
FreeBSD Mastery: ZFS

Michael W Lucas
Allan Jude



Praise for other books by Michael W Lucas

FreeBSD Mastery: Storage Essentials

“If you’re a FreeBSD (or Linux, or Unix) sysadmin, then you need this 
book; it has a lot of hard-won knowledge, and will save your butt more 
than you’ll be comfortable admitting. If you’ve read anything else by 
Lucas, you also know we need him writing more books. Do the right 
thing and buy this now.” – Slashdot

“There’s plenty of coverage of GEOM, GELI, GDBE, and the other 
technologies specific to FreeBSD. I for one did not know how GEOM 
worked, with its consumer/producer model – and I imagine it’s 
complex to dive into when you’ve got a broken machine next to you. If 
you are administering FreeBSD systems, especially ones that deal with 
dedicated storage, you will find this useful.” — DragonFlyBSD Digest

Networking for Systems Administrators

“There is a lot of useful information packed into this book. I recom-
mend it!”—Sunday Morning Linux Review, episode 145

After reading this book, you’ll have a strong footing in networking. 
Lucas explains concepts in practical ways; he makes sure to teach tools 
in both Unix/Linux and Windows; and he gives you the terms you’ll 
use to explain what you’re seeing to the network folks. Along the way 
there’s a lot of hard-won knowledge sprinkled throughout…” – Slash-
dot



Sudo Mastery

“It’s awesome, it’s Lucas, it’s sudo. Buy it now.” – Slashdot 

“Michael W Lucas has always been one of my favorite authors because 
he brings exceptional narrative to information that has the potential 
to be rather boring. Sudo Mastery is no exception.” – Chris Sanders, 
author of Practical Packet Analysis

Absolute OpenBSD, 2nd Edition
“Michael Lucas has done it again.” – cryptednets.org

“After 13 years of using OpenBSD, I learned something new and 
useful!” – Peter Hessler, OpenBSD Journal

“This is truly an excellent book. It’s full of essential material on 
OpenBSD presented with a sense of humor and an obvious deep 
knowledge of how this OS works. If you’re coming to this book from 
a Unix background of any kind, you’re going to find what you need 
to quickly become fluent in OpenBSD – both how it works and how 
to manage it with expertise. I doubt that a better book on OpenBSD 
could be written.” — Sandra Henry-Stocker, ITWorld.com

“It quickly becomes clear that Michael actually uses OpenBSD and is 
not a hired gun with a set word count to satisfy... In short, this is not 
a drive-by book and you will not find any hand waving.” – Michael 
Dexter, callfortesting.org

DNSSEC Mastery
“When Michael descends on a topic and produces a book, you can 
expect the result to contain loads of useful information, presented 
along with humor and real-life anecdotes so you will want to explore 
the topic in depth on your own systems.” — Peter Hansteen, author of 
The Book of PF



“Pick up this book if you want an easy way to dive into DNSSEC.” — 
psybermonkey.net

SSH Mastery

“…one of those technical books that you wouldn’t keep on your 
bookshelf. It’s one of the books that will have its bindings bent, and 
many pages bookmarked sitting near the keyboard.” — Steven K Hicks, 
SKH:TEC

 “…SSH Mastery is a title that Unix users and system administrators 
like myself will want to keep within reach…” — Peter Hansteen, author 
of The Book of PF

“This stripping-down of the usual tech-book explanations gives it 
the immediacy of extended documentation on the Internet. Not the 
multipage how-to articles used as vehicles for advertising, but an in-
depth presentation from someone who used OpenSSH to do a number 
of things, and paid attention while doing it.” — DragonFlyBSD Digest

Network Flow Analysis

“Combining a great writing style with lots of technical info, this book 
provides a learning experience that’s both fun and interesting. Not too 
many technical books can claim that.” — ;login: Magazine, October 
2010

“This book is worth its weight in gold, especially if you have to deal 
with a shoddy ISP who always blames things on your network.” — 
Utahcon.com

“The book is a comparatively quick read and will come in handy when 
troubleshooting and analyzing network problems.” —Dr. Dobbs



“Network Flow Analysis is a pick for any library strong in network 
administration and data management. It’s the first to show system 
administrators how to assess, analyze and debut a network using 
flow analysis, and comes from one of the best technical writers in the 
networking and security environments.” — Midwest Book Review

Absolute FreeBSD, 2nd Edition
“I am happy to say that Michael Lucas is probably the best 
system administration author I’ve read. I am amazed that he can 
communicate top-notch content with a sense of humor, while not 
offending the reader or sounding stupid. When was the last time you 
could physically feel yourself getting smarter while reading a book? If 
you are a beginning to average FreeBSD user, Absolute FreeBSD 2nd 
Ed (AF2E) will deliver that sensation in spades. Even more advanced 
users will find plenty to enjoy.” — Richard Bejtlich, CSO, MANDIANT, 
and TaoSecurity blogger

“Master practitioner Lucas organizes features and functions to make 
sense in the development environment, and so provides aid and 
comfort to new users, novices, and those with significant experience 
alike.” — SciTech Book News

“…reads well as the author has a very conversational tone, while giving 
you more than enough information on the topic at hand. He drops 
in jokes and honest truths, as if you were talking to him in a bar.” — 
Technology and Me Blog

Cisco Routers for the Desperate, 2nd Edition
“If only Cisco Routers for the Desperate had been on my bookshelf 
a few years ago! It would have definitely saved me many hours of 
searching for configuration help on my Cisco routers.” — Blogcritics 
Magazine



“For me, reading this book was like having one of the guys in my 
company who lives and breathes Cisco sitting down with me for a day 
and explaining everything I need to know to handle problems or issues 
likely to come my way. There may be many additional things I could 
potentially learn about my Cisco switches, but likely few I’m likely to 
encounter in my environment.” — IT World

“This really ought to be the book inside every Cisco Router box for the 
very slim chance things go goofy and help is needed ‘right now.’“ — 
MacCompanion

Absolute OpenBSD

“My current favorite is Absolute OpenBSD: Unix for the Practical 
Paranoid by Michael W. Lucas from No Starch Press. Anyone should 
be able to read this book, download OpenBSD, and get it running as 
quickly as possible.” — Infoworld

“I recommend Absolute OpenBSD to all programmers and 
administrators working with the OpenBSD operating system (OS), or 
considering it.” — UnixReview

“Absolute OpenBSD by Michael Lucas is a broad and mostly gentle 
introduction into the world of the OpenBSD operating system. It is 
sufficiently complete and deep to give someone new to OpenBSD 
a solid footing for doing real work and the mental tools for further 
exploration… The potentially boring topic of systems administration 
is made very readable and even fun by the light tone that Lucas uses.” 
— Chris Palmer, President, San Francisco OpenBSD Users Group



PGP & GPG

“...The World’s first user-friendly book on email privacy...unless you’re 
a cryptographer, or never use email, you should read this book.” — Len 
Sassaman, CodeCon Founder

“An excellent book that shows the end-user in an easy to read and 
often entertaining style just about everything they need to know to 
effectively and properly use PGP and OpenPGP.” — Slashdot

“PGP & GPG is another excellent book by Michael Lucas. I thoroughly 
enjoyed his other books due to their content and style. PGP & GPG 
continues in this fine tradition. If you are trying to learn how to use 
PGP or GPG, or at least want to ensure you are using them properly, 
read PGP & GPG.” — TaoSecurity

Tarsnap Mastery

“If you use any nix-type system, and need offsite backups, then you 
need Tarsnap. If you want to use Tarsnap efficiently, you need Tarsnap 
Mastery.” –Sunday Morning Linux Review episode 148

Praise for Allan Jude

“[Cloud vs bare metal] is all about tradeoffs and understanding your 
requirements. Allan’s BSDCan talk from a few years ago was great.”  — 
Simon L. B. Nielsen, Google SRE

“Allan’s work on the ZFS section of the handbook was really helpful 
and severely reduced the need for Googling things.”  — Marie Helene 
Kvello-Aune, FreeBSD/ZFS User



FreeBSD Mastery:

ZFS

Michael W Lucas
Allan Jude



FreeBSD Mastery: ZFS
Copyright 2015 by Michael W Lucas and Allan Jude.
All rights reserved.

Authors: Michael W Lucas and Allan Jude

BSD Daemon Copyright 1988 by Marshall Kirk McKusick. All rights reserved.

Copyediting: Lindy Lou Losh

Cover art: Beastie-cycling, illustration copyright © 2015 Eddie Sharam, 
after Bicycling, 1887, by Hy Sandham.

ISBN-13: 978-0692452356 
ISBN-10: 0692452354

All rights reserved. No part of this work may be reproduced or transmitted in any 
form or by any means, electronic or mechanical, including photocopying, record-
ing, cuneiform, or by any information storage or retrieval system, without the prior 
written permission of the copyright holder and the publisher. For information on 
book distribution, translations, or other rights, please contact Tilted Windmill Press 
(accounts@tiltedwindmillpress.com)

Product and company names mentioned herein might be the trademarks of their 
respective owners. Rather than use a trademark symbol with every occurrence of a 
trademarked name, we are using the names only in an editorial fashion and to the 
benefit of the trademark owner, with no intention of infringement of the trademark.

The information in this book is provided on an “As Is” basis, without warranty. 
While every precaution has been taken in the preparation of this work, neither the 
author nor Tilted Windmill Press shall have any liability to any person or entity with 
respect to any loss or damage caused or alleged to be caused directly or indirectly by 
the information contained in it.

Tilted Windmill Press

https://www.tiltedwindmillpress.com



We dedicate FreeBSD Mastery: ZFS to our good friend 
Paul Schenkeveld 

who sadly passed away as we wrote this book.





Brief Contents

Acknowledgements............................................................................1021

Chapter 0: Introduction...........................................................................1

Chapter 1: Introducing ZFS..................................................................15

Chapter 2: Virtual Devices....................................................................23

Chapter 3: Pools......................................................................................45

Chapter 4: ZFS Datasets........................................................................75

Chapter 5: Repairs & Renovations.....................................................103

Chapter 6: Disk Space Management..................................................131

Chapter 7: Snapshots and Clones.......................................................161

Chapter 8: Installing to ZFS................................................................195

Afterword..............................................................................................201

About the Authors................................................................................203





Complete Contents

Chapter 0: Introduction...........................................................................1
What is ZFS?..........................................................................................1
ZFS History............................................................................................3
Prerequisites...........................................................................................4

Where to Use ZFS?............................................................................5
ZFS Hardware........................................................................................6

RAM....................................................................................................6
RAID Controllers...............................................................................6
SATA vs. SAS vs. SSD........................................................................8
Disk Redundancy...............................................................................8
Physical Redundancy........................................................................9
Disk Installation and Labeling.........................................................9

About this Book..................................................................................11
Book Overview ...................................................................................12

Chapter 1: Introducing ZFS..................................................................15
ZFS Datasets........................................................................................15
ZFS Partitions and Properties...........................................................17

ZFS Limits.........................................................................................19
Storage Pools........................................................................................19
Virtual Devices....................................................................................20
Blocks and Inodes...............................................................................21

Chapter 2: Virtual Devices....................................................................23
Disks and Other Storage Media........................................................23

Raw Disk Storage.............................................................................23
Partition Storage..............................................................................24
GEOM Device Storage....................................................................25
File-Backed Storage.........................................................................27
Providers vs. Disks...........................................................................27



VDEVs: Virtual Devices.....................................................................28
VDEV Redundancy............................................................................29

Stripe (1 Provider)...........................................................................29
Mirrors (2+ Providers)....................................................................30
RAID-Z1 (3+ Providers) ................................................................30
RAID-Z2 (4+ Providers) ................................................................31
RAID-Z3 (5+ Providers).................................................................31
RAID-Z Disk Configurations.........................................................31
The RAID-Z Rule of 2s....................................................................32
Repairing VDEVs............................................................................32

RAID-Z versus traditional RAID......................................................33
Special VDEVs....................................................................................34

Separate Intent Log (SLOG, ZIL)..................................................34
Cache (L2ARC)................................................................................35

How VDEVs Affect Performance.....................................................36
One Disk...........................................................................................38
Two Disks..........................................................................................38
Three Disks.......................................................................................39
Four or Five Disks............................................................................40
Six to Twelve Disks..........................................................................41
Many Disks.......................................................................................42

Chapter 3: Pools......................................................................................45
ZFS Blocks............................................................................................45
Stripes, RAID, and Pools....................................................................46

Viewing Pools...................................................................................48
Multiple VDEVs...............................................................................50
Removing VDEVs............................................................................51

Pools Alignment and Disk Sector Size.............................................51
Partition Alignment.........................................................................51
ZFS Sector Size.................................................................................52
FreeBSD 10.1 and Newer Ashift.....................................................53
Older FreeBSD Ashift......................................................................54

Creating Pools and VDEVs................................................................55
Sample Drives...................................................................................55
Striped Pools.....................................................................................56
Mirrored Pools.................................................................................56
RAID-Z Pools...................................................................................57



Multi-VDEV Pools..........................................................................59
Using Log Devices...........................................................................61
Mismatched VDEVs........................................................................62
Reusing Providers............................................................................63

Pool Integrity.......................................................................................64
ZFS Integrity.....................................................................................64
Scrubbing ZFS..................................................................................65
Scrub Frequency..............................................................................67

Pool Properties....................................................................................67
Viewing Pool Properties.................................................................67
Changing Pool Properties...............................................................68

Pool History.........................................................................................69
Zpool Maintenance Automation.......................................................70
Removing Pools...................................................................................71
Zpool Feature Flags.............................................................................72

Viewing Feature Flags.....................................................................73

Chapter 4: ZFS Datasets........................................................................75
Datasets................................................................................................76

Dataset Types....................................................................................77
Why Do I Want Datasets?...............................................................78

Viewing Datasets.................................................................................80
Creating, Moving, and Destroying Datasets....................................81

Creating Filesystems........................................................................81
Creating Volumes............................................................................82
Renaming Datasets..........................................................................82
Moving Datasets...............................................................................83
Destroying Datasets.........................................................................83

ZFS Properties.....................................................................................84
Viewing Properties..........................................................................84
Changing Properties........................................................................86
Read-Only Properties......................................................................86

Filesystem Properties..........................................................................87
atime..................................................................................................87
exec....................................................................................................87
readonly.............................................................................................88
setuid.................................................................................................88

User-Defined Properties....................................................................88



Parent/Child Relationships................................................................89
Inheritance and Renaming.............................................................90
Removing Properties.......................................................................91

Mounting ZFS Filesystems.................................................................91
Datasets without Mount Points......................................................93
Multiple Datasets with the Same Mount Point............................94
Pools without Mount Points...........................................................96
Manually Mounting and Unmounting Filesystems....................96

ZFS and /etc/fstab...............................................................................96
Tweaking ZFS Volumes......................................................................97

Space Reservations...........................................................................97
Zvol Mode.........................................................................................98

Dataset Integrity..................................................................................99
Checksums........................................................................................99
Copies..............................................................................................100
Metadata Redundancy..................................................................102

Chapter 5: Repairs & Renovations.....................................................103
Resilvering..........................................................................................103
Expanding Pools................................................................................105

Adding VDEVs to Striped Pools..................................................106
Adding VDEVs to Striped Mirror Pools.....................................106
Adding VDEVs to Striped RAID-Z Pools..................................107

Hardware Status................................................................................108
Online..............................................................................................109
Degraded.........................................................................................109
Faulted.............................................................................................109
Unavail............................................................................................110
Offline..............................................................................................110
Removed.........................................................................................110
Errors through the ZFS Stack.......................................................110

Restoring Devices..............................................................................112
Missing Drives................................................................................112

Replacing Drives...............................................................................112
Faulted Drives................................................................................113
Replacing the Same Slot................................................................114
Replacing Unavail Drives..............................................................115
Replacing Mirror Providers..........................................................116



Reattaching Unavail and Removed Drives.................................117
Log and Cache Device Maintenance..............................................117

Adding a Log or Cache Device....................................................117
Removing Log and Cache Devices..............................................118
Replacing Failed Log and Cache Devices...................................119

Exporting and Importing Drives....................................................119
Exporting Pools..............................................................................120
Importing Pools.............................................................................120
Renaming Imported Pools............................................................121
Incomplete Pools............................................................................122
Special Imports...............................................................................123

Larger Providers................................................................................124
Zpool Versions and Upgrades.........................................................127

ZFS Versions and Feature Flags...................................................128
Zpool Upgrades and the Boot Loader.........................................130

FreeBSD ZFS Pool Limitations........................................................130

Chapter 6: Disk Space Management..................................................131
Reading ZFS Disk Usage..................................................................131

Referenced Data.............................................................................132
Freeing Space..................................................................................133

Disk Space Detail..............................................................................134
Pool Space Usage...............................................................................136

ZFS, df(1), and Other Traditional Tools.....................................136
Limiting Dataset Size........................................................................138
Reservations.......................................................................................139

Viewing Reservations....................................................................141
Setting and Removing Reservations............................................141

Quotas.................................................................................................142
Dataset Quotas...............................................................................142
Setting Quotas................................................................................143
Viewing Quotas..............................................................................144
Exceeded Quotas............................................................................145
User and Group Quotas................................................................145
Viewing Space Used and Existing Quotas per Dataset.............145
Assigning and Removing User and Group Quotas...................146
Viewing Individual Quotas...........................................................147



ZFS Compression..............................................................................147
Enabling Compression..................................................................148
Compression Algorithms..............................................................149
Compression Properties................................................................150
Choosing an Algorithm................................................................150
When to Change Compression Algorithms...............................152
Compression and Performance....................................................153
Deactivating Compression...........................................................154

Deduplication....................................................................................154
Deduplication Memory Needs.....................................................155
Deduplication Effectiveness.........................................................157
Enabling Deduplication................................................................159
Disabling Deduplication...............................................................159

Chapter 7: Snapshots and Clones.......................................................161
Copy-on-Write..................................................................................162
How Snapshots Work.......................................................................164
Using Snapshots................................................................................166

Creating a Snapshot.......................................................................166
Dataset Changes and Snapshot Space.........................................166
Recursive Snapshots......................................................................167

Advanced Dataset and Snapshot Viewing.....................................168
View Datasets by Type..................................................................169
Modifying zfs list Output..............................................................171
Listing Snapshots by Default........................................................172
Scripts and ZFS..............................................................................172

Per-Snapshot Space Use...................................................................173
Accessing Snapshots.........................................................................174

Secret Snapdir.................................................................................174
Mounting Snapshots......................................................................175

Deleting Snapshots............................................................................175
Destruction Dry Runs...................................................................175
Recursion and Ranges...................................................................176

Rolling Back.......................................................................................177
Diffing snapshots..............................................................................179



Automatic Snapshot Regimen.........................................................180
Rotation Schedule..........................................................................180
ZFS Tools........................................................................................181
zfs-auto-snapshot...........................................................................182
Enabling Automatic Snapshots....................................................183
Viewing Automatic Snapshots.....................................................184
Getting Clever with zfs-auto-snap...............................................185

Holds...................................................................................................185
Bookmarks.........................................................................................186
Clones.................................................................................................187

Creating a Clone............................................................................187
Viewing Clones..............................................................................188
Deleting Clones and Snapshots....................................................189
Promoting Clones..........................................................................190

Safely Managing Clones, Snapshots, and Recursion....................193

Chapter 8: Installing to ZFS................................................................195
FreeBSD Reference Install................................................................196
Custom ZFS Installation Partitioning............................................196

Disk Partitioning............................................................................197
Pool Creation..................................................................................197
Datasets...........................................................................................198
Post-Install Setup...........................................................................199

Manually Installing FreeBSD...........................................................200

Afterword..............................................................................................201

About the Authors................................................................................203
Never miss a new Lucas release!..................................................205
More Tech Books from Michael W Lucas..................................205





Acknowledgements
The authors would like to thank all the people who have helped us 

with this book in one way or another. That includes a whole bunch of 
people on the FreeBSD mailing lists, lots of folks on social media, and 
every customer who’s ever damaged their filesystem.

We’d also like to thank the technical reviewers who took time 
from their lives to give us feedback: Brooks Davis, John W. De Bos-
key, Alexey Dokuchaev, Julien Elischer, Pedro Giffuni, Marie Helene 
Kvello-Aune, Kurt Jaeger, Alexander Leidinger, Johannes Meixner, and 
Alexander Motin. We might not enjoy being told exactly how we’re 
wrong, but we do appreciate it.

Lucas would like to specifically thank iXsystems for their excellent 
test hardware, his wife Liz for everything, and Costco for their ul-
tra-economy-size ibuprofen.

Jude would like to thank the *BSD community for welcoming him 
so warmly, with special thanks to his mentors Benedict Reuschling, 
Warren Block, and Eitan Adler, as well as Dru Lavigne, Devin Teske, 
George Neville-Neil, and Matt Ahrens. 

Lucas would also like to thank Jude for that effusive acknowledge-
ment of specific cool people in the FreeBSD community, thus making 
him look comparatively churlish. But he’s thanked specific FreeBSDers 
before, so it could be worse.





