
SQL
Notes for ProfessionalsSQL

Notes for Professionals

GoalKicker.com
Free Programming Books

Disclaimer
This is an unocial free book created for educational purposes and is

not aliated with ocial SQL group(s) or company(s).
All trademarks and registered trademarks are

the property of their respective owners

100+ pages
of professional hints and tricks

http://goalkicker.com
http://goalkicker.com

Contents
About 1 ...

Chapter 1: Getting started with SQL 2 ...
Section 1.1: Overview 2 ..

Chapter 2: Identifier 3 ..
Section 2.1: Unquoted identifiers 3 ..

Chapter 3: Data Types 4 ...
Section 3.1: DECIMAL and NUMERIC 4 ..
Section 3.2: FLOAT and REAL 4 ...
Section 3.3: Integers 4 ..
Section 3.4: MONEY and SMALLMONEY 4 ..
Section 3.5: BINARY and VARBINARY 4 ..
Section 3.6: CHAR and VARCHAR 5 ..
Section 3.7: NCHAR and NVARCHAR 5 ..
Section 3.8: UNIQUEIDENTIFIER 5 ...

Chapter 4: NULL 6 ..
Section 4.1: Filtering for NULL in queries 6 ...
Section 4.2: Nullable columns in tables 6 ...
Section 4.3: Updating fields to NULL 6 ...
Section 4.4: Inserting rows with NULL fields 7 ...

Chapter 5: Example Databases and Tables 8 ..
Section 5.1: Auto Shop Database 8 ...
Section 5.2: Library Database 10 ..
Section 5.3: Countries Table 12 ...

Chapter 6: SELECT 14 ..
Section 6.1: Using the wildcard character to select all columns in a query 14 ..
Section 6.2: SELECT Using Column Aliases 15 ...
Section 6.3: Select Individual Columns 18 ..
Section 6.4: Selecting specified number of records 19 ...
Section 6.5: Selecting with Condition 20 ...
Section 6.6: Selecting with CASE 20 ..
Section 6.7: Select columns which are named after reserved keywords 20 ..
Section 6.8: Selecting with table alias 21 ...
Section 6.9: Selecting with more than 1 condition 22 ..
Section 6.10: Selecting without Locking the table 22 ..
Section 6.11: Selecting with Aggregate functions 23 ...
Section 6.12: Select with condition of multiple values from column 24 ...
Section 6.13: Get aggregated result for row groups 24 ..
Section 6.14: Selection with sorted Results 24 ..
Section 6.15: Selecting with null 25 ..
Section 6.16: Select distinct (unique values only) 25 ...
Section 6.17: Select rows from multiple tables 25 ...

Chapter 7: GROUP BY 27 ...
Section 7.1: Basic GROUP BY example 27 ..
Section 7.2: Filter GROUP BY results using a HAVING clause 28 ...
Section 7.3: USE GROUP BY to COUNT the number of rows for each unique entry in a given column

28 ..
Section 7.4: ROLAP aggregation (Data Mining) 29 ...

Chapter 8: ORDER BY 31 ...
Section 8.1: Sorting by column number (instead of name) 31 ..
Section 8.2: Use ORDER BY with TOP to return the top x rows based on a column's value 31
Section 8.3: Customizeed sorting order 32 ..
Section 8.4: Order by Alias 32 ...
Section 8.5: Sorting by multiple columns 33 ..

Chapter 9: AND & OR Operators 34 ...
Section 9.1: AND OR Example 34 ...

Chapter 10: CASE 35 ...
Section 10.1: Use CASE to COUNT the number of rows in a column match a condition 35
Section 10.2: Searched CASE in SELECT (Matches a boolean expression) 36 ...
Section 10.3: CASE in a clause ORDER BY 36 ...
Section 10.4: Shorthand CASE in SELECT 36 ..
Section 10.5: Using CASE in UPDATE 37 ...
Section 10.6: CASE use for NULL values ordered last 37 ..
Section 10.7: CASE in ORDER BY clause to sort records by lowest value of 2 columns 38

Chapter 11: LIKE operator 39 ...
Section 11.1: Match open-ended pattern 39 ..
Section 11.2: Single character match 39 ...
Section 11.3: ESCAPE statement in the LIKE-query 40 ...
Section 11.4: Search for a range of characters 41 ...
Section 11.5: Match by range or set 41 ...
Section 11.6: Wildcard characters 41 ..

Chapter 12: IN clause 43 ...
Section 12.1: Simple IN clause 43 ...
Section 12.2: Using IN clause with a subquery 43 ...

Chapter 13: Filter results using WHERE and HAVING 44 ..
Section 13.1: Use BETWEEN to Filter Results 44 ...
Section 13.2: Use HAVING with Aggregate Functions 45 ..
Section 13.3: WHERE clause with NULL/NOT NULL values 45 ...
Section 13.4: Equality 46 ...
Section 13.5: The WHERE clause only returns rows that match its criteria 46 ...
Section 13.6: AND and OR 46 ...
Section 13.7: Use IN to return rows with a value contained in a list 47 ...
Section 13.8: Use LIKE to find matching strings and substrings 47 ...
Section 13.9: Where EXISTS 48 ...
Section 13.10: Use HAVING to check for multiple conditions in a group 48 ..

Chapter 14: SKIP TAKE (Pagination) 50 ..
Section 14.1: Limiting amount of results 50 ..
Section 14.2: Skipping then taking some results (Pagination) 50 ..
Section 14.3: Skipping some rows from result 51 ..

Chapter 15: EXCEPT 52 ..
Section 15.1: Select dataset except where values are in this other dataset 52 ..

Chapter 16: EXPLAIN and DESCRIBE 53 ..
Section 16.1: EXPLAIN Select query 53 ..
Section 16.2: DESCRIBE tablename; 53 ...

Chapter 17: EXISTS CLAUSE 54 ...
Section 17.1: EXISTS CLAUSE 54 ...

Chapter 18: JOIN 55 ..

Section 18.1: Self Join 55 ...
Section 18.2: Dierences between inner/outer joins 56 ...
Section 18.3: JOIN Terminology: Inner, Outer, Semi, Anti.. 59 ...
Section 18.4: Left Outer Join 68 ...
Section 18.5: Implicit Join 69 ..
Section 18.6: CROSS JOIN 70 ...
Section 18.7: CROSS APPLY & LATERAL JOIN 70 ..
Section 18.8: FULL JOIN 72 ..
Section 18.9: Recursive JOINs 73 ..
Section 18.10: Basic explicit inner join 73 ..
Section 18.11: Joining on a Subquery 73 ...

Chapter 19: UPDATE 75 ...
Section 19.1: UPDATE with data from another table 75 ..
Section 19.2: Modifying existing values 76 ...
Section 19.3: Updating Specified Rows 76 ..
Section 19.4: Updating All Rows 76 ...
Section 19.5: Capturing Updated records 76 ...

Chapter 20: CREATE Database 77 ..
Section 20.1: CREATE Database 77 ...

Chapter 21: CREATE TABLE 78 ..
Section 21.1: Create Table From Select 78 ...
Section 21.2: Create a New Table 78 ..
Section 21.3: CREATE TABLE With FOREIGN KEY 78 ...
Section 21.4: Duplicate a table 79 ...
Section 21.5: Create a Temporary or In-Memory Table 79 ..

Chapter 22: CREATE FUNCTION 81 ...
Section 22.1: Create a new Function 81 ..

Chapter 23: TRY/CATCH 82 ..
Section 23.1: Transaction In a TRY/CATCH 82 ..

Chapter 24: UNION / UNION ALL 83 ...
Section 24.1: Basic UNION ALL query 83 ..
Section 24.2: Simple explanation and Example 84 ...

Chapter 25: ALTER TABLE 85 ..
Section 25.1: Add Column(s) 85 ...
Section 25.2: Drop Column 85 ...
Section 25.3: Add Primary Key 85 ..
Section 25.4: Alter Column 85 ...
Section 25.5: Drop Constraint 85 ..

Chapter 26: INSERT 86 ..
Section 26.1: INSERT data from another table using SELECT 86 ...
Section 26.2: Insert New Row 86 ...
Section 26.3: Insert Only Specified Columns 86 ..
Section 26.4: Insert multiple rows at once 86 ..

Chapter 27: MERGE 87 ..
Section 27.1: MERGE to make Target match Source 87 ...
Section 27.2: MySQL: counting users by name 87 ..
Section 27.3: PostgreSQL: counting users by name 87 ..

Chapter 28: cross apply, outer apply 89 ..
Section 28.1: CROSS APPLY and OUTER APPLY basics 89 ...

Chapter 29: DELETE 91 ...
Section 29.1: DELETE all rows 91 ...
Section 29.2: DELETE certain rows with WHERE 91 ..
Section 29.3: TRUNCATE clause 91 ..
Section 29.4: DELETE certain rows based upon comparisons with other tables 91 ...

Chapter 30: TRUNCATE 93 ..
Section 30.1: Removing all rows from the Employee table 93 ...

Chapter 31: DROP Table 94 ..
Section 31.1: Check for existence before dropping 94 ...
Section 31.2: Simple drop 94 ..

Chapter 32: DROP or DELETE Database 95 ...
Section 32.1: DROP Database 95 ..

Chapter 33: Cascading Delete 96 ..
Section 33.1: ON DELETE CASCADE 96 ...

Chapter 34: GRANT and REVOKE 98 ...
Section 34.1: Grant/revoke privileges 98 ..

Chapter 35: XML 99 ..
Section 35.1: Query from XML Data Type 99 ...

Chapter 36: Primary Keys 100 ..
Section 36.1: Creating a Primary Key 100 ..
Section 36.2: Using Auto Increment 100 ..

Chapter 37: Indexes 101 ...
Section 37.1: Sorted Index 101 ...
Section 37.2: Partial or Filtered Index 101 ..
Section 37.3: Creating an Index 101 ...
Section 37.4: Dropping an Index, or Disabling and Rebuilding it 102 ...
Section 37.5: Clustered, Unique, and Sorted Indexes 102 ...
Section 37.6: Rebuild index 103 ...
Section 37.7: Inserting with a Unique Index 103 ..

Chapter 38: Row number 104 ..
Section 38.1: Delete All But Last Record (1 to Many Table) 104 ..
Section 38.2: Row numbers without partitions 104 ...
Section 38.3: Row numbers with partitions 104 ...

Chapter 39: SQL Group By vs Distinct 105 ..
Section 39.1: Dierence between GROUP BY and DISTINCT 105 ..

Chapter 40: Finding Duplicates on a Column Subset with Detail 106 ..
Section 40.1: Students with same name and date of birth 106 ...

Chapter 41: String Functions 107 ..
Section 41.1: Concatenate 107 ...
Section 41.2: Length 107 ..
Section 41.3: Trim empty spaces 108 ...
Section 41.4: Upper & lower case 108 ...
Section 41.5: Split 108 ...
Section 41.6: Replace 109 ...
Section 41.7: REGEXP 109 ...
Section 41.8: Substring 109 ..
Section 41.9: Stu 109 ..
Section 41.10: LEFT - RIGHT 109 ..

Section 41.11: REVERSE 110 ..
Section 41.12: REPLICATE 110 ..
Section 41.13: Replace function in sql Select and Update query 110 ..
Section 41.14: INSTR 111 ...
Section 41.15: PARSENAME 111 ...

Chapter 42: Functions (Aggregate) 113 ..
Section 42.1: Conditional aggregation 113 ..
Section 42.2: List Concatenation 113 ...
Section 42.3: SUM 114 ..
Section 42.4: AVG() 115 ...
Section 42.5: Count 115 ...
Section 42.6: Min 116 ..
Section 42.7: Max 116 ...

Chapter 43: Functions (Scalar/Single Row) 118 ...
Section 43.1: Date And Time 118 ...
Section 43.2: Character modifications 119 ..
Section 43.3: Configuration and Conversion Function 119 ..
Section 43.4: Logical and Mathmetical Function 120 ...

Chapter 44: Functions (Analytic) 122 ...
Section 44.1: LAG and LEAD 122 ...
Section 44.2: PERCENTILE_DISC and PERCENTILE_CONT 122 ..
Section 44.3: FIRST_VALUE 123 ..
Section 44.4: LAST_VALUE 124 ...
Section 44.5: PERCENT_RANK and CUME_DIST 124 ...

Chapter 45: Window Functions 126 ...
Section 45.1: Setting up a flag if other rows have a common property 126 ..
Section 45.2: Finding "out-of-sequence" records using the LAG() function 126 ...
Section 45.3: Getting a running total 127 ...
Section 45.4: Adding the total rows selected to every row 127 ..
Section 45.5: Getting the N most recent rows over multiple grouping 127 ...

Chapter 46: Common Table Expressions 129 ...
Section 46.1: generating values 129 ...
Section 46.2: recursively enumerating a subtree 129 ..
Section 46.3: Temporary query 130 ...
Section 46.4: recursively going up in a tree 130 ...
Section 46.5: Recursively generate dates, extended to include team rostering as example 130
Section 46.6: Oracle CONNECT BY functionality with recursive CTEs 131 ...

Chapter 47: Views 133 ..
Section 47.1: Simple views 133 ...
Section 47.2: Complex views 133 ..

Chapter 48: Materialized Views 134 ..
Section 48.1: PostgreSQL example 134 ..

Chapter 49: Comments 135 ...
Section 49.1: Single-line comments 135 ...
Section 49.2: Multi-line comments 135 ...

Chapter 50: Foreign Keys 136 ...
Section 50.1: Foreign Keys explained 136 ..
Section 50.2: Creating a table with a foreign key 136 ..

Chapter 51: Sequence 138 ...

Section 51.1: Create Sequence 138 ..
Section 51.2: Using Sequences 138 ...

Chapter 52: Subqueries 139 ...
Section 52.1: Subquery in FROM clause 139 ..
Section 52.2: Subquery in SELECT clause 139 ...
Section 52.3: Subquery in WHERE clause 139 ...
Section 52.4: Correlated Subqueries 139 ...
Section 52.5: Filter query results using query on dierent table 139 ...
Section 52.6: Subqueries in FROM clause 140 ...
Section 52.7: Subqueries in WHERE clause 140 ..

Chapter 53: Execution blocks 141 ...
Section 53.1: Using BEGIN ... END 141 ...

Chapter 54: Stored Procedures 142 ..
Section 54.1: Create and call a stored procedure 142 ..

Chapter 55: Triggers 143 ...
Section 55.1: CREATE TRIGGER 143 ..
Section 55.2: Use Trigger to manage a "Recycle Bin" for deleted items 143 ..

Chapter 56: Transactions 144 ...
Section 56.1: Simple Transaction 144 ...
Section 56.2: Rollback Transaction 144 ...

Chapter 57: Table Design 145 ...
Section 57.1: Properties of a well designed table 145 ...

Chapter 58: Synonyms 146 ..
Section 58.1: Create Synonym 146 ...

Chapter 59: Information Schema 147 ...
Section 59.1: Basic Information Schema Search 147 ..

Chapter 60: Order of Execution 148 ..
Section 60.1: Logical Order of Query Processing in SQL 148 ...

Chapter 61: Clean Code in SQL 149 ...
Section 61.1: Formatting and Spelling of Keywords and Names 149 ..
Section 61.2: Indenting 149 ..
Section 61.3: SELECT * 150 ...
Section 61.4: Joins 151 ...

Chapter 62: SQL Injection 152 ...
Section 62.1: SQL injection sample 152 ..
Section 62.2: simple injection sample 153 ...

Credits 154 ..

You may also like 158 ..

GoalKicker.com – SQL Notes for Professionals 1

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:

http://GoalKicker.com/SQLBook

This SQL Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end

of this book whom contributed to the various chapters. Images may be copyright
of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official SQL group(s) or company(s) nor Stack Overflow. All

trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

http://goalkicker.com/SQLBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 2

Chapter 1: Getting started with SQL
Version Short Name Standard Release Date
1986 SQL-86 ANSI X3.135-1986, ISO 9075:1987 1986-01-01
1989 SQL-89 ANSI X3.135-1989, ISO/IEC 9075:1989 1989-01-01
1992 SQL-92 ISO/IEC 9075:1992 1992-01-01
1999 SQL:1999 ISO/IEC 9075:1999 1999-12-16
2003 SQL:2003 ISO/IEC 9075:2003 2003-12-15
2006 SQL:2006 ISO/IEC 9075:2006 2006-06-01
2008 SQL:2008 ISO/IEC 9075:2008 2008-07-15
2011 SQL:2011 ISO/IEC 9075:2011 2011-12-15
2016 SQL:2016 ISO/IEC 9075:2016 2016-12-01

Section 1.1: Overview
Structured Query Language (SQL) is a special-purpose programming language designed for managing data held in a
Relational Database Management System (RDBMS). SQL-like languages can also be used in Relational Data Stream
Management Systems (RDSMS), or in "not-only SQL" (NoSQL) databases.

SQL comprises of 3 major sub-languages:

Data Definition Language (DDL): to create and modify the structure of the database;1.
Data Manipulation Language (DML): to perform Read, Insert, Update and Delete operations on the data of2.
the database;
Data Control Language (DCL): to control the access of the data stored in the database.3.

SQL article on Wikipedia

The core DML operations are Create, Read, Update and Delete (CRUD for short) which are performed by the
statements INSERT, SELECT, UPDATE and DELETE.
There is also a (recently added) MERGE statement which can perform all 3 write operations (INSERT, UPDATE,
DELETE).

CRUD article on Wikipedia

Many SQL databases are implemented as client/server systems; the term "SQL server" describes such a database.
At the same time, Microsoft makes a database that is named "SQL Server". While that database speaks a dialect of
SQL, information specific to that database is not on topic in this tag but belongs into the SQL Server documentation.

https://en.wikipedia.org/wiki/SQL-92
https://en.wikipedia.org/wiki/SQL:1999
https://en.wikipedia.org/wiki/SQL:2003
https://en.wikipedia.org/wiki/SQL:2006
https://en.wikipedia.org/wiki/SQL:2008
https://en.wikipedia.org/wiki/SQL:2011
https://en.wikipedia.org/wiki/SQL:2016
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 3

Chapter 2: Identifier
This topic is about identifiers, i.e. syntax rules for names of tables, columns, and other database objects.

Where appropriate, the examples should cover variations used by different SQL implementations, or identify the
SQL implementation of the example.

Section 2.1: Unquoted identifiers
Unquoted identifiers can use letters (a-z), digits (0-9), and underscore (_), and must start with a letter.

Depending on SQL implementation, and/or database settings, other characters may be allowed, some even as the
first character, e.g.

MS SQL: @, $, #, and other Unicode letters (source)
MySQL: $ (source)
Oracle: $, #, and other letters from database character set (source)
PostgreSQL: $, and other Unicode letters (source)

Unquoted identifiers are case-insensitive. How this is handled depends greatly on SQL implementation:

MS SQL: Case-preserving, sensitivity defined by database character set, so can be case-sensitive.

MySQL: Case-preserving, sensitivity depends on database setting and underlying file system.

Oracle: Converted to uppercase, then handled like quoted identifier.

PostgreSQL: Converted to lowercase, then handled like quoted identifier.

SQLite: Case-preserving; case insensitivity only for ASCII characters.

https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-identifiers
https://dev.mysql.com/doc/refman/5.7/en/identifiers.html
https://docs.oracle.com/database/121/SQLRF/sql_elements008.htm#SQLRF00223
https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 4

Chapter 3: Data Types
Section 3.1: DECIMAL and NUMERIC
Fixed precision and scale decimal numbers. DECIMAL and NUMERIC are functionally equivalent.

Syntax:

DECIMAL (precision [, scale])
NUMERIC (precision [, scale])

Examples:

SELECT CAST(123 AS DECIMAL(5,2)) --returns 123.00
SELECT CAST(12345.12 AS NUMERIC(10,5)) --returns 12345.12000

Section 3.2: FLOAT and REAL
Approximate-number data types for use with floating point numeric data.

SELECT CAST(PI() AS FLOAT) --returns 3.14159265358979
SELECT CAST(PI() AS REAL) --returns 3.141593

Section 3.3: Integers
Exact-number data types that use integer data.

Data type Range Storage
bigint -2^63 (-9,223,372,036,854,775,808) to 2^63-1 (9,223,372,036,854,775,807) 8 Bytes
int -2^31 (-2,147,483,648) to 2^31-1 (2,147,483,647) 4 Bytes
smallint -2^15 (-32,768) to 2^15-1 (32,767) 2 Bytes
tinyint 0 to 255 1 Byte

Section 3.4: MONEY and SMALLMONEY
Data types that represent monetary or currency values.

Data type Range Storage
money -922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytes
smallmoney -214,748.3648 to 214,748.3647 4 bytes

Section 3.5: BINARY and VARBINARY
Binary data types of either fixed length or variable length.

Syntax:

BINARY [(n_bytes)]
VARBINARY [(n_bytes | max)]

n_bytes can be any number from 1 to 8000 bytes. max indicates that the maximum storage space is 2^31-1.

Examples:

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 5

SELECT CAST(12345 AS BINARY(10)) -- 0x00000000000000003039
SELECT CAST(12345 AS VARBINARY(10)) -- 0x00003039

Section 3.6: CHAR and VARCHAR
String data types of either fixed length or variable length.

Syntax:

CHAR [(n_chars)]
VARCHAR [(n_chars)]

Examples:

SELECT CAST('ABC' AS CHAR(10)) -- 'ABC ' (padded with spaces on the right)
SELECT CAST('ABC' AS VARCHAR(10)) -- 'ABC' (no padding due to variable character)
SELECT CAST('ABCDEFGHIJKLMNOPQRSTUVWXYZ' AS CHAR(10)) -- 'ABCDEFGHIJ' (truncated to 10 characters)

Section 3.7: NCHAR and NVARCHAR
UNICODE string data types of either fixed length or variable length.

Syntax:

NCHAR [(n_chars)]
NVARCHAR [(n_chars | MAX)]

Use MAX for very long strings that may exceed 8000 characters.

Section 3.8: UNIQUEIDENTIFIER
A 16-byte GUID / UUID.

DECLARE @GUID UNIQUEIDENTIFIER = NEWID();
SELECT @GUID -- 'E28B3BD9-9174-41A9-8508-899A78A33540'
DECLARE @bad_GUID_string VARCHAR(100) = 'E28B3BD9-9174-41A9-8508-899A78A33540_foobarbaz'
SELECT
 @bad_GUID_string, -- 'E28B3BD9-9174-41A9-8508-899A78A33540_foobarbaz'
 CONVERT(UNIQUEIDENTIFIER, @bad_GUID_string) -- 'E28B3BD9-9174-41A9-8508-899A78A33540'

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 6

Chapter 4: NULL
NULL in SQL, as well as programming in general, means literally "nothing". In SQL, it is easier to understand as "the
absence of any value".

It is important to distinguish it from seemingly empty values, such as the empty string '' or the number 0, neither
of which are actually NULL.

It is also important to be careful not to enclose NULL in quotes, like 'NULL', which is allowed in columns that accept
text, but is not NULL and can cause errors and incorrect data sets.

Section 4.1: Filtering for NULL in queries
The syntax for filtering for NULL (i.e. the absence of a value) in WHERE blocks is slightly different than filtering for
specific values.

SELECT * FROM Employees WHERE ManagerId IS NULL ;
SELECT * FROM Employees WHERE ManagerId IS NOT NULL ;

Note that because NULL is not equal to anything, not even to itself, using equality operators = NULL or <> NULL (or
!= NULL) will always yield the truth value of UNKNOWN which will be rejected by WHERE.

WHERE filters all rows that the condition is FALSE or UKNOWN and keeps only rows that the condition is TRUE.

Section 4.2: Nullable columns in tables
When creating tables it is possible to declare a column as nullable or non-nullable.

CREATE TABLE MyTable
(
 MyCol1 INT NOT NULL, -- non-nullable
 MyCol2 INT NULL -- nullable
) ;

By default every column (except those in primary key constraint) is nullable unless we explicitly set NOT NULL
constraint.

Attempting to assign NULL to a non-nullable column will result in an error.

INSERT INTO MyTable (MyCol1, MyCol2) VALUES (1, NULL) ; -- works fine

INSERT INTO MyTable (MyCol1, MyCol2) VALUES (NULL, 2) ;
 -- cannot insert
 -- the value NULL into column 'MyCol1', table 'MyTable';
 -- column does not allow nulls. INSERT fails.

Section 4.3: Updating fields to NULL
Setting a field to NULL works exactly like with any other value:

UPDATE Employees
SET ManagerId = NULL
WHERE Id = 4

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 7

Section 4.4: Inserting rows with NULL fields
For example inserting an employee with no phone number and no manager into the Employees example table:

INSERT INTO Employees
 (Id, FName, LName, PhoneNumber, ManagerId, DepartmentId, Salary, HireDate)
VALUES
 (5, 'Jane', 'Doe', NULL, NULL, 2, 800, '2016-07-22') ;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 8

Chapter 5: Example Databases and Tables
Section 5.1: Auto Shop Database
In the following example - Database for an auto shop business, we have a list of departments, employees,
customers and customer cars. We are using foreign keys to create relationships between the various tables.

Live example: SQL fiddle

Relationships between tables

Each Department may have 0 or more Employees
Each Employee may have 0 or 1 Manager
Each Customer may have 0 or more Cars

Departments
Id Name
1 HR
2 Sales
3 Tech

SQL statements to create the table:

CREATE TABLE Departments (
 Id INT NOT NULL AUTO_INCREMENT,
 Name VARCHAR(25) NOT NULL,
 PRIMARY KEY(Id)
);

INSERT INTO Departments
 ([Id], [Name])
VALUES
 (1, 'HR'),
 (2, 'Sales'),
 (3, 'Tech')
;

Employees
Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate
1 James Smith 1234567890 NULL 1 1000 01-01-2002
2 John Johnson 2468101214 1 1 400 23-03-2005
3 Michael Williams 1357911131 1 2 600 12-05-2009
4 Johnathon Smith 1212121212 2 1 500 24-07-2016

SQL statements to create the table:

CREATE TABLE Employees (
 Id INT NOT NULL AUTO_INCREMENT,
 FName VARCHAR(35) NOT NULL,
 LName VARCHAR(35) NOT NULL,
 PhoneNumber VARCHAR(11),
 ManagerId INT,
 DepartmentId INT NOT NULL,
 Salary INT NOT NULL,
 HireDate DATETIME NOT NULL,
 PRIMARY KEY(Id),
 FOREIGN KEY (ManagerId) REFERENCES Employees(Id),
 FOREIGN KEY (DepartmentId) REFERENCES Departments(Id)

http://sqlfiddle.com/#!9/faf2f/1
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 9

);

INSERT INTO Employees
 ([Id], [FName], [LName], [PhoneNumber], [ManagerId], [DepartmentId], [Salary], [HireDate])
VALUES
 (1, 'James', 'Smith', 1234567890, NULL, 1, 1000, '01-01-2002'),
 (2, 'John', 'Johnson', 2468101214, '1', 1, 400, '23-03-2005'),
 (3, 'Michael', 'Williams', 1357911131, '1', 2, 600, '12-05-2009'),
 (4, 'Johnathon', 'Smith', 1212121212, '2', 1, 500, '24-07-2016')
;

Customers
Id FName LName Email PhoneNumber PreferredContact
1 William Jones william.jones@example.com 3347927472 PHONE
2 David Miller dmiller@example.net 2137921892 EMAIL
3 Richard Davis richard0123@example.com NULL EMAIL

SQL statements to create the table:

CREATE TABLE Customers (
 Id INT NOT NULL AUTO_INCREMENT,
 FName VARCHAR(35) NOT NULL,
 LName VARCHAR(35) NOT NULL,
 Email varchar(100) NOT NULL,
 PhoneNumber VARCHAR(11),
 PreferredContact VARCHAR(5) NOT NULL,
 PRIMARY KEY(Id)
);

INSERT INTO Customers
 ([Id], [FName], [LName], [Email], [PhoneNumber], [PreferredContact])
VALUES
 (1, 'William', 'Jones', 'william.jones@example.com', '3347927472', 'PHONE'),
 (2, 'David', 'Miller', 'dmiller@example.net', '2137921892', 'EMAIL'),
 (3, 'Richard', 'Davis', 'richard0123@example.com', NULL, 'EMAIL')
;

Cars
Id CustomerId EmployeeId Model Status Total Cost
1 1 2 Ford F-150 READY 230
2 1 2 Ford F-150 READY 200
3 2 1 Ford Mustang WAITING 100
4 3 3 Toyota Prius WORKING 1254

SQL statements to create the table:

CREATE TABLE Cars (
 Id INT NOT NULL AUTO_INCREMENT,
 CustomerId INT NOT NULL,
 EmployeeId INT NOT NULL,
 Model varchar(50) NOT NULL,
 Status varchar(25) NOT NULL,
 TotalCost INT NOT NULL,
 PRIMARY KEY(Id),
 FOREIGN KEY (CustomerId) REFERENCES Customers(Id),
 FOREIGN KEY (EmployeeId) REFERENCES Employees(Id)
);

INSERT INTO Cars
 ([Id], [CustomerId], [EmployeeId], [Model], [Status], [TotalCost])
VALUES

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 10

 ('1', '1', '2', 'Ford F-150', 'READY', '230'),
 ('2', '1', '2', 'Ford F-150', 'READY', '200'),
 ('3', '2', '1', 'Ford Mustang', 'WAITING', '100'),
 ('4', '3', '3', 'Toyota Prius', 'WORKING', '1254')
;

Section 5.2: Library Database
In this example database for a library, we have Authors, Books and BooksAuthors tables.

Live example: SQL fiddle

Authors and Books are known as base tables, since they contain column definition and data for the actual entities in
the relational model. BooksAuthors is known as the relationship table, since this table defines the relationship
between the Books and Authors table.

