Michael W Lucas
Allan Jude

Praise for other books by Michael W Lucas

FreeBSD Mastery: Storage Essentials

“If you're a FreeBSD (or Linux, or Unix) sysadmin, then you need this
book; it has a lof of hard-won knowledge, and will save your butt more
than you’ll be comfortable admitting. If you've read anything else by
Lucas, you also know we need him writing more books. Do the right

thing and buy this now.” - Slashdot

“There’s plenty of coverage of GEOM, GELI, GDBE, and the other
technologies specific to FreeBSD. I for one did not know how GEOM
worked, with its consumer/producer model - and I imagine it’s
complex to dive into when you've got a broken machine next to you. If
you are administering FreeBSD systems, especially ones that deal with

dedicated storage, you will find this useful.” — DragonFlyBSD Digest

Networking for Systems Administrators

“There is a lot of useful information packed into this book. I recom-

mend it!”—Sunday Morning Linux Review, episode 145

After reading this book, you'll have a strong footing in networking.
Lucas explains concepts in practical ways; he makes sure to teach tools
in both Unix/Linux and Windows; and he gives you the terms you'll
use to explain what you're seeing to the network folks. Along the way
there’s a lot of hard-won knowledge sprinkled throughout...” - Slash-
dot

Sudo Mastery

“It's awesome, it’s Lucas, it’s sudo. Buy it now.” — Slashdot

“Michael W Lucas has always been one of my favorite authors because
he brings exceptional narrative to information that has the potential
to be rather boring. Sudo Mastery is no exception.” — Chris Sanders,

author of Practical Packet Analysis

Absolute OpenBSD, 2nd Edition

“Michael Lucas has done it again.” - cryptednets.org

“After 13 years of using OpenBSD, I learned something new and
useful!” - Peter Hessler, OpenBSD Journal

“This is truly an excellent book. It’s full of essential material on
OpenBSD presented with a sense of humor and an obvious deep
knowledge of how this OS works. If you're coming to this book from
a Unix background of any kind, youre going to find what you need
to quickly become fluent in OpenBSD - both how it works and how
to manage it with expertise. I doubt that a better book on OpenBSD
could be written” — Sandra Henry-Stocker, ITWorld.com

“It quickly becomes clear that Michael actually uses OpenBSD and is
not a hired gun with a set word count to satisfy... In short, this is not
a drive-by book and you will not find any hand waving.” - Michael
Dexter, callfortesting.org

DNSSEC Mastery

“When Michael descends on a topic and produces a book, you can
expect the result to contain loads of useful information, presented
along with humor and real-life anecdotes so you will want to explore

the topic in depth on your own systems.” — Peter Hansteen, author of
The Book of PF

“Pick up this book if you want an easy way to dive into DNSSEC” —
psybermonkey.net

SSH Mastery

“...one of those technical books that you wouldn’t keep on your
bookshelf. It’s one of the books that will have its bindings bent, and
many pages bookmarked sitting near the keyboard.” — Steven K Hicks,
SKH:TEC

“...SSH Mastery is a title that Unix users and system administrators
like myself will want to keep within reach...” — Peter Hansteen, author
of The Book of PF

“This stripping-down of the usual tech-book explanations gives it

the immediacy of extended documentation on the Internet. Not the
multipage how-to articles used as vehicles for advertising, but an in-
depth presentation from someone who used OpenSSH to do a number

of things, and paid attention while doing it” — DragonFlyBSD Digest

Network Flow Analysis

“Combining a great writing style with lots of technical info, this book
provides a learning experience that’s both fun and interesting. Not too
many technical books can claim that” — ;login: Magazine, October
2010

“This book is worth its weight in gold, especially if you have to deal
with a shoddy ISP who always blames things on your network” —

Utahcon.com

“The book is a comparatively quick read and will come in handy when

troubleshooting and analyzing network problems.” —Dr. Dobbs

“Network Flow Analysis is a pick for any library strong in network
administration and data management. It’s the first to show system
administrators how to assess, analyze and debut a network using
flow analysis, and comes from one of the best technical writers in the

networking and security environments.” — Midwest Book Review

Absolute FreeBSD, 2nd Edition

“I am happy to say that Michael Lucas is probably the best

system administration author I've read. I am amazed that he can
communicate top-notch content with a sense of humor, while not
offending the reader or sounding stupid. When was the last time you
could physically feel yourself getting smarter while reading a book? If
you are a beginning to average FreeBSD user, Absolute FreeBSD 2nd
Ed (AF2E) will deliver that sensation in spades. Even more advanced
users will find plenty to enjoy.” — Richard Bejtlich, CSO, MANDIANT,
and TaoSecurity blogger

“Master practitioner Lucas organizes features and functions to make
sense in the development environment, and so provides aid and
comfort to new users, novices, and those with significant experience
alike” — SciTech Book News

“...reads well as the author has a very conversational tone, while giving
you more than enough information on the topic at hand. He drops
in jokes and honest truths, as if you were talking to him in a bar” —

Technology and Me Blog

Cisco Routers for the Desperate, 2nd Edition

“If only Cisco Routers for the Desperate had been on my bookshelf
a few years ago! It would have definitely saved me many hours of
searching for configuration help on my Cisco routers.” — Blogcritics

Magazine

“For me, reading this book was like having one of the guys in my
company who lives and breathes Cisco sitting down with me for a day
and explaining everything I need to know to handle problems or issues
likely to come my way. There may be many additional things I could
potentially learn about my Cisco switches, but likely few I'm likely to

encounter in my environment.” — IT World

“This really ought to be the book inside every Cisco Router box for the
very slim chance things go goofy and help is needed ‘right now’* —

MacCompanion

Absolute OpenBSD

“My current favorite is Absolute OpenBSD: Unix for the Practical
Paranoid by Michael W. Lucas from No Starch Press. Anyone should
be able to read this book, download OpenBSD, and get it running as
quickly as possible” — Infoworld

“I recommend Absolute OpenBSD to all programmers and
administrators working with the OpenBSD operating system (OS), or

considering it” — UnixReview

“Absolute OpenBSD by Michael Lucas is a broad and mostly gentle
introduction into the world of the OpenBSD operating system. It is
sufficiently complete and deep to give someone new to OpenBSD

a solid footing for doing real work and the mental tools for further
exploration... The potentially boring topic of systems administration
is made very readable and even fun by the light tone that Lucas uses.”

— Chris Palmer, President, San Francisco OpenBSD Users Group

PGP & GPG

“...The World’s first user-friendly book on email privacy...unless youre
a cryptographer, or never use email, you should read this book” — Len

Sassaman, CodeCon Founder

“An excellent book that shows the end-user in an easy to read and
often entertaining style just about everything they need to know to

effectively and properly use PGP and OpenPGP.” — Slashdot

“PGP & GPG is another excellent book by Michael Lucas. I thoroughly
enjoyed his other books due to their content and style. PGP & GPG
continues in this fine tradition. If you are trying to learn how to use

PGP or GPG, or at least want to ensure you are using them properly,
read PGP & GPG.” — TaoSecurity

Tarsnap Mastery

“If you use any nix-type system, and need offsite backups, then you
need Tarsnap. If you want to use Tarsnap efficiently, you need Tarsnap

Mastery.” —-Sunday Morning Linux Review episode 148

Praise for Allan Jude

“[Cloud vs bare metal] is all about tradeoffs and understanding your
requirements. Allan’s BSDCan talk from a few years ago was great.” —
Simon L. B. Nielsen, Google SRE

“Allan’s work on the ZFS section of the handbook was really helpful
and severely reduced the need for Googling things” — Marie Helene
Kvello-Aune, FreeBSD/ZFS User

FreeBSD Mastery:

ZFS

Michael W Lucas
Allan Jude

FreeBSD Mastery: ZFS
Copyright 2015 by Michael W Lucas and Allan Jude.
All rights reserved.

Authors: Michael W Lucas and Allan Jude

BSD Daemon Copyright 1988 by Marshall Kirk McKusick. All rights reserved.
Copyediting: Lindy Lou Losh

Cover art: Beastie-cycling, illustration copyright © 2015 Eddie Sharam,
after Bicycling, 1887, by Hy Sandham.

ISBN-13: 978-0692452356
ISBN-10: 0692452354

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, record-
ing, cuneiform, or by any information storage or retrieval system, without the prior
written permission of the copyright holder and the publisher. For information on
book distribution, translations, or other rights, please contact Tilted Windmill Press
(accounts@tiltedwindmillpress.com)

Product and company names mentioned herein might be the trademarks of their
respective owners. Rather than use a trademark symbol with every occurrence of a
trademarked name, we are using the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is provided on an “As Is” basis, without warranty.
While every precaution has been taken in the preparation of this work, neither the
author nor Tilted Windmill Press shall have any liability to any person or entity with
respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in it.

Tilted Windmill Press

https://www.tiltedwindmillpress.com

We dedicate FreeBSD Mastery: ZFS to our good friend
Paul Schenkeveld
who sadly passed away as we wrote this book.

Brief Contents

AcCKNOWIEdGEMENLSc.cuuvueuieciriciriciricrrecieceeeeeie e 1021
Chapter 0: INtroduction..........c.ccccuveeuecrnecrnecrnicrniereerseeseesseeneeaenes 1
Chapter 1: Introducing ZFS ..., 15
Chapter 2: Virtual Devicescoueuveeuneerreeineeineeineeneeseesseenenns 23
Chapter 3: POOLS.......c.oveuieiieiieiieieceeieeeeiee e seaens 45
Chapter 4: ZFS Datasetscocccuveeuveerneerneerneenneeineenseessesensesessenens 75
Chapter 5: Repairs & Renovationscceeeeeeereecreecreeereencrnenes 103
Chapter 6: Disk Space Managementceceeueeeueeereecreecreecrnenens 131
Chapter 7: Snapshots and Clones.........cceeeveveuveerrevcreecreenereencnnenens 161
Chapter 8: Installing to ZFS ..., 195
AFEIWOId .. 201

ADOUL the AUTIOTS .c.eeeeeeeeeeeeeeeee et eeeeete e e e eeeeseeseeas 203

Complete Contents

Chapter 0: INtroduction..........c.cccuveeueeunecrrecireeinecreeree s
WHhat i ZES? ... sesenne
ZEFS HiSTOTY ..ottt
PrerequiSites......cooiiviiiiniiiiniiiiicicc e

WHhETE 10 USE ZES? ..ot e e eeee e e eeeeeeeseeeeseeeeeseeesaeene
ZES HaTAWaTC ..ot eeeeeeee et e e eeeeeeseesseeeseeeeesaesseenns

SATA V8. SAS VS. SSD ..t
Disk Redundancy........ccecuvecurecrricrrincrneerneeneecieeceeeeseesesenesenne
Physical Redundancycccecvcurevcrriernencinenceceeeeeseneeenne
Disk Installation and Labelingcccceeeuveurencurincerincrnnerennennn.
About this BOOKccccocuiiiiiiiiiiiiciccicccccns
BOOK OVEIVIEW ..o

Chapter 1: Introducing ZFS ...,
ZES Datasetsccccciuiiimiiiiiiniiininiii s
ZFS Partitions and Propertiesccceveueeveurevcurercrrencueenceeenerennenenne

ZFS LIMILS ..ot
Storage Pools.........ccccuiuiiiciiiic e
Virtual DeVICESc.cuvucuicrriciiciriciecieeieeeieeeseese s ssesenne
Blocks and INOesc.occuveurecunicrniciricircircecececeeeenene

Chapter 2: Virtual Devicescoueuveeuneerreeineeineeineeneeseenseenenens
Disks and Other Storage Mediacccocoveviiiniiniininicincininicicnnns
Raw Disk StO1agecceueuiuvimniricinciinisicccicicscciesennns
Partition StOrage.........cccoveueviiviuciciiiicieicccc e
GEOM Device StOragecoovuevevreimnieiincicininicieeceie s
File-Backed Storage ...
Providers vs. DisKs........cccoeuveuiimiriciniinininicicccciiens

.1

.5

VDEVS: VITtUAL DOVICES ..eeuveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeereesnesseeens 28

VDEV Redundancyccceeeurineccrninenccinnecereneceeeeeseesesenene 29
Stripe (1 Provider)oocoeeeeeeueieieieieinirersseseeeeeeeeie e 29
MIrrors (24 Providers)ociceeeeieeeeeneereereneeeereereseessesesseseenenne 30
RAID-Z1 (3+ Providers) ..oocveeveeeieciiiinreneseeeeseessessessesesesssesens 30
RAID-Z2 (4+ Providers) ..ocoveevevieveicienieneseseeseessessessesesesssensens 31
RAID-Z3 (5+ Providers)...ooceeeieviiciesieseseeeeseesiessessesesssssensens 31
RAID-Z Disk Configurations...........ceceeeeueureneceerrenecrenneneereunenenes 31
The RAID-Z Rule Of 25.....cceiiiririeieeeiirisieieeeeeesiese e 32
Repairing VDEVSs ... 32

RAID-Z versus traditional RAID.........ccccoceveirinnnrereeeiirieeeennen 33

Special VDEVS ..ottt 34
Separate Intent Log (SLOG, ZIL)coveveuerrnercreinnecreiniccreeneenes 34
CaChe (L2ZARC) ettt eve e essenen 35

How VDEVs Affect Performance.........cccoceoeeveirenierereeenerenenienenennnes 36
ONE DiSK vttt 38
TWO DISKS...cuiiieieieieiiiiieceecc ettt 38
TRIEE DISKS .ottt se e ssseenes 39
FOur or Five DISKS......ccccvuvieieeeiiinieieeeceteetee e 40
Six t0 TWelve DiSKSc.covvieieieieiiiiirieieccceeeee e 41
Many DiSKS ...oovueecieiicciriniccieecee et enees 42

Chapter 3: POOIS.....cccociiieieieieieieiirire ettt 45

ZES BIOCKS.....viviiiiiiiirieieeictisiee ettt se e s s s sans 45

Stripes, RAID, and POOIS.......c.cccceeueeueiiririrrrrrreeeeeeeieeeenen 46
Viewing POOIS.......c.ovvceiriniciciriceicceeccieece s 48
Multiple VDEVS....coiiiriieeeeeeieieisieeesseseseseeeseeenesesenenes 50
Removing VDEVs.......cciiiiiiiiiciicns 51

Pools Alignment and Disk Sector Size........cccccoeveveerrnnccrnnencncnnns 51
Partition AIgNment.........ccouvecueirinicrrinecernineceenecreeseeeeseeneenes 51
ZES SECLOT SIZE ..ttt 52
FreeBSD 10.1 and Newer Ashift.........ccccooevrreeevennnneeecenn, 53
Older FreeBSD Ashift......c.cccoeueiriririeieieeeiieeieeeeesieseve e 54

Creating Pools and VDEVS.......ccccovveirnencennecennecieneceneeneenes 55
SAMPIE DIFIVES ...ttt 55
Striped POOIS......oviiicccccecee e 56
Mirrored POOISc.ccvvieirieieieiiiieieeeeeetstee e 56

RATID Z POOIS et eeeeeeeeeeeeeeesee et eeeesseeesteeeeseessneeseesnes 57

MUIti-VIDEV POOIS ...eeseeeeesaessaeene 59

Using LOg DEVICES ... 61
Mismatched VDEVS.....c.cooiviiriceneceneccieeseeeeseeseesenes 62
Reusing Providersccccceerccueininicininiceinnececneccieeseeeeseeneeaes 63
POOL INtEGIILY ..ottt eeeaeaes 64
ZES INeGLItY ..ociiiiiiiiiiiiicccciccce s 64
Scrubbing ZES ...t 65
SCIUb FIEQUENCY ...cuvviieciiiccieiriccieiecctreecieeeee e 67
POOI PrOPErtiescccceueueueueieuririniririsisereneeeeeeieieeiese et sessesasssssenes 67
Viewing Pool Propertiescoocervevceuninecueenenccrnenencecneenecnennns 67
Changing Pool Properties.........coooccevevcerrnececininecrennenccreenecaes 68
POOL HISTOTY ..ttt sseaeaenees 69
Zpool Maintenance AUtOMAtiONcocveveeereeuererereiereeeieieerisesenenes 70
Removing POOIS.......c.coveueirinicciriicieircceinecceeccteeeee s 71
Zpool Feature Flags........c.covecueurinecrrininccreinicceeinecereeseceeneeneeaenes 72
Viewing Feature Flagsc.ccccoveveeirnecenncncencceneccenecenens 73
Chapter 4: ZFS Datasetsccccevurururerereririnineneeeeeeeienesesesesessesesssees 75
Datasets ..o 76
Dataset TYPes.....cccovuiiivinininiiiiiiiinicccie s 77
Why Do I Want Datasets?..........cocevureceurmneceeinenccrnenencecreenenenenens 78
Viewing Datasets........ccooeiviiniiiniiiniiicccnns 80
Creating, Moving, and Destroying Datasets...........c.cccoeuverecrrurecnee 81
Creating FileSyStems........ccvuvecueirenccrrineccrnineceeneeereseeeeneeneenes 81
Creating VOIUMESccccccueurivecreiniiieinieeieininecseeeeesesseesesesseaeaes 82
Renaming Datasets..........cccoviiviiiiniininiiiciicccnns 82
Moving Datasets.........cccoeviiiiniiiniiiiniii 83
Destroying Datasets..........coviiviniiniiininiiniicicicecinns 83
ZES PrOPEILIEScueviueireiniiieiietteicteretteseesseeeseesae et ene 84
Viewing Properties ... 84
Changing Properties..........cooveceerecreinercernineceeineneesenneeeeseeneenes 86
Read-Only Properties..........ococccererecrrinercuernneceeenenecrenneseesenneenes 86
Filesystem Properties..........cocccerrecrrireneecreinencecueineeereeneceeseeseenenns 87
ALITIC oot 87
EXEC 1vinrererieretetetestet ettt ettt b et ae e 87
TEAAONIY ...ttt 88
SEEUIA oo 88

User-Defined Propertiesoovvvvevireneneneeeeeeeeieieeeieeesesesenens 88

Parent/Child Relationships..........coceveverenencnenceeeeeeeeeeeeseeeenes 89

Inheritance and Renaming...........cccceveecucrrneceeinnccreenenecrenneenes 90
Removing Properties.........ccocovvvviininiiniiniciccinciciinns 91
Mounting ZES FileSyStems..........cocccueurireucreineneecueinenccreeneeeereeneeaenns 91
Datasets without Mount Points..........cceccerveececernccrenenccrnnencnes 93
Multiple Datasets with the Same Mount Point............cccccceueueneee 94
Pools without Mount POINts..........cccceveecerrneceeinenecreenenecreineenes 96
Manually Mounting and Unmounting Filesystems 96
ZFS and /etc/fstabcccceuvvecueininiciircceccecece s 96
Tweaking ZFS VOIUMES.......cccceuvivecrrirecreinicceinicceinecece e 97
Space ReServations.........oeeeeveerieueeniecninieinieeeeecineeeseeseesaenens 97
ZVOL MOAE ...ttt 98
Dataset INtegrity.......coveviviiiniiiiiiiiniciiccs 99
CheCKSUMS. ...c.cuviiiiieicietrcce et aeaeaes 99
COPILS vttt ettt 100
Metadata Redundancy ... 102
Chapter 5: Repairs & Renovationscoceceeeeveveeeueuereeeneneneenenenenes 103
RESIIVETING....ecvviiiciciiicii e seeesees 103
Expanding Pools.........cccceuriceuniniicininiccrnecceceeeecnesneeaenes 105
Adding VDEV3s to Striped Pools........cccoveeecurnecernnecrcinnccnens 106
Adding VDEVs to Striped Mirror Pools.........c.cccoevvecucirencenees 106
Adding VDEVs to Striped RAID-Z Pools........cccccvuvecueurenencnes 107
Hardware STatuscocccereccreininceinineeernneceeeeeseseeeesesseeacsens 108
ONLNE...oiiiiiiiciice et ses 109
Degraded........ccerieeinneceirceece s 109
FaUlted......cuoviiceciiccicccr s 109
UNAVAIL ..ot seeenes 110
OfFINE ...ttt seeeaes 110
REMOVEA ...t seeeaes 110
Errors through the ZFS Stack......c.ccoecvcuvnnccnnnccnncccnccann 110
Restoring Devices.........ocviiiniiiiniiiniiiiiccccce 112
MiSSING DIIVES.....cooviuiiviiiiiiiiiccicas 112
Replacing DIIVESc.coccueuriccuriniieirineccirinecieeeeieseeescsesseeaesens 112
Faulted DIIVeScccccueurieceeiriicierccieecceeeeee e seeneeeenens 113
Replacing the Same Slot......c.cccccueurineccreinncccncerccereeceens 114
Replacing Unavail DIives.......c.cceovevccrernenccrenenecreineccreineneeenes 115

Replacing Mirror Providers.........ccoocccerenccueuneneceeenenccreenencecnnns 116

Reattaching Unavail and Removed Drives.........ccccoeeccueureenceees 117

Log and Cache Device Maintenanceccocoeeveeuevrerceceerrencecnees 117
Adding a Log or Cache Deviceccccevureveeerrenecrernnecrcenenccnnns 117
Removing Log and Cache Devices..........coccceurnecrernenccrcinencecnees 118
Replacing Failed Log and Cache Devices.......c.cccevvecreurencuceees 119

Exporting and Importing DIIiVescccccvveveeurneccerrnccuernenccnens 119
EXpOrting PoOLS........cccceuriieueininiciriniccinineccieecreeeeenesneeeenens 120
IMPOrting POOILScccvuecueirinicieiriecieirccecceseeceeseeeenes 120
Renaming Imported Pools.........ccooveereinnccuennicreirccrenececnens 121
Incomplete PoOLs........cccciiiiiieeieicieicinirsss e 122
Special IMPOTLS......ccviveeeeeieeieieieieieieieiere e 123

Larger ProVIdersccocccereccurinincerninecicirinececeieeseseeescsesseeaenens 124

Zpool Versions and Upgradesccoceceurerercucurnecernenccuernenccnnns 127
ZFS Versions and Feature Flagscccovccuennecrennccrcnenccnnns 128
Zpool Upgrades and the Boot Loader.........ccocecceuevvnccreinencnnnes 130

FreeBSD ZFS Pool Limitations.........ccoeceurunecueurinecueunenccuenrenccnnns 130

Chapter 6: Disk Space Managementc..cecceeurereererrerccueerencecnes 131

Reading ZFS Disk Usagecccvuveueururercuerrinenceeinnecreinenecrenreneaenes 131
Referenced Data........c.cvecueurinicieinenecreineccreneeeieseeesesseeeenens 132
Freeing Space.......ccoviiinininiiiiiiiccie 133

Disk Space Detailcccoeueueunrnnnirrrireeeeeeeeeeeeeeeees 134

P00l Space USage.......ccoeueuureeecuriniicieinicicireneciceieeseseeesenesseeaesees 136
ZFS, df(1), and Other Traditional Tools...........cccceoevrrerrerrrennee. 136

Limiting Dataset Size.......ccccovviiiinininiiiiccinincccciceaes 138

ReServations........ccoceiviiiniiiiniiiiicccc e 139
Viewing Reservations...........cccoeeiviiniiinicnnciniciciinns 141
Setting and Removing Reservations...........c.cooeecuevrencecreerencecnnes 141

[1T = TR 142
Dataset QUOLASoovveiiieeeeeeeeceeecee ettt e 142
Setting QUOLAS ..o 143
Viewing QUOLAS......ccccviviiiiiiiinininiicci s 144
Exceeded QUOTAS.....covivviveeeiieieietcteeeeee ettt esve et nene 145
User and Group QUOLASc.cceeueveurueiririreninirireneseseeeeseeenenenes 145
Viewing Space Used and Existing Quotas per Dataset............ 145
Assigning and Removing User and Group Quotas.................. 146

Viewing Individual QUOtas..........ccccoeeerrnenccrrnecerrreccreceenens 147

ZES COMPIESSION ...uveuiviuiriereinieieierettereeeseesteseesaesestesesesseseeesenes 147

Enabling Compression..........cooceereccrnenencecuneneerersenecrenneneeenns 148
Compression Algorithms.........c.ccoeveceueinnccennccenncceneecnens 149
Compression Properties..........cocoveeveerenieenineeninencniecseneeennnne 150
Choosing an AlGOrithmcccccevneccininnccennicerccereeeens 150
When to Change Compression Algorithms.......c.ccccocecueureeuceees 152
Compression and Performance..........coeccueurenecreinenccreinencecnnns 153
Deactivating COmpressionccovvviiveuecrinininnineccisininnsnenens 154
Deduplicationc.ceeecueirececuriniieeeceeneciee e seeaesens 154
Deduplication Memory Needs........ccccvuveeeueunerecrernencecreirencecnnns 155
Deduplication Effectivenesscoccceuvenccueunenecreinenccreinencecnens 157
Enabling Deduplicationcoccceuveeccuninenccunnecrernneceineneeenens 159
Disabling Deduplicationcccevuveeuerrencceeunenecreenenccreerenceennns 159
Chapter 7: Snapshots and Clones...........cooeeveveveeeeeereieeennnenenes 161
COoPY-0N-WIILe ..ot 162
How Snapshots WOorkc.ccevvnnnnncccceececeeenes 164
USIing SNapShoLsc.ccoveucueiriccrriiceieeccrereciceee et seeaenens 166
Creating a SNapshot.......ccccceurivcreininecreircceece s 166
Dataset Changes and Snapshot Space.........c.ccoecccuevvccrcinnccnnes 166
Recursive SNapshotscccoeeeueeueieieiiininirnrreeeeeeeeeienes 167
Advanced Dataset and Snapshot Viewingccccevecueurenccuennee. 168
View Datasets by TYPecocccuevrrecrrininccrniriccerecreeeecseeneeeenes 169
Modifying zfs list OULPUL......c.oevevrurirccrrrccrreceeeeereeecaees 171
Listing Snapshots by Default.........ccccccoervecenncnnncccnnccnnes 172
Scripts and ZFS ... 172
Per-Snapshot Space USec.ccvvvevivininineneneeeeeeeeeeeieeeesenes 173
Accessing SNAPShOLScccuevrericreiriecieircceceeece e 174
Secret SNAPAIT......ocovviveeceeeceeeeee e 174
Mounting Snapshots........cccccerrecrrininccrninenceneeeeseeesneeeenens 175
Deleting Snapshots.........c.covccueirirccrrinenccirnecceeeeeecee e 175
Destruction Dry Runs........cccoovviiininiiniiccce, 175
Recursion and Rangescococccevveveerernencceenenecreinenecneeneeeenens 176
ROING BACK ...ttt eeaeaes 177

Diffing snapshots ..., 179

Automatic Snapshot Regimencccevveveueunnccreinncceeinenccrennn. 180

Rotation Schedule.........ccoccceuivcinnicnccccrcccreees 180
ZES TOOIS .ttt seeacses 181
2f5-aUt0-SNAPShOL.....ciiiccccc e 182
Enabling Automatic Snapshotscccccevevceurreccernncccinenccnens 183
Viewing Automatic Snapshotscccccereveeurrercernneceinenecnnn 184
Getting Clever with zfs-auto-snap..........cecccoevvecrevnccreirenccnens 185
HOLAS ..ttt esees 185
BOOKMATIKScoviiiiicciiicciccee et seeaeaees 186
CLONES ..ttt 187
Creating @ ClONec.cvuecueirenicieininececcreeeereseeeesesseeeenens 187
VIeWIng ClONESccoccueuriecueiniicieiniciereineeieseeseeseseesesesesseeacsens 188
Deleting Clones and Snapshots.........c.cceeccueurenecreinenccreinencecnnns 189
Promoting ClONes.........coccueureicreinenicreineccreniecieseeeeseeseeeenens 190
Safely Managing Clones, Snapshots, and Recursion. 193
Chapter 8: Installing to ZFSccoceevvevcenncernccereceneeeenes 195
FreeBSD Reference Install..........ccccerivvccinnnccnneccncccreccenes 196
Custom ZFS Installation Partitioningcccccoeveveeueencccrernenenee 196
Disk Partitioning.........cceceeeceeurerecreurenecreunenccreeneneeresseescsesseseeenens 197
POOL Creation......c.coccueuriecueiriccieiniecienececre e sesseeaenens 197
Datasets ..o 198
Post-Install SEtupcoceeveeeeiiieieeecrrre e 199
Manually Installing FreeBSD........ccccocoveeurnnccnnenccnnccecnenccnen 200
AFEIWOTId ..ttt 201
About the AUthOrS......cccoiiciiiriiceccer e 203
Never miss a new Lucas release!ccccoveeuvnvcernncccnnccnees 205

More Tech Books from Michael W Lucascceeeveveeeeeveeeneenne. 205

Acknowledgements

The authors would like to thank all the people who have helped us
with this book in one way or another. That includes a whole bunch of
people on the FreeBSD mailing lists, lots of folks on social media, and
every customer who’s ever damaged their filesystem.

Wed also like to thank the technical reviewers who took time
from their lives to give us feedback: Brooks Davis, John W. De Bos-
key, Alexey Dokuchaev, Julien Elischer, Pedro Giffuni, Marie Helene
Kvello-Aune, Kurt Jaeger, Alexander Leidinger, Johannes Meixner, and
Alexander Motin. We might not enjoy being told exactly how we’re
wrong, but we do appreciate it.

Lucas would like to specifically thank iXsystems for their excellent
test hardware, his wife Liz for everything, and Costco for their ul-
tra-economy-size ibuprofen.

Jude would like to thank the *BSD community for welcoming him
so warmly, with special thanks to his mentors Benedict Reuschling,
Warren Block, and Eitan Adler, as well as Dru Lavigne, Devin Teske,
George Neville-Neil, and Matt Ahrens.

Lucas would also like to thank Jude for that effusive acknowledge-
ment of specific cool people in the FreeBSD community, thus making
him look comparatively churlish. But he’s thanked specific FreeBSDers

before, so it could be worse.

Chapter 0: Introduction

Much of our systems administration training focuses on filesystems. A
computer’s filesystem dictates so much of its performance and behav-
ior. Over the last decades we've rebuilt entire systems because a major
filesystem was configured incorrectly, or the filesystem chosen wasn't
suitable for the task, or because subtle filesystem corruption spread
throughout our files and now we couldn’t trust even the basic pro-
grams the operating system had shipped with. Anyone who's been a
sysadmin more than a few years has learned how to repair filesystems,
rebuild filesystems, work around bugs from vexing to nearly lethal,
rearrange disks to support filesystem limitations, and swear extensively
at filesystems in no fewer than nine languages.

Some of today’s most popular filesystems are, in computing scale,
ancient. We discard hardware because it’s five years old and too slow to
be borne—then put a 30-year-old filesystem on its replacement. Even
more modern filesystems like extfs, UFS2, and NTFS use older ideas at
their core.

The Z File System, or ZFS, is here to change all that.

What is ZFS?

ZFS is a modern filesystem built with the core idea that the filesystem
should be able to guarantee data integrity. ZFS computes a checksum

for every piece of data on disk, so it can identify when the storage

Chapter 0: Introduction

media has experienced an error and damaged the data. It performs the
same cryptographic signatures on all of the metadata. When—not if—
the underlying hardware has a problem or just misfires, ZFS realizes
that the data it has retrieved doesn’t match its records and can take
action. ZFS even automatically corrects discovered errors! ZFS refuses
to serve data it knows to be corrupt.

Filesystem designers had these ideas 30 years ago, but the hard-
ware of the time couldn’t perform this amount of error checking
with reasonable performance. The creators of ZFS looked at current
hardware as well as where hardware was going, and decided that ZFS
would take full advantage of emerging hardware. The result is a filesys-
tem that’s not only more reliable than traditional filesystems, but often
faster.

Today, it seems that traditional filesystems were written with a
“good enough for now” philosophy. Many filesystems suffered from
arbitrary size limits, which sufficed for five years, or ten, or even 20 but
eventually required rewriting and reworking. Many older filesystems
couldn’t handle partitions larger than two gigabytes, which these days
is smaller than a flash drive you'll get for free attached to a bottle
opener. (And really, you picked that up because you wanted the bottle
opener.) But in the early 1980s, when UFS was first released, two giga-
bytes was a ridiculously large amount of storage that would cost many
millions of dollars. Filesystems like FAT needed to efficiently use the
space on 360 KB floppy disks. UFS was “good enough for now,” and for
some time to come.

ZFS is deliberately designed to survive the foreseeable future and
more. Many new filesystems use 64-bit identifiers and indexes inter-
nally, so they’ll be usable without change for the next ten or 20 years.
ZFS use 128-bit identifiers internally, giving it enough capacity to

work on storage systems for the next several millennia. The Enter-

2

Chapter 0: Introduction

prise’s computer on Star Trek probably runs ZFS. Future sysadmins
who must deal with disks, partitions, and files that exceed ZFS’ built-in
constraints will lump us together in history with the cavemen and the
first interstellar travelers.

Strictly speaking, ZFS is not just a filesystem. It’s a combination
filesystem and volume manager. Combining these two functions in
one set of software does impose certain limitations, which we’ll talk
about later—but it also makes some very interesting things possi-
ble. ZFS, being aware of exactly where data is going on the disk, can
arrange files and stripes optimally, from top to bottom. ZFS can use
secondary fast storage as special-purpose caches, further enhancing
performance.

FreeBSD Mastery: ZFS Essentials takes you through what you must

know to run this modern, high-performance, future-proof filesystem.

ZFS History

Matt Ahrens and Jeff Bonwick created ZFS for Sun Microsystems’
Solaris® operating system. While Sun sold systems of all sizes, its main
focus was high-end server hardware. Sun hardware drove most of the
world’s large databases. Sun offered the ZFS source code to the world
under its Common Development and Distribution License (CDDL).
People began porting ZFS to other operating systems, including
FreeBSD, and contributing changes back to Sun.

Then Oracle bought Sun Microsystems. While Oracle has some
open source software, such as MySQL, most of its software is propri-
etary. Oracle brought ZFS development fully in-house and ceased
providing source code under any open source license.

But the ZFS code was already out in public, and under the CDDL
license terms, Oracle couldn’t stop people from using it. Various open

source projects spun up their own ZFS development efforts.

3

Chapter 0: Introduction

Today, the OpenZFS Project (http://open-zfs.org) is the main coor-
dinator of the open source version of ZFS. OpenZFS brings together
ZFS developers from many companies and operating systems, includ-
ing Linux, OS X, Illumos, and FreeBSD. Matt Ahrens leads the project.

Unlike the rest of FreeBSD, ZFS has a restrictive license. The
CDDL limits one’s ability to file patent lawsuits, and contributions
back to ZFS are automatically put under the CDDL. FreeBSD’s
2-clause BSD license permits anyone to use the code for anything,
including patent lawsuits. But the CDDL permits reuse, redistribution,
and changing of the code, so the code is usable by anyone in any com-
mon enterprise environment. If you want to base a product on ZFS or

include ZFS in another product, however, consult a lawyer.

Prerequisites

This book is written for FreeBSD systems administrators interested

in ZFS. We assume that you are familiar with the basics of FreeBSD,
including installing, configuring users, and managing GEOM-based
storage. You should know what a “storage provider” is and why we use
that term. If you're uncertain of your skills, you might pick up a book
like Absolute FreeBSD (No Starch Press, 2007) or other FreeBSD Mas-
tery titles to augment your knowledge, or consult the online documen-
tation and man pages.

If you're using OpenZFS on an operating system other than
FreeBSD, this book offers a bunch of practical ZFS knowledge and
experience you can take advantage of. You'll need to ignore the
FreeBSD-specific stuff, but you’ll learn how to optimize and manage
ZFS.

We have not tested this book against Oracle ZFS. Oracle has taken
its closed-source ZFS in its own direction, and you're really better off

reading Oracle’s official documentation if you must run Oracle Solaris.

4

Chapter 0: Introduction

You really should know something about disk technologies.
FreeBSD’s ZFS can run atop any GEOM provider, but running on raw
disk offers certain benefits. Running ZFS on a RAID container elimi-
nates those benefits. You should be able to slap a RAID controller into
acting as a bunch of disks.

You should also have a test machine for playing with ZFS. Don’t
buy this book and immediately migrate your main database server to
ZFS! Install ZFS on a test machine, then a less critical machine. Ex-
periment with ZFS features until you're confident you can best con-
figure ZFS to support your systems’ purposes. While ZFS is fast, no
filesystem is so tolerant that a sysadmin cannot configure it to perform

poorly.
Where to Use ZFS?

You can use ZFS anywhere, but in some places it won't work well.

ZFS might not be the best choice for certain virtualization systems.
We've used more than one Linux KVM-based virtualization system
that chokes on ZFS filesystems, and would not be shocked to see other
systems have similar issues. Features such as migration between hosts
and restoring from an image-based backup can be problematic. You'll
want to fully test ZFS on your virtualization system before using it
there. Lucas has deployed ZFS on these systems, mind you, but he uses
alternative backup and migration strategies.

ZFS is written for modern hardware. It expects that you have at
least a few gigabytes of RAM. Embedded systems such as the Raspber-
ry Pi are better suited for traditional filesystems like UFS2.

Certain high-intensity workloads on certain hardware perform
better on UFS2 than on ZFS, especially if you have hard drives with
actual 512-byte blocks. If you expect to beat the living snot out of your
database, test its performance with both UFS2 and ZFS.

5

Chapter 0: Introduction

ZFS Hardware
Many people recommend high-end hardware for ZFS. We like high-

end hardware too. It’s nifty. But ZFS works just fine on commodity
hardware, so long as you understand the limitations of the hardware.
Much of the ZFS documentation you’ll find on the Internet includes
recommendations that are not applicable to modern ZFS, or not appli-
cable to FreeBSD.

RAM
It’s not surprising that Sun’s documentation said you needed ECC
RAM to use ZFS well. Sun sold high-end servers. But according to
Matt Ahrens, “ZFS on a system without ECC is no more dangerous
than any other filesystem on a system with ECC.” ZFS’ built-in error
correction compensates for most but not all memory-induced errors.
The generic arguments in favor of ECC RAM are still valid, of
course. A machine with non-ECC memory can suffer memory cor-
ruption, and it’s possible for some of those errors to get to disk. That
would happen regardless of the filesystem you’re using, however,
and ZFS checksums offer a hope of identifying the problem. If youre
running a high-availability service, you want ECC for all of the usual
reasons. But your ZFS laptop or home movie server will function just
fine with normal RAM.

RAID Controllers

Do not use a hardware RAID controller. Ever. Running ZFS on top of
a hardware RAID device creates a configuration with all the disadvan-
tages of RAID and all the disadvantages of ZFS. Use a non-RAID host
bus adapter (HBA) for your disk controller.

All RAID is software RAID. Your hardware RAID controller runs
a custom operating system to perform RAID tasks, and in the process

obscures the hardware from the operating system. This made sense

6

Chapter 0: Introduction

back in the early days of widespread commercial computing, when
consumer operating systems could not be trusted to manage storage.
Spend three seconds contemplating running OS-level software RAID
on Windows 3.1, and you’ll understand why hardware RAID became
so ubiquitous.

Our operating systems have gotten better. Our hardware is billions
of times more powerful. The environment has changed.

ZFS is designed for direct access to the hardware. It deliberately
stores critical metadata on multiple disks. It watches those disks for
errors, and makes decisions based on those errors. A hardware RAID
device hides all of this worrisome detail from the operating system,
eliminating ZFS’ ability to heal itself. Hardware RAID presents no
competing abilities.

Rebuilding a ZFS array is much faster than rebuilding a RAID
array, thanks to ZFS’ integration of redundancy with the filesystem. If
you manage redundancy with hardware RAID, you lose that speed.

Many RAID controllers will not let you use disks without some
sort of RAID, however. Even if you configure the controller to have
“just a bunch of disks,” or JBOD, these controllers actually format each
drive as a single disk RAID-0. This masks certain information, such
as block size and many disk errors, from the operating system. Worse,
disks used on such a controller are readable only by this brand of con-
troller—and sometimes, only by this model of RAID controller! Using
such a RAID controller for ZFS means you won't be able to move these
hard drives to another machine without reformatting them, unless the
new box happens to have the exact same RAID card. This eliminates
all of ZES’ pool portability.

Some hardware RAID cards can be reflashed to be JBOD control-
lers. A bad flash might brick your RAID card. As neither of the au-
thors will use hardware RAID again, we take that risk.

7

Chapter 0: Introduction

If you're condemned to use hardware RAID, probably because you
were a very bad person in a previous life, present the operating system
with single disks. If the RAID controller insists on formatting each
disk as a RAID-0, you're stuck. Disable “write back” mode on the con-
troller; otherwise, the controller’s write cache can corrupt your filesys-
tem. Resign yourself to increased complexity, reduced performance,
and added risk. Be sure to document all this in an email to manage-
ment, so when the inevitable failure happens, you get the tiny pleasure
of saying “I told you so” to compensate for the pain of restoring from
backup.

Host bus adapters are much less expensive than RAID cards—not
only in money, but in time. Use them.

SATA vs. SAS vs. SSD

Data storage devices come in a variety of types. ZFS can use SAS
drives, SATA drives, spinning platters, SSD devices, or any other stor-
age media supported by the operating system.