1

Chapter 0: Introduction
Much of our systems administration training focuses on filesystems. A 
computer’s filesystem dictates so much of its performance and behav-
ior. Over the last decades we’ve rebuilt entire systems because a major 
filesystem was configured incorrectly, or the filesystem chosen wasn’t 
suitable for the task, or because subtle filesystem corruption spread 
throughout our files and now we couldn’t trust even the basic pro-
grams the operating system had shipped with. Anyone who’s been a 
sysadmin more than a few years has learned how to repair filesystems, 
rebuild filesystems, work around bugs from vexing to nearly lethal, 
rearrange disks to support filesystem limitations, and swear extensively 
at filesystems in no fewer than nine languages.

Some of today’s most popular filesystems are, in computing scale, 
ancient. We discard hardware because it’s five years old and too slow to 
be borne—then put a 30-year-old filesystem on its replacement. Even 
more modern filesystems like extfs, UFS2, and NTFS use older ideas at 
their core.

The Z File System, or ZFS, is here to change all that.

What is ZFS?

ZFS is a modern filesystem built with the core idea that the filesystem 
should be able to guarantee data integrity. ZFS computes a checksum 
for every piece of data on disk, so it can identify when the storage 



Chapter 0: Introduction

2

media has experienced an error and damaged the data. It performs the 
same cryptographic signatures on all of the metadata. When—not if—
the underlying hardware has a problem or just misfires, ZFS realizes 
that the data it has retrieved doesn’t match its records and can take 
action. ZFS even automatically corrects discovered errors! ZFS refuses 
to serve data it knows to be corrupt. 

Filesystem designers had these ideas 30 years ago, but the hard-
ware of the time couldn’t perform this amount of error checking 
with reasonable performance. The creators of ZFS looked at current 
hardware as well as where hardware was going, and decided that ZFS 
would take full advantage of emerging hardware. The result is a filesys-
tem that’s not only more reliable than traditional filesystems, but often 
faster.

Today, it seems that traditional filesystems were written with a 
“good enough for now” philosophy. Many filesystems suffered from 
arbitrary size limits, which sufficed for five years, or ten, or even 20 but 
eventually required rewriting and reworking. Many older filesystems 
couldn’t handle partitions larger than two gigabytes, which these days 
is smaller than a flash drive you’ll get for free attached to a bottle 
opener. (And really, you picked that up because you wanted the bottle 
opener.) But in the early 1980s, when UFS was first released, two giga-
bytes was a ridiculously large amount of storage that would cost many 
millions of dollars. Filesystems like FAT needed to efficiently use the 
space on 360 KB floppy disks. UFS was “good enough for now,” and for 
some time to come.

ZFS is deliberately designed to survive the foreseeable future and 
more. Many new filesystems use 64-bit identifiers and indexes inter-
nally, so they’ll be usable without change for the next ten or 20 years. 
ZFS use 128-bit identifiers internally, giving it enough capacity to 
work on storage systems for the next several millennia. The Enter-



Chapter 0: Introduction

3

prise’s computer on Star Trek probably runs ZFS. Future sysadmins 
who must deal with disks, partitions, and files that exceed ZFS’ built-in 
constraints will lump us together in history with the cavemen and the 
first interstellar travelers.

Strictly speaking, ZFS is not just a filesystem. It’s a combination 
filesystem and volume manager. Combining these two functions in 
one set of software does impose certain limitations, which we’ll talk 
about later—but it also makes some very interesting things possi-
ble. ZFS, being aware of exactly where data is going on the disk, can 
arrange files and stripes optimally, from top to bottom. ZFS can use 
secondary fast storage as special-purpose caches, further enhancing 
performance.

FreeBSD Mastery: ZFS Essentials takes you through what you must 
know to run this modern, high-performance, future-proof filesystem.

ZFS History

Matt Ahrens and Jeff Bonwick created ZFS for Sun Microsystems’ 
Solaris® operating system. While Sun sold systems of all sizes, its main 
focus was high-end server hardware. Sun hardware drove most of the 
world’s large databases. Sun offered the ZFS source code to the world 
under its Common Development and Distribution License (CDDL). 
People began porting ZFS to other operating systems, including 
FreeBSD, and contributing changes back to Sun.

Then Oracle bought Sun Microsystems. While Oracle has some 
open source software, such as MySQL, most of its software is propri-
etary. Oracle brought ZFS development fully in-house and ceased 
providing source code under any open source license.

But the ZFS code was already out in public, and under the CDDL 
license terms, Oracle couldn’t stop people from using it. Various open 
source projects spun up their own ZFS development efforts.



Chapter 0: Introduction

4

Today, the OpenZFS Project (http://open-zfs.org) is the main coor-
dinator of the open source version of ZFS. OpenZFS brings together 
ZFS developers from many companies and operating systems, includ-
ing Linux, OS X, Illumos, and FreeBSD. Matt Ahrens leads the project.

Unlike the rest of FreeBSD, ZFS has a restrictive license. The 
CDDL limits one’s ability to file patent lawsuits, and contributions 
back to ZFS are automatically put under the CDDL. FreeBSD’s 
2-clause BSD license permits anyone to use the code for anything, 
including patent lawsuits. But the CDDL permits reuse, redistribution, 
and changing of the code, so the code is usable by anyone in any com-
mon enterprise environment. If you want to base a product on ZFS or 
include ZFS in another product, however, consult a lawyer.

Prerequisites

This book is written for FreeBSD systems administrators interested 
in ZFS. We assume that you are familiar with the basics of FreeBSD, 
including installing, configuring users, and managing GEOM-based 
storage. You should know what a “storage provider” is and why we use 
that term. If you’re uncertain of your skills, you might pick up a book 
like Absolute FreeBSD (No Starch Press, 2007) or other FreeBSD Mas-
tery titles to augment your knowledge, or consult the online documen-
tation and man pages.

If you’re using OpenZFS on an operating system other than 
FreeBSD, this book offers a bunch of practical ZFS knowledge and 
experience you can take advantage of. You’ll need to ignore the 
FreeBSD-specific stuff, but you’ll learn how to optimize and manage 
ZFS.

We have not tested this book against Oracle ZFS. Oracle has taken 
its closed-source ZFS in its own direction, and you’re really better off 
reading Oracle’s official documentation if you must run Oracle Solaris.



Chapter 0: Introduction

5

You really should know something about disk technologies. 
FreeBSD’s ZFS can run atop any GEOM provider, but running on raw 
disk offers certain benefits. Running ZFS on a RAID container elimi-
nates those benefits. You should be able to slap a RAID controller into 
acting as a bunch of disks.

You should also have a test machine for playing with ZFS. Don’t 
buy this book and immediately migrate your main database server to 
ZFS! Install ZFS on a test machine, then a less critical machine. Ex-
periment with ZFS features until you’re confident you can best con-
figure ZFS to support your systems’ purposes. While ZFS is fast, no 
filesystem is so tolerant that a sysadmin cannot configure it to perform 
poorly.

Where to Use ZFS?

You can use ZFS anywhere, but in some places it won’t work well.
ZFS might not be the best choice for certain virtualization systems. 

We’ve used more than one Linux KVM-based virtualization system 
that chokes on ZFS filesystems, and would not be shocked to see other 
systems have similar issues. Features such as migration between hosts 
and restoring from an image-based backup can be problematic. You’ll 
want to fully test ZFS on your virtualization system before using it 
there. Lucas has deployed ZFS on these systems, mind you, but he uses 
alternative backup and migration strategies.

ZFS is written for modern hardware. It expects that you have at 
least a few gigabytes of RAM. Embedded systems such as the Raspber-
ry Pi are better suited for traditional filesystems like UFS2.

Certain high-intensity workloads on certain hardware perform 
better on UFS2 than on ZFS, especially if you have hard drives with 
actual 512-byte blocks. If you expect to beat the living snot out of your 
database, test its performance with both UFS2 and ZFS.



Chapter 0: Introduction

6

ZFS Hardware

Many people recommend high-end hardware for ZFS. We like high-
end hardware too. It’s nifty. But ZFS works just fine on commodity 
hardware, so long as you understand the limitations of the hardware. 
Much of the ZFS documentation you’ll find on the Internet includes 
recommendations that are not applicable to modern ZFS, or not appli-
cable to FreeBSD.

RAM
It’s not surprising that Sun’s documentation said you needed ECC 
RAM to use ZFS well. Sun sold high-end servers. But according to 
Matt Ahrens, “ZFS on a system without ECC is no more dangerous 
than any other filesystem on a system with ECC.” ZFS’ built-in error 
correction compensates for most but not all memory-induced errors. 

The generic arguments in favor of ECC RAM are still valid, of 
course. A machine with non-ECC memory can suffer memory cor-
ruption, and it’s possible for some of those errors to get to disk. That 
would happen regardless of the filesystem you’re using, however, 
and ZFS checksums offer a hope of identifying the problem. If you’re 
running a high-availability service, you want ECC for all of the usual 
reasons. But your ZFS laptop or home movie server will function just 
fine with normal RAM.

RAID Controllers

Do not use a hardware RAID controller. Ever. Running ZFS on top of 
a hardware RAID device creates a configuration with all the disadvan-
tages of RAID and all the disadvantages of ZFS. Use a non-RAID host 
bus adapter (HBA) for your disk controller. 

All RAID is software RAID. Your hardware RAID controller runs 
a custom operating system to perform RAID tasks, and in the process 
obscures the hardware from the operating system. This made sense 



Chapter 0: Introduction

7

back in the early days of widespread commercial computing, when 
consumer operating systems could not be trusted to manage storage. 
Spend three seconds contemplating running OS-level software RAID 
on Windows 3.1, and you’ll understand why hardware RAID became 
so ubiquitous.

Our operating systems have gotten better. Our hardware is billions 
of times more powerful. The environment has changed.

ZFS is designed for direct access to the hardware. It deliberately 
stores critical metadata on multiple disks. It watches those disks for 
errors, and makes decisions based on those errors. A hardware RAID 
device hides all of this worrisome detail from the operating system, 
eliminating ZFS’ ability to heal itself. Hardware RAID presents no 
competing abilities.

Rebuilding a ZFS array is much faster than rebuilding a RAID 
array, thanks to ZFS’ integration of redundancy with the filesystem. If 
you manage redundancy with hardware RAID, you lose that speed.

Many RAID controllers will not let you use disks without some 
sort of RAID, however. Even if you configure the controller to have 
“just a bunch of disks,” or JBOD, these controllers actually format each 
drive as a single disk RAID-0. This masks certain information, such 
as block size and many disk errors, from the operating system. Worse, 
disks used on such a controller are readable only by this brand of con-
troller—and sometimes, only by this model of RAID controller! Using 
such a RAID controller for ZFS means you won’t be able to move these 
hard drives to another machine without reformatting them, unless the 
new box happens to have the exact same RAID card. This eliminates 
all of ZFS’ pool portability.

Some hardware RAID cards can be reflashed to be JBOD control-
lers. A bad flash might brick your RAID card. As neither of the au-
thors will use hardware RAID again, we take that risk.



Chapter 0: Introduction

8

If you’re condemned to use hardware RAID, probably because you 
were a very bad person in a previous life, present the operating system 
with single disks. If the RAID controller insists on formatting each 
disk as a RAID-0, you’re stuck. Disable “write back” mode on the con-
troller; otherwise, the controller’s write cache can corrupt your filesys-
tem. Resign yourself to increased complexity, reduced performance, 
and added risk. Be sure to document all this in an email to manage-
ment, so when the inevitable failure happens, you get the tiny pleasure 
of saying “I told you so” to compensate for the pain of restoring from 
backup.

Host bus adapters are much less expensive than RAID cards—not 
only in money, but in time. Use them.
SATA vs. SAS vs. SSD
Data storage devices come in a variety of types. ZFS can use SAS 
drives, SATA drives, spinning platters, SSD devices, or any other stor-
age media supported by the operating system.

That’s not to say that the drives are equivalent. SAS drives can 
usually last much longer than SATA drives under the same load. Flash 
drives are much faster than any kind of spinning disk. ZFS can store 
data on any of these. Base your choice of drive hardware on your orga-
nization’s needs, not on ZFS.

ZFS can make special use of extra-fast storage as read and write 
caches. If you can add a couple of solid state disks to your SAS or 
SATA-based storage array, you can vastly accelerate ZFS’ performance.
Disk Redundancy
It’s not uncommon for a storage array to lose several disks simultane-
ously. A power surge can damage multiple disks. An intensive array 
rebuild stresses the remaining disks. Heat can build up on one side 
of the shelf. ZFS supports multiple redundancy scenarios for exactly 
these reasons.



Chapter 0: Introduction

9

If you buy a whole bunch of identical disks, they might all be made 
on the same day or in the same batch. A bad day at the manufacturing 
plant can bite you hard. Sadly, disk retailers can’t ship you drives made 
on different days or in different batches. The best you can do is to have 
each array include drives made by multiple manufacturers.

Physical Redundancy

FreeBSD supports multipath storage, allowing you to work around 
many hardware problems. Rearranging your hardware might increase 
the system’s availability and reliability. If you have two external disk 
arrays, perhaps use a disk from each array in your mirrored pair. This 
way, if a disk array’s power supply dies, each mirror still has one active 
disk. When the failed array is restored, the mirrors automatically re-
cover. As this is specialty equipment, we discuss multipath in FreeBSD 
Mastery: Advanced ZFS.

Look at your hardware before installation. Consider how it might 
fail, and how proper arrangement of your kit might prevent outages.

Disk Installation and Labeling

No, not using a label machine and pasting a little sticker on each hard 
drive. The glue on those things never sticks (although you should 
physically label your disks). FreeBSD supports Globally Unique 
ID (GUID) Partition Tables (GPT) labels, letting you put arbitrary 
logical markers on a hard drive or a partition. If a storage device has a 
problem, FreeBSD announces the problem and identifies the troubled 
unit by device name or device node. While it’s nice to know that disk 
/dev/da239 has a problem, you must track that back to a physical 
device. Many ZFS users have machines with many hard drives, 
exacerbating the issue.

FreeBSD tools let you get the serial number of a failed drive. 
Depending on your hardware, however, you might have to physically 



Chapter 0: Introduction

10

examine each drive to identify its serial number. This usually involves 
either opening a case or pulling individual drives out of a disk array. 
This is tedious, unpleasant, and most often interrupts service.

If you prepare during installation, you can zero right in on a failed 
disk—even a disk at a remote facility. Jude runs a lot of very dense 
storage arrays in locations all over the world, and uses this scheme to 
keep hard drive maintenance from overwhelming him.

Come up with a naming and numbering scheme for your storage 
arrays. Many storage arrays have a standard naming scheme, often 
printed on the equipment. If your equipment already has numbered 
shelves, use that numbering. Otherwise, make simple rules like “shelf 
0 is always at the top and disk 0 is always at the left.” You might use the 
prefix “f ” for the front and “b” for the back, or whatever works for you.

Note the serial number of each drive as you install it in the array. 
Physically label each drive tray as you install it by physical location 
and serial number. Yes, this is tedious—but you’ll eventually need this 
information. You can do this work in peace and quiet at your own 
pace, or you can desperately rush through it during an artificially pro-
longed and unnecessarily stressful outage.

Now either install FreeBSD or boot live media. Use camcontrol 
devlist to get a list of all your storage devices, then run diskinfo -v 
on each storage device node to get its serial number. (You can also 
extract serial numbers from camcontrol(8).) This will tell you that, say, 
disk /dev/da0 is actually disk 3 on shelf 4.

You now have a list of device nodes and their associated serial 
numbers, as well as a list of physical locations and serial numbers. 
Match those up with each other, and then use GPT labels to attach 
the location and serial number to the disk partition you’re using. (See 
the FreeBSD documentation or FreeBSD Mastery: Storage Essentials 
for details on GPT labels.) GPT labels have a maximum length of 15 



Chapter 0: Introduction

11

characters, so you might have to truncate long serial numbers. In most 
serial numbers the last digits are most unique, so trim off the front.

Combined, disk 9 in shelf 2, with a serial number of WD-
WCAW36477223, might get a label like /dev/gpt/s2d9-AW36477223.

You want your system to use these labels, and only these labels. 
Disable GPTID and disk ident labels on the system. This avoids confu-
sion later. 

With this setup, during a hardware failure now FreeBSD can tell 
you that the third disk on shelf 4, serial number such-and-such, is bad. 
Given that information, even the most junior tech at your colocation 
provider should be able to pull the right disk.1 Have the tech give you 
the serial number of the replacement drive before installation, so you 
can create the proper labels.

Advance planning makes outages much less traumatic. We highly 
recommend it.

About this Book

This book is for anyone who manages ZFS filesystems or who is cu-
rious about what a modern, high-performance filesystem looks like. 
While it focuses on ZFS on FreeBSD, the general ZFS information 
applies to any platform running OpenZFS. Parts of this book happen 
to be applicable to other implementations, such as Oracle ZFS, but you 
can’t assume this book applies to these other implementations.

We really wanted to write a single FreeBSD OpenZFS book, but 
limitations in the chosen publishing platforms made that impracti-
cal. FreeBSD Mastery: ZFS covers routine use of ZFS. The next book, 
FreeBSD Mastery: Advanced ZFS, covers online replication, perfor-
mance tuning, and other topics requiring greater understanding of 

1	  He will probably screw it up, because that’s what junior techs 
do. But give the poor guy a shot.



Chapter 0: Introduction

12

ZFS. The second book assumes you understand everything in this 
book, however.

OpenZFS advances constantly. This book is a static entity. What’s 
more, a book that covered every OpenZFS feature would be the size 
of the print version of the Manhattan telephone book.2 These books 
try to offer what the vast majority of sysadmins must know to run 
ZFS well. If you’re looking for a feature we don’t discuss, or you have 
a special edge case we don’t cover, definitely check the man pages, 
the online OpenZFS documentation, and the FreeBSD mailing lists 
archives and forums.

Book Overview 

Chapter 0 is this introduction.
Chapter 1, Introducing ZFS, gives you a pterodon’s-eye view of the 

ZFS software suite. You’ll learn how to look at ZFS filesystems and data 
pools, and understand how the large chunks of ZFS fit together.

Chapter 2, Virtual Devices, takes you through the ZFS’ physical 
redundancy schemes. ZFS supports traditional mirrored disks and 
concatenated devices, but also offers its own advanced parity-based 
redundancy, RAID-Z.

Chapter 3, Pools, discusses ZFS storage pools. You’ll learn how to 
assemble virtual devices into pools, how to check pools, and how to 
manage and query your storage pools.

Chapter 4, Datasets, takes you through what traditionalists would 
call a filesystem. Except in ZFS, it’s not really a filesystem. Yes, you put 
files in a dataset, but a dataset is so much more.

2	  See, once upon a time the phone company printed huge books 
that listed everyone with a phone and their phone number. No, phone 
numbers didn’t change so often, because they were all landlines. But 
then the dinosaurs knocked the phone lines down, so we went cellular.



Chapter 0: Introduction

13

Chapter 5, Pool Repairs and Renovations, covers making changes 
to storage pools. You can expand storage pools with additional disks, 
repair failed disks, and tweak pools to support new features.

Chapter 6, Disk Space Management, covers one of the most mis-
understood parts of using ZFS. Why does your 1 TB drive claim to 
have 87 TB free? How do you reserve space for some users and limit 
others? What about this deduplication stuff? This chapter covers all 
that and more.

Chapter 7, Snapshots and Clones, discusses ZFS’ snapshot feature. 
You can create a point-in-time photograph of a dataset, and refer back 
to it later. You want a copy of a file as it existed yesterday? Snapshots 
are your friends. Similarly, clones let you duplicate a filesystem. You’ll 
understand both.

Chapter 8, Installing to ZFS, covers installing FreeBSD to a ZFS. 
The FreeBSD installer can install a ZFS-based system for you. The 
installer is always improving, but the real world is more complex than 
any installation program can possibly expect. Knowing how to install 
the system exactly the way you want is useful.

Fasten your seat belt and get ready to dive into a filesystem for the 
21st century.





15

Chapter 1: Introducing ZFS
Starting to learn ZFS isn’t hard. Install a recent FreeBSD release. Tell 
the installer you want ZFS. You’ve started. If you’ve never worked with 
ZFS, take a moment and install a new FreeBSD with ZFS on a test sys-
tem or virtual machine. Don’t choose encryption or any of the fancy 
customization options. This trivial install offers an opportunity to look 
at some ZFS basics before diving into more complicated setups.

ZFS combines the functions of traditional filesystems and volume 
managers. As such, it expects to handle everything from the permis-
sions on individual files and which files are in which directories down 
to tracking which storage devices get used for what purposes and how 
that storage is arranged. The sysadmin instructs ZFS in arranging disks 
and files, but ZFS manages the whole storage stack beneath them. This 
chapter separates the ZFS stack into three layers: filesystems, storage 
pools, and virtual devices, using a FreeBSD 10.1 host installed with the 
default ZFS settings.

To orient you, we start at the most visible parts of the storage stack 
and work our way down. Once you understand how the layers fit to-
gether, the rest of this book starts at the foundation and works its way 
up.

ZFS Datasets

ZFS filesystems aren’t exactly analogous to traditional filesystems, 
and so are called datasets. The classic Unix File System (UFS) and its 



Chapter 1: Introducing ZFS

16

derivatives and work-alikes, such as modern BSD’s UFS2 and Linux’s 
extfs, manage filesystems with a variety of programs. You’re proba-
bly well accustomed to using df(1), newfs(8), mount(8), umount(8), 
dump(8), restore(8), and similar commands. ZFS absorbs all of these 
functions in the zfs(8) program, which lets you create, destroy, view, 
and otherwise spindle ZFS datasets.

