SOL

Notes for Professionals

Chapter 42: Functions (Aggregate)

Conditional cggregation

b mes Fay mrent iye Amount

100+ pages

of professional hints and tricks

G lK' k This is an unofficial free book created for educational pur oDsigcs:lgirr\rcIieig
oa |C erocom not affiliated with official SOL or &

. roup(s) or company(s).
Free Programming Books All trademarks cmgreg ist%%c?trodemgrksgtgr%

the property of their respective owners

http://goalkicker.com
http://goalkicker.com

Contents

ADOUL ...t et et e bbb e bbb At R A A b AR as At s AR et b e et st b et b s aee 1
Chapter 1: Getting started With SQL ...ttt saes 2
SECHON 1.1 OVEINVIEW uvteeeteieeiiieeeieeeeiteeeeteesestesesseeesasteeaasesesseesssessessssasssesasssessssssssasessessesssaseessnsesesnsesesssesssssesssssessssesans 2
ChAPter 2: IAENLITIEE ... ettt bbb e s ae bbb e st nanbntns 3
Section 2.1 UNQUOTE IAENTIFIEIS tivvieiiiiieiiireriieeiiiieessiteessiteesseeessiaessseesssseessssesssssessssessssssesssesssssesssssessnssessssenssnssassnsens 3
Chapter 3: DALA TUPES ..ottt bbbt bbb bbb bbb as b b ae b s et b st sas s b s et 4
Section 3.1: DECIMAL aNd NUMERIC ...uiiiiiiiiiisieiiesseeseesitessteeseestessseesseessesssassssesssasssessnsesssassssssnsesssasssessnsesssesssessnses 4
Section 3.2 FLOAT ONA REAL ciiitieieciieeeieeeciee e et esetteeeeteeesteeesebeeaeseesessaeaessasassssesassaessesssastessssesessesssnsessnsesssnseenssesans 4
SECHON 3.3: INTEUEIS tivveeeerireisireeriiieeesiteesiiteeesiteesssessssaessssesssssesssssesssssesssssesesssssssssessssesssssesssssesssssesssssesssssassssssessssesenaess 4
Section 3.4: MONEY aNd SMALLMONEY .iiiiiiiieiieesireiriesseestestessseeseesssesssessssesssesssessssesssesssessssssssesssessnsesssasssessessses 4
Section 3.5: BINARY aNd VARBINARY ...tiiiictiiiiciieieiteescieeeeteessseeeseseesesseessssesssssesssssesssssessssesssssesssssesssssesssssesssssesssssnssnns 4
Section 3.6: CHAR AN VARCHAR ittt iiteesitessrieessieessteessstesssaessssesssssesssssasssssesssssasssseessnsasssssesssssesssssesssssassnsees 5
Section 3.7: NCHAR aNd NVARCHAR ...iiicieiitiiterieesee st ssieeseessteesseesstesssasssaesssesssesssessssasssessssesssasssesssesssasssssssesssasans 5
Section 3.8: UNIQUEIDENTIFIER ciiccutteiiiiiitetieiiiteesseiteeesssiteeessseseeessesssseessnsssasessesssssesssssssnesssssssnsessnsssesessnssssesssnssnees 5
CRAPLEE 4: INULL ...ttt st e a s e bbb e bbb s b s s bt s e bt s s bt nasas 6
Section 4.1: Filtering fOr NULL IN QUEIIES .uviiiveerrvieersreeessiseesiiseessiseesseessssesssssnsssssessssssssssssssssasssssasssssesssssassssassssssassssans 6
Section 4.2: Nullable CoOlUMNS IN TADIES ciiiiiiiiiiiiierecceesee ettt sre e e se e see s be e s e e sstessbaesaeesatesbeessnesasesssessnns 6
Section 4.3: Updating fIEIAS O NULL .uueiecveeeiiieeeiieeeiieeeieeeesieessiteeseteesssteesssesssssesssssesssssessssesssssessssesssssesssssessnssessnnees 6
Section 4.4: Inserting rows With NULL fIEIAS .uiiiiiiiiieiieiieiiieieesteeieesieesteesiessieesteesbesseesstessassssesssesssessnsesnsesssessnses 7
Chapter 5: Example Databases and TADBIES ... sene 8
Section 5.1: AUTO SNOPD DOLADGASE iiiiiiriiiiiiiiirieeieesre st eseesre st esaessbessbeessesbassseessessseesssesssesssessssessseessessssesssassnees 8
Section 5.2: LIDrAry DOTADGSE .uiiiccieeiiiieeiiieeeiieeeiteeeieeeeiteesssteesestesessesesssessessessssesssssassssssssssssssssesssssesssssesssssasssssnssnses 10
Section 5.3: COUNTIIES TADIE ..iiiiiiiiieiieeieeseecie et e stestessteeseessteesbeesreesteesbessaeesssaesseesssesssassseesntessassseesnsesssessssesnsennses 12
ChApPter 6: SELECT ...ttt s bbb as bbb bbb bbb as b b ae bbb sae b b st et n et e b e beb s et ebansntas 14
Section 6.1: Using the wildcard character to select all COlIUMNS IN O QUEINU .uuveeeeiiiveeeeiiinierecnsirereesssrereesssseneesnes 14
Section 6.2: SELECT USING COIUMN ALIGSES .uvtereireeirireeieiieeierieeesiieesseeeesssesssseesessasssssesssssesssssesssssesssssesssssessssessssssssnne 15
Section 6.3: Select INAIVIAUAT COIUMNS .uviiuiiiiiiiiriiiieeiteeseesitesieessessseesseessesssesssessssesssesssessssesssessssesssesssessssesssasseesnses 18
Section 6.4: Selecting specified NUMDEr Of FECOIAS .uiiiiiiiiiiieiecie ettt ree s sree e sre e e re e essteessteesreeesseeesnns 19
Section 6.5: Selecting With CONAITION .uiiiivieiiiieeiiieieiteesieeseseeessreessteessteesssteessseeeesseassnsesssssessssesssssesssssasssssesssenssnses 20
Section 6.6: SeleCting WIth CASE ..uiiiiiiceecieriteseesre st et e s rre s e e sreste s be e s ae s be s beesste s bassseesssessbeesseesssasssassstesssassseesnses 20
Section 6.7: Select columns which are named after reserved KEUWOIAS ...iuciviecieeecieeecieeeieeecieeeeeeescseeeeeeeenns 20
Section 6.8: Selecting With TADIE QIIAS wiiiieiiicriiiieeiiiieieieessteessreessteeestesssreessssaessssesssssessssseessssassssnssnssessseasssssessnne 21
Section 6.9: Selecting with More than T CONAITION .vvvivvrererireeeriererreeerreeeeeesireeerreeessreeersesesssasessseesssseesssssesssssesarens 22
Section 6.10: Selecting without LOCKING the TABIE ittt ectee e vee s ste e e e be e st e e s raeesanes 22
Section 6.11: Selecting with AQQregate FUNCHIONS wiiiviiiiivieiiiieesiieeeiieesreessieessreessressssseesssneesssesssssasssssessssesssanssnnns 23
Section 6.12: Select with condition of multiple values from COIUMN .ivvieverveeerieeeeeecreeesreeerreeerreeerreeereeesssaeennne 24
Section 6.13: Get aggregated result TOr FOW GrOUDS .iiicveeiceeeeiieeeiieeeeireeeieeeeieesssteeseseesssseesseseessssesesssesssssesssssessnnes 24
Section 6.14: Selection With SOrted RESUILS wiiiviiiiiiiieiiriieiiieesiieesiteesirressnieesssreessveesssaeessssessssesssssessssessssasssssassssnassnne 24
Section 6.15: SEleCHNG WD NMUIL ..iiiiiiiiiiecceeste sttt se s e s ee s te e s e e seesbe e sbeesatessbaesaeesstesssassnnesssesssassnsesnses 25
Section 6.16: Select distinct (UNIQUE VAIUES ONIU) vveeririeriiieeeiieeieiieeeeieeeeteeseseesssseesssseessssesssssessssesssssesssssnssasesssssenssn 25
Section 6.17: Select rows from MUIIPIE TADIES ..uiiiiviiiiiiiiiiieciiee sttt e e e sseeessreesssbeessssaessbaessssasssssasssseasssssessane 25
Chapter 7: GROUP BY ...ttt s bbb bbb s e bbbt bbb e bbbt es et ben st esastens 27
Section 7.1: Basic GROUP BY EXAMIPIE wiiiiirviiireireirireeseesresiteeseessessssesssssesssesssesssesssassssssssssssassssssssassssssssesssasssens 27
Section 7.2: Filter GROUP BY results using @ HAVING CIAUSE ..uiccueeeiieeeiieesiieeeeieeseinesssesseseesssssesssseessssesssssessssees 28

Section 7.3: USE GROUP BY to COUNT the number of rows for each unique entry in a given column

ChAPLer 8: ORDER BY ..ot eeee e ee e et et et e e et etse e eseate e eeasaeessaeaseteseseaseesseseaseseseasatesssenseesasssasesssessatesseesaenens 31

Section 8.1: Sorting by column number (instedd Of NAME) .iiiciiiciiiiccieeeee e e ree e sbe e e e bee e e be e e e reeaenes 31
Section 8.2: Use ORDER BY with TOP to return the top x rows based on a column’s VAIUEeeeeecveeeeeienveeeennns 31
Section 8.3: CuStOMIZEEd SOITING OFTEI wiivireierirererreeeiieeeeeeesiteeesirererresesseeessseeessseessssesssesessssssssesesssesersssssssssssssanens 32
SeCtioN 8.4: OFAEr DU AlIGS uiieieieeeiieeicieeeiteeeeieeeesteeeerteeseteeeeeeesaseeasbessessessassasssssesssstessastesessesssaseessnsesssnsessssessnsesans 32
Section 8.5: Sorting by MUIIDIE COIUMNS wiiiviiiiiiieiiieeiiieessteesineesseeesrieesssteessseessssesssssessssassssaessssasessasssssasssssnssnnne 33
Chapter 9: AND & OR OPEIALOIS ...ttt ettt st sttt st bebebebebesns 34
Section 9.1: AND OR EXOMIPIE .iiiciiivieriieeieeriterseeseessiessseessesssesssesssesssasssessssesssessssssssesssessssssssesssessssesssessssssssesssasssses 34
ChAPLEE 10: CASE ...ttt bbbttt e b bbb bbb as bbb as bbb e bbb e bbb et st s et s saen 35
Section 10.1: Use CASE to COUNT the number of rows in a column match a conditionceeeveeeeeecveeeeeeninveneenn. 35
Section 10.2: Searched CASE in SELECT (Matches a booledn eXPreSSiON) .uiivieeeieeceeseesieeeseeseesssesseesssssssesnns 36
Section 10.3: CASE in a clause ORDER BY ciiviiiiiiieieireeeiieeeiteeeeitteesctesescreeessesessseeesssasesssesessssesssssssnsesesssasessasesssasennns 36
Section 10.4: ShorthaNd CASE N SELECT uiiiiicieeieieeeeieescieeesteessteeessbeeseteesessesssstessessesssessensesssseesensesssssessssessnsensans 36
Section 10.5: USING CASE IN UPDATE tiiitieriieiiiiteinieeesieessiieessisesssseesssessssssssssesssssesssssesssssasssssssssssessssasssssasssssasssssasens 37
Section 10.6: CASE use for NULL values Ordered IASt ..uiiieiiiieeeiieeecieeeecreeeecreeesreeesreeessseessnsesessseessssesssesesssesesnns 37
Section 10.7: CASE in ORDER BY clause to sort records by lowest value of 2 COlUMNS ...cecceeercieeesireenncieeesiveennns 38
Chapter 11: LIKE OPEIALON ...ttt ssse st ssss st sssssssssssssssssssssssessessssssssssssssssssssssesssssssesssssssesaess 39
Section 11.1: Match 0pen-eNdEd DATEEIN .iiiciiiieiieeceeseesie et seestesseeseesteesbaeseesteessaesstessasssessnsessseessesssesssassrsenns 39
NYelaile]a R NN Tale|I=Nel ale o i (=Tl nato i Te a SRS 39
Section 11.3: ESCAPE statement in the LIKE-QUEIY iviiiiiieeiivieeiiieeeieeeesineesiieessieessseesssesssssesssssessssesssssnsssssesssssesssnne 40
Section 11.4: Search for d ranNge Of CRAIGCTEIS viiiiiieiieeeeieeerireeerireeerreeerireeerreeersaeeersreesssseessesesssasesssesesssesesresenns 41
NYelauile]a NI FoN o] el ol oTU I e aTeSTe) =] 41
Section 11.6: WiIlACArd CRAIGCIENS wiiiiviiiiiieiiiieesiieeesteesereesesteessteessbeessseeessssasssstasssssesssesssssasssssesssssasssseessssessnsenssnnes 41
CRAPLEE 12: IN CIAUSE ...ttt st sttt bbbttt ettt be e e s e s sess e asas s s s sas st st ses 43
Section 12.1: SIMPIE IN CIAUSE icviiiririreeieesreriieesseesiteesseesseessesssaessesssesssessssesssessssssssesssessssssssesssessssesssessssesssesssasssesses 43
Section 12.2: Using IN Clause With G SUDGUEIY .ueeieciieiiiiiieeiiieecieeeeieeesteescieeeeteeessseeeesbeeesseessnsaessnsesessssessnsasssssesnnns 43
Chapter 13: Filter results using WHERE aNd HAVING ...t sessaesesannes 44
Section 13.1: Use BETWEEN tO FIEI RESUITS tiivviiiiiiieiiiieiiieesiteecrinessieessieessteesssreessssessnssesssesssssassssesssssasssssassnnses 44
Section 13.2: Use HAVING with AQQregate FUNCHIONS ..vuiiiieeeriererireeerireeeseeessseeessreeessseeesssesesssesessesssssesessssessssesssens 45
Section 13.3: WHERE clause with NULL/NOT NULL VAIUES w.iiecieeeireeeeiieeeieeecieeesseessieessseesseseesssseessssssssssessssssssenes 45
SECHON T3.4: EQUANTY vovveririeeiiireeiiiieeesiteessieessteessaeessseesssseesssessnssasssssssssssessnsesssssssssnsesssssessssesssssasssssssnssessnsanssssesssssens 46
Section 13.5: The WHERE clause only returns rows that match itS Criteria ..uuieieeeeeeeiieeeesreeescreeerreeessreeesreeennnens 46
Section 13.6: AND OGN OR .iiiiciieeiieieiieesiteeeitee e e eeseteeseteeseateesebesesasesssnbesasssasasssasssstesasssssssstessssesssastessssesssnsesssnsesannses 46
Section 13.7: Use IN to return rows with a value contained i O lIST .iiiveveiieeenieeenieeeneeeireeenreresseeenresessveeersveesnne 47
Section 13.8: Use LIKE to find matching Strings aNd SUDSEINGS .uveeerveeeireeerieresireeerirererireeesseeesssesessesesssssesssesessseses 47
Section 13.9: WHErE EXISTS .oiiiiiiiciieeiieeeiteeeitte s eteeseteesetteesateesebeessbeesenbasaestassessassstassnsesssnsesssnsessssesssssesssstesssssnssnns 48
Section 13.10: Use HAVING to check for multiple conditions in 0 groUD ..ecceeceecieeciesieesrieesieeseeseeesseeseesssesssessnns 48
Chapter 14: SKIP TAKE (PAQINALION) ..ottt ettt esss s b st sssasbesasbesssassesassesanens 50
Section 14.1: LIMItiNg AMOUNT OF FESUITS .uviiiiiieeeieeeciee ettt sree et seree e reeesteessasee e asaesnseesssaessaeesnsssesnsasesasesanes 50
Section 14.2: Skipping then taking some results (PAQINATION) vvveveiierrieeeeiiiieeeeeniieeeesnsreereesisseereessssseseessssseseessssnes 50
Section 14.3: SKipPING SOME FOWS frOM FESUI cuiiiiieiiiiteciieeieesieesteeseestessreeseesbeesbeesse s baesseesssesssassssesnsesssessnsesnses 51
Chapter 15: EXCEPT ...ttt s sttt ss st e ss bbbt as b et b e bbb st bas et sasbebasasbesasbebesasbenassesans 52
Section 15.1: Select dataset except where values are in this other dataseticeeeceeecieecceeeccee e 52
Chapter 16: EXPLAIN dnNd DESCRIBE ...ttt st esas st esas st esas s sessssassesassessenes 53
Section 16.1: EXPLAIN SEIECT QUEIU wiiiviiiiiiiieiiiteiiieesiteeesieessiteessteesssesssssessssesssssesssssesssssesssssesssssesssssessnsesssssesssssesssnne 53
Section 16.2: DESCRIBE tODIENGMIE; wiiiiiiiiiiiiiieeiteestesiieesieeseessteesseeseessseessasssesssassssssssasssessssssssesssesssesssasssassnsesssassns 53
Chapter 17: EXISTS CLAUSE ...ttt st ss bbb as bbb as bbb sas b b ss e as et es st s as et saee 54
SY=Ter Lo a N A = N IS T O U S R SPRNE 54

CRAPLEE 18: JOUN ..ottt et e e et atee s et ateseee et et seseeataeeseseataseseseasasssensassessentasesssesaneseseasassseneaesesseneanas 55

SECHON T8.T: SEIT JOIN 1ottt ettt e et e e s e e e b b e e e e e e e eeesseesssss bbb s e eeeesaeessssssssssassessesesssssssssssssasesssasssssessssnssnes 55

Section 18.2: Differences between INNEIr/OULET JOINS .iiiiiiiiiiiienrerrerrereersereesereereereereesessessessessessessersessessersessessens 56
Section 18.3: JOIN Terminology: Inner, QUEr, SEMI, ANTi. ivivcreerireeerirererireeerireeerireeesseessseeeessesesssssesssesesssessrsesensses 59
Section 18.4: Left OULEE JOIN tiiiiiiiccieeiciieeciee ettt e e ctte e estte e s cttesetee e s baeseateesestae s staesaseaessteesbesessesssnsesasnsessssseesnnteessssaeanns 68
Section 18.5: IMPICIE JOIN iiiiivieiiiireiiiiteeiieeeiiteesreessieesssteessseessseesssssessseessssesssssesssssessssessssessssssssssssssssesssssasssssassssees 69
Section 18.6: CROSS JOIN .uiiicieiiieiireerireeseesieessteesseeseesssesssasssesssasssessssesssesssesssesssesssessssesssesssessssesssessssesssesssessssesssessses 70
Section 18.7: CROSS APPLY & LATERAL JOIN ciiiiecieecieeseeeteecteesteeeteesteesseesteessessseessesssassssssssasssessssssssesssessssesssanans 70
SeCtiON 18.8: FULL JOIN 1iiiieiiieeeeeiteeiteesteesseesseesteesseesssesssasssesssesssesssesssssssessssesssesssessssesssesssssssesssessssesssesssesssesssesnnes 72
SeCtioN 18.9: RECUISIVE JOINS ..iirecieerrreerieeesireresireesssseesssseessseesssesesssessssseessssesssssssssssassssssesssssssssesssssasssssesssssasssssssssnes 73
Section 18.10: BASIC eXPIICit INNET JOIN uriiecieeieieeiiiieeieiieeesteesieeesseesssseesssseessssessssssssssessessesssssesssssasssssesssssesssenssssesssnne 73
Section 18.11: JOINING ON O SUDGUEIY wiuiieiiiiiiiiiieiieesitesiessieestestessseessesssessaesssessasssssssesssessssssssssssessssesssasssassnsesssens 73
ChAPTEr 19: UPDATE ...ttt s et ssees e e ssst e sse s sassse e ssse s sasssss e ssss s ssssssesasssssacs 75
Section 19.1: UPDATE with datd from another tADIEuiiiiiiiiiieeecee et eeree e e e sree s be e eere e e nbeesnres 75
Section 19.2: Modifying eXIStING VAIUES cccuieiicieeiiieieiieesirtesiieessteessseeesssesssssaesssesssssasssssnssnssessnsesssnsesssssasssssassssessnns 76
Section 19.3: Updating SPECIfiIEd ROWS civiiicieiiieeiieeiieesiesiieeseestestessseeseesseessessssssssasssessnsesssesssssssesssesssessnsesssasssenns 76
Section 19.4: UpdOtiNg Al BOWS wuiiicieieieeeiiieeeiteeeeiteeesteeeeteeessseessesesasesessssssssesasssssssssessssssesssssssssesssssesesssesassesssssasan 76
Section 19.5: Capturing UpAOtEd FECOIAS .iviiiieiiiiieieieieiireesiieessteessteessresesssaesssseessssasssssesssssessnsesssssssssssasssssasssssassnns 76
Chapter 20: CREATE DALADASE ...ttt bbb bbbt bbb 77
Section 20.17: CREATE DOIODGASE ..uviiieriieiiieisieriieeneesitessteeseessessseessesssssssessssssssesssessssesssesssssssssssessssssnsesssessssesssssssesas 77
Chapter 21: CREATE TABLE ...ttt as sttt bbbt bbb bns 78
Section 21.1: Create TADIE FrOM SEIECTE iviiiiiiieecieeccie ettt eteeeste e e st e e e e s sreeesssee e s beeessee e s beeesnsesesnsaeesnsasesnseennns 78
Section 21.2: Create G NEW TADIE ittt st e s ste e sste e ssrte s ssbaessbeesssbaesssbaesastassnstasssasssnsasssssesssseesnns 78
Section 21.3: CREATE TABLE With FOREIGN KEY uiiiciiiictiiieeitesiesrieeseeseessteeseesnesssesssnessesssesssessnsesssesssessssesssessnns 78
NY<leuile]a N4 R: R DIV o[efe L t=Te Hite | 11 SRR 79
Section 21.5: Create a Temporary or IN-MemMOry TADIE ..iiivvieievieiiiieeiiieeiiieesieeesieeesseesssseesssseessssesssssesssasssssasssnne 79
Chapter 22: CREATE FUNCTION ...ttt sttt sttt ssssas s s s s sasasssssssssssns 81
Section 22.1: Create A NEW FUNCHION iviiirceiirieeririeessieessiteessseesoeeesssesessseessssesssssssssssessssssssssssssssssssssssssssssssssasssssassns 81
ChAPtEr 23: TRY/CATCH ..ottt sttt sa s bbb et sen s 82
Section 23.1: Transaction IN A TRY/CATCH uieeuiiieeriireerreereerreeteertesteesseeseessesseessesseesseessesseeseesesssessesssensesssessesssensesses 82
ChAPLEr 24: UNION / UNION ALL ..ooooooooeeeeeeseseeeeeesessseenessesssssessssesssssseessesesssssseessessesssssessesssssssenssseseen 83
Section 24.1: BASIC UNION ALL QUEIU wiiiveerrrreerireerisieeesiseessiseesssesessisesssesssssasssssasssssasssssessssssssssasssssasssssasssssasssssassssees 83
Section 24.2: Simple explandation AN EXAMPDIE .uveiiceeeiriveeiieeerieeerireeeriresesseeessseesssesesssesesssessrssesesssssssssessssssesssssesnns 84
Chapter 25: ALTER TABLE ...ttt ettt et bbbt sas s besas s sasbenann 85
Section 25.1: AQd COIUMINTS) tiereeeerieieiieeeeiieeeeteeeeteeesteeesseeseaseeasaseesasesssssesssssesssssesssssassnssesassesssasesssnsesssssesssnsesasssnssnne 85
Section 25.2: DIrOP COIUMN wiiiiiiiireeiiiieesiiieessreesiteesssessssaessssesssssesssssesssssssssssesssssesssssasssssessssasssssasssssasssssasssssasssssnssnsne 85
Section 25.3: A PrIMIOIY KEU tivviivieiieiireeisieeseesieessieesieessessesssesssesssesssssssesssasssessssasssessssesssesssassssesssassassssessasssssns 85
SeCtion 25.4: AILEE COIUMIN wiiiiieeieieeeciee sttt eecteeeeteeseteesesteesssteesabeseebesssssaesassasasssesanstassasesssnsesssnsesesnsesssssessnsesenenesnsen 85
Section 25.5: DIrop CONSIIAINT uiiiiriieerireerniieeinieessiseessiseessiseessieesssaessssesssssessssssssssesssasssssssesssasssssasssssesssssassssanssssassssn 85
CRAPLEE 26: INSERT ...ttt ettt st bbbt sttt ettt bbbt e b e s e e ssasasasasasas st asaes 86
Section 26.1: INSERT data from another table USING SELECT ...uviiiieieiieeeceeeeireeesreeesreeessreeesseeeessneessssesssesesssnssnnns 86
SeCtion 26.2: INSEIT NEW ROW. .iiiiiieiiiieeiiieeeitieesiteeesieeseiseesesteessseessssessasesssssesssssesssssesssssesssssesssssesssssesssssnssssesssenssnses 86
Section 26.3: Insert Only SPeCified COIUMNS .viiiiiiieeieeiieecieeseesteesieeseestessteeseesstesssessssesssesssassssssssesssasssesssassnsans 86
Section 26.4: Insert MUILIPIE FOWS Ot ONCE .uiiivcierieieeeiieeeceeeecteeesiteeesreeesreeestesessseeseseessssesesssesessesessesesssssssssesessseean 86
ChAPLEr 27: MERGE ...ttt bbbttt b bbb e bbb s et bt s s antenesane 87
Section 27.1: MERGE to make Target MATCh SOUICE .uiiiiiiiiiieiiiieeeiieeccite e eieessteesereessteesstesssatesssbeessnbeessnvessnnseasas 87
Section 27.2: MUSOL: COUNtING USEIS DU NAIMIE civvveierireeeriieeenieeeiseeeireresiseeersesesssesersseesssssssssssesssssssssasesssasssssesssssasens 87
Section 27.3: PostgreSQL: cOUNtING USErS DU NOME .uviiicreeecireeeeieeeiieesereeeecseeesseeessseeessasssssessssssesssssesssesesssasssssessns 87
Chapter 28: cross AppPIyY, OULEEr APPIY ...ttt esas s es st sas s b sassenens 89

Section 28.1: CROSS APPLY and OUTER APPLY DASICS ..iiveriireeiiiriieiiieeieiteienteie ettt st eae s ssae e 89

CRAPLEE 29: DELETE ...ttt e et e e et e e et ateee et ates s e et aesesaeaeeteseasataseseneasesessasaeseseeaeaeessseasaeesensanseseenen 91

Section 29.1: DELETE QIL FOWS tivviiireirrieriieineesitessieeseestessseeseesssesssesssessssesssessseesssesssessssesssesssessssesssesssessssesssesssaesssessses 91
Section 29.2: DELETE certdin rows With WHEREuiiiiiviiiiiiiiiiieesiieesreessieessreessieessseessssessssnnssnsnessssesssssasssssassnsees 91
Section 29.3: TRUNCATE ClAUSE .iceevterirreerierstesseestesseseessessessesseessesssessesseessessesssessessessessessessssssessessasssesasssessasssesses 91
Section 29.4: DELETE certain rows based upon comparisons with other tablesccceeevieecciiicceeeccieeccieeene 91
Chapter 30: TRUNGCATE ...ttt ssss sttt s sss st se st bbb ae bt s s s st st esassessssanens 93
Section 30.1: Removing all rows from the EMPIOYEE tADIE ..icviiiiieiiiciiecieccieecte et sieeste e seeesteesveeseeesseessaeens 93
Chapter 31: DROP TADIE ...ttt ssss s ssss st ssss st ssssssssssssssssssssssssssessnsssesssssnens 94
Section 31.1: Check for existence before droPPING c.eeveceerereereerenriesterteseseesesees e seessesee e seessesseessessesssesseensesses 94
SeCtion 31.2: SIMPIE AFOD cveerreervierireeneeriterseesitesrteeseesseessseesseesssesssesssessssesssessseesssesssesssessssesssessessssesssesssesssesssasssesnes 94
Chapter 32: DROP or DELETE DAtADASE ...ttt st ssssssssssssssssssssnsens 95
Section 32.1: DROP DOTGADASE .iveeeiereeriireeriireenieneesieseesiesieesseseessesiesssesasssesssessesasssesssessessasssessssssesssessessasssesssessesses 95
Chapter 33: CasSCAdING DEIELE ...ttt sssnes 96
Section 33.1: ON DELETE CASCADE .iiiccterriteriieessttesireeessreeessseesssseessssessssssesssesssssesesasesssssesssssesssssesssssssssssssssssssssasess 96
Chapter 34: GRANT ANA REVOKEnnininieninsinsssessoses 98
Section 34.1: Grant/reVOKE DIIVIIEGES .viviirereireresteresteseeesserestessteestessetessesessessssassasessesessesessessssessssessesessesessessssassssenens 98
CRAPLEE 35: XML ...ttt ettt as s sasbsen 99
Section 35.1: Query from XML DO TUDE ciiveeerreerireeessineesieeesseeessseessiseessssesssssessssssssssessssasssssasssssssssssesssssnsssssessssees 99
Chapter 36: PriMArY K@USccocevirieiiireniriinesissesesssssssessessssssssssssssssssssssssssnens 100
Section 36.1: Creating A PrIMAIY KEU .eeiceieierercresee ettt see st s see s sseesmeesressseesmeesene e smeesmeeseneesmeesmnes 100
Section 36.2: USING AULO INCIEMENT ..vivcierieeriieriieeneeriteesieestessseesseesssessseesseessessseesssesssssssaesssesssasssasssssssssssaesssesssasns 100
CRAPLEE 37: INAEXES ...ttt bbbt bbbttt bbb eee 101
SECHION 37.1: SOMEA INAEX .vevverveerrerreerrerieeserseesesseessesssessesssessesssessasssessesssessasssessasssessasssessasssessesssessasssessasssessasssesssenses 101
Section 37.2: Partial OF FILErEd INAEX iiviiicieiiieiiiieiierieeniesiiesseestessteesseessesssessseessesssasssessssesssesssesssesssassssesssesssassns 101
Section 37.3: Creating ON INAEX civcviicieereeriierireeneerieeereesitessteesseesseesssessseesssesssesssessssesssessssesssssssassssesssssssessssesssasssassns 101
Section 37.4: Dropping an Index, or Disabling and ReDbUIIAING it covevveeeieenieiieiiiesiesreeseeseessieeseesreesieessnesnneens 102
Section 37.5: Clustered, Unique, aNd SOMEd INAEXES ..iiviirvieiiiiriieriieeniesiieeseeseesssesseesssessseessesssessssssessssesssassnes 102
Section 37.6: REDUIIA INAEX .verreerrierireereerieeriieentesitessreeseesstessseeseesssesssessseesssesssessssesssesssessssesssssssaesssesssasssaesssesssessses 103
Section 37.7: Inserting With 0 UNIQUE INAEX wicvevvieereiriieeiieisiesiiesseessesssessseessesssessseesssesssessssssssssssassssssssesssasssesssees 103
Chapter 38: ROW NUMDETinsnsneensssessessessessssssssssssssssssssssssssssssssssssasssssssssssssssssssssssessessessessesens 104
Section 38.1: Delete All But Last Record (110 MaNy TaABIE) cuivvierveiniieiiieniieinieniensieeseessieesreeseessseessesssesssesssaesns 104
Section 38.2: Row numbers WithOUT DAMTITIONS ..eivcvercreereeriierireeneeritersreeseessreesreesseessseesseesssesssessseesssesssesseesssesssaesns 104
Section 38.3: Row NUMDErs With DAMITIONS wiiiiiivueicieeiiesierieeseesireeseeseesseesseeseessseesseesssessseessassssssssaesssssssasssessnnes 104
Chapter 39: SQL Group By VS DISEINCE ...ttt sss s ssssssssssssssses 105
Section 39.1: Difference between GROUP BY and DISTINCT ...uiiiviervverrrerreensuesseesseesssesseesssesssesseesssesssessseesssessses 105
Chapter 40: Finding Duplicates on a Column Subset with Detailccccoooveevieveviecereennen, 106
Section 40.1: Students with same name and date Of DIFTh oviiieeiiiiiiiieceee e s sre e saae e sans 106
Chapter 41: STriNG FUNCLIONS ...ttt ssss s ssssssssssssssssssssesssssssessssssessssens 107
Yl ei o] I N N o] aele | (=T ale | S PP 107
SECHON 41.2: LENGIN tiiiiiiiieiieiitinteriteeste e st este s e ss e e stestessbeesatesteessaesasessseesseesssesssessseesssessseessessseessaesssesssasssaesns 107
Section 41.3: TrimM E€MPIY SPACES .veerveerrreereerieeeireestessseesseessessseesseessssssseessesssssssseessssssssesseesssssssasssessssssssaessssssseessaess 108
SeCtion 41.4: UDDEL S IOWEL CASE .uvrveerrerreerrerreerrereessestessesseessesseessesseessesssessesseessesssessesssessesssessesssessesssessesssessesnsessesas 108
SECHION 41.5: SPIE tecveerrerrrerrreeriterireeseesiteeseessessseesseessessseessaessesssaessesssessssesssessseesseesssesssessssesssesssessssesssesssassssessassees 108
SECHON 41.6: REDIACE wiivirieeriireeniireenteneesieseesieseesseseesseseessessesssessesssessasssessssssessesssessesssesssessesssensesssessessasssesssensessasns 109
SECHON 41.7: REGEXP cutiruteciiseeeiestestestestestete st etesitesesseetesaeesesatessesseessesatansesseensesseensesstensesseensesseensessensesseensessennes 109
SECHION 41.8: SUDSIIING tecveerverirerireeriteriteestesiteeireessessseesseessessseesssesssesssesssesssessseesssesssaesssesssesssessssesssessseesssesssesssaesses 109
SECHION 41.9: STUTT ettt sttt s et e st e st e et e s st e st e e seesae s s s s e e seesasseastessaesaseensaesnsssnsaeseesnsesseennness 109