That’s not to say that the drives are equivalent. SAS drives can
usually last much longer than SATA drives under the same load. Flash
drives are much faster than any kind of spinning disk. ZFS can store
data on any of these. Base your choice of drive hardware on your orga-
nization’s needs, not on ZFS.

ZFS can make special use of extra-fast storage as read and write
caches. If you can add a couple of solid state disks to your SAS or
SATA-based storage array, you can vastly accelerate ZFS’ performance.
Disk Redundancy
It’s not uncommon for a storage array to lose several disks simultane-
ously. A power surge can damage multiple disks. An intensive array
rebuild stresses the remaining disks. Heat can build up on one side
of the shelf. ZFS supports multiple redundancy scenarios for exactly

these reasons.

Chapter 0: Introduction

If you buy a whole bunch of identical disks, they might all be made
on the same day or in the same batch. A bad day at the manufacturing
plant can bite you hard. Sadly, disk retailers can't ship you drives made
on different days or in different batches. The best you can do is to have

each array include drives made by multiple manufacturers.
Physical Redundancy

FreeBSD supports multipath storage, allowing you to work around
many hardware problems. Rearranging your hardware might increase
the system’s availability and reliability. If you have two external disk
arrays, perhaps use a disk from each array in your mirrored pair. This
way, if a disk array’s power supply dies, each mirror still has one active
disk. When the failed array is restored, the mirrors automatically re-
cover. As this is specialty equipment, we discuss multipath in FreeBSD
Mastery: Advanced ZFS.

Look at your hardware before installation. Consider how it might

fail, and how proper arrangement of your kit might prevent outages.
Disk Installation and Labeling

No, not using a label machine and pasting a little sticker on each hard
drive. The glue on those things never sticks (although you should
physically label your disks). FreeBSD supports Globally Unique
ID (GUID) Partition Tables (GPT) labels, letting you put arbitrary
logical markers on a hard drive or a partition. If a storage device has a
problem, FreeBSD announces the problem and identifies the troubled
unit by device name or device node. While it’s nice to know that disk
/dev/da239 has a problem, you must track that back to a physical
device. Many ZFS users have machines with many hard drives,
exacerbating the issue.

FreeBSD tools let you get the serial number of a failed drive.

Depending on your hardware, however, you might have to physically

9

Chapter 0: Introduction

examine each drive to identify its serial number. This usually involves
either opening a case or pulling individual drives out of a disk array.
This is tedious, unpleasant, and most often interrupts service.

If you prepare during installation, you can zero right in on a failed
disk—even a disk at a remote facility. Jude runs a lot of very dense
storage arrays in locations all over the world, and uses this scheme to
keep hard drive maintenance from overwhelming him.

Come up with a naming and numbering scheme for your storage
arrays. Many storage arrays have a standard naming scheme, often
printed on the equipment. If your equipment already has numbered
shelves, use that numbering. Otherwise, make simple rules like “shelf
0 is always at the top and disk 0 is always at the left” You might use the
prefix “t” for the front and “b” for the back, or whatever works for you.

Note the serial number of each drive as you install it in the array.
Physically label each drive tray as you install it by physical location
and serial number. Yes, this is tedious—but you’ll eventually need this
information. You can do this work in peace and quiet at your own
pace, or you can desperately rush through it during an artificially pro-
longed and unnecessarily stressful outage.

Now either install FreeBSD or boot live media. Use camcontrol
devlist to get a list of all your storage devices, then run diskinfo -v
on each storage device node to get its serial number. (You can also
extract serial numbers from camcontrol (8).) This will tell you that, say,
disk /dev/dao is actually disk 3 on shelf 4.

You now have a list of device nodes and their associated serial
numbers, as well as a list of physical locations and serial numbers.
Match those up with each other, and then use GPT labels to attach
the location and serial number to the disk partition you're using. (See
the FreeBSD documentation or FreeBSD Mastery: Storage Essentials
for details on GPT labels.) GPT labels have a maximum length of 15

10

Chapter 0: Introduction

characters, so you might have to truncate long serial numbers. In most
serial numbers the last digits are most unique, so trim off the front.

Combined, disk 9 in shelf 2, with a serial number of WD-

WCAW 36477223, might get a label like /dev/gpt/s2d9-aw36477223.
You want your system to use these labels, and only these labels.
Disable GPTID and disk ident labels on the system. This avoids confu-

sion later.

With this setup, during a hardware failure now FreeBSD can tell
you that the third disk on shelf 4, serial number such-and-such, is bad.
Given that information, even the most junior tech at your colocation
provider should be able to pull the right disk.' Have the tech give you
the serial number of the replacement drive before installation, so you
can create the proper labels.

Advance planning makes outages much less traumatic. We highly

recommend it.

About this Book

This book is for anyone who manages ZFS filesystems or who is cu-
rious about what a modern, high-performance filesystem looks like.
While it focuses on ZFS on FreeBSD, the general ZFS information
applies to any platform running OpenZFS. Parts of this book happen
to be applicable to other implementations, such as Oracle ZFS, but you
can’'t assume this book applies to these other implementations.

We really wanted to write a single FreeBSD OpenZFS book, but
limitations in the chosen publishing platforms made that impracti-
cal. FreeBSD Mastery: ZFS covers routine use of ZFS. The next book,
FreeBSD Mastery: Advanced ZFS, covers online replication, perfor-

mance tuning, and other topics requiring greater understanding of

1 He will probably screw it up, because that’s what junior techs
do. But give the poor guy a shot.

11

Chapter 0: Introduction

ZFS. The second book assumes you understand everything in this
book, however.

OpenZFS advances constantly. This book is a static entity. What's
more, a book that covered every OpenZFS feature would be the size
of the print version of the Manhattan telephone book.> These books
try to offer what the vast majority of sysadmins must know to run
ZFS well. If youre looking for a feature we don’t discuss, or you have
a special edge case we don't cover, definitely check the man pages,
the online OpenZFS documentation, and the FreeBSD mailing lists

archives and forums.

Book Overview

Chapter 0 is this introduction.

Chapter 1, Introducing ZFS, gives you a pterodons-eye view of the
ZFS software suite. You'll learn how to look at ZFS filesystems and data
pools, and understand how the large chunks of ZFS fit together.

Chapter 2, Virtual Devices, takes you through the ZFS’ physical
redundancy schemes. ZFS supports traditional mirrored disks and
concatenated devices, but also offers its own advanced parity-based
redundancy, RAID-Z.

Chapter 3, Pools, discusses ZFS storage pools. You'll learn how to
assemble virtual devices into pools, how to check pools, and how to
manage and query your storage pools.

Chapter 4, Datasets, takes you through what traditionalists would
call a filesystem. Except in ZFS, it’s not really a filesystem. Yes, you put

files in a dataset, but a dataset is so much more.

2 See, once upon a time the phone company printed huge books
that listed everyone with a phone and their phone number. No, phone
numbers didn’t change so often, because they were all landlines. But

then the dinosaurs knocked the phone lines down, so we went cellular.

12

Chapter 0: Introduction

Chapter 5, Pool Repairs and Renovations, covers making changes
to storage pools. You can expand storage pools with additional disks,
repair failed disks, and tweak pools to support new features.

Chapter 6, Disk Space Management, covers one of the most mis-
understood parts of using ZFS. Why does your 1 TB drive claim to
have 87 TB free? How do you reserve space for some users and limit
others? What about this deduplication stuft? This chapter covers all
that and more.

Chapter 7, Snapshots and Clones, discusses ZFS’ snapshot feature.
You can create a point-in-time photograph of a dataset, and refer back
to it later. You want a copy of a file as it existed yesterday? Snapshots
are your friends. Similarly, clones let you duplicate a filesystem. You’ll
understand both.

Chapter 8, Installing to ZFS, covers installing FreeBSD to a ZFS.
The FreeBSD installer can install a ZFS-based system for you. The
installer is always improving, but the real world is more complex than
any installation program can possibly expect. Knowing how to install
the system exactly the way you want is useful.

Fasten your seat belt and get ready to dive into a filesystem for the

21st century.

13

Chapter 1: Introducing ZFS

Starting to learn ZFS isn’'t hard. Install a recent FreeBSD release. Tell
the installer you want ZFS. You've started. If you've never worked with
ZFS, take a moment and install a new FreeBSD with ZFS on a test sys-
tem or virtual machine. Don’t choose encryption or any of the fancy
customization options. This trivial install offers an opportunity to look
at some ZFS basics before diving into more complicated setups.

ZFS combines the functions of traditional filesystems and volume
managers. As such, it expects to handle everything from the permis-
sions on individual files and which files are in which directories down
to tracking which storage devices get used for what purposes and how
that storage is arranged. The sysadmin instructs ZFS in arranging disks
and files, but ZFS manages the whole storage stack beneath them. This
chapter separates the ZFS stack into three layers: filesystems, storage
pools, and virtual devices, using a FreeBSD 10.1 host installed with the
default ZFS settings.

To orient you, we start at the most visible parts of the storage stack
and work our way down. Once you understand how the layers fit to-

gether, the rest of this book starts at the foundation and works its way

up.
ZFS Datasets

ZFS filesystems aren't exactly analogous to traditional filesystems,

and so are called datasets. The classic Unix File System (UFS) and its

15

Chapter 1: Introducing ZFS

derivatives and work-alikes, such as modern BSD’s UFS2 and Linux’s
extfs, manage filesystems with a variety of programs. You're proba-
bly well accustomed to using df (1), newts (8), mount (8), umount (8),
dump (8), restore (8), and similar commands. ZFS absorbs all of these
functions in the z£s (8) program, which lets you create, destroy, view,
and otherwise spindle ZFS datasets.

Start by viewing existing ZFS datasets with zfs 1ist.

zfs 1ist

NAME USED AVAIL REFER MOUNTPOINT
Zroot 429M 13.0G 96K none
zroot/ROOT 428M 13.0G 96K none
zroot/ROOT/default 428M 13.0G 428M /
zroot/tmp 104K 13.0G 104K /tmp

zroot/usr 428K 13.0G 96K /usr

This combines the output of mount (8) and df (1), and should look
pretty familiar to anyone who's managed UFS or extfs.

Each dataset has a name. A ZFS dataset name starts with the ZFS
storage pool, or zpool, the dataset is on. Our first entry is called just
plain zroot. This entry represents the pool’s root dataset, which every-
thing else hangs off of.

The next two columns show amount of space used and available.
The pool zroot has used 429 MB and 13 GB free.

The REFER column is special to ZFS. This is the amount of ac-
cessible data on the dataset, which is not necessarily the same as the
amount of space used. Some ZFS features, such as snapshots, share
data between themselves. Our zroot entry has “used” 429 MB, but only
refers to 96 KB of data. The pool as a whole has 13 GB free, but 96 KB
are accessible through this specific dataset. That’s not much. The rest of
the space is used for children of this dataset. Chapter 6 gives a detailed
discussion of ZFS disk usage. A dataset’s children include snapshots,

volumes, and child datasets, as you'll see throughout this book.

16

Chapter 1: Introducing ZFS

Finally we have the filesystem mount point. The zroot ZFS is not
mounted.

Look at the second entry, named zroot/roor. This is a ZFS dataset
created for the root filesystem. Like the zroot pool, it isn’t mounted. It
refers 96 KB of data. This apparently isn’t used, which seems strange
for a root filesystem.

The third entry, zroot/Ro0T/default, is the current root filesystem.
It uses 428 MB of data, and is mounted on /, the Unix root. It refers to
428 MB, meaning that there’s that amount of data in this dataset.

Why would ZFS split out this from the root filesystem? ZFS makes
it easy to choose between multiple root filesystems. This host runs
FreeBSD 10.1, but suppose you must apply some security updates
and reboot? Applying operating system patches always afflicts sys-
tems administrators with a gut-twisting mix of fear and hope. Even
a well-tested upgrade can go wrong and ruin everyone’s day. But ZFS
lets you clone and snapshot datasets. When you upgrade to FreeBSD
10.1-p1, you could create a new dataset such as zroot/ro07/10.1-p1
and tell FreeBSD to use that as the root partition. You either wouldn’t
mount zroot/RO0T/default, or I'd mount it at an alternate location like
/oldroot. If the upgrade goes poorly, reversion is trivial.

The next dataset, zroot/tmp, is almost empty. It's mounted at /tmp.

This dataset is the traditional temporary directory.

ZFS Partitions and Properties

ZFS lacks traditional partitions. A partition is a logical subdivision of
a disk, filling very specific Logical Block Addresses (LBAs) on a stor-
age device. Partitions have no awareness of the data on the partition.
Changing a partition means destroying and (presumably) rebuilding

the filesystem on top of it.

17

Chapter 1: Introducing ZFS

Lucas’ first thought on seeing a partition-less filesystem was to
wonder how he would manage his storage, at all. That’s roughly equiv-
alent to the confusion he experiences when, after a long cold Michigan
winter, he steps outside and feels natural warm air for the first time
in months. Confusion is part of liberation. We learned to administer
storage via partitions because we had to, not because partitions are
pleasant or because they’re the best solution. Running a traditional
filesystem without partitions is poor practice, but ZFS is not a tradi-
tional filesystem.

ZFS tightly integrates the filesystem and the lower storage lay-
ers. This means it can dynamically divide storage space between the
various filesystems as needed. While you can set specific size limits on
a ZFS filesystem, datasets do not have traditional sizes. If the pool has
enough space for a file, you can use it. Where you previously allocated
a limited amount of disk space to, say, /var/log, and thus kept berserk
logs from filling your disk, you must now set those limits at the ZFS
level.

The amount of space a dataset may use is one example of a ZFS
property. ZFS supports dozens of dataset properties—for example, the
quota property controls how large a dataset can grow. Use z£s (8) to
set a ZFS property.

zfs set quota=2G zroot/var/log

View a property with the zfs get command.

zfs get quota zroot/var/log
NAME PROPERTY VALUE SOURCE
zroot/var/log quota 2G Tocal

View all of a dataset’s properties with zfs get a1l and the ZFS
dataset name.
Chapter 4 explores ZFS properties in detail, while Chapter 6 dis-

cusses restricting dataset size.

18

Chapter 1: Introducing ZFS
ZFS Limits

Filesystems have always had maximum sizes and limits. The FAT
filesystem we all know and cringe over has required multiple revisions,
in part to overcome its maximum size of 32 MB, then 2 GB, then 4
GB. FAT32’s 2 TB limit is starting to look a little cramped these days.
UES and ext2/3/4fs have had their own, similarly arbitrary, limits.
These limits exist because the filesystem authors had to set a limit
somewhere, and chose values that they expected to be good for the
next several years. A popular filesystem will remain in use until those
limits are reached, however, so systems administrators have needed to
repeatedly cope with them.

ZFS advocates claim that ZFS is immune to these arbitrary limits,
but that’s not quite true. ZFS uses 128 bits to store most of its values,
which set the limits so high that they won’t ever be encountered by
anyone working in systems administration today. One directory can
have 2* files, of up to 16 exabytes each. A single pool can be up to 256
zettabytes, or 27® bytes. A storage pool can contain up to 2 devices,
and a single host can have up to 2% storage pools.

The good news is, we will not live long enough to hit these limits.
The bad news is, we have all the expertise in migrating between filesys-
tems. When technology hits ZFS’ limits, those poor people won't be
accustomed to migrating between filesystems. Fortunately, they’ll have

a few lingering ongoing FAT/UFS/extfs rollovers for practice.

Storage Pools

ZFS uses storage pools rather than disks. A storage pool is an abstrac-
tion atop the underlying storage providers, letting you separate the
physical medium and the user-visible filesystem on top of it.

Use zpoo1 (8) to view and manage a system’s storage pools. Here’s

the pool from a default FreeBSD system.
19

Chapter 1: Introducing ZFS

zpool status
pool: zroot
state: ONLINE
scan: none requested

config:
NAME STATE READ WRITE CKSUM
zroot ONLINE 0 0 0
gpt/zfsO0 ONLINE 0 0 0

errors: No known data errors

You get the pool’s name and state first. Systems can have more than
one ZFS pool—large systems, with dozens and dozens of hard drives,
often have multiple pools. If this host had multiple storage pools, each
would appear in a separate description like the sample above.

ZFS can perform many sorts of integrity checks on storage pools.
The scan statement shows if any integrity check is being performed
and the result of the most recent scan.

The last part of the pool list shows the layout of the virtual devices
in the pool.

Virtual Devices

A storage pool contains one or more virtual devices, or VDEVs. A
VDEYV is similar to a traditional RAID device. A big RAID-5 presents
itself to the filesystem layer as a single huge device, even though the
sysadmin knows it’s really a whole bunch of smaller disks. Virtual de-
vices let you assign specific devices to specific roles. With VDEV's you
can arrange the physical storage as needed.

The virtual device is where a whole bunch of ZFS’ magic happens.
A pool can be arranged for RAID-style redundancy. You can use
providers as dedicated read and write caches, improving the virtual

device’s performance. Chapter 2 covers virtual devices in more depth.

20

Chapter 1: Introducing ZFS

ZFS’ data redundancy and automated error correction also take
place at the VDEV level. Everything in ZFS is checksummed for
integrity verification. If your pool has sufficient redundancy, ZFS is
self-healing. If your pool lacks redundancy, well, at least you know
the data is damaged and you can (hopefully) restore from backup.’

The zpool status command that displays the health of a pool
also shows the virtual devices in that pool. Look at the example in
the previous section. This very simple pool, zroot, contains a single
storage provider, /dev/gpt/zfso. This provider is a GPT partition,
not a disk. ZFS can use all sorts of underlying storage, as Chapter 2
discusses. Using a GPT partition is very common, but other options
include whole disks, files, and any other GEOM provider. FreeBSD

uses GEOM providers to support features such as encryption.

Blocks and Inodes

Traditional filesystems almost always use some variety of data block
for storing data and maps the contents of those blocks with an index
node. BSD’s UFS and Linux’s extfs call these blocks and inodes. Even
Microsoft’s FAT filesystems have data storage blocks and index
nodes.

Like these filesystems, ZFS uses index blocks and data blocks.
Unlike older filesystems, however, ZFS generates index nodes on de-
mand. Whenever possible, ZFS creates storage blocks in sizes that fit
the data. The variable sized blocks don’t always fit every possible file
you might create, but they’re certainly more flexible than traditional

filesystems.

3 ZFS does not eliminate the need for backups. The only thing
that eliminates backups is absolute indifference.

21

Chapter 1: Introducing ZFS

Unlike UFS superblocks, dynamically generated index blocks can’t
be placed in known locations on the disk. How can ZFS cope with the
possibility of damage to an index block? ZFS stores multiple copies
of critical index blocks at algorithmically predictable locations. These
ditto blocks get replicated in multiple locations on the disk. Chapter 3
discusses ZFS blocks, uberblocks, ditto blocks, transaction groups, and
more.

Now that you know the bare basics of ZFS, the rest of this book
merely fills in several hundred little details. We'll start at the very bot-

tom of the stack, with the virtual devices.

22

Chapter 2: Virtual Devices

In this chapter we'll delve into how the sausage is made. This... is a
pig—I mean, a disk. Disks are the physical manifestation of storage.
Disks are evil. They lie about their characteristics and layout, they hide
errors, and they fail in unexpected ways. ZFS means no longer having
to fear that your disks are secretly plotting against you. Yes, your disks
are plotting against you, but ZFS exposes their treachery and puts a
stop to it.

To most effectively use the available disks with ZFS, you require
a basic understanding of how the operating system presents disks to
ZFS, and how ZFS arranges data on those disks.

Disks and Other Storage Media

ZFS can also run on storage media other than disks. Anything that is a
FreeBSD GEOM storage provider can become a ZFS storage medium.
ZFS even has support for using files as the backing storage, which is
really great for testing but is not meant for production. ZFS can use
any block device for its physical storage, but each type has its advan-

tages and disadvantages.
Raw Disk Storage

Using an entire physical disk reduces complexity. Also, there is no
partitioning to worry about, and no software or configuration between
ZFS and the physical disk. However, the disadvantages usually out-

weigh these advantages.

23

Chapter 2: Virtual Devices

Booting from a disk requires that the disk have a boot loader. A
boot loader can only go on a partitioned disk. You cannot boot a raw
disk. FreeBSD supports giving disks useful labels, but those labels live
inside the partition information.

Worse, any replacement disks must be exactly the same size as the
original disk, or larger. Not all 6 TB disks are the same size—disks
from different vendors vary by a few megabytes. You don't care about
these variances when setting up a system, but they’re critical when
replacing a disk. Most catalogs don't list the number of sectors in each
disk, only the size, so finding a usable replacement can take several
attempts. Replacing a drive that uses the traditional 512-byte sectors
with one that uses 4096-byte (4K, also known as Advanced Format)
sectors complicates things further. The original drive probably had a
number of sectors not evenly divisible by 8. Thanks to the special math
used by disk drives, the new drive might appear to be just a couple

bytes smaller than the old drive even if it's a couple bytes larger.
Partition Storage

Instead of using an entire raw disk, you can partition a disk and then
use one of the partitions for ZFS. The biggest advantage to this is that
you can now boot from the disk that contains the ZFS partition, by
creating a small boot partition, instead of requiring a separate boot
device. Using partitions also allows you to use part of the disk space
for other things, like a raw swap partition, another filesystem, or just
leaving some wiggle room at the end of the disk so the replacement
disk doesn’t have to have a matching sector count. Partitioning also
allows you to “short stroke” the drive to increase performance.
Many of the original Solaris ZFS administration guides recom-
mend against using partitions (or, in Solaris terms, slices) for perfor-

mance reasons. In Solaris, using a partition for a filesystem disables

24

Chapter 2: Virtual Devices

the write cache. In FreeBSD, disabling the write cache is completely
separate from disk partitioning or filesystems. FreeBSD gives full per-
formance when using ZFS on a partition.

FreeBSD supports a number of partitioning schemes, but GPT is
strongly recommended. The older partitioning system, MBR, limited
the number of primary partitions to four, while GPT supports up to
128 partitions. MBR can manage disks up to only 2 TB, while GPT can
manage up to 8 ZB with 512 byte-sector disks and up to 64 ZB with 4
K-sector disks. FreeBSD Mastery: Storage Essentials covers FreeBSD’s
support for both partitioning methods.*

The disadvantage to using partitions is that you might lose some of
the portability that ZFS provides. If you move disks from one system
to another, the target system must be able to recognize the disk parti-

tions.
GEOM Device Storage

ZFS can also use the various FreeBSD GEOM classes as its backing
storage. These sit between the filesystem and the physical devices,

and perform various functions. The GEOM classes provide features
such as whole disk encryption (GELI, GBDE), high availability, labels,
multipath, and pluggable schedulers. A GEOM class can be created
based on an entire device, or on top of another GEOM class, such as a
partition, multipath device, or encrypted disk.

GELI (the FreeBSD disk encryption subsystem) is the best way to
achieve an encrypted ZFS pool. GELI encrypts and decrypts blocks as
they are passed back and forth between ZFS and the physical disks, so
it doesn’t require ZFS to do anything different. GELI supports a num-
ber of different encryption algorithms, but the default AES-XTS offers

4 If you're storing your data on clay tablets, you may use
bsdlabel(8) partitions.

25

Chapter 2: Virtual Devices

the best performance, especially with a modern CPU that supports the
AES New Instructions (AESNI). With the help of this hardware offload
feature, GELI can encrypt data at over 1 GB/sec and decrypt even fast-
er, meaning that adding encryption will not lower your performance,
even on an SSD. GELI can also optionally provide data authentication
(integrity verification), where it stores a Hashed Message Authentica-
tion Code (HMAC) with each sector. It uses this HMAC to verify the
integrity (the data has not been tampered with), and authenticity (this
data was written by you) of the data. If upon reading back the sector,
the HMAC does not verify the data, an error is returned. The HMAC
feature is not enabled by default, and is probably overkill for ZFS be-
cause ZFS provides its own checksumming on each data block.

High Availability Storage Technology (HAST) is FreeBSD’s distrib-
uted storage solution. It allows you to mirror a block device between
computers over the network. Using HAST as the backing storage for a
ZFS pool allows you to mirror each backing disk to a second machine.
The advantage to HAST is that it is real time; a block is not considered
to be written until it has been written to all hosts in the HAST cluster.
ZFS replication, on the other hand, is based on syncing periodic snap-
shots. However, with HAST the second machine cannot have the pool
imported or mounted at the same time as the first machine. Compared
to ZFS replication, where you can have the replicated pool active (but
read-only) concurrently, HAST makes sense in only a few cases.

GEOM labels provide a handy way to attach a meaningful note to
each disk or partition. There are many label types, including standards
like disk ident, gptid, GPT labels, and the GEOM-specific glabel. Best
practices for labeling drives appear in Chapter 0.

GEOM also supports multipath for high availability. Sometimes it
is not just the disk that dies, but also the controller card, the backplane,
or the cable. With multipath, enterprise drives that are “dual ported”

26

Chapter 2: Virtual Devices

can be connected to more than one HBA (a disk controller card
without any RAID features). If each drive has a path to two different
storage controllers, it can survive the loss of one of those controllers.
However, when each disk is connected to two different controllers, the
operating system sees each disk twice, once via each controller. The
GEOM multipath class allows you to write a label to each disk, so that
successive routes to the same disk are detected as such. This way you
get one representation of each disk, backed by multiple paths to that
disk via different controllers. We discuss multipath in FreeBSD Mas-
tery: Advanced ZFS.

The GEOM scheduler module allows the administrator to specify
different I/O scheduling algorithms in an attempt to achieve better
performance. As of this writing, the currently available schedulers are
“as,” a simple form of anticipatory scheduling with only one queue,
and “rr;” anticipatory scheduling with round-robin service across
each client queue. See gsched (8) for more details. The GEOM system
makes it relatively easy to write additional scheduling modules for

specific workloads.
File-Backed Storage

You can use a file-backed virtual disk as a ZFS storage device. While
we certainly don’t recommend this for production, file-backed disks

can be useful for testing and experimenting.
Providers vs. Disks

“Provider” is a technical term in FreeBSD. A GEOM storage provid-
er is a thing that offers data storage. It might be a disk. It might be

a GEOM class that transforms the storage in some way. Technically
speaking, this book should use the word provider instead of disk
almost everywhere. You can use any GEOM provider as a back end

for ZFS. The problem with this is, one physical disk can offer several
27

Chapter 2: Virtual Devices

different providers. Your pool might have several different providers,
but if they’re all on one disk, you've just shot your redundancy in the
head.’

Where this book discusses “disks,” we mean “some sort of provid-
er on top of a disk” This disk doesn’t have to be wholly dedicated to
ZFS—you could have a swap partition and a ZFS partition on a disk
and be perfectly fine. But you can’t have two ZFS partitions on a single

physical disk, mirror them, and have physical redundancy.

VDEVs: Virtual Devices

A virtual device, or VDEYV, is the logical storage unit of ZFS. Each
VDEV is composed of one or more GEOM providers. ZFS supports
several different types of VDEV, which are differentiated by the type of
redundancy the VDEV offers. The common mirrored disk, where each
disk contains a copy of another disk, is one type of VDEV. Plain disks,
with no redundancy, are another type of VDEV. And ZFS includes
three different varieties of sophisticated RAID, called RAID-Z.

These VDEVs are arranged into the storage pools discussed in
Chapter 3. Actual data goes on top of the pools, as Chapter 4 covers.
But the arrangement of your virtual devices dictates how well the pool
performs and how well it resists physical damage. Almost all of ZFS’
redundancy comes from the virtual devices.

A storage pool consists of one or more VDEVs where the pool data
is spread across those VDEVs with no redundancy. (You can add some
redundancy with the copies property, as discussed in Chapter 4, but
that provides no protection against total disk failure.) The ZFS pool
treats VDEVs as single units that provide storage space. Storage pools

cannot survive the loss of a VDEYV, so it's important that you either use

5 FreeBSD’s flexible storage system gives you the power to do
stupid things. Don't.

28

Chapter 2: Virtual Devices

VDEVs with redundancy or decide in advance that it’s okay to lose the
data in this pool.

Using multiple VDEVs in a pool creates systems similar to ad-
vanced RAID arrays. A RAID-Z2 array resembles RAID-6, but a
ZFS pool with two RAID-Z2 VDEVs resembles RAID-60. Mirrored
VDEVs look like RAID-1, but groups of them resemble RAID-10. In
both of these cases, ZFS stripes the data across each VDEV with no
redundancy. The individual VDEVs provide the redundancy.

VDEV Redundancy

A VDEV that contains more than one disk can use a number of differ-
ent redundancy schemes to provide fault tolerance. Nothing can make
a single disk sitting all by itself redundant. ZFS supports using mir-
rored disks and several parity-based arrays.

ZFS uses redundancy to self-heal. A VDEV without redundancy
doesn't support self-healing. You can work around this at the dataset
layer (with the copies property), but a redundant VDEV supports

self-healing automatically.
Stripe (1 Provider)
A VDEV composed of a single disk is called a stripe, and has no re-

dundancy. As you might expect, losing the single provider means that
all data on the disk is gone. A stripe pool contains only single-disk
VDEVs.

A ZFS pool stripes data across all the VDEVs in the pool and relies
on the VDEV to provide redundancy. If one stripe device fails, the
entire pool fails. All data stored on the pool is gone. This is fine for
scratch partitions, but if you care about your data, use a type of VDEV

that offers fault tolerance.

29

Chapter 2: Virtual Devices

Mirrors (2+ Providers)

A mirror VDEYV stores a complete copy of all data on every disk. You
can lose all but one of the drives in the provider and still access your
data. You can use any number of disks in a mirror.

Mirrors provide very good random and sequential read speeds
because data can be read from all of the disks at once. Write perfor-
mance suffers because all data must be written to all of the disks, and

the operation is not complete until the slowest disk has finished.

RAID-Z1 (3+ Providers)

ZFS includes three modern RAID-style redundant VDEVs, called
RAID-Z. RAID-Z resembles RAID-5, but includes checksumming to
ensure file integrity. Between checksums and ZFS’ copy-on-write fea-
tures (Chapter 7), RAID-Z insures that incomplete writes do not result
in an inconsistent filesystem.

RAID-Z spreads data and parity information across all of the
disks. If a provider in the RAID-Z dies or starts giving corrupt data,
RAID-Z uses the parity information to recalculate the missing data.
You might hear that RAID-Z uses a provider to store parity informa-
tion, but there’s no single parity provider—the parity role is rotated
through the providers, spreading the data.

A RAID-Z1 VDEV can withstand the failure of any single stor-
age provider. If a second provider fails before the first failed drive is
replaced, all data is lost. Rebuilding a disk array from parity data can
take a long time. If you're using large disks—say, over 2 TB—there’s a
non-trivial chance of a second drive failing as you repair the first drive.
For larger disks, you should probably look at RAID-Z2.

30

Chapter 2: Virtual Devices

RAID-Z2 (4+ Providers)

RAID-Z2 resembles RAID-Z1, but has two parity disks per VDEV.
Like RAID-6, RAID-Z2 allows it to continue to operate even with two
failed providers. It is slightly slower than RAID-Z1, but allows you to

be somewhat lazy in replacing your drives.

RAID-Z3 (5+ Providers)

The most paranoid form of RAID-Z, RAID-Z3 uses three parity disks
per VDEV. Yes, you can have three failed disks in your five-disk array.
It is slightly slower than RAID-Z2. Failure of a fourth disk results in

total data loss.

RAID-Z Disk Configurations

One important thing to remember when using any version of RAID-Z
is that the number of providers in a RAID-Z is completely fixed. You
cannot add drives to a RAID-Z VDEV to expand them. You can ex-
pand the pool by adding VDEVSs, but you cannot expand a VDEV by
adding disks. There are no plans to add this feature.

Suppose you have a host that can accept 20 hard drives. You install
12 drives and use them as a single RAID-Z2, thinking that you will
add more drives to your pool later as you need them. Those new drives
will have to go in as separate RAID-Z2 VDEV.

What’s more, your VDEVs will be unbalanced. Your pool will
have a single 12-drive VDEYV, and a second 8-drive VDEV. One will
be slower than the other. ZFS will let you force it to pool these devices
together, but it’s a really bad idea to do so.

Plan ahead. Look at your physical gear, the number of drives you
have to start with, and how you’ll expand that storage. Our example serv-
er would be fine with on pool containing a single RAID-Z2 VDEYV, and
a completely separate pool containing the other eight disks in whatever

arrangement you want. Don’t cut your own throat before you even start!

31

Chapter 2: Virtual Devices
The RAID-Z Rule of 2s

One commonly discussed configuration is to have a number of data
disks equal to a multiple of two, plus the parity disks needed for a
given RAID-Z level. That is, this rule says that a RAID-Z1 should use
2n+1 disks, or three, five, seven, nine, and so on. A RAID-Z2 should
use 2n+2 disks (four, six, eight, and so on), while a RAID-Z3 should
use 2n+3 (five, seven, nine, and so on).

This rule works—if and only if your data is composed of small
blocks with a size that is a power of 2. Other factors make a much
bigger difference, though. Compression is generally considered far
more effective. Compressing your data reduces the size of the blocks,

eliminating this benefit.
Repairing VDEVs

When a provider that belongs to a redundant VDEYV fails, the VDEV it
is a member of becomes “degraded.” A degraded VDEV still has all of
its data, but performance might be reduced. Chapter 5 covers replac-
ing failed providers.

After the provider is replaced, the system must store data on the
new provider. Mirrors make this easy: read the data from the remain-
ing disk(s) and write it to the replacement. For RAID-Z, the data must
be recalculated from parity.

The way that ZFS combines RAID and the filesystem means that
ZFS knows which blocks contain data, and which blocks are free. In-
stead of having to write out every byte on to the new drive, ZFS needs
to write only the blocks that are actually in use. A traditional RAID
controller has no understanding or awareness of the filesystem layer,
so it has no idea what is in use and what is free space. When a RAID
controller replaces a disk, it must copy every byte of the new disk. This

means a damaged ZFS RAID-Z heals much more quickly, reducing the

32

Chapter 2: Virtual Devices

chance of a concurrent failure that could cause data loss. We discuss

ZFS recovery in Chapter 5.

RAID-Z versus traditional RAID

RAID-Z has a number of advantages compared to traditional RAID,
but the biggest ones come from the fact that ZFS is the volume manag-
er and the filesystem in addition to the disk redundancy layer.

Back in the day, filesystems could only work on one disk. If you
had two disks, you needed two separate filesystems. Traditional RAID
let you combine multiple disks into one virtual disk, permitting the
creation of massive disks as large as 100 MB, or even bigger! Then the
operating system puts its own filesystem on top of that, without any
understanding of how the blocks will be laid out on the physical disks.
At the same time, RAID could provide fault tolerance. Given the lim-
itations of hardware and software at the time, RAID seemed a pretty
good bet.

By combining the filesystem and the volume manager, ZFS can see
exactly where all data lies and how the storage layer and the data in-
teract. This allows ZFS to make a number of important decisions, such
as ensuring that extra copies of important data such as ditto blocks
(Chapter 3) are stored on separate disks. It does no good to have two
or three copies of your critical data all on one underlying storage pro-
vider that can be wiped out by a single hardware failure. ZFS goes so
far as to put the ditto blocks on adjacent disks, because it is statistically
less likely that if two disks fail concurrently, they will be neighbors.

Traditional RAID can suffer from a shortcoming known as the
“write hole,” where two-step operations get cut short halfway through.
RAID 5 and 6 devices chunk up data to be written to all of the data
disks. Once this operation finishes, a parity block is calculated and

stored on the parity disk. If the system crashes or the power is cut after

33

Chapter 2: Virtual Devices

the data is written but before the parity is written, the disk ends up in
an indeterminate state. When the system comes back up, the data does
not match the parity. The same thing can happen with mirrored drives
if one drive finishes updating and the other does not.

Write hole problems are not noticed until you replace a failed disk.
The incorrect parity or incorrect mirror results in the RAID device
returning garbage data to the filesystem. Traditional filesystems return
this garbage data as the contents of your file.

ZFS solves these problems with copy-on-write and checksums.
Copy-on-write (Chapter 7) means data is never overwritten in place.
Each update is transactional, and either completes fully or is not per-
formed, returning the system to the state it was in before the update.
ZFS also has checksums, so it can detect when a drive returns inval-
id data. When ZFS detects invalid data it replaces that data with the
correct data from another source, such as additional copies of the
data, mirrored drives, or RAID-Z parity. Combined, these create ZFS’

self-healing properties.
Special VDEVs

Pools can use special-purpose VDEVs to improve the performance of
the pool. These special VDEV types are not used to persistently store
data, but instead temporarily hold additional copies of data on faster
devices.

Separate Intent Log (SLOG, ZIL)

ZFS maintains a ZFS Intent Log (ZIL) as part of the pool. Similar to
the journal in some other filesystems, this is where it writes in-prog-
ress operations, so they can be completed or rolled back in the event of
a system crash or power failure. The ZIL is subject to the disk’s normal
operating conditions. The pool might have a sudden spike in use or

latency related to load, resulting in slower performance.

34

Chapter 2: Virtual Devices

One way to boost performance is to separate the ZIL from the
normal pool operations. You can use a dedicated device as a Separate
Intent Log, or SLOG, rather than using a regular part of the pool. The
dedicated device is usually a small but very fast device, such as a very
high-endurance SSD.

Rather than copying data from the SLOG to the pool’s main stor-
age in the order it’s received, ZFS can batch the data in sensible groups
and write it more efficiently.

Certain software insists on receiving confirmation that data it
writes to disk is actually on the disk before it proceeds. Databases of-
ten do this to avoid corruption in the event of a system crash or power
outage. Certain NFS operations do the same. By writing these requests
to the faster log device and reporting “all done,” ZFS accelerates these
operations. The database completes the transaction and moves on. You
get write performance almost at an SSD level, while using inexpensive
disk as the storage media.

You can mirror your ZIL to prevent data loss.
Cache (L2ARC)

When a file is read from disk, the system keeps it in memory until the
memory is needed for another purpose. This is old technology, used
even back in the primordial BSD days. Look at top (1) on a UFS-based
BSD system and you’ll see a chunk of memory labeled Buf. That’s the
buffer cache.

The traditional buffer cache was designed decades ago, howev-
er. ZFS has an Adaptive Replacement Cache, or ARC, designed for
modern hardware, that gives it more speed. The ARC retains the most
recently and frequently accessed files.

Very few modern systems have enough RAM to cache as much as

they want, however. Just as ZFS can use a SLOG to accelerate writes,

35

Chapter 2: Virtual Devices

it can use a very fast disk to accelerate reads. This is called a Level 2
ARG, or L2ARC.

When an object is used frequently enough to benefit from caching,
but not frequently enough to rate being stored in RAM, ZFS can store
it on a cache device. The L2ZARC is typically a very fast and high-en-
durance SSD or NVMe device. Now, when that block of data is re-
quested, it can be read from the faster SSD rather than the slower disks
that make up the rest of the pool. ZFS knows which data has been
changed on the back-end disk, so it can ensure that the read cache is

synchronized with the data on the storage pool.

How VDEVs Affect Performance
Each different type of VDEV performs differently. Benchmarking and

dissecting disk performance is a complex topic that would merit a
great big textbook, if anyone would be bothered to read it. Any specific
advice we were to give here would quickly become obsolete, so let’s
just discuss some general terms.

One common measurement is Input/Output Per Second or IOPS,
the number of distinct operations the drive can perform each second.
Spinning drive IOPS are usually physically limited by how quickly the
read/write head can move from place to place over the platter. Solid
state disks have such excellent performance because they don’t need to
physically move anything.

The number of non-parity spindles constrains streaming read and
write performance of an undamaged pool. “Streaming” performance
boils down to the number of megabytes per second (MB/s) the drive
can read or write. When a drive reads or writes data sequentially,
the heads do not have to seek back and forth to different locations.

It is under these conditions that a drive will achieve its best possi-

36

Chapter 2: Virtual Devices

ble streaming performance, giving the highest throughput. Spindle
count affects both random and streaming performance. An array of

12 one-terabyte (12 x 1 TB) drives usually outperforms an array of six
two-terabyte (6 x 2 TB) drives because the greater spindle and head
counts increase both IOPS and streaming performance. Having more
heads means that ZFS can be reading from, or writing to, more dif-
terent locations on the disks at once, resulting in greater IOPS perfor-
mance. More spindles mean more disks working as fast as they can to
read and write your data. The greater number of drives require a larger
shelf or chassis, more power, and more controllers, however.

Other common measurements include read bandwidth, write
bandwidth, space efliciency, and streaming performance.

Generally speaking, mirrors can provide better IOPS and read
bandwidth, but RAID-Z can provide better write bandwidth and much
better space efficiency.

A pool with multiple VDEVs stripes its data across all the VDEVs.
This increases performance but might cost space, as each individual
VDEYV has its own redundant disks. A pool with multiple VDEV's
probably has increased reliability and fault tolerance. While ZFS’
redundancy is all at the VDEV level, a pool with multiple redundant
VDEVs can probably withstand more disk failures. The more VDEVs
you have in a pool, the better the pool performs.

