
Creating
Google Chrome
Extensions

THE E XPER T ’S VOICE® IN W E B D E V E L O P M E N T

—
Learn how to create great extensions
for Google’s popular Chrome browser
—
Prateek Mehta

 Creating Google
Chrome Extensions

 Prateek Mehta

Creating Google Chrome Extensions

Prateek Mehta
New Delhi, India

ISBN-13 (pbk): 978-1-4842-1774-0 ISBN-13 (electronic): 978-1-4842-1775-7
DOI 10.1007/978-1-4842-1775-7

Library of Congress Control Number: 2016943479

Copyright © 2016 by Prateek Mehta

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Ben Renow-Clarke
Development Editor: Matthew Moodie
Technical Reviewer: Massimo Nardone
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, James DeWolf,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,
James Markham, Susan McDermott, Matthew Moodie, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springer.com . Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance
Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com . For detailed information about how to locate your book’s source code, go
to www.apress.com/source-code/ .

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

 Dedicated to my parents and my brother for their
everlasting support and encouragement.

 And to the Stack Overfl ow community, for making computer
programming less troublesome.

v

Contents at a Glance

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

 ■Chapter 1: Introduction to Google Chrome Extensions 1

 ■Chapter 2: Architecture Overview .. 35

 ■Chapter 3: API Availability and Messaging 79

 ■Chapter 4: More About Extensions ... 145

Index .. 163

vii

Contents

About the Author .. xi

About the Technical Reviewer .. xiii

Acknowledgments ... xv

Introduction ... xvii

 ■Chapter 1: Introduction to Google Chrome Extensions 1

What Are Google Chrome Extensions? .. 1

Support for Browser Extensions ... 1

Extensions Are Not Plug-ins ... 2

Extensions and Plug-ins ... 3

Notable Examples .. 4

Adding Extensions from the Store ... 5

Technologies to Create Extensions .. 8

How Are Technologies Used? .. 8

Extensions API ... 8

Creating Your First Extension .. 9

Validating a JSON File .. 11

Creating the Manifest ... 12

Adding the Button: Browser-Action .. 12

 ■ CONTENTS

viii

Loading the Extension Folder .. 15

Debugging an Extension .. 17

Inspecting the Popup .. 18

Sources and Resources Panel .. 19

Console Panel ... 21

Distributing on Store ... 22

Summary ... 33

 ■Chapter 2: Architecture Overview .. 35

What Is User Perspective?... 35

Components Involved in Creating Chrome Extensions 35

Extension Runtime .. 40

Scripts Representing the Runtime .. 41

Input Components: Part One .. 42

The Browser-Action and Page-Action Components .. 42

Shortcut Key or Command .. 46

Event Scripts ... 50

The Need for Event Scripts ... 51

Role of the Manifest for This Component ... 53

Event Objects .. 56

Revisiting the onCommand Event ... 57

Declarative Event Handlers... 57

Content Scripts .. 62

Role of the Manifest for this Component .. 63

HelloContentScript Extension ... 65

Examples of Components .. 68

BrowserActionNotes Extension .. 68

PageActionNotes Extension .. 74

Summary ... 77

 ■ CONTENTS

ix

 ■Chapter 3: API Availability and Messaging 79

Input Components: Part Two .. 79

Omnibox Inputs ... 79

Context Menu Items .. 85

Revisiting Content-UI .. 90

Messaging for Communication ... 94

APIs and Events .. 95

Web Page Scripts and Event Scripts .. 96

Content Scripts and Event Scripts .. 103

Popup Scripts and Event Scripts .. 115

Google Chrome Extensions APIs .. 117

Declare Permissions ... 118

Alarms API .. 121

Bookmarks API ... 124

Downloads API .. 128

History API .. 132

Notifi cations API ... 134

Storage API ... 137

Tabs API .. 139

XHR API ... 142

Summary ... 144

 ■Chapter 4: More About Extensions ... 145

Providing an Options Page .. 145

Role of Manifest for this Component .. 145

Writing an Options Page ... 146

Working with Override Pages .. 149

Role of Manifest for this Component .. 151

OverridePages Extension .. 151

 ■ CONTENTS

x

Creating Themes for Google Chrome ... 155

Extensions Development: Security Concerns 160

API Permissions .. 160

Match Pattern Permissions .. 160

Externally Connectable ... 160

Storage ... 160

Content Script ... 161

Summary ... 162

Index .. 163

xi

 About the Author

 Prateek Mehta (pixdip.com/admin/about.html) holds
a bachelor’s in Information Technology Engineering
from the Indraprastha University, New Delhi.
He is a web and game developer and is currently
working full-time as a Unity3D Game Developer at
MetaDesign Solutions, Gurgaon. He finds developing
Chrome extensions really fun because he considers
extensions the best possible way to enhance browsing
experiences. Some of the sample extensions from
this book, published on the Chrome web store, are
available at pixdip.com/extensions . Prateek resides in
the lovely city of Dwarka, in southwest Delhi. When not
doing technical things, he works as a freelance music
instructor. He spends his spare time playing Counter-
Strike. de_dust2 and de_inferno are his favorite
maps, where he is busy sniping with his AWP. On Stack

Overflow, he has a keen interest in answering questions tagged under “css”, “javascript”,
“php”, “unity3d”, and “opengl-es-2.0”.

 He was also the lead author of Learn OpenGL ES (Apress, 2013).

xiii

 About the Technical
Reviewer

 Massimo Nardone holds a master’s in computing science
from the University of Salerno, Italy. He has worked as a
project manager, software engineer, research engineer,
chief security architect, information security manager,
PCI/SCADA auditor, and senior lead IT security/cloud/
SCADA architect for many years. He currently works as
the chief information security officer (CISO) for Cargotec
Oyj. He has more than 22 years of work experience in IT,
including in the security, SCADA, cloud computing, IT
infrastructure, mobile, security, and WWW technology
areas for both national and international projects. He
worked as a visiting lecturer and supervisor for exercises
at the Networking Laboratory of the Helsinki University of
Technology (Aalto University). He has been programming

and teaching people how to program with Android, Perl, PHP, Java, VB, Python, C/C++, and
MySQL for more than 20 years. He holds four international patents (in the PKI, SIP, SAML,
and Proxy areas).

 He was also the co-author of Pro Android Games (Apress, 2015).

xv

 Acknowledgments

 My sincere thanks go to Steve Anglin and Ben Renow-Clarke for giving me this wonderful
opportunity to write for Apress! Thanks to my coordinating editor, Nancy Chen, for
handling this project to completion.

 Thanks to Matthew Moodie, for his efforts to improve the content, and to Massimo
Nardone, the tech reviewer for this book, for providing his helpful insights. Thank you
to Tom Welsh and Jill Balzano—the editors on my first book Learn OpenGL ES —for
mentoring me and preparing me as an author.

 Thanks to my friends—Anupam Appar and Pratik Sharma—for reviewing the source
code and providing the necessary encouragement to write this book. Also thanks to my
pro-gamer comrade, Tejas Tilak, for lending his amazing photography skills.

xvii

 Introduction

 Creating Google Chrome Extensions is an intermediate-level book that teaches
development of browser extensions for Google Chrome web browser. Browser extensions
are extremely viable in enhancing functionality of web browsers. They have access to
almost all the features provided by the browser. And they can encapsulate such features
in the form of a bundled application to provide a targeted functionality to users – such as
an extension that can summarize the current page you are reading, or another extension
that can save all the images in the page you are browsing. Extensions run in a sandboxed
environment, making them secure – which is a huge plus!

 The APIs provided by Chrome Extensions framework help to empower web
applications by coupling them with amazing features provided by the Google Chrome
web browser, such as bookmarks, history, tabs, actions, storage, notifications, search, and
a lot more other features.

 After understanding the examples and lessons in this book, you will be able to
transform your existing web applications as (into) Google Chrome browser extensions,
as well as create brand new extensions that serve some useful purpose.

 In this book we will go from discovering what Google Chrome Extensions are, how
to create them, extension components and messaging, to publishing of extensions on the
Chrome Web Store (formerly the Google Chrome Extensions Gallery).

 “Extensions” is the only way out for sped-up productivity on Google Chrome
browsers.

 So, showcase your existing web development skills in a completely modernized way,
by “Creating Google Chrome Extensions”.

1© Prateek Mehta 2016
P. Mehta, Creating Google Chrome Extensions, DOI 10.1007/978-1-4842-1775-7_1

 CHAPTER 1

 Introduction to Google
Chrome Extensions

 In this chapter you will learn about Google Chrome Extensions, which are a useful way
to add functionality to the Google Chrome web browser. We will first take a quick look
at some popular Google Chrome Extensions and the technologies that are used to code
Chrome Extensions. Then, you will learn how to create your own “Hello World” style
Chrome Extension—but only after we describe the features and abilities of Chrome
Extensions. Finally, you will learn about publishing Chrome Extensions on the Chrome
Web Store (formerly the Google Chrome Extensions Gallery).

 This chapter assumes you have some experience writing simple web pages using
technologies such as HTML, CSS, and JavaScript. That said, let’s get started!

 What Are Google Chrome Extensions?
 Google Chrome Extensions are browser extensions for the Google Chrome web browser.
Browser extensions are programs that run within the context (security sandbox) of a web
browser. They help to provide new functionality(ies) by combining existing features of the
web browser and make it possible for users to do many things at once!

 ■ Note At the time of this writing, Google Chrome Extensions are only supported on the
desktop versions of the Google Chrome web browser.

 Support for Browser Extensions
 The Google Chrome web browser started supporting browser extensions in its fourth
version, which was released in 2010. It is also possible to create extensions for browsers
such as Safari, Mozilla Firefox, and Opera. Extensions created for the Google Chrome

Electronic supplementary material The online version of this chapter
(doi: 10.1007/978-1-4842-1775-7_1) contains supplementary material, which is available to
authorized users.

http://dx.doi.org/10.1007/978-1-4842-1775-7_1

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

2

web browser are compatible with the Opera web browser, ever since Opera shifted to the
Chromium’s extension model (after Opera dropped its own Presto engine, in favor of the
WebKit engine used by the Google Chrome web browser, from the Chromium project).

 Developing extensions for the Safari web browser has a similar learning curve to that
of the Google Chrome web browser, and developing extensions for both is easy because it
does not require you to learn any newer technologies (only existing web technologies are
used). But developing extensions for the Firefox web browser is comparatively difficult
as it involves the use of technologies apart from web technologies, such as XUL, XPCOM,
etc. (you can read more about these at https://en.wikipedia.org/wiki/Add-on_
(Mozilla)#Extension_technologies). This book only covers development of extensions
on the Google Chrome web browser.

 ■ Note The Chrome Web Store is an online marketplace where users can browse for
Chrome apps, extensions, and themes. The store helps users find, purchase, and install
content on the Chrome browser.

 Extensions Are Not Plug-ins
 An important point to note is that browser extensions are different from browser plug-
ins . While browser extensions are sandboxed within the host web browser (software),
plug-ins are not. Here, a sandbox can be thought of as a software container – allowing the
execution of web technologies, and at the same time providing access to the features of
browsers, such as tabs, history, buttons, popups, etc.

 In addition to this, extensions add new functionality(ies) to browsers by combining
existing features that are already available on browsers (in case of Chrome Extensions,
this is done using the API provided by the Extensions framework). Plug-ins, however,
provide new functionality(ies) by providing support for particular media types to
browsers. In the former case, the example could be an extension that allows users to save
all the opened tabs that are not in incognito mode, to the local storage. For the latter
case, the example could be a plug-in that allows reading and rendering of PDF files on
the browser.

 Also note that there is another kind of web application that developers can create
for the Chrome browser. These applications are known as Google Chrome Apps . From
a development’s standpoint, Google Chrome Apps are somewhere in between Google
Chrome Extensions and browser plug-ins.

 This book does not discuss developing Google Chrome Apps, as it only targets the
development of Google Chrome Extensions. But keep in mind that developing Chrome
Apps is very similar to developing extensions for the Chrome browser. If you want to
know more about Google Chrome Apps, you can visit the following URLs:

• https://en.wikipedia.org/wiki/Google_Chrome_Apps

• https://developer.chrome.com/apps/about_apps

• http://stackoverflow.com/questions/tagged/google-chrome-app

https://en.wikipedia.org/wiki/Add-on_(Mozilla)#Extension_technologies
https://en.wikipedia.org/wiki/Add-on_(Mozilla)#Extension_technologies
https://en.wikipedia.org/wiki/Google_Chrome_Apps
https://developer.chrome.com/apps/about_apps
http://stackoverflow.com/questions/tagged/google-chrome-app

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

3

 Extensions and Plug-ins
 To get a complete list of the extensions installed (added) on your Chrome web browser,
tab over to the URL chrome://extensions , as shown in Figure 1-1 . This page (known as
the Extensions Management page) is used to manage extensions in the Chrome browser.

 Figure 1-1. Viewing the Google Chrome Extensions

 ■ Note The item in Figure 1-1 (i.e. Google Docs) is not an extension. Instead, it is a Google
Chrome App. Both—apps, and extensions—are listed on the same page in the Chrome
browser (chrome://extensions), known as the Extensions Management page . Additionally,
apps are also listed on the page located at the URL chrome://apps .

 Consider pinning this tab (right-click on the tab and then choose the Pin Tab
option—see Figure 1-2), as it will be used quite often during the course of this book.

 Figure 1-2. Pinning the chrome://extensions tab

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

4

 ■ Note Sandboxing is a technique frequently used to test and/or execute unverified
programs (which may contain viruses or other malignant code) so that they can’t harm the
host software.

 Similarly, to get a complete list of the plug-ins running on your Chrome web browser,
tab over to the URL chrome://plugins (shown in Figure 1-3).

 Figure 1-3. Viewing the Google Chrome plug-ins

 Well-known browser plug-ins include the Adobe Flash Player, the Chrome PDF
Viewer, the QuickTime Player, and the Java plug-in.

 Notable Examples
 As of February 2010, around 2,000 extensions were available on the Chrome Web Store
(http://en.wikipedia.org/wiki/Google_Chrome_Extensions#cite_note-4). But
surprisingly, as of September 2014, more than 30,000 extensions were available on the
Chrome Web Store!

 ■ Note The terms “browser” and “web browser” are used interchangeably throughout
this book. Note that they both refer to the same thing, i.e., the desktop versions of the web
browser.

http://en.wikipedia.org/wiki/Google_Chrome_Extensions#cite_note-4

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

5

 Google Chrome users heavily rely on extensions for increasing their productivity
at work, enhancing their ability to access the data (already available) on the web, and
for getting the most out of their favorite web browser. The following list provides some
popular Google Chrome Extensions that are available for free installation from the
 Chrome Web Store . Note that the usage statistics provided are as of March 2016:

• Adblock Plus—10,000,000+ users

• AddThis: Share & Bookmark—600,000+ users

• Awesome Screenshot: Capture & Annotate—900,000+ users

• Evernote Web Clipper—4,500,000+ users

• Google Dictionary—3,000,000+ users

• Google Translate—6,000,000+ users

• Hangouts—6,500,000+ users

• LastPass: Free Password Manager—4,000,000+ users

• Photo Zoom for Facebook—1,500,000+ users

• Pin It Button—10,000,000+ users

 ■ Note To view all the (free and paid) Google Chrome Extensions available on the Chrome
Web Store, visit the URL https://chrome.google.com/webstore/category/extensions .

 Adding Extensions from the Store
 It is extremely easy to add extensions available on the Chrome Web Store to your Chrome
browser. First of all, you need to visit the extensions’ store, located at the URL
 https://chrome.google.com/webstore/category/extensions . Once you are in the
store, you can choose any extension(s) that you want to add to your Chrome browser.

 Next, on the selected page you need to click the Add to Chrome button as displayed
in Figure 1-4 .

 Figure 1-4. Adding an extension from the store

https://chrome.google.com/webstore/category/extensions
https://chrome.google.com/webstore/category/extensions

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

6

 Finally, click on the Add Extension button (Figure 1-5) to confirm your selection.
Congratulations, you have successfully added an extension to your Chrome browser!

 Figure 1-5. Adding an extension from the store: confirming the selection

 Figure 1-6. Adding an extension from the store: Save to Google Drive

 As mentioned earlier, you can tab over to the URL chrome://extensions to see the list
of added extensions. The extension just added will be available in that list (see Figure 1-6).

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

7

 Figure 1-7. Chrome URLs at chrome://chrome- urls

 ■ Note Similar to the chrome-plugins-url (chrome://plugins) and the chrome-
extensions-url (chrome://extensions), there are other useful URLs (Figure 1-7) that you
can access to get more detailed information about your Chrome browser. To get a complete
list of these URLs, open the page chrome://chrome-urls in your Chrome browser, as
displayed in Figure 1-7 .

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

8

 Technologies to Create Extensions
 While Google Chrome Extensions offer a lot to the users (in terms of the rich functionalities
provided), at the same time they also provide a great ease to the developers in creating
extensions. The technologies used to create Google Chrome Extensions are nothing
but vanilla HTML , CSS, JavaScript , and (most essentially) JSON! And because of this,
developing extensions for the Google Chrome browser has a flatter learning curve
compared to developing extensions for other browsers. And yes, Google Chrome
Extensions can be built from any desktop operating system. After all, these extensions are
just a bunch of HTML and JavaScript files!

 How Are Technologies Used?
 For obvious reasons, HTML and CSS are used to create the views in extensions. JavaScript
is used to provide the application logic, as well as to access the APIs and components
provided by the Google Chrome Extensions framework (in-depth coverage of extension
components and APIs is provided in Chapters 2 and 3 , respectively). Finally, JSON is used
to create the manifest file for the extensions, in order to provide information about itself
(the extension) to the Google Chrome browser.

 Extensions API
 Google Chrome Extensions are sandboxed in Chrome browsers. This sandbox allows
an isolated execution of the code (i.e., the JavaScript code) belonging to the extension.
What this basically means is that there could be hundreds of extensions installed on
the Chrome browser, but those extensions won’t be aware of each other’s existence
automatically. And what this implies is:

• Different extensions won’t accidentally connect with each other.

• An extension cannot automatically access code or memory
belonging to another extension.

• There won’t be any name conflicts.

• Chrome browser won’t get confused between your
extension’s Script_A.js and another extension’s Script_A.js .

• The same holds true for other resources that belong to an
extension, such as HTML, JSON files, images, etc.

• Extensions can connect with each other in a determined,
controlled way (for communication).

• The Extensions framework provides a messaging API to help
with one-time as well as long-lived connections (more about
it in Chapter 3).

http://dx.doi.org/10.1007/978-1-4842-1775-7_2
http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

9

 ■ Note Apart from the sandboxing described here, there is another kind of sandboxing
that’s provided by the Chrome browser (sandboxing of scripts that are injected from
extensions into web pages). You will read about it in Chapter 3 .

 Chrome Extensions are extremely viable in enhancing the functionality of the
Chrome web browser. They are able to do so by combining different features (of the
Chrome browser) to provide a common functionality. For example, consider an extension
that accesses the tabs and the alarms API (provided by Chrome) to open a tab after a
predefined interval (say, one day).

 The Google Chrome Extensions framework provides extensions with many
special-purpose APIs that provide access to amazing features of the Chrome browser.
These APIs provide access to almost every feature available in the Chrome browser!

 ■ Note While the Extensions framework provides a whole lot of special-purpose APIs,
extensions can still use all the standard APIs (also known as the standard JavaScript APIs)
that the browser provides to web pages. These are the same core JavaScript and Document
Object Model (DOM) APIs that you are already familiar with. Additionally, XMLHttpRequest,
HTML5 (and other emerging) APIs, WebKit APIs (for CSS animations, filters, etc.), and V8 APIs
(such as JSON) are also supported!

 The HTML5 and other emerging APIs supported by the Chrome browser include audio,
canvas, geolocation, local storage, notifications, and video. To read more about these APIs,
visit the URL https://developer.chrome.com/extensions/api_other .

 Using these APIs, you can integrate different features provided by the Chrome
browser with our extension. The list of features includes APIs for alarms, bookmarks,
history, tabs, actions, storage, notifications, search, and a lot more! You will learn about
these APIs in Chapter 3 .

 Creating Your First Extension
 The first extension that you will be creating is called ShowTime . This extension will add
a clickable button (also known as the Browser-Action button) to the Google Chrome
toolbar. Clicking this button will open a popup (see Figure 1-8) that will display the
current time and date.

http://dx.doi.org/10.1007/978-1-4842-1775-7_3
https://developer.chrome.com/extensions/api_other
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

10

 ■ Note manifest.json is the only reserved file name in an extension. All the other files
can be named anything you want.

 To start off, you need to create a folder with the following files: popup.html ,
 popup_script.js , icon.png , and manifest.json (see Figure 1-9).

 Figure 1-8. Extension popup displayed upon clicking the Extension button

 Figure 1-9. Exercise files: ShowTime

 Later, when you learn about publishing, you will find that the same folder (that you
just created) is zipped and uploaded to the Chrome Web Store.

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

11

 ■ Note A zipped package of the same folder will be uploaded on the Chrome Web Store
(via the Developer Dashboard) when you publish this extension. This is also demonstrated in
Figures 1-30 to 1-32 . The same holds true for every extension you develop.

 As described earlier, the HTML file represents the view our extension’s popup will
have. The JavaScript file will contain the application logic (in this case, logic to display the
current time and date). The manifest file will provide information about the extension
itself to the Chrome browser. For obvious reasons, the icon.png file will be used by the
Chrome browser to create the button for your extension (see Figure 1-10).

 Figure 1-10. Extension button in the Google Chrome toolbar

 Validating a JSON File
 Now it’s time to open the manifest.json file in your favorite text editor. But before you
do, an important thing to note is that a JSON file cannot have comments inside it. This
includes single-line and multi-line comments. Most errors during uploading of extension
packages on the Chrome Web Store are caused due to such comments in the manifest file.
These errors are not reported when testing extensions locally in the Chrome browser.

 ■ Note For the purpose of demonstration, however, comments have been used in the
code listings and related material.

 So, whenever you get a feeling that your manifest file is not in its best condition
(i.e., it might contain some typos or other formatting errors), feel free to try out any JSON
validators of your choice. There are tons of such validators available online. For example,
 http://jsonlint.com , http://jsonschemalint.com , etc. With that said, you can finally
open the manifest file for editing.

http://jsonlint.com/
http://jsonschemalint.com/

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

12

 Creating the Manifest
 Add the following attributes to your empty manifest file: manifest_version , name , and
 version . These are the required fields in a manifest file. manifest_version represents
the version of the manifest file format. name represents the name of the extension. And
similarly, version is the version of the extension.

 The manifest_version attribute takes an integer value greater than 0. At the time of
writing, the valid value for the manifest_version attribute is 2, which indicates that it is
the second version of the manifest file format. The version attribute takes a string value
consisting of (one to four) dot-separated integers (between 0 and 65536). Similarly, the
 name attribute takes a string value containing the name of your extension. You can also
add a description attribute (with a corresponding string value), which represents a plain
text description of the extension.

 ■ Note The auto-update system in the Google Chrome browser compares (the aforementioned)
versions of an extension to determine whether the extension needs to be updated. If the
published extension has a newer version string than the installed extension, the extension
is automatically updated. At the time of writing this book, the extension update frequency is
five hours.

 Adding the Button: Browser-Action
 Now you need to add the code for the clickable button in the Google Chrome toolbar.
This is also known as the Browser-Action button , or simply Browser-Action. For this, you
need to add another attribute in your manifest called browser_action . The browser_
action attribute takes an object value (i.e. {}) comprised of the following (string) keys:
 default_title , default_icon , and default_popup .

 As you can see in Listing 1-1 , each of these keys take a string value. The default_
title key represents the tooltip (string) for the Browser-Action. The default_icon key
represents the (relative) path to the PNG image resource to be used as the icon. And
similarly, default_popup represents the (relative) path to the HTML file to be used as the
popup (view).

 Listing 1-1. Chapter 1 /ShowTime/manifest.json

 {
 "manifest_version" : 2,
 "name" : "ShowTime",
 "description" : "Extension to show the current time and date",
 "version" : "1.2",
 "browser_action" : {
 "default_title" : "ShowTime",
 "default_icon" : "icon.png", //Used as the icon in the Chrome toolbar
 "default_popup" : "popup.html"
 },

http://dx.doi.org/10.1007/978-1-4842-1775-7_1

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

13

 "icons" : {
 "16" : "icon16.png", //Used as the favicon for an extension's pages
 "48" : "icon48.png", //Used on the extension management page
 "128" : "icon128.png" //Used during installation & in the Chrome Web Store
 }
 }

 Now you can move to the other parts, i.e., JavaScript and HTML code for the popup
view. Not so surprisingly, creating the popup is no different from creating any other static
web page. And regarding the JavaScript code, the Chrome Extensions framework while
providing its special-purpose APIs, still provides all the standard JavaScript APIs.

 It basically means that all the JavaScript code for the ShowTime extension can be
written using standard JavaScript APIs. This includes the Date API (to get the current date
and time),and the DOM API (to access the DOM tree).

 You can try to create the JavaScript code for displaying the current time and date, say
for example inside a heading tag (h1 , h2 , etc.). Listings 1-2 and 1-3 show one of the ways
this can be done.

 Listing 1-2. Chapter 1 /ShowTime/popup_script.js

 //region {variables and functions}
 var timeId = "time";
 var dateId = "date";
 var days = ["Sun","Mon","Tue","Wed","Thu","Fri","Sat"];
 var months = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","

Nov","Dec"];
 var consoleGreeting = "Hello World! - from popup_script.js";
 function setTimeAndDate(timeElement,dateElement) {
 var date = new Date();
 var minutes = (date.getMinutes() < 10 ? '0' : '') + date.getMinutes();
 var time = date.getHours() + ":" + minutes;
 //In "date.getMonth", 0 indicates the first month of the year
 //In "date.getDay", 0 represents Sunday
 var date = days[date.getDay()] + ", " + months[date.getMonth()] + "

" + date.getDate() + " " + date.getFullYear();
 timeElement.innerHTML = time;
 dateElement.innerHTML = date;
 }
 //end-region

 An important point to note in Listing 1-2 is that the getMonth method (of the Date
object) returns 0 for the first month of the year. And the getDay method (of the Date
object) returns 0 for Sunday. Also, the setTimeAndDate function takes two arguments.
These arguments represent the elements used to display the current time and date.

http://dx.doi.org/10.1007/978-1-4842-1775-7_1

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

14

 Listing 1-3. Chapter 1 /ShowTime/popup_script.js

 //region {calls}
 console.log(consoleGreeting);
 document.addEventListener("DOMContentLoaded",function(dcle) {
 var timeElement = document.getElementById(timeId);
 var dateElement = document.getElementById(dateId);
 setTimeAndDate(timeElement,dateElement);
 });
 //end-region

 Listing 1-3 contains the remaining JavaScript code where the setTimeAndDate
function is called. As displayed, it is a good practice to access the DOM after the
 document has loaded (which is why the setTimeAndDate function is called inside the
listener for the DOMContentLoaded event).