Y o To) a I I O I N = 4 [1 N 109

Y et To) I N R A =] N 110

SeCtiON 4112 REPLICATE oteieteeteeittestesiteesteeete s teesstesseesaesstessaassaasssesssaasseesnsasssasassesssesssessssesssassssessesssessnsesssesnses 110
Section 41.13: Replace function in sgl Select aNd UPAAIE QUEIY vvvevrererireeerreeeiieeerereesereeessreeessseeesssesesssesesssessnns 110
SECHION 4104 INSTR ciiiieitteeiiicitteseesiteeesserteeessestreesesssreeessesaraneesesstaeessssstesessssssenessssssanessessseesessnsseneessnssneessnsssanessnnns 111
Section 4115 PARSENAME ittt sttt e te s teeste e st e s teestaesae e beessaesataenbaesstesssaassaesnseensaeseesnteesaenstesseansaenn 111
Chapter 42: FUNCLIONS (AQAIrEQALE) ...ttt ettt sas bbbt saee 113
Nelaile]aR:w AR @le]ale iile]ale] e lo e H=To o L1 lo) n TSR 113
Section 42.2: List CONCATENTIION tivvuieeiiiiiiieetiiiiiteeeeiiiereesesitneesesiseeessessseeessssseeesssssssnessessssesessesssssesssssssaessssssanessenas 113
SECHON 42.3: SUM 1iiiittiiiiieeiniieeesiieessiteessiseessseesssesssssesssssssssssessssesssssassssesssssasesssesssssesssssssssssessssasssssssesssesesssasssssassnsens 114
SECHON 42.4: AVG() tirevreereererireeesireeessseeesiseesssseesssseesassesssssesssssssssesssssessssseessssessssessssssssssssesasesssssesessseessssesssssassssassne 115
SECHION 42.5: COUNT tiiiiiiiiiiiiiiiiteeeseiitteesesitee et ssrteeeessssbteessessbaaeesesstaeessastasessssssenesssnssenessessssesessessesesssssseeesssnssanessnnes 115
SECHON 42.6: MIN tetviiiieeiiiieeisiieessireessiteessseessaeesssseessseessssasessssessssessssassssssessssesssssesssssesssssesssssesssssesssssessssaesssasesssasssnne 116
SECHON 42.7: MOX tetreeeiieeeireeesiteeesireeeeiseeesseeestesessseesassessasesesssssessesesssesasssesssssssessssssssesssssesesssesessesesssesssssesessesssssessnn 116
Chapter 43: Functions (SCalar/SiNgI@ ROW)iereneesesssssssssssssessssssssssssssssssssssssssssssssssssnns 118
Section 43.1: DATE ANA TIMIE wiiiiceiiiiieeiiiireeeiteesiteeesteesireesesseesssteesssseesastesansesssseessnsesssssesssssesssssesssssesssseesessesssaseessssens 118
Section 43.2: Character MOAIfICOTIONS .iivvveiiieeirereeieeerieeerieeerireeerireeerreessseeessreeesssaeesssesesssasesssesesssssesssessssssssssseess 119
Section 43.3: Configuration and Conversion FUNCHON ..iiiiiiicieeriieeeieeeccieeeeteeeciesesseessereeessseeesseesssesssnsessssseennns 119
Section 43.4: Logical and MathmetiCal FUNCHION cicuiiiiiiiiiiieiiieeicieessieeseieessiteessveesesiaessveesesesssssessnssesssseassnsenssnne 120
Chapter 44: FUNCLIONS (ANGIYLIC)c.oooveiiceceeeeeeetee ettt bbbt b st sasane 122
SeCtion 44.1: LAG AN LEAD oiiiiicieicieecte st st e ste s e e steestesteesbaesatesstaessaesstasssassssesssasssessssesssesssessstesssesssessnsesssasssnenns 122
Section 44.2: PERCENTILE_DISC and PERCENTILE _CONT wiiiieeireeseesireeireeseeereesseesseesseesseesssessseesssessesssessssennnes 122
Section 44.3: FIRST VALUE ittt et ste e cte et e e te e te e st te st e e beessaesste e baassteansa e seeenseansaasssesnsaanseasssennsaesseesnsenn 123
SECHION 44.4: LAST VALUE cotiictecieecteeste st et estesteesteestesteasbaesatesstaessaesstesssassssssssasssassnsssssessssssssesssesssessnsesssesssees 124
Section 44.5. PERCENT_RANK aNA CUME_DIST ..iiiciieceeeieeecieeseesteecteesteesseesseesssesssesssessssssssesssassssesssassssssssesssases 124
Chapter 45: WINAOW FUNCLIONS ...ttt sttt st sssssasssssssassessssassessssassssssens 126
Section 45.1: Setting up a flag if other rows have a COMMON PrOPREITU vvveeeeerirveeeeriirereeeeireeeeesereeeessssreeeeesssees 126
Section 45.2: Finding "out-of-sequence” records using the LAG() fUNCHION wiivvieverveeerveeerireecreeeereeesreeenveeeenes 126
NYelaile]a RNl CT=utlale e Wau]aTallale T (o) (o] RS 127
Section 45.4: Adding the total rows seleCted O EVEIU FOW iiivcvieereiicireeeeeiiieeeeeerrreeeesssreeeesesssessessssesessessssssesssnns 127
Section 45.5: Getting the N most recent rows over multiple groUpINg ..ececeeecceeeeieeerireressreeerreeersseeessseeseseeessens 127
Chapter 46: COMMON TADIE EXPIrESSIONSccceeiiveiereineiereiesiese sttt s sestesssssssesss s sessssassessssssessesens 129
Section 46.1: JENEIATING VAIUES weiiicuiiieeieieeiteeeieeseieeecteeseteeeesveessbeesebeesestaesesteesastaesasesesnsessssesssnsesssnsesssssnsanssessnsens 129
Section 46.2: recursively enuUmerating O SUDIIEE ..uiiiiviiiiiiieeiiieinieeesiieessieessteessveesssnessssnesssseesssseessseessssassssnesnnne 129
SECHON 46.3: TEMPOIAIY QUETU tevveeersreersreesssseessseeessssesssesssssesesssssssssesssssesssssssssssessssssesssssssssasesssssssssasssssasssssasssssassss 130
Section 46.4: recursively JOING UD N G EFEE ciiiiiiiieeiiieeeciieeeiteessreeseteessstessssaeessbeeessbeeesbaessssesssssasssnsassssenssnseessnsens 130
Section 46.5: Recursively generate dates, extended to include team rostering as examplecccceeeceervennnen. 130
Section 46.6: Oracle CONNECT BY functionality With reCUrSive CTES .uiiivievervieeerreeeiieeerrreescreeesresessseeessesesseeens 131
CRAPLEE 47: VIBWS ...ttt bbbt as st as bt a s bbb e b ae bbb e bt se bt en bbb s e b et s s banbns 133
SECHON 47.1: SIMPIE VIEWS weiieiieieireeieieeieieesiteeestessireesesseessseessssassassesssssessssesssssessssessessesssssesssssesssssesssssessnsessssseessnne 133
SeCtioN 47.2: COMPIEX VIEWS uvtiieirireeriresireesieestessseesseessesisesssaessessssssssesssesssssssesssesssessssesssessssesssesssessssesssesssessssessses 133
Chapter 48: MAteriQliZEA VIBWS ...ttt as et b s et as b n st saes 134
Section 48.1: POStGreSOL EXAMIPIE .iiiviiiiierieiriiieitesitesieeseesiseeseessesssessseessesssessessssesssesssesssesssessssesssasssessssessassnees 134
Chapter 49: COMMENLS ...ttt bbbt ae bbb bbb e b b as bt es s bt en e st nanbens 135
Section 49.1: SINGIE-lINE COMMIENTS .uiiiiviiiiiiieeieieeecieesiteeeseeesrbeeserteessteeseateesssteessstaesnsesessesssssessssesssssessnssasssseessnnes 135
Section 49.2: MUIti-lINE COMMIENTS .iiiiiiivieiiieiiieiiieecieeseesteesteeseessteesseesreeesteessaesatesssasssassnsesssesssessnsesssessssesnsasssasssenns 135
Chapter 50: FOr@ign KEUS ...ttt st es s bbb as bbb s st s as s s bbb en st sansntas 136
Section 50.1: Foreign Keuys EXPIAINEA ...iiiiieieiceeinieeeiieeesreesetteescteeeseseeessesessesesssesesssesesssesssssesesssssssssessssesesasesssnsens 136
Section 50.2: Creating a table with 0 fOr€ign KEU .uiiicieeiciiiiiieiciecciee st sse e srte e ssee s ssvre s ssbeessbeesebeesssteesesseesans 136

CRAPLEE 51 SEQUEINCE ...t eete et e et et et e s eseatsesseseseseesestaseseseasaesseneassesseneasenssensasesenensaeseenenenens 138

SECtiON 51.1: CrEUTE SEQUENCE oiiiiiiieeeereticeeeeeeeeeeetetteeeeteeeeeeeereteeeaaarass———————————steteesteeeesesrsrrsssssssssrasssssnsssssssseeseeees 138

SeCtion 51.2: USING SEQUENCES .evuvercrrerrrrireeseessseesreessesaseesseesssssssessssesssssssassssesssssssessssssssessssessssssssesssessssssseesssesssassses 138
ChApPter 52: SUDQUETIES ...ttt ssss st sss s sssssssssssssssssssssssssessessnsassssans 139
Section 52.1: SubqQuery in FROM ClIOUSE ..uiiciiiiiinierieiseesiesieessesssessseessesssessessssesssessssesssesssessssesssesssessssesssesssesnses 139
Section 52.2: SUbQUEry in SELECT CIAUSE .iivviirieireeriieriieenitersieeseessesssesseesssessseesseesssesssesssaessesssassssesssesssassssesssassne 139
Section 52.3: Subguery in WHERE CIAUSEciicierrierrieriieeneereesreeseeseessseeseessesssessseesssesssesssessssassseesssssssssseessesses 139
Section 52.4: COrrelated SUDQUETIES iiiviiiiiirieiiiiitesiteeseeseesiseeseessessseesssesssesssessssesssesssessssesssesssssssesssessssesssessses 139
Section 52.5: Filter query results using query on different tableiicvieceeiieeciiee e 139
Section 52.6: Subqueries IN FROM CIAUSE .ivcviviirveerierreenienieeniesneesieseesieseessesssessesssessessssssessesssessssssessasssessasssessasssesses 140
Section 52.7: Subqueries iN WHERE CIAUSE ..iiiviiiciiiiiiiieirieeneesiessieeseessessseeseesssesssessessssssssesssesssesssessssesssasssassns 140
Chapter 53: EXECULION BIOCKS ...ttt s s sss s ssssss s s sasssnsans 141
Section 53.1: USING BEGIN . END ceeeiiieiteeete ettt sttt st s et e ssee s st e s s et e s e st e s saeesemeeesmeeesnesesaneeesneessnseesanne 141
Chapter 54: StOred ProCEAUIES ...ttt ssss st ssssssssssessssssssssssesssssssssssssssnes 142
Section 54.1: Create and call O StOred PrOCEAUIE .iiiiiiiiiciieiieeiiesie et e see e e e e seessteesbeesaeessteessaesntesbeessnesnsessasnses 142
ChAPLEr 55: THIQUEIS ...cooveieieeeeeieeseeireets ettt sess bbbt ss s ss b s s b s e s s s se s b st nssssnsenansnens 143
Section 55.1: CREATE TRIGGER .iiicciieeeciteesiteeiteessteesieeesssetesseessssesesssessssessssesssssessssassssssssssssssssssssasesssssesesaseessssens 143
Section 55.2: Use Trigger to manage a "Recycle Bin" for deleted itEMS .iivivievveiicieeicvieeiiiee e e scveeeevee s 143
Chapter 56: TFANSACLIONS ...ttt a bt s e bt s s e s as st snssasasseten 144
Section 56.1: SIMPIE TrANSACTION .viiieervieeieeseesiteeseestesiteeseesaessteesseessesssesssesssesssasssessssesssessssssssesssesssesssasssassssesns 144
Section 56.2: ROIDACK TrAONSACHION viiiiiivvirirerieesirerieeseesiieeseessessseeseesssessseessesssessessssesssesssessssesssesssssssesssessssessses 144
Chapter 57: TADIE DESIGNcocoeeerieieieeeieieiessse e sses 145
Section 57.1: Properties of a well deSIgNed TADIE ...cccvivveervierreiriieniierneenieerreeseestessreeseessessseeseesssessseeseessesssessses 145
Chapter 58: SUNONUMIS ...ttt sessts s ses st essea s s st s st a st s st st s s s a s sseans 146
Section 58.1: Create SUNONUM ..eivveercreereerieercreestesieeeereeseesasessseesseesasessseessesasessseessesssessessasesssessssssasessseesssesasassseesas 146
Chapter 59: INfOrmation SCREMIQ ...ttt snsesanens 147
Section 59.1: Basic Information SChEMA SEAICA ..iiviiiviiiiiiieriececsee et e e saessbe s saeesaessbaesaaesnses 147
Chapter 60: Order Of EXECULION ...ttt be bbbt e 148
Section 60.1: Logical Order of Query Processing iN SOL .ivcueeceerveerrreerreerseerireeseesssessseesseessssssseesssssssesssesssssssssessaess 148
Chapter 61: Cledn COA@ iN SQL ...ttt sss sttt ss st ssssssssssssssssssessssssssssnens 149
Section 61.1: Formatting and Spelling of Keywords and NOMESiviiiceinieriieeieeneesieeseesnessieesseessesssesssesseesnns 149
SECHION 61.2: INAENTING toveerversrerseerrterieeseesisessreessessseeseesssesssessseesssessseesssesssesssessssesssesssaesssesssessseesssesssessssessseesseessses 149
SECHION B1.3: SELECT * eetirieeeeestesiteesrtestesteesteestesseesstestesseesseesasesseesasesasessseesasesssessseessessseesseesasessseessesssesssaesnsesas 150
SECHION B1.4: JOINS weruteeereereerireeereeseesareesstesieesaseesteseesaseeseesasessseesaessasessseesasesaseesseesasessseesesssessseessesaseesseesnsesasaesneesas 151
Chapter 62: SOL INJECLIONccoririririnirininissssssessssessessssssssesssassssses 152
Section 62.1: SOL INJECLION SAMPIE tivvirvieireerirerireerteriterseestessreeseesssessseessaesssessseesssesssesssaesssesssesssaesssesssesssaesssesssaens 152
Section 62.2: SIMPIE INJECLION SAMPIE veuvvirsverereerterrirereerteereeeeessteesseeseessresseeseessseesseesssssseesseessssesseesssessssesseessnens 153
L (=Yoo OO EUR PPN 154

YOU MAUY QISO LIKE ...ttt e e et e e et e e et et et et e e eee s e e et esestes e et eseaseseseaesseaseseasessaseaseseasesesseseaseneasensesenes 158

About

Please feel free to share this PDF with anyone for free,
latest version of this book can be downloaded from:
http://GoalKicker.com/SQLBook

This SQL Notes for Professionals book is compiled from Stack Overflow
Documentation, the content is written by the beautiful people at Stack Overflow.
Text content is released under Creative Commons BY-SA, see credits at the end
of this book whom contributed to the various chapters. Images may be copyright

of their respective owners unless otherwise specified

This is an unofficial free book created for educational purposes and is not
affiliated with official SQL group(s) or company(s) nor Stack Overflow. All
trademarks and registered trademarks are the property of their respective
company owners

The information presented in this book is not guaranteed to be correct nor
accurate, use at your own risk

Please send feedback and corrections to web@petercv.com

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/SQLBook
https://archive.org/details/documentation-dump.7z
https://archive.org/details/documentation-dump.7z
mailto:web@petercv.com
http://goalkicker.com/

Chapter 1. Getting started with SQL

Version Short Name Standard Release Date
1986 SQL-86 ANSI X3.135-1986, ISO 9075:1987 1986-01-01
1989 SQL-89 ANSI X3.135-1989, ISO/IEC 9075:1989 1989-01-01

1992 SQL-92 ISO/IEC 9075:1992 1992-01-01
1999 SQL:1999 ISO/IEC 9075:1999 1999-12-16
2003 SQL:2003 ISO/IEC 9075:2003 2003-12-15
2006 SQL:2006 ISO/IEC 9075:2006 2006-06-01
2008 SQL:2008 ISO/IEC 9075:2008 2008-07-15
2011 SQL:2011 ISO/IEC 9075:2011 2011-12-15
2016 SQL:2016 ISO/IEC 9075:2016 2016-12-01

Section 1.1: Overview

Structured Query Language (SQL) is a special-purpose programming language designed for managing data held in a
Relational Database Management System (RDBMS). SQL-like languages can also be used in Relational Data Stream
Management Systems (RDSMS), or in "not-only SQL" (NoSQL) databases.

SQL comprises of 3 major sub-languages:

1. Data Definition Language (DDL): to create and modify the structure of the database;

2. Data Manipulation Language (DML): to perform Read, Insert, Update and Delete operations on the data of
the database;

3. Data Control Language (DCL): to control the access of the data stored in the database.

SQL article on Wikipedia

The core DML operations are Create, Read, Update and Delete (CRUD for short) which are performed by the
statements INSERT, SELECT, UPDATE and DELETE.

There is also a (recently added) MERGE statement which can perform all 3 write operations (INSERT, UPDATE,
DELETE).

CRUD article on Wikipedia

Many SQL databases are implemented as client/server systems; the term "SQL server" describes such a database.
At the same time, Microsoft makes a database that is named "SQL Server". While that database speaks a dialect of
SQL, information specific to that database is not on topic in this tag but belongs into the SQL Server documentation.

GoalKicker.com - SQL Notes for Professionals 2

https://en.wikipedia.org/wiki/SQL-92
https://en.wikipedia.org/wiki/SQL:1999
https://en.wikipedia.org/wiki/SQL:2003
https://en.wikipedia.org/wiki/SQL:2006
https://en.wikipedia.org/wiki/SQL:2008
https://en.wikipedia.org/wiki/SQL:2011
https://en.wikipedia.org/wiki/SQL:2016
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
http://goalkicker.com/

Chapter 2: Identifier

This topic is about identifiers, i.e. syntax rules for names of tables, columns, and other database objects.

Where appropriate, the examples should cover variations used by different SQL implementations, or identify the
SQL implementation of the example.

Section 2.1: Unquoted identifiers

Unquoted identifiers can use letters (a-z), digits (8-9), and underscore (_), and must start with a letter.

Depending on SQL implementation, and/or database settings, other characters may be allowed, some even as the
first character, e.g.

MS SQL: @, $, #, and other Unicode letters (source)

MySQL: $ (source)

Oracle: §, #, and other letters from database character set (source)
PostgreSQL: $, and other Unicode letters (source)

Unquoted identifiers are case-insensitive. How this is handled depends greatly on SQL implementation:

MS SQL: Case-preserving, sensitivity defined by database character set, so can be case-sensitive.

MySQL: Case-preserving, sensitivity depends on database setting and underlying file system.

Oracle: Converted to uppercase, then handled like quoted identifier.

PostgreSQL: Converted to lowercase, then handled like quoted identifier.

SQLite: Case-preserving; case insensitivity only for ASCII characters.

GoalKicker.com - SQL Notes for Professionals

https://docs.microsoft.com/en-us/sql/relational-databases/databases/database-identifiers
https://dev.mysql.com/doc/refman/5.7/en/identifiers.html
https://docs.oracle.com/database/121/SQLRF/sql_elements008.htm#SQLRF00223
https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html
http://goalkicker.com/

Chapter 3: Data Types
Section 3.1: DECIMAL and NUMERIC

Fixed precision and scale decimal numbers. DECIMAL and NUMERIC are functionally equivalent.

Syntax:

DECIMAL (precision [, scale])
NUMERIC (precision [, scale])
Examples:

SELECT CAST(123 AS DECIMAL(5,2)) --returns 123.00
SELECT CAST(12345.12 AS NUMERIC(18,5)) --returns 12345.12000

Section 3.2: FLOAT and REAL

Approximate-number data types for use with floating point numeric data.

SELECT CAST(PI() AS FLOAT) --returns 3.14159265358979
SELECT CAST(PI() AS REAL) --returns 3.141593

Section 3.3: Integers

Exact-number data types that use integer data.

Data type Range Storage
bigint -2/63 (-9,223,372,036,854,775,808) to 2263-1 (9,223,372,036,854,775,807) 8 Bytes
int -2A31 (-2,147,483,648) to 2/31-1 (2,147,483,647) 4 Bytes
smallint -2A15(-32,768) to 2/A15-1 (32,767) 2 Bytes
tinyint 0to 255 1 Byte

Section 3.4: MONEY and SMALLMONEY

Data types that represent monetary or currency values.

Data type Range Storage
money -922,337,203,685,477.5808 to 922,337,203,685,477.5807 8 bytes
smallmoney-214,748.3648 to 214,748.3647 4 bytes

Section 3.5: BINARY and VARBINARY

Binary data types of either fixed length or variable length.
Syntax:

BINARY [(n_bytes) |
VARBINARY [(n_bytes | max) |

n_bytes can be any number from 1 to 8000 bytes. max indicates that the maximum storage space is 2A31-1.

Examples:

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

SELECT CAST(12345 AS BINARY(10)) -- 0x00000000000000003039
SELECT CAST(12345 AS VARBINARY(10)) -- ©x00003039

Section 3.6: CHAR and VARCHAR

String data types of either fixed length or variable length.

Syntax:

CHAR [(n_chars) |
VARCHAR [(n_chars) |

Examples:

SELECT CAST('ABC' AS CHAR(18)) -- 'ABC ' (padded with spaces on the right)

SELECT CAST('ABC' AS VARCHAR(1@)) -- 'ABC' (no padding due to variable character)

SELECT CAST('ABCDEFGHIJKLMNOPQRSTUVWXYZ' AS CHAR(18)) -- 'ABCDEFGHIJ' (truncated to 10 characters)

Section 3.7: NCHAR and NVARCHAR

UNICODE string data types of either fixed length or variable length.

Syntax:

NCHAR [(n_chars) |
NVARCHAR [(n_chars | MAX) |

Use MAX for very long strings that may exceed 8000 characters.

Section 3.8: UNIQUEIDENTIFIER

A 16-byte GUID / UUID.

DECLARE @GUID UNIQUEIDENTIFIER = NEWID();
SELECT @GUID -- 'E28B3BD9-9174-41A9-8508-899A78A33540"
DECLARE @bad_GUID_string VARCHAR(100) = 'E28B3BD9-9174-41A9-8508-899A78A33540_foobarbaz'
SELECT
@bad_GUID_string, -- 'E28B3BD9-9174-41A9-8508-899A78A33540_foobarbaz'
CONVERT (UNIQUEIDENTIFIER, @bad_GUID_string) -- 'E28B3BD9-9174-41A9-8508-899A78A33540'

GoalKicker.com - SQL Notes for Professionals 5

http://goalkicker.com/

Chapter 4: NULL

NULL in SQL, as well as programming in general, means literally "nothing". In SQL, it is easier to understand as "the
absence of any value".

It is important to distinguish it from seemingly empty values, such as the empty string ' ' or the number 0, neither
of which are actually NULL.

It is also important to be careful not to enclose NULL in quotes, like 'NULL', which is allowed in columns that accept
text, but is not NULL and can cause errors and incorrect data sets.

Section 4.1: Filtering for NULL in queries

The syntax for filtering for NULL (i.e. the absence of a value) in WHERE blocks is slightly different than filtering for
specific values.

SELECT * FROM Employees WHERE ManagerId IS NULL ;
SELECT * FROM Employees WHERE ManagerId IS NOT NULL ;

Note that because NULL is not equal to anything, not even to itself, using equality operators = NULL or <> NULL (or
I'= NULL) will always yield the truth value of UNKNOWN which will be rejected by WHERE.

WHERE filters all rows that the condition is FALSE or UKNOWN and keeps only rows that the condition is TRUE.

Section 4.2: Nullable columns in tables

When creating tables it is possible to declare a column as nullable or non-nullable.

CREATE TABLE MyTable

(
MyCol1 INT NOT NULL, -- non-nullable

MyCol2 INT NULL -- nullable

By default every column (except those in primary key constraint) is nullable unless we explicitly set NOT NULL
constraint.

Attempting to assign NULL to a non-nullable column will result in an error.

INSERT INTO MyTable (MyColl, MyCol2) VALUES (1, NULL) ; -- works fine

INSERT INTO MyTable (MyCol1l, MyCol2) VALUES (NULL, 2) ;
-- cannot insert
-- the value NULL into column 'MyCol1', table 'MyTable’;
-- column does not allow nulls. INSERT fails.

Section 4.3: Updating fields to NULL

Setting a field to NULL works exactly like with any other value;

UPDATE Employees
SET ManagerId = NULL
WHERE Id = 4

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

Section 4.4: Inserting rows with NULL fields

For example inserting an employee with no phone number and no manager into the Employees example table:

INSERT INTO Employees

(Id, FName, LName, PhoneNumber, ManagerId, DepartmentId, Salary, HireDate)
VALUES

(5, 'Jane', 'Doe', NULL, NULL, 2, 800, '2016-07-22') ;

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

Chapter 5: Example Databases and Tables
Section 5.1: Auto Shop Database

In the following example - Database for an auto shop business, we have a list of departments, employees,
customers and customer cars. We are using foreign keys to create relationships between the various tables.

Live example: SQL fiddle

Relationships between tables

¢ Each Department may have 0 or more Employees
¢ Each Employee may have 0 or 1 Manager
e Each Customer may have 0 or more Cars

Departments
Id Name

1 HR

2 Sales

3 Tech

SQL statements to create the table:

CREATE TABLE Departments (
Id INT NOT NULL AUTO_INCREMENT,
Name VARCHAR(25) NOT NULL,
PRIMARY KEY(Id)

)

INSERT INTO Departments
([Id], [Name])

VALUES

(1, 'HR'),

(2, 'Sales'),

(3, 'Tech')
Employees
Id FName LName PhoneNumber Managerld Departmentlid Salary HireDate
1 James Smith 1234567890 NULL 1 1000 01-01-2002
2 John Johnson 2468101214 1 1 400 23-03-2005
3 Michael Williams 1357911131 1 2 600 12-05-2009
4 JohnathonSmith 1212121212 2 1 500 24-07-2016

SQL statements to create the table:

CREATE TABLE Employees (
Id INT NOT NULL AUTO_INCREMENT,
FName VARCHAR(35) NOT NULL,
LName VARCHAR(35) NOT NULL,
PhoneNumber VARCHAR(11),
ManagerId INT,
DepartmentId INT NOT NULL,
Salary INT NOT NULL,
HireDate DATETIME NOT NULL,
PRIMARY KEY(Id),
FOREIGN KEY (ManagerId) REFERENCES Employees(Id),
FOREIGN KEY (DepartmentId) REFERENCES Departments(Id)

GoalKicker.com - SQL Notes for Professionals

http://sqlfiddle.com/#!9/faf2f/1
http://goalkicker.com/

)

INSERT INTO Employees

([Id], [FName], [LName], [PhoneNumber], [ManagerId], [DepartmentId], [Salary],

VALUES
(1, 'James', 'Smith', 1234567890, NULL, 1, 1000, '01-01-2002'),
(2, "John', 'Johnson', 2468101214, '1', 1, 400, '23-03-2005'),
(3, 'Michael', 'Williams', 1357911131, '1', 2, 600, '12-05-2009'),
(4, 'Johnathon', 'Smith', 1212121212, '2', 1, 500, '24-07-2016")

’

Customers

Id FName LName Email PhoneNumber PreferredContact
1 William Jones william.jones@example.com 3347927472 PHONE

2 David Miller dmiller@example.net 2137921892 EMAIL

3 Richard Davis richard0123@example.com NULL EMAIL

SQL statements to create the table:

CREATE TABLE Customers (
Id INT NOT NULL AUTO_INCREMENT,
FName VARCHAR(35) NOT NULL,
LName VARCHAR(35) NOT NULL,
Email varchar(100) NOT NULL,
PhoneNumber VARCHAR(11),
PreferredContact VARCHAR(5) NOT NULL,
PRIMARY KEY(Id)

)

INSERT INTO Customers

([Id], [FName], [LName], [Email], [PhoneNumber], [PreferredContact])
VALUES
(1, 'William', 'Jones', 'william.jones@example.com', '3347927472', 'PHONE')
(2, 'David', 'Miller', 'dmiller@example.net', '2137921892', 'EMAIL'),
(3, 'Richard', 'Davis', 'richard@123@example.com', NULL, 'EMAIL")

’

Cars

Id Customerld Employeeld Model Status Total Cost
11 2 Ford F-150 READY 230

21 2 Ford F-150 READY 200

32 1 Ford Mustang WAITING 100

4 3 3 Toyota Prius WORKING 1254

SQL statements to create the table:

CREATE TABLE Cars (

Id INT NOT NULL AUTO_INCREMENT,

CustomerId INT NOT NULL,

EmployeeId INT NOT NULL,

Model varchar(50) NOT NULL,

Status varchar(25) NOT NULL,

TotalCost INT NOT NULL,

PRIMARY KEY(Id),

FOREIGN KEY (CustomerId) REFERENCES Customers(Id),

FOREIGN KEY (EmployeeId) REFERENCES Employees(Id)
)5

INSERT INTO Cars

([Id], [CustomerId], [EmployeeId]|, [Model], [Status], [TotalCost])
VALUES

[HireDate])

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

2', 'Ford F-150', 'READY', '230'),

", '2', 'Ford F-150', 'READY', '200'),
1', 'Ford Mustang', 'WAITING', '1@0'),
3', 'Toyota Prius', 'WORKING', '1254")

Section 5.2: Library Database

In this example database for a library, we have Authors, Books and BooksAuthors tables.

Live example: SQL fiddle

Authors and Books are known as base tables, since they contain column definition and data for the actual entities in
the relational model. BooksAuthors is known as the relationship table, since this table defines the relationship
between the Books and Authors table.

Relationships between tables

e Each author can have 1 or more books
e Each book can have 1 or more authors

Authors

(view table)

Id Name Country
1).D. Salinger USA

2 F.Scott. Fitzgerald USA

3 Jane Austen UK

4 Scott Hanselman USA
5 Jason N. Gaylord USA
6 Pranav Rastogi India
7 Todd Miranda USA
8 Christian Wenz USA

SQL to create the table:

CREATE TABLE Authors (
Id INT NOT NULL AUTO_INCREMENT,
Name VARCHAR(78) NOT NULL,
Country VARCHAR(108) NOT NULL,
PRIMARY KEY(Id)

DE

INSERT INTO Authors
(Name, Country)

VALUES
('J.D. Salinger', 'USA'),
('F. Scott. Fitzgerald', 'USA'),
('Jane Austen', 'UK')
('Scott Hanselman', 'USA'),
('Jason N. Gaylord', 'USA'),
('Pranav Rastogi', 'India')
('Todd Miranda', 'USA'),
('Christian Wenz', 'USA')

’

GoalKicker.com - SQL Notes for Professionals 10

http://sqlfiddle.com/#!9/7c06f/1
http://sqlfiddle.com/#!9/7c06f/2
http://goalkicker.com/

(view table)

Id Title

The Catcher in the Rye

Nine Stories

Franny and Zooey

The Great Gatsby

Tender id the Night

Pride and Prejudice

Professional ASP.NET 4.5 in C# and VB

No u b~ wnN -

SQL to create the table:

CREATE TABLE Books (
Id INT NOT NULL AUTO_INCREMENT,
Title VARCHAR(5@) NOT NULL,
PRIMARY KEY(Id)

)

INSERT INTO Books
(Id, Title)
VALUES
(1, 'The Catcher in the Rye'),
2, 'Nine Stories'),
3, 'Franny and Zooey'),
4, 'The Great Gatsby'),
5, 'Tender id the Night'),
6, 'Pride and Prejudice'),
7, 'Professional ASP.NET 4.5 in C# and VB')

’

BooksAuthors
(view table)

Bookld Authorld
1

N NNNNOOUh WN -
O NOoOYUT A, WNN = =

SQL to create the table:

CREATE TABLE BooksAuthors (
AuthorId INT NOT NULL,
BookId INT NOT NULL,
FOREIGN KEY (AuthorId) REFERENCES Authors(Id),
FOREIGN KEY (BookId) REFERENCES Books(Id)
Ji:

INSERT INTO BooksAuthors
(BookId, AuthorId)

GoalKicker.com - SQL Notes for Professionals

1

http://sqlfiddle.com/#!9/7c06f/3
http://sqlfiddle.com/#!9/7c06f/4
http://goalkicker.com/

VALUES

o =

~— O O N N

N NNNNOoo kW
O NO U WNNA QA

’

Examples

View all authors (view live example):

SELECT * FROM Authors;

View all book titles (view live example):

SELECT * FROM Books;

View all books and their authors (view live example):

SELECT
ba.AuthorId,
a.Name AuthorName,
ba.BookId,
b.Title BookTitle
FROM BooksAuthors ba
INNER JOIN Authors a ON a.id = ba.authorid
INNER JOIN Books b ON b.id = ba.bookid

Section 5.3: Countries Table

In this example, we have a Countries table. A table for countries has many uses, especially in Financial applications
involving currencies and exchange rates.

Live example: SQL fiddle

Some Market data software applications like Bloomberg and Reuters require you to give their APl either a 2 or 3
character country code along with the currency code. Hence this example table has both the 2-character IS0 code
column and the 3 character IS03 code columns.

Countries
(view table)

Id ISO ISO3 ISONumeric CountryName Capital ContinentCode CurrencyCode

1 AU AUS 36 Australia Canberra 0OC AUD
2 DE DEU 276 Germany Berlin EU EUR
2 IN IND 356 India New Delhi AS INR
3 LA LAO 418 Laos Vientiane AS LAK
4 US USA 840 United States Washington NA usD
5 ZW ZWE 716 Zimbabwe Harare AF ZWL

GoalKicker.com - SQL Notes for Professionals 12

http://sqlfiddle.com/#!9/7c06f/2
http://sqlfiddle.com/#!9/7c06f/3
http://sqlfiddle.com/#!9/7c06f/5
http://sqlfiddle.com/#!9/14cfc6
http://sqlfiddle.com/#!9/14cfc6/1
http://goalkicker.com/

SQL to create the table:

CREATE TABLE Countries (
Id INT NOT NULL AUTO_INCREMENT,
ISO VARCHAR(2) NOT NULL,
IS03 VARCHAR(3) NOT NULL,
ISONumeric INT NOT NULL,
CountryName VARCHAR(64) NOT NULL,
Capital VARCHAR(64) NOT NULL,
ContinentCode VARCHAR(2) NOT NULL,
CurrencyCode VARCHAR(3) NOT NULL,
PRIMARY KEY(Id)

INSERT INTO Countries

(IS0, IS03, ISONumeric, CountryName, Capital, ContinentCode, CurrencyCode)

VALUES
("AU", 'AUS', 36, 'Australia', 'Canberra’', 'OC',

"AUD"),

'DE', 'DEU', 276, 'Germany', 'Berlin', 'EU', "EUR'"),
"IN', "IND', 356, 'India', 'New Delhi', 'AS', 'INR')

'US', 'USA', 840, 'United States', 'Washington',

(
(
("LA'", 'LAO', 418, 'Laos', 'Vientiane', 'AS', 'LAK'),
(
(

'NA', 'USD'),

"ZW', "ZWE', 716, 'Zimbabwe', 'Harare', 'AF', 'ZWL')

GoalKicker.com - SQL Notes for Professionals

13

http://goalkicker.com/

Chapter 6: SELECT

The SELECT statement is at the heart of most SQL queries. It defines what result set should be returned by the
query, and is almost always used in conjunction with the FROM clause, which defines what part(s) of the database
should be queried.

Section 6.1: Using the wildcard character to select all columns

in a query
Consider a database with the following two tables.
Employees table:

Id FName LName Deptid
1 James Smith 3
2 John Johnson4

Departments table:

Id Name

1 Sales

2 Marketing

3 Finance

4 1T

Simple select statement

* is the wildcard character used to select all available columns in a table.

When used as a substitute for explicit column names, it returns all columns in all tables that a query is selecting
FROM. This effect applies to all tables the query accesses through its JOIN clauses.

Consider the following query:

SELECT * FROM Employees

It will return all fields of all rows of the Employees table:

Id FName LName Deptid
1 James Smith 3

2 John Johnson4

Dot notation

To select all values from a specific table, the wildcard character can be applied to the table with dot notation.
Consider the following query:

SELECT
Employees. *,
Departments.Name
FROM
Employees
JOIN
Departments
ON Departments.Id = Employees.DeptId

GoalKicker.com - SQL Notes for Professionals

14

http://goalkicker.com/

This will return a data set with all fields on the Employee table, followed by just the Name field in the Departments
table:

Id FName LName Deptld Name
1 James Smith 3 Finance
2 John Johnson4 IT

Warnings Against Use

It is generally advised that using * is avoided in production code where possible, as it can cause a number of
potential problems including;:

1. Excess 10, network load, memory use, and so on, due to the database engine reading data that is not needed
and transmitting it to the front-end code. This is particularly a concern where there might be large fields such
as those used to store long notes or attached files.

2. Further excess 10 load if the database needs to spool internal results to disk as part of the processing for a
query more complex than SELECT <columns> FROM <table>.

3. Extra processing (and/or even more |0) if some of the unneeded columns are:

o computed columns in databases that support them
o in the case of selecting from a view, columns from a table/view that the query optimiser could
otherwise optimise out

4. The potential for unexpected errors if columns are added to tables and views later that results ambiguous
column names. For example SELECT * FROM orders JOIN people ON people.id = orders.personid ORDER
BY displayname - if a column column called displayname is added to the orders table to allow users to give
their orders meaningful names for future reference then the column name will appear twice in the output so
the ORDER BY clause will be ambiguous which may cause errors ("ambiguous column name" in recent MS SQL
Server versions), and if not in this example your application code might start displaying the order name
where the person name is intended because the new column is the first of that name returned, and so on.