Let’s go through some common VDEYV configurations and see how
the various possible arrangements affect performance and capacity.
Assume we're using a set of modest commodity 1 TB spinning disks.
Each disk is capable of 250 IOPS and streaming read/writes at 100
MB/s.

37

Chapter 2: Virtual Devices
One Disk

With only one disk, there is only one possible configuration, a single
ZFS stripe VDEV. This is the most basic configuration, and provides
no fault tolerance. If that one disk dies, all of your data is gone.

Table 1: Single Disk Virtual Device Configurations

Config Read Write Read Write Usable Fault
IOPS I0PS MB/s MB/s Space Tolerance
Stripe 250 250 100 100 1TB(100%) none

The performance characteristics of a one-disk stripe device look
suspiciously like the characteristics of the underlying disk. Weird,
huh?

Two Disks

If your system has two disks, you can build your pool out of two stripe
VDEVs or a single mirror VDEV.

Striped VDEVs double the available storage and bandwidth, but
also double the risk of failure. ZFS spreads the blocks of each file over
the two disks. If either disk fails, all of the data is unusable.

Using a single mirrored VDEV stores each block of data on both
disks. This maintains the improved read performance, as blocks can
be read from both disks at once. But you get only the capacity of the
smallest disk. Write performance is limited to the speed of the slowest

disk. One disk can fail, however, and the pool will still be usable.

Table 2: Two-Disk Virtual Device Configurations

Config Read Write Read Write Usable Fault
IOPS I0PS MB/s MB/s Space Tolerance

2 x Stripe 500 500 200 200 2TB(100%) none

1 x 2 disk Mirror 500 250 200 100 1TB (50%) 1

As the table shows, our mirror pool gets half the write perfor-

mance of the striped pool and has half the space.

38

Chapter 2: Virtual Devices
Three Disks

Three disks means more options, including a deeper mirror and
RAID-Z. You could also use a pool of three stripe disks, but the odds
of failure are much higher.

A deeper mirror has more disks, providing more fault tolerance
and improved read performance. More spindles and heads mean that
the VDEV can read data from the least busy of the three drives, serv-
ing random reads more quickly. Write performance in a mirror is still
limited to the slowest of the drives in the mirror.

RAID-Z1 offers better space efficiency, as the fault tolerance re-
quires only one of the disks in the VDEV. Data is spread across all of
the drives, so they must work together to perform reads and writes.
Spreading the data across all the drives improves streaming write per-
formance. Unlike a mirror, in RAID-Z all drives can write their share

of data simultaneously, instead of each drive writing identical data.

Table 3: Three-Disk Virtual Device Configurations

Config Read Write Read Write Usable Fault
IOPS I10PS MB/s MB/s Space Tolerance

1 x 3 disk Mirror 750 250 300 100 1TB(33%) 2

1 x 3 disk RAID-Z1 250 250 200 200 2TB(66%) 1

Note here that IOPS don’t necessarily scale to actual read/write
performance. A mirror VDEV has three times the read IOPS of a
RAID-Z1 because the head in each drive can work independently,
whereas in RAID-Z the heads must work together. In megabytes per
second mirrors have the advantage of using all of their disks’ through-
put for data, whereas RAID-Z1 loses one disk’s worth of throughput

because of the parity data. A three-disk mirror also writes half as many

39

Chapter 2: Virtual Devices

MB/s because it writes the same data to every disk, whereas RAID-Z1
can spread the writes out over all the disks but loses some throughput

to parity.
Four or Five Disks

With four or five disks, you get even more options.

Multiple mirror VDEVs (similar to traditional RAID 10) provide
the best possible performance for random I/O workloads like databas-
es. When you divide four disks into two mirror VDEVs of two disks
each, ZFS stripes the writes across both mirrors. One mirror holds half
of your data, and the other mirror the other half. This helps mitigate
the write bottleneck of mirrors, while still providing the impressive
read performance.

With four disks, RAID-Z2 becomes an option. RAID-Z2’s two par-
ity disks mean that the VDEV can continue to operate with the loss of
any two disks. When compared to a mirror with the same number of
disks, the performance is worse; however, it no longer matters which
two disks fail concurrently.

At five disks, we can deploy RAID-Z3. A RAID-Z3 VDEV can
survive the loss of any three disks. A RAID-Z3 exchanges performance
for fault tolerance.

And RAID-Z1 remains an option, of course.

Table 4: Four- or Five-Disk Virtual Device Configurations

Disks Config Read Write Read Write Usable Fault

IOPS I0PS MB/s MB/s Space Tolerance

4 2 x2disk Mirror 1000 500 400 200 2TB(50%) 2 (1/VDEV)

4 1x4disk RAID-Z1 250 250 300 300 3TB(75%) 1

4 1x4diskRAID-Z2 250 250 200 200 2TB(50%) 2

5 1x5disk RAID-Z1 250 250 400 400 4TB(80%) 1

5 1x5disk RAID-Z2 250 250 300 300 3TB(60%) 2

5 1x5disk RAID-Z3 250 250 200 200 2TB(40%) 3

40

Chapter 2: Virtual Devices

Note how the streaming (MB/s) read and write performance of
RAID-Z1 compares with RAID-Z2, and how the performance of
RAID-Z3 compares to both. Adding a parity disk means sacrificing
that disk’s throughput.

The fault tolerance of multiple mirror VDEVs is slightly tricky. Re-
member, redundancy is per-VDEYV, not per pool. Each mirror VDEV
still provides n - 1 fault tolerance. As long as one drive in each mirror
VDEV still works, all data is accessible. With two two-disk mirror
VDEVs in your pool, you can lose one disk from each VDEV and keep
running. If you lose two disks from the same VDEV, however, the pool

dies and all data is lost.

Six to Twelve Disks

With large numbers of disks, the decision shifts to balancing fault tol-
erance, space efficiency, and performance.

Six disks could become three two-disk mirror VDEVs, giving you
a fair amount of space and good write performance. You could opt for
a pair of three-disk mirror VDEV3s, giving you less space, but allowing
two disks out of each set of three to fail without risking data loss. Or
they could become a RAID-Z VDEV.

Get many more than six disks and you can have multiple RAID-Z
VDEVs in a pool. A dozen disks can be operated together as a single
VDEYV giving the most available space, or can be split into two sepa-
rate VDEVs, providing less usable space but better performance and

more fault tolerance.

41

Chapter 2: Virtual Devices
Table 5: Six- to Twelve-Disk Virtual Device Configurations

Disks Config Read Write Read Write Usable Fault
IOPS I0OPS MB/s MB/s Space Tolerance

6 3 x2disk Mirror 1500 750 600 300 3TB(50%) 3(1/VDEV)
6 2 x3disk Mirror 1500 500 600 200 2TB(33%) 4 (2/VDEV)
6 1x6disk RAID-Z1 250 250 500 500 5TB(83%) 1
6 1x6diskRAID-Z2 250 250 400 400 4TB (66%) 2
6 1x6diskRAID-Z3 250 250 300 300 3TB(50%) 3
12 6 x 2 disk Mirror 3000 1500 1200 600 6TB(50%) 6 (1/VDEV)
12 4 x 3 disk Mirror 3000 1000 1200 400 4TB(33%) 8(2/VDEV)
12 1x12diskRAID-Z1T 250 250 1100 1100 11TB (92%) 1
12 2x6disk RAID-Z1 500 500 1000 1000 10TB(83%) 2(1/VDEV)
12 3 x4disk RAID-Z1 750 750 900 900 9TB(75%) 3(1/VDEV)
12 1x12-diskRAID-Z2 250 250 1000 1000 10TB (83%) 2
12 2x6-diskRAID-Z2 500 500 800 800 8TB(66%) 4 (2/VDEV)
12 1x12-diskRAID-Z3 250 250 900 900 9TB (75%) 3
12 2x6-diskRAID-Z3 500 500 600 600 6TB(50%) 6 (3/VDEV)

Using multiple RAID-Z devices in a pool is much like using mul-
tiple mirror devices in a pool. Tolerance to disk failures is per-VDEYV,
not per pool. Your 12-disk array of two six-disk RAID-Z2 VDEVs
can handle the loss of four disks, provided you lose only two disks per
VDEV.

Many Disks

Common advice is to use no more than nine to 12 disks per VDEV.
You can use more, but ZFS isn’t designed for that. Let’s look at an array
of 36 disks to see some possible arrangements and their performance

impact.

42

Chapter 2: Virtual Devices

Table 6: 36-Disk Virtual Device Configurations

Config Read Write Read Write Usable Fault
IOPS I0OPS MB/s MB/s Space Tolerance
18 x 2 disk Mirror 9000 4500 3600 1800 18TB(50%) 18 (1/VDEV)
12 x 3 disk Mirror 9000 3000 3600 1200 12TB(33%) 24 (2/VDEV)
1 x 36 disk RAID-Z2 250 250 3400 3400 34TB(94%) 2
2 x 18 disk RAID-Z2 500 500 3200 3200 32TB(89%) 4 (2/VDEV)
4 x 9 disk RAID-Z2 1000 1000 2800 2800 28TB(78%) 8 (2/VDEV)
6 x 6 disk RAID-Z2 1500 1500 2400 2400 24TB(66%) 12 (2/VDEV)

By using more VDEVs, you can create screaming fast pools. A
pool of 18 two-disk mirror VDEVs can read data more quickly than
most anything else—and it can lose 18 drives before failing! Yes, they
have to be the right 18 drives, but if you have two disk shelves with
different power supplies, that’s entirely possible. On the other hand, if
the wrong two disks in that pool fail, your entire pool dies.

Adding parity or mirrors to each VDEV increases reliability. A
greater number of VDEVs increases performance. Your job is to juggle
these two characteristics to support your environment.

Each VDEV is limited to the random read/write performance of
the slowest disk, so if you have too many disks in one VDEV, you are
surrendering performance for only a small gain in space efficiency.
While you can add L2ARC and SLOG devices to improve perfor-
mance, it’s best to avoid these problems altogether.

So if more VDEV's are always better, why is the 6 x 6 disk RAID-Z2
pool so much slower at reading and writing compared to the 1 x 36
disk RAID-Z2 pool? The answer lies in the fault tolerance column.
When you have more RAID-Z2 VDEVs, you have more redundancy,
and you can survive more failures. When a disk is providing fault tol-

erance, it is storing an extra copy of your data, so it can replace a copy

43

Chapter 2: Virtual Devices

that is lost when a disk fails. The system recalculates and stores parity
data every time the data changes. Parity data isn’t used when read-
ing files unless the original copy is missing. The disks used for parity
no longer contribute to streaming performance. You can restore that
performance by adding more disks. A 6 x 8 disk RAID-Z2 pool would
have the equivalent of 36 data disks and 12 parity disks, and be able to
outperform the 1 x 36 disk RAID-Z2 pool.

Let’s take what you know about VDEVs, and create some actual

pools with them.

44

Chapter 3: Pools

ZFS pools, or zpools, form the middle of the ZFS stack, connecting
the lower-level virtual devices to the user-visible filesystem. Pools are
where many filesystem-level tasks happen, such as allocating blocks
of storage. At the ZFS pool level you can increase the amount of space
available to your ZFS dataset, or add special virtual devices to improve

reading or writing performance.

ZFS Blocks

Traditional filesystems such as UFS and extfs place data on the disk in
fixed-size blocks. The filesystem has special blocks, called inodes, that
index which blocks belong to which files. Even non-Unix filesystems
like NTFS and FAT use similar structures. It’s a standard across the
industry.

ZFS does not pre-configure special index blocks. It only uses stor-
age blocks, also known as stripes. Each block contains index informa-
tion to link the block to other blocks on the disk in a tree. ZFS com-
putes hashes of all information in the block and stores the information
in the block and in the parent block. Each block is a complete unit in
and of itself. A file might be partially missing, but what exists is coher-
ent.

Not having dedicated special index blocks sounds great, but surely

ZFS needs to start somewhere! Every data tree needs a root. ZFS uses

45

Chapter 3: Pools

a special block called an uberblock to store a pointer to the filesystem
root. ZFS never changes data on the disk—rather, when a block chang-
es, it writes a whole new copy of the block with the modified data. (We
discuss this copy-on-write behavior in depth in Chapter 6.) A data
pool reserves 128 blocks for uberblocks, used in sequence as the un-
derlying pool changes. When the last uberblock gets used, ZFS loops
back to the beginning.

The uberblocks are not the only critical blocks. ZFS copies blocks
containing vital information like filesystem metadata and pool data
into multiple ditto blocks. If a main block is damaged, ZFS checks the
ditto block for a backup copy. Ditto blocks are stored as far as possi-
ble from each other, either on separate disks or on separate parts of
a single disk. (ZFS has no special ability to see the layout of the disk
hardware, but it makes a valiant guess.)

ZFS commits changes to the storage media in transaction groups,
or txg. Transaction groups contain several batched changes, and have
an incrementing 64-bit number. Each transaction group uses the next
uberblock in line. ZFS identifies the most current uberblock out of the
group of 128 by looking for the uberblock with the highest transaction
number.

ZFS does use some blocks for indexing, but these znodes and
dnodes can use any storage block in the pool. They aren’t like UFS2 or

extfs index nodes, assigned when creating the filesystem.

Stripes, RAID, and Pools

You've certainly heard the word stripe in connection with storage,
probably many times. A ZFS pool “stripes” data across the virtual
devices. A traditional RAID “stripes” data across the physical devices.
What is a stripe, and how does it play into a pool?

46

Chapter 3: Pools

A stripe is a chunk of data that’s written to a single device. Most
traditional RAID uses a 128 KB stripe size. When you’re writing a file
to a traditional RAID device, the RAID software writes to each drive
in 128 KB chunks, usually in parallel. Similarly, reads from a tradition-
al RAID array take place in increments of the stripe size. While you
can customize the stripe size to fit a server’s workload, the hardware’s
capacity and the software’s limitations greatly restrict stripe size.

Stripes do not provide any redundancy. Traditional RAID gets its
redundancy from parity and/or mirroring. ZFS pools get any redun-
dancy from the underlying VDEVs.

ZFS puts stripes on rocket-driven roller skates. A ZFS dataset uses
a default stripe size of 128 KB, but ZFS is smart enough to dynamically
change that stripe size to fit the equipment and the workload. If a 32
KB stripe size makes sense for a particular chunk of data, but 64 KB
makes sense for another piece of data, ZFS uses the appropriate size
for each one. The ZFS developers have completed support for stripe
sizes up to 1 MB. This feature is already available in FreeBSD-CUR-
RENT, and is expected to be included in FreeBSD 10.2 and later.

A ZFS pool has much more flexibility than a traditional RAID.
Traditional RAID has a fixed and inflexible data layout (although some
hardware vendors have their own proprietary RAID systems with
more flexibility). The RAID software writes to each disk in a determin-
istic order. ZFS has more flexibility. If you have a five-disk traditional
RAID array, that array will always have five disks. You cannot change
the array by adding disks. While you might be able to exchange the
disks for larger disks, doing so won’t change the array’s size. Creating a
RAID device petrifies the array’s basic characteristics.

ZFS pools not only tolerate changes, but they’re designed to easily
accept additions as well. If you have a ZFS pool with five VDEVs and
you want to add a sixth, that’s fine. ZFS accepts that VDEV and starts

47

Chapter 3: Pools

striping data on that device without blinking. You cannot add storage
to RAID-Z VDEVs, only VDEVs to pools. The number of providers in
a RAID-Z VDEYV is fixed at creation time.

With ZFES, though, that virtual device can be any type of VDEV
ZFS supports. Take two VDEVs that are mirror pairs. Put them in
a single zpool. ZFS stripes data across them. In traditional RAID, a
stripe on top of mirrors would be called RAID-10. For most use cases,
RAID-10 is the highest-performance RAID you can have. Where
traditional RAID-10 has a fixed size, however, you can add additional
VDEVs to a pool. Expanding your RAID-10 means backing up your
data, adding disks to the RAID array, and restoring the data. Expand-
ing your zpool means adding more VDEV's to the pool. RAID-10 also
allows a depth of up to two disks, where ZFS allows a depth of up to
284,

Remember, though, that pools do not provide any redundancy. All
ZFS redundancy comes from the underlying VDEVs.

Viewing Pools

To see all of the pools on your system, run zpool list.
zpool Tist

NAME SIZE ALLOC FREE EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
db 2.72T 1.16G 2.72T - 0% 0% 1.00x ONLINE -

zroot 920G 17.3G 903G - 2% 1% 1.00x ONLINE -

The first column gives the pool name. This system has two pools,
db and zroot.

The next three columns give size and usage information on each
pool. You’'ll get the size, the amount of space used, and the amount of
free space.

The EXPANDSZ column shows if the underlying storage providers
have any free space. You might be able to expand the amount of space

in this pool, as discussed in Chapter 5. This space includes blocks that

48

Chapter 3: Pools

will go to parity information, so expanding the pool won't give you
this much usable space.

Under FRAG you’ll see the amount of fragmentation in this pool.
Fragmentation degrades filesystem performance.

The CAP column shows what percentage of the available space is
used.

The DEDUP entry shows the amount of deduplication that’s hap-
pened on the filesystem. Chapter 6 covers deduplication.

The pool's HEALTH column reflects the status of the underlying
VDEVs. If a storage provider fails, your first hint will be any status
other than ONLINE. Chapter 5 discusses pool health.

Finally, the ALTROOT shows where this pool is mounted, or its
“alternate root.” Chapter 4 covers alternate roots.

If you want to know the information for a specific pool or pools,
list the pool names after zpoo1 1ist. This shows only the output of the

storage pools prod and test.

zpool Tist prod test

If you want more detailed information on your pools, including
the utilization of underlying drives, add the -v option. You must give

the option before any pool name.

zpool list -v zroot

The -p flag prints numbers in bytes rather than the more hu-
man-friendly format, and -& eliminates the column headers. These
options are useful for automation and management scripts.

For a more detailed view of a system’s pools, including the under-
lying VDEV layout, use zpool status. We'll see lots of examples of
zpool status when we create pools.

To briefly check your pools, run zpool status -x.

49

Chapter 3: Pools

zpool status -x
all pools are healthy

Sometimes, that’s all you need.
Multiple VDEVs
A pool can include multiple VDEVs. Adding VDEVs not only increas-

es the space available in the pool but also increases the performance.
A pool splits all writes between the VDEVs. A small file might need
only a single stripe, which would go on a single VDEYV, but if you're
writing a whole bunch of small files ZFS divides the writes between
the VDEVs.

Chapter 2 talks about the performance of various VDEV types.
That performance percolates up into the pool level. If you're reading a
large file from across multiple VDEVs, the file read finishes once the
last (usually the slowest) drive finishes calling up its part of the data. If
your pool includes multiple VDEVs, however, that slowest drive con-
tains only a fraction of the file, somewhat reducing the time needed to
access it. Remember, the slowest part of reading data from a storage
provider is seeking the head to the correct piece of disk to call it from,
so it’s not as simple as dividing the time by the number of VDEVs—
but additional VDEVs in a pool do improve performance.

Best practices call for using only identical storage VDEVs in a
pool. If you have a bunch of mirrored VDEVs in your pool, don’t go
adding a RAID-Z3 device to the pool. Mixed storage VDEV's foul
up pool performance terribly and make ZFS work harder as it opti-

mally spreads the data between the devices. You can do this, but you
shouldn't.®

6 ZFS follows the Unix tradition of not preventing you from do-
ing daft things, because that would also prevent you from doing clever
things.

50

Chapter 3: Pools
Removing VDEVs

You cannot currently remove a VDEV from a pool. Each VDEV has
data on it. You can remove disks from certain types of VDEV, but the
VDEYV as a whole has critical pool data on it. For example, you can
remove a disk from a mirror VDEV, but you cannot remove the entire
VDEYV from the pool. Normally youd remove a disk from a VDEV
only when it fails. Forcibly removing a VDEV from a pool—say, by
pulling the storage providers—destroys the pool. The ability to remove
a VDEV from a stripe or mirror pool is expected to arrive in OpenZFS
in late 2015, but it’s not yet possible. Support for removing RAID-Z
devices is on the road map, but work has not yet started.

This means you cannot shrink a pool. If you want to make a pool
smaller, you must move the data on that pool to a new, smaller pool

and then recycle the disks from the original pool.

Pools Alignment and Disk Sector Size

ZFS expects to have an in-depth knowledge of the storage medium, in-
cluding the sector size of the underlying providers. If your pools don’t
use the correct sector size, or if ZFS’ sectors don't align to the physi-
cal sectors on the disk, your storage performance will drop by half or
more. These are orthogonal problems, but failing to plan for either one
will crush your system.

We'll discuss partition alignment and ZFS sector size separately.
Partition Alignment

Disks report their sector size, so this isn’t a problem—except when it
is. Many disks report that they have 512-byte sectors, but they really
have 4096-byte (4K) sectors. FreeBSD Mastery: Storage Essentials dis-

cusses this in depth, so we won't go through this in painful detail here.

51

Chapter 3: Pools

Older partition management schemes, like the venerable Master
Boot Record (MBR), included all sorts of hairy math to make sure that
disk partitions conformed to the disk’s physical characteristics. Mod-
ern partition schemes like GUID Partition Tables (GPT) know that
physical disks speak with forked tongue and that those old MBR-based
restrictions are utterly bogus, and so require only that partitions fill
complete sectors.

But when a disk lies about its sector size, gpart (8) lets you create
partitions that begin or end halfway through a physical sector. Each
read or write to the disk requires touching two physical sectors. This
wreaks havoc on performance.

Certain SSDs also expect partitions to be aligned along 128 KB or
1 MB boundaries.

The easy way to avoid alignment problems is to make all GPT par-
titions begin and end on megabyte boundaries. Add the -2 1m argu-

ment to your gpart add commands.

ZFS Sector Size
ZFS defaults to assuming a 512-byte sector size. Using a 512-byte

filesystem sector size on a disk with physical 512-byte sectors is per-
fectly fine. Using a 512-byte filesystem sector on a 4K-sector disk
makes the hardware work harder. Assume you want to write 4 KB of
data on such a disk. Rather than telling the hard drive to write a single
physical sector, the hard drive is told to modify the first eighth of the
sector, then the second eighth, then the third, and so on. Doing a 512-
byte write to a 4 KB sector means reading the entire 4 KB, modifying
the small section, then writing it back. This is much slower than just
overwriting the entire sector. Your performance plummets. If ZFS uses
a 4K sector size on a disk with 512-byte sectors, the disk hardware

52

Chapter 3: Pools

breaks up the access requests into physical sector sizes, at very little
performance cost.

While using a larger sector size does not impact performance, it
does reduce space efficiency when you're storing many small files. If
you have a whole bunch of 1 KB files, each occupies a single sector.

ZFS sector size is a property of each virtual device in a pool. You
cannot change a virtual device’s sector size, even when exporting the
pool or replacing a failed drive.

Combined, these two facts mean that it’s almost always preferable
to force ZFS to use 4K sectors, regardless of the sector size reported by
the underlying disk. Using the larger ZFS sector size won't hurt perfor-
mance except on certain specific database operations, and even then
only when using disks that really and for true use 512-byte sectors.

ZFS uses the sector size of the device that reports the largest sector
size. If all of your devices claim to use 512-byte sectors, and you don’t
set a larger sector size, a virtual device built out of those devices will
use 512-byte sectors. Including a single device with 4096-byte sectors
in your VDEYV forces ZFS to use 4096-byte sectors.

Don't trust that your 4K-sector devices report their sector size. Tell
ZFS to insist on always using 4K sectors.

A pool variable called the ashift controls sector size. An ashift of 9
tells ZFS to use 512-byte sectors. An ashift of 12 tells ZFS to use 4096-
byte sectors. (Why 9 and 122 2° is 512, while 2'? is 4096.)” The way you

set ashift depends on your FreeBSD release.
FreeBSD 10.1 and Newer Ashift

Set the system’s default ashift with the sysctl vfs.zfs.min_auto_ashift,

either in /etc/sysctl.conf or at the command line.

sysctl vfs.zfs.min_auto_ashift=12

7 Because everyone sees “9” and thinks 2°, don’t they?
53

Chapter 3: Pools

Use the command line during installation, but also set it permanent-
lyin /etc/sysctl.conf so you don't forget when creating new pools.

This book’s examples assume that you're using FreeBSD 10.1 or
newer. For older FreeBSD versions, you'll need to set the ashift each

time rather than setting the sysctl.
Older FreeBSD Ashift

FreeBSD versions older than 10.1 lack the ashift sysctl found in newer
FreeBSD versions, so you have to rely on ZFS’ internal sector-size-de-
tection code. This code reads the sector size from the underlying
storage medium—namely, the storage provider.

This case highlights the critical difference between a provider
and a disk. FreeBSD lets you create a pass-through device with the
GEOM module gnop (8). The gnop module lets you insert arbitrary
data between your storage devices—in this case, enforcing a sector
size. You create a gnop device that says, “Pass everything through
transparently, but insist on a 4096-byte sector size.” Use that device to
create your zpool. Here, we add a gnop device to the partition labeled

/dev/gpt/zfsO0.
gnop create -S 4096 /dev/gpt/zfs0

This creates the device /dev/gpt/zfs0.nop. Use this provider as
one member of the VDEV, and ZFS will pick up on the sector size for
that VDEV. The rest of this chapter discusses creating various ZFS
pools, but here’s an example of using this device when creating a mir-

rored pool.
zpool create compost mirror gpt/zfsO.nop gpt/zfsl

Providers created with gnop (8) are temporary, disappearing at re-
boot. As gnop (8) passes everything through to the device, though, ZFS
will find metadata on the underlying device. ZFS will no longer try to

detect the disk’s sector size, as it has already set its sector size.

54

Chapter 3: Pools
Creating Pools and VDEVs

Create pools and virtual devices simultaneously with zpoo1 (8). You'll
also use zpoo1 (8) to add VDEVs to an existing pool and swap out
failed devices, but we’ll cover all that in Chapter 5. Here we'll create
striped pools, mirrors, and pools on each of the RAID-Z devices.
Chapter 2 discusses each VDEV type.

You need to set the ashift only once before creating as many pools
as you like. You don’t have to reset it each time you create a pool. We
expect most readers to skip through this book until they find the entry
for the type of pool they create, though, so we listed “set ashift” in all
of them.

Sample Drives

Chapter 0 recommends labeling drives by physical location and serial
number, so you can easily identify failed hardware. For production,
that’s very useful. For a book, however, longer device names make
comprehension more difficult. Our examples use GPT labels of zfs and
a number. This chapter uses six 1 TB drives, each with a 1 GB swap

partition and a large ZFS partition, created with gpart(8).
gpart create -s gpt da0
gpart add -a 1m -slg -1 sw0 -t freebsd-swap da0
gpart add -a 1lm -1 zfsO0 -t freebsd-zfs da0
The resulting disk has the following partitions.
gpart show -1 da0

=> 40 1953525088 da0 GPT (9320)
40 2008 - free - (1.0M)
2048 2097152 1 sw0 (1.00)
2099200 1951424512 2 zfsO (9310)
1953523712 1416 - free - (708K)

We manage the ZFS pools with the GPT labels, so the examples
reference gpt/z£s0 through gpt/z£s5. In production, use meaningful

labels that map disks to physical locations.

55

Chapter 3: Pools

Striped Pools

Some storage pools don’t need redundancy, but do need lots of space.
Scratch partitions for engineering and physics computations are
common use cases for this kind of storage. Use zpool create, the
pool name, and list the devices in the pool. Remember to set the ashift
before creating the pool.

Here we create a pool of five storage providers.

sysctl vfs.zfs.min_auto_ashift=12
zpool create compost gpt/zfs0 gpt/zfsl gpt/zfs2 \
gpt/zfs3 gpt/zfs4

If the command succeeds, you get no output back. See if the pool

exists with zpool status.

zpool status
pool: compost
state: ONLINE
scan: none requested

config:
NAME STATE READ WRITE CKSUM
compost ONLINE

gpt/zfs0 ONLINE
gpt/zfsl ONLINE
gpt/zfs2 ONLINE
gpt/zfs3 ONLINE
gpt/zfs4 ONLINE

All five providers appear. Each provider is its own VDEV. This is a

(eoNeoNoNoNoNo)
eoNoNoNoNeNo)
oNoNoNoNoNo)

big pool for a system this size.
This pool stripes data across all the member VDEVs, but the
VDEVs have no redundancy. Most real-world applications require

redundancy. The simplest sort of redundancy is the mirror.

Mirrored Pools

Mirrored devices copy all data to multiple storage providers. If any one

provider on the mirror fails, the pool still has another copy of the data.

Traditional mirrors have two disks, although more is certainly possible.
56

Chapter 3: Pools

Use the same zpool create command and the pool name. Before
listing the storage devices, use the mirror keyword. Set the system
ashift before creating the pool.

sysctl vfs.zfs.min_auto_ashift=12
zpool create reflect mirror gpt/zfs0 gpt/zfsl
Check the pool’s configuration with zpoo1 status.

zpool status
pool: reflect
state: ONLINE
scan: none requested

config:
NAME STATE READ WRITE CKSUM
reflect ONLINE

mirror-0 ONLINE
gpt/zfs0 ONLINE
gpt/zfsl ONLINE

eoNeoNeNel
[oNeNeNe]
eoNeoNeNel

errors: No known data errors

The zpool command created a new layer here, something called
mirror-0. The mirror-0 entry is a VDEV. This VDEV contains two
devices, gpt/zfso and gpt/zfs1.

You can certainly have a mirror with many disks if this fits your

needs. Too many copies are better than not enough.

zpool create reflect mirror gpt/zfs0 gpt/zfsl \
gpt/zfs2 gpt/zfs3

This might be an example of going too far, however (although we
do discuss splitting a mirror into multiple pools in FreeBSD Mastery:
Advanced ZFS.)

RAID-Z Pools

The redundancy you get from mirrors is fast and reliable, but not

terribly complicated or exciting. RAID-Z offers greater flexibility at a

57

Chapter 3: Pools

complexity cost, which makes it more exciting.® Create a RAID-Z pool

much as you would any other zpool: run zpool create and give the

pool name, the type, and the storage devices. Here we create a RAID-Z

(or RAID-Z1) pool.

sysctl vfs.zfs.min_auto_ashift=12

zpool create bucket raidzl gpt/zfs0 gpt/zfsl gpt/zfs2
The new pools status shows a new VDEYV, called raidzI-0, with

three providers.

zpool status bucket
pool: bucket
state: ONLINE
scan: none requested

config:
NAME STATE READ WRITE CKSUM
bucket ONLINE 0 0 0
raidzl-0 ONLINE 0 0 0
gpt/zfsO0 ONLINE 0 0 0
gpt/zfsl ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0

If any one disk in this pool fails, the data remains intact. Other
RAID-Z levels have even more redundancy. Here we pull six providers
into a RAID-Z3. The only difference between creating the RAID-Z3 and
the RAID-Z1 is the use of raidz3 and the additional devices needed.

zpool create bucket raidz3 gpt/zfs0 gpt/zfsl \
gpt/zfs2 gpt/zfs3 gpt/zfs4 gpt/zfs5

As you might guess by now, the pool’s status shows a new device
called raidz3-0.

8 Exciting is a bad word in systems administration.
58

Chapter 3: Pools

zpool status
pool: bucket
state: ONLINE
scan: none requested

config:
NAME STATE READ WRITE CKSUM
bucket ONLINE

raidz3-0 ONLINE

gpt/zfs0 ONLINE
gpt/zfsl ONLINE

[eNeNe N
[eNe NN
[eNeNeNe]

All of these pools have a single VDEV. What if you want multiple
VDEVs, though?

Multi-VDEV Pools

You can create a pool with multiple VDEVs. The keywords mirror,
raidz, raidz2, and raidz3 all tell zpoo1 (8) to create a new VDEV. Any
storage providers listed after one of those keywords goes into creat-
ing a new instance of that VDEV. When one of the keywords appears
again, zpool (8) starts with a new VDEV.

The opening of this chapter covered striping across multiple mir-

rors, simulating a traditional RAID-10 setup. Here we do exactly that.

sysctl vfs.zfs.min_auto_ashift=12
zpool create barrel mirror gpt/zfs0 gpt/zfsl \
mirror gpt/zfs2 gpt/zfs3

The first three words, zpool create barrel, tell zpool(8) to in-
stantiate a new pool, named barrel. The mirror keyword says “create a
mirror” We then have two storage providers, gpt/zfso0 and gpt/zfs1.
These storage providers go into the first mirror. The word mirror ap-
pears again, telling zpool(8) that the previous VDEV is complete and
we're starting on a new VDEV. The second VDEV also has two storage
providers, gpt/zfs2 and gpt/z£s3. This pool’s status looks different

than anything we've seen before.

59

Chapter 3: Pools

zpool status barrel
pool: barrel
state: ONLINE
scan: none requested

config:
NAME STATE READ WRITE CKSUM
barrel ONLINE

mirror-0 ONLINE

gpt/zfs0 ONLINE
gpt/zfsl ONLINE
mirror-1 ONLINE
gpt/zfs2 ONLINE
gpt/zfs3 ONLINE

[eNeoNeoNoNoNoNe]
[eNeoNeoNoNoNoNe]
[eNeoNoNoNoNoNe]

The pool has two VDEVs, mirror-0 and mirror-1. Each VDEV
includes two storage devices. We know that ZFS stripes data across all
the VDEVs. Stripes over mirrors are RAID-10.

You can also arrange multi-VDEV pools in ways that have no
common RAID equivalent. While software RAID systems like some of
FreeBSD’s GEOM classes would let you build similar RAIDs, you won’t
find them on a hardware RAID card. Here we create a pool that stripes

data across two RAID-Z1 VDEVs.
zpool create vat raidzl gpt/zfs0 gpt/zfsl gpt/zfs2 \
raidzl gpt/zfs3 gpt/zfs4 gpt/zfs5

The first RAID-Z1 VDEV includes three storage providers, gpt/
z£s0, gpt/zfs1, and gpt/z£s2. The second includes gpt/z£s3, got/
zfs4, and gpt/zfs5. The zpool vat stripes data across both providers.

This creates a pool that contains two RAID-Z devices.

60

Chapter 3: Pools

zpool status vat

config:
NAME STATE READ WRITE CKSUM
vat ONLINE

raidz1-0 ONLINE
gpt/zfsO ONLINE
gpt/zfsl ONLINE
gpt/zfs2 ONLINE
raidzl1l-1 ONLINE
gpt/zfs3 ONLINE
gpt/zfs4 ONLINE
gpt/zfs5 ONLINE

[eNoNololoNoNoNeNeo)
[eNoNololoNoNoNeNe)
[eNoNololoNoNoNeNeo)

Each VDEV has its own redundancy.

While mirrors are faster than RAIDZ, you might find that the
added speed of having multiple VDEVs makes this RAIDZ-based pool
sufficiently fast for your workload and offers you significantly more
space. The only way to tell is by creating the pool and testing your
workload.

Remember, a pool splits all write requests between VDEVs in the
pool. A single small file might only go to one VDEYV, but in aggregate,
writes are split between VDEVs. Using multiple VDEVs increases
IOPS and throughput bandwidth.

Using Log Devices

As Chapter 2 discusses, ZFS can improve performance using dedi-
cated write cache devices and/or dedicated read cache devices. These
dedicated devices are normally very fast, high-endurance SSDs. The
zpool (8) command calls the write cache a log and the read cache a
cache.

Use the log and cache keywords to specify these devices when
creating your pool. Here we create a striped pool, named scratch, with

both a read and write cache.

61

Chapter 3: Pools

zpool create scratch gpt/zfs0 log gpt/zlog0 \
cache gpt/zcachel

The log devices show up in the pool’s status.

zpool status scratch

config:
NAME STATE READ WRITE CKSUM
scratch ONLINE 0 0 0
gpt/zfs0 ONLINE 0 0 0
Togs
gpt/zlog0 ONLINE 0 0 0
cache
gpt/zcachel ONLINE 0 0 0

On systems that need high availability, you can mirror these write
caches. Mirroring the read cache doesn’t make much sense—if you
lose the read cache, ZFS falls back to reading from the actual pool.
Losing the ZIL write log can cause data loss, however, so mirroring
it makes sense. Here we create a stripe of two mirrors using devices
gpt/zfs0 through gpt/z£s3, with mirrored log devices gpt/z10g0 and

gpt/zlogl.

zpool create db mirror gpt/zfs0 gpt/zfsl mirror \
gpt/zfs2 gpt/zfs3 log mirror gpt/zlog0 gpt/zlogl

You can add intent log and read cache devices to an existing pool,
or remove them. If you're not sure you need the performance boost of
these devices, try running the pool without them. Make sure that your

hardware has space to add SSD storage devices later, however!

Mismatched VDEVs
Using different VDEV types within a pool is not advisable, and

zpool (8) attempts to prevent you from creating such a disaster.

62

Chapter 3: Pools

zpool create daftie raidz gpt/zfs0 gpt/zfsl gpt/zfs2 \

mirror gpt/zfs3 gpt/zfs4 gpt/zfs5
invalid vdev specification
use ‘-f’ to override the following errors:
mismatched replication Tevel: both raidz and mirror
vdevs are present

The zpoo1 (8) command points out the mistake, and then tells you
how to insist. We normally take these kinds of errors as a way of saying
the sysadmin needs more caffeine, but maybe you really intended it.
Running zpool create -f with the specified VDEV types and storage
providers tells ZFS that yes, you fully intended to create a malformed
pool. Hey, it’s your system; you're in charge.

If ZFS doesn’t want you to do something, you probably shouldn’t.
When you use -£, you're creating something that ZFS isn’t designed to
handle. You can easily create a pool that won't work well and cannot be

repaired.

Reusing Providers

We sometimes create and destroy pools more than once to get them
right. We might pull disks from one machine and mount them in an-

other. Sometimes we encounter a disk that we've used before.

zpool create db gpt/zfsl gpt/zfs2 gpt/zfs3 gpt/zfs4
invalid vdev specification

use ‘-f’ to override the following errors:
/dev/gpt/zfs3 is part of exported pool ‘db’

We used this disk in another pool, which we later exported (see
Chapter 5). The problem disk was used in that pool, and the ZFS label
remained on the disk. While we erased and recreated the partition
table, the new partition table happens to be precisely identical to the

previous one. ZFS easily finds the old metadata in this case.

63

Chapter 3: Pools

If you're absolutely sure this provider doesn’t have anything im-
portant on it, follow the instructions and force creation of the new
pool with -£.

zpool create -f db gpt/zfsl gpt/zfs2 gpt/zfs3 gpt/zfs4

The ZFS programs can be very picky about where your com-

mand-line flags go, so be sure the - immediately follows create.
Pool Integrity

One common complaint about ZFS is that it has no filesystem checker,
such as fsck (8). An offline file checker wouldn’t improve ZFS because
the online pool integrity checker verifies everything that fsck (8)
checks for and more. The online checker is also much more effective
than a traditional filesystem would ever let fsck(8) be. Let’s talk about
how ZFS ensures file integrity, and then how pool scrubbing helps
maintain integrity.

ZFS Integrity

Storage devices screw up. When you have trillions of sectors on any
sort of disk, the odds of a stray cosmic ray striking one hard enough
to make it stagger around drunkenly go way up—as well as the odds
of a write error, or a power failure, or a short in a faulty cable, or any
number of other problems. No filesystem can prevent errors in the
underlying hardware.

ZFS uses hashes almost everywhere. A hash is a mathematical al-
gorithm that takes a chunk of data and computes a fixed-length string
from it. The interesting thing about a hash is that minor changes in the
original data dramatically change the hash of the data. Each block of
storage includes the hash of its parent block, while each parent block
includes the hash of all its children.

While ZFS cannot prevent storage provider errors, it uses these
hashes to detect them. Whenever the system accesses data, it verifies

64

Chapter 3: Pools

the checksums. ZFS uses the pool’s redundancy to repair any errors
before giving the corrected file to the operating system. This is called
self-healing.

If the underlying VDEV's have redundancy, ZFS either recon-
structs the damaged block from RAID-Z or grabs the intact copy from
the mirror. If both sides of a mirror have errors, ZFS can recover the
files so long as the same data is not bad on both disks. If the VDEV has
no redundancy, but a dataset has extra copies of the data (see Chapter
4), ZFS uses those extra copies instead.

If the underlying VDEV has no redundancy, and the dataset does
not keep extra copies, the pool notes that the file is damaged and re-
turns an error, instead of returning incorrect data. You can restore that
file from backup, or throw it away.

While ZFS performs file integrity checks, it also verifies the con-
nections between storage blocks. This is the task performed by £sck (8)
in traditional filesystems. It’s a small part of data verification, and ZFS
performs this task continually as part of its normal operation. ZFS
has an additional advantage over £sck (8) in that it checks only blocks
that actually exist, rather than used and unused inodes. If you want to
perform a full integrity check on all data in a pool, scrub it.

The nice thing about hash-based integrity checking is that it catch-
es all sorts of errors, even unexpected ones. Remember, happy filesys-

tems are all alike; every unhappy filesystem is unhappy in its own way.