Start by viewing existing ZFS datasets with zfs list.

# zfs list
NAME                USED  AVAIL  REFER  MOUNTPOINT
zroot               429M  13.0G    96K  none
zroot/ROOT          428M  13.0G    96K  none
zroot/ROOT/default  428M  13.0G   428M  /
zroot/tmp           104K  13.0G   104K  /tmp
zroot/usr           428K  13.0G    96K  /usr
…

This combines the output of mount(8) and df(1), and should look 
pretty familiar to anyone who’s managed UFS or extfs.

Each dataset has a name. A ZFS dataset name starts with the ZFS 
storage pool, or zpool, the dataset is on. Our first entry is called just 
plain zroot. This entry represents the pool’s root dataset, which every-
thing else hangs off of.

The next two columns show amount of space used and available. 
The pool zroot has used 429 MB and 13 GB free.

The REFER column is special to ZFS. This is the amount of ac-
cessible data on the dataset, which is not necessarily the same as the 
amount of space used. Some ZFS features, such as snapshots, share 
data between themselves. Our zroot entry has “used” 429 MB, but only 
refers to 96 KB of data. The pool as a whole has 13 GB free, but 96 KB 
are accessible through this specific dataset. That’s not much. The rest of 
the space is used for children of this dataset. Chapter 6 gives a detailed 
discussion of ZFS disk usage. A dataset’s children include snapshots, 
volumes, and child datasets, as you’ll see throughout this book.



Chapter 1: Introducing ZFS

17

Finally we have the filesystem mount point. The zroot ZFS is not 
mounted.

Look at the second entry, named zroot/ROOT. This is a ZFS dataset 
created for the root filesystem. Like the zroot pool, it isn’t mounted. It 
refers 96 KB of data. This apparently isn’t used, which seems strange 
for a root filesystem.

The third entry, zroot/ROOT/default, is the current root filesystem. 
It uses 428 MB of data, and is mounted on /, the Unix root. It refers to 
428 MB, meaning that there’s that amount of data in this dataset.

Why would ZFS split out this from the root filesystem? ZFS makes 
it easy to choose between multiple root filesystems. This host runs 
FreeBSD 10.1, but suppose you must apply some security updates 
and reboot? Applying operating system patches always afflicts sys-
tems administrators with a gut-twisting mix of fear and hope. Even 
a well-tested upgrade can go wrong and ruin everyone’s day. But ZFS 
lets you clone and snapshot datasets. When you upgrade to FreeBSD 
10.1-p1, you could create a new dataset such as zroot/ROOT/10.1-p1 
and tell FreeBSD to use that as the root partition. You either wouldn’t 
mount zroot/ROOT/default, or I’d mount it at an alternate location like 
/oldroot. If the upgrade goes poorly, reversion is trivial.

The next dataset, zroot/tmp, is almost empty. It’s mounted at /tmp. 
This dataset is the traditional temporary directory.

ZFS Partitions and Properties

ZFS lacks traditional partitions. A partition is a logical subdivision of 
a disk, filling very specific Logical Block Addresses (LBAs) on a stor-
age device. Partitions have no awareness of the data on the partition. 
Changing a partition means destroying and (presumably) rebuilding 
the filesystem on top of it.



Chapter 1: Introducing ZFS

18

Lucas’ first thought on seeing a partition-less filesystem was to 
wonder how he would manage his storage, at all. That’s roughly equiv-
alent to the confusion he experiences when, after a long cold Michigan 
winter, he steps outside and feels natural warm air for the first time 
in months. Confusion is part of liberation. We learned to administer 
storage via partitions because we had to, not because partitions are 
pleasant or because they’re the best solution. Running a traditional 
filesystem without partitions is poor practice, but ZFS is not a tradi-
tional filesystem.

ZFS tightly integrates the filesystem and the lower storage lay-
ers. This means it can dynamically divide storage space between the 
various filesystems as needed. While you can set specific size limits on 
a ZFS filesystem, datasets do not have traditional sizes. If the pool has 
enough space for a file, you can use it. Where you previously allocated 
a limited amount of disk space to, say, /var/log, and thus kept berserk 
logs from filling your disk, you must now set those limits at the ZFS 
level.

The amount of space a dataset may use is one example of a ZFS 
property. ZFS supports dozens of dataset properties—for example, the 
quota property controls how large a dataset can grow. Use zfs(8) to 
set a ZFS property.
# zfs set quota=2G zroot/var/log

View a property with the zfs get command.
# zfs get quota zroot/var/log
NAME           PROPERTY  VALUE  SOURCE
zroot/var/log  quota        2G  local

View all of a dataset’s properties with zfs get all and the ZFS 
dataset name.

Chapter 4 explores ZFS properties in detail, while Chapter 6 dis-
cusses restricting dataset size.



Chapter 1: Introducing ZFS

19

ZFS Limits

Filesystems have always had maximum sizes and limits. The FAT 
filesystem we all know and cringe over has required multiple revisions, 
in part to overcome its maximum size of 32 MB, then 2 GB, then 4 
GB. FAT32’s 2 TB limit is starting to look a little cramped these days. 
UFS and ext2/3/4fs have had their own, similarly arbitrary, limits. 
These limits exist because the filesystem authors had to set a limit 
somewhere, and chose values that they expected to be good for the 
next several years. A popular filesystem will remain in use until those 
limits are reached, however, so systems administrators have needed to 
repeatedly cope with them.

ZFS advocates claim that ZFS is immune to these arbitrary limits, 
but that’s not quite true. ZFS uses 128 bits to store most of its values, 
which set the limits so high that they won’t ever be encountered by 
anyone working in systems administration today. One directory can 
have 248 files, of up to 16 exabytes each. A single pool can be up to 256 
zettabytes, or 278 bytes. A storage pool can contain up to 264 devices, 
and a single host can have up to 264 storage pools.

The good news is, we will not live long enough to hit these limits. 
The bad news is, we have all the expertise in migrating between filesys-
tems. When technology hits ZFS’ limits, those poor people won’t be 
accustomed to migrating between filesystems. Fortunately, they’ll have 
a few lingering ongoing FAT/UFS/extfs rollovers for practice.

Storage Pools

ZFS uses storage pools rather than disks. A storage pool is an abstrac-
tion atop the underlying storage providers, letting you separate the 
physical medium and the user-visible filesystem on top of it.

Use zpool(8) to view and manage a system’s storage pools. Here’s 
the pool from a default FreeBSD system.



Chapter 1: Introducing ZFS

20

# zpool status
  pool: zroot
 state: ONLINE
  scan: none requested
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
 zroot	 ONLINE	 0	 0	 0
  gpt/zfs0	 ONLINE	 0	 0	 0

errors: No known data errors

You get the pool’s name and state first. Systems can have more than 
one ZFS pool—large systems, with dozens and dozens of hard drives, 
often have multiple pools. If this host had multiple storage pools, each 
would appear in a separate description like the sample above.

ZFS can perform many sorts of integrity checks on storage pools. 
The scan statement shows if any integrity check is being performed 
and the result of the most recent scan.

The last part of the pool list shows the layout of the virtual devices 
in the pool.

Virtual Devices

A storage pool contains one or more virtual devices, or VDEVs. A 
VDEV is similar to a traditional RAID device. A big RAID-5 presents 
itself to the filesystem layer as a single huge device, even though the 
sysadmin knows it’s really a whole bunch of smaller disks. Virtual de-
vices let you assign specific devices to specific roles. With VDEVs you 
can arrange the physical storage as needed.

The virtual device is where a whole bunch of ZFS’ magic happens. 
A pool can be arranged for RAID-style redundancy. You can use 
providers as dedicated read and write caches, improving the virtual 
device’s performance. Chapter 2 covers virtual devices in more depth.



Chapter 1: Introducing ZFS

21

ZFS’ data redundancy and automated error correction also take 
place at the VDEV level. Everything in ZFS is checksummed for 
integrity verification. If your pool has sufficient redundancy, ZFS is 
self-healing. If your pool lacks redundancy, well, at least you know 
the data is damaged and you can (hopefully) restore from backup.3

The zpool status command that displays the health of a pool 
also shows the virtual devices in that pool. Look at the example in 
the previous section. This very simple pool, zroot, contains a single 
storage provider, /dev/gpt/zfs0. This provider is a GPT partition, 
not a disk. ZFS can use all sorts of underlying storage, as Chapter 2 
discusses. Using a GPT partition is very common, but other options 
include whole disks, files, and any other GEOM provider. FreeBSD 
uses GEOM providers to support features such as encryption.

Blocks and Inodes

Traditional filesystems almost always use some variety of data block 
for storing data and maps the contents of those blocks with an index 
node. BSD’s UFS and Linux’s extfs call these blocks and inodes. Even 
Microsoft’s FAT filesystems have data storage blocks and index 
nodes.

Like these filesystems, ZFS uses index blocks and data blocks. 
Unlike older filesystems, however, ZFS generates index nodes on de-
mand. Whenever possible, ZFS creates storage blocks in sizes that fit 
the data. The variable sized blocks don’t always fit every possible file 
you might create, but they’re certainly more flexible than traditional 
filesystems.

3	  ZFS does not eliminate the need for backups. The only thing 
that eliminates backups is absolute indifference.



Chapter 1: Introducing ZFS

22

Unlike UFS superblocks, dynamically generated index blocks can’t 
be placed in known locations on the disk. How can ZFS cope with the 
possibility of damage to an index block? ZFS stores multiple copies 
of critical index blocks at algorithmically predictable locations. These 
ditto blocks get replicated in multiple locations on the disk. Chapter 3 
discusses ZFS blocks, uberblocks, ditto blocks, transaction groups, and 
more.

Now that you know the bare basics of ZFS, the rest of this book 
merely fills in several hundred little details. We’ll start at the very bot-
tom of the stack, with the virtual devices. 



23

Chapter 2: Virtual Devices
In this chapter we’ll delve into how the sausage is made. This... is a 
pig—I mean, a disk. Disks are the physical manifestation of storage. 
Disks are evil. They lie about their characteristics and layout, they hide 
errors, and they fail in unexpected ways. ZFS means no longer having 
to fear that your disks are secretly plotting against you. Yes, your disks 
are plotting against you, but ZFS exposes their treachery and puts a 
stop to it.

To most effectively use the available disks with ZFS, you require 
a basic understanding of how the operating system presents disks to 
ZFS, and how ZFS arranges data on those disks.

Disks and Other Storage Media

ZFS can also run on storage media other than disks. Anything that is a 
FreeBSD GEOM storage provider can become a ZFS storage medium. 
ZFS even has support for using files as the backing storage, which is 
really great for testing but is not meant for production. ZFS can use 
any block device for its physical storage, but each type has its advan-
tages and disadvantages.

Raw Disk Storage

Using an entire physical disk reduces complexity. Also, there is no 
partitioning to worry about, and no software or configuration between 
ZFS and the physical disk. However, the disadvantages usually out-
weigh these advantages.



Chapter 2: Virtual Devices

24

Booting from a disk requires that the disk have a boot loader. A 
boot loader can only go on a partitioned disk. You cannot boot a raw 
disk. FreeBSD supports giving disks useful labels, but those labels live 
inside the partition information.

Worse, any replacement disks must be exactly the same size as the 
original disk, or larger. Not all 6 TB disks are the same size—disks 
from different vendors vary by a few megabytes. You don’t care about 
these variances when setting up a system, but they’re critical when 
replacing a disk. Most catalogs don’t list the number of sectors in each 
disk, only the size, so finding a usable replacement can take several 
attempts. Replacing a drive that uses the traditional 512-byte sectors 
with one that uses 4096-byte (4K, also known as Advanced Format) 
sectors complicates things further. The original drive probably had a 
number of sectors not evenly divisible by 8. Thanks to the special math 
used by disk drives, the new drive might appear to be just a couple 
bytes smaller than the old drive even if it’s a couple bytes larger.

Partition Storage

Instead of using an entire raw disk, you can partition a disk and then 
use one of the partitions for ZFS. The biggest advantage to this is that 
you can now boot from the disk that contains the ZFS partition, by 
creating a small boot partition, instead of requiring a separate boot 
device. Using partitions also allows you to use part of the disk space 
for other things, like a raw swap partition, another filesystem, or just 
leaving some wiggle room at the end of the disk so the replacement 
disk doesn’t have to have a matching sector count. Partitioning also 
allows you to “short stroke” the drive to increase performance.

Many of the original Solaris ZFS administration guides recom-
mend against using partitions (or, in Solaris terms, slices) for perfor-
mance reasons. In Solaris, using a partition for a filesystem disables 



Chapter 2: Virtual Devices

25

the write cache. In FreeBSD, disabling the write cache is completely 
separate from disk partitioning or filesystems. FreeBSD gives full per-
formance when using ZFS on a partition.

FreeBSD supports a number of partitioning schemes, but GPT is 
strongly recommended. The older partitioning system, MBR, limited 
the number of primary partitions to four, while GPT supports up to 
128 partitions. MBR can manage disks up to only 2 TB, while GPT can 
manage up to 8 ZB with 512 byte-sector disks and up to 64 ZB with 4 
K-sector disks. FreeBSD Mastery: Storage Essentials covers FreeBSD’s 
support for both partitioning methods.4

The disadvantage to using partitions is that you might lose some of 
the portability that ZFS provides. If you move disks from one system 
to another, the target system must be able to recognize the disk parti-
tions.

GEOM Device Storage

ZFS can also use the various FreeBSD GEOM classes as its backing 
storage. These sit between the filesystem and the physical devices, 
and perform various functions. The GEOM classes provide features 
such as whole disk encryption (GELI, GBDE), high availability, labels, 
multipath, and pluggable schedulers. A GEOM class can be created 
based on an entire device, or on top of another GEOM class, such as a 
partition, multipath device, or encrypted disk.

GELI (the FreeBSD disk encryption subsystem) is the best way to 
achieve an encrypted ZFS pool. GELI encrypts and decrypts blocks as 
they are passed back and forth between ZFS and the physical disks, so 
it doesn’t require ZFS to do anything different. GELI supports a num-
ber of different encryption algorithms, but the default AES-XTS offers 

4	  If you’re storing your data on clay tablets, you may use 
bsdlabel(8) partitions.



Chapter 2: Virtual Devices

26

the best performance, especially with a modern CPU that supports the 
AES New Instructions (AESNI). With the help of this hardware offload 
feature, GELI can encrypt data at over 1 GB/sec and decrypt even fast-
er, meaning that adding encryption will not lower your performance, 
even on an SSD. GELI can also optionally provide data authentication 
(integrity verification), where it stores a Hashed Message Authentica-
tion Code (HMAC) with each sector. It uses this HMAC to verify the 
integrity (the data has not been tampered with), and authenticity (this 
data was written by you) of the data. If upon reading back the sector, 
the HMAC does not verify the data, an error is returned. The HMAC 
feature is not enabled by default, and is probably overkill for ZFS be-
cause ZFS provides its own checksumming on each data block.

High Availability Storage Technology (HAST) is FreeBSD’s distrib-
uted storage solution. It allows you to mirror a block device between 
computers over the network. Using HAST as the backing storage for a 
ZFS pool allows you to mirror each backing disk to a second machine. 
The advantage to HAST is that it is real time; a block is not considered 
to be written until it has been written to all hosts in the HAST cluster. 
ZFS replication, on the other hand, is based on syncing periodic snap-
shots. However, with HAST the second machine cannot have the pool 
imported or mounted at the same time as the first machine. Compared 
to ZFS replication, where you can have the replicated pool active (but 
read-only) concurrently, HAST makes sense in only a few cases.

GEOM labels provide a handy way to attach a meaningful note to 
each disk or partition. There are many label types, including standards 
like disk ident, gptid, GPT labels, and the GEOM-specific glabel. Best 
practices for labeling drives appear in Chapter 0.

GEOM also supports multipath for high availability. Sometimes it 
is not just the disk that dies, but also the controller card, the backplane, 
or the cable. With multipath, enterprise drives that are “dual ported” 



Chapter 2: Virtual Devices

27

can be connected to more than one HBA (a disk controller card 
without any RAID features). If each drive has a path to two different 
storage controllers, it can survive the loss of one of those controllers. 
However, when each disk is connected to two different controllers, the 
operating system sees each disk twice, once via each controller. The 
GEOM multipath class allows you to write a label to each disk, so that 
successive routes to the same disk are detected as such. This way you 
get one representation of each disk, backed by multiple paths to that 
disk via different controllers. We discuss multipath in FreeBSD Mas-
tery: Advanced ZFS.

The GEOM scheduler module allows the administrator to specify 
different I/O scheduling algorithms in an attempt to achieve better 
performance. As of this writing, the currently available schedulers are 
“as,” a simple form of anticipatory scheduling with only one queue, 
and “rr,” anticipatory scheduling with round-robin service across 
each client queue. See gsched(8) for more details. The GEOM system 
makes it relatively easy to write additional scheduling modules for 
specific workloads.

File-Backed Storage

You can use a file-backed virtual disk as a ZFS storage device. While 
we certainly don’t recommend this for production, file-backed disks 
can be useful for testing and experimenting.

Providers vs. Disks

“Provider” is a technical term in FreeBSD. A GEOM storage provid-
er is a thing that offers data storage. It might be a disk. It might be 
a GEOM class that transforms the storage in some way. Technically 
speaking, this book should use the word provider instead of disk 
almost everywhere. You can use any GEOM provider as a back end 
for ZFS. The problem with this is, one physical disk can offer several 



Chapter 2: Virtual Devices

28

different providers. Your pool might have several different providers, 
but if they’re all on one disk, you’ve just shot your redundancy in the 
head.5

Where this book discusses “disks,” we mean “some sort of provid-
er on top of a disk.” This disk doesn’t have to be wholly dedicated to 
ZFS—you could have a swap partition and a ZFS partition on a disk 
and be perfectly fine. But you can’t have two ZFS partitions on a single 
physical disk, mirror them, and have physical redundancy.

VDEVs: Virtual Devices

A virtual device, or VDEV, is the logical storage unit of ZFS. Each 
VDEV is composed of one or more GEOM providers. ZFS supports 
several different types of VDEV, which are differentiated by the type of 
redundancy the VDEV offers. The common mirrored disk, where each 
disk contains a copy of another disk, is one type of VDEV. Plain disks, 
with no redundancy, are another type of VDEV. And ZFS includes 
three different varieties of sophisticated RAID, called RAID-Z.

These VDEVs are arranged into the storage pools discussed in 
Chapter 3. Actual data goes on top of the pools, as Chapter 4 covers. 
But the arrangement of your virtual devices dictates how well the pool 
performs and how well it resists physical damage. Almost all of ZFS’ 
redundancy comes from the virtual devices.

A storage pool consists of one or more VDEVs where the pool data 
is spread across those VDEVs with no redundancy. (You can add some 
redundancy with the copies property, as discussed in Chapter 4, but 
that provides no protection against total disk failure.) The ZFS pool 
treats VDEVs as single units that provide storage space. Storage pools 
cannot survive the loss of a VDEV, so it’s important that you either use 

5	  FreeBSD’s flexible storage system gives you the power to do 
stupid things. Don’t.



Chapter 2: Virtual Devices

29

VDEVs with redundancy or decide in advance that it’s okay to lose the 
data in this pool.

Using multiple VDEVs in a pool creates systems similar to ad-
vanced RAID arrays. A RAID-Z2 array resembles RAID-6, but a 
ZFS pool with two RAID-Z2 VDEVs resembles RAID-60. Mirrored 
VDEVs look like RAID-1, but groups of them resemble RAID-10. In 
both of these cases, ZFS stripes the data across each VDEV with no 
redundancy. The individual VDEVs provide the redundancy.

VDEV Redundancy

A VDEV that contains more than one disk can use a number of differ-
ent redundancy schemes to provide fault tolerance. Nothing can make 
a single disk sitting all by itself redundant. ZFS supports using mir-
rored disks and several parity-based arrays.

ZFS uses redundancy to self-heal. A VDEV without redundancy 
doesn’t support self-healing. You can work around this at the dataset 
layer (with the copies property), but a redundant VDEV supports 
self-healing automatically.

Stripe (1 Provider)

A VDEV composed of a single disk is called a stripe, and has no re-
dundancy. As you might expect, losing the single provider means that 
all data on the disk is gone. A stripe pool contains only single-disk 
VDEVs.

A ZFS pool stripes data across all the VDEVs in the pool and relies 
on the VDEV to provide redundancy. If one stripe device fails, the 
entire pool fails. All data stored on the pool is gone. This is fine for 
scratch partitions, but if you care about your data, use a type of VDEV 
that offers fault tolerance.



Chapter 2: Virtual Devices

30

Mirrors (2+ Providers)

A mirror VDEV stores a complete copy of all data on every disk. You 
can lose all but one of the drives in the provider and still access your 
data. You can use any number of disks in a mirror.

Mirrors provide very good random and sequential read speeds 
because data can be read from all of the disks at once. Write perfor-
mance suffers because all data must be written to all of the disks, and 
the operation is not complete until the slowest disk has finished.