 You might be wondering about the output of the console.log method . This is
discussed in one of the following topics on debugging extensions. But before that, you will
first need to know how to load an extension in the browser. This is discussed in the next
section, “Loading the Extension Folder”.

 Listing 1-4. Chapter 1 / ShowTime/popup.html

 <!DOCTYPE html>
 <html>
 <head>

 <!-- The following tag is not obeyed -->

 <title>ShowTime (Custom)</title>

 <!--
 <script>
 // Inline scripts are not allowed
 alert('Hello World');
 </script>
 -->

 <!-- Referring scripts is allowed -->

 <script src="popup_script.js"></script>

 <style>
 body {
 padding:0px;
 margin:0px;
 width:300px;
 height:200px;
 }

http://dx.doi.org/10.1007/978-1-4842-1775-7_1
http://dx.doi.org/10.1007/978-1-4842-1775-7_1

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

15

 Take a look at Listings 1-4 and 1-5 , which contain the HTML code. There is a very
important point to note here. Inlining of scripts is not allowed in the popup! But scripts
can be referred, as displayed in the code. The src should always point to the relative path
to the script file (i.e. relative to the extension folder). Additionally, you can also split the
application logic into multiple JavaScript files. But each should be referred separately.
The CSS inside the style tag can also be extracted into an external CSS file and referred
as <link type="text/css" rel="stylesheet" href="some_file.css" /> .

 Listing 1-5. Chapter 1 / ShowTime/popup.html

 h1,h2 {
 display:table-row;
 vertical-align:middle;
 text-align:center;
 }
 h2 {
 background-color:#777;
 }
 .unselectable {
 -webkit-user-select:none;
 cursor:default;
 }
 </style>
 </head>
 <body>
 <div class="unselectable">
 <h1 class="empty"></h1>
 <h1 id="time"></h1>
 <h2 id="date"></h2>
 </div>
 </body>
 </html>

 Loading the Extension Folder
 The Chrome browser provides a very quick and easy way to load the extension folder in
the browser (for testing purposes). Note that no additional file is required by the browser.
It only expects to find a folder with HTML, JavaScript, and a JSON file. The following steps
demonstrate how to load the extension folder:

 1. Tab over to the Extensions Management page. Recall that this
page is located at the URL chrome://extensions (Figure 1-1).

 2. Turn on the Developer Mode option (seen in Figure 1-11)
on this page.

http://dx.doi.org/10.1007/978-1-4842-1775-7_1

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

16

 3. This will add an additional section to the page, with buttons to
load , pack , and update extensions (as displayed in Figure 1-11).

 4. Click on the Load Unpacked Extension button to load the
extension. As displayed in Figure 1-12 , a Browse for Folder or
a similar window will prompt you to choose the
extension folder.

 Figure 1-11. Loading an extension: Choosing the developer mode option

 Figure 1-12. Loading an extension: Browsing for the extension folder

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

17

 5. Select the ShowTime folder you created, and click OK to
proceed. There it is! You have finally loaded your extension in
the browser (see Figures 1-13 and 1-14). As discussed earlier,
if your manifest file is malformed, an error will be shown at
this stage (“Manifest is not valid JSON”). It will ask you to
correct it and retry the loading process.

 ■ Note You can also enable the extension to run in the incognito mode by selecting the
Allow in Incognito option from the Extensions Management page (see Figure 1-13).

 Figure 1-13. Loading an extension: Extension is listed in the Extensions Management page

 As soon as the extension is successfully loaded, it will also be available (for
configuration) in the Extensions Management page, as displayed in Figure 1-13 . Finally,
to view the popup, you need to click on the Browser-Action (button) corresponding to the
 ShowTime extension. Upon hovering over this button, you can also see the tooltip for the
Browser-Action (recall that the tooltip string was set using the default_title key in the
manifest file). Next, you’ll find out how to debug Chrome Extensions.

 Debugging an Extension
 In this section, you learn about debugging Chrome Extensions. Not so surprisingly, this
debugging is not different from debugging simple web pages on the Chrome browser.
Your best friend for this task is—you guessed it—Chrome DevTools.

 We won’t be getting into great detail about Chrome DevTools, because the Google
developers community has already provided excellent resources to get newbies, as well
as experienced web developers, familiar with debugging web applications on the Chrome
browser. The following URL will get you there: https://developers.google.com/web/
tools/chrome-devtools/ .

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

18

 Inspecting the Popup
 The first kind of debugging you can do is inspect the popup. To do that, simply right-click
on the popup (after the popup gets displayed upon clicking the Browser-Action) and
choose Inspect Element, as shown in Figure 1-14 .

 Figure 1-14. Debugging an extension: Inspecting the popup

 ■ Note Alternatively, popups can also be inspected by selecting the Inspect Popup
menu item, which is displayed when you right-click on the icon for the extension (i.e., the
Browser-Action).

 As displayed in Figure 1-15 , the Chrome DevTools window will appear, with the
Elements panel selected. You can use this panel to edit the styles, or even the DOM, in an
iterative manner to see what’s working best with your designs.

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

19

 Sources and Resources Panel
 The other panels that can be useful during debugging include the Sources panel and the
Resources panel. Using the Sources panel, you can debug the JavaScript code by setting
 breakpoints in the script. In order to do that, you first need to select the particular script
(see Figure 1-16) that needs to be debugged. Next, click the line number of the line where
you want to set the breakpoint. Finally (while staying inside the DevTools window), reload
the DevTools window to activate the breakpoint(s).

 Figure 1-15. Debugging an extension: Elements panel

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

20

 ■ Note You can also add multiple breakpoints to scripts in the Sources panel by clicking
each line’s line number.

 Using the Resources panel, you can inspect the other resources that are loaded, such
as local storage and session storage. We won’t, however, use these kinds of storage for
the purposes of this book, as the Google Chrome Extensions framework provides a better
storage API for the extensions. It which allows syncing of the stored data across multiple
devices, which is not provided by the localStorage and sessionStorage APIs.

 You can still experiment with their use in the extensions you develop. Inspecting the
storage via the Resources panel is extremely easy. As displayed in Figure 1-17 , all you need
to do is simply select the resource item with the kind of storage you need to inspect.

 Figure 1-16. Debugging an extension: Sources panel

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

21

 Console Panel
 The Console panel is a typical (JavaScript) REPL in the Chrome DevTools window. Using
it, not only can you log diagnostic information, you can also use it as a shell to interact
with the JavaScript on the page. The Console panel is displayed in Figure 1-18 .

 Figure 1-17. Debugging an extension: Resources panel

 Figure 1-18. Debugging an extension: Console panel

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

22

 In the context of extension development, it means you can use the Console panel to
log data from the scripts. The way you can log data is using the console.log method. This
method takes a variable list of JavaScript objects to output.

 ■ Note Use the console.clear method to clear the console log.

 In addition to this, using the Console panel you can also interact with the various
APIs provided by the Google Chrome Extensions framework. Recall that all this is in the
context of extension development, so such APIs are only available to the (scripts or) pages
that belong to an extension. For example, in the ShowTime extension you developed,
you can also add the following lines of code to log if incognito access is available to
the extension. In fact, you can directly execute this code in the Console panel (while
inspecting the popup).

 chrome.extension.isAllowedIncognitoAccess(function(isAllowed) {
 console.log(isAllowed);
 });

 As you learn more about the other components used to build extensions, you will
find that the Console panel is an indispensable tool to help you quickly debug your
extensions. It will be demonstrated more in the upcoming topics where you create new
extensions. For now, let’s explore how to distribute extensions via the Chrome Web Store.

 Distributing on Store
 Once you create your awesome extension, you will soon find the need to distribute it
on the Chrome Web Store. This will help you market your app, extension, or theme to
a multitude of users in search of such products for their Chrome browsers. The way
the Chrome Web Store allows you to distribute your extensions is via its Developer
Dashboard. At the time of writing, the Developer Dashboard is available at the following
URL: https://chrome.google.com/webstore/developer/dashboard . In this section,
we’ll go step by step to upload the ShowTime extension to the Chrome Web Store.

 1. Tab over to the following URL, which is the Developer
Dashboard: https://chrome.google.com/webstore/
developer/dashboard . If you are not logged in to a Google
account, you will be asked to do so, as displayed in Figure 1-19 .
Upon successful login, you will be redirected to the Developer
Dashboard shown in Figure 1-20 .

https://chrome.google.com/webstore/developer/dashboard
https://chrome.google.com/webstore/developer/dashboard
https://chrome.google.com/webstore/developer/dashboard

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

23

 Figure 1-19. Distributing an extension: Logging into a Google account

 Figure 1-20. Distributing an extension: Using the dashboard

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

24

 Figure 1-21. Distributing an extension: Selecting a payment method

 ■ Note The Google Account ID does not necessarily have to be a Gmail ID, but
commonly, it is.

 2. Once you are in the Developer Dashboard, you need to review
the basic information about your developer account. At the time
of writing, this information can be reviewed before paying the
developer’s registration fee.

 ■ Note A one-time developer registration fee of U.S. $5.00 is required to verify your
account and publish items.

 3. Next, you need to pay the developer registration fee . It is a
one-time fee, required to verify your account and publish
items. At the time of writing, it amounts to U.S. $5.00. Click
Pay This Fee Now button to initiate the payment process.

 4. As displayed in Figures 1-21 and 1-22 , you need to add a
payment method to pay with. If you already have a payment
method associated with your Google account, you can
proceed to the next step.

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

25

 5. Review your purchase (see Figure 1-23) and then click Buy to
proceed to the next step.

 Figure 1-22. Distributing an extension: Adding a new payment method

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

26

 Figure 1-23. Distributing an extension: Reviewing the purchase

 6. Finally, you can start the payment gateway by clicking the
Start Now button, shown in Figure 1-24 .

 Figure 1-24. Distributing an extension: Confirming the purchase

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

27

 Figure 1-25. Distributing an extension: Completing the purchase

 7. Upon successful completion of the payment process, a
window will be displayed from Google Wallet , thanking you
for the purchase. As displayed in Figure 1-25 , click Done to
return to the Developer Dashboard.

 ■ Note Currency fluctuations, bank fees, and applicable taxes may change your final amount.

 8. In the Developer Dashboard, click the Add New Item
button (see Figure 1-26) to upload a new extension to your
dashboard.

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

28

 9. Here, you need to upload a zipped package of your extension
folder. For that, you will have to click the Choose File button
seen in Figure 1-27 . But before you do, there are some quick
additions you need to make to the ShowTime extension.

 Figure 1-26. Distributing an extension: Adding a new extension

 Figure 1-27. Distributing an extension: Uploading the zipped package

 10. As shown in Listing 1-1 , you need to add the icons attribute to
the manifest file. This attribute takes an object value (i.e. {})
of the following key-value pairs:

 a. "16" : "icon16.png" : This 16px icon is used as the
favicon for an extension's pages

 b. "48" : "icon48.png" : This 48px icon is used on the
Extensions Management page (as displayed in Figure 1-28)

 c. "128" : "icon128.png" : This 128px icon is used during
installation and in the Chrome Web Store

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

29

 11. Now that you have added the icons attribute to the manifest,
you also need to add the corresponding images. You can
create your own or use the ones provided in the Exercise
Files folder for Chapter 1 (see Figure 1-29). Note that the keys
 16 , 48 , and 128 represent the (relative) paths to the PNG image
resources to be used.

 12. Finally, you can create a zipped package of this extension
folder and resume from Step 9.

 13. After choosing the zipped package, click the Upload button
(see Figure 1-30).

 Figure 1-28. Distributing an extension: 48px icon

 Figure 1-29. Distributing an extension: Adding the icons

http://dx.doi.org/10.1007/978-1-4842-1775-7_1

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

30

 Figure 1-30. Distributing an extension: Uploading the ShowTime zipped package

 14. Upon successful uploading of the zipped package, the
dashboard will reload (see Figure 1-31) to reflect the changes.

 Figure 1-31. Distributing an extension: Uploading the ShowTime zipped package

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

31

 15. If your manifest file is malformed (or there are any other
related flaws, for example missing image resources, etc.), an
error will be shown at this stage, as displayed in Figure 1-32 .

 Figure 1-32. Distributing an extension: Uploading the ShowTime zipped package

 16. You then enter the edit mode for your extension (see Figure 1-33).
You are free to fill in the fields the way you want.

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

32

 Figure 1-33. Distributing an extension: Editing the draft

 17. Finally, you can either publish the changes you made, which
will also publish the extension on the store, or you can choose
to save the draft. You may also discard the current draft if you
want to try again. For now, save the draft by clicking on Save
Draft and Return to Dashboard, as displayed in Figure 1-34 .

 Figure 1-34. Distributing an extension: Saving the draft

CHAPTER 1 ■ INTRODUCTION TO GOOGLE CHROME EXTENSIONS

33

 Summary
 This chapter began with a basic definition of browser extensions, including what they are
and what they are not. Then you learned to list the extensions installed in your Chrome
browser via the Extensions Management page.

 Next, some notable extensions were discussed, after which you also learned to install
extensions on the Chrome browser. The technologies to create Chrome Extensions were
also described, while comparing them with the technologies used on other browsers.

 Finally you created your first extension—called ShowTime —and you learned to
load it in the Chrome browser. Not only this, you also learned to debug your extension
and upload it on the Chrome Web Store. In Chapter 2 , you will read more about the
development of Chrome Extensions, as well as their architecture. But before moving
ahead, make sure to fiddle and experiment with things in the ShowTime extension
you created to get a better feel of the development process. This will make you more
comfortable with the sample extensions that are used in the next chapter, where you learn
about the architecture of extensions.

 When you return to the dashboard, you will find the draft of your extension listed
under the Your Listings section, as displayed in Figure 1-35 . As you learn more about the
development of extensions, you can improve and update this draft. And finally, when you
are ready with this extension, you can update the fields discussed in Step 16 and publish
the extension.

 Figure 1-35. Distributing an extension: Item listings

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

35© Prateek Mehta 2016
P. Mehta, Creating Google Chrome Extensions, DOI 10.1007/978-1-4842-1775-7_2

 CHAPTER 2

 Architecture Overview

 This chapter describes the architecture of Chrome Extensions from the user’s and
developer’s points of view. Doing so will help you quickly wrap your head around various
components that are used to create Chrome Extensions. After reading this chapter, you
will understand the building blocks of Chrome Extensions like a user—in terms of the
interactive functionalities involved—and also like a developer—in terms of the inner
techniques available to provide various functionalities.

 Like the previous chapter, this chapter assumes you have some experience writing
simple web pages using technologies such as HTML, CSS, and JavaScript. You should
know the event-driven nature of web pages, for example—showing some UI after clicking
a button (using event listeners), etc. That said, let’s begin!

 What Is User Perspective ?
 An API (in our case, the Google Chrome Extensions API) can be understood in terms of
the inner techniques involved in providing various functionalities (such as UI, storage,
etc.) or in terms of the interactive functionalities—down to the techniques that need to be
used to access these functionalities. The latter—i.e., understanding the Extension’s API
in terms of the interactive functionalities it provides—is described as the user perspective
(or the user’s point of view). The contents of this chapter switch perspective from time to
time, to aid your learning of the Google Chrome Extensions API.

 Components Involved in Creating Chrome
Extensions
 Google Chrome Extensions are no different from any other software application. You
interact with it via inputs such as buttons (or shortcut keys, etc.), and it processes some
data and displays the result. Abstract, isn’t it? Well, not so much. You will find out soon.

 Similar to other application development frameworks, the Google Chrome
Extensions framework provides its developers with techniques to provide UI, and
functionalities such as storage, messaging, web requests, etc. The following are the
components that are used to create Chrome Extensions.

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

36

• Input components —Offer interactive functionalities, comprised
of UI/non-UI input elements, such as toolbar buttons, shortcut
keys, context menu items, etc. Chrome Extensions provide the
following input components (see Figure 2-1):

• Browser-Action

• Page-Action

• Shortcut-Key

• Context-Menu-Item

• Omnibox-Input

• Content-UI

 Figure 2-1. Input components for creating Chrome Extensions

• Scripting components —As the name suggests, these
components are scripts that contain the application logic which
may be required at different times when users interact with the
extension. There are three types of scripting components:

• Event scripts (Background scripts)

• Popup scripts

• Content scripts

 ■ Note Each type of scripting component has its own separate scope . So, for example,
a popup script cannot use variables and functions defined in an event script, and vice
versa. The same holds true for other pairs of scripts—content scripts and popup scripts,
and content scripts and event script. The only way scripts can access each other’s data
(variables, functions, etc.) is by messaging , which you will learn about in the next chapter.

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

37

• Popup component —Popup is a special (optional) view
available only to the Browser-Action and Page-Action input
components. A popup is made entirely of an HTML page
(see Figures 2-2 and 2-3). Note that a popup only appears
when the user clicks on the toolbar button corresponding
to a Browser-Action or a Page-Action (whichever one the
extension is using). And yes, you guessed it right—popup
scripts are used along with the popup component.

 Figure 2-2. A Browser-Action popup

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

38

• Popup scripts are plain JavaScript files. Because they are
used in a popup, they are known as popup scripts. Note that
a popup script’s code cannot be inlined into the HTML page
for popup. Inlining of scripts means placing JavaScript code
directly inside script tags, as in <script>alert('Hello
World');</script> .

• So, popup scripts can only be referred to, where the src
needs to point a path, relative to the extension folder, such
as <script src="popup_script.js"></script> . And yes,
multiple popup scripts can be referred to (see Listing 2-1)
to modularize the code. These scripts do not get merged
when the extension loads (in the browser), and they can be
separately identified in the Sources and Resources panels
(see Figures 1-16 and 1-17 in Chapter 1) in the DevTools
window, discussed in Chapter 1 . Additionally, the Console
panel will also help categorize the logs from different
(referred) popup scripts, as displayed in Figure 2-4 .

 Figure 2-3. A Page-Action popup

http://dx.doi.org/10.1007/978-1-4842-1775-7_1
http://dx.doi.org/10.1007/978-1-4842-1775-7_1

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

39

• A very important feature of popup scripts is that they can access
the Chrome Extensions API. Moreover, being JavaScript files,
popup scripts have access to all the Standard JavaScript APIs,
including the event APIs to listen for and respond to DOM events
fired from the nodes within a popup.

 Listing 2-1. Chapter 2 /HelloBrowserAction/popup.html

 <head>

 <!-- The following tag is not obeyed -->
 <title>HelloBrowserAction (Custom)</title>

 <!--
 <script>
 // Inline scripts are not allowed
 alert('Hello World');
 </script>
 -->

 <!-- Referring scripts is allowed -->
 <script src="popup_script.js"></script>
 <script src="another_popup_script.js"></script>

 <style>

 ...

 Figure 2-4. Inspecting the popup: Console panel

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

40

 ■ Note While inspecting the popup, sometimes, popup script(s) might not appear in
the Sources panel. To correct this, all you need to do is reload the DevTools window (while
staying inside the DevTools window).

• Manifest component —Every extension has a JSON-formatted
manifest file named manifest.json , and it provides important
information about the extension to the Chrome browser. To
facilitate that purpose, you need to declare the features your
extension is going to use (such as the kinds of inputs—Browser-
Action, Shortcut-Key, etc.) and define their corresponding values
in the manifest.

 In addition to this, the Google Chrome Extensions framework
provides a whole slew of APIs that you can use to access useful
functionalities of the Chrome browser, such as bookmarks , tabs ,
 history , etc. And in order to use these, you need to declare their
usage in the manifest also. More details on the manifest follow in
the upcoming topics in this chapter.

 At the time of writing this book, to create the simplest valid
Google Chrome Extension (that does nothing), the only
requirement is a folder with a manifest file that contains the
following required attributes (also discussed in Chapter 1).

• manifest_version —Indicates the version of the manifest file
format (at the time of writing, it is 2)

• name —Indicates the name of the extension, for example
 HelloBrowserAction

• version —Indicates the version of the extension, for example 1. 2

 Extension Runtime
 In this section you learn about Extensions development from the developer’s point of
view. Specifically, you will learn about the extension runtime (not to be confused with the
actual runtime API provided by the Extensions framework, i.e., the chrome.runtime API).

 By now you understand that an extension’s logic is written in JavaScript. And given
the event-driven nature of JavaScript, you might be wondering about the extension
lifecycle. For example, considering the various input components used to create
extensions, you might wonder about listening to events fired from these inputs, and then
responding accordingly.

 Every input component in the Extensions framework (with the exception of Content-
UI) has some associated events (for example, Browser-Action and Page-Action input
components have the following events associated with them respectively—the chrome.
browserAction.onClicked event and the chrome.pageAction.onClicked event). And to
listen to these events, you need to attach listener functions. These functions are created (and
assigned to events) within the scripting components that represent the extension runtime.

http://dx.doi.org/10.1007/978-1-4842-1775-7_1

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

41

 So, when an extension is loaded in the browser, the manifest is first read for
providing permission(s) to access certain APIs (such as the tabs API). Then, the views
and scripts get loaded. And finally, listener functions are assigned to input components.
Note that the extension itself has some events associated with it (for example, onMessage ,
 onInstalled , etc.), and listener functions can also be assigned to these events by the
scripting components that represent the extension runtime. Now, you may ask which
scripting components represent the extension runtime. The following topic provides the
answer to this question.

 ■ Note The extension itself has many events associated with it. These events are
properties of the chrome.runtime (API) object. Following are some of the most useful events
associated with the extension— onMessage , onConnect , onConnectExternal , onInstalled ,
and onUpdateAvailable .

 Scripts Representing the Runtime
 In a loaded extension, the scripts (scripting components) that can listen for events fired
from the input components, or other things that happen to an extension, represent the
extension runtime. These scripts include the popup script and the event script. But
because a popup script is only executed when a popup is opened, you will rely more on
the event script in your extension (which is a long-running script in the background)
to listen for each and every event (fired from any input component, or fired from the
extension itself, including those that are fired when an extension installs, uninstalls,
updates, etc.).

 The script that does not represent the extension runtime is the content script.
And obviously, the web pages loaded in the browser can never represent the extension
runtime. But, as you will see in Chapter 3 , web page scripts can still interact with the
extension runtime and with the content scripts (using the messaging APIs).

 ■ Note Content scripts (a type of scripting component that is injected into the visited
web pages) have very limited access to the Chrome Extensions API, because they do
not represent the extension runtime. They can only access the following APIs— chrome.
runtime , chrome.extension , and chrome.storage . But content scripts have access to all
the standard JavaScript APIs that regular web page scripts do. Additionally, they can interact
with the extension runtime (using the messaging APIs).

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

42

 Input Components: Part One
 Input components are the interactive functionalities offered by the Google Chrome
Extensions framework. Extensions do not heavily rely on inputs. But they are crucial, as
these are the entry points to the extensions’ core logic. For example, consider an extension
that searches for a word in URLs from all opened tabs and returns matched URLs. For that
it is required that the extension at least provide a toolbar button (i.e., a Browser-Action or
Page-Action, as described next), which upon being pressed, displays a popup with text
field to enter the word to be searched. Similar to this scenario, there are many other ways in
which an extension will rely on one or more input components to trigger certain responses
(from the scripting components) or to simply display the popup.

 ■ Note Most of these input components can be combined in a single extension.
For example, the Google Dictionary (by Google) extension uses Browser-Action, Content-UI
(where events are attached to document content), and Shortcut-Key as input components.

 So, now you understand what inputs are. Let’s learn more about them, including how
are they used, and how to declare and define them in the manifest. Let me also reiterate
that the manifest is the place where you declare the features your extension is going to
use and define their corresponding values.

 But before moving ahead, keep in mind that fully functional extensions can be
created without any input components. For example, an extension that automatically
sends the details of the visited web pages to an HTTP server. In addition to this example,
 theme that are created for the Chrome browser are also created without any input
components. As a matter of fact, themes are solely created using a manifest component
(and some images). Besides, a theme is an extension too! You learned to create themes in
the last chapter.

 The Browser-Action and Page-Action Components
 The Browser-Action and Page-Action components are buttons in the Google Chrome
toolbar, as displayed in Figure 2-1 . Browser-Action is always located just right of the
address bar (outside it), whereas Page-Action is always located inside the address bar
(aligned to its right edge). In Figure 2-1 , Browser-Action is the circular, purple button,
just to the right of the omnibox. Page-Action is the triangular, light-purple button that’s
located inside the omnibox. Note that an extension can only use one of these—either a
Browser-Action or a Page-Action component.

 Both, Browser-Action and Page-Action have a popup component associated with
them (along with an icon and a title). This popup gets displayed upon clicking on the
icon corresponding to a Browser-Action or a Page-Action button. The title assigned in
the manifest for these actions is set as the tooltip for the Browser-Action or Page-Action
button (whichever one you are using). The Browser-Action and Page-Action APIs can
be accessed from all the scripting components, except content scripts. The chrome.
browserAction object is used to access the API for Browser-Action. Similarly, the
 chrome.pageAction object is used to access the API for Page-Action.

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

43

 ■ Note In Google Chrome browser, the address bar is also known as an omnibox .
Throughout this book, these words are used interchangeably.

 Need for Separate Actions
 While a Browser-Action represents an action that is common to all web pages, it is not
so with a Page-Action. Page-Actions are meant for specific web pages (for example, web
pages belonging to facebook.com , web pages with password fields, etc.). This is why a
Page-Action is named so. This is a recommendation from Chrome, but there is nothing
to stop you from going against it. You could use Page-Actions for all web pages instead
of (the recommended way) only specific ones. But still, in terms of the API and the
architecture, there is a limitation set on Page-Actions that makes it quite clear what they
are actually intended for.

 Once declared and defined in the manifest, a Browser-Action is always visible. This is
not so with a Page-Action. In order to display the Page-Action button in the browser, a call
to the chrome.pageAction.show(tabId) method needs to be made (see Listings 2-7 and
2-8) from any of the scripting components (except a content script). In addition to this,
the chrome.declarativeContent API can also be used to display Page-Actions (don’t get
overwhelmed, as you will learn more about these APIs in the topics that follow).

 ■ Note In the context of extensions development, every tab has a unique ID. Additionally,
in the Chrome Extensions framework, every tab is represented using the Tab type. This type
has many properties associated with it and important ones include id , active , and url .
The complete list of properties is available at the URL https://developer.chrome.com/
extensions/tabs#type . The chrome.tabs API is used to manipulate the tabs. You will read
more about this in the upcoming topics in this chapter.