Relationships between tables

Each author can have 1 or more books
Each book can have 1 or more authors

Authors

(view table)

Id Name Country
1 J.D. Salinger USA
2 F. Scott. Fitzgerald USA
3 Jane Austen UK
4 Scott Hanselman USA
5 Jason N. Gaylord USA
6 Pranav Rastogi India
7 Todd Miranda USA
8 Christian Wenz USA

SQL to create the table:

CREATE TABLE Authors (
 Id INT NOT NULL AUTO_INCREMENT,
 Name VARCHAR(70) NOT NULL,
 Country VARCHAR(100) NOT NULL,
 PRIMARY KEY(Id)
);

INSERT INTO Authors
 (Name, Country)
VALUES
 ('J.D. Salinger', 'USA'),
 ('F. Scott. Fitzgerald', 'USA'),
 ('Jane Austen', 'UK'),
 ('Scott Hanselman', 'USA'),
 ('Jason N. Gaylord', 'USA'),
 ('Pranav Rastogi', 'India'),
 ('Todd Miranda', 'USA'),
 ('Christian Wenz', 'USA')
;

Books

http://sqlfiddle.com/#!9/7c06f/1
http://sqlfiddle.com/#!9/7c06f/2
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 11

(view table)

Id Title
1 The Catcher in the Rye
2 Nine Stories
3 Franny and Zooey
4 The Great Gatsby
5 Tender id the Night
6 Pride and Prejudice
7 Professional ASP.NET 4.5 in C# and VB

SQL to create the table:

CREATE TABLE Books (
 Id INT NOT NULL AUTO_INCREMENT,
 Title VARCHAR(50) NOT NULL,
 PRIMARY KEY(Id)
);

INSERT INTO Books
 (Id, Title)
VALUES
 (1, 'The Catcher in the Rye'),
 (2, 'Nine Stories'),
 (3, 'Franny and Zooey'),
 (4, 'The Great Gatsby'),
 (5, 'Tender id the Night'),
 (6, 'Pride and Prejudice'),
 (7, 'Professional ASP.NET 4.5 in C# and VB')
;

BooksAuthors

(view table)

BookId AuthorId
1 1
2 1
3 1
4 2
5 2
6 3
7 4
7 5
7 6
7 7
7 8

SQL to create the table:

CREATE TABLE BooksAuthors (
 AuthorId INT NOT NULL,
 BookId INT NOT NULL,
 FOREIGN KEY (AuthorId) REFERENCES Authors(Id),
 FOREIGN KEY (BookId) REFERENCES Books(Id)
);

INSERT INTO BooksAuthors
 (BookId, AuthorId)

http://sqlfiddle.com/#!9/7c06f/3
http://sqlfiddle.com/#!9/7c06f/4
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 12

VALUES
 (1, 1),
 (2, 1),
 (3, 1),
 (4, 2),
 (5, 2),
 (6, 3),
 (7, 4),
 (7, 5),
 (7, 6),
 (7, 7),
 (7, 8)
;

Examples

View all authors (view live example):

SELECT * FROM Authors;

View all book titles (view live example):

SELECT * FROM Books;

View all books and their authors (view live example):

SELECT
 ba.AuthorId,
 a.Name AuthorName,
 ba.BookId,
 b.Title BookTitle
FROM BooksAuthors ba
 INNER JOIN Authors a ON a.id = ba.authorid
 INNER JOIN Books b ON b.id = ba.bookid
;

Section 5.3: Countries Table
In this example, we have a Countries table. A table for countries has many uses, especially in Financial applications
involving currencies and exchange rates.

Live example: SQL fiddle

Some Market data software applications like Bloomberg and Reuters require you to give their API either a 2 or 3
character country code along with the currency code. Hence this example table has both the 2-character ISO code
column and the 3 character ISO3 code columns.

Countries

(view table)

Id ISO ISO3 ISONumeric CountryName Capital ContinentCode CurrencyCode
1 AU AUS 36 Australia Canberra OC AUD
2 DE DEU 276 Germany Berlin EU EUR
2 IN IND 356 India New Delhi AS INR
3 LA LAO 418 Laos Vientiane AS LAK
4 US USA 840 United States Washington NA USD
5 ZW ZWE 716 Zimbabwe Harare AF ZWL

http://sqlfiddle.com/#!9/7c06f/2
http://sqlfiddle.com/#!9/7c06f/3
http://sqlfiddle.com/#!9/7c06f/5
http://sqlfiddle.com/#!9/14cfc6
http://sqlfiddle.com/#!9/14cfc6/1
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 13

SQL to create the table:

CREATE TABLE Countries (
 Id INT NOT NULL AUTO_INCREMENT,
 ISO VARCHAR(2) NOT NULL,
 ISO3 VARCHAR(3) NOT NULL,
 ISONumeric INT NOT NULL,
 CountryName VARCHAR(64) NOT NULL,
 Capital VARCHAR(64) NOT NULL,
 ContinentCode VARCHAR(2) NOT NULL,
 CurrencyCode VARCHAR(3) NOT NULL,
 PRIMARY KEY(Id)
)
;

INSERT INTO Countries
 (ISO, ISO3, ISONumeric, CountryName, Capital, ContinentCode, CurrencyCode)
VALUES
 ('AU', 'AUS', 36, 'Australia', 'Canberra', 'OC', 'AUD'),
 ('DE', 'DEU', 276, 'Germany', 'Berlin', 'EU', 'EUR'),
 ('IN', 'IND', 356, 'India', 'New Delhi', 'AS', 'INR'),
 ('LA', 'LAO', 418, 'Laos', 'Vientiane', 'AS', 'LAK'),
 ('US', 'USA', 840, 'United States', 'Washington', 'NA', 'USD'),
 ('ZW', 'ZWE', 716, 'Zimbabwe', 'Harare', 'AF', 'ZWL')
;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 14

Chapter 6: SELECT
The SELECT statement is at the heart of most SQL queries. It defines what result set should be returned by the
query, and is almost always used in conjunction with the FROM clause, which defines what part(s) of the database
should be queried.

Section 6.1: Using the wildcard character to select all columns
in a query
Consider a database with the following two tables.

Employees table:

Id FName LName DeptId
1 James Smith 3
2 John Johnson 4

Departments table:

Id Name
1 Sales
2 Marketing
3 Finance
4 IT
Simple select statement

* is the wildcard character used to select all available columns in a table.

When used as a substitute for explicit column names, it returns all columns in all tables that a query is selecting
FROM. This effect applies to all tables the query accesses through its JOIN clauses.

Consider the following query:

SELECT * FROM Employees

It will return all fields of all rows of the Employees table:

Id FName LName DeptId
1 James Smith 3
2 John Johnson 4
Dot notation

To select all values from a specific table, the wildcard character can be applied to the table with dot notation.

Consider the following query:

SELECT
 Employees.*,
 Departments.Name
FROM
 Employees
JOIN
 Departments
 ON Departments.Id = Employees.DeptId

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 15

This will return a data set with all fields on the Employee table, followed by just the Name field in the Departments
table:

Id FName LName DeptId Name
1 James Smith 3 Finance
2 John Johnson 4 IT

Warnings Against Use

It is generally advised that using * is avoided in production code where possible, as it can cause a number of
potential problems including:

Excess IO, network load, memory use, and so on, due to the database engine reading data that is not needed1.
and transmitting it to the front-end code. This is particularly a concern where there might be large fields such
as those used to store long notes or attached files.
Further excess IO load if the database needs to spool internal results to disk as part of the processing for a2.
query more complex than SELECT <columns> FROM <table>.
Extra processing (and/or even more IO) if some of the unneeded columns are:3.

computed columns in databases that support them
in the case of selecting from a view, columns from a table/view that the query optimiser could
otherwise optimise out

The potential for unexpected errors if columns are added to tables and views later that results ambiguous4.
column names. For example SELECT * FROM orders JOIN people ON people.id = orders.personid ORDER
BY displayname - if a column column called displayname is added to the orders table to allow users to give
their orders meaningful names for future reference then the column name will appear twice in the output so
the ORDER BY clause will be ambiguous which may cause errors ("ambiguous column name" in recent MS SQL
Server versions), and if not in this example your application code might start displaying the order name
where the person name is intended because the new column is the first of that name returned, and so on.

When Can You Use *, Bearing The Above Warning In Mind?

While best avoided in production code, using * is fine as a shorthand when performing manual queries against the
database for investigation or prototype work.

Sometimes design decisions in your application make it unavoidable (in such circumstances, prefer tablealias.*
over just * where possible).

When using EXISTS, such as SELECT A.col1, A.Col2 FROM A WHERE EXISTS (SELECT * FROM B where A.ID =
B.A_ID), we are not returning any data from B. Thus a join is unnecessary, and the engine knows no values from B
are to be returned, thus no performance hit for using *. Similarly COUNT(*) is fine as it also doesn't actually return
any of the columns, so only needs to read and process those that are used for filtering purposes.

Section 6.2: SELECT Using Column Aliases
Column aliases are used mainly to shorten code and make column names more readable.

Code becomes shorter as long table names and unnecessary identification of columns (e.g., there may be 2 IDs in the
table, but only one is used in the statement) can be avoided. Along with table aliases this allows you to use longer
descriptive names in your database structure while keeping queries upon that structure concise.

Furthermore they are sometimes required, for instance in views, in order to name computed outputs.

All versions of SQL

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 16

Aliases can be created in all versions of SQL using double quotes (").

SELECT
 FName AS "First Name",
 MName AS "Middle Name",
 LName AS "Last Name"
FROM Employees

Different Versions of SQL

You can use single quotes ('), double quotes (") and square brackets ([]) to create an alias in Microsoft SQL Server.

SELECT
 FName AS "First Name",
 MName AS 'Middle Name',
 LName AS [Last Name]
FROM Employees

Both will result in:

First Name Middle Name Last Name
James John Smith
John James Johnson
Michael Marcus Williams

This statement will return FName and LName columns with a given name (an alias). This is achieved using the AS
operator followed by the alias, or simply writing alias directly after the column name. This means that the following
query has the same outcome as the above.

SELECT
 FName "First Name",
 MName "Middle Name",
 LName "Last Name"
FROM Employees

First Name Middle Name Last Name
James John Smith
John James Johnson
Michael Marcus Williams

However, the explicit version (i.e., using the AS operator) is more readable.

If the alias has a single word that is not a reserved word, we can write it without single quotes, double quotes or
brackets:

SELECT
 FName AS FirstName,
 LName AS LastName
FROM Employees

FirstName LastName
James Smith
John Johnson
Michael Williams

A further variation available in MS SQL Server amongst others is <alias> = <column-or-calculation>, for
instance:

SELECT FullName = FirstName + ' ' + LastName,

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 17

 Addr1 = FullStreetAddress,
 Addr2 = TownName
FROM CustomerDetails

which is equivalent to:

SELECT FirstName + ' ' + LastName As FullName
 FullStreetAddress As Addr1,
 TownName As Addr2
FROM CustomerDetails

Both will result in:

FullName Addr1 Addr2
James Smith 123 AnyStreet TownVille
John Johnson 668 MyRoad Anytown
Michael Williams 999 High End Dr Williamsburgh

Some find using = instead of As easier to read, though many recommend against this format, mainly because it is
not standard so not widely supported by all databases. It may cause confusion with other uses of the = character.

All Versions of SQL

Also, if you need to use reserved words, you can use brackets or quotes to escape:

SELECT
 FName as "SELECT",
 MName as "FROM",
 LName as "WHERE"
FROM Employees

Different Versions of SQL

Likewise, you can escape keywords in MSSQL with all different approaches:

SELECT
 FName AS "SELECT",
 MName AS 'FROM',
 LName AS [WHERE]
FROM Employees

SELECT FROM WHERE
James John Smith
John James Johnson
Michael Marcus Williams

Also, a column alias may be used any of the final clauses of the same query, such as an ORDER BY:

SELECT
 FName AS FirstName,
 LName AS LastName
FROM
 Employees
ORDER BY
 LastName DESC

However, you may not use

SELECT

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 18

 FName AS SELECT,
 LName AS FROM
FROM
 Employees
ORDER BY
 LastName DESC

To create an alias from these reserved words (SELECT and FROM).

This will cause numerous errors on execution.

Section 6.3: Select Individual Columns
SELECT
 PhoneNumber,
 Email,
 PreferredContact
FROM Customers

This statement will return the columns PhoneNumber, Email, and PreferredContact from all rows of the Customers
table. Also the columns will be returned in the sequence in which they appear in the SELECT clause.

The result will be:

PhoneNumber Email PreferredContact
3347927472 william.jones@example.com PHONE
2137921892 dmiller@example.net EMAIL
NULL richard0123@example.com EMAIL

If multiple tables are joined together, you can select columns from specific tables by specifying the table name
before the column name: [table_name].[column_name]

SELECT
 Customers.PhoneNumber,
 Customers.Email,
 Customers.PreferredContact,
 Orders.Id AS OrderId
FROM
 Customers
LEFT JOIN
 Orders ON Orders.CustomerId = Customers.Id

*AS OrderId means that the Id field of Orders table will be returned as a column named OrderId. See selecting
with column alias for further information.

To avoid using long table names, you can use table aliases. This mitigates the pain of writing long table names for
each field that you select in the joins. If you are performing a self join (a join between two instances of the same
table), then you must use table aliases to distinguish your tables. We can write a table alias like Customers c or
Customers AS c. Here c works as an alias for Customers and we can select let's say Email like this: c.Email.

SELECT
 c.PhoneNumber,
 c.Email,
 c.PreferredContact,
 o.Id AS OrderId
FROM
 Customers c

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 19

LEFT JOIN
 Orders o ON o.CustomerId = c.Id

Section 6.4: Selecting specified number of records
The SQL 2008 standard defines the FETCH FIRST clause to limit the number of records returned.

SELECT Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC
FETCH FIRST 10 ROWS ONLY

This standard is only supported in recent versions of some RDMSs. Vendor-specific non-standard syntax is provided
in other systems. Progress OpenEdge 11.x also supports the FETCH FIRST <n> ROWS ONLY syntax.

Additionally, OFFSET <m> ROWS before FETCH FIRST <n> ROWS ONLY allows skipping rows before fetching rows.

SELECT Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC
OFFSET 5 ROWS
FETCH FIRST 10 ROWS ONLY

The following query is supported in SQL Server and MS Access:

SELECT TOP 10 Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC

To do the same in MySQL or PostgreSQL the LIMIT keyword must be used:

SELECT Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC
LIMIT 10

In Oracle the same can be done with ROWNUM:

SELECT Id, ProductName, UnitPrice, Package
FROM Product
WHERE ROWNUM <= 10
ORDER BY UnitPrice DESC

Results: 10 records.

Id ProductName UnitPrice Package
38 Côte de Blaye 263.50 12 - 75 cl bottles
29 Thüringer Rostbratwurst 123.79 50 bags x 30 sausgs.
9 Mishi Kobe Niku 97.00 18 - 500 g pkgs.
20 Sir Rodney's Marmalade 81.00 30 gift boxes
18 Carnarvon Tigers 62.50 16 kg pkg.
59 Raclette Courdavault 55.00 5 kg pkg.
51 Manjimup Dried Apples 53.00 50 - 300 g pkgs.
62 Tarte au sucre 49.30 48 pies
43 Ipoh Coffee 46.00 16 - 500 g tins
28 Rössle Sauerkraut 45.60 25 - 825 g cans

https://en.wikipedia.org/wiki/SQL:2008
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 20

Vendor Nuances:

It is important to note that the TOP in Microsoft SQL operates after the WHERE clause and will return the specified
number of results if they exist anywhere in the table, while ROWNUM works as part of the WHERE clause so if other
conditions do not exist in the specified number of rows at the beginning of the table, you will get zero results when
there could be others to be found.

Section 6.5: Selecting with Condition
The basic syntax of SELECT with WHERE clause is:

SELECT column1, column2, columnN
FROM table_name
WHERE [condition]

The [condition] can be any SQL expression, specified using comparison or logical operators like >, <, =, <>, >=, <=,
LIKE, NOT, IN, BETWEEN etc.

The following statement returns all columns from the table 'Cars' where the status column is 'READY':

SELECT * FROM Cars WHERE status = 'READY'

See WHERE and HAVING for more examples.

Section 6.6: Selecting with CASE
When results need to have some logic applied 'on the fly' one can use CASE statement to implement it.

SELECT CASE WHEN Col1 < 50 THEN 'under' ELSE 'over' END threshold
FROM TableName

also can be chained

SELECT
 CASE WHEN Col1 < 50 THEN 'under'
 WHEN Col1 > 50 AND Col1 <100 THEN 'between'
 ELSE 'over'
 END threshold
FROM TableName

one also can have CASE inside another CASE statement

SELECT
 CASE WHEN Col1 < 50 THEN 'under'
 ELSE
 CASE WHEN Col1 > 50 AND Col1 <100 THEN Col1
 ELSE 'over' END
 END threshold
FROM TableName

Section 6.7: Select columns which are named after reserved
keywords
When a column name matches a reserved keyword, standard SQL requires that you enclose it in double quotation
marks:

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 21

SELECT
 "ORDER",
 ID
FROM ORDERS

Note that it makes the column name case-sensitive.

Some DBMSes have proprietary ways of quoting names. For example, SQL Server uses square brackets for this
purpose:

SELECT
 [Order],
 ID
FROM ORDERS

while MySQL (and MariaDB) by default use backticks:

SELECT
 `Order`,
 id
FROM orders

Section 6.8: Selecting with table alias
SELECT e.Fname, e.LName
FROM Employees e

The Employees table is given the alias 'e' directly after the table name. This helps remove ambiguity in scenarios
where multiple tables have the same field name and you need to be specific as to which table you want to return
data from.

SELECT e.Fname, e.LName, m.Fname AS ManagerFirstName
FROM Employees e
 JOIN Managers m ON e.ManagerId = m.Id

Note that once you define an alias, you can't use the canonical table name anymore. i.e.,

SELECT e.Fname, Employees.LName, m.Fname AS ManagerFirstName
FROM Employees e
JOIN Managers m ON e.ManagerId = m.Id

would throw an error.

It is worth noting table aliases -- more formally 'range variables' -- were introduced into the SQL language to solve
the problem of duplicate columns caused by INNER JOIN. The 1992 SQL standard corrected this earlier design flaw
by introducing NATURAL JOIN (implemented in mySQL, PostgreSQL and Oracle but not yet in SQL Server), the result
of which never has duplicate column names. The above example is interesting in that the tables are joined on
columns with different names (Id and ManagerId) but are not supposed to be joined on the columns with the same
name (LName, FName), requiring the renaming of the columns to be performed before the join:

SELECT Fname, LName, ManagerFirstName
FROM Employees
 NATURAL JOIN
 (SELECT Id AS ManagerId, Fname AS ManagerFirstName
 FROM Managers) m;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 22

Note that although an alias/range variable must be declared for the dervied table (otherwise SQL will throw an
error), it never makes sense to actually use it in the query.

Section 6.9: Selecting with more than 1 condition
The AND keyword is used to add more conditions to the query.

Name Age Gender
Sam 18 M
John 21 M
Bob 22 M
Mary 23 F
SELECT name FROM persons WHERE gender = 'M' AND age > 20;

This will return:

Name
John
Bob

using OR keyword

SELECT name FROM persons WHERE gender = 'M' OR age < 20;

This will return:

name
Sam
John
Bob

These keywords can be combined to allow for more complex criteria combinations:

SELECT name
FROM persons
WHERE (gender = 'M' AND age < 20)
 OR (gender = 'F' AND age > 20);

This will return:

name
Sam
Mary

Section 6.10: Selecting without Locking the table
Sometimes when tables are used mostly (or only) for reads, indexing does not help anymore and every little bit
counts, one might use selects without LOCK to improve performance.

SQL Server

SELECT * FROM TableName WITH (nolock)

MySQL

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 23

SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM TableName;
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Oracle

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM TableName;

DB2

SELECT * FROM TableName WITH UR;

where UR stands for "uncommitted read".

If used on table that has record modifications going on might have unpredictable results.

Section 6.11: Selecting with Aggregate functions
Average
The AVG() aggregate function will return the average of values selected.

SELECT AVG(Salary) FROM Employees

Aggregate functions can also be combined with the where clause.

SELECT AVG(Salary) FROM Employees where DepartmentId = 1

Aggregate functions can also be combined with group by clause.

If employee is categorized with multiple department and we want to find avg salary for every department then we
can use following query.

SELECT AVG(Salary) FROM Employees GROUP BY DepartmentId

Minimum
The MIN() aggregate function will return the minimum of values selected.

SELECT MIN(Salary) FROM Employees

Maximum
The MAX() aggregate function will return the maximum of values selected.

SELECT MAX(Salary) FROM Employees

Count
The COUNT() aggregate function will return the count of values selected.

SELECT Count(*) FROM Employees

It can also be combined with where conditions to get the count of rows that satisfy specific conditions.

SELECT Count(*) FROM Employees where ManagerId IS NOT NULL

Specific columns can also be specified to get the number of values in the column. Note that NULL values are not
counted.

Select Count(ManagerId) from Employees

Count can also be combined with the distinct keyword for a distinct count.

Select Count(DISTINCT DepartmentId) from Employees

Sum
The SUM() aggregate function returns the sum of the values selected for all rows.

SELECT SUM(Salary) FROM Employees

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 24

Section 6.12: Select with condition of multiple values from
column
SELECT * FROM Cars WHERE status IN ('Waiting', 'Working')

This is semantically equivalent to

SELECT * FROM Cars WHERE (status = 'Waiting' OR status = 'Working')

i.e. value IN (<value list>) is a shorthand for disjunction (logical OR).

Section 6.13: Get aggregated result for row groups
Counting rows based on a specific column value:

SELECT category, COUNT(*) AS item_count
FROM item
GROUP BY category;

Getting average income by department:

SELECT department, AVG(income)
FROM employees
GROUP BY department;

The important thing is to select only columns specified in the GROUP BY clause or used with aggregate functions.

There WHERE clause can also be used with GROUP BY, but WHERE filters out records before any grouping is done:

SELECT department, AVG(income)
FROM employees
WHERE department <> 'ACCOUNTING'
GROUP BY department;

If you need to filter the results after the grouping has been done, e.g, to see only departments whose average
income is larger than 1000, you need to use the HAVING clause:

SELECT department, AVG(income)
FROM employees
WHERE department <> 'ACCOUNTING'
GROUP BY department
HAVING avg(income) > 1000;

Section 6.14: Selection with sorted Results
SELECT * FROM Employees ORDER BY LName

This statement will return all the columns from the table Employees.

Id FName LName PhoneNumber
2 John Johnson 2468101214
1 James Smith 1234567890
3 Michael Williams 1357911131
SELECT * FROM Employees ORDER BY LName DESC

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 25

Or

 SELECT * FROM Employees ORDER BY LName ASC

This statement changes the sorting direction.

One may also specify multiple sorting columns. For example:

SELECT * FROM Employees ORDER BY LName ASC, FName ASC

This example will sort the results first by LName and then, for records that have the same LName, sort by FName. This
will give you a result similar to what you would find in a telephone book.

In order to save retyping the column name in the ORDER BY clause, it is possible to use instead the column's
number. Note that column numbers start from 1.

SELECT Id, FName, LName, PhoneNumber FROM Employees ORDER BY 3

You may also embed a CASE statement in the ORDER BY clause.

SELECT Id, FName, LName, PhoneNumber FROM Employees ORDER BY CASE WHEN LName='Jones' THEN 0 ELSE 1
END ASC

This will sort your results to have all records with the LName of "Jones" at the top.

Section 6.15: Selecting with null
SELECT Name FROM Customers WHERE PhoneNumber IS NULL

Selection with nulls take a different syntax. Don't use =, use IS NULL or IS NOT NULL instead.

Section 6.16: Select distinct (unique values only)
SELECT DISTINCT ContinentCode
FROM Countries;

This query will return all DISTINCT (unique, different) values from ContinentCode column from Countries table

ContinentCode
OC
EU
AS
NA
AF

SQLFiddle Demo

Section 6.17: Select rows from multiple tables
SELECT *
FROM
 table1,
 table2

SELECT

http://sqlfiddle.com/#!9/14cfc6/2/0
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 26

 table1.column1,
 table1.column2,
 table2.column1
FROM
 table1,
 table2

This is called cross product in SQL it is same as cross product in sets

These statements return the selected columns from multiple tables in one query.

There is no specific relationship between the columns returned from each table.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 27

Chapter 7: GROUP BY
Results of a SELECT query can be grouped by one or more columns using the GROUP BY statement: all results with
the same value in the grouped columns are aggregated together. This generates a table of partial results, instead of
one result. GROUP BY can be used in conjunction with aggregation functions using the HAVING statement to define
how non-grouped columns are aggregated.

Section 7.1: Basic GROUP BY example
It might be easier if you think of GROUP BY as "for each" for the sake of explanation. The query below:

SELECT EmpID, SUM (MonthlySalary)
FROM Employee
GROUP BY EmpID

is saying:

"Give me the sum of MonthlySalary's for each EmpID"

So if your table looked like this:

+-----+-------------+
|EmpID|MonthlySalary|
+-----+-------------+
|1 |200 |
+-----+-------------+
|2 |300 |
+-----+-------------+

Result:

+-+---+
|1|200|
+-+---+
|2|300|
+-+---+

Sum wouldn't appear to do anything because the sum of one number is that number. On the other hand if it looked
like this:

+-----+-------------+
|EmpID|MonthlySalary|
+-----+-------------+
|1 |200 |
+-----+-------------+
|1 |300 |
+-----+-------------+
|2 |300 |
+-----+-------------+

Result:

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 28

+-+---+
|1|500|
+-+---+
|2|300|
+-+---+

Then it would because there are two EmpID 1's to sum together.

Section 7.2: Filter GROUP BY results using a HAVING clause
A HAVING clause filters the results of a GROUP BY expression. Note: The following examples are using the Library
example database.

Examples:

Return all authors that wrote more than one book (live example).

SELECT
 a.Id,
 a.Name,
 COUNT(*) BooksWritten
FROM BooksAuthors ba
 INNER JOIN Authors a ON a.id = ba.authorid
GROUP BY
 a.Id,
 a.Name
HAVING COUNT(*) > 1 -- equals to HAVING BooksWritten > 1
;

Return all books that have more than three authors (live example).

SELECT
 b.Id,
 b.Title,
 COUNT(*) NumberOfAuthors
FROM BooksAuthors ba
 INNER JOIN Books b ON b.id = ba.bookid
GROUP BY
 b.Id,
 b.Title
HAVING COUNT(*) > 3 -- equals to HAVING NumberOfAuthors > 3
;

Section 7.3: USE GROUP BY to COUNT the number of rows for
each unique entry in a given column
Let's say you want to generate counts or subtotals for a given value in a column.

Given this table, "Westerosians":

Name GreatHouseAllegience
Arya Stark
Cercei Lannister
Myrcella Lannister
Yara Greyjoy
Catelyn Stark
Sansa Stark

http://sqlfiddle.com/#!9/7c06f/7
http://sqlfiddle.com/#!9/7c06f/9
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 29

Without GROUP BY, COUNT will simply return a total number of rows:

SELECT Count(*) Number_of_Westerosians
FROM Westerosians

returns...

Number_of_Westerosians
6

But by adding GROUP BY, we can COUNT the users for each value in a given column, to return the number of
people in a given Great House, say:

SELECT GreatHouseAllegience House, Count(*) Number_of_Westerosians
FROM Westerosians
GROUP BY GreatHouseAllegience

returns...

House Number_of_Westerosians
Stark 3
Greyjoy 1
Lannister 2

It's common to combine GROUP BY with ORDER BY to sort results by largest or smallest category:

SELECT GreatHouseAllegience House, Count(*) Number_of_Westerosians
FROM Westerosians
GROUP BY GreatHouseAllegience
ORDER BY Number_of_Westerosians Desc

returns...

House Number_of_Westerosians
Stark 3
Lannister 2
Greyjoy 1

Section 7.4: ROLAP aggregation (Data Mining)
Description

The SQL standard provides two additional aggregate operators. These use the polymorphic value "ALL" to denote
the set of all values that an attribute can take. The two operators are:

with data cube that it provides all possible combinations than the argument attributes of the clause.
with roll up that it provides the aggregates obtained by considering the attributes in order from left to
right compared how they are listed in the argument of the clause.

SQL standard versions that support these features: 1999,2003,2006,2008,2011.

Examples

Consider this table:

Food Brand Total_amount

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 30

Pasta Brand1 100
Pasta Brand2 250
Pizza Brand2 300
With cube
select Food,Brand,Total_amount
from Table
group by Food,Brand,Total_amount with cube

Food Brand Total_amount
Pasta Brand1 100
Pasta Brand2 250
Pasta ALL 350
Pizza Brand2 300
Pizza ALL 300
ALL Brand1 100
ALL Brand2 550
ALL ALL 650
With roll up
select Food,Brand,Total_amount
from Table
group by Food,Brand,Total_amount with roll up

Food Brand Total_amount
Pasta Brand1 100
Pasta Brand2 250
Pizza Brand2 300
Pasta ALL 350
Pizza ALL 300
ALL ALL 650

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 31

Chapter 8: ORDER BY
Section 8.1: Sorting by column number (instead of name)
You can use a column's number (where the leftmost column is '1') to indicate which column to base the sort on,
instead of describing the column by its name.

Pro: If you think it's likely you might change column names later, doing so won't break this code.

Con: This will generally reduce readability of the query (It's instantly clear what 'ORDER BY Reputation' means, while
'ORDER BY 14' requires some counting, probably with a finger on the screen.)

This query sorts result by the info in relative column position 3 from select statement instead of column name
Reputation.

SELECT DisplayName, JoinDate, Reputation FROM Users ORDER BY 3
DisplayName JoinDate Reputation
Community 2008-09-15 1
Jarrod Dixon 2008-10-03 11739
Geoff Dalgas 2008-10-03 12567
Joel Spolsky 2008-09-16 25784
Jeff Atwood 2008-09-16 37628

Section 8.2: Use ORDER BY with TOP to return the top x rows
based on a column's value
In this example, we can use GROUP BY not only determined the sort of the rows returned, but also what rows are
returned, since we're using TOP to limit the result set.