RAID-Z1 (3+ Providers) 

ZFS includes three modern RAID-style redundant VDEVs, called 
RAID-Z. RAID-Z resembles RAID-5, but includes checksumming to 
ensure file integrity. Between checksums and ZFS’ copy-on-write fea-
tures (Chapter 7), RAID-Z insures that incomplete writes do not result 
in an inconsistent filesystem.

RAID-Z spreads data and parity information across all of the 
disks. If a provider in the RAID-Z dies or starts giving corrupt data, 
RAID-Z uses the parity information to recalculate the missing data. 
You might hear that RAID-Z uses a provider to store parity informa-
tion, but there’s no single parity provider—the parity role is rotated 
through the providers, spreading the data.

A RAID-Z1 VDEV can withstand the failure of any single stor-
age provider. If a second provider fails before the first failed drive is 
replaced, all data is lost. Rebuilding a disk array from parity data can 
take a long time. If you’re using large disks—say, over 2 TB—there’s a 
non-trivial chance of a second drive failing as you repair the first drive. 
For larger disks, you should probably look at RAID-Z2.



Chapter 2: Virtual Devices

31

RAID-Z2 (4+ Providers) 
RAID-Z2 resembles RAID-Z1, but has two parity disks per VDEV. 
Like RAID-6, RAID-Z2 allows it to continue to operate even with two 
failed providers. It is slightly slower than RAID-Z1, but allows you to 
be somewhat lazy in replacing your drives.

RAID-Z3 (5+ Providers)
The most paranoid form of RAID-Z, RAID-Z3 uses three parity disks 
per VDEV. Yes, you can have three failed disks in your five-disk array. 
It is slightly slower than RAID-Z2. Failure of a fourth disk results in 
total data loss.

RAID-Z Disk Configurations
One important thing to remember when using any version of RAID-Z 
is that the number of providers in a RAID-Z is completely fixed. You 
cannot add drives to a RAID-Z VDEV to expand them. You can ex-
pand the pool by adding VDEVs, but you cannot expand a VDEV by 
adding disks. There are no plans to add this feature.

Suppose you have a host that can accept 20 hard drives. You install 
12 drives and use them as a single RAID-Z2, thinking that you will 
add more drives to your pool later as you need them. Those new drives 
will have to go in as separate RAID-Z2 VDEV.

What’s more, your VDEVs will be unbalanced. Your pool will 
have a single 12-drive VDEV, and a second 8-drive VDEV. One will 
be slower than the other. ZFS will let you force it to pool these devices 
together, but it’s a really bad idea to do so.

Plan ahead. Look at your physical gear, the number of drives you 
have to start with, and how you’ll expand that storage. Our example serv-
er would be fine with on pool containing a single RAID-Z2 VDEV, and 
a completely separate pool containing the other eight disks in whatever 
arrangement you want. Don’t cut your own throat before you even start!



Chapter 2: Virtual Devices

32

The RAID-Z Rule of 2s

One commonly discussed configuration is to have a number of data 
disks equal to a multiple of two, plus the parity disks needed for a 
given RAID-Z level. That is, this rule says that a RAID-Z1 should use 
2n+1 disks, or three, five, seven, nine, and so on. A RAID-Z2 should 
use 2n+2 disks (four, six, eight, and so on), while a RAID-Z3 should 
use 2n+3 (five, seven, nine, and so on).

This rule works—if and only if your data is composed of small 
blocks with a size that is a power of 2. Other factors make a much 
bigger difference, though. Compression is generally considered far 
more effective. Compressing your data reduces the size of the blocks, 
eliminating this benefit.

Repairing VDEVs

When a provider that belongs to a redundant VDEV fails, the VDEV it 
is a member of becomes “degraded.” A degraded VDEV still has all of 
its data, but performance might be reduced. Chapter 5 covers replac-
ing failed providers.

After the provider is replaced, the system must store data on the 
new provider. Mirrors make this easy: read the data from the remain-
ing disk(s) and write it to the replacement. For RAID-Z, the data must 
be recalculated from parity.

The way that ZFS combines RAID and the filesystem means that 
ZFS knows which blocks contain data, and which blocks are free. In-
stead of having to write out every byte on to the new drive, ZFS needs 
to write only the blocks that are actually in use. A traditional RAID 
controller has no understanding or awareness of the filesystem layer, 
so it has no idea what is in use and what is free space. When a RAID 
controller replaces a disk, it must copy every byte of the new disk. This 
means a damaged ZFS RAID-Z heals much more quickly, reducing the 



Chapter 2: Virtual Devices

33

chance of a concurrent failure that could cause data loss. We discuss 
ZFS recovery in Chapter 5.

RAID-Z versus traditional RAID

RAID-Z has a number of advantages compared to traditional RAID, 
but the biggest ones come from the fact that ZFS is the volume manag-
er and the filesystem in addition to the disk redundancy layer.

Back in the day, filesystems could only work on one disk. If you 
had two disks, you needed two separate filesystems. Traditional RAID 
let you combine multiple disks into one virtual disk, permitting the 
creation of massive disks as large as 100 MB, or even bigger! Then the 
operating system puts its own filesystem on top of that, without any 
understanding of how the blocks will be laid out on the physical disks. 
At the same time, RAID could provide fault tolerance. Given the lim-
itations of hardware and software at the time, RAID seemed a pretty 
good bet.

By combining the filesystem and the volume manager, ZFS can see 
exactly where all data lies and how the storage layer and the data in-
teract. This allows ZFS to make a number of important decisions, such 
as ensuring that extra copies of important data such as ditto blocks 
(Chapter 3) are stored on separate disks. It does no good to have two 
or three copies of your critical data all on one underlying storage pro-
vider that can be wiped out by a single hardware failure. ZFS goes so 
far as to put the ditto blocks on adjacent disks, because it is statistically 
less likely that if two disks fail concurrently, they will be neighbors.

Traditional RAID can suffer from a shortcoming known as the 
“write hole,” where two-step operations get cut short halfway through. 
RAID 5 and 6 devices chunk up data to be written to all of the data 
disks. Once this operation finishes, a parity block is calculated and 
stored on the parity disk. If the system crashes or the power is cut after 



Chapter 2: Virtual Devices

34

the data is written but before the parity is written, the disk ends up in 
an indeterminate state. When the system comes back up, the data does 
not match the parity. The same thing can happen with mirrored drives 
if one drive finishes updating and the other does not.

Write hole problems are not noticed until you replace a failed disk. 
The incorrect parity or incorrect mirror results in the RAID device 
returning garbage data to the filesystem. Traditional filesystems return 
this garbage data as the contents of your file.

ZFS solves these problems with copy-on-write and checksums. 
Copy-on-write (Chapter 7) means data is never overwritten in place. 
Each update is transactional, and either completes fully or is not per-
formed, returning the system to the state it was in before the update. 
ZFS also has checksums, so it can detect when a drive returns inval-
id data. When ZFS detects invalid data it replaces that data with the 
correct data from another source, such as additional copies of the 
data, mirrored drives, or RAID-Z parity. Combined, these create ZFS’ 
self-healing properties.

Special VDEVs

Pools can use special-purpose VDEVs to improve the performance of 
the pool. These special VDEV types are not used to persistently store 
data, but instead temporarily hold additional copies of data on faster 
devices.
Separate Intent Log (SLOG, ZIL)

ZFS maintains a ZFS Intent Log (ZIL) as part of the pool. Similar to 
the journal in some other filesystems, this is where it writes in-prog-
ress operations, so they can be completed or rolled back in the event of 
a system crash or power failure. The ZIL is subject to the disk’s normal 
operating conditions. The pool might have a sudden spike in use or 
latency related to load, resulting in slower performance.



Chapter 2: Virtual Devices

35

One way to boost performance is to separate the ZIL from the 
normal pool operations. You can use a dedicated device as a Separate 
Intent Log, or SLOG, rather than using a regular part of the pool. The 
dedicated device is usually a small but very fast device, such as a very 
high-endurance SSD.

Rather than copying data from the SLOG to the pool’s main stor-
age in the order it’s received, ZFS can batch the data in sensible groups 
and write it more efficiently.

Certain software insists on receiving confirmation that data it 
writes to disk is actually on the disk before it proceeds. Databases of-
ten do this to avoid corruption in the event of a system crash or power 
outage. Certain NFS operations do the same. By writing these requests 
to the faster log device and reporting “all done,” ZFS accelerates these 
operations. The database completes the transaction and moves on. You 
get write performance almost at an SSD level, while using inexpensive 
disk as the storage media.

You can mirror your ZIL to prevent data loss.

Cache (L2ARC)

When a file is read from disk, the system keeps it in memory until the 
memory is needed for another purpose. This is old technology, used 
even back in the primordial BSD days. Look at top(1) on a UFS-based 
BSD system and you’ll see a chunk of memory labeled Buf. That’s the 
buffer cache.

The traditional buffer cache was designed decades ago, howev-
er. ZFS has an Adaptive Replacement Cache, or ARC, designed for 
modern hardware, that gives it more speed. The ARC retains the most 
recently and frequently accessed files.

Very few modern systems have enough RAM to cache as much as 
they want, however. Just as ZFS can use a SLOG to accelerate writes, 



Chapter 2: Virtual Devices

36

it can use a very fast disk to accelerate reads. This is called a Level 2 
ARC, or L2ARC.

When an object is used frequently enough to benefit from caching, 
but not frequently enough to rate being stored in RAM, ZFS can store 
it on a cache device. The L2ARC is typically a very fast and high-en-
durance SSD or NVMe device. Now, when that block of data is re-
quested, it can be read from the faster SSD rather than the slower disks 
that make up the rest of the pool. ZFS knows which data has been 
changed on the back-end disk, so it can ensure that the read cache is 
synchronized with the data on the storage pool.

How VDEVs Affect Performance

Each different type of VDEV performs differently. Benchmarking and 
dissecting disk performance is a complex topic that would merit a 
great big textbook, if anyone would be bothered to read it. Any specific 
advice we were to give here would quickly become obsolete, so let’s 
just discuss some general terms.

One common measurement is Input/Output Per Second or IOPS, 
the number of distinct operations the drive can perform each second. 
Spinning drive IOPS are usually physically limited by how quickly the 
read/write head can move from place to place over the platter. Solid 
state disks have such excellent performance because they don’t need to 
physically move anything.

The number of non-parity spindles constrains streaming read and 
write performance of an undamaged pool. “Streaming” performance 
boils down to the number of megabytes per second (MB/s) the drive 
can read or write. When a drive reads or writes data sequentially, 
the heads do not have to seek back and forth to different locations. 
It is under these conditions that a drive will achieve its best possi-



Chapter 2: Virtual Devices

37

ble streaming performance, giving the highest throughput. Spindle 
count affects both random and streaming performance. An array of 
12 one-terabyte (12 x 1 TB) drives usually outperforms an array of six 
two-terabyte (6 x 2 TB) drives because the greater spindle and head 
counts increase both IOPS and streaming performance. Having more 
heads means that ZFS can be reading from, or writing to, more dif-
ferent locations on the disks at once, resulting in greater IOPS perfor-
mance. More spindles mean more disks working as fast as they can to 
read and write your data. The greater number of drives require a larger 
shelf or chassis, more power, and more controllers, however.

Other common measurements include read bandwidth, write 
bandwidth, space efficiency, and streaming performance.

Generally speaking, mirrors can provide better IOPS and read 
bandwidth, but RAID-Z can provide better write bandwidth and much 
better space efficiency. 

A pool with multiple VDEVs stripes its data across all the VDEVs. 
This increases performance but might cost space, as each individual 
VDEV has its own redundant disks. A pool with multiple VDEVs 
probably has increased reliability and fault tolerance. While ZFS’ 
redundancy is all at the VDEV level, a pool with multiple redundant 
VDEVs can probably withstand more disk failures. The more VDEVs 
you have in a pool, the better the pool performs.

Let’s go through some common VDEV configurations and see how 
the various possible arrangements affect performance and capacity. 
Assume we’re using a set of modest commodity 1 TB spinning disks. 
Each disk is capable of 250 IOPS and streaming read/writes at 100 
MB/s.



Chapter 2: Virtual Devices

38

One Disk

With only one disk, there is only one possible configuration, a single 
ZFS stripe VDEV. This is the most basic configuration, and provides 
no fault tolerance. If that one disk dies, all of your data is gone. 

Table 1: Single Disk Virtual Device Configurations

 Config	 Read	 Write	 Read	 Write 	 Usable	 Fault
	 IOPS	 IOPS	 MB/s	 MB/s	 Space	 Tolerance
 Stripe	 250	 250	 100	 100	 1 TB (100%)	 none

The performance characteristics of a one-disk stripe device look 
suspiciously like the characteristics of the underlying disk. Weird, 
huh?

Two Disks

If your system has two disks, you can build your pool out of two stripe 
VDEVs or a single mirror VDEV.

Striped VDEVs double the available storage and bandwidth, but 
also double the risk of failure. ZFS spreads the blocks of each file over 
the two disks. If either disk fails, all of the data is unusable.

Using a single mirrored VDEV stores each block of data on both 
disks. This maintains the improved read performance, as blocks can 
be read from both disks at once. But you get only the capacity of the 
smallest disk. Write performance is limited to the speed of the slowest 
disk. One disk can fail, however, and the pool will still be usable.

Table 2: Two-Disk Virtual Device Configurations

Config	 Read	 Write	 Read	 Write 	 Usable	 Fault
	 IOPS	 IOPS	 MB/s	 MB/s	 Space	 Tolerance
 2 x Stripe	 500	 500	 200	 200	 2 TB (100%)	 none
 1 x 2 disk Mirror	 500	 250	 200	 100	 1 TB (50%)	 1

As the table shows, our mirror pool gets half the write perfor-
mance of the striped pool and has half the space.



Chapter 2: Virtual Devices

39

Three Disks

Three disks means more options, including a deeper mirror and 
RAID-Z. You could also use a pool of three stripe disks, but the odds 
of failure are much higher.

A deeper mirror has more disks, providing more fault tolerance 
and improved read performance. More spindles and heads mean that 
the VDEV can read data from the least busy of the three drives, serv-
ing random reads more quickly. Write performance in a mirror is still 
limited to the slowest of the drives in the mirror. 

RAID-Z1 offers better space efficiency, as the fault tolerance re-
quires only one of the disks in the VDEV. Data is spread across all of 
the drives, so they must work together to perform reads and writes. 
Spreading the data across all the drives improves streaming write per-
formance. Unlike a mirror, in RAID-Z all drives can write their share 
of data simultaneously, instead of each drive writing identical data.

Table 3: Three-Disk Virtual Device Configurations

 Config	 Read	 Write	 Read	 Write 	 Usable	 Fault
	 IOPS	 IOPS	 MB/s	 MB/s	 Space	 Tolerance
 1 x 3 disk Mirror	 750	 250	 300	 100	 1 TB (33%)	 2
 1 x 3 disk RAID-Z1	 250	 250	 200	 200	 2 TB (66%)	 1

Note here that IOPS don’t necessarily scale to actual read/write 
performance. A mirror VDEV has three times the read IOPS of a 
RAID-Z1 because the head in each drive can work independently, 
whereas in RAID-Z the heads must work together. In megabytes per 
second mirrors have the advantage of using all of their disks’ through-
put for data, whereas RAID-Z1 loses one disk’s worth of throughput 
because of the parity data. A three-disk mirror also writes half as many 



Chapter 2: Virtual Devices

40

MB/s because it writes the same data to every disk, whereas RAID-Z1 
can spread the writes out over all the disks but loses some throughput 
to parity.

Four or Five Disks

With four or five disks, you get even more options. 
Multiple mirror VDEVs (similar to traditional RAID 10) provide 

the best possible performance for random I/O workloads like databas-
es. When you divide four disks into two mirror VDEVs of two disks 
each, ZFS stripes the writes across both mirrors. One mirror holds half 
of your data, and the other mirror the other half. This helps mitigate 
the write bottleneck of mirrors, while still providing the impressive 
read performance.

With four disks, RAID-Z2 becomes an option. RAID-Z2’s two par-
ity disks mean that the VDEV can continue to operate with the loss of 
any two disks. When compared to a mirror with the same number of 
disks, the performance is worse; however, it no longer matters which 
two disks fail concurrently.

At five disks, we can deploy RAID-Z3. A RAID-Z3 VDEV can 
survive the loss of any three disks. A RAID-Z3 exchanges performance 
for fault tolerance.

And RAID-Z1 remains an option, of course.

Table 4: Four- or Five-Disk Virtual Device Configurations

	 Disks	 Config	 Read	 Write	 Read	 Write 	 Usable	 Fault
			   IOPS	 IOPS	 MB/s	 MB/s	 Space	 Tolerance
	 4	 2 x 2 disk Mirror	 1000	 500	 400	 200	 2 TB (50%)	 2 (1/VDEV)
	 4	 1 x 4 disk RAID-Z1	 250	 250	 300	 300	 3 TB (75%)	 1
	 4	 1 x 4 disk RAID-Z2	 250	 250	 200	 200	 2 TB (50%)	 2
	 5	 1 x 5 disk RAID-Z1	 250	 250	 400	 400	 4 TB (80%)	 1
	 5	 1 x 5 disk RAID-Z2	 250	 250	 300	 300	 3 TB (60%)	 2
	 5	 1 x 5 disk RAID-Z3	 250	 250	 200	 200	 2 TB (40%)	 3



Chapter 2: Virtual Devices

41

Note how the streaming (MB/s) read and write performance of 
RAID-Z1 compares with RAID-Z2, and how the performance of 
RAID-Z3 compares to both. Adding a parity disk means sacrificing 
that disk’s throughput.

The fault tolerance of multiple mirror VDEVs is slightly tricky. Re-
member, redundancy is per-VDEV, not per pool. Each mirror VDEV 
still provides n - 1 fault tolerance. As long as one drive in each mirror 
VDEV still works, all data is accessible. With two two-disk mirror 
VDEVs in your pool, you can lose one disk from each VDEV and keep 
running. If you lose two disks from the same VDEV, however, the pool 
dies and all data is lost.

Six to Twelve Disks

With large numbers of disks, the decision shifts to balancing fault tol-
erance, space efficiency, and performance.

Six disks could become three two-disk mirror VDEVs, giving you 
a fair amount of space and good write performance. You could opt for 
a pair of three-disk mirror VDEVs, giving you less space, but allowing 
two disks out of each set of three to fail without risking data loss. Or 
they could become a RAID-Z VDEV. 

Get many more than six disks and you can have multiple RAID-Z 
VDEVs in a pool. A dozen disks can be operated together as a single 
VDEV giving the most available space, or can be split into two sepa-
rate VDEVs, providing less usable space but better performance and 
more fault tolerance. 



Chapter 2: Virtual Devices

42

Table 5: Six- to Twelve-Disk Virtual Device Configurations

	 Disks	 Config	 Read	 Write	 Read	 Write 	 Usable	 Fault
			   IOPS	 IOPS	 MB/s	 MB/s	 Space	 Tolerance

	 6	 3 x 2 disk Mirror	 1500	 750	 600	 300	 3 TB (50%)	 3 (1/VDEV)
	 6	 2 x 3 disk Mirror	 1500	 500	 600	 200	 2 TB (33%)	 4 (2/VDEV)
	 6	 1 x 6 disk RAID-Z1	 250	 250	 500	 500	 5 TB (83%)	 1
	 6	 1 x 6 disk RAID-Z2	 250	 250	 400	 400	 4 TB (66%)	 2
	 6	 1 x 6 disk RAID-Z3	 250	 250	 300	 300	 3 TB (50%)	 3
	 12	 6 x 2 disk Mirror	 3000	 1500	 1200	 600	 6 TB (50%)	 6 (1/VDEV)
	 12	 4 x 3 disk Mirror	 3000	 1000	 1200	 400	 4 TB (33%)	 8 (2/VDEV)
	 12	 1 x 12 disk RAID-Z1	 250	 250	 1100	 1100	 11 TB (92%)	 1
	 12	 2 x 6 disk RAID-Z1	 500	 500	 1000	 1000	 10 TB (83%)	 2 (1/VDEV)
	 12	 3 x 4 disk RAID-Z1	 750	 750	 900	 900	 9 TB (75%)	 3 (1/VDEV)
	 12	 1 x 12-disk RAID-Z2	 250	 250	 1000	 1000	 10 TB (83%)	 2
	 12	 2 x 6-disk RAID-Z2	 500	 500	 800	 800	 8 TB (66%)	 4 (2/VDEV)
	 12	 1 x 12-disk RAID-Z3	 250	 250	 900	 900	 9 TB (75%)	 3
	 12	 2 x 6-disk RAID-Z3	 500	 500	 600	 600	 6TB (50%)	 6 (3/VDEV)

Using multiple RAID-Z devices in a pool is much like using mul-
tiple mirror devices in a pool. Tolerance to disk failures is per-VDEV, 
not per pool. Your 12-disk array of two six-disk RAID-Z2 VDEVs 
can handle the loss of four disks, provided you lose only two disks per 
VDEV.

Many Disks

Common advice is to use no more than nine to 12 disks per VDEV. 
You can use more, but ZFS isn’t designed for that. Let’s look at an array 
of 36 disks to see some possible arrangements and their performance 
impact.