Scrubbing ZFS
A scrub of a ZFS pool verifies the cryptographic hash of every data

block in the pool. If the scrub detects an error, it repairs the error if
sufficient resiliency exists. Scrubs happen while the pool is online and

in use.

65

Chapter 3: Pools

If your pool has identified any data errors, they’ll show up in the
zpool’s status. If you've run a scrub before, you'll also see that informa-

tion in the scan line.

scan: scrub repaired 0 in 15h57m with 0 errors on Sun
Feb 8 15:57:55 2015

errors: No known data errors

This pool has encountered no errors in the data it has accessed. If
it had found errors, it would have self-healed them. The pool hasn’t
checked all the data for errors, however—it has checked only the data
it's been asked for. To methodically search the entire pool for errors,

use a scrub. Run zpool scrub and the pool name.
zpool scrub zroot

Scrubs run in the background. You can see how they’re doing by

running zpool status.
zpool status

scan: scrub in progress since Tue Feb 24 11:52:23 2015
12.8G scanned out of 17.3G at 23.0M/s, Oh3m to go
0 repaired, 74.08% done

A ZFS pool scrubbing its storage runs more slowly than usual. If
your system is already pushing its performance limits, scrub pools
only during off-peak hours. If you must cancel an ongoing scrub, run

zpool scrub -s.

zpool scrub -s zroot

Be sure to go back and have the system complete its scrub as soon

as possible.

66

Chapter 3: Pools

Scrub Frequency

ZFS built-in integrity testing and resiliency mean that most errors are
fixable, provided that they’re found early enough for the resiliency to
kick in. This means that your hardware’s quality dictates how often you
should scrub a host’s pools. If you have reliable hardware, such as so-
called “server grade” gear, scrubbing quarterly should suffice. If you're
abusing cheap hardware, you should scrub every month or so.
FreeBSD can perform regular scrubs for you, as discussed in “ZFS

Maintenance Automation” later this chapter.

Pool Properties

ZFS uses properties to express a pool’s characteristics. While zpool
properties look and work much like a dataset’s properties, and many
properties seem to overlap between the two, dataset properties have no
relationship to pool properties. Pool properties include facts such as
the pool’s health, size, capacity, and per-pool features.

A pool’s properties affect the entire pool. If you want to set a prop-
erty for only part of a pool, check for a per-dataset property that fits

your needs.
Viewing Pool Properties

To view all the properties of all the pools on your system, run zpool
get all. You can add a pool name to the end if you want only the
properties on a specific pool. Here we look at the properties for the

pOOl zroot.

zpool get all zroot

NAME PROPERTY VALUE SOURCE
zroot size 920G -

zroot capacity 1% -

zroot altroot default
zroot health ONLINE -

67

Chapter 3: Pools

The first two columns give the pool name and the name of the
property.

The third column lists the value of the property. This can be some-
thing like enabled or disabled, on or off, active or inactive, or it can be
a value. This pool’s size property is 920G—this pool has 920 GB of
space.

The SOURCE column shows where this property is set. This can
be a single dash, or the words default or local. A dash means that this
property isn't set per se, but rather somehow read from the pool. You
don't set the value for the pool’s size or how much of that space is used.
FreeBSD calculates those values from the pool. A SOURCE of default
indicates that this property is set to its default value, while local means
that this property has been specifically set on this pool.

To get a single property, run zpool get with the property name.

zpool get size

NAME PROPERTY VALUE SOURCE
db size 2.72T -
zroot size 920G -

Narrow this down by giving the pool name at the end.
Changing Pool Properties

We'll set properties throughout this book to change pool behavior.
Change a pool’s properties using the zpool set command. Here we set

a pool’s comment property.
zpool set comment="Main 0S files” zroot

This comment now appears within the property list.
zpool get comment
NAME PROPERTY VALUE SOURCE
db comment - default
zroot comment Main 0S files Tlocal

68

Chapter 3: Pools

Note the SOURCE column here. By default, pools have no com-
ment. Now that I've set a comment, though, the source changes to lo-
cal. Once a property’s source changes from default to local, it remains
local forever. Even setting the property to the default value won't

change the source.

zpool set comment=
zpool get comment

NAME PROPERTY VALUE SOURCE

db comment - default
zroot comment - local

zroot

We locally set the comment to the default value, so the value’s
source remains local.
You can set a pool’s properties at creation time with -o. You can set

properties for the root dataset on that pool with -o.

zpool create -o altroot=/mnt -0 canmount=off \
-m none zroot /dev/gpt/diskO

The pool has its altroot property set to /mnt, and the root dataset
on this pool has the canmount property set to off. If a property changes
how data is written, only data written after changing the property is
affected. ZFS won't rewrite existing data to comply with a property

change.

Pool History

Every zpool retains a copy of all changes that have ever been made to
the pool, all the way back to the pool’s creation. This history doesn’t
include routine events like system power-on and power-off, but it does
include setting properties, pool upgrades, and dataset creation.

To access the history, run zpool nistory and give the pool name.

69

Chapter 3: Pools

zpool history zroot

History for ‘zroot’:

2014-01-07.04:12:05 zpool create -o altroot=/mnt -0 can-
mount=off -m none zroot mirror /dev/gpt/diskO.nop /dev/
gpt/diskl.nop

2014-01-07.04:12:50 zfs set checksum=fletcher4 zroot
2014-01-07.04:13:00 zfs set atime=off zroot

Experienced FreeBSD hands probably recognize this from any
number of ZFS tutorials in the FreeBSD documentation and forums.
The history ends with:

2015-03-12.14:36:35 zpool set comment=Main OS files
zroot
2015-03-12.14:43:45 zpool set comment=- zroot

We changed the comment property, so it’s in the history. Forever.
Sadly, the pool history doesn’t track who made each change, but

having a permanent record of changes helps with problem analysis.

Zpool Maintenance Automation

FreeBSD checks each system’s filesystems as part of the daily mainte-
nance job run by periodic (8). You can add ZFS pool information to
this check, so that you’ll get information on pool health. The daily_sta-

tus_zfs_enable periodic.conf option enables pool checks.

daily_status_zfs_enable="YES”
The daily periodic (8) output now includes the output of zpoo1
status -x, which is normally the single line of “all pools are healthy”
If you want more detailed information on your pools, the daily
report can also include zpool 1ist output. Set daily_status_zfs_zpool
list to YES to get the list. If you want to trim that output, showing only
the status of specific pools, list the desired pools in the daily_status_

zpool periodic.conf variable.

70

Chapter 3: Pools

You can also have FreeBSD perform your pool scrubs. With the
scrubbing options set, FreeBSD performs a daily check to see if the
pool needs scrubbing, but only scrubs at configured intervals. To au-
tomatically scrub every pool every 35 days, set daily_scrub_zfs_enable
to YES in periodic. cont.
daily_scrub_zfs_enable="YES”

FreeBSD defaults to scrubbing all pools. You can't explicitly ex-
clude specific pools from the daily scrub check. You can, however,
explicitly list the pools you want checked in daily_scrub_zfs_pools.

Any pool not listed isn’t scrubbed.
daily_scrub_zfs_pools="zroot prod test”

To change the number of days between scrubs, set daily_scrub_

zfs_default_threshold to the desired number of days.
daily_scrub_zfs_default_threshold="10"

If you want to scrub a specific pool on a different schedule, set
daily_scrub_zfs_${poolname}_threshold to the desired number of
days. Here we scrub the pool prod every 7 days.
daily_scrub_zfs_prod_threshold="7"

Any pool without its own personal threshold uses the default
threshold.

Removing Pools

To get rid of a pool, use the zpool destroy command and the pool
name.
zpool destroy test

Destruction marks the pool’s underlying providers as being part
of a destroyed pool, so that they can be reused for other pools. It does
not erase the disks, and anyone who has read Chapter 5 can restore the

pool and access the data.

71

Chapter 3: Pools

If you must securely erase or overwrite the data on the providers,

you'll need a disk overwriting or shredding program.

Zpool Feature Flags

ZFS and pools originally came with a version number, indicating the
features supported by the pool. A system could look at an unfamiliar
storage provider and say, “Oh, this pool is ZFS version 20, so it doesn't
support deduplication or native encryption.” You could upgrade the
pool to the newest version supported by your release—or not.

Then Oracle closed the ZFS source, leaving various people to pick
up the last open-source ZFS release and maintain it on their own.

The final open-source Oracle ZFS version was 28. As various groups
implemented their own pool features, version numbers from different
groups threatened to become mutually incompatible. Different ZFS
teams could implement whatever new features they chose, meaning
that, say, FooZFS version 30 would be incompatibly with BarZFS ver-
sion 30. A major goal of ZFS is interoperability.

The OpenZFS team decided that the best way forward was to break
away from tracking features with version numbers. They cranked the
OpenZES version up to 5000, leaving Oracle plenty of room to add
new versions. To accommodate all the different OpenZFS develop-
ers on all the different platforms, the developers chose to effectively
replace the version numbers with feature flags.

Every platform that runs OpenZFS, including FreeBSD, should in-
clude a zpool-features (7) manual page that lists the pool features this
particular install supports. Newer versions of FreeBSD will probably
support new pool features.

Using a feature normally changes the on-disk format in some way.
Adding snapshot support, for example, means adding new fields and

metadata to say “this is a snapshot.” A system that doesn’t support

72

Chapter 3: Pools

that feature will look at this pool and go “oh crud, I don't recognize
that data structure. I ain't touching this!” If you routinely swap disks
between systems, you'll want to carefully check feature flags supported

on the various hosts before upgrading or enabling new feature flags.

Viewing Feature Flags

To view the feature flags supported by a pool, and their settings, look

for pool properties that include the word “feature.”

zpool get all zroot | grep feature

zroot feature@async_destroy enabled Tocal
zroot feature@empty_bpobj active local
zroot feature@lz4_compress active local

Pool features that are enabled are available for use, but not actually
used yet. Your system might support a new type of compression, but
has not actually written any data to the pool using the new algorithm.
This pool could be imported on a system that doesn’t support the fea-
ture, because the on-disk format has not changed to accommodate the
feature. The new host won't see anything that makes it freak out.

Disabled pool features are available in the operating system but not
enabled. Nothing in the pool says that these features are available—the
presence of disabled features means they’re available in the operating
system. This pool is definitely usable on hosts that don’t support this
feature.

If the feature is active, the on-disk format has changed because the
feature is in use. Most commonly, this pool cannot be imported onto
a system that doesn’t support this feature. If the feature is active, but
all datasets using the feature are destroyed, the pool reverts the feature

setting to enabled.

73

Chapter 3: Pools

A few features are “read-only compatible.” If the feature is in active
use, the pool could be partially imported onto a system that doesn't
support the feature. The new host might not see some datasets on the
pool, and it can’t write any data to the pool, but it might be able to
extract some data from the datasets.

Creating a pool enables all features supported by that operating
system’s ZFS implementation. You could use the -d flag with zpoo1
create to disable all features in a new pool and then enable features
more selectively.

Now that you understand how pools work, let’s put some actual

data on them.

74

Chapter 4: ZFS Datasets

With ordinary filesystems you create partitions to separate different
types of data, apply different optimizations to them, and limit how
much of your space the partition can consume. Each partition receives
a specific amount of space from the disk. We've all been there. We
make our best guesses at how much disk space each partition on this
system will need next month, next year, and five years from now. Fast
forward to the future, and the amount of space you decided to give
each partition is more than likely wrong. A partition without enough
space for all its data sends you adding disks or moving data, compli-
cating system management. When a partition has too much space,
you kick yourself and use it as a dumping ground for stuft youd rather
have elsewhere. More than one of Lucas’ UFS2 systems has /usr/ports
as a symlink to somewhere in /home. Jude usually ends up with some
part of /varliving in /usr/local/var.

ZFS solves this problem by pooling free space, giving your parti-
tions flexibility impossible with more common filesystems. Each ZFS
dataset you create consumes only the space required to store the files
within it. Each dataset has access to all of the free space in the pool,
eliminating your worries about the size of your partitions. You can
limit the size of a dataset with a quota or guarantee it a minimum

amount of space with a reservation, as discussed in Chapter 6.

75

Chapter 4: ZFS Datasets

Regular filesystems use the separate partitions to establish different
policies and optimizations for the different types of data. /var contains
often-changing files like logs and databases. The root filesystem needs
consistency and safety over performance. Over in /home, anything
goes. Once you establish a policy for a traditional filesystem, though,
it’s really hard to change. The tunefs (8) utility for UFS requires the
filesystem be unmounted to make changes. Some characteristics, such
as the number of inodes, just cannot be changed after the filesystem
has been created.

The core problem of traditional filesystems distills to inflexibility.
ZFS datasets are almost infinitely flexible.

Datasets

A dataset is a named chunk of data. This data might resemble a tradi-
tional filesystem, with files, directories, and permissions and all that
fun stuff. It could be a raw block device, or a copy of other data, or
anything you can cram onto a disk.

ZFS uses datasets much like a traditional filesystem might use par-
titions. Need a policy for /usr and a separate policy for /home? Make
each a dataset. Need a block device for an iSCSI target? That's a data-
set. Want a copy of a dataset? That’s another dataset.

Datasets have a hierarchical relationship. A single storage pool is
the parent of each top-level dataset. Each dataset can have child data-
sets. Datasets inherit many characteristics from their parent, as we’ll
see throughout this chapter.

You'll perform all dataset operations with the zfs (8) command.

This command has all sorts of sub-commands.

76

Chapter 4: ZFS Datasets

Dataset Types

ZFS currently has five types of datasets: filesystems, volumes, snap-
shots, clones, and bookmarks.

A filesystem dataset resembles a traditional filesystem. It stores
files and directories. A ZFS filesystem has a mount point and supports
traditional filesystem characteristics like read-only, restricting setuid
binaries, and more. Filesystem datasets also hold other information,
including permissions, timestamps for file creation and modification,
NEFSv4 Access Control Flags, chflags(2), and the like.

A ZFS volume, or zvol, is a block device. In an ordinary filesystem,
you might create a file-backed filesystem for iSCSI or a special-pur-
pose UEFS partition. On ZFS, these block devices bypass all the over-
head of files and directories and reside directly on the underlying pool.
Zvols get a device node, skipping the FreeBSD memory devices used
to mount disk images.

A snapshot is a read-only copy of a dataset from a specific point in
time. Snapshots let you retain previous versions of your filesystem and
the files therein for later use. Snapshots use an amount of space based
on the difference between the current filesystem and what’s in the
snapshot.

A clone is a new dataset based on a snapshot of an existing dataset,
allowing you to fork a filesystem. You get an extra copy of everything
in the dataset. You might clone the dataset containing your production
web site, giving you a copy of the site that you can hack on without
touching the production site. A clone only consumes space to store the
differences from the original snapshot it was created from. Chapter 7

covers snapshots, clones, and bookmarks.

77

Chapter 4: ZFS Datasets

Why Do | Want Datasets?

You obviously need datasets. Putting files on the disk requires a filesys-
tem dataset. And you probably want a dataset for each traditional Unix
partition, like /usr and /var. But with ZFS, you want a lot of datasets.
Lots and lots and lots of datasets. This would be cruel madness with

a traditional filesystem, with its hard-coded limits on the number of
partitions and the inflexibility of those partitions. But using many
datasets increases the control you have over your data.

Each ZFS dataset has a series of properties that control its opera-
tion, allowing the administrator to control how the dataset performs
and how carefully it protects its data. You can tune each dataset exactly
as you can with a traditional filesystem. Dataset properties work much
like pool properties.

The sysadmin can delegate control over individual datasets to
another user, allow the user to manage it without root privileges. If
your organization has a whole bunch of project teams, you can give
each project manager their own chunk of space and say, “Here, arrange
it however you want.” Anything that reduces our workload is a good
thing.

Many ZFS features, such as replication and snapshots, operate on
a per-dataset basis. Separating your data into logical groups makes it
easier to use these ZFS features to support your organization.

Take the example of a web server with dozens of sites, each main-
tained by different teams. Some teams are responsible for multiple
sites, while others have only one. Some people belong to multiple
teams. If you follow the traditional filesystem model, you might create
a /webserver dataset, put everything in it, and control access with
group permissions and sudo (8). You've lived like this for decades, and

it works, so why change?

78

Chapter 4: ZFS Datasets

But create a dataset for each team, and give each site its own data-
set within that parent dataset, and possibilities multiply.

A team needs a copy of a web site for testing? Clone it. With tradi-
tional filesystems, youd have to copy the whole site directory, doubling
the amount of disk needed for the site and taking much, much longer.
A clone uses only the amount of space for the differences between the
sites and appears instantaneously.

The team is about to deploy a new version of a site, but wants a
backup of the old site? Create a snapshot. This new site probably uses
a whole bunch of the same files as the old one, so you’ll reduce disk
space usage. Plus, when the deployment goes horribly wrong, you can
restore the old version by rolling back to the snapshot.

A particular web site needs filesystem-level performance tweaks,
or compression, or some locally created property? Set it for that site.

You might create a dataset for each team, and then let the teams
create their own child datasets for their own sites. You can organize
your datasets to fit your people, rather than organizing your people to
fit your technology.

When you must change a filesystem setting (property) on all of the
sites, make the change to the parent dataset and let the children inherit it.

The same benefits apply to user home directories.

You can also move datasets between machines. Your web sites
overflow the web server? Send half the datasets, along with their cus-
tom settings and all their clones and snapshots, to the new server.

There is one disadvantage to using many filesystem datasets. When
you move a file within a filesystem, the file is renamed. Moving files
between separate filesystems requires copying the file to a new location
and deleting it from the old, rather than just renaming it. Inter-dataset
file copies take more time and require more free space. But that’s triv-

ial against all the benefits ZFS gives you with multiple datasets. This
79

Chapter 4: ZFS Datasets

problem exists on other filesystems as well, but hosts using most other
filesystems have only a few partitions, making it less obvious.
Viewing Datasets

The zfs 1ist command shows all of the datasets, and some basic

information about them.

zfs 1ist

NAME USED AVAIL REFER MOUNTPOINT
mypool 420M 17.9G 96K none
mypoo1/RO0T 418M 17.9G 96K none

mypoo1/R0O0T/default 418M 17.9G 418M /

The first field shows the dataset’s name.

Under USED and REFER you find information about how much
disk space the dataset uses. One downside to ZFS’ incredible flexibility
and efliciency is that its interpretation of disk space usage seems some-
what surreal if you don’t understand it. Chapter 6 discusses disk space
and strategies to use it.

The AVAIL column shows how much space remains free in the
pool or dataset.

Finally MOUNTPOINT shows where the dataset should be
mounted. That doesn’t mean that the dataset is mounted, merely that if
it were to be mounted, this is where it would go. (Use z£s mount to see
all mounted ZFS filesystems.)

If you give a dataset as an argument, z£s 1ist shows only that

specific dataset.

zfs 1ist mypool/Tlamb
NAME USED AVAIL REFER MOUNTPOINT
mypool/Tamb 192K 17.9G 96K /Tamb

Restrict the type of dataset shown with the -t flag and the type.
You can show filesystems, volumes, or snapshots. Here we display

snapshots, and only snapshots.

80

Chapter 4: ZFS Datasets

zfs 1ist -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
zroot/var/log/db@backup 0 - 10.0G -

Now that you can see filesystems, let's make some.

Creating, Moving, and Destroying Datasets

Use the zfs create command to create any dataset. We'll look at snap-
shots, clones, and bookmarks in Chapter 7, but let’s discuss filesystems

and volumes now.
Creating Filesystems

Filesystems are the most common type of dataset on most systems.
Everyone needs a place to store and organize files. Create a filesystem

dataset by specifying the pool and the filesystem name.
zfs create mypool/l1amb

This creates a new dataset, 1amb, on the ZFS pool called mypoo1.
If the pool has a default mount point, the new dataset is mounted by

default (see “Mounting ZFS Filesystems” later this chapter).

mount | grep lamb
mypool/Tlamb on /Tamb (zfs, local, noatime, nfsvdacls)

The mount settings in parentheses are usually ZFS properties,
inherited from the parent dataset. To create a child filesystem, give the

full path to the parent filesystem.
zfs create mypool/lamb/baby

The dataset inherits many of its characteristics, including its mount
point, from the parent, as we'll see in “Parent/Child Relationships”

later in this chapter.

81

Chapter 4: ZFS Datasets

Creating Volumes

Use the -v flag and a volume size to tell zfs create that you want to

create a volume. Give the full path to the volume dataset.
zfs create -V 4G mypool/avolume

Zvols show up in a dataset list like any other dataset. You can tell

zfs list to show only zvols by adding the -t volume option.

zfs 1ist mypool/avolume
NAME USED AVAIL REFER MOUNTPOINT
mypool/avolume 4.13G 17.9G 64K -

Zvols automatically reserve an amount of space equal to the size
of the volume plus the ZFS metadata. This 4 GB zvol uses 4.13 GB of
space.

As block devices, zvols do not have a mount point. They do get a
device node under /dev/zvo1, so you can access them as you would

any other block device.

1s -al /dev/zvol/mypool/avolume
crw-r----- 1 root operator 0x4d Mar 27 20:22 /dev/zvol/mypool/avolume

You can run newts (8) on this device node, copy a disk image to it,

and generally use it like any other block device.
Renaming Datasets

You can rename a dataset with, oddly enough, the zfs rename com-
mand. Give the dataset’s current name as the first argument and the

new location as the second.

zfs rename db/production db/ol1d
zfs rename db/testing db/production

Use the -£ flag to forcibly rename the dataset. You cannot un-
mount a filesystem with processes running in it, but the - £ flag glee-
fully forces the unmount. Any process using the dataset loses access to
whatever it was using, and reacts however it will.’

9 Probably badly.

82

Chapter 4: ZFS Datasets

Moving Datasets

You can move a dataset from part of the ZFS tree to another, making

the dataset a child of its new parent. This may cause many of the data-

set’s properties to change, since children inherit properties from their

parent. Any properties set specifically on the dataset will not change.
Here we move a database out from under the zroot/var/db data-

set, to a new parent where you have set some properties to improve

fault tolerance.
zfs rename zroot/var/db/mysql zroot/important/mysql

Note that since mount points are inherited, this will likely change
the dataset’s mount point. Adding the -u flag to the rename command
will cause ZFS not to immediately change the mount point, giving you
time to reset the property to the intended value. Remember that if the
machine is restarted, or the dataset is manually remounted, it will use
its new mount point.

You can rename a snapshot, but you cannot move snapshots out of

their parent dataset. Snapshots are covered in detail in Chapter 7.

Destroying Datasets
Sick of that dataset? Drag it out behind the barn and put it out of your

misery with zfs destroy.
zfs destroy db/old

If you add the -r flag, you recursively destroy all children (datasets,
snapshots, etc.) of the dataset. To destroy any cloned datasets while
you're at it, use -r. Be very careful recursively destroying datasets, as
you can frequently be surprised by what, exactly, is a child of a dataset.

You might use the -v and -n flags to see exactly what will happen
when you destroy a dataset. The -v flag prints verbose information
about what gets destroyed, while -n tells z£s (8) to perform a dry run.
Between the two, they show what this command would actually de-

stroy before you pull the trigger.
83

Chapter 4: ZFS Datasets

ZFS Properties

ZFS datasets have a number of settings, called properties, that control

how the dataset works. While you can set a few of these only when you

create the dataset, most of them are tunable while the dataset is live.

ZFS also offers a number of read-only properties that provide informa-

tion such as the amount of space consumed by the dataset, the com-

pression or deduplication ratios, and the creation time of the dataset.
Each dataset inherits its properties from its parent, unless the

property is specifically set on that dataset.

Viewing Properties
The z£s (8) tool can retrieve a specific property, or all properties for a
dataset. Use the zfs get command, the desired property, and if de-

sired, a dataset name.

zfs get compression mypool/lamb
NAME PROPERTY VALUE SOURCE
mypool/lamb compression T1z4 inherited from mypool

Under NAME we see the dataset you asked about, and PROPERTY
shows the property you requested. The VALUE is what the property is
set to.

The SOURCE is a little more complicated. A source of default
means that this property is set to ZFS’ default. A local source means
that someone deliberately set this property on this dataset. A tem-
porary property was set when the dataset was mounted, and this
property reverts to its usual value when the dataset is unmounted. An
inherited property comes from a parent dataset, as discussed in “Par-
ent/Child Relationships” later in this chapter.

Some properties have no source because the source is either irrel-
evant or inherently obvious. The creation property, which records the
date and time the dataset was created, has no source. The value came

from the system clock.

84

Chapter 4: ZFS Datasets

If you don't specify a dataset name, zfs get shows the value of this
property for all datasets. The special property keyword all retrieves all

of a dataset’s properties.
zfs get all mypool/1amb

NAME PROPERTY VALUE SOURCE
mypool/lamb type filesystem -
mypool/Tamb creation Fri Mar 27 20:05 2015 -

mypool/lamb used 192K -

If you use all and don’t give a dataset name, you get all the proper-
ties for all datasets. This is a lot of information.

Show multiple properties by separating the property names with

commas.
zfs get quota,reservation zroot/home
NAME PROPERTY VALUE SOURCE
zroot/home quota none local
zroot/home reservation none default

You can also view properties with zfs 1ist and the -o modifier.
This is most suited for when you want to view several properties from

multiple datasets. Use the special property name to show the dataset’s

name.
zfs 1ist -o name,quota,reservation
NAME QUOTA RESERV
db none none
zroot none none
zroot/ROOT none none

zroot/RO0OT/default none none

zroot/var/log 100G 20G

You can also add a dataset name to see these properties in this

format for that dataset.

85

Chapter 4: ZFS Datasets
Changing Properties
Change properties with the zfs set command. Give the property
name, the new setting, and the dataset name. Here we change the com-
pression property to off.
zfs set compression=off mypool/1amb/baby

Confirm your change with zfs get.

zfs get compression mypool/1amb/baby
NAME PROPERTY VALUE SOURCE
mypool/lamb/baby compression off Tocal

Most properties apply only to data written after the property is
changed. The compression property tells ZFS to compress data before
writing it to disk. We talk about compression in Chapter 6. Disabling
compression doesn’t uncompress any data written before the change
was made. Similarly, enabling compression doesn’t magically compress
data already on the disk. To get the full benefit of enabling compres-
sion, you must rewrite every file. You're better off creating a new data-
set, copying the data over with z£s send, and destroying the original

dataset.
Read-Only Properties

ZFS uses read-only properties to offer basic information about the
dataset. Disk space usage is expressed as properties. You can't change
how much data you're using by changing the property that says “your
disk is half-full” (Chapter 6 covers ZFS disk space usage.) The cre-
ation property records when this dataset was created. You can change
many read-only properties by adding or removing data to the disk, but

you can’t write these properties directly.

86

Chapter 4: ZFS Datasets

Filesystem Properties

One key tool for managing the performance and behavior of tradition-
al filesystems is mount options. You can mount traditional filesystems
read-only, or use the noexec flag to disable running programs from
them. ZFS uses properties to achieve the same effects. Here are the

properties used to accomplish these familiar goals.
atime

A file’s atime indicates when the file was last accessed. ZFS’ atime
property controls whether the dataset tracks access times. The default
value, on, updates the file’s atime metadata every time the file is ac-
cessed. Using atime means writing to the disk every time it’s read.

Turning this property off avoids writing to the disk when you read
a file, and can result in significant performance gains. It might confuse
mailers and other similar utilities that depend on being able to deter-
mine when a file was last read.

Leaving atime on increases snapshot size. The first time a file is
accessed, its atime is updated. The snapshot retains the original access
time, while the live filesystem contains the newly updated accessed
time. This is the default.

exec
The exec property determines if anyone can run binaries and com-
mands on this filesystem. The default is on, which permits execution.
Some environments don’'t permit users to execute programs from their
personal or temporary directories. Set the exec property to off to dis-
able execution of programs on the filesystem.

The exec property doesn’t prohibit people from running interpret-
ed scripts, however. If a user can run /bin/sh, they can run /bin/sh /
home/mydir/script.sh. The shell is whats actually executing—it only

takes instructions from the script.

87

Chapter 4: ZFS Datasets

readonly
If you don’t want anything writing to this dataset, set the readon1y
property to on. The default, off, lets users modify the dataset within
administrative permissions.
setuid
Many people consider setuid programs risky."” While some programs
must be setuid, such as passwd (1) and 1ogin (1), there’s rarely a need
to have setuid programs on filesystems like /nome and /tmp. Many sys-
admins disallow setuid programs except on specific filesystems.

ZFS setuid property toggles setuid support. If set to on, the
filesystem supports setuid. If set to off, the setuid flag is ignored.

User-Defined Properties

ZFS properties are great, and you can’t get enough of them, right?
Well, start adding your own. The ability to store your own metadata
along with your datasets lets you develop whole new realms of auto-
mation. The fact that children automatically inherit these properties
makes life even easier.

To make sure your custom properties remain yours, and don’t con-
flict with other people’s custom properties, create a namespace. Most
people prefix their custom properties with an organizational identifier
and a colon. For example, FreeBSD-specific properties have the format
“org.freebsd:propertyname,” such as org. freebsd: swap. If the illumos
project creates its own property named swap, theyd call it org.il1lu-

mos: swap. The two values won't collide.

10 Properly written setuid programs are not risky. That's why real
setuid programs are risky.

88

Chapter 4: ZFS Datasets

For example, suppose Jude wants to control which datasets get
backed up via a dataset property. He creates the namespace com.allan-

jude." Within that namespace, he creates the property backup_ignore.

zfs set com.allanjude:backup_ignore=on mypool/1amb
Jude’s backup script checks the value of this property. If it’s set to
true, the backup process skips this dataset.

Parent/Child Relationships

Datasets inherit properties from their parent datasets. When you set a
property on a dataset, that property applies to that dataset and all of its
children. For convenience, you can run z£s (8) commands on a dataset
and all of its children by adding the -r flag. Here, we query the com-

pression property on a dataset and all of its children.

zfs get -r compression mypool/lamb

NAME PROPERTY VALUE SOURCE

mypool/Tamb compression 1z4 inherited from mypool
mypool/Tlamb/baby compression off Tocal

Look at the source values. The first dataset, mypoo1/1amb, inherited
this property from the parent pool. In the second dataset, this proper-
ty has a different value. The source is local, meaning that the property
was set specifically on this dataset.

We can restore the original setting with the zfs inherit command.

zfs inherit compression mypool/lamb/baby

zfs get -r compression mypool/lamb

NAME PROPERTY VALUE SOURCE

mypool/Tamb compression 1z4 inherited from mypool
mypool/Tamb/baby compression 1z4 inherited from mypool

The child now inherits the compression properties from the parent,

which inherits from the grandparent.

11 When you name ZFS properties after yourself, you are immor-
talized by your work. Whether this is good or bad depends on your
work.

89

Chapter 4: ZFS Datasets

When you change a parent’s properties, the new properties auto-

matically propagate down to the child.

zfs set compression=gzip-9 mypool/Tamb

zfs get -r compression mypool/lamb

NAME PROPERTY VALUE SOURCE
mypool/Tamb compression gzip-9 local

mypool/Tamb/baby compression gzip-9 inherited from mypool/Tamb
I told the parent dataset to use gzip-9 compression. That percolated
down to the child.

Inheritance and Renaming

When you move or rename a dataset so that it has a new parent, the
parent’s properties automatically propagate down to the child. Locally
set properties remain unchanged, but inherited ones switch to those
from the new parent.

Here we create a new parent dataset and check its compression
property.
zfs create mypool/second
zfs get compress mypool/second

NAME PROPERTY VALUE SOURCE
mypool/second compression 1z4 dinherited from mypool

Our baby dataset uses gzip-9 compression. It’s inherited this prop-
erty from mypoo1/1amb. Now let’s move baby to be a child of second,

and see what happens to the compression property.

zfs rename mypool/lamb/baby mypool/second/baby
zfs get -r compression mypool/second

NAME PROPERTY VALUE SOURCE
mypool/second compression 1z4 inherited from mypool
mypool/second/baby compression 1z4 inherited from mypool

The child dataset now belongs to a different parent, and inherits its
properties from the new parent. The child keeps any local properties.

Data on the baby dataset is a bit of a tangle, however. Data writ-
ten before compression was turned on is uncompressed. Data written

while the dataset used gzip-9 compression is compressed with gzip-9.

90

Chapter 4: ZFS Datasets

Any data written now will be compressed with 1z4. ZFS sorts all this
out for you automatically, but thinking about it does make one’s head
hurt.

Removing Properties

While you can set a property back to its default value, it’s not obvious
how to change the source back to inherit or default, or how to remove
custom properties once they’re set.

To remove a custom property, inherit it.
zfs 1inherit com.allanjude:backup_ignore mypool/1amb

This works even if you set the property on the root dataset.
To reset a property to its default value on a dataset and all its chil-
dren, or totally remove custom properties, use the zfs inherit com-

mand on the pool’s root dataset.
zfs dinherit -r compression mypool

It’s counterintuitive, but it knocks the custom setting off of the root

dataset.

Mounting ZFS Filesystems

With traditional filesystems you listed each partition, its type, and
where it should be mounted in /etc/fstab. You even listed temporary
mounts such as floppies and CD-ROM drives, just for convenience.
ZFS allows you to create such a large number of filesystems that this
quickly grows impractical.

Each ZFS filesystem has a mountpoint property that defines where
it should be mounted. The default mountpoint is built from the pool’s
mountpoint. If a pool doesn’t have a mount point, you must assign a

mount point to any datasets you want to mount.

91

Chapter 4: ZFS Datasets

zfs get mountpoint zroot/usr/home
NAME PROPERTY VALUE SOURCE
zroot/usr/home mountpoint /usr/home inherited from zroot/usr

The filesystem normally get mounted at /usr/home. You could
override this when manually mounting the filesystem.

The zroot pool used for a default FreeBSD install doesn't have a
mount point set. If you create new datasets directly under zroot, they
won’t have a mount point. Datasets created on zroot under, say, /usr,
inherit a mount point from their parent dataset.

Any pool other than the pool with the root filesystem normally has
a mount point named after the pool. If you create a pool named db, it
gets mounted at /dp. All children inherit their mount point from that
pool unless you change them.

When you change the mountpoint property for a filesystem, the
filesystem and any children that inherit the mount point are un-
mounted. If the new value is legacy, then they remain unmounted.
Otherwise, they are automatically remounted in the new location if
the property was previously legacy or none, or if they were mounted
before the property was changed. In addition, any shared filesystems
are unshared and shared in the new location.

Just like ordinary filesystems, ZFS filesystems aren’t necessarily
mounted. The canmount property controls a filesystem’s mount be-
havior. If canmount is set to yes, running zfs mount -a mounts the
filesystem, just like mount -a. When you enable ZFS in /etc/rc. conf,
FreeBSD runs zfs mount -a at startup.

When the canmount property is set to noauto, a dataset can only be
mounted and unmounted explicitly. The dataset is not mounted auto-
matically when the dataset is created or imported, nor is it mounted by

the zfs mount -a command or unmounted by zfs unmount -a.

92

Chapter 4: ZFS Datasets

Things can get interesting when you set canmount to off. You might
have two non-mountable datasets with the same mount point. A data-
set can exist solely for the purpose of being the parent to future data-
sets, but not actually store files, as we'll see below.

Child datasets do not inherit the canmount property.

Changing the canmount property does not automatically unmount
or mount the filesystem. If you disable mounting on a mounted filesys-

tem, you'll need to manually unmount the filesystem or reboot.
Datasets without Mount Points

ZFS datasets are hierarchical. You might need to create a dataset that
will never contain any files only so it can be the common parent of a
number of other datasets. Consider a default install of FreeBSD 10.1 or

newer.
zfs mount
zroot/RO0OT/default /

zroot/tmp /tmp
zroot/usr/home /usr/home
zroot/usr/ports /usr/ports
zroot/usr/src /usr/src

We have all sorts of datasets under /usr, but there’s no /usr dataset
mounted. What’s going on?

A zfs 1ist shows that a dataset exists, and it has a mount point of
/usr. But let’s check the mountpoint and canmount properties of zroot/

usr and all its children.
zfs 1ist -o name,canmount,mountpoint -r zroot/usr

NAME CANMOUNT MOUNTPOINT
zroot/usr off /usr
zroot/usr/home on /usr/home
zroot/usr/ports on /usr/ports
zroot/usr/src on /usr/src

93

Chapter 4: ZFS Datasets

With canmount set to off, the zroot/usr dataset is never mounted.
Any files written in /usr, such as the commands in /usr/bin and the
packages in /usr/local, go into the root filesystem. Lower-level mount
points such as /usr/src have their own datasets, which are mounted.

The dataset exists only to be a parent to the child datasets. You'll

see something similar with the /var partitions.
Multiple Datasets with the Same Mount Point

Setting canmount to off allows datasets to be used solely as a mecha-
nism to inherit properties. One reason to set canmount to off is to have
two datasets with the same mount point, so that the children of both
datasets appear in the same directory, but might have different inherit-
ed characteristics.

FreeBSD’s installer does not have a mountpoint on the default pool,
zroot. When you create a new dataset, you must assign a mount point
to it.

If you don’t want to assign a mount point to every dataset you
create right under the pool, you might assign a mountpoint of / to the
zroot pool and leave canmount set to off. This way, when you create a
new dataset, it has a mountpoint to inherit. This is a very simple exam-
ple of using multiple datasets with the same mount point.

Imagine you want an /opt directory with two sets of subdirecto-
ries. Some of these directories contain programs, and should never be
written to after installation. Other directories contain data. You must

lock down the ability to run programs at the filesystem level.

zfs create db/programs
zfs create db/data

Now give both of these datasets the mountpoint of /opt and tell

them that they cannot be mounted.

94

Chapter 4: ZFS Datasets
zfs set canmount=off db/programs
zfs set mountpoint=/opt db/programs

Install your programs to the dataset, and then make it read-only.

zfs set readonly=on db/programs
You can’t run programs from the db/data dataset, so turn off exec

and setuid. We need to write data to these directories, however.

zfs set canmount=off db/data
zfs set mountpoint=/opt db/data
zfs set setuid=off db/data

zfs set exec=off db/data

FH H H H

Now create some child datasets. The children of the db/programs
dataset inherit that dataset’s properties, while the children of the an/

data dataset inherit the other set of properties.

zfs create db/programs/bin
zfs create db/programs/sbin
zfs create db/data/test

zfs create db/data/production

FH o W H

We now have four datasets mounted inside /opt, two for binaries
and two for data. As far as users know, these are normal directories.
No matter what the file permissions say, though, nobody can write to
two of these directories. Regardless of what trickery people pull, the
system won't recognize executables and setuid files in the other two.
When you need another dataset for data or programs, create it as a
child of the dataset with the desired settings. Changes to the parent
datasets propagate immediately to all the children.

95

Chapter 4: ZFS Datasets

Pools without Mount Points

While a pool is normally mounted at a directory named after the pool,

that isn’t necessarily so.
zfs set mountpoint=none mypool

This pool no longer gets mounted. Neither does any dataset on
the pool unless you specify a mount point. This is how the FreeBSD
installer creates the pool for the OS.

zfs set mountpoint=/someplace mypool/lamb

The directory will be created if necessary and the filesystem

mounted.
Manually Mounting and Unmounting Filesystems

To manually mount a filesystem, use zfs mount and the dataset name.

This is most commonly used for filesystems with canmount set to noauto.

zfs mount mypool/usr/src

To unmount a filesystem and all of its children, use zfs unmount.
zfs unmount mypool/second

If you want to temporarily mount a dataset at a different location,
use the -o flag to specify a new mount point. This mount point only
lasts until you unmount the dataset.

zfs mount -o mountpoint=/mnt mypool/lamb

You can only mount a dataset if it has a mountpoint defined. De-

fining a temporary mount point when the dataset has no mount point

giVES you an error.

ZFS and /etc/fstab

You can choose to manage some or all of your ZFS filesystem mount
points with /etc/fstab if you prefer. Set the dataset’s mountpoint

property to legacy. This unmounts the filesystem.

96

Chapter 4: ZFS Datasets

zfs set mountpoint=legacy mypool/second

Now you can mount this dataset with the mount (8) command:
mount -t zfs mypool/second /tmp/second

You can also add ZFS datasets to the system’s /etc/fstab. Use the
full dataset name as the device node. Set the type to zfs. You can use
the standard filesystem options of noatime, noexec, readonly oOr ro, and
nosuid. (You could also explicitly give the default behaviors of atime,
exec, rw, and suid, but these are ZFS’ defaults.) The mount order is
normal, but the fsck field is ignored. Here’s an /etc/fstab entry that

mounts the dataset scratch/junk nosuid at /tmp.
scratch/junk /tmp nosuid 2 0

We recommend using ZFS properties to manage your mounts,
however. Properties can do almost everything /etc/fstab does, and

more.

Tweaking ZFS Volumes

Zvols are pretty straightforward—here’s a chunk of space as a block de-
vice; use it. You can adjust how a volume uses space and what kind of

device node it offers.
Space Reservations

The volsize property of a zvol specifies the volume’ logical size. By
default, creating a volume reserves an amount of space for the dataset
equal to the volume size. (If you look ahead to Chapter 6, it establishes
a refreservation of equal size.) Changing vo1size changes the reser-
vation. The volsize can only be set to a multiple of the volblocksize
property, and cannot be zero.