When Can You Use %, Bearing The Above Warning In Mind?

While best avoided in production code, using * is fine as a shorthand when performing manual queries against the
database for investigation or prototype work.

Sometimes design decisions in your application make it unavoidable (in such circumstances, prefer tablealias. *
over just * where possible).

When using EXISTS, such as SELECT A.coll, A.Col2 FROM A WHERE EXISTS (SELECT * FROM B where A.ID =
B.A_ID), we are not returning any data from B. Thus a join is unnecessary, and the engine knows no values from B
are to be returned, thus no performance hit for using *. Similarly COUNT () is fine as it also doesn't actually return
any of the columns, so only needs to read and process those that are used for filtering purposes.

Section 6.2: SELECT Using Column Aliases

Column aliases are used mainly to shorten code and make column names more readable.

Code becomes shorter as long table names and unnecessary identification of columns (e.g., there may be 2 IDs in the
table, but only one is used in the statement) can be avoided. Along with table aliases this allows you to use longer
descriptive names in your database structure while keeping queries upon that structure concise.

Furthermore they are sometimes required, for instance in views, in order to name computed outputs.

All versions of SQL

GoalKicker.com - SQL Notes for Professionals 15

http://goalkicker.com/

Aliases can be created in all versions of SQL using double quotes (").

SELECT
FName AS "First Name",
MName AS "Middle Name",
LName AS "Last Name"
FROM Employees

Different Versions of SQL
You can use single quotes ('), double quotes (") and square brackets ([]) to create an alias in Microsoft SQL Server.

SELECT
FName AS "First Name",
MName AS 'Middle Name',
LName AS [Last Name]
FROM Employees

Both will result in:

First Name Middle Name Last Name

James John Smith
John James Johnson
Michael Marcus Williams

This statement will return FName and LName columns with a given name (an alias). This is achieved using the AS
operator followed by the alias, or simply writing alias directly after the column name. This means that the following
query has the same outcome as the above.

SELECT
FName "First Name",
MName "Middle Name",
LName "Last Name"
FROM Employees

First Name Middle Name Last Name

James John Smith
John James Johnson
Michael Marcus Williams

However, the explicit version (i.e., using the AS operator) is more readable.

If the alias has a single word that is not a reserved word, we can write it without single quotes, double quotes or
brackets:

SELECT
FName AS FirstName,
LName AS LastName
FROM Employees
FirstName LastName
James Smith
John Johnson
Michael Williams

A further variation available in MS SQL Server amongst others is <alias> = <column-or-calculation>, for
instance:

SELECT FullName = FirstName + ' ' + LastName,

GoalKicker.com - SQL Notes for Professionals 16

http://goalkicker.com/

Addr1 = FullStreetAddress,
Addr2 = TownName
FROM CustomerDetails

which is equivalent to:

SELECT FirstName + ' ' + LastName As FullName
FullStreetAddress As Addr1,
TownName As Addr2

FROM CustomerDetails

Both will result in:

FullName Addr1 Addr2
James Smith 123 AnyStreet TownVille
John Johnson 668 MyRoad Anytown
Michael Williams 999 High End Dr Williamsburgh

Some find using = instead of As easier to read, though many recommend against this format, mainly because it is

not standard so not widely supported by all databases. It may cause confusion with other uses of the = character.

All Versions of SQL

Also, if you need to use reserved words, you can use brackets or quotes to escape:

SELECT
FName as "SELECT",
MName as "FROM",
LName as "WHERE"
FROM Employees

Different Versions of SQL

Likewise, you can escape keywords in MSSQL with all different approaches:

SELECT
FName AS "SELECT",
MName AS 'FROM',
LName AS [WHERE]
FROM Employees

SELECT FROM WHERE
James John Smith

John James Johnson
Michael Marcus Williams

Also, a column alias may be used any of the final clauses of the same query, such as an ORDER BY:

SELECT
FName AS FirstName,
LName AS LastName
FROM
Employees
ORDER BY
LastName DESC

However, you may not use

SELECT

GoalKicker.com - SQL Notes for Professionals

17

http://goalkicker.com/

FName AS SELECT,
LName AS FROM
FROM
Employees
ORDER BY
LastName DESC

To create an alias from these reserved words (SELECT and FROM).

This will cause numerous errors on execution.

Section 6.3: Select Individual Columns

SELECT
PhoneNumber,
Email,
PreferredContact
FROM Customers

This statement will return the columns PhoneNumber, Email, and PreferredContact from all rows of the Customers
table. Also the columns will be returned in the sequence in which they appear in the SELECT clause.

The result will be:

PhoneNumber Email PreferredContact
3347927472 william.jones@example.com PHONE
2137921892 dmiller@example.net EMAIL

NULL richard0123@example.com EMAIL

If multiple tables are joined together, you can select columns from specific tables by specifying the table name
before the column name: [table_name] .[column_name]

SELECT
Customers.PhoneNumber,
Customers.Email,
Customers.PreferredContact,
Orders.Id AS OrderId
FROM
Customers
LEFT JOIN
Orders ON Orders.CustomerId = Customers.Id

*AS OrderId means that the Id field of Orders table will be returned as a column named OrderId. See selecting
with column alias for further information.

To avoid using long table names, you can use table aliases. This mitigates the pain of writing long table names for
each field that you select in the joins. If you are performing a self join (a join between two instances of the same
table), then you must use table aliases to distinguish your tables. We can write a table alias like Customers c or
Customers AS c. Here c works as an alias for Customers and we can select let's say Email like this: c.Email.

SELECT
c.PhoneNumber,
c.Email,
c.PreferredContact,
0.Id AS OrderlId
FROM
Customers ¢

GoalKicker.com - SQL Notes for Professionals 18

http://goalkicker.com/

LEFT JOIN
Orders o ON o.CustomerId = c.Id

Section 6.4: Selecting specified number of records

The SQL 2008 standard defines the FETCH FIRST clause to limit the number of records returned.

SELECT Id, ProductName, UnitPrice, Package
FROM Product

ORDER BY UnitPrice DESC

FETCH FIRST 10 ROWS ONLY

This standard is only supported in recent versions of some RDMSs. Vendor-specific non-standard syntax is provided
in other systems. Progress OpenEdge 11.x also supports the FETCH FIRST <n> ROWS ONLY syntax.

Additionally, OFFSET <m> ROWS before FETCH FIRST <n> ROWS ONLY allows skipping rows before fetching rows.

SELECT Id, ProductName, UnitPrice, Package
FROM Product

ORDER BY UnitPrice DESC

OFFSET 5 ROWS

FETCH FIRST 10 ROWS ONLY

The following query is supported in SQL Server and MS Access:

SELECT TOP 10 Id, ProductName, UnitPrice, Package
FROM Product
ORDER BY UnitPrice DESC

To do the same in MySQL or PostgreSQL the LIMIT keyword must be used:

SELECT Id, ProductName, UnitPrice, Package
FROM Product

ORDER BY UnitPrice DESC

LIMIT 10

In Oracle the same can be done with ROWNUM:

SELECT Id, ProductName, UnitPrice, Package
FROM Product

WHERE ROWNUM <= 10

ORDER BY UnitPrice DESC

Results: 10 records.

Id ProductName UnitPrice Package

38 Cote de Blaye 263.50 12 - 75 cl bottles
29 Thiringer Rostbratwurst 123.79 50 bags x 30 sausgs.
9 Mishi Kobe Niku 97.00 18 - 500 g pkgs.
20 Sir Rodney's Marmalade 81.00 30 gift boxes

18 Carnarvon Tigers 62.50 16 kg pkg.

59 Raclette Courdavault 55.00 5 kg pkg.

51 Manjimup Dried Apples 53.00 50 - 300 g pkgs.
62 Tarte au sucre 49.30 48 pies

43 Ipoh Coffee 46.00 16 - 500 g tins

28 Rossle Sauerkraut 45.60 25 - 825 g cans

GoalKicker.com - SQL Notes for Professionals 19

https://en.wikipedia.org/wiki/SQL:2008
http://goalkicker.com/

Vendor Nuances:

It is important to note that the TOP in Microsoft SQL operates after the WHERE clause and will return the specified
number of results if they exist anywhere in the table, while ROWNUM works as part of the WHERE clause so if other
conditions do not exist in the specified number of rows at the beginning of the table, you will get zero results when
there could be others to be found.

Section 6.5: Selecting with Condition

The basic syntax of SELECT with WHERE clause is:

SELECT columni1, column2, columnN
FROM table_name
WHERE [condition]

The [condition] can be any SQL expression, specified using comparison or logical operators like >, <, =, <>, >=, <=,
LIKE, NOT, IN, BETWEEN etc.

The following statement returns all columns from the table 'Cars' where the status column is 'READY":

SELECT * FROM Cars WHERE status = 'READY'

See WHERE and HAVING for more examples.

Section 6.6: Selecting with CASE

When results need to have some logic applied 'on the fly' one can use CASE statement to implement it.

SELECT CASE WHEN Col1 < 50 THEN 'under' ELSE 'over' END threshold
FROM TableName

also can be chained

SELECT
CASE WHEN Col1 < 56 THEN 'under'
WHEN Col1l > 50 AND Col1l <100 THEN 'between’
ELSE 'over'
END threshold
FROM TableName

one also can have CASE inside another CASE statement

SELECT
CASE WHEN Col1 < 56 THEN 'under'
ELSE
CASE WHEN Col1 > 50 AND Col1 <100 THEN Col1
ELSE 'over' END
END threshold
FROM TableName

Section 6.7: Select columns which are named after reserved
keywords

When a column name matches a reserved keyword, standard SQL requires that you enclose it in double quotation
marks:

GoalKicker.com - SQL Notes for Professionals 20

http://goalkicker.com/

SELECT
"ORDER",
ID

FROM ORDERS

Note that it makes the column name case-sensitive.

Some DBMSes have proprietary ways of quoting names. For example, SQL Server uses square brackets for this
purpose:

SELECT
[Order],
ID

FROM ORDERS

while MySQL (and MariaDB) by default use backticks:

SELECT
‘Order ",
id

FROM orders

Section 6.8: Selecting with table alias

SELECT e.Fname, e.LName
FROM Employees e

The Employees table is given the alias 'e' directly after the table name. This helps remove ambiguity in scenarios
where multiple tables have the same field name and you need to be specific as to which table you want to return
data from.

SELECT e.Fname, e.LName, m.Fname AS ManagerFirstName
FROM Employees e
JOIN Managers m ON e.ManagerId = m.Id

Note that once you define an alias, you can't use the canonical table name anymore. i.e.,

SELECT e.Fname, Employees.LName, m.Fname AS ManagerFirstName
FROM Employees e
JOIN Managers m ON e.ManagerId = m.Id

would throw an error.

It is worth noting table aliases -- more formally 'range variables' -- were introduced into the SQL language to solve
the problem of duplicate columns caused by INNER JOIN. The 1992 SQL standard corrected this earlier design flaw
by introducing NATURAL JOIN (implemented in mySQL, PostgreSQL and Oracle but not yet in SQL Server), the result
of which never has duplicate column names. The above example is interesting in that the tables are joined on
columns with different names (Id and ManagerId) but are not supposed to be joined on the columns with the same
name (LName, FName), requiring the renaming of the columns to be performed before the join:

SELECT Fname, LName, ManagerFirstName
FROM Employees
NATURAL JOIN
(SELECT Id AS ManagerId, Fname AS ManagerFirstName
FROM Managers) m;

GoalKicker.com - SQL Notes for Professionals 21

http://goalkicker.com/

Note that although an alias/range variable must be declared for the dervied table (otherwise SQL will throw an
error), it never makes sense to actually use it in the query.

Section 6.9: Selecting with more than 1 condition

The AND keyword is used to add more conditions to the query.

Name Age Gender

Sam 18 M
John 21 M
Bob 22 M
Mary 23 F

SELECT name FROM persons WHERE gender = 'M' AND age > 20;

This will return:

Name
John
Bob

using OR keyword
SELECT name FROM persons WHERE gender = 'M' OR age < 20;

This will return:

name
Sam
John
Bob

These keywords can be combined to allow for more complex criteria combinations:

SELECT name

FROM persons

WHERE (gender
OR (gender

‘M' AND age < 20)
"F' AND age > 20);

This will return:

name
Sam
Mary

Section 6.10: Selecting without Locking the table

Sometimes when tables are used mostly (or only) for reads, indexing does not help anymore and every little bit
counts, one might use selects without LOCK to improve performance.

SQL Server

SELECT * FROM TableName WITH (nolock)

MySQL

GoalKicker.com - SQL Notes for Professionals 22

http://goalkicker.com/

SET SESSION TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM TableName;
SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ;

Oracle

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED;
SELECT * FROM TableName;

DB2
SELECT * FROM TableName WITH UR;

where UR stands for "uncommitted read".

If used on table that has record modifications going on might have unpredictable results.

Section 6.11: Selecting with Aggregate functions

Average
The AVG() aggregate function will return the average of values selected.

SELECT AVG(Salary) FROM Employees
Aggregate functions can also be combined with the where clause.
SELECT AVG(Salary) FROM Employees where DepartmentId = 1

Aggregate functions can also be combined with group by clause.

If employee is categorized with multiple department and we want to find avg salary for every department then we
can use following query.

SELECT AVG(Salary) FROM Employees GROUP BY DepartmentId

Minimum

The MIN() aggregate function will return the minimum of values selected.

SELECT MIN(Salary) FROM Employees

Maximum

The MAX () aggregate function will return the maximum of values selected.

SELECT MAX(Salary) FROM Employees

Count

The COUNT () aggregate function will return the count of values selected.

SELECT Count(*) FROM Employees

It can also be combined with where conditions to get the count of rows that satisfy specific conditions.
SELECT Count(#*) FROM Employees where ManagerId IS NOT NULL

Specific columns can also be specified to get the number of values in the column. Note that NULL values are not
counted.

Select Count(ManagerId) from Employees

Count can also be combined with the distinct keyword for a distinct count.

Select Count(DISTINCT DepartmentId) from Employees

Sum

The SuUM() aggregate function returns the sum of the values selected for all rows.

SELECT SUM(Salary) FROM Employees

GoalKicker.com - SQL Notes for Professionals 23

http://goalkicker.com/

Section 6.12: Select with condition of multiple values from
column

SELECT * FROM Cars WHERE status IN ('Waiting', 'Working')

This is semantically equivalent to

SELECT * FROM Cars WHERE (status = 'Waiting' OR status = 'Working')

i.e. value IN (<value list>) is a shorthand for disjunction (logical OR).

Section 6.13: Get aggregated result for row groups

Counting rows based on a specific column value:

SELECT category, COUNT(#*) AS item_count
FROM item
GROUP BY category;

Getting average income by department:

SELECT department, AVG(income)
FROM employees
GROUP BY department;

The important thing is to select only columns specified in the GROUP BY clause or used with aggregate functions.

There WHERE clause can also be used with GROUP BY, but WHERE filters out records before any grouping is done:

SELECT department, AVG(income)
FROM employees

WHERE department <> 'ACCOUNTING'
GROUP BY department;

If you need to filter the results after the grouping has been done, e.g, to see only departments whose average
income is larger than 1000, you need to use the HAVING clause:

SELECT department, AVG(income)
FROM employees

WHERE department <> 'ACCOUNTING'
GROUP BY department

HAVING avg(income) > 1000;

Section 6.14: Selection with sorted Results

SELECT * FROM Employees ORDER BY LName

This statement will return all the columns from the table Employees.

Id FName LName PhoneNumber
2 John Johnson 2468101214
1 James Smith 1234567890
3 Michael Williams 1357911131

SELECT * FROM Employees ORDER BY LName DESC

GoalKicker.com - SQL Notes for Professionals 24

http://goalkicker.com/

Or
SELECT * FROM Employees ORDER BY LName ASC
This statement changes the sorting direction.
One may also specify multiple sorting columns. For example:
SELECT * FROM Employees ORDER BY LName ASC, FName ASC

This example will sort the results first by LName and then, for records that have the same LName, sort by FName. This
will give you a result similar to what you would find in a telephone book.

In order to save retyping the column name in the ORDER BY clause, it is possible to use instead the column's
number. Note that column numbers start from 1.

SELECT Id, FName, LName, PhoneNumber FROM Employees ORDER BY 3

You may also embed a CASE statement in the ORDER BY clause.

SELECT Id, FName, LName, PhoneNumber FROM Employees ORDER BY CASE WHEN LName='Jones' THEN @ ELSE 1
END ASC

This will sort your results to have all records with the LName of "Jones" at the top.

Section 6.15: Selecting with null
SELECT Name FROM Customers WHERE PhoneNumber IS NULL

Selection with nulls take a different syntax. Don't use =, use IS NULL or IS NOT NULL instead.

Section 6.16: Select distinct (unique values only)

SELECT DISTINCT ContinentCode
FROM Countries;

This query will return all DISTINCT (unique, different) values from ContinentCode column from Countries table

ContinentCode
0oC

EU

AS

NA

AF

SQLFiddle Demo

Section 6.17: Select rows from multiple tables

SELECT =

FROM
table1,
table2

SELECT

GoalKicker.com - SQL Notes for Professionals 25

http://sqlfiddle.com/#!9/14cfc6/2/0
http://goalkicker.com/

tablel.columni,

tablel.column2,

table2.columni
FROM

tablel,
table2

This is called cross product in SQL it is same as cross product in sets
These statements return the selected columns from multiple tables in one query.

There is no specific relationship between the columns returned from each table.

GoalKicker.com - SQL Notes for Professionals

26

http://goalkicker.com/

Chapter 7. GROUP BY

Results of a SELECT query can be grouped by one or more columns using the GROUP BY statement: all results with
the same value in the grouped columns are aggregated together. This generates a table of partial results, instead of
one result. GROUP BY can be used in conjunction with aggregation functions using the HAVING statement to define
how non-grouped columns are aggregated.

Section 7.1: Basic GROUP BY example

It might be easier if you think of GROUP BY as "for each" for the sake of explanation. The query below:

SELECT EmpID, SUM (MonthlySalary)
FROM Employee
GROUP BY EmpID

is saying:
"Give me the sum of MonthlySalary's for each EmpID"

So if your table looked like this:

o R R +
| EmpID|MonthlySalary |
+----- Fom o +
|1 [200 |
o L +
|2 300 |
R Fom e +
Result:

+-+---+

|1]200|

+ot---t

[2]300]

+-t+-- -+

Sum wouldn't appear to do anything because the sum of one number is that number. On the other hand if it looked
like this:

+----- Fommm e +
| EmpID|MonthlySalary|
+----- R +
|1 | 200 |
+--m-- Fomem e +
|1 | 300 |
+----- R +
|2 |300 |
F----- Fomem e +
Result:

GoalKicker.com - SQL Notes for Professionals 27

http://goalkicker.com/

+od-- -+
|1]500]
+ot-- -+
[2]300]
ot -t

Then it would because there are two EmplID 1's to sum together.

Section 7.2: Filter GROUP BY results using a HAVING clause

A HAVING clause filters the results of a GROUP BY expression. Note: The following examples are using the Library

example database.

Examples:

Return all authors that wrote more than one book (live example).

SELECT

a.Id,

a.Name,

COUNT(*) BooksWritten
FROM BooksAuthors ba

INNER JOIN Authors a ON a.id = ba.authorid

GROUP BY
a.Id,
a.Name

HAVING COUNT(*) > 1 -- equals to HAVING BooksWritten > 1

’

Return all books that have more than three authors (live example).

SELECT

b.Id,

b.Title,

COUNT(*) NumberOfAuthors
FROM BooksAuthors ba

INNER JOIN Books b ON b.id = ba.bookid

GROUP BY
b.Id,
b.Title

HAVING COUNT(*) > 3 -- equals to HAVING NumberOfAuthors > 3

’

Section 7.3: USE GROUP BY to COUNT the number of rows for

each unique entry in a given column

Let's say you want to generate counts or subtotals for a given value in a column.

Given this table, "Westerosians":

Name GreatHouseAllegience
Arya Stark

Cercei Lannister

Myrcella Lannister

Yara Greyjoy

Catelyn Stark

Sansa Stark

GoalKicker.com - SQL Notes for Professionals

28

http://sqlfiddle.com/#!9/7c06f/7
http://sqlfiddle.com/#!9/7c06f/9
http://goalkicker.com/

Without GROUP BY, COUNT will simply return a total number of rows:

SELECT Count(*) Number_of_Westerosians
FROM Westerosians

returns...

Number_of Westerosians
6

But by adding GROUP BY, we can COUNT the users for each value in a given column, to return the number of
people in a given Great House, say:

SELECT GreatHouseAllegience House, Count(#*) Number_of_Westerosians
FROM Westerosians
GROUP BY GreatHouseAllegience

returns...

House Number_of Westerosians
Stark 3
Greyjoy 1
Lannister 2

It's common to combine GROUP BY with ORDER BY to sort results by largest or smallest category:

SELECT GreatHouseAllegience House, Count(#*) Number_of_Westerosians
FROM Westerosians

GROUP BY GreatHouseAllegience

ORDER BY Number_of_Westerosians Desc

returns...

House Number_of Westerosians
Stark 3
Lannister 2
Greyjoy 1

Section 7.4: ROLAP aggregation (Data Mining)
Description

The SQL standard provides two additional aggregate operators. These use the polymorphic value "ALL" to denote
the set of all values that an attribute can take. The two operators are;:

e with data cube that it provides all possible combinations than the argument attributes of the clause.
e with roll up that it provides the aggregates obtained by considering the attributes in order from left to
right compared how they are listed in the argument of the clause.

SQL standard versions that support these features: 1999,2003,2006,2008,2011.
Examples
Consider this table:

Food Brand Total amount

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

Pasta Brand1 100
Pasta Brand2 250
Pizza Brand2 300
With cube
select Food,Brand, Total_amount
from Table
group by Food,Brand, Total_amount with cube
Food Brand Total_amount
Pasta Brand1 100
Pasta Brand2 250
PastaALL 350
Pizza Brand2 300
Pizza ALL 300
ALL Brand1100
ALL Brand2550
ALL ALL 650
With roll up
select Food,Brand, Total_amount
from Table
group by Food,Brand, Total_amount with roll up
Food Brand Total_amount
Pasta Brand1 100
Pasta Brand2 250
Pizza Brand2 300
PastaALL 350
Pizza ALL 300
ALL ALL 650

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

Chapter 8: ORDER BY

Section 8.1: Sorting by column number (instead of name)

You can use a column's number (where the leftmost column is '1') to indicate which column to base the sort on,
instead of describing the column by its name.

Pro: If you think it's likely you might change column names later, doing so won't break this code.

Con: This will generally reduce readability of the query (It's instantly clear what 'ORDER BY Reputation' means, while

'ORDER BY 14' requires some counting, probably with a finger on the screen.)

This query sorts result by the info in relative column position 3 from select statement instead of column name
Reputation.

SELECT DisplayName, JoinDate, Reputation FROM Users ORDER BY 3
DisplayName JoinDate Reputation

Community 2008-09-151

Jarrod Dixon 2008-10-03 11739

Geoff Dalgas 2008-10-03 12567

Joel Spolsky 2008-09-16 25784

Jeff Atwood 2008-09-16 37628

Section 8.2: Use ORDER BY with TOP to return the top x rows
based on a column’s value

In this example, we can use GROUP BY not only determined the sort of the rows returned, but also what rows are
returned, since we're using TOP to limit the result set.

Let's say we want to return the top 5 highest reputation users from an unnamed popular Q&A site.
Without ORDER BY

This query returns the Top 5 rows ordered by the default, which in this case is "Id", the first column in the table
(even though it's not a column shown in the results).

SELECT TOP 5 DisplayName, Reputation
FROM Users

returns...

DisplayName Reputation
Community 1

Geoff Dalgas 12567
Jarrod Dixon 11739

Jeff Atwood 37628

Joel Spolsky 25784

With ORDER BY

SELECT TOP 5 DisplayName, Reputation
FROM Users
ORDER BY Reputation desc

GoalKicker.com - SQL Notes for Professionals

31

http://goalkicker.com/

returns...

DisplayName Reputation

JonSkeet 865023
Darin Dimitrov 661741
BalusC 650237

Hans Passant 625870
Marc Gravell 601636

Remarks

Some versions of SQL (such as MySQL) use a LIMIT clause at the end of a SELECT, instead of TOP at the beginning,

for example:

SELECT DisplayName, Reputation

FROM Users
ORDER BY Reputation DESC
LIMIT 5

Section 8.3: Customizeed sorting order

To sort this table Employee by department, you would use ORDER BY Department. However, if you want a different
sort order that is not alphabetical, you have to map the Department values into different values that sort correctly;
this can be done with a CASE expression:

Name Department
Hasan IT

Yusuf HR

Hillary HR

Joe IT

Merry HR

Ken Accountant
SELECT =*

FROM Employee

ORDER BY CASE Department
WHEN 'HR'

THEN 1

WHEN 'Accountant’' THEN 2

ELSE
END;

Name Department
Yusuf HR
Hillary HR
Merry HR
Ken Accountant
Hasan IT
Joe IT

3

Section 8.4: Order by Alias

Due to logical query processing order, alias can be used in order by.

SELECT DisplayName, JoinDate as jd, Reputation as rep

FROM Users
ORDER BY jd, rep

GoalKicker.com - SQL Notes for Professionals

32

http://goalkicker.com/

And can use relative order of the columns in the select statement .Consider the same example as above and
instead of using alias use the relative order like for display name itis 1, forJd itis 2 and so on

SELECT DisplayName, JoinDate as jd, Reputation as rep
FROM Users
ORDER BY 2, 3

Section 8.5: Sorting by multiple columns

SELECT DisplayName, JoinDate, Reputation FROM Users ORDER BY JoinDate, Reputation
DisplayName JoinDate Reputation

Community 2008-09-151

Jeff Atwood 2008-09-16 25784

Joel Spolsky 2008-09-16 37628

Jarrod Dixon 2008-10-03 11739

Geoff Dalgas 2008-10-03 12567

GoalKicker.com - SQL Notes for Professionals

33

http://goalkicker.com/

Chapter 9: AND & OR Operators
Section 9.1: AND OR Example

Have a table

Name Age City
Bob 10 Paris
Mat 20 Berlin
Mary 24 Prague

select Name from table where Age>10 AND City='Prague’

Gives

Name
Mary

select Name from table where Age=10 OR City='Prague’

Gives

Name
Bob
Mary

GoalKicker.com - SQL Notes for Professionals

34

http://goalkicker.com/

Chapter 10: CASE

The CASE expression is used to implement if-then logic.

Section 10.1: Use CASE to COUNT the number of rows in a
column match a condition

Use Case

CASE can be used in conjunction with SUM to return a count of only those items matching a pre-defined condition.

(This is similar to COUNTIF in Excel.)

The trick is to return binary results indicating matches, so the "1"s returned for matching entries can be summed
for a count of the total number of matches.

Given this table ItemSales, let's say you want to learn the total number of items that have been categorized as
"Expensive":

Id Itemid Price PriceRating
1 100 34.5 EXPENSIVE
2 145 23 CHEAP

3 100 34.5 EXPENSIVE
4 100 34.5 EXPENSIVE
5 145 10 AFFORDABLE

Query

SELECT
COUNT(Id) AS ItemsCount,
SUM (CASE
WHEN PriceRating = 'Expensive' THEN 1
ELSE ©
END
) AS ExpensiveltemsCount
FROM ItemSales

Results:

ItemsCount ExpensiveltemsCount
5 3

Alternative:

SELECT
COUNT(Id) as ItemsCount,
SUM (
CASE PriceRating
WHEN 'Expensive' THEN 1
ELSE ©
END
) AS ExpensiveItemsCount
FROM ItemSales

GoalKicker.com - SQL Notes for Professionals

35

http://goalkicker.com/

Section 10.2: Searched CASE in SELECT (Matches a boolean
expression)

The searched CASE returns results when a boolean expression is TRUE.

(This differs from the simple case, which can only check for equivalency with an input.)

SELECT Id, ItemId, Price,
CASE WHEN Price < 10 THEN 'CHEAP'
WHEN Price < 20 THEN 'AFFORDABLE'
ELSE 'EXPENSIVE'
END AS PriceRating
FROM ItemSales

Id Itemid Price PriceRating
1 100 34.5 EXPENSIVE
2 145 23 CHEAP

3 100 34.5 EXPENSIVE
4 100 34.5 EXPENSIVE
5145 10 AFFORDABLE

Section 10.3: CASE in a clause ORDER BY

We can use 1,2,3.. to determine the type of order:

SELECT * FROM DEPT

ORDER BY

CASE DEPARTMENT
WHEN 'MARKETING' THEN 1
WHEN 'SALES' THEN 2
WHEN 'RESEARCH' THEN 3
WHEN 'INNOVATION' THEN 4

ELSE 5

END,

CITY
ID REGION CITY DEPARTMENT EMPLOYEES_NUMBER
12 New England Boston MARKETING 9
15 West San Francisco MARKETING 12
9 Midwest Chicago SALES 8
14 Mid-Atlantic New York SALES 12
5 West Los Angeles RESEARCH 11
10 Mid-Atlantic Philadelphia RESEARCH 13
4 Midwest Chicago INNOVATION 11
2 Midwest Detroit HUMAN RESOURCES 9

Section 10.4: Shorthand CASE in SELECT

CASE's shorthand variant evaluates an expression (usually a column) against a series of values. This variant is a bit

shorter, and saves repeating the evaluated expression over and over again. The ELSE clause can still be used,
though:

SELECT Id, ItemId, Price,
CASE Price WHEN 5 THEN 'CHEAP'
WHEN 15 THEN 'AFFORDABLE'
ELSE "EXPENSIVE'
END as PriceRating

GoalKicker.com - SQL Notes for Professionals

36

http://goalkicker.com/

FROM ItemSales

A word of caution. It's important to realize that when using the short variant the entire statement is evaluated at

each WHEN. Therefore the following statement:

SELECT
CASE ABS(CHECKSUM(NEWID())) % 4

WHEN @ THEN 'Dr'

WHEN 1 THEN 'Master’

WHEN 2 THEN 'Mr'
WHEN 3 THEN 'Mrs’
END

may produce a NULL result. That is because at each WHEN NEWID() is being called again with a new result. Equivalent

to:

SELECT

CASE
WHEN ABS(CHECKSUM
WHEN ABS(CHECKSUM
WHEN ABS(CHECKSUM
WHEN ABS(CHECKSUM
END

(
(
(
(

NEWID())) %

NEWID())) %
0))
)

NEWID %
NEWID %

B N)
1

@ THEN 'Dr'

1 THEN 'Master'
2 THEN 'Mr'

3 THEN 'Mrs'

Therefore it can miss all the WHEN cases and result as NULL.

Section 10.5: Using CASE in UPDATE

sample on price increases:

UPDATE ItemPrice
SET Price = Price *
CASE ItemId

WHEN 1 THEN 1.85
WHEN 2 THEN 1.10
WHEN 3 THEN 1.15
ELSE 1.00

END

Section 10.6: CASE use for NULL values ordered last

in this way '0' representing the known values are ranked first, '1' representing the NULL values are sorted by the

last:

SELECT ID

, REGION

,CITY

, DEPARTMENT

, EMPLOYEES_NUMBER

FROM DEPT
ORDER BY
CASE WHEN REGION IS NULL THEN 1
ELSE ©

END

’

REGION

ID

REGION CITY

DEPARTMENT

10 Mid-Atlantic Philadelphia RESEARCH

EMPLOYEES_NUMBER
13

GoalKicker.com - SQL Notes for Professionals

37

http://goalkicker.com/

14 Mid-Atlantic New York SALES 12

9 Midwest Chicago SALES 8
12 New England Boston MARKETING 9
5 West Los Angeles RESEARCH 11
15 NULL San Francisco MARKETING 12
4 NULL Chicago INNOVATION 11
2 NULL Detroit HUMAN RESOURCES 9

Section 10.7: CASE in ORDER BY clause to sort records by
lowest value of 2 columns

Imagine that you need sort records by lowest value of either one of two columns. Some databases could use a non-
aggregated MIN() or LEAST() function for this (... ORDER BY MIN(Datel, Date2)), butin standard SQL, you have
to use a CASE expression.

The CASE expression in the query below looks at the Date1 and Date2 columns, checks which column has the lower
value, and sorts the records depending on this value.

Sample data

Id Date1 Date2
2017-01-01 2017-01-31
2017-01-31 2017-01-03
2017-01-31 2017-01-02
2017-01-06 2017-01-31
2017-01-31 2017-01-05
2017-01-04 2017-01-31

Query

SELECT Id, Datel, Date2
FROM YourTable
ORDER BY CASE
WHEN COALESCE(Datel1, '1753-81-01') < COALESCE(Date2, '1753-81-01') THEN Date1
ELSE Date2
END

o Ul WN =

Results

Id Date1 Date2
2017-01-01 2017-01-31
2017-01-31 2017-01-02
2017-01-31 2017-01-03
2017-01-04 2017-01-31
2017-01-31 2017-01-05
2017-01-06 2017-01-31
Explanation

AUoNW-=-

As you see row with Id = 1 is first, that because Date1 have lowest record from entire table 2017-81-01, row where
Id = 3issecond that because Date2 equals to 28617-01-02 that is second lowest value from table and so on.

So we have sorted records from 2817-01-81 to 2817-01-06 ascending and no care on which one column Date1 or
Date2 are those values.

GoalKicker.com - SQL Notes for Professionals 38

http://goalkicker.com/

Chapter 11: LIKE operator

Section 11.1: Match open-ended pattern

The % wildcard appended to the beginning or end (or both) of a string will allow 0 or more of any character before

the beginning or after the end of the pattern to match.

Using '%' in the middle will allow 0 or more characters between the two parts of the pattern to match.

We are going to use this Employees Table:

Id FName LName PhoneNumber Managerld Departmentld Salary Hire_date

1 John Johnson 2468101214 1 1 400 23-03-2005
2 Sophie Amudsen 2479100211 1 1 400 11-01-2010
3 Ronny Smith 2462544026 2 1 600 06-08-2015
4 Jon Sanchez 2454124602 1 1 400 23-03-2005
5 Hilde Knag 2468021911 2 1 800 01-01-2000

Following statement matches for all records having FName containing string 'on' from Employees Table.

SELECT * FROM Employees WHERE FName LIKE '%on%';

Id FName LName PhoneNumber Managerld Departmentid Salary Hire_date
3 Ronny Smith 2462544026 2 1 600 06-08-2015
4 Jon Sanchez 2454124602 1 1 400 23-03-2005

Following statement matches all records having PhoneNumber starting with string '246' from Employees.

SELECT * FROM Employees WHERE PhoneNumber LIKE '246%';
Id FName LName PhoneNumber Managerld Departmentld Salary Hire_date

1 John Johnson 2468101214 1 1 400 23-03-2005
3 Ronny Smith 2462544026 2 1 600 06-08-2015
5 Hilde Knag 2468021911 2 1 800 01-01-2000

Following statement matches all records having PhoneNumber ending with string '11' from Employees.

SELECT * FROM Employees WHERE PhoneNumber LIKE '%11'
Id FName LName PhoneNumber Managerld Departmentld Salary Hire_date

2 Sophie Amudsen 2479100211 1 1 400 11-01-2010
5 Hilde Knag 2468021911 2 1 800 01-01-2000

All records where Fname 3rd character is 'n' from Employees.
SELECT * FROM Employees WHERE FName LIKE '__n%";

(two underscores are used before 'n' to skip first 2 characters)

Id FName LName PhoneNumber Managerld Departmentid Salary Hire_date
3 Ronny Smith 2462544026 2 1 600 06-08-2015
4 Jon Sanchez 2454124602 1 1 400 23-03-2005

Section 11.2: Single character match

To broaden the selections of a structured query language (SQL-SELECT) statement, wildcard characters, the percent

GoalKicker.com - SQL Notes for Professionals

39

http://goalkicker.com/

sign (%) and the underscore (_), can be used.
The _ (underscore) character can be used as a wildcard for any single character in a pattern match.