Chapter 2: Virtual Devices

43

Table 6: 36-Disk Virtual Device Configurations

Config	 Read	 Write	 Read	 Write 	 Usable	 Fault
	 IOPS	 IOPS	 MB/s	 MB/s	 Space	 Tolerance

 18 x 2 disk Mirror	 9000	 4500	 3600	 1800	 18 TB (50%)	 18 (1/VDEV)
 12 x 3 disk Mirror	 9000	 3000	 3600	 1200	 12 TB (33%)	 24 (2/VDEV)
 1 x 36 disk RAID-Z2	 250	 250	 3400	 3400	 34 TB (94%)	 2
 2 x 18 disk RAID-Z2	 500	 500	 3200	 3200	 32 TB (89%)	 4 (2/VDEV)
 4 x 9 disk RAID-Z2	 1000	 1000	 2800	 2800	 28 TB (78%)	 8 (2/VDEV)
 6 x 6 disk RAID-Z2	 1500	 1500	 2400	 2400	 24 TB (66%)	 12 (2/VDEV)

By using more VDEVs, you can create screaming fast pools. A 
pool of 18 two-disk mirror VDEVs can read data more quickly than 
most anything else—and it can lose 18 drives before failing! Yes, they 
have to be the right 18 drives, but if you have two disk shelves with 
different power supplies, that’s entirely possible. On the other hand, if 
the wrong two disks in that pool fail, your entire pool dies.

Adding parity or mirrors to each VDEV increases reliability. A 
greater number of VDEVs increases performance. Your job is to juggle 
these two characteristics to support your environment. 

Each VDEV is limited to the random read/write performance of 
the slowest disk, so if you have too many disks in one VDEV, you are 
surrendering performance for only a small gain in space efficiency. 
While you can add L2ARC and SLOG devices to improve perfor-
mance, it’s best to avoid these problems altogether.

So if more VDEVs are always better, why is the 6 x 6 disk RAID-Z2 
pool so much slower at reading and writing compared to the 1 x 36 
disk RAID-Z2 pool? The answer lies in the fault tolerance column. 
When you have more RAID-Z2 VDEVs, you have more redundancy, 
and you can survive more failures. When a disk is providing fault tol-
erance, it is storing an extra copy of your data, so it can replace a copy 



Chapter 2: Virtual Devices

44

that is lost when a disk fails. The system recalculates and stores parity 
data every time the data changes. Parity data isn’t used when read-
ing files unless the original copy is missing. The disks used for parity 
no longer contribute to streaming performance. You can restore that 
performance by adding more disks. A 6 x 8 disk RAID-Z2 pool would 
have the equivalent of 36 data disks and 12 parity disks, and be able to 
outperform the 1 x 36 disk RAID-Z2 pool.

Let’s take what you know about VDEVs, and create some actual 
pools with them.



45

Chapter 3: Pools
ZFS pools, or zpools, form the middle of the ZFS stack, connecting 
the lower-level virtual devices to the user-visible filesystem. Pools are 
where many filesystem-level tasks happen, such as allocating blocks 
of storage. At the ZFS pool level you can increase the amount of space 
available to your ZFS dataset, or add special virtual devices to improve 
reading or writing performance.

ZFS Blocks

Traditional filesystems such as UFS and extfs place data on the disk in 
fixed-size blocks. The filesystem has special blocks, called inodes, that 
index which blocks belong to which files. Even non-Unix filesystems 
like NTFS and FAT use similar structures. It’s a standard across the 
industry.

ZFS does not pre-configure special index blocks. It only uses stor-
age blocks, also known as stripes. Each block contains index informa-
tion to link the block to other blocks on the disk in a tree. ZFS com-
putes hashes of all information in the block and stores the information 
in the block and in the parent block. Each block is a complete unit in 
and of itself. A file might be partially missing, but what exists is coher-
ent.

Not having dedicated special index blocks sounds great, but surely 
ZFS needs to start somewhere! Every data tree needs a root. ZFS uses 



Chapter 3: Pools

46

a special block called an uberblock to store a pointer to the filesystem 
root. ZFS never changes data on the disk—rather, when a block chang-
es, it writes a whole new copy of the block with the modified data. (We 
discuss this copy-on-write behavior in depth in Chapter 6.) A data 
pool reserves 128 blocks for uberblocks, used in sequence as the un-
derlying pool changes. When the last uberblock gets used, ZFS loops 
back to the beginning.

The uberblocks are not the only critical blocks. ZFS copies blocks 
containing vital information like filesystem metadata and pool data 
into multiple ditto blocks. If a main block is damaged, ZFS checks the 
ditto block for a backup copy. Ditto blocks are stored as far as possi-
ble from each other, either on separate disks or on separate parts of 
a single disk. (ZFS has no special ability to see the layout of the disk 
hardware, but it makes a valiant guess.)

ZFS commits changes to the storage media in transaction groups, 
or txg. Transaction groups contain several batched changes, and have 
an incrementing 64-bit number. Each transaction group uses the next 
uberblock in line. ZFS identifies the most current uberblock out of the 
group of 128 by looking for the uberblock with the highest transaction 
number.

ZFS does use some blocks for indexing, but these znodes and 
dnodes can use any storage block in the pool. They aren’t like UFS2 or 
extfs index nodes, assigned when creating the filesystem.

Stripes, RAID, and Pools

You’ve certainly heard the word stripe in connection with storage, 
probably many times. A ZFS pool “stripes” data across the virtual 
devices. A traditional RAID “stripes” data across the physical devices. 
What is a stripe, and how does it play into a pool?



Chapter 3: Pools

47

A stripe is a chunk of data that’s written to a single device. Most 
traditional RAID uses a 128 KB stripe size. When you’re writing a file 
to a traditional RAID device, the RAID software writes to each drive 
in 128 KB chunks, usually in parallel. Similarly, reads from a tradition-
al RAID array take place in increments of the stripe size. While you 
can customize the stripe size to fit a server’s workload, the hardware’s 
capacity and the software’s limitations greatly restrict stripe size.

Stripes do not provide any redundancy. Traditional RAID gets its 
redundancy from parity and/or mirroring. ZFS pools get any redun-
dancy from the underlying VDEVs.

ZFS puts stripes on rocket-driven roller skates. A ZFS dataset uses 
a default stripe size of 128 KB, but ZFS is smart enough to dynamically 
change that stripe size to fit the equipment and the workload. If a 32 
KB stripe size makes sense for a particular chunk of data, but 64 KB 
makes sense for another piece of data, ZFS uses the appropriate size 
for each one. The ZFS developers have completed support for stripe 
sizes up to 1 MB. This feature is already available in FreeBSD-CUR-
RENT, and is expected to be included in FreeBSD 10.2 and later.

A ZFS pool has much more flexibility than a traditional RAID. 
Traditional RAID has a fixed and inflexible data layout (although some 
hardware vendors have their own proprietary RAID systems with 
more flexibility). The RAID software writes to each disk in a determin-
istic order. ZFS has more flexibility. If you have a five-disk traditional 
RAID array, that array will always have five disks. You cannot change 
the array by adding disks. While you might be able to exchange the 
disks for larger disks, doing so won’t change the array’s size. Creating a 
RAID device petrifies the array’s basic characteristics.

ZFS pools not only tolerate changes, but they’re designed to easily 
accept additions as well. If you have a ZFS pool with five VDEVs and 
you want to add a sixth, that’s fine. ZFS accepts that VDEV and starts 



Chapter 3: Pools

48

striping data on that device without blinking. You cannot add storage 
to RAID-Z VDEVs, only VDEVs to pools. The number of providers in 
a RAID-Z VDEV is fixed at creation time.

With ZFS, though, that virtual device can be any type of VDEV 
ZFS supports. Take two VDEVs that are mirror pairs. Put them in 
a single zpool. ZFS stripes data across them. In traditional RAID, a 
stripe on top of mirrors would be called RAID-10. For most use cases, 
RAID-10 is the highest-performance RAID you can have. Where 
traditional RAID-10 has a fixed size, however, you can add additional 
VDEVs to a pool. Expanding your RAID-10 means backing up your 
data, adding disks to the RAID array, and restoring the data. Expand-
ing your zpool means adding more VDEVs to the pool. RAID-10 also 
allows a depth of up to two disks, where ZFS allows a depth of up to 
264.

Remember, though, that pools do not provide any redundancy. All 
ZFS redundancy comes from the underlying VDEVs.

Viewing Pools

To see all of the pools on your system, run zpool list.
# zpool list
NAME   SIZE  ALLOC  FREE  EXPANDSZ  FRAG  CAP  DEDUP  HEALTH  ALTROOT
db    2.72T  1.16G  2.72T        -    0%   0%  1.00x  ONLINE  -

zroot  920G  17.3G  903G         -    2%   1%  1.00x  ONLINE  -

The first column gives the pool name. This system has two pools, 
db and zroot.

The next three columns give size and usage information on each 
pool. You’ll get the size, the amount of space used, and the amount of 
free space.

The EXPANDSZ column shows if the underlying storage providers 
have any free space. You might be able to expand the amount of space 
in this pool, as discussed in Chapter 5. This space includes blocks that 



Chapter 3: Pools

49

will go to parity information, so expanding the pool won’t give you 
this much usable space.

Under FRAG you’ll see the amount of fragmentation in this pool. 
Fragmentation degrades filesystem performance.

The CAP column shows what percentage of the available space is 
used.

The DEDUP entry shows the amount of deduplication that’s hap-
pened on the filesystem. Chapter 6 covers deduplication.

The pool’s HEALTH column reflects the status of the underlying 
VDEVs. If a storage provider fails, your first hint will be any status 
other than ONLINE. Chapter 5 discusses pool health.

Finally, the ALTROOT shows where this pool is mounted, or its 
“alternate root.” Chapter 4 covers alternate roots.

If you want to know the information for a specific pool or pools, 
list the pool names after zpool list. This shows only the output of the 
storage pools prod and test.

# zpool list prod test

If you want more detailed information on your pools, including 
the utilization of underlying drives, add the -v option. You must give 
the option before any pool name.

# zpool list -v zroot

The -p flag prints numbers in bytes rather than the more hu-
man-friendly format, and -H eliminates the column headers. These 
options are useful for automation and management scripts.

For a more detailed view of a system’s pools, including the under-
lying VDEV layout, use zpool status. We’ll see lots of examples of 
zpool status when we create pools.

To briefly check your pools, run zpool status -x.



Chapter 3: Pools

50

# zpool status -x
all pools are healthy

Sometimes, that’s all you need.

Multiple VDEVs

A pool can include multiple VDEVs. Adding VDEVs not only increas-
es the space available in the pool but also increases the performance. 
A pool splits all writes between the VDEVs. A small file might need 
only a single stripe, which would go on a single VDEV, but if you’re 
writing a whole bunch of small files ZFS divides the writes between 
the VDEVs.

Chapter 2 talks about the performance of various VDEV types. 
That performance percolates up into the pool level. If you’re reading a 
large file from across multiple VDEVs, the file read finishes once the 
last (usually the slowest) drive finishes calling up its part of the data. If 
your pool includes multiple VDEVs, however, that slowest drive con-
tains only a fraction of the file, somewhat reducing the time needed to 
access it. Remember, the slowest part of reading data from a storage 
provider is seeking the head to the correct piece of disk to call it from, 
so it’s not as simple as dividing the time by the number of VDEVs—
but additional VDEVs in a pool do improve performance.

Best practices call for using only identical storage VDEVs in a 
pool. If you have a bunch of mirrored VDEVs in your pool, don’t go 
adding a RAID-Z3 device to the pool. Mixed storage VDEVs foul 
up pool performance terribly and make ZFS work harder as it opti-
mally spreads the data between the devices. You can do this, but you 
shouldn’t.6

6	  ZFS follows the Unix tradition of not preventing you from do-
ing daft things, because that would also prevent you from doing clever 
things.



Chapter 3: Pools

51

Removing VDEVs

You cannot currently remove a VDEV from a pool. Each VDEV has 
data on it. You can remove disks from certain types of VDEV, but the 
VDEV as a whole has critical pool data on it. For example, you can 
remove a disk from a mirror VDEV, but you cannot remove the entire 
VDEV from the pool. Normally you’d remove a disk from a VDEV 
only when it fails. Forcibly removing a VDEV from a pool—say, by 
pulling the storage providers—destroys the pool. The ability to remove 
a VDEV from a stripe or mirror pool is expected to arrive in OpenZFS 
in late 2015, but it’s not yet possible. Support for removing RAID-Z 
devices is on the road map, but work has not yet started.

This means you cannot shrink a pool. If you want to make a pool 
smaller, you must move the data on that pool to a new, smaller pool 
and then recycle the disks from the original pool.

Pools Alignment and Disk Sector Size

ZFS expects to have an in-depth knowledge of the storage medium, in-
cluding the sector size of the underlying providers. If your pools don’t 
use the correct sector size, or if ZFS’ sectors don’t align to the physi-
cal sectors on the disk, your storage performance will drop by half or 
more. These are orthogonal problems, but failing to plan for either one 
will crush your system.

We’ll discuss partition alignment and ZFS sector size separately.

Partition Alignment

Disks report their sector size, so this isn’t a problem—except when it 
is. Many disks report that they have 512-byte sectors, but they really 
have 4096-byte (4K) sectors. FreeBSD Mastery: Storage Essentials dis-
cusses this in depth, so we won’t go through this in painful detail here.



Chapter 3: Pools

52

Older partition management schemes, like the venerable Master 
Boot Record (MBR), included all sorts of hairy math to make sure that 
disk partitions conformed to the disk’s physical characteristics. Mod-
ern partition schemes like GUID Partition Tables (GPT) know that 
physical disks speak with forked tongue and that those old MBR-based 
restrictions are utterly bogus, and so require only that partitions fill 
complete sectors.

But when a disk lies about its sector size, gpart(8) lets you create 
partitions that begin or end halfway through a physical sector. Each 
read or write to the disk requires touching two physical sectors. This 
wreaks havoc on performance.

Certain SSDs also expect partitions to be aligned along 128 KB or 
1 MB boundaries.

The easy way to avoid alignment problems is to make all GPT par-
titions begin and end on megabyte boundaries. Add the -a 1m argu-
ment to your gpart add commands.

ZFS Sector Size

ZFS defaults to assuming a 512-byte sector size. Using a 512-byte 
filesystem sector size on a disk with physical 512-byte sectors is per-
fectly fine. Using a 512-byte filesystem sector on a 4K-sector disk 
makes the hardware work harder. Assume you want to write 4 KB of 
data on such a disk. Rather than telling the hard drive to write a single 
physical sector, the hard drive is told to modify the first eighth of the 
sector, then the second eighth, then the third, and so on. Doing a 512-
byte write to a 4 KB sector means reading the entire 4 KB, modifying 
the small section, then writing it back. This is much slower than just 
overwriting the entire sector. Your performance plummets. If ZFS uses 
a 4K sector size on a disk with 512-byte sectors, the disk hardware 



Chapter 3: Pools

53

breaks up the access requests into physical sector sizes, at very little 
performance cost.

While using a larger sector size does not impact performance, it 
does reduce space efficiency when you’re storing many small files. If 
you have a whole bunch of 1 KB files, each occupies a single sector.

ZFS sector size is a property of each virtual device in a pool. You 
cannot change a virtual device’s sector size, even when exporting the 
pool or replacing a failed drive.

Combined, these two facts mean that it’s almost always preferable 
to force ZFS to use 4K sectors, regardless of the sector size reported by 
the underlying disk. Using the larger ZFS sector size won’t hurt perfor-
mance except on certain specific database operations, and even then 
only when using disks that really and for true use 512-byte sectors.

ZFS uses the sector size of the device that reports the largest sector 
size. If all of your devices claim to use 512-byte sectors, and you don’t 
set a larger sector size, a virtual device built out of those devices will 
use 512-byte sectors. Including a single device with 4096-byte sectors 
in your VDEV forces ZFS to use 4096-byte sectors.

Don’t trust that your 4K-sector devices report their sector size. Tell 
ZFS to insist on always using 4K sectors.

A pool variable called the ashift controls sector size. An ashift of 9 
tells ZFS to use 512-byte sectors. An ashift of 12 tells ZFS to use 4096-
byte sectors. (Why 9 and 12? 29 is 512, while 212 is 4096.)7 The way you 
set ashift depends on your FreeBSD release.

FreeBSD 10.1 and Newer Ashift

Set the system’s default ashift with the sysctl vfs.zfs.min_auto_ashift, 
either in /etc/sysctl.conf or at the command line.

# sysctl vfs.zfs.min_auto_ashift=12

7	  Because everyone sees “9” and thinks 29, don’t they?



Chapter 3: Pools

54

Use the command line during installation, but also set it permanent-
ly in /etc/sysctl.conf so you don’t forget when creating new pools.

This book’s examples assume that you’re using FreeBSD 10.1 or 
newer. For older FreeBSD versions, you’ll need to set the ashift each 
time rather than setting the sysctl.

Older FreeBSD Ashift

FreeBSD versions older than 10.1 lack the ashift sysctl found in newer 
FreeBSD versions, so you have to rely on ZFS’ internal sector-size-de-
tection code. This code reads the sector size from the underlying 
storage medium—namely, the storage provider.

This case highlights the critical difference between a provider 
and a disk. FreeBSD lets you create a pass-through device with the 
GEOM module gnop(8). The gnop module lets you insert arbitrary 
data between your storage devices—in this case, enforcing a sector 
size. You create a gnop device that says, “Pass everything through 
transparently, but insist on a 4096-byte sector size.” Use that device to 
create your zpool. Here, we add a gnop device to the partition labeled 
/dev/gpt/zfs0.
# gnop create -S 4096 /dev/gpt/zfs0

This creates the device /dev/gpt/zfs0.nop. Use this provider as 
one member of the VDEV, and ZFS will pick up on the sector size for 
that VDEV. The rest of this chapter discusses creating various ZFS 
pools, but here’s an example of using this device when creating a mir-
rored pool.
# zpool create compost mirror gpt/zfs0.nop gpt/zfs1

Providers created with gnop(8) are temporary, disappearing at re-
boot. As gnop(8) passes everything through to the device, though, ZFS 
will find metadata on the underlying device. ZFS will no longer try to 
detect the disk’s sector size, as it has already set its sector size.



Chapter 3: Pools

55

Creating Pools and VDEVs

Create pools and virtual devices simultaneously with zpool(8). You’ll 
also use zpool(8) to add VDEVs to an existing pool and swap out 
failed devices, but we’ll cover all that in Chapter 5. Here we’ll create 
striped pools, mirrors, and pools on each of the RAID-Z devices. 
Chapter 2 discusses each VDEV type.

You need to set the ashift only once before creating as many pools 
as you like. You don’t have to reset it each time you create a pool. We 
expect most readers to skip through this book until they find the entry 
for the type of pool they create, though, so we listed “set ashift” in all 
of them.

Sample Drives

Chapter 0 recommends labeling drives by physical location and serial 
number, so you can easily identify failed hardware. For production, 
that’s very useful. For a book, however, longer device names make 
comprehension more difficult. Our examples use GPT labels of zfs and 
a number. This chapter uses six 1 TB drives, each with a 1 GB swap 
partition and a large ZFS partition, created with gpart(8).
# gpart create -s gpt da0
# gpart add -a 1m -s1g -l sw0 -t freebsd-swap da0
# gpart add -a 1m -l zfs0 -t freebsd-zfs da0

The resulting disk has the following partitions.
# gpart show -l da0
=>      40  1953525088  da0  GPT  (932G)
        40        2008    -  free -  (1.0M)
      2048     2097152    1  sw0  (1.0G)
   2099200  1951424512    2  zfs0  (931G)
1953523712        1416    -  free -  (708K)

We manage the ZFS pools with the GPT labels, so the examples 
reference gpt/zfs0 through gpt/zfs5. In production, use meaningful 
labels that map disks to physical locations.



Chapter 3: Pools

56

Striped Pools

Some storage pools don’t need redundancy, but do need lots of space. 
Scratch partitions for engineering and physics computations are 
common use cases for this kind of storage. Use zpool create, the 
pool name, and list the devices in the pool. Remember to set the ashift 
before creating the pool.

Here we create a pool of five storage providers. 
# sysctl vfs.zfs.min_auto_ashift=12
# zpool create compost gpt/zfs0 gpt/zfs1 gpt/zfs2 \
   gpt/zfs3 gpt/zfs4

If the command succeeds, you get no output back. See if the pool 
exists with zpool status.

# zpool status
  pool: compost
 state: ONLINE
  scan: none requested
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
compost	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
gpt/zfs3	 ONLINE	 0	 0	 0
gpt/zfs4	 ONLINE	 0	 0	 0

All five providers appear. Each provider is its own VDEV. This is a 
big pool for a system this size.

This pool stripes data across all the member VDEVs, but the 
VDEVs have no redundancy. Most real-world applications require 
redundancy. The simplest sort of redundancy is the mirror.

Mirrored Pools
Mirrored devices copy all data to multiple storage providers. If any one 
provider on the mirror fails, the pool still has another copy of the data. 
Traditional mirrors have two disks, although more is certainly possible.