Let's say we want to return the top 5 highest reputation users from an unnamed popular Q&A site.

Without ORDER BY

This query returns the Top 5 rows ordered by the default, which in this case is "Id", the first column in the table
(even though it's not a column shown in the results).

SELECT TOP 5 DisplayName, Reputation
FROM Users

returns...

DisplayName Reputation
Community 1
Geoff Dalgas 12567
Jarrod Dixon 11739
Jeff Atwood 37628
Joel Spolsky 25784

With ORDER BY

SELECT TOP 5 DisplayName, Reputation
FROM Users
ORDER BY Reputation desc

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 32

returns...

DisplayName Reputation
JonSkeet 865023
Darin Dimitrov 661741
BalusC 650237
Hans Passant 625870
Marc Gravell 601636

Remarks

Some versions of SQL (such as MySQL) use a LIMIT clause at the end of a SELECT, instead of TOP at the beginning,
for example:

SELECT DisplayName, Reputation
FROM Users
ORDER BY Reputation DESC
LIMIT 5

Section 8.3: Customizeed sorting order
To sort this table Employee by department, you would use ORDER BY Department. However, if you want a different
sort order that is not alphabetical, you have to map the Department values into different values that sort correctly;
this can be done with a CASE expression:

Name Department
Hasan IT
Yusuf HR
Hillary HR
Joe IT
Merry HR
Ken Accountant
SELECT *
FROM Employee
ORDER BY CASE Department
 WHEN 'HR' THEN 1
 WHEN 'Accountant' THEN 2
 ELSE 3
 END;

Name Department
Yusuf HR
Hillary HR
Merry HR
Ken Accountant
Hasan IT
Joe IT

Section 8.4: Order by Alias
Due to logical query processing order, alias can be used in order by.

SELECT DisplayName, JoinDate as jd, Reputation as rep
FROM Users
ORDER BY jd, rep

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 33

And can use relative order of the columns in the select statement .Consider the same example as above and
instead of using alias use the relative order like for display name it is 1 , for Jd it is 2 and so on

SELECT DisplayName, JoinDate as jd, Reputation as rep
FROM Users
ORDER BY 2, 3

Section 8.5: Sorting by multiple columns
SELECT DisplayName, JoinDate, Reputation FROM Users ORDER BY JoinDate, Reputation
DisplayName JoinDate Reputation
Community 2008-09-15 1
Jeff Atwood 2008-09-16 25784
Joel Spolsky 2008-09-16 37628
Jarrod Dixon 2008-10-03 11739
Geoff Dalgas 2008-10-03 12567

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 34

Chapter 9: AND & OR Operators
Section 9.1: AND OR Example
Have a table

Name Age City
Bob 10 Paris
Mat 20 Berlin
Mary 24 Prague
select Name from table where Age>10 AND City='Prague'

Gives

Name
Mary
select Name from table where Age=10 OR City='Prague'

Gives

Name
Bob
Mary

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 35

Chapter 10: CASE
The CASE expression is used to implement if-then logic.

Section 10.1: Use CASE to COUNT the number of rows in a
column match a condition
Use Case

CASE can be used in conjunction with SUM to return a count of only those items matching a pre-defined condition.
(This is similar to COUNTIF in Excel.)

The trick is to return binary results indicating matches, so the "1"s returned for matching entries can be summed
for a count of the total number of matches.

Given this table ItemSales, let's say you want to learn the total number of items that have been categorized as
"Expensive":

Id ItemId Price PriceRating
1 100 34.5 EXPENSIVE
2 145 2.3 CHEAP
3 100 34.5 EXPENSIVE
4 100 34.5 EXPENSIVE
5 145 10 AFFORDABLE

Query

SELECT
 COUNT(Id) AS ItemsCount,
 SUM (CASE
 WHEN PriceRating = 'Expensive' THEN 1
 ELSE 0
 END
) AS ExpensiveItemsCount
FROM ItemSales

Results:

ItemsCount ExpensiveItemsCount
5 3

Alternative:

SELECT
 COUNT(Id) as ItemsCount,
 SUM (
 CASE PriceRating
 WHEN 'Expensive' THEN 1
 ELSE 0
 END
) AS ExpensiveItemsCount
FROM ItemSales

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 36

Section 10.2: Searched CASE in SELECT (Matches a boolean
expression)
The searched CASE returns results when a boolean expression is TRUE.

(This differs from the simple case, which can only check for equivalency with an input.)

SELECT Id, ItemId, Price,
 CASE WHEN Price < 10 THEN 'CHEAP'
 WHEN Price < 20 THEN 'AFFORDABLE'
 ELSE 'EXPENSIVE'
 END AS PriceRating
FROM ItemSales

Id ItemId Price PriceRating
1 100 34.5 EXPENSIVE
2 145 2.3 CHEAP
3 100 34.5 EXPENSIVE
4 100 34.5 EXPENSIVE
5 145 10 AFFORDABLE

Section 10.3: CASE in a clause ORDER BY
We can use 1,2,3.. to determine the type of order:

SELECT * FROM DEPT
ORDER BY
CASE DEPARTMENT
 WHEN 'MARKETING' THEN 1
 WHEN 'SALES' THEN 2
 WHEN 'RESEARCH' THEN 3
 WHEN 'INNOVATION' THEN 4
 ELSE 5
 END,
 CITY

ID REGION CITY DEPARTMENT EMPLOYEES_NUMBER
12 New England Boston MARKETING 9
15 West San Francisco MARKETING 12
9 Midwest Chicago SALES 8
14 Mid-Atlantic New York SALES 12
5 West Los Angeles RESEARCH 11
10 Mid-Atlantic Philadelphia RESEARCH 13
4 Midwest Chicago INNOVATION 11
2 Midwest Detroit HUMAN RESOURCES 9

Section 10.4: Shorthand CASE in SELECT
CASE's shorthand variant evaluates an expression (usually a column) against a series of values. This variant is a bit
shorter, and saves repeating the evaluated expression over and over again. The ELSE clause can still be used,
though:

SELECT Id, ItemId, Price,
 CASE Price WHEN 5 THEN 'CHEAP'
 WHEN 15 THEN 'AFFORDABLE'
 ELSE 'EXPENSIVE'
 END as PriceRating

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 37

FROM ItemSales

A word of caution. It's important to realize that when using the short variant the entire statement is evaluated at
each WHEN. Therefore the following statement:

SELECT
 CASE ABS(CHECKSUM(NEWID())) % 4
 WHEN 0 THEN 'Dr'
 WHEN 1 THEN 'Master'
 WHEN 2 THEN 'Mr'
 WHEN 3 THEN 'Mrs'
 END

may produce a NULL result. That is because at each WHEN NEWID() is being called again with a new result. Equivalent
to:

SELECT
 CASE
 WHEN ABS(CHECKSUM(NEWID())) % 4 = 0 THEN 'Dr'
 WHEN ABS(CHECKSUM(NEWID())) % 4 = 1 THEN 'Master'
 WHEN ABS(CHECKSUM(NEWID())) % 4 = 2 THEN 'Mr'
 WHEN ABS(CHECKSUM(NEWID())) % 4 = 3 THEN 'Mrs'
 END

Therefore it can miss all the WHEN cases and result as NULL.

Section 10.5: Using CASE in UPDATE
sample on price increases:

UPDATE ItemPrice
SET Price = Price *
 CASE ItemId
 WHEN 1 THEN 1.05
 WHEN 2 THEN 1.10
 WHEN 3 THEN 1.15
 ELSE 1.00
 END

Section 10.6: CASE use for NULL values ordered last
in this way '0' representing the known values are ranked first, '1' representing the NULL values are sorted by the
last:

SELECT ID
 ,REGION
 ,CITY
 ,DEPARTMENT
 ,EMPLOYEES_NUMBER
 FROM DEPT
 ORDER BY
 CASE WHEN REGION IS NULL THEN 1
 ELSE 0
 END,
 REGION

ID REGION CITY DEPARTMENT EMPLOYEES_NUMBER
10 Mid-Atlantic Philadelphia RESEARCH 13

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 38

14 Mid-Atlantic New York SALES 12
9 Midwest Chicago SALES 8
12 New England Boston MARKETING 9
5 West Los Angeles RESEARCH 11
15 NULL San Francisco MARKETING 12
4 NULL Chicago INNOVATION 11
2 NULL Detroit HUMAN RESOURCES 9

Section 10.7: CASE in ORDER BY clause to sort records by
lowest value of 2 columns
Imagine that you need sort records by lowest value of either one of two columns. Some databases could use a non-
aggregated MIN() or LEAST() function for this (... ORDER BY MIN(Date1, Date2)), but in standard SQL, you have
to use a CASE expression.

The CASE expression in the query below looks at the Date1 and Date2 columns, checks which column has the lower
value, and sorts the records depending on this value.

Sample data
Id Date1 Date2
1 2017-01-01 2017-01-31
2 2017-01-31 2017-01-03
3 2017-01-31 2017-01-02
4 2017-01-06 2017-01-31
5 2017-01-31 2017-01-05
6 2017-01-04 2017-01-31
Query
SELECT Id, Date1, Date2
FROM YourTable
ORDER BY CASE
 WHEN COALESCE(Date1, '1753-01-01') < COALESCE(Date2, '1753-01-01') THEN Date1
 ELSE Date2
 END

Results
Id Date1 Date2
1 2017-01-01 2017-01-31
3 2017-01-31 2017-01-02
2 2017-01-31 2017-01-03
6 2017-01-04 2017-01-31
5 2017-01-31 2017-01-05
4 2017-01-06 2017-01-31
Explanation

As you see row with Id = 1 is first, that because Date1 have lowest record from entire table 2017-01-01, row where
Id = 3 is second that because Date2 equals to 2017-01-02 that is second lowest value from table and so on.

So we have sorted records from 2017-01-01 to 2017-01-06 ascending and no care on which one column Date1 or
Date2 are those values.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 39

Chapter 11: LIKE operator
Section 11.1: Match open-ended pattern
The % wildcard appended to the beginning or end (or both) of a string will allow 0 or more of any character before
the beginning or after the end of the pattern to match.

Using '%' in the middle will allow 0 or more characters between the two parts of the pattern to match.

We are going to use this Employees Table:

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
1 John Johnson 2468101214 1 1 400 23-03-2005
2 Sophie Amudsen 2479100211 1 1 400 11-01-2010
3 Ronny Smith 2462544026 2 1 600 06-08-2015
4 Jon Sanchez 2454124602 1 1 400 23-03-2005
5 Hilde Knag 2468021911 2 1 800 01-01-2000

Following statement matches for all records having FName containing string 'on' from Employees Table.

SELECT * FROM Employees WHERE FName LIKE '%on%';

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
3 Ronny Smith 2462544026 2 1 600 06-08-2015
4 Jon Sanchez 2454124602 1 1 400 23-03-2005

Following statement matches all records having PhoneNumber starting with string '246' from Employees.

SELECT * FROM Employees WHERE PhoneNumber LIKE '246%';

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
1 John Johnson 2468101214 1 1 400 23-03-2005
3 Ronny Smith 2462544026 2 1 600 06-08-2015
5 Hilde Knag 2468021911 2 1 800 01-01-2000

Following statement matches all records having PhoneNumber ending with string '11' from Employees.

SELECT * FROM Employees WHERE PhoneNumber LIKE '%11'

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
2 Sophie Amudsen 2479100211 1 1 400 11-01-2010
5 Hilde Knag 2468021911 2 1 800 01-01-2000

All records where Fname 3rd character is 'n' from Employees.

SELECT * FROM Employees WHERE FName LIKE '__n%';

(two underscores are used before 'n' to skip first 2 characters)

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
3 Ronny Smith 2462544026 2 1 600 06-08-2015
4 Jon Sanchez 2454124602 1 1 400 23-03-2005

Section 11.2: Single character match
To broaden the selections of a structured query language (SQL-SELECT) statement, wildcard characters, the percent

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 40

sign (%) and the underscore (_), can be used.

The _ (underscore) character can be used as a wildcard for any single character in a pattern match.

Find all employees whose Fname start with 'j' and end with 'n' and has exactly 3 characters in Fname.

SELECT * FROM Employees WHERE FName LIKE 'j_n'

_ (underscore) character can also be used more than once as a wild card to match patterns.

For example, this pattern would match "jon", "jan", "jen", etc.

These names will not be shown "jn","john","jordan", "justin", "jason", "julian", "jillian", "joann" because in our query
one underscore is used and it can skip exactly one character, so result must be of 3 character Fname.

For example, this pattern would match "LaSt", "LoSt", "HaLt", etc.

SELECT * FROM Employees WHERE FName LIKE '_A_T'

Section 11.3: ESCAPE statement in the LIKE-query
If you implement a text-search as LIKE-query, you usually do it like this:

SELECT *
FROM T_Whatever
WHERE SomeField LIKE CONCAT('%', @in_SearchText, '%')

However, (apart from the fact that you shouldn't necessarely use LIKE when you can use fulltext-search) this
creates a problem when somebody inputs text like "50%" or "a_b".

So (instead of switching to fulltext-search), you can solve that problem using the LIKE-escape statement:

SELECT *
FROM T_Whatever
WHERE SomeField LIKE CONCAT('%', @in_SearchText, '%') ESCAPE '\'

That means \ will now be treated as ESCAPE character. This means, you can now just prepend \ to every character
in the string you search, and the results will start to be correct, even when the user enters a special character like %
or _.

e.g.

string stringToSearch = "abc_def 50%";
string newString = "";
foreach(char c in stringToSearch)
 newString += @"\" + c;

sqlCmd.Parameters.Add("@in_SearchText", newString);
// instead of sqlCmd.Parameters.Add("@in_SearchText", stringToSearch);

Note: The above algorithm is for demonstration purposes only. It will not work in cases where 1 grapheme consists
out of several characters (utf-8). e.g. string stringToSearch = "Les Mise\u0301rables"; You'll need to do this
for each grapheme, not for each character. You should not use the above algorithm if you're dealing with
Asian/East-Asian/South-Asian languages. Or rather, if you want correct code to begin with, you should just do that
for each graphemeCluster.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 41

See also ReverseString, a C# interview-question

Section 11.4: Search for a range of characters
Following statement matches all records having FName that starts with a letter from A to F from Employees Table.

SELECT * FROM Employees WHERE FName LIKE '[A-F]%'

Section 11.5: Match by range or set
Match any single character within the specified range (e.g.: [a-f]) or set (e.g.: [abcdef]).

This range pattern would match "gary" but not "mary":

SELECT * FROM Employees WHERE FName LIKE '[a-g]ary'

This set pattern would match "mary" but not "gary":

SELECT * FROM Employees WHERE Fname LIKE '[lmnop]ary'

The range or set can also be negated by appending the ^ caret before the range or set:

This range pattern would not match "gary" but will match "mary":

SELECT * FROM Employees WHERE FName LIKE '[^a-g]ary'

This set pattern would not match "mary" but will match"gary":

SELECT * FROM Employees WHERE Fname LIKE '[^lmnop]ary'

Section 11.6: Wildcard characters
wildcard characters are used with the SQL LIKE operator. SQL wildcards are used to search for data within a table.

Wildcards in SQL are:%, _, [charlist], [^charlist]

% - A substitute for zero or more characters

 Eg: //selects all customers with a City starting with "Lo"
 SELECT * FROM Customers
 WHERE City LIKE 'Lo%';

 //selects all customers with a City containing the pattern "es"
 SELECT * FROM Customers
 WHERE City LIKE '%es%';

_ - A substitute for a single character

Eg://selects all customers with a City starting with any character, followed by "erlin"
SELECT * FROM Customers
WHERE City LIKE '_erlin';

[charlist] - Sets and ranges of characters to match

Eg://selects all customers with a City starting with "a", "d", or "l"

https://stackoverflow.com/questions/1009689/reversestring-a-c-sharp-interview-question/36312251#36312251
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 42

SELECT * FROM Customers
WHERE City LIKE '[adl]%';

//selects all customers with a City starting with "a", "d", or "l"
SELECT * FROM Customers
WHERE City LIKE '[a-c]%';

[^charlist] - Matches only a character NOT specified within the brackets

Eg://selects all customers with a City starting with a character that is not "a", "p", or "l"
SELECT * FROM Customers
WHERE City LIKE '[^apl]%';

or

SELECT * FROM Customers
WHERE City NOT LIKE '[apl]%' and city like '_%';

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 43

Chapter 12: IN clause
Section 12.1: Simple IN clause
To get records having any of the given ids

select *
from products
where id in (1,8,3)

The query above is equal to

select *
from products
where id = 1
 or id = 8
 or id = 3

Section 12.2: Using IN clause with a subquery
SELECT *
FROM customers
WHERE id IN (
 SELECT DISTINCT customer_id
 FROM orders
);

The above will give you all the customers that have orders in the system.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 44

Chapter 13: Filter results using WHERE and
HAVING
Section 13.1: Use BETWEEN to Filter Results
The following examples use the Item Sales and Customers sample databases.

Note: The BETWEEN operator is inclusive.

Using the BETWEEN operator with Numbers:

SELECT * From ItemSales
WHERE Quantity BETWEEN 10 AND 17

This query will return all ItemSales records that have a quantity that is greater or equal to 10 and less than or equal
to 17. The results will look like:

Id SaleDate ItemId Quantity Price
1 2013-07-01 100 10 34.5
4 2013-07-23 100 15 34.5
5 2013-07-24 145 10 34.5

Using the BETWEEN operator with Date Values:

SELECT * From ItemSales
WHERE SaleDate BETWEEN '2013-07-11' AND '2013-05-24'

This query will return all ItemSales records with a SaleDate that is greater than or equal to July 11, 2013 and less
than or equal to May 24, 2013.

Id SaleDate ItemId Quantity Price
3 2013-07-11 100 20 34.5
4 2013-07-23 100 15 34.5
5 2013-07-24 145 10 34.5

When comparing datetime values instead of dates, you may need to convert the datetime values into a
date values, or add or subtract 24 hours to get the correct results.

Using the BETWEEN operator with Text Values:

SELECT Id, FName, LName FROM Customers
WHERE LName BETWEEN 'D' AND 'L';

Live example: SQL fiddle

This query will return all customers whose name alphabetically falls between the letters 'D' and 'L'. In this case,
Customer #1 and #3 will be returned. Customer #2, whose name begins with a 'M' will not be included.

Id FName LName
1 William Jones
3 Richard Davis

http://sqlfiddle.com/#!9/76b9b/2
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 45

Section 13.2: Use HAVING with Aggregate Functions
Unlike the WHERE clause, HAVING can be used with aggregate functions.

An aggregate function is a function where the values of multiple rows are grouped together as input on
certain criteria to form a single value of more significant meaning or measurement (Wikipedia).

Common aggregate functions include COUNT(), SUM(), MIN(), and MAX().

This example uses the Car Table from the Example Databases.

SELECT CustomerId, COUNT(Id) AS [Number of Cars]
FROM Cars
GROUP BY CustomerId
HAVING COUNT(Id) > 1

This query will return the CustomerId and Number of Cars count of any customer who has more than one car. In
this case, the only customer who has more than one car is Customer #1.

The results will look like:

CustomerId Number of Cars
1 2

Section 13.3: WHERE clause with NULL/NOT NULL values
SELECT *
FROM Employees
WHERE ManagerId IS NULL

This statement will return all Employee records where the value of the ManagerId column is NULL.

The result will be:

Id FName LName PhoneNumber ManagerId DepartmentId
1 James Smith 1234567890 NULL 1

SELECT *
FROM Employees
WHERE ManagerId IS NOT NULL

This statement will return all Employee records where the value of the ManagerId is not NULL.

The result will be:

Id FName LName PhoneNumber ManagerId DepartmentId
2 John Johnson 2468101214 1 1
3 Michael Williams 1357911131 1 2
4 Johnathon Smith 1212121212 2 1

Note: The same query will not return results if you change the WHERE clause to WHERE ManagerId = NULL or WHERE
ManagerId <> NULL.

https://en.wikipedia.org/wiki/Aggregate_function
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 46

Section 13.4: Equality
SELECT * FROM Employees

This statement will return all the rows from the table Employees.

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
CreatedDate ModifiedDate
1 James Smith 1234567890 NULL 1 1000 01-01-2002 01-01-2002
01-01-2002
2 John Johnson 2468101214 1 1 400 23-03-2005 23-03-2005
01-01-2002
3 Michael Williams 1357911131 1 2 600 12-05-2009 12-05-2009
NULL
4 Johnathon Smith 1212121212 2 1 500 24-07-2016 24-07-2016
01-01-2002

Using a WHERE at the end of your SELECT statement allows you to limit the returned rows to a condition. In this case,
where there is an exact match using the = sign:

SELECT * FROM Employees WHERE DepartmentId = 1

Will only return the rows where the DepartmentId is equal to 1:

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
CreatedDate ModifiedDate
1 James Smith 1234567890 NULL 1 1000 01-01-2002 01-01-2002
01-01-2002
2 John Johnson 2468101214 1 1 400 23-03-2005 23-03-2005
01-01-2002
4 Johnathon Smith 1212121212 2 1 500 24-07-2016 24-07-2016
01-01-2002

Section 13.5: The WHERE clause only returns rows that match
its criteria
Steam has a games under $10 section of their store page. Somewhere deep in the heart of their systems, there's
probably a query that looks something like:

SELECT *
FROM Items
WHERE Price < 10

Section 13.6: AND and OR
You can also combine several operators together to create more complex WHERE conditions. The following examples
use the Employees table:

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
CreatedDate ModifiedDate
1 James Smith 1234567890 NULL 1 1000 01-01-2002 01-01-2002
01-01-2002
2 John Johnson 2468101214 1 1 400 23-03-2005 23-03-2005
01-01-2002

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 47

3 Michael Williams 1357911131 1 2 600 12-05-2009 12-05-2009
NULL
4 Johnathon Smith 1212121212 2 1 500 24-07-2016 24-07-2016
01-01-2002

AND

SELECT * FROM Employees WHERE DepartmentId = 1 AND ManagerId = 1

Will return:

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
CreatedDate ModifiedDate
2 John Johnson 2468101214 1 1 400 23-03-2005 23-03-2005
01-01-2002

OR

SELECT * FROM Employees WHERE DepartmentId = 2 OR ManagerId = 2

Will return:

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire_date
CreatedDate ModifiedDate
3 Michael Williams 1357911131 1 2 600 12-05-2009 12-05-2009
NULL
4 Johnathon Smith 1212121212 2 1 500 24-07-2016 24-07-2016
01-01-2002

Section 13.7: Use IN to return rows with a value contained in a
list
This example uses the Car Table from the Example Databases.

SELECT *
FROM Cars
WHERE TotalCost IN (100, 200, 300)

This query will return Car #2 which costs 200 and Car #3 which costs 100. Note that this is equivalent to using
multiple clauses with OR, e.g.:

SELECT *
FROM Cars
WHERE TotalCost = 100 OR TotalCost = 200 OR TotalCost = 300

Section 13.8: Use LIKE to find matching strings and substrings
See full documentation on LIKE operator.

This example uses the Employees Table from the Example Databases.

SELECT *
FROM Employees

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 48

WHERE FName LIKE 'John'

This query will only return Employee #1 whose first name matches 'John' exactly.

SELECT *
FROM Employees
WHERE FName like 'John%'

Adding % allows you to search for a substring:

John% - will return any Employee whose name begins with 'John', followed by any amount of characters
%John - will return any Employee whose name ends with 'John', proceeded by any amount of characters
%John% - will return any Employee whose name contains 'John' anywhere within the value

In this case, the query will return Employee #2 whose name is 'John' as well as Employee #4 whose name is
'Johnathon'.

Section 13.9: Where EXISTS
Will select records in TableName that have records matching in TableName1.

SELECT * FROM TableName t WHERE EXISTS (
 SELECT 1 FROM TableName1 t1 where t.Id = t1.Id)

Section 13.10: Use HAVING to check for multiple conditions in a
group
Orders Table

CustomerId ProductId Quantity Price
1 2 5 100
1 3 2 200
1 4 1 500
2 1 4 50
3 5 6 700

To check for customers who have ordered both - ProductID 2 and 3, HAVING can be used

 select customerId
 from orders
 where productID in (2,3)
 group by customerId
 having count(distinct productID) = 2

Return value:

customerId
1

The query selects only records with the productIDs in questions and with the HAVING clause checks for groups
having 2 productIds and not just one.

Another possibility would be

 select customerId

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 49

 from orders
 group by customerId
 having sum(case when productID = 2 then 1 else 0 end) > 0
 and sum(case when productID = 3 then 1 else 0 end) > 0

This query selects only groups having at least one record with productID 2 and at least one with productID 3.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 50

Chapter 14: SKIP TAKE (Pagination)
Section 14.1: Limiting amount of results
ISO/ANSI SQL:

SELECT * FROM TableName FETCH FIRST 20 ROWS ONLY;

MySQL; PostgreSQL; SQLite:

SELECT * FROM TableName LIMIT 20;

Oracle:

SELECT Id,
 Col1
FROM (SELECT Id,
 Col1,
 row_number() over (order by Id) RowNumber
 FROM TableName)
WHERE RowNumber <= 20

SQL Server:

SELECT TOP 20 *
FROM dbo.[Sale]

Section 14.2: Skipping then taking some results (Pagination)
ISO/ANSI SQL:

SELECT Id, Col1
FROM TableName
ORDER BY Id
OFFSET 20 ROWS FETCH NEXT 20 ROWS ONLY;

MySQL:

SELECT * FROM TableName LIMIT 20, 20; -- offset, limit

Oracle; SQL Server:

SELECT Id,
 Col1
 FROM (SELECT Id,
 Col1,
 row_number() over (order by Id) RowNumber
 FROM TableName)
WHERE RowNumber BETWEEN 21 AND 40

PostgreSQL; SQLite:

SELECT * FROM TableName LIMIT 20 OFFSET 20;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 51

Section 14.3: Skipping some rows from result
ISO/ANSI SQL:

SELECT Id, Col1
FROM TableName
ORDER BY Id
OFFSET 20 ROWS

MySQL:

SELECT * FROM TableName LIMIT 20, 42424242424242;
-- skips 20 for take use very large number that is more than rows in table

Oracle:

SELECT Id,
 Col1
FROM (SELECT Id,
 Col1,
 row_number() over (order by Id) RowNumber
 FROM TableName)
WHERE RowNumber > 20

PostgreSQL:

SELECT * FROM TableName OFFSET 20;

SQLite:

SELECT * FROM TableName LIMIT -1 OFFSET 20;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 52

Chapter 15: EXCEPT
Section 15.1: Select dataset except where values are in this
other dataset
--dataset schemas must be identical
SELECT 'Data1' as 'Column' UNION ALL
SELECT 'Data2' as 'Column' UNION ALL
SELECT 'Data3' as 'Column' UNION ALL
SELECT 'Data4' as 'Column' UNION ALL
SELECT 'Data5' as 'Column'
EXCEPT
SELECT 'Data3' as 'Column'
--Returns Data1, Data2, Data4, and Data5

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 53

Chapter 16: EXPLAIN and DESCRIBE
Section 16.1: EXPLAIN Select query
An Explain infront of a select query shows you how the query will be executed. This way you to see if the query
uses an index or if you could optimize your query by adding an index.

Example query:

explain select * from user join data on user.test = data.fk_user;

Example result:

id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE user index test test 5 (null) 1 Using where; Using
index
1 SIMPLE data ref fk_user fk_user 5 user.test 1 (null)

on type you see if an index was used. In the column possible_keys you see if the execution plan can choose from
different indexes of if none exists. key tells you the acutal used index. key_len shows you the size in bytes for one
index item. The lower this value is the more index items fit into the same memory size an they can be faster
processed. rows shows you the expected number of rows the query needs to scan, the lower the better.

Section 16.2: DESCRIBE tablename;
DESCRIBE and EXPLAIN are synonyms. DESCRIBE on a tablename returns the definition of the columns.

DESCRIBE tablename;

Exmple Result:

COLUMN_NAME COLUMN_TYPE IS_NULLABLE COLUMN_KEY COLUMN_DEFAULT EXTRA
id int(11) NO PRI 0 auto_increment
test varchar(255) YES (null)

Here you see the column names, followed by the columns type. It shows if null is allowed in the column and if the
column uses an Index. the default value is also displayed and if the table contains any special behavior like an
auto_increment.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 54

Chapter 17: EXISTS CLAUSE
Section 17.1: EXISTS CLAUSE
Customer Table

Id FirstName LastName
1 Ozgur Ozturk
2 Youssef Medi
3 Henry Tai

Order Table

Id CustomerId Amount
1 2 123.50
2 3 14.80
Get all customers with a least one order
SELECT * FROM Customer WHERE EXISTS (
 SELECT * FROM Order WHERE Order.CustomerId=Customer.Id
)

Result

Id FirstName LastName
2 Youssef Medi
3 Henry Tai
Get all customers with no order
SELECT * FROM Customer WHERE NOT EXISTS (
 SELECT * FROM Order WHERE Order.CustomerId = Customer.Id
)

Result

Id FirstName LastName
1 Ozgur Ozturk
Purpose

EXISTS, IN and JOIN could sometime be used for the same result, however, they are not equals :

EXISTS should be used to check if a value exist in another table
IN should be used for static list
JOIN should be used to retrieve data from other(s) table(s)

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 55

Chapter 18: JOIN
JOIN is a method of combining (joining) information from two tables. The result is a stitched set of columns from
both tables, defined by the join type (INNER/OUTER/CROSS and LEFT/RIGHT/FULL, explained below) and join criteria
(how rows from both tables relate).

A table may be joined to itself or to any other table. If information from more than two tables needs to be accessed,
multiple joins can be specified in a FROM clause.