 Note that the popup component is available to Browser-Action and Page-Action
input components. And because a popup script is always attached to the popup, it is
implied that this script is always available to these input components (obviously, as
long as the popup is visible after the user clicks on these input components). The popup
component has the sole purpose of containing additional views, for example, form fields.
But to display a popup, the button corresponding to a Browser-Action or Page-Action
component needs to be clicked.

 Role of the Manifest for This Component
 The Browser-Action and Page-Action components need to be declared in the manifest
file. Apart from the declarations, you also need to define these components (whichever
one you are using in your extension). Browser-Action is declared (and defined) in the
following way (Listing 2-2) in the manifest file.

https://developer.chrome.com/extensions/tabs#type
https://developer.chrome.com/extensions/tabs#type

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

44

 Listing 2-2. Chapter 2 /HelloBrowserAction/manifest.json

 "browser_action" : {
 "default_title" : "HelloBrowserAction",
 "default_icon" : "icon.png",
 "default_popup" : "popup.html"
 }

 Similarly, Listing 2-3 displays how to declare (and define) a Page-Action in the
manifest file. You are reminded again that an extension can use only one of these —either
the Browser-Action or Page-Action component, but not both.

 Listing 2-3. Chapter 2 /HelloPageAction/manifest.json

 "page_action" : {
 "default_title" : "HelloPageAction",
 "default_icon" : "icon.png",
 "default_popup" : "popup.html"
 }

 As you can see, the declaration and definition go together for these two input
components. Simply saving the manifest with only the attributes (browser_action
or page_action) will produce errors when you try to upload this package into the
Chrome browser for testing. So, along with the attribute, you also need to provide the
corresponding value. For the Browser-Action and Page-Action components, those values
are key-value pairs with the following keys.

• default_title —Set as the tooltip for the extension

• default_icon —PNG image resource at this path is set as the icon
for the extension

• default_popup —HTML file at this path is set as the popup for the
extension

 ■ Note All resource paths provided in the manifest file are relative to the root of your
extension folder. For example, if you have a folder named HelloWorldExtension that
contains the manifest, then default-icon “icon.png” is taken relative to the root. It would
be HelloWorldExtension/icon.png . So make sure you only provide relative paths.

 Defining the Component

 For the browser_action or page_action attributes, null , empty-string , bool , etc. are all
invalid values. The only allowed value is an object, i.e. {} . This object can be left empty.
This is usually done for quick deployment of an extension, for testing purposes. Moreover,
sometimes you may want so intentionally for another reason (as explained ahead).

http://dx.doi.org/10.1007/978-1-4842-1775-7_2
http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

45

Whatever the scenario is, an extension will load successfully with an empty object as the
value for a browser_action or page_action attribute.

 You may be puzzled by how this works without providing the values. Well, it works
because Chrome will provide a default extension icon (as seen in Figure 2-5) and a default
title (using the name you have assigned to your extension in the manifest file for the name
attribute). No default popup will be set for this action.

 Figure 2-5. Default extension icon in Google Chrome browser

 Table 2-1. Page-Action : Setting Title, Icon, and Popup

 Method Description

 chrome.pageAction.
setTitle(object details)

 Details object takes keys tabId and title , where
(integer) tabId is the ID of the tab for which you want
to modify the Page-Action and title is the tooltip
string.

 chrome.pageAction.
setIcon(object details,
function callback)

 Details object takes keys tabId and path , where path
is the relative image path. The (optional) callback
parameter should be a function that looks like
 function() {...} .

 chrome.pageAction.
setPopup(object details)

 Details object takes keys tabId and popup , where popup
is the HTML file to show in a popup. If it’s set to the
empty string (""), no popup is shown.

 Note that all these attribute keys are prefixed with default because their values can
be overridden by the extension runtime using certain API calls (provided by the Chrome
Extensions framework). The calls are listed in Tables 2-1 and 2-2 for the Page-Action and
Browser-Action components, respectively.

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

46

 Component Usage
 Now that you understand what these components are, let us discuss how we will be using
them in the topic “Examples on Components” – which contains demo extensions for
your learning purposes. As mentioned earlier, a Browser-Action component is used in an
extension where a common functionality is desired for every visited page. An example of
such an extension is a note-taking extension used to take notes on different pages.

 You will be working with this note-taking extension in the topic
“BrowserActionNotes” (to utilize a Browser-Action). And for the Page-Action demo,
you’ll be working with a modified version of the BrowserActionNotes extension, where
note-taking will only be allowed on web pages belonging to the stackoverflow.com host.
Additionally, the use of an event script to show Page-Actions has been demonstrated in
the topic “HelloPageAction Extension”.

 Shortcut Key or Command
 Shortcut key (or command) is another useful input component. As its name suggests, a
shortcut key is a keyboard shortcut that can be registered as an input to your extension.
Each such shortcut key must be listed in the manifest as an attribute of the commands
manifest attribute, as seen in Listing 2-4 . An extension can have many such shortcut
key attributes, but there can only be a total of four keyboard shortcuts mapped to these
attributes.

 Table 2-2. Browser-Action : Setting Title, Icon, and Popup

 Method Description

 chrome.browserAction.
setTitle(object details)

 Details object takes keys tabId and title , where
(integer) tabId is the ID of the tab for which you want
to limit this modification and title is the tooltip
string. The tooltip is reset when this tab is closed.

 chrome.browserAction.
setIcon(object details,
function callback)

 Details object takes keys tabId and path , where path
is the relative image path. The (optional) callback
parameter should be a function that looks like
 function() {...} . The icon is reset when this tab is
closed.

 chrome.browserAction.
setPopup(object details)

 Details object takes keys tabId and popup , where
 popup is the HTML file to show in a popup. If it’s set to
the empty string (""), no popup is shown. The popup
is reset when this tab is closed.

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

47

 Listing 2-4. Chapter 2 /HelloShortcutKey/manifest.json

 {
 "manifest_version" : 2,
 "name" : "HelloShortcutKey",
 "description" : "Extension to demonstrate a Shortcut-Key as an input

component",
 "version" : "1.2",
 "browser_action" : {
 "default_title" : "HelloShortcutKey",
 "default_icon" : "icon-1.png"
 },
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : false
 },
 "commands" : {
 "shortcut-key to change the extension icon" : {
 "suggested_key" : {"default" : "Alt+Shift+9"},
 "description" : "Change the extension icon"
 }
 }
 }

 In Listing 2-4 , only one shortcut key has been used. As mentioned, the shortcut key
(shortcut-key to change the extension icon) is listed as an attribute of the commands
manifest attribute. The actual keyboard shortcut that is mapped to the shortcut key is
defined as a value of the default attribute of the suggested_key attribute. It is named
 default as it can be overridden.

 The user can manually add more shortcuts from the chrome://extensions/
configureCommands window (see Figures 2-6 and 2-7). The API associated with the
shortcut key input component feature is accessible from the chrome.commands object. All
scripting components, except for content scripts, can use this API.

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

48

 Figure 2-7. A registered shortcut for the HelloBrowserAction extension

 Figure 2-6. Registering a shortcut for the HelloBrowserAction extension

 In addition to this, attributes _execute_browser_action and _execute_page_action
are reserved by Chrome for executing Browser-Action and Page-Action respectively.
Command attributes should not have an _ as a prefix to their names because this will
cause the commands API to fail silently.

 Note that in Figures 2-6 and 2-7 , only one attribute can be seen for the
 HelloBrowserAction extension . This attribute is generated by Chrome automatically.
If you define your custom shortcuts, those will be visible in the chrome://extensions/
configureCommands window, as shown for the HelloShortcutKey extension in Figure 2-8 .

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

49

 The onCommand Event
 Once you have defined a shortcut key for your extension, you can implement its
listener function by listening for the onCommand (chrome.commands.onCommand) event.
As discussed earlier, only the extension runtime (not to be confused with the chrome.
runtime API) can listen for such events. Specifically, the script that can do so is the event
script in an extension (refer back to the topic “Scripts Representing Runtime” to remind
yourself about the extension runtime).

 Listing 2-5. Chapter 2 /HelloShortcutKey/event_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World! - from event_script.js";
 var details = {"path":"icon-2.png"};
 //end-region

 //region {calls}
 console.log(consoleGreeting);
 chrome.commands.onCommand.addListener(function(command) {
 chrome.browserAction.setIcon(
 details,
 function() {/**/}
);
 });
 //end- region

 Figure 2-8. HelloShortcutKey extension with its custom shortcut key

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

50

 Listings 2-4 and 2-5 contain the code sample from the HelloShortcutKey extension.
This extension has a default icon (icon-1.png) for the Browser-Action. With the help of
the onCommand listener, it changes the Browser-Action icon to icon-2.png , by calling the
 chrome.browserAction.setIcon method. For this extension, you can use your own icons
or use the ones provided in Chapter 2 ’s Exercise Files folder (see Figure 2-9).

 Figure 2-9. Exercise files: HelloShortcutKey

 As seen in Listing 2-5 , the addListener method is used to attach a listener to the
 onCommand event. The listener function receives a string argument “command” , which
represents name of the command (i.e., shortcut key) that was performed. In this case,
if “command” is logged to the console, it will display the string “shortcut-key to
change the extension icon” . This argument is useful when an extension has multiple
commands defined in the manifest. To separate the logic inside the listener (based on
different commands) you need to branch out on different commands (names) that were
performed (for example, using if or switch). Obviously, it’s best to avoid the use of long
and descriptive names for commands to make the comparisons easier.

 ■ Note Do not get confused between the addListener and the addEventListener
methods. The latter belongs to the DOM API, which you are already familiar with.

 Event Scripts
 In the previous topic, you learned about the event-script scripting component.
Let’s discuss more about this scripting component, including how it is declared in the
manifest, why it needs to represent the extension runtime, and how persistent it is
compared to other scripts.

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

51

 ■ Note Popup scripts also represent the extension runtime. But they do not enjoy as
many privileges (for example, persistence) as an event script (because a popup script is only
executed when the corresponding popup is opened). So, there are only a few events which
popup scripts can successfully listen to.

 The Need for Event Scripts
 Every component discussed so far has a specific purpose. For example, the Browser-
Action and Page-Action components serve as button inputs; a shortcut key provides an
alternative way of providing inputs; a popup component provides a view, and a popup
script provides the application logic. Now you might have some rough idea as to how an
event script is useful to an extension (based on your reading so far). The following points
clearly define its uses:

• The most important use is listening for events fired from input
components, such as click events fired from the Browser-Action
or Page-Action components, command events when invoking a
shortcut key, and context menu events from context menu item
selection. Moreover, an event script can also listen for events fired
from an omnibox input. Following is a complete list of events
(fired from input components) along with the corresponding
 input component APIs (here, all input components are listed
except for Content-UI).

• chrome.browserAction — onClicked

• chrome.pageAction — onClicked

• chrome.commands — onCommand

• chrome.contextMenus — onClicked

• chrome.omnibox — onInputStarted , onInputChanged ,
 onInputEntered , onInputCancelled

 ■ Note The onClicked event will not fire if the Browser-Action or Page-Action
component has default_popup defined in the manifest.

• Another important use is listening for events fired from the
extension itself. This includes events such as onMessage ,
 onConnect , onInstalled , onUpdateAvailable , etc., that are only
accessible from the chrome.runtime object . Most of these events
are part of the messaging API provided by the Chrome Extensions
framework. You will read about these events in the next chapter.

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

52

 ■ Note Content scripts (a type of scripting component that is injected into the visited web
pages) can be used to create HTML elements in the host web pages. These elements are
referred as Content UIs in this book. Content UIs can only fire standard JavaScript events.

 Additionally, content scripts have very limited access to the Chrome Extensions API
because they do not represent the extension runtime. They can only access the following
APIs— chrome.runtime , chrome.extension , and chrome.storage . Content scripts can
still communicate with the extension runtime using the messaging API (accessible via the
 chrome.runtime object) provided by the Chrome Extensions framework.

• As you will see in Chapter 3 , using the onMessage (or onConnect)
event, an event script can listen for messages from content
scripts(s), injected into a web page by the extension. Additionally,
using the chrome.runtime.onMessageExternal event , event
scripts can also listen for messages directly from a web page.

• Apart from all these events, event scripts can also listen for
events that are associated with various API features , such as tabs ,
 alarms , storage , bookmarks , history , etc. Examples of such
events (along with their corresponding APIs) are listed here:

• chrome.tabs — onCreated , onUpdated , onRemoved , etc.

• chrome.alarms — onAlarm

• chrome.storage — onChanged

• chrome.bookmarks — onCreated , onRemoved , onChanged ,
 onImportBegan , onImportEnded , etc.

• chrome.history — onVisited , onVisitRemoved

• Most important of all is the persistence of event-script, which gives
rise to all of these features. An event script can listen for events in
a reliable manner because it is a long-running script (unlike the
popup script, which is only executed when the popup is opened).
Event scripts are automatically loaded whenever they are needed
(i.e., when the events they are listening to get fired) and are
unloaded when they go idle again.

• Lastly, event scripts can also be used for containing the application
logic that is shared by multiple components in an extension. For
example, consider a note-taking extension that allows taking notes
on any page. Initially, if only a Browser-Action is used, the entire
application logic can be placed within the popup script itself. But
if additional input components are added, the code inside popup
script won’t be accessible to these components (because a popup
script is only executed when a popup is opened).

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

53

 To allow for this, the shared code (reflecting the common
logic) can be placed inside an event script. This allows various
components to access the common application logic, without any
restrictions. Obviously, the popup script (for this case) will need
to use the messaging API to communicate back and forth with
the event script (so as to access the common application logic).
Don’t get overwhelmed with this example, as you will understand
it more clearly when you work out the BrowserActionNotes
extension later in this chapter.

 Role of the Manifest for This Component
 To use an event script in your extension, you need to define the background attribute in
the manifest. This attribute is an object composed of the scripts and persistent keys .
The scripts key takes an array of strings as its value, where each string is the (relative)
path to an event script. And the persistent key takes the Boolean false as its value (as
displayed in Listing 2-4). Multiple event scripts are simply allowed to modularize the
code (Figures 2-10 and 2-11), as shown in the following lines.

 "background" : {
 "scripts" : ["event_script.js","another_event_script.js"],
 "persistent" : false
 }

 Figure 2-10. HelloShortcutKey : Background page

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

54

 Additionally, once these script(s) are defined in the manifest—upon the successful
loading of the extension (in the browser)—they are automatically referred in an auto-
generated HTML page, known as the background page , as shown in Figures 2-12 and 2-13 .

 Figure 2-11. HelloShortcutKey: Background page

 Figure 2-12. Extensions Management page : HelloShortcutKey

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

55

 The actual HTML file is named differently (see Figure 2-14).

 Figure 2-13. HelloShortcutKey: background page

 Figure 2-14. HelloShortcutKey: Background page

 Background Scripts
 Event scripts persist only as long as the events being listened to are getting triggered.
When events are not getting triggered, event scripts are made inactive by the Chrome
browser (note that this does not happen immediately), as displayed in Figure 2-15 .

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

56

 To make this script persist as long as the browser is opened, you need to mark it as
persistent, by setting persistent to true in the manifest. Such an event script is known
as a background script . Usually, you won’t find the need to use background scripts in your
extension. There are only a few API calls (in the Extensions framework) that require a
background script for their proper execution. For most examples used in this book, only
event script are used unless stated otherwise.

 ■ Note Background scripts are not recommended for use. This is due to performance
reasons—they take up more memory and other system resources.

 Event Objects
 In all the events discussed in the current topic, one thing is common. They all represent
an event object in the Extensions framework. An event is an object that allows you to be
notified when something interesting happens. The following is an example of using the
 chrome.alarms.onAlarm event to be notified whenever an alarm has elapsed.

 chrome.alarms.onAlarm.addListener(function(alarm) {
 if(alarm.name == "A") {/**/}
 else if(alarm.name == "B") {/**/}
 else {/**/}
 });

 Figure 2-15. Extensions Management page: HelloShortcutKey

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

57

 Similar to the DOM APIs, the events in the Extensions framework also require a
listener function, registered using the addListener method. It should not be confused
with the addEventListener method of the DOM API. Every API in the Extensions
framework (browserAction , pageAction , commands , tabs , alarms , bookmarks , etc.) passes
different kinds of arguments to the listener functions. For the example listed previously,
the listener receives an argument of type Alarm .

 Aside from the events discussed so far, the Extensions framework also provides an
advanced system for taking actions depending on (matching of) certain custom rules.
Although this sounds similar to the typical events and listeners model, it is not. This
advanced feature in the Extensions framework is known as a declarative event handler
and will be discussed in the following topic of the same name.

 Revisiting the onCommand Event
 Now you can finally revisit the HelloShortcutKey extension. To listen for the onCommand
event, first you need to create an event script in the extension folder. An event script can be
named anything you like, as long as it is a valid file name. Next, you need to list the event
script in the manifest. For that, you first need to define the background manifest attribute.

 Add two properties to this attribute— scripts and persistent . As mentioned earlier,
the scripts attribute takes an array as its value. The event script will be listed within this
array. For this extension, since you don’t want the event script(s) to persist as long as the
browser is opened (you only want them to stay active on an event basis), you need to
define persistent as false , as displayed in Listing 2-4 .

 When this extension loads in the browser, the background page corresponding to the
event script will start listening for any events. To handle the onCommand event, you need
to implement its listener function (see Listing 2-5). When the defined shortcut key(s) are
invoked, the background page will become active and execute the listener function. It
will be made inactive once it goes idle (see Figure 2-11), thereby also unloading all the
associated scripts (to save memory and other system resources).

 Declarative Event Handlers
 Before we start the discussion on declarative event handlers as an advanced mechanism
to take actions based on custom rules, divert your attention to the HelloPageAction
extension to display Page-Actions. This extension is provided in Chapter 2 ’s Exercise
Files folder. You can load it in the browser for testing.

 Listing 2-6. Chapter 2 /HelloPageAction/manifest.json

 {
 "manifest_version" : 2,
 "name" : "HelloPageAction",
 "description" : "Extension to demonstrate a Page-Action",
 "version" : "1.2",
 "page_action" : {
 "default_title" : "HelloPageAction",
 "default_icon" : "icon.png",

http://dx.doi.org/10.1007/978-1-4842-1775-7_2
http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

58

 "default_popup" : "popup.html"
 },
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : false
 },
 "permissions" : [
 "tabs"
]
 }

 The HelloPageAction Extension
 As displayed in Listing 2-6 , apart from declaring and defining the Page-Action, the manifest
for this extension also contains a definition for the background manifest attribute to use an
event script. In addition to this, the manifest also contains the permissions attribute to use
the tabs feature (you will read about the permissions attribute in Chapter 3). To make the
event script active only on an event basis, persistent is defined as false .

 Listing 2-7. Chapter 2 /HelloPageAction/event_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World! - from event_script.js";
 var queryInfoForAllTabs = {
 //"active":false,"currentWindow":true
 };
 function logTabs(tabs) {
 console.group("Tabs");
 console.log(tabs);
 console.groupEnd("Tabs");
 }
 function queryTabsAndShowPageActions() {
 chrome.tabs.query(
 queryInfoForAllTabs,
 function(tabs) {
 console.log("All tabs length: %s", tabs.length);
 //Output tabs object to the console as a separate visual group
 logTabs(tabs);
 if(tabs.length > 0) {
 for(var i=0; i<tabs.length; i++) {
 chrome.pageAction.show(tabs[i].id);
 }
 }
 }
);
 }
 //end- region

http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

59

 Listings 2-7 and 2-8 contain the code for the event script used in this extension. The
function queryTabsAndShowPageActions makes use of the chrome.tabs.query API to
query the tabs based on the object queryInfoForAllTabs , which is passed as the first
argument to the query method. This object is empty, so as to make the query API return
all the tabs. This is required in your extension to show Page-Actions on all the tabs.

 The second argument of the query method is a callback function, which receives
 tabs as its first (and only) argument. Because it is an array, you can iterate over it. Every
element in this array is of Tab type. In the Chrome Extensions framework, every tab is
represented using this Tab type. This type has many properties associated with it, and the
important ones include id , active , and url .

 For the purpose of this extension, you need the id property in order to show the
Page-Action. Page-Action is displayed in a tab by calling the method chrome.pageAction.
show , which takes the id of the tab as its only argument. So, inside the loop for(var i=0;
i<tabs.length; i++) , the show method is called to display the Page-Action.

 Listing 2-8. Chapter 2 /HelloPageAction/event_script.js

 //region {calls}
 console.log(consoleGreeting);
 //Show Page-Actions using the chrome.tabs.query method
 //queryTabsAndShowPageActions();
 //Show Page-Actions using the onUpdated event
 chrome.tabs.onUpdated.addListener(function(tabId,changeInfo,tab) {
 chrome.pageAction.show(tabId);
 });
 //end-region

 However, there is one drawback to using the queryTabsAndShowPageActions
function. This function will only get called once, i.e. when the event script first loads in
the browser. In order to show Page-Action every time you open (or update) a tab, this will
not suffice. For that, you need to listen for an event on the tabs—the onUpdated event.
The use of this event is demonstrated in Listing 2-8 . For the purpose of this extension,
the queryTabsAndShowPageActions function call has been commented out. Page-Actions
are displayed by simply listening for the onUpdated event. This way, every time a tab gets
updated (i.e., opened or updated), the listener function will get called and will display a
Page-Action for the corresponding tab, with an ID of tabId (the argument received by the
listener function, as shown in Listing 2-8).

 The declarativeContent API
 Now we can begin the discussion on declarative event handlers. Declarative event
handlers provide a means to define certain rules consisting of declarative conditions and
actions. Conditions are evaluated in the browser itself, rather than the JavaScript engine
that powers the Extensions framework. This reduces the round-trip latencies between
the browser and the (aforementioned) JavaScript engine. At the time of writing this book,
there are two kinds of declarative event handlers— chrome.declarativeContent and
 chrome.declarativeWebRequest . For the course of this book, you won’t be dealing with
the latter (as it is not available to the Google Chrome users on the stable channel).

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

60

 You can use the chrome.declarativeContent API to take actions depending on
the content of a web page, without requiring permission to read the web page’s content
(which is done using content scripts that are injected into the visited web pages, to
read and modify the web page’s content). Only two such actions are supported at
the time of writing— chrome.declarativeContent.ShowPageAction and chrome.
declarativeContent.SetIcon . To use this API, the following permission is required in
the manifest: declarativeContent .

 Adding and Removing Rules

 As a declarative API, this API lets you register rules on the onPageChanged event, i.e.
using chrome.declarativeContent.onPageChanged.* . Here, * could mean addRules or
 removeRules . The addRules method takes an array of rule instances as its first parameter,
and an optional callback function (that is called on completion) as the second parameter.

 var rule1 = {
 id : "some_rule_A", //Optional, will be generated if not set
 priority : 100, //Optional, defaults to 100
 conditions : [/*conditions*/],
 actions : [/*actions*/]
 };
 ...
 var ruleList = [rule1,rule2,...];
 chrome.declarativeContent.onPageChanged.addRules(ruleList);

 To remove rules, call the removeRules method. It accepts an optional array of rule
identifiers (for example, [rule1.id,rule2.id]) as its first parameter, and a callback
function as its second parameter. If the array is undefined , all registered rules of this
extension are removed.

 Listing 2-9. Chapter 2 /PageActionNotes/event_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World! - from event_script.js";
 var ruleStackOverflowHost = {
 "conditions" : [
 new chrome.declarativeContent.PageStateMatcher({
 "pageUrl" : {
 "hostEquals" : "stackoverflow.com",
 "schemes" : ["http","https"]
 }
 })
],
 "actions" : [new chrome.declarativeContent.ShowPageAction()]
 };
 //end-region

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

61

 ■ Note Rules are persistent across browsing sessions. Therefore, you should add rules
during extension installation time, using the runtime.onInstalled event. Note that this
event is also triggered when an extension is updated. Therefore, you should first clear
previously installed rules and then register new rules. For more details on rules, visit the
following URL https://developer.chrome.com/extensions/events .

 Listing 2-10. Chapter 2 /PageActionNotes/event_script.js

 //region {calls}
 console.log(consoleGreeting);
 chrome.runtime.onInstalled.addListener(function() {
 //Replace all rules
 chrome.declarativeContent.onPageChanged.removeRules(undefined,function()
{
 //With a new rule
 chrome.declarativeContent.onPageChanged.addRules(
 [ruleStackOverflowHost]
);
 });
 });
 //end-region

 Using ShowPageAction

 In the previous topic, “HelloPageAction Extension,” it was demonstrated how Page-Action
can be displayed using the chrome.tabs.query method and using the chrome.tabs.
onUpdated event. Now, you will examine another way to do so using a declarative event
handlers’ actions.

 ■ Note For advanced coverage of this topic, visit the URL
 https://developer.chrome.com/extensions/declarativeContent .

 As displayed in Listing 2-9 , the rule ruleStackOverflowHost is created using a condition
and a corresponding action. The condition is represented using a PageStateMatcher object.
 PageStateMatcher matches web pages if and only if all listed criteria are met. In Listing 2-9 ,
those criteria include pageUrl.hostEquals and pageUrl.schemes (to match all the web
pages on stackoverflow.com). In addition to using the pageUrl criteria, css criteria can
also be used. For example, consider the following rule to show a Page-Action for web pages
on https://www.google.com / , when a password field is present on it:

 var rule1 = {
 "conditions" : [
 new chrome.declarativeContent.PageStateMatcher({

https://developer.chrome.com/extensions/events
http://dx.doi.org/10.1007/978-1-4842-1775-7_2
https://developer.chrome.com/extensions/declarativeContent
https://www.google.com/

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

62

 "pageUrl" : {
 "hostEquals" : "www.google.com",
 "schemes" : ["https"]
 },
 "css" : ["input[type='password']"]
 })
],
 "actions" : [new chrome.declarativeContent.ShowPageAction()]
 };

 As discussed already, only two actions are supported by the declarativeContent
API. An action is listed as an element of the actions array (actions is an attribute of the
rule instance, as displayed in Listing 2-9). Finally, to register the rules, the following calls
are made. As rules are persistent across browsing sessions, they are only added once,
which is when the extension installs. Additionally, to clear all the previously defined rules,
 removeRules is called with undefined as the first argument.

 chrome.runtime.onInstalled.addListener(function() {
 //Replace all rules
 chrome.declarativeContent.onPageChanged.removeRules(undefined,function() {
 //With a new rule
 chrome.declarativeContent.onPageChanged.addRules(
 [ruleStackOverflowHost]
);
 });
 });

 Content Scripts
 In the previous topic on the declarativeContent API, you understood how without
reading the web page contents you can take certain actions simply by declaring some
condition(s). This may not be always sufficient, as the declarativeContent API (via the
 PageStateMatcher object) only allows certain limited criteria for matching. Moreover, the
actions are also very limited. This is where content scripts are useful.