Without the reservation, the volume could run out of space, result-
ing in undefined behavior or data corruption, depending on how the

volume is used. These effects can also occur when the volume size is

97

Chapter 4: ZFS Datasets

changed while it is in use, particularly when shrinking the size. Adjust-
ing the volume size can confuse applications using the block device.

Zvols also support sparse volumes, also known as thin provisioning.
A sparse volume is a volume where the reservation is less than the vol-
ume size. Essentially, using a sparse volume permits allocating more
space than the dataset has available. With sparse provisioning you
could, say, create ten 1 TB sparse volumes on your 5 TB dataset. So
long as your volumes are never heavily used, nobody will notice that
you’re overcommitted.

Sparse volumes are not recommended. Writes to a sparse volume
can fail with an “out of space” error even if the volume itself looks only
partially full.

Specify a sparse volume at creation time by specifying the -s
option to the zfs create -v.command. Changes to volsize are not
reflected in the reservation. You can also reduce the reservation after

the volume has been created.
Zvol Mode

FreeBSD normally exposes zvols to the operating system as geom (4)
providers, giving them maximum flexibility. You can change this with
the volmode property.

Setting a volume’s volmode to dev exposes volumes only as a char-
acter device in /dev. Such volumes can be accessed only as raw disk
device files. They cannot be partitioned or mounted, and they cannot
participate in RAIDs or other GEOM features. They are faster. In some
cases where you don’t trust the device using the volume, dev mode can
be safer.

Setting volmode to none means that the volume is not exposed out-
side ZFS. These volumes can be snapshotted, cloned, and replicated,

however. These volumes can be suitable for backup purposes.

98

Chapter 4: ZFS Datasets

Setting volmode to default means that volume exposure is con-
trolled by the sysctl vfs.zfs.vol. mode. You can set the default zvol mode
system-wide. A value of 1 means the default is geom, 2 means dev, and
3 means none.

While you can change the property on a live volume, it has no ef-
fect. This property is processed only during volume creation and pool
import. You can recreate the zvol device by renaming the volume with

zfs rename.

Dataset Integrity
Most of ZFS’ protections work at the VDEV layer. That’s where blocks

and disks go bad, after all. Some hardware limits pool redundancy,
however. Very few laptops have enough hard drives to use mirroring,
let alone RAID-Z. You can do some things at the dataset layer to offer
some redundancy, however, by using checksums, metadata redundan-
cy, and copies. Most users should never touch the first two, and users

with redundant virtual devices probably want to leave all three alone.
Checksums

ZFS computes and stores checksums for every block that it writes. This
ensures that when a block is read back, ZFS can verify that it is the
same as when it was written, and has not been silently corrupted in
one way or another. The checksum property controls which checksum
algorithm the dataset uses. Valid settings are on, fletcher2, fletcher4,
sha256, off, and noparity.

The default value, on, uses the algorithm selected by the OpenZFS
developers. In 2015 that algorithm is fletcher4, but it might change in
future releases.

The standard algorithm, fletcher4, is the default checksum algo-

rithm. It’s good enough for most use and is very fast. If you want to

99

Chapter 4: ZFS Datasets

use fletcher4 forever and ever, you could set this property to fletcher4.
We recommend keeping the default of on, however, and letting ZFS
upgrade your pool’s checksum algorithm when it’s time.

The value off disables integrity checking on user data.

The value noparity not only disables integrity but also disables
maintaining parity for user data. This setting is used internally by a
dump device residing on a RAID-Z pool and should not be used by
any other dataset. Disabling checksums is not recommended.

Older versions of ZFS used the fletcher2 algorithm. While it’s sup-
ported for older pools, it’s certainly not encouraged.

The sha256 algorithm is slower than fletcher4, but less likely to re-
sult in a collision. In most cases, a collision is not harmful. The sha256

algorithm is frequently recommended when doing deduplication.
Copies

ZFS stores two or three copies of important metadata, and can give the
same treatment to your important user data. The copies property tells
ZFS how many copies of user data to keep. ZFS attempts to put those
copies on different disks, or failing that, as far apart on the physical
disk as possible, to help guard against hardware failure. When you
increase the copies property, ZFS also increases the number of copies
of the metadata for that dataset, to a maximum of three.

If your pool runs on two mirrored disks, and you set copies to 3,
you’'ll have six copies of your data. One of them should survive your
ill-advised use of dd (1) on the raw provider device or that plunge off
the roof.

Increasing or decreasing copies only affects data written after the
setting change. Changing copies from I to 2 doesn’t suddenly create
duplicate copies of all your data, as we see here. Create a 10 MB file of

random data.

100

Chapter 4: ZFS Datasets

dd if=/dev/random of=/1amb/randoml bs=1m count=10
10+0 records 1in

10+0 records out

10485760 bytes transferred in 0.144787 secs (72421935
bytes/sec)

zfs set copies=2 mypool/lamb

Now every block is stored twice. If one of the copies becomes
corrupt, ZFS can still read your file. It knows which of the blocks is
corrupt because its checksums won’t match. But look at the space use

on the pool (the REFER space in the pool listing).

zfs 1ist mypool/Tamb
NAME USED AVAIL REFER MOUNTPOINT
mypool/lamb 10.2M 13.7G 10.1M /Tamb

Only the 10 MB we wrote were used. No extra copy was made of
this file, as you wrote it before changing the copies property.
With copies set to 2, however, if we either write another file or

overwrite the original file, we'll see different disk usage.

dd if=/dev/random of=/1amb/random2 bs=1m count=10

10+0 records in

10+0 records out

10485760 bytes transferred in 0.141795 secs (73950181
bytes/sec)

Look at disk usage now.

zfs 1ist mypool/Tamb
NAME USED AVAIL REFER MOUNTPOINT
mypool/lamb 30.2M 13.7G 30.1M /Tlamb

The total space usage is 30 MB, 10 for the first file of random data,
and 20 for 2 copies of the second 10 MB file.

When we look at the files with 1s(1), they only show the actual size:

1s -1 /1amb/random*
-rw-r--r-- 1 root wheel 10485760 Apr 6 15:27 /lamb/randoml
-rw-r--r-- 1 root wheel 10485760 Apr 6 15:29 /lamb/random2

If you really want to muck with your dataset’s resilience, look at

metadata redundancy.

101

Chapter 4: ZFS Datasets

Metadata Redundancy

Each dataset stores an extra copy of its internal metadata, so that if a
single block is corrupted, the amount of user data lost is limited. This
extra copy is in addition to any redundancy provided at the VDEV
level (e.g., by mirroring or RAID-Z). It’s also in addition to any extra
copies specified by the copies property (below), up to a total of three
copies.

The redundant_metadata property lets you decide how redundant
you want your dataset metadata to be. Most users should never change
this property.

When redundant_metadata is set to all (the default), ZFS stores an
extra copy of all metadata. If a single on-disk block is corrupt, at worst
a single block of user data can be lost.

When you set redundant_metadata to most, ZFS stores an extra
copy of only most types of metadata. This can improve performance
of random writes, because less metadata must be written. When only
most metadata is redundant, at worst about 100 blocks of user data can
be lost if a single on-disk block is corrupt. The exact behavior of which
metadata blocks are stored redundantly may change in future releases.

If you set redundant_metadata to most and copies to 3, and the
dataset lives on a mirrored pool, then ZFS stores six copies of most
metadata, and four copies of data and some metadata.

This property was designed for specific use cases that frequently
update metadata, such as databases. If the data is already protected by
sufficiently strong fault tolerance, reducing the number of copies of
the metadata that must be written each time the database changes can
improve performance. Change this value only if you know what you
are doing.

Now that you have a grip on datasets, let’s talk about pool

maintenance.

102

Chapter 5: Repairs & Renovations

Disks fill up. That's what they’re for. Hardware fails for the same rea-
son. Sometimes you must take disks from one machine and put them
in another, or replace a failed hard drive, or give your database more
space. This chapter discusses how you can modity, update, and repair
your storage pools.

Before we get into that, let’s discuss how ZFS rebuilds damaged

virtual devices.

Resilvering

Virtual devices such as mirrors and RAID-Z are specifically designed
to reconstruct missing data on damaged disks. If a disk in your mirror
pair dies, you replace the disk and ZFS will copy the surviving mirror
onto the new one. If a disk in your RAID-Z VDEYV fails, you replace
the broken drive and ZFS rebuilds that disk from parity data. This sort
of data recovery is a core feature of every RAID implementation.

ZFS understands both the filesystem and the underlying storage,
however. This gives ZFS latitude and advantages that traditional RAID
managers lack.

Rebuilding a disk mirrored by software or hardware RAID requires
copying every single sector from the good disk onto the replacement.
The RAID unit must copy the partition table, the filesystem, all the
inodes, all the blocks (even the free space), and all the data from one
to the other.

103

Chapter 5: Repairs and Renovations

We've all made a typo in /etc/rc. conf that prevented a system
from booting. Fixing that typo on a system mirrored with UFS2 and
gmirror (8) required booting into single-user mode, fixing the typo,
and rebooting. This made one of the disks out of sync with the other.
At the reboot, FreeBSD noticed the discrepancy and brought the back-
up disk into sync by copying every single sector of the current drive
onto the backup. You might have changed one or two sectors on the
disk, but gmirror (8) had to copy the whole thing. This might take
hours or days.

ZFS knows precisely how much of each disk is in use. When ZFS
reassembles a replacement storage provider, it copies only the data
actually needed on that provider. If you replace a ZFS disk that was
only one-third data, ZFS copies only that one-third of a disk of data to
the replacement.

Fixing a rc. conf typo on a ZFS-mirrored disk requires sysadmin
intervention very similar to that needed on a gmirror (8) system.
You get into single-user mode. You fix the typo. You reboot. The
difference is, ZFS knows exactly which blocks changed on the disk. If
only one of the disks was powered on during single user mode (un-
likely, but it could happen), the two disks would be out of sync. Rather
than try to copy the entire disk, ZFS updates only the blocks needed
to resynchronize the disks. The system will probably repair the mirror
before you can type a command to see how it’s doing.

ZFS reconstruction is called resilvering. Like other ZFS integrity
operations, resilvering takes place only on live filesystems. You could
resilver in single-user mode, but it makes as much sense as installing
software in single-user mode.

Resilvering happens automatically when you replace a storage pro-
vider. It also happens when a drive temporarily fails and is restored,

such as when a controller restarts or an external disk shelf reboots.

104

Chapter 5: Repairs and Renovations

While resilvering a replacement storage provider can take quite a
while, resilvering after a brief outage probably takes only seconds.

If you use a RAID-Z pool normally while resilvering, resilvering
can greatly slow down. Resilvering and scrubbing are performed in
order by transaction groups, while normal read-write operations are
pretty random. ZFS’ resilver rate is throttled so that it won't impact

normal system function.

Expanding Pools

Data expands to fill all available space. No matter how much disk
space you give a pool, eventually you’ll want more. To increase a pool’s
size, add a VDEYV to the pool. For redundant pools, you can replace
storage providers with larger providers.

When you expand a pool, ZFS automatically starts writing data
to the new space. As the pool ages, ZFS tries to evenly balance avail-
able space between the various providers. ZFS biases the writes to the
drives so that they will all become full simultaneously. A pool with one
empty VDEV and three nearly full ones has little choice but to put new
data on the empty VDEV, however. If you frequently create and delete
files, per-disk load eventually levels out.

Every VDEV within a zpool should be identical. If your pool is
built from a bunch of mirrors, don't go adding a RAID-Z3 to the pool.
Add providers to VDEVs with the zpool attach command and

VDEVs to pools with the zpool add command.

You can’t remove a device from a non-mirror VDEV or any VDEV
from a pool. The -n flag to zpool add performs a “dry run,” showing
you the results of what running the command would be without ac-
tually changing the pool. Running your zpool add command with the
-n flag and carefully studying the resulting pool configuration can give

you warning you're about to shoot yourself in the foot.

105

Chapter 5: Repairs and Renovations

Adding VDEVs to Striped Pools

Striped pools, with no redundancy, can be expanded up to the limits of
the hardware. Each non-redundant VDEV you add to a pool increases
the odds of a catastrophic failure, however, exactly like the RAID-0
device it resembles. Remember, the failure of a single VDEV in a pool
destroys the entire pool. In a striped pool, each disk is a standalone
VDEV.

Here’s a striped pool with three providers.
zpool status scratch

config:

NAME STATE READ WRITE CKSUM

scratch ONLINE 0 0 0
gpt/zfsO0 ONLINE 0 0 0
gpt/zfsl ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0

Use the zpoo1 add command to add a storage provider to the
scratch pool.
zpool add scratch gpt/zfs3

The pool status now shows four storage providers, and you have

your additional disk space.

Adding VDEVs to Striped Mirror Pools

You can add providers to a mirrored VDEV, but extra disks don’t
increase the available space. They become additional mirrors of each
other. To add space to a pool that uses mirrored VDEVs, add a new
mirror VDEV to the pool.

The zpool db currently has two mirror VDEVs in it.

106

Chapter 5: Repairs and Renovations
zpool status db

NAME STATE READ WRITE CKSUM

db ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
gpt/zfsO0 ONLINE 0 0 0
gpt/zfsl ONLINE 0 0 0
mirror-1 ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
gpt/zfs3 ONLINE 0 0 0

We need more space, so we want to add a third mirror VDEV. Use
the zpool add command to create a new mirror device and add it to
the pool. Here we use the providers gpt/zfs4 and gpt/zfs5 to create a

new mirror and add it to the pool.
zpool add db mirror gpt/zfs4 gpt/zfs5

The pool’s status now shows a new mirror VDEV, mirror-2, con-
taining two storage providers. As you write and delete data, the pool
gradually shifts load among all three VDEVs. To view how a pool

currently distributes data between the VDEVs, use zpool 1ist -v.

Adding VDEVs to Striped RAID-Z Pools

You cannot add providers to any RAID-Z VDEV. To expand a RAID-
Z-based pool, you must add additional VDEVs to the pool, or replace
each member disk with a larger one. Best practice is to make all of the
RAID-Z VDEVs use the same number of drives.

Here’s a RAID-Z pool that we want to expand with another VDEV.

NAME STATE READ WRITE CKSUM
db ONLINE 0 0 0
raidzl-0 ONLINE 0 0 0
gpt/zfs0 ONLINE 0 0 0
gpt/zfsl ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0

107

Chapter 5: Repairs and Renovations

Again, we use the zpool add command to create a new VDEV and
add it to the pool.
zpool add db raidzl gpt/zfs3 gpt/zfs4 gpt/zfs5

A check of the pool status shows a new VDEV, raidz1-1, contain-
ing three providers. ZFS starts striping data across the new provider
immediately.

If you want to add a new VDEV to a RAID-Z2 or RAID-Z3-based
pool, use the same command with the desired RAID-Z type and the
appropriate number of providers.

Remember, you cannot add providers to a RAID-Z VDEV—the
configuration of a RAID-Z VDEYV is fixed in concrete. Many people
try to add a disk to a RAID-Z VDEV by using zpool add. The zpool
add command adds new VDEV:s to a pool. If you use - to demand
zpool add put one new disk in your RAID-Z-based pool, you get a
malformed pool with one RAID-Z member and one stripe member.
The resulting pool is not maintainable and is irreparable. Fixing it re-
quires backing up your data, then destroying and recreating the pool.

You can use zpool attach to expand mirrored and striped VDEVs,
but it doesn’t work on RAID-Z pools. You cannot add providers to a
RAID-Z VDEV.

Hardware Status

Most ZFS configurations tolerate a certain amount of hardware failure.
When the underlying storage providers fail, ZFS does its best to warn
you. Listen to it.

The zpool status command displays the condition of the storage
hardware in the STATE field. You get one STATE field for the entire
pool, near the top. Lower down, where zpoo1 status lists each VDEV
and storage provider, the STATE column lets you narrow down where

a fault lies.

108

Chapter 5: Repairs and Renovations

Errors percolate upwards. If a single storage provider fails, the pool
develops a related failure. The big screaming failure message at the top
of zpool status is your clue to look into the individual providers to
see the underlying error.

Pools and VDEVs can have six states. Underlying providers can

have at least three of these states.

Online

An online pool, VDEYV, or provider is working normally.

Degraded

A degraded pool is missing at least one storage provider. That provider
is either totally offline, missing, or generating errors more quickly than
ZFS tolerates. A degraded pool retains enough resiliency to continue
working, but one more failure might shut it down.

If a storage provider has too many I/O errors, ZFS would prefer to
totally shut down (fault) the device. ZFS really tries to avoid faulting
devices that provide necessary resiliency to a pool, however. If the last
working provider in a mirror starts showing many errors, or a provid-
er fails in a RAID-Z1 VDEV that already has a dead storage provider,
ZFS puts that provider into degraded mode when it would normally

put it in a faulted mode.

Faulted

Faulted storage providers are either corrupt or generate more errors
than ZFS can tolerate. A faulted storage provider takes with it the last
known good copy of the data. If your two-disk mirror loses both disks,
or your RAID-Z1 loses two disks, the VDEV faults. A faulted VDEV

takes its whole pool with it.

109

Chapter 5: Repairs and Renovations

Unavail

Unavail means that ZFS can’t open the storage provider. Maybe the
device isn't attached to the system anymore, or perhaps it was badly
imported (see “Moving Pools” later this chapter). In any case, it’s not
there, so ZFS can't use it. An unavailable device might take the whole
VDEYV, and hence the whole pool, with it.

An unavailable device impacts the VDEV’s state depending on the
resiliency in the VDEV. If a pool still has enough resilience to func-
tion, the pool becomes degraded. If the VDEV can no longer function,
it faults.

Unavailable devices appear in the pool’s status by the GUID as-

signed to them rather than the provider’s device node.
Offline

Offline devices have been deliberately turned oft by the sysadmin. You

have no end of reasons for turning off a drive in a large array.

Removed

Some hardware can detect when a drive is physically removed from
the system while the system is running. Such hardware lets ZFS set the
Removed status when a drive is pulled. When you reattach the drive,

ZFS tries to bring the provider back online.

Errors through the ZFS Stack

Here’s a server with a couple disconnected storage providers. This
doesn’t belong to Lucas’ or Jude’s system; it belongs to Lucas’ friend’s
system.'? Note the errors on the providers, the type of VDEYV, and the

state of the pool as a whole.

12 And now that Lucas has a good example of a problem, he can
tell that friend that this zpool is wounded. Although, to be certain

he has good examples, he’ll probably wait until he finishes this book.
Being Lucas’ friend kind of sucks.

110

Chapter 5: Repairs and Renovations

zpool status
pool: FreeNAS02
state: DEGRADED
status: One or more devices could not be opened. Sufficient replicas
exist for the pool to continue functioning in a degraded
state.
action: Attach the missing device and online it using ‘zpool online’.
see: http://illumos.org/msg/ZFS-8000-2Q
scan: scrub repaired 0 in 15h57m with O errors on Sun Feb 8
15:57:55 2015

config:
NAME STATE READ WRITE CKSUM
FreeNAS0O2 DEGRADED 0 0 0
raidz2-0 DEGRADED 0 0 0
15881943619... UNAVAIL 0 0 0 was /dev/gpt/zfs0O
gpt/zfsl ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
gpt/zfs3 ONLINE 0 0 0
gpt/zfs4 ONLINE 0 0 0
gpt/zfs5 ONLINE 0 0 0
gpt/zfs6 ONLINE 0 0 0
gpt/zfs7 ONLINE 0 0 0
gpt/zfs8 ONLINE 0 0 0
gpt/zfs9 ONLINE 0 0 0
14768132704... UNAVAIL 0 0 0 was /dev/gpt/zfsl0
gpt/zfsll ONLINE 0 0 0
gpt/zfsl2 ONLINE 0 0 0
gpt/zfsl3 ONLINE 0 0 0

This RAID-Z2 pool is in a degraded state. It's missing two pro-
viders, /dev/gpt/zfs0and /dev/gpt/zrs10. A RAID-Z2 VDEV can
handle up to two disk failures, and will continue to function despite
the missing drives.

A degraded pool has limited self-healing abilities, however. A
pool without redundancy does not have the information necessary for
ZFS to repair files. Our sample pool above has lost two disks out of its
RAID-Z2 VDEW. It has zero redundancy. If a file suffers from bit rot,
ZFS can't fix it. When you try to access that file, ZFS returns an error.
Redundancy at the dataset layer (with the copies property) might let
ZFS heal the file.

If this pool experiences another drive failure, the pool will no lon-

ger have a complete copy of its data and will fault.

111

Chapter 5: Repairs and Renovations

Restoring Devices

If ZFS is kind enough to announce its problems, the least you can do
is try to fix them. The repair process depends on whether the drive is

missing or failed.
Missing Drives

A drive disconnected during operation shows up as either removed or
faulted. Maybe you removed a drive to check its serial number. Per-
haps a cable came loose. It might have been gremlins. In any case, you
probably want to plug it back in.

If the hardware notices that the drive is removed, rather than just
saying it’s missing, the hardware also notices when the drive returns.
ZFS attempts to reactivate restored drives.

Hardware that doesn’t notify the operating system when drives
are added or removed needs sysadmin intervention to restore service.
Use the zfs online command to bring a reconnected drive back into

service.
zfs online gpt/zfs5

If the drive is offline because it’s failed, though, you must replace it

rather than just turn it back on.

Replacing Drives

The hardest part of drive replacement often has nothing to do with
ZFS: you must find the bad drive. We advise using the physical loca-
tion of the disk in the GPT label for the disk when you first install the
drive to make later replacement easier. If you must identify a failed
drive without this information, use gpart list and smartctl to get the

disk’s serial number and manufacturer, then search the chassis for that

112

Chapter 5: Repairs and Renovations

drive. It's the same process discussed in Chapter 0, in reverse, with the
added pressure of unscheduled downtime. Worst case, you can find
the serial number of every drive that is still working, and process of
elimination will reveal which drive is missing.

Now don’t you wish youd done the work in advance?

Once you find the failed drive and arrange its replacement, that’s

where we can start to use ZFS.

Faulted Drives

Use the command zpool replace to remove a drive from a resilient
VDEV and swap a new drive in. The drive doesn’t have to be failed—it
could be a perfectly healthy drive that you want to replace so that you
can, say, do maintenance on the disk shelf. Here’s a RAID-Z1 pool
with a bad drive.

NAME STATE READ WRITE CKSuM
db DEGRADED 0 0 0
raidz1-0 DEGRADED 0 0 0
gpt/zfsl ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
gpt/zfs3 FAULTED 0 0 0
gpt/zfs4 ONLINE 0 0 0

The /var/log/messages log includes many warnings about the
physical disk underlying gpt/z£s3. This disk needs to be put out of our
misery. Use zpool replace to remove the faulted provider from the
VDEYV and replace it with a new device. Give the pool name, the failed
provider, and the new provider.

zpool replace db gpt/zfs3 gpt/zfs5

This command might take a long time, depending on the disk’s
capacity and speed and the amount of data on the disk. You can view

the status of the replacement by checking the pool’s status.

113

Chapter 5: Repairs and Renovations

zpool status db
pool: db
state: DEGRADED
status: One or more devices is currently being
resilvered. The pool will continue to
function, possibly in a degraded state.
action: Wait for the resilver to complete.
scan: resilver in progress since Mon Mar 16
12:04:50 2015
195M scanned out of 254M at 19.5M/s, OhOm to go
47.3M resilvered, 76.56% done

config:
NAME STATE READ WRITE CKSUM
db ONLINE 0 0 0
raidz1-0 ONLINE 0 0 0
gpt/zfsl ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
replacing-2 ONLINE 0 0 0
gpt/zfs3 FAULTED 0 0 0
gpt/zfs5 ONLINE 0 0 0 (resilvering)
gpt/zfs4 ONLINE 0 0 0

The resilvering time estimates given assume that disk activity is
fairly constant. Starting a big database dump halfway through the

resilvering process delays everything.

Replacing the Same Slot

Perhaps your hard drive array is full, and you don’t have the space to
slot in a new hard drive with a new device node. You must physically
remove the failed hard drive, mount the replacement in its space, par-
tition and label the drive, and replace the provider. That’s only slightly
more complex.

This method has more risks, however. With zpool replace, the
faulted provider remains as online as it can manage until resilvering
finishes. If you lose a second disk in your RAID-Z1 during resilvering,
there’s a chance the pool has enough data integrity to survive. If you

replace the faulty provider before starting the rebuild, you lose that

114

Chapter 5: Repairs and Renovations

safety line. If your hardware doesn't give you the flexibility you need
for a safer replacement, though, check your backups and proceed.
Start by taking the failed provider offline. This tells ZFS to stop
trying to read or write to the device.
zpool offline gpt/zfs3
You can now remove the failed drive from the array and install its
replacement. Partition the provider as needed. If you're unsure of par-
titioning, you can copy an existing disks partition table to another disk
with something like gpart backup da0 | gpart restore da9. Use the
new provider label in zpool replace. If the label on the new provider
is identical to the label on the drive you removed, you don't have to
repeat the provider name. Here we replace gpt/zrs3 with a new disk,
also labeled gpt/z£s3.
zpool replace db gpt/zfs3

If you're labeling your disks by serial number, as we recommend in

Chapter 0, you won't have this issue.

Replacing Unavail Drives

If a drive status is UNAVAIL, ZFS identifies the missing drive by its
GUID and gives the previous device name off to the side. The zpool

can still function, but you really need to replace the drive.

NAME STATE READ WRITE CKSUM
db DEGRADED 0 0 0
RAID-Z1-0 DEGRADED 0
gpt/zfsl ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
137922168... UNAVAIL 0 0 0 was /dev/gpt/zfs3
gpt/zfs4 ONLINE 0 0 0

I've installed a new drive, which shows up in /var/run/dmesg.boot
as da5, and created a freebsd-zfs partition on it. This new provider
gets the GPT label zfs3. The pool won't automatically identify this

115

Chapter 5: Repairs and Renovations

provider as its replacement—it knows that the previous provider was
/dev/gpt/z£s3, but the new /dev/gpt/z£s3lacks the on-disk metadata
that identifies it as a ZFS volume.

To slip this new provider into the zpool, use zpool replace again.

Use the GUID instead of the previous device name.

zpool replace db 13792229702739533691 gpt/zfs3
Checking the zpool’s status shows the pool resilvering. Once the

resilver completes, the pool is fully restored.

Replacing Mirror Providers

Sometimes a disk doesn’t totally fail, but generates so many errors that
it’s clearly about to die. When this disk is in a mirrored virtual device,
it might be better to keep the failing provider in place while you add
the replacement disk. This maximizes redundancy throughout the
replacement process. It does require that your hardware be able to use
three disks instead of the usual two. If your system can handle only
two disks, then stick with zpool replace.

Here we have a pool with a single mirror VDEV containing
two providers, gpt/zfs0 and gpt/zfs1. We must replace the dying
gpt/z£s0 With gpt/zfs2. Rather than going straight to zpool replace,
start by attaching the replacement disk to pool. The zpool attach
command tells this pool to add another layer of mirroring to the pool.

Give the pool name, a device to be mirrored, and the new device.

zpool attach db gpt/zfsl gpt/zfs2

Here we attach a provider to the pool dr. One of the existing pro-
viders is gpt/zfs1, and were attaching gpt/zrs2. Look at zpool status
db and you’ll see the pool resilvering to synchronize the new provider
with the other disks in the mirror. Once the new provider is syn-
chronized with the pool, remove the failing provider from the virtual

device.

116

Chapter 5: Repairs and Renovations
zpool detach db gpt/zfsO

The failing disk behind gpt/z£s0 is no longer in use.
You can also use this technique to transform a single-disk pool

into a mirrored virtual device.

Reattaching Unavail and Removed Drives

An UNAVAIL drive might not have catastrophically failed. It might
have come unplugged. If you go to the server and find that wiggling
the drive tray makes it light up, you can tell the zpool to reactivate the
disk. You can also reactivate a drive with a status of REMOVED. In
either case use the zpool online command, the pool name, and the
GUID of the missing provider.

zpool online db 718035988381613979

ZFS will resilver the reactivated drive and resume normal function.

Log and Cache Device Maintenance

We advise using high-endurance SSD drives for your ZFS Intent Log
(write cache) and L2ARC (read cache). All too often you’'ll find that
“high endurance” is not the same as “high enough endurance,” and
you might need to replace the device. Log devices use the same status
keywords as regular storage providers—faulted, offline, and so on. You
might also need to insert a log device or, less commonly, remove the
log device.

While the examples show log devices, cache devices work exactly

the same way.
Adding a Log or Cache Device

To add a log or cache device to an existing pool, use zpool add, the
pool name, and the device type and providers. Here we add the log

device gpt/z10g0 to the pool db.

117

Chapter 5: Repairs and Renovations

zpool add db Tog gpt/zlog0
The pool immediately begins using the new log or cache device.
To add a mirrored log device, use the mirror keyword and the
providers. Mirroring the ZIL provides redundancy for writes, helping
guarantee that data written to disk survives a hardware failure. Here
we mirror the devices gpt/z10g0 and gpt/z10g1 and tell the pool ab to

use the mirror as a log device.
zpool add db Tog mirror gpt/zlog0 gpt/zlogl

Most often, a mirrored cache device isn’t a good use of fast disk.
ZFS handles the death of a cache device fairly well. Striping the cache
across multiple devices reduces load on any single device and hence

reduces the chance of failure.
Removing Log and Cache Devices

When you remove a log or cache device from a ZFS pool, ZFS stops
writing new data to the log, clears out the buffer of data from the log,
and releases the device.

To remove a standalone log or cache device, use zpool remove,
the pool name, and the device name. We previously added the device

gpt/z1log0 as a log device for the pool ab. Let’s remove it.
zpool remove db gpt/zlog0

Removing a mirrored log device is slightly more complex. You
must know the mirror name before you can remove it. Look at the

pool status.

118

Chapter 5: Repairs and Renovations
zpool status db

NAME STATE READ WRITE CKSUM

db ONLINE 0 0 0
mirror-0 ONLINE 0 0 0
gpt/zfs0 ONLINE 0 0 0
gpt/zfsl ONLINE 0 0 0
mirror-1 ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
gpt/zfs3 ONLINE 0 0 0
Togs
mirror-2 ONLINE 0 0 0
gpt/zTog0 ONLINE 0 0 0
gpt/zlogl ONLINE 0 0 0

The log device is called mirror-2. Remove it as you would a stand-

alone device.
zpool remove db mirror-2

The pool clears the log and removes the device from the pool.
Replacing Failed Log and Cache Devices

Replace a failed log or cache device, even a mirror member, exact-
ly as you would any other failed devices. Here we replace the device
gpt/zlog0 wWith gpt/z1o0g2.

zpool replace db gpt/zlog0 gpt/zlog2

The log device resilvers and carries on.

Exporting and Importing Drives

You can move ZFS filesystem drives between machines, even machines
running different operating systems. You aren’t restricted to similar
architectures, either—ZFS even lets you move disks between different
endian hardware! This offers an easy migration path between, say,
Sparc OpenSolaris and FreeBSD. ZFS uses its own on-disk metadata
to track the role of each provider in a pool, so you don’t need to track

drive order, device nodes, or any of the usual disk issues. Unplug your

119

Chapter 5: Repairs and Renovations

drives, throw them in a bag, drive across town, and plug them back in.
Bringing a pool back online is called importing.

ZFS can run on storage providers other than disks, however.
Suppose you use GPT disk partitions on your ZFS disks, as we recom-
mend. You might then decide to move those disks from your FreeBSD
host to another operating system or another hardware architecture. If
the new operating system or hardware doesn’t recognize GPT parti-
tions, the new host won’t be able to find the pools to import them!

Before you import a pool, though, you must export it.
Exporting Pools

Export is roughly analogous to cleanly unmounting a traditional
filesystem. ZFS marks the providers as inactive and completes all
pending transactions. If you have a ZFS Intent Log (Chapter 2), the
log is purged. Everything is written to the provider, the filesystem is
unmounted, and the system is notified that these providers are now
free for reuse.

Use zpool export and the pool name to export a pool. Here, we
export the pool dn.
zpool export db

This command should run silently. Run zpoo1 1ist to verify the
pool is no longer on the system.

The system will refuse to export an active filesystem. Shut down
any daemons writing to the dataset and change your shell’s working di-
rectory away from the dataset. Stop tailing files. You can use fstat (1)

or 1sof (8) to identify processes using filesystems on that dataset.

Importing Pools
To see inactive pools attached to a system, run zpool import. This
doesn’t actually import any pools, but only shows what’s available for

import.

120

Chapter 5: Repairs and Renovations

zpool -import
pool: db
id: 8407636206040904802
state: ONLINE
action: The pool can be imported using its name or
numeric identifier.
config:

db ONLINE
raidz1-0 ONLINE
gpt/zfsl ONLINE
gpt/zfs2 ONLINE
gpt/zfs3 ONLINE
gpt/zfs4 ONLINE

This shows that the pool ab, also known by a long numerical iden-
tifier, can be imported. You see the pool configuration at the bottom
exactly as you would for an active pool.

The status ONLINE does not mean that the pool is active, but
rather that the providers are all ready for use. As far as ZFS knows, this
pool is ready to go.

Import the pool with zpoo1 import and the pool name or numerical ID.
zpool 1import db

If you have multiple inactive pools with the same name, import the

pool by ID number instead.
zpool import 8407636206040904802

You cannot import a pool if a pool of that name already exists,

unless you rename the pool.

Renaming Imported Pools

Some of us reuse pool names between machines. When Lucas needs
a dedicated pool for a database he always calls it db, because it’s short
and he’s lazy. This is great for standardization—everyone knows exact-
ly where the database files live. It’s an annoyance when moving disks
to another machine, though. Each machine can have only one pool of

each name.

121

Chapter 5: Repairs and Renovations

ZFS lets you permanently rename a pool by giving the new name
after the existing name. Here we import the pool called d» under the

name olddb.
zpool import db olddb

Datasets from the imported pool can be found in /o1ddr. These
renames are permanent. You can export and reimport the pool with its
new name forever.

To temporarily mount a pool at a location other than its usual

mount point, use the -r flag and an alternate root path.
zpool import -R /dunno data

This temporarily adds the path /dunno to all datasets in the im-
ported pool. Exporting the pool removes the extra path and unsets the
altroot property.

Use the altroot property when you don't know what’s in a pool
and you don’t want to chance overlaying it on your existing datasets
or filesystems. Remember, BSD filesystems are stackable! You can
also use it in an alternate boot environment, where the imported pool
might overlay the running root filesystem and hide the tools you need

to manage the pool.
Incomplete Pools

You can’t import a pool if it doesn’t have enough members to provide
all the needed data. Much as you can’t use a RAID-Z1 if it's missing

two disks, you can’t import a RAID-Z1 with more than one missing
disk.

122

Chapter 5: Repairs and Renovations

zpool -import
pool: db
id: 8407636206040904802
state: UNAVAIL
status: One or more devices are missing from the
system.
action: The pool cannot be imported. Attach the missing
devices and try again.
see: http://illumos.org/msg/ZFS-8000-3C
config:

db UNAVAIL insufficient replicas
RAID-7Z1-0 UNAVAIL insufficient replicas
gpt/zfsl ONLINE
4300284214136283306 UNAVAIL cannot open
gpt/zfs3 ONLINE

3061272315720693424 UNAVAIL cannot open

This is a four-provider RAID-Z1, but two of the providers are
missing. Check that the reinstalled disks are all correctly attached and

try again.
Special Imports

Pool imports are highly useful in recovering from damaged systems.
ZFS lets you work around many errors and problems when importing
pools. This section takes you through some special cases of imports.
Destroying a pool doesn’t actually destroy any data. It marks the
pools as destroyed, but the pools and all their metadata remain on the
hard drives until overwritten. To tell ZFS to search for destroyed but
importable pools, add the -p flag.
zpool 1import -D
The pool’s status will show up as ONLINE (DESTROYED). The
ONLINE means that the pool has everything it needs to function. Use

the -p flag and the pool name or ID number to resurrect it.
zpool import -D 8407636206040904802

If a pool is missing too many storage providers, you cannot import
it. You cannot zpool online detached drives. Check the drive trays
123

Chapter 5: Repairs and Renovations

and make sure the drives you want to import are attached and pow-
ered on. The next time you run zpool import, reconnected drives will
show up.

If a pool is missing its log device, add the -n flag to import it
without that device. An exported pool should have everything on the
storage providers.

zpool import -m db

You can set pool properties when you import, by using the -o

flag. Here we import and rename a database pool, and also make it

read-only.
zpool import -o readonly=on db olddb

We can now copy files from the old pool without damaging the
pristine copy of the data.

You might want to import a damaged pool, to try to recover some
part of the data on it. The -r flag tells zpool import to roll back the
last few transactions. This might return the pool to an importable
state. You’'ll lose the contents of the rolled back transactions, but if

this works, those transactions were probably causing your problems

anyway.
Larger Providers

One interesting fact about ZFS is that it permits replacing providers
with larger providers. If your redundant storage pool uses 4 TB disks
you can replace them with, say, 10 TB models and increase the size of
your pool. This requires replacing successive providers with larger ones.

A pool calculates its size by the smallest disk in each VDEV. If your
mirror has a 4 TB disk and a 10 TB disk in a single VDEV, the mirror
VDEV will only have 4 TB of space. There’s no sensible way to mirror
10 TB of data on a 4 TB disk! If you replace the 4 TB disk, however,

you’ll be able to expand the mirror to the size of the smallest disk.

124

Chapter 5: Repairs and Renovations

One question to ask is: do you want your pools to automatically
expand when they can, or do you want to manually activate the expan-
sion? ZFS can automatically make the expansion work, but you need
to set the autoexpand property for each pool before starting. ZFS leaves
this off by default because you can never shrink a pool. (Having to
turn on autoexpand won't hurt you, but having it on by default might
leave you with a pool too large for any of your other disks.)

zpool set autoexpand=on db

Without this property set, you must run a command to expand the
pool after you replace the providers.

Replacing all the providers in a pool isn’t complicated, but it does
involve a certain amount of tediousness. Take this RAID-Z1 pool with

three providers.

NAME STATE READ WRITE CKSUM
db ONLINE 0 0 0
raidzl-0 ONLINE 0 0 0
gpt/zfsl ONLINE 0 0 0
gpt/zfs2 ONLINE 0 0 0
gpt/zfs3 ONLINE 0 0 0

Each of those providers is a single tiny disk.

zpool Tist db
NAME SIZE ALLOC FREE FRAG EXPANDSZ CAP DEDUP HEALTH ALTROOT

db 59.5G 1.43G 58.1G 1% - 2% 1.00x ONLINE -

If the hardware has enough physical space, add new drives and
create replacement providers. If you're short on physical space, offline
the providers and replace the hard drives. Here we offline and replace
the drives.

This pool has three providers: gpt/zfs1, gpt/zfs2, and gpt/zfs3.
We first replace gpt/z£s1. Running gpart show -1 shows that this

provider is on drive dal.

125

Chapter 5: Repairs and Renovations

If you need to offline the drive to add the replacement drive, start
by identifying the physical location of drive dal. Prepare the replace-
ment drive as required by your hardware, then offline the pool from
the provider.

zpool offline db gpt/zfsl
This should return silently. Checking zpool status shows this pro-
vider is offline. You can remove this hard drive from the system.

Insert the replacement drive, either in the space where the old
drive was removed or a new slot. The new drive should appear in
/var/run/dmesg.boot. On this system, the new drive shows up as
/dev/da4. Create the desired partitioning on that drive and label it.

If youre not using serial numbers in your labels, but labeling only by
physical location, you can use the same label. (Again, we use these

short labels here because they're easier to read while learning.)

gpart create -s gpt da4
da4 created
gpart add -a 1lm -t freebsd-zfs -1 zfsl da4

Now tell the pool to replace the failed device.
zpool replace -f db gpt/zfsl

Let the pool finish resilvering before replacing any other providers.
Replacing a non-redundant unit during a resilvering will only cause
pain. If you're using RAID-Z2 or RAID-Z3 it is possible to replace
multiple disks simultaneously, but it’s risky. An additional disk failure
might make the VDEV fail. Without the redundancy provided by the
additional providers, ZFS cannot heal itself. Each disk’s I/O limits will
probably throttle resilvering speed.

After your first provider resilvers, swap out your next smaller
provider. You will see no change in disk space until you swap out every
provider in the VDEV. To be sure you've replaced every providers with

a larger one, check zpool 1list.

126

Chapter 5: Repairs and Renovations

zpool Tist db
NAME SIZE ALLOC FREE FRAG EXPANDSZ CAP DEDUP HEALTH ALTROOT

db 59.5G 1.70G 57.8G 0% 240G 2% 1.00x ONLINE -

Note that we now have new space in EXPANDSZ. This pool can be
grown.

If you set the pool to autoexpand before you started, it should
grow on its own. If not, manually expand each device in the pool with

zpool online -e.

zpool online -e db gpt/zfsl
zpool online -e db gpt/zfs2
zpool online -e db gpt/zfs3

This pool now has more space.