Find all employees whose Fname start with 'j' and end with 'n' and has exactly 3 characters in Fname.
SELECT * FROM Employees WHERE FName LIKE 'j_n'

_ (underscore) character can also be used more than once as a wild card to match patterns.

For example, this pattern would match "jon", "jan", "jen", etc.

These names will not be shown "jn","john","jordan", "justin”, "jason", "julian", "jillian", "joann" because in our query
one underscore is used and it can skip exactly one character, so result must be of 3 character Fname.

For example, this pattern would match "LaSt", "LoSt", "Halt", etc.

SELECT * FROM Employees WHERE FName LIKE '_A_T'

Section 11.3: ESCAPE statement in the LIKE-query

If you implement a text-search as LIKE-query, you usually do it like this:

SELECT *
FROM T_Whatever
WHERE SomeField LIKE CONCAT('%', @in_SearchText, '%')

However, (apart from the fact that you shouldn't necessarely use LIKE when you can use fulltext-search) this
creates a problem when somebody inputs text like "50%" or "a_b".

So (instead of switching to fulltext-search), you can solve that problem using the LIKE-escape statement:

SELECT *
FROM T_Whatever
WHERE SomeField LIKE CONCAT('%', @in_SearchText, '%') ESCAPE "\’

That means \ will now be treated as ESCAPE character. This means, you can now just prepend \ to every character
in the string you search, and the results will start to be correct, even when the user enters a special character like %
or _

e.g.

string stringToSearch = "abc_def 50%";

string newString = ;
foreach(char ¢ in stringToSearch)
newString += @"\" + c;

sqlCmd.Parameters.Add("@in_SearchText", newString);
// instead of sqlCmd.Parameters.Add("@in_SearchText", stringToSearch);

Note: The above algorithm is for demonstration purposes only. It will not work in cases where 1 grapheme consists
out of several characters (utf-8). e.g. string stringToSearch = "Les Mise\uB83@1rables”; You'll need to do this
for each grapheme, not for each character. You should not use the above algorithm if you're dealing with
Asian/East-Asian/South-Asian languages. Or rather, if you want correct code to begin with, you should just do that
for each graphemecCluster.

GoalKicker.com - SQL Notes for Professionals 40

http://goalkicker.com/

See also ReverseString, a C# interview-question

Section 11.4: Search for a range of characters

Following statement matches all records having FName that starts with a letter from A to F from Employees Table.

SELECT * FROM Employees WHERE FName LIKE '[A-F]%'

Section 11.5: Match by range or set
Match any single character within the specified range (e.g.: [a-f]) or set (e.g.: [abcdef]).
This range pattern would match "gary" but not "mary":

SELECT * FROM Employees WHERE FName LIKE '[a-glary'

This set pattern would match "mary" but not "gary":

SELECT * FROM Employees WHERE Fname LIKE '[lmnop]ary’
The range or set can also be negated by appending the * caret before the range or set:
This range pattern would not match "gary" but will match "mary":

SELECT * FROM Employees WHERE FName LIKE '[“a-glary'’

This set pattern would not match "mary" but will match"gary":

SELECT * FROM Employees WHERE Fname LIKE '[“lmnop]lary'’

Section 11.6: Wildcard characters

wildcard characters are used with the SQL LIKE operator. SQL wildcards are used to search for data within a table.
Wildcards in SQL are:%, _, [charlist], [Acharlist]

% - A substitute for zero or more characters

Eg: //selects all customers with a City starting with "Lo"

SELECT * FROM Customers

WHERE City LIKE 'Lo%";

//selects all customers with a City containing the pattern "es"
SELECT * FROM Customers
WHERE City LIKE '%es%";

_- A substitute for a single character

Eg://selects all customers with a City starting with any character, followed by "erlin"
SELECT * FROM Customers
WHERE City LIKE '_erlin';

[charlist] - Sets and ranges of characters to match

Eg://selects all customers with a City starting with "a", "d", or "l1"

GoalKicker.com - SQL Notes for Professionals 41

https://stackoverflow.com/questions/1009689/reversestring-a-c-sharp-interview-question/36312251#36312251
http://goalkicker.com/

SELECT * FROM Customers
WHERE City LIKE '[adl]%"';

//selects all customers with a City starting with "a", "d", or "1"

SELECT * FROM Customers
WHERE City LIKE '[a-c]%"';

[~charlist] - Matches only a character NOT specified within the brackets

Eg://selects all customers with a City starting with a character that is not
SELECT * FROM Customers
WHERE City LIKE '["apl]%';

or

SELECT * FROM Customers
WHERE City NOT LIKE '[apl]%' and city like '_%';

a

’

p

’

or

nyn

GoalKicker.com - SQL Notes for Professionals

42

http://goalkicker.com/

Chapter 12: IN clause

Section 12.1: Simple IN clause
To get records having any of the given ids

select *
from products
where id in (1,8,3)

The query above is equal to

select *

from products

where id = 1
or id = 8
or id = 3

Section 12.2: Using IN clause with a subquery

SELECT =*

FROM customers

WHERE id IN (
SELECT DISTINCT customer_id
FROM orders

)

The above will give you all the customers that have orders in the system.

GoalKicker.com - SQL Notes for Professionals

43

http://goalkicker.com/

Chapter 13: Filter results using WHERE and
HAVING

Section 13.1: Use BETWEEN to Filter Results

The following examples use the Item Sales and Customers sample databases.
Note: The BETWEEN operator is inclusive.

Using the BETWEEN operator with Numbers:

SELECT * From ItemSales
WHERE Quantity BETWEEN 16 AND 17

This query will return all ItemSales records that have a quantity that is greater or equal to 10 and less than or equal
to 17. The results will look like:

Id SaleDate Itemld Quantity Price

1 2013-07-01100 10 34.5
4 2013-07-23100 15 34.5
5 2013-07-24145 10 34.5

Using the BETWEEN operator with Date Values:

SELECT * From ItemSales
WHERE SaleDate BETWEEN '2813-07-11"' AND '2013-05-24'

This query will return all TtemSales records with a SaleDate that is greater than or equal to July 11, 2013 and less
than or equal to May 24, 2013.

Id SaleDate Itemld Quantity Price

3 2013-07-11100 20 34.5
4 2013-07-23100 15 34.5
5 2013-07-24145 10 345

When comparing datetime values instead of dates, you may need to convert the datetime values into a
date values, or add or subtract 24 hours to get the correct results.

Using the BETWEEN operator with Text Values:

SELECT Id, FName, LName FROM Customers
WHERE LName BETWEEN 'D' AND 'L‘;

Live example: SQL fiddle

This query will return all customers whose name alphabetically falls between the letters 'D' and 'L'. In this case,
Customer #1 and #3 will be returned. Customer #2, whose name begins with a 'M" will not be included.

Id FName LName
1 William Jones
3 Richard Davis

GoalKicker.com - SQL Notes for Professionals 44

http://sqlfiddle.com/#!9/76b9b/2
http://goalkicker.com/

Section 13.2: Use HAVING with Aggregate Functions

Unlike the WHERE clause, HAVING can be used with aggregate functions.

An aggregate function is a function where the values of multiple rows are grouped together as input on
certain criteria to form a single value of more significant meaning or measurement (Wikipedia).
Common aggregate functions include COUNT (), SUM(), MIN(), and MAX().

This example uses the Car Table from the Example Databases.

SELECT CustomerId, COUNT(Id) AS [Number of Cars]
FROM Cars

GROUP BY CustomerId

HAVING COUNT(Id) > 1

This query will return the CustomerId and Number of Cars count of any customer who has more than one car. In
this case, the only customer who has more than one car is Customer #1.

The results will look like:

Customerld Number of Cars

1 2
Section 13.3: WHERE clause with NULL/NOT NULL values
SELECT =

FROM Employees
WHERE ManagerId IS NULL

This statement will return all Employee records where the value of the ManagerId column is NULL.

The result will be:

Id FName LName PhoneNumber ManagerId DepartmentId
1 James Smith 1234567890 NULL 1

SELECT *
FROM Employees
WHERE ManagerId IS NOT NULL

This statement will return all Employee records where the value of the ManagerId is not NULL.

The result will be:

Id FName LName PhoneNumber ManagerId DepartmentId
2 John Johnson 2468101214 1 1
3 Michael Williams 1357911131 1 2
4 Johnathon Smith 1212121212 2 1

Note: The same query will not return results if you change the WHERE clause to WHERE ManagerId = NULL or WHERE
ManagerId <> NULL.

GoalKicker.com - SQL Notes for Professionals 45

https://en.wikipedia.org/wiki/Aggregate_function
http://goalkicker.com/

Section 13.4: Equality

SELECT * FROM Employees

This statement will return all the rows from the table Employees.

Id FName LName PhoneNumber ManagerlId DepartmentlId Salary Hire date

CreatedDate ModifiedDate

1 James Smith 1234567890 NULL 1 1000 01-01-2002 01-01-2002
01-01-2002

2 John Johnson 2468101214 1 1 400 23-03-2005 23-03-2005
01-01-2002

3 Michael Williams 1357911131 1 2 600 12-05-2009 12-05-2009
NULL

4 Johnathon Smith 1212121212 2 1 500 24-07-2016 24-07-2016
01-01-2002

Using a WHERE at the end of your SELECT statement allows you to limit the returned rows to a condition. In this case,
where there is an exact match using the = sign:

SELECT * FROM Employees WHERE DepartmentId = 1

Will only return the rows where the DepartmentId is equal to 1:

Id FName LName PhoneNumber ManagerlId DepartmentId Salary Hire date

CreatedDate ModifiedDate

1 James Smith 1234567890 NULL 1 1000 01-01-2002 01-01-2002
01-01-2002

2 John Johnson 2468101214 1 1 400 23-03-2005 23-03-2005
01-01-2002

4 Johnathon Smith 1212121212 2 1 500 24-07-2016 24-07-2016
01-01-2002

Section 13.5: The WHERE clause only returns rows that match
its criteria

Steam has a games under $10 section of their store page. Somewhere deep in the heart of their systems, there's
probably a query that looks something like:

SELECT =*
FROM Items
WHERE Price < 10

Section 13.6: AND and OR

You can also combine several operators together to create more complex WHERE conditions. The following examples
use the Employees table:

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire date

CreatedDate ModifiedDate

1 James Smith 1234567890 NULL 1 1000 01-01-2002 01-01-2002
01-01-2002

2 John Johnson 2468101214 1 1 400 23-03-2005 23-03-2005
01-01-2002

GoalKicker.com - SQL Notes for Professionals 46

http://goalkicker.com/

3 Michael Williams 1357911131 1 2 600 12-05-2009 12-05-2009
NULL

4 Johnathon Smith 1212121212 2 1 500 24-07-2016 24-07-2016
01-01-2002
AND

SELECT * FROM Employees WHERE DepartmentId = 1 AND ManagerId = 1

Will return:

Id FName LName PhoneNumber ManagerlId DepartmentId Salary Hire date

CreatedDate ModifiedDate

2 John Johnson 2468101214 1 1 400 23-03-2005 23-03-2005
01-01-2002

OR

SELECT * FROM Employees WHERE DepartmentId = 2 OR ManagerId = 2

Will return:

Id FName LName PhoneNumber ManagerId DepartmentId Salary Hire date

CreatedDate ModifiedDate

3 Michael Williams 1357911131 1 2 600 12-05-2009 12-05-2009
NULL

4 Johnathon Smith 1212121212 2 1 500 24-07-2016 24-07-2016
01-01-2002

ISection 13.7: Use IN to return rows with a value contained in a
ist

This example uses the Car Table from the Example Databases.

SELECT =*
FROM Cars
WHERE TotalCost IN (160, 2066, 3600)

This query will return Car #2 which costs 200 and Car #3 which costs 100. Note that this is equivalent to using
multiple clauses with OR, e.g.:

SELECT =
FROM Cars
WHERE TotalCost = 100 OR TotalCost = 2006 OR TotalCost = 300

Section 13.8: Use LIKE to find matching strings and substrings
See full documentation on LIKE operator.

This example uses the Employees Table from the Example Databases.

SELECT *
FROM Employees

GoalKicker.com - SQL Notes for Professionals 47

http://goalkicker.com/

WHERE FName LIKE 'John'

This query will only return Employee #1 whose first name matches 'John' exactly.

SELECT =*
FROM Employees
WHERE FName like 'John%'

Adding % allows you to search for a substring:

¢ John% - will return any Employee whose name begins with 'John', followed by any amount of characters
¢ %John - will return any Employee whose name ends with 'John', proceeded by any amount of characters
¢ %John% - will return any Employee whose name contains 'John' anywhere within the value

In this case, the query will return Employee #2 whose name is 'John' as well as Employee #4 whose name is
Johnathon'.

Section 13.9: Where EXISTS

Will select records in TableName that have records matching in TableNameT.

SELECT * FROM TableName t WHERE EXISTS (
SELECT 1 FROM TableNamel t1 where t.Id = t1.Id)

Section 13.10: Use HAVING to check for multiple conditions in a
group

Orders Table

Customerld Productid Quantity Price

1 2 5 100
1 3 2 200
1 4 1 500
2 1 4 50

3 5 6 700

To check for customers who have ordered both - ProductID 2 and 3, HAVING can be used

select customerId

from orders

where productID in (2,3)

group by customerId

having count(distinct productID) = 2

Return value:

customerld
1

The query selects only records with the productIDs in questions and with the HAVING clause checks for groups
having 2 productlds and not just one.

Another possibility would be

select customerId

GoalKicker.com - SQL Notes for Professionals 48

http://goalkicker.com/

from orders

group by customerId

having sum(case when productID = 2 then 1 else 0 end) > @
and sum(case when productID = 3 then 1 else 0 end) > @

This query selects only groups having at least one record with productID 2 and at least one with productID 3.

GoalKicker.com - SQL Notes for Professionals

49

http://goalkicker.com/

Chapter 14: SKIP TAKE (Pagination)

Section 14.1: Limiting amount of results
ISO/ANSI SQL:

SELECT * FROM TableName FETCH FIRST 20 ROWS ONLY;
MySQL; PostgreSQL; SQLite:
SELECT * FROM TableName LIMIT 20;

Oracle:

SELECT Id,
Col1
FROM (SELECT Id,
Col1,
row_number() over (order by Id) RowNumber
FROM TableName)
WHERE RowNumber <= 20

SQL Server:

SELECT TOP 20 =*
FROM dbo.[Sale]

Section 14.2: Skipping then taking some results (Pagination)
ISO/ANSI SQL:

SELECT Id, Col1

FROM TableName

ORDER BY 1Id

OFFSET 20 ROWS FETCH NEXT 20 ROWS ONLY;

MySQL:
SELECT * FROM TableName LIMIT 20, 20; -- offset, limit
Oracle; SQL Server:

SELECT Id,
Col1
FROM (SELECT Id,
Col1,
row_number() over (order by Id) RowNumber
FROM TableName)
WHERE RowNumber BETWEEN 21 AND 40

PostgreSQL; SQLite:

SELECT * FROM TableName LIMIT 20 OFFSET 20;

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

Section 14.3: Skipping some rows from result

ISO/ANSI SQL:

SELECT Id, Coli1
FROM TableName
ORDER BY Id

OFFSET 26 ROWS

MySQL:

SELECT * FROM TableName LIMIT 20, 42424242424242;
-- skips 20 for take use very large number that is more than rows in table

Oracle:

SELECT Id,
Col1
FROM (SELECT Id,
Col1,
row_number() over (order by Id) RowNumber
FROM TableName)
WHERE RowNumber > 20

PostgreSQL:
SELECT * FROM TableName OFFSET 20;
SQLite:

SELECT * FROM TableName LIMIT -1 OFFSET 20;

GoalKicker.com - SQL Notes for Professionals

51

http://goalkicker.com/

Chapter 15: EXCEPT

Section 15.1: Select dataset except where values are in this
other dataset

--dataset schemas must be identical
SELECT 'Datal' as 'Column’' UNION ALL
SELECT 'Data2' as 'Column’' UNION ALL
SELECT 'Data3' as 'Column' UNION ALL
SELECT 'Data4' as 'Column’ UNION ALL
SELECT 'Data5' as 'Column'’

EXCEPT

SELECT 'Data3' as 'Column’

--Returns Datal, Data2, Data4, and Data5

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

Chapter 16: EXPLAIN and DESCRIBE
Section 16.1: EXPLAIN Select query

An Explain infront of a select query shows you how the query will be executed. This way you to see if the query
uses an index or if you could optimize your query by adding an index.

Example query:
explain select * from user join data on user.test = data.fk_user;

Example result:

id select type table type possible keys key key len ref rows Extra

1 SIMPLE user index test test 5 (null) 1 Using where; Using
index

1 SIMPLE data ref fk_user fk _user 5 user.test 1 (null)

on type you see if an index was used. In the column possible_keys you see if the execution plan can choose from
different indexes of if none exists. key tells you the acutal used index. key_len shows you the size in bytes for one
index item. The lower this value is the more index items fit into the same memory size an they can be faster
processed. rows shows you the expected number of rows the query needs to scan, the lower the better.

Section 16.2: DESCRIBE tablename;

DESCRIBE and EXPLAIN are synonyms. DESCRIBE on a tablename returns the definition of the columns.

DESCRIBE tablename;

Exmple Result:

COLUMN_NAME COLUMN_TYPE IS_NULLABLE COLUMN_KEY COLUMN_DEFAULT EXTRA
id int(11) NO PRI 0 auto_increment
test varchar(255) YES (null)

Here you see the column names, followed by the columns type. It shows if null is allowed in the column and if the
column uses an Index. the default value is also displayed and if the table contains any special behavior like an
auto_increment.

GoalKicker.com - SQL Notes for Professionals 53

http://goalkicker.com/

Chapter 17: EXISTS CLAUSE
Section 17.1: EXISTS CLAUSE

Customer Table

Id FirstName LastName
1 Ozgur Ozturk

2 Youssef Medi

3 Henry Tai

Order Table

Id Customerld Amount

12 123.50

23 14.80

Get all customers with a least one order

SELECT * FROM Customer WHERE EXISTS (
SELECT * FROM Order WHERE Order.CustomerId=Customer.Id

)

Result

Id FirstName LastName

2 Youssef Medi

3 Henry Tai

Get all customers with no order

SELECT * FROM Customer WHERE NOT EXISTS (
SELECT * FROM Order WHERE Order.CustomerId = Customer.Id

)

Result

Id FirstName LastName
1 Ozgur Ozturk
Purpose

EXISTS, IN and JOIN could sometime be used for the same result, however, they are not equals :

e EXISTS should be used to check if a value exist in another table
¢ IN should be used for static list
e JOIN should be used to retrieve data from other(s) table(s)

GoalKicker.com - SQL Notes for Professionals

54

http://goalkicker.com/

Chapter 18: JOIN

JOIN is a method of combining (joining) information from two tables. The result is a stitched set of columns from
both tables, defined by the join type (INNER/OUTER/CROSS and LEFT/RIGHT/FULL, explained below) and join criteria
(how rows from both tables relate).

A table may be joined to itself or to any other table. If information from more than two tables needs to be accessed,
multiple joins can be specified in a FROM clause.

Section 18.1; Self Join

A table may be joined to itself, with different rows matching each other by some condition. In this use case, aliases
must be used in order to distinguish the two occurrences of the table.

In the below example, for each Employee in the example database Employees table, a record is returned containing
the employee's first name together with the corresponding first name of the employee's manager. Since managers
are also employees, the table is joined with itself:

SELECT
e.FName AS "Employee",
m.FName AS "Manager"
FROM
Employees e
JOIN
Employees m
ON e.ManagerId = m.Id

This query will return the following data:

Employee Manager

John James
Michael James
JohnathonJohn

So how does this work?
The original table contains these records:

Id FName LName PhoneNumber Managerid Departmentid Salary HireDate

1 James Smith 1234567890 NULL 1 1000 01-01-2002
2 John Johnson 2468101214 1 1 400 23-03-2005
3 Michael Williams 1357911131 1 2 600 12-05-2009
4 JohnathonSmith 1212121212 2 1 500 24-07-2016

The first action is to create a Cartesian product of all records in the tables used in the FROM clause. In this case it's
the Employees table twice, so the intermediate table will look like this (I've removed any fields not used in this
example):

e.ld e FName e.Managerld m.ld m.FName m.Managerld

1 James NULL 1 James NULL
1 James NULL 2 John 1
1 James NULL 3 Michael 1
1 James NULL 4 Johnathon2
2 John 1 1 James NULL
2 John 1 2 John 1
2 John 1 3 Michael 1

GoalKicker.com - SQL Notes for Professionals 55

http://goalkicker.com/

2 John 1 4 Johnathon2
3 Michael 1 1 James NULL
3 Michael 1 2 John 1
3 Michael 1 3 Michael 1
3 Michael 1 4 Johnathon?2
4 Johnathon2 1 James NULL
4 Johnathon2 2 John 1
4 Johnathon2 3 Michael 1
4 Johnathon2 4 Johnathon2

The next action is to only keep the records that meet the JOIN criteria, so any records where the aliased e table
ManagerId equals the aliased m table Id:

e.ld e.FName e.Managerld m.ld m.FName m.Managerid

2 John 1 1 James NULL
3 Michael 1 1 James NULL
4 Johnathon2 2 John 1

Then, each expression used within the SELECT clause is evaluated to return this table:

e.FName m.FName

John James
Michael James
Johnathon John

Finally, column names e .FName and m.FName are replaced by their alias column names, assigned with the AS
operator:

Employee Manager

John James
Michael James
Johnathon John

Section 18.2: Differences between inner/outer joins

SQL has various join types to specify whether (non-)matching rows are included in the result: INNER JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN (the INNER and OUTER keywords are optional). The figure

below underlines the differences between these types of joins: the blue area represents the results returned by the

join, and the white area represents the results that the join will not return.

GoalKicker.com - SQL Notes for Professionals

56

http://goalkicker.com/

SELECT <fields>
FROM TableA A
INNER JOIN TableB B
ON A.key = B.key

SELECT <fields>
FROM TableA A
LEFT JOIN TableB B
ON A.key = B.key

SELECT <fields>
FROM TableA A
RIGHT JOIN TableB B

ON Akey =B.key

SELECT <fields>
FROM TableA A
RIGHT JOIN TableB B
ON A.key = B.key
WHERE A.key IS NULL

SELECT <fields>
FROM TableA A
LEFT JOIN TableB B
ON A.key = B.key
WHERE B.key IS NULL

. o SELECT <fields>

SELECT <fields>
FROM TableA A

FROM TableA A
FULL OUTER JOIN TableB B FULL OUTER JOIN TableB B
ON A.key = B.key ON A.key = B.key
()@ | This work is licensed under a Creative Commons Attribution 3.0 Unported License. WHERE A key IS NULL
— Author: http://commons.wikimedia.org/wiki/User:Arbeck

OR B.key IS NULL
Cross Join SQL Pictorial Presentation (reference) :

SELECT * FROM table1 CROSS JOIN table2;

In CROSS JOIN, each row from 1st table joins with all the rows of another table.
If 1st table contain x rows and y rows in 2nd one the result set will be x * y rows.

Below are examples from this answer.

For instance there are two tables as below :

GoalKicker.com - SQL Notes for Professionals

57

https://i.stack.imgur.com/3bs7C.png
http://www.w3resource.com/sql/joins/cross-join.php
http://www.w3resource.com/sql/joins/cross-join.php
http://stackoverflow.com/a/38578/3709746
http://goalkicker.com/

A OWON=2 | >
OO h W W

Note that (1,2) are unique to A, (3,4) are common, and (5,6) are unique to B.
Inner Join

An inner join using either of the equivalent queries gives the intersection of the two tables, i.e. the two rows they
have in common:

select * from a INNER JOIN b on a.a

= b.b;
select a.*,b.* from a,b where a.a = b.b;

Q
o

|
-+-

|

|

S~ W
~ W

Left outer join
A left outer join will give all rows in A, plus any common rows in B:

select * from a LEFT OUTER JOIN b on a.a = b.b;

al| b
[
1 | null
2 | null
3| 3
4 | 4

Right outer join
Similarly, a right outer join will give all rows in B, plus any common rows in A:

select * from a RIGHT OUTER JOIN b on a.a = b.b;

a | b
_____ +----
3 | 3
4 | 4
null | 5
null | 6

Full outer join

A full outer join will give you the union of A and B, i.e., all the rows in A and all the rows in B. If something in A
doesn't have a corresponding datum in B, then the B portion is null, and vice versa.

select * from a FULL OUTER JOIN b on a.a = b.b;

GoalKicker.com - SQL Notes for Professionals

58

http://goalkicker.com/

Section 18.3: JOIN Terminology: Inner, Outer, Semi, Anti..

Let's say we have two tables (A and B) and some of their rows match (relative to the given JOIN condition, whatever
it may be in the particular case):

GoalKicker.com - SQL Notes for Professionals 59

http://goalkicker.com/

Table A Table B

l l

ANTI

OUTER
INNER
43NNI

431Nn0o

LNV

| SEMI | SEMI |

| LEFT | RIGHT |

| FULL |

We can use various join types to include or exclude matching or non-matching rows from either side, and correctly
name the join by picking the corresponding terms from the diagram above.

The examples below use the following test data:

CREATE TABLE A (
X varchar(255) PRIMARY KEY

GoalKicker.com - SQL Notes for Professionals 60

http://i.stack.imgur.com/TbHy6.png
http://goalkicker.com/

Ik
CREATE TABLE B (

Y varchar(255) PRIMARY KEY
Ji;

INSERT INTO A VALUES

Inner Join
Combines left and right rows that match.

Table A Table B

l l

INMER:
YIMNI

SELECT = FROM A JOIN B ON X =Y;

Lisa Lisa
Marco Marco
Phil Phil

Left Outer Join

Sometimes abbreviated to "left join". Combines left and right rows that match, and includes non-matching left
rows.

GoalKicker.com - SQL Notes for Professionals

http://i.stack.imgur.com/j4eti.png
http://goalkicker.com/

Table A Table B

l |

MUILLE

OUTER

| LEFT

SELECT * FROM A LEFT JOIN B ON X =Y;

X Y
Amy NULL
John NULL

Lisa Lisa
Marco Marco
Phil Phil

Right Outer Join

Sometimes abbreviated to "right join". Combines left and right rows that match, and includes non-matching right
rows.

GoalKicker.com - SQL Notes for Professionals

62

http://i.stack.imgur.com/5UjhU.png
http://goalkicker.com/

Table A Table B

l l

H3LNo

NULLs

RIGHT |

SELECT * FROM A RIGHT JOIN B ON X =Y;

Lisa Lisa
Marco Marco
Phil Phil
NULL Tim
NULL Vincent

Full Outer Join

Sometimes abbreviated to "full join". Union of left and right outer join.

GoalKicker.com - SQL Notes for Professionals

63

http://i.stack.imgur.com/Lrg4z.png
http://goalkicker.com/

Table A Table B

MULLs

OUTER

WULLs

FULL

SELECT * FROM A FULL JOIN B ON X =Y;

X Y
Amy NULL
John NULL

Lisa Lisa
Marco Marco
Phil Phil
NULL Tim
NULL Vincent

Left Semi Join

Includes left rows that match right rows.

H3LNo

GoalKicker.com - SQL Notes for Professionals

64

http://i.stack.imgur.com/XCCMm.png
http://goalkicker.com/

Table A Table B

l l

SEMI |

LEFT |

SELECT * FROM A WHERE X IN (SELECT Y FROM B);

Right Semi Join
Includes right rows that match left rows.

Table A Table B

l l

GoalKicker.com - SQL Notes for Professionals

65

http://i.stack.imgur.com/UGEsN.png
http://i.stack.imgur.com/OwH1z.png
http://goalkicker.com/

SELECT * FROM B WHERE Y IN (SELECT X FROM A);

As you can see, there is no dedicated IN syntax for left vs. right semi join - we achieve the effect simply by switching
the table positions within SQL text.

Left Anti Semi Join
Includes left rows that do not match right rows.

Table A Table B

| l

ANTI

SEMI |

LEFT |

SELECT * FROM A WHERE X NOT IN (SELECT Y FROM B);
X

Amy
John

WARNING: Be careful if you happen to be using NOT IN on a NULL-able column! More details here.
Right Anti Semi Join

Includes right rows that do not match left rows.

GoalKicker.com - SQL Notes for Professionals 66

http://i.stack.imgur.com/I3KVl.png
http://stackoverflow.com/a/132402/533120
http://goalkicker.com/

Table A Table B

—|LNY —

SEMI

RIGHT

SELECT * FROM B WHERE Y NOT IN (SELECT X FROM A);

Tim
Vincent

As you can see, there is no dedicated NOT IN syntax for left vs. right anti semi join - we achieve the effect simply by

switching the table positions within SQL text.
Cross Join

A Cartesian product of all left with all right rows.

SELECT * FROM A CROSS JOIN B;

Amy Lisa
John Lisa
Lisa Lisa
Marco Lisa
Phil Lisa
Amy Marco
John Marco
Lisa Marco
Marco Marco
Phil Marco

Amy Phil
John Phil
Lisa Phil
Marco Phil
Phil Phil
Amy Tim

John Tim

GoalKicker.com - SQL Notes for Professionals

67

http://i.stack.imgur.com/sPY3h.png
http://goalkicker.com/

Lisa Tim
Marco Tim
Phil Tim
Amy Vincent
John Vincent
Lisa Vincent
Marco Vincent
Phil Vincent

Cross join is equivalent to an inner join with join condition which always matches, so the following query would

have returned the same result:

SELECT * FROM A JOIN B ON 1 = 1;
Self-Join

This simply denotes a table joining with itself. A self-join can be any of the join types discussed above. For example,

this is a an inner self-join:

SELECT * FROM A A1 JOIN A A2 ON LEN(A1.X) < LEN(A2.X);

X X
Amy John
Amy Lisa

John Marco
Lisa Marco
Phil Marco
Amy Phil

Section 18.4: Left Outer Join

A Left Outer Join (also known as a Left Join or Outer Join) is a Join that ensures all rows from the left table are
represented; if no matching row from the right table exists, its corresponding fields are NULL.

The following example will select all departments and the first name of employees that work in that department.
Departments with no employees are still returned in the results, but will have NULL for the employee name:

SELECT Departments.Name, Employees.FName

FROM Departments

LEFT OUTER JOIN Employees

ON Departments.Id = Employees.DepartmentId

This would return the following from the example database:

Departments.Name Employees.FName

HR James

HR John

HR Johnathon
Sales Michael
Tech NULL

So how does this work?
There are two tables in the FROM clause:

IdFName LName PhoneNumber Managerid Departmentid Salary HireDate
1 James Smith 1234567890 NULL 1 1000 01-01-2002

GoalKicker.com - SQL Notes for Professionals

68

http://goalkicker.com/

2 John Johnson 2468101214 1 1 400 23-03-2005
3 Michael Williams 1357911131 1 2 600 12-05-2009
4 JohnathonSmith 1212121212 2 1 500 24-07-2016

and

Id Name
17 HR

2 Sales
3 Tech

First a Cartesian product is created from the two tables giving an intermediate table.
The records that meet the join criteria (Departments.ld = Employees.Departmentld) are highlighted in bold; these are
passed to the next stage of the query.

As this is a LEFT OUTER JOIN all records are returned from the LEFT side of the join (Departments), while any
records on the RIGHT side are given a NULL marker if they do not match the join criteria. In the table below this will
return Tech with NULL

Id Nameld FName LName PhoneNumber Managerld Departmentid Salary HireDate

1 HR 1 James Smith 1234567890 NULL 1 1000 01-01-2002
1 HR 2 John Johnson 2468101214 1 1 400 23-03-2005
1 HR 3 Michael Williams 1357911131 1 2 600 12-05-2009
1 HR 4 JohnathonSmith 1212121212 2 1 500 24-07-2016
2 Sales 1 James Smith 1234567890 NULL 1 1000 01-01-2002
2 Sales 2 John Johnson 2468101214 1 1 400 23-03-2005
2 Sales 3 Michael Williams 1357911131 1 2 600 12-05-2009
2 Sales 4 Johnathon Smith 1212121212 2 1 500 24-07-2016
3 Tech 1 James Smith 1234567890 NULL 1 1000 01-01-2002
3 Tech 2 John Johnson 2468101214 1 1 400 23-03-2005
3 Tech 3 Michael Williams 1357911131 1 2 600 12-05-2009
3 Tech 4 Johnathon Smith 1212121212 2 1 500 24-07-2016

Finally each expression used within the SELECT clause is evaluated to return our final table:

Departments.Name Employees.FName

HR James
HR John
Sales Richard
Tech NULL

Section 18.5: Implicit Join

Joins can also be performed by having several tables in the from clause, separated with commas , and defining the
relationship between them in the where clause. This technique is called an Implicit Join (since it doesn't actually
contain a join clause).

All RDBMSs support it, but the syntax is usually advised against. The reasons why it is a bad idea to use this syntax
are:

e |tis possible to get accidental cross joins which then return incorrect results, especially if you have a lot of
joins in the query.

e If you intended a cross join, then it is not clear from the syntax (write out CROSS JOIN instead), and someone
is likely to change it during maintenance.

GoalKicker.com - SQL Notes for Professionals 69

http://goalkicker.com/

The following example will select employee's first names and the name of the departments they work for:

SELECT e.FName, d.Name
FROM Employee e, Departments d
WHERE e.DeptartmentId = d.Id

This would return the following from the example database:

e.FName d.Name
James HR

John HR
Richard Sales

Section 18.6: CROSS JOIN

Cross join does a Cartesian product of the two members, A Cartesian product means each row of one table is
combined with each row of the second table in the join. For example, if TABLEA has 20 rows and TABLEB has 20
rows, the result would be 20+20 = 400 output rows.

Using example database

SELECT d.Name, e.FName
FROM Departments d
CROSS JOIN Employees €;

Which returns:

d.Name e.FName

HR James
HR John
HR Michael

HR Johnathon
Sales James
Sales John
Sales Michael
Sales Johnathon
Tech James
Tech John

Tech Michael
Tech Johnathon

It is recommended to write an explicit CROSS JOIN if you want to do a cartesian join, to highlight that this is what
you want.

Section 18.7: CROSS APPLY & LATERAL JOIN

A very interesting type of JOIN is the LATERAL JOIN (new in PostgreSQL 9.3+),
which is also known as CROSS APPLY/OUTER APPLY in SQL-Server & Oracle.

The basic idea is that a table-valued function (or inline subquery) gets applied for every row you join.

This makes it possible to, for example, only join the first matching entry in another table.
The difference between a normal and a lateral join lies in the fact that you can use a column that you previously
joined in the subquery that you "CROSS APPLY".