Section 18.1: Self Join
A table may be joined to itself, with different rows matching each other by some condition. In this use case, aliases
must be used in order to distinguish the two occurrences of the table.

In the below example, for each Employee in the example database Employees table, a record is returned containing
the employee's first name together with the corresponding first name of the employee's manager. Since managers
are also employees, the table is joined with itself:

SELECT
 e.FName AS "Employee",
 m.FName AS "Manager"
FROM
 Employees e
JOIN
 Employees m
 ON e.ManagerId = m.Id

This query will return the following data:

Employee Manager
John James
Michael James
Johnathon John
So how does this work?

The original table contains these records:

Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate
1 James Smith 1234567890 NULL 1 1000 01-01-2002
2 John Johnson 2468101214 1 1 400 23-03-2005
3 Michael Williams 1357911131 1 2 600 12-05-2009
4 Johnathon Smith 1212121212 2 1 500 24-07-2016

The first action is to create a Cartesian product of all records in the tables used in the FROM clause. In this case it's
the Employees table twice, so the intermediate table will look like this (I've removed any fields not used in this
example):

e.Id e.FName e.ManagerId m.Id m.FName m.ManagerId
1 James NULL 1 James NULL
1 James NULL 2 John 1
1 James NULL 3 Michael 1
1 James NULL 4 Johnathon 2
2 John 1 1 James NULL
2 John 1 2 John 1
2 John 1 3 Michael 1

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 56

2 John 1 4 Johnathon 2
3 Michael 1 1 James NULL
3 Michael 1 2 John 1
3 Michael 1 3 Michael 1
3 Michael 1 4 Johnathon 2
4 Johnathon 2 1 James NULL
4 Johnathon 2 2 John 1
4 Johnathon 2 3 Michael 1
4 Johnathon 2 4 Johnathon 2

The next action is to only keep the records that meet the JOIN criteria, so any records where the aliased e table
ManagerId equals the aliased m table Id:

e.Id e.FName e.ManagerId m.Id m.FName m.ManagerId
2 John 1 1 James NULL
3 Michael 1 1 James NULL
4 Johnathon 2 2 John 1

Then, each expression used within the SELECT clause is evaluated to return this table:

e.FName m.FName
John James
Michael James
Johnathon John

Finally, column names e.FName and m.FName are replaced by their alias column names, assigned with the AS
operator:

Employee Manager
John James
Michael James
Johnathon John

Section 18.2: Dierences between inner/outer joins
SQL has various join types to specify whether (non-)matching rows are included in the result: INNER JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN (the INNER and OUTER keywords are optional). The figure
below underlines the differences between these types of joins: the blue area represents the results returned by the
join, and the white area represents the results that the join will not return.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 57

Cross Join SQL Pictorial Presentation (reference) :

Below are examples from this answer.

For instance there are two tables as below :

https://i.stack.imgur.com/3bs7C.png
http://www.w3resource.com/sql/joins/cross-join.php
http://www.w3resource.com/sql/joins/cross-join.php
http://stackoverflow.com/a/38578/3709746
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 58

A B
- -
1 3
2 4
3 5
4 6

Note that (1,2) are unique to A, (3,4) are common, and (5,6) are unique to B.

Inner Join

An inner join using either of the equivalent queries gives the intersection of the two tables, i.e. the two rows they
have in common:

select * from a INNER JOIN b on a.a = b.b;
select a.*,b.* from a,b where a.a = b.b;

a | b
--+--
3 | 3
4 | 4

Left outer join

A left outer join will give all rows in A, plus any common rows in B:

select * from a LEFT OUTER JOIN b on a.a = b.b;

a | b
--+-----
1 | null
2 | null
3 | 3
4 | 4

Right outer join

Similarly, a right outer join will give all rows in B, plus any common rows in A:

select * from a RIGHT OUTER JOIN b on a.a = b.b;

a | b
-----+----
3 | 3
4 | 4
null | 5
null | 6

Full outer join

A full outer join will give you the union of A and B, i.e., all the rows in A and all the rows in B. If something in A
doesn't have a corresponding datum in B, then the B portion is null, and vice versa.

select * from a FULL OUTER JOIN b on a.a = b.b;

a | b
-----+-----

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 59

1 | null
2 | null
3 | 3
4 | 4
null | 6
null | 5

Section 18.3: JOIN Terminology: Inner, Outer, Semi, Anti..
Let's say we have two tables (A and B) and some of their rows match (relative to the given JOIN condition, whatever
it may be in the particular case):

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 60

We can use various join types to include or exclude matching or non-matching rows from either side, and correctly
name the join by picking the corresponding terms from the diagram above.

The examples below use the following test data:

CREATE TABLE A (
 X varchar(255) PRIMARY KEY

http://i.stack.imgur.com/TbHy6.png
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 61

);

CREATE TABLE B (
 Y varchar(255) PRIMARY KEY
);

INSERT INTO A VALUES
 ('Amy'),
 ('John'),
 ('Lisa'),
 ('Marco'),
 ('Phil');

INSERT INTO B VALUES
 ('Lisa'),
 ('Marco'),
 ('Phil'),
 ('Tim'),
 ('Vincent');

Inner Join

Combines left and right rows that match.

SELECT * FROM A JOIN B ON X = Y;

X Y
------ -----
Lisa Lisa
Marco Marco
Phil Phil

Left Outer Join

Sometimes abbreviated to "left join". Combines left and right rows that match, and includes non-matching left
rows.

http://i.stack.imgur.com/j4eti.png
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 62

SELECT * FROM A LEFT JOIN B ON X = Y;

X Y
----- -----
Amy NULL
John NULL
Lisa Lisa
Marco Marco
Phil Phil

Right Outer Join

Sometimes abbreviated to "right join". Combines left and right rows that match, and includes non-matching right
rows.

http://i.stack.imgur.com/5UjhU.png
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 63

SELECT * FROM A RIGHT JOIN B ON X = Y;

X Y
----- -------
Lisa Lisa
Marco Marco
Phil Phil
NULL Tim
NULL Vincent

Full Outer Join

Sometimes abbreviated to "full join". Union of left and right outer join.

http://i.stack.imgur.com/Lrg4z.png
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 64

SELECT * FROM A FULL JOIN B ON X = Y;

X Y
----- -------
Amy NULL
John NULL
Lisa Lisa
Marco Marco
Phil Phil
NULL Tim
NULL Vincent

Left Semi Join

Includes left rows that match right rows.

http://i.stack.imgur.com/XCCMm.png
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 65

SELECT * FROM A WHERE X IN (SELECT Y FROM B);

X

Lisa
Marco
Phil

Right Semi Join

Includes right rows that match left rows.

http://i.stack.imgur.com/UGEsN.png
http://i.stack.imgur.com/OwH1z.png
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 66

SELECT * FROM B WHERE Y IN (SELECT X FROM A);

Y

Lisa
Marco
Phil

As you can see, there is no dedicated IN syntax for left vs. right semi join - we achieve the effect simply by switching
the table positions within SQL text.

Left Anti Semi Join

Includes left rows that do not match right rows.

SELECT * FROM A WHERE X NOT IN (SELECT Y FROM B);

X

Amy
John

WARNING: Be careful if you happen to be using NOT IN on a NULL-able column! More details here.

Right Anti Semi Join

Includes right rows that do not match left rows.

http://i.stack.imgur.com/I3KVl.png
http://stackoverflow.com/a/132402/533120
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 67

SELECT * FROM B WHERE Y NOT IN (SELECT X FROM A);

Y

Tim
Vincent

As you can see, there is no dedicated NOT IN syntax for left vs. right anti semi join - we achieve the effect simply by
switching the table positions within SQL text.

Cross Join

A Cartesian product of all left with all right rows.

SELECT * FROM A CROSS JOIN B;

X Y
----- -------
Amy Lisa
John Lisa
Lisa Lisa
Marco Lisa
Phil Lisa
Amy Marco
John Marco
Lisa Marco
Marco Marco
Phil Marco
Amy Phil
John Phil
Lisa Phil
Marco Phil
Phil Phil
Amy Tim
John Tim

http://i.stack.imgur.com/sPY3h.png
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 68

Lisa Tim
Marco Tim
Phil Tim
Amy Vincent
John Vincent
Lisa Vincent
Marco Vincent
Phil Vincent

Cross join is equivalent to an inner join with join condition which always matches, so the following query would
have returned the same result:

SELECT * FROM A JOIN B ON 1 = 1;

Self-Join

This simply denotes a table joining with itself. A self-join can be any of the join types discussed above. For example,
this is a an inner self-join:

SELECT * FROM A A1 JOIN A A2 ON LEN(A1.X) < LEN(A2.X);

X X
---- -----
Amy John
Amy Lisa
Amy Marco
John Marco
Lisa Marco
Phil Marco
Amy Phil

Section 18.4: Left Outer Join
A Left Outer Join (also known as a Left Join or Outer Join) is a Join that ensures all rows from the left table are
represented; if no matching row from the right table exists, its corresponding fields are NULL.

The following example will select all departments and the first name of employees that work in that department.
Departments with no employees are still returned in the results, but will have NULL for the employee name:

SELECT Departments.Name, Employees.FName
FROM Departments
LEFT OUTER JOIN Employees
ON Departments.Id = Employees.DepartmentId

This would return the following from the example database:

Departments.Name Employees.FName
HR James
HR John
HR Johnathon
Sales Michael
Tech NULL
So how does this work?

There are two tables in the FROM clause:

Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate
1 James Smith 1234567890 NULL 1 1000 01-01-2002

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 69

2 John Johnson 2468101214 1 1 400 23-03-2005
3 Michael Williams 1357911131 1 2 600 12-05-2009
4 Johnathon Smith 1212121212 2 1 500 24-07-2016

and

Id Name
1 HR
2 Sales
3 Tech

First a Cartesian product is created from the two tables giving an intermediate table.
The records that meet the join criteria (Departments.Id = Employees.DepartmentId) are highlighted in bold; these are
passed to the next stage of the query.

As this is a LEFT OUTER JOIN all records are returned from the LEFT side of the join (Departments), while any
records on the RIGHT side are given a NULL marker if they do not match the join criteria. In the table below this will
return Tech with NULL

Id Name Id FName LName PhoneNumber ManagerId DepartmentId Salary HireDate
1 HR 1 James Smith 1234567890 NULL 1 1000 01-01-2002
1 HR 2 John Johnson 2468101214 1 1 400 23-03-2005
1 HR 3 Michael Williams 1357911131 1 2 600 12-05-2009
1 HR 4 Johnathon Smith 1212121212 2 1 500 24-07-2016
2 Sales 1 James Smith 1234567890 NULL 1 1000 01-01-2002
2 Sales 2 John Johnson 2468101214 1 1 400 23-03-2005
2 Sales 3 Michael Williams 1357911131 1 2 600 12-05-2009
2 Sales 4 Johnathon Smith 1212121212 2 1 500 24-07-2016
3 Tech 1 James Smith 1234567890 NULL 1 1000 01-01-2002
3 Tech 2 John Johnson 2468101214 1 1 400 23-03-2005
3 Tech 3 Michael Williams 1357911131 1 2 600 12-05-2009
3 Tech 4 Johnathon Smith 1212121212 2 1 500 24-07-2016

Finally each expression used within the SELECT clause is evaluated to return our final table:

Departments.Name Employees.FName
HR James
HR John
Sales Richard
Tech NULL

Section 18.5: Implicit Join
Joins can also be performed by having several tables in the from clause, separated with commas , and defining the
relationship between them in the where clause. This technique is called an Implicit Join (since it doesn't actually
contain a join clause).

All RDBMSs support it, but the syntax is usually advised against. The reasons why it is a bad idea to use this syntax
are:

It is possible to get accidental cross joins which then return incorrect results, especially if you have a lot of
joins in the query.
If you intended a cross join, then it is not clear from the syntax (write out CROSS JOIN instead), and someone
is likely to change it during maintenance.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 70

The following example will select employee's first names and the name of the departments they work for:

SELECT e.FName, d.Name
FROM Employee e, Departments d
WHERE e.DeptartmentId = d.Id

This would return the following from the example database:

e.FName d.Name
James HR
John HR
Richard Sales

Section 18.6: CROSS JOIN
Cross join does a Cartesian product of the two members, A Cartesian product means each row of one table is
combined with each row of the second table in the join. For example, if TABLEA has 20 rows and TABLEB has 20
rows, the result would be 20*20 = 400 output rows.

Using example database

SELECT d.Name, e.FName
FROM Departments d
CROSS JOIN Employees e;

Which returns:

d.Name e.FName
HR James
HR John
HR Michael
HR Johnathon
Sales James
Sales John
Sales Michael
Sales Johnathon
Tech James
Tech John
Tech Michael
Tech Johnathon

It is recommended to write an explicit CROSS JOIN if you want to do a cartesian join, to highlight that this is what
you want.

Section 18.7: CROSS APPLY & LATERAL JOIN
A very interesting type of JOIN is the LATERAL JOIN (new in PostgreSQL 9.3+),
which is also known as CROSS APPLY/OUTER APPLY in SQL-Server & Oracle.

The basic idea is that a table-valued function (or inline subquery) gets applied for every row you join.

This makes it possible to, for example, only join the first matching entry in another table.
The difference between a normal and a lateral join lies in the fact that you can use a column that you previously
joined in the subquery that you "CROSS APPLY".

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 71

Syntax:

PostgreSQL 9.3+

left | right | inner JOIN LATERAL

SQL-Server:

CROSS | OUTER APPLY

INNER JOIN LATERAL is the same as CROSS APPLY
and LEFT JOIN LATERAL is the same as OUTER APPLY

Example usage (PostgreSQL 9.3+):

SELECT * FROM T_Contacts

--LEFT JOIN T_MAP_Contacts_Ref_OrganisationalUnit ON MAP_CTCOU_CT_UID = T_Contacts.CT_UID AND
MAP_CTCOU_SoftDeleteStatus = 1
--WHERE T_MAP_Contacts_Ref_OrganisationalUnit.MAP_CTCOU_UID IS NULL -- 989

LEFT JOIN LATERAL
(
 SELECT
 --MAP_CTCOU_UID
 MAP_CTCOU_CT_UID
 ,MAP_CTCOU_COU_UID
 ,MAP_CTCOU_DateFrom
 ,MAP_CTCOU_DateTo
 FROM T_MAP_Contacts_Ref_OrganisationalUnit
 WHERE MAP_CTCOU_SoftDeleteStatus = 1
 AND MAP_CTCOU_CT_UID = T_Contacts.CT_UID

 /*
 AND
 (
 (__in_DateFrom <= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateTo)
 AND
 (__in_DateTo >= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateFrom)
)
 */
 ORDER BY MAP_CTCOU_DateFrom
 LIMIT 1
) AS FirstOE

And for SQL-Server

SELECT * FROM T_Contacts

--LEFT JOIN T_MAP_Contacts_Ref_OrganisationalUnit ON MAP_CTCOU_CT_UID = T_Contacts.CT_UID AND
MAP_CTCOU_SoftDeleteStatus = 1
--WHERE T_MAP_Contacts_Ref_OrganisationalUnit.MAP_CTCOU_UID IS NULL -- 989

-- CROSS APPLY -- = INNER JOIN
OUTER APPLY -- = LEFT JOIN

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 72

(
 SELECT TOP 1
 --MAP_CTCOU_UID
 MAP_CTCOU_CT_UID
 ,MAP_CTCOU_COU_UID
 ,MAP_CTCOU_DateFrom
 ,MAP_CTCOU_DateTo
 FROM T_MAP_Contacts_Ref_OrganisationalUnit
 WHERE MAP_CTCOU_SoftDeleteStatus = 1
 AND MAP_CTCOU_CT_UID = T_Contacts.CT_UID

 /*
 AND
 (
 (@in_DateFrom <= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateTo)
 AND
 (@in_DateTo >= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateFrom)
)
 */
 ORDER BY MAP_CTCOU_DateFrom
) AS FirstOE

Section 18.8: FULL JOIN
One type of JOIN that is less known, is the FULL JOIN.
(Note: FULL JOIN is not supported by MySQL as per 2016)

A FULL OUTER JOIN returns all rows from the left table, and all rows from the right table.

If there are rows in the left table that do not have matches in the right table, or if there are rows in right table that
do not have matches in the left table, then those rows will be listed, too.

Example 1 :

SELECT * FROM Table1

FULL JOIN Table2
 ON 1 = 2

Example 2:

SELECT
 COALESCE(T_Budget.Year, tYear.Year) AS RPT_BudgetInYear
 ,COALESCE(T_Budget.Value, 0.0) AS RPT_Value
FROM T_Budget

FULL JOIN tfu_RPT_All_CreateYearInterval(@budget_year_from, @budget_year_to) AS tYear
 ON tYear.Year = T_Budget.Year

Note that if you're using soft-deletes, you'll have to check the soft-delete status again in the WHERE-clause (because
FULL JOIN behaves kind-of like a UNION);
It's easy to overlook this little fact, since you put AP_SoftDeleteStatus = 1 in the join clause.

Also, if you are doing a FULL JOIN, you'll usually have to allow NULL in the WHERE-clause; forgetting to allow NULL
on a value will have the same effects as an INNER join, which is something you don't want if you're doing a FULL
JOIN.

Example:

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 73

SELECT
 T_AccountPlan.AP_UID
 ,T_AccountPlan.AP_Code
 ,T_AccountPlan.AP_Lang_EN
 ,T_BudgetPositions.BUP_Budget
 ,T_BudgetPositions.BUP_UID
 ,T_BudgetPositions.BUP_Jahr
FROM T_BudgetPositions

FULL JOIN T_AccountPlan
 ON T_AccountPlan.AP_UID = T_BudgetPositions.BUP_AP_UID
 AND T_AccountPlan.AP_SoftDeleteStatus = 1

WHERE (1=1)
AND (T_BudgetPositions.BUP_SoftDeleteStatus = 1 OR T_BudgetPositions.BUP_SoftDeleteStatus IS NULL)
AND (T_AccountPlan.AP_SoftDeleteStatus = 1 OR T_AccountPlan.AP_SoftDeleteStatus IS NULL)

Section 18.9: Recursive JOINs
Recursive joins are often used to obtain parent-child data. In SQL, they are implemented with recursive common
table expressions, for example:

WITH RECURSIVE MyDescendants AS (
 SELECT Name
 FROM People
 WHERE Name = 'John Doe'

 UNION ALL

 SELECT People.Name
 FROM People
 JOIN MyDescendants ON People.Name = MyDescendants.Parent
)
SELECT * FROM MyDescendants;

Section 18.10: Basic explicit inner join
A basic join (also called "inner join") queries data from two tables, with their relationship defined in a join clause.

The following example will select employees' first names (FName) from the Employees table and the name of the
department they work for (Name) from the Departments table:

SELECT Employees.FName, Departments.Name
FROM Employees
JOIN Departments
ON Employees.DepartmentId = Departments.Id

This would return the following from the example database:

Employees.FName Departments.Name
James HR
John HR
Richard Sales

Section 18.11: Joining on a Subquery
Joining a subquery is often used when you want to get aggregate data from a child/details table and display that

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 74

along with records from the parent/header table. For example, you might want to get a count of child records, an
average of some numeric column in child records, or the top or bottom row based on a date or numeric field. This
example uses aliases, which arguable makes queries easier to read when you have multiple tables involved. Here's
what a fairly typical subquery join looks like. In this case we are retrieving all rows from the parent table Purchase
Orders and retrieving only the first row for each parent record of the child table PurchaseOrderLineItems.

SELECT po.Id, po.PODate, po.VendorName, po.Status, item.ItemNo,
 item.Description, item.Cost, item.Price
FROM PurchaseOrders po
LEFT JOIN
 (
 SELECT l.PurchaseOrderId, l.ItemNo, l.Description, l.Cost, l.Price, Min(l.id) as Id
 FROM PurchaseOrderLineItems l
 GROUP BY l.PurchaseOrderId, l.ItemNo, l.Description, l.Cost, l.Price
) AS item ON item.PurchaseOrderId = po.Id

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 75

Chapter 19: UPDATE
Section 19.1: UPDATE with data from another table
The examples below fill in a PhoneNumber for any Employee who is also a Customer and currently does not have a
phone number set in the Employees Table.

(These examples use the Employees and Customers tables from the Example Databases.)

Standard SQL

Update using a correlated subquery:

UPDATE
 Employees
SET PhoneNumber =
 (SELECT
 c.PhoneNumber
 FROM
 Customers c
 WHERE
 c.FName = Employees.FName
 AND c.LName = Employees.LName)
WHERE Employees.PhoneNumber IS NULL

SQL:2003

Update using MERGE:

MERGE INTO
 Employees e
USING
 Customers c
ON
 e.FName = c.Fname
 AND e.LName = c.LName
 AND e.PhoneNumber IS NULL
WHEN MATCHED THEN
 UPDATE
 SET PhoneNumber = c.PhoneNumber

SQL Server

Update using INNER JOIN:

UPDATE
 Employees
SET
 PhoneNumber = c.PhoneNumber
FROM
 Employees e
INNER JOIN Customers c
 ON e.FName = c.FName
 AND e.LName = c.LName
WHERE
 PhoneNumber IS NULL

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 76

Section 19.2: Modifying existing values
This example uses the Cars Table from the Example Databases.

UPDATE Cars
SET TotalCost = TotalCost + 100
WHERE Id = 3 or Id = 4

Update operations can include current values in the updated row. In this simple example the TotalCost is
incremented by 100 for two rows:

The TotalCost of Car #3 is increased from 100 to 200
The TotalCost of Car #4 is increased from 1254 to 1354

A column's new value may be derived from its previous value or from any other column's value in the same table or
a joined table.

Section 19.3: Updating Specified Rows
This example uses the Cars Table from the Example Databases.

UPDATE
 Cars
SET
 Status = 'READY'
WHERE
 Id = 4

This statement will set the status of the row of 'Cars' with id 4 to "READY".

WHERE clause contains a logical expression which is evaluated for each row. If a row fulfills the criteria, its value is
updated. Otherwise, a row remains unchanged.

Section 19.4: Updating All Rows
This example uses the Cars Table from the Example Databases.

UPDATE Cars
SET Status = 'READY'

This statement will set the 'status' column of all rows of the 'Cars' table to "READY" because it does not have a WHERE
clause to filter the set of rows.

Section 19.5: Capturing Updated records
Sometimes one wants to capture the records that have just been updated.

CREATE TABLE #TempUpdated(ID INT)

Update TableName SET Col1 = 42
 OUTPUT inserted.ID INTO #TempUpdated
 WHERE Id > 50

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 77

Chapter 20: CREATE Database
Section 20.1: CREATE Database
A database is created with the following SQL command:

CREATE DATABASE myDatabase;

This would create an empty database named myDatabase where you can create tables.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 78

Chapter 21: CREATE TABLE
Parameter Details
tableName The name of the table

columns Contains an 'enumeration' of all the columns that the table have. See Create a New Table for more
details.

The CREATE TABLE statement is used create a new table in the database. A table definition consists of a list of
columns, their types, and any integrity constraints.

Section 21.1: Create Table From Select
You may want to create a duplicate of a table:

CREATE TABLE ClonedEmployees AS SELECT * FROM Employees;

You can use any of the other features of a SELECT statement to modify the data before passing it to the new table.
The columns of the new table are automatically created according to the selected rows.

CREATE TABLE ModifiedEmployees AS
SELECT Id, CONCAT(FName," ",LName) AS FullName FROM Employees
WHERE Id > 10;

Section 21.2: Create a New Table
A basic Employees table, containing an ID, and the employee's first and last name along with their phone number
can be created using

CREATE TABLE Employees(
 Id int identity(1,1) primary key not null,
 FName varchar(20) not null,
 LName varchar(20) not null,
 PhoneNumber varchar(10) not null
);

This example is specific to Transact-SQL

CREATE TABLE creates a new table in the database, followed by the table name, Employees

This is then followed by the list of column names and their properties, such as the ID

Id int identity(1,1) not null

Value Meaning
Id the column's name.
int is the data type.

identity(1,1) states that column will have auto generated values starting at 1 and incrementing by 1 for each new
row.

primary key states that all values in this column will have unique values
not null states that this column cannot have null values

Section 21.3: CREATE TABLE With FOREIGN KEY
Below you could find the table Employees with a reference to the table Cities.

CREATE TABLE Cities(

https://en.wikipedia.org/wiki/Transact-SQL
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 79

 CityID INT IDENTITY(1,1) NOT NULL,
 Name VARCHAR(20) NOT NULL,
 Zip VARCHAR(10) NOT NULL
);

CREATE TABLE Employees(
 EmployeeID INT IDENTITY (1,1) NOT NULL,
 FirstName VARCHAR(20) NOT NULL,
 LastName VARCHAR(20) NOT NULL,
 PhoneNumber VARCHAR(10) NOT NULL,
 CityID INT FOREIGN KEY REFERENCES Cities(CityID)
);

Here could you find a database diagram.

The column CityID of table Employees will reference to the column CityID of table Cities. Below you could find
the syntax to make this.

CityID INT FOREIGN KEY REFERENCES Cities(CityID)

Value Meaning
CityID Name of the column
int type of the column
FOREIGN KEY Makes the foreign key (optional)
REFERENCES
Cities(CityID)

Makes the reference
to the table Cities column CityID

Important: You couldn't make a reference to a table that not exists in the database. Be source to make first the
table Cities and second the table Employees. If you do it vise versa, it will throw an error.

Section 21.4: Duplicate a table
To duplicate a table, simply do the following:

CREATE TABLE newtable LIKE oldtable;
INSERT newtable SELECT * FROM oldtable;

Section 21.5: Create a Temporary or In-Memory Table
PostgreSQL and SQLite

To create a temporary table local to the session:

http://i.stack.imgur.com/ch7t3.png
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 80

CREATE TEMP TABLE MyTable(...);

SQL Server

To create a temporary table local to the session:

CREATE TABLE #TempPhysical(...);

To create a temporary table visible to everyone:

CREATE TABLE ##TempPhysicalVisibleToEveryone(...);

To create an in-memory table:

DECLARE @TempMemory TABLE(...);

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 81

Chapter 22: CREATE FUNCTION
Argument Description

function_name the name of function
list_of_paramenters parameters that function accepts
return_data_type type that function returs. Some SQL data type
function_body the code of function
scalar_expression scalar value returned by function

Section 22.1: Create a new Function
CREATE FUNCTION FirstWord (@input varchar(1000))
RETURNS varchar(1000)
AS
BEGIN
 DECLARE @output varchar(1000)
 SET @output = SUBSTRING(@input, 0, CASE CHARINDEX(' ', @input)
 WHEN 0 THEN LEN(@input) + 1
 ELSE CHARINDEX(' ', @input)
 END)

 RETURN @output
END

This example creates a function named FirstWord, that accepts a varchar parameter and returns another varchar
value.

http://www.w3schools.com/sql/sql_datatypes_general.asp
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 82

Chapter 23: TRY/CATCH
Section 23.1: Transaction In a TRY/CATCH
This will rollback both inserts due to an invalid datetime:

BEGIN TRANSACTION
BEGIN TRY
 INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
 VALUES (5.2, GETDATE(), 1)
 INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
 VALUES (5.2, 'not a date', 1)
 COMMIT TRANSACTION
END TRY
BEGIN CATCH
 THROW
 ROLLBACK TRANSACTION
END CATCH

This will commit both inserts:

BEGIN TRANSACTION
BEGIN TRY
 INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
 VALUES (5.2, GETDATE(), 1)
 INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
 VALUES (5.2, GETDATE(), 1)
 COMMIT TRANSACTION
END TRY
BEGIN CATCH
 THROW
 ROLLBACK TRANSACTION
END CATCH

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 83

Chapter 24: UNION / UNION ALL
UNION keyword in SQL is used to combine to SELECT statement results with out any duplicate. In order to use
UNION and combine results both SELECT statement should have same number of column with same data type in
same order, but the length of column can be different.

Section 24.1: Basic UNION ALL query
CREATE TABLE HR_EMPLOYEES
(
 PersonID int,
 LastName VARCHAR(30),
 FirstName VARCHAR(30),
 Position VARCHAR(30)
);

CREATE TABLE FINANCE_EMPLOYEES
(
 PersonID INT,
 LastName VARCHAR(30),
 FirstName VARCHAR(30),
 Position VARCHAR(30)
);

Let's say we want to extract the names of all the managers from our departments.

Using a UNION we can get all the employees from both HR and Finance departments, which hold the position of a
manager

SELECT
 FirstName, LastName
FROM
 HR_EMPLOYEES
WHERE
 Position = 'manager'
UNION ALL
SELECT
 FirstName, LastName
FROM
 FINANCE_EMPLOYEES
WHERE
 Position = 'manager'

The UNION statement removes duplicate rows from the query results. Since it is possible to have people having the
same Name and position in both departments we are using UNION ALL, in order not to remove duplicates.

If you want to use an alias for each output column, you can just put them in the first select statement, as follows:

SELECT
 FirstName as 'First Name', LastName as 'Last Name'
FROM
 HR_EMPLOYEES
WHERE
 Position = 'manager'
UNION ALL
SELECT
 FirstName, LastName
FROM

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 84

 FINANCE_EMPLOYEES
WHERE
 Position = 'manager'

Section 24.2: Simple explanation and Example
In simple terms:

UNION joins 2 result sets while removing duplicates from the result set
UNION ALL joins 2 result sets without attempting to remove duplicates

One mistake many people make is to use a UNION when they do not need to have the duplicates removed.
The additional performance cost against large results sets can be very significant.

When you might need UNION

Suppose you need to filter a table against 2 different attributes, and you have created separate non-clustered
indexes for each column. A UNION enables you to leverage both indexes while still preventing duplicates.

SELECT C1, C2, C3 FROM Table1 WHERE C1 = @Param1
UNION
SELECT C1, C2, C3 FROM Table1 WHERE C2 = @Param2

This simplifies your performance tuning since only simple indexes are needed to perform these queries optimally.
You may even be able to get by with quite a bit fewer non-clustered indexes improving overall write performance
against the source table as well.

