can see this as a refresher. There we used nearly two hundred pages
to describe these services and how to use them. Here we will condense it to one-tenth
of that, including some new AWS services released recently.

If you are familiar with AWS services, you can skip this chapter, or just read those
sections about the services you don’t know about. This chapter details all AWS services
used in the remainder of the book (Figure 3-1). You can also use this chapter as a ref‐
erence and come back to it later as necessary.

For the rest of the book, prior knowledge and experience with AWS is not necessary,
but a good understanding of the services in this and the next chapter is instrumental.

In addition to being shown in the AWS Management Console, AWS services are exposed
programmatically via a set of well defined APIs, implemented as web services. These
can be accessed via command line tools or any of the different libraries or toolkits in
the different programming languages (Java, PHP, Ruby, etc.). From now on, we will use
the terms “API” or “APIs” to refer to the different ways AWS can be accessed; see the
code page on the AWS site.

Regions and Availability Zones
EC2 and S3 (and a number of other services, see Figure 3-1) are organized in regions.
All regions provide more or less the same services, and everything we talk about in this
chapter applies to all the available AWS regions.

7

http://aws.amazon.com/code
http://aws.amazon.com/code

Figure 3-1. Overview of some of AWS services

A region is comprised of two or more availability zones (Figure 3-2), each zone consisting
of one or more distinct data centers. Availability zones are designed to shield our in‐
frastructures from physical harm, like thunderstorms or hurricanes, for example. If one
data center is damaged, you should be able to use another one by switching to another
availability zone. Availability zones are, therefore, important in getting your apps resil‐
ient and reliable.

Route 53: Domain Name System Service
If you register a domain, you often get the Domain Name System service for free. Your
registrar will give you access to a web application where you can manage your records.
This part of your infrastructure is often overlooked. But it is a notoriously weak spot; if
it fails, no one will be able to reach your site. And it is often outside of your control.

8 | Chapter 3: Crash Course in AWS

Figure 3-2. AWS regions and edge locations

There were three or four high quality, commercial DNS services before AWS introduced
Route 53. The features of all of these DNS services are more or less similar, but the prices
can vary enormously. Route 53 changed this market. It offered basic features for a frac‐
tion of the price of competing offerings.

But Route 53 is different in its approach. DNS is viewed as a dynamic part of its software,
which you can utilize for things like failover or application provisioning. Services like
RDS and ElastiCache rely heavily on Route 53 (behind the scenes, for the most part).

Just as AWS does, we often rely on the programmatic nature of Route 53. As you will
see in later chapters we will implement failover strategies with relative ease.

Not all software is ready for the dynamic nature of DNS. The assumption often is that
DNS records hardly change. These systems adopt an aggressive caching mechanism (just
never resolve domain names again for the duration of the execution) that breaks when
underlying IP addresses change.

Route 53 is a very important tool at our disposal!

IAM (Identity and Access Management)
IAM is exactly what it says it is. It lets you manage identities that can be allowed (or
denied) access to AWS resources. Access is granted on services (API actions) or resour‐
ces (things like S3 buckets or EC2 instances). Access can be organized by users and
groups. Both users and groups have permissions assigned to them by way of policies. The
user’s credentials are used to authenticate with the AWS web services. A user can belong
to zero or more groups.

Regions and Availability Zones | 9

You can use IAM to give access to people. And you can use it to give access to particular
components. For example, an elasticsearch EC2 instance (more about this in Chap‐
ter 5) only needs restricted read access on the EC2 API to “discover” the cluster, and it
needs restricted read/write access on S3 on a particular bucket (a sort of folder) for
making backups.

Access is granted in policies. For example, the following policy allows access to all EC2
API operations starting with Describe, on all resources (or globally), some kind of read-
only policy for EC2:

{
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "EC2:Describe*",
 "Resource": "*"
 }
]
}

IAM is VERY important
This service is very, very important. It not only protects you from serious
exposure in case of security breaches; it also protects you from inad‐
vertent mistakes or bugs. If you only have privileges to work on one
particular S3 bucket, you can do no harm to the rest.

IAM has many interesting features, but two deserve to be mentioned explicitly. Multi
Factor Authentication (MFA) adds a second authentication step to particular opera‐
tions. Just assuming a particular identity is not enough; you are prompted for a dynamic
security code generated by a physical or virtual device that you own, before you can
proceed.

The second feature that needs to be mentioned explicitly is that you can add a role to
an EC2 instance. The role’s policies will then determine all the permissions available
from that instance. This means that you no longer need to do a lot of work rotating
(replacing) access credentials, something that is a tedious-to-implement security best
practice.

10 | Chapter 3: Crash Course in AWS

The Basics: EC2, RDS, ElastiCache, S3, CloudFront, SES, and
CloudWatch
The basic services of any IaaS (Infrastructure as a Service) are compute and storage.
AWS offers compute as EC2 (Elastic Compute Cloud) and storage as S3 (Simple Storage
Service). These two services are the absolute core of everything that happens on Amazon
AWS.

RDS (Relational Database Service) is “database as a service,” hiding many of the diffi‐
culties of databases behind a service layer. This has been built with EC2 and S3.

CloudFront is the CDN (Content Distribution Network) AWS offers. It helps you dis‐
tribute static, dynamic, and streaming content to many places in the world.

Simple Email Service (SES) helps you send mails. You can use it for very large batches.
We just always use it, because it is reliable and has a very high deliverability (spam is
not solved only by Outlook or Gmail).

We grouped the services like this because these are the basic services for a web appli‐
cation: we have computing, storage, relational database services, content delivery, and
email sending. So, bear with us, here we go…

CloudWatch
CloudWatch is AWS’s own monitoring solution. All AWS services come with metrics
on resource utilization. An EC2 instance has metrics for CPU utilization, network, and
IO. Next to those metrics, an RDS instance also creates metrics on memory and disk
usage.

CloudWatch has its own tab in the console, and from there you can browse metrics and
look at measurements over periods of up to two weeks. You can look at multiple metrics
at the same time, comparing patterns of utilization.

You can also add your own custom metrics. For example, if you build your own managed
solution for MongoDB, you can add custom metrics for all sorts of operational param‐
eters, as we will see in Chapter 7. Figure 3-3 shows a chart of the “resident memory”
metric in a MongoDB replica set.

The Basics: EC2, RDS, ElastiCache, S3, CloudFront, SES, and CloudWatch | 11

Figure 3-3. Showing some MongoDB-specific metrics using CloudWatch

EC2 (et al.)
To understand EC2 (Figure 3-4) you need to be familiar with a number of concepts:

• Instance

• Image (Amazon Machine Image, AMI)

• Volume and Snapshot (EBS and S3)

• Security Group

• Elastic IP

There are other concepts we will not discuss here, like Virtual Private Cloud (VPC),
which has some features (such as multiple IP addresses and flexible networking) that
can help you make your application more resilient and reliable. But some of these con‐
cepts can be implemented with other AWS services like IAM or Route 53.

12 | Chapter 3: Crash Course in AWS

Figure 3-4. Screenshot from AWS Console, EC2 Dashboard

Instance

An instance is a server, nothing more and nothing less. Instances are launched from an
image (an AMI) into an availability zone. There are S3-backed instances, a kind of
ephemeral storage in which the root device is part of the instance itself. (Instances
launched from an S3-backed AMI cannot be stopped and started; they can only be
restarted or terminated.) EBS-backed instances, which are more the norm now, provide
block level storage volumes that persist independently of the instance (that is, the root/
boot disk is on a separate EBS volume, allowing the instance to be stopped and started).
See “Volume and snapshot (EBS and S3)” (page 15).

Dependencies
EBS still has a dependency on S3 (when a new volume is created from
an existing S3 snapshot). Even though this dependency is extremely
reliable, it might not be a good idea to increase dependencies.

Instances come in types (sizes). Types used to be restricted to either 32-bit or 64-bit
operating systems, but since early 2012 all instance types are capable of running 64-bit.
We work mainly with Ubuntu, and we mostly run 64-bit now. There are the following
instance types:

The Basics: EC2, RDS, ElastiCache, S3, CloudFront, SES, and CloudWatch | 13

http://aws.amazon.com/ec2/instance-types/

Small Instance (m1.small) – default
1.7 GB memory, 1 EC2 Compute Unit

Medium Instance (m1.medium)
3.75 GB memory, 2 EC2 Compute Unit

Large Instance (m1.large)
7.5 GB memory, 4 EC2 Compute Units

Extra Large Instance (m1.xlarge)
15 GB memory, 8 EC2 Compute Units

Micro Instance (t1.micro)
613 MB memory, Up to 2 EC2 Compute Units (for short periodic bursts)

High-Memory Extra Large Instance (m2.xlarge)
17.1 GB of memory, 6.5 EC2 Compute Units

High-Memory Double Extra Large Instance (m2.2xlarge)
34.2 GB of memory, 13 EC2 Compute Units

High-Memory Quadruple Extra Large Instance (m2.4xlarge)
68.4 GB of memory, 26 EC2 Compute Units

High-CPU Medium Instance (c1.medium)
1.7 GB of memory, 5 EC2 Compute Units

High-CPU Extra Large Instance (c1.xlarge)
7 GB of memory, 20 EC2 Compute Units

The micro instance is “fair use.” You can burst CPU for short periods of time, but when
you misbehave and use too much, your CPU capacity is capped for a certain amount of
time.

For higher requirements, such as high performance computing, there are also cluster
type instances, with increased CPU and network performance, including one with
graphics processing units. Recently Amazon also released high I/O instances, which give
very high storage performance by using SSD (Solid State Drives) devices.

At launch, an instance can be given user data. User data is exposed on the instance
through a locally accessible web service. In the bash Unix shell, we can get the user data
as follows (in this case json). The output is an example from the Mongo setup we will
explain in Chapter 7, so don’t worry about it for now:

14 | Chapter 3: Crash Course in AWS

www.allitebooks.com

http://www.allitebooks.org

$ curl --silent http://169.254.169.254/latest/user-data/ | python -mjson.tool

{
 "name" : "mongodb",
 "size" : 100,
 "role" : "active"
}

Almost all information about the instance is exposed through this interface. You can
learn the private IP address, the public hostname, etc.:

$ curl --silent http://169.254.169.254/latest/meta-data/public-hostname
ec2-46-137-11-123.eu-west-1.compute.amazonaws.com

Image (AMI, Amazon Machine Image)

An AMI is a bit like a boot CD. You launch an instance from an AMI. You have 32-bit
AMIs and 64-bit AMIs. Anything that runs on the XEN Hypervisor can run on Amazon
AWS and thus be turned into an AMI.

There are ways to make AMIs from scratch. These days that is not necessary unless you
are Microsoft, Ubuntu, or you want something extremely special. We could also launch
an Ubuntu AMI provided by Canonical, change the instance, and make our own AMI
from that.

AMIs are cumbersome to work with, but they are the most important raw ingredient of
your application infrastructures. AMIs just need to work. And they need to work reliably,
always giving the same result. There is no simulator for working with AMIs, except EC2
itself. (EBS-backed AMIs are so much easier to work with that we almost forgot S3-
backed AMIs still exist.)

If you use AMIs from third parties, make sure to verify their origin (which is now easier
to do than before.)

Volume and snapshot (EBS and S3)

EBS (Elastic Block Store) is one of the of the more interesting inventions of AWS. It has
been introduced to persist local storage, because S3 (Simple Storage Service) was not
enough to work with.

Basically EBS offers disks, or volumes, between 1 GB and 1 TB in size. A volume resides
in an availability zone, and can be attached to one (and only one) instance. An EBS
volume can have a point-in-time snapshot taken, from which the volume can be re‐
stored. Snapshots are regional, but not bound to an availability zone.

If you need disks (local storage) that are persistent (you have to make your own backups)
you use EBS.

The Basics: EC2, RDS, ElastiCache, S3, CloudFront, SES, and CloudWatch | 15

http://www.xen.org

EBS is a new technology. As such, it has seen its fair share of difficulties. But it is very
interesting and extremely versatile. See the coming chapters (the chapter on Postgres in
particular) for how we capitalize on the opportunities EBS gives.

Security group

Instances are part of one or more security groups. With these security groups, you can
shield off instances from the outside world. You can expose them on only certain ports
or port ranges, or for certain IP masks, like you would do with a firewall. Also you can
restrict access to instances which are inside specific security groups.

Security groups give you a lot of flexibility to selectively expose your assets.

VPC
VPC (Virtual Private Cloud) offers much more functionality as part of
the Security Groups. For example, it is not possible to restrict incoming
connections in normal security groups. With VPC you can control both
incoming and outgoing connections.

Elastic IP

Instances are automatically assigned a public IP address. This address changes with
every instance launch. If you have to identify a particular part of your application
through an instance and therefore use an address that doesn’t change, you can use an
elastic IP (EIP). You can associate and dissociate them from instances, manually in the
console or through the API.

Route 53 makes elastic IPs almost obsolete. But many software packages do not yet
gracefully handle DNS changes. If this is the case, using an elastic IP might help you.

RDS
Amazon’s RDS (Relational Database Service) now comes in three different flavors:
MySQL, Oracle, and Microsoft SQLServer. You can basically run one of these databases,
production ready, commercial grade. You can scale up and down in minutes. You can
grow storage without service interruption. And you can restore your data up to 31 days
back.

The maximum storage capacity is 1 TB. Important metrics are exposed through Cloud‐
Watch. In Figure 3-5 you can see, for example, the CPU utilization of an instance. This
service will be explained more in detail later.

The only thing RDS doesn’t do for you is optimize your schema!

16 | Chapter 3: Crash Course in AWS

Figure 3-5. Screenshot from the AWS Console, showing CPU utilization of an RDS in‐
stance

ElastiCache
This is like RDS for memcached, an object caching protocol often used to relieve the
database and/or speed up sites and apps. This technology is not very difficult to run,
but it does require close monitoring. Before ElastiCache, we always ran it by hand,
replacing instances when they died.

ElastiCache adds the ability to easily grow or shrink a memcached cluster. Unfortunately
you can’t easily change the type of the instances used. But more importantly, ElastiCache
manages failure. If a node fails to operate, it will replace it.

As with other services, it exposes a number of operational metrics through CloudWatch.
These can be used for capacity planning, or to understand other parts of your system’s
behavior.

S3/CloudFront
S3 stands for Simple Storage Service. This is probably the most revolutionary service
AWS offers at this moment. S3 allows you to store an unlimited amount of data. If you
do not delete your objects yourself, it is almost impossible for them to be corrupt or lost
entirely. S3 has 99.999999999% durability.

You can create buckets in any of the regions. And you can store an unlimited amount
of objects per bucket, with a size between 1 byte to 5 TB.

The Basics: EC2, RDS, ElastiCache, S3, CloudFront, SES, and CloudWatch | 17

S3 is reliable storage exposed through a web service. For many things this is fast enough,
but not for static assets of websites or mobile applications. For these assets, AWS intro‐
duced CloudFront, a CDN (Content Distribution Network).

CloudFront can expose an S3 bucket, or it can be used with what AWS calls a custom
origin (another site). On top of S3, CloudFront distributes the objects to edge locations
all over the world, so latency is reduced considerably. Apart from getting them closer to
the users, it offloads some of the heavy lifting your application or web servers used
to do.

SES
Sending mails in a way that they actually arrive is getting more and more difficult. On
AWS you can have your elastic IP whitelisted automatically. But it still requires operating
an MTA (Mail Transfer Agent) like Postfix. But with Amazon SES (Simple Email System)
this has all become much easier.

After signing up for the service you have to practice a bit in the sandbox before you can
request production access. It might take a while before you earn the right to send a
significant volume. But if you use SES from the start, you have no problems when your
service takes off.

Growing Up: ELB, Auto Scaling
Elasticity is still the promise of “The Cloud.” If the traffic increases, you get yourself
more capacity, only to release it when you don’t need it anymore. The game is to increase
utilization, often measured in terms of the CPU utilization. The other way of seeing it
is to decrease waste, and be more efficient.

AWS has two important services to help us with this. The first is ELB, or Elastic Load
Balancer. The second is Auto Scaling.

ELB (Elastic Load Balancer)
An ELB sits in front of a group of instances. You can reach an ELB through a hostname.
Or, with Route 53, you can have your records resolve directly to the IP addresses of the
ELB.

An ELB can distribute any kind of TCP traffic. It also distributes HTTP and HTTPS.
The ELB will terminate HTTPS and talk plain HTTP to the instances. This is convenient,
and reduces the load on the instances behind.

18 | Chapter 3: Crash Course in AWS

Traffic is evenly distributed across one or more availability zones, which you configure
in the ELB. Remember that every EC2 instance runs in a particular availability zone.
Within an availability zone, the ELB distributes the traffic evenly over the instances. It
has no sophisticated (or complicated) routing policies. Instances are either healthy, de‐
termined with a configurable health check, or not. A health check could be something

like pinging /status.html on HTTP every half a minute, and a response status 200
would mean the instance is healthy.

ELBs are a good alternative for elastic IPs. ELBs cost some money in contrast to elastic
IPs (which are free while they are associated to an instance), but ELBs increase security
and reduce the complexity of the infrastructure. You can use an auto scaling group (see
below) to automatically register and unregister the instance, instead of managing elastic
IP attachments yourself.

ELBs are versatile and the features are fine, but they are still a bit immature and the
promise of surviving availability zone problems are not always met. It’s not always the
case that when one availability zone fails, the ELB keeps running normally on the other
availability zones. We choose to work with AWS to improve this technology, instead of
building (and maintaining) something ourselves.

Auto Scaling
If you want an elastic group of instances that resizes based on demand, you want Auto
Scaling. This service helps you coordinate these groups of instances.

Auto Scaling launches and terminates instances based on CloudWatch metrics. For
example, you can use the average CPU utilization (or any of the other instance metrics
available) of the instances in the group itself. You could configure your group so that

Growing Up: ELB, Auto Scaling | 19

every time the average CPU utilization of your group is over 60% for a period of 5
minutes, it will launch two new instances. If it goes below 10%, it will terminate two
instances. You can make sure the group is never empty by setting the minimum size to
two.

You can resize the group based on any CloudWatch metric available. When using SQS
(see below) for a job queue, you can grow and shrink the group’s capacity based on the
number of items in that queue. And you can also use CloudWatch custom metrics. For
example, you could create a custom metric for the number of connections to NGiNX
or Apache, and use that to determine the desired capacity.

Auto Scaling ties in nicely with ELBs, as they can register and unregister instances au‐
tomatically. At this point, this mechanism is still rather blunt. Instances are first removed
and terminated before a new one is launched and has the chance to become “in service.”

Decoupling: SQS, SimpleDB & DynamoDB, SNS, SWF
The services we have discussed so far are great for helping you build a good web appli‐
cation. But when you reach a certain scale, you will require something else.

If your app starts to get so big that your individual components can’t handle it any more,
there is only one solution left: to break your app into multiple smaller apps. This method
is called decoupling.

Decoupling is very different from sharding. Sharding is horizontal partitioning across
instances and it can help you in certain circumstances, but is extremely difficult to do
well. If you feel the need for sharding, look around. With different components (Dyna‐
moDB, Cassandra, elasticsearch, etc.) and decoupling, you are probably better off not
sharding.

Amazon travelled down this path before. The first service to see the light was SQS,
Simple Queue Service. Later other services followed like SimpleDB and SNS (Simple
Notification Service). And only recently (early 2012) they introduced SWF, Simple
Workflow Service.

These services are like the glue of your decoupled system: they bind the individual apps
or components together. They are designed to be very reliable and scalable, for which
they had to make some tradeoffs. But at scale you have different problems to worry
about.

If you consider growing beyond the relational database model (either in scale or in
features) DynamoDB is a very interesting alternative. You can provision your Dyna‐
moDB database to be able to handle insane amounts of transactions. It does require
some administration, but completely negligible compared to building and operating
your own Cassandra cluster or MongoDB Replica Set (See Chapter 7).

20 | Chapter 3: Crash Course in AWS

SQS (Simple Queue Service)
In the SQS Developer Guide, you can read that “Amazon SQS is a distributed queue
system that enables web service applications to quickly and reliably queue messages that
one component in the application generates to be consumed by another component. A
queue is a temporary repository for messages that are awaiting processing” (Figure 3-6).

Figure 3-6. Some SQS queues shown in the AWS Console

And that’s basically all it is. You can have many writers hitting a queue at the same time.
SQS does its best to preserve order, but the distributed nature makes it impossible to
guarantee this. If you really need to preserve order, you can add your own identifier as
part of the queued messages, but approximate order is probably enough to work with
in most cases. A trade-off like this is necessary in massively scalable services like SQS.
This is not very different from eventual consistency, as is the case in S3 and in SimpleDB.

In addition to many writers hitting a queue at the same time, you can also have many
readers, and SQS guarantees each message is delivered at least once (more than once if
the receiving reader doesn’t delete it from the queue). Reading a message is atomic; locks
are used to keep multiple readers from processing the same message. Because you can’t
assume a message will be processed successfully and deleted, SQS first sets it to invisi‐
ble. This invisibility has an expiration, called visibility timeout, that defaults to thirty
seconds. After processing the message, it must be deleted explicitly (if successful, of

Decoupling: SQS, SimpleDB & DynamoDB, SNS, SWF | 21

course). If it’s not deleted and the timeout expires, the message shows up in the queue
again. If 30 seconds is not enough, the timeout can be configured in the queue or per
message, although the recommended way is to use different queues for different visibility
timeouts.

You can have as many queues as you want, but leaving them inactive is a violation of
intended use. We couldn’t figure out what the penalties are, but the principle of cloud
computing is to minimize waste. Message size is variable, and the maximum is 64 KB.
If you need to work with larger objects, the obvious place to store them is S3.

One last important thing to remember is that messages are not retained indefinitely.
Messages will be deleted after four days by default, but you can have your queue retain
them for a maximum of two weeks.

SimpleDB
AWS says that SimpleDB is “a highly available, scalable, and flexible nonrelational data
store that offloads the work of database administration.” There you have it! In other
words, you can store an extreme amount of structured information without worrying
about security, data loss, and query performance. And you pay only for what you use.

SimpleDB is not a relational database, but to explain what it is, we will compare it to a
relational database since that’s what we know best. SimpleDB is not a database server,
so therefore there is no such thing in SimpleDB as a database. In SimpleDB, you create
domains to store related items. Items are collections of attributes, or key-value pairs. The
attributes can have multiple values. An item can have 256 attributes and a domain can
have one billion attributes; together, this may take up to 10 GB of storage.

You can compare a domain to a table, and an item to a record in that table. A traditional
relational database imposes the structure by defining a schema. A SimpleDB domain
does not require items to be all of the same structure. It doesn’t make sense to have all
totally different items in one domain, but you can change the attributes you use over
time. As a consequence, you can’t define indexes, but they are implicit: every attribute
is indexed automatically for you.

Domains are distinct—they are on their own. Joins, which are the most powerful feature
in relational databases, are not possible. You cannot combine the information in two
domains with one single query. Joins were introduced to reconstruct normalized data,
where normalizing data means ripping it apart to avoid duplication.

Because of the lack of joins, there are two different approaches to handling relations.
You can either introduce duplication (for instance, by storing employees in the employer
domain and vice versa), or you can use multiple queries and combine the data at the

22 | Chapter 3: Crash Course in AWS

application level. If you have data duplication and if several applications write to your
SimpleDB domains, each of them will have to be aware of this when you make changes
or add items to maintain consistency. In the second case, each application that reads
your data will need to aggregate information from different domains.

There is one other aspect of SimpleDB that is important to understand. If you add or
update an item, it does not have to be immediately available. SimpleDB reserves the
right to take some time to process the operations you fire at it. This is what is called
eventual consistency, and for many kinds of information getting a slightly earlier version
of that information is not a huge problem.

But in some cases, you need the latest, most up-to-date information, and for these cases,
consistency can be enforced. Think of an online auction website like eBay, where people
bid for different items. At the moment a purchase is made, it’s important that the correct
(latest) price is read from the database. To address those situations, SimpleDB intro‐
duced two new features in early 2010: consistent read and conditional put/delete. A con‐
sistent read guarantees to return values that reflect all previously successful writes.
Conditional put/delete guarantees that a certain operation is performed only when one
of the attributes exists or has a particular value. With this, you can implement a counter,
for example, or implement locking/concurrency.

We have to stress that SimpleDB is a service, and as such, it solves a number of problems
for you. Indexing is one we already mentioned. High availability, performance, and
infinite scalability are other benefits. You don’t have to worry about replicating your
data to protect it against hardware failures, and you don’t have to think of what hard-
ware you are using if you have more load, or how to handle peaks. Also, the software
upgrades are taken care of for you.

But even though SimpleDB makes sure your data is safe and highly available by seam‐
lessly replicating it in several data centers, Amazon itself doesn’t provide a way to man‐
ually make backups. So if you want to protect your data against your own mistakes and
be able to revert back to previous versions, you will have to resort to third-party solutions
that can back up SimpleDB data, for example by using S3.

SNS (Simple Notification Service)
Both SQS and SimpleDB are kind of passive, or static. You can add things, and if you
need something from it, you have to pull. This is OK for many services, but sometimes
you need something more disruptive; you need to push instead of pull. This is what
Amazon SNS gives us. You can push information to any component that is listening,
and the messages are delivered right away.