 Content scripts are a type of scripting component that is injected into the visited web
page(s). They have a very limited access to the Chrome Extensions API (as they do not
represent the extension runtime). But, they can read and modify the contents (i.e., HTML
elements) of visited web pages using the DOM API . Since they have access to the DOM
API, they can also add content (i.e., HTML elements) to the web pages they are injected
into. Such a UI created using content scripts is known as Content UI . Before you learn
more about content scripts, keep in mind that content scripts cannot:

• Use chrome.* APIs with the exception of the following:

• extension (getURL , inIncognitoContext , lastError ,
 onRequest , sendRequest)

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

63

• i18n

• runtime (connect , getManifest , getURL , id , onConnect ,
 onMessage , sendMessage)

• storage

• Use variables or functions defined in other scripting components.

• Use variables or functions defined by web pages (they are injected
into) or by other content scripts.

 ■ Note Content scripts can indirectly use the complete chrome.* APIs and indirectly also
access the variables and functions defined in other scripting components. They can do all
this by using the messaging API (discussed in Chapter 3).

 Role of the Manifest for This Component
 Now let’s see how to configure the manifest for using the content script component.
If the content scripts’ code always needs to be injected automatically, you need to
declare and define the content_scripts attribute in the manifest, as displayed in the
following code.

 "content_scripts" : [
 {
 "matches" : ["http://www.google.com/*"],
 "css" : ["mystyles_A.css"],
 "js" : ["jquery.js","myscript_A.js"]
 }
]

 This attribute is an array, where each element (a content script) takes the following
properties in its definition— matches , css , and js . Quite obviously, css and js are arrays
of CSS and JavaScript files (respectively) that need be injected in the web pages that
match against the URLs specified in the matches array.

 In addition to this, JavaScript (or CSS) code can also be injected programmatically
using the tabs API (which requires the tabs permission in the manifest to grant access
to all the tabs for interacting with them; however, if only the currently active tab needs be
accessed, the activeTab permission will suffice).

 For programmatic-injection, either tabs or activeTab permission can be used in the
manifest. The activeTab permission gives an extension temporary access to the currently
active tab when the user invokes the extension, for example, by clicking its Browser-
Action. Access to the tab lasts until the tab is navigated or closed.

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

64

 The activeTab permission can be used when your code in the extension runtime
has access to the currently active tab via the listener function(s) (say listener function for
events chrome.browserAction.onClicked or chrome.pageAction.onClicked) and wants
to interact with this tab by injecting JavaScript or CSS code. To interact with the remaining
tabs, use the tabs permission. The following methods (in the tabs API) are used to inject
CSS and JavaScript code, respectively.

 chrome.tabs.insertCSS(integer tabId, object details, function callback)
 chrome.tabs.executeScript(integer tabId, object details, function callback)

 ■ Note Programmatic-injection is useful when your JavaScript or CSS code shouldn’t
be injected into every single web page that matches the matches pattern. Instead, it needs
to be injected only for certain cases. For example, upon clicking of a Browser-Action or
Page-Action button.

 The tabId parameter is the ID of the tab in which to inject the CSS or JavaScript
code; it defaults to the (currently) active tab of the current window. The details
parameter is an object that contains the details of the (CSS/JavaScript) code or file to
inject. In this object, the code or the file property must be set, but both may not be set at
the same time. The HelloContentScript extension in Chapter 2 ’s Exercise Files folder
demonstrates the use of content scripts in an extension.

 Listing 2-11. Chapter 2 /HelloContentScript/manifest.json

 {
 "manifest_version" : 2,
 "name" : "HelloContentScript",
 "description" : "Extension to demonstrate a content-script",
 "version" : "1.2",
 "content_scripts" : [
 {
 "matches" : ["*://stackoverflow.com/*"],
 "js" : ["content_script.js"]
 }
],
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : false
 },
 "permissions" : ["activeTab"],
 "browser_action" : {
 "default_icon" : "icon.png"
 }
 }

http://dx.doi.org/10.1007/978-1-4842-1775-7_2
http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

65

 HelloContentScript Extension
 This extension injects content scripts both the ways—using the content_scripts
attribute in the manifest as well as using programmatic-injection (from an event script).
First, let’s examine the former. Note the matches pattern in Listing 2-11 . The asterisk (*)
in the beginning of the pattern represents any scheme— http , https , etc. Similarly, the
asterisk in the end of the pattern represents all paths on the stackoverflow.com host.
As displayed in Figure 2-16 , the content script (content_script.js) gets injected upon
visiting the aforementioned host. You can try out this extension and visit other paths on
the stackoverflow.com host.

 Figure 2-16. Injected content script component

 Listing 2-12. Chapter 2 /HelloContentScript/event_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World! - from event_script.js";
 var cssCode = "a {text-decoration:underline !important;}";
 cssCode += "div {background-color:#999 !important;}";
 var javascriptCode = "var imgElement = document.createElement('img');";
 javascriptCode += "imgElement.src = 'http://placehold.it/350x150';";
 javascriptCode += "document.body.appendChild(imgElement);";
 //end-region

 //region {calls}
 console.log(consoleGreeting);
 chrome.browserAction.onClicked.addListener(function(tab) {
 chrome.tabs.insertCSS(
 {
 //CSS file or code to inject
 //file : "mystyles.css",
 code : cssCode
 },
 function() {
 console.log("CSS inserted!");

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

66

 }
);
 chrome.tabs.executeScript(
 {
 //JavaScript file or code to inject
 //file : "content_script.js",
 code : javascriptCode

 },
 function() {
 console.log("JavaScript executed!");
 }
);
 });
 //end-region

 Programmatic-injection in this extension is performed using the event script,
specifically using the Browser-Action’s onClicked listener (as displayed in Listing 2-12).
Both the insertCSS and executeScript methods are called within the listener function
to inject CSS and JavaScript code, respectively. Figures 2-17 to 2-19 display the various
stages during the interaction of the HelloContentScript extension with a web page,
located at the URL www.example.org . Note that Figure 2-18 represents the incomplete
extension (it only contained the insertCSS method).

 Figure 2-17. HelloContentScript: Background page

http://www.example.org/

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

67

 Figure 2-19. HelloContentScript: Background page

 Figure 2-18. HelloContentScript: Background page

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

68

 ■ Note Every pattern used with the matches attribute is known as a match pattern
in the Extensions framework. You can learn more about them at the following URL
 https://developer.chrome.com/extensions/match_patterns .

 Upon clicking the Browser-Action button, the listener function gets called, as a
result of which CSS and JavaScript codes get injected. The cssCode variable contains
CSS code to underline the anchor tags, i.e. a tag, and code to set the background color
for all div tags— “div {background-color:#999 !important;}” . Note the use of
 !important to override any (similar) existing styles on the visited web page. Similarly,
the javascriptCode variable contains JavaScript code to inject an image element in the
visited web page.

 Examples of Components
 This topic contains demo extensions for your learning purposes. This section examines
two extensions— BrowserActionNotes and PageActionNotes (also mentioned earlier in the
book). Each of these is a note-taking extension to allow taking notes on different pages.

 ■ Note The chrome.runtime.lastError object will be defined during an API method
callback if there was an error.

 BrowserActionNotes Extension
 This extension allows taking notes on all visited web pages. It uses a Browser-Action input
component (as displayed in Figure 2-20) and a popup component (Figure 2-21) with a
popup script. By now you understand that the manifest component is mandatory for
every extension. Note that this extension only allows saving one note for a URL. The note
can be overwritten or completely removed from the storage.

https://developer.chrome.com/extensions/match_patterns

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

69

 Figure 2-20. BrowserActionNotes: Browser-Action component

 Figure 2-21. BrowserActionNotes: popup component

 The popup contains a textarea and two buttons—SAVE and REMOVE. The
 textarea is used to contain the note to be saved (as displayed in Figure 2-22). Listing 2-13
provides the relevant code for the popup. Note the use of the textarea and button tags.

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

70

 Also note the referred popup script, named popup_script.js . The SAVE button is used
to save the entered note, using the localStorage API (a standard JavaScript API). The saved
note is mapped to the URL the note was saved for (see Figure 2-23 , in the Resources panel).
The REMOVE button is used to remove the saved note for the corresponding URL.

 Figure 2-22. BrowserActionNotes: popup component

 Figure 2-23. BrowserActionNotes: Resources panel

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

71

 Listing 2-13. Chapter 2 /BrowserActionNotes/popup.html

 <script src="popup_script.js"></script>

 <style>
 ...
 </style>
 </head>
 <body>
 <div id="container">
 <div id="top"><textarea id="note" placeholder="..."></textarea></div>
 <div id="bottom">

 <button id="save_button">SAVE</button>

 <button id="remove_button">REMOVE</button>
 </div>
 </div>
 </body>
 </html>

 The popup script, upon loading, gets references to the textarea and button
elements. This is done using the getElementById method (a Standard JavaScript API).
The most important functions defined in the popup script (see Listing 2-14) are hardSave
and removeNote . Both these functions use the tab’s API to access the currently active tab.
Note that this extension uses the tabs permission in the manifest.

 Upon clicking of the saveButton in the popup, the hardSave function gets called.
Similarly, clicking the removeButton calls the removeNote function. A note is saved by calling
the localStorage.setItem method— “localStorage.setItem(activeURL,noteText)”.
It is removed by calling the localStorage.removeItem method.

 Listing 2-14. Chapter 2 /BrowserActionNotes/ popup_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World! - from popup_script.js";
 //Active-URL can also be cached
 //var activeURL = "";
 var noteElementID = "note";
 var saveButtonID = "save_button";
 var removeButtonID = "remove_button";
 var noteElement = null;
 var saveButton = null;
 var removeButton = null;
 var queryInfo = {"active":true};
 function logSuccess(task) {
 console.log("%s Successful!",task);
 chrome.browserAction.setBadgeText({"text":localStorage.length.toString()});
 }

http://dx.doi.org/10.1007/978-1-4842-1775-7_2
http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

72

 //function logFailure(task) {console.log("%s Failed!",task);}
 function loadNoteForActiveURL(noteElement) {
 chrome.tabs.query(queryInfo,function(tabs) {
 var activeURL = tabs[0].url;
 noteElement.value = localStorage.getItem(activeURL);
 logSuccess("Get-Storage");
 });
 }
 function softSave(noteText) {} //appends the text
 function hardSave(noteText) { //overwrites the text
 chrome.tabs.query(queryInfo,function(tabs) {
 var activeURL = tabs[0].url;
 localStorage.setItem(activeURL,noteText);
 logSuccess("Set-Storage");
 });
 }
 function removeNote() {
 chrome.tabs.query(queryInfo,function(tabs) {
 var activeURL = tabs[0].url;
 localStorage.removeItem(activeURL);
 logSuccess("Remove-Storage");
 });
 }
 //end- region

 As soon as the popup opens, the loadNoteForActiveURL function (Listing 2-15)
gets called to access the note corresponding to the currently active URL and to load this
note in the textarea element . Note the use of the logSuccess function. Aside from use
as a logging function, it is also used to set the badge text for the Browser-Action (see
Figures 2-24 and 2-25). This text is updated with the localStorage.length value, at
various times when you interact with the extension.

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

73

 Figure 2-24. BrowserActionNotes: Setting the badge text

 Figure 2-25. BrowserActionNotes: Console panel for popup

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

74

 ■ Note Browser-Actions can optionally display a badge, which is a bit of text that is
layered over the icon. Badges make it easy to update the Browser-Action to display a small
amount of information about the state of the extension. Because the badge has limited
space, it should have four characters or less.

 You set the text and color of the badge using browserAction.setBadgeText and
 browserAction.setBadgeBackgroundColor , respectively.

 Listing 2-15. Chapter 2 /BrowserActionNotes/ popup_script.js

 //region {calls}
 console.log(consoleGreeting);
 document.addEventListener('DOMContentLoaded',function(dcle) {
 saveButton = document.getElementById(saveButtonID);
 removeButton = document.getElementById(removeButtonID);
 noteElement = document.getElementById(noteElementID);

 //Load note for active URL (if it was stored before)
 loadNoteForActiveURL(noteElement);
 chrome.browserAction.setBadgeBackgroundColor({"color":[255,0,0,255]})
 //Add listeners to buttons
 saveButton.addEventListener('click',function(ce) {
 var noteText = noteElement.value;
 if(noteText.length > 0) hardSave(noteText);
 });
 removeButton.addEventListener('click',function(ce) {
 removeNote();
 });
 });
 //end-region

 PageActionNotes Extension
 This extension is almost identical to the previous one. The main difference is that it
allows taking notes only on specific pages, by controlling the appearance of the Page-
Action used in this extension. To control the appearance of Page-Action, it uses the
 declarativeContent API provided by the Extensions framework. All code for this aspect
of the extension has already been covered earlier in this chapter. The remaining code
(for the popup and popup script components) is identical to the previous extension.
Hence, we are only left with discussing the flow of this extension.

 As displayed in Figure 2-26 , this extension has an event script component . The
event script (Listings 2-9 and 2-10) contains the code to register the rules to allow the
appearance of Page-Action only on web pages belonging to the stackoverflow.com host .

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

75

 The Page-Action, along with the popup, is displayed in Figures 2-27 to 2-29 .

 Figure 2-26. PageActionNotes: background page

 Figure 2-27. PageActionNotes: Popup component

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

76

 Figure 2-29. PageActionNotes: Console panel for popup

 Figure 2-28. PageActionNotes: Popup component

CHAPTER 2 ■ ARCHITECTURE OVERVIEW

77

 This way, when any web page belonging to the stackoverflow.com host is visited,
Page-Action button will be displayed. Upon clicking the Page-Action, the popup will
open. As discussed, this popup (along with its popup script) is identical to the popup
used in the previous extension. This popup will allow you to interact with the textarea , to
enter the note to be saved. And finally, clicking the SAVE button will save the note. Once
again, you can visit the Resources panel to confirm the storage of the note. When you
revisit the URL for which a note was already saved, opening the popup will automatically
load the note in the textarea (as displayed in Figure 2-29).

 Summary
 In this chapter you learned that there are certain components used to create an
extension. These include the manifest component (which is a must-have for every
extension!), the input component(s), the scripting component(s), and an optional popup
component. You also learned about the lifecycle of an extension, where you understood
the use of event scripts to listen for various events fired from input components, as well as
events that are fired from feature API (i.e., APIs such as tabs , alarms , storage , bookmarks ,
 history , etc.).

 You also learned why only event scripts are used to represent the extension runtime,
by listing their many advantages over popup scripts (that are only executed when a
popup is opened). You learned why input components are necessary in an extension, as
they provide an entry point (for the users) to interact with. Remember, though, that fully
functional extensions can be created without any input components!

 Finally, you learned about the declarativeContent API to register custom rules in
an extension and also the content-script component, to inject JavaScript and CSS files
into visited web pages (in a declarative, as well as in a programmatic, manner).

 In the next chapter, you will read about various APIs provided by the Chrome
Extensions framework. You will also learn about messaging APIs to communicate
between different scripting components, as well as between web page scripts and
scripting components.

79© Prateek Mehta 2016
P. Mehta, Creating Google Chrome Extensions, DOI 10.1007/978-1-4842-1775-7_3

 CHAPTER 3

 API Availability and
Messaging

 This chapter describes the various ways in which scripting components can interact with each
other using the messaging APIs provided by the Google Chrome Extensions framework. In
addition to this, you will also learn how ordinary web pages can interact with an extension.
Plus, you will also examine the usage of many useful APIs provided by the Extensions
framework. But before all of this, first you will learn about the remaining input components.

 Like the previous chapters, this chapter assumes you have some experience of
writing simple web pages using technologies such as HTML, CSS, and JavaScript. You
should know the event-driven nature of web pages, for example—showing some UI
after clicking a button (using event listeners), etc. In addition to this, you should also
know about the architecture of extensions, which is comprised of components, such as
manifest file, inputs, scripts, and popups. That said, let’s begin!

 Input Components: Part Two
 The previous chapter left out some input components to discuss. This section takes
them on before you start examining various APIs in the Extensions framework and
understanding the messaging APIs. The input components that are discussed here
include the omnibox input and the context menu item. In addition to these components,
the application of the Content UI component is also discussed.

 Omnibox Inputs
 The omnibox input is a very special input component that allows you to register a keyword
with Google Chrome’s address bar, which is also known as the omnibox . Using this input
component is extremely easy, as it only requires an event script component and a small
addition to the manifest, as follows:

 "omnibox" : {
 "keyword" : "OI"
 }

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

80

 As shown, to use the omnibox input component, the omnibox manifest attribute is
required. This attribute has a keyword property . When the corresponding keyword value
(in this case, OI), which is case-insensitive, is entered into the address bar (upon certain
confirmation), the user can begin interacting solely with the extension. This is displayed
in Figures 3-2 and 3-3 .

 Figure 3-2. HelloOmniboxInput: Entering the keyword

 Figure 3-1. Extensions Management Page : HelloOmniboxInput

 Additionally, to use an icon in the address bar, when the user is interacting, you can
define the icons attribute in the manifest (see Listing 3-1). Note that Chrome automatically
creates a grayscale version of the 16px icon listed in the manifest. Also see Figures 3-1 and 3-3
to note the difference between colored and grayscaled versions of the icon.

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

81

 Listing 3-1. Chapter 3 /HelloOmniboxInput/ manifest.json

 {
 "manifest_version" : 2,
 "version" : "1.2",
 "name" : "HelloOmniboxInput",
 "description" : "Extension to demonstrate an Omnibox",
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : false
 },
 "omnibox" : {
 "keyword" : "OI"
 },
 "icons" : {
 "16" : "icon-16.png",
 "128" : "icon-128.png"
 }
 }

 Role of an Event Script for this Component
 Now for the event script part needed to use this input component. Similar to the use of
event script for other input components, for the omnibox input component also, an event
script is used to listen for the associated events. These events include onInputStarted ,
 onInputChanged , onInputEntered , and onInputCancelled . Note that these events belong
to the chrome.omnibox API. This API does not require any permission in the manifest.
The use of these events is demonstrated in Listing 3-2 .

 Figure 3-3. HelloOmniboxInput: Interacting with the omnibox

 Listing 3-2. Chapter 3 /HelloOmniboxInput/ event_script.js

 //region {variables and functions}
 var ON_INPUT_ENTERED_DISPOSITION = {
 "CURRENT_TAB" : "currentTab",
 "NEW_FOREGROUND_TAB" : "newForegroundTab",
 "NEW_BACKGROUND_TAB" : "newBackgroundTab"
 };

http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

82

 var suggestResultOne = {
 "content" : "Some content",
 "description" : "Description"
 };
 var suggestResults = [suggestResultOne];
 var searchService = "https://www.google.com/";
 searchService += "search?q=chrome+extensions+developers+";
 function CreateWindow(url) {
 var windowCreateData = {"url" : ""};
 windowCreateData.url = url;
 chrome.windows.create(windowCreateData);
 }
 //end-region

 //region {calls}
 chrome.omnibox.onInputStarted.addListener(function() {
 console.log("<InputStarted>");
 });
 chrome.omnibox.onInputChanged.addListener(function(text,suggest) {
 console.log("<InputChanged> Text: " + text);
 //suggest(suggestResults);
 suggest(getSuggestResults(text));
 });
 chrome.omnibox.onInputEntered.addListener(function(text,disposition) {
 console.log("<InputEntered> Text: " + text);
 CreateWindow(searchService + text);
 //default disposition is ON_INPUT_ENTERED_DISPOSITION.CURRENT_TAB
 });
 //end- region

 Figure 3-4. HelloOmniboxInput: Suggested results

 The most important events that need to be listened to are chrome.omnibox.
onInputChanged , and chrome.omnibox.onInputEntered . Firing of the former (event)
means that the user has changed what is typed into the omnibox, and the latter
(i.e., onInputEntered event) means that the user has accepted what is typed, or
suggested, into the omnibox. The logs associated with different events can be seen in
Figure 3-6 .

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

83

 When onInputChanged event gets fired, you need to suggest results for the user to accept.
Results can be suggested by passing an array to the suggest callback (see Listing 3-2). Note
that each element in this array should be of type SuggestResult , which is an object with the
 content and description properties. For example, to suggest a result suggestResultOne ,
which is defined as

 var suggestResultOne = {"content":"Some content","description":
"Description"};

 You need to pass the array [suggestResultOne] to the suggest callback. Figures 3-4
and 3-5 show suggestion of results, where the suggested results are Description and
 Search 'tabs' on ... , Search 'themes' on ... for Figures 3-4 and 3-5 , respectively.
Note that what actually gets accepted is the content corresponding to these descriptions.
And by getting “accepted,” I mean, passing of the content to the listener function for the
 onInputEntered event.

 Figure 3-5. HelloOmniboxInput: Interacting with the omnibox

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

84

 The content is passed to this listener function as the text parameter, shown in
Listing 3-2 . The second parameter, called disposition , is the recommended context to
display results. This is usually not required, as it has a default value of current tab. The
 text , in Listing 3-2 , is used to display related search web pages in a new window. Note the
use of the chrome.windows.create method to create a new window (see Figure 3-8).

 Figure 3-7. HelloOmniboxInput: Setting the default suggestion

 Figure 3-6. HelloOmniboxInput: background page

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

85

 Note the default suggestion Run HelloOmniboxInput command ... seen in Figure 3-5 ,
for the HelloOmniboxInput extension. This can be easily overridden to Search on
developer.chrome.com (displayed in Figure 3-7) by executing the following lines of code
in the event script component:

 chrome.omnibox.setDefaultSuggestion(
 {"description":"Search on developer.chrome.com"}
);

 Context Menu Items
 In the Chrome Extensions framework, one of the most advanced and feature-leveraging
input component provided is the context menu item. This component allows an
extension to create item(s) in the context menu, as displayed in Figure 3-10 . The created
item can nest other such items within itself. This becomes extremely useful when an
extension offers multiple related functionalities (each displayed as a separate context
menu item) that can be grouped under a single item. This input component requires the
 contextMenus permission.

 Listing 3-3. Chapter 3 /HelloContextMenuItem/ manifest.json

 {
 "manifest_version" : 2,
 "name" : "HelloContextMenuItem",
 "description" : "Extension to demonstrate a Context-Menu-Item",
 "version" : "1.2",
 "permissions" : ["contextMenus"],
 "icons" : {
 "16" : "icon-16.png",
 "128" : "icon-128.png"
 },
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : true
 }
 }

 Similar to the input component discussed in the previous topic, using the
context menu item component is also very straightforward. First, you need to use
the contextMenus permission in the manifest. Then, you need to use an event script
component in order to create item(s) in the context menu. This event script component
needs to be defined with persistent set to true in the manifest, in order to make it
persist as long as the browser is opened. This is required because the item(s) in the
context menu are defined from within the event script component, so it should last long
enough. The corresponding code for the event script component and the contextMenus
permission is provided in Listing 3-3 .

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

86

 ■ Note Recall, that an event script with persistent defined as true is a background
script, as discussed in Chapter 2 .

 Figure 3-8. HelloOmniboxInput: Setting the default suggestion

 Creating an Item
 There are different forms of context menu items, including normal , separator , checkbox ,
etc. Here, you will create a “normal” item. Note that if your extension requires the use
of multiple items in the context menu, you can also use a “separator” item to (visually)
group your items.

 ■ Note A context menu item can take different forms. It can be a “normal” item (the
typical item you always notice in context menus), a “separator” item, a “checkbox” item, or
a “radio” item. For the course of this book, we will be dealing only with the first-two items.
This will help you focus more on the various contexts available to context menus in the
Chrome browser.

http://dx.doi.org/10.1007/978-1-4842-1775-7_2

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

87

 Every context menu item is identified using a unique ID. In Listing 3-4 , this is defined
using the ID_CONTEXT_MENU_ITEM_HELLO variable . Next are the different types of contexts
an item can appear in. The different types of contexts are defined using the TYPES_CONTEXT
variable in Listing 3-4 . Note that the browser_action and page_action contexts are
associated with the buttons for these actions, as well as their popup components. The
remaining contexts have their usual meanings. We won’t be dealing with the launcher
context.

 Listing 3-4. Chapter 3 /HelloContextMenuItem/ event_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World! - from event_script.js";
 function logSuccess(task) {console.log("%s Successful!",task);}
 function logFailure(task) {console.log("%s Failed!",task);}
 var ID_CONTEXT_MENU_ITEM_HELLO = "ID_CONTEXT_MENU_ITEM_HELLO";
 var TYPES_CONTEXT_MENU_ITEM = { //Object used as an enum
 "NORMAL" : "normal",
 "CHECKBOX" : "checkbox",
 "RADIO" : "radio",
 "SEPARATOR" : "separator"
 };
 var TYPES_CONTEXT = {
 "ALL" : "all",
 "PAGE" : "page",
 "FRAME" : "frame",
 "SELECTION" : "selection",
 "LINK" : "link",
 "EDITABLE" : "editable",
 "IMAGE" : "image",

 Figure 3-9. HelloContextMenuItem: background page

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

88

 "VIDEO" : "video",
 "AUDIO" : "audio",
 "LAUNCHER" : "launcher",
 "BROWSER_ACTION" : "browser_action",
 "PAGE_ACTION" : "page_action"
 };
 var match_pattern_stackoverflow = "*://*.stackoverflow.com/*";
 var createProperties = {
 "type" : TYPES_CONTEXT_MENU_ITEM.NORMAL,
 "id" : ID_CONTEXT_MENU_ITEM_HELLO,
 "title" : "Custom search '%s'",
 "contexts" : [TYPES_CONTEXT.SELECTION],
 "documentUrlPatterns" : [match_pattern_stackoverflow],
 //Use "targetUrlPatterns" for TYPES_CONTEXT.IMAGE,
 //TYPES_CONTEXT.VIDEO, TYPES_CONTEXT.AUDIO, etc.
 "targetUrlPatterns" : []
 };
 //end- region

 The event script code seen in Listings 3-4 and 3-5 is from the HelloContextMenuItem
extension . In this extension, a context menu item is created only when a selection is
made in the visited web page (see Figure 3-10). Additionally, to allow this only on the
 stackoverflow.com host, the documentUrlPatterns property is also defined in the
 createProperties object, as shown in Listing 3-4 .