Chapter 3: Pools

57

Use the same zpool create command and the pool name. Before 
listing the storage devices, use the mirror keyword. Set the system 
ashift before creating the pool.
# sysctl vfs.zfs.min_auto_ashift=12
# zpool create reflect mirror gpt/zfs0 gpt/zfs1

Check the pool’s configuration with zpool status.
# zpool status
  pool: reflect
 state: ONLINE
  scan: none requested
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
reflect	 ONLINE	 0	 0	 0
mirror-0	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0

errors: No known data errors

The zpool command created a new layer here, something called 
mirror-0. The mirror-0 entry is a VDEV. This VDEV contains two 
devices, gpt/zfs0 and gpt/zfs1.

You can certainly have a mirror with many disks if this fits your 
needs. Too many copies are better than not enough.
# zpool create reflect mirror gpt/zfs0 gpt/zfs1 \
    gpt/zfs2 gpt/zfs3

This might be an example of going too far, however (although we 
do discuss splitting a mirror into multiple pools in FreeBSD Mastery: 
Advanced ZFS.)

RAID-Z Pools

The redundancy you get from mirrors is fast and reliable, but not 
terribly complicated or exciting. RAID-Z offers greater flexibility at a 



Chapter 3: Pools

58

complexity cost, which makes it more exciting.8 Create a RAID-Z pool 
much as you would any other zpool: run zpool create and give the 
pool name, the type, and the storage devices. Here we create a RAID-Z 
(or RAID-Z1) pool.
# sysctl vfs.zfs.min_auto_ashift=12
# zpool create bucket raidz1 gpt/zfs0 gpt/zfs1 gpt/zfs2

The new pool’s status shows a new VDEV, called raidz1-0, with 
three providers.
# zpool status bucket
  pool: bucket
 state: ONLINE
  scan: none requested
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
bucket	 ONLINE	 0	 0	 0
raidz1-0	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0

If any one disk in this pool fails, the data remains intact. Other 
RAID-Z levels have even more redundancy. Here we pull six providers 
into a RAID-Z3. The only difference between creating the RAID-Z3 and 
the RAID-Z1 is the use of raidz3 and the additional devices needed.

# zpool create bucket raidz3 gpt/zfs0 gpt/zfs1 \
   gpt/zfs2 gpt/zfs3 gpt/zfs4 gpt/zfs5

As you might guess by now, the pool’s status shows a new device 
called raidz3-0.

8	  Exciting is a bad word in systems administration.



Chapter 3: Pools

59

# zpool status
  pool: bucket
 state: ONLINE
  scan: none requested
config:

NAME           	STATE  READ WRITE		 CKSUM
bucket	 ONLINE	 0	 0	 0
raidz3-0	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
...

All of these pools have a single VDEV. What if you want multiple 
VDEVs, though?

Multi-VDEV Pools

You can create a pool with multiple VDEVs. The keywords mirror, 
raidz, raidz2, and raidz3 all tell zpool(8) to create a new VDEV. Any 
storage providers listed after one of those keywords goes into creat-
ing a new instance of that VDEV. When one of the keywords appears 
again, zpool(8) starts with a new VDEV.

The opening of this chapter covered striping across multiple mir-
rors, simulating a traditional RAID-10 setup. Here we do exactly that.

# sysctl vfs.zfs.min_auto_ashift=12
# zpool create barrel mirror gpt/zfs0 gpt/zfs1 \
   mirror gpt/zfs2 gpt/zfs3

The first three words, zpool create barrel, tell zpool(8) to in-
stantiate a new pool, named barrel. The mirror keyword says “create a 
mirror.” We then have two storage providers, gpt/zfs0 and gpt/zfs1. 
These storage providers go into the first mirror. The word mirror ap-
pears again, telling zpool(8) that the previous VDEV is complete and 
we’re starting on a new VDEV. The second VDEV also has two storage 
providers, gpt/zfs2 and gpt/zfs3. This pool’s status looks different 
than anything we’ve seen before.



Chapter 3: Pools

60

# zpool status barrel
  pool: barrel
 state: ONLINE
  scan: none requested
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
barrel	 ONLINE	 0	 0	 0
mirror-0	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0

mirror-1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
gpt/zfs3	 ONLINE	 0	 0	 0

The pool has two VDEVs, mirror-0 and mirror-1. Each VDEV 
includes two storage devices. We know that ZFS stripes data across all 
the VDEVs. Stripes over mirrors are RAID-10.

You can also arrange multi-VDEV pools in ways that have no 
common RAID equivalent. While software RAID systems like some of 
FreeBSD’s GEOM classes would let you build similar RAIDs, you won’t 
find them on a hardware RAID card. Here we create a pool that stripes 
data across two RAID-Z1 VDEVs.
# zpool create vat raidz1 gpt/zfs0 gpt/zfs1 gpt/zfs2 \
   raidz1 gpt/zfs3 gpt/zfs4 gpt/zfs5

The first RAID-Z1 VDEV includes three storage providers, gpt/
zfs0, gpt/zfs1, and gpt/zfs2. The second includes gpt/zfs3, gpt/
zfs4, and gpt/zfs5. The zpool vat stripes data across both providers. 
This creates a pool that contains two RAID-Z devices.



Chapter 3: Pools

61

# zpool status vat
...
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
vat	 ONLINE	 0	 0	 0
raidz1-0	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0

raidz1-1	 ONLINE	 0	 0	 0
gpt/zfs3	 ONLINE	 0	 0	 0
gpt/zfs4	 ONLINE	 0	 0	 0
gpt/zfs5	 ONLINE	 0	 0	 0

Each VDEV has its own redundancy.
While mirrors are faster than RAIDZ, you might find that the 

added speed of having multiple VDEVs makes this RAIDZ-based pool 
sufficiently fast for your workload and offers you significantly more 
space. The only way to tell is by creating the pool and testing your 
workload.

Remember, a pool splits all write requests between VDEVs in the 
pool. A single small file might only go to one VDEV, but in aggregate, 
writes are split between VDEVs. Using multiple VDEVs increases 
IOPS and throughput bandwidth.

Using Log Devices

As Chapter 2 discusses, ZFS can improve performance using dedi-
cated write cache devices and/or dedicated read cache devices. These 
dedicated devices are normally very fast, high-endurance SSDs. The 
zpool(8) command calls the write cache a log and the read cache a 
cache.

Use the log and cache keywords to specify these devices when 
creating your pool. Here we create a striped pool, named scratch, with 
both a read and write cache.



Chapter 3: Pools

62

# zpool create scratch gpt/zfs0 log gpt/zlog0 \
   cache gpt/zcache1

The log devices show up in the pool’s status.

# zpool status scratch
...
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
scratch	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0

logs
gpt/zlog0	 ONLINE	 0	 0	 0

cache
gpt/zcache1	 ONLINE	 0	 0	 0

On systems that need high availability, you can mirror these write 
caches. Mirroring the read cache doesn’t make much sense—if you 
lose the read cache, ZFS falls back to reading from the actual pool. 
Losing the ZIL write log can cause data loss, however, so mirroring 
it makes sense. Here we create a stripe of two mirrors using devices 
gpt/zfs0 through gpt/zfs3, with mirrored log devices gpt/zlog0 and 
gpt/zlog1.

# zpool create db mirror gpt/zfs0 gpt/zfs1 mirror \
   gpt/zfs2 gpt/zfs3 log mirror gpt/zlog0 gpt/zlog1

You can add intent log and read cache devices to an existing pool, 
or remove them. If you’re not sure you need the performance boost of 
these devices, try running the pool without them. Make sure that your 
hardware has space to add SSD storage devices later, however!

Mismatched VDEVs

Using different VDEV types within a pool is not advisable, and 
zpool(8) attempts to prevent you from creating such a disaster.



Chapter 3: Pools

63

# zpool create daftie raidz gpt/zfs0 gpt/zfs1 gpt/zfs2 \
   mirror gpt/zfs3 gpt/zfs4 gpt/zfs5
invalid vdev specification
use ‘-f’ to override the following errors:
mismatched replication level: both raidz and mirror 
vdevs are present

The zpool(8) command points out the mistake, and then tells you 
how to insist. We normally take these kinds of errors as a way of saying 
the sysadmin needs more caffeine, but maybe you really intended it. 
Running zpool create -f with the specified VDEV types and storage 
providers tells ZFS that yes, you fully intended to create a malformed 
pool. Hey, it’s your system; you’re in charge.

If ZFS doesn’t want you to do something, you probably shouldn’t. 
When you use –f, you’re creating something that ZFS isn’t designed to 
handle. You can easily create a pool that won’t work well and cannot be 
repaired. 

Reusing Providers

We sometimes create and destroy pools more than once to get them 
right. We might pull disks from one machine and mount them in an-
other. Sometimes we encounter a disk that we’ve used before.

# zpool create db gpt/zfs1 gpt/zfs2 gpt/zfs3 gpt/zfs4
invalid vdev specification
use ‘-f’ to override the following errors:
/dev/gpt/zfs3 is part of exported pool ‘db’

We used this disk in another pool, which we later exported (see 
Chapter 5). The problem disk was used in that pool, and the ZFS label 
remained on the disk. While we erased and recreated the partition 
table, the new partition table happens to be precisely identical to the 
previous one. ZFS easily finds the old metadata in this case.



Chapter 3: Pools

64

If you’re absolutely sure this provider doesn’t have anything im-
portant on it, follow the instructions and force creation of the new 
pool with -f.
# zpool create -f db gpt/zfs1 gpt/zfs2 gpt/zfs3 gpt/zfs4

The ZFS programs can be very picky about where your com-
mand-line flags go, so be sure the -f immediately follows create.

Pool Integrity

One common complaint about ZFS is that it has no filesystem checker, 
such as fsck(8). An offline file checker wouldn’t improve ZFS because 
the online pool integrity checker verifies everything that fsck(8) 
checks for and more. The online checker is also much more effective 
than a traditional filesystem would ever let fsck(8) be. Let’s talk about 
how ZFS ensures file integrity, and then how pool scrubbing helps 
maintain integrity.

ZFS Integrity

Storage devices screw up. When you have trillions of sectors on any 
sort of disk, the odds of a stray cosmic ray striking one hard enough 
to make it stagger around drunkenly go way up—as well as the odds 
of a write error, or a power failure, or a short in a faulty cable, or any 
number of other problems. No filesystem can prevent errors in the 
underlying hardware.

ZFS uses hashes almost everywhere. A hash is a mathematical al-
gorithm that takes a chunk of data and computes a fixed-length string 
from it. The interesting thing about a hash is that minor changes in the 
original data dramatically change the hash of the data. Each block of 
storage includes the hash of its parent block, while each parent block 
includes the hash of all its children.

While ZFS cannot prevent storage provider errors, it uses these 
hashes to detect them. Whenever the system accesses data, it verifies 



Chapter 3: Pools

65

the checksums. ZFS uses the pool’s redundancy to repair any errors 
before giving the corrected file to the operating system. This is called 
self-healing.

If the underlying VDEVs have redundancy, ZFS either recon-
structs the damaged block from RAID-Z or grabs the intact copy from 
the mirror. If both sides of a mirror have errors, ZFS can recover the 
files so long as the same data is not bad on both disks. If the VDEV has 
no redundancy, but a dataset has extra copies of the data (see Chapter 
4), ZFS uses those extra copies instead.

If the underlying VDEV has no redundancy, and the dataset does 
not keep extra copies, the pool notes that the file is damaged and re-
turns an error, instead of returning incorrect data. You can restore that 
file from backup, or throw it away.

While ZFS performs file integrity checks, it also verifies the con-
nections between storage blocks. This is the task performed by fsck(8) 
in traditional filesystems. It’s a small part of data verification, and ZFS 
performs this task continually as part of its normal operation. ZFS 
has an additional advantage over fsck(8) in that it checks only blocks 
that actually exist, rather than used and unused inodes. If you want to 
perform a full integrity check on all data in a pool, scrub it.

The nice thing about hash-based integrity checking is that it catch-
es all sorts of errors, even unexpected ones. Remember, happy filesys-
tems are all alike; every unhappy filesystem is unhappy in its own way.

Scrubbing ZFS

A scrub of a ZFS pool verifies the cryptographic hash of every data 
block in the pool. If the scrub detects an error, it repairs the error if 
sufficient resiliency exists. Scrubs happen while the pool is online and 
in use.



Chapter 3: Pools

66

If your pool has identified any data errors, they’ll show up in the 
zpool’s status. If you’ve run a scrub before, you’ll also see that informa-
tion in the scan line.

...
scan: scrub repaired 0 in 15h57m with 0 errors on Sun 
Feb  8 15:57:55 2015
…
errors: No known data errors
...

This pool has encountered no errors in the data it has accessed. If 
it had found errors, it would have self-healed them. The pool hasn’t 
checked all the data for errors, however—it has checked only the data 
it’s been asked for. To methodically search the entire pool for errors, 
use a scrub. Run zpool scrub and the pool name.
# zpool scrub zroot

Scrubs run in the background. You can see how they’re doing by 
running zpool status.
# zpool status
...
scan: scrub in progress since Tue Feb 24 11:52:23 2015
12.8G scanned out of 17.3G at 23.0M/s, 0h3m to go
0 repaired, 74.08% done

...

A ZFS pool scrubbing its storage runs more slowly than usual. If 
your system is already pushing its performance limits, scrub pools 
only during off-peak hours. If you must cancel an ongoing scrub, run 
zpool scrub -s.
# zpool scrub -s zroot

Be sure to go back and have the system complete its scrub as soon 
as possible.



Chapter 3: Pools

67

Scrub Frequency

ZFS’ built-in integrity testing and resiliency mean that most errors are 
fixable, provided that they’re found early enough for the resiliency to 
kick in. This means that your hardware’s quality dictates how often you 
should scrub a host’s pools. If you have reliable hardware, such as so-
called “server grade” gear, scrubbing quarterly should suffice. If you’re 
abusing cheap hardware, you should scrub every month or so.

FreeBSD can perform regular scrubs for you, as discussed in “ZFS 
Maintenance Automation” later this chapter.

Pool Properties

ZFS uses properties to express a pool’s characteristics. While zpool 
properties look and work much like a dataset’s properties, and many 
properties seem to overlap between the two, dataset properties have no 
relationship to pool properties. Pool properties include facts such as 
the pool’s health, size, capacity, and per-pool features.

A pool’s properties affect the entire pool. If you want to set a prop-
erty for only part of a pool, check for a per-dataset property that fits 
your needs.

Viewing Pool Properties

To view all the properties of all the pools on your system, run zpool 
get all. You can add a pool name to the end if you want only the 
properties on a specific pool. Here we look at the properties for the 
pool zroot.

# zpool get all zroot
NAME   PROPERTY  VALUE   SOURCE
zroot  size      920G    -
zroot  capacity  1%      -
zroot  altroot   -       default
zroot  health    ONLINE  -
...



Chapter 3: Pools

68

The first two columns give the pool name and the name of the 
property.

The third column lists the value of the property. This can be some-
thing like enabled or disabled, on or off, active or inactive, or it can be 
a value. This pool’s size property is 920G—this pool has 920 GB of 
space.

The SOURCE column shows where this property is set. This can 
be a single dash, or the words default or local. A dash means that this 
property isn’t set per se, but rather somehow read from the pool. You 
don’t set the value for the pool’s size or how much of that space is used. 
FreeBSD calculates those values from the pool. A SOURCE of default 
indicates that this property is set to its default value, while local means 
that this property has been specifically set on this pool.

To get a single property, run zpool get with the property name.

# zpool get size
NAME   PROPERTY  VALUE  SOURCE
db     size      2.72T  -
zroot  size      920G   -

Narrow this down by giving the pool name at the end.

Changing Pool Properties

We’ll set properties throughout this book to change pool behavior. 
Change a pool’s properties using the zpool set command. Here we set 
a pool’s comment property.

# zpool set comment=”Main OS files” zroot

This comment now appears within the property list.
# zpool get comment
NAME   PROPERTY  VALUE          SOURCE
db     comment   -              default
zroot  comment   Main OS files  local



Chapter 3: Pools

69

Note the SOURCE column here. By default, pools have no com-
ment. Now that I’ve set a comment, though, the source changes to lo-
cal. Once a property’s source changes from default to local, it remains 
local forever. Even setting the property to the default value won’t 
change the source.

# zpool set comment=”-” zroot
# zpool get comment
NAME   PROPERTY  VALUE  SOURCE
db     comment   -      default
zroot  comment   -      local

We locally set the comment to the default value, so the value’s 
source remains local.

You can set a pool’s properties at creation time with -o. You can set 
properties for the root dataset on that pool with -O.

# zpool create -o altroot=/mnt -O canmount=off \
   -m none zroot /dev/gpt/disk0

The pool has its altroot property set to /mnt, and the root dataset 
on this pool has the canmount property set to off. If a property changes 
how data is written, only data written after changing the property is 
affected. ZFS won’t rewrite existing data to comply with a property 
change.

Pool History

Every zpool retains a copy of all changes that have ever been made to 
the pool, all the way back to the pool’s creation. This history doesn’t 
include routine events like system power-on and power-off, but it does 
include setting properties, pool upgrades, and dataset creation.

To access the history, run zpool history and give the pool name.



Chapter 3: Pools

70

# zpool history zroot
History for ‘zroot’:
2014-01-07.04:12:05 zpool create -o altroot=/mnt -O can-
mount=off -m none zroot mirror /dev/gpt/disk0.nop /dev/
gpt/disk1.nop
2014-01-07.04:12:50 zfs set checksum=fletcher4 zroot
2014-01-07.04:13:00 zfs set atime=off zroot
…

Experienced FreeBSD hands probably recognize this from any 
number of ZFS tutorials in the FreeBSD documentation and forums. 

The history ends with:
...
2015-03-12.14:36:35 zpool set comment=Main OS files 
zroot
2015-03-12.14:43:45 zpool set comment=- zroot

We changed the comment property, so it’s in the history. Forever.
Sadly, the pool history doesn’t track who made each change, but 

having a permanent record of changes helps with problem analysis.

Zpool Maintenance Automation

FreeBSD checks each system’s filesystems as part of the daily mainte-
nance job run by periodic(8). You can add ZFS pool information to 
this check, so that you’ll get information on pool health. The daily_sta-
tus_zfs_enable periodic.conf option enables pool checks.

daily_status_zfs_enable=”YES”

The daily periodic(8) output now includes the output of zpool 
status -x, which is normally the single line of “all pools are healthy.”

If you want more detailed information on your pools, the daily 
report can also include zpool list output. Set daily_status_zfs_zpool_
list to YES to get the list. If you want to trim that output, showing only 
the status of specific pools, list the desired pools in the daily_status_
zpool periodic.conf variable.



Chapter 3: Pools

71

You can also have FreeBSD perform your pool scrubs. With the 
scrubbing options set, FreeBSD performs a daily check to see if the 
pool needs scrubbing, but only scrubs at configured intervals. To au-
tomatically scrub every pool every 35 days, set daily_scrub_zfs_enable 
to YES in periodic.conf.
daily_scrub_zfs_enable=”YES”

FreeBSD defaults to scrubbing all pools. You can’t explicitly ex-
clude specific pools from the daily scrub check. You can, however, 
explicitly list the pools you want checked in daily_scrub_zfs_pools. 
Any pool not listed isn’t scrubbed.
daily_scrub_zfs_pools=”zroot prod test”

To change the number of days between scrubs, set daily_scrub_
zfs_default_threshold to the desired number of days.
daily_scrub_zfs_default_threshold=”10”

If you want to scrub a specific pool on a different schedule, set 
daily_scrub_zfs_${poolname}_threshold to the desired number of 
days. Here we scrub the pool prod every 7 days.
daily_scrub_zfs_prod_threshold=”7”

Any pool without its own personal threshold uses the default 
threshold.

Removing Pools

To get rid of a pool, use the zpool destroy command and the pool 
name.
# zpool destroy test

Destruction marks the pool’s underlying providers as being part 
of a destroyed pool, so that they can be reused for other pools. It does 
not erase the disks, and anyone who has read Chapter 5 can restore the 
pool and access the data.



Chapter 3: Pools

72

If you must securely erase or overwrite the data on the providers, 
you’ll need a disk overwriting or shredding program.

Zpool Feature Flags

ZFS and pools originally came with a version number, indicating the 
features supported by the pool. A system could look at an unfamiliar 
storage provider and say, “Oh, this pool is ZFS version 20, so it doesn’t 
support deduplication or native encryption.” You could upgrade the 
pool to the newest version supported by your release—or not.

Then Oracle closed the ZFS source, leaving various people to pick 
up the last open-source ZFS release and maintain it on their own. 
The final open-source Oracle ZFS version was 28. As various groups 
implemented their own pool features, version numbers from different 
groups threatened to become mutually incompatible. Different ZFS 
teams could implement whatever new features they chose, meaning 
that, say, FooZFS version 30 would be incompatibly with BarZFS ver-
sion 30. A major goal of ZFS is interoperability.

The OpenZFS team decided that the best way forward was to break 
away from tracking features with version numbers. They cranked the 
OpenZFS version up to 5000, leaving Oracle plenty of room to add 
new versions. To accommodate all the different OpenZFS develop-
ers on all the different platforms, the developers chose to effectively 
replace the version numbers with feature flags.

Every platform that runs OpenZFS, including FreeBSD, should in-
clude a zpool-features(7) manual page that lists the pool features this 
particular install supports. Newer versions of FreeBSD will probably 
support new pool features.