Zpool Versions and Upgrades

The FreeBSD and OpenZFES teams constantly improve their software,
adding new features to ZFS and to FreeBSD’s ZFS support. Some of
these improvements require changes or additions to the zpools. When
you upgrade your host’s operating system, the host might gain ZFS
features that the existing pools don’t support. Before you can use those
new features, you must upgrade the storage pools. Pools continue to
function if you don’t upgrade them, but they won't take advantage of
new features that require on-disk format changes.

You might choose to not upgrade your pools when you upgrade
your operating system, however. If you're upgrading a system from
FreeBSD 11 to FreeBSD 12, you might leave the disks in the pool
format for FreeBSD 11. If you need to roll back the upgrade, the
operating system will still be able to read the pools. Operating system

upgrades are reversible. Pool upgrades are not.

127

Chapter 5: Repairs and Renovations

ZFS Versions and Feature Flags

Originally, ZFS used version numbers to indicate which features a
pool or operating system version supported. Version numbers started
at 1 and increased by one for every ZFS improvement that touched the
on-disk format. When Sun Microsystems acted as the central coordi-
nator of all ZFS development, a single incrementing version number
made sense. The version number in OpenZFS is set to 5000, and pools
use feature flags instead. We discuss feature flags in detail in Chapter 3.

The two questions for feature flags are: “What features does your
pool currently support?” and “What features does your operating sys-
tem support?” Check the pool properties to see what’s on your disks,
as discussed in Chapter 3. To see all the feature flags your FreeBSD

release supports, run zpool upgrade -v.

zpool upgrade -v

This system supports ZFS pool feature flags.
The following features are supported:

FEAT DESCRIPTION

async_destroy (read-only compatible)
Destroy filesystems asynchronously.
empty_bpobj (read-only compatible)

Snapshots use less space.
1z4_compress
LZ4 compression algorithm support.

The features marked “read-only compatible” mean that hosts that
don’t support these feature flags can import these pools, but only as
read-only. See “Pool Import and Export” earlier this chapter for a dis-
cussion of moving pools between hosts.

The FreeBSD release notes for each version indicate new ZFS
features. You do read the release notes carefully before upgrading,

don’t you? If you somehow miss that part of the documentation, zpoo1

128

Chapter 5: Repairs and Renovations

status tells you which pools could use an upgrade. (Remember, just
because a pool can take an upgrade doesn’t mean that you should do
the upgrade. If you might need to revert an operating system upgrade,

leave your pool features alone!)

zpool status db
pool: db

state: ONLINE

status: Some supported features are not enabled on the
pool. The pool can still be used, but some fea-
tures are unavailable.

action: Enable all features using ‘zpool upgrade’. Once
this is done, the pool may no Tonger be acces-
sible by software that does not support the
features. See zpool-features(7) for details.

You'll also get a list of the new features supported by the upgrade.

Upgrade your pools by running zpool upgrade on the pool.
zpool upgrade zroot

Pool upgrades non-reversibly add new fields to the existing pool
layout. An upgrade doesn't rewrite existing data, however. While the
new feature might have problems, the mere availability of that feature
flag on the disk is very low risk.

If you plan to move disks to a system running an older operat-
ing system, or to an operating system running an older version of
OpenZFS, you can enable pool features more selectively. Moving disks
from a FreeBSD 11 system to a FreeBSD 10 system requires carefully
checking pool features. Enable a single feature by setting its property
to enabled.

zpool set feature@large_blocks=enabled data

This pool now supports the large_blocks feature.

129

Chapter 5: Repairs and Renovations

Zpool Upgrades and the Boot Loader

FreeBSD’s boot loader must understand the ZFS pool you're boot-
ing from. This means it must recognize the pool’s features. Any time
you update the pool containing the /boot filesystem, you must update
the boot loader on the disks. Use gpart (8) to update the boot loader.
If you boot from a ZFS mirror on the disks da0 and dal, you'll update

the loaders on both disks like so:

gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 dal

The system might not boot without this update. The zpoo1 upgrade
command prints a reminder to perform the update, but you're free to
ignore it if you like. If you render your system unbootable, you might
try to boot from the newest FreeBSD-current ISO or a live CD and

copy its boot loader to your system.

FreeBSD ZFS Pool Limitations

FreeBSD does not yet support all ZFS features. Most unsupported
features don’t work because of fundamental differences between the
FreeBSD and Solaris architectures. People are actively developing
solutions that will let FreeBSD support all of ZFS’ features. We expect
some of these to become supported after this book goes to press.

At this time, hot spares do not work. Hot spares let ZFS automati-
cally swap a failed drive with an assigned standby on the system. This
depends on the forthcoming zfsd (8) implementation, which is still a
work in progress.

Now that you can fill a pool with data and repair the hardware, let’s

play with a couple of ZFS’ more useful features, clones and snapshots.

130

Chapter 6: Disk Space Management

ZFS makes it easy to answer questions like “How much free disk does
this pool have?” The question “What’s using up all my space?” is much
harder to answer thanks to snapshots, clones, reservations, ZVOLs,
and referenced data. These features might also cause problems when
trying to use traditional filesystem management methods on ZFS data-
sets. It’s possible to find you don’t have enough space to delete files,
which is terribly confusing until you understand what’s happening.

ZFS offers ways to improve disk space utilization. Rather than re-
quiring the system administrator to compress individual files, ZFS can
use compression at the filesystem level. ZFS can also perform dedupli-
cation of files, vastly improving disk usage at the cost of memory. We'll
see how to evaluate these options and determine when to use each.

But let’s start by considering ZFS’ disk space usage.

Reading ZFS Disk Usage

The df (1) program shows the amount of free space on each partition,
while du (1) shows how much disk is used in a partition or directory
tree. For decades, sysadmins have used these tools to see what’s eating
their free space. Theyre great for traditional filesystems. ZFS requires

different ways of thinking, however.

131

Chapter 6: Disk Space Management

Consider this (heavily trimmed) list of ZFS datasets.

zfs 1ist

NAME USED AVAIL REFER MOUNTPOINT
zZroot 17.5G 874G 144K none
zroot/ROOT 1.35G 874G 144K none
zroot/RO0OT/default 1.35G 874G 1.35G /
zroot/usr 12.5G 874G 454M /usr

zroot/usr/Tlocal 1.84G 874G 1.84G /usr/local

According to this, the zroot pool has 17.5 GB in use. At first glance
you might think that zroot/roor and zroot/roor/default both use
1.35 GB. Youd be wrong.

The dataset zroot/roor uses 1.35 GB of data. There’s 1.35 GB of
data in this dataset. The dataset zroot/rooT/default also uses 1.35 GB
of data. The zroot/rooT/default dataset is included in the zroot/rooT
dataset, however. It's the same 1.35 GB of data.

Similarly, consider the 12.5 GB that zroot/usr uses. This dataset
has child datasets, such as zroot /usr/1ocal, zroot/usr/obj, and so
on. Each of these datasets uses a chunk of data, often several gigabytes.
The 12.5 GB that zroot/usr uses includes everything beneath it.

With ZFES, you can’t just add up the amount of used space to get
the total.

The AVAIL column, or space available, is somewhat more reliable.
The pool zroot has 874 GB of empty space. Once you start using snap-
shots and clones and all of the other ZFS goodness, you’ll find that this
874 GB of space can contain many times that much data, thanks to

referenced data.
Referenced Data

The amount of data included in a dataset is the referenced data.
Look at the REFER column in the listing above. The zroot pool and
zroot/RooT both refer to 144 KB of space. That’s roughly enough to

132

Chapter 6: Disk Space Management

say that “yes, this chunk of stuff exists.” It's a placeholder. The dataset
zroot/ROOT/default, however, references 1.35 GB of data.

The referenced data is stuff that exists within this filesystem or
dataset. If you go into the zroot/roor/default filesystem, you'll find
1.35 GB of stuff.

So, you add up the referenced space and get the amount used? No,
wrong again. Multiple ZFS datasets can refer to the same collection
of data. That’s exactly how snapshots and clones work. That’s why ZFS
can hold, for example, several 10 GB snapshots in 11 GB of space.

Clones use space much like snapshots, except in a more dynamic
manner. Once you add in deduplication and compression, disk space
usage gets complicated really quickly.

And then there are even issues around freeing space.
Freeing Space

In many ZFS deployments, deleting files doesn’t actually free up space.
In most situations, deletions actually increase disk space usage by a
tiny amount, thanks to snapshots and metadata. The space used by
those files gets assigned to the most recent snapshot. To successfully
manage ZFS, you have to understand how the underlying features
work and what ZFS does when you delete data.

On a filesystem using snapshots and clones, newly freed space
doesn’t appear immediately. Many ZFS operations free space asynchro-
nously, as ZFS updates all the blocks that refer to that space. The pool’s
freeing property shows how much space ZFS still needs to reclaim
from the pool. If you free up a whole bunch of space at once, you can
watch the freeing property decrease and the free space increase. How
quickly ZFS reclaims space depends on your hardware, the amount of

load, pool design, fragmentation level, and how the space was used.

133

Chapter 6: Disk Space Management

Asynchronously freeing space is easily understood: you look at the
freeing property and see how quickly it goes down. But to the uniniti-
ated, ZFS’ disk use can seem much weirder. Suppose you have a bunch
of dataset snapshots, and their parent dataset gets full. (We cover snap-
shots in Chapter 7, but bear with us now.) You delete a couple of large
ISOs from the dataset. Deleting those files won't free up any space.
Why not?

Those ISO files still exist in the older snapshots. ZFS knows that
the files don't exist on the current dataset, but if you go look in the
snapshot directories you'll see those files. ZFS must keep copies of
those deleted files for the older snapshots as long as the snapshots
refer to that data. Snapshots contents are read-only, so the only way to
remove those large files is to remove the snapshots. If you have multi-
ple snapshots, disk usage gets more complex. And clones (Chapter 7),
built on snapshots, behave the same way.

Understanding precisely how a particular dataset uses disk space

requires spending some time with its properties.

Disk Space Detail

To see exactly where your disk space went, ask zfs 1ist for more de-

tail on space usage with the -o space modifier.
zfs 1ist -o space

NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD
zroot 874G 17.5G 0 144K 0 17.5G
zroot/ROOT 874G 1.35G 0 144K 0 1.35G
zroot/ROOT/default 874G 1.35G 0 1.35G 0 0
zroot/usr 874G 12.5G 0 454M 0 12.0G

The AVAIL column shows the amount of space available to each
of the datasets on this pool. ZFS shares the available space amongst all
of the datasets in the pool. This is taken from the ZFS property avail-
able. We show how to limit usage with quotas and reservations later in

this chapter.
134

Chapter 6: Disk Space Management

The USED column shows the amount of space taken up by this
dataset and everything descended from it. Snapshots, ZVOLs, clones,
regular files, and anything else that uses space counts against this
amount. This value might lag behind changes for a few seconds as ZFS
writes new files, creates snapshots and child datasets, or makes other
changes. The value comes from the dataset’s used property.

The USEDBYSNAP column shows the amount of space used ex-
clusively by snapshots. When you first snapshot a dataset, the snapshot
takes almost no space, because it’s nearly identical to the original data-
set. As the dataset changes, however, the snapshots grow. As multiple
snapshots of the same dataset probably refer to the same data, it’s
difficult to say if deleting a single snapshot will free up any part of this
space. Completely removing all of this dataset’s snapshots will certain-
ly free up this amount of space, however. This value comes from the
dataset’s usedbysnapshots property. Chapter 7 discusses snapshots.

The USEDDS column shows the amount of space used by files on
this dataset. It excludes snapshots, reservations, child datasets, or other
special ZFS features. It comes from the dataset’s usedbydataset prop-
erty. Chapter 4 covers datasets.

Under USEDBYREFRESERYV you’ll see the space used by a refres-
ervation for this dataset, excluding its children. This value comes from
the dataset’s usedbyrefreserv property. See “Reservations and Quotas”
later in this chapter.

The USEDCHILD column shows how much space this dataset’s
children use, as shown by the usedbychildren property.

Compare the entry for zroot/usrin z£s 1ist from the previous
section to the detailed space description. The z£s 1ist result says
that the dataset uses 12.5 GB and refers to 454 MB. By breaking the
space-specific list into different categories, it’s very clear that this data-
set uses 454 MB, and the child datasets take up 12 GB.

135

Chapter 6: Disk Space Management

Use zfs list -o space whenever you investigate disk usage.

Pool Space Usage

Sometimes you don’t care about the space usage of individual datasets.
Only the space available to the pool as a whole matters. If you look at
a pool’s properties, you'll see properties that look an awful lot like the
amount of space used and free. They are, but a pool’s space properties
include space required for parity information. They don't reflect the
amount of data you can fit on the pool.

If you have a mirror or a striped pool, the pool space information
is fairly close to reality. If you're using RAID-Z1, you’ll lose one pro-
vider of space to parity per virtual device in the pool. RAID-Z2 costs
two disks per VDEV, and RAID-Z3 costs three disks per VDEV. While
you could, in theory, use these properties, the pool’s current usage, and
a bit of math to get a good guess as to how much space you're using,

there’s an easier way: ask zfs (8) about the pool’s root dataset.

zfs 1ist zroot
NAME USED AVAIL REFER MOUNTPOINT
zroot 37.7G 854G 144K none

This pool is using 37.7 GB and has 854 GB free.
ZFS, df(1), and Other Traditional Tools

So ZFS has all kinds of fancy abilities to slice and dice its display of
disk usage. After decades of using df (1) to look at disk usage, many
of us are loathe to change. When you're using ZFS, however, the
venerable df (1) and many other tools are not merely less than opti-
mal—they’re actively incorrect and give wrong or confusing answers
for ZFS. We're going to use df (1) as an example, but many other tools
have similar problems.

Traditional filesystems consist of a single partition. That partition

has a size, based on the number of blocks allocated on the underlying

136

Chapter 6: Disk Space Management

disk. The df (1) tool iterates over each mounted filesystem, and shows
the size of the partition, how much of that space is currently used, and
how much is remaining as free space.

Walking through the filesystems doesn't work for ZFS, because
datasets are not filesystems. ZFS exposes each dataset to the operat-
ing system as if it were a separate filesystem. A dataset does not have
a maximum size (unless it has a quota). While you can set upper and
lower limits on the size of a dataset, all ZFS datasets have access to all
of the available free space in the pool.

To offer some semblance of compatibility with the traditional
df (1) tool, ZFS tells a little white lie. Since a ZFS dataset has no “size”
in the traditional filesystem sense, it sums the used space, and the en-
tire pool’s available free space together, and presents that value as the
“size” of the dataset.

Look at our example pools in the previous section. The
zroot/ROOT/default dataset uses 1.35 GB of space, and has 874 GB
free. The total size is 875.35 GB. Then look at the zroot/usr dataset. It
has used 12.5 GB, and has 874 GB free, for a total of 886.5 GB.

Now check some actual dr (1) output for these datasets.

df -h
Filesystem Size Used Avail Capacity Mounted on
zroot/RO0OT/default 875G 1.4G 874G 0% /

zroot/usr 874G 454M 874G 0% /usr

The root filesystem is 875 GB, and /usr is 874 GB, giving these two
partitions a total of 1749 GB, with 1748 GB free. Pretty impressive for
a 1 TB disk, isn't it? The “Capacity” column that showed what percent-
age of the filesystem is in use is similarly bogus.

As datasets grow larger, the amount of free space shrinks. Accord-
ing to af (1), the filesystem shrinks as space is used up, and grows

when space is freed.

137

Chapter 6: Disk Space Management

Tools like af (1), and most other monitoring tools intended for
traditional filesystems, give incorrect answers. Beware of them! While
they might seem fine for a quick check, continuing to use these tools
turther ingrains bad habits. Bad systems administration habits cause
pain and outages. When monitoring a dataset’s free space, make sure
you are measuring the actual amount of free space, rather than the
percentage used. If a traditional tool that shows “percent used” gives a
meaningful result, it’s only by accident. Your monitoring system needs
ZFS-specific tools.

This behavior has interesting side effects when viewed with other
tools meant for traditional filesystems. A ZFS dataset mounted via
Samba on a Windows machine will show only a minuscule amount of
space used, and the remaining amount of space in the pool as the free
space. As the pool fills with data, Windows sees the drive shrink.

When using ZFS, develop the habit of managing it with accurate

tools.

Limiting Dataset Size

ZFS’ flexibility means that users and applications can use disk space

if it’s available. This is very valuable, especially on long-lived systems,
but sometimes that’s the exact behavior you don’t want. You don’t want
datasets like /var/10g expanding to fill your disk and, inversely, you
want to be certain that critical datasets like your database get the space
they need. If the main database runs out of space because Jude tem-
porarily stashed his collection of illicit potted fern photos in his home
directory, you’ll have an unpleasant and unnecessary meeting."* That’s

where quotas and reservations come in.

13 On the plus side, you’ll have an excuse to throw Jude under
the bus. Metaphorically, if you prefer.

138

Chapter 6: Disk Space Management

A quota dictates the maximum amount of space a dataset and all
its descendants can use up. If you set a quota of 100 GB on the dataset
mounted as /home, the total amount of space used by /rome and all the
datasets and snapshots beneath it cannot exceed 100 GB.

A reservation dictates an amount of space set aside for a dataset. To
ensure that a database always has room to write its files, use a reserva-
tion to carve out an amount of disk space just for that dataset.

We'll discuss reservations first, then proceed to quotas.
Reservations
A reservation sets aside a chunk of disk space for a dataset and its
children. The system will not allow other datasets to use that space. If
a pool runs out of space, the reserved space will still be available for
writes to that dataset.

Suppose we reserve 100 GB out of a 1 TB pool for /var/db, where
our database stufs its data files. This dataset has about 50 GB of data
in it. A log file runs amok, and fills the rest of the pool. We'll get errors
from the other programs on the system saying that the disk is full—
but the database program will still have free space in /var/dp. It might
complain that it can’t write program logs to /var/10g/db, but that’s a
separate issue.

ZFS manages reservations with two ZFS properties: refreserva-
tion and reservation. A refreservation affects the dataset’s referenced
data—that is, it excludes snapshots, clones, and other descendants. A
reservation includes child datasets, snapshots, and so on. For an exam-

ple, look at this snippet from zfs 1ist.

zfs Tist

NAME USED AVAIL REFER MOUNTPOINT
zroot/usr 12.5G 874G 454M /usr
zroot/usr/local 1.84G 874G 1.84G /usr/local
zroot/usr/obj 6.89GC 874G 6.89G /usr/obj

zroot/usr/ports 1.97G 874G 816M /usr/ports

139

Chapter 6: Disk Space Management

The zroot/usr dataset is mounted as /usr. It “uses” 12.5 GB,
including child datasets such as /usr/1ocal, /usr/obj, and so on. It
refers to only 454 MB, meaning that the amount of data on the main
zroot/usr dataset is less than half a gigabyte.

If we set a reservation of 1 GB on zroot/usr, that’s basically moot.
The existing files in the child datasets far exceed that, and the odds
of something non-catastrophic trimming those children down to less
than 1 GB are negligible.

If we set a refreservation of 1 GB on zroot/usr, though, it only
affects files on zroot/usr. The child datasets are excluded. The dataset
is currently half full, so it would have space to write more files.

That’s an extreme example, but somewhat artificial. Suppose you
want to ensure that all of your users get at least 1 GB of disk space.
Create a separate dataset for each user’s home directory and assign
each a reservation.

You might also nest reservations. Suppose you have two data-
sets, zroot/var/logand zroot/var/log/db, the latter exclusively for
your database server. You want to always have at least 10 GB for your
database server logs, so you assign a reservation to zroot/var/log/db.
Then you want 20 GB for generic server logs. If that 20 GB should
include the database logs, use a reservation. If it should not include the
database logs, use a refreservation.

A dataset might have both a reservation and a refreservation. You
might say that the dataset zroot/var/10g/db has a 10 GB refreserva-
tion for current log files, but set a much larger reservation so that you
can take snapshots of the dataset and count their usage separately.

Attempting to violate a reservation generates an “out of space”
error. When that error appears even though you know you still have
free disk space, check your reservations. The datasets with reservations

will show free space, but all others will be full.

140

Chapter 6: Disk Space Management

Viewing Reservations

You can check the reservations and refreservations separately, but

we prefer to get all reservation information at once. You can view the
specific list of properties by running zfs get -o reservation,refres-
ervation,usedbyrefreservation, but Lucas is too blasted lazy to type

all that and he’s the lead author, so this example uses grep (1).

zfs get all zroot/var/log/db | grep reserv
zroot/var/log/db reservation none default
zroot/var/log/db refreservation none default
zroot/var/log/db usedbyrefreservation 0 -

This dataset has no reservation or refreservation set. Let’s set some.
The usedbyrefreservation property shows how much space on

this dataset would be freed if the refreservation was removed.
Setting and Removing Reservations

Set a reservation just like you would any other ZFS property. Here we

set a refreservation ON /var/log/db and a reservation on /var/1 og.

zfs set refreservation=10G zroot/var/log/db
zfs set reservation=20G zroot/var/log

No matter what, this host will now have 10 GB reserved for data-
base logs and 20 GB for the log files, including the database directory.
We used a refreservation for the database logs because we don’t
want snapshots counted against that reservation.

To remove a reservation, set it to none.
zfs set reservation=none zroot/var/log

Other datasets can now use that space.

141

Chapter 6: Disk Space Management

Quotas

A quota is a maximum amount of space that a dataset, user, or user
group may use. All of these quotas are set on a per-dataset basis. We'll

start with dataset quotas, then investigate user and group quotas.
Dataset Quotas

Use a quota when you want to set a maximum amount of space that
a dataset can consume. For example, you might decide that /tmp can
only use up to 10 GB, or /home can only take up 200 GB, or any other
limit that makes sense to you.

Like reservations, ZFS uses two properties for quotas: quota and
refquota. The quota property sets a maximum amount of space that a
dataset and all its children can use. The refquota property establishes
the maximum amount of space that the dataset can use, excluding its
children. If you want a quota that excludes snapshots and child data-
sets, use the refquota property.

Why would you want to use a refquota instead of a quota? Sup-
pose each user’s home directory is its own dataset, and users cannot
create snapshots. Most can’'t, and most of those who can don’t know
how. If you automatically create snapshots, as we demonstrate in
Chapter 7, then the space used by snapshots will get charged to the us-
er’s account. A user who runs out of disk space might delete some files
but discover that they haven't freed any space. It’s probably not fair to

charge a user for disk space that they don't control.*

14 Sysadmins who consider “being fair to users” outside their
normal remit can use refquotas as a way of reducing exposure to user
cooties.

142

Chapter 6: Disk Space Management

Setting Quotas

To configure a quota on a dataset, assign the quota and/or refquota
properties.

In the Reservations section we set aside 20 GB for the system logs
in the zroot/var/1o0g dataset, guaranteeing that the log would always
have at least 20 GB of space. A more common issue is when logging
runs amok and absorbs all available disk space, crashing the system.
Your monitoring system should catch this error, but it also makes
sense to establish a quota on the log dataset so that someone uncom-
menting /var/log/all.login /etc/syslog.conf doesn't crash the box
a day later.

Here we set a quota on zroot/var/log.

zfs set quota=100G zroot/var/log

The log files can use no more than 100 GB, including snapshots,
child datasets, and everything else.

You can separately limit the amount of referenced data with a
refquota. This excludes child datasets and snapshots. Limiting both
the size of the entire dataset and the dataset’s referenced data can help
you control the size of your snapshots. For example, setting a refquota
of 10 GB and a quota of 100 GB would tell you that you could always
have 10 snapshots even if the data completely changes. Similarly, if you

want to exclude child datasets, use a refquota.

zfs set refquota=50G zroot/var/log
zfs set refquota=50G zroot/var/log/db
zfs set quota=500G zroot/var/log

Here we have separate refquotas for two logging datasets, and a
quota for both of the datasets together. If each dataset can reference up
to 50 GB on its own, the 500 GB quota means that no matter how the

data changes, you can have at least four snapshots of each.

143

Chapter 6: Disk Space Management

Viewing Quotas

To see the quotas on a dataset, check the quota and refquota proper-
ties.

zfs get all zroot/home | grep quota
zroot/home quota none default
zroot/home refquota none default

The /home directory has no quotas on it. Users may fill your hard
drive to its limits.

Quotas change the dataset’s maximum size and the free space in
the dataset. This pool has several hundred gigabytes free, but zfs 1ist

on this dataset says otherwise.

zfs 1ist zroot/var/log
NAME USED AVAIL REFER MOUNTPOINT
zroot/var/log 25.0G 75.0G 5.01G /var/log

The zroot/var/log dataset has 25 GB on it, and 75 GB free. ZFS
knows that the dataset has a 100 GB quota on it, and it shows utili-
zation appropriately. You've just simulated a traditional partition by
setting a quota—but don’t go running for at (1)! First, look at a child

dataset of zroot/var/log.

zfs 1ist zroot/var/log/db
NAME USED AVAIL REFER MOUNTPOINT
zroot/var/log/db 20.0G 85.0G 10.0G /var/Tlog/db

ZFS knows that the parent dataset has a quota of 100 GB, and
therefore also sets that maximum size on the child datasets. If
/var/loghas 75 GB free, and /var/10g/db has 85 GB free, does that
mean that these two partitions have (75 + 85 =) 160 GB of free space?
No, because like free space in a pool, these two entries both refer to
the same free space. The dataset zroot/var/log/db entry seems to have
more free space because data in its parent dataset is not reflected in the

child dataset’s usage.

144

Chapter 6: Disk Space Management

Exceeded Quotas

If a user or process attempts to write something that would make the

dataset exceed its quota, it will get a quota error.

cp script.sh testscript.sh
cp: testscript.sh: Disc quota exceeded

You’'ll need to free some space, but remember that snapshots might
complicate that, as discussed in “Freeing Space” earlier in this chapter.
If you've set both a quota and a refquota, the user might be able to
delete files and free up space even though that increases the size of the

filesystem’s snapshots.
User and Group Quotas

User and group quotas control how much data a user or a group can
write to a dataset. Like dataset quotas, user and group quotas are con-
trolled on a per-dataset basis.

User and group quotas don't apply to child filesystems, snapshots,
and clones. You must apply quotas to each individual dataset you want
them to affect.

Viewing Space Used and Existing Quotas per Dataset

The zfs userspace command lets you see how much space is used by
each user in a dataset. Here we examine the zroot/home dataset on our
test system. A system with complicated datasets might need several
minutes to run du (1), but zfs userspace finds all the files owned by

each user nearly instantaneously.

zfs userspace zroot/home

TYPE NAME USED QUOTA
POSIX User 179 7.29M none
POSIX User mwlucas 1.16G none
POSIX User root 298M none

The user mwlucas has 1.16 GB of files—unsurprising. The root user

has 298 MB of files in /home—somewhat surprising, but not shocking.
145

Chapter 6: Disk Space Management

Somehow, though, user 179 has 7.29 MB of files in that dataset. This
system has no user 179, which is why the user is shown by UID rather
than username. A bit of digging shows that Lucas once used tar’s -p
argument when extracting a source code tarball, preserving the origi-
nal file ownership.

None of these users have quotas.

The zfs groupspace command shows how much space files owned
by each group use. For something more interesting, I'm checking the

group ownerships on the zroot/usr/local dataset.

zfs groupspace zroot/usr/local

TYPE NAME USED QUOTA
POSIX Group _tss 25.5K none
POSIX Group bin 93.5K none
POSIX Group kmem 128K none
POSIX Group messagebus 392K none
POSIX Group polkit 115K none
POSIX Group wheel 1.85G none

If your server supports multiple groups, such as development
teams, research groups, or devotees of different BSD variants, you can

assign each group or user a quota to restrict their disk usage.
Assigning and Removing User and Group Quotas

Use the userquota and groupquota properties to assign user and group
quotas. To specify the user or group the quota belongs to, give the
property name, an @ sign, and the user or group name. Give the quota

for the user mwilucas, for example, with userquota@mwlucas.

zfs set userquota@mwlucas=1G zroot/home
The previous section showed that the mwlucas account had over a
gigabyte of data in it. The mwlucas account is over quota, and that user

gets an error whenever he tries to create a file.

$ touch test
touch: test: Disc quota exceeded

146

Chapter 6: Disk Space Management

Similarly, assign a group quota with the groupquota property, an @
sign, and the group name.
zfs set groupquota@staff=10G zroot/home

If a user has repeatedly abused shared directories like /tmp, assign
them a restrictive quota.
zfs set userquota@mwlucas=10m zroot/tmp

This user can use features like SSH agent forwarding, but he can’t
extract huge tarballs and monopolize the shared temporary space.

To remove a quota, set the quota to none.
Viewing Individual Quotas

If you're interested in the quota set for a specific user or group, ask ZFS

for that one property.

zfs get userquota@mwlucas zroot/tmp

NAME PROPERTY VALUE SOURCE
zroot/tmp userquota@mwlucas 10M Tocal

Now you can let your teams squabble among themselves over their
disk space usage, without taking up your precious time. Congratula-

tions!

ZFS Compression

You can't increase the size of an existing disk, but you can change how
your data uses that disk. For decades, sysadmins have compressed files
to make them take up less space. We've written all kinds of shell scripts
to run our preferred compression algorithm on the files we know can
be safely compressed, and we're always looking for additional files that
can be compressed to save space. And we all know about that previ-
ously unknown log file that expands until it fills the partition and trips

an alarm.?

15 You don’t monitor disk space usage? Well, an outage is merely
a different sort of alarm.

147

Chapter 6: Disk Space Management

ZFS takes away that problem by compressing files in real time, at the
filesystem level. Those log files your daemon writes? ZFS can compress
them as they’re written, rendering all those scripts irrelevant. This also
amortizes the cost of compression as the system compresses everything
on an ongoing basis rather than in a 3 AM frenzy of disk thrashing.

Compression imposes costs, however. Compression and decom-
pression require CPU time, so blindly enabling the tightest gzip com-
pression everywhere can add another constraint on disk performance.
Any performance losses are most often more than made up by the
reduction in disk activity, however. ZFS includes compression algo-

rithms specifically designed for filesystem use.
Enabling Compression

ZFS compression works on a per-dataset basis. You can enable com-
pression for some datasets but not others.

Enable and disable compression with the compression property.
Here we check the compression setting.

zfs get compress zroot/usr
NAME PROPERTY VALUE SOURCE
zroot/usr compression off default

Enable compression by setting the compression property. The
default compression algorithm, LZJB, isn’'t the most effective algorithm
ZFS ofters. Use LZ4 compression in almost all cases. Here we enable
LZ4 compression on all datasets on the zroot pool, but specify gzip-9

on the zroot/var/cdr dataset.

zfs set compress=1z4 zroot
zfs set compress=gzip-9 zroot/var/cdr

ZFS compresses files when the files are written to disk. If you
have a dataset full of text files, adding compression won't make them
shrink. To reduce disk space used by files, you must rewrite all the files

after enabling compression.

148

Chapter 6: Disk Space Management

Compression Algorithms

ZFS supports several compression algorithms. The default, LZ]B, was
specifically designed for filesystem use. It can quickly compress and
decompress blocks with a modest compression ratio. It’s not the best
compression algorithm for routine use, however.

The LZ4 algorithm is a newer and faster filesystem-specific com-
pression algorithm. It outperforms LZ]B in all ways. Not all data is
compressible, but LZ4 quickly detects incompressible files and doesn’t
try to compress them. When you enable compression for a dataset, use
LZ4 unless you have a specific use case for gzip compression.

The ZLE algorithm compresses strings of zeroes in files. It’s a min-
imal compression system, and isn't terribly useful for most files. LZ4 is
far more effective than ZLE, even on files with many runs of zeroes.

For special cases, ZFS supports gzip compression. Gzip uses much
more CPU time than LZ4, but can be more effective for some datasets.
The additional CPU time gzip requires makes the filesystem slower,
but for data that’s not accessed frequently the disk space savings might
be worthwhile.

Gzip has nine compression levels, from 1 (the fastest but least ef-
fective) to 9 (the slowest but most aggressive). Specify a gzip compres-

sion level with a dash and the level.
zfs set compress=gzip-1 zroot/var/log

If you specify gzip without a level, ZFS uses the gzip default of level 6.

149

Chapter 6: Disk Space Management

Compression Properties

Several properties offer insight into how well ZFS compresses your data.

The compressratio property shows how compression has affected
this dataset and all its children, while the refcompressratio property
allows you to see how compression has impacted this dataset’s refer-
enced data.

Datasets have two properties just for compression scenarios, logi-
calreferenced and logicalused. A dataset’s referenced space includes
the effects of compression, but the 1ogicalreferenced property ex-
cludes compression.

Similarly, the used property shows the amount of space actually
consumed on the dataset and all its children, while 10gicalused shows
the amount of uncompressed data in the dataset.

When you study all of these together, you can get a good idea of

how compression has impacted your data.
Choosing an Algorithm

How can you tell if your data can benefit from compression, or how
different algorithms affect file size? Get some of your typical data files
and test them. Use du (1) or 1s -1s to see a file’s actual size on the disk.
In testing your own data, you’ll want to use a whole bunch of differ-
ent files of your actual data. For this example, Lucas used the Human

Genome Project as downloaded from Project Gutenberg.

du hgp.txt
280721 hgp.txt

Uncompressed, this file takes up 280,721 blocks, or about 274 MB.

Our test dataset is called ab. We have no other data on this dataset,
so we can accurately assess compression’s impact on this particular file.
Now that we know the test file’s uncompressed size, enable compres-

sion and see what happens.

150

Chapter 6: Disk Space Management

zfs set compression=on db

This activates LZ]B compression. Check the file size now.

du hgp.txt
280721 hgp.txt

The file size hasn't changed, but we enabled compression. What’s
going on? Remember, compression, deduplication, and similar fea-
tures work only on files written after the feature is enabled. We must

remove the file and put it back.

rm /db/*
cp /home/mwl/hgp.txt /db

Wait a few seconds so that ZFS can write everything to disk, and

see what happens.

du /db/hgp.txt
139577 /db/hgp.txt

The file uses only 139,577 blocks, or about 136 MB. It’s shrunk

about in half, as the dataset properties show.
zfs get compressratio,refcompressratio db

NAME PROPERTY VALUE SOURCE
db compressratio 2.01x -
db refcompressratio 2.01x -

The refcompressratio equals the compressratio because we have
only one chunk of data on this dataset and only one dataset on this
pool. On more complex pools, the values will probably difter.

So, the default algorithm reduced the size by half. Let’s try the
more efficient [z4.

zfs set compression=1z4 db
Recopy the file to trigger LZ4 compression, wait a few seconds for

ZFS to do its accounting, and see what happens.

du /db/hgp.txt
146076 /db/hgp.txt

LZ4 compresses this data to 142 MB. LZ4 is not as effective as
LZ]JB on this particular file. That’s not terribly shocking—different
algorithms work differently on different data.

151

Chapter 6: Disk Space Management

Would gzip improve things further?
zfs set compress=gzip-1 db/text

Re-copy the test file to the dataset and check the disk usage.

du /db/hgp.txt
74104 /db/hgp.txt

This data now uses about 72 MB, and the dataset now has a com-
pressratio of 3.78. Gzip is clearly a better match for this particular
data. Compression almost quadrupled our effective disk space. While

that’s fairly impressive, let’s turn up the volume.

zfs set compress=gzip-9 db/text
cp /home/mwl/hgp.txt /db/

du /db/hgp.txt

63614 /db/hgp. txt

Cranking up the compression to gzip-9 reduces this 274 MB file
to 62 MB, with a compressratio of 4.41. Gzip-9 more than quadruples
how much data we can store.

This example cheats, though. Really, really cheats. As in, “writes
the formulas on the palm of its hand before the physics test” cheats.

With the exception of the boilerplate added by Project Gutenberg,
the Human Genome Project is composed entirely of four letters. It is
perhaps the most redundant, most compressible real-world data that

exists. You can’t expect that from most real-world data.'
When to Change Compression Algorithms

Generally, we recommend changing compression algorithms from LZ4
only when a compelling need demands you do so and the additional

CPU overhead and slower disk access don’t impact actual work.

16 Yes, Mr. Pedantic, your real-world data is composed only of
ones and zeroes. Go compress your data down to a single 0 and a 1
and see how well that works for you.

152

Chapter 6: Disk Space Management

Not long ago, Lucas worked for a phone company. The company
retained more than a decade of plain-text call detail records (CDRs)
for every phone call that had ever been made through their equip-
ment. These records were routinely accessed for running reports in the
middle of the night. Occasionally, a fraud investigator needed to access
those reports with tools like grep(1) and awk(1). For this use case, en-
abling gzip-9 compression made perfect sense. Measured with qu (1),
ZFS compressed the files at roughly 8:1. If wed needed to routinely in-
teract with these files, however, LZ4 and an extra few hundred dollars

in hard drives would have made more sense.
Compression and Performance

Take a look at these properties for the example data.

zfs get all db | grep reference
db/text referenced 48.7M -
db/text Tlogicalreferenced 220M -

This dataset uses 48.7 MB of disk space. When you ignore the
compression, the dataset has 220 MB of data. A compressed dataset
can store more “logical data” than its size.

Here’s where the effectiveness of compression really comes into
play. The slowest part of reading and writing data is getting it on the
storage media. The physical media is the slowest part of a disk transac-
tion. Writing 48.7 MB to disk takes about 22% as long as writing 220
MB. You can cut your storage times by 78% by enabling compression,
at the cost of a little CPU time. If your disk can write 100 MB/s, then
writing that 48.7 MB of compressed data will take about half a second.
If you look at it from the perspective of the application that wrote the
data, you actually wrote 220 MB in half a second, effectively 440 MB/s.
We bet you didn’t think your laptop disk could manage that!

153

Chapter 6: Disk Space Management

If you are storing many small files, compression is less effective.
Files smaller than the sector size get a whole block allocated to them
anyway. If you want really, really effective compression, use a disk with
actual 512-byte physical sectors and tell ZFS to use that sector size.

Compression isn't perfect. Sequential and random access can
change how well compression performs. Always test with your own
data, in your environment. Compression works well enough that
FreeBSD enables 1z4 compression in its default install.

Most CPUs are mostly idle. Make the lazy critters crunch some
data!

Deactivating Compression

To deactivate compression, set the dataset’s compression property to
off

Much as activating compression only affects newly written files,
deactivating compression only affects new data. Compressed files
remain compressed until rewritten. ZFS is smart enough to know that
a file is compressed and to automatically decompress it when accessed,
but it still has the overhead.

You cannot purge all traces of compression from a dataset except
by rewriting all the files. You're probably better off recreating the data-

set.

Deduplication

Files repeat the same data over and over again, arranged slightly dif-
ferently. Multiple files contain even more repetition. More than half of
the data on your system might be duplicates of data found elsewhere.
ZFS can identify duplicate data in your files, extract and document it,
thus storing each piece of data only once. It’s very similar to compres-

sion. Deduplication can reduce disk use in certain cases.

154

Chapter 6: Disk Space Management

Many deduplication systems exist. At one extreme, you could
deduplicate all data on a byte-by-byte level. You could deduplicate
this book by identifying and recording the position of each letter and
punctuation mark, but the record would grow larger than the actual
book. At the other extreme, you could deduplicate multiple copies of
entire files by recording each only once.

ZFS snapshots could be said to deduplicate filesystem data. For de-
duplicating files, ZFS deduplicates at the filesystem block level (shown
by the recordsize property). This makes ZFS good at removing du-
plicates of identical files, but it realizes that files are duplicates only if
their filesystem blocks line up exactly. Using smaller blocks improves
how well deduplication works, but increases memory requirements.
ZFS stores identical blocks only once and stores the deduplication
table in memory.

Enable deduplication on a dataset-by-dataset basis. Every time any
file on a deduplicated dataset is accessed by either reading or writing,
the system must consult the deduplication table. For efficient dedupli-
cation, the system must have enough memory to hold the entire de-
duplication table. ZFS stores the deduplication table on disk, but if the
host must consult the on-disk copy every time it wants to access a file,
performance will slow to a drag. (A host must read the dedup table
from disk at boot, so you'll get disk thrashing at every reboot anyway:.)

While deduplication sounds incredibly cool, you must know how
well your data can deduplicate and how much memory deduplication

requires before you even consider enabling it.
Deduplication Memory Needs

For a rough-and-dirty approximation, you can assume that 1 TB of
deduplicated data uses about 5 GB of RAM. You can more closely

approximate memory needs for your particular data by looking at your

155

Chapter 6: Disk Space Management

data pool and doing some math. We recommend always doing the
math and computing how much RAM your data needs, then using the
most pessimistic result. If the math gives you a number above 5 GB,
use your math. If not, assume 5 GB per terabyte.

If you short your system on RAM, performance will plummet like
Wile E. Coyote."” Don’t do that to yourself.

Each filesystem block on a deduplicated dataset uses about 320
bytes of RAM. ZFS’ zdb (8) tool can analyze a pool to see how many
blocks would be in use. Use the - flag and the name of the pool you

want to analyze.

zdb -b data
Traversing all blocks to verify nothing leaked ...