 Figure 3-10. HelloContextMenuItem: Context menu item component

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

89

 Listing 3-5. Chapter 3 /HelloContextMenuItem/ event_script.js

 //region {calls}
 console.log(consoleGreeting);
 chrome.contextMenus.create(createProperties,function() {
 if(!chrome.runtime.lastError) {
 logSuccess("ContextMenus.Create");
 chrome.contextMenus.onClicked.addListener(
 function(info,tab) {
 console.log(
 "id: %s, selection: %s, url: %s",
 info.menuItemId,info.selectionText,
 tab.url
);
 }
);
 } else {
 logFailure("ContextMenus.Create");
 }
 });
 //end- region

 There are two stages to using this component—the first is creating the context
menu item (Figure 3-9 shows the corresponding log) and the second is listening for the
 onClicked event on this item. Creating the context menu item is done using the chrome.
contextMenus.create method . This method takes an object as its first parameter, to
create a context menu item with the defined properties. If the creation is not successful,
the chrome.runtime.lastError object gets defined to the last error that was caused.
Conversely, if the creation is successful, you can define the listener function for the
 onClicked event, as shown in Listing 3-5 .

 Figure 3-11. HelloContextMenuItem: Background page

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

90

 Note that this listener receives an info object, as well as the tab object (which is of
 Tab type). The info object contains important information when a context menu item
is clicked. This information can be used to take actions depending on the item that was
clicked. For example, in Listing 3-5 , the info.menuItemId property is simply logged to the
console (Figure 3-11 shows the corresponding log).

 Other important properties include parentMenuItemId , mediaType , linkUrl ,
 selectionText , etc. The complete list of properties is available at the URL https://
developer.chrome.com/extensions/contextMenus .

 Figure 3-12. HelloContentUI: Background page

 Revisiting Content-UI
 In the previous chapter, you learned how to create a Content-UI. But you did not learn
how exactly it might be used or interacted with, apart from simply staying as a static
content on the web page (see Figure 2-19) it is injected into. You will examine its use with
the help of the HelloContentUI extension, which is provided in Chapter 3 ’s Exercise
Files folder. In this extension, Content-UI is used to display the Page-Action component.

https://developer.chrome.com/extensions/contextMenus
https://developer.chrome.com/extensions/contextMenus
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

91

 ■ Note The accompanying source code for this book is available (for free) in the
Downloads section at http://www.apress.com/9781484217740 .

 The HelloContentUI Extension
 This extension contains a content script component that is injected into the visited web
pages belonging to the example.org host, as inferred from the matches attribute in its
manifest, which is in Listing 3-6 . In addition to this, it also contains a Page-Action and an
event script component (see Figure 3-12). Note the use of activeTab permission to only
interact with the currently active tab (in this case, via the content script component).

 Listing 3-6. Chapter 3 /HelloContentUI/ manifest.json

 {
 "manifest_version" : 2,
 "name" : "HelloContentUI",
 "description" : "Show Page-Action using Content-UI",
 "version" : "1.2",
 "page_action" : {
 "default_title" : "HelloContentUI",
 "default_icon" : "icon.png",
 "default_popup" : "popup.html"
 },
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : false
 },
 "permissions" : [
 "activeTab"
],
 "content_scripts" : [
 {
 "matches" : ["*://www.example.org/*"],
 "js" : ["content_script.js"]
 }
]
 }

http://www.apress.com/9781484217740
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

92

 Listing 3-7. Chapter 3 /HelloContentUI/ content_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World! - from content_script.js";
 var requestMessage = {"data":"Test message X"};
 var responseCallback = function(responseMessage) {
 console.log("responseMessage: " + responseMessage.data);
 };
 function createButton() {
 var button = document.createElement("button");
 button.style.width = "70px";
 button.style.height = "40px";
 button.style.position = "fixed";
 button.style.top = "10px";
 button.style.right = "10px";
 button.innerText = "Send Message";
 document.body.appendChild(button);
 return button;
 }
 //end-region

 Figure 3-13. HelloContentUI: Injected content script component

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

93

 //region {calls}
 console.log(consoleGreeting);
 var button = createButton();
 button.addEventListener("click",function() {
 console.log("Button clicked!");
 chrome.runtime.sendMessage(/*extensionId,*/
 requestMessage,
 responseCallback
);
 });
 //end- region

 As displayed in Figure 3-13 , the content script component (content_script.js) is
used to create a button element (“Send Message”) into the web page it is injected into.
The addEventListener method (see Listing 3-7) is used to provide a callback to handle
the click event on this button (recall from Chapter 2 that a content script component has
access to all the standard JavaScript APIs). Page-Action will get displayed upon clicking
this button. You might wonder how this works. Well, this is where the messaging APIs
become useful. As described, the messaging APIs, provided in the Extensions framework,
allow different scripting components to interact with each other. This is displayed in
Listings 3-7 and 3-8 .

 The content script component in this extension uses the runtime.sendMessage
method of the messaging API to send a message to the extension runtime. Recall that an
event script is used to represent the extension runtime (refer back to the topic “Scripts
Representing Runtime” to remind yourself of the extension runtime).

 Listing 3-8. Chapter 3 /HelloContentUI/ event_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World! - from event_script.js";
 var responseMessage = {"data":"Test message Y"};
 //end-region

 //region {calls}
 console.log(consoleGreeting);
 //Show Page-Action using the onMessage event
 chrome.runtime.onMessage.addListener(
 function(requestMessage,sender,sendResponse) {
 chrome.pageAction.show(sender.tab.id);
 console.log("requestMessage: " + requestMessage.data);
 sendResponse(responseMessage);
 }
);
 //end- region

http://dx.doi.org/10.1007/978-1-4842-1775-7_2
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

94

 As displayed in Listing 3-8 , the event script component (event_script.js) can
listen for the messages using the listener function for the runtime.onMessage event. In
this case, the listener function contains code to display the Page-Action (see Figure 3-14)
for the corresponding tab, which is obtained from the sender object’s tab ID. Don’t get
overwhelmed with this example, as you will read more about the messaging APIs in the
following topics in this chapter.

 Figure 3-14. HelloContentUI: Page-Action component

 Messaging for Communication
 By now you have tried different sscripting components to accomplish different purposes.
But there are scenarios where a single type of scripting component is not sufficient
to get the job done—for example, consider the HelloContentUI extension discussed
previously. In that extension, you needed the content script and the event script (i.e., the
extension runtime) to communicate with each other in order to show the Page-Action
component.

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

95

 In addition to this, apart from the scripting components belonging to an extension,
normal (external) web pages may also want to interact with an extension. So, in all, there
are four types of scripts that can communicate with each other—content scripts, popup
scripts, event scripts (or background scripts), and web page scripts (belonging to external
web pages that need to interact with an extension).

 Figure 3-15. Inspecting the web page: Console panel

 APIs and Events
 Now we can talk about the actual messaging APIs that are used for communication
between different scripting components. These APIs are from the standard JavaScript
APIs and the Extensions framework. The messaging API provided by the standard
JavaScript APIs includes the window.postMessage method. Similarly, the messaging APIs
provided by the Extensions framework includes the following methods:

• chrome.runtime.sendMessage

• chrome.runtime.connect (and the corresponding port.
postMessage method)

• chrome.tabs.sendMessage

• chrome.tabs.connect (and the corresponding port.postMessage
method)

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

96

 The corresponding event for the messaging API in the standard JavaScript APIs
includes the message event. And similarly, the corresponding events for the messaging APIs
in the Extensions framework include the following events. Now that you have an overview
of messaging, let’s try different examples to understand these concepts more clearly.

• chrome.runtime.onMessage

• chrome.runtime.onMessageExternal

• chrome.runtime.onConnect (and the corresponding port.
onMessage event)

• chrome.runtime.onConnectExternal (and the corresponding
 port.onMessage event)

 Web Page Scripts and Event Scripts
 The basic idea here is to allow an external web page to communicate with the extension
runtime. In the Chrome browser, all web pages (except the Extensions Management
page) have access to the chrome.runtime.sendMessage method , which is used to send
messages to the extension runtime. This method takes the following parameters .

• extensionID

• message

• responseCallback

 As seen in Listing 3-9 , clicking the button send_message leads to the chrome.runtime.
sendMessage(extensionID,message,responseCallback) call. Note that extensionID is
the ID of the extension to send the message to. This ID can be viewed from the Extensions
Management page (see Figure 3-16). Also note that this ID will change upon loading the
extension every time a change is made in the extension contents or in the extension folder’s
location. Moreover, the modifications to manifest.json (or any other file in the extension’s
folder) will only take effect upon reinstalling or reloading the extension!

 Figure 3-16. Console panel for background page

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

97

 ■ Note For the WSandES extension, the contents of the folder WebServer have been
served from my local HTTP server to give a demonstration that is close to the real-world
scenario, where your extension might be attempting to listen for messages from external
web pages (visited on the Chrome browser).

 Also note that the served web page has a .php suffix but contains plain HTML code. For this
reason, it can be opened directly in the Chrome browser as a local file web page (i.e., using
the file:// scheme).

 Figure 3-17. Inspecting the web page: Console panel

 Listing 3-9. Chapter 3 /WSandES/WebServer/ webpage_script.js

 //region {variables and functions}
 //Note this from the extensions page
 var extensionID = "lconbphjmfkpdopdnadkdfiiflajajgg";
 var sendMessageButtonID = "send_message";
 var greeting = "Hello World!";
 var message = "Test message X";
 function responseCallback(responseObject) {
 console.log("Message '" +
 responseObject.message + "' from Sender '" +
 responseObject.sender + "'"
);

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

98

 }
 //end-region

 //region {calls}
 console.log(greeting);
 document.addEventListener("DOMContentLoaded",function(dcle) {
 var buttonID = document.getElementById(sendMessageButtonID);
 buttonID.addEventListener("click",function(ce) {
 //This message will be intercepted by event_script.js
 chrome.runtime.sendMessage(extensionID,message,responseCallback);
 });
 });
 //end- region

 The message parameter in sendMessage is the message to send. In this case, the
message is a string “Test message X” . You might be wondering about the use of the
 responseCallback parameter . Well, this parameter is a callback function that is used by the
receiver of the sent message, i.e. the extension runtime. For the examples in Listings 3-9
and 3-10 (from the WSandES extension), the event script component is used to represent the
extension runtime. An important point to note is that the callback (although called by the
event script) gets executed in the context of the web page script. Figure 3-15 displays the log
corresponding to the sendResponse(responseObject) call in the event script.

 Figure 3-18. Console panel for background page

 Listening to the Event
 As shown in Listing 3-10, the listener function for the chrome.runtime.onMessageExternal
event is used to handle the incoming message from the external web page. The listener
function for the onMessageExternal event takes three parameters— message , sender ,
and sendResponse . As discussed, sendResponse is the callback that gets executed in the
context of the web page script. Note the passed argument called responseObject .

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

99

 Listing 3-10. Chapter 3 /WSandES/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var responseObject = {
 message : "Test message Y",
 sender : "event_script.js"
 };
 function GetFormattedMessageString(message,sender) {
 return "Message '" + message + "' from Sender '" + sender.url + "'";
 }
 //end-region

 //region {calls}
 console.log(greeting);
 chrome.runtime.onMessageExternal.addListener(
 function(message,sender,sendResponse) {
 //Will get called from the script where sendResponse is defined
 sendResponse(responseObject);
 console.log(GetFormattedMessageString(message,sender));
 }
);
 //end- region

 Figure 3-19. Inspecting the web page: Console panel

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

100

 The message parameter contains the passed message. And similarly, the sender
parameter contains the URL of the external web page that sent the message. In this
case, the external web page is webpage.php , served from my local HTTP server. The log
corresponding to these values is shown in Figure 3-16 .

 Role of the Manifest for This API
 For an extension to be able to receive messages from external web pages (or other
extensions), an important addition is required in the manifest. This addition is the
 externally_connectable manifest attribute. This attribute contains two keys— ids and
 matches . Both of these keys take array values. While the ids key represents the IDs of
the (external) extensions that can send messages, the matches key represents the URL
patterns of the external web pages that can send messages. An important point to note is
that this attribute is a must-have for any extension that needs to be communicated with
from external web pages or extensions, irrespective of the messaging API that’s used
(chrome.runtime.sendMessage or chrome.runtime.connect).

 Figure 3-20. Inspecting the web page: Console panel

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

101

 For the WSandES extension (provided in Chapter 3 ’s Exercise Files folder), the
 externally_connectable attribute is defined the following way. This is done so as to only
allow web pages served from the localhost to send messages to the extension runtime.

 "externally_connectable" : {
 //Extension and app IDs. If this field is not specified, no
 //extensions or apps can communicate.
 //"ids" : [], //To match all extensions and apps, specify only "*"
 //Allowed webpages
 "matches" : ["*://localhost/*"]
 }

 Using Long-Lived Connections
 The messaging example that was demonstrated in this topic involved a single message
and response. Sometimes it is useful to have a conversation that lasts longer than that. To
facilitate this purpose, the Extensions framework provides the chrome.runtime.connect
method . Note that apart from the web page script, this method is also available to other
scripts, including to content script and popup script.

 ■ Note Obviously, the event script can also use the chrome.runtime.connect method.
But you will rarely find this application. However, you will definitely find a frequent use of
the chrome.runtime.onConnect (or the chrome.runtime.onConnectExternal) event
with its listener function in the event script. The connect method will mainly be used from
within the event script to communicate with another extension. The same holds true for the
 sendMessage method. You can read more about cross-extension messaging at https://
developer.chrome.com/extensions/messaging#external .

 This method takes the extensionID as its first parameter. This is the ID of the
extension you need to connect to for a long-lived connection. The second parameter is an
object, which can be used to provide additional information about the connection—for
example, {"name" : "connection1"} . Note that this method returns a port object. The
 port.postMessage method is used to send message to the extension runtime. The code
discussed so far (for the web page script) is summarized as following.

 var port = chrome.runtime.connect("...",{"name" : "connection1"});
 port.onMessage.addListener(function(message) {
 console.log(message);
 });
 port.postMessage("Test message X");

http://dx.doi.org/10.1007/978-1-4842-1775-7_3
https://developer.chrome.com/extensions/messaging#external
https://developer.chrome.com/extensions/messaging#external

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

102

 Next, on the receiving end (i.e., the extension runtime represented using an event
script), the listener function for the chrome.runtime.onConnectExternal event (or the
 chrome.runtime.onConnect event, for connection made from within the extension) also
receives the port object. Note that in this case—i.e., for connection between a web page
script and event script—the onConnectExternal event needs to be used, because it gets
fired when a connection is made from an external web page (or extension).

 Figure 3-21. Inspecting the popup: Console panel

 Finally, using the listener function for the port.onMessage event (available to both
ends of the connection), you can listen for the incoming messages. Note that since each
end has access to the port object, they can do the both. That means they can send as
well as receive messages through the established connection (via the port). The code
discussed so far (for the event script) is summarized as following:

 chrome.runtime.onConnectExternal.addListener(function(port) {
 //if(port.name == "connection1")
 port.onMessage.addListener(function(message) {
 console.log(message); //Test message X
 port.postMessage("Test message Y");
 });
 });

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

103

 Content Scripts and Event Scripts
 Recall that the content script component does not represent the extension runtime.
But it does have access to the following APIs in the Extensions framework— extension ,
 i18n , runtime , and storage . And in the runtime API, the content script component has
access to connect and sendMessage methods . And access to events runtime.onConnect
(including the corresponding port.onMessage event) and runtime.onMessage .

 Note that the content script component does not have access to the runtime.
onMessageExternal and runtime.onConnectExternal events . For this reason, it cannot
rely on the runtime APIs to communicate with the web page scripts. Instead, it needs to
listen for the message event provided by the standard JavaScript APIs to do so. First let’s
take a look at how content scripts can communicate with the extension runtime, and
then in the following topics, you will learn how popup scripts and web page scripts can
communicate with a content script.

 For this purpose, evaluate Listings 3-11 to 3-13 from the CSandES extension. Note from
the manifest file (Listing 3-13) that this extension injects content scripts into the visited
web pages belonging to the localhost. This is specified using the "*://localhost/*" string
in the matches array. The corresponding script that gets injected is content_script.js
(see Figures 3-17 and 3-19). Listing 3-11 contains the code from this script.

 Figure 3-22. Inspecting the web page: Console panel

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

104

 ■ Note For popup scripts and event scripts to be able to communicate with the content
scripts, the chrome.runtime.sendMessage method cannot be used. Instead, the
 chrome.tabs.sendMessage (or chrome.tabs.connect) method needs to be used. For the
 chrome.tabs.sendMessage method, the corresponding event remains the same—i.e.,
 chrome.runtime.onMessage (and similarly the event chrome.runtime.onConnect for the
 chrome.tabs.connect method).

 Listing 3-11. Chapter 3 /CSandES/ content_script.js

 //region {variables and functions}
 var sendMessageButtonID = "send_message";
 var greeting = "Hello World!";
 var message = "Test message X";
 function responseCallback(responseObject) {
 console.log("Message '" + responseObject.message +
 "' from Sender '" + responseObject.sender + "'"
);
 }
 //end-region

 //region {calls}
 console.log(greeting);
 (function(){
 var buttonElement = document.createElement("button");
 buttonElement.style.position = "fixed";
 buttonElement.style.display = "block";
 buttonElement.style.width = "70px";
 buttonElement.style.height = "40px";
 buttonElement.style.bottom = "10px";
 buttonElement.style.left = "10px";
 buttonElement.innerText = "Message Runtime";
 buttonElement.addEventListener("click",function(ce) {
 //This message will be intercepted by event_script.js
 chrome.runtime.sendMessage(message,responseCallback);
 });
 document.body.appendChild(buttonElement);
 /*
 //var port = chrome.runtime.connect("...",{"name":"connection1"});
 var port = chrome.runtime.connect({"name":"connection1"});
 port.onMessage.addListener(function(message){console.log(message);});
 port.postMessage("...");
 */
 })();
 //end-region

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

105

 As shown in Listing 3-11 , as soon as the content script gets injected, it appends a button
element into the visited web page. This element has a listener function attached to its click
event. To send messages to the extension runtime, it calls the chrome.runtime.sendMessage
method . Note that compared to the previous use of this method (in Listing 3-9), here,
the extensionID parameter is not used. This is because it is an optional parameter. Since
messaging is being performed within the extension, the extensionID parameter defaults
to the ID of the current extension. Also note that, similar to how the sendMessage method
has been used, you can also use the connect method. Once again, the first parameter of the
 connect method can also be omitted.

 Listing 3-12. Chapter 3 /CSandES/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var responseObject = {
 message : "Test message Y",
 sender : "event_script.js"
 };
 function GetFormattedMessageString(message,sender) {
 return "Message '" + message + "' from Sender '" + sender.url + "'";
 }
 //end-region

 //region {calls}
 console.log(greeting);
 chrome.runtime.onMessage.addListener(function(message,sender,sendResponse) {
 //Will get called from the script where sendResponse is defined
 sendResponse(responseObject);
 console.log(GetFormattedMessageString(message,sender));
 });
 /*
 chrome.runtime.onConnect.addListener(function(port) {
 port.onMessage.addListener(function(message){console.log(message);});
 port.postMessage("...");
 });
 */
 //end-region

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

106

 Listing 3-12 contains the corresponding code for the event script. Note that compared
to the previous example (see Listing 3-10), the onMessageExternal event is not used
here. Instead the onMessage event is used, since messaging is being performed within the
extension. If a long-lived connection were to be used (using the chrome.runtime.connect
method; see Listing 3-11), the code for the event script would need a listener function for
the chrome.runtime.onConnect event. This has been displayed in the commented-out
section in Listing 3-12 . Figure 3-18 contains the log corresponding to the event script.

 Listing 3-13. Chapter 3 /CSandES/ manifest.json

 {
 "manifest_version" : 2,
 "name" : "Communication Demo: content-script and event-script",
 "description" : "Shows communication b/w content-script and

event-script",
 "version" : "1.2",
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : false
 },
 "content_scripts" : [

 Figure 3-23. Inspecting the popup : PSandES extension

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

107

 {
 "matches" : ["*://localhost/*"],
 "js" : ["content_script.js"]
 }
]
 }

 Figure 3-24. Console panel for background page

 Popup Scripts and Content Scripts
 Now, let’s take a look at how a popup script can communicate with the content script.
To demonstrate this, the Exercise Files folder contains the PSandCS extension. Listings 3-14
to 3-16 contain the relevant code from this extension. You can load this extension in your
browser for testing. Figures 3-20 and 3-21 contain the logs from the content script and the
popup script (respectively) from this extension.

 ■ Note If the extension’s Browser-Action does not contain a popup, an event script can
be used to provide a listener function for the chrome.browserAction.onClicked event.
Using this listener function, you can call the chrome.tabs.sendMessage (or chrome.tabs.
connect) method. This approach does not require use of the tabs API, since the listener
function receives the active tab as its argument. This will still require the activeTab
permission, in order to interact with the content of the active tab—for example, via the
 chrome.tabs.executeScript method.

 As you can see from the manifest file (Listing 3-14), this extension injects content
scripts into the visited web pages belonging to the example.org host. Note the use of
the browser_action attribute, along with its popup component. The popup contains
a clickable element (see Figure 3-21)—“Send Message” with an ID of send_message . A
listener function is attached to the click event on this element. Listing 3-15 contains the
corresponding code for the listener function.

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

108

 Listing 3-14. Chapter 3 /PSandCS/ manifest.json

 {
 "manifest_version" : 2,
 "name" : "Communication Demo: popup-script and content-script",
 "description" : "Shows communication b/w popup-script and content-script",
 "version" : "1.2",
 "content_scripts" : [
 {
 "matches" : ["*://www.example.org/*"],
 "js" : ["content_script.js"]
 }
],
 "browser_action" : {
 "default_title" : "Communication Demo: popup-script and content...",
 "default_icon" : "icon.png",
 "default_popup" : "popup.html"
 }
 }

 In Listing 3-15 , note the use of chrome.tabs.query method to get the (currently)
active tab. As described earlier, the chrome.tabs.sendMessage method is used to send
message to the content script. This method takes the following parameters .

• tabID

• message

• responseCallback

 The tabID is the ID of the tab to send messages to. The message parameter is
the message to send. In this case, it is a string “Test message X” . And similar to the
previously discussed extensions, responseCallback is a callback function that is used by
the receiver of the sent message.

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

109

 Listing 3-15. Chapter 3 /PSandCS/ popup_script.js

 //region {variables and functions}
 var sendMessageButtonID = "send_message";
 var greeting = "Hello World!";
 var message = "Test message X";
 function responseCallback(responseObject) {
 console.log("Message '" + responseObject.message +
 "' from Sender '" + responseObject.sender + "'");
 }
 //end-region

 //region {calls}
 console.log(greeting);
 document.addEventListener("DOMContentLoaded",function(dcle){
 var buttonID = document.getElementById(sendMessageButtonID);
 buttonID.addEventListener("click",function(ce) {
 chrome.tabs.query({"active":true},function(tabs) {
 chrome.tabs.sendMessage(tabs[0].id,message,responseCallback);
 });
 });
 });
 //end- region

 Figure 3-25. Inspecting the popup: PSandES extension

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

110

 Finally, the content script contains the code to receive the sent message. The listener
function for the chrome.runtime.onMessage event is used for this purpose. In Listing
 3-16 , the received message is logged to the console by calling console.log . The output
corresponding to this log is displayed in Figure 3-20 . Note that the injected button
element is not used anywhere in this extension. You are free to extend this extension (for
experimentation, etc.) by making use of the available code.

 Listing 3-16. Chapter 3 /PSandCS/ content_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World!";
 var responseObject = {
 message : "Test message Y",
 sender : "content_script.js"
 };
 function GetFormattedMessageString(message,sender) {
 return "Message '" + message + "' from Sender '" + sender.id + "'";
 }
 function createButton() {
 var button = document.createElement("button");
 button.style.width = "70px";
 button.style.height = "40px";
 button.style.position = "fixed";
 button.style.top = "10px";
 button.style.right = "10px";
 button.innerText = "Send Message";
 document.body.appendChild(button);
 return button;
 }
 //end-region

 //region {calls}
 console.log(consoleGreeting);
 var button = createButton();
 chrome.runtime.onMessage.addListener(function(message,sender,sendResponse) {
 //Will get called from the script where sendResponse is defined
 sendResponse(responseObject);
 console.log(GetFormattedMessageString(message,sender));
 });
 //end-region

 Using a Long-lived Connection

 To create a long-lived connection to communicate with the content script, the chrome.
tabs.connect method can be used. This method takes the ID of the tab (to connect to) as
its only parameter. The corresponding chrome.runtime.onConnect event is fired in each
content script running in the specified tab for the current extension.

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

111

 Once again, since both ends of the connection have access to the port object – port.
postMessage method and the corresponding port.onMessage event can be used for
communication. This is similar to the way it was done in the topic “Web Page Scripts and
Event Scripts”.

 Figure 3-26. API demos: Alarms API

 Content Scripts and Web Page Scripts
 As described earlier, content scripts do not have access to the runtime.
onMessageExternal and runtime.onConnectExternal events . For this reason, they
cannot rely on the runtime APIs to communicate with the web page scripts. Instead, they
need to listen for the message event provided by the standard JavaScript APIs to do so. For
this purpose, let’s examine the CSandWS extension provided in the Exercise Files folder
of this chapter. Listings 3-17 to 3-19 contain the relevant code from this extension.

 As seen in the manifest file for this extension, using the content_scripts attribute ,
a content script is injected into the visited web pages belonging to the localhost. Note
that for the purpose demonstrated by this extension, an HTTP server is not necessary to
serve the external web pages. But it has been done so to display secure use of the window.
postMessage method and the message event. If the content script were to be injected in a
local file web page, the target origin (i.e., URL or URI of the window that would receive the
messages) in the postMessage method would need to be specified as * . This is strongly
discouraged for security reasons, as it would allow messages from all hosts.

 ■ Note A local file in this context is a file accessed in the browser using the file://
scheme. An example of a local file web page is file:///F:/Exercise%20Files/somefile.
html . This is different from a web page served from the localhost that uses http:// or
 https:// schemes.

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

112

 Listing 3-17. Chapter 3 /CSandWS/ manifest.json

 {
 "manifest_version" : 2,
 "name" : "Communication Demo: content-script and webpage-script",
 "description" : "Shows communication b/w content-script and ...",
 "version" : "1.2",
 "content_scripts" : [
 {
 "matches" : ["*://localhost/*"],
 "js" : ["content_script.js"]
 }
]
 }

 ■ Note The web page provided with this extension can also be served as a local file web
page. Although it has a .php suffix, it contains plain HTML code. For this reason, it can be
opened directly in the Chrome browser (i.e., as a local file web page using the file://
scheme).

 Listing 3-18 contains the code from the injected content script. The button variable
refers the created button element— Send Message . This element can be seen at the top-
right of Figure 3-22 . Note that this button element has a listener function associated with
its click event. Upon clicking this element, the listener function first logs the “Button
clicked!” string to the console. Then it calls the postMessage method— window.postMes
sage (message,targetOrigin) .