Using a feature normally changes the on-disk format in some way. 
Adding snapshot support, for example, means adding new fields and 
metadata to say “this is a snapshot.” A system that doesn’t support 



Chapter 3: Pools

73

that feature will look at this pool and go “oh crud, I don’t recognize 
that data structure. I ain’t touching this!” If you routinely swap disks 
between systems, you’ll want to carefully check feature flags supported 
on the various hosts before upgrading or enabling new feature flags.

Viewing Feature Flags

To view the feature flags supported by a pool, and their settings, look 
for pool properties that include the word “feature.”

# zpool get all zroot | grep feature
zroot  feature@async_destroy  enabled  local
zroot  feature@empty_bpobj    active   local
zroot  feature@lz4_compress   active   local
…

Pool features that are enabled are available for use, but not actually 
used yet. Your system might support a new type of compression, but 
has not actually written any data to the pool using the new algorithm. 
This pool could be imported on a system that doesn’t support the fea-
ture, because the on-disk format has not changed to accommodate the 
feature. The new host won’t see anything that makes it freak out.

Disabled pool features are available in the operating system but not 
enabled. Nothing in the pool says that these features are available—the 
presence of disabled features means they’re available in the operating 
system. This pool is definitely usable on hosts that don’t support this 
feature.

If the feature is active, the on-disk format has changed because the 
feature is in use. Most commonly, this pool cannot be imported onto 
a system that doesn’t support this feature. If the feature is active, but 
all datasets using the feature are destroyed, the pool reverts the feature 
setting to enabled.



Chapter 3: Pools

74

A few features are “read-only compatible.” If the feature is in active 
use, the pool could be partially imported onto a system that doesn’t 
support the feature. The new host might not see some datasets on the 
pool, and it can’t write any data to the pool, but it might be able to 
extract some data from the datasets.

Creating a pool enables all features supported by that operating 
system’s ZFS implementation. You could use the –d flag with zpool 
create to disable all features in a new pool and then enable features 
more selectively.

Now that you understand how pools work, let’s put some actual 
data on them.



75

Chapter 4: ZFS Datasets
With ordinary filesystems you create partitions to separate different 
types of data, apply different optimizations to them, and limit how 
much of your space the partition can consume. Each partition receives 
a specific amount of space from the disk. We’ve all been there. We 
make our best guesses at how much disk space each partition on this 
system will need next month, next year, and five years from now. Fast 
forward to the future, and the amount of space you decided to give 
each partition is more than likely wrong. A partition without enough 
space for all its data sends you adding disks or moving data, compli-
cating system management. When a partition has too much space, 
you kick yourself and use it as a dumping ground for stuff you’d rather 
have elsewhere. More than one of Lucas’ UFS2 systems has /usr/ports 
as a symlink to somewhere in /home. Jude usually ends up with some 
part of /var living in /usr/local/var.

ZFS solves this problem by pooling free space, giving your parti-
tions flexibility impossible with more common filesystems. Each ZFS 
dataset you create consumes only the space required to store the files 
within it. Each dataset has access to all of the free space in the pool, 
eliminating your worries about the size of your partitions. You can 
limit the size of a dataset with a quota or guarantee it a minimum 
amount of space with a reservation, as discussed in Chapter 6.



Chapter 4: ZFS Datasets

76

Regular filesystems use the separate partitions to establish different 
policies and optimizations for the different types of data. /var contains 
often-changing files like logs and databases. The root filesystem needs 
consistency and safety over performance. Over in /home, anything 
goes. Once you establish a policy for a traditional filesystem, though, 
it’s really hard to change. The tunefs(8) utility for UFS requires the 
filesystem be unmounted to make changes. Some characteristics, such 
as the number of inodes, just cannot be changed after the filesystem 
has been created.

The core problem of traditional filesystems distills to inflexibility. 
ZFS datasets are almost infinitely flexible.

Datasets

A dataset is a named chunk of data. This data might resemble a tradi-
tional filesystem, with files, directories, and permissions and all that 
fun stuff. It could be a raw block device, or a copy of other data, or 
anything you can cram onto a disk. 

ZFS uses datasets much like a traditional filesystem might use par-
titions. Need a policy for /usr and a separate policy for /home? Make 
each a dataset. Need a block device for an iSCSI target? That’s a data-
set. Want a copy of a dataset? That’s another dataset.

Datasets have a hierarchical relationship. A single storage pool is 
the parent of each top-level dataset. Each dataset can have child data-
sets. Datasets inherit many characteristics from their parent, as we’ll 
see throughout this chapter.

You’ll perform all dataset operations with the zfs(8) command. 
This command has all sorts of sub-commands.



Chapter 4: ZFS Datasets

77

Dataset Types

ZFS currently has five types of datasets: filesystems, volumes, snap-
shots, clones, and bookmarks.

A filesystem dataset resembles a traditional filesystem. It stores 
files and directories. A ZFS filesystem has a mount point and supports 
traditional filesystem characteristics like read-only, restricting setuid 
binaries, and more. Filesystem datasets also hold other information, 
including permissions, timestamps for file creation and modification, 
NFSv4 Access Control Flags, chflags(2), and the like.

A ZFS volume, or zvol, is a block device. In an ordinary filesystem, 
you might create a file-backed filesystem for iSCSI or a special-pur-
pose UFS partition. On ZFS, these block devices bypass all the over-
head of files and directories and reside directly on the underlying pool. 
Zvols get a device node, skipping the FreeBSD memory devices used 
to mount disk images.

A snapshot is a read-only copy of a dataset from a specific point in 
time. Snapshots let you retain previous versions of your filesystem and 
the files therein for later use. Snapshots use an amount of space based 
on the difference between the current filesystem and what’s in the 
snapshot.

A clone is a new dataset based on a snapshot of an existing dataset, 
allowing you to fork a filesystem. You get an extra copy of everything 
in the dataset. You might clone the dataset containing your production 
web site, giving you a copy of the site that you can hack on without 
touching the production site. A clone only consumes space to store the 
differences from the original snapshot it was created from. Chapter 7 
covers snapshots, clones, and bookmarks.



Chapter 4: ZFS Datasets

78

Why Do I Want Datasets?

You obviously need datasets. Putting files on the disk requires a filesys-
tem dataset. And you probably want a dataset for each traditional Unix 
partition, like /usr and /var. But with ZFS, you want a lot of datasets. 
Lots and lots and lots of datasets. This would be cruel madness with 
a traditional filesystem, with its hard-coded limits on the number of 
partitions and the inflexibility of those partitions. But using many 
datasets increases the control you have over your data.

Each ZFS dataset has a series of properties that control its opera-
tion, allowing the administrator to control how the dataset performs 
and how carefully it protects its data. You can tune each dataset exactly 
as you can with a traditional filesystem. Dataset properties work much 
like pool properties.

The sysadmin can delegate control over individual datasets to 
another user, allow the user to manage it without root privileges. If 
your organization has a whole bunch of project teams, you can give 
each project manager their own chunk of space and say, “Here, arrange 
it however you want.” Anything that reduces our workload is a good 
thing.

Many ZFS features, such as replication and snapshots, operate on 
a per-dataset basis. Separating your data into logical groups makes it 
easier to use these ZFS features to support your organization.

Take the example of a web server with dozens of sites, each main-
tained by different teams. Some teams are responsible for multiple 
sites, while others have only one. Some people belong to multiple 
teams. If you follow the traditional filesystem model, you might create 
a /webserver dataset, put everything in it, and control access with 
group permissions and sudo(8). You’ve lived like this for decades, and 
it works, so why change?



Chapter 4: ZFS Datasets

79

But create a dataset for each team, and give each site its own data-
set within that parent dataset, and possibilities multiply.

A team needs a copy of a web site for testing? Clone it. With tradi-
tional filesystems, you’d have to copy the whole site directory, doubling 
the amount of disk needed for the site and taking much, much longer. 
A clone uses only the amount of space for the differences between the 
sites and appears instantaneously.

The team is about to deploy a new version of a site, but wants a 
backup of the old site? Create a snapshot. This new site probably uses 
a whole bunch of the same files as the old one, so you’ll reduce disk 
space usage. Plus, when the deployment goes horribly wrong, you can 
restore the old version by rolling back to the snapshot.

A particular web site needs filesystem-level performance tweaks, 
or compression, or some locally created property? Set it for that site.

You might create a dataset for each team, and then let the teams 
create their own child datasets for their own sites. You can organize 
your datasets to fit your people, rather than organizing your people to 
fit your technology.

When you must change a filesystem setting (property) on all of the 
sites, make the change to the parent dataset and let the children inherit it.

The same benefits apply to user home directories.
You can also move datasets between machines. Your web sites 

overflow the web server? Send half the datasets, along with their cus-
tom settings and all their clones and snapshots, to the new server.

There is one disadvantage to using many filesystem datasets. When 
you move a file within a filesystem, the file is renamed. Moving files 
between separate filesystems requires copying the file to a new location 
and deleting it from the old, rather than just renaming it. Inter-dataset 
file copies take more time and require more free space. But that’s triv-
ial against all the benefits ZFS gives you with multiple datasets. This 



Chapter 4: ZFS Datasets

80

problem exists on other filesystems as well, but hosts using most other 
filesystems have only a few partitions, making it less obvious.

Viewing Datasets

The zfs list command shows all of the datasets, and some basic 
information about them.
# zfs list
NAME                USED  AVAIL  REFER  MOUNTPOINT
mypool              420M  17.9G    96K  none
mypool/ROOT         418M  17.9G    96K  none
mypool/ROOT/default 418M  17.9G   418M  /
...

The first field shows the dataset’s name.
Under USED and REFER you find information about how much 

disk space the dataset uses. One downside to ZFS’ incredible flexibility 
and efficiency is that its interpretation of disk space usage seems some-
what surreal if you don’t understand it. Chapter 6 discusses disk space 
and strategies to use it.

The AVAIL column shows how much space remains free in the 
pool or dataset.

Finally MOUNTPOINT shows where the dataset should be 
mounted. That doesn’t mean that the dataset is mounted, merely that if 
it were to be mounted, this is where it would go. (Use zfs mount to see 
all mounted ZFS filesystems.)

If you give a dataset as an argument, zfs list shows only that 
specific dataset.
# zfs list mypool/lamb
NAME         USED  AVAIL  REFER  MOUNTPOINT
mypool/lamb  192K  17.9G    96K  /lamb

Restrict the type of dataset shown with the -t flag and the type. 
You can show filesystems, volumes, or snapshots. Here we display 
snapshots, and only snapshots.



Chapter 4: ZFS Datasets

81

# zfs list -t snapshot
NAME                    USED  AVAIL  REFER  MOUNTPOINT
zroot/var/log/db@backup    0      -  10.0G  -

Now that you can see filesystems, let’s make some.

Creating, Moving, and Destroying Datasets

Use the zfs create command to create any dataset. We’ll look at snap-
shots, clones, and bookmarks in Chapter 7, but let’s discuss filesystems 
and volumes now.

Creating Filesystems

Filesystems are the most common type of dataset on most systems. 
Everyone needs a place to store and organize files. Create a filesystem 
dataset by specifying the pool and the filesystem name.

# zfs create mypool/lamb

This creates a new dataset, lamb, on the ZFS pool called mypool. 
If the pool has a default mount point, the new dataset is mounted by 
default (see “Mounting ZFS Filesystems” later this chapter).

# mount | grep lamb
mypool/lamb on /lamb (zfs, local, noatime, nfsv4acls)

The mount settings in parentheses are usually ZFS properties, 
inherited from the parent dataset. To create a child filesystem, give the 
full path to the parent filesystem. 

# zfs create mypool/lamb/baby

The dataset inherits many of its characteristics, including its mount 
point, from the parent, as we’ll see in “Parent/Child Relationships” 
later in this chapter.



Chapter 4: ZFS Datasets

82

Creating Volumes

Use the -V flag and a volume size to tell zfs create that you want to 
create a volume. Give the full path to the volume dataset.
# zfs create -V 4G mypool/avolume

Zvols show up in a dataset list like any other dataset. You can tell 
zfs list to show only zvols by adding the -t volume option.

# zfs list mypool/avolume
NAME             USED  AVAIL  REFER  MOUNTPOINT
mypool/avolume  4.13G  17.9G    64K  -

Zvols automatically reserve an amount of space equal to the size 
of the volume plus the ZFS metadata. This 4 GB zvol uses 4.13 GB of 
space.

As block devices, zvols do not have a mount point. They do get a 
device node under /dev/zvol, so you can access them as you would 
any other block device.
# ls -al /dev/zvol/mypool/avolume

crw-r----- 1 root operator  0x4d Mar 27 20:22 /dev/zvol/mypool/avolume

You can run newfs(8) on this device node, copy a disk image to it, 
and generally use it like any other block device. 

Renaming Datasets

You can rename a dataset with, oddly enough, the zfs rename com-
mand. Give the dataset’s current name as the first argument and the 
new location as the second.

# zfs rename db/production db/old
# zfs rename db/testing db/production

Use the -f flag to forcibly rename the dataset. You cannot un-
mount a filesystem with processes running in it, but the -f flag glee-
fully forces the unmount. Any process using the dataset loses access to 
whatever it was using, and reacts however it will.9

9	  Probably badly.



Chapter 4: ZFS Datasets

83

Moving Datasets
You can move a dataset from part of the ZFS tree to another, making 
the dataset a child of its new parent. This may cause many of the data-
set’s properties to change, since children inherit properties from their 
parent. Any properties set specifically on the dataset will not change.

Here we move a database out from under the zroot/var/db data-
set, to a new parent where you have set some properties to improve 
fault tolerance.
# zfs rename zroot/var/db/mysql zroot/important/mysql

Note that since mount points are inherited, this will likely change 
the dataset’s mount point. Adding the -u flag to the rename command 
will cause ZFS not to immediately change the mount point, giving you 
time to reset the property to the intended value. Remember that if the 
machine is restarted, or the dataset is manually remounted, it will use 
its new mount point.

You can rename a snapshot, but you cannot move snapshots out of 
their parent dataset. Snapshots are covered in detail in Chapter 7.

Destroying Datasets
Sick of that dataset? Drag it out behind the barn and put it out of your 
misery with zfs destroy.
# zfs destroy db/old

If you add the -r flag, you recursively destroy all children (datasets, 
snapshots, etc.) of the dataset. To destroy any cloned datasets while 
you’re at it, use -R. Be very careful recursively destroying datasets, as 
you can frequently be surprised by what, exactly, is a child of a dataset. 

You might use the -v and -n flags to see exactly what will happen 
when you destroy a dataset. The -v flag prints verbose information 
about what gets destroyed, while -n tells zfs(8) to perform a dry run. 
Between the two, they show what this command would actually de-
stroy before you pull the trigger.



Chapter 4: ZFS Datasets

84

ZFS Properties

ZFS datasets have a number of settings, called properties, that control 
how the dataset works. While you can set a few of these only when you 
create the dataset, most of them are tunable while the dataset is live. 
ZFS also offers a number of read-only properties that provide informa-
tion such as the amount of space consumed by the dataset, the com-
pression or deduplication ratios, and the creation time of the dataset.

Each dataset inherits its properties from its parent, unless the 
property is specifically set on that dataset.

Viewing Properties
The zfs(8) tool can retrieve a specific property, or all properties for a 
dataset. Use the zfs get command, the desired property, and if de-
sired, a dataset name.
# zfs get compression mypool/lamb
NAME         PROPERTY     VALUE  SOURCE
mypool/lamb  compression  lz4    inherited from mypool

Under NAME we see the dataset you asked about, and PROPERTY 
shows the property you requested. The VALUE is what the property is 
set to.

The SOURCE is a little more complicated. A source of default 
means that this property is set to ZFS’ default. A local source means 
that someone deliberately set this property on this dataset. A tem-
porary property was set when the dataset was mounted, and this 
property reverts to its usual value when the dataset is unmounted. An 
inherited property comes from a parent dataset, as discussed in “Par-
ent/Child Relationships” later in this chapter.

Some properties have no source because the source is either irrel-
evant or inherently obvious. The creation property, which records the 
date and time the dataset was created, has no source. The value came 
from the system clock.



Chapter 4: ZFS Datasets

85

If you don’t specify a dataset name, zfs get shows the value of this 
property for all datasets. The special property keyword all retrieves all 
of a dataset’s properties.
# zfs get all mypool/lamb
NAME         PROPERTY   VALUE                 SOURCE
mypool/lamb  type       filesystem            -
mypool/lamb  creation   Fri Mar 27 20:05 2015 -
mypool/lamb  used       192K                  -
...

If you use all and don’t give a dataset name, you get all the proper-
ties for all datasets. This is a lot of information.

Show multiple properties by separating the property names with 
commas.
# zfs get quota,reservation zroot/home
NAME        PROPERTY     VALUE   SOURCE
zroot/home  quota        none    local
zroot/home  reservation  none    default

You can also view properties with zfs list and the -o modifier. 
This is most suited for when you want to view several properties from 
multiple datasets. Use the special property name to show the dataset’s 
name.
# zfs list -o name,quota,reservation
NAME                QUOTA  RESERV
db                   none    none
zroot                none    none
zroot/ROOT           none    none
zroot/ROOT/default   none    none
...
zroot/var/log        100G     20G
...

You can also add a dataset name to see these properties in this 
format for that dataset.



Chapter 4: ZFS Datasets

86

Changing Properties

Change properties with the zfs set command. Give the property 
name, the new setting, and the dataset name. Here we change the com-
pression property to off.

# zfs set compression=off mypool/lamb/baby

Confirm your change with zfs get.

# zfs get compression mypool/lamb/baby
NAME              PROPERTY     VALUE  SOURCE
mypool/lamb/baby  compression  off    local

Most properties apply only to data written after the property is 
changed. The compression property tells ZFS to compress data before 
writing it to disk. We talk about compression in Chapter 6. Disabling 
compression doesn’t uncompress any data written before the change 
was made. Similarly, enabling compression doesn’t magically compress 
data already on the disk. To get the full benefit of enabling compres-
sion, you must rewrite every file. You’re better off creating a new data-
set, copying the data over with zfs send, and destroying the original 
dataset.

Read-Only Properties

ZFS uses read-only properties to offer basic information about the 
dataset. Disk space usage is expressed as properties. You can’t change 
how much data you’re using by changing the property that says “your 
disk is half-full.” (Chapter 6 covers ZFS disk space usage.) The cre-
ation property records when this dataset was created. You can change 
many read-only properties by adding or removing data to the disk, but 
you can’t write these properties directly.



Chapter 4: ZFS Datasets

87

Filesystem Properties

One key tool for managing the performance and behavior of tradition-
al filesystems is mount options. You can mount traditional filesystems 
read-only, or use the noexec flag to disable running programs from 
them. ZFS uses properties to achieve the same effects. Here are the 
properties used to accomplish these familiar goals.

atime

A file’s atime indicates when the file was last accessed. ZFS’ atime 
property controls whether the dataset tracks access times. The default 
value, on, updates the file’s atime metadata every time the file is ac-
cessed. Using atime means writing to the disk every time it’s read.

Turning this property off avoids writing to the disk when you read 
a file, and can result in significant performance gains. It might confuse 
mailers and other similar utilities that depend on being able to deter-
mine when a file was last read.

Leaving atime on increases snapshot size. The first time a file is 
accessed, its atime is updated. The snapshot retains the original access 
time, while the live filesystem contains the newly updated accessed 
time. This is the default.

exec
The exec property determines if anyone can run binaries and com-
mands on this filesystem. The default is on, which permits execution. 
Some environments don’t permit users to execute programs from their 
personal or temporary directories. Set the exec property to off to dis-
able execution of programs on the filesystem.

The exec property doesn’t prohibit people from running interpret-
ed scripts, however. If a user can run /bin/sh, they can run /bin/sh /
home/mydir/script.sh. The shell is what’s actually executing—it only 
takes instructions from the script.



Chapter 4: ZFS Datasets

88

readonly
If you don’t want anything writing to this dataset, set the readonly 
property to on. The default, off, lets users modify the dataset within 
administrative permissions.
setuid
Many people consider setuid programs risky.10 While some programs 
must be setuid, such as passwd(1) and login(1), there’s rarely a need 
to have setuid programs on filesystems like /home and /tmp. Many sys-
admins disallow setuid programs except on specific filesystems. 

ZFS’ setuid property toggles setuid support. If set to on, the 
filesystem supports setuid. If set to off, the setuid flag is ignored.

User-Defined Properties

ZFS properties are great, and you can’t get enough of them, right? 
Well, start adding your own. The ability to store your own metadata 
along with your datasets lets you develop whole new realms of auto-
mation. The fact that children automatically inherit these properties 
makes life even easier.

To make sure your custom properties remain yours, and don’t con-
flict with other people’s custom properties, create a namespace. Most 
people prefix their custom properties with an organizational identifier 
and a colon. For example, FreeBSD-specific properties have the format 
“org.freebsd:propertyname,” such as org.freebsd:swap. If the illumos 
project creates its own property named swap, they’d call it org.illu-
mos:swap. The two values won’t collide.

10	  Properly written setuid programs are not risky. That’s why real 
setuid programs are risky.



Chapter 4: ZFS Datasets

89

For example, suppose Jude wants to control which datasets get 
backed up via a dataset property. He creates the namespace com.allan-
jude.11 Within that namespace, he creates the property backup_ignore.