SNS is not an easy service, but it is incredibly versatile. Luckily, we are all living in “the
network society,” so the essence of SNS should be familiar to most of us. It is basically

Decoupling: SQS, SimpleDB & DynamoDB, SNS, SWF | 23

the same concept as a mailing list or LinkedIn group—there is something you are in‐
terested in (a topic, in SNS-speak), and you show that interest by subscribing. Once the
topic verifies that you exist by confirming the subscription, you become part of the group
receiving messages on that topic.

SNS can be seen as an event system, but how does it work? First, you create topics. Topics
are the conduits for sending (publishing) and receiving messages, or events. Anyone
with an AWS account can subscribe to a topic, though that doesn’t mean they will be
automatically permitted to receive messages. And the topic owner can subscribe non-
AWS users on their behalf. Every subscriber has to explicitly “opt in,” though that term
is usually related to mailing lists and spam; it is the logical consequence in an open
system like the Web (you can see this as the equivalent of border control in a country).

The most interesting thing about SNS has to do with the subscriber, the recipient of the
messages. A subscriber can configure an end point, specifying how and where the mes‐
sage will be delivered. Currently SNS supports three types of end points: HTTP/ HTTPS,
email, and SQS; this is exactly the reason we feel it is more than a notification system.
You can integrate an API using SNS, enabling totally different ways of execution.

SWF (Simple Workflow Service)
Simple Workflow Service helps you build and run complex process flows. It takes a
workflow description and fires two tasks. Some tasks require a decision that affects the
flow of the process; these are handled by a decider. Other, more mundane tasks, are
handled by workers.

If your application requires some kind of workflow you usually start with a couple of
cron jobs. If this starts to get out of hand, task queues and workers take over that role.
This is a huge advantage, especially if you use a service like SQS.

But, if your process flows get more complex, the application starts to bloat. Information
about current state and history starts to creep into your application. This is not desirable,
to say the least, especially not at scale.

heystaq.com, one of our own applications, is about rating AWS infrastructures. Our core
business is to say something knowledgable about an infrastructure, not manage hun‐
dreds of workflows generating thousands of individual tasks. For heystaq.com we could
build a workflow for scanning the AWS infrastructure. We could scan instances, vol‐
umes, snapshots, ELBs, etc. Some of these tasks are related, like instances and volumes.
Others can easily be run in parallel.

We also scan for CloudWatch alarms, and add those alarms if they are not present. We
could create another SWF workflow for this. Now we have two, entirely unrelated se‐
quences of activities that can be run in any combination. And, as a consequence, we can
auto scale our system on demand relatively easily. (We’ll show you how we do this in a
later chapter.)

24 | Chapter 3: Crash Course in AWS

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 4

Top 10 Survival Tips

Outages are the norm, not the exception, and though they are rare, they are inevitable.
This is something we all have to deal with.

Amazon AWS has been designed with failure in mind, and you can do a number of
things to survive outages and other kinds of problems.

Make a Choice
At this point there are very few public cloud vendors that offer a comparable suite of
services to Amazon AWS. This is only a matter time.

There are several cloud management tools that advertise multi-vendor (multi-cloud) as
their core feature. They try to frighten you into purchasing their added complexity. The
result is that you can’t use the more sophisticated services of one cloud, because they
are not supported on another.

The core reason to use a public cloud is to get rid of the burden to own and manage
these types of infrastructures. You pay your cloud vendor to handle the responsibility
of making sure there are facilities to properly handle failure. If they do not deliver, you
move on.

Instead of wasting time supporting multiple clouds, we choose Amazon AWS. Because
we make this choice, we can use all of their services if they make sense for us. We do not
worry if they are supported on other clouds; we just use them because they save us time
and money.

25

Embrace Change
Even though the cloud has dominated technology news for years, this is still uncharted
territory. Existing systems reflect this and are not well prepared for the nature of this
type of infrastructure platform.

Features that are considered old (tablespaces in Postgres) can be given new life with
services like EBS from AWS. Existing automation tools feel awkward in dynamic envi‐
ronments built on top of AWS with things like images and snapshots.

Also the work changes. Infrastructure literally moves into software engineering. And
we are not ready yet.

So be ready for change. Embrace it. You might have spent three months building a
workflow tool only to learn about SWF. Embrace this, and refactor if you think it will
improve your system. Look for these opportunities, and take full advantage of them.

Everything Will Break
Failure is something we have always known but never accepted. We have been buying
system components with dual-anything, to prevent them from breaking. We have spent
a lot of time trying to get rid of malfunction.

Well, the world is not perfect, and we will never be able to completely avoid malfunctions.
Things will break; systems will fail.

You may lose a snapshot of your system, which may not be a big problem if you have
more recent snapshots. But if you lose a snapshot from an image that you rely on for
recovery you really do have to act on that.

You may lose a volume, too, which is not a problem if it is not used and you have a recent
snapshot. But it is definitely a problem if you have data you didn’t persist somewhere
else. (It turns out that snapshotting rejuvenates your volumes.)

Life Expectancy of an EBS Volume
An EBS volume is cached. The cache contains the diffs since the last snapshot. Every
diff is another item that can fail. Less diffs, less chance of failure.

You can lose instances. You can even lose entire Availability Zones. You know this, so
you shouldn’t act surprised when it happens. AWS has multiple Availability Zones, and
you should use them. They have an almost unlimited supply of instances, so make sure
you can replace your instances easily. And a snapshot doesn’t cost very much, so make
sure you take them often enough.

26 | Chapter 4: Top 10 Survival Tips

Know Your Enemy
For the sake of our top 10 tips, we’ll consider AWS our enemy. They do not make many
promises, and in fact they stress as many times as possible that things will break. Make
sure everyone has a basic understanding of AWS-style cloud engineering. All your soft‐
ware developers need to understand about the different ways to persist data in AWS.
Everyone needs to have a basic architectural understanding. They need to know about
services like SQS and ELB. It is a good idea to share operational responsibility, as that
is the fastest way to disseminate this information.

Netflix introduced a rather radical approach to this. Instead of failure scenarios, they
introduced failure itself. Their Chaos Monkey wreaks havoc continuously in their pro‐
duction infrastructure.

Know Yourself
A good understanding of AWS alone is not enough. You need to know yourself as well.
Be sure to spend time building failure scenarios and testing them to see what happens.
If you have practiced with these scenarios your teams will be trained, there will be fewer
surprises, and even the surprises will be handled much better.

There is always something that can be improved upon in terms of Resilience and Reli‐
ability. Make it a priority for everyone to have a personal top 3!

Engineer for Today
If you build your stuff for the problems you have now, you will stay focused and do the
right things. This doesn’t mean that you can only solve small problems—it means that
you can steer clear of doing unnecessary or expensive things that do not add value.

This is the main reason why we always try to use as many off-the-shelf components,
preferably from AWS. Perhaps ELB is not perfect yet, but we choose to work on features,
instead of operating multi-availability-zone load balancers.

Same goes for RDS. You can debate whether Postgres has better transaction support
than MySQL. But with RDS we move on to working on application functionality, instead
of building a highly available Postgres database that looks like RDS.

So, pick your targets and stay focused. Don’t spend time trying to build a better queuing
system with RabbitMQ if SQS does the trick.

Know Your Enemy | 27

https://github.com/Netflix/SimianArmy/wiki

Question Everything
I wish everyone was curious by nature—not only curious, but also interested in the inner
working of things. If you are curious by nature, then you should regularly browse your
AWS accounts looking for anomalies. This curiosity should be cultivated because there
are interesting events happening all the time. The first thing we need to do is identify
them, and then we can monitor for their occurrences.

If you question everything you can easily identify waste, which is something we cate‐
gorically try to prevent.

Don’t Waste
The more resources you have, the more they can (and will) fail. Start by minimizing the
different types of resources. Why do you need Postgres and MySQL? Why do you need
MongoDB and DynamoDB?

Don’t waste your resources; make sure they do their fair share of work. Tune your in‐
stances for reliable operation (stay within the instance resources of CPU and memory).
And always try to run the minimum amount of instances necessary.

Do not keep unused resources. Not only do they cost money but it is also more difficult
to find problems with a lot of rubbish around. Services like Auto Scaling are free and
force you to think about flexible resource allocation.

AWS is constantly looking to innovate in the space of resource utilization. They intro‐
duced Spot Instances, for example, to optimize utilization distribution by introducing
a marketplace. You can bid on instances, which will be launched when the chosen price
point is reached. Another example is Reduced Redundancy Storage with S3, less reliable
but significantly cheaper. And very recently they introduced Glacier, a storage service
like S3, but analogous to tape backups.

But, there is another, even more important reason to keep your nest clean. It is a much
more pleasant place to work. It will feel like home to you and everyone else on your
team.

Learn from Others
Learning starts with respect. Your colleagues often deal with similar problems. You
might think your problems are the most difficult in the world. Well, they probably are
not. Talk to your colleagues. Be honest and share your doubts and worries. They will
tell you theirs. And together you will figure out how to deal with the next outage.

28 | Chapter 4: Top 10 Survival Tips

Amazon AWS forums
The Amazon AWS forums might be their most important asset. There
are thousands of people discussing services and finding help for the
problems they encounter.

If you can’t find your answer directly, you will find many helpful people
with potentially the same experience as you.

You Are Not Alone
Finally, make sure you build a team. Running operations, large or small, is difficult.
Having everything under control makes this fun, but doing it together takes the
edge off.

There are different event streams with more or less important bits of information. You
can try to build a tool to sift out every meaningful bit. You can also rely on your team
to use weak signals in all the noise. Outages and routine operational work is much more
fun to do with your colleagues.

Remember, engineering is teamwork!

You Are Not Alone | 29

CHAPTER 5

elasticsearch

Most of the technology stacks we use are not yet designed for the cloud. In Ubuntu
(Linux) every so often you have to jump through hoops to get your root volume checked.
Replication in most databases, synchronous or asynchronous, is notoriously hard to get
right. And once running, scaling up resources takes an extreme amount of courage.

Most of these problems make your systems less resilient and reliable, because you just
can’t be flexible with resources.

elasticsearch is the first infrastructural component that gets it right. They really under‐
stand what it takes to operate datastores (it is much more than search). And therefore
this is the first example we’ll talk about.

Introduction
“It is an Open Source (Apache 2), Distributed, RESTful, Search Engine built on top of
Apache Lucene.”

The operational unit of elasticsearch is a cluster, not a server. Note that this is already
different from many other datastore technologies. You can have a cluster of one, for
development or test, or for transient data. But in production you will want to have at
least two nodes most of the time.

elasticsearch holds json data in indexes. These indexes are broken up into shards. If you
have a cluster with multiple nodes, shards are distributed in such a way that you can
lose a node. You can manipulate almost everything in elasticsearch, so changing the
sharding is not too difficult.

To add a document to an index (if the index doesn’t exist it is created):

$ curl -XPOST 'http://elasticsearch.heystaq.com:9200/heystaq/snapshot/?pret
ty=true' -d '{

31

 "scanId" : "Ibx9biARRAGX1yglO8Y4zQ",
 "region" : "eu-west-1",
 "snapshotId" : "snap-cc79c0a7",
 "status" : "completed",
 "capacity" : "50",
 "started" : "2012-04-25T06:00:17.000Z",
 "volumeId" : "vol-b268cada"
}'
{
 "ok" : true,
 "_index" : "heystaq",
 "_type" : "snapshot",
 "_id" : "7bQUFu_gT8CWyjLJXaupGg",
 "_version" : 1
}

An elasticsearch query can be fired at any node in the cluster. Smart clients are nodes
themselves, without holding data. They scout the cluster and can use multiple nodes, all
at their convenience. We do not know the practical upper limit in the number of nodes,
but scaling like this is very easy.

Searching is just as easy:

$ curl -XGET 'http://elasticsearch.heystaq.com:9200/heystaq/_search?pret
ty=true' -d '{
 "sort" : [
 { "_timestamp" : { "order" : "desc" } }
],
 "from" : 0, "size" : 1,
 "query" : {
 "term" : { "snapshotId": "snap-cc79c0a7" }
 }
}'
{
 "took" : 187,
 "timed_out" : false,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 },
 "hits" : {
 "total" : 216,
 "max_score" : null,
 "hits" : [{
 "_index" : "heystaq",
 "_type" : "snapshot",
 "_id" : "7bQUFu_gT8CWyjLJXaupGg",
 "_score" : null,
 "_source" : {
 "scanId" : "Ibx9biARRAGX1yglO8Y4zQ",
 "region" : "eu-west-1",

32 | Chapter 5: elasticsearch

 "snapshotId" : "snap-cc79c0a7",
 "status" : "completed",
 "capacity" : "50",
 "started" : "2012-04-25T06:00:17.000Z",
 "volumeId" : "vol-b268cada"
 },
 "sort" : [1348138249308]
 }]
 }
}

So without too much effort, you have a resilient and reliable datastore out of the box.
You can add and remove nodes without too much hassle. Data is stored safely and can
be queried in a very versatile way.

We use elasticsearch as a replacement for SOLR. We use it to power distributed logging
with logstash, in environments with hundreds of events per second. But we also use it
as a Big Data solution.

EC2 Plug-in
elasticsearch comes with an EC2 plug-in. Normally nodes can discover their context, or
their environment with multicast. They can look for elasticsearch nodes, with the same
clustername. But in AWS (EC2) we don’t have multicast. The solution is to use security
groups, or tags. You can also restrict discovery to specify Availability Zones. With this
plug-in you can also tell elasticsearch to store the index in S3. In case of real serious
problems you can always restore from this location. Pretty cool!

Missing Features
elasticsearch is nearly perfect, in our opinion. However, we did add some functionality
to our elasticsearch cluster AMIs.

Scaling up means using more resources, memory, and CPU. The default configuration
on an elasticsearch node does not take the liberty to reserve a proportionate amount of
available system memory. So that is what we do on launch. We added something like

this in /etc/default/elasticsearch:

they advise to use half the memory (need to test)
ES_HEAP_SIZE=$(($(/usr/bin/awk '/MemTotal/{print $2}' /proc/meminfo) / 2))k

EC2 Plug-in | 33

Startup scripts
We install elasticsearch from the supplied .deb package (Debian/Ubun‐
tu format). This package installs, among other things, a startup script

and accompanying default settings. /etc/default/elasticsearch

contains the default settings for the elasticsearch startup script (/etc/

init.d/elasticsearch).

The other thing we added is Route 53. When joining a cluster (something that a client
also does) it needs an entrypoint. Any cluster node will do, so it doesn’t matter where
to start. To make this easy we have each node add itself to a Route 53 WRR (weighted
round robin) record.

Boto
We often work with Python when we script these solutions. The main
reason is Boto, a complete and up-to-date Python interface to AWS.

Boto is not listed as an AWS SDK. But since Boto’s creator (Mitch Gar‐
naat) now works for AWS, we regard it as stable enough for production
work.

See Python & AWS Cookbook.

When we launch, we call this:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of ES for AWS.
#
ES for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
ES for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with ES for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, json

import boto.utils

from route53 import Route53Zone

34 | Chapter 5: elasticsearch

www.allitebooks.com

http://oreil.ly/Python_AWS_CB
http://www.allitebooks.org

userdata = json.loads(boto.utils.get_instance_userdata())
metadata = boto.utils.get_instance_metadata()

if __name__ == '__main__':
 key = userdata["iam"]["security-credentials"]["elasticsearch-heystaq-com"]
["AccessKeyId"]
 secret = userdata["iam"]["security-credentials"]["elasticsearch-heystaq-
com"]["SecretAccessKey"]
 r53_zone = Route53Zone(userdata['hosted_zone_id'], key, secret)

 name = "{0}.{1}".format(userdata['name'], userdata['hos
ted_zone'].rstrip('.'))
 value = metadata['hostname']
 identifier = metadata['instance-id']

 try:
 r53_zone.create_record(name, value, identifier, 100)
 except:
 r53_zone.update_record(name, value, identifier, 100)

With the help of the following, it manages the Route 53 WRR record:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of ES for AWS.
#
ES for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
ES for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with ES for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, json

from boto.route53.connection import Route53Connection
from boto.route53.record import ResourceRecordSets

class Route53Zone:
 def __init__(self, zone_id, key=None, secret=None):
 self.zone_id = zone_id

 # perhaps we use an IAM role (although we had some problems with
Route53 before)
 if key == None or secret == None:
 self.route53 = Route53Connection()
 else:

Missing Features | 35

 self.route53 = Route53Connection(key, secret)

 def create_record(self, name, value, identifier=None, weight=None):
 changes = ResourceRecordSets(self.route53, self.zone_id)

 change = changes.add_change("CREATE", name + ".", "CNAME", 60,
 identifi
er=identifier, weight=weight)
 change.add_value(value)
 changes.commit()

 def update_record(self, name, value, identifier=None, weight=None):
 changes = ResourceRecordSets(self.route53, self.zone_id)

 # there is no real update, so we combine delete and create in change
request
 sets = self.route53.get_all_rrsets(self.zone_id, None)
 for rset in sets:
 if rset.name == name + "." and rset.identifier == identifier:
 previous_value = rset.resource_records[0]

 change = changes.add_change("DELETE", name + ".", "CNAME", 60,
 identifier=identifier,
weight=weight)
 change.add_value(previous_value)

 change = changes.add_change("CREATE", name + ".", "CNAME", 60,
 identifi
er=identifier, weight=weight)
 change.add_value(value)
 changes.commit()

 def delete_record(self, name, identifier=None, weight=None):
 changes = ResourceRecordSets(self.route53, self.zone_id)

 value = None
 # only delete when it exists, otherwise we get painful errors
 sets = self.route53.get_all_rrsets(self.zone_id, None)
 for rset in sets:
 if rset.name == name + "." and rset.identifier == identifier:
 value = rset.resource_records[0]

 if value != None:
 change = changes.add_change("DELETE", name + ".", "CNAME", 60,
 identifi
er=identifier, weight=weight)
 change.add_value(value)
 changes.commit()

if __name__ == '__main__':

36 | Chapter 5: elasticsearch

 # easy testing, use like this (requires environment variables)
 # python route53.py create_record id key access name value
 r53_zone = Route53Zone(sys.argv[2], sys.argv[3], sys.argv[4])
 print getattr(r53_zone, sys.argv[1])(*sys.argv[5:])

Conclusion
This is it! With no real work we have an extremely powerful NoSQL-type Big Data
solution. Now the only thing to do is climb the learning curve of elasticsearch itself.
There is so much potential in this solution, we discover something new every day.

Conclusion | 37

CHAPTER 6

Postgres

Ok, if we want to play with bricks, the we’re going to have to build some. This section
will show how we approach building flexible, default components that can be used again
and again. We require predictable performance and reliable operations. We have to be
able to rotate, clone, link, cluster, backup, restore—all in minutes.

Postgres is one of components that we work with every day. Postgres is an open source,
scalable relational database system. (The name “Postgres” is actually a shortened form
of PostgreSQL.) We’ll discuss the tools we use (SimpleDB, Route 53) and show how we
run Postgres to provide high availability. All of the source code is available on pgRDS
on github.

As long as Amazon RDS does not support Postgres, there will be people struggling to
get it running. The official lamenting to be heard online is that EBS sucks. EBS is said
to be slow and unreliable in performance, for example.

As described before, EBS is a new storage technology. It is popularly described as some‐
thing in between RAID and local disk storage. Because it is different, people have had
unrealistic expectations of it. They are disappointed if performance fluctuatees, and start
to call EBS unreliable. And they call EBS slow if hardware RAID or SSD feels faster.

But, if we focus on the opportunities EBS brings (many small volumes with sophisticated
snapshot capabilities) we can solve this problem as well. We’ll show that Postgres can
be made to scale really well, combining the strengths of both Postgres and AWS.

39

https://github.com/9apps/pgRDS
https://github.com/9apps/pgRDS

IOPS EBS
AWS listens very well to their customers. They continuously innovate
to solve problems people experience.

One of the problems is consistent I/O performance of EBS. They intro‐
duced Provisioned IOPS for Amazon EBS. You can now purchase a
minimum amount guaranteed I/O operations per second.

This is important, but does not solve the absolute upper limit of a single
EBS volume. Even with IOPS nothing beats the ability to scale out with
many EBS volumes to solve these problems.

Pragmatism First
Our Postgres will span several database clusters, not hundreds of thousands. Our clusters
have to be stable, of course. We want to be flexible with our datastores, so we need to be
able to scale clusters easily in several ways. We also need a reliable restore to point in
time, which we will use for cloning clusters.

Because our scope is several clusters there are a couple of things we do not yet implement:

1. Automatic failover (think multi Availability Zone RDS instance), due to time con‐
straints.

2. Dynamic parameters (still in progress; RDS has Parameter Groups), since RDS
handles failover within several minutes. With this Postgres solution, we add another
two to three minutes for manual intervention.

Because we only have several clusters running, failure of a master database is very rare.
Because we always plan to run with one or more slaves we can easily promote one
manually. The consequence is that we add one or two minutes to a failover event.

Dynamic parameters is not a feature that is required often. We choose to run with a
good set of default parameters. We do not want to master Postgres, we want to master
our applications. If we can relatively easily replace cluster nodes we can also change
Postgres parameters.

The Challenge
In our situation the biggest challenge is the disk space. The largest instances offer us up
to 68GB of memory, which should be enough to work with. But we work with compli‐
cated schemas, a lot of data (hundreds of gigabytes), and many operations.

40 | Chapter 6: Postgres

http://amzn.to/Vb4HRr

The way out of disk problems with databases is SSD (Solid State Drive) devices, but we
don’t have an SSD device. We could use a high I/O EBS volume, but that only alleviates
the problem a little bit. The new high I/O quadruple extra large instance has 2TB of
SSD-backed local storage. We could use that for temporary tables.

But in the end, SSD and high I/O volumes are a short-term solution when dealing with
big databases. You want to be able to scale the storage horizontally.

Tablespaces
Well, as it turns out, Postgres has an old technology designed to scale the storage. We
can use tablespaces to move tables and indexes to other filesystems. This is advertised
for moving your one problematic table to a different type of storage like SSD. But we are
on AWS; we have EBS. If we could easily work with tablespaces, we could spread our
disk operations across many EBS volumes. So that is what we are going to do.

Alternative approach
An alternative approach to scaling storage horizontally is RAID. In this
case we can’t use it, because, as you will see later, engineering backup
and restore functionality is very difficult.

Building Blocks
The basic building blocks we are going to use to create this Postgres component are:

• EC2

• S3

• SimpleDB

• Route 53

• CloudWatch

EC2 is an obvious choice because we need instances and volumes. We’ll use S3 for the
WAL archive files [files that help in restoring the database after a crash; for more on
this, see “WAL Archive” (page 52)]. SimpleDB is handy for housekeeping. Route 53 will
help us identify our resources. And CloudWatch is necessary to keep an eye on the entire
operation.

Configuration with userdata
When we launch a node, it starts or joins a cluster. We are going to launch a master with
userdata like this:

Building Blocks | 41

{
 "name" : "db01",
 "cluster" : "db.9apps.net",
 "slow" : "500",
 "tablespaces" :
 [
 { "device" : "/dev/sdf", "name" : "main", "size" : 100}
]
}

To launch a slave, we would give userdata like this:

{
 "name" : "db02",
 "cluster" : "db.9apps.net",
 "master" : "db01.9apps.net",
 "slow" : "500",
 "tablespaces" :
 [
 { "device" : "/dev/sdf", "name" : "main", "size" : 100}
]
}

A clone can be launched like this (this will start a new cluster):

{
 "name" : "db",
 "cluster" : "development.9apps.net",
 "clone" : "db01.9apps.net",
 "tablespaces" :
 [
 { "device" : "/dev/sdf", "name" : "main", "size" : 100}
]
}

This approach makes it very flexible to grow, as adding tablespaces is not extremely
difficult. You simply specify an additional tablespace in the userdata, and rotate the
cluster nodes. When the new nodes are launched, the existing tablespaces are ignored,
or changed when we increase the size of the volume. If a tablespace didn’t exist before,
it is created. The full source of node provisioning looks like this:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of pgRDS for AWS.
#
pgRDS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
pgRDS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

42 | Chapter 6: Postgres

GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with pgRDS. If not, see <http://www.gnu.org/licenses/>.