 Quite obviously, message argument is the message to send. And as described,
 targetOrigin is the URL or URI of the window that will receive the messages. Note that
in this case, targetOrigin points to the origin of the current window: var targetOrigin
= window.location.origin . Also note that all the following values for targetOrigin are
invalid: "file://" , "file://*" , "" , and null . To use the messaging API in a local file web
page, postMessage needs be called as window.postMessage(message,"*") .

 ■ Note To inject content scripts into local file web pages, you need to define the matches
attribute as "matches" : ["file://*"] .

 Regardless of the scheme the web page is served with (i.e., http:// or https://
versus file://), to receive a sent message, a listener function for the message event is
required to be created, as shown in the window.addEventListener("message",functio
n(me){/**/}) line. The same has been done in Listing 3-19 . The log corresponding to its
listener function can be seen in Figure 3-22 . Note that the event that gets passed to this
listener function has a data property that can be used to access the string or object that
was sent by the postMessage method.

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

113

 Listing 3-18. Chapter 3 /CSandWS/ content_script.js

 //region {variables and functions}
 var consoleGreeting = "Hello World!";
 var targetOrigin = window.location.origin;
 var message = "Test message X";
 function createButton() {
 var button = document.createElement("button");
 button.style.width = "70px";
 button.style.height = "40px";
 button.style.position = "fixed";
 button.style.top = "10px";
 button.style.right = "10px";
 button.innerText = "Send Message";
 document.body.appendChild(button);
 return button;
 }
 //end-region

 //region {calls}
 console.log(consoleGreeting);
 var button = createButton();
 button.addEventListener("click",function() {
 console.log("Button clicked!");
 window.postMessage(message,targetOrigin);
 });
 /*
 window.addEventListener("message",function(me) {
 console.log("message: " + me.data);
 });
 */
 //end-region

 Figure 3-27. API demos: Bookmarks API

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

114

 For this extension, messaging was initiated from the content script. In a similar way
you can extend this extension to initiate messaging from the web page script. You can use
the existing listener function for the click event in the web page script to do so. To handle
the send message, the content script should contain the corresponding listener function.

 Figure 3-28. API demos: Bookmarks API

 Listing 3-19. Chapter 3 /CSandWS/WebServer/ webpage_script.js

 //region {variables and functions}
 var sendMessageButtonID = "send_message";
 var greeting = "Hello World!";
 //var targetOrigin = window.location.origin;
 //var message = "Test message Y";
 //end-region

 //region {calls}
 console.log(greeting);
 document.addEventListener("DOMContentLoaded",function(dcle) {
 var buttonID = document.getElementById(sendMessageButtonID);
 buttonID.addEventListener("click",function(ce) {
 //window.postMessage(message,targetOrigin);
 });
 });
 window.addEventListener("message",function(me) {
 console.log("message: " + me.data);
 });
 //end-region

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

115

 Popup Scripts and Event Scripts
 Now let’s see how a popup script can communicate with the event script. Although
both these components represent the extension runtime, they exist as different
scripting components in the extensions architecture. This is why there is a need for
communication between these two scripting components. Having these components
communicate with each other is a lot easier than it is for other components.

 Listing 3-20. Chapter 3 /PSandES/ manifest.json

 {
 "manifest_version" : 2,
 "name" : "Communication Demo: popup-script and event-script",
 "description" : "Shows communication b/w popup-script and event-script",
 "version" : "1.2",
 "browser_action" : {
 "default_title" : "Communication Demo: popup-script and event-

script",
 "default_icon" : "icon.png",
 "default_popup" : "popup.html"
 },
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : false
 }
 }

 Since a popup script is being used, it is obvious that the extension will need a Browser-
Action or Page-Action component with a popup. This can be seen in Listing 3-20 , from
the PSandES extension (in Chapter 3 ’s Exercise Files folder). To use an event script, the
 background attribute has been defined in the manifest. Listing 3-22 contains the code for
the corresponding event script component.

 Listing 3-21. Chapter 3 /PSandES/ popup_script.js

 //region {variables and functions}
 var sendMessageButtonID = "send_message";
 var greeting = "Hello World!";
 var message = "Test message X";
 function responseCallback(responseObject) {
 console.log("Message '" + responseObject.message +
 "' from Sender '" + responseObject.sender + "'");
 }
 //end-region

http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

116

 //region {calls}
 console.log(greeting);
 document.addEventListener("DOMContentLoaded",function(dcle){
 var buttonID = document.getElementById(sendMessageButtonID);
 buttonID.addEventListener("click",function(ce) {
 //This message will be intercepted by event_script.js
 chrome.runtime.sendMessage(message,responseCallback);
 });
 });
 //end-region

 As discussed in the previous examples, to send a message to the event script, the
following call needs to be made: chrome.runtime.sendMessage(message,response
Callback) . As you know already, the message parameter is the message to send. The
 responseCallback is a callback function that is used by the receiver of the sent message.
Note that Listing 3-21 contains the code from the popup script used in the PSandES
extension. Figures 3-23 and 3-25 display the logs from the popup script.

 Figure 3-29. API demos: Downloads API

 Listing 3-22. Chapter 3 /PSandES/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var responseObject = {
 message : "Test message Y",
 sender : "event_script.js"
 };
 function GetFormattedMessageString(message,sender) {
 return "Message '" + message + "' from Sender '" + sender.url + "'";
 }
 //end-region

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

117

 //region {calls}
 console.log(greeting);
 chrome.runtime.onMessage.addListener(function(message,sender,sendResponse) {
 //Will get called from the script where sendResponse is defined
 sendResponse(responseObject);
 console.log(GetFormattedMessageString(message,sender));
 });
 //end-region

 Finally, to receive the sent message, the event script provides the listener function for
the chrome.runtime.onMessage event . The log corresponding to this function is shown in
Figure 3-24 . Note the sendResponse callback and the passed argument responseObject ,
which is logged to the console in the context of the popup script (see Figure 3-25).

 Google Chrome Extensions APIs
 The Google Chrome Extensions framework provides extensions with many special-
purpose APIs that allow you to access amazing features of the Chrome browser. These
APIs provide access to almost every feature available in the Chrome browser! A lot
of APIs have already been discussed, although they were described in a different
context. For example, the following APIs were described as input components: chrome.
omnibox , chrome.contextMenus , chrome.commands , chrome.pageAction , and chrome.
browserAction . This section looks at the following APIs:

• alarms

• bookmarks

• downloads

• history

• notifications

• storage

• tabs

 ■ Note Extensions can still use all the standard APIs (also known as the standard
JavaScript APIs) that the browser provides to web pages. These are the same core
JavaScript and Document Object Model (DOM) APIs that you are already familiar with.
Additionally, XMLHttpRequest (XHR) APIs, HTML5 APIs, WebKit APIs (for CSS animations,
filters, etc.), and V8 APIs (such as JSON) are supported!

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

118

 In addition to these APIs from the Extensions framework, this section also covers the
 XHR API from the standard JavaScript APIs. Other APIs that are not discussed here—but
that you can read about in the online documentation at https://developer.chrome.
com/extensions/api_index —include the following:

• contentSettings

• cookies

• desktopCapture

• extension

• management

• system.cpu

• system.memory

• webstore

• windows

 Declare Permissions
 To use most chrome.* APIs, your extension (or app) must declare its intent in the
 permissions field of the manifest. Every such permission in the permissions field can be
one of a list of known strings (such as “ alarms ”, “ storage ”, “ tabs ”, etc.—see the following
list containing all permission strings) or a match pattern that gives access to one or more
hosts. In all the examples discussed until this point, you haven’t seen a match pattern in
the permissions field of the manifest. This is because such use is only required alongside
the XHR API (more about it later in this section).

 An Example of Permissions
 The following code snippet is an example of the permissions part of a manifest file.
As you might have guessed by looking at this code, the "alarms", " tabs", and "
bookmarks" permission strings are required to access the alarms, tabs, and bookmarks
APIs (respectively). And unlike these permission strings, the remaining two permission
strings (i.e., the URLs) are required to talk to remote hosts outside of the extension’s
origin (via XHR).

 "permissions" : [
 "alarms", //Extensions-API permission
 "tabs", //Extensions-API permission
 "bookmarks", //Extensions-API permission
 "http://www.blogger.com/", //XHR permission
 "http://*.google.com/" //XHR permission
],

https://developer.chrome.com/extensions/api_index�include
https://developer.chrome.com/extensions/api_index�include

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

119

 APIs Requiring Permissions
 The documentation corresponding to an API in the Google Chrome Extensions framework
specifies the need for a permission string (if any). In addition to this, if an API requires you
to declare a permission string in the manifest, then its documentation tells you how to do
so. For example, the Alarms API documentation—found at https://developer.chrome.
com/extensions/alarms —shows you how to declare the alarms permission .

• activeTab

• alarms

• audioModem

• background

• bookmarks

• browsingData

• clipboardRead

• clipboardWrite

• contentSettings

• contextMenus

• cookies

• copresence

• debugger

• declarativeContent

• declarativeWebRequest

• desktopCapture

• dns

• documentScan

• downloads

• enterprise.platformKeys

• experimental

• fileBrowserHandler

• fileSystemProvider

• fontSettings

• gcm

• geolocation

https://developer.chrome.com/extensions/alarms�shows
https://developer.chrome.com/extensions/alarms�shows

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

120

• history

• identity

• idle

• idltest

• location

• management

• nativeMessaging

• networking.config

• notificationProvider

• notifications

• pageCapture

• platformKeys

• power

• printerProvider

• privacy

• processes

• proxy

• sessions

• signedInDevices

• storage

• system.cpu

• system.display

• system.memory

• system. storage

• tabCapture

• tabs

• topSites

• tts

• ttsEngine

• unlimitedStorage

• vpnProvider

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

121

• wallpaper

• webNavigation

• webRequest

• webRequestBlocking

 ■ Note Permissions help to limit damage if your extension or app is compromised by
malware. Some of the permissions are also displayed to users, before installation of the
extension (or app), as a warning. You can read more about these warnings at https://
developer.chrome.com/extensions/permission_warnings .

 Optional Permissions
 There are two types of permissions— required permissions and optional permissions . The
permissions you’ve dealt with so far are required permissions. Optional permissions are
permissions that can be requested at runtime, rather than install time. Users understand
why the permissions are needed and grant only those that are necessary. Though
optional permissions are more informative for users, they are not described here due to
their complexity. You can read more about them at https://developer.chrome.com/
extensions/permissions .

 Alarms API
 The alarms API (i.e., the chrome.alarms API) is used to schedule code to run periodically
or at a specified time in the future. It uses the alarms permission. Listing 3-23 contains
the code from the AlarmsAPI extension, provided in Chapter 3 ’s Exercise Files folder.

 Figure 3-30. API demos: Notifications API

https://developer.chrome.com/extensions/permission_warnings
https://developer.chrome.com/extensions/permission_warnings
https://developer.chrome.com/extensions/permissions
https://developer.chrome.com/extensions/permissions
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

122

 To create an alarm, use the chrome.alarms.create method . This method takes two
parameters— alarmName (of type string) and alarmInfo (of type object). The alarmInfo
object describes when the alarm should fire. The initial time must be specified by either
 when or delayInMinutes (but not both).

 If periodInMinutes is set, the alarm will repeat every periodInMinutes minutes after
the initial event. The listener function for the corresponding chrome.alarms.onAlarm
event is fired when an alarm has elapsed. Figure 3-26 displays the log from this listener
function. Note the argument received by this callback. This argument is of type Alarm ,
which contains properties such as name , scheduledTime , and periodInMinutes .

 Figure 3-31. API demos: Notifications API

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

123

 ■ Note While debugging an extension, which is loaded unpacked, there’s no limit to how
often the alarm can fire. For all other cases, alarms with intervals of less than one minute
will not be honored and will cause a warning. Refer back to the topic “Loading the Extension
Folder” (from Chapter 1) to remind yourself of the basics of extension loading.

 Listing 3-23. Chapter 3 /AlarmsAPI/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var count = 0;
 var alarmName = "testAlarm";
 var alarmInfo = {
 when : Date.now() + 6000,
 periodInMinutes : 1 //Repeatedly fire after every 1 minute
 };
 //end-region

 //region {calls}
 console.log(greeting);
 chrome.alarms.clearAll();
 chrome.alarms.onAlarm.addListener(function(alarm) {
 console.log("onAlarm-" + ++count);
 });
 chrome.alarms.create(alarmName,alarmInfo);
 //end-region

 Figure 3-32. API demos: Notifications API

http://dx.doi.org/10.1007/978-1-4842-1775-7_1
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

124

 In Listing 3-23 , the chrome.alarms.clearAll method is used to clear all alarms. To
clear a specific alarm, use the chrome.alarms.clear(string name,function callback)
method. Other important methods in the alarms API include the following. Here, note
that the callback function for the get method receives an argument of type Alarm ,
whereas the callback function for the getAll method receives an argument of type array .

• chrome.alarms.get(string name, function callback)

• chrome.alarms.getAll(function callback)

 Bookmarks API
 The bookmarks API (i.e., the chrome.bookmarks API) is used to create, organize, and
otherwise manipulate bookmarks. It uses the bookmarks permission. Bookmarks
are organized in a tree, where each node in the tree is either a bookmark or a folder.
Each node in the tree is represented by a bookmarks.BookmarkTreeNode object .
 BookmarkTreeNode properties are used throughout the chrome.bookmarks API. For
example, when you call chrome.bookmarks.create , you pass in the new node’s parent
(parentId), and optionally, the node’s title and url properties. To read about the
complete list of properties a node can have, refer to https://developer.chrome.com/
extensions/bookmarks#type-BookmarkTreeNode .

 Figure 3-33. API demos: Notifications API

 Note that if a node is a folder, it has the following properties— id , parentId ,
 children , and title . And if it’s a bookmark, it has the following properties— id ,
 parentId , title , and url . Moreover, the root node for the bookmarks tree does not have
any parent, so there isn’t any parentId . It has the following two special folders as its
children— Bookmarks Bar and Other Bookmarks .

 ■ Note You cannot use this API to add or remove entries in the root node. You also cannot
rename, move, or remove the special Bookmarks Bar and Other Bookmarks folders.

https://developer.chrome.com/extensions/bookmarks#type-BookmarkTreeNode
https://developer.chrome.com/extensions/bookmarks#type-BookmarkTreeNode

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

125

 Creating a Bookmark
 To create a bookmark, use the chrome.bookmarks.create method . This method takes
two parameters— bookmark (of type object) and callback (of type function). Using the
properties defined in the bookmark object— parentId , title , and url —you can create a
bookmark or a folder. Note that if url is null or missing, the created bookmark will be a
folder. The callback function receives an argument of type BookmarkTreeNode .

 Figure 3-34. API demos: Notifications API

 Listing 3-24 contains the corresponding code snippet, where, using the bookmark1
object, first a folder is created, and then a bookmark is created inside this folder. This is
done using the result.id value in the callback function. Also see Figure 3-27 , which
contains the created folder and bookmark. An interesting thing to note is that the id of
the created folder (highlighted in blue) is 373 , as can be seen from the URL chrome://
bookmarks/#373 . You can examine this by using the chrome.bookmarks.get method,
as seen in Listing 3-24 . This method takes a string id , or an array of these, along with a
 callback function as its parameters. The callback function receives a results argument,
which is an array of BookmarkTreeNode objects.

 Listing 3-24. Chapter 3 /BookmarksAPI/event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var bookmark1 = {
 title : "MyBookmark1",
 //If url is null or missing, created bookmark will be a folder
 url : ""
 };
 var bookmark2 = {
 title : "MyBookmark2",
 url : "http://www.example.org"

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

126

 };
 var queryObject = {
 query : "",
 url : "",
 title : "chrome extensions"
 };
 var queryString = "example url";
 //end-region

 //region {calls}
 console.log(greeting);
 /*
 //result is of type BookmarkTreeNode
 chrome.bookmarks.create(bookmark1,function(result) {
 console.log("Created bookmark with id: " + result.id);
 bookmark2.parentId = result.id;
 chrome.bookmarks.create(bookmark2);
 });
 */
 /*
 //string or array of string id
 chrome.bookmarks.get("373",function(results) {
 console.log(results); //array of BookmarkTreeNode
 });
 */
 /*
 //only title and url are supported
 chrome.bookmarks.update("374",{"title":"Example URL"});
 */
 //string or object query
 chrome.bookmarks.search(queryString,function(results) {
 console.log(results); //array of BookmarkTreeNode
 });
 //end-region

 Updating a Bookmark
 A bookmark (or a folder) can also be updated. The specific properties that are allowed to
be updated include title and url . Note that url is only valid for a bookmark that is not a
folder. To update a bookmark, call the chrome.bookmarks.update method. This method
takes the following parameters— id (of type string), changes (of type object), and
 callback (of type function).

 Note the passed string id in the update method in Listing 3-24 . This id corresponds
to the bookmark shown in Figure 3-27 (i.e., MyBookmark2). Figure 3-28 shows the updated
bookmark. As shown, the title of the bookmark is updated. This has been done by passing
the following object to the update method: {"title":"Example URL"} .

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

127

 Searching for Bookmarks
 To search bookmarks, use the chrome.bookmarks.search method . This method takes a
 query and a callback function as its parameters. Query can be made using a string or
object. In Listing 3-24 , query has been made using a string. If an object were to be used, it
would need to have the following properties defined: query , url , and title .

 Figure 3-35. API demos: Storage API

 Using the Bookmarks Hierarchy
 The bookmarks API provides the chrome.bookmarks.getTree method to retrieve the
entire bookmarks hierarchy. This method takes a function as its only parameter. A
bookmark tree is passed as an array to this method. A usage corresponding to this API can
be seen in the following code snippet.

 Note that the tree is the first element of this passed array. Since this tree is
represented using a node, the children property is used to access the nested folders.
In this case, the folders are Bookmarks Bar and Other Bookmarks . By iterating over the
nested BookmarkTreeNode items (say, using the folder.children.forEach call), you can
access all the bookmarks in the hierarchy.

 chrome.bookmarks.getTree(function(bookmarkTreeAsArray) {
 var bookmarkTree = bookmarkTreeAsArray[0];
 var folders = [];
 if(bookmarkTree.children) {
 bookmarkTree.children.forEach(function(node) {
 if(node.children.length > 0) folders.push(node);
 });
 }
 if(folders.length > 0) {
 folders.forEach(function(folder) {
 folder.children.forEach(function(bookmarkTreeNode) {
 if(bookmarkTreeNode.url) {
 /*use the node*/

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

128

 }
 }
 }
 }
 });

 Associated Events
 The bookmarks API also provides a number of events that are fired when certain things
happen to the bookmark tree. The following list contains the events, along with their
descriptions. Note that as you have seen for the previous examples, to listen for these
events, you need to provide listener functions. They are added by calling addListener
on the event. To read more about these events, visit https://developer.chrome.com/
extensions/bookmarks .

• onCreated —Fired when a bookmark or folder is created

• onRemoved —Fired when a bookmark or folder is removed

• onChanged —Fired when a bookmark or folder changes

• onMoved —Fired when a bookmark or folder is moved to a different
parent folder

• onChildrenReordered —Fired when the children of a folder have
changed their order due to the order being sorted in the UI

• onImportBegan —Fired when a bookmark import session begins

• onImportEnded —Fired when a bookmark import session ends

 Downloads API
 The downloads API (i.e., the chrome.downloads API) is used to programmatically initiate,
monitor, manipulate, and search for downloads. It uses the downloads permission.
Listing 3-25 contains the code from the DownloadsAPI extension, provided in Chapter 3 ’s
 Exercise Files folder.

 Listing 3-25. Chapter 3 /DownloadsAPI/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var downloadOptions = {
 "url" : "http://www.apress.com/downloadable/download/sample/sample_id/1456/",
 "saveAs" : true
 };
 //end-region

https://developer.chrome.com/extensions/bookmarks
https://developer.chrome.com/extensions/bookmarks
http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

129

 //region {calls}
 console.log(greeting);
 chrome.downloads.download(downloadOptions,function(downloadId) {
 console.log(downloadId);
 /*
 chrome.downloads.pause(downloadId,function() {
 if(!chrome.runtime.lastError) console.log("pause");
 });
 */
 });
 chrome.downloads.onCreated.addListener(function(downloadItem) {
 console.log("onCreated:");
 console.log(downloadItem);
 });
 chrome.downloads.onErased.addListener(function(downloadId) {
 console.log("onErased:");
 console.log(downloadId);
 });
 chrome.downloads.onChanged.addListener(function(downloadDelta) {
 console.log("onChanged:");
 console.log(downloadDelta);
 });
 //end-region

 Downloading a File
 To download a file, use the chrome.downloads.download method . This method takes
two parameters— options (of type object) and callback (of type function). The id
corresponding to the DownloadItem is passed to the callback function. The options
object describes what to download and how. It supports the following properties.

• url (string)

• filename (string)

• saveAs (Boolean)

• method ("GET" or "POST" string)

• headers (array)

• body (string)

 ■ Note DownloadItem is a type associated with the downloads API. This type contains
a long list of properties (details are available at https://developer.chrome.com/
extensions/downloads#type-DownloadItem). Some of the important properties include
 id , filename , mime , startTime , endTime , bytesReceived , and totalBytes .

https://developer.chrome.com/extensions/downloads#type-DownloadItem
https://developer.chrome.com/extensions/downloads#type-DownloadItem

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

130

 Note that the method , headers , and body properties are to be used if the URL to
download uses the HTTPS protocol. Now, let’s look at an example to use the download
method. For this example, we will download the source code file available at http://
www.apress.com/9781430250531 . The exact URL of the file to be downloaded is shown in
Listing 3-25 (in the downloadOptions object).

 Figure 3-36. Tabs API: Using the captureVisibleTab method

 As you can see, the call to the download method is made and downloadOptions
object is passed as the first argument. The downloadOptions object is defined using
the url and saveAs properties. Quite obviously, url is the URL to download. Setting
the saveAs property to true is done to use a file chooser to allow the users to select a
filename. Note the “Downloaded by” section in Figure 3-29 , referring the extension that
has initiated the download.

http://www.apress.com/9781430250531
http://www.apress.com/9781430250531

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

131

 Cancelling or Resuming a Download
 Once you have obtained the id corresponding to the DownloadItem (passed to the
 callback function of the download method), you can easily cancel, resume, or even pause
a download. The corresponding calls are very straightforward:

• chrome.downloads.cancel(integer downloadId, function callback)

• chrome.downloads.resume(integer downloadId, function callback)

• chrome.downloads.pause(integer downloadId, function callback)

 Opening a Download
 Use the open method to open the downloaded file if the DownloadItem is complete. If it
is not complete, the open method returns an error through chrome.runtime.lastError .
This method only requires a single parameter, which is the downloadId . Note that this
method requires an additional permission: downloads.open .

 To simply show the downloaded file in its folder in a file manager, a call to the
following method needs to be made: chrome.downloads.show(integer downloadId) .
Moreover, if the only intent is to show the default Downloads folder in a file manager, you
need to call the chrome.downloads.showDefaultFolder() method.

 Deleting a Download
 To remove the downloaded file if the DownloadItem is complete, use the chrome.
downloads.removeFile method . This method takes two parameters— downloadId and
 callback . However, if all that is required is clearing off the download from the history
(without deleting the downloaded file), use the chrome.downloads.erase method instead.

 This method takes a query object and a callback function as its parameters. The query
object can take a long list of properties. Some important ones include id , startedBefore ,
 startedAfter , endedBefore , endedAfter , filenameRegex , and urlRegex . To view the
complete list, visit https://developer.chrome.com/extensions/downloads#method-erase .

 Associated Events
 The downloads API provides some useful events such as onCreated , onChanged , etc., that
can be used to provide callbacks when download begins, or when the corresponding
 DownloadItem’s properties change. The following is a list of such events with their
descriptions. Note that you can also refer Listing 3-25 to see the exact uses of these events
with their listener functions.

• onCreated —Fired with the DownloadItem object when a
download begins

• onErased —Fired with the downloadId when a download is erased
from history

• onChanged —Fired when any of a DownloadItem’s properties
change (except bytesReceived and estimatedEndTime)

https://developer.chrome.com/extensions/downloads#method-erase

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

132

 History API
 The history API (i.e., the chrome.history API) is used to interact with the browser’s
record of visited pages. Using this API, you can add, remove, and query for URLs in the
browser’s history. It uses the history permission. Listing 3-26 contains the code from the
 HistoryAPI extension, provided in Chapter 3 ’s Exercise Files folder.

 Listing 3-26. Chapter 3 /HistoryAPI/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var tenMinutesAsMilliseconds = 10 * 60 * 1000;
 //getTime returns the number of milliseconds since the epoch
 var currentTimeAsMilliseconds = new Date().getTime();
 //query to filter history using "text", in the past hour
 var query = {
 "text" : "apress",
 "startTime" : currentTimeAsMilliseconds - 6 * tenMinutesAsMilliseconds,
 "endTime" : currentTimeAsMilliseconds,
 "maxResults" : 10
 };
 //end-region

 //region {calls}
 console.log(greeting);
 chrome.history.search(query,function(results) {
 results.forEach(function(result) {
 //result is of type HistoryItem
 console.log(result);
 });
 });
 chrome.history.getVisits({"url" : "http://www.example.
org"},function(results) {
 results.forEach(function(result) {
 //result is of type VisitItem
 console.log(result);
 });
 });
 chrome.history.addUrl({"url" : "http://www.example.org"},function() {
 console.log("addUrl");
 });
 chrome.history.deleteUrl({"url" : "http://www.example.org"},function() {
 console.log("deleteUrl");
 });

http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

133

 /*
 chrome.history.deleteAll(function() {
 console.log("deleteAll");
 });
 */
 //end-region

 To search the history using a query, use the chrome.history.search method . This
method takes two parameters— query (of type object) and callback (of type function).
The query object supports the following properties:

• text —A free-text query to the history service. Leave it empty to
retrieve all pages.

• startTime —Limit results to those visited after this date,
represented in milliseconds since the epoch.

• endTime —Limit results to those visited before this date.
Represented in milliseconds since the epoch.

• maxResults —The maximum number of results to retrieve.
Defaults to 100.

 Note that the callback function receives an array of HistoryItem results. Here,
a HistoryItem is an object encapsulating one result of a history query. It supports the
following useful properties— id , url , title , lastVisitTime , visitCount , etc.

 To retrieve information about visits to a URL, use the chrome.history.getVisits
method. As shown in Listing 3-26 , this method takes an object (with url property) as its
first parameter. The second parameter is a callback function that receives an array of
 VisitItem results.