When you might need UNION ALL

Suppose you still need to filter a table against 2 attributes, but you do not need to filter duplicate records (either
because it doesn't matter or your data wouldn't produce any duplicates during the union due to your data model
design).

SELECT C1 FROM Table1
UNION ALL
SELECT C1 FROM Table2

This is especially useful when creating Views that join data that is designed to be physically partitioned across
multiple tables (maybe for performance reasons, but still wants to roll-up records). Since the data is already split,
having the database engine remove duplicates adds no value and just adds additional processing time to the
queries.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 85

Chapter 25: ALTER TABLE
ALTER command in SQL is used to modify column/constraint in a table

Section 25.1: Add Column(s)
ALTER TABLE Employees
ADD StartingDate date NOT NULL DEFAULT GetDate(),
 DateOfBirth date NULL

The above statement would add columns named StartingDate which cannot be NULL with default value as current
date and DateOfBirth which can be NULL in Employees table.

Section 25.2: Drop Column
ALTER TABLE Employees
DROP COLUMN salary;

This will not only delete information from that column, but will drop the column salary from table employees(the
column will no more exist).

Section 25.3: Add Primary Key
ALTER TABLE EMPLOYEES ADD pk_EmployeeID PRIMARY KEY (ID)

This will add a Primary key to the table Employees on the field ID. Including more than one column name in the
parentheses along with ID will create a Composite Primary Key. When adding more than one column, the column
names must be separated by commas.

ALTER TABLE EMPLOYEES ADD pk_EmployeeID PRIMARY KEY (ID, FName)

Section 25.4: Alter Column
ALTER TABLE Employees
ALTER COLUMN StartingDate DATETIME NOT NULL DEFAULT (GETDATE())

This query will alter the column datatype of StartingDate and change it from simple date to datetime and set
default to current date.

Section 25.5: Drop Constraint
ALTER TABLE Employees
DROP CONSTRAINT DefaultSalary

This Drops a constraint called DefaultSalary from the employees table definition.

Note: Ensure that constraints of the column are dropped before dropping a column.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 86

Chapter 26: INSERT
Section 26.1: INSERT data from another table using SELECT
INSERT INTO Customers (FName, LName, PhoneNumber)
SELECT FName, LName, PhoneNumber FROM Employees

This example will insert all Employees into the Customers table. Since the two tables have different fields and you
don't want to move all the fields over, you need to set which fields to insert into and which fields to select. The
correlating field names don't need to be called the same thing, but then need to be the same data type. This
example is assuming that the Id field has an Identity Specification set and will auto increment.

If you have two tables that have exactly the same field names and just want to move all the records over you can
use:

INSERT INTO Table1
SELECT * FROM Table2

Section 26.2: Insert New Row
INSERT INTO Customers
VALUES ('Zack', 'Smith', 'zack@example.com', '7049989942', 'EMAIL');

This statement will insert a new row into the Customers table. Note that a value was not specified for the Id column,
as it will be added automatically. However, all other column values must be specified.

Section 26.3: Insert Only Specified Columns
INSERT INTO Customers (FName, LName, Email, PreferredContact)
VALUES ('Zack', 'Smith', 'zack@example.com', 'EMAIL');

This statement will insert a new row into the Customers table. Data will only be inserted into the columns specified -
note that no value was provided for the PhoneNumber column. Note, however, that all columns marked as not null
must be included.

Section 26.4: Insert multiple rows at once
Multiple rows can be inserted with a single insert command:

INSERT INTO tbl_name (field1, field2, field3)

VALUES (1,2,3), (4,5,6), (7,8,9);

For inserting large quantities of data (bulk insert) at the same time, DBMS-specific features and recommendations
exist.

MySQL - LOAD DATA INFILE

MSSQL - BULK INSERT

http://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://msdn.microsoft.com/en-us/library/ms188365.aspx
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 87

Chapter 27: MERGE
MERGE (often also called UPSERT for "update or insert") allows to insert new rows or, if a row already exists, to
update the existing row. The point is to perform the whole set of operations atomically (to guarantee that the data
remain consistent), and to prevent communication overhead for multiple SQL statements in a client/server system.

Section 27.1: MERGE to make Target match Source
MERGE INTO targetTable t
 USING sourceTable s
 ON t.PKID = s.PKID
 WHEN MATCHED AND NOT EXISTS (
 SELECT s.ColumnA, s.ColumnB, s.ColumnC
 INTERSECT
 SELECT t.ColumnA, t.ColumnB, s.ColumnC
)
 THEN UPDATE SET
 t.ColumnA = s.ColumnA
 ,t.ColumnB = s.ColumnB
 ,t.ColumnC = s.ColumnC
 WHEN NOT MATCHED BY TARGET
 THEN INSERT (PKID, ColumnA, ColumnB, ColumnC)
 VALUES (s.PKID, s.ColumnA, s.ColumnB, s.ColumnC)
 WHEN NOT MATCHED BY SOURCE
 THEN DELETE
 ;

Note: The AND NOT EXISTS portion prevents updating records that haven't changed. Using the INTERSECT construct
allows nullable columns to be compared without special handling.

Section 27.2: MySQL: counting users by name
Suppose we want to know how many users have the same name. Let us create table users as follows:

create table users(
 id int primary key auto_increment,
 name varchar(8),
 count int,
 unique key name(name)
);

Now, we just discovered a new user named Joe and would like to take him into account. To achieve that, we need to
determine whether there is an existing row with his name, and if so, update it to increment count; on the other
hand, if there is no existing row, we should create it.

MySQL uses the following syntax : insert … on duplicate key update …. In this case:

insert into users(name, count)
 values ('Joe', 1)
 on duplicate key update count=count+1;

Section 27.3: PostgreSQL: counting users by name
Suppose we want to know how many users have the same name. Let us create table users as follows:

https://dev.mysql.com/doc/refman/5.7/en/insert-on-duplicate.html
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 88

create table users(
 id serial,
 name varchar(8) unique,
 count int
);

Now, we just discovered a new user named Joe and would like to take him into account. To achieve that, we need to
determine whether there is an existing row with his name, and if so, update it to increment count; on the other
hand, if there is no existing row, we should create it.

PostgreSQL uses the following syntax : insert … on conflict … do update …. In this case:

insert into users(name, count)
 values('Joe', 1)
 on conflict (name) do update set count = users.count + 1;

https://www.postgresql.org/docs/current/static/sql-insert.html
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 89

Chapter 28: cross apply, outer apply
Section 28.1: CROSS APPLY and OUTER APPLY basics
Apply will be used when when table valued function in the right expression.

create a Department table to hold information about departments. Then create an Employee table which hold
information about the employees. Please note, each employee belongs to a department, hence the Employee table
has referential integrity with the Department table.

First query selects data from Department table and uses CROSS APPLY to evaluate the Employee table for each
record of the Department table. Second query simply joins the Department table with the Employee table and all
the matching records are produced.

SELECT *
FROM Department D
CROSS APPLY (
 SELECT *
 FROM Employee E
 WHERE E.DepartmentID = D.DepartmentID
) A
GO
SELECT *
FROM Department D
INNER JOIN Employee E
 ON D.DepartmentID = E.DepartmentID

If you look at the results they produced, it is the exact same result-set; How does it differ from a JOIN and how does
it help in writing more efficient queries.

The first query in Script #2 selects data from Department table and uses OUTER APPLY to evaluate the Employee
table for each record of the Department table. For those rows for which there is not a match in Employee table,
those rows contains NULL values as you can see in case of row 5 and 6. The second query simply uses a LEFT
OUTER JOIN between the Department table and the Employee table. As expected the query returns all rows from
Department table; even for those rows for which there is no match in the Employee table.

SELECT *
FROM Department D
OUTER APPLY (
 SELECT *
 FROM Employee E
 WHERE E.DepartmentID = D.DepartmentID
) A
GO
SELECT *
FROM Department D
LEFT OUTER JOIN Employee E
 ON D.DepartmentID = E.DepartmentID
GO

Even though the above two queries return the same information, the execution plan will be bit different. But cost
wise there will be not much difference.

Now comes the time to see where the APPLY operator is really required. In Script #3, I am creating a table-valued
function which accepts DepartmentID as its parameter and returns all the employees who belong to this
department. The next query selects data from Department table and uses CROSS APPLY to join with the function

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 90

we created. It passes the DepartmentID for each row from the outer table expression (in our case Department
table) and evaluates the function for each row similar to a correlated subquery. The next query uses the OUTER
APPLY in place of CROSS APPLY and hence unlike CROSS APPLY which returned only correlated data, the OUTER
APPLY returns non-correlated data as well, placing NULLs into the missing columns.

CREATE FUNCTION dbo.fn_GetAllEmployeeOfADepartment (@DeptID AS int)
RETURNS TABLE
AS
 RETURN
 (
 SELECT
 *
 FROM Employee E
 WHERE E.DepartmentID = @DeptID
)
GO
SELECT
 *
FROM Department D
CROSS APPLY dbo.fn_GetAllEmployeeOfADepartment(D.DepartmentID)
GO
SELECT
 *
FROM Department D
OUTER APPLY dbo.fn_GetAllEmployeeOfADepartment(D.DepartmentID)
GO

So now if you are wondering, can we use a simple join in place of the above queries? Then the answer is NO, if you
replace CROSS/OUTER APPLY in the above queries with INNER JOIN/LEFT OUTER JOIN, specify ON clause (something
as 1=1) and run the query, you will get "The multi-part identifier "D.DepartmentID" could not be bound." error. This
is because with JOINs the execution context of outer query is different from the execution context of the function
(or a derived table), and you can not bind a value/variable from the outer query to the function as a parameter.
Hence the APPLY operator is required for such queries.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 91

Chapter 29: DELETE
The DELETE statement is used to delete records from a table.

Section 29.1: DELETE all rows
Omitting a WHERE clause will delete all rows from a table.

DELETE FROM Employees

See TRUNCATE documentation for details on how TRUNCATE performance can be better because it ignores triggers
and indexes and logs to just delete the data.

Section 29.2: DELETE certain rows with WHERE
This will delete all rows that match the WHERE criteria.

DELETE FROM Employees
WHERE FName = 'John'

Section 29.3: TRUNCATE clause
Use this to reset the table to the condition at which it was created. This deletes all rows and resets values such as
auto-increment. It also doesn't log each individual row deletion.

TRUNCATE TABLE Employees

Section 29.4: DELETE certain rows based upon comparisons
with other tables
It is possible to DELETE data from a table if it matches (or mismatches) certain data in other tables.

Let's assume we want to DELETEdata from Source once its loaded into Target.

DELETE FROM Source
WHERE EXISTS (SELECT 1 -- specific value in SELECT doesn't matter
 FROM Target
 Where Source.ID = Target.ID)

Most common RDBMS implementations (e.g. MySQL, Oracle, PostgresSQL, Teradata) allow tables to be joined
during DELETE allowing more complex comparison in a compact syntax.

Adding complexity to original scenario, let's assume Aggregate is built from Target once a day and does not contain
the same ID but contains the same date. Let us also assume that we want to delete data from Source only after the
aggregate is populated for the day.

On MySQL, Oracle and Teradata this can be done using:

DELETE FROM Source
WHERE Source.ID = TargetSchema.Target.ID
 AND TargetSchema.Target.Date = AggregateSchema.Aggregate.Date

In PostgreSQL use:

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 92

DELETE FROM Source
USING TargetSchema.Target, AggregateSchema.Aggregate
WHERE Source.ID = TargetSchema.Target.ID
 AND TargetSchema.Target.DataDate = AggregateSchema.Aggregate.AggDate

This essentially results in INNER JOINs between Source, Target and Aggregate. The deletion is performed on Source
when the same IDs exist in Target AND date present in Target for those IDs also exists in Aggregate.

Same query may also be written (on MySQL, Oracle, Teradata) as:

DELETE Source
FROM Source, TargetSchema.Target, AggregateSchema.Aggregate
WHERE Source.ID = TargetSchema.Target.ID
 AND TargetSchema.Target.DataDate = AggregateSchema.Aggregate.AggDate

Explicit joins may be mentioned in Delete statements on some RDBMS implementations (e.g. Oracle, MySQL) but
not supported on all platforms (e.g. Teradata does not support them)

Comparisons can be designed to check mismatch scenarios instead of matching ones with all syntax styles (observe
NOT EXISTS below)

DELETE FROM Source
WHERE NOT EXISTS (SELECT 1 -- specific value in SELECT doesn't matter
 FROM Target
 Where Source.ID = Target.ID)

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 93

Chapter 30: TRUNCATE
The TRUNCATE statement deletes all data from a table. This is similar to DELETE with no filter, but, depending on
the database software, has certain restrictions and optimizations.

Section 30.1: Removing all rows from the Employee table
TRUNCATE TABLE Employee;

Using truncate table is often better then using DELETE TABLE as it ignores all the indexes and triggers and just
removes everything.

Delete table is a row based operation this means that each row is deleted. Truncate table is a data page operation
the entire data page is reallocated. If you have a table with a million rows it will be much faster to truncate the table
than it would be to use a delete table statement.

Though we can delete specific Rows with DELETE, we cannot TRUNCATE specific rows, we can only TRUNCATE all
the records at once. Deleting All rows and then inserting a new record will continue to add the Auto incremented
Primary key value from the previously inserted value, where as in Truncate, the Auto Incremental primary key value
will also get reset and starts from 1.

Note that when truncating table, no foreign keys must be present, otherwise you will get an error.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 94

Chapter 31: DROP Table
Section 31.1: Check for existence before dropping
MySQL Version ≥ 3.19

DROP TABLE IF EXISTS MyTable;

PostgreSQL Version ≥ 8.x

DROP TABLE IF EXISTS MyTable;

SQL Server Version ≥ 2005

If Exists(Select * From Information_Schema.Tables
 Where Table_Schema = 'dbo'
 And Table_Name = 'MyTable')
 Drop Table dbo.MyTable

SQLite Version ≥ 3.0

DROP TABLE IF EXISTS MyTable;

Section 31.2: Simple drop
Drop Table MyTable;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 95

Chapter 32: DROP or DELETE Database
Section 32.1: DROP Database
Dropping the database is a simple one-liner statement. Drop database will delete the database, hence always
ensure to have a backup of the database if required.

Below is the command to drop Employees Database

DROP DATABASE [dbo].[Employees]

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 96

Chapter 33: Cascading Delete
Section 33.1: ON DELETE CASCADE
Assume you have a application that administers rooms.
Assume further that your application operates on a per client basis (tenant).
You have several clients.
So your database will contain one table for clients, and one for rooms.

Now, every client has N rooms.

This should mean that you have a foreign key on your room table, referencing the client table.

ALTER TABLE dbo.T_Room WITH CHECK ADD CONSTRAINT FK_T_Room_T_Client FOREIGN KEY(RM_CLI_ID)
REFERENCES dbo.T_Client (CLI_ID)
GO

Assuming a client moves on to some other software, you'll have to delete his data in your software. But if you do

DELETE FROM T_Client WHERE CLI_ID = x

Then you'll get a foreign key violation, because you can't delete the client when he still has rooms.

Now you'd have write code in your application that deletes the client's rooms before it deletes the client. Assume
further that in the future, many more foreign key dependencies will be added in your database, because your
application's functionality expands. Horrible. For every modification in your database, you'll have to adapt your
application's code in N places. Possibly you'll have to adapt code in other applications as well (e.g. interfaces to
other systems).

There is a better solution than doing it in your code.
You can just add ON DELETE CASCADE to your foreign key.

ALTER TABLE dbo.T_Room -- WITH CHECK -- SQL-Server can specify WITH CHECK/WITH NOCHECK
ADD CONSTRAINT FK_T_Room_T_Client FOREIGN KEY(RM_CLI_ID)
REFERENCES dbo.T_Client (CLI_ID)
ON DELETE CASCADE

Now you can say

DELETE FROM T_Client WHERE CLI_ID = x

and the rooms are automagically deleted when the client is deleted.
Problem solved - with no application code changes.

One word of caution: In Microsoft SQL-Server, this won't work if you have a table that references itselfs. So if you try
to define a delete cascade on a recursive tree structure, like this:

IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_T_FMS_Navigation_T_FMS_Navigation]') AND parent_object_id =
OBJECT_ID(N'[dbo].[T_FMS_Navigation]'))
ALTER TABLE [dbo].[T_FMS_Navigation] WITH CHECK ADD CONSTRAINT
[FK_T_FMS_Navigation_T_FMS_Navigation] FOREIGN KEY([NA_NA_UID])
REFERENCES [dbo].[T_FMS_Navigation] ([NA_UID])
ON DELETE CASCADE

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 97

GO

IF EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_T_FMS_Navigation_T_FMS_Navigation]') AND parent_object_id =
OBJECT_ID(N'[dbo].[T_FMS_Navigation]'))
ALTER TABLE [dbo].[T_FMS_Navigation] CHECK CONSTRAINT [FK_T_FMS_Navigation_T_FMS_Navigation]
GO

it won't work, because Microsoft-SQL-server doesn't allow you to set a foreign key with ON DELETE CASCADE on a
recursive tree structure. One reason for this is, that the tree is possibly cyclic, and that would possibly lead to a
deadlock.

PostgreSQL on the other hand can do this;
the requirement is that the tree is non-cyclic.
If the tree is cyclic, you'll get a runtime error.
In that case, you'll just have to implement the delete function yourselfs.

A word of caution:
This means you can't simply delete and re-insert the client table anymore, because if you do this, it will delete all
entries in "T_Room"... (no non-delta updates anymore)

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 98

Chapter 34: GRANT and REVOKE
Section 34.1: Grant/revoke privileges
GRANT SELECT, UPDATE
ON Employees
TO User1, User2;

Grant User1 and User2 permission to perform SELECT and UPDATE operations on table Employees.

REVOKE SELECT, UPDATE
ON Employees
FROM User1, User2;

Revoke from User1 and User2 the permission to perform SELECT and UPDATE operations on table Employees.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 99

Chapter 35: XML
Section 35.1: Query from XML Data Type
DECLARE @xmlIN XML = '<TableData>
<aaa Main="First">
 <row name="a" value="1" />
 <row name="b" value="2" />
 <row name="c" value="3" />
</aaa>
<aaa Main="Second">
 <row name="a" value="3" />
 <row name="b" value="4" />
 <row name="c" value="5" />
</aaa>
<aaa Main="Third">
 <row name="a" value="10" />
 <row name="b" value="20" />
 <row name="c" value="30" />
</aaa>
</TableData>'

SELECT t.col.value('../@Main', 'varchar(10)') [Header],
t.col.value('@name', 'VARCHAR(25)') [name],
t.col.value('@value', 'VARCHAR(25)') [Value]
FROM @xmlIn.nodes('//TableData/aaa/row') AS t (col)

Results

Header name Value
First a 1
First b 2
First c 3
Second a 3
Second b 4
Second c 5
Third a 10
Third b 20
Third c 30

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 100

Chapter 36: Primary Keys
Section 36.1: Creating a Primary Key
CREATE TABLE Employees (
 Id int NOT NULL,
 PRIMARY KEY (Id),
 ...
);

This will create the Employees table with 'Id' as its primary key. The primary key can be used to uniquely identify the
rows of a table. Only one primary key is allowed per table.

A key can also be composed by one or more fields, so called composite key, with the following syntax:

CREATE TABLE EMPLOYEE (
 e1_id INT,
 e2_id INT,
 PRIMARY KEY (e1_id, e2_id)
)

Section 36.2: Using Auto Increment
Many databases allow to make the primary key value automatically increment when a new key is added. This
ensures that every key is different.

MySQL

CREATE TABLE Employees (
 Id int NOT NULL AUTO_INCREMENT,
 PRIMARY KEY (Id)
);

PostgreSQL

CREATE TABLE Employees (
 Id SERIAL PRIMARY KEY
);

SQL Server

CREATE TABLE Employees (
 Id int NOT NULL IDENTITY,
 PRIMARY KEY (Id)
);

SQLite

CREATE TABLE Employees (
 Id INTEGER PRIMARY KEY
);

https://dev.mysql.com/doc/refman/5.7/en/create-table.html#create-table-types-attributes
https://www.postgresql.org/docs/current/static/datatype-numeric.html#DATATYPE-SERIAL
https://msdn.microsoft.com/en-us/library/ms186775.aspx
http://www.sqlite.org/autoinc.html
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 101

Chapter 37: Indexes
Indexes are a data structure that contains pointers to the contents of a table arranged in a specific order, to help
the database optimize queries. They are similar to the index of book, where the pages (rows of the table) are
indexed by their page number.

Several types of indexes exist, and can be created on a table. When an index exists on the columns used in a
query's WHERE clause, JOIN clause, or ORDER BY clause, it can substantially improve query performance.

Section 37.1: Sorted Index
If you use an index that is sorted the way you would retrieve it, the SELECT statement would not do additional
sorting when in retrieval.

CREATE INDEX ix_scoreboard_score ON scoreboard (score DESC);

When you execute the query

SELECT * FROM scoreboard ORDER BY score DESC;

The database system would not do additional sorting, since it can do an index-lookup in that order.

Section 37.2: Partial or Filtered Index
SQL Server and SQLite allow to create indexes that contain not only a subset of columns, but also a subset of rows.

Consider a constant growing amount of orders with order_state_id equal to finished (2), and a stable amount of
orders with order_state_id equal to started (1).

If your business make use of queries like this:

SELECT id, comment
 FROM orders
 WHERE order_state_id = 1
 AND product_id = @some_value;

Partial indexing allows you to limit the index, including only the unfinished orders:

CREATE INDEX Started_Orders
 ON orders(product_id)
 WHERE order_state_id = 1;

This index will be smaller than an unfiltered index, which saves space and reduces the cost of updating the index.

Section 37.3: Creating an Index
CREATE INDEX ix_cars_employee_id ON Cars (EmployeeId);

This will create an index for the column EmployeeId in the table Cars. This index will improve the speed of queries
asking the server to sort or select by values in EmployeeId, such as the following:

SELECT * FROM Cars WHERE EmployeeId = 1

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 102

The index can contain more than 1 column, as in the following;

CREATE INDEX ix_cars_e_c_o_ids ON Cars (EmployeeId, CarId, OwnerId);

In this case, the index would be useful for queries asking to sort or select by all included columns, if the set of
conditions is ordered in the same way. That means that when retrieving the data, it can find the rows to retrieve
using the index, instead of looking through the full table.

For example, the following case would utilize the second index;

SELECT * FROM Cars WHERE EmployeeId = 1 Order by CarId DESC

If the order differs, however, the index does not have the same advantages, as in the following;

SELECT * FROM Cars WHERE OwnerId = 17 Order by CarId DESC

The index is not as helpful because the database must retrieve the entire index, across all values of EmployeeId and
CarID, in order to find which items have OwnerId = 17.

(The index may still be used; it may be the case that the query optimizer finds that retrieving the index and filtering
on the OwnerId, then retrieving only the needed rows is faster than retrieving the full table, especially if the table is
large.)

Section 37.4: Dropping an Index, or Disabling and Rebuilding
it
DROP INDEX ix_cars_employee_id ON Cars;

We can use command DROP to delete our index. In this example we will DROP the index called ix_cars_employee_id on
the table Cars.

This deletes the index entirely, and if the index is clustered, will remove any clustering. It cannot be rebuilt without
recreating the index, which can be slow and computationally expensive. As an alternative, the index can be
disabled:

ALTER INDEX ix_cars_employee_id ON Cars DISABLE;

This allows the table to retain the structure, along with the metadata about the index.

Critically, this retains the index statistics, so that it is possible to easily evaluate the change. If warranted, the index
can then later be rebuilt, instead of being recreated completely;

ALTER INDEX ix_cars_employee_id ON Cars REBUILD;

Section 37.5: Clustered, Unique, and Sorted Indexes
Indexes can have several characteristics that can be set either at creation, or by altering existing indexes.

CREATE CLUSTERED INDEX ix_clust_employee_id ON Employees(EmployeeId, Email);

The above SQL statement creates a new clustered index on Employees. Clustered indexes are indexes that dictate
the actual structure of the table; the table itself is sorted to match the structure of the index. That means there can
be at most one clustered index on a table. If a clustered index already exists on the table, the above statement will

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 103

fail. (Tables with no clustered indexes are also called heaps.)

CREATE UNIQUE INDEX uq_customers_email ON Customers(Email);

This will create an unique index for the column Email in the table Customers. This index, along with speeding up
queries like a normal index, will also force every email address in that column to be unique. If a row is inserted or
updated with a non-unique Email value, the insertion or update will, by default, fail.

CREATE UNIQUE INDEX ix_eid_desc ON Customers(EmployeeID);

This creates an index on Customers which also creates a table constraint that the EmployeeID must be unique.
(This will fail if the column is not currently unique - in this case, if there are employees who share an ID.)

CREATE INDEX ix_eid_desc ON Customers(EmployeeID Desc);

This creates an index that is sorted in descending order. By default, indexes (in MSSQL server, at least) are
ascending, but that can be changed.

Section 37.6: Rebuild index
Over the course of time B-Tree indexes may become fragmented because of updating/deleting/inserting data. In
SQLServer terminology we can have internal (index page which is half empty) and external (logical page order
doesn't correspond physical order). Rebuilding index is very similar to dropping and re-creating it.

We can re-build an index with

ALTER INDEX index_name REBUILD;

By default rebuilding index is offline operation which locks the table and prevents DML against it , but many RDBMS
allow online rebuilding. Also, some DB vendors offer alternatives to index rebuilding such as REORGANIZE
(SQLServer) or COALESCE/SHRINK SPACE(Oracle).

Section 37.7: Inserting with a Unique Index
UPDATE Customers SET Email = "richard0123@example.com" WHERE id = 1;

This will fail if an unique index is set on the Email column of Customers. However, alternate behavior can be defined
for this case:

UPDATE Customers SET Email = "richard0123@example.com" WHERE id = 1 ON DUPLICATE KEY;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 104

Chapter 38: Row number
Section 38.1: Delete All But Last Record (1 to Many Table)
WITH cte AS (
 SELECT ProjectID,
 ROW_NUMBER() OVER (PARTITION BY ProjectID ORDER BY InsertDate DESC) AS rn
 FROM ProjectNotes
)
DELETE FROM cte WHERE rn > 1;

Section 38.2: Row numbers without partitions
Include a row number according to the order specified.

SELECT
 ROW_NUMBER() OVER(ORDER BY Fname ASC) AS RowNumber,
 Fname,
 LName
FROM Employees

Section 38.3: Row numbers with partitions
Uses a partition criteria to group the row numbering according to it.

SELECT
 ROW_NUMBER() OVER(PARTITION BY DepartmentId ORDER BY DepartmentId ASC) AS RowNumber,
 DepartmentId, Fname, LName
FROM Employees

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 105

Chapter 39: SQL Group By vs Distinct
Section 39.1: Dierence between GROUP BY and DISTINCT
GROUP BY is used in combination with aggregation functions. Consider the following table:

orderId userId storeName orderValue orderDate
1 43 Store A 25 20-03-2016
2 57 Store B 50 22-03-2016
3 43 Store A 30 25-03-2016
4 82 Store C 10 26-03-2016
5 21 Store A 45 29-03-2016

The query below uses GROUP BY to perform aggregated calculations.

SELECT
 storeName,
 COUNT(*) AS total_nr_orders,
 COUNT(DISTINCT userId) AS nr_unique_customers,
 AVG(orderValue) AS average_order_value,
 MIN(orderDate) AS first_order,
 MAX(orderDate) AS lastOrder
FROM
 orders
GROUP BY
 storeName;

and will return the following information

storeName total_nr_orders nr_unique_customers average_order_value first_order lastOrder
Store A 3 2 33.3 20-03-2016 29-03-2016
Store B 1 1 50 22-03-2016 22-03-2016
Store C 1 1 10 26-03-2016 26-03-2016

While DISTINCT is used to list a unique combination of distinct values for the specified columns.

SELECT DISTINCT
 storeName,
 userId
FROM
 orders;

storeName userId
Store A 43
Store B 57
Store C 82
Store A 21

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 106

Chapter 40: Finding Duplicates on a
Column Subset with Detail
Section 40.1: Students with same name and date of birth
WITH CTE (StudentId, Fname, LName, DOB, RowCnt)
as (
SELECT StudentId, FirstName, LastName, DateOfBirth as DOB, SUM(1) OVER (Partition By FirstName,
LastName, DateOfBirth) as RowCnt
FROM tblStudent
)
SELECT * from CTE where RowCnt > 1
ORDER BY DOB, LName

This example uses a Common Table Expression and a Window Function to show all duplicate rows (on a subset of
columns) side by side.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 107

Chapter 41: String Functions
String functions perform operations on string values and return either numeric or string values.

Using string functions, you can, for example, combine data, extract a substring, compare strings, or convert a string
to all uppercase or lowercase characters.

Section 41.1: Concatenate
In (standard ANSI/ISO) SQL, the operator for string concatenation is ||. This syntax is supported by all major
databases except SQL Server:

SELECT 'Hello' || 'World' || '!'; --returns HelloWorld!

Many databases support a CONCAT function to join strings:

SELECT CONCAT('Hello', 'World'); --returns 'HelloWorld'

Some databases support using CONCAT to join more than two strings (Oracle does not):

SELECT CONCAT('Hello', 'World', '!'); --returns 'HelloWorld!'

In some databases, non-string types must be cast or converted:

SELECT CONCAT('Foo', CAST(42 AS VARCHAR(5)), 'Bar'); --returns 'Foo42Bar'

Some databases (e.g., Oracle) perform implicit lossless conversions. For example, a CONCAT on a CLOB and NCLOB
yields a NCLOB. A CONCAT on a number and a varchar2 results in a varchar2, etc.:

SELECT CONCAT(CONCAT('Foo', 42), 'Bar') FROM dual; --returns Foo42Bar

Some databases can use the non-standard + operator (but in most, + works only for numbers):

SELECT 'Foo' + CAST(42 AS VARCHAR(5)) + 'Bar';

On SQL Server < 2012, where CONCAT is not supported, + is the only way to join strings.