#
Usage:
backup.py <cmd> EC2_KEY_ID EC2_SECRET_KEY <expiration>
#
<cmd>: snapshot or purge
<expiration>: hourly (default), daily, weekly, monthly
#

import os, sys, subprocess, json, psycopg2
from time import gmtime,strftime,time

import boto.utils, boto.ec2
from boto.ec2.connection import EC2Connection

import settings, administration

OK, let's get some userdata and metadata
userdata = json.loads(boto.utils.get_user_data())
if not userdata.has_key('tablespaces'):
 userdata['tablespaces'] = [{ "device" : "/dev/sdf",
 "name" : "main",
"size" : 2}]

metadata = boto.utils.get_instance_metadata()
instance_id = metadata['instance-id']
hostname = metadata['public-hostname']

zone is not available directly (we assume the structure stays the same)
zone = metadata['placement']['availability-zone']
region = zone[:-1]

expiration in the future, calculated like this
days = 24 * 60 * 60
form = "%Y-%m-%d %H:%M:%S"
expires = {'hourly': strftime(form, gmtime(time() + 7 * days)),
 'daily': strftime(form, gmtime(time() + 14 * days)),
 'weekly': strftime(form, gmtime(time() + 61 * days)),
 'monthly': strftime(form, gmtime(time() + 365 * days))}

snapshot a certain device, with a particular expiration
def make_snapshot(key, access, cluster, name="main", expiration='weekly',
 device="/dev/sdf"):
 # first get the mountpoint (requires some energy, but we can...)
 df = subprocess.Popen(["/bin/df", device], stdout=subprocess.PIPE)
 output = df.communicate()[0]
 dummy, size, used, available, percent, mountpoint = output.split("\n")
[1].split()

Building Blocks | 43

 ec2 = boto.ec2.connect_to_region(region, aws_access_key_id = key, aws_se
cret_access_key = access)

 # if we have the device (/dev/sdf) just don't do anything anymore
 mapping = ec2.get_instance_attribute(instance_id, 'blockDeviceMapping')
 try:
 volume_id = mapping['blockDeviceMapping'][device].volume_id

 os.system("/usr/sbin/xfs_freeze -f {0}".format(mountpoint))
 snapshot = ec2.create_snapshot(volume_id,
 "Backup of {0} - for {1}/{2} - expires
{3}".format(

volume_id, cluster, name,

expires[expiration]))
 except Exception as e:
 print e
 finally:
 os.system("/usr/sbin/xfs_freeze -u {0}".format(mountpoint))

 return ["{0}".format(snapshot.id), expires[expiration]]

delete a number of snapshots
def purge_snapshots(key, access, cluster, snapshots):
 ec2 = boto.ec2.connect_to_region(region, aws_access_key_id = key, aws_se
cret_access_key = access)

 for snapshot in snapshots:
 try:
 print "deleting snapshot: {0}".format(snapshot['snapshot'])
 ec2.delete_snapshot(snapshot['snapshot'])
 except:
 pass

 administration.delete_snapshot(key, access, cluster,snapshot['snap
shot'])

actually the only thing this does is 'mark' the start
def start_backup(label):
 conn = psycopg2.connect(host=settings.host, dbname=settings.database_name,
 user=settings.database_user,
 password=set
tings.database_password)
 try:
 conn.autocommit = True
 cur = conn.cursor()

 cur.execute('select pg_start_backup(\x27{0}\x27)'.format(label))
 finally:
 cur.close()

44 | Chapter 6: Postgres

www.allitebooks.com

http://www.allitebooks.org

 conn.close()

and, 'mark' the stop
def stop_backup():
 conn = psycopg2.connect(host=settings.host, dbname=settings.database_name,
 user=settings.database_user,
 password=set
tings.database_password)

 try:
 conn.autocommit = True
 cur = conn.cursor()

 cur.execute("select pg_stop_backup()")
 finally:
 cur.close()
 conn.close()

def is_in_recovery():
 conn = psycopg2.connect(host=settings.host, dbname=settings.database_name,
 user=settings.database_user,
 password=set
tings.database_password)
 try:
 conn.autocommit = True
 cur = conn.cursor()

 cur.execute("select pg_is_in_recovery()")
 in_recovery = cur.fetchone()[0]
 finally:
 cur.close()
 conn.close()

 return in_recovery == True

for convenience we can call this file to make backups directly
if __name__ == '__main__':
 # get the bucket, from the name
 name = userdata['name'].strip()
 hosted_zone = os.environ['HOSTED_ZONE_NAME'].rstrip('.')
 name = "{0}.{1}".format(name, hosted_zone)
 cluster = userdata['cluster'].strip()

 def snapshot_all(expiration="weekly", master=True):
 # don't snapshot the WAL or root volume
 for tablespace in userdata['tablespaces']:
 backup = make_snapshot(sys.argv[2], sys.argv[3], cluster, table
space['name'],
 expira
tion=expiration,
 de
vice=tablespace['device'])

Building Blocks | 45

 # we use "dummy" to make sure the backups are restored from
 if not master:
 administration.add_snapshot(sys.argv[2], sys.argv[3], cluster,
"dummy", backup)
 else:
 administration.add_snapshot(sys.argv[2], sys.argv[3],
 cluster, table
space['name'], backup)
 print "created {0} from {1}".format(backup[0], tablespace['name'])

 if "latest" == sys.argv[1]:
 print administration.get_latest_snapshot(sys.argv[2], sys.argv[3], clus
ter, sys.argv[4])
 elif "basebackup" == sys.argv[1]:
 if not is_in_recovery():
 start_backup(sys.argv[4])
 snapshot_all()
 stop_backup()
 else:
 snapshot_all("hourly", False)
 elif "snapshot" == sys.argv[1]:
 backup = make_snapshot(sys.argv[2], sys.argv[3],
 cluster, sys.argv[4],
sys.argv[5])
 administration.add_snapshot(sys.argv[2], sys.argv[3],
 cluster, sys.argv[4],
backup)
 elif "snapshot-all" == sys.argv[1]:
 snapshot_all()
 elif "purge" == sys.argv[1]:
 snapshots = administration.get_expired_snapshots(sys.argv[2],

sys.argv[3], cluster)
 purge_snapshots(sys.argv[2], sys.argv[3], cluster, snapshots)

 elif "purge-all" == sys.argv[1]:
 snapshots = administration.get_all_snapshots(sys.argv[2],

sys.argv[3], name)
 purge_snapshots(sys.argv[2], sys.argv[3], name, snapshots)

IAM Policies (Identity and Access Management)
We are going to use several AWS services that we need programmatic access to. We want
to protect our systems from outside prying eyes, but we also want to protect ourselves
from making costly mistakes. We use IAM to grant access to those assets and operations
we need.

46 | Chapter 6: Postgres

Creating IAM policies
Creating IAM policies is cumbersome at best. Most often this is pretty
frustrating business. Most of the time we document our stuff relatively
well, and copy/paste to our hearts content. If we need something new
we always build this with AWS’s Policy Generator in combination with
the developer or API guides.

Here are the policies that selectively grant necessary rights:

EC2
The EC2 policy is a bit too liberal, but in this case we have no choice. You can specify
a particular instance resource in an IAM policy. But you can’t specify me as a re‐
source. This means scripts on instances can perform actions on all resources. It
would be great if you could restrict actions on volumes to only those volumes that
are attached to the instance, but you can’t.

{
 "Statement": [
 {
 "Sid": "Stmt1327831658328",
 "Action": [
 "ec2:AttachVolume",
 "ec2:CreateSnapshot",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteSnapshot",
 "ec2:DeleteTags",
 "ec2:DeleteVolume",
 "ec2:DescribeInstanceAttribute",
 "ec2:DescribeSnapshots",
 "ec2:DescribeTags",
 "ec2:DescribeVolumes",
 "ec2:DetachVolume",
 "ec2:ModifyInstanceAttribute",
 "ec2:ResetInstanceAttribute"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 }
]
}

Building Blocks | 47

http://bit.ly/ZTX4X3

S3
For S3 it is easier. We can use wildcards to give access to all buckets starting with
postgres.

{
 "Statement": [
 {
 "Sid": "Stmt1346312055951",
 "Action": [
 "s3:*"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:s3:::postgres*",
 "arn:aws:s3:::postgres*/*"
]
 }
]
}

SimpleDB
Here we chose a different approach. With S3 we assumed that the buckets have
already been created. With SimpleDB we’ll create them when they don’t exist.

{
 "Statement": [
 {
 "Sid": "Stmt1328015970799",
 "Action": [
 "sdb:BatchDeleteAttributes",
 "sdb:BatchPutAttributes",
 "sdb:CreateDomain",
 "sdb:DeleteAttributes",
 "sdb:DomainMetadata",
 "sdb:GetAttributes",
 "sdb:ListDomains",
 "sdb:PutAttributes",
 "sdb:Select"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 }
]
}

Route 53
We use one hosted zone only, to create different identifiers for (groups of) nodes.

{
 "Statement": [
 {

48 | Chapter 6: Postgres

 "Sid": "Stmt1327831880545",
 "Action": [
 "route53:ChangeResourceRecordSets",
 "route53:GetHostedZone",
 "route53:ListHostedZones",
 "route53:ListResourceRecordSets"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:route53:::hostedzone/Z148QEXAMPLE8V"
]
 }
]
}

CloudWatch
For monitoring cluster and node health:

{
 "Statement": [
 {
 "Sid": "Stmt1337411999556",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Effect": "Allow",
 "Resource": [
 "*"
]
 }
]
}

Postgres Persistence (backup/restore)
Remember that one of our goals is decent restore to point-in-time functionality. De‐
cent with big databases is to be able to restore a full database with a copy of the data
from several minutes ago. We could aim for seconds, but the additional cost does not
warrant this investment.

As with Amazon RDS, we are going to work with the concept of full backup. In Postgres
terms, this is called a basebackup, marked with pg_start_backup and pg_stop_backup.
In addition to this we are going to persist the WAL archive to S3.

A full backup is not a dump; it is a collection of snapshots taken of the EBS volumes. A
restore will create volumes from these snapshots, and will replay the WAL archive until
the database is fully restored (to the latest version, or restored to a specific timestamp).

The full code of our backup script is as follows:

Building Blocks | 49

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of pgRDS for AWS.
#
pgRDS for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
pgRDS for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with pgRDS for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, json

import boto.utils, boto.ec2
from boto.ec2.connection import EC2Connection

from route53 import Route53Zone

import settings

userdata = json.loads(boto.utils.get_user_data())
if not userdata.has_key('tablespaces'):
 userdata['tablespaces'] = [{ "device" : "/dev/sdf", "name" : "main",
"size" : 2}]

metadata = boto.utils.get_instance_metadata()
instance_id = metadata['instance-id']
hostname = metadata['public-hostname']

zone = metadata['placement']['availability-zone']
region = zone[:-1]

zone_name = os.environ['HOSTED_ZONE_NAME']
zone_id = os.environ['HOSTED_ZONE_ID']

pg_dir = '/var/lib/postgresql/9.1/'

import psycopg2

def pgbouncer():
 os.system("""sudo -u postgres psql -t -c
\"select '\\\"'||rolname||'\\\"'||' \\\"'||rolpassword||'\\\"'
from pg_authid ;\" | sed 's/^\s*//' | sed '/^$/d' > /etc/pgbouncer/user
list.txt""")
 os.system("/etc/init.d/pgbouncer restart")

50 | Chapter 6: Postgres

def monitor():
 os.system("/usr/sbin/monit reload")
 os.system("/usr/sbin/monit monitor postgresql")

def create_tablespace(tablespace, location=None):
 conn = psycopg2.connect(host=settings.host, dbname=settings.database_name,
 user=settings.database_user,
 password=set
tings.database_password)
 try:
 conn.autocommit = True
 cur = conn.cursor()
 if location == None or location == "":
 location = "{0}{1}".format(pg_dir, tablespace)

 cur.execute('CREATE TABLESPACE {0} LOCATION \x27{1}\x27'.format(table
space, location))
 finally:
 cur.close()
 conn.close()

def alter_table_set_tablespace(table, tablespace):
 conn = psycopg2.connect(host=settings.host, dbname=settings.database_name,
 user=settings.database_user,
 password=set
tings.database_password)
 try:
 cur = conn.cursor()

 cur.execute('ALTER TABLE {0} SET TABLESPACE {1}'.format(table, table
space))
 conn.commit()
 finally:
 cur.close()
 conn.close()

without a root database and root user we have nothing
def prepare_database():
 os.system('sudo -u postgres psql -c "create user root"')
 os.system('sudo -u postgres psql -c "create database root"')
 os.system('sudo -u postgres psql -c "grant all on database root to root"')
 os.system('sudo -u postgres psql -c "alter user {0} password
\x27{1}\x27"'.format(
 settings.data
base_user,settings.database_password))

if __name__ == '__main__':
 ec2 = boto.ec2.connect_to_region(region, aws_access_key_id = sys.argv[1],
 aws_secret_access_key = sys.argv[2])
 r53_zone = Route53Zone(sys.argv[1], sys.argv[2], zone_id)

Building Blocks | 51

 name = "{0}.{1}".format(userdata['name'],os.environ['HOS
TED_ZONE_NAME'].rstrip('.'))

 if sys.argv[3] == "start":
 # make sure others can check on us (logfiles)
 os.system('chmod 644 /var/log/postgresql/*.log')
 # don't hijack the record, but do continue
 try:
 r53_zone.create_record(name, hostname)
 except:
 pass
 ec2.create_tags([instance_id], { "Name": name })

 # we only prepare the database when we are NOT subservient
 if 'master' in userdata:
 prepare_database()

 pgbouncer()
 monitor()
 elif sys.argv[3] == "tablespaces":
 for tablespace in userdata['tablespaces']:
 name = tablespace['name']
 if name != "main":
 try:
 create_tablespace(name)
 except:
 print "tablespace {0} already exists?".format(name)

 try:
 alter_table_set_tablespace(name, name)
 except:
 print "table {0} does not exist yet?".format(name)

WAL Archive

Postgres has a feature called “write ahead logging” (WAL). These WAL files maintain a
continuous backup of log files which help in restoring the database after a system crash.
Postgres’s own description is clear as to the intent of the developers of this feature.

“One aspect of reliable operation is that all data recorded by a committed transaction
should be stored in a nonvolatile area that is safe from power loss, operating system
failure, and hardware failure (except failure of the nonvolatile area itself, of course).”

When enabling WAL files, you can also have these files archived. This is what we use to
enable point-in-time restores (the master has WAL enabled and archived to S3):

archive_mode = on
archive_command = '/usr/bin/s3cmd -c /etc/postgresql/.s3cfg put %p s3://9apps-
net/%f'
archive_timeout = 60

A restore looks like this:

52 | Chapter 6: Postgres

restore_command = '/usr/bin/s3cmd -c /etc/postgresql/.s3cfg get s3://9apps-
net/%f %p'

All of this is fully automated depending on userdata and the state of the cluster.

When doing a restore to a point in time for the sake of making a copy, you want to tell
the node to stop at a certain point in time. By default, when you omit the timestamp
userdata, the restore will try to get as far as possible, after which is stops restoring.

In Practice

We run Postgres clusters with over 10 tablespaces. A basebackup takes about an hour
to complete, but that is entirely dependent on the size and level of activity of the EBS
volumes. Usually a basebackup does not interfere too much with normal operations, but
it is a good idea to run this when traffic is not at its peak.

This cluster had one master and two slaves. Both of these slaves were serving reads, and
both were hot enough to take over the master when necessary.

Self Reliance
In this Postgres cluster approach, we choose self reliance as our mode of operations.
What we mean by that is that we have no outside puppet master that pulls the strings.
The instances themselves determine the necessary course of action. And in case they
don’t know what to do, there is always human intervention.

Pragmatic automation
Some say that whatever needs to be done more than two times needs to
be automated. This sounds nice, but it is ridiculously absurd when you
think of it.

Some tasks are just too critical to automate 100%, like initiating a deploy
to production. Sometimes it is more economical to perform some tasks
manually because automating is just too expensive.

Automation is fun, sure. But it doesn’t necessarily make your apps more
reliable or resilient. And in the end, that is what matters.

The core of this self reliance is an AMI (Amazon Machine Image). An AMI is like a boot
CD. It contains the root image with everything necessary to start an instance, so when
an instance is launched it has basically everything already installed. We do not install
software when instances are launched because we always try to minimize the possibility
of unintended consequences.

Our AMI holds an Ubuntu LTS install and Postgres. We install Postgres something like
this:

Building Blocks | 53

postgres
$ add-apt-repository ppa:pitti/postgresql
$ apt-get update

$ apt-get install postgresql-9.1 postgresql-client-9.1 pgtune

We can’t stress this enough: you should always choose a proven install method and do
your best to keep everything as default as possible.

Once Postgres is running, you can use Monit to keep it in check:

 check process postgresql with pidfile /var/run/postgresql/9.1-main.pid
 start program = "/etc/init.d/postgresql start"
 stop program = "/etc/init.d/postgresql stop"
 if failed unixsocket /var/run/postgresql/.s.PGSQL.5432 protocol pgsql then
restart
 if failed unixsocket /var/run/postgresql/.s.PGSQL.5432 protocol pgsql then
alert
 if failed host localhost port 5432 protocol pgsql then restart
 if failed host localhost port 5432 protocol pgsql then alert
 if 5 restarts within 5 cycles then timeout
 group database

Postgres is launched from the default /etc/init.d/postgres script. In this script we
intervene for provisioning (see configure.py), starting and stopping.

Working with AMIs is the most tedious task of all, but it is also the most important. You
need to be able to rely on your AMI to work, especially in circumstances where you need
it the most. Because there is no AMI simulator, you can test it only by launching new
instances.

Monitoring
You probably got the idea of how we run Postgres. We have used RDS as a role model,
while keeping in mind the practical constraints we are working under. There is one very
important aspect to running infrastructural components like a database: we need to be
able to monitor and send alerts when certain events occur. We use CloudWatch for that.

Again, we choose the self reliant approach. Every node reports on itself and what it
knows about the cluster. We let CloudWatch handle the aggregation of the metrics
collected.

The full monitor.py script is as follows:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

54 | Chapter 6: Postgres

www.allitebooks.com

http://www.allitebooks.org

(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, json, hashlib
import psycopg2, psycopg2.extras

from datetime import datetime

import boto.utils, boto.ec2, boto.ec2.cloudwatch

import settings

#
pgRDS MONITOR
#
#
class Monitor:
 def __init__(self, key, access):
 self.userdata = json.loads(boto.utils.get_instance_userdata())
 self.metadata = boto.utils.get_instance_metadata()

 public_hostname = self.metadata['public-hostname']
 zone = self.metadata['placement']['availability-zone']
 region = zone[:-1]

 # the name (and identity) of the cluster (the master)
 self.cluster = self.userdata['cluster']
 self.name = "{0}.{1}".format(self.userdata['name'], self.cluster)

 self.cloudwatch = boto.ec2.cloudwatch.connect_to_region(region,
 aws_access_key_id = key,
 aws_secret_access_key = access)
 self.namespace = '9apps/postgres'

 self.connection = psycopg2.connect(host=settings.host,
 port=5432,
 dbname=set
tings.database_name,
 user=set
tings.database_user,
 password=set
tings.database_password)

 # now, the non-system database connections

Monitoring | 55

 self.databases = []
 try:
 database_cursor = self.connection.cursor()

 database_cursor.execute("select datname from pg_stat_database where
datname !~ '(template[0-9]+|root|postgres)'")
 for database in database_cursor:
 self.databases.append([database[0],
 psycopg2.con
nect(host=settings.host, port=5432,
 dbname=database[0],
user=settings.database_user,
 password=settings.database_pass
word)])
 finally:
 database_cursor.close()

 self.pgbouncer = psycopg2.connect(host=settings.host,
 port=6432,
 dbname='pgbouncer',
 user=set
tings.database_user,
 password=set
tings.database_password)
 # without this it doesn't work
 self.pgbouncer.set_isolation_level(0)

 def __del__(self):
 self.connection.close()

 def is_in_recovery(self):
 self.connection.autocommit = True

 try:
 cur = self.connection.cursor()

 cur.execute("select pg_is_in_recovery()")
 in_recovery = cur.fetchone()[0]
 finally:
 cur.close()

 return in_recovery == True

 def collect(self, monitoring = 'on'):
 if monitoring not in ['on', 'all']:
 return [[], [], [], {}]

 now = datetime.utcnow()

 names = []
 values = []
 units = []

56 | Chapter 6: Postgres

 dimensions = { 'name' : self.name,
 'cluster' : self.cluster }

 if 'master' in self.userdata:
 [offset, receive_offset, replay_offset] = self._get_standby_lag()

 if receive_offset != None:
 names.append('receive_lag')
 values.append(int(offset - receive_offset))
 units.append('Bytes')

 if replay_offset != None:
 names.append('replay_lag')
 values.append(int(offset - replay_offset))
 units.append('Bytes')

 for database in self.databases:
 for relation in ["heap", "idx"]:
 [read, hit, hitratio] = self._get_hitratio(database[1], rela
tion)

 names.append("{0}_{1}_read".format(database[0], relation))
 values.append(int(read))
 units.append("Count")

 names.append("{0}_{1}_hit".format(database[0], relation))
 values.append(int(hit))
 units.append("Count")

 if hitratio != None:
 names.append("{0}_{1}_hitratio".format(database[0], rela
tion))
 values.append(float(hitratio * 100))
 units.append("Percent")

 conflicts = self._get_conflicts(database[0])
 names.append("{0}_{1}".format(database[0], 'confl_tablespace'))
 values.append(int(conflicts[0]))
 units.append("Count")

 names.append("{0}_{1}".format(database[0], 'confl_lock'))
 values.append(int(conflicts[1]))
 units.append("Count")

 names.append("{0}_{1}".format(database[0], 'confl_snapshot'))
 values.append(int(conflicts[2]))
 units.append("Count")

 names.append("{0}_{1}".format(database[0], 'confl_bufferpin'))
 values.append(int(conflicts[3]))
 units.append("Count")

Monitoring | 57

 names.append("{0}_{1}".format(database[0], 'confl_deadlock'))
 values.append(int(conflicts[4]))
 units.append("Count")

 indexes_size = self._get_indexes_size(database[1])
 names.append("{0}_indexes_size".format(database[0]))
 values.append(int(indexes_size))
 units.append("Bytes")

 tables_size = self._get_tables_size(database[1])
 names.append("{0}_tables_size".format(database[0]))
 values.append(int(tables_size))
 units.append("Bytes")

 # nr of wal files
 size = self._get_nr_wal_files()
 names.append("wal_files")
 values.append(int(size))
 units.append("Count")

 # pgbouncer stats
 stats = self._get_pgbouncer_stats()
 names.append("pgbouncer_avg_req")
 values.append(int(stats[0]))
 units.append("Count/Second")

 names.append("pgbouncer_avg_recv")
 values.append(int(stats[1]))
 units.append("Bytes/Second")

 names.append("pgbouncer_avg_sent")
 values.append(int(stats[2]))
 units.append("Bytes/Second")

 names.append("pgbouncer_avg_query")
 values.append(float(stats[3] / 1000000))
 units.append("Seconds")

 # pgbouncer pools
 pools = self._get_pgbouncer_pools()
 names.append("pgbouncer_cl_active")
 values.append(float(pools[0]))
 units.append("Count")

 names.append("pgbouncer_cl_waiting")
 values.append(float(pools[1]))
 units.append("Count")

 names.append("pgbouncer_sv_active")
 values.append(float(pools[2]))
 units.append("Count")

58 | Chapter 6: Postgres

 names.append("pgbouncer_sv_idle")
 values.append(float(pools[3]))
 units.append("Count")

 names.append("pgbouncer_sv_used")
 values.append(float(pools[4]))
 units.append("Count")

 names.append("pgbouncer_sv_tested")
 values.append(float(pools[5]))
 units.append("Count")

 names.append("pgbouncer_sv_login")
 values.append(float(pools[6]))
 units.append("Count")

 names.append("pgbouncer_maxwait")
 values.append(float(pools[7]))
 units.append("Count")

 return [names, values, units, dimensions]

 def put(self):
 result = False
 try:
 # only monitor if we are told to (this will break, if not set)
 monitoring = self.userdata['monitoring']
 except:
 monitoring = 'on'

 if monitoring in ['on', 'all']:
 # first get all we need
 [names, values, units, dimensions] = self.collect(monitoring)
 while len(names) > 0:
 names20 = names[:20]
 values20 = values[:20]
 units20 = units[:20]

 # we can't send all at once, only 20 at a time
 # first aggregated over all
 result = self.cloudwatch.put_metric_data(self.namespace,
 names20, value=values20,
unit=units20)
 for dimension in dimensions:
 dimension = { dimension : dimensions[dimension] }
 result &= self.cloudwatch.put_metric_data(
 self.namespace, names20, val
ue=values20,
 unit=units20, dimensions=dimension)

 del names[:20]
 del values[:20]

Monitoring | 59

 del units[:20]
 else:
 print "we are not monitoring"

 return result

 def metrics(self):
 return self.cloudwatch.list_metrics()

 def _get_nr_wal_files(self):
 try:
 cursor = self.connection.cursor()

 sql = "select count(name) from (select pg_ls_dir('pg_xlog') as
name) as xlogs where name != 'archive_status'"
 cursor.execute(sql)

 [size] = cursor.fetchone()
 finally:
 cursor.close()

 return size

 def _get_tables_size(self, connection):
 try:
 cursor = connection.cursor()

 sql = "select sum(pg_relation_size(relid)) from pg_stat_user_tables"
 cursor.execute(sql)

 [size] = cursor.fetchone()
 finally:
 cursor.close()

 return size

 def _get_indexes_size(self, connection):
 try:
 cursor = connection.cursor()

 sql = "select sum(pg_relation_size(indexrelid)) from pg_stat_user_in
dexes"
 cursor.execute(sql)

 [size] = cursor.fetchone()
 finally:
 cursor.close()

 return size

 def _get_conflicts(self, database):
 try:

60 | Chapter 6: Postgres

 cursor = self.connection.cursor()

 sql = "select * from pg_stat_database_conflicts where datname =
'{0}'".format(database)
 cursor.execute(sql)

 conflicts = cursor.fetchone()
 finally:
 cursor.close()

 return [conflicts[2], conflicts[3], conflicts[4],
 conflicts[5], conflicts[6]]

 def _get_hitratio(self, connection, relation="heap"):
 if relation == "heap":
 table = "tables"
 else:
 table = "indexes"

 try:
 cursor = connection.cursor()

 sql = "select sum({0}_blks_read) as read, sum({0}_blks_hit) as hit,
(sum({0}_blks_hit) - sum({0}_blks_read)) / nullif(sum({0}_blks_hit),0) as hitra
tio from pg_statio_user_{1}".format(relation, table)
 cursor.execute(sql)

 [read, hit, hitratio] = cursor.fetchone()
 finally:
 cursor.close()

 return [read, hit, hitratio]

 def _get_standby_lag(self):
 try:
 master = psycopg2.connect(host=self.userdata['master'],
 dbname=settings.database_name,
 user=settings.database_user,
 password=settings.database_password)

 master.autocommit = True
 try:
 cursor = master.cursor()
 cursor.execute("SELECT pg_current_xlog_location() AS location")
 [x, y] = (cursor.fetchone()[0]).split('/')
 offset = (int('ff000000', 16) * int(x, 16)) + int(y, 16)
 finally:
 cursor.close()

 try:
 cursor = self.connection.cursor()

Monitoring | 61

 cursor.execute("SELECT pg_last_xlog_receive_location(),
pg_last_xlog_replay_location()")
 one = cursor.fetchone()

 try:
 [x, y] = (one[0]).split('/')
 receive_offset = (int('ff000000', 16) * int(x, 16)) +
int(y, 16)
 except:
 receive_offset = None

 try:
 [x, y] = (one[1]).split('/')
 replay_offset = (int('ff000000', 16) * int(x, 16)) + int(y,
16)
 except:
 replay_offset = None
 finally:
 cursor.close()
 finally:
 master.close()

 return [offset, receive_offset, replay_offset]

 def _get_pgbouncer_stats(self):
 try:
 cursor = self.pgbouncer.cursor()
 cursor.execute('show stats')

 # ('pgbouncer\x00', 119L, 0L, 0L, 0L, 0L, 0L, 0L, 0L)
 [name, total_requests, total_received,
 total_sent, total_query_time, avg_req,
 avg_recv, avg_sent, avg_query] = cursor.fetchone()
 finally:
 cursor.close()

 return [avg_req, avg_recv, avg_sent, avg_query]

 def _get_pgbouncer_pools(self):
 cl_active = cl_waiting = sv_active = sv_idle = 0
 sv_used = sv_tested = sv_login = maxwait = 0
 try:
 cursor = self.pgbouncer.cursor()
 cursor.execute('show pools')

 # ('pgbouncer\x00', 'pgbouncer\x00', 1, 0, 0, 0, 0, 0, 0, 0)
 for pool in cursor:
 cl_active += pool[2]
 cl_waiting += pool[3]
 sv_active += pool[4]
 sv_idle += pool[5]
 sv_used += pool[6]

62 | Chapter 6: Postgres

 sv_tested += pool[7]
 sv_login += pool[8]
 maxwait = max(maxwait, pool[9])
 finally:
 cursor.close()

 return [cl_active, cl_waiting, sv_active, sv_idle,
 sv_used, sv_tested, sv_login, maxwait]

if __name__ == '__main__':
 key = os.environ['EC2_KEY_ID']
 access = os.environ['EC2_SECRET_KEY']

 # easy testing, use like this (requires environment variables)
 # python cluster.py get_master cluster 2c922342a.cluster
 monitor = Monitor(key, access)
 print getattr(monitor, sys.argv[1])(*sys.argv[3:])

We call this every minute, with a simple cron job.