 ■ Note A VisitItem is an object encapsulating one visit to a URL. It is composed of
the following properties: id , visitId , visitTime , referringVisitId , and transition
(of TransitionType , which describes how the browser navigated to a particular URL). You
can read more about the TransitionType by visiting https://developer.chrome.com/
extensions/history#transition_types .

 Adding and Removing URLs
 To add a URL to the history at the current time, use the chrome.history.addUrl method.
This method takes two parameters— details (of type object) and callback (of type
 function). The details object only supports the url property. Similarly, use the chrome.
history.deleteUrl(object details, function callback) method to remove all
occurrences of the given URL from the history. Note that to remove all items from the
history, you use the chrome.history.deleteAll method. This method only takes a
 callback function as its parameter.

https://developer.chrome.com/extensions/history#transition_types
https://developer.chrome.com/extensions/history#transition_types

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

134

 Associated Events
 The history API supports the onVisited and onVisitRemoved events. The onVisited
event is fired when a URL is visited, providing the HistoryItem data for that URL in the
corresponding listener function. Note that this event fires before the page has loaded.
Similarly, the onVisitRemoved event is fired when one or more URLs are removed from
the history service. The listener function corresponding to this event receives an object.
This object supports the following properties:

• allHistory (Boolean)-True if all history was removed. If it’s true,
URLs will be empty.

• urls (array)-String array of removed URLs.

 Notifications API
 You can use the chrome.notifications API to create rich notifications using templates
and show these notifications to users in the system tray. It uses the notifications
permission. Listing 3-27 contains the code from the NotificationsAPI extension,
provided in Chapter 3 ’s Exercise Files folder.

 Listing 3-27. Chapter 3 /NotificationsAPI/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var title = "NotificationsAPI";
 var message = "Test message X";
 var oneMinuteAsMilliseconds = 1 * 60 * 1000;
 //getTime returns the number of milliseconds since the epoch
 var currentTimeAsMilliseconds = new Date().getTime();

 Figure 3-37. XHRAPI: Logging the response

http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

135

 var notificationId = "myNotification1";
 var NOTIFICATION_TEMPLATE_TYPE = {
 BASIC : "basic",
 IMAGE : "image",
 LIST : "list",
 PROGRESS : "progress"
 };
 var myButton1 = {
 title : "Click X",
 iconUrl : "button.png"
 };
 var myButton2 = {
 title : "Click Y",
 iconUrl : "button.png"
 };
 var myItem1 = {
 title : "Item X",
 message : "This is item X"
 };
 var myItem2 = {
 title : "Item Y",
 message : "This is item Y"
 };
 var notificationOptions = {
 type : NOTIFICATION_TEMPLATE_TYPE.LIST,
 iconUrl : "icon.png",
 title : title,
 message : message,
 eventTime : currentTimeAsMilliseconds + oneMinuteAsMilliseconds,
 buttons : [myButton1,myButton2],
 /*imageUrl : "icon.png",*/
 items : [myItem1,myItem2], //comment out for BASIC
 /*progress : 0,*/
 isClickable : true
 };
 //end-region

 //region {calls}
 console.log(greeting);
 chrome.notifications.create(notificationId,notificationOptions,
 function(id) {
 console.log("create: " + id);
 }
);
 /*

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

136

 chrome.notifications.clear(notificationId,function(wasCleared) {
 console.log("clear: " + wasCleared);
 });
 */
 /*
 chrome.notifications.getAll(function(notifications) {
 console.log("getAll:");
 console.log(notifications);
 });
 */
 chrome.notifications.onClicked.addListener(function(id) { //notification-id
 console.log("onClicked: " + id);
 notificationOptions.title = title + " (onClicked)";
 chrome.notifications.update(notificationId,notificationOptions,
 function(wasUpdated) {
 console.log("update: " + wasUpdated);
 }
);
 });
 chrome.notifications.onClosed.addListener(function(notificationId,byUser) {
 console.log("onClosed: " + notificationId);
 });
 chrome.notifications.onButtonClicked.addListener(
 function(notificationId,buttonIndex) {
 console.log("onButtonClicked: " + buttonIndex);
 }
);
 //end-region

 Creating and Clearing a Notification
 To create a notification, use the chrome.notifications.create method . This method
takes three parameters- notificationId (of type string), notificationOptions (of type
 object), and a callback function. Note that the notificationOptions object describes
the contents of the notification. The complete list of properties it supports is available at
 https://developer.chrome.com/apps/notifications#type-NotificationOptions .

 An important property (in the notificationOptions object) called type declares the
template to be used for creating a notification. Other properties such as title , message ,
 buttons , imageUrl , items , progress , etc. define the specific parts of the template.
Figures 3-30 to 3-32 contain examples of different notification templates. In Listing 3-27 ,
note the NOTIFICATION_TEMPLATE_TYPE object used as an enum to select the notification
template.

 You can clear a notification by calling the chrome.notifications.clear method,
which takes the notificationId as its parameter. To clear all the notifications, use the
 clear method, along with the chrome.notifications.getAll method, which takes a
 callback function as its parameter. This callback receives an object consisting of all the
notifications.

https://developer.chrome.com/apps/notifications#type-NotificationOptions

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

137

 Updating a Notification
 To update an existing notification, use the chrome.notifications.update method . This
method takes three parameters- notificationId (of type string), notificationOptions
(of type object), and a callback function. The callback function receives a Boolean
argument indicating whether the notification updated. In Listing 3-27 , note that the
 update method is called from within the listener function for the onClicked event.

 Associated Events
 The notifications API supports the onClosed , onClicked , and onButtonClicked events.
The onClosed event is fired when the notification is closed-either by the system or by user
action. As seen in Listing 3-27 , the listener function corresponding to this event receives
two arguments-(string) notificationId and (Boolean) byUser .

 The onButtonClicked event is fired when the user clicks a button (see Figure 3-34)
in the notification. Note that buttons are provided using the buttons property in the
 notificationOptions object (see Listing 3-27). The listener function for this event receives
the notificationId as well as the buttonIndex . Similarly, the onClicked event is fired
when the user clicks in a non-button area of the notification. This event is used in Listing
 3-27 to update the notification’s title property (see Figure 3-33).

 Storage API
 The storage API (i.e., the chrome.storage API) is used to store, retrieve, and track
changes to user data. It uses the storage permission. Listing 3-28 contains the code from
the StorageAPI extension, provided in Chapter 3 ’s Exercise Files folder. This API is
optimized to meet the specific storage needs of extensions. It provides the same storage
capabilities as the localStorage API with the following key differences:

• User data can be automatically synced with Chrome sync (using
 chrome.storage.sync API).

• Your extension’s content scripts can directly access user data
without the need for a background page .

• It’s asynchronous with bulk read and write operations, and
therefore faster than the blocking and serial localStorage API.

• User data can be stored as objects (the localStorage API stores
data in strings).

 Sync versus Local Storage
 To store user data for your extension, you can use the storage.sync or storage.local
APIs. When using storage.sync , the stored data will automatically be synced to any
Chrome browser that the user is logged into, provided the user has sync enabled.

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

138

 When Chrome is offline, Chrome stores the data locally. The next time the browser is
online, Chrome syncs the data. Even if a user disables syncing, the storage.sync API will
still work. In this case, it will behave identically to the storage.local API.

 ■ Note Confidential user information should not be stored! The storage area isn’t
encrypted.

 Listing 3-28. Chapter 3 /StorageAPI/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 //end-region

 //region {calls}
 console.log(greeting);
 /*
 //single key or a list of keys for items to remove
 chrome.storage.sync.remove("color",function() {
 console.log("remove");
 chrome.storage.sync.get("color",function(items) {
 console.log("get");
 console.log(items);
 });
 });
 */
 chrome.storage.sync.set({"color":"red"},function() {
 console.log("set");
 //string or array of string or object keys
 chrome.storage.sync.get("color",function(items) {
 console.log("get");
 console.log(items);
 });
 });
 chrome.storage.onChanged.addListener(function(changes,areaName) {
 console.log(changes);
 //"sync","local" or "managed"
 console.log(areaName);
 });
 //end-region

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

139

 Setting and Getting Items
 You set and get items from storage using the following API calls respectively- chrome.
storage.sync.set , and chrome.storage.sync.get . The get method takes a string, an
array of strings, or object keys as its first parameter, and the set method takes an object
(with key-value pairs) as its first parameter. The second parameter in the get method is
a callback function, and it receives an object as its argument. Figure 3-35 contains the
corresponding logs from these method calls.

 Removing Items
 You can easily remove an item in storage by calling the chrome.storage.sync.remove
method . This method takes a string or array of strings as its first parameter, and an
optional callback function as its second parameter. To remove all items from the storage,
use the chrome.storage.sync.clear method.

 Associated Events
 The storage API provides the chrome.storage.onChanged event . This event is fired when
one or more (storage) items change. The listener function corresponding to this event
receives two arguments-(object) changes and (string) areaName . Here, areaName is name
of the storage area (sync, local, etc.).

 Tabs API
 The tabs API (i.e., the chrome.tabs API) is used to interact with the browser’s tab system.
You can use this API to create, modify, and rearrange tabs in the browser. It uses the
 tabs permission. Listing 3-29 contains the code from the TabsAPI extension, provided
in Chapter 3 ’s Exercise Files folder. You have already used the query , connect ,
 sendMessage , executeScript , and insertCSS methods from this API. This section looks
at the remaining methods.

 ■ Note You can use most chrome.tabs methods and events without declaring any
permissions in the extension’s manifest file. However, if you require access to the url ,
 title , or favIconUrl properties of tabs.Tab , you must declare the tabs permission in the
manifest.

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

140

 Listing 3-29. Chapter 3 /TabsAPI/ event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var createProperties = {
 url : "http://www.example.org",
 active : false,
 };
 var updateProperties = {
 pinned : true
 };
 function getJavaScriptCode(dataUrl) {
 var javascriptCode = "var imgElement = document.createElement('img');";
 javascriptCode += "document.body.appendChild(imgElement);";
 javascriptCode += "imgElement.style.borderTop = '2px dashed silver';";
 javascriptCode += "imgElement.src = ";
 javascriptCode += "'" + dataUrl + "';";
 return javascriptCode;
 }
 function createAndUpdateTab(tab) {
 chrome.tabs.create(createProperties,function(tab) {
 console.log("create");
 //integer or array of integers
 //chrome.tabs.remove(tab.id);
 /*
 chrome.tabs.duplicate(tab.id,function(tab) {
 console.log("duplicate");
 });
 */
 chrome.tabs.update(tab.id,updateProperties,function(tab) {
 console.log("update");
 //chrome.tabs.reload(tab.id);
 chrome.tabs.getZoom(tab.id,function(zoomFactor) {
 console.log("getZoom");
 console.log(zoomFactor); //1
 });
 /*
 chrome.tabs.setZoom(tab.id,2,function() {
 console.log("setZoom");
 });
 */
 });
 });
 }
 //end-region

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

141

 //region {calls}
 console.log(greeting);
 chrome.browserAction.onClicked.addListener(function(tab) {
 chrome.tabs.captureVisibleTab({"format":"png"},function(dataUrl) {
 //Cannot access a chrome:// URL

 chrome.tabs.executeScript(tab.id,{"code":getJavaScriptCode(dataUrl)});
 });
 //createAndUpdateTab(tab);
 });
 //end-region

 Creating and Removing a Tab
 To create a tab, use the chrome.tabs.create method . This method takes two
parameters- createProperties (of type object) and callback (of type function). The
 createProperties object supports the following useful properties- index , url , active ,
and pinned . The callback function receives an argument of type Tab (tabs.Tab). A tab
can also be duplicated by calling the chrome.tabs.duplicate method, as shown in
Listing 3-29 (see the commented-out section in the createAndUpdateTab function).

 Use the chrome.tabs.remove method to close one or more tabs. This method takes
the ID of the tab to close, or a list of such IDs as its first parameter. It also supports an
optional callback function as its second parameter.

 Updating a Tab
 Use the chrome.tabs.update method to modify the properties of a tab. This method takes
three parameters- tabId , updateProperties , and callback . As you might have guessed,
 tabId is the ID of the tab to update. The callback function receives the details of the
updated tab via the tab argument. The updateProperties object specifies the properties
to update. Only the following properties are supported- url , active , highlighted ,
 pinned , muted , and openerTabId . Note that you can also reload a tab by calling the
 chrome.tabs.reload method. This method takes the ID of the tab to reload as its first
parameter and an optional callback function as its second parameter.

 Listing 3-30. Chapter 3 /TabsAPI/ manifest.json

 {
 "manifest_version" : 2,
 "name" : "API Demos: tabs API",
 "description" : "Demonstrates use of the tabs API",
 "version" : "1.2",
 "background" : {
 "scripts" : ["event_script.js"],
 "persistent" : false
 },
 "browser_action" : {

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

142

 "default_icon" : "icon.png"
 },
 "permissions" : [
 "tabs",
 "<all_urls>"
]
 }

 ■ Note To zoom a specified tab, use the chrome.tabs.setZoom method. Additionally, to
get the current zoom factor of a specified tab, use the chrome.tabs.getZoom method.

 Capturing a Tab
 To capture the visible area of the currently active tab in the specified window, use
the chrome.tabs.captureVisibleTab method . This method takes three parameters-
 windowId , options , and callback . The windowId parameter is optional, and it defaults to
the current window. The options parameter is used to specify the format of the image.
The callback function receives the dataUrl (string) argument-which is a URL referring
to the data containing the encoded image of the visible area of the captured tab. Note that
the dataUrl can be assigned to the src property of an HTML img element, as shown in
Listing 3-29 . An image corresponding to this is shown in Figure 3-36 . Also note that this
method requires an additional permission- <all_urls> —shown in Listing 3-30 .

 Associated Events
 The chrome.tabs API provides a long list of events corresponding to almost every
available method. For example, the onCreated , onUpdated , onRemoved , onZoomChange ,
etc., events. The complete list of such events is available at https://developer.chrome.
com/extensions/tabs .

 XHR API
 An extension can talk to remote servers (using the XMLHttpRequest object) by requesting
cross-origin permissions. Such permissions are requested with the help of match patterns
that provide access to one or more hosts (see “*://localhost/*” in Listing 3-31).

 Listing 3-31. Chapter 3 /XHRAPI/manifest.json

 {
 "manifest_version" : 2,
 "name" : "API Demos: xhr API",
 "description" : "Demonstrates use of the xhr API",
 "version" : "1.2",
 "background" : {
 "scripts" : ["event_script.js"],

https://developer.chrome.com/extensions/tabs
https://developer.chrome.com/extensions/tabs
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

143

 "persistent" : false
 },
 "permissions" : [
 "*://localhost/*"
]
 }

 Once the host permission is requested, the XHR API can be used, similarly to the
way it is used in regular web pages. In Listing 3-32 , note that the ucService (PHP script
to uppercase the input string) is served from my local HTTP server. The PHP script is
available in Listing 3-33 .

 Listing 3-32. Chapter 3 /XHRAPI/event_script.js

 //region {variables and functions}
 var greeting = "Hello World!";
 var xhr = new XMLHttpRequest();
 function onReadyStateChange() {
 if(xhr.readyState == 4) {
 console.log(xhr.responseText);
 }
 }
 var host = "http://localhost/";
 var ucService = host + "Exercise Files/Chapter3/XHRAPI/webpage.php?";
 var queryString = "name=" + encodeURIComponent("xhr api");
 //end-region

 //region {calls}
 console.log(greeting);
 xhr.onreadystatechange = onReadyStateChange;
 xhr.open("GET",ucService + queryString);
 xhr.send();
 //end- region

 The query string “name=xhr api” is provided in a static manner. It could be
dynamically provided in your extension, for example, from a Browser-Action popup, or
Content-UI, etc. Figure 3-37 shows the corresponding response from the server.

 Listing 3-33. Chapter 3 /XHRAPI/WebServer/webpage.php

 <?php
 $raw_input = trim($_GET["name"]);
 if(!preg_match("/^[a-zA-Z]*$/",$raw_input)) {
 echo "";
 } else {
 echo strtoupper($raw_input);
 }
 ?>

http://dx.doi.org/10.1007/978-1-4842-1775-7_3
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 3 ■ API AVAILABILITY AND MESSAGING

144

 Summary
 The beginning of this chapter discussed the left-out input components from the previous
chapter-omnibox input, context menu item, and Content-UI . After this, you learned
the various ways in which scripting components can interact with each other using the
messaging APIs provided by the Google Chrome Extensions framework. In addition to
this, you also learned how ordinary web pages can interact with an extension.

 You then learned what permission strings are in a manifest file, before learning about
how to use the many useful APIs provided by the Extensions framework. You also learned
how using XHR in an extension is possible across different origins using match pattern
permission strings in the manifest file.

 In the next chapter, you will read about a few remaining features provided by the
Chrome Extensions framework, such as themes, override pages (to override a new tab,
bookmarks page, etc.), and options pages, which enable you to enhance the niche of your
extension on the Chrome browser.

145© Prateek Mehta 2016
P. Mehta, Creating Google Chrome Extensions, DOI 10.1007/978-1-4842-1775-7_4

 CHAPTER 4

 More About Extensions

 By now you have learned about most of the features of Google Chrome Extensions,
including the architecture, messaging between different components, and the APIs
provided by the Google Chrome Extensions framework. This chapter covers the remaining
features of Google Chrome Extensions, such as the options page, override pages, and
themes. In addition to this, you will learn about some security concerns that you should
keep in mind when developing Google Chrome Extensions. These include API permissions,
 match pattern permissions, content-script injections, etc.

 Providing an Options Page
 You can allow users to customize the behavior of the extension by providing an options
page (see Figure 4-4). An important point to note is that such a provision can be easily
made without the use of an options page. This can be done, for example, by providing a
popup component consisting of a UI to allow saving of preferences for the extension
(say using the chrome.storage API). However, this is not recommended, as it won’t allow
users to access the options page from the Extensions Management page (see Figure 4-3
for the options link).

 Role of Manifest for this Component
 To declare an options page, you need to use the options_ui manifest attribute.
This attribute supports the following properties. As seen in Listing 4-1 (from the
 OverridePages extension), the page and chrome_style properties suffice to declare the
options page for an extension.

• page (string) —The path to the options page, relative to the
extension’s root.

• chrome_style (boolean) —If true , a Chrome user agent
stylesheet will be applied to the options page. The default value is
 false , but for a consistent UI with Chrome, it is recommended to
set this value to true .

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

146

• open_in_tab (boolean) —If true , the extension’s options
page will be opened in a new tab rather than embedded in
 chrome://extensions . The default value is false , and true is not
recommended.

 Listing 4-1. Chapter 4 /OverridePages/manifest.json

 {
 "name" : "My New-Tab",
 "version" : "1.2",
 "manifest_version" : 2,
 "chrome_url_overrides" : {
 /*newtab,history,bookmarks*/
 "newtab" : "myNewTab.html"
 },
 "permissions" : ["bookmarks","storage"],
 /*Using an options page*/
 "options_ui" : {
 "page" : "myOptionsPage.html",
 /*Use Chrome stylesheet*/
 "chrome_style" : true
 }
 }

 Writing an Options Page
 An options page is made entirely of an HTML page (displayed in Figure 4-4). Listing 4-2
contains the HTML code for the options page used in the OverridePages extension .
This extension is available in Chapter 4 ’s Exercise Files folder. As described, it is
recommended to use the Chrome stylesheet for this HTML, by setting the chrome_style
property to true in the manifest.

 ■ Note To programmatically open an options page, use the chrome.runtime.
openOptionsPage method.

http://dx.doi.org/10.1007/978-1-4842-1775-7_4
http://dx.doi.org/10.1007/978-1-4842-1775-7_4

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

147

 Listing 4-2. Chapter 4 /OverridePages/ myOptionsPage.html

 <!DOCTYPE html>
 <html>
 <head>
 <title>My Options-Page</title>
 <script src="myOptionsPage_1.js"></script>
 <style>
 div.left {
 float:left;
 }
 div.right {
 float:right;
 }
 p.clear {
 clear:both;
 }
 </style>
 </head>
 <body>
 <p>
 <div class="left">
 Only display matching bookmarks?
 </div>
 <div class="right">
 <form>

 Figure 4-1. New Tab page: override prompt

http://dx.doi.org/10.1007/978-1-4842-1775-7_4

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

148

 <input type="radio" name="highlight" value="1"> Yes
 <input type="radio" name="highlight" value="0" checked="checked"> No
 </form>
 </div>
 </p>

 <p class="clear">
 <input type="button" id="save" value="Save">
 </p>
 </body>
 </html>

 An options page can refer scripts. The src of the script needs to point to a path,
relative to the extension folder (i.e., the extension’s root). In Listing 4-2 , the referred script
is myOptionsPage_1.js . Listing 4-3 contains the corresponding code from this referred
script. The purpose of this script is to save user preferences for the OverridePages
extension. The exact details of the preference are described in the following topic.

 Listing 4-3. Chapter 4 /OverridePages/ myOptionsPage_1.js

 //region {variables and functions}
 var storageKey = "APPEND_MATCHING_ONLY";
 var items = {};
 var saveButtonID = "save";
 function logSuccess(task) {
 console.log("%s Successful!",task);
 }
 //end-region

 //region {calls}
 document.addEventListener("DOMContentLoaded",function(dcle) {
 var saveButton = document.getElementById(saveButtonID);
 saveButton.addEventListener("click",function(ce) {
 if(document.forms[0].highlight.value == "1") {
 items[storageKey] = true;
 chrome.storage.sync.set(
 items,
 function() {
 if(!chrome.runtime.lastError)
 logSuccess("Set-Storage");
 }
);
 } else {
 items[storageKey] = false;
 chrome.storage.sync.set(
 items,
 function() {

http://dx.doi.org/10.1007/978-1-4842-1775-7_4

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

149

 if(!chrome.runtime.lastError)
 logSuccess("Set-Storage");
 }
);
 }
 });
 });
 //end-region

 Working with Override Pages
 Override pages are a way to substitute (i.e., override) an HTML file from the extension
for a page that Google Chrome normally provides. In addition to HTML, an override
page usually has CSS and JavaScript code . An extension can override any one of the
following pages:

• Bookmark Manager (chrome://bookmarks)—The page that
appears when the user chooses the Bookmark Manager menu
item from the Chrome menu or, on a Mac, the Bookmark Manager
item from the Bookmarks menu.

• History (chrome://history)—The page that appears when the
user chooses the History menu item from the Chrome menu or,
on a Mac, the Show Full History item from the History menu.

• New Tab (chrome://newtab)—The page that appears when the
user creates a new tab or window.

 Figure 4-2. New Tab page with bookmarks

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

150

 ■ Note An extension can override only one page. For example, the OverridePages
extension, provided in the Exercise Files folder, overrides the New Tab page.

 Listing 4-4. Chapter 4 /OverridePages/ myNewTab.html

 <!DOCTYPE html>
 <html>
 <head>
 <title>My New-Tab</title>
 <script src="myNewTab_1.js"></script>
 <style>
 body {
 background-color:#eee;
 }
 h2 {
 width:50%;
 margin:auto auto;
 text-align:center;
 color:#555;
 }
 ul {
 padding:0px;
 width:60%;
 margin-left:auto;
 margin-right:auto;
 margin-top:100px;
 text-align:center;
 border:2px dashed #555;
 }
 li {
 overflow:hidden;
 list-style-type:none;
 }
 a {
 text-decoration:none;
 }
 a:hover {
 text-decoration:underline;
 }
 </style>
 </head>
 <body>
 <h2>My New-Tab: Chrome Developer Bookmarks</h2>
 <ul id="list">
 </body>
 </html>

http://dx.doi.org/10.1007/978-1-4842-1775-7_4

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

151

 Role of Manifest for this Component
 To override a page, use the chrome_url_overrides manifest attribute. The exact page
that will be overridden is specified using the bookmarks , history , or newtab property.
An example for this is shown in Listing 4-1 , where the New Tab page is overridden by
specifying "newtab" : "myNewTab.html" . Listing 4-4 contains the corresponding HTML
code from the myNewTab.html file.

 Figure 4-3. Extensions Management page: options link

 OverridePages Extension
 The OverridePages extension provided in the Exercise Files folder of this chapter can
override the New Tab page. You can load this extension in your browser for testing. Note
the prompt that appears upon loading this extension (see Figure 4-1). This is required by
the Chrome browser to know if the override is intended (by the user) or not.

 As seen in Figure 4-2 , this extension overrides the New Tab page to display the
bookmarks. The referred script myNewTab_1.js is used to append bookmark items to the
HTML ul element list , seen in Listing 4-4 as <ul id="list"> . Listings 4-5 and 4-6
contain the JavaScript code from the referred script.

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

152

 Listing 4-5. Chapter 4 /OverridePages/myNewTab_1.js

 //region {variables and functions}
 var folders = [];
 var listName = "list";
 var host = "developer.chrome.com";
 var itemBorderRightStyle = "5px solid #666";
 var itemBoxShadowStyle = "0px 0px 2px #333";
 var itemBackgroundColor = "#ccc";
 var storageKey = "APPEND_MATCHING_ONLY";
 function appendItem(listElement,nodeURL,nodeParentTitle) {
 var li = document.createElement("li");
 var a = document.createElement("a");
 a.href = nodeURL;
 a.innerText = nodeURL + " (" + nodeParentTitle + ")";
 li.appendChild(a);
 if(nodeURL.indexOf(host) != -1) {
 li.style.borderRight = itemBorderRightStyle;
 li.style.boxShadow = itemBoxShadowStyle;
 li.style.backgroundColor = itemBackgroundColor;
 }
 listElement.appendChild(li);
 }
 function appendMatchingItem(listElement,nodeURL,nodeParentTitle) {
 if(nodeURL.indexOf(host) != -1)
 appendItem(listElement,nodeURL,nodeParentTitle);
 }

 Figure 4-4. Options page with Chrome stylesheet

http://dx.doi.org/10.1007/978-1-4842-1775-7_4

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

153

 function populateList(listElement) {
 folders.forEach(function(folder) {
 folder.children.forEach(function(bookmarkTreeNode) {
 appendItem(listElement,bookmarkTreeNode.url,folder.title);
 });
 });
 }
 function populateListV2(listElement) {
 chrome.storage.sync.get(storageKey,function(items) {
 if(!chrome.runtime.lastError && items[storageKey]) {
 folders.forEach(function(folder) {
 folder.children.forEach(function(bookmarkTreeNode) {
 if(bookmarkTreeNode.url)
 appendMatchingItem(
 listElement,
 bookmarkTreeNode.url,
 folder.title
);
 });
 });
 } else {
 folders.forEach(function(folder) {
 folder.children.forEach(function(bookmarkTreeNode) {
 if(bookmarkTreeNode.url)
 appendItem(
 listElement,
 bookmarkTreeNode.url,
 folder.title
);
 });
 });
 }
 });
 }
 //end- region

 To display bookmarks in the New Tab page, the bookmarks API (i.e., the chrome.
bookmarks API) has been used. Recall from Chapter 3 that each node in the bookmark
tree is represented by a bookmarks.BookmarkTreeNode object. And also recall that to
retrieve the entire bookmark’s hierarchy, you need to use the chrome.bookmarks.getTree
method.