Toading space map for vdev 1 of 2, metaslab 33 of 174
5:456 completed (341MB/s) estimated time remaining:
Ohr 00min 30sec
The “time remaining” counter actually isn’t completely terrible,
which is good, because the process can run a very long time
depending on disk speed and utilization. Once it runs out you'll get a

statistical analysis of the pool.

bp count: 139025
ganged count: 0
bp logical: 18083569152 avg: 130074

bp physical: 18070658560 avg: 129981 compression: 1.00
bp allocated: 18076997120 avg: 130026 compression: 1.00
bp deduped: 0 ref>1: 0 deduplication: 1.00
SPA allocated: 18076997120 wused: 1.81%

additional, non-pointer bps of type 0: 21
Dittoed blocks on same vdev: 1183

17 Also like Wile E. Coyote, painting a tunnel on the wall won't
help.

156

Chapter 6: Disk Space Management

The “bp count” shows the total number of ZFS blocks stored in the
pool. This pool uses 139,025 blocks. While ZFS uses a maximum block
size of 128 KB by default, small files use smaller blocks. If a pool has
many small files, you'll need more memory.

In the third line from the bottom, the “used” entry shows that
this pool is 1.81% (or 0.0181) used. Assume that the data in this pool
will remain fairly consistent as it grows. Round up the number of
used blocks to 140,000. Divide the used blocks by how full the block
is, and we see that the full pool will have about (140,000 / 0.0181 =)
7,734,806 blocks. At 320 bytes per block, this data uses 2,475,138,121
bytes of RAM, or roughly 2.3 GB.

That’s less than half the rule of thumb. Assume that the ZFS de-
duplication table on this pool will need 5 GB of RAM per terabyte of
storage.

ZFS lets metadata like the deduplication table take up only 25% of
the system’s memory. (Actually, it's 25% of the Adaptive Replacement
Cache, or ARC, but we'll go into detail on that in FreeBSD Mastery:
Advanced ZFS.) Each terabyte of deduplicated pool means that the
system needs at least 20 GB of RAM. Even if you go with your more
hopeful math based on block usage, where each terabyte of disk needs
2.3 GB of RAM, the 25% limit means that each terabyte of deduplicat-
ed pool needs about 10 GB of RAM. (In FreeBSD Mastery: Advanced
ZFS, we discuss adjusting this limit so that people who want to shoot

themselves in the foot can do it well.)
Deduplication Effectiveness

ZFS can simulate deduplication and provide a good estimate on how
well the data would deduplicate. Run zdb -s on your pool. You'll get a
nice histogram of block utilization and common elements, which you

can completely ignore in favor of the last line.

157

Chapter 6: Disk Space Management

zdb -S data
Simulated DDT histogram:

aééup = 3.68, compress = 1.00, copies = 1.00,
dedup * compress / copies = 3.68

Our pool data can be deduplicated 3.68 times. If all the data in
this pool were this deduplicatable, we could fit 3.68 TB of data in each
terabyte of storage. This data is exceptionally redundant, however.

For comparison, on Lucas’ desktop, the zroot pool that contains the
FreeBSD operating system, user programs, and home directories, is
about 1.06 deduplicatable.

That’s not bad. We still need a machine with 20 GB of RAM per
terabyte of deduplicated pool, mind you, but we can now make a cost/
benefit calculation based on the current needs of hardware. You can
also compare your test data’s deduplicatability with its compressibility.

Is the memory expense worth it? That depends on the cost of
memory versus the cost of storage.

Every time we've assessed our data for deduplicatability and com-
pressibility, and then priced hardware for each situation, we've found
that enhancing compression with faster disks and more CPU was more
cost-effective than loads of memory for deduplication. Deduplication
does not improve disk read speed, although it can improve cache hit
rates. It only increases write speed when it finds a duplicate block.
Deduplication also significantly increases the amount of time needed
to free blocks, so destroying datasets and snapshots can become in-
credibly slow. Compression affects everything without imposing these
penalties.

Deduplication probably only makes sense when disk space is con-
strained, expensive, and very high performance. If you need to cram

lots of deduplicable data onto a pool of SSDs, dedup might be for you.

158

Chapter 6: Disk Space Management

Everyone’s data is different, however, so check yours before making

a decision.
Enabling Deduplication

The ZFS property dedup activates and deactivates deduplication.
zfs set dedup=on data/datal

Deduplication is now active on this data set.

Like compression, deduplication only affects newly written data.
Activating deduplication won’t magically deduplicate data already on
the pool. For best results activate deduplication when first creating the

dataset, before writing any data to it.
Disabling Deduplication

To turn deduplication off, set the dataset’s dedup property to off.
zfs set dedup=off data/datal

Like compression, disabling deduplication doesn’t magically
reduplicate all of your files. Deduplicated files remain deduplicated.

If you turned off dedup because it made system performance abysmal,
turning it off won’t improve performance. Only removing deduplicat-
ed files will improve performance. You can’'t purge all traces of dedup
from a dataset. You're better off using zfs send and zfs receive to
send the data to a new dataset that doesn’t use deduplication.

Your best choice is probably to not use deduplication. Deduplica-
tion is a great technology, and the people who need it really do need it.
Most of us don’t have deduplicable data, however. Don’t enable fea-
tures only because they’re cool.

Choosing a disk space management strategy correctly at the begin-

ning will save you much future pain.

159

Chapter 7: Snapshots and Clones

One of ZFS’ most powerful features is snapshots. A filesystem or
zvol snapshot allows you to access a copy of the dataset as it existed
at a precise moment. Snapshots are read-only, and never change. A
snapshot is a frozen image of your files, which you can access at your
leisure. While backups normally capture a system across a period

of minutes or hours, running backups on a snapshot means that the
backup gets a single consistent system image, eliminating those tar:
file changed as we read it messagesand its cousins.

While snapshots are read-only, you can roll the dataset back to the
snapshot’s state. Take a snapshot before upgrading a system, and if the
upgrade goes horribly wrong, you can fall back to the snapshot and
yell at your vendor.

Snapshots are the root of many special ZFS features, such as
clones. A clone is a fork of a filesystem based on a snapshot. New
clones take no additional space, as they share all of their dataset blocks
with the snapshot. As you alter the clone, ZFS allocates new storage
to accommodate the changes. This lets you spin up several slightly
different copies of a dataset without using a full ration of disk space
for each. You want to know that your test environment tightly mirrors
the production one? Clone your production filesystem and test on the

clone.

161

Chapter 7: Snapshots and Clones

Snapshots also underpin replication, letting you send datasets
from one host to another.

Best of all, ZFS’ copy-on-write nature means that snapshots are
“free” Creating a snapshot is instantaneous and consumes no addi-

tional space.

Copy-on-Write

In both ordinary filesystems and ZFS, files exist as blocks on the disk.
In a traditional filesystem, changing the file means changing the file’s
blocks. If the system crashes or loses power when the system is actively
changing those blocks, the resulting shorn write creates a file that’s half
the old version, half the new, and probably unusable.

ZFS never overwrites a file’s existing blocks. When something
changes a file, ZFS identifies the blocks that must change and writes
them to a new location on the disk. This is called copy-on-write, or
COW. The old blocks remain untouched. A shorn write might lose
the newest changes to the file, but the previous version of the file still
exists intact.

Never losing a file is a great benefit of copy-on-write, but COW
opens up other possibilities. ZFS creates snapshots by keeping track of
the old versions of the changed blocks. That sounds deceptively simple,
doesn’t it? It is. But like everything simple, the details are complicated.
We talked about how ZFS stores data in Chapter 3, but let’s go deeper.

ZFS is almost an object-oriented filesystem. Metadata, indexing,
and data are all different types of objects that can point to other ob-
jects. A ZFS pool is a giant tree of objects, rooted in the pool labels.

Each disk in a pool contains four copies of the ZFS label: two at
the front of the drive and two at the end. Each label contains the pool
name, a Globally Unique ID (GUID), and information on each mem-
ber of the VDEV. Each label also contains 128 KB for uberblocks.

162

Chapter 7: Snapshots and Clones

The uberblock is a fixed size object that contains a pointer to the
Meta Object Set (MOS), the number of the transaction group that
generated the uberblock, and a checksum.

The MOS records the top-level information about everything in
the pool, including a pointer to a list of all of the root datasets in the
pool. In turn each of these lists points to similar lists for their children,
and to blocks that describe the files and directories stored in the data-
set. ZFS chains these lists and pointer objects as needed for your data.
At the bottom of the tree, the leaf blocks contain the actual data stored
on the pool.

Every object contains a checksum and a birth time. The checksum
is used to make sure the object is valid. The birth time is the transac-
tion group (txg) number that created the block. Birth time is a critical
part of snapshot infrastructure.

Moditying a block of data touches the whole tree. The modified
block of data is written to a new location, so the block that points to it
is updated. This pointer block is also written to a new location, so the
next object up the tree needs updating. This percolates all the way up
to the uberblock.

The uberblock is the root of the tree. Everything descends from it.
ZFS can’t modify the uberblock without breaking the rules of copy-
on-write, so it rotates the uberblock. Each label reserves 128 KB for
uberblocks. Disks with 512-byte sectors have 128 uberblocks, while
disks with 4 KB sectors have 32 uberblocks. If you have a disk with 16
KB sectors, it will have only eight uberblocks. Each filesystem update
adds a new uberblock to this array. When the array fills up, the oldest
uberblock gets overwritten.

When the system starts, ZFS scans all of the uberblocks, finds the
newest one with a valid checksum, and uses that to import the pool.

Even if the most recent update somehow got botched, the system can

163

Chapter 7: Snapshots and Clones

import a consistent version of what the pool was like a few seconds be-
fore that. If the system failed during a write, the very last data is lost—
but that data never made it to disk anyway. It’s gone, and ZFS can’t
help you. Using copy-on-write means that ZFS doesn't suffer from the

problems that make £sck (8) necessary for traditional filesystems.

How Snapshots Work

When the administrator tells ZFS to create a snapshot, ZFS copies the
filesystem’s top-level metadata block. The live system uses the copy,
leaving the original for use by the snapshot. Creating the snapshot
requires copying only the one block, which means that ZFS can create
snapshots almost instantly. ZFS won’t modify data or metadata inside
the snapshot, making snapshots read-only. ZFS does record other
metadata about the snapshot, such as the birth time.

Snapshots also require a new piece of ZFS metadata, the dead list.
A dataset’s dead list records all the blocks that were used by the most
recent snapshot but are no longer part of the dataset. When you delete
a file from the dataset, the blocks used by that file get added to the
dataset’s dead list. When you create a snapshot, the live dataset’s dead
list is handed off to the snapshot and the live dataset gets a new, empty
dead list.

Deleting, modifying, or overwriting a file on the live dataset means
allocating new blocks for the new data and disconnecting blocks
containing old data. Snapshots need some of those old data blocks,
however. Before discarding an old block, the system checks to see if a

snapshot still needs it.

164

Chapter 7: Snapshots and Clones

ZFS compares the birth time of the old data block with the birth
time of the most recent snapshot. Blocks younger than the snapshot
can't possibly be used by that snapshot and can be tossed into the recy-
cle bin. Blocks older than the snapshot birth time are still used by the
snapshot, and so get added to the live dataset’s dead list.

After all this, a snapshot is merely a list of which blocks were in use
in the live dataset at the time the snapshot was taken. Creating a snap-
shot tells ZFS to preserve those blocks, even if the files that use those
blocks are removed from the live filesystem.

This means that ZFS doesn’t keep copies of every version of every
file. When you create a new file and delete it before taking a snapshot,
the file is gone. Each snapshot contains a copy of each file as it exist-
ed when the snapshot was created. ZFS does not retain a history like
DragonFly's HAMMER.

Deleting a snapshot requires comparing block birth times to
determine which blocks can now be freed and which are still in use. If
you delete the most recent snapshot, the dataset’s current dead list gets
updated to remove blocks required only by that snapshot.

Snapshots mean that data can stick around for a long time. If you
took a snapshot one year ago, any blocks with a birth date more than
a year ago are still in use, whether you deleted them 11 months ago or
before lunch today. Deleting a six-month-old snapshot might not free
up much space if the year-old snapshot needs most of those blocks.'®

Only once no filesystems, volumes, or snapshots use a block, does

it get freed.

18 Snapshots make you the data equivalent of a hoarder. Do try
to not get buried in an avalanche of old newspapers.

165

Chapter 7: Snapshots and Clones

Using Snapshots

To experiment with snapshots, let’s create a new filesystem dataset and
populate it with some files.

zfs create -o mountpoint=/sheep mypool/sheep

cd /sheep

dd if=/dev/random of=randomfile bs=1lm count=1
fetch -o zfsbook.html http://www.zfsbook.com/
date > date.txt

This gives us some data we can play with.
Creating a Snapshot

Use zfs snapshot to create a snapshot. Specify the dataset by its full

path, then add @ and a snapshot name.
zfs snapshot mypool/sheep@snapl

View snapshots with zfs 1ist -t snapshot. To see the snapshots

of a specific dataset, add the -r flag and the dataset name.

zfs 1ist -t snapshot -r mypool/sheep
NAME USED AVAIL REFER MOUNTPOINT
mypool/sheep@snapl 0 - 1.1Im -

Notice that the amount of space used by the snapshot (the USED
column) is 0. Every block in the snapshot is still used by the live data-

set, so the snapshot uses no additional space.
Dataset Changes and Snapshot Space

Now change the dataset and see how it affects the snapshots. Here we
append a megabyte of new crud to the random file and update the date

file.

dd if=/dev/random of=randomfile bs=1m count=1 oseek=1
date > date.txt

Think back on how snapshots work. The file of random data grew
by one megabyte, but thats not in the old snapshot. The date file was
replaced, so the snapshot should have held onto the blocks used by the

older file. Let’s see what that does to the snapshot’s space usage.

166

Chapter 7: Snapshots and Clones

zfs 1ist -t snapshot -r mypool/sheep
NAME USED AVAIL REFER MOUNTPOINT
mypool/sheep@snapl 72K - 1.1Im -

The snapshot now uses 72 KB. The only space consumed by the
snapshot was for the replaced block from the date file. The snapshot
doesn’t get charged for the new space sucked up by the larger random
file, because no blocks were overwritten.

Now let’s create a second snapshot and see how much space it uses.

zfs snapshot mypool/sheep@second
zfs 1ist -t snapshot -r mypool/sheep

NAME USED AVAIL REFER MOUNTPOINT
mypool/sheep@snapl 72K - 1.11IMm -
mypool/sheep@second 0 - 2.11IM -

The REFER column shows that the first snapshot gives you access
to 1.11 MB of data, while the second lets you see 2.11 MB of data. The
first snapshot uses 72 KB of space, while the second uses none. The
second snapshot is still identical to the live dataset.

But not for long. Let’s change the live dataset by overwriting part of

the random file and see how space usage changes.

dd if=/dev/random of=randomfile bs=1m count=1 oseek=1
zfs 1ist -t snapshot -r mypool/sheep

NAME USED AVAIL REFER MOUNTPOINT
mypool/sheep@snapl 72K - 1.1IM -
mypool/sheep@second 1.07M - 2.1IM -

We've overwritten one megabyte of the random data file. The first
snapshot’s space usage hasn’t changed. The second snapshot shows
that it’s using 1 MB of space to retain the overwritten data, plus some

metadata overhead.
Recursive Snapshots

ZFS lets you create recursive snapshots, which take a snapshot of the
dataset you specify and all its children. All of the snapshots have the
same name. Use the -r flag to recursively snapshot a system. Here we
snapshot the boot pool with a single command.

167

Chapter 7: Snapshots and Clones

zfs snapshot -r zroot@beforeupgrade
We now have a separate snapshot for each dataset in this pool,

each tagged with @beforeupgrade.
zfs 1ist -t snapshot

NAME USED AVAIL REFER
MOUNTPOINT

zroot@beforeupgrade 0 - 144K -
zroot/RO0T@beforeupgrade 0 - 144K -
zroot/RO0T/default@beforeupgrade 0 - 1.35¢ -
zroot/usr@beforeupgrade 0 - 454M -
zroot/usr/local@beforeupgrade 0 - 1.54G -

We can now abuse this system with wild abandon, secure in know-

ing that a known good version of the system exists in snapshots.

Advanced Dataset and Snapshot Viewing

Once you grow accustomed to ZFS you’ll find that you've created a

lot of datasets, and that each dataset has a whole bunch of snapshots.
Trying to find the exact snapshots you want gets troublesome. While
you can always fall back on grep (1), the ZFS command line tools have
very powerful features for viewing and managing your datasets and
snapshots. Combining options lets you zero in on exactly what you
want to see. We started with zfs 1ist in Chapter 4, but let’s plunge all
the way in now.

Many of these options work for other types of datasets as well as
snapshots. If you stack filesystems 19 layers deep, you'll probably want
to limit what you see. For most of us, though, snapshots are where
these options really start to be useful. Many features also work with
zpool (8) and pools, although pools don’t get as complicated as data-

sets.

168

Chapter 7: Snapshots and Clones

A plain z£s 1ist displays filesystem and zvol datasets, but no

snapshots.

zfs 1ist

NAME USED AVAIL REFER MOUNTPOINT
mypool 4.62G 13.7G 96K none
mypoo1/RO0T 469M 13.7G 96K none
mypool/R0O0T/default 469M 13.7G 469M /

mypool/avolume 4.13G 17.8G 64K -

You can examine a single dataset by name.

zfs 1ist mypool/sheep
NAME USED AVAIL REFER MOUNTPOINT
mypool/sheep 2.11M 13.7G 2.11M /mypool/sheep

To view a pool or dataset and all of its children, add the -r flag and

the pool or dataset name.
zfs 1ist -r mypool/var

NAME USED AVAIL REFER MOUNTPOINT
mypool/var 22.6G 854G 1.70G /var
mypool/var/crash 355M 854G 355M /var/crash

mypool/var/db 224M 854G 187M /var/db

Once you get many datasets, you'll want to narrow this further.
View Datasets by Type

To see only a particular type of dataset, use the -t flag and the dataset

type. You can view filesystems, volumes, snapshots, and bookmarks.
zfs 1ist -t snapshot -r mypool

NAME USED AVAIL REFER MOUNTPOINT
mypool@all 0 - 96K -
mypoo1/R00T@al1 0 - 96K -
mypoo1/R0O0T/default@all 84K - 419M -

mypool/avolume@all 0 - 64K -

You can examine specific snapshots by giving the complete snap-
shot name

zfs 1ist -t snapshot mypool/sheep@all
NAME USED AVAIL REFER MOUNTPOINT
mypool/sheep@all 0 - 2.1IM -

169

Chapter 7: Snapshots and Clones

Be sure you give the complete name, including the snapshot part.
Here we tell z£s 1ist to show only snapshots, and then give it the
name of a filesystem dataset; z£s (8) very politely tells us to be consis-

tent in what we ask for.

zfs 1ist -t snapshot mypool/sheep
cannot open ‘mypool/sheep’: operation not applicable to
datasets of this type

We used the -r flag before to show a dataset and all of its children.

It also works with the list of snapshots.
zfs 1ist -r -t snapshot mypool/second

NAME USED AVAIL REFER MOUNTPOINT
mypool/second@all 0 - 96K -
mypool/second/baby@all 0 - 96K -

To view absolutely everything, use -t al1.
zfs 1ist -r -t all mypool/second

NAME USED AVAIL REFER MOUNTPOINT
mypool/second 192K 13.5G 96K Tegacy
mypool/second@all 0 - 96K -
mypool/second/baby 96K 13.5G 96K Tegacy
mypool/second/baby@all 0 - 96K -

If you have many layers of datasets you might want a partially re-
cursive view. While -r shows all the children, the -4 option limits the
number of layers you see. Limit the depth to 1 and you get the snap-

shots of only a single dataset.
zfs 1ist -d 1 -t snapshot mypool/sheep

NAME USED AVAIL REFER MOUNTPOINT
mypool/sheep@all 0 - 2.11IM -
mypool/sheep@snap? 0 - 2.11IM -
mypool/sheep@noresnap 0 - 2.11IM -
mypool/sheep@evenmore 0 - 2.11IM -

Limiting the depth to 2 would show the specified dataset, snap-
shots from the specified dataset, and the dataset’s children, but not its

grandchild filesystems or its children’s snapshots.

170

Chapter 7: Snapshots and Clones

Modifying zfs list Output

You can control which information zfs 1ist displays with the -o
option and a list of columns or properties. When you use -o, zfs 1list
displays only the information you request.

Look at any of the earlier zfs 1ist output and you’'ll see that the
NAME column (predictably) shows the dataset name. Show only that
column with -o. Here we recursively list all of the snapshots in mypoo1,

showing only their name.

zfs 1ist -r -t snapshot -o name mypool
NAME

mypool@all

mypoo1/R00T@al1

mypool/sheep@snap?2
mypool/sheep@noresnap
mypool/sheep@evenmore

You can display any property as a column as well. Here we list

some common filesystem properties for each dataset.

zfs 1ist -o name,atime,exec,setuid

NAME ATIME EXEC SETUID
mypool on on on
mypool/sheep on on on
zroot off on on
zroot/ROOT off on on

Yes, filesystem properties have nothing to do with snapshots. But
they’re a good example of this feature.

Finally, you can change the order z£s 1ist shows datasets. Use -s
and a property to sort by the property’s value. Use -s and a property
to reverse sort the output by the property. List multiple properties in

order, separated by commas.

171

Chapter 7: Snapshots and Clones

Listing Snapshots by Default

The z£s 1ist command defaults to hiding snapshots and bookmarks.
If you want to see these datasets by default, set the pool’s 1istsnap-

shots property to on.

zpool set listsnapshots=on zroot
Once you've run with this for a while, however, we're highly confi-
dent you'll turn it back off. Accumulated snapshots quickly overwhelm

everything else.
Scripts and ZFS

Sysadmins like automation. One annoying thing about automation is
when you must run a command and parse the output. Making output
more human-friendly often makes it less automation-friendly. The
ZFS developers were all too familiar with this problem, and included
command-line options to eliminate most of it.

The -p option tells z£s (8) and zpool (8) to print exact values,
rather than human-friendly ones. A pool doesn't actually have 2 TB
free—it’s just a number that rounds to that. Using p prints the actual
value in all its glory.

The -1 option tells z£s (8) and zpool (8) to not print headers, and
to separate columns with a single tab, instead of making them line up
nicely, the way humans like. You are human, aren’t you?

Combined together, these options transform output from some-
thing easily understood by humans to something you can feed straight

to a script.

zfs 1ist -t all -pH -r mypool

mypool 2670592 96529122918498304 /mypoo]l
mypool/sheep 2351104 965291229184 2273280 /sheep
mypool/sheep@snapl 77824 - 1224704 -
mypool/sheep@second 0 - 2273280 -

Yes, that’s the real spacing. Orderly columns are for humans, silly.
172

Chapter 7: Snapshots and Clones

Per-Snapshot Space Use

An especially useful property for snapshots is the written property,
which gives you an idea of how much new data that snapshot contains.
zfs Tist -d 1 -t all -o name,used,refer,written \

mypool/sheep
NAME USED REFER WRITTEN
mypool/sheep 10.3M 6.11M 2.07M
mypool/sheep@all 0 2.11M 2.11M
mypool/sheep@snap?2 0 2.11M 0
mypool/sheep@evenmore 0 2.11M 0
mypool/sheep@later 2.07M 5.11M 4.07M
mypool/sheep@rewrite 1.07M 5.11M 2.07M

Remember, snapshots appear in order by creation date. The live
dataset appears first—while it probably has newer data than any snap-
shot, it was created before any of its snapshots. The snapshot @all is
the oldest, then @snap2, and so on.

The first snapshot, @all, lets you access 2.11 MB of data (the RE-
FER column). This snapshot also contains 2.11 of newly written data.
This is the difference between this snapshot and the snapshot before it.

Snapshots @snap2 and @evenmore have no new data. Theyre un-
changed from the first snapshot.

Sometime in between the snapshots @evenmore and @later snap-
shots, the data grew. The snapshot @later lets you access 5.11 MB of
data. It has 4.07 MB of new data.

The @rewrite snapshot also lets you access 5.11 MB of data, but
it’s written 2.07 MB of new data. As the amount of data you can access
is the same as the previous snapshot, some of the old data must have
been overwritten.

The live filesystem has also overwritten 1 MB of data. That data is

now included only in the @rewrite snapshot.

173

Chapter 7: Snapshots and Clones

Accessing Snapshots

The most convenient way to access the content of snapshots is via the
snapshot directory, or snapdir. The root of each ZFS dataset has a hid-
den . zrs directory. That directory has a snapshot directory, which in

turn has a directory for each snapshot.

1s /mypool/sheep/.zfs

total 1

dr-xr-xr-x 2 root wheel 2 Mar 29 00:30 shares
dr-xr-xr-x 2 root wheel 2 Mar 30 16:27 snapshot
1s -1 /mypool/sheep/.zfs/snhapshot

total 1

drwxr-xr-x 2 root wheel 5 Mar 29 00:40 snapl
drwxr-xr-x 2 root wheel 5 Mar 29 00:40 second

Go into that directory and you'll find yourself inside the snapshot’s
root directory. Each file in the snapshot is preserved exactly as it was
when the snapshot was taken, down to the file access time. To recover
individual files from a snapshot, copy them back into the main filesys-

tem.
Secret Snapdir

The . zfs snapdir is hidden by default. It won't show up even if you run
1s -1a. This prevents backup programs, rsync, and similar software
from traversing into it. If you want the . z£s directory to show up, set
the dataset’s snapdir property to visible.
zfs set snapdir=visible mypool/sheep

Once someone runs cp -r on a dataset, recursively copies all your
snapshots onto the filesystem, and blows everything up, hide it again

by setting the snapdir property to hidden.

174

Chapter 7: Snapshots and Clones

Mounting Snapshots

You can mount a snapshot much like youd mount any other filesystem.
mount -t zfs mypool/sheep@snapl /mnt
You cannot access a snapshot via the hidden . z£s directory while it

is manually mounted. Even a mounted snapshot is still read-only.

Deleting Snapshots

Snapshots prevent the blocks they use from being freed. This means
you don't get that space back until you stop using those blocks, by
removing all snapshots that reference them.

Create a new snapshot, and then remove it:

zfs snapshot mypool/sheep@deleteme
zfs destroy mypool/sheep@deleteme

That wasn’t so hard, was it?

You can also add the verbose flag (-v), to get more detail about
what's being destroyed. While verbose mode doesn’t help much when
you’re destroying a single snapshot, it becomes more valuable as you
destroy more datasets or if you want to see what a command would do

without actually running it.
Destruction Dry Runs

The noop flag, -n, does a “dry run” of the delete process. It describes
what would happen if you delete the snapshot without actually delet-
ing it. Let’s return to those first few snapshots we took and see what

would happen if we removed the first one.

zfs destroy -vn mypool/sheep@snapl
would destroy mypool/sheep@snapl
would reclaim 72K

Deleting this snapshot would reclaim only 72 KB of space. The
blocks that make up this snapshot are still used by the live filesystem

and/or the second snapshot.

175

Chapter 7: Snapshots and Clones

Our second snapshot overwrote some of the data from the first

snapshot. That changes the effect of deleting the snapshot.

zfs destroy -vn mypool/sheep@second
would destroy mypool/sheep@second
would reclaim 1.07M

We would free the space used to store the overwritten version of
the files.

Recursion and Ranges

Creating snapshots recursively can create a whole mess of snapshots.

Fortunately, you can recursively destroy snapshots as well.

zfs destroy -rv mypool@all

will destroy mypool@all

will destroy mypool/second@all

will destroy mypool/second/baby@all
will destroy mypool/Tamb@all

will destroy mypool/R0O0T@alT

will reclaim 84K

Recursively destroying snapshots is a great time to use -n before
actually destroying any data.'” More than once, we've realized that we
need a snapshot two seconds after deleting it.

Another handy feature is destroying a range of snapshots. You
give two snapshots of the same dataset, and ZFS wipes them out and
all snapshots taken between them. Run zfs destroy, but give the
full name of the “from” snapshot, a percent sign, and the name of the
“to” snapshot. Those two snapshots and everything between them get
destroyed.

The -n flag is handy to make sure this is going to do what you
expect before you actually execute it. Plus you learn how much space

you'll get back.

19 When shooting yourself in the foot, aim carefully. Safety first!
176

Chapter 7: Snapshots and Clones

Here, we destroy our two test snapshots. Note that the first snap-
shot is given by its full name, including the dataset: mypoo1/sheep@my-
firstsnapshot. The second snapshot has to be part of the same dataset,
and it has to be a snapshot, so you need only the brief name of the

snapshot: second.

zfs destroy -vn mypool/sheep@snapl%second
would destroy mypool/sheep@snapl

would destroy mypool/sheep@second

would reclaim 1.14M

If you are sure, drop the -vn and truly destroy the snapshots:
zfs destroy mypool/sheep@snapl%second

The snapshots are gone. Your users are now free to tell you that
they needed that data.

Rolling Back

Snapshots don’t only show you how the filesystem existed at a point in
the past. You can revert the entire dataset to its snapshot state. Going
to do an upgrade? Create a snapshot first. If it doesn’t work, just roll
back. Use the z£s rollback command to revert a filesystem to a snap-
shot. But once you go back, you can’t go forward again.

Here we create a filesystem with a series of changes, snapshotting

each one.

zfs create -o mountpoint=/delorean mypool/delorean
echo “this 1is the past” > /delorean/timecapsule.txt
zfs snapshot mypool/delorean@thepast

echo “this is the present” > /delorean/timecapsule.txt
zfs snapshot mypool/delorean@thepresent

echo “I broke the future” > /delorean/timecapsule.txt

HH oW H H H

The file /delorean/timecapsule. txt has had three different sets of
text in it. Two versions of that text are captured in snapshots. The third

is not in a snapshot.

177

Chapter 7: Snapshots and Clones
cat /delorean/timecapsule.txt
“I broke the future”
Oh no, the future is broken. Let’s return to the present. Run zfs

rollback and give the name of the snapshot you want to use.

zfs rollback mypool/delorean@thepresent

This takes less time than you might think. Remember, all the data
and metadata is already on disk. ZFS only switches which set of meta-
data it uses. Once the rollback finishes, the live filesystem contains all

the files from the chosen snapshot.

cat /delorean/timecapsule.txt
“this is the present”

Your newer changes to the dataset are gone, and unrecoverable.
While this is a simple example, you can do the exact same thing
for a software upgrade, a database migration, or any other risky opera-
tion. Operations that once required annoying restorations from offline

backup can now be handled in a single command.

You can only roll a filesystem back to the most recent snapshot. It
is not possible to surf forwards and backwards like in the movies. If
you want to return to an earlier snapshot, “thepast,” you must destroy

all snapshots newer than your target.

zfs rollback mypool/delorean@thepast

cannot rollback to ‘mypool/delorean@thepast’: more re-
cent snapshots or bookmarks exist

use ‘-r’ to force deletion of the following snapshots
and bookmarks:

mypool/deTorean@thepresent

The zfs rollback command can destroy all the intermediate snap-
shots for you if you use the recursive (-r) flag. This is not the same
kind of multi-dataset recursion used in creating and destroying snap-
shots. Using rol1back -r does not roll back the children. You must

roll back each dataset separately.

178

Chapter 7: Snapshots and Clones

zfs rollback -r mypool/delorean@thepast
cat /delorean/timecapsule.txt
“this is the past”

You've gone back in time, and can now try your risky and painful

upgrade again. Congratulations!

Diffing snapshots

Sometimes you really want to know what changed between the time
the snapshot was taken and now. If the database server started crash-
ing at noon today, you probably want to compare the state of the
filesystem right now with the 11 AM snapshot so you can see if any-
thing changed. You could use find (1) to look for files modified since
the snapshot was created, or you could use diff (1) to compare the
files from the snapshot with the ones from the live filesystem. ZFS
already has this information, however, and makes it available with zfs
diff.

To look at the difference between a snapshot and the live filesys-

tem, run zfs diff and give it a snapshot name.

zfs diff mypool/sheep@later
M /mypool/sheep/randomfile

Files can be in four states. A “-” means that the file was removed.
A “+” means that the file was added. An “M” indicates that the file has
been modified. And an “R” shows that the file has been renamed. Our
example here shows that the file /mypoo1/sheep/randomfilie was modi-

fied after the snapshot was taken.

179

Chapter 7: Snapshots and Clones

You can also compare two snapshots.

zfs diff mypool/sheep@later @muchlater
/mypool/sheep/
/mypool/sheep/newfile
/mypool/sheep/zfsbook.html
/mypool/sheep/date.txt -> /mypool/sheep/olddate.txt
/mypool/sheep/randomfile

=01+ =%

The directory /mypool/sheep was modified. The
file /mypool/sheep/newsile was added, while the file
/mypool/sheep/zfsbook.html was removed. We have a file rename
and, again, the file randomfize was modified.

You can also get even more detail. If you add the -t flag, the output
includes the change’s timestamp from the inode. The -r flag includes
the type of the file. Check z£s (8) to get the full list of file types.

Automatic Snapshot Regimen

Snapshots are useful even if you create them only for special events.
If you create snapshots automatically on a schedule, however, they
become extremely useful. It's simple enough to schedule creating a
recursive snapshot of your system every 15 minutes. If you keep all
of these snapshots, your pool fills up, however. Automated snapshots

need rotating and discarding just like backup tapes.
Rotation Schedule

The hard part of scheduling the creation and destruction of snapshots
is figuring out how you might use the snapshots. Who are your users?
What applications might need snapshots? We can't answer those ques-
tions for you.

One common setup is built around weekly, daily, hourly, and

15-minute snapshots. You take weekly snapshots that you keep for

180

Chapter 7: Snapshots and Clones

two months. Daily snapshots are retained for two weeks. Your hourly
snapshots are retained for three days. Then you take snapshots every
15 minutes and keep those for six hours.

Maybe you need only four 15-minute snapshots. Or you must re-
tain monthly snapshots for a year. The regimen right for you depends
on many factors. How important is your data? How far back might
you have to reach? How space constrained are you? How often do your
files change, and how much new data gets written each day? Do you
have IT audit controls that dictate how long certain data must be re-
tained? Talk with other people on your team, and figure out a schedule
that works for your organization.

Once you have your desired schedule, ZFS tools can help you

deploy it.
ZFS Tools

Many scripts and software packages can manage ZFS snapshots for
you. We recommend ZFS Tools (https://github.com/bdrewery/zf-
stools), as it doesn’t use a configuration file. It does need cron (8), but
you don’t have to mess with any kind of zfstoo1s.conr. ZES Tools
takes its configuration from user-defined properties set within ZFS.
This means that new datasets automatically inherit their snapshot
configuration from their parent. When a system has dozens of datasets
and you're constantly creating and removing them, inherited configu-
ration saves lots of time.

Install ZFS Tools from packages.
pkg install zfstools

ZFS Tools come with many scripts and applications, but right now

we’re concerned with zfs-auto-snapshot.

181

Chapter 7: Snapshots and Clones

zfs-auto-snapshot

The zfs-auto-snapshot Ruby script creates and deletes snapshots. It
takes two arguments, the name of the snapshot, and the number of
those snapshots to keep. For example, running zfs-auto-snapshot
frequent 4 creates a recursive snapshot named frequent, and keeps
four snapshots of each dataset.

Combined with cron (8), zfs-auto-snapshot lets you create what-
ever snapshots you like, at any time interval desired, and then discard
them as they age out.

ZFS Tools come with a default crontab to create snapshots on a
schedule that the developers hope will fit most people’s needs. It starts
by setting $PATH so that zfs-auto-snapshot can find Ruby. It then has
entries to create 15-minute, hourly, daily, weekly, and monthly snap-
shots. Let’s look at each.

15,30,45 * * * * root /usr/local/sbin/zfs-auto-snapshot frequent 4
zfs-auto-snapshot runs on the 15%, 30", and 45" minute of each

hour. It creates a snapshot called frequent on each dataset. When a

dataset has more than four frequent snapshots, the oldest snapshots

get removed until only four remain.

0 * % % % proot /usr/local/sbin/zfs-auto-snapshot hourly 24
Every hour, on the hour, zfs-auto-snapshot creates a snapshot
called hourly. It retains 24 of these snapshots, discarding the oldest.
7 0 * * * root /usr/local/sbin/zfs-auto-snapshot daily 7
Every day, at 7 minutes after midnight, zfs-auto-snapshot creates
a daily snapshot. It retains seven dailies.
14 0 * * 7 root /usr/local/sbin/zfs-auto-snapshot weekly 4
On the 7 day of the week, at midnight, zfs-auto-snapshot takes a

weekly snapshot. It retains four weekly snapshots.

182

Chapter 7: Snapshots and Clones

28 01 * * root /usr/local/sbin/zfs-auto-snapshot monthly 12

Monthly snapshots happen on the first day of the month, at 28
minutes past midnight. We keep 12 of them.

These crontab entries are designed for /etc/crontab. If you use
them in root’s crontab, you must remove the user (root) entry from
each. In either case, be sure to include the PATH variable so zfs-auto-
tools can find Ruby.

Adjust the names and schedules to fit your environment and preju-
dices. Lucas always renames the frequent snapshots to 15min, because
the word frequent is ambiguous. But he’s kind of a pain, so ignore what
he thinks.

Enabling Automatic Snapshots

The zfs-auto-snapshot script only creates snapshots of datasets that
have the com. sun:auto-snapshot property set to true. Datasets without
this property, or that have it set to any value other than true, will not
get snapshotted. Setting this property on a dataset lets all of the child
datasets inherit it.

Here we set com. sun:auto-snapshot on the root dataset of the pool

mypool.
zfs set com.sun:auto-snapshot=true mypool

When zfs-auto-snapshot runs, it creates snapshots of every data-
set in mypoo1, with the name and intervals dictated by /etc/crontab.

Some datasets probably don’t need snapshots. We never snapshot
the ports tree, for example. To turn off snapshots for a dataset and its

children, set com.sun: auto-snapshot tofalse.
zfs set com.sun:auto-snapshot=false mypool/usr/ports

183

Chapter 7: Snapshots and Clones

You can also disable just specific classes of snapshots. A dataset
that doesn’t change frequently probably doesn’t need frequent or hour-
ly snapshots. zfs-auto-snapshot checks for sub-properties of com.
sun:auto-snapshot named after the snapshot period. For example, the
property that controls your hourly snapshots is named com. sun:au-
to-snapshot:hourly. Set these properties to false to disable those

snapshots.

zfs set com.sun:auto-snapshot:frequent=false mypool/delorean
zfs set com.sun:auto-snapshot:hourly=false mypool/delorean

Now zfs-auto-snapshot only takes daily, weekly, and monthly
snapshots for that dataset and all of its children. You can re-enable the
more frequent snapshots for a specific child by setting the property
back to true on that child.

You may also decide that, while you need frequent snapshots of
/usr/src since you are working on some important code, you don't
need to keep months-old copies of the source tree:

zfs set com.sun:auto-snapshot:monthly=false mypool/usr/src
ZFS Tools’ zfs-auto-snapshot handles all snapshot rotation for

you.
Viewing Automatic Snapshots

Automatic snapshots have names beginning with zfs-auto-snap and

followed by the period and the timestamp.
zfs Tist -t all -r db/db

NAME USED AVAIL REFER
MOUNTPOINT

db/db 587M 13.5G 561IM /
db/db@zfs-auto-snap_hourly-2015-04-08-16h00 224K - 561M -
db/db@zfs-auto-snap_hourly-2015-04-08-17h00 220K - 561M -
db/db@zfs-auto-snap_hourly-2015-04-08-18h00 200K - 561IM -
db/db@zfs-auto-snap_frequent-2015-04-08-18h45 188K - 561M -
db/db@zfs-auto-snap_hourly-2015-04-08-19h00 172K - 561M -
db/db@zfs-auto-snap_frequent-2015-04-08-19h15 172K - 561M -
db/db@zfs-auto-snap_frequent-2015-04-08-19h30 180K - 561M -
db/db@zfs-auto-snap_frequent-2015-04-08-19h45 180K - 561M -
db/db@zfs-auto-snap_hourly-2015-04-08-20h00 180K - 56IM -

184

Chapter 7: Snapshots and Clones

Getting Clever with zfs-auto-snap

There’s nothing magical about the snapshot names or the schedules
used by zfs-auto-snap. Lucas once ran zfs-auto-snap hourly 2 at
the command line and blew away lots of hourly snapshots. You can
name your hourly snapshots monthly, and your yearly snapshots daily.
If you're short on people who detest you and all you stand for, this is a

wonderful way to remedy that problem.

Holds

Sometimes, you want a specific snapshot to be retained despite any
automatic retention schedule or a desperate late-night effort to clean
the pool. Maybe there was an incident, or this is the starting point for
some replication. If you need to keep a snapshot, place a hold on it,
like your bank does when it doesn’t want you to spend your money.