GoalKicker.com - SQL Notes for Professionals

70

http://goalkicker.com/

Syntax:

PostgreSQL 9.3+

left | right | inner JOIN LATERAL

SQL-Server:

CROSS | OUTER APPLY

INNER JOIN LATERAL is the same as CROSS APPLY
and LEFT JOIN LATERAL is the same as OUTER APPLY

Example usage (PostgreSQL 9.3+):

SELECT * FROM T_Contacts

--LEFT JOIN T_MAP_Contacts_Ref_OrganisationalUnit ON MAP_CTCOU_CT_UID = T_Contacts.CT_UID AND
MAP_CTCOU_SoftDeleteStatus = 1
--WHERE T_MAP_Contacts_Ref_OrganisationalUnit.MAP_CTCOU_UID IS NULL -- 989

LEFT JOIN LATERAL
(
SELECT
--MAP_CTCOU_UID
MAP_CTCOU_CT_UID
,MAP_CTCOU_COU_UID
,MAP_CTCOU_DateFrom
,MAP_CTCOU_DateTo
FROM T_MAP_Contacts_Ref_OrganisationalUnit
WHERE MAP_CTCOU_SoftDeleteStatus = 1
AND MAP_CTCOU_CT_UID = T_Contacts.CT_UID

/*
AND
(
(__in_DateFrom <= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateTo)
AND
(__in_DateTo >= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateFrom)
)
*/
ORDER BY MAP_CTCOU_DateFrom
LIMIT 1

) AS FirstOE

And for SQL-Server

SELECT * FROM T_Contacts

--LEFT JOIN T_MAP_Contacts_Ref_OrganisationalUnit ON MAP_CTCOU_CT_UID = T_Contacts.CT_UID AND
MAP_CTCOU_SoftDeleteStatus = 1
--WHERE T_MAP_Contacts_Ref_OrganisationalUnit.MAP_CTCOU_UID IS NULL -- 989

-- CROSS APPLY --
OUTER APPLY =0

INNER JOIN
LEFT JOIN

GoalKicker.com - SQL Notes for Professionals 71

http://goalkicker.com/

SELECT TOP 1
--MAP_CTCOU_UID
MAP_CTCOU_CT_UID
,MAP_CTCOU_COU_UID
,MAP_CTCOU_DateFrom
,MAP_CTCOU_DateTo
FROM T_MAP_Contacts_Ref_OrganisationalUnit
WHERE MAP_CTCOU_SoftDeleteStatus = 1
AND MAP_CTCOU_CT_UID = T_Contacts.CT_UID

/%
AND
(
(@in_DateFrom <= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateTo)
AND
(@in_DateTo >= T_MAP_Contacts_Ref_OrganisationalUnit.MAP_KTKOE_DateFrom)
)
*/

ORDER BY MAP_CTCOU_DateFrom
) AS FirstOE

Section 18.8: FULL JOIN

One type of JOIN that is less known, is the FULL JOIN.
(Note: FULL JOIN is not supported by MySQL as per 2016)

A FULL OUTER JOIN returns all rows from the left table, and all rows from the right table.

If there are rows in the left table that do not have matches in the right table, or if there are rows in right table that
do not have matches in the left table, then those rows will be listed, too.

Example 1:

SELECT * FROM TableT

FULL JOIN Table2
ON 1 = 2

Example 2:

SELECT
COALESCE(T_Budget.Year, tYear.Year) AS RPT_BudgetInYear
,COALESCE (T_Budget.Value, ©.0) AS RPT_Value

FROM T_Budget

FULL JOIN tfu_RPT_All_CreateYearInterval(@budget_year_from, @budget_year_to) AS tYear
ON tYear.Year = T_Budget.Year

Note that if you're using soft-deletes, you'll have to check the soft-delete status again in the WHERE-clause (because
FULL JOIN behaves kind-of like a UNION);
It's easy to overlook this little fact, since you put AP_SoftDeleteStatus = 1 in the join clause.

Also, if you are doing a FULL JOIN, you'll usually have to allow NULL in the WHERE-clause; forgetting to allow NULL
on a value will have the same effects as an INNER join, which is something you don't want if you're doing a FULL
JOIN.

Example:

GoalKicker.com - SQL Notes for Professionals 72

http://goalkicker.com/

SELECT

T_AccountPlan.AP_UID

, T_AccountPlan.AP_Code

, T_AccountPlan.AP_Lang_EN

, T_BudgetPositions.BUP_Budget

, T_BudgetPositions.BUP_UID

, T_BudgetPositions.BUP_Jahr
FROM T_BudgetPositions

FULL JOIN T_AccountPlan
ON T_AccountPlan.AP_UID = T_BudgetPositions.BUP_AP_UID
AND T_AccountPlan.AP_SoftDeleteStatus = 1

WHERE (1=1)

AND (T_BudgetPositions.BUP_SoftDeleteStatus = 1 OR T_BudgetPositions.BUP_SoftDeleteStatus IS NULL)

AND (T_AccountPlan.AP_SoftDeleteStatus = 1 OR T_AccountPlan.AP_SoftDeleteStatus IS NULL)

Section 18.9: Recursive JOINs

Recursive joins are often used to obtain parent-child data. In SQL, they are implemented with recursive common
table expressions, for example:

WITH RECURSIVE MyDescendants AS (
SELECT Name
FROM People
WHERE Name = 'John Doe'

UNION ALL
SELECT People.Name

FROM People
JOIN MyDescendants ON People.Name = MyDescendants.Parent

)
SELECT * FROM MyDescendants;

Section 18.10: Basic explicit inner join

A basic join (also called "inner join") queries data from two tables, with their relationship defined in a join clause.

The following example will select employees' first names (FName) from the Employees table and the name of the
department they work for (Name) from the Departments table:

SELECT Employees.FName, Departments.Name
FROM Employees

JOIN Departments

ON Employees.DepartmentId = Departments.Id

This would return the following from the example database:

Employees.FName Departments.Name

James HR
John HR
Richard Sales

Section 18.11: Joining on a Subquery

Joining a subquery is often used when you want to get aggregate data from a child/details table and display that

GoalKicker.com - SQL Notes for Professionals

73

http://goalkicker.com/

along with records from the parent/header table. For example, you might want to get a count of child records, an
average of some numeric column in child records, or the top or bottom row based on a date or numeric field. This
example uses aliases, which arguable makes queries easier to read when you have multiple tables involved. Here's
what a fairly typical subquery join looks like. In this case we are retrieving all rows from the parent table Purchase
Orders and retrieving only the first row for each parent record of the child table PurchaseOrderLineltems.

SELECT po.Id, po.PODate, po.VendorName, po.Status, item.ItemNo,
item.Description, item.Cost, item.Price
FROM PurchaseOrders po
LEFT JOIN
(
SELECT 1.PurchaseOrderId, 1.ItemNo, 1l.Description, 1.Cost, 1.Price, Min(1l.id) as Id
FROM PurchaseOrderLineItems 1
GROUP BY 1.PurchaseOrderId, 1.ItemNo, 1.Description, 1.Cost, 1l.Price
) AS item ON item.PurchaseOrderId = po.Id

GoalKicker.com - SQL Notes for Professionals 74

http://goalkicker.com/

Chapter 19: UPDATE

Section 19.1: UPDATE with data from another table

The examples below fill in a PhoneNumber for any Employee who is also a Customer and currently does not have a
phone number set in the Employees Table.

(These examples use the Employees and Customers tables from the Example Databases.)
Standard SQL

Update using a correlated subquery:

UPDATE
Employees
SET PhoneNumber =
(SELECT
¢ .PhoneNumber
FROM
Customers c
WHERE
c.FName = Employees.FName
AND c.LName = Employees.LName)
WHERE Employees.PhoneNumber IS NULL

SQL:2003
Update using MERGE:

MERGE INTO

Employees e
USING

Customers c
ON

e.FName = c.Fname

AND e.LName = c.LName

AND e.PhoneNumber IS NULL
WHEN MATCHED THEN

UPDATE

SET PhoneNumber = c.PhoneNumber

SQL Server
Update using INNER JOIN:

UPDATE
Employees
SET
PhoneNumber = c.PhoneNumber
FROM
Employees e
INNER JOIN Customers c
ON e.FName = c.FName
AND e.LName = c.LName
WHERE
PhoneNumber IS NULL

GoalKicker.com - SQL Notes for Professionals

http://goalkicker.com/

Section 19.2: Modifying existing values
This example uses the Cars Table from the Example Databases.

UPDATE Cars
SET TotalCost = TotalCost + 100
WHERE Id = 3 or Id = 4

Update operations can include current values in the updated row. In this simple example the TotalCost is
incremented by 100 for two rows:

e The TotalCost of Car #3 is increased from 100 to 200
e The TotalCost of Car #4 is increased from 1254 to 1354

A column's new value may be derived from its previous value or from any other column's value in the same table or
a joined table.

Section 19.3: Updating Specified Rows
This example uses the Cars Table from the Example Databases.

UPDATE

Cars
SET

Status = 'READY'
WHERE

Id = 4

This statement will set the status of the row of 'Cars' with id 4 to "READY".

WHERE clause contains a logical expression which is evaluated for each row. If a row fulfills the criteria, its value is
updated. Otherwise, a row remains unchanged.

Section 19.4: Updating All Rows

This example uses the Cars Table from the Example Databases.

UPDATE Cars
SET Status = 'READY'

This statement will set the 'status' column of all rows of the 'Cars' table to "READY" because it does not have a WHERE
clause to filter the set of rows.

Section 19.5: Capturing Updated records
Sometimes one wants to capture the records that have just been updated.

CREATE TABLE #TempUpdated(ID INT)

Update TableName SET Coll = 42
OUTPUT inserted.ID INTO #TempUpdated
WHERE Id > 50

GoalKicker.com - SQL Notes for Professionals 76

http://goalkicker.com/

Chapter 20: CREATE Database
Section 20.1: CREATE Database

A database is created with the following SQL command:
CREATE DATABASE myDatabase;

This would create an empty database named myDatabase where you can create tables.

GoalKicker.com - SQL Notes for Professionals

77

http://goalkicker.com/

Chapter 21: CREATE TABLE

Parameter Details

tableName The name of the table

Contains an 'enumeration' of all the columns that the table have. See Create a New Table for more
details.

The CREATE TABLE statement is used create a new table in the database. A table definition consists of a list of

columns, their types, and any integrity constraints.

columns

Section 21.1: Create Table From Select
You may want to create a duplicate of a table:

CREATE TABLE ClonedEmployees AS SELECT * FROM Employees;

You can use any of the other features of a SELECT statement to modify the data before passing it to the new table.
The columns of the new table are automatically created according to the selected rows.

CREATE TABLE ModifiedEmployees AS
SELECT Id, CONCAT(FName," ", LName) AS FullName FROM Employees
WHERE Id > 19;

Section 21.2: Create a New Table

A basic Employees table, containing an ID, and the employee's first and last name along with their phone number
can be created using

CREATE TABLE Employees(
Id int identity(1,1) primary key not null,
FName varchar(2@) not null,
LName varchar(20) not null,
PhoneNumber varchar(10) not null

);
This example is specific to Transact-SQL
CREATE TABLE creates a new table in the database, followed by the table name, Employees

This is then followed by the list of column names and their properties, such as the ID

Id int identity(1,1) not null

Value Meaning
Id the column's name.
int is the data type.
identity(1,1) states that column will have auto generated values starting at 1 and incrementing by 1 for each new
row.
primary key states that all values in this column will have unique values
not null states that this column cannot have null values

Section 21.3: CREATE TABLE With FOREIGN KEY

Below you could find the table Employees with a reference to the table Cities.

CREATE TABLE Cities(

GoalKicker.com - SQL Notes for Professionals 78

https://en.wikipedia.org/wiki/Transact-SQL
http://goalkicker.com/

CityID INT IDENTITY(1,1) NOT NULL,
Name VARCHAR(20) NOT NULL,
Zip VARCHAR(10) NOT NULL

)

CREATE TABLE Employees(
EmployeeID INT IDENTITY (1,1) NOT NULL,
FirstName VARCHAR(20) NOT NULL,
LastName VARCHAR(20) NOT NULL,
PhoneNumber VARCHAR(10) NOT NULL,
CityID INT FOREIGN KEY REFERENCES Cities(CityID)

)

Here could you find a database diagram.

, Employees 1 , Cities 1
EmployeelD — CitylD
FirstName Name
Field Zip
PhoneNumber) ’
CitylD —

The column CityID of table Employees will reference to the column CityID of table Cities. Below you could find
the syntax to make this.

CityID INT FOREIGN KEY REFERENCES Cities(CityID)

Value Meaning
CityID Name of the column
int type of the column

FOREIGN KEY Makes the foreign key (optional)
REFERENCES Makes the reference
Cities(CityID) to the table Cities column CityID

Important: You couldn't make a reference to a table that not exists in the database. Be source to make first the
table Cities and second the table Employees. If you do it vise versa, it will throw an error.

Section 21.4: Duplicate a table

To duplicate a table, simply do the following:

CREATE TABLE newtable LIKE oldtable;
INSERT newtable SELECT * FROM oldtable;

Section 21.5: Create a Temporary or In-Memory Table
PostgreSQL and SQLite

To create a temporary table local to the session:

GoalKicker.com - SQL Notes for Professionals 79

http://i.stack.imgur.com/ch7t3.png
http://goalkicker.com/

CREATE TEMP TABLE MyTable(...);
SQL Server

To create a temporary table local to the session:

CREATE TABLE #TempPhysical(...);

To create a temporary table visible to everyone:

CREATE TABLE ##TempPhysicalVisibleToEveryone(..

To create an in-memory table:

DECLARE @TempMemory TABLE(...);

¥

GoalKicker.com - SQL Notes for Professionals

80

http://goalkicker.com/

Chapter 22: CREATE FUNCTION

Argument Description
function_name the name of function
list_of_paramenters parameters that function accepts
return_data_type type that function returs. Some SQL data type
function_body the code of function
scalar_expression scalar value returned by function

Section 22.1: Create a new Function

CREATE FUNCTION FirstWord (@input varchar(1600))
RETURNS varchar(1000)
AS
BEGIN
DECLARE @output varchar(1000)
SET @output = SUBSTRING(@input, @, CASE CHARINDEX(' ', @input)
WHEN © THEN LEN(@input) + 1
ELSE CHARINDEX(' ', @input)
END)

RETURN @output
END

This example creates a function named FirstWord, that accepts a varchar parameter and returns another varchar

value.

GoalKicker.com - SQL Notes for Professionals

81

http://www.w3schools.com/sql/sql_datatypes_general.asp
http://goalkicker.com/

Chapter 23: TRY/CATCH
Section 23.1: Transaction In a TRY/CATCH

This will rollback both inserts due to an invalid datetime:

BEGIN TRANSACTION
BEGIN TRY
INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
VALUES (5.2, GETDATE(), 1)
INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
VALUES (5.2, 'not a date', 1)
COMMIT TRANSACTION
END TRY
BEGIN CATCH
THROW
ROLLBACK TRANSACTION
END CATCH

This will commit both inserts:

BEGIN TRANSACTION
BEGIN TRY
INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
VALUES (5.2, GETDATE(), 1)
INSERT INTO dbo.Sale(Price, SaleDate, Quantity)
VALUES (5.2, GETDATE(), 1)
COMMIT TRANSACTION
END TRY
BEGIN CATCH
THROW
ROLLBACK TRANSACTION
END CATCH

GoalKicker.com - SQL Notes for Professionals

82

http://goalkicker.com/

Chapter 24: UNION / UNION ALL

UNION keyword in SQL is used to combine to SELECT statement results with out any duplicate. In order to use
UNION and combine results both SELECT statement should have same number of column with same data type in

same order, but the length of column can be different.

Section 24.1: Basic UNION ALL query

CREATE TABLE HR_EMPLOYEES

(

)

CREATE TABLE FINANCE_EMPLOYEES

(

)

Let's say we want to extract the names of all the managers from our departments.

PersonID int,

LastName VARCHAR(39),
FirstName VARCHAR(30),
Position VARCHAR(30)

PersonID INT,

LastName VARCHAR(39),
FirstName VARCHAR(390),
Position VARCHAR(39)

Using a UNION we can get all the employees from both HR and Finance departments, which hold the position of a
manager

SELE

FROM

WHER

UNIO
SELE

FROM

WHER

CT
FirstName, LastName

HR_EMPLOYEES

E

Position = 'manager'
N ALL

CT

FirstName, LastName

FINANCE_EMPLOYEES
E
Position = 'manager'

The UNION statement removes duplicate rows from the query results. Since it is possible to have people having the

same Name and position in both departments we are using UNION ALL, in order not to remove duplicates.

If you want to use an alias for each output column, you can just put them in the first select statement, as follows:

SELE

FROM

WHER

UNIO
SELE

FROM

CT

FirstName as 'First Name',

HR_EMPLOYEES

E

Position = 'manager'
N ALL

CT

FirstName, LastName

LastName as

‘Last Name'

GoalKicker.com - SQL Notes for Professionals

83

http://goalkicker.com/

FINANCE_EMPLOYEES
WHERE
Position = 'manager’

Section 24.2: Simple explanation and Example
In simple terms:
e UNION joins 2 result sets while removing duplicates from the result set

e UNION ALL joins 2 result sets without attempting to remove duplicates

One mistake many people make is to use a UNION when they do not need to have the duplicates removed.
The additional performance cost against large results sets can be very significant.

When you might need UNION

Suppose you need to filter a table against 2 different attributes, and you have created separate non-clustered
indexes for each column. A UNION enables you to leverage both indexes while still preventing duplicates.

SELECT C1, C2, C3 FROM Tablel WHERE C1 = @Paramil
UNION

SELECT C1, C2, C3 FROM Tablel WHERE C2 = @Param2

This simplifies your performance tuning since only simple indexes are needed to perform these queries optimally.
You may even be able to get by with quite a bit fewer non-clustered indexes improving overall write performance
against the source table as well.

When you might need UNION ALL

Suppose you still need to filter a table against 2 attributes, but you do not need to filter duplicate records (either
because it doesn't matter or your data wouldn't produce any duplicates during the union due to your data model
design).

SELECT C1 FROM Table1
UNION ALL
SELECT C1 FROM Table2

This is especially useful when creating Views that join data that is designed to be physically partitioned across
multiple tables (maybe for performance reasons, but still wants to roll-up records). Since the data is already split,
having the database engine remove duplicates adds no value and just adds additional processing time to the
queries.

GoalKicker.com - SQL Notes for Professionals 84

http://goalkicker.com/

Chapter 25: ALTER TABLE

ALTER command in SQL is used to modify column/constraint in a table

Section 25.1: Add Column(s)

ALTER TABLE Employees
ADD StartingDate date NOT NULL DEFAULT GetDate(),
DateOfBirth date NULL

The above statement would add columns named StartingDate which cannot be NULL with default value as current
date and Date0OfBirth which can be NULL in Employees table.

Section 25.2: Drop Column

ALTER TABLE Employees
DROP COLUMN salary;

This will not only delete information from that column, but will drop the column salary from table employees(the
column will no more exist).

Section 25.3: Add Primary Key

ALTER TABLE EMPLOYEES ADD pk_EmployeeID PRIMARY KEY (ID)

This will add a Primary key to the table Employees on the field ID. Including more than one column name in the
parentheses along with ID will create a Composite Primary Key. When adding more than one column, the column
names must be separated by commas.

ALTER TABLE EMPLOYEES ADD pk_EmployeeID PRIMARY KEY (ID, FName)

Section 25.4: Alter Column

ALTER TABLE Employees
ALTER COLUMN StartingDate DATETIME NOT NULL DEFAULT (GETDATE())

This query will alter the column datatype of StartingDate and change it from simple date to datetime and set
default to current date.

Section 25.5: Drop Constraint

ALTER TABLE Employees
DROP CONSTRAINT DefaultSalary

This Drops a constraint called DefaultSalary from the employees table definition.

Note: Ensure that constraints of the column are dropped before dropping a column.

GoalKicker.com - SQL Notes for Professionals 85

http://goalkicker.com/

Chapter 26: INSERT
Section 26.1: INSERT data from another table using SELECT

INSERT INTO Customers (FName, LName, PhoneNumber)
SELECT FName, LName, PhoneNumber FROM Employees

This example will insert all Employees into the Customers table. Since the two tables have different fields and you
don't want to move all the fields over, you need to set which fields to insert into and which fields to select. The
correlating field names don't need to be called the same thing, but then need to be the same data type. This
example is assuming that the Id field has an Identity Specification set and will auto increment.

If you have two tables that have exactly the same field names and just want to move all the records over you can
use:

INSERT INTO Tablel
SELECT * FROM Table2

Section 26.2: Insert New Row

INSERT INTO Customers
VALUES ('Zack', 'Smith', 'zack@example.com', '7049989942',6 'EMAIL');

This statement will insert a new row into the Customers table. Note that a value was not specified for the Id column,
as it will be added automatically. However, all other column values must be specified.

Section 26.3: Insert Only Specified Columns

INSERT INTO Customers (FName, LName, Email, PreferredContact)
VALUES ('Zack', 'Smith', 'zack@example.com', 'EMAIL');

This statement will insert a new row into the Customers table. Data will only be inserted into the columns specified -
note that no value was provided for the PhoneNumber column. Note, however, that all columns marked as not null
must be included.

Section 26.4: Insert multiple rows at once

Multiple rows can be inserted with a single insert command:
INSERT INTO tbl_name (field1, field2, field3)
VALUES (1,2,3), (4,5,6), (7,8,9);

For inserting large quantities of data (bulk insert) at the same time, DBMS-specific features and recommendations
exist.

MySQL - LOAD DATA INFILE

MSSQL - BULK INSERT

GoalKicker.com - SQL Notes for Professionals 86

http://dev.mysql.com/doc/refman/5.7/en/load-data.html
https://msdn.microsoft.com/en-us/library/ms188365.aspx
http://goalkicker.com/

Chapter 27: MERGE

MERGE (often also called UPSERT for "update or insert") allows to insert new rows or, if a row already exists, to
update the existing row. The point is to perform the whole set of operations atomically (to guarantee that the data
remain consistent), and to prevent communication overhead for multiple SQL statements in a client/server system.

Section 27.1: MERGE to make Target match Source

MERGE INTO targetTable t
USING sourceTable s
ON t.PKID = s.PKID
WHEN MATCHED AND NOT EXISTS (
SELECT s.ColumnA, s.ColumnB, s.ColumnC
INTERSECT
SELECT t.ColumnA, t.ColumnB, s.ColumnC
)
THEN UPDATE SET
t.ColumnA = s.ColumnA
,t.ColumnB = s.ColumnB
,t.ColumnC = s.ColumnC
WHEN NOT MATCHED BY TARGET
THEN INSERT (PKID, ColumnA, ColumnB, ColumnC)
VALUES (s.PKID, s.ColumnA, s.ColumnB, s.ColumnC)
WHEN NOT MATCHED BY SOURCE
THEN DELETE

Note: The AND NOT EXISTS portion prevents updating records that haven't changed. Using the INTERSECT construct
allows nullable columns to be compared without special handling.

Section 27.2: MySQL: counting users by name

Suppose we want to know how many users have the same name. Let us create table users as follows:

create table users(
id int primary key auto_increment,
name varchar(8),
count int,
unique key name(name)

)

Now, we just discovered a new user named Joe and would like to take him into account. To achieve that, we need to
determine whether there is an existing row with his name, and if so, update it to increment count; on the other
hand, if there is no existing row, we should create it.

MySQL uses the following syntax : insert ... on duplicate key update ... In this case:

insert into users(name, count)
values ('Joe', 1)
on duplicate key update count=count+1;

Section 27.3: PostgreSQL: counting users by nhame

Suppose we want to know how many users have the same name. Let us create table users as follows:

GoalKicker.com - SQL Notes for Professionals 87

https://dev.mysql.com/doc/refman/5.7/en/insert-on-duplicate.html
http://goalkicker.com/

create table users(
id serial,
name varchar(8) unique,
count int

)

Now, we just discovered a new user named Joe and would like to take him into account. To achieve that, we need to
determine whether there is an existing row with his name, and if so, update it to increment count; on the other
hand, if there is no existing row, we should create it.

PostgreSQL uses the following syntax : insert ... on conflict ... do update In this case:

insert into users(name, count)
values('Joe', 1)
on conflict (name) do update set count = users.count + 1;

GoalKicker.com - SQL Notes for Professionals 88

https://www.postgresql.org/docs/current/static/sql-insert.html
http://goalkicker.com/

Chapter 28: cross apply, outer apply
Section 28.1: CROSS APPLY and OUTER APPLY basics

Apply will be used when when table valued function in the right expression.

create a Department table to hold information about departments. Then create an Employee table which hold
information about the employees. Please note, each employee belongs to a department, hence the Employee table
has referential integrity with the Department table.

First query selects data from Department table and uses CROSS APPLY to evaluate the Employee table for each
record of the Department table. Second query simply joins the Department table with the Employee table and all
the matching records are produced.

SELECT =*
FROM Department D
CROSS APPLY (

SELECT =*

FROM Employee E

WHERE E.DepartmentID = D.DepartmentID
) A
GO
SELECT =*
FROM Department D
INNER JOIN Employee E

ON D.DepartmentID = E.DepartmentID

If you look at the results they produced, it is the exact same result-set; How does it differ from a JOIN and how does
it help in writing more efficient queries.

The first query in Script #2 selects data from Department table and uses OUTER APPLY to evaluate the Employee
table for each record of the Department table. For those rows for which there is not a match in Employee table,
those rows contains NULL values as you can see in case of row 5 and 6. The second query simply uses a LEFT
OUTER JOIN between the Department table and the Employee table. As expected the query returns all rows from
Department table; even for those rows for which there is no match in the Employee table.

SELECT =*
FROM Department D
OUTER APPLY (

SELECT =*

FROM Employee E

WHERE E.DepartmentID = D.DepartmentID
) A
GO
SELECT *
FROM Department D
LEFT OUTER JOIN Employee E

ON D.DepartmentID = E.DepartmentID

GO

Even though the above two queries return the same information, the execution plan will be bit different. But cost
wise there will be not much difference.

Now comes the time to see where the APPLY operator is really required. In Script #3, | am creating a table-valued
function which accepts DepartmentID as its parameter and returns all the employees who belong to this
department. The next query selects data from Department table and uses CROSS APPLY to join with the function

GoalKicker.com - SQL Notes for Professionals 89

http://goalkicker.com/

we created. It passes the DepartmentID for each row from the outer table expression (in our case Department
table) and evaluates the function for each row similar to a correlated subquery. The next query uses the OUTER
APPLY in place of CROSS APPLY and hence unlike CROSS APPLY which returned only correlated data, the OUTER
APPLY returns non-correlated data as well, placing NULLs into the missing columns.

CREATE FUNCTION dbo.fn_GetAllEmployeeOfADepartment (@DeptID AS int)
RETURNS TABLE
AS

RETURN

(

SELECT

*

FROM Employee E

WHERE E.DepartmentID = @DeptID

)
GO
SELECT

*
FROM Department D
CROSS APPLY dbo.fn_GetAllEmployeeOfADepartment(D.DepartmentID)
GO
SELECT

*
FROM Department D
OUTER APPLY dbo.fn_GetAllEmployeeOfADepartment(D.DepartmentID)
GO

So now if you are wondering, can we use a simple join in place of the above queries? Then the answer is NO, if you
replace CROSS/OUTER APPLY in the above queries with INNER JOIN/LEFT OUTER JOIN, specify ON clause (something
as 1=1) and run the query, you will get "The multi-part identifier "D.DepartmentID" could not be bound." error. This

is because with JOINs the execution context of outer query is different from the execution context of the function

(or a derived table), and you can not bind a value/variable from the outer query to the function as a parameter.
Hence the APPLY operator is required for such queries.

GoalKicker.com - SQL Notes for Professionals

90

http://goalkicker.com/

Chapter 29: DELETE

The DELETE statement is used to delete records from a table.

Section 29.1: DELETE all rows

Omitting a WHERE clause will delete all rows from a table.
DELETE FROM Employees

See TRUNCATE documentation for details on how TRUNCATE performance can be better because it ignores triggers
and indexes and logs to just delete the data.

Section 29.2: DELETE certain rows with WHERE

This will delete all rows that match the WHERE criteria.

DELETE FROM Employees
WHERE FName = 'John'

Section 29.3: TRUNCATE clause

Use this to reset the table to the condition at which it was created. This deletes all rows and resets values such as
auto-increment. It also doesn't log each individual row deletion.

TRUNCATE TABLE Employees

Section 29.4: DELETE certain rows based upon comparisons
with other tables

It is possible to DELETE data from a table if it matches (or mismatches) certain data in other tables.

Let's assume we want to DELETEdata from Source once its loaded into Target.

DELETE FROM Source

WHERE EXISTS (SELECT 1 -- specific value in SELECT doesn't matter
FROM Target
Where Source.ID = Target.ID)

Most common RDBMS implementations (e.g. MySQL, Oracle, PostgresSQL, Teradata) allow tables to be joined
during DELETE allowing more complex comparison in a compact syntax.

Adding complexity to original scenario, let's assume Aggregate is built from Target once a day and does not contain
the same ID but contains the same date. Let us also assume that we want to delete data from Source only after the
aggregate is populated for the day.

On MySQL, Oracle and Teradata this can be done using:

DELETE FROM Source
WHERE Source.ID = TargetSchema.Target.ID
AND TargetSchema.Target.Date = AggregateSchema.Aggregate.Date

In PostgreSQL use:

GoalKicker.com - SQL Notes for Professionals 91

http://goalkicker.com/

DELETE FROM Source
USING TargetSchema.Target, AggregateSchema.Aggregate
WHERE Source.ID = TargetSchema.Target.ID
AND TargetSchema.Target.DataDate = AggregateSchema.Aggregate.AggDate

This essentially results in INNER JOINs between Source, Target and Aggregate. The deletion is performed on Source
when the same IDs exist in Target AND date present in Target for those IDs also exists in Aggregate.

Same query may also be written (on MySQL, Oracle, Teradata) as:

DELETE Source
FROM Source, TargetSchema.Target, AggregateSchema.Aggregate
WHERE Source.ID = TargetSchema.Target.ID
AND TargetSchema.Target.DataDate = AggregateSchema.Aggregate.AggDate

Explicit joins may be mentioned in Delete statements on some RDBMS implementations (e.g. Oracle, MySQL) but
not supported on all platforms (e.g. Teradata does not support them)

Comparisons can be designed to check mismatch scenarios instead of matching ones with all syntax styles (observe
NOT EXISTS below)

DELETE FROM Source

WHERE NOT EXISTS (SELECT 1 -- specific value in SELECT doesn't matter
FROM Target
Where Source.ID = Target.ID)

GoalKicker.com - SQL Notes for Professionals 92

http://goalkicker.com/

Chapter 30: TRUNCATE

The TRUNCATE statement deletes all data from a table. This is similar to DELETE with no filter, but, depending on
the database software, has certain restrictions and optimizations.

Section 30.1: Removing all rows from the Employee table

TRUNCATE TABLE Employee;

Using truncate table is often better then using DELETE TABLE as it ignores all the indexes and triggers and just
removes everything.

Delete table is a row based operation this means that each row is deleted. Truncate table is a data page operation
the entire data page is reallocated. If you have a table with a million rows it will be much faster to truncate the table
than it would be to use a delete table statement.

Though we can delete specific Rows with DELETE, we cannot TRUNCATE specific rows, we can only TRUNCATE all
the records at once. Deleting All rows and then inserting a new record will continue to add the Auto incremented
Primary key value from the previously inserted value, where as in Truncate, the Auto Incremental primary key value
will also get reset and starts from 1.

Note that when truncating table, no foreign keys must be present, otherwise you will get an error.

GoalKicker.com - SQL Notes for Professionals 93

http://goalkicker.com/

Chapter 31: DROP Table

Section 31.1: Check for existence before dropping

MySQL Version = 3.19

DROP TABLE IF EXISTS MyTable;
PostgreSQL version = 8.x

DROP TABLE IF EXISTS MyTable;
SQL Server Version = 2005

If Exists(Select * From Information_Schema.Tables
Where Table_Schema = 'dbo'
And Table_Name = 'MyTable')
Drop Table dbo.MyTable

SQLite version = 3.0
DROP TABLE IF EXISTS MyTable;

Section 31.2: Simple drop

Drop Table MyTable;

GoalKicker.com - SQL Notes for Professionals

94

http://goalkicker.com/

Chapter 32: DROP or DELETE Database
Section 32.1: DROP Database

Dropping the database is a simple one-liner statement. Drop database will delete the database, hence always
ensure to have a backup of the database if required.

Below is the command to drop Employees Database

DROP DATABASE [dbo].[Employees]

GoalKicker.com - SQL Notes for Professionals

95

http://goalkicker.com/

Chapter 33: Cascading Delete
Section 33.1: ON DELETE CASCADE

Assume you have a application that administers rooms.

Assume further that your application operates on a per client basis (tenant).
You have several clients.

So your database will contain one table for clients, and one for rooms.

Now, every client has N rooms.
This should mean that you have a foreign key on your room table, referencing the client table.

ALTER TABLE dbo.T_Room WITH CHECK ADD CONSTRAINT FK_T_Room_T_Client FOREIGN KEY(RM_CLI_ID)
REFERENCES dbo.T_Client (CLI_ID)
GO

Assuming a client moves on to some other software, you'll have to delete his data in your software. But if you do

DELETE FROM T_Client WHERE CLI_ID = Xx

Then you'll get a foreign key violation, because you can't delete the client when he still has rooms.

Now you'd have write code in your application that deletes the client's rooms before it deletes the client. Assume
further that in the future, many more foreign key dependencies will be added in your database, because your
application's functionality expands. Horrible. For every modification in your database, you'll have to adapt your
application's code in N places. Possibly you'll have to adapt code in other applications as well (e.g. interfaces to
other systems).

There is a better solution than doing it in your code.
You can just add ON DELETE CASCADE to your foreign key.

ALTER TABLE dbo.T_Room -- WITH CHECK -- SQL-Server can specify WITH CHECK/WITH NOCHECK
ADD CONSTRAINT FK_T_Room_T_Client FOREIGN KEY(RM_CLI_ID)

REFERENCES dbo.T_Client (CLI_ID)

ON DELETE CASCADE

Now you can say

DELETE FROM T_Client WHERE CLI_ID = x

and the rooms are automagically deleted when the client is deleted.
Problem solved - with no application code changes.

One word of caution: In Microsoft SQL-Server, this won't work if you have a table that references itselfs. So if you try
to define a delete cascade on a recursive tree structure, like this:

IF NOT EXISTS (SELECT * FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_T_FMS_Navigation_T_FMS_Navigation]') AND parent_object_id =
OBJECT_ID(N'[dbo].[T_FMS_Navigation]'))

ALTER TABLE [dbo].[T_FMS_Navigation] WITH CHECK ADD CONSTRAINT
[FK_T_FMS_Navigation_T_FMS_Navigation] FOREIGN KEY([NA_NA_UID])

REFERENCES [dbo].[T_FMS_Navigation]| ([NA_UID])

ON DELETE CASCADE

GoalKicker.com - SQL Notes for Professionals 96

http://goalkicker.com/

GO

IF EXISTS (SELECT % FROM sys.foreign_keys WHERE object_id =
OBJECT_ID(N'[dbo].[FK_T_FMS_Navigation_T_FMS_Navigation]') AND parent_object_id =
OBJECT_ID(N'[dbo].[T_FMS_Navigation]'))

ALTER TABLE [dbo].[T_FMS_Navigation] CHECK CONSTRAINT [FK_T_FMS_Navigation_T_FMS_Navigation]
GO

it won't work, because Microsoft-SQL-server doesn't allow you to set a foreign key with ON DELETE CASCADE on a
recursive tree structure. One reason for this is, that the tree is possibly cyclic, and that would possibly lead to a
deadlock.

PostgreSQL on the other hand can do this;

the requirement is that the tree is non-cyclic.

If the tree is cyclic, you'll get a runtime error.

In that case, you'll just have to implement the delete function yourselfs.

A word of caution:
This means you can't simply delete and re-insert the client table anymore, because if you do this, it will delete all
entries in "T_Room"... (no non-delta updates anymore)

GoalKicker.com - SQL Notes for Professionals

97

http://goalkicker.com/

Chapter 34: GRANT and REVOKE

Section 34.1: Grant/revoke privileges

GRANT SELECT, UPDATE
ON Employees
TO User1, User2;

Grant User1 and User2 permission to perform SELECT and UPDATE operations on table Employees.

REVOKE SELECT, UPDATE
ON Employees
FROM User1, User?2;

Revoke from User1 and User2 the permission to perform SELECT and UPDATE operations on table Employees.