Section 41.2: Length
SQL Server

The LEN doesn't count the trailing space.

SELECT LEN('Hello') -- returns 5

SELECT LEN('Hello '); -- returns 5

The DATALENGTH counts the trailing space.

SELECT DATALENGTH('Hello') -- returns 5

SELECT DATALENGTH('Hello '); -- returns 6

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 108

It should be noted though, that DATALENGTH returns the length of the underlying byte representation of the string,
which depends, i.a., on the charset used to store the string.

DECLARE @str varchar(100) = 'Hello ' --varchar is usually an ASCII string, occupying 1 byte per
char
SELECT DATALENGTH(@str) -- returns 6

DECLARE @nstr nvarchar(100) = 'Hello ' --nvarchar is a unicode string, occupying 2 bytes per char
SELECT DATALENGTH(@nstr) -- returns 12

Oracle

Syntax: Length (char)

Examples:

SELECT Length('Bible') FROM dual; --Returns 5
SELECT Length('righteousness') FROM dual; --Returns 13
SELECT Length(NULL) FROM dual; --Returns NULL

See Also: LengthB, LengthC, Length2, Length4

Section 41.3: Trim empty spaces
Trim is used to remove write-space at the beginning or end of selection

In MSSQL there is no single TRIM()

SELECT LTRIM(' Hello ') --returns 'Hello '
SELECT RTRIM(' Hello ') --returns ' Hello'
SELECT LTRIM(RTRIM(' Hello ')) --returns 'Hello'

MySql and Oracle

SELECT TRIM(' Hello ') --returns 'Hello'

Section 41.4: Upper & lower case
SELECT UPPER('HelloWorld') --returns 'HELLOWORLD'
SELECT LOWER('HelloWorld') --returns 'helloworld'

Section 41.5: Split
Splits a string expression using a character separator. Note that STRING_SPLIT() is a table-valued function.

SELECT value FROM STRING_SPLIT('Lorem ipsum dolor sit amet.', ' ');

Result:

value

Lorem
ipsum
dolor
sit

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 109

amet.

Section 41.6: Replace
Syntax:

REPLACE(String to search , String to search for and replace , String to place into the original string)

Example:

SELECT REPLACE('Peter Steve Tom', 'Steve', 'Billy') --Return Values: Peter Billy Tom

Section 41.7: REGEXP
MySQL Version ≥ 3.19

Checks if a string matches a regular expression (defined by another string).

SELECT 'bedded' REGEXP '[a-f]' -- returns True

SELECT 'beam' REGEXP '[a-f]' -- returns False

Section 41.8: Substring
Syntax is: SUBSTRING (string_expression, start, length). Note that SQL strings are 1-indexed.

SELECT SUBSTRING('Hello', 1, 2) --returns 'He'
SELECT SUBSTRING('Hello', 3, 3) --returns 'llo'

This is often used in conjunction with the LEN() function to get the last n characters of a string of unknown length.

DECLARE @str1 VARCHAR(10) = 'Hello', @str2 VARCHAR(10) = 'FooBarBaz';
SELECT SUBSTRING(@str1, LEN(@str1) - 2, 3) --returns 'llo'
SELECT SUBSTRING(@str2, LEN(@str2) - 2, 3) --returns 'Baz'

Section 41.9: Stu
Stuff a string into another, replacing 0 or more characters at a certain position.

Note: start position is 1-indexed (you start indexing at 1, not 0).

Syntax:

STUFF (character_expression , start , length , replaceWith_expression)

Example:

SELECT STUFF('FooBarBaz', 4, 3, 'Hello') --returns 'FooHelloBaz'

Section 41.10: LEFT - RIGHT
Syntax is:
LEFT (string-expression , integer)

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 110

RIGHT (string-expression , integer)

SELECT LEFT('Hello',2) --return He
SELECT RIGHT('Hello',2) --return lo

Oracle SQL doesn't have LEFT and RIGHT functions. They can be emulated with SUBSTR and LENGTH.
SUBSTR (string-expression, 1, integer)
SUBSTR (string-expression, length(string-expression)-integer+1, integer)

SELECT SUBSTR('Hello',1,2) --return He
SELECT SUBSTR('Hello',LENGTH('Hello')-2+1,2) --return lo

Section 41.11: REVERSE
Syntax is: REVERSE (string-expression)

SELECT REVERSE('Hello') --returns olleH

Section 41.12: REPLICATE
The REPLICATE function concatenates a string with itself a specified number of times.

Syntax is: REPLICATE (string-expression , integer)

SELECT REPLICATE ('Hello',4) --returns 'HelloHelloHelloHello'

Section 41.13: Replace function in sql Select and Update query
The Replace function in SQL is used to update the content of a string. The function call is REPLACE() for MySQL,
Oracle, and SQL Server.

The syntax of the Replace function is:

REPLACE (str, find, repl)

The following example replaces occurrences of South with Southern in Employees table:

FirstName Address
James South New York
John South Boston
Michael South San Diego

Select Statement :

If we apply the following Replace function:

SELECT
 FirstName,
 REPLACE (Address, 'South', 'Southern') Address
FROM Employees
ORDER BY FirstName

Result:

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 111

FirstName Address
James Southern New York
John Southern Boston
Michael Southern San Diego

Update Statement :

We can use a replace function to make permanent changes in our table through following approach.

Update Employees
Set city = (Address, 'South', 'Southern');

A more common approach is to use this in conjunction with a WHERE clause like this:

Update Employees
Set Address = (Address, 'South', 'Southern')
Where Address LIKE 'South%';

Section 41.14: INSTR
Return the index of the first occurrence of a substring (zero if not found)

Syntax: INSTR (string, substring)

SELECT INSTR('FooBarBar', 'Bar') -- return 4
SELECT INSTR('FooBarBar', 'Xar') -- return 0

Section 41.15: PARSENAME
DATABASE : SQL Server

PARSENAME function returns the specific part of given string(object name). object name may contains string like
object name,owner name, database name and server name.

More details MSDN:PARSENAME

Syntax

PARSENAME('NameOfStringToParse',PartIndex)

Example

To get object name use part index 1

SELECT PARSENAME('ServerName.DatabaseName.SchemaName.ObjectName',1) // returns `ObjectName`
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',1) // returns `Student`

To get schema name use part index 2

SELECT PARSENAME('ServerName.DatabaseName.SchemaName.ObjectName',2) // returns `SchemaName`
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',2) // returns `school`

To get database name use part index 3

SELECT PARSENAME('ServerName.DatabaseName.SchemaName.ObjectName',3) // returns `DatabaseName`

https://msdn.microsoft.com/en-us/library/ms188006.aspx
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 112

SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',3) // returns `SchoolDatabase`

To get server name use part index 4

SELECT PARSENAME('ServerName.DatabaseName.SchemaName.ObjectName',4) // returns `ServerName`
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',4) // returns `[1012-1111]`

PARSENAME will returns null is specified part is not present in given object name string

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 113

Chapter 42: Functions (Aggregate)
Section 42.1: Conditional aggregation
Payments Table

Customer Payment_type Amount
Peter Credit 100
Peter Credit 300
John Credit 1000
John Debit 500
select customer,
 sum(case when payment_type = 'credit' then amount else 0 end) as credit,
 sum(case when payment_type = 'debit' then amount else 0 end) as debit
from payments
group by customer

Result:

Customer Credit Debit
Peter 400 0
John 1000 500
select customer,
 sum(case when payment_type = 'credit' then 1 else 0 end) as credit_transaction_count,
 sum(case when payment_type = 'debit' then 1 else 0 end) as debit_transaction_count
from payments
group by customer

Result:

Customer credit_transaction_count debit_transaction_count
Peter 2 0
John 1 1

Section 42.2: List Concatenation
Partial credit to this SO answer.

List Concatenation aggregates a column or expression by combining the values into a single string for each group. A
string to delimit each value (either blank or a comma when omitted) and the order of the values in the result can be
specified. While it is not part of the SQL standard, every major relational database vendor supports it in their own
way.

MySQL
SELECT ColumnA
 , GROUP_CONCAT(ColumnB ORDER BY ColumnB SEPARATOR ',') AS ColumnBs
 FROM TableName
 GROUP BY ColumnA
 ORDER BY ColumnA;

Oracle & DB2
SELECT ColumnA
 , LISTAGG(ColumnB, ',') WITHIN GROUP (ORDER BY ColumnB) AS ColumnBs
 FROM TableName
 GROUP BY ColumnA

http://stackoverflow.com/a/19348687/4896952
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 114

 ORDER BY ColumnA;

PostgreSQL
SELECT ColumnA
 , STRING_AGG(ColumnB, ',' ORDER BY ColumnB) AS ColumnBs
 FROM TableName
 GROUP BY ColumnA
 ORDER BY ColumnA;

SQL Server
SQL Server 2016 and earlier

(CTE included to encourage the DRY principle)

 WITH CTE_TableName AS (
 SELECT ColumnA, ColumnB
 FROM TableName)
SELECT t0.ColumnA
 , STUFF((
 SELECT ',' + t1.ColumnB
 FROM CTE_TableName t1
 WHERE t1.ColumnA = t0.ColumnA
 ORDER BY t1.ColumnB
 FOR XML PATH('')), 1, 1, '') AS ColumnBs
 FROM CTE_TableName t0
 GROUP BY t0.ColumnA
 ORDER BY ColumnA;

SQL Server 2017 and SQL Azure
SELECT ColumnA
 , STRING_AGG(ColumnB, ',') WITHIN GROUP (ORDER BY ColumnB) AS ColumnBs
 FROM TableName
 GROUP BY ColumnA
 ORDER BY ColumnA;

SQLite

without ordering:

SELECT ColumnA
 , GROUP_CONCAT(ColumnB, ',') AS ColumnBs
 FROM TableName
 GROUP BY ColumnA
 ORDER BY ColumnA;

ordering requires a subquery or CTE:

 WITH CTE_TableName AS (
 SELECT ColumnA, ColumnB
 FROM TableName
 ORDER BY ColumnA, ColumnB)
SELECT ColumnA
 , GROUP_CONCAT(ColumnB, ',') AS ColumnBs
 FROM CTE_TableName
 GROUP BY ColumnA
 ORDER BY ColumnA;

Section 42.3: SUM
Sum function sum the value of all the rows in the group. If the group by clause is omitted then sums all the rows.

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 115

select sum(salary) TotalSalary
from employees;

TotalSalary
2500
select DepartmentId, sum(salary) TotalSalary
from employees
group by DepartmentId;

DepartmentId TotalSalary
1 2000
2 500

Section 42.4: AVG()
The aggregate function AVG() returns the average of a given expression, usually numeric values in a column.
Assume we have a table containing the yearly calculation of population in cities across the world. The records for
New York City look similar to the ones below:

EXAMPLE TABLE
city_name population year

New York City 8,550,405 2015
New York City
New York City 8,000,906 2005

To select the average population of the New York City, USA from a table containing city names, population
measurements, and measurement years for last ten years:

QUERY
select city_name, AVG(population) avg_population
from city_population
where city_name = 'NEW YORK CITY';

Notice how measurement year is absent from the query since population is being averaged over time.

RESULTS
city_name avg_population

New York City 8,250,754

Note: The AVG() function will convert values to numeric types. This is especially important to keep in mind
when working with dates.

Section 42.5: Count
You can count the number of rows:

SELECT count(*) TotalRows
FROM employees;

TotalRows
4

Or count the employees per department:

SELECT DepartmentId, count(*) NumEmployees
FROM employees

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 116

GROUP BY DepartmentId;

DepartmentId NumEmployees
1 3
2 1

You can count over a column/expression with the effect that will not count the NULL values:

SELECT count(ManagerId) mgr
FROM EMPLOYEES;

mgr
3

(There is one null value managerID column)

You can also use DISTINCT inside of another function such as COUNT to only find the DISTINCT members of the
set to perform the operation on.

For example:

 SELECT COUNT(ContinentCode) AllCount
 , COUNT(DISTINCT ContinentCode) SingleCount
 FROM Countries;

Will return different values. The SingleCount will only Count individual Continents once, while the AllCount will
include duplicates.

ContinentCode
OC
EU
AS
NA
NA
AF
AF

AllCount: 7 SingleCount: 5

Section 42.6: Min
Find the smallest value of column:

 select min(age) from employee;

Above example will return smallest value for column age of employee table.

Syntax:

 SELECT MIN(column_name) FROM table_name;

Section 42.7: Max
Find the maximum value of column:

select max(age) from employee;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 117

Above example will return largest value for column age of employee table.

Syntax:

SELECT MAX(column_name) FROM table_name;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 118

Chapter 43: Functions (Scalar/Single Row)
SQL provides several built-in scalar functions. Each scalar function takes one value as input and returns one value
as output for each row in a result set.

You use scalar functions wherever an expression is allowed within a T-SQL statement.

Section 43.1: Date And Time
In SQL, you use date and time data types to store calendar information. These data types include the time, date,
smalldatetime, datetime, datetime2, and datetimeoffset. Each data type has a specific format.

Data type Format
time hh:mm:ss[.nnnnnnn]
date YYYY-MM-DD
smalldatetime YYYY-MM-DD hh:mm:ss
datetime YYYY-MM-DD hh:mm:ss[.nnn]
datetime2 YYYY-MM-DD hh:mm:ss[.nnnnnnn]
datetimeoffset YYYY-MM-DD hh:mm:ss[.nnnnnnn] [+/-]hh:mm

The DATENAME function returns the name or value of a specific part of the date.

SELECT DATENAME (weekday,'2017-01-14') as Datename

Datename
Saturday

You use the GETDATE function to determine the current date and time of the computer running the current SQL
instance. This function doesn't include the time zone difference.

SELECT GETDATE() as Systemdate

Systemdate
2017-01-14 11:11:47.7230728

The DATEDIFF function returns the difference between two dates.

In the syntax, datepart is the parameter that specifies which part of the date you want to use to calculate
difference. The datepart can be year, month, week, day, hour, minute, second, or millisecond. You then specify the
start date in the startdate parameter and the end date in the enddate parameter for which you want to find the
difference.

SELECT SalesOrderID, DATEDIFF(day, OrderDate, ShipDate)
AS 'Processing time'
FROM Sales.SalesOrderHeader

SalesOrderID Processing time
43659 7
43660 7
43661 7
43662 7

The DATEADD function enables you to add an interval to part of a specific date.

SELECT DATEADD (day, 20, '2017-01-14') AS Added20MoreDays

Added20MoreDays

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 119

2017-02-03 00:00:00.000

Section 43.2: Character modifications
Character modifying functions include converting characters to upper or lower case characters, converting
numbers to formatted numbers, performing character manipulation, etc.

The lower(char) function converts the given character parameter to be lower-cased characters.

SELECT customer_id, lower(customer_last_name) FROM customer;

would return the customer's last name changed from "SMITH" to "smith".

Section 43.3: Configuration and Conversion Function
An example of a configuration function in SQL is the @@SERVERNAME function. This function provides the name of the
local server that's running SQL.

SELECT @@SERVERNAME AS 'Server'

Server
SQL064

In SQL, most data conversions occur implicitly, without any user intervention.

To perform any conversions that can't be completed implicitly, you can use the CAST or CONVERT functions.

The CAST function syntax is simpler than the CONVERT function syntax, but is limited in what it can do.

In here, we use both the CAST and CONVERT functions to convert the datetime data type to the varchar data type.

The CAST function always uses the default style setting. For example, it will represent dates and times using the
format YYYY-MM-DD.

The CONVERT function uses the date and time style you specify. In this case, 3 specifies the date format dd/mm/yy.

USE AdventureWorks2012
GO
SELECT FirstName + ' ' + LastName + ' was hired on ' +
 CAST(HireDate AS varchar(20)) AS 'Cast',
 FirstName + ' ' + LastName + ' was hired on ' +
 CONVERT(varchar, HireDate, 3) AS 'Convert'
FROM Person.Person AS p
JOIN HumanResources.Employee AS e
ON p.BusinessEntityID = e.BusinessEntityID
GO

Cast Convert
David Hamiltion was hired on 2003-02-04 David Hamiltion was hired on 04/02/03

Another example of a conversion function is the PARSE function. This function converts a string to a specified data
type.

In the syntax for the function, you specify the string that must be converted, the AS keyword, and then the required
data type. Optionally, you can also specify the culture in which the string value should be formatted. If you don't
specify this, the language for the session is used.

If the string value can't be converted to a numeric, date, or time format, it will result in an error. You'll then need to

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 120

use CAST or CONVERT for the conversion.

SELECT PARSE('Monday, 13 August 2012' AS datetime2 USING 'en-US') AS 'Date in English'

Date in English
2012-08-13 00:00:00.0000000

Section 43.4: Logical and Mathmetical Function
SQL has two logical functions – CHOOSE and IIF.

The CHOOSE function returns an item from a list of values, based on its position in the list. This position is specified
by the index.

In the syntax, the index parameter specifies the item and is a whole number, or integer. The val_1 … val_n
parameter identifies the list of values.

SELECT CHOOSE(2, 'Human Resources', 'Sales', 'Admin', 'Marketing') AS Result;

Result
Sales

In this example, you use the CHOOSE function to return the second entry in a list of departments.

The IIF function returns one of two values, based on a particular condition. If the condition is true, it will return
true value. Otherwise it will return a false value.

In the syntax, the boolean_expression parameter specifies the Boolean expression. The true_value parameter
specifies the value that should be returned if the boolean_expression evaluates to true and the false_value
parameter specifies the value that should be returned if the boolean_expression evaluates to false.

SELECT BusinessEntityID, SalesYTD,
 IIF(SalesYTD > 200000, 'Bonus', 'No Bonus') AS 'Bonus?'
FROM Sales.SalesPerson
GO

BusinessEntityID SalesYTD Bonus?
274 559697.5639 Bonus
275 3763178.1787 Bonus
285 172524.4512 No Bonus

In this example, you use the IIF function to return one of two values. If a sales person's year-to-date sales are above
200,000, this person will be eligible for a bonus. Values below 200,000 mean that employees don't qualify for
bonuses.

SQL includes several mathematical functions that you can use to perform calculations on input values and
return numeric results.

One example is the SIGN function, which returns a value indicating the sign of an expression. The value of -1
indicates a negative expression, the value of +1 indicates a positive expression, and 0 indicates zero.

SELECT SIGN(-20) AS 'Sign'

Sign
-1

In the example, the input is a negative number, so the Results pane lists the result -1.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 121

Another mathematical function is the POWER function. This function provides the value of an expression raised to a
specified power.

In the syntax, the float_expression parameter specifies the expression, and the y parameter specifies the power to
which you want to raise the expression.

SELECT POWER(50, 3) AS Result

Result
125000

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 122

Chapter 44: Functions (Analytic)
You use analytic functions to determine values based on groups of values. For example, you can use this type of
function to determine running totals, percentages, or the top result within a group.

Section 44.1: LAG and LEAD
The LAG function provides data on rows before the current row in the same result set. For example, in a SELECT
statement, you can compare values in the current row with values in a previous row.

You use a scalar expression to specify the values that should be compared. The offset parameter is the number of
rows before the current row that will be used in the comparison. If you don't specify the number of rows, the
default value of one row is used.

The default parameter specifies the value that should be returned when the expression at offset has a NULL value. If
you don't specify a value, a value of NULL is returned.

The LEAD function provides data on rows after the current row in the row set. For example, in a SELECT statement,
you can compare values in the current row with values in the following row.

You specify the values that should be compared using a scalar expression. The offset parameter is the number of
rows after the current row that will be used in the comparison.

You specify the value that should be returned when the expression at offset has a NULL value using the default
parameter. If you don't specify these parameters, the default of one row is used and a value of NULL is returned.

SELECT BusinessEntityID, SalesYTD,
 LEAD(SalesYTD, 1, 0) OVER(ORDER BY BusinessEntityID) AS "Lead value",
 LAG(SalesYTD, 1, 0) OVER(ORDER BY BusinessEntityID) AS "Lag value"
FROM SalesPerson;

This example uses the LEAD and LAG functions to compare the sales values for each employee to date with those of
the employees listed above and below, with records ordered based on the BusinessEntityID column.

BusinessEntityID SalesYTD Lead value Lag value
274 559697.5639 3763178.1787 0.0000
275 3763178.1787 4251368.5497 559697.5639
276 4251368.5497 3189418.3662 3763178.1787
277 3189418.3662 1453719.4653 4251368.5497
278 1453719.4653 2315185.6110 3189418.3662
279 2315185.6110 1352577.1325 1453719.4653

Section 44.2: PERCENTILE_DISC and PERCENTILE_CONT
The PERCENTILE_DISC function lists the value of the first entry where the cumulative distribution is higher than the
percentile that you provide using the numeric_literal parameter.

The values are grouped by rowset or partition, as specified by the WITHIN GROUP clause.

The PERCENTILE_CONT function is similar to the PERCENTILE_DISC function, but returns the average of the sum of
the first matching entry and the next entry.

SELECT BusinessEntityID, JobTitle, SickLeaveHours,
 CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours ASC)

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 123

 AS "Cumulative Distribution",
 PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY SickLeaveHours)
 OVER(PARTITION BY JobTitle) AS "Percentile Discreet"
FROM Employee;

To find the exact value from the row that matches or exceeds the 0.5 percentile, you pass the percentile as the
numeric literal in the PERCENTILE_DISC function. The Percentile Discreet column in a result set lists the value of the
row at which the cumulative distribution is higher than the specified percentile.

BusinessEntityID JobTitle SickLeaveHours Cumulative Distribution Percentile Discreet
272 Application Specialist 55 0.25 56
268 Application Specialist 56 0.75 56
269 Application Specialist 56 0.75 56
267 Application Specialist 57 1 56

To base the calculation on a set of values, you use the PERCENTILE_CONT function. The "Percentile Continuous"
column in the results lists the average value of the sum of the result value and the next highest matching value.

SELECT BusinessEntityID, JobTitle, SickLeaveHours,
 CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours ASC)
 AS "Cumulative Distribution",
 PERCENTILE_DISC(0.5) WITHIN GROUP(ORDER BY SickLeaveHours)
 OVER(PARTITION BY JobTitle) AS "Percentile Discreet",
 PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY SickLeaveHours)
 OVER(PARTITION BY JobTitle) AS "Percentile Continuous"
FROM Employee;

BusinessEntityID JobTitle SickLeaveHours Cumulative
Distribution

Percentile
Discreet

Percentile
Continuous

272 Application Specialist 55 0.25 56 56
268 Application Specialist 56 0.75 56 56
269 Application Specialist 56 0.75 56 56
267 Application Specialist 57 1 56 56

Section 44.3: FIRST_VALUE
You use the FIRST_VALUE function to determine the first value in an ordered result set, which you identify using a
scalar expression.

SELECT StateProvinceID, Name, TaxRate,
 FIRST_VALUE(StateProvinceID)
 OVER(ORDER BY TaxRate ASC) AS FirstValue
FROM SalesTaxRate;

In this example, the FIRST_VALUE function is used to return the ID of the state or province with the lowest tax rate.
The OVER clause is used to order the tax rates to obtain the lowest rate.

StateProvinceID Name TaxRate FirstValue
74 Utah State Sales Tax 5.00 74
36 Minnesota State Sales Tax 6.75 74
30 Massachusetts State Sales Tax 7.00 74
1 Canadian GST 7.00 74
57 Canadian GST 7.00 74
63 Canadian GST 7.00 74

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 124

Section 44.4: LAST_VALUE
The LAST_VALUE function provides the last value in an ordered result set, which you specify using a scalar
expression.

SELECT TerritoryID, StartDate, BusinessentityID,
 LAST_VALUE(BusinessentityID)
 OVER(ORDER BY TerritoryID) AS LastValue
FROM SalesTerritoryHistory;

This example uses the LAST_VALUE function to return the last value for each rowset in the ordered values.

TerritoryID StartDate BusinessentityID LastValue
1 2005-07-01 00.00.00.000 280 283
1 2006-11-01 00.00.00.000 284 283
1 2005-07-01 00.00.00.000 283 283
2 2007-01-01 00.00.00.000 277 275
2 2005-07-01 00.00.00.000 275 275
3 2007-01-01 00.00.00.000 275 277

Section 44.5: PERCENT_RANK and CUME_DIST
The PERCENT_RANK function calculates the ranking of a row relative to the row set. The percentage is based on the
number of rows in the group that have a lower value than the current row.

The first value in the result set always has a percent rank of zero. The value for the highest-ranked – or last – value
in the set is always one.

The CUME_DIST function calculates the relative position of a specified value in a group of values, by determining the
percentage of values less than or equal to that value. This is called the cumulative distribution.

SELECT BusinessEntityID, JobTitle, SickLeaveHours,
PERCENT_RANK() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours DESC)
 AS "Percent Rank",
CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours DESC)
 AS "Cumulative Distribution"
FROM Employee;

In this example, you use an ORDER clause to partition – or group – the rows retrieved by the SELECT statement based
on employees' job titles, with the results in each group sorted based on the numbers of sick leave hours that
employees have used.

BusinessEntityID JobTitle SickLeaveHours Percent Rank Cumulative Distribution
267 Application Specialist 57 0 0.25
268 Application Specialist 56 0.333333333333333 0.75
269 Application Specialist 56 0.333333333333333 0.75
272 Application Specialist 55 1 1

262 Assitant to the Cheif Financial
Officer 48 0 1

239 Benefits Specialist 45 0 1
252 Buyer 50 0 0.111111111111111
251 Buyer 49 0.125 0.333333333333333
256 Buyer 49 0.125 0.333333333333333
253 Buyer 48 0.375 0.555555555555555
254 Buyer 48 0.375 0.555555555555555

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 125

The PERCENT_RANK function ranks the entries within each group. For each entry, it returns the percentage of entries
in the same group that have lower values.

The CUME_DIST function is similar, except that it returns the percentage of values less than or equal to the current
value.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 126

Chapter 45: Window Functions
Section 45.1: Setting up a flag if other rows have a common
property
Let's say I have this data:

Table items

id name tag
1 example unique_tag
2 foo simple
42 bar simple
3 baz hello
51 quux world

I'd like to get all those lines and know if a tag is used by other lines

SELECT id, name, tag, COUNT(*) OVER (PARTITION BY tag) > 1 AS flag FROM items

The result will be:

id name tag flag
1 example unique_tag false
2 foo simple true
42 bar simple true
3 baz hello false
51 quux world false

In case your database doesn't have OVER and PARTITION you can use this to produce the same result:

SELECT id, name, tag, (SELECT COUNT(tag) FROM items B WHERE tag = A.tag) > 1 AS flag FROM items A

Section 45.2: Finding "out-of-sequence" records using the
LAG() function
Given these sample data:

ID STATUS STATUS_TIME STATUS_BY
1 ONE 2016-09-28-19.47.52.501398 USER_1
3 ONE 2016-09-28-19.47.52.501511 USER_2
1 THREE 2016-09-28-19.47.52.501517 USER_3
3 TWO 2016-09-28-19.47.52.501521 USER_2
3 THREE 2016-09-28-19.47.52.501524 USER_4

Items identified by ID values must move from STATUS 'ONE' to 'TWO' to 'THREE' in sequence, without skipping
statuses. The problem is to find users (STATUS_BY) values who violate the rule and move from 'ONE' immediately to
'THREE'.

The LAG() analytical function helps to solve the problem by returning for each row the value in the preceding row:

SELECT * FROM (
 SELECT
 t.*,

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 127

 LAG(status) OVER (PARTITION BY id ORDER BY status_time) AS prev_status
 FROM test t
) t1 WHERE status = 'THREE' AND prev_status != 'TWO'

In case your database doesn't have LAG() you can use this to produce the same result:

SELECT A.id, A.status, B.status as prev_status, A.status_time, B.status_time as prev_status_time
FROM Data A, Data B
WHERE A.id = B.id
AND B.status_time = (SELECT MAX(status_time) FROM Data where status_time < A.status_time and id =
A.id)
AND A.status = 'THREE' AND NOT B.status = 'TWO'

Section 45.3: Getting a running total
Given this data:

date amount
2016-03-12 200
2016-03-11 -50
2016-03-14 100
2016-03-15 100
2016-03-10 -250
SELECT date, amount, SUM(amount) OVER (ORDER BY date ASC) AS running
FROM operations
ORDER BY date ASC

will give you

date amount running
2016-03-10 -250 -250
2016-03-11 -50 -300
2016-03-12 200 -100
2016-03-14 100 0
2016-03-15 100 -100

Section 45.4: Adding the total rows selected to every row
SELECT your_columns, COUNT(*) OVER() as Ttl_Rows FROM your_data_set

id name Ttl_Rows
1 example 5
2 foo 5
3 bar 5
4 baz 5
5 quux 5

Instead of using two queries to get a count then the line, you can use an aggregate as a window function and use
the full result set as the window.
This can be used as a base for further calculation without the complexity of extra self joins.

Section 45.5: Getting the N most recent rows over multiple
grouping
Given this data

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 128

User_ID Completion_Date
1 2016-07-20
1 2016-07-21
2 2016-07-20
2 2016-07-21
2 2016-07-22
;with CTE as
(SELECT *,
 ROW_NUMBER() OVER (PARTITION BY User_ID
 ORDER BY Completion_Date DESC) Row_Num
FROM Data)
SELECT * FORM CTE WHERE Row_Num <= n

Using n=1, you'll get the one most recent row per user_id:

User_ID Completion_Date Row_Num
1 2016-07-21 1
2 2016-07-22 1

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 129

Chapter 46: Common Table Expressions
Section 46.1: generating values
Most databases do not have a native way of generating a series of numbers for ad-hoc use; however, common
table expressions can be used with recursion to emulate that type of function.