 In Listing 4-6 , note the use of the children.length property to access the child
bookmark nodes. All these bookmark nodes are stored in the folders array. Listing 4-5
contains the populateList and populateListV2 functions. Any of these functions can be
used to append bookmark items to the aforementioned HTML ul element list . These
bookmark items are obtained from the folders array.

http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

154

 The OverridePages extension contains an options page to save a user preference to only
allow display of matching bookmarks in the New Tab page (here, a matched bookmark has an
URL belonging to a certain host). To implement this, the storage API (i.e., the chrome.storage
API) has been used. In Listing 4-3 , note the use of chrome.storage.sync.set method to
save the selected option (the Yes and No options can be seen in Figure 4-4). Also note that
the log corresponding to this call can be seen in Figure 4-5 . In Listings 4-3 and 4-5 , the key
corresponding to the storage item (for the selected option) is declared in the following way:

 var storageKey = "APPEND_MATCHING_ONLY";

 To make use of this stored item (which corresponds to the selected option—Yes or
No), the populateListV2 function calls the chrome.storage.sync.get method. If no
runtime error is caused during this call, and the storage item is set to true (i.e., Yes), the
 appendMatchingItem function is called. Otherwise, the appendItem function is called.
Before appending a bookmark item, the appendMatchingItem function tests if the
bookmark node to append has the URL that matches the host developer.chrome.com .
The corresponding output is shown in Figure 4-6 .

 Listing 4-6. Chapter 4 /OverridePages/ myNewTab_1.js

 //region {calls}
 document.addEventListener("DOMContentLoaded",function(dcle) {
 var listElement = document.getElementById(listName);
 chrome.bookmarks.getTree(function(bookmarkTreeAsArray) {
 var bookmarkTree = bookmarkTreeAsArray[0];
 if(bookmarkTree.children) {
 bookmarkTree.children.forEach(function(node) {
 if(node.children.length > 0) folders.push(node);
 });
 }
 //populateList(listElement);
 populateListV2(listElement);
 });
 });
 //end- region

 Figure 4-5. Options page : logging on to the console

http://dx.doi.org/10.1007/978-1-4842-1775-7_4

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

155

 Creating Themes for Google Chrome
 A theme is a special kind of extension that changes the way the browser looks. Themes
are packaged like regular extensions, but note that themes don’t contain JavaScript
or HTML code . You can try out the themes available on the Chrome Web Store. The
following URL will take you directly to the themes category: https://chrome.google.com/
webstore/category/themes .

 ■ Note There is no difference in uploading extensions or themes to the dashboard,
because a theme is also an extension.

 Creating a theme is extremely easy, as it only requires few images and a bunch of
lines in the manifest file to create it. Figure 4-7 displays the images used in the Themes
extension, which are provided in Chapter 4 ’s Exercise Files folder. Listing 4-7 contains
the code from the manifest file corresponding to this extension.

 Listing 4-7. Chapter 4 /Themes/manifest.json

 {
 "manifest_version" : 2,
 "name" : "HelloTheme",
 "version" : "1.2",
 "theme" : {
 "images" : {

 Figure 4-6. New Tab page with bookmarks

https://chrome.google.com/webstore/category/themes
https://chrome.google.com/webstore/category/themes
http://dx.doi.org/10.1007/978-1-4842-1775-7_4
http://dx.doi.org/10.1007/978-1-4842-1775-7_4

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

156

 "theme_frame" : "images/theme_frame_golden.png",
 "theme_toolbar" : "images/theme_toolbar_silver.png",
 "theme_ntp_background" : "images/theme_ntp_background.png",
 "theme_ntp_attribution" : "images/theme_ntp_attribution.png"
 },
 "colors" : {
 "tab_text" : [0,0,0],
 "ntp_text" : [255,255,255],
 "button_background" : [0,0,255]
 },
 "tints" : {
 "buttons" : [0.0,0.0,0.0],
 "frame" : [-1.0,-1.0,-1.0],
 "frame_inactive" : [-1.0,-1.0,0.3],
 "frame_incognito" : [-1.0,-1.0,0.2],
 "frame_incognito_inactive" : [-1.0,-1.0,0.0]
 }
 }
 }

 Figure 4-7. Images used for the Themes extension

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

157

 ■ Note The SVG file has been provided in the Exercise Files folder so you can
customize the shapes used to create the images for the theme.

 A theme supports the image , color , and tint elements . To create a theme, you need
to define these elements for the theme manifest attribute (see Listing 4-7). In addition to
this, you also need to define the properties corresponding to these elements. Some of the
most useful properties are listed here, along with their descriptions.

• theme_frame —The frame of the window, i.e., the area that is
behind the tabs.

• theme_toolbar —The theme for the current tab and the toolbar
together.

• theme_ntp_background —The background image for the New
Tab page.

• theme_ntp_attribution —The attribution image for the New
Tab page.

• tab_text —The color of the text in the title of current tab.

• ntp_text —The color of all the text in the New Tab page.

• button_background —The background color of all the window
buttons (for example, minimize, close, etc.)

• buttons —The color tint that can be applied to various buttons in
the Chrome toolbar.

• frame —The color tint that can be applied to the frame of Chrome.

• frame_inactive —The color tint that is applied when the Chrome
window is inactive.

• frame_incognito —The color tint to the frame in incognito mode.

• frame_incognito_inactive —Same as with frame_incognito ,
but when the window is inactive (and in incognito mode).

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

158

 ■ Note Themes don’t contain JavaScript or HTML code.

 Figure 4-8 displays the New Tab page with the applied theme. Note the golden
colored frame of the window, as specified using the theme_frame attribute. Also note the
background image for the New Tab page. It is specified using the theme_ntp_background
attribute. To specify an attribution image, use the theme_ntp_attribution attribute. In
the provided extension, the attribution image is theme_ntp_attribution.png , which is
the circular image with a yellow logo (seen in Figure 4-8 in the lower-right corner).

 Figure 4-8. New Tab page with the applied theme

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

159

 ■ Note Tints are in Hue-Saturation-Lightness (HSL) format, using floating-point numbers
in the range 0 to 1.0. A value of -1.0 is for no change.

 For the incognito mode, you can apply color tints to existing styles. For example, in
Figure 4-9 note the color tint applied to the window frame. This tint is applied using the
 frame_incognito attribute (see Listing 4-7). Similarly, color tints can also be applied
to different styles for the inactive mode. In Figure 4-10 , note the difference between the
active window (in the front) and the inactive window (the inactive window is in back and
has a darker frame).

 Figure 4-9. Theme in incognito mode

 Figure 4-10. Color tint for inactive window (back window)

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

160

 Extensions Development: Security Concerns
 By now you understand that extensions have certain privileges that allow them to go
beyond what regular web page scripts can do. For this reason, you need to be security
conscious when writing extensions. Failing to do so can affect your users in terms of the
privacy of the data that was accessed, that is currently being accessed, and that will be
accessed. The following topics discuss some useful ways in which you can make your
extensions more secure, and ways in which the Extensions framework takes care of
security behind the scenes.

 API Permissions
 The first level of security is automatically provided by the permissions architecture in the
Extensions framework. API permissions help to limit damage if the extension or app is
compromised by malware. For example, if an extension that manipulates bookmarks has
the bookmarks permission, it won’t be able to affect the user’s downloads, simply because
it does not have the downloads permission. So, here you see that you should never request
unnecessary permissions in the manifest, as this will weaken the user’s security if the
extension or app gets compromised.

 Additionally, some of the permissions are also displayed to users, before installation
of the extension (or app), as a warning. Note that you can read more about these warnings
at the following URL: https://developer.chrome.com/extensions/permission_warnings .

 Match Pattern Permissions
 Similar to the permissions for APIs, match patterns provide access to one or more hosts
(for use with the XHR API). To prevent damage to the extension or to the user’s security,
you should only allow white-listed hosts in your extensions, or in fact, the exact white-
listed remote service that your extension needs to use.

 Externally Connectable
 As discussed previously in the “Web Page Scripts and Event Scripts” section
(in Chapter 3), for an extension to be able to receive messages from external web pages
(or other extensions), the externally_connectable attribute is required in the manifest.
For the ids and matches keys, you should specify the IDs of the extensions, and the
URL patterns of the external web pages (respectively) that need to send messages to
the extension. This way, you can avoid unsolicited messages to your extensions, and
 specifically choose the sources you want to communicate with .

 Storage
 The storage API is an optimized API provided by the Extensions framework to meet the
specific storage needs of the extensions. However, an important point to note is that the
storage provided is not encrypted. So, confidential user information should never be
stored using this API.

https://developer.chrome.com/extensions/permission_warnings
http://dx.doi.org/10.1007/978-1-4842-1775-7_3

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

161

 To store user data for your extension, you can use storage.sync or storage.local .
When using storage.sync , the stored data will automatically be synced to any Chrome
browser that the user is logged in to, provided the user has sync enabled.

 When Chrome is offline, Chrome stores the data locally. The next time the browser
is online, Chrome syncs the data. Even if a user disables syncing, storage.sync will still
work. In this case, it will behave identically to storage.local .

 To use the storage.sync API, the following calls need to be made. To read more
about this API, you can refer back to the topic “Storage API” in the previous chapter.

 chrome.storage.sync.get(string or array of string or object keys, function
callback)
 chrome.storage.sync.set(object items, function callback)

 Content Script
 When writing a content script, you should be aware of two security issues. First, be careful
not to introduce security vulnerabilities into the web page your content script is injected
into. For example, if your content script receives data from a remote server (for example,
via the XHR API), be careful to filter that data for cross-site scripting attacks before
injecting it into the current web page. For example, it’s better to inject data via innerText
rather than innerHTML .

 ■ Note Content scripts execute in a special environment called an isolated world . They
have access to the DOM of the web page they are injected into, but not to any JavaScript
variables or functions created by the web page. It looks to each content script as if there is
no other JavaScript executing on the web page it is running on. The same is true in reverse:
JavaScript running on the web page cannot call any functions or access any variables
defined by content scripts. Isolated worlds allow each content script to make changes to its
JavaScript environment without worrying about conflicting with the web page or with other
content scripts.

 It’s worth noting what happens with JavaScript objects that are shared by the web page and
the extension—for example, the window.onload event. Each isolated world sees its own
version of the object. Assigning to the object affects your independent copy of the object. For
example, both the web page and extension can assign to window.onload , but neither one
can read the other’s event handler. The event handlers are called in the order in which they
were assigned.

CHAPTER 4 ■ MORE ABOUT EXTENSIONS

162

 Second, although running your content script in an isolated world provides some
protection from the web page, a malicious web page (or remote service, accessed via the
XHR API) might still be able to attack your content script if you use data from the web
page (or service) indiscriminately. For example, using the eval method to parse this
data allows it to be executed, enabling malicious code to execute from within your
extension. To avoid this, choose safer (parsing) APIs that do not execute code, such as the
 JSON.parse method.

 Summary
 This chapter discussed the remaining features of Google Chrome Extensions, such as
options page, override pages, and themes. The OverridePages extension described in this
chapter overrides the New Tab page. The use of an options page was also demonstrated
in this extension. This page provided a single option to save a user preference for the
 OverridePages extension.

 The Themes extension displayed a simple theme for the browser—providing colored
frames for the window, a background image for the New Tab page, and color tints for
the incognito and inactive windows. Finally, some security concerns were described,
and their corresponding remedies were also discussed. The issues that were described
included API permissions, match pattern permissions, the externally_connectable
attribute, storage, and content-script injection.

 This chapter concludes the book. You discovered what Google Chrome Extensions
are, learned how to create them, learned about extension components and messaging,
and publishing of extensions on the Chrome Web Store (formerly the Google Chrome
Extensions Gallery). So now it’s time for you to leverage the power of the Google Chrome
browser by creating your own awesome extensions!

163© Prateek Mehta 2016
P. Mehta, Creating Google Chrome Extensions, DOI 10.1007/978-1-4842-1775-7

 A
 Alarms API , 121–124
 Architecture, Chrome Extensions

 components
 input components (see Input

components)
 manifest , 40
 popup , 37–39
 scripting , 36

 extension runtime , 40–41
 user perspective , 35

 B
 Browser-Action button , 9, 12
 BrowserActionNotes Extension

 Browser-Action component , 69
 console panel, popup , 73
 loadNoteForActiveURL function , 72
 popup component , 69–70
 popup_script.js , 71–72, 74
 resources panel , 70
 setting, badge text , 73
 textarea element , 72

 Browser-Action popup , 37

 C
 Chrome.runtime.connect method , 101
 Chrome Web Store , 11
 Content scripts

 Chrome Extensions API , 62
 Content UI , 62
 DOM API , 62
 HelloContentScript

Extension , 65–66, 68
 manifest , 63–64

 Content scripts and event scripts
 chrome.runtime.sendMessage

method , 105
 connect and sendMessage

methods , 103
 Console panel , 103, 107
 content_script.js , 104
 event_script.js , 105
 extensionID parameter , 105
 manifest.json , 106–107
 popup inspecting , 106
 runtime.onMessage , 103
 runtime.onMessageExternal and

runtime.onConnectExternal
events , 103

 Content scripts and web page scripts
 bookmarks API , 113–114
 button element , 112
 content_script.js , 113
 content_scripts attribute , 111
 manifest.json , 112
 postMessage method—window.

postMessage , 112
 runtime.onMessageExternal and

runtime.onConnectExternal
events , 111

 webpage_script.js , 114
 window.addEventListener(“message”,

function(me){/**/}) , 112
 window.postMessage method , 111
 window.postMessage

(message,“*”) , 112
 Context menu items

 contextMenus permission , 85
 item creation

 addEventListener method , 93
 browser_action and page_action

contexts , 87

 Index

■ INDEX

164

 chrome.contextMenus.create
method , 89

 chrome.runtime.lastError
object , 89

 documentUrlPatterns property , 88
 event_script.js , 87–89, 93
 HelloContextMenuItem

extension , 88
 ID_CONTEXT_MENU_ITEM_

HELLO variable , 87
 info object , 90
 info.menuItemId property , 90
 onClicked event , 89
 Page-Action component , 94
 properties , 90
 runtime.sendMessage method , 93
 TYPES_CONTEXT variable , 87

 manifest.json , 85

 D
 Debugging Chrome Extensions

 Chrome DevTools window , 18
 Console panel , 21–22
 Elements panel , 19
 inspecting, popup , 18
 Sources and Resources panel , 19–21

 Disposition , 84
 Distributing extension, Chrome Web Store

 dashboard , 24
 developer registration fee , 24
 draft

 editing , 32
 saving , 32

 Google Wallet , 27
 icons adding , 29
 item listings , 33
 logging, Google account , 23
 new extension adding , 28
 payment gateway , 26
 payment method , 25
 purchase completing , 27
 purchase reviewing , 26
 48px icon , 29
 ShowTime extension , 22
 uploading

 ShowTime zipped package , 30–31
 zipped package , 28

 Document Object Model (DOM) , 9, 117
 DOMContentLoaded event , 14

 E, F
 Event scripts

 API features , 52
 background scripts , 55–56
 Browser-Action and Page-Action

components , 51
 BrowserActionNotes , 53
 chrome.runtime object , 51
 chrome.runtime.onMessageExternal

event , 52
 content scripts , 52
 declarativeContent API

 addRules/removeRules , 60
 chrome.declarativeContent and

chrome.declarativeWeb
Request , 59

 chrome.declarativeContent.
ShowPageAction , 60

 ShowPageAction , 61–62
 event handlers, declarative , 57
 event objects , 56
 HelloPageAction Extension , 58–59
 input component APIs , 51
 manifest

 background attribute , 53
 Extensions Management

page , 54
 HelloShortcutKey, background

page , 53, 55
 scripts and persistent keys , 53

 multiple components , 52
 onClicked event , 51
 onCommand event , 57
 scripts and persistent

attribute , 57
 shared code , 53

 Extension runtime , 40
 Extensions

 creation
 Browser-Action , 12
 console.log method , 14
 Extension button , 11
 getMonth method , 13
 JavaScript code, current time , 13
 JSON fi le validation , 11
 manifest , 12
 popup , 10
 setTimeAndDate function , 13–14
 ShowTime , 9–10
 ShowTime/popup.html , 14–15

Context menu items (cont.)

■ INDEX

165

 debugging (see Debugging Chrome
Extensions)

 HTML and CSS , 8
 JavaScript and JSON , 8
 loading, extension folder , 15–17
 override pages

 Bookmark Manager , 149
 children.length property , 153
 CSS and JavaScript code , 149
 history , 149
 manifest , 151
 myNewTab_1.js , 151–154
 myNewTab.html , 150
 New Tab page, bookmarks , 149, 155
 options page , 154
 options page, Chrome

stylesheet , 152
 Extensions API , 8–9
 Extensions development, security

 API permissions , 160
 content script , 161
 externally_connectable attribute , 160
 match pattern permissions , 160
 storage , 160

 Extensions Management page , 3, 17

 G
 Google Chrome Apps , 2
 Google Chrome Extensions

 browser extensions, support , 1
 browser plug-ins , 2
 Chrome Web Store , 5
 defi nition , 1
 extensions adding, store , 5–7
 Extensions Management page , 3
 pinning, chrome://extensions tab , 3
 plug-ins , 3–4
 sandboxing , 4
 technologies , 8
 URLs , 7

 Google Chrome Extensions APIs
 alarms permission , 119, 121
 alarms API

 alarmNameand alarmInfo , 122
 chrome.alarms.clearAll

method , 124
 chrome.alarms.create method , 122
 event_script.js , 123
 notifi cations API , 121–122
 periodInMinutes , 122

 bookmarks API
 associated events , 128
 bookmarks.BookmarkTreeNode

object , 124
 chrome.bookmarks.create

method , 125
 chrome.bookmarks.getTree

method , 127
 chrome.bookmarks.search

method , 127
 creating , 125–126
 hierarchy , 127–128
 notifi cations API , 124
 updating , 126

 declare permissions , 118
 downloads API

 associated events , 131
 cancelling/resuming , 131
 chrome.downloads.download

method , 129
 chrome.downloads.removeFile

method , 131
 chrome.runtime.lastError , 131
 event_script.js , 128–129
 fi le downloading , 129–130
 open method , 131

 history API
 associated events , 134
 callback function , 133
 chrome.history.search

method , 133
 event_script.js , 132
 query object

properties , 133
 URLs, adding and

removing , 133
 input components

 chrome.commands , 117
 chrome.contextMenus , 117
 chrome.omnibox , 117
 chrome.pageAction, and chrome.

browserAction , 117
 notifi cations API

 associated events , 137
 chrome.notifi cations.create

method , 136
 chrome.notifi cations.update

method , 137
 event_script.js , 134–136

 optional permissions , 121
 required permissions , 119–120

■ INDEX

166

 storage API
 chrome.storage.onChanged

event , 139
 chrome.storage.sync.remove

method , 139
 chrome.storage.sync.set, and

chrome.storage.sync.get. , 139
 event_script.js , 138
 localStorage API , 137
 set and get items , 139
 sync vs . local storage , 137–138

 tabs API
 associated events , 142
 capturing , 142
 chrome.tabs.captureVisibleTab

method , 142
 chrome.tabs.create method , 141
 chrome.tabs.update method , 141
 creating and removing , 141
 event_script.js , 140–141
 insertCSS methods , 139
 manifest.json , 141–142

 XHR API , 118, 142–143
 Google Chrome plug-ins , 4

 H
 Hue-Saturation-Lightness (HSL) , 159

 I, J, K, L
 Input components

 Browser-Action and
Page-Action , 42

 BrowserActionNotes , 46
 context menu items (see Context

menu items)
 HelloContentUI extension

 activeTab permission , 91
 content_script.js , 92–93
 injected content script

component , 92
 manifest.json , 91

 interactive functionalities , 42
 manifest

 Browser-Action , 43–44, 46
 default extension icon , 45
 Page-Action , 43–45
 setting title, icon, and

popup , 45–46

 omnibox inputs (see Omnibox
inputs)

 onCommand event , 49
 separate actions , 43
 shortcut key/command

 change extension icon , 47
 _execute_browser_action

and _execute_page_action , 48
 HelloBrowserAction

extension , 48
 HelloShortcutKey

extension , 49

 M, N
 manifest_version attribute , 12
 Match pattern permission , 118, 144, 160
 Messaging APIs

 and events , 95–96
 CS and ES extension (see Content

scripts and event scripts)
 CS and WS extension (see Content

scripts and web page scripts)
 Extensions framework , 95
 popup script and event script ,

115–116
 PS and CS extension (see Popup

scripts and content scripts)
 web page scripts and event scripts

 chrome.runtime.sendMessage
method , 96

 Console panel , 97–98
 event_script.js , 99
 listening event , 98, 100
 long-lived connections , 101–102
 manifest role , 100
 parameters , 96
 responseCallback parameter , 98
 send_message , 96
 webpage_script.js , 97–98

 O
 Omnibox inputs

 chrome.omnibox.onInputChanged , 82
 chrome.omnibox.onInputEntered , 82
 event script component , 79, 81–82, 84
 Extensions Management page , 80
 HelloOmniboxInput

 background page , 84
 event_script.js , 81–82

Google Chrome Extensions APIs (cont.)

■ INDEX

167

 interacting, omnibox , 81, 83
 manifest.json , 81
 setting, default suggestion , 84
 suggested results , 82

 icons attribute , 80
 keyword property , 80
 16px icon , 80

 OnConnectExternal event , 102
 Options page, extensions

 HTML page , 146
 manifest , 145–146
 myOptionsPage_1.js , 148–149
 myOptionsPage.html , 147–148
 OverridePages extension , 146
 override prompt , 147

 OverridePages extension , 151–153

 P, Q
 PageActionNotes Extension

 background page , 75
 Console panel, popup , 76
 declarativeContent API , 74
 event script component , 74
 popup component , 75–76
 stackoverfl ow.com host , 74, 77
 textarea , 77

 Page-Action popup , 38
 Popup scripts and content scripts

 alarms API , 111
 chrome.runtime.onMessage event , 110
 chrome.tabs.query method , 108
 chrome.tabs.sendMessage

method , 108
 content_script.js , 110
 long-lived connection , 110
 manifest.json , 108
 parameters , 108
 popup_script.js , 109

 PS and ES extension , 109
 responseCallback , 108

 Popup scripts and event scripts
 background attribute , 115
 chrome.runtime.onMessage

event , 117
 chrome.runtime.sendMessage

(message,response
Callback) , 116

 downloads API , 116
 event_script.js , 116
 manifest.json , 115
 popup_script.js , 115
 sendResponse callback , 117

 port.onMessage event , 102

 R
 Run HelloOmniboxInput command , 85

 S
 Sandboxing , 4
 ShowTime , 9

 T, U, V, W
 Th emes, Google Chrome

 color and tint elements , 157
 color tint, inactive window , 159
 images , 156
 incognito mode , 159
 manifest fi le , 155
 New Tab page, applied theme , 158
 properties , 157

 X, Y, Z
 XHR API , 118, 142–143

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Google Chrome Extensions
	What Are Google Chrome Extensions?
	Support for Browser Extensions
	Extensions Are Not Plug-ins
	Extensions and Plug-ins

	Notable Examples
	Adding Extensions from the Store
	Technologies to Create Extensions
	How Are Technologies Used?

	Extensions API
	Creating Your First Extension
	Validating a JSON File
	Creating the Manifest
	Adding the Button: Browser-Action

	Loading the Extension Folder
	Debugging an Extension
	Inspecting the Popup
	Sources and Resources Panel
	Console Panel

	Distributing on Store
	Summary

	Chapter 2: Architecture Overview
	What Is User Perspective?
	Components Involved in Creating Chrome Extensions
	Extension Runtime
	Scripts Representing the Runtime

	Input Components: Part One
	The Browser-Action and Page-Action Components
	Need for Separate Actions
	Role of the Manifest for This Component
	Defining the Component

	Component Usage

	Shortcut Key or Command
	The onCommand Event

	Event Scripts
	The Need for Event Scripts
	Role of the Manifest for This Component
	Background Scripts

	Event Objects
	Revisiting the onCommand Event
	Declarative Event Handlers
	The HelloPageAction Extension
	The declarativeContent API
	Adding and Removing Rules
	Using ShowPageAction

	Content Scripts
	Role of the Manifest for This Component
	HelloContentScript Extension

	Examples of Components
	BrowserActionNotes Extension
	PageActionNotes Extension

	Summary

	Chapter 3: API Availability and Messaging
	Input Components: Part Two
	Omnibox Inputs
	Role of an Event Script for this Component

	Context Menu Items
	Creating an Item

	Revisiting Content-UI
	The HelloContentUI Extension

	Messaging for Communication
	APIs and Events
	Web Page Scripts and Event Scripts
	Listening to the Event
	Role of the Manifest for This API
	Using Long-Lived Connections

	Content Scripts and Event Scripts
	Popup Scripts and Content Scripts
	Using a Long-lived Connection

	Content Scripts and Web Page Scripts

	Popup Scripts and Event Scripts

	Google Chrome Extensions APIs
	Declare Permissions
	An Example of Permissions
	APIs Requiring Permissions
	Optional Permissions

	Alarms API
	Bookmarks API
	Creating a Bookmark
	Updating a Bookmark
	Searching for Bookmarks
	Using the Bookmarks Hierarchy
	Associated Events

	Downloads API
	Downloading a File
	Cancelling or Resuming a Download
	Opening a Download
	Deleting a Download
	Associated Events

	History API
	Adding and Removing URLs
	Associated Events

	Notifications API
	Creating and Clearing a Notification
	Updating a Notification
	Associated Events

	Storage API
	Sync versus Local Storage
	Setting and Getting Items
	Removing Items
	Associated Events

	Tabs API
	Creating and Removing a Tab
	Updating a Tab
	Capturing a Tab
	Associated Events

	XHR API

	Summary

	Chapter 4: More About Extensions
	Providing an Options Page
	Role of Manifest for this Component
	Writing an Options Page

	Working with Override Pages
	Role of Manifest for this Component
	OverridePages Extension

	Creating Themes for Google Chrome
	Extensions Development: Security Concerns
	API Permissions
	Match Pattern Permissions
	Externally Connectable
	Storage
	Content Script

	Summary

	Index