Conclusion
This approach creates an RDS-like solution for Postgres. We do not need all the features
of RDS, because they are not necessary or are too expensive. But we do have a very
resilient and reliable Postgres that:

• Scales really well

• Is configurable

• Is easy to operate

• Is easily monitored

There are a few things that would be nice to have, such as automatic failover and master-
master replication. But we’ll add those features when the need arises.

Conclusion | 63

CHAPTER 7

MongoDB

MongoDB is one of the more prominent NoSQL databases at this time. In our MongoDB
implementations the requirements are that of an old-fashioned database:

• Backup/restore

• Easy (horizontal) scalability

• Resilience to external influence

• Reliability

You can find the entire project on github.

How It Works
For those who are new to MongoDB we’ll briefly introduce the key concepts with their
implementation. We work with MongoDB Replica Set for high availability. We’ll use
Route 53 to make sure it can be reached. We’ll use SimpleDB for backup administration.
And we’ll use Amazon SQS (Simple Queue Service) for a simple task queue.

Replica Set
The high-availability version of MongoDB is called a Replica Set (Figure 7-1). In short,
this is a collection of nodes, some of which hold data (members), and of those nodes
holding data, one is master. The group uses a voting process to determine the master if
there isn’t one or if the current one is not healthy anymore. Nondata member nodes are
called arbiters.

65

https://github.com/9apps/mongodb

Figure 7-1. MongDB Replica Set

A Replica Set is only operational if the majority is up. For instance, if you have three
Availability Zones, you need at least three nodes: two members holding data and one
arbiter. Keep in mind that if you lose an entire Availability Zone, you want to keep an
operational Replica Set.

Set configuration

We are lucky that elections are part of MongoDB. We don’t have to worry about failover
anymore, but we do have to configure Replica Sets. Members and arbiters should join
a Replica Set automatically, and they should leave it in good state when they shut down.

We have two possible scenarios: one where the Replica Set doesn’t exist yet and one
where the set exists but has to be joined. The first case is relatively easy, because we only
have to work on ourselves. The second is harder, because we have to task the master
with adding us.

We join or initiate the cluster directly after the MongoDB daemon is launched. The
replica set might be recovering or doing something else important first so telling the
master to join directly at this point won’t work. We use SQS to create a task queue.

The script for launching MongoDB shows how we handle this:

Ubuntu upstart file at /etc/init/mongodb.conf

limit nofile 20000 20000
kill timeout 10

pre-start script
 # we do this in monit.conf as well, but we can't wait for that
 curl="curl --retry 3 --silent --show-error --fail"
 hostname_public=$($curl http://169.254.169.254/latest/meta-data/public-
hostname)
 echo "host name = ["$hostname_public"]"

66 | Chapter 7: MongoDB

 hostname $hostname_public
 echo $hostname_public > /etc/hostname

 mkdir -p /var/mongodb/run
 chown -R mongodb.mongodb /var/mongodb/run

 arbiter=$(/root/is_arbiter.sh)
 if ["x$arbiter" = "xno"]; then
 /root/create_mongodb_volume.sh

 new=$(/root/new_set.sh)
 # if we are new, make sure we start without previous replica set conf
 if ["x$new" = "xyes"]; then
 rm -rf /var/mongodb/lib/local.*
 fi
 else
 rm -rf /var/mongodb/lib/ /var/mongodb/log /mnt/mongodb/log /var/run/
mongodb
 fi

 mkdir -p /var/mongodb/lib /var/run/mongodb /var/mongodb/log /mnt/mongodb/log
 chown -R mongodb.mongodb /var/run/mongodb /var/mongodb /mnt/mongodb/log

 /root/init-backups
end script

post-start script
 # wait for activity on port 27017
 while ! nc -q0 localhost 27017 </dev/null >/dev/null 2>&1; do
 sleep 1;
 done

 arbiter=$(/root/is_arbiter.sh)
 if ["x$arbiter" = "xno"]; then
 # we might be initial member of a new replica set
 new=$(/root/new_set.sh)

 # if we are, initiate the set, if not tell the primary we want to be part
 if ["x$new" = "xyes"]; then
 echo $(/usr/bin/mongo --eval "rs.initiate()") >> /var/log/syslog
 else
 task="\"rs.add('`hostname`:27017')\""
 /root/add_task.sh "${task}"
 fi

 # add the full crontab
 /bin/cat /root/crontab | /usr/bin/crontab -
 else
 task="\"rs.addArb('`hostname`:27017')\""
 /root/add_task.sh "${task}"

 # arbiter does nothing, or relatively very little

How It Works | 67

 /bin/cat /dev/null | /usr/bin/crontab -
 fi
end script

pre-stop script
 /usr/bin/mongo --eval "if(rs.isMaster()) { rs.stepDown()}"

 # schedule us to be removed (by the primary)
 task="\"rs.remove('`hostname`:27017')\""
 /root/add_task.sh "${task}"
end script

start on runlevel [2345]
stop on runlevel RUNLEVEL=0 PREVLEVEL=2

script
 curl="curl --retry 3 --silent --show-error --fail"
 set_name=$($curl http://169.254.169.254/latest/user-data | grep '"name"' |
sed 's/.*\:[\t]*"\{0,1\}\([^,"]*\)"\{0,1\},\{0,1\}/\1/')

 ENABLE_MONGODB="yes"
 if [-f /etc/default/mongodb]; then . /etc/default/mongodb; fi
 if ["x$ENABLE_MONGODB" = "xyes"]; then
 arbiter=$(/root/is_arbiter.sh)
 if ["x$arbiter" = "xno"]; then
 exec start-stop-daemon --start --make-pidfile --pidfile /var/run/mongodb/
mongodb.pid --chuid mongodb --exec /usr/bin/mongod -- --rest --oplogSize 5120
--config /etc/mongodb.conf --replSet $set_name;
 else
 exec start-stop-daemon --start --make-pidfile --pidfile /var/run/mongodb/
mongodb.pid --chuid mongodb --exec /usr/bin/mongod -- --rest --config /etc/
mongodb.conf --replSet $set_name --nojournal;
 fi
 fi
end script

This task queue is simple. It consists of tasks that can be fired by a MongoDB. Anyone
can write to the task queue, but only the master runs the tasks in the queue:

import os, utils, boto.sqs

your amazon keys
key = os.environ['SQS_KEY_ID']
access = os.environ['SQS_ACCESS_KEY']
queue = os.environ['SQS_TASK_QUEUE']

if __name__ == '__main__':
 sqs = boto.sqs.connect_to_region(region,
 aws_access_key_id = key,
 aws_secret_access_key = access)

 tasks = sqs.create_queue(queue)

68 | Chapter 7: MongoDB

 # this is not really failsave. it would be better to check the return value
of
 # the mongo task, and only delete on successful execution.
 m = tasks.read()
 while m != None:
 body = m.get_body()
 os.system("/usr/bin/mongo --quiet --eval {0}".format(body))

 tasks.delete_message(m)

 m = tasks.read()

As you can see this is fairly rudimentary, but by choosing to work with services like SQS
and SimpleDB we have not introduced another layer of infrastructure that we have to
manage. Instead of making our application infrastructure more complex we made it
simpler.

SNS
An alternative approach is to use SNS. You could send a message to an
SNS topic, to be delivered to an SQS queue, and then be sent to some
other place or mechanism (such as an event log).

Set endpoint

MongoDB’s method of discovery is entirely handled by the client. Good client libraries
only need to access the Replica Set through one of the members. The rest is automatic,
more or less.

As with Postgres we use Route 53 to give nodes and clusters (Replica Sets) an end point.
When we started this project Route 53 did not yet have weighted round robin DNS
records. So we had to find another way.

We chose to have the master control the end point to the Replica Set. A master period‐
ically (once every minute) checks the Route 53 record for the Replica Set. If it is does
not point to itself, it changes it. (This happens when a new master is elected.) The Replica
Set will continue to operate fine, except that the endpoint is not necessarily a valid entry
point for a couple of minutes.

How It Works | 69

Master election
MongoDB has its internal master election process. This is convenient,
because we don’t have to consider race conditions or multiple masters.

Master election is notoriously difficult. You have to introduce notions
of health and rules to deal with health changes. Two equally healthy
nodes are eligible to assume the lead role, but we need another entity to
make that decision. This is difficult to implement in general, but even
more so without a central authority. If you deal with a software com‐
ponent that does not have this (like Postgres or Redis), you might have
to choose a strategy and implement the tactics yourself.

These kinds of aspects make that distributed systems require very care‐
ful planning, execution, and relentless testing.

this script expects 2 environment variables
1. R53_KEY_ID (preferably an IAM user with limited rights)
2. R53_SECRET_KEY (accompanying secret key)
3. R53_TASK_QUEUE (the queue to use)

import os, platform

from boto.route53.connection import Route53Connection
from boto.route53.record import ResourceRecordSets

your amazon keys
key = os.environ['R53_KEY_ID']
access = os.environ['R53_SECRET_KEY']

NAME = os.environ['SET_NAME']
HOSTED_ZONE_NAME = os.environ['HOSTED_ZONE_NAME']
HOSTED_ZONE_ID = os.environ['HOSTED_ZONE_ID']
hostname = platform.node()

if __name__ == '__main__':
 zones = {}
 value = ''
 route53 = Route53Connection(key, access)

 # get hosted zone for HOSTED_ZONE_NAME
 results = route53.get_hosted_zone(HOSTED_ZONE_ID)
 zone = results['GetHostedZoneResponse']['HostedZone']
 zone_id = zone['Id'].replace('/hostedzone/', '')
 zones[zone['Name']] = zone_id

 # first get the old value
 name = "{0}.{1}".format(NAME, HOSTED_ZONE_NAME)
 sets = route53.get_all_rrsets(zones[HOSTED_ZONE_NAME], None)
 for rset in sets:
 if rset.name == name:
 value = rset.resource_records[0]

70 | Chapter 7: MongoDB

 # only change when necessary
 if value != hostname:
 # first delete old record
 changes = ResourceRecordSets(route53, zone_id)

 if value != '':
 change = changes.add_change("DELETE", name, "CNAME", 60)
 change.add_value(value)

 # now, add ourselves as zuckerberg
 change = changes.add_change("CREATE", name, "CNAME", 60)
 change.add_value(platform.node())

 changes.commit()

Userdata

Joining (or initiating) a Replica Set requires the same userdata. If the Replica Set name
exists, there are valid snapshots of an EBS volume with a version of the database, and
those snapshots are used to bootstrap or join the set. The userdata for a Replica Set
named mongodb, with 100GB storage space looks like this:

{
 "name" : "mongodb",
 "size" : 100,
 "role" : "active"
}

To launch an arbiter in the same Replica Set:

{
 "name" : "mongodb",
 "role" : "arbiter"
}

In case you want to launch a Replica Set from a specific snapshot you can use the fol‐
lowing userdata:

{
 "name" : "mongodb",
 "size" : 100,
 "source" : "snap-78ee631b",
 "role" : "active"
}

Backups
With MongoDB 2.0 they introduced journaling. With journaling enabled it is easy to
create a filesystem-based snapshot. Because we can easily (and quickly) make snapshots
of our dbpath directory this is the obvious alternative.

How It Works | 71

When we started working on our solution there was no journaling yet, so we chose to
use the lock/fsync/backup method. This is advertised for fast snapshots only, as writes
are blocked. EBS snapshotting is fast enough.

Take regular snapshots
We can run this on a master, or a slave. For various reasons it is good
to make regular, automated snapshots of your volumes.

Don’t forget to implement snapshot purging. Snapshots also cost money.

To lock/fsync the database we run /usr/bin/mongo --quiet admin /root/lock.js,

with lock.js like this:

#!/usr/bin/mongo admin

db.runCommand({fsync:1,lock:1});
db.currentOP();

To be absolutely sure we have a consistent snapshot we freeze (xfs_freeze) the mount
point first.

Unlock is similar; we run /usr/bin/mongo --quiet admin /root/unlock.js with

unlock.js like this:

#!/usr/bin/mongo admin

db.fsyncUnlock();
db.currentOP();

Shared resources
As with a database, a volume is a shared resource. If the volume is not
unfrozen it is basically useless for other processes to work with. Your
system grinds to a painful halt and it can be difficult to track down the
source of the problem.

When implemented in Python a simple try/finally to make sure we

don’t leave frozen volumes. In bash, the absence of try/finally makes
this more difficult.

Auto Scaling
Ultimately, you would like to have a self-healing Replica Set. If something goes wrong
you will be alerted but only to supervise recovery. Like Postgres we will be pragmatic,
but we can go a step further.

72 | Chapter 7: MongoDB

Remember that Postgres failover was fully manual. Because of this we didn’t utilize AWS
services like Auto Scaling, as it could get a bit too automated. But for MongoDB we can
use Auto Scaling. If your components can be safely stopped and restarted, it does make
sense to use Auto Scaling Groups of 1, to keep the replica set alive at all times.

We don’t use Auto Scaling for growing or shrinking the Auto Scaling Group. We only
use it to keep the group size intact. Setting up Auto Scaling for a typical MongoDB
Replica Set looks like this:

$ userdata='{
 "name" : "mongodb",
 "size" : 100,
 "role" : "active"
 }'

$ as-create-launch-config mongodb-9apps-net-lc-1 \
 --image-id ami-fd915694 \
 --instance-type m1.medium \
 --user-data "${userdata}" \
 --group mongodb

$ as-create-auto-scaling-group mongodb-9apps-net \
 --launch-configuration mongodb-9apps-net-lc-1 \
 --availability-zones eu-west-1a, eu-west-1b \
 --min-size 2 \
 --max-size 2

$ arbiter_userdata='{
 "name" : "mongodb",
 "role" : "arbiter"
 }'

$ as-create-launch-config arbiter-mongodb-9apps-net-lc-1 \
 --image-id ami-fd915694 \
 --instance-type t1.micro \
 --user-data "${arbiter_userdata}" \
 --group mongodb

$ as-create-auto-scaling-group arbiter-mongodb-9apps-net \
 --launch-configuration arbiter-mongodb-9apps-net-lc-1 \
 --availability-zones eu-west-1c \
 --min-size 1 \
 --max-size 1

It is now also easy to upgrade the Replica Set. All you need to do is change the Auto
Scaling Group and rotate the instances. It is best to do this slowly, of course, as you don’t
want to lose the Replica Set.

$ userdata='{
 "name" : "mongodb",
 "size" : 100,
 "role" : "active",

Auto Scaling | 73

 }'

$ as-create-launch-config mongodb-9apps-net-lc-2 \
 --image-id ami-fd915695 \
 --instance-type m1.large \
 --user-data "${userdata}" \
 --group mongodb

$ as-update-auto-scaling-group mongodb-9apps-net \
 --launch-configuration mongodb-9apps-net-lc-2

$ as-terminate-instance-in-auto-scaling-group i-55f03d34 -D
$ as-terminate-instance-in-auto-scaling-group i-e16aaa80 -D

$ arbiter_userdata='{
 "name" : "mongodb",
 "role" : "arbiter"
 }'

$ as-create-launch-config arbiter-mongodb-9apps-net-lc-2 \
 --image-id ami-fd915695 \
 --instance-type t1.micro \
 --user-data "${arbiter_userdata}" \
 --group mongodb

$ as-update-auto-scaling-group arbiter-mongodb-9apps-net \
 --launch-configuration arbiter-mongodb-9apps-net-lc-2

$ as-terminate-instance-in-auto-scaling-group i-55f03d35 -D

Monitoring
We started this project quite a while back. At that time CloudWatch support in boto
(the Python interface to AWS) was not 100% yet, so we used PHP to implement the
monitoring.

For every member in the Replica Set we add metrics. The health of arbiters we get from
the state of the Replica Set itself. We basically monitor every aspect MongoDB itself
thinks is interesting enough to expose.

The Replica Set metrics are only added by the master. We particularly watch the
UnHealthHostCount metric closely.

The full source of put-status.php:

<?php

require_once 'AWSSDKforPHP/sdk.class.php';

define('AWS_KEY', getenv('EC2_KEY_ID'));
define('AWS_SECRET_KEY', getenv('EC2_SECRET_KEY'));

74 | Chapter 7: MongoDB

define('AWS_ACCOUNT_ID', getenv('AWS_ACCOUNT_ID'));

$m = new Mongo();
$cw = new AmazonCloudWatch();
$cw->set_region('monitoring.' . getenv('EC2_REGION') . '.amazonaws.com');

$db = $m->admin;
$local = $m->selectDB("local");

$replset = $local->selectCollection("system.replset");
$replica_set_conf = $replset->findOne();

$ismaster = $db->command(array('ismaster'=>true));
$server_status = $db->command(array('serverStatus'=>true));
$replica_set_status = $db->command(array('replSetGetStatus'=>true));

if(isset($server_status['repl']['arbiterOnly']) && $server_status['repl']['ar
biterOnly']) {
 $state = 'arbiter';
} else if($server_status['repl']['ismaster']) {
 $state = 'primary';
} else {
 $state = 'secondary';
}

switch($state) {
 case 'primary':
 # here we do the replica set metrics
 add_replica_set_metrics($cw, $ismaster, $server_status,
 $replica_set_status, $replica_set_conf);
 case 'secondary':
 # and the metrics for primary & secondary
 add_host_metrics($cw, $ismaster, $server_status,
 get_lag($server_status['host'], $replica_set_status));
 break;
 case 'arbiter':
 # for an arbiter we don't add metrics, the health is
 # implicit in the replica set metrics
}

function add_replica_set_metrics($cw, $ismaster, $server_status, $set_status,
$replica_set_conf) {
 $dimensions = array(
 array('Name' => 'ReplSet',
 'Value' => $server_status['repl']['setName'])
);
 $timestamp = date(DATE_RFC822, $server_status['localTime']->sec);

 # set totals and assume all unhealthy
 $nr_hosts = $nr_unhealthy_hosts = count($ismaster['hosts']);
 $nr_passives = $nr_unhealthy_passives =
 isset($ismaster['passives']) && count($ismaster['passives']) ?