Use z£s hold, a tag name, and the snapshot name. A tag name is a
human-readable label for this particular hold.
zfs hold tag dataset@snapshot

This locks the snapshot and assigns your tag name. One snapshot
can have many holds on it, so you can create holds for different pur-
poses.

Holds can also be recursive. To lock all of the snapshots of the
same name on child datasets, using a common tag, use -r.
zfs hold -r hostages mypool/test@holdme

The zfs holds command lists the holds on a snapshot, or recur-
sively lists all the holds on a hierarchy of snapshots.

zfs holds -r mypool/test@holdme

NAME TAG TIMESTAMP
mypool/test@holdme hostages Fri Apr 3 19:13 2015
mypool/test/subl@holdme hostages Fri Apr 3 19:13 2015
mypool/test/sub2@holdme hostages Fri Apr 3 19:13 2015

A snapshot with a hold cannot be destroyed.

185

Chapter 7: Snapshots and Clones

zfs destroy mypool/test@holdme
cannot destroy snapshot mypool/test@holdme: dataset is busy

Release a hold on the dataset with zfs release, giving the tag and
the dataset name.
zfs release hostages mypool/test@holdme

You can now destroy the snapshot. If only getting the bank to re-
lease your funds was this easy!

Releasing a hold on a snapshot does not release any hold on its

children, however.

zfs destroy -r mypool/test@holdme
cannot destroy snapshot mypool/test/subl@holdme: dataset is busy

cannot destroy snapshot mypool/test/sub2@holdme: dataset is busy
To recursively release all of the holds on a snapshot and its chil-
dren, use the -r flag.

zfs release -r hostages mypool/test@holdme
zfs destroy -r mypool/test@holdme

You can now destroy the child datasets.

Bookmarks

Newer versions of ZFS support bookmarks. Bookmarks are similar to
snapshots, except they don’t keep the old data around. A bookmark is
just the timestamp of the snapshot it was created from. Bookmarks are
built on the new extensible dataset feature flag.

ZFS requires a timestamp to do incremental replication. ZFS can
easily gather up every block that has changed since the bookmark’s
timestamp. This allows incremental replication, without having to
keep the old snapshots around like used to be required.

Bookmarks are a dataset type related to snapshots, so we're
mentioning them here. They get full coverage in FreeBSD Mastery:
Advanced ZFS.

186

Chapter 7: Snapshots and Clones

Clones

A clone is a new filesystem created from a snapshot. Initially it uses
no new space, sharing all of its blocks with the snapshot that it was
created from. While snapshots are read-only, clones are writable like
any normal filesystem.

A clone can be thought of as a “fork” or “branch” of a filesystem.
If you have a filesystem that contains your web application, you can
create a snapshot and clone that snapshot. The cloned filesystem can
be your test instance of the application, letting you apply patches
and changes without touching the production instance and without
consuming extra disk space. You can run tests on the clone version,
keeping it running alongside the live version.

Clones do not receive updates made in the original dataset. They're
based on a static snapshot. If you want a clone that has your recent up-
dates to the original dataset, you must take a new snapshot and create
a new clone.

Clones initially use no disk space. When the clone diverges from
the snapshot, any changes made to the cloned filesystem are stored
as part of the clone, and it starts to consume space. You might have
a multi-terabyte dataset for your big Enterprise Resource Planning
(ERP) application, but a fully writable copy of that dataset takes up no
space at all except for what you change.

Disk space is already cheap, but clones make it even cheaper.
Creating a Clone

Use z£s clone to create a clone. Give it two arguments, the source
snapshot and the destination. If your pool has no mount point, you’ll

need to set one on the clone to access its contents.
zfs clone mypool/sheep@evenmore mypool/dolly

Look at our datasets now.

187

Chapter 7: Snapshots and Clones

zfs 1ist

NAME USED AVAIL REFER MOUNTPOINT
mypool 4.74G 13.5G 96K none
mypool/sheep 10.3M 13.5G 6.10M /mypool/sheep
mypool/dol11y 8K 13.5G 2.11M /mypool/dolly
mypool/second 192K 13.5G 96K Tegacy

mypool/second/baby 96K 13.5G 96K Tegacy

The do11y dataset looks like a normal dataset, except in its space
usage. The REFER column shows that it has 2 MB of data, but under
USED it takes up only 8 KB. The data it contains is from the original
snapshot. A clone consumes space for only newly written data, wheth-

er it be new files or overwriting old ones.
Viewing Clones

Clones appear the same as a regular dataset. In zfs 1ist, you won't
notice any difference between a clone and any other dataset.* Clones

record their source snapshot in their origin property, however.

zfs get type,origin mypool/dolly

NAME PROPERTY VALUE SOURCE
mypool/dolly type filesystem -
mypool/dolly origin mypool/sheep@evenmore -

So a clone appears, in every way, to just be a regular dataset. The
origin property is the only way to tell that this is a clone. The origin is
the snapshot that this clone was created from.

To track down all of the clones on your system, use zfs 1ist and
check the origin property. We're checking for any entries that don't
end in a dash.

zfs 1ist -o name,origin | grep -ve ‘-$’
NAME ORIGIN
mypool/dolly mypool/sheep@evenmore

This gives a list of all datasets that originate in snapshots.

20 Clones look like their source material. That’s why they make
such good assassins. No, wait—wrong clones. Sorry.

188

Chapter 7: Snapshots and Clones

Deleting Clones and Snapshots

Clones depend on blocks stored in the source snapshot. The existence
of a clone prevents removing the source snapshot. If you try to remove

the snapshot, zfs destroy tells you there’s a problem.

zfs destroy mypool/sheep@evenmore

cannot destroy ‘mypool/sheep@evenmore’: snapshot has
dependent clones

use ‘-R’ to destroy the following datasets:
mypool/doT11y@zfs-auto-snap_frequent-2015-04-08-16h15
mypool/dolly

Add the -r flag, and destroying the snapshot takes all the depen-
dent clones with it. You can delete the clone itself like any other filesys-

tem dataset.

zfs destroy mypool/dolly

cannot destroy ‘mypool/dolly’: filesystem has children
use ‘-r’ to destroy the following datasets:
mypool/dol1y@zfs-auto-snap_frequent-2015-04-08-16h15

Oh, wait. The clone inherited the z£s-auto-snapshot property
from its parent, so our snapshot automation caught it. If you didn’t
want the clone snapshotted, you should have turned that property off.
You can manually remove the clone’s snapshots, but zfs-auto-snap-
shot keeps creating new ones. You can also use the -r (recursive) flag
to destroy the clone and all its snapshots.

zfs destroy -rv mypool/dolly

will destroy mypool/dolly@zfs-auto-snap_frequent-2015-
04-08-16h15

will destroy mypool/dolly

Now we can erase the origin snapshot.

zfs destroy -v mypool/sheep@evenmore
will destroy mypool/sheep@evenmore
will reclaim O

Clones are powerful, but they complicate snapshot management.

189

Chapter 7: Snapshots and Clones

Promoting Clones

Now that you've finished testing the developmental version of your
web app, you want to make the clone the live version, and discard the
previous version. But this causes problems. You cannot destroy the
original dataset, because the clone depends on the snapshot from that
dataset.

To solve this you “promote” the clone, telling ZFS to reverse the
parent/child relationship between the original dataset and the clone.
The clone becomes the filesystem. The previous parent becomes a
clone. The student becomes the master. Any snapshots that the clone
requires move, and become part of the clone instead. Snapshots
created after the clone’s snapshot of origin still belong to the original
parent.

Once the clone successfully switches places with the parent dataset,
you can eliminate the original dataset.

ZFS also changes the space used by the new parent and the new
clone. The datasets take up no extra space, but the accounting for that
space changes. Clones get billed only for the amount of space where
they differ from their snapshot of origin. The new parent dataset gets
billed for pretty much everything, just like new human parents.

Let’s walk through promoting a clone. Here we clone the dataset

mypool/wooly to a dataset called mypoo1/bonnie and modify the clone.

zfs clone mypool/wooly@later mypool/bonnie

date > /mypool/bonnie/date. txt

dd if=/dev/random of=/mypool/bonnie/randomfile bs=1m
count=8 oseek=4

Look at the clone’s disk usage.

zfs 1ist mypool/bonnie
NAME USED AVAIL REFER MOUNTPOINT
mypool/bonnie 8.07M 13.5G 12.1M /mypool/bonnie

190

Chapter 7: Snapshots and Clones

The USED column shows the 8 MB of new data we wrote to
the clone. The REFER column shows the dataset contains 12 MB of
data—4 MB from the snapshot of origin, plus the new 8 MB of data we
added.

We want to keep the ronnie dataset, and get rid of the original

wooly dataset:

zfs destroy -rv mypool/wooly

cannot destroy ‘mypool/wooly’: filesystem has dependent
clones

use ‘-R’ to destroy the following datasets:
mypool/bonnie@zfs-auto-snap_frequent-2015-04-08-16h30
mypool/bonnie

ZFS knows that the dataset mypoo1/bonnie and its snapshot of
origin depend on the mypoo1/woo1y dataset. So we use the zfs promote
command to make bonnie the filesystem, and turn the old dataset into
the clone.

Before promoting the clone, run z£s 1ist and check the space

usage and parentage of both datasets involved.

zfs 1ist -t all -r mypool/wooly mypool/bonnie

NAME USED AVAIL REFER MOUNTPOINT
mypool/bonnie 8.07M 13.5G 12.1M /mypool/
bonnie

mypool/wooly 10.3M 13.5G 6.10M /mypool/
sheep

mypool/wooly@all 0 - 2.11IM -
mypool/wooly@noresnap 0 - 2.11IM -
mypool/wooly@later 2.07M - 5.1IMm -
mypool/wooly@rewrite 1.07M - 5.1IMm -
mypool/wooly@nuchlater 0 - 6.10M -

We'll come back to this list later. Now promote mypoo1/bonnie.
zfs promote mypool/bonnie

The promotion should run silently. Go take a look at these two

datasets again.

191

Chapter 7: Snapshots and Clones

zfs 1ist -t all -r mypool/wooly mypool/bonnie

NAME USED AVAIL REFER MOUNTPOINT
mypool/bonnie 14.3M 13.5G 12.1IM /mypool/
bonnie

mypool/bonnie@all 0 - 2.11M -
mypool/bonnie@moresnap 0 - 2.11M -
mypool/bonnie@later 1.07M - 5.11M -
mypool/wooly 4.14M 13.5G 4.10M /mypool/
sheep

mypool/wooly@rewrite 1.07M - 5.11M -
mypool/wooly@nuchlater 0 - 6.10M -

The snapshot that mypoo1,/bonnie was based on, and all snapshots
older than that snapshot of origin, now belong to mypoo1/bonnie. New-
er snapshots of mypoo1/wooly, taken after the snapshot mypoo1,/bonnie
was created from, still belong to mypoo1/woo1ly.

You can now destroy the old dataset and all of its snapshots.

zfs destroy -rv mypool/wooly

will destroy mypool/wooly@muchlater
will destroy mypool/wooly@rewrite
will destroy mypool/wooly

Remember that once a clone is forked from the main filesystem,
it does not get any updates from the parent. Any persistent data your
application needs should go in a different dataset. It can be a child
dataset, as Jude prefers. Lucas says that persistent data should go in a
completely unrelated dataset, just so a recursive remove doesn’t touch

it. Watch out for your persistent data in any way you prefer.

192

Chapter 7: Snapshots and Clones

Safely Managing Clones, Snapshots, and Recursion

You can take snapshots of datasets. You can create clones based on
those snapshots. You can then take snapshots of the clones and cre-
ate more clones. Despite your best efforts, you're likely to produce a
massive tangle of interrelated clones and snapshots that exceed any
human’s ability to mentally track. ZFS gives you a whole bunch of
power and convenience, but clones make possible brand new types of
mayhem that will churn your bowels.*!

The -nv flags are vital to safe systems administration. Any time the
merest thought of destroying a dataset begins to consider the possi-
bility of crossing your mind, do a verbose dry run with -nv. See what
the destroy command would actually eliminate. Read the list. You
might find that your recursive destroy pulls on a thread of clones that
stretches all the way across the pool.

Test before you leap. Always.

ZFS changes how you use disk space, but it’s still the sysadmin’s

task to manage it. Let’s cover that next.

21 Admittedly, the big shoes and red noses don't help. No, wait—
that’s clowns. Sorry, never mind.

193

Chapter 8: Installing to ZFS

The whole point of learning about ZFS is to use the filesystem on a
machine. Let’s discuss FreeBSD 10 installs on ZFS.

If you must install a whole slew of FreeBSD machines, such as at
a server farm, we recommend the PC-BSD installer. Scripts like we
demonstrate here are fine for occasional installs of a few machines, but
if you're configuring machines by the rack, you really need a PXE-
based installer.

Your hardware limits your choices. With rare exceptions, laptops
have one hard drive. Running FreeBSD means using a single striped
virtual device pool for storage. If you have hundreds of disks, you'll
need to consider how you want to separate your pools.

When you have many many disks, separate your operating system
from your data. FreeBSD and a good selection of add-on software fits
nicely on a mirrored pool or a RAID-Z. You don’t need RAID-Z3 for
just the operating system! If you have hundreds of data storage disks,
use separate pools for the operating system and data. With hundreds
of disks, Lucas would want a few separate pools, but he’s an old fogey.
Jude would pour them all into one giant pool. The only wrong choice
is one that makes more work for you.

This chapter assumes you're familiar with GPT partitioning,
FreeBSD tools such as gpart (8), and FreeBSD partition types. If you're
not, check the FreeBSD documentation or perhaps read FreeBSD
Mastery: Storage Essentials. (FMSE also covers installation scripts and

other advanced installation techniques.)

195

Chapter 8: Installing to ZFS

Installing a ZFS-based system requires configuring storage pools,
assigning datasets, and installing FreeBSD to the datasets. You can
make separate choices in each step, so we'll consider each separately.

But start with a reference FreeBSD install.

FreeBSD Reference Install

Before installing your custom FreeBSD system, install a small FreeBSD
ZFS virtual machine as a reference platform. This offers lots of infor-
mation about a standard FreeBSD install. Installing your own system
is great, but don’t abandon all the carefully considered defaults the
installer uses. Your goal is probably to tweak the install in a way the
installer doesn’t permit, not abandon all FreeBSD standards.

Boot your reference platform, become root, and run zpool histo-

ry to see how this ZFS was created.

zpool history

History for ‘zroot’:

2015-04-08.07:18:30 zpool create -o altroot=/mnt -0 com-
press=1z4 -0 atime=off -m none -f zroot raidzl daOp3.nop
dalp3.nop da2p3.nop

2015-04-08.07:18:30 zfs create -o mountpoint=none zroot/
ROOT

2015-04-08.07:18:30 zfs create -o mountpoint=/ zroot/
ROOT/default

2015-04-08.07:18:30 zfs create -o mountpoint=/tmp -o ex-
ec=on -0 setuid=off zroot/tmp

We'll use this information throughout the installation process to

tweak our install.

Custom ZFS Installation Partitioning

Boot into the FreeBSD installer image, and choose install. When you
get to the point where you partition disks, select the command line
rather than any automatic or guided method. You could also use some-

thing like mfsBSD for the version you want, if you have that handy.
196

Chapter 8: Installing to ZFS

Disk Partitioning

When the computer boots, it looks for an operating system on the
storage media. For FreeBSD, this is a boot loader. FreeBSD provides
the gptzfsboot(8) boot loader specifically for booting from ZFS pools.
The hardware BIOS boots the boot loader, which activates the pool
and fires up the FreeBSD kernel. Every disk in every virtual device in
the boot pool should have a ZFS boot loader installed, which means
the disks must be partitioned. The maximum size of the FreeBSD boot
loader partition is just a smidgen over 512 KB for some daft reason,
so assign 512 KB for the boot loader. Then we put in a 1 GB FreeBSD
swap partition, and assign the remaining space for ZFS. The swap and
ZFS partitions are aligned at 1 MB boundaries.

While I'm using these short names for the GPT labels for teaching
purposes, we strongly encourage you to use location-based labels as

discussed in Chapter 0.

gpart add -a 1Im -t freebsd-boot -s 512k -1 zfsboot da0
daOpl added

gpart add -a 1m -t freebsd-swap -s 1g -a 1lm -1 swap0 da0
daOp2 added

gpart add -a 1Im -t freebsd-zfs -a 1m -1 zfsO da0

daOp3 added
Now install the FreeBSD ZFS bootloader onto this disk. Every disk

you might boot from needs the bootloader.

gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
bootcode written to da0

Repeat this partitioning for every disk involved in the storage pool.
Pool Creation

Still at the disk formatting command prompt, assemble your disks into
your root storage pool. It's common to call the root pool something
like systemor zroot, or you might name it after the host. Do whatever
fits for your environment. I'm calling the example pool zroot, so that it
fits with the default used by the FreeBSD installer.

197

Chapter 8: Installing to ZFS

Look at the default FreeBSD install’s zpool history and consider
what it shows.

2015-04-08.07:18:30 zpool create -o altroot=/mnt -0 com-
press=1z4 -0 atime=off -m none -f zroot raidzl daOp3.nop
dalp3.nop da2p3.nop

This is a FreeBSD 10.1 system. The installer mounts the boot pool
temporarily at /mnt, and we really have to keep that for the installer
to work. We want the other options, like setting compression to 1z4
and disabling atime. The -m none tells zpoo1 (8) to not assign a mount
point to this pool. Using -£ tells zpoo1 (8) to ignore any other ZFS
information on these disks. The altroot property gives a temporary
mount point, as discussed in Chapter 4. You're reinstalling pools, not
recycling them.

The 10.1 installer wasn’t yet updated to take advantage of the vfs.

zfs.min_auto_ashift sysctl, but I'm going to use it now.
sysctl vfs.zfs.min_auto_ashift=12

ZFS will now use 4096-byte sectors. Create the pool. We're stealing

all of the default FreeBSD options, making only the changes we desire.

zpool create -o altroot=/mnt -0 compress=1z4 -0 \
atime=off -m none -f zroot mirror gpt/zfs0 gpt/zfsl \
cache gpt/zcache0 log gpt/zlog0

Chances are, FreeBSD’s default pool installation options are fine.

You probably want to tweak the datasets.
Datasets

While you want to create your custom dataset configuration, do check
FreeBSD’s installation defaults. They’re sensible for the average user,
and allow use of advanced features like boot environment managers.
If you want to complete your install with the FreeBSD installer,
you must give the installer a recognizable system. That means follow-

ing steps from the reference install, even if you're not sure why a pool

198

Chapter 8: Installing to ZFS

is exported and imported at the end of the dataset creation step. In
sum, we recommend adding your own datasets, but leaving the de-
faults unchanged.

Here are a few bits from zpool history on a reference FreeBSD
host, omitting the timestamps.

zfs create -o mountpoint=none zroot/ROOT

zfs create -o mountpoint=/ zroot/ROOT/default

zfs create -o mountpoint=/tmp -o exec=on -o setuid=off
zroot/tmp

zfs create -o mountpoint=/usr -o canmount=off zroot/usr

zfs create zroot/usr/home

zfs create -o setuid=off zroot/usr/ports

zfs create zroot/usr/src

zfs create -o mountpoint=/var -o canmount=off zroot/var

zfs create -o exec=off -0 setuid=off zroot/var/crash

zfs create -o exec=off -o setuid=off zroot/var/log

zfs create -o atime=on zroot/var/mail

zfs create -o setuid=off zroot/var/tmp

zpool set bootfs=zroot/RO0T/default zroot

zpool set cachefile=/mnt/boot/zfs/zpool.cache zroot

You can easily add or change your own datasets to this, creating
zroot/var/mysgl Or moving /home out from under /usr or whatever it
is you desire.

Creating datasets is a lot of typing. We recommend creating instal-
lation scripts, as discussed in FreeBSD Mastery: Storage Essentials.

Once you have your datasets, exit the command-line partitioning

and the installer will resume.
Post-Install Setup

Once the installer finishes copying files to your disks, setting up net-
working, and so on, you'll get a chance to go into the installed system
and make changes. Take that chance. You must change a few settings

in the finished system.

199

Chapter 8: Installing to ZFS

Make sure that ZFS is started in /etc/rc. cont. This mounts your
filesystem datasets at boot.
zfs_enable=yes

Edit /boot/loader.cont to tell FreeBSD to load ZFS and related

kernel modules at boot.
zfs_load="YES”

You can also make any other system changes you like here.

While some documentation refers to other required steps, such as
copying the pool cache file, that’s no longer necessary.

Reboot when you're finished, and you’ll come up in a new, custom-
ized FreeBSD install!

Manually Installing FreeBSD

If you have to go to a command line to partition your disks, you might
as well install the FreeBSD files to the disk yourself. The FreeBSD dis-
tribution files are in /usr/freebsd-dist, and you write them to your
disk with tar (1). Your installation target is mounted in /mnt.

tar --unlink -xpJf base.txz -C /mnt
tar --unlink -xpJf kernel.txz -C /mnt

You can install other distribution sets, but the base and kernel are
the only critical ones.

Your installation needs an /etc/fstab, for the swap files if nothing
else. Create it in /mnt/etc/fstab. You can also edit critical system files
like /mnt/etc/rc.confand /mnt/boot/loader. cont.

With a bit of work and testing, you can make your ZFS install as
simple or as complex as you like.

Exactly like you can ZFS.

200

Afterword

A whole book on a filesystem? Are you mad?

ZFS is merely a filesystem, yes. But it includes features that many
filesystems can’t even contemplate. Youd never try to wedge self-heal-
ing into extfs, or variable block size into UFS2. Copy on write must be
built into the filesystem core—you can’t retrofit that into an existing
filesystem.

By building on decades of experience with filesystems and target-
ing modern and future hardware, ZFS has not only changed the way
we manage digital storage. It's changed how we think about storage.
ZFS’s flexibility and power has even rendered many long-hallowed
“system administration best practices” obsolete. When your filesystem
is an ally rather than a menace, everything gets amazingly easier.

The continued growth of OpenZFS brings new features, steady
improvement, and a certain future that commercial vendors cannot
provide. OpenZFS gets more exciting every week, with new features
and greater performance. It also gets less exciting, in that it protects
your data more and more with each release. We are fortunate enough
to be a part of this great project, and are glad for this chance to share

some of our excitement with you.

201

While Lucas used ZFS before writing this book, Jude uses lots
of ZFS to deliver lots of content everywhere in the world. Jude is a
FreeBSD doc committer, but Lucas has written big stacks of books.
Together, we've created a stronger book than either of us could have
alone.

And stay tuned for more ZFS from us. In FreeBSD Mastery:
Advanced ZFS, we'll take you into strange new filesystem realms un-

imaginable just a few years ago.

About the Authors

Allan Jude is VP of operations at ScaleEngine Inc., a global Video
Streaming CDN, where he makes extensive use of ZFS on FreeBSD.
He is also the host of the weekly video podcasts
BSD Now (with Kris Moore) and TechSNAP on
JupiterBroadcasting.com. Allan is a FreeBSD
committer, focused on improving the docu-
mention and implementing libucl and libxo
throughout the base system. He taught FreeBSD
and NetBSD at Mohawk College in Hamilton,
Canada from 2007-2010 and has 13 years of BSD unix sysadmin expe-

rience.

Michael W Lucas is a full time author. His FreeBSD experience is

almost as old as FreeBSD. He worked for twenty years as a sysadmin

and network engineer at a variety of firms,

.+ most of which no longer exist. He’s written a

¥ languages. Ones that people actually speak.)
You can find him lurking at various user
groups around Detroit, Michigan, his dojo

(zenmartialarts.com), or at https://www.michaelwlucas.com.

Find the authors on Twitter as @allanjude and @mwlauthor.

Never miss a new Lucas release!

Sign up for Michael W Lucas’ mailing list.

https://www.michaelwlucas.com/mailing-lists

More Tech Books from Michael W Lucas

Absolute BSD
Absolute OpenBSD (1* and 2™ edition)
Cisco Routers for the Desperate (1* and 2™ edition)
PGP and GPG
Absolute FreeBSD
Network Flow Analysis

the IT Mastery Series

SSH Mastery
DNSSEC Mastery
Sudo Mastery
FreeBSD Mastery: Storage Essentials
Networking for Systems Administrators
Tarsnap Mastery

FreeBSD Mastery: ZFS
FreeBSD Mastery: Advanced ZFS (coming 2015!)
FreeBSD Mastery: Specialty Filesystems (coming 2015!)

Adaptive Replacement Cache.........ccccoreueee 35
Advanced Format drivecccooeeeereeeevcenecene 24

Ahrens, Mattcooceeveereeuneenencenecenennnenne 3-4,6
ALTROOT ..ovurrereeirereeieresererisereesiseraennes 49
anticipatory schedulingcccoecvevieinenne 27
ARC......... see “Adaptive Replacement Cache”
as (scheduling)cccevvuvevivivivininieinenne 27
ASHft e 53-54
atime (Property)ceeveeeververeeenersenennnenne 87

autoexpand (Property)........evcrereennes

checksum (property)........cceeuevevnenncee 99-100
CheCKSUMS ... 34
ClONES...eceierrreeeeeeeeeeaae 77,79, 187-193
Creating.......coveevevvevccieveinencnenenns 187-188
destroyingcecvcevevveuevencnennes 189, 192
VIEWING ..o 188, 191-192

Common Development and

Distribution License.........ccccevuveeveerunece 3
COMPIESSION ...uvinininininiiiiiisisenes 32,147-154
algorithms.......ccoevvuviuennee. 149, 150-153
disabling........cccceuvivernirineninirenine 154
enabling........ccocvvvevenineneineeine 148
performanceocoveeeecerecenenne 153-154
PIOPerties.....ovviviviveriviviciiiiiininevinnnens 150
compression (Property)eeeeeeenenne 86
compressratio (property)..........c........ 150, 152
copies (property)28,100-101
copy on write............. ...34,162-164

creation (Property)ceeeeveeeverrenenenenne 86

datasets.......cevereeieieieinenieieienieiennes

destroying

inherited.......

renaming..

moving

size, limiting see “reservations”

EYPES ettt 77

VIEWING oottt 80-81
dataset integritycocoeueeuveurerercnennens 99-102
dataset propertieso.oeveeeevcerecerernenenne 84-89

changing........cccovvvvivivininininincnnne,

filesystem

inheritance

parent/child relationships...... 89-90, 190

read-only......cccececvveunnnee

removing.. .

SOTTING oot

user-defined.......ccoouvivirinivirniniencnnne. 88

VIEWING oot 84-85
dead list ..o 16-165
DEDUP. ...t 49
dedup (Property)ccevevevererverenrennennes 159
deduplication 154-159

effectiveness.... ... 157-159

enabling........cocvvverenineneninieine 159

disabling... .. 159

memory needs 155-157
degraded ..o 32
DEGRADED ... 109
Af(1) oo, 16,131, 136-138
AINOSAUT .ceveeeeieeiiiiiciceeieeieisienee 12
disk identcovvvivirininininieenn, 11, 26
disk redundancy ..., 8
disk replacement.. 112-120
AiSKINLO(8) v.viuvevevineererceeeereeeeeeee e 10
ditto blocks 21, 46
ANOE ..o 46
DragonFly ... 165
AIy TUD e 105, 175-177
AU(B) et 131, 150-152
AUMP(8) oo 16
ECCRAM....oiiiiciiiccccccnes 6
errors in ZFS110-111
expand RAID-Z.........ivvenivinininenne 31
EXPANDSZ...... .48
€XEC (PIOPEILY).ceuveuienieieiminieirinieirsensaenes 87
EXUES couv e 1, 16, 19, 21, 45-46

FAT ooteeeneiecseeciesseeaenaens
FAULTED
feature flags........cccocueveuncuvicrcrcrcnnnn. 128-130
filesystem (dataset)ccooeuververeirerreneinnenne 77
and /etc/fstab........coceieiciiicinnnne. 96-97
MOUNING ..o 91-93, 96
without mount pointsc....... 93-94
fletcher2covvvvvivenrerinnenn. 100
fletcherd ... 99-100
footnotes.......coeuuueeee see “find them yourself”

gnop(8)

HMAC ...
host bus adapters....
Human Genome Project

“T1old YOU SO™ ...t 8
iNdex BlOCKS.....ovrieiirreeeeeeeeseneees 45

inheritance.........ococeeeeevevrvensnenenennnne 89-90, 94-95
inodes

Input/Output Per Second........cocceveuevvcurecene 36
integrity checks ..o 20
TOPS ..t saesasaees 36-39
JBOD ...iiiiiiiiiiiiiisssiessssesasasenes 7
KVM.oiiirieiiieiisieiesssessssnsssessssesssssnes 5
landlinecceveveivinivivinicirininieiinne 12
LBA ..ottt 17
Level 2 ARC... ..35,43
adding to a pool. . 117-118
Creating......ocvveevevevnicnereininceeennens 61-62
MUITOLING «.vvvieiereiireietecreaenne 62
removing from a pool 118
loader.conf.........coovivivirininininininiinnes 200
log
COMPIESSION...cuviiiririiiiriririrenenenenenens 148
Separate Intent Log..........cccoevvviiurennne 61
Logical Block Address..........ccovuueiuvirrinninnenne 17
logicalreferenced (property)150
logicalused (property)............ ...150

149, 151

195-200

Meta Object Set.....vivivinivirneniniireninnns
metadata redundancy....
MNIITOTING coovoveiviviniiereveie e
mirror virtual device..........cevvevivirieinenne

adding to pools........ccceeueucuunnee

fault tolerance..........cecveveuvieverrirrinennne

performance....
mount point

multiple datasets with common

mount point........evvvererinininenenenes 94-95
MOUNTPOINTcovviireiereireiereneaeaen 80
mountpoint (property) ..
MOUNE(8) vvvierererineerereeeeereteee e eresenees 16
multipath ...

NAME
newfs(1)
NES
noparity....
NTEFS
ONLINEotiiiirccreincereieeieneesenennene 49
OPENZES.....oiiieeinirnccieinieeieinienenen 4,12
Oracle.... s 3-4
“Out Of SPACE” ... 98
PATILY cov e 30, 32,47
partition.......... .. 17,24-25
alignment........ovevevivevinninenneneinenns 51
why they suck... w75
periodic.conf.......... ..70-71
PEriodic(8) .. 70-71
P8 o 23
Project Gutenbergccovevivirerrerninnenn. 150
properties, datasetsee “dataset properties”
properties, zpool.......... see “zpool properties”
PROPERTY ..ovuiiiicririccreiriccieineenenennene 84
provider........ 4,27
reusing. ...63-64
PLeradon.....c.vucucecucerecirecircieecerecree e 12
QUOLA et 75,139
dataset ..o 142-145
eXCeedingocvvverernieveneriiriieninne 145
GIOUP covveeiriineienecnie e 145-147
TEMOVING ...vvvinivererinineienne 143, 146-147
SEttiNg ..cvveevcveviceeiiine 143, 146-147
USET oovviieninieneteseeeaeie s 145-147
VIEWING oo 144, 147
RAID ..o 5
CONLIOIIET ... 6-8, 32
hardware ... 6-8
VS RAID-Z ...ooviiiceininccieiriccneinene 33
RAID-T s 29
RAID-10 .o, 29, 48
RAID-6 ..ot 29
RAID-60 .. .29
RAID-Z...ooiiiiiicieiiicieisetcieiseeeieieacaes 28
adding disks...... .31, 48,108
adding VDEVSs......cocveuneucicnnes 107-108
performance..... 37,43-44
“rule of 287 ..o 32

RAID-Z1 virtual device.......cceeuevevrverrrnnnnne 30

Performanceocveeeevcereceneeenncenecene 39
RAID-Z2 virtual device........ccceuevrvrrerrrrennnne 31

performance........... 40, 42-43
RAID-Z3 virtual device.......cceevevrvererrrnnnne 31

performanceocoveeecerecereennncnns 42-43
RAM, ECCi..ooveteeeieeeeeeeeeeeeeeve v 6
raw disk StOrageccooeuvvrivivirinirieininne 23
Raspberry Pi.......eivinivicieiciniinnns 5
FC.CONT et 104, 200
read cache.......cooevvieennnnne see “Level 2 ARC”
readonly (Property).......ceeveeevireeinenne 88
recordsize (Property)cceeerereeeerenienns

redundant_metadata (property).
refcompressratio (property)....

REFER......oooiivireieieenne 16, 80, 191
referenced data.........coceeveveverererererennnen. 132-133
refreservation.........eceevevevevevenenenenennens 142-152
refreservation (property)............c...... 138-141
REMOVED ...t 110155
TEPlICAtION ...uveeereeecrceeecreerereeenne 78,162
TE€SETVAtION ..cuvvviereieeerreeeeerereeeseenne 75, 138-141
reservation (property)...........cceeueee. 139-141

resilvering 105
1eStore(8) .ovevvvvvrerererererennes .. 16
rocket-driven roller skates .47
root dataset..........ccceevveernnenes .. 16

set properties at creation...........ceeueuune 69
root fileSystem.......ccuvveievierienieririniniirineieenne 17
11 (scheduling)covvvvivivivivininirieininne 27

self-healingccoeevvercncrncieincincncnnes 65,111
Separate Intent Logcccceuevvvirnnnne 34-35, 43
adding to a pool........ccecuveucuunnee 117-118
Creating......cvvevevevniceneiniceneninnens 61-62
MUITOLING «vovviecveieiircieieiereeienne 62
removing from a pool .. .118
serial numberco....... .. 10
setuid (property).. ... 88
sha256 ..., ... 100
ShOIN WIILe ..o, 162

ShOTt STIOKE.....cvevevererererererereretereeree e 24

SLOG....creieanen. see “Separate Intent Log”
SNAPAIT ettt sesenesneaes 174
snapshot...... 77-78,161-162, 164-186
ACCESSING ooveviievrrirereieiireieeei e 174
automation.......ccoevvvvievevciincieinnns 180-185
COMPATING...vvivririircieriiinererennes 179-180
Creating......covvevevevvincreieniceeccinnes 166
destroyingccecveeveuennee. 175,191-192
hOldS ..o
185-186 .couveeirrrinciinciescisce s
MOUNING ..ot 175
TANEES ..ovvevrrineneierieaeieneeenerennas 176-177
recursive............... 167-168, 176-177, 178
rolling back tococueviiercinnes 177-178
show by defaultccocvevivirninnnnnce. 172
SPACE USAZE ...cvvvevernnenee 165, 166-167, 173
VIEWING ... 168-172, 184
SOIALIS coucvev s 3,24
SOURCE......oirimririnriennincisinns 68-69, 84
SPArSe VOIUIME.cvuerreeeeicreeecereeeerereecereaeane 98
SPINALES ... 36-37
SSD s 8,35-36
alignment........ccooeveieincinineieinininns 52
Star TreK. .o 3
StOrage POOIS.......vuveveieivririninririsirrieieenne 19
storage
0N diSKS ..o 23-24
on GEOM devices........cocuevevunnnnee. 25-26
on partitionsceevveveveiineninininnee 24-25
stripe virtual device.......ocoveuevveurecerernencenecane 29
adding to @ pool......cccecvervirrerrerinnee. 106
Performanceccveeevcerecereeeenceneenne 38
SEIIPES e, ..46-48
across virtual devices.........cocvuvviuenene. 28
dynamically sized.........cccoeuvrreinninnnnns 47
RAID .ot insasinninns 47
redundancy.......ceeneninennennens 29,47
Sun Microsystems..........ccocvevremricnrinnennn. 3,6
SUPETDlOCKS.......ueeieieireecicieecirecreieicireaeene 22
SYSCLLCONS ... 54
thin provisioning..........ceeeeveviveveeinenne 98
EOP(1) et seaetseseeeeseaeene 36
transaction groups 46, 163
trEACHETY ..o 23
TUDNELS(8) cevveieerereeeeerceeeeree e 76
EXE s 46, 163

uberblocK.......coovveeieeeiiiinee 46, 162-163
UFS, UFS2................ 1, 5,15, 19, 21, 45-46, 75
UMOUNE(8) vt eereseaees 16
UNAVAIL ..ottt enene 110
USED......ccccuuuu. .80, 135, 191
used (Property)ccceervererennenne 135,150
USEDBYSNAP......eeeeeeeererereveenee 135
usedbysnapshots (property)..........cceceeenee 135
USEDCHILD ..ottt 135
usedbychildren (property)cccecveueunee 135
USEDDS ...ttt eesaevenens 135
usedbydataset (Property)........c.oeeveurereunee 135
USEDBYREFRESERVcooevverirererennene 135
usedbyrefreserv (property)cecveveeunee 135
VALUE ..o 84
VDEV .. see “virtual device”
vfs.zfs.min_auto_ashift......................... 53,198
virtual devices........cocoverereererererererererenenen. 20, 28
add to @ pool......ccvecuveeeecerecenenne 105-108
mirror........... see “mirror virtual device”
mismatchedcccoeverererereererenennn, 62-63
multiple in @ pool.......ccocvccreeerrcrecnne 50
raid-z1 see “raid-z1 virtual device”
raid-z2 see “raid-z2 virtual device”
raid-z3 see “raid-z3 virtual device”
redundancy.......nninininininns 28
removing from a poolcccceuvvuennee. 51
TEPAUL et 32,112-117
Stripe....ceceeene. see “stripe virtual device”
volblocksize (Property)........oeveveeveveeene 97
volmode (Property)........ceeeeeevervevvevrereenn 98
volsize (PrOPerty)cvvveveeerevevvevrevrivreneenes 97
volume.................. W77
creating.........cooee... .. 82
properties, changing. .99
TECTEALE ...vevvererereeriereerereeeeesreneeneereaens 929
SPALSE...vvvrrririrerereserersssasrr s 98
WINAOWS 3.1 7
WINLET ceviieiiieieerencceee et aes 18
write back modeccceueveeeeeececeeeene 8
write hole..............

write cache

Z File System......cccuvuvvvieviuvivirrinninnenne see ZFS
ZAD(8) ..o 156, 158

ZES oottt
BLOCKS. oo
compression...
index blocks...
limits.........c.....
mount point
PIOPerties......ovviviviriririiniiniiiiisisinns
redundancy........nnnenininens
storage pool
ZPOOL et

ZFS POOL...uuiiirieiniinicirecireisecinenne see “zpool”

ZES TOOIS ... 181-185

ZES(8) vttt 76
clone..... 187, 190
CIEALE ..voveerrinrrerc s 81-82
diffeeo s 179-180
destroy......... 175-177, 186, 189, 191-192
Gl 85,141, 188
hold....ouiiiciccnes 185-186
GIOUPSPACE.....ucvrrircierrrireinencaesennains 146
list..oovviennene 80-81, 85-86, 136, 139, 144,
............................... 167-173, 188, 190-192
MMOUNE ..ottt 80
promote.. 190-191
TECEIVE...ourviiiniteretirctc e 159
TEleASE ...ovcveveicricec e 186
send.. 86, 159
SEL .ottt 86
snapshotceeveevecenenee 166-168, 175,177
USEISPACE ..uvuieiiiririereriisesesenesenenenenenens 146

zfs-auto-snapshotc.ccvcevevcerecenenne 182-185

ZESA(8) vt 130

Y/ | DR see “Separate Intent Log”

[2:4070) o AT 119-120
hiStorycceeveveviirerennes 69-70, 196, 199
INEEGIILY covevviieciiccce 64-67
label.....ciiiiiiiice 162
maintenance...... .70-71
multiple VDEVs... .50
removing VDEVs........coviininnnns 51
renaming imports... 121-122
SECTOL SIZE..o.vviiviriinciieeine 52
UPEradecovveevceiicieieieneinennes 127-130
VEISIONS w.vovevviininereiinciiicnisaienne 72

VIEWING oottt 48-50

zpool feature flags........cccooueeuervivicnnnanee 72-74

read-only compatiblecccceurvuueee. 74
VIEWING oo 73
zpool import............ .120-124
damaged poolscecvevevinirrerninneen. 124
destroyed pools..........ccecveuirirrerinneen. 123
incomplete pools........c.cecureucenenne 122-123
without log devices.........cocvuviurerinnee 124
ZPOO] PrOPErties.......cveureueurcereucereueerevneeend 67-69
set at creationceeeevecnciennecnenen 69
SETHING .vvvvietiieec 68-69
VIEWING oot 67-68
ZPOOL SCTUD ..o 65-67
AUtOMAtiON.. ... 70-71
canceling ..o, 68
zpool versions127-130, 127-130
ZPOOL(8) et 19,55
Add e 105-108, 118
AttaCh oo 105, 116
CIEALE ..voveevriirrerc s 56-64
deStIOY ...uvuviiiiisi e 71-72
detach ..o, 117
export ... 120
Gl 67-68
hiStOrY .o 69-70
import... .. 121
online. ..115,117, 127
LISt et 48-49
TEMOVE....urvririneierineaeierenesesenenns 118-119
replacecovceevcurecenenne 113,115-116,119
<] SOOI 68-69, 129
SCIUD ..ot 66
status......cceee 49-50, 56-62, 66, 119, 129
UPEradecevenevciiicreicieneiennes 128-129
ZP0Ol-features(8)ocveueureurrcureucererenncerecane 72
ZVOL oot see “volume”