The following example generates a common table expression called Numbers with a column i which has a row for
numbers 1-5:

--Give a table name `Numbers" and a column `i` to hold the numbers
WITH Numbers(i) AS (
 --Starting number/index
 SELECT 1
 --Top-level UNION ALL operator required for recursion
 UNION ALL
 --Iteration expression:
 SELECT i + 1
 --Table expression we first declared used as source for recursion
 FROM Numbers
 --Clause to define the end of the recursion
 WHERE i < 5
)
--Use the generated table expression like a regular table
SELECT i FROM Numbers;

i
1
2
3
4
5

This method can be used with any number interval, as well as other types of data.

Section 46.2: recursively enumerating a subtree
WITH RECURSIVE ManagedByJames(Level, ID, FName, LName) AS (
 -- start with this row
 SELECT 1, ID, FName, LName
 FROM Employees
 WHERE ID = 1

 UNION ALL

 -- get employees that have any of the previously selected rows as manager
 SELECT ManagedByJames.Level + 1,
 Employees.ID,
 Employees.FName,
 Employees.LName
 FROM Employees
 JOIN ManagedByJames
 ON Employees.ManagerID = ManagedByJames.ID

 ORDER BY 1 DESC -- depth-first search
)
SELECT * FROM ManagedByJames;

Level ID FName LName

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 130

1 1 James Smith
2 2 John Johnson
3 4 Johnathon Smith
2 3 Michael Williams

Section 46.3: Temporary query
These behave in the same manner as nested subqueries but with a different syntax.

WITH ReadyCars AS (
 SELECT *
 FROM Cars
 WHERE Status = 'READY'
)
SELECT ID, Model, TotalCost
FROM ReadyCars
ORDER BY TotalCost;

ID Model TotalCost
1 Ford F-150 200
2 Ford F-150 230

Equivalent subquery syntax

SELECT ID, Model, TotalCost
FROM (
 SELECT *
 FROM Cars
 WHERE Status = 'READY'
) AS ReadyCars
ORDER BY TotalCost

Section 46.4: recursively going up in a tree
WITH RECURSIVE ManagersOfJonathon AS (
 -- start with this row
 SELECT *
 FROM Employees
 WHERE ID = 4

 UNION ALL

 -- get manager(s) of all previously selected rows
 SELECT Employees.*
 FROM Employees
 JOIN ManagersOfJonathon
 ON Employees.ID = ManagersOfJonathon.ManagerID
)
SELECT * FROM ManagersOfJonathon;

Id FName LName PhoneNumber ManagerId DepartmentId
4 Johnathon Smith 1212121212 2 1
2 John Johnson 2468101214 1 1
1 James Smith 1234567890 NULL 1

Section 46.5: Recursively generate dates, extended to include

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 131

team rostering as example
DECLARE @DateFrom DATETIME = '2016-06-01 06:00'
DECLARE @DateTo DATETIME = '2016-07-01 06:00'
DECLARE @IntervalDays INT = 7

-- Transition Sequence = Rest & Relax into Day Shift into Night Shift
-- RR (Rest & Relax) = 1
-- DS (Day Shift) = 2
-- NS (Night Shift) = 3

;WITH roster AS
(
 SELECT @DateFrom AS RosterStart, 1 AS TeamA, 2 AS TeamB, 3 AS TeamC
 UNION ALL
 SELECT DATEADD(d, @IntervalDays, RosterStart),
 CASE TeamA WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamA,
 CASE TeamB WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamB,
 CASE TeamC WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamC
 FROM roster WHERE RosterStart < DATEADD(d, -@IntervalDays, @DateTo)
)

SELECT RosterStart,
 ISNULL(LEAD(RosterStart) OVER (ORDER BY RosterStart), RosterStart + @IntervalDays) AS
RosterEnd,
 CASE TeamA WHEN 1 THEN 'RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamA,
 CASE TeamB WHEN 1 THEN 'RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamB,
 CASE TeamC WHEN 1 THEN 'RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamC
FROM roster

Result

I.e. For Week 1 TeamA is on R&R, TeamB is on Day Shift and TeamC is on Night Shift.

Section 46.6: Oracle CONNECT BY functionality with recursive
CTEs
Oracle's CONNECT BY functionality provides many useful and nontrivial features that are not built-in when using
SQL standard recursive CTEs. This example replicates these features (with a few additions for sake of
completeness), using SQL Server syntax. It is most useful for Oracle developers finding many features missing in
their hierarchical queries on other databases, but it also serves to showcase what can be done with a hierarchical
query in general.

 WITH tbl AS (
 SELECT id, name, parent_id
 FROM mytable)
 , tbl_hierarchy AS (
 /* Anchor */
 SELECT 1 AS "LEVEL"

http://i.stack.imgur.com/rm2xk.jpg
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 132

 --, 1 AS CONNECT_BY_ISROOT
 --, 0 AS CONNECT_BY_ISBRANCH
 , CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN 0 ELSE 1 END AS CONNECT_BY_ISLEAF
 , 0 AS CONNECT_BY_ISCYCLE
 , '/' + CAST(t.id AS VARCHAR(MAX)) + '/' AS SYS_CONNECT_BY_PATH_id
 , '/' + CAST(t.name AS VARCHAR(MAX)) + '/' AS SYS_CONNECT_BY_PATH_name
 , t.id AS root_id
 , t.*
 FROM tbl t
 WHERE t.parent_id IS NULL -- START WITH parent_id IS NULL
 UNION ALL
 /* Recursive */
 SELECT th."LEVEL" + 1 AS "LEVEL"
 --, 0 AS CONNECT_BY_ISROOT
 --, CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN 1 ELSE 0 END AS
CONNECT_BY_ISBRANCH
 , CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN 0 ELSE 1 END AS CONNECT_BY_ISLEAF
 , CASE WHEN th.SYS_CONNECT_BY_PATH_id LIKE '%/' + CAST(t.id AS VARCHAR(MAX)) + '/%'
THEN 1 ELSE 0 END AS CONNECT_BY_ISCYCLE
 , th.SYS_CONNECT_BY_PATH_id + CAST(t.id AS VARCHAR(MAX)) + '/' AS
SYS_CONNECT_BY_PATH_id
 , th.SYS_CONNECT_BY_PATH_name + CAST(t.name AS VARCHAR(MAX)) + '/' AS
SYS_CONNECT_BY_PATH_name
 , th.root_id
 , t.*
 FROM tbl t
 JOIN tbl_hierarchy th ON (th.id = t.parent_id) -- CONNECT BY PRIOR id = parent_id
 WHERE th.CONNECT_BY_ISCYCLE = 0) -- NOCYCLE
SELECT th.*
 --, REPLICATE(' ', (th."LEVEL" - 1) * 3) + th.name AS tbl_hierarchy
 FROM tbl_hierarchy th
 JOIN tbl CONNECT_BY_ROOT ON (CONNECT_BY_ROOT.id = th.root_id)
 ORDER BY th.SYS_CONNECT_BY_PATH_name; -- ORDER SIBLINGS BY name

CONNECT BY features demonstrated above, with explanations:

Clauses
CONNECT BY: Specifies the relationship that defines the hierarchy.
START WITH: Specifies the root nodes.
ORDER SIBLINGS BY: Orders results properly.

Parameters
NOCYCLE: Stops processing a branch when a loop is detected. Valid hierarchies are Directed Acyclic
Graphs, and circular references violate this construct.

Operators
PRIOR: Obtains data from the node's parent.
CONNECT_BY_ROOT: Obtains data from the node's root.

Pseudocolumns
LEVEL: Indicates the node's distance from its root.
CONNECT_BY_ISLEAF: Indicates a node without children.
CONNECT_BY_ISCYCLE: Indicates a node with a circular reference.

Functions
SYS_CONNECT_BY_PATH: Returns a flattened/concatenated representation of the path to the node
from its root.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 133

Chapter 47: Views
Section 47.1: Simple views
A view can filter some rows from the base table or project only some columns from it:

CREATE VIEW new_employees_details AS
SELECT E.id, Fname, Salary, Hire_date
FROM Employees E
WHERE hire_date > date '2015-01-01';

If you select form the view:

select * from new_employees_details

Id FName Salary Hire_date
4 Johnathon 500 24-07-2016

Section 47.2: Complex views
A view can be a really complex query(aggregations, joins, subqueries, etc). Just be sure you add column names for
everything you select:

Create VIEW dept_income AS
SELECT d.Name as DepartmentName, sum(e.salary) as TotalSalary
FROM Employees e
JOIN Departments d on e.DepartmentId = d.id
GROUP BY d.Name;

Now you can select from it as from any table:

SELECT *
FROM dept_income;

DepartmentName TotalSalary
HR 1900
Sales 600

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 134

Chapter 48: Materialized Views
A materialized view is a view whose results are physically stored and must be periodically refreshed in order to
remain current. They are therefore useful for storing the results of complex, long-running queries when realtime
results are not required. Materialized views can be created in Oracle and PostgreSQL. Other database systems offer
similar functionality, such as SQL Server's indexed views or DB2's materialized query tables.

Section 48.1: PostgreSQL example
CREATE TABLE mytable (number INT);
INSERT INTO mytable VALUES (1);

CREATE MATERIALIZED VIEW myview AS SELECT * FROM mytable;

SELECT * FROM myview;

number

1
(1 row)

INSERT INTO mytable VALUES(2);

SELECT * FROM myview;

number

1
(1 row)

REFRESH MATERIALIZED VIEW myview;

SELECT * FROM myview;

number

1
2
(2 rows)

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 135

Chapter 49: Comments
Section 49.1: Single-line comments
Single line comments are preceded by --, and go until the end of the line:

SELECT *
FROM Employees -- this is a comment
WHERE FName = 'John'

Section 49.2: Multi-line comments
Multi-line code comments are wrapped in /* ... */:

/* This query
 returns all employees */
SELECT *
FROM Employees

It is also possible to insert such a comment into the middle of a line:

SELECT /* all columns: */ *
FROM Employees

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 136

Chapter 50: Foreign Keys
Section 50.1: Foreign Keys explained
Foreign Keys constraints ensure data integrity, by enforcing that values in one table must match values in another
table.

An example of where a foreign key is required is: In a university, a course must belong to a department. Code for
the this scenario is:

CREATE TABLE Department (
 Dept_Code CHAR (5) PRIMARY KEY,
 Dept_Name VARCHAR (20) UNIQUE
);

Insert values with the following statement:

INSERT INTO Department VALUES ('CS205', 'Computer Science');

The following table will contain the information of the subjects offered by the Computer science branch:

CREATE TABLE Programming_Courses (
 Dept_Code CHAR(5),
 Prg_Code CHAR(9) PRIMARY KEY,
 Prg_Name VARCHAR (50) UNIQUE,
 FOREIGN KEY (Dept_Code) References Department(Dept_Code)
);

(The data type of the Foreign Key must match the datatype of the referenced key.)

The Foreign Key constraint on the column Dept_Code allows values only if they already exist in the referenced table,
Department. This means that if you try to insert the following values:

INSERT INTO Programming_Courses Values ('CS300', 'FDB-DB001', 'Database Systems');

the database will raise a Foreign Key violation error, because CS300 does not exist in the Department table. But
when you try a key value that exists:

INSERT INTO Programming_Courses VALUES ('CS205', 'FDB-DB001', 'Database Systems');
INSERT INTO Programming_Courses VALUES ('CS205', 'DB2-DB002', 'Database Systems II');

then the database allows these values.

A few tips for using Foreign Keys

A Foreign Key must reference a UNIQUE (or PRIMARY) key in the parent table.
Entering a NULL value in a Foreign Key column does not raise an error.
Foreign Key constraints can reference tables within the same database.
Foreign Key constraints can refer to another column in the same table (self-reference).

Section 50.2: Creating a table with a foreign key
In this example we have an existing table, SuperHeros.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 137

This table contains a primary key ID.

We will add a new table in order to store the powers of each super hero:

CREATE TABLE HeroPowers
(
 ID int NOT NULL PRIMARY KEY,
 Name nvarchar(MAX) NOT NULL,
 HeroId int REFERENCES SuperHeros(ID)
)

The column HeroId is a foreign key to the table SuperHeros.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 138

Chapter 51: Sequence
Section 51.1: Create Sequence
 CREATE SEQUENCE orders_seq
 START WITH 1000
 INCREMENT BY 1;

Creates a sequence with a starting value of 1000 which is incremented by 1.

Section 51.2: Using Sequences
a reference to seq_name.NEXTVAL is used to get the next value in a sequence. A single statement can only generate
a single sequence value. If there are multiple references to NEXTVAL in a statement, they use will use the same
generated number.

NEXTVAL can be used for INSERTS

INSERT INTO Orders (Order_UID, Customer)
 VALUES (orders_seq.NEXTVAL, 1032);

It can be used for UPDATES

UPDATE Orders
SET Order_UID = orders_seq.NEXTVAL
WHERE Customer = 581;

It can also be used for SELECTS

SELECT Order_seq.NEXTVAL FROM dual;

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 139

Chapter 52: Subqueries
Section 52.1: Subquery in FROM clause
A subquery in a FROM clause acts similarly to a temporary table that is generated during the execution of a query
and lost afterwards.

SELECT Managers.Id, Employees.Salary
FROM (
 SELECT Id
 FROM Employees
 WHERE ManagerId IS NULL
) AS Managers
JOIN Employees ON Managers.Id = Employees.Id

Section 52.2: Subquery in SELECT clause
SELECT
 Id,
 FName,
 LName,
 (SELECT COUNT(*) FROM Cars WHERE Cars.CustomerId = Customers.Id) AS NumberOfCars
FROM Customers

Section 52.3: Subquery in WHERE clause
Use a subquery to filter the result set. For example this will return all employees with a salary equal to the highest
paid employee.

SELECT *
FROM Employees
WHERE Salary = (SELECT MAX(Salary) FROM Employees)

Section 52.4: Correlated Subqueries
Correlated (also known as Synchronized or Coordinated) Subqueries are nested queries that make references to
the current row of their outer query:

SELECT EmployeeId
 FROM Employee AS eOuter
 WHERE Salary > (
 SELECT AVG(Salary)
 FROM Employee eInner
 WHERE eInner.DepartmentId = eOuter.DepartmentId
)

Subquery SELECT AVG(Salary) ... is correlated because it refers to Employee row eOuter from its outer query.

Section 52.5: Filter query results using query on dierent
table
This query selects all employees not on the Supervisors table.

SELECT *

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 140

FROM Employees
WHERE EmployeeID not in (SELECT EmployeeID
 FROM Supervisors)

The same results can be achieved using a LEFT JOIN.

SELECT *
FROM Employees AS e
LEFT JOIN Supervisors AS s ON s.EmployeeID=e.EmployeeID
WHERE s.EmployeeID is NULL

Section 52.6: Subqueries in FROM clause
You can use subqueries to define a temporary table and use it in the FROM clause of an "outer" query.

SELECT * FROM (SELECT city, temp_hi - temp_lo AS temp_var FROM weather) AS w
WHERE temp_var > 20;

The above finds cities from the weather table whose daily temperature variation is greater than 20. The result is:

city temp_var
ST LOUIS 21
LOS ANGELES 31
LOS ANGELES 23
LOS ANGELES 31
LOS ANGELES 27
LOS ANGELES 28
LOS ANGELES 28
LOS ANGELES 32

.

Section 52.7: Subqueries in WHERE clause
The following example finds cities (from the cities example) whose population is below the average temperature
(obtained via a sub-qquery):

SELECT name, pop2000 FROM cities
WHERE pop2000 < (SELECT avg(pop2000) FROM cities);

Here: the subquery (SELECT avg(pop2000) FROM cities) is used to specify conditions in the WHERE clause. The result
is:

name pop2000
San Francisco 776733
ST LOUIS 348189
Kansas City 146866

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 141

Chapter 53: Execution blocks
Section 53.1: Using BEGIN ... END
BEGIN
 UPDATE Employees SET PhoneNumber = '5551234567' WHERE Id = 1;
 UPDATE Employees SET Salary = 650 WHERE Id = 3;
END

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 142

Chapter 54: Stored Procedures
Section 54.1: Create and call a stored procedure
Stored procedures can be created through a database management GUI (SQL Server example), or through a SQL
statement as follows:

-- Define a name and parameters
CREATE PROCEDURE Northwind.getEmployee
 @LastName nvarchar(50),
 @FirstName nvarchar(50)
AS

-- Define the query to be run
SELECT FirstName, LastName, Department
FROM Northwind.vEmployeeDepartment
WHERE FirstName = @FirstName AND LastName = @LastName
AND EndDate IS NULL;

Calling the procedure:

EXECUTE Northwind.getEmployee N'Ackerman', N'Pilar';

-- Or
EXEC Northwind.getEmployee @LastName = N'Ackerman', @FirstName = N'Pilar';
GO

-- Or
EXECUTE Northwind.getEmployee @FirstName = N'Pilar', @LastName = N'Ackerman';
GO

https://msdn.microsoft.com/en-us/library/ms345415.aspx
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 143

Chapter 55: Triggers
Section 55.1: CREATE TRIGGER
This example creates a trigger that inserts a record to a second table (MyAudit) after a record is inserted into the
table the trigger is defined on (MyTable). Here the "inserted" table is a special table used by Microsoft SQL Server to
store affected rows during INSERT and UPDATE statements; there is also a special "deleted" table that performs the
same function for DELETE statements.

CREATE TRIGGER MyTrigger
 ON MyTable
 AFTER INSERT

AS

BEGIN
 -- insert audit record to MyAudit table
 INSERT INTO MyAudit(MyTableId, User)
 (SELECT MyTableId, CURRENT_USER FROM inserted)
END

Section 55.2: Use Trigger to manage a "Recycle Bin" for
deleted items
CREATE TRIGGER BooksDeleteTrigger
 ON MyBooksDB.Books
 AFTER DELETE
AS
 INSERT INTO BooksRecycleBin
 SELECT *
 FROM deleted;
GO

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 144

Chapter 56: Transactions
Section 56.1: Simple Transaction
BEGIN TRANSACTION
 INSERT INTO DeletedEmployees(EmployeeID, DateDeleted, User)
 (SELECT 123, GetDate(), CURRENT_USER);
 DELETE FROM Employees WHERE EmployeeID = 123;
COMMIT TRANSACTION

Section 56.2: Rollback Transaction
When something fails in your transaction code and you want to undo it, you can rollback your transaction:

BEGIN TRY
 BEGIN TRANSACTION
 INSERT INTO Users(ID, Name, Age)
 VALUES(1, 'Bob', 24)

 DELETE FROM Users WHERE Name = 'Todd'
 COMMIT TRANSACTION
END TRY
BEGIN CATCH
 ROLLBACK TRANSACTION
END CATCH

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 145

Chapter 57: Table Design
Section 57.1: Properties of a well designed table
A true relational database must go beyond throwing data into a few tables and writing some SQL statements to pull
that data out.
At best a badly designed table structure will slow the execution of queries and could make it impossible for the
database to function as intended.

A database table should not be considered as just another table; it has to follow a set of rules to be considered truly
relational. Academically it is referred to as a 'relation' to make the distinction.

The five rules of a relational table are:

Each value is atomic; the value in each field in each row must be a single value.1.
Each field contains values that are of the same data type.2.
Each field heading has a unique name.3.
Each row in the table must have at least one value that makes it unique amongst the other records in the4.
table.
The order of the rows and columns has no significance.5.

A table conforming to the five rules:

Id Name DOB Manager
1 Fred 11/02/1971 3
2 Fred 11/02/1971 3
3 Sue 08/07/1975 2

Rule 1: Each value is atomic. Id, Name, DOB and Manager only contain a single value.
Rule 2: Id contains only integers, Name contains text (we could add that it's text of four characters or less), DOB
contains dates of a valid type and Manager contains integers (we could add that corresponds to a Primary Key
field in a managers table).
Rule 3: Id, Name, DOB and Manager are unique heading names within the table.
Rule 4: The inclusion of the Id field ensures that each record is distinct from any other record within the
table.

A badly designed table:

Id Name DOB Name
1 Fred 11/02/1971 3
1 Fred 11/02/1971 3
3 Sue Friday the 18th July 1975 2, 1

Rule 1: The second name field contains two values - 2 and 1.
Rule 2: The DOB field contains dates and text.
Rule 3: There's two fields called 'name'.
Rule 4: The first and second record are exactly the same.
Rule 5: This rule isn't broken.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 146

Chapter 58: Synonyms
Section 58.1: Create Synonym
CREATE SYNONYM EmployeeData
FOR MyDatabase.dbo.Employees

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 147

Chapter 59: Information Schema
Section 59.1: Basic Information Schema Search
One of the most useful queries for end users of large RDBMS's is a search of an information schema.

Such a query allows users to rapidly find database tables containing columns of interest, such as when attempting
to relate data from 2 tables indirectly through a third table, without existing knowledge of which tables may contain
keys or other useful columns in common with the target tables.

Using T-SQL for this example, a database's information schema may be searched as follows:

SELECT *
FROM INFORMATION_SCHEMA.COLUMNS
WHERE COLUMN_NAME LIKE '%Institution%'

The result contains a list of matching columns, their tables' names, and other useful information.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 148

Chapter 60: Order of Execution
Section 60.1: Logical Order of Query Processing in SQL
/*(8)*/ SELECT /*9*/ DISTINCT /*11*/ TOP
/*(1)*/ FROM
/*(3)*/ JOIN
/*(2)*/ ON
/*(4)*/ WHERE
/*(5)*/ GROUP BY
/*(6)*/ WITH {CUBE | ROLLUP}
/*(7)*/ HAVING
/*(10)*/ ORDER BY
/*(11)*/ LIMIT

The order in which a query is processed and description of each section.

VT stands for 'Virtual Table' and shows how various data is produced as the query is processed

FROM: A Cartesian product (cross join) is performed between the first two tables in the FROM clause, and as1.
a result, virtual table VT1 is generated.

ON: The ON filter is applied to VT1. Only rows for which the is TRUE are inserted to VT2.2.

OUTER (join): If an OUTER JOIN is specified (as opposed to a CROSS JOIN or an INNER JOIN), rows from the3.
preserved table or tables for which a match was not found are added to the rows from VT2 as outer rows,
generating VT3. If more than two tables appear in the FROM clause, steps 1 through 3 are applied repeatedly
between the result of the last join and the next table in the FROM clause until all tables are processed.

WHERE: The WHERE filter is applied to VT3. Only rows for which the is TRUE are inserted to VT4.4.

GROUP BY: The rows from VT4 are arranged in groups based on the column list specified in the GROUP BY5.
clause. VT5 is generated.

CUBE | ROLLUP: Supergroups (groups of groups) are added to the rows from VT5, generating VT6.6.

HAVING: The HAVING filter is applied to VT6. Only groups for which the is TRUE are inserted to VT7.7.

SELECT: The SELECT list is processed, generating VT8.8.

DISTINCT: Duplicate rows are removed from VT8. VT9 is generated.9.

ORDER BY: The rows from VT9 are sorted according to the column list specified in the ORDER BY clause. A10.
cursor is generated (VC10).

TOP: The specified number or percentage of rows is selected from the beginning of VC10. Table VT11 is11.
generated and returned to the caller. LIMIT has the same functionality as TOP in some SQL dialects such as
Postgres and Netezza.

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 149

Chapter 61: Clean Code in SQL
How to write good, readable SQL queries, and example of good practices.

Section 61.1: Formatting and Spelling of Keywords and Names
Table/Column Names

Two common ways of formatting table/column names are CamelCase and snake_case:

SELECT FirstName, LastName
FROM Employees
WHERE Salary > 500;

SELECT first_name, last_name
FROM employees
WHERE salary > 500;

Names should describe what is stored in their object. This implies that column names usually should be singular.
Whether table names should use singular or plural is a heavily discussed question, but in practice, it is more
common to use plural table names.

Adding prefixes or suffixes like tbl or col reduces readability, so avoid them. However, they are sometimes used to
avoid conflicts with SQL keywords, and often used with triggers and indexes (whose names are usually not
mentioned in queries).

Keywords

SQL keywords are not case sensitive. However, it is common practice to write them in upper case.

Section 61.2: Indenting
There is no widely accepted standard. What everyone agrees on is that squeezing everything into a single line is
bad:

SELECT d.Name, COUNT(*) AS Employees FROM Departments AS d JOIN Employees AS e ON d.ID =
e.DepartmentID WHERE d.Name != 'HR' HAVING COUNT(*) > 10 ORDER BY COUNT(*) DESC;

At the minimum, put every clause into a new line, and split lines if they would become too long otherwise:

SELECT d.Name,
 COUNT(*) AS Employees
FROM Departments AS d
JOIN Employees AS e ON d.ID = e.DepartmentID
WHERE d.Name != 'HR'
HAVING COUNT(*) > 10
ORDER BY COUNT(*) DESC;

Sometimes, everything after the SQL keyword introducing a clause is indented to the same column:

SELECT d.Name,
 COUNT(*) AS Employees
FROM Departments AS d
JOIN Employees AS e ON d.ID = e.DepartmentID
WHERE d.Name != 'HR'
HAVING COUNT(*) > 10

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
http://stackoverflow.com/questions/338156/table-naming-dilemma-singular-vs-plural-names
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 150

ORDER BY COUNT(*) DESC;

(This can also be done while aligning the SQL keywords right.)

Another common style is to put important keywords on their own lines:

SELECT
 d.Name,
 COUNT(*) AS Employees
FROM
 Departments AS d
JOIN
 Employees AS e
 ON d.ID = e.DepartmentID
WHERE
 d.Name != 'HR'
HAVING
 COUNT(*) > 10
ORDER BY
 COUNT(*) DESC;

Vertically aligning multiple similar expressions improves readability:

SELECT Model,
 EmployeeID
FROM Cars
WHERE CustomerID = 42
 AND Status = 'READY';

Using multiple lines makes it harder to embed SQL commands into other programming languages. However, many
languages have a mechanism for multi-line strings, e.g., @"..." in C#, """...""" in Python, or R"(...)" in C++.

Section 61.3: SELECT *
SELECT * returns all columns in the same order as they are defined in the table.

When using SELECT *, the data returned by a query can change whenever the table definition changes. This
increases the risk that different versions of your application or your database are incompatible with each other.

Furthermore, reading more columns than necessary can increase the amount of disk and network I/O.

So you should always explicitly specify the column(s) you actually want to retrieve:

--SELECT * don't
 SELECT ID, FName, LName, PhoneNumber -- do
 FROM Emplopees;

(When doing interactive queries, these considerations do not apply.)

However, SELECT * does not hurt in the subquery of an EXISTS operator, because EXISTS ignores the actual data
anyway (it checks only if at least one row has been found). For the same reason, it is not meaningful to list any
specific column(s) for EXISTS, so SELECT * actually makes more sense:

-- list departments where nobody was hired recently
SELECT ID,
 Name
FROM Departments

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 151

WHERE NOT EXISTS (SELECT *
 FROM Employees
 WHERE DepartmentID = Departments.ID
 AND HireDate >= '2015-01-01');

Section 61.4: Joins
Explicit joins should always be used; implicit joins have several problems:

The join condition is somewhere in the WHERE clause, mixed up with any other filter conditions. This makes
it harder to see which tables are joined, and how.

Due to the above, there is a higher risk of mistakes, and it is more likely that they are found later.

In standard SQL, explicit joins are the only way to use outer joins:

SELECT d.Name,
 e.Fname || e.LName AS EmpName
FROM Departments AS d
LEFT JOIN Employees AS e ON d.ID = e.DepartmentID;

Explicit joins allow using the USING clause:

SELECT RecipeID,
 Recipes.Name,
 COUNT(*) AS NumberOfIngredients
FROM Recipes
LEFT JOIN Ingredients USING (RecipeID);

(This requires that both tables use the same column name.
USING automatically removes the duplicate column from the result, e.g., the join in this query returns a
single RecipeID column.)

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 152

Chapter 62: SQL Injection
SQL injection is an attempt to access a website's database tables by injecting SQL into a form field. If a web server
does not protect against SQL injection attacks, a hacker can trick the database into running the additional SQL code.
By executing their own SQL code, hackers can upgrade their account access, view someone else's private
information, or make any other modifications to the database.

Section 62.1: SQL injection sample
Assuming the call to your web application's login handler looks like this:

https://somepage.com/ajax/login.ashx?username=admin&password=123

Now in login.ashx, you read these values:

strUserName = getHttpsRequestParameterString("username");
strPassword = getHttpsRequestParameterString("password");

and query your database to determine whether a user with that password exists.

So you construct an SQL query string:

txtSQL = "SELECT * FROM Users WHERE username = '" + strUserName + "' AND password = '"+ strPassword
+"'";

This will work if the username and password do not contain a quote.

However, if one of the parameters does contain a quote, the SQL that gets sent to the database will look like this:

-- strUserName = "d'Alambert";
txtSQL = "SELECT * FROM Users WHERE username = 'd'Alambert' AND password = '123'";

This will result in a syntax error, because the quote after the d in d'Alambert ends the SQL string.

You could correct this by escaping quotes in username and password, e.g.:

strUserName = strUserName.Replace("'", "''");
strPassword = strPassword.Replace("'", "''");

However, it's more appropriate to use parameters:

cmd.CommandText = "SELECT * FROM Users WHERE username = @username AND password = @password";

cmd.Parameters.Add("@username", strUserName);
cmd.Parameters.Add("@password", strPassword);

If you do not use parameters, and forget to replace quote in even one of the values, then a malicious user (aka
hacker) can use this to execute SQL commands on your database.

For example, if an attacker is evil, he/she will set the password to

lol'; DROP DATABASE master; --

and then the SQL will look like this:

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 153

"SELECT * FROM Users WHERE username = 'somebody' AND password = 'lol'; DROP DATABASE master; --'";

Unfortunately for you, this is valid SQL, and the DB will execute this!

This type of exploit is called an SQL injection.

There are many other things a malicious user could do, such as stealing every user's email address, steal everyone's
password, steal credit card numbers, steal any amount of data in your database, etc.