GoalKicker.com - SQL Notes for Professionals

98

http://goalkicker.com/

Chapter 35: XML

Section 35.1: Query from XML Data Type

DECLARE @xmlIN XML = '<TableData>
<aaa Main="First">
<row name="a" value="1" />
<row name="b" value="2" />
<row name="c" value="3" />
</aaa>
<aaa Main="Second">
<row name="a" value="3" />
<row name="b" value="4" />
<row name="c" value="5" />
</aaa>
<aaa Main="Third">
<row name="a" value="10" />
<row name="b" value="20" />
<row name="c" value="30" />
</aaa>

</TableData>"

SELECT t.col.value('../@Main', 'varchar(10)') [Header],
t.col.value('@name', 'VARCHAR(25)') [name],
t.col.value('@value', 'VARCHAR(25)') [Value]

FROM @xmlIn.nodes('//TableData/aaa/row') AS t (col)

Results

Header name Value
First a 1
First b 2
First C 3
Second a 3
Second b 4
Second C 5
Third a 10
Third b 20
Third C 30

GoalKicker.com - SQL Notes for Professionals

99

http://goalkicker.com/

Chapter 36: Primary Keys

Section 36.1: Creating a Primary Key

CREATE TABLE Employees (
Id int NOT NULL,
PRIMARY KEY (Id),

This will create the Employees table with 'Id" as its primary key. The primary key can be used to uniquely identify the

rows of a table. Only one primary key is allowed per table.

A key can also be composed by one or more fields, so called composite key, with the following syntax:

CREATE TABLE EMPLOYEE (
el_id INT,
e2_id INT,
PRIMARY KEY (el1_id, e2_id)

Section 36.2: Using Auto Increment

Many databases allow to make the primary key value automatically increment when a new key is added. This

ensures that every key is different.

MySQL

CREATE TABLE Employees (
Id int NOT NULL AUTO_INCREMENT,
PRIMARY KEY (Id)

)

PostgreSQL

CREATE TABLE Employees (
Id SERIAL PRIMARY KEY

DE
SQL Server

CREATE TABLE Employees (
Id int NOT NULL IDENTITY,
PRIMARY KEY (Id)

SQLite

CREATE TABLE Employees (
Id INTEGER PRIMARY KEY

)

GoalKicker.com - SQL Notes for Professionals

100

https://dev.mysql.com/doc/refman/5.7/en/create-table.html#create-table-types-attributes
https://www.postgresql.org/docs/current/static/datatype-numeric.html#DATATYPE-SERIAL
https://msdn.microsoft.com/en-us/library/ms186775.aspx
http://www.sqlite.org/autoinc.html
http://goalkicker.com/

Chapter 37: Indexes

Indexes are a data structure that contains pointers to the contents of a table arranged in a specific order, to help
the database optimize queries. They are similar to the index of book, where the pages (rows of the table) are
indexed by their page number.

Several types of indexes exist, and can be created on a table. When an index exists on the columns used in a
query's WHERE clause, JOIN clause, or ORDER BY clause, it can substantially improve query performance.

Section 37.1: Sorted Index

If you use an index that is sorted the way you would retrieve it, the SELECT statement would not do additional
sorting when in retrieval.

CREATE INDEX ix_scoreboard_score ON scoreboard (score DESC);

When you execute the query

SELECT * FROM scoreboard ORDER BY score DESC;

The database system would not do additional sorting, since it can do an index-lookup in that order.

Section 37.2: Partial or Filtered Index

SQL Server and SQLite allow to create indexes that contain not only a subset of columns, but also a subset of rows.

Consider a constant growing amount of orders with order_state_id equal to finished (2), and a stable amount of
orders with order_state_id equal to started (1).

If your business make use of queries like this:

SELECT id, comment
FROM orders
WHERE order_state_id = 1
AND product_id = @some_value;

Partial indexing allows you to limit the index, including only the unfinished orders:

CREATE INDEX Started_Orders
ON orders(product_id)
WHERE order_state_id = 1;

This index will be smaller than an unfiltered index, which saves space and reduces the cost of updating the index.
Section 37.3: Creating an Index
CREATE INDEX ix_cars_employee_id ON Cars (Employeeld);

This will create an index for the column Employeeld in the table Cars. This index will improve the speed of queries
asking the server to sort or select by values in Employeeld, such as the following:

SELECT * FROM Cars WHERE Employeeld = 1

GoalKicker.com - SQL Notes for Professionals 101

http://goalkicker.com/

The index can contain more than 1 column, as in the following;

CREATE INDEX ix_cars_e_c_o_ids ON Cars (Employeeld, CarId, OwnerId);

In this case, the index would be useful for queries asking to sort or select by all included columns, if the set of
conditions is ordered in the same way. That means that when retrieving the data, it can find the rows to retrieve
using the index, instead of looking through the full table.

For example, the following case would utilize the second index;

SELECT * FROM Cars WHERE EmployeeId = 1 Order by CarId DESC

If the order differs, however, the index does not have the same advantages, as in the following;
SELECT * FROM Cars WHERE OwnerId = 17 Order by CarId DESC

The index is not as helpful because the database must retrieve the entire index, across all values of Employeeld and
CarlD, in order to find which items have OwnerId = 17.

(The index may still be used; it may be the case that the query optimizer finds that retrieving the index and filtering
on the OwnerId, then retrieving only the needed rows is faster than retrieving the full table, especially if the table is
large.)

Section 37.4: Dropping an Index, or Disabling and Rebuilding
It

DROP INDEX ix_cars_employee_id ON Cars;

We can use command DROP to delete our index. In this example we will DROP the index called ix_cars_employee_id on
the table Cars.

This deletes the index entirely, and if the index is clustered, will remove any clustering. It cannot be rebuilt without
recreating the index, which can be slow and computationally expensive. As an alternative, the index can be
disabled:

ALTER INDEX ix_cars_employee_id ON Cars DISABLE;

This allows the table to retain the structure, along with the metadata about the index.

Critically, this retains the index statistics, so that it is possible to easily evaluate the change. If warranted, the index
can then later be rebuilt, instead of being recreated completely;

ALTER INDEX ix_cars_employee_id ON Cars REBUILD;

Section 37.5: Clustered, Unique, and Sorted Indexes

Indexes can have several characteristics that can be set either at creation, or by altering existing indexes.

CREATE CLUSTERED INDEX ix_clust_employee_id ON Employees(EmployeeId, Email);

The above SQL statement creates a new clustered index on Employees. Clustered indexes are indexes that dictate
the actual structure of the table; the table itself is sorted to match the structure of the index. That means there can
be at most one clustered index on a table. If a clustered index already exists on the table, the above statement will

GoalKicker.com - SQL Notes for Professionals 102

http://goalkicker.com/

fail. (Tables with no clustered indexes are also called heaps.)

CREATE UNIQUE INDEX ug_customers_email ON Customers(Email);

This will create an unique index for the column Email in the table Customers. This index, along with speeding up
queries like a normal index, will also force every email address in that column to be unique. If a row is inserted or
updated with a non-unique Email value, the insertion or update will, by default, fail.

CREATE UNIQUE INDEX ix_eid_desc ON Customers(EmployeelD) ;

This creates an index on Customers which also creates a table constraint that the EmployeelD must be unique.
(This will fail if the column is not currently unique - in this case, if there are employees who share an ID.)

CREATE INDEX ix_eid_desc ON Customers(EmployeeID Desc) ;

This creates an index that is sorted in descending order. By default, indexes (in MSSQL server, at least) are
ascending, but that can be changed.

Section 37.6: Rebuild index

Over the course of time B-Tree indexes may become fragmented because of updating/deleting/inserting data. In
SQLServer terminology we can have internal (index page which is half empty) and external (logical page order
doesn't correspond physical order). Rebuilding index is very similar to dropping and re-creating it.

We can re-build an index with

ALTER INDEX index_name REBUILD;

By default rebuilding index is offline operation which locks the table and prevents DML against it , but many RDBMS
allow online rebuilding. Also, some DB vendors offer alternatives to index rebuilding such as REORGANIZE
(SQLServer) or COALESCE/SHRINK SPACE(Oracle).

Section 37.7: Inserting with a Unique Index

UPDATE Customers SET Email = "richard@123@example.com” WHERE id = 1;

This will fail if an unique index is set on the Email column of Customers. However, alternate behavior can be defined
for this case:

UPDATE Customers SET Email = "richard@123@example.com" WHERE id = 1 ON DUPLICATE KEY;

GoalKicker.com - SQL Notes for Professionals 103

http://goalkicker.com/

Chapter 38: Row humber
Section 38.1: Delete All But Last Record (1 to Many Table)

WITH cte AS (
SELECT ProjectID,
ROW_NUMBER() OVER (PARTITION BY ProjectID ORDER BY InsertDate DESC) AS rn
FROM ProjectNotes

)
DELETE FROM cte WHERE rn > 1;

Section 38.2: Row numbers without partitions
Include a row number according to the order specified.

SELECT
ROW_NUMBER() OVER(ORDER BY Fname ASC) AS RowNumber,
Fname,
LName

FROM Employees

Section 38.3: Row numbers with partitions
Uses a partition criteria to group the row numbering according to it.

SELECT
ROW_NUMBER() OVER(PARTITION BY DepartmentId ORDER BY DepartmentId ASC) AS RowNumber,
DepartmentId, Fname, LName

FROM Employees

GoalKicker.com - SQL Notes for Professionals

104

http://goalkicker.com/

Chapter 39: SQL Group By vs Distinct

Section 39.1: Difference between GROUP BY and DISTINCT

GROUP BY is used in combination with aggregation functions. Consider the following table:

orderld userld storeName orderValue orderDate

1 43 Store A 25 20-03-2016
2 57 Store B 50 22-03-2016
3 43 Store A 30 25-03-2016
4 82 Store C 10 26-03-2016
5 21 Store A 45 29-03-2016

The query below uses GROUP BY to perform aggregated calculations.

SELECT
storeName,
COUNT(*) AS total_nr_orders,
COUNT(DISTINCT userId) AS nr_unique_customers,
AVG(orderValue) AS average_order_value,
MIN(orderDate) AS first_order,
MAX(orderDate) AS lastOrder

FROM
orders

GROUP BY
storeName;

and will return the following information

storeName total_nr_orders nr_unique_customers average_order_value first_order lastOrder

Store A 3 2 333 20-03-2016 29-03-2016
Store B 1 1 50 22-03-2016 22-03-2016
Store C 1 1 10 26-03-2016 26-03-2016

While DISTINCT is used to list a unique combination of distinct values for the specified columns.

SELECT DISTINCT
storeName,
userId

FROM
orders;

storeName userld

Store A 43
Store B 57
Store C 82
Store A 21

GoalKicker.com - SQL Notes for Professionals

105

http://goalkicker.com/

Chapter 40: Finding Duplicates on a
Column Subset with Detail

Section 40.1;: Students with same name and date of birth

WITH CTE (StudentId, Fname, LName, DOB, RowCnt)

as (

SELECT StudentId, FirstName, LastName, DateOfBirth as DOB, SUM(1) OVER (Partition By FirstName,
LastName, DateOfBirth) as RowCnt

FROM tblStudent

)
SELECT * from CTE where RowCnt > 1

ORDER BY DOB, LName

This example uses a Common Table Expression and a Window Function to show all duplicate rows (on a subset of
columns) side by side.

GoalKicker.com - SQL Notes for Professionals 106

http://goalkicker.com/

Chapter 41: String Functions

String functions perform operations on string values and return either numeric or string values.

Using string functions, you can, for example, combine data, extract a substring, compare strings, or convert a string
to all uppercase or lowercase characters.

Section 41.1: Concatenate

In (standard ANSI/ISO) SQL, the operator for string concatenation is | |. This syntax is supported by all major
databases except SQL Server:

SELECT 'Hello' || 'World' || '!'; --returns HelloWorld!

Many databases support a CONCAT function to join strings:

SELECT CONCAT('Hello', 'World'); --returns 'HelloWorld'

Some databases support using CONCAT to join more than two strings (Oracle does not):
SELECT CONCAT('Hello', 'World', '!'"); --returns 'HelloWorld!'

In some databases, non-string types must be cast or converted:

SELECT CONCAT('Foo', CAST(42 AS VARCHAR(5)), 'Bar'); --returns 'Foo42Bar'

Some databases (e.g., Oracle) perform implicit lossless conversions. For example, a CONCAT on a CLOB and NCLOB
yields a NCLOB. A CONCAT on a number and a varchar2 results in a varchar2, etc.:

SELECT CONCAT(CONCAT('Foo', 42), 'Bar') FROM dual; --returns Foo42Bar
Some databases can use the non-standard + operator (but in most, + works only for numbers);
SELECT 'Foo' + CAST(42 AS VARCHAR(5)) + 'Bar';

On SQL Server < 2012, where CONCAT is not supported, + is the only way to join strings.

Section 41.2: Length

SQL Server

The LEN doesn't count the trailing space.
SELECT LEN('Hello') -- returns 5
SELECT LEN('Hello '); -- returns 5
The DATALENGTH counts the trailing space.

SELECT DATALENGTH('Hello') -- returns 5

SELECT DATALENGTH('Hello '); -- returns 6

GoalKicker.com - SQL Notes for Professionals 107

http://goalkicker.com/

It should be noted though, that DATALENGTH returns the length of the underlying byte representation of the string,
which depends, i.a., on the charset used to store the string.

DECLARE @str varchar(100) = 'Hello ' --varchar is usually an ASCII string, occupying 1 byte per
char
SELECT DATALENGTH(@str) -- returns 6

DECLARE @nstr nvarchar(160) = 'Hello ' --nvarchar is a unicode string, occupying 2 bytes per char
SELECT DATALENGTH(@nstr) -- returns 12

Oracle
Syntax: Length (char)

Examples:

SELECT Length('Bible') FROM dual; --Returns 5
SELECT Length('righteousness') FROM dual; --Returns 13
SELECT Length(NULL) FROM dual; --Returns NULL

See Also: LengthB, LengthC, Length2, Length4

Section 41.3: Trim empty spaces

Trim is used to remove write-space at the beginning or end of selection
In MSSQL there is no single TRIM()

SELECT LTRIM(' Hello ') --returns 'Hello '
SELECT RTRIM(' Hello ') --returns ' Hello'
SELECT LTRIM(RTRIM(' Hello ')) --returns 'Hello'

MySql and Oracle

SELECT TRIM(' Hello ') --returns 'Hello’

Section 41.4: Upper & lower case

SELECT UPPER('HelloWorld') --returns 'HELLOWORLD'
SELECT LOWER('HelloWorld') --returns 'helloworld’

Section 41.5: Split

Splits a string expression using a character separator. Note that STRING_SPLIT() is a table-valued function.

SELECT value FROM STRING_SPLIT('Lorem ipsum dolor sit amet.', ' ');

Result:

GoalKicker.com - SQL Notes for Professionals 108

http://goalkicker.com/

amet.

Section 41.6: Replace

Syntax:
REPLACE (String to search , String to search for and replace , String to place into the original string)

Example:

SELECT REPLACE('Peter Steve Tom', 'Steve', 'Billy') --Return Values: Peter Billy Tom

Section 41.7: REGEXP

MySQL version = 3.19
Checks if a string matches a regular expression (defined by another string).

SELECT 'bedded' REGEXP '[a-f]' -- returns True

SELECT 'beam' REGEXP '[a-f]' -- returns False

Section 41.8: Substring

Syntax is: SUBSTRING (string_expression, start, length). Note that SQL strings are 1-indexed.

SELECT SUBSTRING('Hello', 1, 2) --returns 'He'
SELECT SUBSTRING('Hello', 3, 3) --returns 'llo’

This is often used in conjunction with the LEN() function to get the last n characters of a string of unknown length.

DECLARE @str1 VARCHAR(1@) = 'Hello', @str2 VARCHAR(10) = 'FooBarBaz';
SELECT SUBSTRING(@str1, LEN(@str1) - 2, 3) --returns 'llo’
SELECT SUBSTRING(@str2, LEN(@str2) - 2, 3) --returns 'Baz’

Section 41.9: Stuff

Stuff a string into another, replacing 0 or more characters at a certain position.
Note: start position is 1-indexed (you start indexing at 1, not 0).

Syntax:

STUFF (character_expression , start , length , replaceWith_expression)
Example:

SELECT STUFF('FooBarBaz', 4, 3, 'Hello') --returns 'FooHelloBaz'

Section 41.10: LEFT - RIGHT

Syntax is:
LEFT (string-expression , integer)

GoalKicker.com - SQL Notes for Professionals 109

http://goalkicker.com/

RIGHT (string-expression , integer)

SELECT LEFT('Hello',2) --return He
SELECT RIGHT('Hello',2) --return lo

Oracle SQL doesn't have LEFT and RIGHT functions. They can be emulated with SUBSTR and LENGTH.
SUBSTR (string-expression, 1, integer)
SUBSTR (string-expression, length(string-expression)-integer+1, integer)

SELECT SUBSTR('Hello',1,2) --return He
SELECT SUBSTR('Hello',LENGTH('Hello')-2+1,2) --return lo

Section 41.11: REVERSE

Syntax is: REVERSE (string-expression)

SELECT REVERSE('Hello') --returns olleH

Section 41.12: REPLICATE

The REPLICATE function concatenates a string with itself a specified number of times.

Syntax is: REPLICATE (string-expression , integer)

SELECT REPLICATE ('Hello',4) --returns 'HelloHelloHelloHello'

Section 41.13: Replace function in sql Select and Update query

The Replace function in SQL is used to update the content of a string. The function call is REPLACE() for MySQL,
Oracle, and SQL Server.

The syntax of the Replace function is:
REPLACE (str, find, repl)

The following example replaces occurrences of South with Southern in Employees table:

FirstName Address
James South New York
John South Boston
Michael South San Diego

Select Statement :

If we apply the following Replace function:

SELECT

FirstName,

REPLACE (Address, 'South', 'Southern') Address
FROM Employees
ORDER BY FirstName

Result:

GoalKicker.com - SQL Notes for Professionals 10

http://goalkicker.com/

FirstName Address
James Southern New York
John Southern Boston
Michael Southern San Diego

Update Statement :

We can use a replace function to make permanent changes in our table through following approach.

Update Employees
Set city = (Address, 'South', 'Southern');

A more common approach is to use this in conjunction with a WHERE clause like this:

Update Employees
Set Address = (Address, 'South', 'Southern')
Where Address LIKE 'South%';

Section 41.14: INSTR

Return the index of the first occurrence of a substring (zero if not found)

Syntax: INSTR (string, substring)

SELECT INSTR('FooBarBar', 'Bar') -- return 4
SELECT INSTR('FooBarBar', 'Xar') -- return ©

Section 41.15: PARSENAME
DATABASE : SQL Server

PARSENAME function returns the specific part of given string(object name). object name may contains string like
object name,owner name, database name and server name.

More details | MSDN : PARSENAME |

Syntax

PARSENAME ('NameOfStringToParse', PartIndex)
Example
To get object name use part index 1

SELECT PARSENAME ('ServerName.DatabaseName.SchemaName.ObjectName',1) // returns ‘ObjectName®
SELECT PARSENAME('[10612-1111].SchoolDatabase.school.Student', 1) // returns “Student’

To get schema name use part index 2

SELECT PARSENAME ('ServerName.DatabaseName.SchemaName.ObjectName',2) // returns “SchemaName"
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',2) // returns ‘school’

To get database name use part index 3

SELECT PARSENAME ('ServerName.DatabaseName.SchemaName.ObjectName',3) // returns “DatabaseName"

GoalKicker.com - SQL Notes for Professionals il

https://msdn.microsoft.com/en-us/library/ms188006.aspx
http://goalkicker.com/

SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student',3) // returns “SchoolDatabase"

To get server name use part index 4

SELECT PARSENAME ('ServerName.DatabaseName.SchemaName.ObjectName',4) // returns “ServerName"
SELECT PARSENAME('[1012-1111].SchoolDatabase.school.Student', 4) // returns “[1812-1111]"

PARSENAME will returns null is specified part is not present in given object name string

GoalKicker.com - SQL Notes for Professionals 12

http://goalkicker.com/

Chapter 42: Functions (Aggregate)

Section 42.1: Conditional aggregation

Payments Table

Customer Payment_type Amount

Peter Credit 100
Peter Credit 300
John Credit 1000
John Debit 500

select customer,
sum(case when payment_type ‘credit' then amount else @ end) as credit,
sum(case when payment_type = 'debit' then amount else @ end) as debit
from payments
group by customer

Result:

Customer Credit Debit
Peter 400 O
John 1000 500

select customer,
sum(case when payment_type ‘credit' then 1 else @ end) as credit_transaction_count,
sum(case when payment_type = 'debit' then 1 else @ end) as debit_transaction_count
from payments
group by customer

Result:

Customer credit_transaction_count debit_transaction_count
Peter 2 0
John 1 1

Section 42.2: List Concatenation

Partial credit to this SO answer.

List Concatenation aggregates a column or expression by combining the values into a single string for each group. A
string to delimit each value (either blank or a comma when omitted) and the order of the values in the result can be
specified. While it is not part of the SQL standard, every major relational database vendor supports it in their own
way.

MySQL

SELECT ColumnA
, GROUP_CONCAT (ColumnB ORDER BY ColumnB SEPARATOR ', ') AS ColumnBs
FROM TableName
GROUP BY ColumnA
ORDER BY ColumnA;

Oracle & DB2

SELECT ColumnA
, LISTAGG(ColumnB, ',') WITHIN GROUP (ORDER BY ColumnB) AS ColumnBs
FROM TableName
GROUP BY ColumnA

GoalKicker.com - SQL Notes for Professionals 13

http://stackoverflow.com/a/19348687/4896952
http://goalkicker.com/

ORDER BY ColumnA:

PostgreSQL

SELECT ColumnA
, STRING_AGG(ColumnB, ',' ORDER BY ColumnB) AS ColumnBs
FROM TableName
GROUP BY ColumnA
ORDER BY ColumnA;

SQL Server
SQL Server 2016 and earlier

(CTE included to encourage the DRY principle)

WITH CTE_TableName AS (
SELECT ColumnA, ColumnB
FROM TableName)
SELECT t@.ColumnA
, STUFF((
SELECT ',"' + t1.ColumnB
FROM CTE_TableName t1
WHERE t1.ColumnA = t0.ColumnA
ORDER BY t1.ColumnB
FOR XML PATH('')), 1, 1, '') AS ColumnBs
FROM CTE_TableName t©
GROUP BY t@.ColumnA
ORDER BY ColumnA:

SQL Server 2017 and SQL Azure

SELECT ColumnA
, STRING_AGG(ColumnB, ',') WITHIN GROUP (ORDER BY ColumnB) AS ColumnBs
FROM TableName
GROUP BY ColumnA
ORDER BY ColumnA;

SQLite
without ordering:

SELECT ColumnA
, GROUP_CONCAT(ColumnB, ',') AS ColumnBs
FROM TableName
GROUP BY ColumnA
ORDER BY ColumnA;

ordering requires a subquery or CTE:

WITH CTE_TableName AS (
SELECT ColumnA, ColumnB
FROM TableName
ORDER BY ColumnA, ColumnB)
SELECT ColumnA
, GROUP_CONCAT(ColumnB, ',') AS ColumnBs

FROM CTE_TableName
GROUP BY ColumnA
ORDER BY ColumnA;

Section 42.3: SUM

Sum function sum the value of all the rows in the group. If the group by clause is omitted then sums all the rows.

GoalKicker.com - SQL Notes for Professionals 14

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://goalkicker.com/

select sum(salary) TotalSalary
from employees;

TotalSalary
2500

select DepartmentId, sum(salary) TotalSalary
from employees
group by DepartmentId;

Departmentid TotalSalary
1 2000
2 500

Section 42.4: AVG()

The aggregate function AVG() returns the average of a given expression, usually numeric values in a column.
Assume we have a table containing the yearly calculation of population in cities across the world. The records for
New York City look similar to the ones below:

EXAMPLE TABLE

city_name population year
New York City 8,550,405 2015
New York City ...
New York City 8,000,906 2005

To select the average population of the New York City, USA from a table containing city names, population
measurements, and measurement years for last ten years:

QUERY

select city_name, AVG(population) avg_population
from city_population
where city_name = 'NEW YORK CITY';

Notice how measurement year is absent from the query since population is being averaged over time.

RESULTS
city_ name avg population
New York City 8,250,754

Note: The AVG() function will convert values to numeric types. This is especially important to keep in mind
when working with dates.

Section 42.5: Count

You can count the number of rows:

SELECT count(*) TotalRows
FROM employees;

TotalRows
4

Or count the employees per department:

SELECT DepartmentId, count(*) NumEmployees
FROM employees

GoalKicker.com - SQL Notes for Professionals

15

http://goalkicker.com/

GROUP BY DepartmentId;

Departmentld NumEmployees
1 3
2 1

You can count over a column/expression with the effect that will not count the NULL values:

SELECT count(ManagerId) mgr
FROM EMPLOYEES;

mgr
3

(There is one null value managerID column)

You can also use DISTINCT inside of another function such as COUNT to only find the DISTINCT members of the
set to perform the operation on.

For example:

SELECT COUNT(ContinentCode) AllCount
, COUNT(DISTINCT ContinentCode) SingleCount
FROM Countries;

Will return different values. The SingleCount will only Count individual Continents once, while the AllCount will
include duplicates.

ContinentCode
0oC

EU

AS

NA

NA

AF

AF

AllCount: 7 SingleCount: 5
Section 42.6: Min
Find the smallest value of column:
select min(age) from employee;
Above example will return smallest value for column age of employee table.
Syntax:

SELECT MIN(column_name) FROM table_name;

Section 42.7: Max
Find the maximum value of column:

select max(age) from employee;

GoalKicker.com - SQL Notes for Professionals 16

http://goalkicker.com/

Above example will return largest value for column age of employee table.

Syntax:

SELECT MAX(column_name) FROM table_name;

GoalKicker.com - SQL Notes for Professionals 17

http://goalkicker.com/

Chapter 43: Functions (Scalar/Single Row)

SQL provides several built-in scalar functions. Each scalar function takes one value as input and returns one value
as output for each row in a result set.

You use scalar functions wherever an expression is allowed within a T-SQL statement.

Section 43.1: Date And Time

In SQL, you use date and time data types to store calendar information. These data types include the time, date,
smalldatetime, datetime, datetime2, and datetimeoffset. Each data type has a specific format.

Data type Format
time hh:mm:ss[.nnnnnnn]
date YYYY-MM-DD
smalldatetime YYYY-MM-DD hh:mm:ss
datetime YYYY-MM-DD hh:mm:ss[.nnn]

datetime2 YYYY-MM-DD hh:mm:ss[.nnnnnnn]
datetimeoffset YYYY-MM-DD hh:mm:ss[.nnnnnnn] [+/-]lhh:mm

The DATENAME function returns the name or value of a specific part of the date.

SELECT DATENAME (weekday, '2017-01-14') as Datename

Datename
Saturday

You use the GETDATE function to determine the current date and time of the computer running the current SQL
instance. This function doesn't include the time zone difference.

SELECT GETDATE() as Systemdate

Systemdate
2017-01-14 11:11:47.7230728

The DATEDIFF function returns the difference between two dates.

In the syntax, datepart is the parameter that specifies which part of the date you want to use to calculate
difference. The datepart can be year, month, week, day, hour, minute, second, or millisecond. You then specify the
start date in the startdate parameter and the end date in the enddate parameter for which you want to find the
difference.

SELECT SalesOrderID, DATEDIFF(day, OrderDate, ShipDate)
AS 'Processing time'
FROM Sales.SalesOrderHeader

SalesOrderID Processing time

43659 7
43660 7
43661 7
43662 7

The DATEADD function enables you to add an interval to part of a specific date.

SELECT DATEADD (day, 2@, '20817-01-14"') AS Added2@MoreDays
Added20MoreDays

GoalKicker.com - SQL Notes for Professionals 18

http://goalkicker.com/

2017-02-03 00:00:00.000

Section 43.2: Character modifications

Character modifying functions include converting characters to upper or lower case characters, converting
numbers to formatted numbers, performing character manipulation, etc.

The lower (char) function converts the given character parameter to be lower-cased characters.
SELECT customer_id, lower(customer_last_name) FROM customer;

would return the customer's last name changed from "SMITH" to "smith".

Section 43.3: Configuration and Conversion Function

An example of a configuration function in SQL is the @@SERVERNAME function. This function provides the name of the
local server that's running SQL.

SELECT @@SERVERNAME AS 'Server'

Server
SQLO64

In SQL, most data conversions occur implicitly, without any user intervention.

To perform any conversions that can't be completed implicitly, you can use the CAST or CONVERT functions.

The CAST function syntax is simpler than the CONVERT function syntax, but is limited in what it can do.

In here, we use both the CAST and CONVERT functions to convert the datetime data type to the varchar data type.

The CAST function always uses the default style setting. For example, it will represent dates and times using the
format YYYY-MM-DD.

The CONVERT function uses the date and time style you specify. In this case, 3 specifies the date format dd/mm/yy.

USE AdventureWorks2012

GO

SELECT FirstName + ' ' + LastName + ' was hired on ' +
CAST(HireDate AS varchar(20)) AS 'Cast’,
FirstName + ' ' + LastName + ' was hired on ' +

CONVERT (varchar, HireDate, 3) AS 'Convert'
FROM Person.Person AS p
JOIN HumanResources.Employee AS e
ON p.BusinessEntityID = e.BusinessEntityID
GO

Cast Convert
David Hamiltion was hired on 2003-02-04 David Hamiltion was hired on 04/02/03

Another example of a conversion function is the PARSE function. This function converts a string to a specified data
type.

In the syntax for the function, you specify the string that must be converted, the AS keyword, and then the required
data type. Optionally, you can also specify the culture in which the string value should be formatted. If you don't
specify this, the language for the session is used.

If the string value can't be converted to a numeric, date, or time format, it will result in an error. You'll then need to

GoalKicker.com - SQL Notes for Professionals 19

http://goalkicker.com/

use CAST or CONVERT for the conversion.

SELECT PARSE('Monday, 13 August 2012' AS datetime2 USING 'en-US') AS 'Date in English'

Date in English
2012-08-13 00:00:00.0000000

Section 43.4: Logical and Mathmetical Function
SQL has two logical functions - CHOOSE and IIF.

The CHOOSE function returns an item from a list of values, based on its position in the list. This position is specified
by the index.

In the syntax, the index parameter specifies the item and is a whole number, or integer. The val_1 ... val_n
parameter identifies the list of values.

SELECT CHOOSE(2, 'Human Resources', 'Sales', 'Admin', 'Marketing') AS Result;

Result
Sales

In this example, you use the CHOOSE function to return the second entry in a list of departments.

The IIF function returns one of two values, based on a particular condition. If the condition is true, it will return
true value. Otherwise it will return a false value.

In the syntax, the boolean_expression parameter specifies the Boolean expression. The true_value parameter
specifies the value that should be returned if the boolean_expression evaluates to true and the false_value
parameter specifies the value that should be returned if the boolean_expression evaluates to false.

SELECT BusinessEntityID, SalesYTD,
IIF(SalesYTD > 200000, 'Bonus', 'No Bonus') AS 'Bonus?’
FROM Sales.SalesPerson

GO

BusinessEntitylD SalesYTD Bonus?
274 559697.5639 Bonus
275 3763178.1787 Bonus
285 172524.4512 No Bonus

In this example, you use the IIF function to return one of two values. If a sales person's year-to-date sales are above
200,000, this person will be eligible for a bonus. Values below 200,000 mean that employees don't qualify for
bonuses.

SQL includes several mathematical functions that you can use to perform calculations on input values and
return numeric results.

One example is the SIGN function, which returns a value indicating the sign of an expression. The value of -1
indicates a negative expression, the value of +1 indicates a positive expression, and 0 indicates zero.

SELECT SIGN(-208) AS 'Sign’
Sign
-1

In the example, the input is a negative number, so the Results pane lists the result -1.

GoalKicker.com - SQL Notes for Professionals 120

http://goalkicker.com/

Another mathematical function is the POWER function. This function provides the value of an expression raised to a
specified power.

In the syntax, the float_expression parameter specifies the expression, and the y parameter specifies the power to
which you want to raise the expression.

SELECT POWER(58, 3) AS Result

Result
125000

GoalKicker.com - SQL Notes for Professionals 121

http://goalkicker.com/

Chapter 44: Functions (Analytic)

You use analytic functions to determine values based on groups of values. For example, you can use this type of
function to determine running totals, percentages, or the top result within a group.

Section 44.1: LAG and LEAD

The LAG function provides data on rows before the current row in the same result set. For example, in a SELECT
statement, you can compare values in the current row with values in a previous row.

You use a scalar expression to specify the values that should be compared. The offset parameter is the number of
rows before the current row that will be used in the comparison. If you don't specify the number of rows, the
default value of one row is used.

The default parameter specifies the value that should be returned when the expression at offset has a NULL value. If
you don't specify a value, a value of NULL is returned.

The LEAD function provides data on rows after the current row in the row set. For example, in a SELECT statement,
you can compare values in the current row with values in the following row.

You specify the values that should be compared using a scalar expression. The offset parameter is the number of
rows after the current row that will be used in the comparison.

You specify the value that should be returned when the expression at offset has a NULL value using the default
parameter. If you don't specify these parameters, the default of one row is used and a value of NULL is returned.

SELECT BusinessEntityID, SalesYTD,
LEAD(SalesYTD, 1, @) OVER(ORDER BY BusinessEntityID) AS "Lead value",
LAG(SalesYTD, 1, @) OVER(ORDER BY BusinessEntityID) AS "Lag value"
FROM SalesPerson;

This example uses the LEAD and LAG functions to compare the sales values for each employee to date with those of
the employees listed above and below, with records ordered based on the BusinessEntitylD column.

BusinessEntitylD SalesYTD Lead value Lag value

274 559697.5639 3763178.1787 0.0000
275 3763178.1787 4251368.5497 559697.5639
276 4251368.5497 3189418.3662 3763178.1787
277 3189418.3662 1453719.4653 4251368.5497
278 1453719.4653 2315185.6110 3189418.3662
279 2315185.6110 1352577.1325 1453719.4653

Section 44.2: PERCENTILE_DISC and PERCENTILE_CONT

The PERCENTILE_DISC function lists the value of the first entry where the cumulative distribution is higher than the
percentile that you provide using the numeric_literal parameter.

The values are grouped by rowset or partition, as specified by the WITHIN GROUP clause.

The PERCENTILE_CONT function is similar to the PERCENTILE_DISC function, but returns the average of the sum of
the first matching entry and the next entry.

SELECT BusinessEntityID, JobTitle, SickLeaveHours,
CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours ASC)

GoalKicker.com - SQL Notes for Professionals 122

http://goalkicker.com/

AS "Cumulative Distribution",
PERCENTILE_DISC(©.5) WITHIN GROUP(ORDER BY SickLeaveHours)
OVER(PARTITION BY JobTitle) AS "Percentile Discreet"
FROM Employee;

To find the exact value from the row that matches or exceeds the 0.5 percentile, you pass the percentile as the
numeric literal in the PERCENTILE_DISC function. The Percentile Discreet column in a result set lists the value of the
row at which the cumulative distribution is higher than the specified percentile.

BusinessEntitylD JobTitle SickLeaveHours Cumulative Distribution Percentile Discreet
272 Application Specialist 55 0.25 56
268 Application Specialist 56 0.75 56
269 Application Specialist 56 0.75 56
267 Application Specialist 57 1 56

To base the calculation on a set of values, you use the PERCENTILE_CONT function. The "Percentile Continuous"
column in the results lists the average value of the sum of the result value and the next highest matching value.