Monitoring | 75

 count($ismaster['passives']) : 0;
 if(array_key_exists('arbiters', $ismaster)) {
 $nr_arbiters = $nr_unhealthy_arbiters =
 count($ismaster['arbiters']);
 } else {
 $nr_arbiters = $nr_unhealthy_arbiters = 0;
 }

 foreach($set_status['members'] as $i => $member) {
 if(isset($replica_set_conf['members'][$i]['priority']) &&
 $replica_set_conf['members'][$i]['priority'] == 0) {
 $nr_unhealthy_passives -= $member['health'];
 } else {
 if($member['state'] == 1 or $member['state'] == 2) {
 # primary or secondary
 $nr_unhealthy_hosts -= $member['health'];
 } else if($member['state'] == 7) {
 # arbiter
 $nr_unhealthy_arbiters -= $member['health'];
 }
 }
 }

 $metrics = array(
 array(
 'MetricName' => 'HealthyHostCount',
 'Dimensions' => $dimensions,
 'Value' => $nr_hosts - $nr_unhealthy_hosts,
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'UnHealthyHostCount',
 'Dimensions' => $dimensions,
 'Value' => $nr_unhealthy_hosts,
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'PassiveHostCount',
 'Dimensions' => $dimensions,
 'Value' => $nr_passives - $nr_unhealthy_passives,
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'UnHealthyPassiveHostCount',
 'Dimensions' => $dimensions,
 'Value' => $nr_unhealthy_passives,
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),

76 | Chapter 7: MongoDB

 array(
 'MetricName' => 'ArbiterCount',
 'Dimensions' => $dimensions,
 'Value' => $nr_arbiters - $nr_unhealthy_arbiters,
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'UnHealthyArbiterCount',
 'Dimensions' => $dimensions,
 'Value' => $nr_unhealthy_arbiters,
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
)
);

 $response = $cw->put_metric_data('9Apps/MongoDB', $metrics);
 if(!$response->isOK()) { print_r($response); }
}

function add_host_metrics($cw, $ismaster, $server_status, $lag) {
 $state = $ismaster['ismaster'] ? 'primary' : 'secondary';
 $timestamp = date(DATE_RFC822, $server_status['localTime']->sec);

 $replset = array(array(
 'Name' => 'ReplSet', 'Value' => $server_status['repl']['setName'])
);

 $dimensions = array(
 array('Name' => 'Host', 'Value' => $server_status['host'])
);

 # we can only add 20 metrics at most, so we need to do this twice
 $metrics = array(
 # first add the metric for aggregate
 array(
 'MetricName' => 'OperationsQueuedWaitingForLock',
 'Dimensions' => $replset,
 'Value' => $server_status['globalLock']['currentQueue']['total'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 # and don't forget the instance specific
 array(
 'MetricName' => 'OperationsQueuedWaitingForLock',
 'Dimensions' => $dimensions,
 'Value' => $server_status['globalLock']['currentQueue']['total'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ReadOperationsQueuedWaitingForLock',

Monitoring | 77

 'Dimensions' => $replset,
 'Value' => $server_status['globalLock']['currentQueue']['readers'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ReadOperationsQueuedWaitingForLock',
 'Dimensions' => $dimensions,
 'Value' => $server_status['globalLock']['currentQueue']['readers'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'WriteOperationsQueuedWaitingForLock',
 'Dimensions' => $replset,
 'Value' => $server_status['globalLock']['currentQueue']['writers'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'WriteOperationsQueuedWaitingForLock',
 'Dimensions' => $dimensions,
 'Value' => $server_status['globalLock']['currentQueue']['writers'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ActiveClients',
 'Dimensions' => $replset,
 'Value' => $server_status['globalLock']['activeClients']['total'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ActiveClients',
 'Dimensions' => $dimensions,
 'Value' => $server_status['globalLock']['activeClients']['total'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ActiveReaders',
 'Dimensions' => $replset,
 'Value' => $server_status['globalLock']['activeClients']['readers'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ActiveReaders',
 'Dimensions' => $dimensions,
 'Value' => $server_status['globalLock']['activeClients']['readers'],
 'Timestamp' => $timestamp,

78 | Chapter 7: MongoDB

 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ActiveWriters',
 'Dimensions' => $replset,
 'Value' => $server_status['globalLock']['activeClients']['writers'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ActiveWriters',
 'Dimensions' => $dimensions,
 'Value' => $server_status['globalLock']['activeClients']['writers'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ResidentMemory',
 'Dimensions' => $replset,
 'Value' => $server_status['mem']['resident'],
 'Timestamp' => $timestamp,
 'Unit' => 'Megabytes'
),
 array(
 'MetricName' => 'ResidentMemory',
 'Dimensions' => $dimensions,
 'Value' => $server_status['mem']['resident'],
 'Timestamp' => $timestamp,
 'Unit' => 'Megabytes'
),
 array(
 'MetricName' => 'VirtualMemory',
 'Dimensions' => $replset,
 'Value' => $server_status['mem']['virtual'],
 'Timestamp' => $timestamp,
 'Unit' => 'Megabytes'
),
 array(
 'MetricName' => 'VirtualMemory',
 'Dimensions' => $dimensions,
 'Value' => $server_status['mem']['virtual'],
 'Timestamp' => $timestamp,
 'Unit' => 'Megabytes'
),
 array(
 'MetricName' => 'MappedMemory',
 'Dimensions' => $replset,
 'Value' => $server_status['mem']['mapped'],
 'Timestamp' => $timestamp,
 'Unit' => 'Megabytes'
),
 array(

Monitoring | 79

 'MetricName' => 'MappedMemory',
 'Dimensions' => $dimensions,
 'Value' => $server_status['mem']['mapped'],
 'Timestamp' => $timestamp,
 'Unit' => 'Megabytes'
),
 array(
 'MetricName' => 'ActiveConnections',
 'Dimensions' => $replset,
 'Value' => $server_status['connections']['current'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'ActiveConnections',
 'Dimensions' => $dimensions,
 'Value' => $server_status['connections']['current'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
));
 $response = $cw->put_metric_data('9Apps/MongoDB', $metrics);
 if(!$response->isOK()) { print_r($response); }

 $metrics = array(
 array(
 'MetricName' => 'LastFlushOperation',
 'Dimensions' => $replset,
 'Value' => $server_status['backgroundFlushing']['last_ms'],
 'Timestamp' => $timestamp,
 'Unit' => 'Milliseconds'
),
 array(
 'MetricName' => 'LastFlushOperation',
 'Dimensions' => $dimensions,
 'Value' => $server_status['backgroundFlushing']['last_ms'],
 'Timestamp' => $timestamp,
 'Unit' => 'Milliseconds'
),
 array(
 'MetricName' => 'OpenCursors',
 'Dimensions' => $replset,
 'Value' => $server_status['cursors']['totalOpen'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),
 array(
 'MetricName' => 'OpenCursors',
 'Dimensions' => $dimensions,
 'Value' => $server_status['cursors']['totalOpen'],
 'Timestamp' => $timestamp,
 'Unit' => 'Count'
),

80 | Chapter 7: MongoDB

);

 # add lag if secondary
 if(!$ismaster['ismaster']) {
 $metrics[] = array(
 'MetricName' => 'Lag',
 'Dimensions' => $dimensions,
 'Value' => $lag,
 'Timestamp' => $timestamp,
 'Unit' => 'Seconds'
);
 }
 $response = $cw->put_metric_data('9Apps/MongoDB', $metrics);
 if(!$response->isOK()) { print_r($response); }
}

return lag of host, relative to master
function get_lag($host, $replica_set_status) {
 foreach($replica_set_status['members'] as $member) {
 if($member['state'] == 1) {
 $base = $member['optime']->sec;
 }

 if(strpos($member['name'], $host) !== false) {
 $me = $member['optime']->sec;
 }

 # we are done when we are done
 if(isset($base) && isset($me)) break;
 }

 return $me - $base;
}

?>

Conclusion
We have been running MongoDB this way for several years now—it has survived several
AWS glitches, with no data loss, and we have restored full Replica Sets several times.

This project is a bit older, but we still run it like this. If we were to build it now, we would
build it solely using one software platform, probably boto/Python. And we would use a
couple of different techniques Amazon AWS has to offer, like weighted round robin
DNS records.

But, MongoDB has served us well, and we do not see the need to make these changes at
this moment.

Conclusion | 81

CHAPTER 8

Redis

Redis is an open source, advanced key-value store. It is often referred to as a data structure
server since keys can contain strings, hashes, lists, sets, and sorted sets.

Redis has a very novel approach to being a datastore. Actually, its own data structure
server is a very apt description: it is a server.

As with all our infrastructure components, we aim for resilience (does not break easily)
and reliability (does what you expect it to do). For Redis, we have to figure out how to
do the following:

• Backup/restore

• Failover

• Scaling (up and down)

• Monitoring

This project is available on github at ReDiS.

The Problem
Redis as a data structure server finds its limits in the server. The core idea is that it
exposes the memory on an instance as a variety of structured data through an API. This
is fast but very fragile. Memory is not persisted.

This feature has two consequences we have to deal with:

1. Persistence (how to make backups)

2. Replication

83

http://redis.io
https://github.com/9apps/redis

Both these problems would go away if Redis were available in a distributed manner. In
the next chapter, we’ll see how elasticsearch elegantly solves this shortcoming. But the
distributed Redis is a work in progress and we don’t know when it will be available. In
the meantime, we have our own workaround.

Our Approach
Redis has the notion of master-slave replication. In Redis anything can be a master, and
masters are almost completely unaware of existing slaves. A slave has only one master,

which is slaveof.

This simple approach to replication is very powerful, and we’ll use it to our advantage.
To solve replication (and a bit of horizontal scalability), we’ll chain Redis into resilience.

Our Redis chain is a unidirectional linked list. It has a head, a tail (perhaps the same),
and perhaps nodes in between. The nature of this list is that every slave is behind its
master.

If a node dies for whatever reason, its slave (if there is one) has to re-slave itself to the
master of its previous master, or become a master itself. How? you might ask. The answer
is: if we have slaves that can automatically look for a new master, the chain will heal
itself.

The head is for writing only, but the slaves can also be used for reading.

Implementation
This project is again nearly 100% boto/Python. With the excellent Python redis client

(pip install redis) we can do everything we want. Our install looks like this:

check http://redis.io/download for the latest
$ wget http://redis.googlecode.com/files/redis-2.4.5.tar.gz
$ tar xzvf redis-2.4.5.tar.gz
$ cd redis-2.4.5
$ make
$ apt-get install tcl8.5
$ make test
$ make install

$ adduser --disabled-password --no-create-home --gecos "Redis Server" redis

$ cat <<EOF > /etc/logrotate.d/redis
/var/log/redis/*.log {
 daily
 rotate 14
 copytruncate
 delaycompress
 compress

84 | Chapter 8: Redis

 notifempty
 missingok
}
EOF

install redis.py (the 'official' python redis client)
$ pip install redis

Apart from this, we install the EC2 command-line tools, because we can’t designate a
volume to be deleted upon termination with boto.

We’ll also create an IAM user with more or less the same privileges as we saw in the
previous chapters on Postgres and MongoDB.

userdata
{
 "name" : "kate",
 "persistence" : "normal",
 "monitoring" : "on",
 "maxmemory" : "on",
 "maxmemory-policy" : "noeviction",
 "logging" : "warning"
}

We want to dictate a Redis instance/chain by userdata. Depending on your requirements
we can launch it with a certain level of persistence. Default is normal.

no
No snapshots, no dumps, nothing

low
Dumps to S3 (RDB) and EBS snapshots

normal
Low + AOF (append only file, with default configuration)

high
Normal + AOF is append always (every change is appended)

The default logging is warning. You can change that to error, if you want less. Or to
info, if you want to see all. Events are logged in SimpleDB. Default is unset, meaning no
logging at all.

The monitoring parameter can be set to (default is off).

off
No CloudWatch monitoring

on
CloudWatch monitoring of Redis system state

Implementation | 85

all
Monitoring of system state and size of all keys present

The parameter maxmemory needs some explanation. If you are using your system as a
database, you never want the system to start getting rid of keys randomly. But if you are
using your system for caching, then it does make sense. If used as cache, memcached

should be discarded first. For maxmemory, on means we’ll set the max to 60% of available
system memory. By default this is off.

With the maxmemory policy, you can override the default eviction policy. The value
you give here will be copied verbatim to the config, there is no checking for validity. The

default for maxmemory-policy is empty in case maxmemory is not off, using the default
of Redis (which may change over time).

Redis
As by now you might have realized, we like the default settings in Redis. Everything that
you change adds complexity and for every change you need a very good reason.

Let start with our init.d, our start/stop script:

#! /bin/sh
BEGIN INIT INFO
Provides: redis-server
Required-Start: $syslog
Required-Stop: $syslog
Default-Start: 2 3 4 5
Default-Stop: 0 1 6
Short-Description: redis-server - Persistent key-value db
Description: redis-server - Persistent key-value db
END INIT INFO

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/sbin:/usr/bin
DAEMON=/usr/local/bin/redis-server
DAEMON_ARGS=/etc/redis/redis.conf
NAME=redis-server
DESC=redis-server
PIDFILE=/var/run/redis/redis.pid

test -x $DAEMON || exit 0
test -x $DAEMONBOOTSTRAP || exit 0

set -e

case "$1" in
 start)
 echo -n "Starting $DESC: "

 mkdir -p /var/lib/redis

86 | Chapter 8: Redis

 chown redis.redis /var/lib/redis

 mkdir -p /var/log/redis
 chown redis.redis /var/log/redis

 mkdir -p /var/run/redis
 chown redis.redis /var/run/redis

 # prepare for running redis
 /root/ReDiS/prepare.sh

 if start-stop-daemon --start --quiet --umask 007 \
 --pidfile $PIDFILE --user redis --group redis \
 --exec $DAEMON -- $DAEMON_ARGS
 then
 echo "$NAME."

 # now, 'join' the cluster
 /root/ReDiS/join.sh
 else
 echo "failed"
 fi
 ;;
 stop)
 echo -n "Stopping $DESC: "

 # first, 'leave' the cluster
 /root/ReDiS/leave.sh
 if start-stop-daemon --stop --retry 10 --quiet --oknodo
 --pidfile $PIDFILE --exec $DAEMON
 then
 echo "$NAME."
 # and now, decommission
 /root/ReDiS/decommission.sh
 else
 echo "failed"
 fi
 ;;
 restart|force-reload)
 ${0} stop
 ${0} start
 ;;
 *)
 echo "Usage: /etc/init.d/$NAME {start|stop|restart|force-reload}" >&2
 exit 1
 ;;
esac

exit 0

prepare.sh/prepare.py deal with getting the instance ready to do work. Most of these
scripts deal with persistence (see below) but there is one part we want to mention here.

Implementation | 87

Configuration (maxmemory)

Redis is pretty volatile. If you do not treat it gently, it might blow up in your face. Because

not all applications play nicely with their environments we introduced maxmemory set‐
tings. This is basically a failsafe option to protect data, something you would like the
application to take responsibility for.

 dst = "/etc/redis/redis.conf"
 redis = "{0}/etc/redis/{1}.conf".format(path, persistence)
 cron = "{0}/cron.d/{1}.cron".format(path, persistence)

 # redis will start with this conf
 log('configuring redis', 'info')
 os.system("/bin/cp -f {0} {1}".format(redis, dst))
 if maxmemory > 0:
 os.system("/bin/sed 's/^# maxmemory <bytes>.*$/maxmemory {0}/' -i
{1}".format(maxmemory, dst))

 if policy != None:
 os.system("/bin/sed 's/^# maxmemory-policy.*$/maxmemory-policy
{0}/' -i {1}".format(policy,dst))

The Redis configuration files are dependent on the persistence level, which are taken

from the Redis install directory. maxmemory and policy are read from userdata.

Persistence

In Redis, there are several ways to achieve persistence. You have RDB (point in time
database snapshots) and AOF (append-only file). So, we can use full database dumps
(RDB) or rely on replaying the logfile (AOF) for re-creating a database. However, we
also have a third way: EBS snapshots.

We can configure our Redis instance to create RDB dumps and copy them to S3. We

can also tell Redis to write the AOF in several different ways. The default way is every

sec, which is fine for most apps. But you can set it to always, in which case all changes

are persisted to AOF. This is also the most costly way. The default way of everysec is
fine for most applications.

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

88 | Chapter 8: Redis

#
You should have received a copy of the GNU General Public License
along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, re, json

from boto.ec2.connection import EC2Connection
from boto.ec2.regioninfo import RegionInfo

import backup, administration
from events import Events
from host import Host

Ubuntu 12.04 uses recent kernels (/dev/xvdf), EC2 not yet (/dev/sdf)
def DEVICE(device):
 return device.replace('/s', '/xv')

self.userdata = json.loads(boto.utils.get_instance_userdata())
self.metadata = boto.utils.get_instance_metadata()

instance_id = self.metadata['instance-id']
hostname = self.metadata['public-hostname']
zone = self.metadata['placement']['availability-zone']
region = zone[:-1]

device = "/dev/sdf"
mount = "/var/lib/redis"

what is the domain to work with
redis_name = os.environ['REDIS_NAME'].strip()
hosted_zone = os.environ['HOSTED_ZONE_NAME'].rstrip('.')

the name (and identity) of the cluster (the master)
cluster = "{0}.{1}".format(redis_name, hosted_zone)

events = Events(sys.argv[1], sys.argv[2], cluster)
node = Host(cluster, events).get_node()
component = os.path.basename(sys.argv[0])
def log(message, logging='warning'):
 events.log(node, component, message, logging)

we are going to work with local files, we need our path
path = os.path.dirname(os.path.abspath(__file__))

def provision(key, access, cluster, size, maxmemory=-1, policy=None, persis
tence="no", snapshot=None, rdb=None):
 log('start provisioning', 'info')
 # ec2 is region specific
 ec2 = boto.ec2.connect_to_region(region,
 aws_access_key_id = key,
 aws_secret_access_key = access)

Implementation | 89

 def add_monitor(device="/dev/sdf", name="main"):
 f = open("{0}/etc/monit/{1}".format(path, name), "w")
 f.write(" check filesystem {0} with path {1}".format(name,

 DEVICE(device)))
 f.write(" if failed permission 660 then alert")
 f.write(" if failed uid root then alert")
 f.write(" if failed gid disk then alert")
 f.write(" if space usage > 80% for 5 times within 15 cycles then
alert")
 f.close()

 def create_device(snapshot=None):
 log('getting a device', 'info')
 # if we have the device (/dev/sdf) just don't do anything anymore
 mapping = ec2.get_instance_attribute(instance_id, 'blockDeviceMapping')
 try:
 volume_id = mapping['blockDeviceMapping'][DEVICE(device)].volume_id
 log('using existing volume', 'info')
 except:
 log('creating a new volume', 'info')
 volume = ec2.create_volume(size, zone, snapshot)
 volume.attach(instance_id, DEVICE(device))
 volume_id = volume.id
 log('created ' + volume_id, 'info')

 # we can't continue without a properly attached device
 log('waiting for ' + DEVICE(device), 'info')
 os.system("while [! -b {0}] ; do /bin/true ; done".format(DE
VICE(device)))

 # make sure the volume is deleted upon termination
 # should also protect from disaster like loosing an instance
 # (it doesn't work with boto, so we do it 'outside')
 log('set delete-on-termination', 'info')
 os.system("/usr/bin/ec2-modify-instance-attribute --block-device-
mapping \"{0}=:true\" {1} --region {2}".format(DEVICE(device), instance_id, re
gion))

 # if we start from snapshot we are almost done
 if snapshot == "" or None == snapshot:
 log('creating a filesystem', 'info')
 # first create filesystem
 os.system("/sbin/mkfs.xfs {0}".format(DEVICE(device)))

 log('mounting the filesystem', 'info')
 log('(but cleaning the mountpoint first)', 'info')
 os.system("/bin/rm -rf {0}/*".format(mount))
 # mount, but first wait until the device is ready
 os.system("/bin/mount -t xfs -o defaults {0} {1}".format(DEVICE(de
vice), mount))
 # and grow (if necessary)

90 | Chapter 8: Redis

 log('growing the filesystem', 'info')
 os.system("/usr/sbin/xfs_growfs {0}".format(mount))

 add_monitor(DEVICE(device), 'data')

 log('volume {0} is attached to {1} and mounted ({2}) and ready for
use'.format(volume_id, DEVICE(device), mount), 'info')
 return volume_id

 def prepare():
 log('prepare the environment', 'info')
 # from this point we are sure we don't have to be careful
 # with local files/devices/disks/etc

 dst = "/etc/redis/redis.conf"
 redis = "{0}/etc/redis/{1}.conf".format(path, persistence)
 cron = "{0}/cron.d/{1}.cron".format(path, persistence)

 # redis will start with this conf
 log('configuring redis', 'info')
 os.system("/bin/cp -f {0} {1}".format(redis, dst))
 if maxmemory > 0:
 os.system("/bin/sed 's/^# maxmemory <bytes>.*$/maxmemory {0}/' -i
{1}".format(maxmemory, dst))

 if policy != None:
 os.system("/bin/sed 's/^# maxmemory-policy.*$/maxmemory-policy
{0}/' -i {1}".format(policy, dst))

 # and root's cron will be set accordingly as well
 log('setting up cron', 'info')
 os.system("/bin/sed 's:INSTALLPATH:{0}:' {1} | /usr/bin/crontab".for
mat(path, cron))

 # ok, ready to set up assets like bucket and volume
 # also, if we have a valid mount, we don't do anything
 log('set up persistence', 'info')
 if os.path.ismount(mount) == False and "no" != persistence:
 log('create bucket {0}'.format(cluster), 'info')
 backup.create_bucket(key, access, cluster)

 try:
 # only try to create one if we have one
 if "" == snapshot or None == snapshot:
 raise Exception('metadata','empty snapshot')
 else:
 create_device(snapshot)
 except:
 try:
 latest = administration.get_latest_snapshot(key,

 access, cluster)

Implementation | 91

 create_device(latest)
 except:
 create_device()

 # we have a bucket, and perhaps a device. lets try to restore
 # from rdb, first from metadata later from user_data.
 if rdb != None and "" != rdb:
 log('restore rdb {0}/{1}'.format(cluster, rdb), 'info')
 backup.restore(key, access, cluster, rdb)

 latest = administration.get_latest_RDB(key, access, cluster)
 if "" != latest and None != latest:
 log('restore rdb {0}/{1}'.format(cluster, latest), 'info')
 backup.restore(key, access, cluster, latest)

 prepare()

def meminfo():
 """
 dict of data from meminfo (str:int).
 Values are in kilobytes.
 """
 re_parser = re.compile(r'^(?P<key>\S*):\s*(?P<value>\d*)\s*kB')
 result = dict()
 for line in open('/proc/meminfo'):
 match = re_parser.match(line)
 if not match:
 continue # skip lines that don't parse
 key, value = match.groups(['key', 'value'])
 result[key] = int(value)
 return result

if __name__ == '__main__':
 import os, sys

 try:
 persistence = userdata['persistence']
 except:
 persistence = None
 try:
 snapshot = userdata['snapshot']
 except:
 snapshot = None
 try:
 rdb = userdata['rdb']
 except:
 rdb = None

 maxmemory = -1
 policy = None
 try:
 if userdata['maxmemory'] == 'on':

92 | Chapter 8: Redis

 maxmemory = int(0.8 * (meminfo()['MemTotal'] * 1024))

 try:
 policy = userdata['maxmemory-policy']
 except:
 pass
 except:
 pass

 size = 3 * (meminfo()['MemTotal'] / (1024 * 1024))
 # set a default size of 5 gigs just incase we are using a micro instance.
 # Usefult for playing around with this project
 size = 5 if size == 0 else size

 provision(sys.argv[1], sys.argv[2], cluster, size, maxmemory, policy,
 persistence=persistence, snapshot=snapshot,
rdb=rdb)

In our experience, Redis persistence is quite problematic. In high traffic environments
both RDB and AOF incur serious performance penalties. We mostly rely on replication
(see below) for durability of the data.

The new IOPS EBS volumes might bring some relief to IO traffic incurred through RDB
operations and writing to the AOF, in that we can use it for replication of our data.
Perhaps even SSD can help overcome this. But in our opinion this is to be solved in the
software itself. Persistence, at this moment, is an afterthought to the core concept of
Redis, which is an in-memory datastore.

Monitoring

As we did with MongoDB and Postgres, we’ll use CloudWatch for monitoring our Redis
system. For Redis we want to switch monitoring on and off (because it is not always
necessary for development or test environments). But we also want to do a little bit more.

Sometimes Redis is used for queue style data. In this case, we would like to monitor the
size of the keys in Redis. This is not always feasible, as you can end up with thousands
of metrics. Apart from the cost (which is pretty significant) it also renders the Cloud‐
Watch part of the AWS Console useless for practical purposes.

Here is the monitoring script:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,

Implementation | 93

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, redis, json, hashlib

from datetime import datetime

import boto.utils, boto.ec2.cloudwatch

#
REDIS MONITOR
#
#
class Monitor:
 def __init__(self, key, access, cluster):
 self.userdata = json.loads(boto.utils.get_instance_userdata())
 self.metadata = boto.utils.get_instance_metadata()

 public_hostname = self.metadata['public-hostname']
 zone = self.metadata['placement']['availability-zone']
 region = zone[:-1]

 # the name (and identity) of the cluster (the master)
 self.cluster = cluster

 self.redis = redis.StrictRedis(host='localhost', port=6379)

 self.cloudwatch = boto.ec2.cloudwatch.connect_to_region(region,
 aws_access_key_id = key,
 aws_secret_access_key = access)
 self.namespace = '9apps/redis'

 # get the host, but without the logging
 self.node = public_hostname

 def collect(self, monitoring = 'on'):
 if monitoring not in ['on', 'all']:
 return [[], [], [], {}]

 now = datetime.utcnow()

 items = self.redis.info()

 names = []
 values = []
 units = []
 dimensions = { 'node' : self.node,

94 | Chapter 8: Redis

 'cluster' : self.cluster }

 slowlog_len = self.redis.execute_command('SLOWLOG','LEN')
 names.append('slowlog_len')
 values.append(slowlog_len)
 units.append('Count')

 if items['aof_enabled']:
 names.append('bgrewriteaof_in_progress')
 values.append(items['bgrewriteaof_in_progress'])
 units.append('Count')

 names.append('aof_pending_bio_fsync')
 values.append(items['aof_pending_bio_fsync'])
 units.append('Count')

 names.append('aof_buffer_length')
 values.append(items['aof_buffer_length'])
 units.append('Count')

 names.append('aof_current_size')
 values.append(items['aof_current_size'])
 units.append('Bytes')

 names.append('aof_pending_rewrite')
 values.append(items['aof_pending_rewrite'])
 units.append('Count')

 names.append('aof_base_size')
 values.append(items['aof_base_size'])
 units.append('Bytes')

 # master/slave
 names.append(items['role'])
 values.append(1)
 units.append('Count')

 for item in items:
 if item >= 'db0' and item < 'dc':
 names.append("{0}_keys".format(item))
 values.append(items[item]['keys'])
 units.append('Count')

 names.append("{0}_expires".format(item))
 values.append(items[item]['expires'])
 units.append('Count')

 # and now add some info on the keys, if we want
 if monitoring == 'all':
 nr = item.lstrip('db')
 db = redis.StrictRedis(host='localhost', port=6379, db=nr)
 keys = db.keys('*')

Implementation | 95

 for key in keys:
 key_type = db.type(key)
 key = key.replace('.', '_')

 if key_type == "list":
 llen = db.llen(key)
 names.append("{0}_{1}_llen".format(item, key))
 values.append(llen)
 units.append('Count')
 elif key_type == "hash":
 hlen = db.hlen(key)
 names.append("{0}_{1}_hlen".format(item, key))
 values.append(hlen)
 units.append('Count')
 elif key_type == "set":
 scard = db.scard(key)
 names.append("{0}_{1}_scard".format(item, key))
 values.append(scard)
 units.append('Count')
 elif key_type == "zset":
 zcard = db.zcard(key)
 names.append("{0}_{1}_zcard".format(item, key))
 values.append(zcard)
 units.append('Count')
 elif key_type == "string":
 strlen = db.strlen(key)
 names.append("{0}_{1}_strlen".format(item, key))
 values.append(strlen)
 units.append('Count')

 # pub/sub
 names.append('pubsub_channels')
 values.append(items['pubsub_channels'])
 units.append('Count')

 names.append('pubsub_patterns')
 values.append(items['pubsub_patterns'])
 units.append('Count')

 # memory
 names.append('used_memory')
 values.append(items['used_memory'])
 units.append('Bytes')

 names.append('used_memory_peak')
 values.append(items['used_memory_peak'])
 units.append('Bytes')

 names.append('used_memory_rss')
 values.append(items['used_memory_rss'])
 units.append('Bytes')

96 | Chapter 8: Redis

 names.append('mem_fragmentation_ratio')
 values.append(items['mem_fragmentation_ratio'])
 units.append('None')

 names.append('connected_slaves')
 values.append(items['connected_slaves'])
 units.append('Count')

 #
 names.append('loading')
 values.append(items['loading'])
 units.append('Count')

 names.append('bgsave_in_progress')
 values.append(items['bgsave_in_progress'])
 units.append('Count')

 # clients
 names.append('connected_clients')
 values.append(items['connected_clients'])
 units.append('Count')

 names.append('blocked_clients')
 values.append(items['blocked_clients'])
 units.append('Count')

 # connection/command totals
 #names.append('total_connections_received')
 #values.append(items['total_connections_received'])
 #units.append('Count')

 #names.append('total_commands_processed')
 #values.append(items['total_commands_processed'])
 #units.append('Count')

 # client input/output
 names.append('client_biggest_input_buf')
 values.append(items['client_biggest_input_buf'])
 units.append('Bytes')

 names.append('client_longest_output_list')
 values.append(items['client_longest_output_list'])
 units.append('Bytes')

 # keys
 names.append('expired_keys')
 values.append(items['expired_keys'])
 units.append('Count')

 names.append('evicted_keys')
 values.append(items['evicted_keys'])
 units.append('Count')

Implementation | 97

 # last_save
 names.append('changes_since_last_save')
 values.append(items['changes_since_last_save'])
 units.append('Count')

 # keyspace
 #names.append('keyspace_misses')
 #values.append(items['keyspace_misses'])
 #units.append('Count')

 #names.append('keyspace_hits')
 #values.append(items['keyspace_hits'])
 #units.append('Count')

 return [names, values, units, dimensions]

 def put(self):
 result = False
 try:
 # only monitor if we are told to (this will break, if not set)
 monitoring = self.userdata['monitoring']
 except:
 monitoring = 'on'

 if monitoring in ['on', 'all']:
 # first get all we need
 [names, values, units, dimensions] = self.collect(monitoring)
 print [names, values, units, dimensions]
 while len(names) > 0:
 names20 = names[:20]
 values20 = values[:20]
 units20 = units[:20]

 # we can't send all at once, only 20 at a time
 # first aggregated over all
 result = self.cloudwatch.put_metric_data(self.namespace,
 names20, value=values20,
unit=units20)
 for dimension in dimensions:
 dimension = { dimension : dimensions[dimension] }
 result &= self.cloudwatch.put_metric_data(
 self.namespace, names20, val
ue=values20,
 unit=units20, dimensions=dimension)

 del names[:20]
 del values[:20]
 del units[:20]
 else:
 print "we are not monitoring"

98 | Chapter 8: Redis

 return result

 def metrics(self):
 return self.cloudwatch.list_metrics()

if __name__ == '__main__':
 key = os.environ['EC2_KEY_ID']
 access = os.environ['EC2_SECRET_KEY']

 name = os.environ['REDIS_NAME'].strip()
 zone = os.environ['HOSTED_ZONE_NAME'].rstrip('.')
 cluster = "{0}.{1}".format(name, zone)

 # easy testing, use like this (requires environment variables)
 # python cluster.py get_master cluster 2c922342a.cluster
 monitor = Monitor(key, access, cluster)
 print getattr(monitor, sys.argv[1])(*sys.argv[3:])

As you can see, this is more or less the same as the other monitoring scripts. But because
we could end up with hundreds of metrics we have to add them in groups of 20. (Even
with hundreds of keys running this every minute does not cause performance problems.)