This is why you always need to escape your strings.
And the fact that you'll invariably forget to do so sooner or later is exactly why you should use parameters. Because
if you use parameters, then your programming language framework will do any necessary escaping for you.

Section 62.2: simple injection sample
If the SQL statement is constructed like this:

SQL = "SELECT * FROM Users WHERE username = '" + user + "' AND password ='" + pw + "'";
db.execute(SQL);

Then a hacker could retrieve your data by giving a password like pw' or '1'='1; the resulting SQL statement will
be:

SELECT * FROM Users WHERE username = 'somebody' AND password ='pw' or '1'='1'

This one will pass the password check for all rows in the Users table because '1'='1' is always true.

To prevent this, use SQL parameters:

SQL = "SELECT * FROM Users WHERE username = ? AND password = ?";
db.execute(SQL, [user, pw]);

http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 154

Credits
Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,

more changes can be sent to web@petercv.com for new content to be published or updated

Özgür Öztürk Chapters 8 and 17
3N1GM4 Chapter 7
a1ex07 Chapter 37
Abe Miessler Chapter 7
Abhilash R Vankayala Chapters 6, 5, 11, 30, 27 and 32
aholmes Chapter 6
Aidan Chapters 21 and 25
alex9311 Chapter 21
Almir Vuk Chapters 37 and 21
Alok Singh Chapter 6
Ameya Deshpande Chapter 26
Amir Pourmand Chapter 56
Amnon Chapter 6
Andrea Chapter 24
Andrea Montanari Chapter 36
Andreas Chapter 2
Andy G Chapter 18
apomene Chapter 6
Ares Chapter 21
Arkh Chapter 45
Arpit Solanki Chapter 6
Arthur D Chapter 41
Arulkumar Chapters 13 and 41
ashja99 Chapters 11 and 42
Athafoud Chapter 24
A_Arnold Chapter 18
Bart Schuijt Chapter 11
Batsu Chapter 41
bhs Chapter 45
bignose Chapter 5
blackbishop Chapter 25
Blag Chapter 17
Bostjan Chapters 5, 7 and 13
Branko Dimitrijevic Chapter 18
Brent Oliver Chapter 6
brichins Chapter 54
carlosb Chapters 37 and 39
Chris Chapter 6
Christian Chapter 5
Christian Sagmüller Chapter 6
Christos Chapter 6
CL. Chapters 1, 6, 18, 19, 37, 21, 10, 36, 8, 46, 42, 41, 49, 31, 14, 62, 2 and 61
Cristian Abelleira Chapter 30
DaImTo Chapter 30
Daniel Chapter 46
Daniel Langemann Chapters 18 and 24
dariru Chapter 6
Dariusz Chapters 19 and 10
Darrel Lee Chapter 40

mailto:web@petercv.com
https://stackoverflow.com/users/1934778/
https://stackoverflow.com/users/5669294/
https://stackoverflow.com/users/232403/
https://stackoverflow.com/users/226897/
https://stackoverflow.com/users/6158629/
https://stackoverflow.com/users/1801382/
https://stackoverflow.com/users/1980414/
https://stackoverflow.com/users/1618292/
https://stackoverflow.com/users/5165961/
https://stackoverflow.com/users/3955698/
https://stackoverflow.com/users/2609817/
https://stackoverflow.com/users/4201765/
https://stackoverflow.com/users/1860089/
https://stackoverflow.com/users/909742/
https://stackoverflow.com/users/3319687/
https://stackoverflow.com/users/5221149/
https://stackoverflow.com/users/620444/
https://stackoverflow.com/users/1000827/
https://stackoverflow.com/users/2887760/
https://stackoverflow.com/users/151758/
https://stackoverflow.com/users/5250746/
https://stackoverflow.com/users/6220816/
https://stackoverflow.com/users/2451726/
https://stackoverflow.com/users/3522593/
https://stackoverflow.com/users/2279200/
https://stackoverflow.com/users/5050431/
https://stackoverflow.com/users/2811537/
https://stackoverflow.com/users/1029516/
https://stackoverflow.com/users/215452/
https://stackoverflow.com/users/70157/
https://stackoverflow.com/users/1386551/
https://stackoverflow.com/users/5546267/
https://stackoverflow.com/users/648119/
https://stackoverflow.com/users/533120/
https://stackoverflow.com/users/5116096/
https://stackoverflow.com/users/957950/
https://stackoverflow.com/users/5095669/
https://stackoverflow.com/users/536950/
https://stackoverflow.com/users/112670/
https://stackoverflow.com/users/6619524/
https://stackoverflow.com/users/913124/
https://stackoverflow.com/users/11654/
https://stackoverflow.com/users/2404889/
https://stackoverflow.com/users/1841839/
https://stackoverflow.com/users/2444386/
https://stackoverflow.com/users/2612068/
https://stackoverflow.com/users/2036808/
https://stackoverflow.com/users/1961634/
https://stackoverflow.com/users/307968/
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 155

Darren Bartrup Chapters 18 and 57
Daryl Chapters 6, 55, 56 and 58
dasblinkenlight Chapter 52
David Manheim Chapter 37
David Pine Chapter 6
David Spillett Chapter 6
day_dreamer Chapter 6
dd4711 Chapter 46
dmfay Chapter 48
Durgpal Singh Chapter 6
Dylan Vander Berg Chapters 21 and 29
Emil Rowland Chapter 20
Eric VB Chapter 6
Florin Ghita Chapters 18, 5, 25, 47 and 42
FlyingPiMonster Chapters 6, 5, 19, 37 and 36
forsvarir Chapters 18 and 5
Franck Dernoncourt Chapters 6, 18 and 41
Frank Chapter 7
fuzzy_logic Chapter 46
Gallus Chapter 60
geeksal Chapter 1
Gidil Chapter 45
Golden Gate Chapter 41
guiguiblitz Chapter 9
H. Pauwelyn Chapter 21
Hack Chapter 59
Harish Gyanani Chapter 11
Harjot Chapter 50
hatchet Chapter 41
hellyale Chapter 11
HK1 Chapter 18
HLGEM Chapter 18
HoangHieu Chapter 6
Horaciux Chapter 37
Hynek Bernard Chapter 30
Ian Kenney Chapter 42
iliketocode Chapter 6
Imran Ali Khan Chapters 6, 42 and 41
Inca Chapter 6
IncrediApp Chapter 55
Jared Hooper Chapter 6
Jason W Chapter 24
JavaHopper Chapter 5
Jaydip Jadhav Chapter 41
Jaydles Chapters 6, 10, 8 and 7
Jenism Chapter 37
Jerry Jeremiah Chapter 45
Jim Chapter 24
Joe Taras Chapter 24
Joel Chapters 29 and 31
John Odom Chapters 6, 18, 56, 22 and 32
John Slegers Chapters 6 and 18
John Smith Chapter 51
JohnLBevan Chapter 1
Jojodmo Chapter 21

https://stackoverflow.com/users/4677305/
https://stackoverflow.com/users/204285/
https://stackoverflow.com/users/335858/
https://stackoverflow.com/users/1132642/
https://stackoverflow.com/users/2410379/
https://stackoverflow.com/users/114292/
https://stackoverflow.com/users/5319981/
https://stackoverflow.com/users/6101163/
https://stackoverflow.com/users/7259926/
https://stackoverflow.com/users/1759015/
https://stackoverflow.com/users/2297366/
https://stackoverflow.com/users/5410879/
https://stackoverflow.com/users/4915654/
https://stackoverflow.com/users/319875/
https://stackoverflow.com/users/4250629/
https://stackoverflow.com/users/592182/
https://stackoverflow.com/users/395857/
https://stackoverflow.com/users/1191259/
https://stackoverflow.com/users/1657427/
https://stackoverflow.com/users/3494243/
https://stackoverflow.com/users/3212574/
https://stackoverflow.com/users/1709629/
https://stackoverflow.com/users/5860431/
https://stackoverflow.com/users/3845436/
https://stackoverflow.com/users/4551041/
https://stackoverflow.com/users/3604745/
https://stackoverflow.com/users/1495703/
https://stackoverflow.com/users/7003682/
https://stackoverflow.com/users/834261/
https://stackoverflow.com/users/4645236/
https://stackoverflow.com/users/504958/
https://stackoverflow.com/users/9034/
https://stackoverflow.com/users/2076049/
https://stackoverflow.com/users/3564751/
https://stackoverflow.com/users/6518147/
https://stackoverflow.com/users/2308473/
https://stackoverflow.com/users/3739391/
https://stackoverflow.com/users/2723943/
https://stackoverflow.com/users/485534/
https://stackoverflow.com/users/829407/
https://stackoverflow.com/users/3872894/
https://stackoverflow.com/users/4154421/
https://stackoverflow.com/users/3059893/
https://stackoverflow.com/users/4964923/
https://stackoverflow.com/users/347414/
https://stackoverflow.com/users/5907809/
https://stackoverflow.com/users/2193968/
https://stackoverflow.com/users/6450450/
https://stackoverflow.com/users/2577734/
https://stackoverflow.com/users/4096670/
https://stackoverflow.com/users/2843157/
https://stackoverflow.com/users/1946501/
https://stackoverflow.com/users/4917882/
https://stackoverflow.com/users/361842/
https://stackoverflow.com/users/2767207/
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 156

Jon Chan Chapter 13
Jon Ericson Chapters 1 and 13
JonH Chapter 6
juergen d Chapters 13, 42 and 12
Karthikeyan Chapter 28
Kewin Björk Nielsen Chapters 41 and 43
KIRAN KUMAR MATAM Chapter 21
KjetilNordin Chapter 36
Knickerless Chapter 62
Lankymart Chapter 6
LCIII Chapter 15
Leigh Riffel Chapter 41
Lexi Chapter 25
Lohitha Palagiri Chapter 11
Magisch Chapter 5
Mark Iannucci Chapters 6 and 18
Mark Perera Chapters 6 and 11
Mark Stewart Chapter 43
Matas Vaitkevicius Chapters 6, 19, 21, 13, 41 and 14
Mateusz Piotrowski Chapter 41
Matt Chapters 6, 5 and 10
Matt S Chapter 6
Mattew Whitt Chapter 6
mauris Chapter 37
Mihai Chapters 6 and 24
mithra chintha Chapters 25 and 8
MotKohn Chapter 10
Mr. Developer Chapter 11
Mureinik Chapters 18, 10 and 45
mustaccio Chapters 6 and 45
Mzzzzzz Chapter 5
Nathan Chapter 42
nazark Chapter 8
Neria Nachum Chapter 41
Nunie123 Chapter 52
Oded Chapter 6
Ojen Chapters 6 and 11
omini data Chapters 42 and 44
onedaywhen Chapter 6
Ozair Kafray Chapter 25
Parado Chapters 37 and 8
Paul Bambury Chapter 30
Paulo Freitas Chapter 37
Peter K Chapters 46 and 42
Phrancis Chapters 1, 18, 19, 8, 13, 46, 11, 29, 41, 3, 49, 52, 53, 38 and 4
Prateek Chapters 1, 6 and 21
Preuk Chapter 6
Racil Hilan Chapter 6
raholling Chapter 18
rajarshig Chapter 26
RamenChef Chapter 41
Reboot Chapter 42
Redithion Chapter 11
Ricardo Pontual Chapter 22
Robert Columbia Chapters 6 and 41

https://stackoverflow.com/users/1043674/
https://stackoverflow.com/users/1438/
https://stackoverflow.com/users/168703/
https://stackoverflow.com/users/575376/
https://stackoverflow.com/users/5194088/
https://stackoverflow.com/users/5276718/
https://stackoverflow.com/users/1940824/
https://stackoverflow.com/users/1203811/
https://stackoverflow.com/users/1271898/
https://stackoverflow.com/users/692942/
https://stackoverflow.com/users/1439748/
https://stackoverflow.com/users/27010/
https://stackoverflow.com/users/5586958/
https://stackoverflow.com/users/5011068/
https://stackoverflow.com/users/5389107/
https://stackoverflow.com/users/1944366/
https://stackoverflow.com/users/6574064/
https://stackoverflow.com/users/4178262/
https://stackoverflow.com/users/1509764/
https://stackoverflow.com/users/4694621/
https://stackoverflow.com/users/2641576/
https://stackoverflow.com/users/163024/
https://stackoverflow.com/users/3264217/
https://stackoverflow.com/users/126039/
https://stackoverflow.com/users/5192848/
https://stackoverflow.com/users/6357886/
https://stackoverflow.com/users/5976576/
https://stackoverflow.com/users/5829848/
https://stackoverflow.com/users/2422776/
https://stackoverflow.com/users/1227152/
https://stackoverflow.com/users/145988/
https://stackoverflow.com/users/2111584/
https://stackoverflow.com/users/4650537/
https://stackoverflow.com/users/5280641/
https://stackoverflow.com/users/6491757/
https://stackoverflow.com/users/1583/
https://stackoverflow.com/users/1334542/
https://stackoverflow.com/users/6203436/
https://stackoverflow.com/users/15354/
https://stackoverflow.com/users/365188/
https://stackoverflow.com/users/1579182/
https://stackoverflow.com/users/6620537/
https://stackoverflow.com/users/222758/
https://stackoverflow.com/users/4896952/
https://stackoverflow.com/users/3626537/
https://stackoverflow.com/users/500773/
https://stackoverflow.com/users/1503505/
https://stackoverflow.com/users/3215948/
https://stackoverflow.com/users/2052732/
https://stackoverflow.com/users/4203686/
https://stackoverflow.com/users/6392939/
https://stackoverflow.com/users/2680864/
https://stackoverflow.com/users/1423901/
https://stackoverflow.com/users/4730201/
https://stackoverflow.com/users/6471538/
http://goalkicker.com/

GoalKicker.com – SQL Notes for Professionals 157

Ryan Chapter 37
Ryan Rockey Chapter 60
Saroj Sasmal Chapters 6 and 4
Shiva Chapter 5
Sibeesh Venu Chapter 46
Simon Foster Chapter 25
Simone Chapter 7
Simulant Chapter 16
SommerEngineering Chapter 6
SQLFox Chapter 27
sqluser Chapter 6
Stanislovas
Kalašnikovas Chapter 10

Stefan Steiger Chapters 18, 11, 62 and 33
Steven Chapter 35
Stivan Chapter 61
Stu Chapter 31
Timothy Chapter 6
tinlyx Chapter 52
Tot Zam Chapters 18, 5, 19, 26, 13 and 42
Uberzen1 Chapter 23
Umesh Chapter 29
user1221533 Chapter 38
user1336087 Chapter 6
user2314737 Chapter 34
Vikrant Chapter 11
vmaroli Chapters 19, 11 and 41
walid Chapters 12 and 4
WesleyJohnson Chapter 5
William Ledbetter Chapter 42
wintersolider Chapter 6
Wolfgang Chapter 8
xenodevil Chapters 18 and 29
xQbert Chapter 6
Yehuda Shapira Chapter 50
yper Chapters 1 and 4
Yury Fedorov Chapter 6
Zaga Chapter 12
Zahiro Mor Chapters 6 and 7
zedfoxus Chapter 6
Zoyd Chapter 27
zplizzi Chapter 26
ɐlǝx Chapters 10 and 41
Алексей Неудачин Chapter 42
Рахул Маквана Chapter 18

https://stackoverflow.com/users/84383/
https://stackoverflow.com/users/6281947/
https://stackoverflow.com/users/5293076/
https://stackoverflow.com/users/325521/
https://stackoverflow.com/users/5550507/
https://stackoverflow.com/users/26111/
https://stackoverflow.com/users/6668376/
https://stackoverflow.com/users/1515052/
https://stackoverflow.com/users/2258393/
https://stackoverflow.com/users/1735928/
https://stackoverflow.com/users/2958272/
https://stackoverflow.com/users/4609360/
https://stackoverflow.com/users/4609360/
https://stackoverflow.com/users/155077/
https://stackoverflow.com/users/3865006/
https://stackoverflow.com/users/4651802/
https://stackoverflow.com/users/414/
https://stackoverflow.com/users/4497805/
https://stackoverflow.com/users/683218/
https://stackoverflow.com/users/4660897/
https://stackoverflow.com/users/3401520/
https://stackoverflow.com/users/3056913/
https://stackoverflow.com/users/1221533/
https://stackoverflow.com/users/1336087/
https://stackoverflow.com/users/2314737/
https://stackoverflow.com/users/3682162/
https://stackoverflow.com/users/1398786/
https://stackoverflow.com/users/1268937/
https://stackoverflow.com/users/187538/
https://stackoverflow.com/users/5322242/
https://stackoverflow.com/users/3292325/
https://stackoverflow.com/users/1979340/
https://stackoverflow.com/users/98804/
https://stackoverflow.com/users/1016435/
https://stackoverflow.com/users/954725/
https://stackoverflow.com/users/344949/
https://stackoverflow.com/users/4378400/
https://stackoverflow.com/users/6633643/
https://stackoverflow.com/users/4700149/
https://stackoverflow.com/users/2554537/
https://stackoverflow.com/users/3528562/
https://stackoverflow.com/users/2989201/
https://stackoverflow.com/users/4358339/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/3709746/
http://goalkicker.com/

You may also like

http://goalkicker.com/CSSBook
http://goalkicker.com/HTML5Book
http://goalkicker.com/JavaScriptBook
http://goalkicker.com/MicrosoftSQLServerBook
http://goalkicker.com/MongoDBBook
http://goalkicker.com/MySQLBook
http://goalkicker.com/OracleDatabaseBook
http://goalkicker.com/PostgreSQLBook
http://goalkicker.com/PHPBook

	Content list
	About
	Chapter 1: Getting started with SQL
	Section 1.1: Overview

	Chapter 2: Identiﬁer
	Section 2.1: Unquoted identiﬁers

	Chapter 3: Data Types
	Section 3.1: DECIMAL and NUMERIC
	Section 3.2: FLOAT and REAL
	Section 3.3: Integers
	Section 3.4: MONEY and SMALLMONEY
	Section 3.5: BINARY and VARBINARY
	Section 3.6: CHAR and VARCHAR
	Section 3.7: NCHAR and NVARCHAR
	Section 3.8: UNIQUEIDENTIFIER

	Chapter 4: NULL
	Section 4.1: Filtering for NULL in queries
	Section 4.2: Nullable columns in tables
	Section 4.3: Updating ﬁelds to NULL
	Section 4.4: Inserting rows with NULL ﬁelds

	Chapter 5: Example Databases and Tables
	Section 5.1: Auto Shop Database
	Section 5.2: Library Database
	Section 5.3: Countries Table

	Chapter 6: SELECT
	Section 6.1: Using the wildcard character to select all columns in a query
	Section 6.2: SELECT Using Column Aliases
	Section 6.3: Select Individual Columns
	Section 6.4: Selecting speciﬁed number of records
	Section 6.5: Selecting with Condition
	Section 6.6: Selecting with CASE
	Section 6.7: Select columns which are named after reserved keywords
	Section 6.8: Selecting with table alias
	Section 6.9: Selecting with more than 1 condition
	Section 6.10: Selecting without Locking the table
	Section 6.11: Selecting with Aggregate functions
	Section 6.12: Select with condition of multiple values from column
	Section 6.13: Get aggregated result for row groups
	Section 6.14: Selection with sorted Results
	Section 6.15: Selecting with null
	Section 6.16: Select distinct (unique values only)
	Section 6.17: Select rows from multiple tables

	Chapter 7: GROUP BY
	Section 7.1: Basic GROUP BY example
	Section 7.2: Filter GROUP BY results using a HAVING clause
	Section 7.3: USE GROUP BY to COUNT the number of rows for each unique entry in a given column
	Section 7.4: ROLAP aggregation (Data Mining)

	Chapter 8: ORDER BY
	Section 8.1: Sorting by column number (instead of name)
	Section 8.2: Use ORDER BY with TOP to return the top x rows based on a column's value
	Section 8.3: Customizeed sorting order
	Section 8.4: Order by Alias
	Section 8.5: Sorting by multiple columns

	Chapter 9: AND & OR Operators
	Section 9.1: AND OR Example

	Chapter 10: CASE
	Section 10.1: Use CASE to COUNT the number of rows in a column match a condition
	Section 10.2: Searched CASE in SELECT (Matches a boolean expression)
	Section 10.3: CASE in a clause ORDER BY
	Section 10.4: Shorthand CASE in SELECT
	Section 10.5: Using CASE in UPDATE
	Section 10.6: CASE use for NULL values ordered last
	Section 10.7: CASE in ORDER BY clause to sort records by lowest value of 2 columns

	Chapter 11: LIKE operator
	Section 11.1: Match open-ended pattern
	Section 11.2: Single character match
	Section 11.3: ESCAPE statement in the LIKE-query
	Section 11.4: Search for a range of characters
	Section 11.5: Match by range or set
	Section 11.6: Wildcard characters

	Chapter 12: IN clause
	Section 12.1: Simple IN clause
	Section 12.2: Using IN clause with a subquery

	Chapter 13: Filter results using WHERE and HAVING
	Section 13.1: Use BETWEEN to Filter Results
	Section 13.2: Use HAVING with Aggregate Functions
	Section 13.3: WHERE clause with NULL/NOT NULL values
	Section 13.4: Equality
	Section 13.5: The WHERE clause only returns rows that match its criteria
	Section 13.6: AND and OR
	Section 13.7: Use IN to return rows with a value contained in a list
	Section 13.8: Use LIKE to ﬁnd matching strings and substrings
	Section 13.9: Where EXISTS
	Section 13.10: Use HAVING to check for multiple conditions in a group

	Chapter 14: SKIP TAKE (Pagination)
	Section 14.1: Limiting amount of results
	Section 14.2: Skipping then taking some results (Pagination)
	Section 14.3: Skipping some rows from result

	Chapter 15: EXCEPT
	Section 15.1: Select dataset except where values are in this other dataset

	Chapter 16: EXPLAIN and DESCRIBE
	Section 16.1: EXPLAIN Select query
	Section 16.2: DESCRIBE tablename;

	Chapter 17: EXISTS CLAUSE
	Section 17.1: EXISTS CLAUSE

	Chapter 18: JOIN
	Section 18.1: Self Join
	Section 18.2: Dierences between inner/outer joins
	Section 18.3: JOIN Terminology: Inner, Outer, Semi, Anti..
	Section 18.4: Left Outer Join
	Section 18.5: Implicit Join
	Section 18.6: CROSS JOIN
	Section 18.7: CROSS APPLY & LATERAL JOIN
	Section 18.8: FULL JOIN
	Section 18.9: Recursive JOINs
	Section 18.10: Basic explicit inner join
	Section 18.11: Joining on a Subquery

	Chapter 19: UPDATE
	Section 19.1: UPDATE with data from another table
	Section 19.2: Modifying existing values
	Section 19.3: Updating Speciﬁed Rows
	Section 19.4: Updating All Rows
	Section 19.5: Capturing Updated records

	Chapter 20: CREATE Database
	Section 20.1: CREATE Database

	Chapter 21: CREATE TABLE
	Section 21.1: Create Table From Select
	Section 21.2: Create a New Table
	Section 21.3: CREATE TABLE With FOREIGN KEY
	Section 21.4: Duplicate a table
	Section 21.5: Create a Temporary or In-Memory Table

	Chapter 22: CREATE FUNCTION
	Section 22.1: Create a new Function

	Chapter 23: TRY/CATCH
	Section 23.1: Transaction In a TRY/CATCH

	Chapter 24: UNION / UNION ALL
	Section 24.1: Basic UNION ALL query
	Section 24.2: Simple explanation and Example

	Chapter 25: ALTER TABLE
	Section 25.1: Add Column(s)
	Section 25.2: Drop Column
	Section 25.3: Add Primary Key
	Section 25.4: Alter Column
	Section 25.5: Drop Constraint

	Chapter 26: INSERT
	Section 26.1: INSERT data from another table using SELECT
	Section 26.2: Insert New Row
	Section 26.3: Insert Only Speciﬁed Columns
	Section 26.4: Insert multiple rows at once

	Chapter 27: MERGE
	Section 27.1: MERGE to make Target match Source
	Section 27.2: MySQL: counting users by name
	Section 27.3: PostgreSQL: counting users by name

	Chapter 28: cross apply, outer apply
	Section 28.1: CROSS APPLY and OUTER APPLY basics

	Chapter 29: DELETE
	Section 29.1: DELETE all rows
	Section 29.2: DELETE certain rows with WHERE
	Section 29.3: TRUNCATE clause
	Section 29.4: DELETE certain rows based upon comparisons with other tables

	Chapter 30: TRUNCATE
	Section 30.1: Removing all rows from the Employee table

	Chapter 31: DROP Table
	Section 31.1: Check for existence before dropping
	Section 31.2: Simple drop

	Chapter 32: DROP or DELETE Database
	Section 32.1: DROP Database

	Chapter 33: Cascading Delete
	Section 33.1: ON DELETE CASCADE

	Chapter 34: GRANT and REVOKE
	Section 34.1: Grant/revoke privileges

	Chapter 35: XML
	Section 35.1: Query from XML Data Type

	Chapter 36: Primary Keys
	Section 36.1: Creating a Primary Key
	Section 36.2: Using Auto Increment

	Chapter 37: Indexes
	Section 37.1: Sorted Index
	Section 37.2: Partial or Filtered Index
	Section 37.3: Creating an Index
	Section 37.4: Dropping an Index, or Disabling and Rebuilding it
	Section 37.5: Clustered, Unique, and Sorted Indexes
	Section 37.6: Rebuild index
	Section 37.7: Inserting with a Unique Index

	Chapter 38: Row number
	Section 38.1: Delete All But Last Record (1 to Many Table)
	Section 38.2: Row numbers without partitions
	Section 38.3: Row numbers with partitions

	Chapter 39: SQL Group By vs Distinct
	Section 39.1: Dierence between GROUP BY and DISTINCT

	Chapter 40: Finding Duplicates on a Column Subset with Detail
	Section 40.1: Students with same name and date of birth

	Chapter 41: String Functions
	Section 41.1: Concatenate
	Section 41.2: Length
	Section 41.3: Trim empty spaces
	Section 41.4: Upper & lower case
	Section 41.5: Split
	Section 41.6: Replace
	Section 41.7: REGEXP
	Section 41.8: Substring
	Section 41.9: Stu
	Section 41.10: LEFT - RIGHT
	Section 41.11: REVERSE
	Section 41.12: REPLICATE
	Section 41.13: Replace function in sql Select and Update query
	Section 41.14: INSTR
	Section 41.15: PARSENAME

	Chapter 42: Functions (Aggregate)
	Section 42.1: Conditional aggregation
	Section 42.2: List Concatenation
	Section 42.3: SUM
	Section 42.4: AVG()
	Section 42.5: Count
	Section 42.6: Min
	Section 42.7: Max

	Chapter 43: Functions (Scalar/Single Row)
	Section 43.1: Date And Time
	Section 43.2: Character modiﬁcations
	Section 43.3: Conﬁguration and Conversion Function
	Section 43.4: Logical and Mathmetical Function

	Chapter 44: Functions (Analytic)
	Section 44.1: LAG and LEAD
	Section 44.2: PERCENTILE_DISC and PERCENTILE_CONT
	Section 44.3: FIRST_VALUE
	Section 44.4: LAST_VALUE
	Section 44.5: PERCENT_RANK and CUME_DIST

	Chapter 45: Window Functions
	Section 45.1: Setting up a ﬂag if other rows have a common property
	Section 45.2: Finding "out-of-sequence" records using the LAG() function
	Section 45.3: Getting a running total
	Section 45.4: Adding the total rows selected to every row
	Section 45.5: Getting the N most recent rows over multiple grouping

	Chapter 46: Common Table Expressions
	Section 46.1: generating values
	Section 46.2: recursively enumerating a subtree
	Section 46.3: Temporary query
	Section 46.4: recursively going up in a tree
	Section 46.5: Recursively generate dates, extended to include team rostering as example
	Section 46.6: Oracle CONNECT BY functionality with recursive CTEs

	Chapter 47: Views
	Section 47.1: Simple views
	Section 47.2: Complex views

	Chapter 48: Materialized Views
	Section 48.1: PostgreSQL example

	Chapter 49: Comments
	Section 49.1: Single-line comments
	Section 49.2: Multi-line comments

	Chapter 50: Foreign Keys
	Section 50.1: Foreign Keys explained
	Section 50.2: Creating a table with a foreign key

	Chapter 51: Sequence
	Section 51.1: Create Sequence
	Section 51.2: Using Sequences

	Chapter 52: Subqueries
	Section 52.1: Subquery in FROM clause
	Section 52.2: Subquery in SELECT clause
	Section 52.3: Subquery in WHERE clause
	Section 52.4: Correlated Subqueries
	Section 52.5: Filter query results using query on dierent table
	Section 52.6: Subqueries in FROM clause
	Section 52.7: Subqueries in WHERE clause

	Chapter 53: Execution blocks
	Section 53.1: Using BEGIN ... END

	Chapter 54: Stored Procedures
	Section 54.1: Create and call a stored procedure

	Chapter 55: Triggers
	Section 55.1: CREATE TRIGGER
	Section 55.2: Use Trigger to manage a "Recycle Bin" for deleted items

	Chapter 56: Transactions
	Section 56.1: Simple Transaction
	Section 56.2: Rollback Transaction

	Chapter 57: Table Design
	Section 57.1: Properties of a well designed table

	Chapter 58: Synonyms
	Section 58.1: Create Synonym

	Chapter 59: Information Schema
	Section 59.1: Basic Information Schema Search

	Chapter 60: Order of Execution
	Section 60.1: Logical Order of Query Processing in SQL

	Chapter 61: Clean Code in SQL
	Section 61.1: Formatting and Spelling of Keywords and Names
	Section 61.2: Indenting
	Section 61.3: SELECT *
	Section 61.4: Joins

	Chapter 62: SQL Injection
	Section 62.1: SQL injection sample
	Section 62.2: simple injection sample

	Credits
	You may also like