SELECT BusinessEntityID, JobTitle, SickLeaveHours,
CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SickLeaveHours ASC)
AS "Cumulative Distribution",
PERCENTILE_DISC(@©.5) WITHIN GROUP(ORDER BY SickLeaveHours)
OVER(PARTITION BY JobTitle) AS "Percentile Discreet”,
PERCENTILE_CONT(@.5) WITHIN GROUP(ORDER BY SickLeaveHours)
OVER(PARTITION BY JobTitle) AS "Percentile Continuous"
FROM Employee;

. . . . Cumulative Percentile Percentile
BusinessEntityID JobTitle SickLeaveHours Distribution Discreet Continuous
272 Application Specialist 55 0.25 56 56
268 Application Specialist 56 0.75 56 56
269 Application Specialist 56 0.75 56 56
267 Application Specialist 57 1 56 56

Section 44.3: FIRST_VALUE

You use the FIRST_VALUE function to determine the first value in an ordered result set, which you identify using a
scalar expression.

SELECT StateProvinceID, Name, TaxRate,
FIRST_VALUE(StateProvincelD)
OVER(ORDER BY TaxRate ASC) AS FirstValue
FROM SalesTaxRate;

In this example, the FIRST_VALUE function is used to return the ID of the state or province with the lowest tax rate.
The OVER clause is used to order the tax rates to obtain the lowest rate.

StateProvincelD Name TaxRate FirstValue
74 Utah State Sales Tax 5.00 74
36 Minnesota State Sales Tax 6.75 74
30 Massachusetts State Sales Tax 7.00 74
1 Canadian GST 7.00 74
57 Canadian GST 7.00 74
63 Canadian GST 7.00 74

GoalKicker.com - SQL Notes for Professionals 123

http://goalkicker.com/

Section 44.4: LAST_VALUE

The LAST_VALUE function provides the last value in an ordered result set, which you specify using a scalar
expression.

SELECT TerritoryID, StartDate, BusinessentitylID,
LAST_VALUE (BusinessentityID)
OVER(ORDER BY TerritoryID) AS LastValue
FROM SalesTerritoryHistory;

This example uses the LAST_VALUE function to return the last value for each rowset in the ordered values.

TerritorylD StartDate BusinessentitylD LastValue
1 2005-07-01 00.00.00.000 280 283
1 2006-11-01 00.00.00.000 284 283
1 2005-07-01 00.00.00.000 283 283
2 2007-01-01 00.00.00.000 277 275
2 2005-07-01 00.00.00.000 275 275
3 2007-01-01 00.00.00.000 275 277

Section 44.5: PERCENT_RANK and CUME_DIST

The PERCENT_RANK function calculates the ranking of a row relative to the row set. The percentage is based on the
number of rows in the group that have a lower value than the current row.

The first value in the result set always has a percent rank of zero. The value for the highest-ranked - or last - value
in the set is always one.

The CUME_DIST function calculates the relative position of a specified value in a group of values, by determining the
percentage of values less than or equal to that value. This is called the cumulative distribution.

SELECT BusinessEntityID, JobTitle, SickLeaveHours,

PERCENT_RANK() OVER(PARTITION BY JobTitle ORDER BY SicklLeaveHours DESC)
AS "Percent Rank",

CUME_DIST() OVER(PARTITION BY JobTitle ORDER BY SicklLeaveHours DESC)
AS "Cumulative Distribution"

FROM Employee;

In this example, you use an ORDER clause to partition - or group - the rows retrieved by the SELECT statement based
on employees' job titles, with the results in each group sorted based on the numbers of sick leave hours that
employees have used.

BusinessEntitylD JobTitle SickLeaveHours Percent Rank Cumulative Distribution
267 Application Specialist 57 0 0.25
268 Application Specialist 56 0.3333333333333330.75
269 Application Specialist 56 0.3333333333333330.75
272 Application Specialist 55 1 1
262 Ass.itant to the Cheif Financial 48 0]

Officer
239 Benefits Specialist 45 0 1
252 Buyer 50 0 0111111111111 1
251 Buyer 49 0.125 0.333333333333333
256 Buyer 49 0.125 0.333333333333333
253 Buyer 48 0.375 0.555555555555555
254 Buyer 48 0.375 0.555555555555555

GoalKicker.com - SQL Notes for Professionals 124

http://goalkicker.com/

The PERCENT_RANK function ranks the entries within each group. For each entry, it returns the percentage of entries
in the same group that have lower values.

The CUME_DIST function is similar, except that it returns the percentage of values less than or equal to the current
value.

GoalKicker.com - SQL Notes for Professionals 125

http://goalkicker.com/

Chapter 45: Window Functions

Section 45.1: Setting up a flag if other rows have a common
property

Let's say | have this data:

Table items

id name tag

1 example unique_tag
2 foo simple

42 bar simple

3 baz hello

51 quux world

I'd like to get all those lines and know if a tag is used by other lines
SELECT id, name, tag, COUNT(*) OVER (PARTITION BY tag) > 1 AS flag FROM items

The result will be:

id name tag flag
1 example unique_tag false

2 foo simple true
42 bar simple true
3 baz hello false
51 quux world false

In case your database doesn't have OVER and PARTITION you can use this to produce the same result:

SELECT id, name, tag, (SELECT COUNT(tag) FROM items B WHERE tag = A.tag) > 1 AS flag FROM items A

Section 45.2: Finding "out-of-sequence" records using the
LAG() function

Given these sample data:

ID STATUS STATUS_TIME STATUS_BY
1 ONE 2016-09-28-19.47.52.501398 USER_1
3 ONE 2016-09-28-19.47.52.501511 USER_2
1 THREE 2016-09-28-19.47.52.501517 USER_3
3 TWO 2016-09-28-19.47.52.501521 USER_2
3 THREE 2016-09-28-19.47.52.501524 USER 4

Items identified by ID values must move from STATUS 'ONE' to 'TWO' to 'THREE' in sequence, without skipping
statuses. The problem is to find users (STATUS_BY) values who violate the rule and move from 'ONE' immediately to
'"THREE'.

The LAG() analytical function helps to solve the problem by returning for each row the value in the preceding row:

SELECT * FROM (
SELECT
t.x*,

GoalKicker.com - SQL Notes for Professionals 126

http://goalkicker.com/

LAG(status) OVER (PARTITION BY id ORDER BY status_time) AS prev_status
FROM test t
) t1 WHERE status = 'THREE' AND prev_status !'= 'TWO'

In case your database doesn't have LAG() you can use this to produce the same result:

SELECT A.id, A.status, B.status as prev_status, A.status_time, B.status_time as prev_status_time
FROM Data A, Data B

WHERE A.id = B.id

AND B.status_time = (SELECT MAX(status_time) FROM Data where status_time < A.status_time and id =
A.id)

AND A.status = 'THREE' AND NOT B.status = 'TWO'

Section 45.3: Getting a running total

Given this data:

date amount
2016-03-12 200
2016-03-11-50
2016-03-14 100
2016-03-15 100
2016-03-10-250
SELECT date, amount, SUM(amount) OVER (ORDER BY date ASC) AS running

FROM operations
ORDER BY date ASC

will give you

date amountrunning
2016-03-10-250 -250
2016-03-11-50 -300
2016-03-12 200 -100
2016-03-14 100 0
2016-03-15100 -100

Section 45.4: Adding the total rows selected to every row

SELECT your_columns, COUNT(*) OVER() as Ttl_Rows FROM your_data_set

id name Ttl_ Rows
1 example5

2 foo 5
3 bar 5
4 baz 5
5 quux 5

Instead of using two queries to get a count then the line, you can use an aggregate as a window function and use
the full result set as the window.
This can be used as a base for further calculation without the complexity of extra self joins.

Section 45.5: Getting the N most recent rows over multiple
grouping

Given this data

GoalKicker.com - SQL Notes for Professionals 127

http://goalkicker.com/

User_ID Completion_Date
2016-07-20
2016-07-21
2016-07-20
2016-07-21
2016-07-22

:with CTE as

(SELECT =,

ROW_NUMBER() OVER (PARTITION BY User_ID
ORDER BY Completion_Date DESC) Row_Num

N NN = =

FROM Data)
SELECT * FORM CTE WHERE Row_Num <= n

Using n=1, you'll get the one most recent row per user_id:

User_ID Completion_Date Row_Num
1 2016-07-21 1
2 2016-07-22 1

GoalKicker.com - SQL Notes for Professionals 128

http://goalkicker.com/

Chapter 46: Common Table Expressions

Section 46.1: generating values

Most databases do not have a native way of generating a series of numbers for ad-hoc use; however, common
table expressions can be used with recursion to emulate that type of function.

The following example generates a common table expression called Numbers with a column i which has a row for

numbers 1-5:

--Give a table name “Numbers" and a column i’ to hold the numbers
WITH Numbers(i) AS (

--Starting number/index

SELECT 1

--Top-level UNION ALL operator required for recursion

UNION ALL

--Iteration expression:

SELECT i + 1

--Table expression we first declared used as source for recursion

FROM Numbers

--Clause to define the end of the recursion

WHERE i < 5

)

--Use the generated table expression like a regular table
SELECT i FROM Numbers;

ua b~ WN = -

This method can be used with any number interval, as well as other types of data.

Section 46.2: recursively enumerating a subtree

WITH RECURSIVE ManagedByJames(Level, ID, FName, LName) AS (
-- start with this row
SELECT 1, ID, FName, LName
FROM Employees
WHERE ID = 1

UNION ALL

-- get employees that have any of the previously selected rows as manager
SELECT ManagedByJames.Level + 1,

Employees.ID,

Employees.FName,

Employees.LName
FROM Employees
JOIN ManagedByJames

ON Employees.ManagerID = ManagedByJames.ID

ORDER BY 1 DESC -- depth-first search

)
SELECT * FROM ManagedByJames;

LevelID FName LName

GoalKicker.com - SQL Notes for Professionals

129

http://goalkicker.com/

1 James Smith
2 John Johnson
4 Johnathon Smith
3 Michael Williams

N WN =

Section 46.3: Temporary query

These behave in the same manner as nested subqueries but with a different syntax.

WITH ReadyCars AS (
SELECT *
FROM Cars
WHERE Status = 'READY'

)
SELECT ID, Model, TotalCost

FROM ReadyCars
ORDER BY TotalCost;

ID Model TotalCost
1 Ford F-150200
2 Ford F-150230

Equivalent subquery syntax

SELECT ID, Model, TotalCost
FROM (
SELECT =*
FROM Cars
WHERE Status = 'READY'
) AS ReadyCars
ORDER BY TotalCost

Section 46.4: recursively going up in a tree

WITH RECURSIVE ManagersOfJonathon AS (
-- start with this row
SELECT =
FROM Employees
WHERE ID = 4

UNION ALL

-- get manager(s) of all previously selected rows
SELECT Employees.=*
FROM Employees
JOIN ManagersOfJonathon
ON Employees.ID = ManagersOfJonathon.ManagerID

)
SELECT * FROM ManagersOfJonathon;

Id FName LName PhoneNumber Managerid Departmentid

4 JohnathonSmith 1212121212 2 1
2 John Johnson 2468101214 1 1
1 James Smith 1234567890 NULL 1

Section 46.5: Recursively generate dates, extended to include

GoalKicker.com - SQL Notes for Professionals 130

http://goalkicker.com/

team rostering as example

DECLARE @DateFrom DATETIME = '2016-06-01 06:00'
DECLARE @DateTo DATETIME = '2016-07-01 06:00'
DECLARE @IntervalDays INT = 7

-- Transition Sequence =
-- RR (Rest & Relax) = 1
-- DS (Day Shift) = 2

-- NS (Night Shift) = 3

Rest & Relax into Day Shift into Night Shift

WITH roster AS

(

SELECT @DateFrom AS RosterStart, 1 AS TeamA, 2 AS TeamB, 3 AS TeamC

UNION ALL

SELECT DATEADD(d, @IntervalDays, RosterStart),
CASE TeamA WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamA,
CASE TeamB WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamB,
CASE TeamC WHEN 1 THEN 2 WHEN 2 THEN 3 WHEN 3 THEN 1 END AS TeamC

FROM roster WHERE RosterStart < DATEADD(d, -@IntervalDays, @DateTo)

)

SELECT RosterStart,

ISNULL (LEAD(RosterStart) OVER (ORDER BY RosterStart), RosterStart + @IntervalDays) AS
RosterEnd,

CASE TeamA WHEN 1 THEN 'RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamA,
CASE TeamB WHEN 1 THEN ‘RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamB,

CASE TeamC WHEN 1 THEN 'RR' WHEN 2 THEN 'DS' WHEN 3 THEN 'NS' END AS TeamC
FROM roster

Result
l.e. For Week 1 TeamA is on R&R, TeamB is on Day Shift and TeamC is on Night Shift.

1 Results 3 Messages

RosterStart RosterEnd TeamA TeamB TeamC
1 2016060106:00:00.000 2016-060806:00:00000 RR ps NS i
2 20160608 06:00:00000 20160615 06:00:00000 DS NS RR
1 20160615 06:00.00.000 20160622 06:00:00000 NS RR DS
4 20160622 06:00:00000 20160629 06:00:00000 RR DS NS
5 20160629 06:00:00.000 20160706 06:00:00000 DS NS RR

?:?'(I:Etion 46.6: Oracle CONNECT BY functionality with recursive
S

Oracle's CONNECT BY functionality provides many useful and nontrivial features that are not built-in when using
SQL standard recursive CTEs. This example replicates these features (with a few additions for sake of
completeness), using SQL Server syntax. It is most useful for Oracle developers finding many features missing in
their hierarchical queries on other databases, but it also serves to showcase what can be done with a hierarchical
query in general.

WITH tbl AS (
SELECT id, name, parent_id
FROM mytable)
, tbl_hierarchy AS (
/* Anchor */
SELECT 1 AS "LEVEL"

GoalKicker.com - SQL Notes for Professionals 131

http://i.stack.imgur.com/rm2xk.jpg
http://goalkicker.com/

--, 1 AS CONNECT_BY_ISROOT
--, 0 AS CONNECT_BY_ISBRANCH
, CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN © ELSE 1 END AS CONNECT_BY_ISLEAF
, @ AS CONNECT_BY_ISCYCLE
, /" + CAST(t.id AS VARCHAR(MAX)) + '/' AS SYS_CONNECT_BY_PATH_id
, '/' + CAST(t.name AS VARCHAR(MAX)) + '/' AS SYS_CONNECT_BY_PATH_name
, t.id AS root_id
, t.x
FROM tbl t
WHERE t.parent_id IS NULL -- START WITH parent_id IS NULL
UNION ALL
/* Recursive */
SELECT th."LEVEL" + 1 AS "LEVEL"
--, @ AS CONNECT_BY_ISROOT
--, CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN 1 ELSE @ END AS
CONNECT_BY_ISBRANCH
, CASE WHEN t.id IN (SELECT parent_id FROM tbl) THEN © ELSE 1 END AS CONNECT_BY_ISLEAF
, CASE WHEN th.SYS_CONNECT_BY_PATH_id LIKE '%/' + CAST(t.id AS VARCHAR(MAX)) + '/%'
THEN 1 ELSE © END AS CONNECT_BY_ISCYCLE
, th.SYS_CONNECT_BY_PATH_id + CAST(t.id AS VARCHAR(MAX)) + '/' AS
SYS_CONNECT_BY_PATH_id
, th.SYS_CONNECT_BY_PATH_name + CAST(t.name AS VARCHAR(MAX)) + '/' AS
SYS_CONNECT_BY_PATH_name

, th.root_id
, ok
FROM tbl t
JOIN tbl_hierarchy th ON (th.id = t.parent_id) -- CONNECT BY PRIOR id = parent_id
WHERE th.CONNECT_BY_ISCYCLE = @) -- NOCYCLE
SELECT th.*
--, REPLICATE(' ', (th."LEVEL" - 1) * 3) + th.name AS tbl_hierarchy

FROM tbl_hierarchy th
JOIN tbl CONNECT_BY_ROOT ON (CONNECT_BY_ROOT.id = th.root_id)
ORDER BY th.SYS_CONNECT_BY_PATH_name; -- ORDER SIBLINGS BY name

CONNECT BY features demonstrated above, with explanations:

¢ Clauses
o CONNECT BY: Specifies the relationship that defines the hierarchy.
o START WITH: Specifies the root nodes.
o ORDER SIBLINGS BY: Orders results properly.
Parameters
o NOCYCLE: Stops processing a branch when a loop is detected. Valid hierarchies are Directed Acyclic
Graphs, and circular references violate this construct.
Operators
o PRIOR: Obtains data from the node's parent.
o CONNECT_BY_ROOQOT: Obtains data from the node's root.
Pseudocolumns

o LEVEL: Indicates the node's distance from its root.
o CONNECT_BY_ISLEAF: Indicates a node without children.
o CONNECT_BY_ISCYCLE: Indicates a node with a circular reference.
Functions
o SYS_CONNECT_BY_PATH: Returns a flattened/concatenated representation of the path to the node
from its root.

GoalKicker.com - SQL Notes for Professionals 132

http://goalkicker.com/

Chapter 47: Views

Section 47.1: Simple views

A view can filter some rows from the base table or project only some columns from it:

CREATE VIEW new_employees_details AS

SELECT E.id, Fname, Salary, Hire_date
FROM Employees E

WHERE hire_date > date '2015-01-01";

If you select form the view:

select * from new_employees_details

Id FName Salary Hire_date
4 Johnathon500 24-07-2016

Section 47.2: Complex views

A view can be a really complex query(aggregations, joins, subqueries, etc). Just be sure you add column names for
everything you select:

Create VIEW dept_income AS

SELECT d.Name as DepartmentName, sum(e.salary) as TotalSalary
FROM Employees e

JOIN Departments d on e.DepartmentId = d.id

GROUP BY d.Name;

Now you can select from it as from any table:

SELECT *
FROM dept_income;

DepartmentName TotalSalary
HR 1900
Sales 600

GoalKicker.com - SQL Notes for Professionals 133

http://goalkicker.com/

Chapter 48: Materialized Views

A materialized view is a view whose results are physically stored and must be periodically refreshed in order to
remain current. They are therefore useful for storing the results of complex, long-running queries when realtime
results are not required. Materialized views can be created in Oracle and PostgreSQL. Other database systems offer
similar functionality, such as SQL Server's indexed views or DB2's materialized query tables.

Section 48.1: PostgreSQL example

CREATE TABLE mytable (number INT);
INSERT INTO mytable VALUES (1);

CREATE MATERIALIZED VIEW myview AS SELECT * FROM mytable;

SELECT * FROM myview;

number

INSERT INTO mytable VALUES(2);

SELECT * FROM myview;

number

REFRESH MATERIALIZED VIEW myview;

SELECT * FROM myview;

(2 rows)

GoalKicker.com - SQL Notes for Professionals 134

http://goalkicker.com/

Chapter 49: Comments

Section 49.1: Single-line comments

Single line comments are preceded by --, and go until the end of the line:

SELECT *
FROM Employees -- this is a comment
WHERE FName = 'John'

Section 49.2: Multi-line comments

Multi-line code comments are wrapped in /* ... */:

/* This query

returns all employees */
SELECT =
FROM Employees

It is also possible to insert such a comment into the middle of a line:

SELECT /#* all columns: */ =*
FROM Employees

GoalKicker.com - SQL Notes for Professionals

135

http://goalkicker.com/

Chapter 50: Foreign Keys

Section 50.1: Foreign Keys explained

Foreign Keys constraints ensure data integrity, by enforcing that values in one table must match values in another
table.

An example of where a foreign key is required is: In a university, a course must belong to a department. Code for
the this scenario is:

CREATE TABLE Department (
Dept_Code CHAR (5) PRIMARY KEY,
Dept_Name VARCHAR (20) UNIQUE

Ji ¢
Insert values with the following statement:
INSERT INTO Department VALUES ('CS205', 'Computer Science');
The following table will contain the information of the subjects offered by the Computer science branch:

CREATE TABLE Programming_Courses (

Dept_Code CHAR(5),
Prg_Code CHAR(9) PRIMARY KEY,
Prg_Name VARCHAR (50) UNIQUE,

FOREIGN KEY (Dept_Code) References Department(Dept_Code)
Ji;

(The data type of the Foreign Key must match the datatype of the referenced key.)

The Foreign Key constraint on the column Dept_Code allows values only if they already exist in the referenced table,
Department. This means that if you try to insert the following values:

INSERT INTO Programming_Courses Values ('CS300', 'FDB-DBOO1', 'Database Systems');

the database will raise a Foreign Key violation error, because CS380 does not exist in the Department table. But
when you try a key value that exists:

INSERT INTO Programming_Courses VALUES ('CS205', 'FDB-DBOO1', 'Database Systems');
INSERT INTO Programming_Courses VALUES ('CS205', 'DB2-DB0@2', 'Database Systems II');

then the database allows these values.

A few tips for using Foreign Keys

A Foreign Key must reference a UNIQUE (or PRIMARY) key in the parent table.

Entering a NULL value in a Foreign Key column does not raise an error.

Foreign Key constraints can reference tables within the same database.

Foreign Key constraints can refer to another column in the same table (self-reference).

Section 50.2: Creating a table with a foreign key

In this example we have an existing table, SuperHeros.

GoalKicker.com - SQL Notes for Professionals 136

http://goalkicker.com/

This table contains a primary key ID.

We will add a new table in order to store the powers of each super hero:

CREATE TABLE HeroPowers
(
ID int NOT NULL PRIMARY KEY,
Name nvarchar(MAX) NOT NULL,
HeroId int REFERENCES SuperHeros(ID)

The column HeroId is a foreign key to the table SuperHeros.

GoalKicker.com - SQL Notes for Professionals 137

http://goalkicker.com/

Chapter 51: Sequence

Section 51.1: Create Sequence

CREATE SEQUENCE orders_seq
START WITH 1000
INCREMENT BY 1;

Creates a sequence with a starting value of 1000 which is incremented by 1.

Section 51.2: Using Sequences

a reference to seq_name.NEXTVAL is used to get the next value in a sequence. A single statement can only generate
a single sequence value. If there are multiple references to NEXTVAL in a statement, they use will use the same
generated number.

NEXTVAL can be used for INSERTS

INSERT INTO Orders (Order_UID, Customer)
VALUES (orders_seq.NEXTVAL, 1032);

It can be used for UPDATES

UPDATE Orders
SET Order_UID = orders_seq.NEXTVAL
WHERE Customer = 581;

It can also be used for SELECTS

SELECT Order_seq.NEXTVAL FROM dual;

GoalKicker.com - SQL Notes for Professionals 138

http://goalkicker.com/

Chapter 52: Subqueries
Section 52.1: Subquery in FROM clause

A subquery in a FROM clause acts similarly to a temporary table that is generated during the execution of a query
and lost afterwards.

SELECT Managers.Id, Employees.Salary
FROM (
SELECT Id
FROM Employees
WHERE ManagerId IS NULL
) AS Managers
JOIN Employees ON Managers.Id = Employees.Id

Section 52.2: Subquery in SELECT clause

SELECT

Id,

FName,

LName,

(SELECT COUNT(#*) FROM Cars WHERE Cars.CustomerId = Customers.Id) AS NumberOfCars
FROM Customers

Section 52.3: Subquery in WHERE clause

Use a subquery to filter the result set. For example this will return all employees with a salary equal to the highest
paid employee.

SELECT *
FROM Employees
WHERE Salary = (SELECT MAX(Salary) FROM Employees)

Section 52.4: Correlated Subqueries

Correlated (also known as Synchronized or Coordinated) Subqueries are nested queries that make references to
the current row of their outer query:

SELECT Employeeld
FROM Employee AS eOuter
WHERE Salary > (
SELECT AVG(Salary)
FROM Employee eInner
WHERE eInner.DepartmentId = eOuter.DepartmentId

Subquery SELECT AVG(Salary) ... is correlated because it refers to Employee row eOuter from its outer query.

Setc)ltion 52.5: Filter query results using query on different
table

This query selects all employees not on the Supervisors table.

SELECT *

GoalKicker.com - SQL Notes for Professionals 139

http://goalkicker.com/

FROM Employees
WHERE EmployeeID not in (SELECT EmployeeID
FROM Supervisors)

The same results can be achieved using a LEFT JOIN.

SELECT *

FROM Employees AS e

LEFT JOIN Supervisors AS s ON s.EmployeeID=e.EmployeeID
WHERE s.EmployeeID is NULL

Section 52.6: Subqueries in FROM clause
You can use subqueries to define a temporary table and use it in the FROM clause of an "outer" query.

SELECT * FROM (SELECT city, temp_hi - temp_lo AS temp_var FROM weather) AS w
WHERE temp_var > 20;

The above finds cities from the weather table whose daily temperature variation is greater than 20. The result is:

city temp_var
ST LOUIS 21
LOS ANGELES 31
LOS ANGELES 23
LOS ANGELES 31
LOS ANGELES 27
LOS ANGELES 28
LOS ANGELES 28
LOS ANGELES 32

Section 52.7: Subqueries in WHERE clause

The following example finds cities (from the cities example) whose population is below the average temperature
(obtained via a sub-qquery):

SELECT name, pop2000 FROM cities
WHERE pop2080 < (SELECT avg(pop20080) FROM cities);

Here: the subquery (SELECT avg(pop2000) FROM cities) is used to specify conditions in the WHERE clause. The result
is:

name pop2000
San Francisco 776733
ST LOUIS 348189
Kansas City 146866

GoalKicker.com - SQL Notes for Professionals 140

http://goalkicker.com/

Chapter 53: Execution blocks
Section 53.1: Using BEGIN ... END

BEGIN
UPDATE Employees SET PhoneNumber = '5551234567' WHERE Id = 1;
UPDATE Employees SET Salary = 650 WHERE Id = 3;

END

GoalKicker.com - SQL Notes for Professionals 141

http://goalkicker.com/

Chapter 54: Stored Procedures

Section 54.1: Create and call a stored procedure

Stored procedures can be created through a database management GUI (SQL Server example), or through a SQL

statement as follows:

-- Define a name and parameters

CREATE PROCEDURE Northwind.getEmployee
@LastName nvarchar(50),
@FirstName nvarchar(50)

AS

-- Define the query to be run
SELECT FirstName, LastName, Department
FROM Northwind.vEmployeeDepartment

WHERE FirstName = @FirstName AND LastName = @LastName

AND EndDate IS NULL;

Calling the procedure:

EXECUTE Northwind.getEmployee N'Ackerman', N'Pilar';

-- Or

EXEC Northwind.getEmployee @LastName = N'Ackerman',

GO

== OF
EXECUTE Northwind.getEmployee @FirstName
GO

@FirstName

N'Pilar';

N'Ackerman' ;

GoalKicker.com - SQL Notes for Professionals

142

https://msdn.microsoft.com/en-us/library/ms345415.aspx
http://goalkicker.com/

Chapter 55: Triggers
Section 55.1: CREATE TRIGGER

This example creates a trigger that inserts a record to a second table (MyAudit) after a record is inserted into the
table the trigger is defined on (MyTable). Here the "inserted" table is a special table used by Microsoft SQL Server to
store affected rows during INSERT and UPDATE statements; there is also a special "deleted" table that performs the
same function for DELETE statements.

CREATE TRIGGER MyTrigger
ON MyTable
AFTER INSERT

AS

BEGIN

-- insert audit record to MyAudit table

INSERT INTO MyAudit(MyTableId, User)

(SELECT MyTableId, CURRENT_USER FROM inserted)
END

Section 55.2: Use Trigger to manage a "Recycle Bin" for
deleted items

CREATE TRIGGER BooksDeleteTrigger
ON MyBooksDB.Books
AFTER DELETE
AS
INSERT INTO BooksRecycleBin
SELECT *
FROM deleted;
GO

GoalKicker.com - SQL Notes for Professionals 143

http://goalkicker.com/

Chapter 56: Transactions

Section 56.1: Simple Transaction

BEGIN TRANSACTION
INSERT INTO DeletedEmployees(EmployeeID, DateDeleted, User)
(SELECT 123, GetDate(), CURRENT_USER);
DELETE FROM Employees WHERE EmployeelD = 123;
COMMIT TRANSACTION

Section 56.2: Rollback Transaction

When something fails in your transaction code and you want to undo it, you can rollback your transaction:

BEGIN TRY
BEGIN TRANSACTION
INSERT INTO Users(ID, Name, Age)
VALUES(1, 'Bob', 24)

DELETE FROM Users WHERE Name = 'Todd'
COMMIT TRANSACTION
END TRY
BEGIN CATCH
ROLLBACK TRANSACTION
END CATCH

GoalKicker.com - SQL Notes for Professionals 144

http://goalkicker.com/

Chapter 57: Table Design

Section 57.1: Properties of a well designed table

A true relational database must go beyond throwing data into a few tables and writing some SQL statements to pull
that data out.

At best a badly designed table structure will slow the execution of queries and could make it impossible for the
database to function as intended.

A database table should not be considered as just another table; it has to follow a set of rules to be considered truly
relational. Academically it is referred to as a 'relation' to make the distinction.

The five rules of a relational table are:

Each value is atomic; the value in each field in each row must be a single value.

Each field contains values that are of the same data type.

Each field heading has a unique name.

Each row in the table must have at least one value that makes it unique amongst the other records in the
table.

5. The order of the rows and columns has no significance.

AwnN =

A table conforming to the five rules:

IdName DOB Manager
1 Fred 11/02/19713
2 Fred 11/02/19713
3 Sue 08/07/19752

e Rule 1: Each value is atomic. Id, Name, DOB and Manager only contain a single value.

¢ Rule 2: Id contains only integers, Name contains text (we could add that it's text of four characters or less), DOB
contains dates of a valid type and Manager contains integers (we could add that corresponds to a Primary Key
field in a managers table).

¢ Rule 3: Id, Name, DOB and Manager are unique heading names within the table.

¢ Rule 4: The inclusion of the Id field ensures that each record is distinct from any other record within the
table.

A badly designed table:

Id Name DOB Name
1 Fred 11/02/1971 3
1 Fred 11/02/1971 3

3 Sue Friday the 18th July 19752, 1

¢ Rule 1: The second name field contains two values - 2 and 1.
Rule 2: The DOB field contains dates and text.

Rule 3: There's two fields called 'name'.

Rule 4: The first and second record are exactly the same.
Rule 5: This rule isn't broken.

GoalKicker.com - SQL Notes for Professionals 145

http://goalkicker.com/

Chapter 58: Synonyms

Section 58.1: Create Synonym

CREATE SYNONYM EmployeeData
FOR MyDatabase.dbo.Employees

GoalKicker.com - SQL Notes for Professionals 146

http://goalkicker.com/

Chapter 59: Information Schema

Section 59.1;: Basic Information Schema Search

One of the most useful queries for end users of large RDBMS's is a search of an information schema.

Such a query allows users to rapidly find database tables containing columns of interest, such as when attempting
to relate data from 2 tables indirectly through a third table, without existing knowledge of which tables may contain
keys or other useful columns in common with the target tables.

Using T-SQL for this example, a database's information schema may be searched as follows:

SELECT =
FROM INFORMATION_SCHEMA.COLUMNS
WHERE COLUMN_NAME LIKE '%Institution%'

The result contains a list of matching columns, their tables' names, and other useful information.

GoalKicker.com - SQL Notes for Professionals 147

http://goalkicker.com/

Chapter 60: Order of Execution
Section 60.1: Logical Order of Query Processing in SQL

/*(8)
/%(1)
/*(3)
/%(2)
s
/*(5)
/*(6)
/1%(7)

%/ SELECT /#9%/ DISTINCT /#11%/ TOP
*/ FROM

*/ JOIN

*/ ON

*/ WHERE

*/ GROUP BY

%/ WITH {CUBE | ROLLUP}

*/ HAVING

/*(10)*/ ORDER BY

/%(1

)%/ LIMIT

The order in which a query is processed and description of each section.

VT stands for 'Virtual Table' and shows how various data is produced as the query is processed

1.

10.

11.

FROM: A Cartesian product (cross join) is performed between the first two tables in the FROM clause, and as
a result, virtual table VT1 is generated.

ON: The ON filter is applied to VT1. Only rows for which the is TRUE are inserted to VT2.

OUTER (join): If an OUTER JOIN is specified (as opposed to a CROSS JOIN or an INNER JOIN), rows from the
preserved table or tables for which a match was not found are added to the rows from VT2 as outer rows,
generating VT3. If more than two tables appear in the FROM clause, steps 1 through 3 are applied repeatedly
between the result of the last join and the next table in the FROM clause until all tables are processed.

WHERE: The WHERE filter is applied to VT3. Only rows for which the is TRUE are inserted to VT4.

GROUP BY: The rows from VT4 are arranged in groups based on the column list specified in the GROUP BY
clause. VTS5 is generated.

CUBE | ROLLUP: Supergroups (groups of groups) are added to the rows from VT5, generating VT6.

HAVING: The HAVING filter is applied to VT6. Only groups for which the is TRUE are inserted to VT7.

. SELECT: The SELECT list is processed, generating VT8.

DISTINCT: Duplicate rows are removed from VT8. VT9 is generated.

ORDER BY: The rows from VT9 are sorted according to the column list specified in the ORDER BY clause. A
cursor is generated (VC10).

TOP: The specified number or percentage of rows is selected from the beginning of VC10. Table VT11 is
generated and returned to the caller. LIMIT has the same functionality as TOP in some SQL dialects such as
Postgres and Netezza.

GoalKicker.com - SQL Notes for Professionals 148

http://goalkicker.com/

Chapter 61: Clean Code in SQL

How to write good, readable SQL queries, and example of good practices.

Section 61.1: Formatting and Spelling of Keywords and Names

Table/Column Names

Two common ways of formatting table/column names are CamelCase and snake_case:

SELECT FirstName, LastName
FROM Employees
WHERE Salary > 5600;

SELECT first_name, last_name
FROM employees
WHERE salary > 500;

Names should describe what is stored in their object. This implies that column names usually should be singular.
Whether table names should use singular or plural is a heavily discussed question, but in practice, it is more
common to use plural table names.

Adding prefixes or suffixes like tbl or col reduces readability, so avoid them. However, they are sometimes used to
avoid conflicts with SQL keywords, and often used with triggers and indexes (whose names are usually not
mentioned in queries).

Keywords

SQL keywords are not case sensitive. However, it is common practice to write them in upper case.

Section 61.2: Indenting

There is no widely accepted standard. What everyone agrees on is that squeezing everything into a single line is
bad:

SELECT d.Name, COUNT(#*) AS Employees FROM Departments AS d JOIN Employees AS e ON d.ID =
e.DepartmentID WHERE d.Name != 'HR' HAVING COUNT(#*) > 10 ORDER BY COUNT(#*) DESC;

At the minimum, put every clause into a new line, and split lines if they would become too long otherwise:

SELECT d.Name,
COUNT(*) AS Employees
FROM Departments AS d
JOIN Employees AS e ON d.ID = e.DepartmentID
WHERE d.Name != 'HR'
HAVING COUNT(*) > 10
ORDER BY COUNT(#*) DESC;

Sometimes, everything after the SQL keyword introducing a clause is indented to the same column:

SELECT d.Name,
COUNT(*) AS Employees

FROM Departments AS d
JOIN Employees AS e ON d.ID = e.DepartmentID
WHERE d.Name != 'HR'

HAVING COUNT(*) > 10

GoalKicker.com - SQL Notes for Professionals 149

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Snake_case
http://stackoverflow.com/questions/338156/table-naming-dilemma-singular-vs-plural-names
http://goalkicker.com/

ORDER BY COUNT(=*) DESC;

(This can also be done while aligning the SQL keywords right.)
Another common style is to put important keywords on their own lines:

SELECT

d.Name,

COUNT(*) AS Employees
FROM

Departments AS d
JOIN

Employees AS e

ON d.ID = e.DepartmentID

WHERE

d.Name !'= 'HR'
HAVING

COUNT(*) > 10
ORDER BY

COUNT(*) DESC;
Vertically aligning multiple similar expressions improves readability:

SELECT Model,

EmployeeID
FROM Cars
WHERE CustomerID = 42
AND Status = 'READY';

Using multiple lines makes it harder to embed SQL commands into other programming languages. However, many
languages have a mechanism for multi-line strings, e.g., @" ... " in C#, """ ..."""in Python, orR"(...)" in C++.