Chaining (Replication)
Now that we have a properly running Redis, it is time to put it into context. Lets create
chains of Redis instances.

Again, we designed this component to function without central oversight. We do not
want to introduce yet another server that can fail.

We do, however, need central administration. For this we turn to SimpleDB and Route
53. We will use SimpleDB to administer the chain, and Route 53 to identify the different
parts of the chain.

Lets start with join.py, which is called right after the Redis daemon is launched:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License

Implementation | 99

along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, json

from cluster import Cluster
from host import Host
from route53 import Route53Zone

from events import Events

your amazon keys
key = os.environ['EC2_KEY_ID']
access = os.environ['EC2_SECRET_KEY']

what is the domain to work with
name = os.environ['REDIS_NAME'].strip()
zone_name = os.environ['HOSTED_ZONE_NAME']
zone_id = os.environ['HOSTED_ZONE_ID']

the name (and identity) of the cluster (the master)
cluster = "{0}.{1}".format(name, zone_name.rstrip('.'))

get/create the cluster environment
cluster = Cluster(key, access, cluster)
r53_zone = Route53Zone(key, access, zone_id)
ec2 = EC2(key, access)

events = Events(key, access, cluster.name())
host = Host(cluster.name(), events)
node = host.get_node()
endpoint = host.get_endpoint()
component = os.path.basename(sys.argv[0])
def log(message, logging='info'):
 events.log(node, component, message, logging)

if __name__ == '__main__':
 log('joining the cluster', 'info')

 log('adding the node to the cluster', 'info')
 # now we are ready to be (added to) the cluster
 cluster.add_node(node, endpoint)
 log('creating a Route53 records', 'info')
 r53_zone.create_record(node, endpoint)
 log('setting the tag', 'info')
 ec2.set_tag(node)

 log('getting the master of the node', 'info')
 master = cluster.get_master(node)
 # if we don't have a master, we ARE the master
 if master == None:
 log('setting the main Route53 record for the cluster', 'info')
 r53_zone.update_record(cluster.name(), endpoint)

100 | Chapter 8: Redis

 # and make sure we 'run' correctly (no-slave, well-monitored)
 log('set the host to run as master', 'info')
 host.set_master()
 else:
 # attach to the master (and start watching its availability)
 log('set the host to run as slave of {0}'.format(master), 'info')
 host.set_master(master)

 log('joined the cluster', 'info')

join.py organizes the joining process; the actual slaving is done in host.py:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, time, json, hashlib
import boto.utils, redis

from events import Events

#
REDIS HOST
#
...
#
class Host:
 def __init__(self, cluster, events=None):
 self.endpoint = boto.utils.get_instance_metadata()['public-hostname']
 self.userdata = json.loads(boto.utils.get_instance_userdata())

 self.cluster = cluster
 self.id = hashlib.md5(self.endpoint).hexdigest()[:8]
 self.node = "{0}.{1}".format(self.id, self.cluster)
 self.master = None

 self.redis = redis.StrictRedis(host="localhost", port=6379)
 self.events = events

Implementation | 101

 def __log(self, message, logging='warning'):
 try:
 self.events.log(self.node, 'Host', message, logging)
 except:
 print "probably no 'events' object supplied"

 def get_node(self):
 self.__log('get_node', 'info')
 return self.node

 def get_endpoint(self):
 self.__log('get_endpoint', 'info')
 return self.endpoint

 def get_master(self):
 self.__log('get_master', 'info')
 return self.master

 def set_master(self, master=None):
 self.__log('set_master: {0}'.format(master), 'info')
 self.master = master
 try:
 os.system("/usr/bin/monit monitor redis")
 if None == master:
 try:
 self.__log('slaveof()', 'info')
 self.redis.slaveof()
 finally:
 self.__log('monit unmonitor initializing', 'info')
 os.system("/usr/bin/monit unmonitor initializing")

 self.__log('monit unmonitor slave', 'info')
 os.system("/usr/bin/monit unmonitor slave")
 else:
 try:
 self.__log('slaveof({0})'.format(master), 'info')
 while True:
 try:
 self.redis.slaveof(master, 6379)
 self.__log('master now: ({0})'.format(master),
'info')
 break
 except Exception as e:
 self.__log(e, 'error')
 if str(e) == "Redis is loading data into memory":
 self.__log('retrying slaveof, in a sec', 'info')
 time.sleep(1)
 else:
 self.__log('different error', 'info')
 raise e
 finally:

102 | Chapter 8: Redis

 self.__log('monit monitor initializing', 'info')
 os.system("/usr/bin/monit monitor initializing")

 self.__log('monit monitor slave', 'info')
 os.system("/usr/bin/monit monitor slave")
 except Exception as e:
 self.__log(e, 'error')

if __name__ == '__main__':
 # easy testing, use like this (requires environment variables)
 # python host.py set_master cluster 2c922342a.cluster
 host = Host(sys.argv[2])
 print getattr(host, sys.argv[1])(*sys.argv[3:])

The state of Redis is important. With bigger data sets we have to patiently wait until the
Redis daemon is ready for us.

Also, note that we manage monit from this place. We use monit for health and failover,
so it is important that monit state is up-to-date and reflects the current state of Redis.

There is one more thing. With large data sets Redis wants to commit to a large chunk
of memory. Sometimes this is actually too large to fit, and you will get complaints from
a kernel (in our case Linux). To mitigate this in Linux you can do something like this:

echo 1 > /proc/sys/vm/overcommit_memory

SimpleDB

Managing the state of the Redis chain (cluster) we have to keep track of the following:

head
Entry point for almost everything

nodes
With master and slave, so we can follow the chain easily

tail

New nodes can just use slaveof(tail)

If your client supports reading from slaves:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

Implementation | 103

GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, json, hashlib

from urllib2 import urlopen
from time import gmtime,strftime

from boto.sdb.connection import SDBConnection
from boto.sdb.regioninfo import RegionInfo

class Cluster:
 def __init__(self, key, access, cluster):
 userdata = json.loads(boto.utils.get_instance_userdata())
 metadata = boto.utils.get_instance_metadata()

 public_hostname = userdata['hostname']
 zone = userdata['availability-zone']
 region = zone[:-1]

 #us-east-1 breaks the convention. See http://docs.amazonwebservices.com/
general/latest/gr/rande.html#sdb_region
 endpoint = "sdb.{0}.amazonaws.com".format(region) if region != "us-
east-1" \
 else "sdb.amazonaws.com"
 region_info = RegionInfo(name=region, endpoint=endpoint)

 sdb = SDBConnection(key, access, region=region_info)

 self.domain = sdb.create_domain(cluster)

 self.metadata = self.domain.get_item('metadata', consistent_read=True)
 if None == self.metadata:
 self.metadata = self.domain.new_item('metadata')

 self.metadata.add_value('master', '')
 self.metadata.add_value('slave', '')
 self.metadata.save()

 def name(self):
 return self.domain.name

 def add_node(self, node, endpoint):
 try:
 head = self.metadata['master']
 except:
 head = ""

104 | Chapter 8: Redis

 try:
 tail = self.metadata['slave']
 except:
 tail = ""

 # create a new node, always added to the tail
 new = self.domain.new_item(node)
 new.add_value('endpoint', endpoint)

 try:
 if head == tail == "":
 # we are empty; a cluster of one
 self.metadata['master'] = self.metadata['slave'] = node
 else:
 # now, we extend, by adding a new tail
 self.metadata['slave'] = node

 self.domain.put_attributes(node, {'master': head})
 self.domain.put_attributes(tail, {'slave': node})

 new.add_value('master', tail)

 self.metadata.save()
 new.save()
 return True
 except:
 # head or tail (perhaps both) are None?
 pass

 return False

 def delete_node(self, node):
 head = self.metadata['master']
 tail = self.metadata['slave']

 item = self.domain.get_item(node, True)

 if None != item:
 # we have to be careful, node might be head or tail
 if node == head == tail:
 self.metadata['master'] = None
 self.metadata['slave'] = None
 elif node == tail:
 master = self.get_master(node)
 self.metadata['slave'] = master
 self.domain.delete_attributes(master, ['slave'])
 elif node == head:
 slave = self.get_slave(node)
 self.metadata['master'] = slave
 self.domain.delete_attributes(slave, ['master'])
 else:
 master = self.get_master(node)

Implementation | 105

 slave = self.get_slave(node)

 self.domain.put_attributes(master, {'slave': slave})
 self.domain.put_attributes(slave, {'master': master})

 item.delete()
 self.metadata.save()
 return True
 else:
 return False

 # blaming can be done in case of loss of connection. if a slave
 # looses connection, it can blame its master, and start searching for
 # a new master (or become THE master).
 def incarcerate_node(self, node):
 head = self.metadata['master']
 tail = self.metadata['slave']

 item = self.domain.get_item(node, True)

 if None != item:
 # we have to be careful, node might be head or tail
 if node == head == tail:
 self.metadata['master'] = None
 self.metadata['slave'] = None
 elif node == tail:
 master = self.get_master(node)
 self.metadata['slave'] = master
 self.domain.delete_attributes(master, ['slave'])
 elif node == head:
 slave = self.get_slave(node)
 self.metadata['master'] = slave
 self.domain.delete_attributes(slave, ['master'])
 else:
 master = self.get_master(node)
 slave = self.get_slave(node)

 self.domain.put_attributes(master, {'slave': slave})
 self.domain.put_attributes(slave, {'master': master})

 self.domain.delete_attributes(node, ['master'])
 self.domain.delete_attributes(node, ['slave'])
 self.metadata.save()

 return True
 else:
 return False

 def exists(self, node):
 return (self.domain.get_item(node, True) != None)

 def get_endpoint(self, node):

106 | Chapter 8: Redis

 try:
 return self.domain.get_item(node, True)['endpoint']
 except:
 return None

 def get_master(self, node=None):
 if node == None or node == "":
 return self.metadata['master']

 try:
 return self.domain.get_item(node, True)['master']
 except:
 return None

 def get_slave(self, node=None):
 if node == None or node == "":
 return self.metadata['slave']

 try:
 return self.domain.get_item(node, True)['slave']
 except:
 return None

 def size(self):
 select = "select count(*) from `{0}` where itemName() like '%.{0}'".for
mat(self.domain.name)
 return int(self.domain.select(select, consistent_read=True).next()
['Count'])

 def check_integrity(self, cluster):
 pass

if __name__ == '__main__':
 key = os.environ['EC2_KEY_ID']
 access = os.environ['EC2_SECRET_KEY']

 # easy testing, use like this (requires environment variables)
 # python cluster.py get_master cluster 2c922342a.cluster
 cluster = Cluster(key, access, sys.argv[2])
 print getattr(cluster, sys.argv[1])(*sys.argv[3:])

Redis cluster

Our cluster has one topology at the moment. We’ll implement the cluster as a chain. The
advantage of this is that the nodes are relatively independent. If a node is lost, it will be
picked up by the slave, which moves itself up a place in the chain. Another advantage is
that the slaves might lag, but the lag is always relative. Moving up is no problem; adding
slaves is done at the tail.

Implementation | 107

The cluster’s structure is managed in SimpleDB and made accessible using Route 53.

The head of the chain is the mydomain.com and the tail is accessible through tail.my

domain.com. Every individual node has a unique FQDN like 4821541d.mydomain.com.

If your client supports reading from slaves, you can add support for getting them here.
We didn’t, as our apps do not need or support this (yet).

Route 53

Route 53 basically follows SimpleDB:

head
Takes the name of the Redis cluster

nodes
Every node has its unique, identifiable hostname

We don’t need to get to tail from our apps, so we can skip keeping track of that in
Route 53.

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, platform
import json

from boto.route53.connection import Route53Connection
from boto.route53.record import ResourceRecordSets

class Route53Zone:
 def __init__(self, key, access, zone_id):
 self.zone_id = zone_id
 self.route53 = Route53Connection(key, access)

 def create_record(self, name, value):
 changes = ResourceRecordSets(self.route53, self.zone_id)

 change = changes.add_change("CREATE", name + ".", "CNAME", 60)

108 | Chapter 8: Redis

 change.add_value(value)
 changes.commit()

 def update_record(self, name, value):
 changes = ResourceRecordSets(self.route53, self.zone_id)

 sets = self.route53.get_all_rrsets(self.zone_id, None)
 for rset in sets:
 if rset.name == name + ".":
 previous_value = rset.resource_records[0]

 change = changes.add_change("DELETE", name + ".", "CNAME", 60)
 change.add_value(previous_value)

 change = changes.add_change("CREATE", name + ".", "CNAME", 60)
 change.add_value(value)
 changes.commit()

 def delete_record(self, name):
 changes = ResourceRecordSets(self.route53, self.zone_id)

 value = None
 sets = self.route53.get_all_rrsets(self.zone_id, None)
 for rset in sets:
 if rset.name == name + ".":
 value = rset.resource_records[0]

 if value != None:
 change = changes.add_change("DELETE", name + ".", "CNAME", 60)
 change.add_value(value)
 changes.commit()

if __name__ == '__main__':
 # easy testing, use like this (requires environment variables)
 # python route53.py create_record key access id name value
 r53_zone = Route53Zone(sys.argv[2], sys.argv[3], sys.argv[4])
 print getattr(r53_zone, sys.argv[1])(*sys.argv[5:])

Failover

Failover in our cluster setup is managed by the slave. We know that every master has
zero or one slave. And that a slave always has a master.

So, as a slave we monitor the master. If the master goes down we’ll remove it, and we

make ourselves slave of our grandmaster. Or, we assume head position and slaveof(no

one).

 # add this to the main monit with 'include <path>/redis.monitrc'

 # always check the local redis
 check process redis with pidfile /var/run/redis/redis.pid
 start program = "/etc/init.d/redis start"

Implementation | 109

 stop program = "/etc/init.d/redis stop"
 if failed port 6379 for 3 times within 5 cycles then restart
 group redis

 set expectbuffer 2 kb
 check host slave with address localhost
 if failed host localhost port 6379
 send "PING\r\nINFO\r\n" expect "role:slave"
 send "PING\r\nINFO\r\n" expect "master_link_status:up"
 3 cycles
 then exec "/root/ReDiS/remaster.sh"

 check file initializing with path /var/run/redis/slave
 if does not exist then exec "/root/ReDiS/reslave.sh"
 else if succeeded then unmonitor

If a slave has to restore from a master with a sizable dataset it might take a while. Until
it has caught up it is not fit to assume a master role, as it does not represent a valid slave.

We use reslave.py for this:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, redis

from cluster import Cluster
from host import Host
from route53 import Route53Zone

from events import Events

your amazon keys
key = os.environ['EC2_KEY_ID']
access = os.environ['EC2_SECRET_KEY']

what is the domain to work with
name = os.environ['REDIS_NAME'].strip()
zone_name = os.environ['HOSTED_ZONE_NAME'].rstrip('.')

110 | Chapter 8: Redis

zone_id = os.environ['HOSTED_ZONE_ID']

the name (and identity) of the cluster (the master)
cluster = "{0}.{1}".format(name, zone_name)

get/create the cluster environment
cluster = Cluster(key, access, cluster)

events = Events(key, access, cluster.name())
host = Host(cluster.name(), events)
node = host.get_node()
endpoint = host.get_endpoint()
component = os.path.basename(sys.argv[0])
def log(message, logging='info'):
 events.log(node, component, message, logging)

r = redis.StrictRedis(host='localhost', port=6379)

if __name__ == '__main__':
 try:
 log('get Redis INFO', 'info')
 info = r.info()

 log('get the link_status', 'info')
 if 'master_link_status' in info:
 log('determine if our master is up', 'info')
 if info['master_link_status'] == "up":
 log('master is up: touch the slave', 'info')
 os.system('/bin/touch /var/run/redis/slave')

 except Exception as e:
 log('no redis yet?', 'info')

The main part of failover is done in remaster.py:

Copyright (C) 2011, 2012 9apps B.V.
#
This file is part of Redis for AWS.
#
Redis for AWS is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Redis for AWS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with Redis for AWS. If not, see <http://www.gnu.org/licenses/>.

import os, sys, redis

Implementation | 111

from cluster import Cluster
from host import Host
from route53 import Route53Zone

from events import Events

your amazon keys
key = os.environ['EC2_KEY_ID']
access = os.environ['EC2_SECRET_KEY']

what is the domain to work with
name = os.environ['REDIS_NAME'].strip()
zone_name = os.environ['HOSTED_ZONE_NAME'].rstrip('.')
zone_id = os.environ['HOSTED_ZONE_ID']

the name (and identity) of the cluster (the master)
cluster = "{0}.{1}".format(name, zone_name)

get/create the cluster environment
cluster = Cluster(key, access, cluster)
r53_zone = Route53Zone(key, access, zone_id)

events = Events(key, access, cluster.name())
host = Host(cluster.name(), events)
node = host.get_node()
endpoint = host.get_endpoint()
component = os.path.basename(sys.argv[0])
def log(message, logging='info'):
 events.log(node, component, message, logging)

r = redis.StrictRedis(host='localhost', port=6379)

if __name__ == '__main__':
 # make sure we get the redis master, perhaps our master is already gone
 # from the cluster
 try:
 log('get Redis INFO', 'info')
 info = r.info()
 log('get the link_status', 'info')
 link_status = info['master_link_status']

 log('determine if our master is up', 'info')
 if link_status != "up":
 log('how long are we down?', 'info')
 link_down_since_seconds = info['master_link_down_since_seconds']
 master_sync_in_progress = info['master_sync_in_progress']

 # if not syncing, and link down longer than 30s
 down = ((master_sync_in_progress == 0) and
 (link_down_since_seconds > 30))
 else:

112 | Chapter 8: Redis

 down = False

 except Exception as e:
 log('master are down, or we were master, in any case we should not be
here ', 'info')
 down = True

 if down:
 log('down: find a new master!', 'info')
 try:
 master = r.info()['master_host']
 log("master: {0}".format(master), 'info')
 if cluster.exists(master):
 grandmaster = cluster.get_master(master)
 log("{0} = cluster.get_master({1})".format(grandmaster, mas
ter), 'info')

 # and make sure the master doesn't participate anymore
 cluster.incarcerate_node(master)
 log("cluster.incarcerate_node({0})".format(master), 'info')
 else:
 grandmaster = cluster.get_master(node)
 log("{0} = cluster.get_master({1})".format(grandmaster, node),
'info')
 except:
 log('we never were a slave', 'info')
 grandmaster = None

 if grandmaster == None:
 r53_zone.update_record(cluster.name(), endpoint)
 log("r53_zone.update_record({0}, {1})".format(cluster.name(), end
point), 'info')
 host.set_master()
 log("host.set_master()", 'info')
 else:
 host.set_master(grandmaster)
 log("host.set_master({0})".format(grandmaster), 'info')
 else:
 log("master is up (and running)", 'info')

In Practice
Redis is interesting, but in practice you have to be very gentle with it. Large datasets are
difficult to handle, as slaving takes quite some time (because there is no incremental

slaveof).

In Practice | 113

Also, as we mentioned before, we have dropped persistence altogether in high traffic
environments. We rely instead on replication and failover.

With this setup we can easily scale up. We rotate a Redis cluster one by one, relying on
the failover mechanism we have just built. This is also a good test of whether the appli‐
cation handles these failovers gracefully or whether it comes grindingly to a halt.

114 | Chapter 8: Redis

CHAPTER 9

Logstash

Managing logs is difficult. It gets even more complicated when your infrastructure is
bigger. And, making it dynamic (changing instances, all the time) doesn’t help at all.

You have commercial services like Splunk and Loggly, but they can get very expensive,
very quickly. We would prefer to run it ourselves, providing that the following are true:

• We can design this to be reliable.

• It has a small footprint for log shipping.

• It comes with out of the box interface for reading (analyzing).

• It is scalable.

Logstash calls itself a log management solution. You can collect events, parse them (add
meaning), search, and store them. Logstash can be easily decoupled, and run in a setup
(see Figure 9-1).

The base setup should be able to handle several hundred events per second. The shippers
have a small footprint. The reader (and interface) run on high CPU medium. For the
elasticsearch (powering the interface) we’ll use two high memory medium instances.

Build
Logstash works with input, filter, and output definitions. Most of the time shippers

read from file (input), do not filter very much, and write out to a middleware message

bus (output). Logstash comes with many plug-ins.

The default isolated message bus is RabbitMQ; you can also use Redis, but we want to
use SQS, of course.

115

http://logstash.net/

Figure 9-1. Logstash distributed logging

The latest logstash.jar comes with the AWS SDK. This means we do not have to build a
custom jar anymore.

Shipper
The shipper reads from file and writes to SQS. A typical shipper configuration looks
like this:

input {
 file {
 type => "linux-syslog"

 # Wildcards work, here :)
 path => ["/var/log/*.log", "/var/log/messages", "/var/log/syslog"]
 }

 file {
 type => "nginx-access"
 path => "/var/log/nginx/access.log"
 }

116 | Chapter 9: Logstash

 file {
 type => "nginx-error"
 path => "/var/log/nginx/error.log"
 }

 file {
 type => "fashiolista"
 path => "/var/log/fashiolista/*.log"
 }
}

output {
 # Emit events to stdout for easy debugging of what is going through
 # logstash.
 stdout { }

 sqs {
 access_key_id => ""
 secret_access_key => ""
 name => ""
 endpoint => "sqs.us-east-1.amazonaws.com"
 }
}

Output Plug-in
require "logstash/outputs/base"
require "logstash/namespace"

require 'aws-sdk'

class LogStash::Outputs::SQS < LogStash::Outputs::Base
 config_name "sqs"
 plugin_status "beta"

 config :access_key_id, :validate => :string, :required => true
 config :secret_access_key, :validate => :string, :required => true
 config :name, :validate => :string, :required => true
 config :endpoint, :validate => :string, :required => true,
 :default => 'sqs.eu-west-1.amazonaws.com'

 public
 def register
 # if you work with IAM, allow sqs:* on only this queue
 # aws-sdk appears to be pretty particular in their understanding
 # of IAM in combination with SQS (see iam.sqs.policy)
 @queue = create()
 end # def register

 public
 def receive(event)
 return unless output?(event)

Shipper | 117

 @queue.send_message(event.to_json)
 rescue
 # create (if not exists), but wait for 60s first
 sleep(60)
 @queue.send_message(event.to_json)
 end # def receive

 private
 def create()
 sqs = AWS::SQS.new(
 :access_key_id => @access_key_id,
 :secret_access_key => @secret_access_key,
 :sqs_endpoint => @endpoint)

 sqs.queues.create(@name)
 end
end # class LogStash::Outputs::SQS

Reader
The reader does most of the heavy lifting. It needs to keep the queues empty, parse them,
and add them to elasticsearch. You want to keep your logs forever, and you even want
the reader to store your logs on disk.