Section 61.3: SELECT *

SELECT = returns all columns in the same order as they are defined in the table.

When using SELECT =, the data returned by a query can change whenever the table definition changes. This
increases the risk that different versions of your application or your database are incompatible with each other.

Furthermore, reading more columns than necessary can increase the amount of disk and network 1/0.

So you should always explicitly specify the column(s) you actually want to retrieve:

--SELECT * don’t
SELECT ID, FName, LName, PhoneNumber -- do
FROM Emplopees;

(When doing interactive queries, these considerations do not apply.)

However, SELECT * does not hurt in the subquery of an EXISTS operator, because EXISTS ignores the actual data
anyway (it checks only if at least one row has been found). For the same reason, it is not meaningful to list any
specific column(s) for EXISTS, so SELECT =* actually makes more sense:

-- list departments where nobody was hired recently
SELECT 1ID,

Name
FROM Departments

GoalKicker.com - SQL Notes for Professionals 150

http://goalkicker.com/

WHERE NOT EXISTS (SELECT =
FROM Employees
WHERE DepartmentID = Departments.ID
AND HireDate >= '2015-01-01");

Section 61.4: Joins

Explicit joins should always be used; implicit joins have several problems:

¢ The join condition is somewhere in the WHERE clause, mixed up with any other filter conditions. This makes
it harder to see which tables are joined, and how.

¢ Due to the above, there is a higher risk of mistakes, and it is more likely that they are found later.

¢ In standard SQL, explicit joins are the only way to use outer joins:

SELECT d.Name,

e.Fname || e.LName AS EmpName
FROM Departments AS d

LEFT JOIN Employees AS e ON d.ID = e.DepartmentID;

¢ Explicit joins allow using the USING clause:

SELECT RecipelD,
Recipes.Name,

COUNT(*) AS NumberOfIngredients
FROM Recipes

LEFT JOIN Ingredients USING (RecipelD);

(This requires that both tables use the same column name.

USING automatically removes the duplicate column from the result, e.g., the join in this query returns a
single RecipeID column.)

GoalKicker.com - SQL Notes for Professionals 151

http://goalkicker.com/

Chapter 62: SQL Injection

SQL injection is an attempt to access a website's database tables by injecting SQL into a form field. If a web server
does not protect against SQL injection attacks, a hacker can trick the database into running the additional SQL code.
By executing their own SQL code, hackers can upgrade their account access, view someone else's private
information, or make any other modifications to the database.

Section 62.1: SQL injection sample
Assuming the call to your web application's login handler looks like this:
https://somepage.com/ajax/login.ashx?username=admin&password=123

Now in login.ashx, you read these values:

strUserName = getHttpsRequestParameterString("username");
strPassword getHttpsRequestParameterString("password") ;

and query your database to determine whether a user with that password exists.

So you construct an SQL query string:

txtSQL = "SELECT * FROM Users WHERE username = '" + strUserName + "' AND password = '"+ strPassword
prn

’

This will work if the username and password do not contain a quote.
However, if one of the parameters does contain a quote, the SQL that gets sent to the database will look like this:

-- strUserName = "d'Alambert"”;
txtSQL = "SELECT * FROM Users WHERE username = 'd'Alambert' AND password = '123'";

This will result in a syntax error, because the quote after the d in d' Alambert ends the SQL string.

You could correct this by escaping quotes in username and password, e.g.:

strUserName
strPassword

strUserName.Replace(""'", "'"");
strPassword.Replace("'", "'"'");

However, it's more appropriate to use parameters:

cmd.CommandText = "SELECT * FROM Users WHERE username = @username AND password = @password";

cmd.Parameters.Add("@username", strUserName) ;
cmd.Parameters.Add("@password", strPassword);

If you do not use parameters, and forget to replace quote in even one of the values, then a malicious user (aka
hacker) can use this to execute SQL commands on your database.

For example, if an attacker is evil, he/she will set the password to

lol'; DROP DATABASE master; --

and then the SQL will look like this:

GoalKicker.com - SQL Notes for Professionals 152

http://goalkicker.com/

"SELECT * FROM Users WHERE username = 'somebody' AND password = 'lol'; DROP DATABASE master; --'";

Unfortunately for you, this is valid SQL, and the DB will execute this!
This type of exploit is called an SQL injection.

There are many other things a malicious user could do, such as stealing every user's email address, steal everyone's
password, steal credit card numbers, steal any amount of data in your database, etc.

This is why you always need to escape your strings.
And the fact that you'll invariably forget to do so sooner or later is exactly why you should use parameters. Because
if you use parameters, then your programming language framework will do any necessary escaping for you.

Section 62.2: simple injection sample
If the SQL statement is constructed like this:

SQL = "SELECT * FROM Users WHERE username = '" + user + "' AND password ='" + pw + "'";
db.execute(SQL) ;

Then a hacker could retrieve your data by giving a password like pw' or '1'="1; the resulting SQL statement will
be:

SELECT * FROM Users WHERE username = 'somebody' AND password ='pw' or '1'="1'
This one will pass the password check for all rows in the Users table because "1'="1" is always true.
To prevent this, use SQL parameters:

SQL = "SELECT * FROM Users WHERE username = ? AND password = ?";
db.execute(SQL, [user, pw]);

GoalKicker.com - SQL Notes for Professionals 153

http://goalkicker.com/

Credits

Thank you greatly to all the people from Stack Overflow Documentation who helped provide this content,
more changes can be sent to web@petercv.com for new content to be published or updated

Ozgir Oztiirk
3N1GM4

alex07
Abe Miessler

Abhilash R Vankayala

aholmes

Aidan

alex9311

Almir Vuk

Alok Singh
Ameya Deshpande
Amir Pourmand
Amnon

Andrea

Andrea Montanari
Andreas

Andy G
apomene

Ares

Arkh

Arpit Solanki
Arthur D
Arulkumar
ashja99
Athafoud

A Arnold

Bart Schuijt
Batsu

bhs

bignose
blackbishop
Blag

Bostjan
Branko Dimitrijevic

Brent Oliver
brichins

carlosb

Chris

Christian

Christian Sagmuller
Christos

CL.

Cristian Abelleira
DalmTo

Daniel

Daniel Langemann
dariru

Dariusz

Darrel Lee

Chapters 8 and 17
Chapter 7
Chapter 37
Chapter 7

Chapters 6, 5, 11, 30, 27 and 32

Chapter 6
Chapters 21 and 25
Chapter 21
Chapters 37 and 21
Chapter 6

Chapter 26
Chapter 56
Chapter 6

Chapter 24
Chapter 36
Chapter 2

Chapter 18
Chapter 6

Chapter 21

Chapter 45
Chapter 6

Chapter 41
Chapters 13 and 41
Chapters 11 and 42
Chapter 24
Chapter 18
Chapter 11

Chapter 41

Chapter 45
Chapter 5

Chapter 25
Chapter 17
Chapters 5,7 and 13
Chapter 18
Chapter 6

Chapter 54
Chapters 37 and 39
Chapter 6

Chapter 5

Chapter 6

Chapter 6

Chapters 1, 6, 18, 19, 37, 21, 10, 36, 8, 46, 42, 41, 49, 31, 14, 62, 2 and 61

Chapter 30
Chapter 30
Chapter 46
Chapters 18 and 24
Chapter 6
Chapters 19 and 10
Chapter 40

GoalKicker.com - SQL Notes for Professionals

154

mailto:web@petercv.com
https://stackoverflow.com/users/1934778/
https://stackoverflow.com/users/5669294/
https://stackoverflow.com/users/232403/
https://stackoverflow.com/users/226897/
https://stackoverflow.com/users/6158629/
https://stackoverflow.com/users/1801382/
https://stackoverflow.com/users/1980414/
https://stackoverflow.com/users/1618292/
https://stackoverflow.com/users/5165961/
https://stackoverflow.com/users/3955698/
https://stackoverflow.com/users/2609817/
https://stackoverflow.com/users/4201765/
https://stackoverflow.com/users/1860089/
https://stackoverflow.com/users/909742/
https://stackoverflow.com/users/3319687/
https://stackoverflow.com/users/5221149/
https://stackoverflow.com/users/620444/
https://stackoverflow.com/users/1000827/
https://stackoverflow.com/users/2887760/
https://stackoverflow.com/users/151758/
https://stackoverflow.com/users/5250746/
https://stackoverflow.com/users/6220816/
https://stackoverflow.com/users/2451726/
https://stackoverflow.com/users/3522593/
https://stackoverflow.com/users/2279200/
https://stackoverflow.com/users/5050431/
https://stackoverflow.com/users/2811537/
https://stackoverflow.com/users/1029516/
https://stackoverflow.com/users/215452/
https://stackoverflow.com/users/70157/
https://stackoverflow.com/users/1386551/
https://stackoverflow.com/users/5546267/
https://stackoverflow.com/users/648119/
https://stackoverflow.com/users/533120/
https://stackoverflow.com/users/5116096/
https://stackoverflow.com/users/957950/
https://stackoverflow.com/users/5095669/
https://stackoverflow.com/users/536950/
https://stackoverflow.com/users/112670/
https://stackoverflow.com/users/6619524/
https://stackoverflow.com/users/913124/
https://stackoverflow.com/users/11654/
https://stackoverflow.com/users/2404889/
https://stackoverflow.com/users/1841839/
https://stackoverflow.com/users/2444386/
https://stackoverflow.com/users/2612068/
https://stackoverflow.com/users/2036808/
https://stackoverflow.com/users/1961634/
https://stackoverflow.com/users/307968/
http://goalkicker.com/

Darren Bartrup
Daryl

dasblinkenlight
David Manheim

David Pine

David Spillett
day_dreamer
dd4711
dmfay

Durgpal Singh
Dylan Vander Berg

Emil Rowland

Eric VB

Florin Ghita
FlyingPiMonster
forsvarir

Franck Dernoncourt
Frank

fuzzy_logic
Gallus

geeksal

Gidil

Golden Gate
guiguiblitz

H. Pauwelyn
Hack

Harish Gyanani
Harjot

hatchet
hellyale

Horaciux

Hynek Bernard

lan Kenney
iliketocode

Imran Ali Khan
Inca

IncrediApp
Jared Hooper
Jason W
JavaHopper
Jaydip Jadhav
Jaydles
Jenism

erry Jeremiah
Jim

Joe Taras
Joel

John Odom
John Slegers
John Smith
JohnlLBevan
Jojodmo

Chapters 18 and 57
Chapters 6, 55, 56 and 58
Chapter 52

Chapter 37

Chapter 6

Chapter 6

Chapter 6

Chapter 46

Chapter 48

Chapter 6

Chapters 21 and 29
Chapter 20

Chapter 6

Chapters 18, 5, 25, 47 and 42
Chapters 6, 5, 19, 37 and 36
Chapters 18 and 5
Chapters 6, 18 and 41
Chapter 7

Chapter 46

Chapter 60

Chapter 1

Chapter 45

Chapter 41

Chapter 9

Chapter 21

Chapter 59

Chapter 11

Chapter 50

Chapter 41

Chapter 11

Chapter 18

Chapter 18

Chapter 6

Chapter 37

Chapter 30

Chapter 42

Chapter 6

Chapters 6, 42 and 41
Chapter 6

Chapter 55

Chapter 6

Chapter 24

Chapter 5

Chapter 41

Chapters 6, 10, 8 and 7
Chapter 37

Chapter 45

Chapter 24

Chapter 24

Chapters 29 and 31
Chapters 6, 18, 56, 22 and 32
Chapters 6 and 18
Chapter 51

Chapter 1

Chapter 21

GoalKicker.com - SQL Notes for Professionals

155

https://stackoverflow.com/users/4677305/
https://stackoverflow.com/users/204285/
https://stackoverflow.com/users/335858/
https://stackoverflow.com/users/1132642/
https://stackoverflow.com/users/2410379/
https://stackoverflow.com/users/114292/
https://stackoverflow.com/users/5319981/
https://stackoverflow.com/users/6101163/
https://stackoverflow.com/users/7259926/
https://stackoverflow.com/users/1759015/
https://stackoverflow.com/users/2297366/
https://stackoverflow.com/users/5410879/
https://stackoverflow.com/users/4915654/
https://stackoverflow.com/users/319875/
https://stackoverflow.com/users/4250629/
https://stackoverflow.com/users/592182/
https://stackoverflow.com/users/395857/
https://stackoverflow.com/users/1191259/
https://stackoverflow.com/users/1657427/
https://stackoverflow.com/users/3494243/
https://stackoverflow.com/users/3212574/
https://stackoverflow.com/users/1709629/
https://stackoverflow.com/users/5860431/
https://stackoverflow.com/users/3845436/
https://stackoverflow.com/users/4551041/
https://stackoverflow.com/users/3604745/
https://stackoverflow.com/users/1495703/
https://stackoverflow.com/users/7003682/
https://stackoverflow.com/users/834261/
https://stackoverflow.com/users/4645236/
https://stackoverflow.com/users/504958/
https://stackoverflow.com/users/9034/
https://stackoverflow.com/users/2076049/
https://stackoverflow.com/users/3564751/
https://stackoverflow.com/users/6518147/
https://stackoverflow.com/users/2308473/
https://stackoverflow.com/users/3739391/
https://stackoverflow.com/users/2723943/
https://stackoverflow.com/users/485534/
https://stackoverflow.com/users/829407/
https://stackoverflow.com/users/3872894/
https://stackoverflow.com/users/4154421/
https://stackoverflow.com/users/3059893/
https://stackoverflow.com/users/4964923/
https://stackoverflow.com/users/347414/
https://stackoverflow.com/users/5907809/
https://stackoverflow.com/users/2193968/
https://stackoverflow.com/users/6450450/
https://stackoverflow.com/users/2577734/
https://stackoverflow.com/users/4096670/
https://stackoverflow.com/users/2843157/
https://stackoverflow.com/users/1946501/
https://stackoverflow.com/users/4917882/
https://stackoverflow.com/users/361842/
https://stackoverflow.com/users/2767207/
http://goalkicker.com/

Jon Chan
Jon Ericson
JonH
juergend

Karthikeyan
Kewin Bjork Nielsen

KIRAN KUMAR MATAM

KjetilNordin
Knickerless

Lankymart
LCl

Leigh Riffel
Lexi
Lohitha Palagiri

Magisch
Mark lannucci

Mark Perera
Mark Stewart
Matas Vaitkevicius
Mateusz Piotrowski
Matt

Matt S
Mattew Whitt
mauris

Mihai

mithra chintha
MotKohn

Mr. Developer
Mureinik
mustaccio
Mzzzzzz
Nathan
nazark

Neria Nachum
Nunie123
Oded

Ojen

omini data
onedaywhen
Ozair Kafray
Parado

Paul Bambury
Paulo Freitas
Peter K
Phrancis
Prateek
Preuk

Racil Hilan

raholling

rajarshig
RamenChef

Reboot
Redithion
Ricardo Pontual
Robert Columbia

Chapter 13
Chapters 1 and 13
Chapter 6

Chapters 13,42 and 12

Chapter 28
Chapters 41 and 43
Chapter 21
Chapter 36
Chapter 62
Chapter 6
Chapter 15
Chapter 41
Chapter 25
Chapter 11
Chapter 5
Chapters 6 and 18
Chapters 6 and 11
Chapter 43

Chapters 6, 19, 21, 13,41 and 14

Chapter 41

Chapters 6, 5and 10
Chapter 6

Chapter 6

Chapter 37
Chapters 6 and 24
Chapters 25 and 8
Chapter 10

Chapter 11

Chapters 18, 10 and 45

Chapters 6 and 45
Chapter 5

Chapter 42
Chapter 8

Chapter 41

Chapter 52
Chapter 6
Chapters 6 and 11
Chapters 42 and 44
Chapter 6

Chapter 25
Chapters 37 and 8
Chapter 30
Chapter 37
Chapters 46 and 42

Chapters 1, 18,19, 8, 13, 46, 11, 29, 41, 3, 49, 52, 53, 38 and 4

Chapters 1, 6 and 21
Chapter 6

Chapter 6

Chapter 18

Chapter 26

Chapter 41

Chapter 42

Chapter 11

Chapter 22
Chapters 6 and 41

GoalKicker.com - SQL Notes for Professionals

https://stackoverflow.com/users/1043674/
https://stackoverflow.com/users/1438/
https://stackoverflow.com/users/168703/
https://stackoverflow.com/users/575376/
https://stackoverflow.com/users/5194088/
https://stackoverflow.com/users/5276718/
https://stackoverflow.com/users/1940824/
https://stackoverflow.com/users/1203811/
https://stackoverflow.com/users/1271898/
https://stackoverflow.com/users/692942/
https://stackoverflow.com/users/1439748/
https://stackoverflow.com/users/27010/
https://stackoverflow.com/users/5586958/
https://stackoverflow.com/users/5011068/
https://stackoverflow.com/users/5389107/
https://stackoverflow.com/users/1944366/
https://stackoverflow.com/users/6574064/
https://stackoverflow.com/users/4178262/
https://stackoverflow.com/users/1509764/
https://stackoverflow.com/users/4694621/
https://stackoverflow.com/users/2641576/
https://stackoverflow.com/users/163024/
https://stackoverflow.com/users/3264217/
https://stackoverflow.com/users/126039/
https://stackoverflow.com/users/5192848/
https://stackoverflow.com/users/6357886/
https://stackoverflow.com/users/5976576/
https://stackoverflow.com/users/5829848/
https://stackoverflow.com/users/2422776/
https://stackoverflow.com/users/1227152/
https://stackoverflow.com/users/145988/
https://stackoverflow.com/users/2111584/
https://stackoverflow.com/users/4650537/
https://stackoverflow.com/users/5280641/
https://stackoverflow.com/users/6491757/
https://stackoverflow.com/users/1583/
https://stackoverflow.com/users/1334542/
https://stackoverflow.com/users/6203436/
https://stackoverflow.com/users/15354/
https://stackoverflow.com/users/365188/
https://stackoverflow.com/users/1579182/
https://stackoverflow.com/users/6620537/
https://stackoverflow.com/users/222758/
https://stackoverflow.com/users/4896952/
https://stackoverflow.com/users/3626537/
https://stackoverflow.com/users/500773/
https://stackoverflow.com/users/1503505/
https://stackoverflow.com/users/3215948/
https://stackoverflow.com/users/2052732/
https://stackoverflow.com/users/4203686/
https://stackoverflow.com/users/6392939/
https://stackoverflow.com/users/2680864/
https://stackoverflow.com/users/1423901/
https://stackoverflow.com/users/4730201/
https://stackoverflow.com/users/6471538/
http://goalkicker.com/

Ryan
Ryan Rockey

Saroj Sasmal
Shiva

Sibeesh Venu

Simon Foster
Simone

Simulant
SommerEngineering
SQLFox

sgluser
Stanislovas
Kalasnikovas

Stefan Steiger
Steven

Stivan

Stu

Timothy

tinlyx

Tot Zam
Uberzen1
Umesh
user1221533
user1336087
user2314737
Vikrant
vmaroli

walid
WesleyJohnson
William Ledbetter
wintersolider

Wolfgang
xenodevil

xQbert

Yehuda Shapira
yper

Yury Fedorov

Zaga
Zahiro Mor

zedfoxus

Zoyd

zplizzi

alox

Anekcer HeyaauunH
Paxyn MakBaHa

Chapter 37
Chapter 60
Chapters 6 and 4
Chapter 5
Chapter 46
Chapter 25
Chapter 7
Chapter 16
Chapter 6
Chapter 27
Chapter 6

Chapter 10

Chapters 18, 11, 62 and 33

Chapter 35
Chapter 61
Chapter 31
Chapter 6

Chapter 52

Chapters 18, 5, 19, 26, 13 and 42

Chapter 23
Chapter 29
Chapter 38
Chapter 6

Chapter 34
Chapter 11
Chapters 19, 11 and 41
Chapters 12 and 4
Chapter 5

Chapter 42
Chapter 6

Chapter 8
Chapters 18 and 29
Chapter 6

Chapter 50
Chapters 1 and 4
Chapter 6

Chapter 12
Chapters 6 and 7
Chapter 6

Chapter 27
Chapter 26
Chapters 10 and 41
Chapter 42
Chapter 18

GoalKicker.com - SQL Notes for Professionals

157

https://stackoverflow.com/users/84383/
https://stackoverflow.com/users/6281947/
https://stackoverflow.com/users/5293076/
https://stackoverflow.com/users/325521/
https://stackoverflow.com/users/5550507/
https://stackoverflow.com/users/26111/
https://stackoverflow.com/users/6668376/
https://stackoverflow.com/users/1515052/
https://stackoverflow.com/users/2258393/
https://stackoverflow.com/users/1735928/
https://stackoverflow.com/users/2958272/
https://stackoverflow.com/users/4609360/
https://stackoverflow.com/users/4609360/
https://stackoverflow.com/users/155077/
https://stackoverflow.com/users/3865006/
https://stackoverflow.com/users/4651802/
https://stackoverflow.com/users/414/
https://stackoverflow.com/users/4497805/
https://stackoverflow.com/users/683218/
https://stackoverflow.com/users/4660897/
https://stackoverflow.com/users/3401520/
https://stackoverflow.com/users/3056913/
https://stackoverflow.com/users/1221533/
https://stackoverflow.com/users/1336087/
https://stackoverflow.com/users/2314737/
https://stackoverflow.com/users/3682162/
https://stackoverflow.com/users/1398786/
https://stackoverflow.com/users/1268937/
https://stackoverflow.com/users/187538/
https://stackoverflow.com/users/5322242/
https://stackoverflow.com/users/3292325/
https://stackoverflow.com/users/1979340/
https://stackoverflow.com/users/98804/
https://stackoverflow.com/users/1016435/
https://stackoverflow.com/users/954725/
https://stackoverflow.com/users/344949/
https://stackoverflow.com/users/4378400/
https://stackoverflow.com/users/6633643/
https://stackoverflow.com/users/4700149/
https://stackoverflow.com/users/2554537/
https://stackoverflow.com/users/3528562/
https://stackoverflow.com/users/2989201/
https://stackoverflow.com/users/4358339/
https://stackoverflow.com/users/7172363/
https://stackoverflow.com/users/3709746/
http://goalkicker.com/

You may also like

CSS

Notes for Professionals

200+ pages

GoalKicker.com
Free Progromméng Books

Microsoft
SQL Server

Notes for Professionals

200+ pcges

GoalKicker.com

Free Progromming Books

Oracle
Database

Notes for Professionals

100+ _poges

and ricks

HTML5

Notes for Professionals

100+ pages

e Iriciks

Sogiickercom ™ sini i R

MongoDB

Notes for Professionals

60+ poges

hints and fricks

i

PostgreSQL

Notes for Professionals

60+ poges

s and fricks

GoalKicker.com
Eree Progromming Books

JavaScript

Notes for Professionals

400+ puges

sinnel hints and Tricks

MySQL

Notes for Professionals

100+ puges

iaral hi

GoalKicker. -com

Free Programming Books

Notes for Professionals

400+ puges

iareal hints and fricks

http://goalkicker.com/CSSBook
http://goalkicker.com/HTML5Book
http://goalkicker.com/JavaScriptBook
http://goalkicker.com/MicrosoftSQLServerBook
http://goalkicker.com/MongoDBBook
http://goalkicker.com/MySQLBook
http://goalkicker.com/OracleDatabaseBook
http://goalkicker.com/PostgreSQLBook
http://goalkicker.com/PHPBook

	Content list
	About
	Chapter 1: Getting started with SQL
	Section 1.1: Overview

	Chapter 2: Identiﬁer
	Section 2.1: Unquoted identiﬁers

	Chapter 3: Data Types
	Section 3.1: DECIMAL and NUMERIC
	Section 3.2: FLOAT and REAL
	Section 3.3: Integers
	Section 3.4: MONEY and SMALLMONEY
	Section 3.5: BINARY and VARBINARY
	Section 3.6: CHAR and VARCHAR
	Section 3.7: NCHAR and NVARCHAR
	Section 3.8: UNIQUEIDENTIFIER

	Chapter 4: NULL
	Section 4.1: Filtering for NULL in queries
	Section 4.2: Nullable columns in tables
	Section 4.3: Updating ﬁelds to NULL
	Section 4.4: Inserting rows with NULL ﬁelds

	Chapter 5: Example Databases and Tables
	Section 5.1: Auto Shop Database
	Section 5.2: Library Database
	Section 5.3: Countries Table

	Chapter 6: SELECT
	Section 6.1: Using the wildcard character to select all columns in a query
	Section 6.2: SELECT Using Column Aliases
	Section 6.3: Select Individual Columns
	Section 6.4: Selecting speciﬁed number of records
	Section 6.5: Selecting with Condition
	Section 6.6: Selecting with CASE
	Section 6.7: Select columns which are named after reserved keywords
	Section 6.8: Selecting with table alias
	Section 6.9: Selecting with more than 1 condition
	Section 6.10: Selecting without Locking the table
	Section 6.11: Selecting with Aggregate functions
	Section 6.12: Select with condition of multiple values from column
	Section 6.13: Get aggregated result for row groups
	Section 6.14: Selection with sorted Results
	Section 6.15: Selecting with null
	Section 6.16: Select distinct (unique values only)
	Section 6.17: Select rows from multiple tables

	Chapter 7: GROUP BY
	Section 7.1: Basic GROUP BY example
	Section 7.2: Filter GROUP BY results using a HAVING clause
	Section 7.3: USE GROUP BY to COUNT the number of rows for each unique entry in a given column
	Section 7.4: ROLAP aggregation (Data Mining)

	Chapter 8: ORDER BY
	Section 8.1: Sorting by column number (instead of name)
	Section 8.2: Use ORDER BY with TOP to return the top x rows based on a column's value
	Section 8.3: Customizeed sorting order
	Section 8.4: Order by Alias
	Section 8.5: Sorting by multiple columns

	Chapter 9: AND & OR Operators
	Section 9.1: AND OR Example

	Chapter 10: CASE
	Section 10.1: Use CASE to COUNT the number of rows in a column match a condition
	Section 10.2: Searched CASE in SELECT (Matches a boolean expression)
	Section 10.3: CASE in a clause ORDER BY
	Section 10.4: Shorthand CASE in SELECT
	Section 10.5: Using CASE in UPDATE
	Section 10.6: CASE use for NULL values ordered last
	Section 10.7: CASE in ORDER BY clause to sort records by lowest value of 2 columns

	Chapter 11: LIKE operator
	Section 11.1: Match open-ended pattern
	Section 11.2: Single character match
	Section 11.3: ESCAPE statement in the LIKE-query
	Section 11.4: Search for a range of characters
	Section 11.5: Match by range or set
	Section 11.6: Wildcard characters

	Chapter 12: IN clause
	Section 12.1: Simple IN clause
	Section 12.2: Using IN clause with a subquery

	Chapter 13: Filter results using WHERE and HAVING
	Section 13.1: Use BETWEEN to Filter Results
	Section 13.2: Use HAVING with Aggregate Functions
	Section 13.3: WHERE clause with NULL/NOT NULL values
	Section 13.4: Equality
	Section 13.5: The WHERE clause only returns rows that match its criteria
	Section 13.6: AND and OR
	Section 13.7: Use IN to return rows with a value contained in a list
	Section 13.8: Use LIKE to ﬁnd matching strings and substrings
	Section 13.9: Where EXISTS
	Section 13.10: Use HAVING to check for multiple conditions in a group

	Chapter 14: SKIP TAKE (Pagination)
	Section 14.1: Limiting amount of results
	Section 14.2: Skipping then taking some results (Pagination)
	Section 14.3: Skipping some rows from result

	Chapter 15: EXCEPT
	Section 15.1: Select dataset except where values are in this other dataset

	Chapter 16: EXPLAIN and DESCRIBE
	Section 16.1: EXPLAIN Select query
	Section 16.2: DESCRIBE tablename;

	Chapter 17: EXISTS CLAUSE
	Section 17.1: EXISTS CLAUSE

	Chapter 18: JOIN
	Section 18.1: Self Join
	Section 18.2: Dierences between inner/outer joins
	Section 18.3: JOIN Terminology: Inner, Outer, Semi, Anti..
	Section 18.4: Left Outer Join
	Section 18.5: Implicit Join
	Section 18.6: CROSS JOIN
	Section 18.7: CROSS APPLY & LATERAL JOIN
	Section 18.8: FULL JOIN
	Section 18.9: Recursive JOINs
	Section 18.10: Basic explicit inner join
	Section 18.11: Joining on a Subquery

	Chapter 19: UPDATE
	Section 19.1: UPDATE with data from another table
	Section 19.2: Modifying existing values
	Section 19.3: Updating Speciﬁed Rows
	Section 19.4: Updating All Rows
	Section 19.5: Capturing Updated records

	Chapter 20: CREATE Database
	Section 20.1: CREATE Database

	Chapter 21: CREATE TABLE
	Section 21.1: Create Table From Select
	Section 21.2: Create a New Table
	Section 21.3: CREATE TABLE With FOREIGN KEY
	Section 21.4: Duplicate a table
	Section 21.5: Create a Temporary or In-Memory Table

	Chapter 22: CREATE FUNCTION
	Section 22.1: Create a new Function

	Chapter 23: TRY/CATCH
	Section 23.1: Transaction In a TRY/CATCH

	Chapter 24: UNION / UNION ALL
	Section 24.1: Basic UNION ALL query
	Section 24.2: Simple explanation and Example

	Chapter 25: ALTER TABLE
	Section 25.1: Add Column(s)
	Section 25.2: Drop Column
	Section 25.3: Add Primary Key
	Section 25.4: Alter Column
	Section 25.5: Drop Constraint

	Chapter 26: INSERT
	Section 26.1: INSERT data from another table using SELECT
	Section 26.2: Insert New Row
	Section 26.3: Insert Only Speciﬁed Columns
	Section 26.4: Insert multiple rows at once

	Chapter 27: MERGE
	Section 27.1: MERGE to make Target match Source
	Section 27.2: MySQL: counting users by name
	Section 27.3: PostgreSQL: counting users by name

	Chapter 28: cross apply, outer apply
	Section 28.1: CROSS APPLY and OUTER APPLY basics

	Chapter 29: DELETE
	Section 29.1: DELETE all rows
	Section 29.2: DELETE certain rows with WHERE
	Section 29.3: TRUNCATE clause
	Section 29.4: DELETE certain rows based upon comparisons with other tables

	Chapter 30: TRUNCATE
	Section 30.1: Removing all rows from the Employee table

	Chapter 31: DROP Table
	Section 31.1: Check for existence before dropping
	Section 31.2: Simple drop

	Chapter 32: DROP or DELETE Database
	Section 32.1: DROP Database

	Chapter 33: Cascading Delete
	Section 33.1: ON DELETE CASCADE

	Chapter 34: GRANT and REVOKE
	Section 34.1: Grant/revoke privileges

	Chapter 35: XML
	Section 35.1: Query from XML Data Type

	Chapter 36: Primary Keys
	Section 36.1: Creating a Primary Key
	Section 36.2: Using Auto Increment

	Chapter 37: Indexes
	Section 37.1: Sorted Index
	Section 37.2: Partial or Filtered Index
	Section 37.3: Creating an Index
	Section 37.4: Dropping an Index, or Disabling and Rebuilding it
	Section 37.5: Clustered, Unique, and Sorted Indexes
	Section 37.6: Rebuild index
	Section 37.7: Inserting with a Unique Index

	Chapter 38: Row number
	Section 38.1: Delete All But Last Record (1 to Many Table)
	Section 38.2: Row numbers without partitions
	Section 38.3: Row numbers with partitions

	Chapter 39: SQL Group By vs Distinct
	Section 39.1: Dierence between GROUP BY and DISTINCT

	Chapter 40: Finding Duplicates on a Column Subset with Detail
	Section 40.1: Students with same name and date of birth

	Chapter 41: String Functions
	Section 41.1: Concatenate
	Section 41.2: Length
	Section 41.3: Trim empty spaces
	Section 41.4: Upper & lower case
	Section 41.5: Split
	Section 41.6: Replace
	Section 41.7: REGEXP
	Section 41.8: Substring
	Section 41.9: Stu
	Section 41.10: LEFT - RIGHT
	Section 41.11: REVERSE
	Section 41.12: REPLICATE
	Section 41.13: Replace function in sql Select and Update query
	Section 41.14: INSTR
	Section 41.15: PARSENAME

	Chapter 42: Functions (Aggregate)
	Section 42.1: Conditional aggregation
	Section 42.2: List Concatenation
	Section 42.3: SUM
	Section 42.4: AVG()
	Section 42.5: Count
	Section 42.6: Min
	Section 42.7: Max

	Chapter 43: Functions (Scalar/Single Row)
	Section 43.1: Date And Time
	Section 43.2: Character modiﬁcations
	Section 43.3: Conﬁguration and Conversion Function
	Section 43.4: Logical and Mathmetical Function

	Chapter 44: Functions (Analytic)
	Section 44.1: LAG and LEAD
	Section 44.2: PERCENTILE_DISC and PERCENTILE_CONT
	Section 44.3: FIRST_VALUE
	Section 44.4: LAST_VALUE
	Section 44.5: PERCENT_RANK and CUME_DIST

	Chapter 45: Window Functions
	Section 45.1: Setting up a ﬂag if other rows have a common property
	Section 45.2: Finding "out-of-sequence" records using the LAG() function
	Section 45.3: Getting a running total
	Section 45.4: Adding the total rows selected to every row
	Section 45.5: Getting the N most recent rows over multiple grouping

	Chapter 46: Common Table Expressions
	Section 46.1: generating values
	Section 46.2: recursively enumerating a subtree
	Section 46.3: Temporary query
	Section 46.4: recursively going up in a tree
	Section 46.5: Recursively generate dates, extended to include team rostering as example
	Section 46.6: Oracle CONNECT BY functionality with recursive CTEs

	Chapter 47: Views
	Section 47.1: Simple views
	Section 47.2: Complex views

	Chapter 48: Materialized Views
	Section 48.1: PostgreSQL example

	Chapter 49: Comments
	Section 49.1: Single-line comments
	Section 49.2: Multi-line comments

	Chapter 50: Foreign Keys
	Section 50.1: Foreign Keys explained
	Section 50.2: Creating a table with a foreign key

	Chapter 51: Sequence
	Section 51.1: Create Sequence
	Section 51.2: Using Sequences

	Chapter 52: Subqueries
	Section 52.1: Subquery in FROM clause
	Section 52.2: Subquery in SELECT clause
	Section 52.3: Subquery in WHERE clause
	Section 52.4: Correlated Subqueries
	Section 52.5: Filter query results using query on dierent table
	Section 52.6: Subqueries in FROM clause
	Section 52.7: Subqueries in WHERE clause

	Chapter 53: Execution blocks
	Section 53.1: Using BEGIN ... END

	Chapter 54: Stored Procedures
	Section 54.1: Create and call a stored procedure

	Chapter 55: Triggers
	Section 55.1: CREATE TRIGGER
	Section 55.2: Use Trigger to manage a "Recycle Bin" for deleted items

	Chapter 56: Transactions
	Section 56.1: Simple Transaction
	Section 56.2: Rollback Transaction

	Chapter 57: Table Design
	Section 57.1: Properties of a well designed table

	Chapter 58: Synonyms
	Section 58.1: Create Synonym

	Chapter 59: Information Schema
	Section 59.1: Basic Information Schema Search

	Chapter 60: Order of Execution
	Section 60.1: Logical Order of Query Processing in SQL

	Chapter 61: Clean Code in SQL
	Section 61.1: Formatting and Spelling of Keywords and Names
	Section 61.2: Indenting
	Section 61.3: SELECT *
	Section 61.4: Joins

	Chapter 62: SQL Injection
	Section 62.1: SQL injection sample
	Section 62.2: simple injection sample

	Credits
	You may also like