Spot instances
The reader is relatively fault tolerant. We expose it using ELB, and data
is persisted in SQS and elasticsearch. We could run this as a Spot In‐
stance. Perhaps we could even choose our bid price to reflect office
hours, as logstash might not be required outside of office hours.

This is a typical reader configuration:

input {
 sqs {
 type => "sqs"
 access_key_id => ""
 secret_access_key => ""
 name => "logstash-django-rawlogs"
 endpoint => "sqs.eu-west-1.amazonaws.com"
 }
}

filter {
 grok {
 type => "nginx"
 tags => ["access"]

118 | Chapter 9: Logstash

 patterns_dir => "/usr/local/logstash/patterns"
 pattern => "%{HOST:servername} %{IP:clientip} (?:%{HOST:clienthost}|-) (?:%
{USER:clientuser}|-) \[%{HTTPDATE:time}\] \"(?:%{WORD:verb} %{URIPATHPARAM:re
quest} HTTP/%{NUMBER:httpversion}|%{DATA:unparsedrq})\" %{NUMBER:response} (?:%
{NUMBER:bytes}|-) (?:%{QUOTEDSTRING:httpreferrer}|-) (?:%
{QUOTEDSTRING:httpuseragent}|-) (?:%{NUMBER:cookieid}|-) \"%{NUMBER:reques
ttime} (?:%{NUMBER:upstreamresponsetime}(: %{NUMBER})*|-)\""
 }

 mutate {
 convert => ["requesttime", "float"]
 }

 # collapse the stack traces
 multiline {
 type => "django"
 pattern => "^(|Traceback|AssertionError)"
 what => "previous"
 }
}

output {
 #stdout { }
 elasticsearch {
 cluster => "logstash.elasticsearch"
 host => "logstash.elasticsearch.goteam.be"
 port => 9300
 index => "logstash-%{+YYYY.MM.dd}"
 }
}

Input Plug-in
require 'json'

require "logstash/inputs/base"
require "logstash/namespace"

require 'aws-sdk'

java_import java.util.concurrent.Executors

class LogStash::Inputs::SQS < LogStash::Inputs::Base
 config_name "sqs"
 plugin_status "beta"

 config :access_key_id, :validate => :string, :required => true
 config :secret_access_key, :validate => :string, :required => true
 config :name, :validate => :string, :required => true
 config :endpoint, :validate => :string, :required => true,
 :default => 'sqs.eu-west-1.amazonaws.com'
 config :threads, :validate => :number, :default => 32

Reader | 119

 def initialize(*args)
 super(*args)
 @format ||= "json_event"
 end # def initialize

 public
 def register
 # if you work with IAM, allow sqs:* on only this queue
 # aws-sdk appears to be pretty particular in their understanding
 # of IAM in combination with SQS (see iam.sqs.policy)
 @queue = create()

 @pool = Executors.newFixedThreadPool(@threads)
 end # def register

 public
 def run(queue)
 @threads.times do
 @pool.submit do
 @queue.poll(:batch_size => 10) do |msg|
 queue << to_event(msg.body, msg.queue)
 end
 end
 end
 end # def run

 private
 def create()
 sqs = AWS::SQS.new(
 :access_key_id => @access_key_id,
 :secret_access_key => @secret_access_key,
 :sqs_endpoint => @endpoint)

 sqs.queues.create(@name)
 end
end # class LogStash::Inputs::SQS

Grok
This is one of the more powerful features of logstash. It uses Google Grok to parse an
event (a group of log lines) into fields. These fields are stored separately and make it
very easy to search or do other more complex operations.

It might take a while to get the hang of this, and it is quite tedious to build the more
complex Grok filters. But the results are very valuable.

Kibana
As an interface we use kibana. The main kibana page looks like this:

120 | Chapter 9: Logstash

https://github.com/rashidkpc/Kibana

You can quickly get particular distribution scores on the fields you have, standard or
added with your grok patterns.

Kibana | 121

Kibana exposes elasticsearch’s very powerful search features. You can create your queries
by hand or you can select the fields from the events.

122 | Chapter 9: Logstash

CHAPTER 10

Global (Content) Delivery

A global operation is a blessing in disguise. Some things are not easy to solve. But if you
do, you have the opportunity to achieve the next level of Resilience and Reliability.

AWS offers two services you can use for global delivery. It has CloudFront, their Content
Distribution Network, and it has Route 53, a global DNS network.

CloudFront
A full treatise of CloudFront is beyond the scope of this book. We use it in several
different ways.

We use CloudFront to expose objects in S3 buckets. This is easy, and it automatically
distributes the objects to multiple locations all around the world.

You can also use CloudFront on a Custom Origin. This basically means that you point
the CloudFront distribution to a site (which can be an S3 bucket), and then you can set

a default object, for example index.html, and you are good to go.

With the introduction of more caching flexibility it is quite feasible to have your dynamic
content pass through CloudFront as well. We do not do this very often yet.

(Live) Streaming
CloudFront has another remarkable feature, and that is streaming. The feature itself is
not that sophisticated, but it is offered at the same price as normal content delivery.

For live streaming there are several examples. But for the Concertgebouw (the concert
hall in Amsterdam) we had to do something else. One of the requirements was to stream
at multiple bit rates, dynamically chosen by client. And one other requirement was that
we had to deal with interlaced material coming in.

123

We will spare you the details, but the usual Flash Media Server setup was not sufficient.
The transcoding (transformation of one high quality stream into multiple streams of
different qualities) had to be moved to AWS as well.

So, we ended up adapting the Flash Media Server (FMS) streaming example. We added
a Wowza server for transcoding, feeding the streams automatically into FMS, which was
picked up by CloudFront.

Asynchronous transcoding
Our challenge is to transcode live. If you are tasked with transcoding
asynchronously you can use a different setup. You can use SQS (or SWF)
to produce/consume transcoding tasks. The consumers (the transcod‐
ers) can easily run on Spot Instances to reduce the cost.

Wowza

Wowza is like FMS—it doesn’t play nicely with CloudFront yet, but it does do a good
job of encoding. However, we had to make the whole setup very flexible. For two events
a month (to start with) it doesn’t make sense to have two very expensive machines
running around the clock.

The first thing we had to fix was automatically pushing the published streams to a
particular location. Wowza has a plug-in framework we used for that.

package com.videodock.wms.modules;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.MalformedURLException;
import java.net.URL;
import java.util.HashMap;
import java.util.Map;

import com.google.gson.Gson;
import com.wowza.wms.amf.AMFPacket;
import com.wowza.wms.application.IApplicationInstance;
import com.wowza.wms.logging.WMSLoggerFactory;
import com.wowza.wms.module.ModuleBase;
import com.wowza.wms.plugin.pushpublish.protocol.rtmp.PushPublisherRTMP;
import com.wowza.wms.stream.IMediaStream;
import com.wowza.wms.stream.IMediaStreamActionNotify2;

public class PushPublisher extends ModuleBase {
 Map<IMediaStream, PushPublisherRTMP> publishers = new HashMap<IMediaStream,
PushPublisherRTMP>();

124 | Chapter 10: Global (Content) Delivery

 class UserData {
 private String key;
 private String event;

 UserData() {
 // no-args constructor
 }

 public String getKey() {
 return key;
 }

 public void setKey(String key) {
 this.key = key;
 }

 public String getEvent() {
 return event;
 }

 public void setEvent(String event) {
 this.event = event;
 }
 }

 class StreamNotify implements IMediaStreamActionNotify2 {

 public void onPlay(IMediaStream stream, String streamName,
 double playStart, double playLen, int playReset) {
 }

 public void onPause(IMediaStream stream, boolean isPause,
 double location) {
 }

 public void onSeek(IMediaStream stream, double location) {
 }

 public void onStop(IMediaStream stream) {
 }

 public void onMetaData(IMediaStream stream, AMFPacket metaDataPacket) {
 }

 public void onPauseRaw(IMediaStream stream, boolean isPause,
 double location) {
 }

 public void onPublish(IMediaStream stream, String streamName,
 boolean isRecord, boolean isAppend) {
 if (stream.isTranscodeResult()) {

CloudFront | 125

 try {
 IApplicationInstance appInstance = stream.getStreams()
 .getAppInstance();

 synchronized (publishers) {
 PushPublisherRTMP publisher = new PushPublisherRTMP();

 // Source stream
 publisher.setAppInstance(appInstance);
 publisher.setSrcStreamName(streamName);

 // Destination stream
 publisher.setHostname(getEvent() + ".cgb.videodock.eu");
 publisher.setPort(1935);
 publisher.setDstApplicationName(appInstance
 .getApplication().getName());

 // setConnectionQueryString() does not appear to work.
 // appending it to the streamName like this gets
 // everything through to the other side (FMS)
 publisher.setConnectionQueryStr(stream.getQueryStr());

 String queryStr;
 if (stream.isTranscodeResult()) {
 String streamSrcName = stream.getName().substring(
 0, stream.getName().indexOf("_"));
 getLogger().error("Source Stream Name: " + stream
SrcName);

 IMediaStream streamSrc = stream.getStreams()
 .getStream(streamSrcName);
 if (!"".equals(streamSrc.getQueryStr())) {
 queryStr = streamName
 + "?"
 + streamSrc.getQueryStr().substring(
 streamSrc.getQueryStr()
 .indexOf("?") + 1,
 streamSrc.getQueryStr()
 .length());
 } else {
 queryStr = streamName;
 }
 getLogger().error(
 "Source Stream Query String: " + queryStr);
 } else {
 if (!"".equals(stream.getQueryStr())) {
 queryStr = streamName + "?"
 + stream.getQueryStr();
 } else {
 queryStr = streamName;
 }
 }

126 | Chapter 10: Global (Content) Delivery

 getLogger().error("queryString: " + queryStr);
 stream.getProperties().setProperty("queryString",
 queryStr);
 publisher.setDstStreamName(queryStr);
 stream.setQueryStr(queryStr);

 publisher
 .setConnectionFlashVerion(PushPublish
erRTMP.CURRENTFMLEVERSION);

 publisher.setSendFCPublish(true);
 publisher.setSendReleaseStream(true);
 publisher.setSendOnMetadata(true);
 publisher.setDebugLog(true);
 publisher.setDebugPackets(false);

 publisher.connect();
 publishers.put(stream, publisher);
 }
 } catch (Exception e) {
 WMSLoggerFactory.getLogger(null).error(
 "ModulePushPublishSimpleExample#StreamNotify.onPub
lish: "
 + e.toString());
 }
 }
 }

 public void onUnPublish(IMediaStream stream, String streamName,
 boolean isRecord, boolean isAppend) {
 stopPublisher(stream);
 }
 }

 public void stopPublisher(IMediaStream stream) {
 try {
 synchronized (publishers) {
 PushPublisherRTMP publisher = publishers.remove(stream);
 if (publisher != null) {
 publisher.disconnect();
 }
 }
 } catch (Exception e) {
 WMSLoggerFactory.getLogger(null).error(
 "ModulePushPublishSimpleExample#StreamNotify.onPublish: "
 + e.toString());
 }
 }

 public void onStreamCreate(IMediaStream stream) {
 stream.addClientListener(new StreamNotify());

CloudFront | 127

 }

 public void onStreamDestroy(IMediaStream stream) {
 stopPublisher(stream);
 }

 private String getEvent() {
 String event = "webcast";
 Gson gson = new Gson();

 try {
 // URL url = new URL("http://169.254.169.254/latest/user-data/");
 FileInputStream file = new FileInputStream(new File(
 "/etc/default/wowza.json"));

 // InputStream response = url.openStream();
 BufferedReader reader = new BufferedReader(new InputStreamReader(
 file));

 event = gson.fromJson(reader, UserData.class).getEvent();

 reader.close();
 } catch (MalformedURLException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 return event;
 }
}

CloudFormation
Because we will do one or two events per month at first, we want to have a very temporary
infrastructure. We will probably use it about 8 hours per event. The assets we run are
pretty big, m2.4xlarge and c1.xlarge. These machines costs several hundreds of dollars
per month.

We don’t see the benefit of CloudFormation often in our projects, but this is a good
example of where it is perfect. The CloudFormation template is an adapted version of
Adobe’s template for streaming with (FMS) and CloudFront.

In this template you can see several interesting things we can automate. You see the use
of Route53, for accessibility. You see the extensive use of userdata scripting, mainly
because we have to massage FMS into shape every time we launch. (We can’t make an
AMI from their instance.)

The resulting template will take a number of parameters. It will launch a Wowza instance
(we do m2.4xlarge). This instance will register itself with the supplied license key, get
some configuration files determining the transcoding scheme.

128 | Chapter 10: Global (Content) Delivery

Then it will launch the FMS, where we have to do several additional things as well. We

are not so happy with the default main.far which handles publishing and several other

things. So we remove that and add our own main.asc. And we create and provision an
event with configuration files from an S3 bucket.

{
 "AWSTemplateFormatVersion" : "2010-09-09",

 "Description" : "Create a Videodock Live Streaming Stack (Wowza & FMS)",

 "Parameters" : {
 "KeyName" : {
 "Description" : "Name of and existing EC2 KeyPair to enable SSH access to
the instances",
 "Default" : "cgb",
 "Type" : "String"
 },
 "LicenseKey" : {
 "Description" : "License key for Wowza media server",
 "Type" : "String",
 "Default" : "SVRD3-zn6Xb-bupeY-7TNmT-ZXhMm-4xABM",
 "NoEcho" : "true"
 },
 "EventName" : {
 "Description" : "Name the default event",
 "Type" : "String",
 "Default" : "webcast"
 },
 "StreamName" : {
 "Type" : "String",
 "Description" : "A short name for your live stream (no spaces allowed).
Default value is livestream.",
 "Default" : "livestream"
 },
 "WowzaInstanceType" : {
 "Type" : "String",
 "Description" : "The type of Amazon EC2 instance to launch.
Valid values are: m1.small, m1.medium, c1.medium, m1.large, m1.xlarge,
m2.xlarge, m2.2xlarge, m2.4xlarge, c1.xlarge, hi1.4xlarge.",
 "Default" : "m1.large",
 "AllowedValues" : ["m1.small","m1.medium","c1.medi
um","m1.large","m1.xlarge","m2.xlarge","m2.2xlarge","m2.4xlarge","c1.xlarge","hi
1.4xlarge"],
 "ConstraintDescription" : "must be a valid Amazon EC2 instance type."
 },
 "FMSAdminUsername" : {
 "Type" : "String",
 "Description" : "Enter a username you want to use for the Flash Media
Administration Console. Default value is admin.",
 "Default" : "admin"
 },
 "FMSAdminPassword" : {

CloudFront | 129

 "Type" : "String",
 "NoEcho" : "true",
 "MinLength" : "8",
 "MaxLength" : "40",
 "AllowedPattern" : "[a-zA-Z0-9]*",
 "Default" : "12345678",
 "Description" : "Enter an alphanumeric password (minimum 8
characters) you want to use for the Flash Media Administration Console.",
 "ConstraintDescription" : "must contain only alphanumeric characters
and minimum 8 characters."
 },
 "FMSInstanceType" : {
 "Type" : "String",
 "Description" : "The type of Amazon EC2 instance to launch.
Valid values are: m1.large, m1.xlarge, m2.xlarge, m2.2xlarge, m2.4xlarge,
c1.xlarge.",
 "Default" : "m1.large",
 "AllowedValues" : [
"m1.large","m1.xlarge","m2.xlarge","m2.2xlarge","m2.4xlarge","c1.xlarge"],
 "ConstraintDescription" : "must be a valid Amazon EC2 instance type."
 }
 },

 "Mappings" : {
 "WowzaRegionMap" : {
 "eu-west-1" : {
 "AMI" : "ami-2f57565b"
 }
 },
 "FMSRegionMap" : {
 "us-east-1" : { "AMI" : "ami-69f82600" },
 "us-west-2" : { "AMI" : "ami-c8de52f8" },
 "us-west-1" : { "AMI" : "ami-a3b7efe6" },
 "eu-west-1" : { "AMI" : "ami-dd073fa9" },
 "ap-southeast-1" : { "AMI" : "ami-904f08c2" },
 "ap-northeast-1" : { "AMI" : "ami-b06edfb1" },
 "sa-east-1" : { "AMI" : "ami-bebf61a3" }
 }
 },

 "Resources" : {
 "WowzaInstance" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "SecurityGroups" : [{ "Ref" : "WowzaSecurityGroup" }],
 "KeyName" : { "Ref" : "KeyName" },
 "ImageId" : { "Fn::FindInMap" : ["WowzaRegionMap", { "Ref" : "AWS::Re
gion" }, "AMI"]},
 "Monitoring" : "true",
 "InstanceType" : {"Ref" : "WowzaInstanceType"},
 "Tags" : [{
 "Key" : "Name",

130 | Chapter 10: Global (Content) Delivery

 "Value" : { "Fn::Join" : ["", ["wowza.", { "Ref" : "EventName" },
".cgb.videodock.eu"]]}
 }],
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash",
 "\n", "/bin/echo \"", { "Ref" : "LicenseKey" } , "\" > /usr/local/
WowzaMediaServer/conf/Server.license",
 "\n",
 "\n", "/usr/bin/curl --silent \\",
 "\n", " https://s3-eu-west-1.amazonaws.com/cgb.videodock.eu/
wowza/", { "Ref" : "EventName" }, "/transcoder/templates/transrate.xml > \\",
 "\n", " /usr/local/WowzaMediaServer/transcoder/templates/trans
rate.xml",
 "\n", "/usr/bin/curl --silent \\",
 "\n", " https://s3-eu-west-1.amazonaws.com/cgb.videodock.eu/
wowza/", { "Ref" : "EventName" }, "/conf/livepkgr/Application.xml > \\",
 "\n", " /usr/local/WowzaMediaServer/conf/livepkgr/Applica
tion.xml",
 "\n", "/bin/cat > /etc/default/wowza.json <<EOFF",
 "\n", "{",
 "\n", " \"event\" : \"", { "Ref" : "EventName" }, "\",",
 "\n", " \"key\" : \"", { "Ref" : "LicenseKey" } , "\"",
 "\n", "}",
 "\n", "EOFF",
 "\n", "sleep 15 && /etc/init.d/WowzaMediaServer start"
]] } }
 }
 },

 "WowzaSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Security group for the Wowza media server",
 "SecurityGroupIngress" : [
 {"IpProtocol" : "tcp", "FromPort" : "22", "ToPort" : "22", "Ci
drIp" : "0.0.0.0/0"},
 {"IpProtocol" : "tcp", "FromPort" : "80", "ToPort" : "80", "Ci
drIp" : "0.0.0.0/0"},
 {"IpProtocol" : "tcp", "FromPort" : "1111", "ToPort" : "1111", "Ci
drIp" : "0.0.0.0/0"},
 {"IpProtocol" : "tcp", "FromPort" : "1935", "ToPort" : "1935", "Ci
drIp" : "0.0.0.0/0"},
 {"IpProtocol" : "udp", "FromPort" : "1935", "ToPort" : "1935", "Ci
drIp" : "0.0.0.0/0"}
]
 }
 },
 "WowzaDNSRecord" : {
 "Type" : "AWS::Route53::RecordSet",
 "Properties" : {
 "HostedZoneName" : "cgb.videodock.eu.",
 "Comment" : "Wowza streaming entry point.",

CloudFront | 131

 "Name" : { "Fn::Join" : ["", ["wowza.", { "Ref" : "EventName" },
".cgb.videodock.eu"]]},
 "Type" : "CNAME",
 "TTL" : "60",
 "ResourceRecords" : [
 {"Fn::GetAtt":["WowzaInstance","PublicDnsName"]}
]
 }
 },

 "LiveStreamingDistribution" : {
 "Type" : "AWS::CloudFront::Distribution",
 "Properties" : {
 "DistributionConfig" : {
 "CustomOrigin" : {
 "DNSName" : { "Fn::GetAtt" : ["FMSOriginServ
er", "PublicDnsName"] },
 "HTTPPort" : "80",
 "HTTPSPort" : "443",
 "OriginProtocolPolicy" : "http-only"
 },
 "Enabled" : "true",
 "Logging" : {
 "Bucket" : "logs.cgb.videodock.eu.s3.amazonaws.com",
 "Prefix" : { "Ref" : "EventName" }
 },
 "CNAMEs" : [{ "Fn::Join" : ["", ["cdn.", { "Ref" : "Even
tName" }, ".cgb.videodock.eu"]]}],
 "Comment" : "Live HTTP Streaming"
 }

 }
 },

 "FMSOriginServer" : {
 "Type" : "AWS::EC2::Instance",
 "Properties" : {
 "SecurityGroups" : [{ "Ref" : "FMSOriginServerSecurityGroup" }],
 "KeyName" : { "Ref" : "KeyName" },
 "ImageId" : { "Fn::FindInMap" : ["FMSRegionMap", { "Ref" :
"AWS::Region" }, "AMI"]},
 "Monitoring" : "true",
 "InstanceType" : {"Ref" : "FMSInstanceType"},
 "Tags" : [{
 "Key" : "Name",
 "Value" : { "Fn::Join" : ["", [{ "Ref" : "EventName" },
".cgb.videodock.eu"]]}
 }],
 "UserData" : { "Fn::Base64" : { "Fn::Join" : ["", [
 "#!/bin/bash",
 "\n", "sed -i \"s/^SERVER.ADMIN_USERNAME.*=/SERVER.ADMIN_USER
NAME = ", { "Ref" : "FMSAdminUsername" },"/\" /opt/adobe/fms/conf/fms.ini",

132 | Chapter 10: Global (Content) Delivery

 "\n", "sed -i \"s/^SERVER.ADMINSERVER_HOSTPORT.*=/SERVER.ADMIN
SERVER_HOSTPORT = :1111/\" /opt/adobe/fms/conf/fms.ini",
 "\n", "chown fmsuser:fmsgroup /opt/adobe/fms/conf/fms.ini",
 "\n", "/opt/adobe/fms/fmsmgr adminserver stop",
 "\n", "echo \"", { "Ref" : "FMSAdminPassword" },"\" | /opt/
adobe/fms/fmsadmin -console -user ", { "Ref" : "FMSAdminUsername" },
 "\n", "/opt/adobe/fms/fmsmgr adminserver start",
 "\n", "cat > /mnt/webroot/crossdomain.xml <<EOFF",
 "\n", "<?xml version=\"1.0\"?>",
 "\n", " <cross-domain-policy>",
 "\n", " <site-control permitted-cross-domain-policies=\"master-
only\" />",
 "\n", " <allow-access-from domain=\"*.osmf.org\" />",
 "\n", " <allow-access-from domain=\"*.adobe.com\" />",
 "\n", " <allow-access-from domain=\"*.macromedia.com\" />",
 "\n", " <allow-access-from domain=\"*.videodock.com\" />",
 "\n", "</cross-domain-policy>",
 "\n", "EOFF",
 "\n", "chown fmsuser:fmsgroup /mnt/webroot/crossdomain.xml",
 "\n", "rm /mnt/applications/livepkgr/main.far",
 "\n", "cat <<EOF > /mnt/applications/livepkgr/main.asc",
 "\n", "application.onAppStart = function()",
 "\n", "{",
 "\n", " trace(\"Application name: \" + applica
tion.name);",
 "\n", " trace(\"Server: \" + application.server);",
 "\n", " _clientId = 0;",
 "\n", " ",
 "\n", " application.s = new Array();",
 "\n", " application.a = new Array();",
 "\n", " application.v = new Array();",
 "\n", "}",
 "\n", "",
 "\n", "application.onStatus = function()",
 "\n", "{",
 "\n", " /*trace(\"There is an error in the code or
functionality.\");*/",
 "\n", "}",
 "\n", "",
 "\n", "application.onConnect = function(clientObj)",
 "\n", "{",
 "\n", " this.acceptConnection(clientObj);",
 "\n", "}",
 "\n", "",
 "\n", "Stream.prototype.trace = function(msg)",
 "\n", "{",
 "\n", " trace(this.type + \":\" + this.name + \" - \" +
msg);",
 "\n", "}",
 "\n", "",
 "\n", "application.onPublish = function(clientObj, stream
Obj)",

CloudFront | 133

 "\n", "{",
 "\n", " // a race can happen during republish. if
onPublish is called",
 "\n", " // before onUnpublish, we need to wait for
onUnpublish to",
 "\n", " // complete before calling onPublish for the new
stream.",
 "\n", " if (streamObj.publishing == true)",
 "\n", " {",
 "\n", " // onUnpublish has not been called yet",
 "\n", " //trace(\"Unpublish pending...\");",
 "\n", " streamObj.publishingClient = clientObj; //
save and call onPublish later",
 "\n", " return;",
 "\n", " }",
 "\n", " streamObj.publishing = true;",
 "\n", " trace(\"onPublish : \" + streamObj.name);",
 "\n", "",
 "\n", " var queryString = streamObj.publishQueryString;",
 "\n", " var liveEventName = streamObj.name;",
 "\n", " var audioStreamSrc = \"\";",
 "\n", " var audioStreamName = \"\";",
 "\n", " var videoStreamSrc = \"\";",
 "\n", " var videoStreamName = \"\";",
 "\n", " var recordMode = \"append\";",
 "\n", "",
 "\n", " //trace(\"queryString[\"+queryString+\"]
stream[\"+streamObj.name+\"]\");",
 "\n", " if (queryString == undefined || (queryString.lo
caleCompare(\"\") == 0)) {",
 "\n", " /* Did not find query string so use the
streamname as the event id */",
 "\n", " trace(\"Query string not specified. Using
StreamName[\"",
 "\n", " +liveEventName+\"] as eventname\");",
 "\n", " } else {",
 "\n", " /* Looking for name value pair adbe-live-
event in the query string. If specified, use event name based on it. Otherwise,
it is a single stream so you don't need to configure Event.xml and Manifest.xml
*/",
 "\n", " var nvpairs = new LoadVars();",
 "\n", " nvpairs.decode(queryString);",
 "\n", " for (var nv in nvpairs) {",
 "\n", " var nval = nvpairs[nv];",
 "\n", " /*trace(\"nv[\"+nv+\"]=val[\"+nval+\"]
\");*/",
 "\n", " if (nv.localeCompare(\"adbe-live-event
\")==0) {",
 "\n", " liveEventName = nval;",
 "\n", " /*trace(\"live event set to[\"+liveE
ventName+\"]\");*/",
 "\n", " }",

134 | Chapter 10: Global (Content) Delivery

 "\n", " else if (nv.localeCompare(\"adbe-audio-
stream-src\") == 0)",
 "\n", " {",
 "\n", " audioStreamSrc = nval;",
 "\n", " }",
 "\n", " else if (nv.localeCompare(\"adbe-audio-
stream-name\") == 0)",
 "\n", " {",
 "\n", " audioStreamName = nval;",
 "\n", " }",
 "\n", " else if (nv.localeCompare(\"adbe-video-
stream-src\") == 0)",
 "\n", " {",
 "\n", " videoStreamSrc = nval;",
 "\n", " }",
 "\n", " else if (nv.localeCompare(\"adbe-video-
stream-name\") == 0)",
 "\n", " {",
 "\n", " videoStreamName = nval;",
 "\n", " }",
 "\n", " else if (nv.localeCompare(\"adbe-record-
mode\") == 0)",
 "\n", " {",
 "\n", " recordMode = nval;",
 "\n", " }",
 "\n", " }",
 "\n", " }",
 "\n", "",
 "\n", " // exploring the object",
 "\n", " for(var p in streamObj)",
 "\n", "{",
 "\n", " trace(p + \": \" + streamObj[p]);",
 "\n", "}",
 "\n", "",
 "\n", " var s = Stream.get(\"f4f:\" + streamObj.name);",
 "\n", " if (s == undefined)",
 "\n", " return;",
 "\n", " ",
 "\n", " if ((s.liveEvent != undefined)&&(s.liveEvent !=
\"\")&&(s.liveEvent != liveEventName)) {",
 "\n", " trace(\"Rejecting publish from client:
\"+clientObj.ip +\" as stream: \"+streamObj.name+",
 "\n", " \" is already assigned to event:
[\"+s.liveEvent +\"]\");",
 "\n", "",
 "\n", " application.disconnect(clientObj);",
 "\n", " ",
 "\n", " return;",
 "\n", " }",
 "\n", "",
 "\n", " s.onStatus = function(info)",
 "\n", " {",

CloudFront | 135

 "\n", " this.trace(info.code);",
 "\n", " }",
 "\n", " ",
 "\n", " s.liveEvent = liveEventName;",
 "\n", " trace(\"Stream name is: \" + streamObj.name + \"
and live event is: \"+s.liveEvent);",
 "\n", " if (!s.record(recordMode))",
 "\n", " {",
 "\n", " s.trace(\"record failed.\");",
 "\n", " }",
 "\n", " ",
 "\n", " s.play(streamObj.name,-1,-1); ",
 "\n", " ",
 "\n", " ",
 "\n", " application.s[streamObj.name] = s;",
 "\n", " ",
 "\n", " // check if audio only stream is desired",
 "\n", " if (audioStreamName != \"\")",
 "\n", " {",
 "\n", " // if no stream src specified, use this
stream",
 "\n", " if (audioStreamSrc == \"\")",
 "\n", " {",
 "\n", " audioStreamSrc = streamObj.name;",
 "\n", " }",
 "\n", " ",
 "\n", " if (audioStreamSrc == streamObj.name)",
 "\n", " {",
 "\n", " //trace(\"Creating audio only stream \"
+ audioStreamName + \" from \" + audioStreamSrc);",
 "\n", " var a = Stream.get(\"f4f:\" + audioStream
Name);",
 "\n", " a.onStatus = function(info)",
 "\n", " {",
 "\n", " this.trace(info.code);",
 "\n", " }",
 "\n", " a.receiveAudio = true;",
 "\n", " a.receiveVideo = false;",
 "\n", " a.liveEvent = liveEventName;",
 "\n", " if (!a.record(recordMode))",
 "\n", " {",
 "\n", " a.trace(\"record failed.\");",
 "\n", " }",
 "\n", " ",
 "\n", " a.play(audioStreamSrc, -1, -1);",
 "\n", " application.a[streamObj.name] = a;",
 "\n", " ",
 "\n", " }",
 "\n", " }",
 "\n", " ",
 "\n", " // check if video only stream is desired",
 "\n", " if (videoStreamName != \"\")",

136 | Chapter 10: Global (Content) Delivery

 "\n", " {",
 "\n", " // if no stream src specified, use this
stream",
 "\n", " if (videoStreamSrc == \"\")",
 "\n", " {",
 "\n", " videoStreamSrc = streamObj.name;",
 "\n", " }",
 "\n", " ",
 "\n", " if (videoStreamSrc == streamObj.name)",
 "\n", " {",
 "\n", " trace(\"Creating video only stream \" +
videoStreamName + \" from \" + videoStreamSrc);",
 "\n", " var v = Stream.get(\"f4f:\" + videoStream
Name);",
 "\n", " v.onStatus = function(info)",
 "\n", " {",
 "\n", " this.trace(info.code);",
 "\n", " }",
 "\n", " v.receiveAudio = false;",
 "\n", " v.receiveVideo = true;",
 "\n", " v.liveEvent = liveEventName;",
 "\n", " if (!v.record(recordMode))",
 "\n", " {",
 "\n", " v.trace(\"record failed.\");",
 "\n", " ",
 "\n", " }",
 "\n", " v.play(videoStreamSrc, -1,
-1); ",
 "\n", " application.v[streamObj.name] = v;",
 "\n", " ",
 "\n", " }",
 "\n", " }",
 "\n", "}",
 "\n", "",
 "\n", "application.onUnpublish = function(clientObj, stream
Obj)",
 "\n", "{",
 "\n", " trace(\"onUnpublish : \" + streamObj.name);",
 "\n", " ",
 "\n", " var s = application.s[streamObj.name];",
 "\n", " trace(s);",
 "\n", " if (s && s!= undefined)",
 "\n", " {",
 "\n", " s.record(false);",
 "\n", " s.play(false);",
 "\n", " // trying to get FMS to remove objects (we
have problems",
 "\n", " // re-creating streams)",
 "\n", " s.clear();",
 "\n", " s.liveEvent = \"\";",
 "\n", " application.s[streamObj.name] = null;",
 "\n", " }",

CloudFront | 137

 "\n", " // is this the source for audio only stream?",
 "\n", " var a = application.a[streamObj.name];",
 "\n", " trace(a);",
 "\n", " if (a && a != undefined)",
 "\n", " {",
 "\n", " //trace(\"Removing audio only stream \" +
a.name + \" : source = \" + streamObj.name);",
 "\n", " a.record(false);",
 "\n", " a.play(false);",
 "\n", " a.liveEvent = \"\";",
 "\n", " application.a[streamObj.name] = null;",
 "\n", " }",
 "\n", " // is this the source for video only stream?",
 "\n", " var v = application.v[streamObj.name];",
 "\n", " trace(v);",
 "\n", " if (v && v != undefined)",
 "\n", " {",
 "\n", " //trace(\"Removing video only stream \" +
v.name + \" : source = \" + streamObj.name);",
 "\n", " v.record(false);",
 "\n", " v.play(false);",
 "\n", " v.liveEvent = \"\";",
 "\n", " application.v[streamObj.name] = null;",
 "\n", " }",
 "\n", "",
 "\n", " streamObj.publishing = false; ",
 "\n", " if (streamObj.publishingClient != undefined && ",
 "\n", " streamObj.publishingClient != null)",
 "\n", " {",
 "\n", " // onPublish was suspended pending comple
tion of onUnpublish",
 "\n", " // call it now.",
 "\n", " application.onPublish(streamObj.publishing
Client, streamObj);",
 "\n", " streamObj.publishingClient = null;",
 "\n", " }",
 "\n", "}",
 "\n", "",
 "\n", "/*",
 "\n", "* FCPublish :",
 "\n", "* FMLE calls FCPublish with the name of the stream
whenever a new stream ",
 "\n", "* is published. This notification can be used by
server-side action script",
 "\n", "* to maintain list of all streams or to force FMLE
to stop publishing.",
 "\n", "* To stop publishing, call \"onFCPublish\" with an
info object with status",
 "\n", "* code set to \"NetStream.Publish.BadName\".",
 "\n", "*/ ",
 "\n", "",
 "\n", "Client.prototype.FCPublish = function(streamname)",

138 | Chapter 10: Global (Content) Delivery

 "\n", "{",
 "\n", " trace(\"streamname: \" + streamname);",
 "\n", " ",
 "\n", " // setup your stream and check if you want to
allow this stream to be published",
 "\n", " if (true) // do some validation here",
 "\n", " { // this is optional.",
 "\n", " this.call(\"onFCPublish\", null, {code:
\"NetStream.Publish.Start\", description:streamname});",
 "\n", " }",
 "\n", " else",
 "\n", " {",
 "\n", " this.call(\"onFCPublish\", null, {code:
\"NetStream.Publish.BadName\", description:streamname});",
 "\n", " }",
 "\n", " ",
 "\n", "}",
 "\n", "",
 "\n", "/*",
 "\n", "* FCUnpublish :",
 "\n", "* FMLE notifies the server script when a stream is
unpublished.",
 "\n", "*/",
 "\n", "",
 "\n", "Client.prototype.FCUnpublish = function(stream
name)",
 "\n", "{",
 "\n", " // perform your clean up",
 "\n", " this.call(\"onFCUnpublish\", null, {code:\"Net
Stream.Unpublish.Success\", description:streamname});",
 "\n", "}",
 "\n", "",
 "\n", "/*",
 "\n", "* releaseStream :",
 "\n", "* When an FMLE connection to FMS drops during a
publishing session it",
 "\n", "* tries to republish the stream when the connection
is restored. On certain",
 "\n", "* occasions, FMS rejects the new stream because the
server is still ",
 "\n", "* unaware of the connection drop, sometimes this can
take a few minutes.",
 "\n", "* FMLE calls the \"releaseStream\" method with the
stream name and this can be",
 "\n", "* used to forcibly clear the stream.",
 "\n", "*/ ",
 "\n", "Client.prototype.releaseStream = function(stream
name)",
 "\n", "{",
 "\n", " var s = Stream.get(streamname);",
 "\n", " if (s) {",
 "\n", " s.play(false);",

CloudFront | 139

 "\n", " }",
 "\n", "}",
 "\n", "EOF",
 "\n", "",
 "\n", "mkdir -p /mnt/applications/livepkgr/events/_de
finst_/", { "Ref" : "EventName" },
 "\n", "curl --silent \\",
 "\n", " https://s3-eu-west-1.amazonaws.com/cgb.video
dock.eu/fms/applications/livepkgr/events/_definst_/", { "Ref" : "EventName" },
"/Manifest.xml | \\",
 "\n", " sed 's/streamname/", { "Ref" : "StreamName" },
"/' > \\",
 "\n", " /mnt/applications/livepkgr/events/_definst_/", {
"Ref" : "EventName" }, "/Manifest.xml",
 "\n", "curl --silent \\",
 "\n", " https://s3-eu-west-1.amazonaws.com/cgb.video
dock.eu/fms/applications/livepkgr/events/_definst_/", { "Ref" : "EventName" },
"/Event.xml | \\",
 "\n", " sed 's/eventname/", { "Ref" : "EventName" }, "/'
> \\",
 "\n", " /mnt/applications/livepkgr/events/_definst_/", {
"Ref" : "EventName" }, "/Event.xml",
 "\n", "/bin/chown fmsuser.fmsgroup -R /mnt/applications",
 "\n", "/opt/adobe/fms/fmsmgr server fms restart"
]] }}
 }
 },
 "FMSOriginServerSecurityGroup" : {
 "Type" : "AWS::EC2::SecurityGroup",
 "Properties" : {
 "GroupDescription" : "Security group for live HTTP streaming using
Amazon CloudFront",
 "SecurityGroupIngress" : [
 {"IpProtocol" : "tcp", "FromPort" : "22", "ToPort" : "22",
"CidrIp" : "0.0.0.0/0"},
 {"IpProtocol" : "tcp", "FromPort" : "80", "ToPort" : "80",
"CidrIp" : "0.0.0.0/0"},
 {"IpProtocol" : "tcp", "FromPort" : "1111", "ToPort" : "1111",
"CidrIp" : "0.0.0.0/0"},
 {"IpProtocol" : "tcp", "FromPort" : "1935", "ToPort" : "1935",
"CidrIp" : "0.0.0.0/0"},
 {"IpProtocol" : "udp", "FromPort" : "1935", "ToPort" : "1935",
"CidrIp" : "0.0.0.0/0"}
]
 }
 },
 "FMSDNSRecord" : {
 "Type" : "AWS::Route53::RecordSet",
 "Properties" : {
 "HostedZoneName" : "cgb.videodock.eu.",
 "Comment" : "FMS streaming entry point.",
 "Name" : { "Fn::Join" : ["", [{ "Ref" : "EventName" }, ".cgb.video

140 | Chapter 10: Global (Content) Delivery

dock.eu"]]},
 "Type" : "CNAME",
 "TTL" : "60",
 "ResourceRecords" : [
 {"Fn::GetAtt":["FMSOriginServer","PublicDnsName"]}
]
 }
 },
 "CDNDNSRecord" : {
 "Type" : "AWS::Route53::RecordSet",
 "Properties" : {
 "HostedZoneName" : "cgb.videodock.eu.",
 "Comment" : "FMS streaming entry point.",
 "Name" : { "Fn::Join" : ["", ["cdn.", { "Ref" : "EventName" },
".cgb.videodock.eu"]]},
 "Type" : "CNAME",
 "TTL" : "60",
 "ResourceRecords" : [
 {"Fn::GetAtt":["LiveStreamingDistribution","DomainName"]}
]
 }
 }
 },

 "Outputs" : {
 "WowzaHostname" : {
 "Description" : "Hostname (Route53) of the Wowza instance",
 "Value" : { "Ref" : "WowzaDNSRecord" }
 },
 "FMSHostname" : {
 "Description" : "Hostname (Route53) of the FMS instance",
 "Value" : { "Ref" : "FMSDNSRecord" }
 },
 "FMSURL" : {
 "Value" : { "Fn::Join" : ["", ["rtmp://", { "Ref" : "FMSDNSRecord" }, "/
livepkgr"]] },
 "Description" : "FMS 4.5 Server Stream Publishing Location"
 },
 "Stream" : {
 "Value" : { "Fn::Join" : ["", [{ "Ref" : "StreamName" }, "?adbe-live-
event=", { "Ref" : "EventName" }, ""]] },
 "Description" : "Stream Name"
 },
 "FlashMediaPlayback" : {
 "Value" : { "Fn::Join" : ["", ["http://www.osmf.org/configurator/
fmp/"]] },
 "Description" : "Flash Media Playback Setup"
 },
 "LiveHDSManifest" : {
 "Value" : { "Fn::Join" : ["", ["http://", { "Ref" : "CDNDNSRecord" }, "/
hds-live/livepkgr/_definst_/", { "Ref" : "EventName" }, ".f4m"]] },
 "Description" : "Live HDS Manifest"

CloudFront | 141

 },
 "LiveHLSManifest" : {
 "Value" : { "Fn::Join" : ["", ["http://", { "Ref" : "CDNDNSRecord" }, "/
hls-live/livepkgr/_definst_/", { "Ref" : "EventName" }, ".m3u8"]] },
 "Description" : "Live HLS Manifest"
 },
 "FMSServerAdminConsole" : {
 "Value" : { "Fn::Join" : ["", ["http://", { "Ref" : "FMSDNSRecord" }, "/
fms_adminConsole.htm"]] },
 "Description" : "FMS 4.5 Server"
 },
 "FMSAdminConsoleServerAddress" : {
 "Value" : { "Fn::Join" : ["", [{ "Ref" : "FMSDNSRecord" }, ":1111"]] },
 "Description" : "FMS Administration Console Server Address"
 }
 }
}

Orchestration

Wikipedia defines orchestration as follows
Orchestration is the study or practice of writing music for an orchestra
(or, more loosely, for any musical ensemble) or of adapting for orchestra
music composed for another medium. It only gradually over the course
of music history came to be regarded as a compositional art in itself.

The interesting thing about this definition is that it does not include performance. If we
talk about orchestration in a software system’s context we implicitly include the art of
conducting, or performing.

Tools like puppet and chef originate from a pre-Cloud era. They focus on automating
complex stack deployment, with numerous dependencies.

In the cloud you have other tools that can alleviate much of the pain that puppet/chef
style tools aim to take away. If you can make an AMI, installing software at deploy time
is not necessary anymore. Perhaps the only thing you want to do is to get the latest
version of your own software, most of the time from a repository like github.

Many of the systems we have described so far do not require a lot of handling before
they are up and running. Chef or puppet would be unnecessary overkill and would
introduce unwanted complexity that might do more harm than good.

142 | Chapter 10: Global (Content) Delivery

There is a class of problems that do require scripted orchestration. One example is the
occasional stack. If you have a large development team, with members joining/leaving
all the time, you can use CloudFormation plus Chef to spin up dev environments easily.
But if you have two streaming events per month it is not very cost-effective to have a
full platform all of the time.

CloudFormation (and/or Chef/Puppet) are not the easiest tools to use, especially if you
rely on them in your operation and your operation requires extensive testing. Unfortu‐
nately, there is no such thing as an AWS simulator (yet), so building solutions with
CloudFormation or tools like Chef or Puppet is quite time consuming. You can do the
math. If it all adds up, go and have fun.

Route 53
In early 2012 AWS introduced latency-based routing. With this feature you can tell Route
53 to route users (or devices) to the closest end point (in the sense of latency). You can
mix and match ELBs, EC2 instances, or A records across regions.

Moving your processing closer to the origin of the request makes sense for the origin,
especially if it is a human being waiting for a page to load, but it also helps you deal with
the loss of an entire Region.

Region gone missing
Missing Regions is not something that happened to our recollection.
What can happen is that certain key features are not accessible. If you
lose an instance and you can’t launch another, you lose the Region from
your point of view.

Global Database
Spanning an app across multiple Regions poses its own new set of problems. One of the
most difficult to solve is a global database. There is hardly a database that can handle
geographic dispersement at the continental level.

This is one area of innovation to watch—the development of simple and easy to set
datastores that can handle the intricacies of long distance relationships with their peers.

Spanner
Google has published a research paper on a technology they call Span‐
ner. This new database technology aims to solve global distribution of
data, while respecting certain database properties like consistency.

Route 53 | 143

http://bit.ly/T9LHpZ

CHAPTER 11

Conclusion

The general requirement of services in production is that most of the time they cannot
break. We are used to the general availability of services like Gmail that are always one.
We expect these services to be basically free and never break. This generally takes a lot
of time and effort.

In discussing the actual definition of cannot break it quickly becomes clear that small
interruptions are not a big problem. It is more important that it doesn’t happen all the
time, and that you can rely on the system to fix itself quickly. In other words the system
needs to be Reliable.

There are many factors that can cause harm to your system. It might be a lightning strike
causing power to be interrupted. Or it may be that you are nursing your newborn at
night and make a sleepy mistake. Systems can be designed to withstand these events;
they should be engineered for Resilience.

In this book we have shown how we usually design, build, and operate for Resilience

and Reliability on AWS. The overview we have given of this platform and of the way
we run our production is definitely not complete. And the examples are how we run our
stuff in production. If we have inspired you to build or improve your own systems, then
we have succeeded in what we set out to do.

There are certain aspects we have not touched on here. We did not overly focus on the
cost of infrastructures. A good infrastructure always utilizes the minimum number of
components. If you achieve this, applying principles like Reserved and Spot instances
is not difficult anymore.

We are struggling day in and day out to achieve the highest levels of quality, especially
in terms of Resilience and Reliability. We hope you can benefit from our struggles. May
your infrastructures improve every day!

145

About the Authors
Jurg van Vliet graduated from the University of Amsterdam in Computer Science. After
his internship with Philips Research, he worked for many web startups and media com‐
panies. Passionate about technology, he wrote for many years about it and its effects on
society. He became interested in the cloud and started using AWS in 2007. After merging
his former company, 2Yellows, with a research firm, he decided to start 9Apps, an AWS
boutique that is an AWS solution provider and silver partner of Eucalyptus, together
with Flavia. Give Jurg a scalability challenge, and he will not sleep until he solves it—
and he will love you for it.

Flavia Paganelli has been developing software in different industries and languages for
over 14 years, for companies like TomTom and Layar. She moved to The Netherlands
with her cat after finishing an MSc in Computer Science at the University of Buenos
Aires. A founder of 9Apps, Flavia loves to create easy-to-understand software that makes
people’s lives easier, like the Decaf EC2 smartphone app. When she is not building soft‐
ware, she is probably exercising her other passions, like acting or playing capoeira.

Jasper Geurtsen has been a pragmatic software developer for over 15 years. After pro‐
gramming embedded systems for many years, like the TomTom devices, he co-founded
9apps. This brought him into a world with an infinite supply of cloud computing re‐
sources. He loves making all kind of systems work together with other fun people. When
he is not making systems work, Jasper enjoys going to music concerts, hiking, and
camping with his girlfriend and their two children.

	Copyright
	Table of Contents
	Foreword
	Preface
	Audience
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	Chapter 2. The Road to Resilience and Reliability
	Once Upon a Time, There Was a Mason
	Rip. Mix. Burn.
	Cradle to Cradle
	In Short

	Chapter 3. Crash Course in AWS
	Regions and Availability Zones
	Route 53: Domain Name System Service
	IAM (Identity and Access Management)

	The Basics: EC2, RDS, ElastiCache, S3, CloudFront, SES, and CloudWatch
	CloudWatch
	EC2 (et al.)
	RDS
	ElastiCache
	S3/CloudFront
	SES

	Growing Up: ELB, Auto Scaling
	ELB (Elastic Load Balancer)
	Auto Scaling

	Decoupling: SQS, SimpleDB & DynamoDB, SNS, SWF
	SQS (Simple Queue Service)
	SimpleDB
	SNS (Simple Notification Service)
	SWF (Simple Workflow Service)

	Chapter 4. Top 10 Survival Tips
	Make a Choice
	Embrace Change
	Everything Will Break
	Know Your Enemy
	Know Yourself
	Engineer for Today
	Question Everything
	Don’t Waste
	Learn from Others
	You Are Not Alone

	Chapter 5. elasticsearch
	Introduction
	EC2 Plug-in
	Missing Features
	Conclusion

	Chapter 6. Postgres
	Pragmatism First
	The Challenge
	Tablespaces

	Building Blocks
	Configuration with userdata
	IAM Policies (Identity and Access Management)
	Postgres Persistence (backup/restore)
	Self Reliance

	Monitoring
	Conclusion

	Chapter 7. MongoDB
	How It Works
	Replica Set
	Backups

	Auto Scaling
	Monitoring
	Conclusion

	Chapter 8. Redis
	The Problem
	Our Approach
	Implementation
	userdata
	Redis
	Chaining (Replication)

	In Practice

	Chapter 9. Logstash
	Build
	Shipper
	Output Plug-in

	Reader
	Input Plug-in
	Grok

	Kibana

	Chapter 10. Global (Content) Delivery
	CloudFront
	(Live) Streaming
	CloudFormation
	Orchestration

	Route 53
	Global Database

	Chapter 11. Conclusion
	About the Authors