# zfs set com.allanjude:backup_ignore=on mypool/lamb

Jude’s backup script checks the value of this property. If it’s set to 
true, the backup process skips this dataset.

Parent/Child Relationships

Datasets inherit properties from their parent datasets. When you set a 
property on a dataset, that property applies to that dataset and all of its 
children. For convenience, you can run zfs(8) commands on a dataset 
and all of its children by adding the -r flag. Here, we query the com-
pression property on a dataset and all of its children.

# zfs get -r compression mypool/lamb
NAME              PROPERTY     VALUE  SOURCE
mypool/lamb       compression  lz4    inherited from mypool
mypool/lamb/baby  compression  off    local

Look at the source values. The first dataset, mypool/lamb, inherited 
this property from the parent pool. In the second dataset, this proper-
ty has a different value. The source is local, meaning that the property 
was set specifically on this dataset.

We can restore the original setting with the zfs inherit command.
# zfs inherit compression mypool/lamb/baby
# zfs get -r compression mypool/lamb
NAME              PROPERTY     VALUE SOURCE
mypool/lamb       compression  lz4   inherited from mypool
mypool/lamb/baby  compression  lz4   inherited from mypool

The child now inherits the compression properties from the parent, 
which inherits from the grandparent. 

11	  When you name ZFS properties after yourself, you are immor-
talized by your work. Whether this is good or bad depends on your 
work.



Chapter 4: ZFS Datasets

90

When you change a parent’s properties, the new properties auto-
matically propagate down to the child.
# zfs set compression=gzip-9 mypool/lamb
# zfs get -r compression mypool/lamb
NAME              PROPERTY     VALUE  SOURCE
mypool/lamb       compression  gzip-9 local
mypool/lamb/baby  compression  gzip-9 inherited from mypool/lamb

I told the parent dataset to use gzip-9 compression. That percolated 
down to the child.

Inheritance and Renaming

When you move or rename a dataset so that it has a new parent, the 
parent’s properties automatically propagate down to the child. Locally 
set properties remain unchanged, but inherited ones switch to those 
from the new parent.

Here we create a new parent dataset and check its compression 
property.
# zfs create mypool/second
# zfs get compress mypool/second
NAME           PROPERTY     VALUE SOURCE
mypool/second  compression  lz4   inherited from mypool

Our baby dataset uses gzip-9 compression. It’s inherited this prop-
erty from mypool/lamb. Now let’s move baby to be a child of second, 
and see what happens to the compression property.
# zfs rename mypool/lamb/baby mypool/second/baby
# zfs get -r compression mypool/second
NAME                PROPERTY     VALUE  SOURCE
mypool/second       compression  lz4    inherited from mypool
mypool/second/baby  compression  lz4    inherited from mypool

The child dataset now belongs to a different parent, and inherits its 
properties from the new parent. The child keeps any local properties.

Data on the baby dataset is a bit of a tangle, however. Data writ-
ten before compression was turned on is uncompressed. Data written 
while the dataset used gzip-9 compression is compressed with gzip-9. 



Chapter 4: ZFS Datasets

91

Any data written now will be compressed with lz4. ZFS sorts all this 
out for you automatically, but thinking about it does make one’s head 
hurt.

Removing Properties

While you can set a property back to its default value, it’s not obvious 
how to change the source back to inherit or default, or how to remove 
custom properties once they’re set.

To remove a custom property, inherit it.
# zfs inherit com.allanjude:backup_ignore mypool/lamb

This works even if you set the property on the root dataset.
To reset a property to its default value on a dataset and all its chil-

dren, or totally remove custom properties, use the zfs inherit com-
mand on the pool’s root dataset.
# zfs inherit -r compression mypool

It’s counterintuitive, but it knocks the custom setting off of the root 
dataset.

Mounting ZFS Filesystems

With traditional filesystems you listed each partition, its type, and 
where it should be mounted in /etc/fstab. You even listed temporary 
mounts such as floppies and CD-ROM drives, just for convenience. 
ZFS allows you to create such a large number of filesystems that this 
quickly grows impractical.

Each ZFS filesystem has a mountpoint property that defines where 
it should be mounted. The default mountpoint is built from the pool’s 
mountpoint. If a pool doesn’t have a mount point, you must assign a 
mount point to any datasets you want to mount.



Chapter 4: ZFS Datasets

92

# zfs get mountpoint zroot/usr/home
NAME            PROPERTY    VALUE      SOURCE
zroot/usr/home  mountpoint  /usr/home  inherited from zroot/usr

The filesystem normally get mounted at /usr/home. You could 
override this when manually mounting the filesystem.

The zroot pool used for a default FreeBSD install doesn’t have a 
mount point set. If you create new datasets directly under zroot, they 
won’t have a mount point. Datasets created on zroot under, say, /usr, 
inherit a mount point from their parent dataset.

Any pool other than the pool with the root filesystem normally has 
a mount point named after the pool. If you create a pool named db, it 
gets mounted at /db. All children inherit their mount point from that 
pool unless you change them.

When you change the mountpoint property for a filesystem, the 
filesystem and any children that inherit the mount point are un-
mounted. If the new value is legacy, then they remain unmounted. 
Otherwise, they are automatically remounted in the new location if 
the property was previously legacy or none, or if they were mounted 
before the property was changed. In addition, any shared filesystems 
are unshared and shared in the new location.

Just like ordinary filesystems, ZFS filesystems aren’t necessarily 
mounted. The canmount property controls a filesystem’s mount be-
havior. If canmount is set to yes, running zfs mount -a mounts the 
filesystem, just like mount -a. When you enable ZFS in /etc/rc.conf, 
FreeBSD runs zfs mount -a at startup.

When the canmount property is set to noauto, a dataset can only be 
mounted and unmounted explicitly. The dataset is not mounted auto-
matically when the dataset is created or imported, nor is it mounted by 
the zfs mount -a command or unmounted by zfs unmount -a. 



Chapter 4: ZFS Datasets

93

Things can get interesting when you set canmount to off. You might 
have two non-mountable datasets with the same mount point. A data-
set can exist solely for the purpose of being the parent to future data-
sets, but not actually store files, as we’ll see below.

Child datasets do not inherit the canmount property.
Changing the canmount property does not automatically unmount 

or mount the filesystem. If you disable mounting on a mounted filesys-
tem, you’ll need to manually unmount the filesystem or reboot.

Datasets without Mount Points

ZFS datasets are hierarchical. You might need to create a dataset that 
will never contain any files only so it can be the common parent of a 
number of other datasets. Consider a default install of FreeBSD 10.1 or 
newer.
# zfs mount
zroot/ROOT/default   /
zroot/tmp            /tmp
zroot/usr/home       /usr/home
zroot/usr/ports      /usr/ports
zroot/usr/src        /usr/src
...

We have all sorts of datasets under /usr, but there’s no /usr dataset 
mounted. What’s going on?

A zfs list shows that a dataset exists, and it has a mount point of 
/usr. But let’s check the mountpoint and canmount properties of zroot/
usr and all its children.
# zfs list -o name,canmount,mountpoint -r zroot/usr
NAME            CANMOUNT  MOUNTPOINT
zroot/usr            off  /usr
zroot/usr/home        on  /usr/home
zroot/usr/ports       on  /usr/ports
zroot/usr/src         on  /usr/src



Chapter 4: ZFS Datasets

94

With canmount set to off, the zroot/usr dataset is never mounted. 
Any files written in /usr, such as the commands in /usr/bin and the 
packages in /usr/local, go into the root filesystem. Lower-level mount 
points such as /usr/src have their own datasets, which are mounted.

The dataset exists only to be a parent to the child datasets. You’ll 
see something similar with the /var partitions.

Multiple Datasets with the Same Mount Point

Setting canmount to off allows datasets to be used solely as a mecha-
nism to inherit properties. One reason to set canmount to off is to have 
two datasets with the same mount point, so that the children of both 
datasets appear in the same directory, but might have different inherit-
ed characteristics.

FreeBSD’s installer does not have a mountpoint on the default pool, 
zroot. When you create a new dataset, you must assign a mount point 
to it.

If you don’t want to assign a mount point to every dataset you 
create right under the pool, you might assign a mountpoint of / to the 
zroot pool and leave canmount set to off. This way, when you create a 
new dataset, it has a mountpoint to inherit. This is a very simple exam-
ple of using multiple datasets with the same mount point.

Imagine you want an /opt directory with two sets of subdirecto-
ries. Some of these directories contain programs, and should never be 
written to after installation. Other directories contain data. You must 
lock down the ability to run programs at the filesystem level.

# zfs create db/programs
# zfs create db/data

Now give both of these datasets the mountpoint of /opt and tell 
them that they cannot be mounted. 



Chapter 4: ZFS Datasets

95

# zfs set canmount=off db/programs
# zfs set mountpoint=/opt db/programs

Install your programs to the dataset, and then make it read-only.

# zfs set readonly=on db/programs

You can’t run programs from the db/data dataset, so turn off exec 
and setuid. We need to write data to these directories, however.

# zfs set canmount=off db/data
# zfs set mountpoint=/opt db/data
# zfs set setuid=off db/data
# zfs set exec=off db/data

Now create some child datasets. The children of the db/programs 
dataset inherit that dataset’s properties, while the children of the db/
data dataset inherit the other set of properties.

# zfs create db/programs/bin
# zfs create db/programs/sbin
# zfs create db/data/test
# zfs create db/data/production

We now have four datasets mounted inside /opt, two for binaries 
and two for data. As far as users know, these are normal directories. 
No matter what the file permissions say, though, nobody can write to 
two of these directories. Regardless of what trickery people pull, the 
system won’t recognize executables and setuid files in the other two. 
When you need another dataset for data or programs, create it as a 
child of the dataset with the desired settings. Changes to the parent 
datasets propagate immediately to all the children.



Chapter 4: ZFS Datasets

96

Pools without Mount Points

While a pool is normally mounted at a directory named after the pool, 
that isn’t necessarily so.
# zfs set mountpoint=none mypool

This pool no longer gets mounted. Neither does any dataset on 
the pool unless you specify a mount point. This is how the FreeBSD 
installer creates the pool for the OS.
# zfs set mountpoint=/someplace mypool/lamb

The directory will be created if necessary and the filesystem 
mounted.

Manually Mounting and Unmounting Filesystems

To manually mount a filesystem, use zfs mount and the dataset name. 
This is most commonly used for filesystems with canmount set to noauto.

# zfs mount mypool/usr/src

To unmount a filesystem and all of its children, use zfs unmount.
# zfs unmount mypool/second

If you want to temporarily mount a dataset at a different location, 
use the -o flag to specify a new mount point. This mount point only 
lasts until you unmount the dataset.
# zfs mount -o mountpoint=/mnt mypool/lamb

You can only mount a dataset if it has a mountpoint defined. De-
fining a temporary mount point when the dataset has no mount point 
gives you an error.

ZFS and /etc/fstab

You can choose to manage some or all of your ZFS filesystem mount 
points with /etc/fstab if you prefer. Set the dataset’s mountpoint 
property to legacy. This unmounts the filesystem.



Chapter 4: ZFS Datasets

97

# zfs set mountpoint=legacy mypool/second

Now you can mount this dataset with the mount(8) command:
# mount -t zfs mypool/second /tmp/second

You can also add ZFS datasets to the system’s /etc/fstab. Use the 
full dataset name as the device node. Set the type to zfs. You can use 
the standard filesystem options of noatime, noexec, readonly or ro, and 
nosuid. (You could also explicitly give the default behaviors of atime, 
exec, rw, and suid, but these are ZFS’ defaults.) The mount order is 
normal, but the fsck field is ignored. Here’s an /etc/fstab entry that 
mounts the dataset scratch/junk nosuid at /tmp.

scratch/junk  /tmp  nosuid  2  0

We recommend using ZFS properties to manage your mounts, 
however. Properties can do almost everything /etc/fstab does, and 
more.

Tweaking ZFS Volumes

Zvols are pretty straightforward—here’s a chunk of space as a block de-
vice; use it. You can adjust how a volume uses space and what kind of 
device node it offers.

Space Reservations

The volsize property of a zvol specifies the volume’s logical size. By 
default, creating a volume reserves an amount of space for the dataset 
equal to the volume size. (If you look ahead to Chapter 6, it establishes 
a refreservation of equal size.) Changing volsize changes the reser-
vation. The volsize can only be set to a multiple of the volblocksize 
property, and cannot be zero.

Without the reservation, the volume could run out of space, result-
ing in undefined behavior or data corruption, depending on how the 
volume is used. These effects can also occur when the volume size is 



Chapter 4: ZFS Datasets

98

changed while it is in use, particularly when shrinking the size. Adjust-
ing the volume size can confuse applications using the block device.

Zvols also support sparse volumes, also known as thin provisioning. 
A sparse volume is a volume where the reservation is less than the vol-
ume size. Essentially, using a sparse volume permits allocating more 
space than the dataset has available. With sparse provisioning you 
could, say, create ten 1 TB sparse volumes on your 5 TB dataset. So 
long as your volumes are never heavily used, nobody will notice that 
you’re overcommitted.

Sparse volumes are not recommended. Writes to a sparse volume 
can fail with an “out of space” error even if the volume itself looks only 
partially full.

Specify a sparse volume at creation time by specifying the -s 
option to the zfs create -V command. Changes to volsize are not 
reflected in the reservation. You can also reduce the reservation after 
the volume has been created.

Zvol Mode

FreeBSD normally exposes zvols to the operating system as geom(4) 
providers, giving them maximum flexibility. You can change this with 
the volmode property.

Setting a volume’s volmode to dev exposes volumes only as a char-
acter device in /dev. Such volumes can be accessed only as raw disk 
device files. They cannot be partitioned or mounted, and they cannot 
participate in RAIDs or other GEOM features. They are faster. In some 
cases where you don’t trust the device using the volume, dev mode can 
be safer.

Setting volmode to none means that the volume is not exposed out-
side ZFS. These volumes can be snapshotted, cloned, and replicated, 
however. These volumes can be suitable for backup purposes.



Chapter 4: ZFS Datasets

99

Setting volmode to default means that volume exposure is con-
trolled by the sysctl vfs.zfs.vol.mode. You can set the default zvol mode 
system-wide. A value of 1 means the default is geom, 2 means dev, and 
3 means none.

While you can change the property on a live volume, it has no ef-
fect. This property is processed only during volume creation and pool 
import. You can recreate the zvol device by renaming the volume with 
zfs rename.

Dataset Integrity

Most of ZFS’ protections work at the VDEV layer. That’s where blocks 
and disks go bad, after all. Some hardware limits pool redundancy, 
however. Very few laptops have enough hard drives to use mirroring, 
let alone RAID-Z. You can do some things at the dataset layer to offer 
some redundancy, however, by using checksums, metadata redundan-
cy, and copies. Most users should never touch the first two, and users 
with redundant virtual devices probably want to leave all three alone.

Checksums

ZFS computes and stores checksums for every block that it writes. This 
ensures that when a block is read back, ZFS can verify that it is the 
same as when it was written, and has not been silently corrupted in 
one way or another. The checksum property controls which checksum 
algorithm the dataset uses. Valid settings are on, fletcher2, fletcher4, 
sha256, off, and noparity.

The default value, on, uses the algorithm selected by the OpenZFS 
developers. In 2015 that algorithm is fletcher4, but it might change in 
future releases.

The standard algorithm, fletcher4, is the default checksum algo-
rithm. It’s good enough for most use and is very fast. If you want to 



Chapter 4: ZFS Datasets

100

use fletcher4 forever and ever, you could set this property to fletcher4. 
We recommend keeping the default of on, however, and letting ZFS 
upgrade your pool’s checksum algorithm when it’s time.

The value off disables integrity checking on user data.
The value noparity not only disables integrity but also disables 

maintaining parity for user data. This setting is used internally by a 
dump device residing on a RAID-Z pool and should not be used by 
any other dataset. Disabling checksums is not recommended.

Older versions of ZFS used the fletcher2 algorithm. While it’s sup-
ported for older pools, it’s certainly not encouraged.

The sha256 algorithm is slower than fletcher4, but less likely to re-
sult in a collision. In most cases, a collision is not harmful. The sha256 
algorithm is frequently recommended when doing deduplication.

Copies

ZFS stores two or three copies of important metadata, and can give the 
same treatment to your important user data. The copies property tells 
ZFS how many copies of user data to keep. ZFS attempts to put those 
copies on different disks, or failing that, as far apart on the physical 
disk as possible, to help guard against hardware failure. When you 
increase the copies property, ZFS also increases the number of copies 
of the metadata for that dataset, to a maximum of three.

If your pool runs on two mirrored disks, and you set copies to 3, 
you’ll have six copies of your data. One of them should survive your 
ill-advised use of dd(1) on the raw provider device or that plunge off 
the roof.

Increasing or decreasing copies only affects data written after the 
setting change. Changing copies from 1 to 2 doesn’t suddenly create 
duplicate copies of all your data, as we see here. Create a 10 MB file of 
random data.



Chapter 4: ZFS Datasets

101

# dd if=/dev/random of=/lamb/random1 bs=1m count=10
10+0 records in
10+0 records out
10485760 bytes transferred in 0.144787 secs (72421935 
bytes/sec)
# zfs set copies=2 mypool/lamb

Now every block is stored twice. If one of the copies becomes 
corrupt, ZFS can still read your file. It knows which of the blocks is 
corrupt because its checksums won’t match. But look at the space use 
on the pool (the REFER space in the pool listing).

# zfs list mypool/lamb
NAME          USED  AVAIL  REFER  MOUNTPOINT
mypool/lamb  10.2M  13.7G  10.1M  /lamb

Only the 10 MB we wrote were used. No extra copy was made of 
this file, as you wrote it before changing the copies property.

With copies set to 2, however, if we either write another file or 
overwrite the original file, we’ll see different disk usage.

# dd if=/dev/random of=/lamb/random2 bs=1m count=10
10+0 records in
10+0 records out
10485760 bytes transferred in 0.141795 secs (73950181  
   bytes/sec)

Look at disk usage now.

# zfs list mypool/lamb
NAME         USED   AVAIL  REFER  MOUNTPOINT
mypool/lamb  30.2M  13.7G  30.1M  /lamb

The total space usage is 30 MB, 10 for the first file of random data, 
and 20 for 2 copies of the second 10 MB file.

When we look at the files with ls(1), they only show the actual size:
# ls -l /lamb/random*
-rw-r--r--  1 root  wheel  10485760 Apr  6 15:27 /lamb/random1
-rw-r--r--  1 root  wheel  10485760 Apr  6 15:29 /lamb/random2

If you really want to muck with your dataset’s resilience, look at 
metadata redundancy.



Chapter 4: ZFS Datasets

102

Metadata Redundancy
Each dataset stores an extra copy of its internal metadata, so that if a 
single block is corrupted, the amount of user data lost is limited. This 
extra copy is in addition to any redundancy provided at the VDEV 
level (e.g., by mirroring or RAID-Z). It’s also in addition to any extra 
copies specified by the copies property (below), up to a total of three 
copies.

The redundant_metadata property lets you decide how redundant 
you want your dataset metadata to be. Most users should never change 
this property.

When redundant_metadata is set to all (the default), ZFS stores an 
extra copy of all metadata. If a single on-disk block is corrupt, at worst 
a single block of user data can be lost.

When you set redundant_metadata to most, ZFS stores an extra 
copy of only most types of metadata. This can improve performance 
of random writes, because less metadata must be written. When only 
most metadata is redundant, at worst about 100 blocks of user data can 
be lost if a single on-disk block is corrupt. The exact behavior of which 
metadata blocks are stored redundantly may change in future releases.

If you set redundant_metadata to most and copies to 3, and the 
dataset lives on a mirrored pool, then ZFS stores six copies of most 
metadata, and four copies of data and some metadata.

This property was designed for specific use cases that frequently 
update metadata, such as databases. If the data is already protected by 
sufficiently strong fault tolerance, reducing the number of copies of 
the metadata that must be written each time the database changes can 
improve performance. Change this value only if you know what you 
are doing.

Now that you have a grip on datasets, let’s talk about pool 
maintenance.



103

Chapter 5: Repairs & Renovations
Disks fill up. That’s what they’re for. Hardware fails for the same rea-
son. Sometimes you must take disks from one machine and put them 
in another, or replace a failed hard drive, or give your database more 
space. This chapter discusses how you can modify, update, and repair 
your storage pools.

Before we get into that, let’s discuss how ZFS rebuilds damaged 
virtual devices.

Resilvering

Virtual devices such as mirrors and RAID-Z are specifically designed 
to reconstruct missing data on damaged disks. If a disk in your mirror 
pair dies, you replace the disk and ZFS will copy the surviving mirror 
onto the new one. If a disk in your RAID-Z VDEV fails, you replace 
the broken drive and ZFS rebuilds that disk from parity data. This sort 
of data recovery is a core feature of every RAID implementation.

ZFS understands both the filesystem and the underlying storage, 
however. This gives ZFS latitude and advantages that traditional RAID 
managers lack.

Rebuilding a disk mirrored by software or hardware RAID requires 
copying every single sector from the good disk onto the replacement. 
The RAID unit must copy the partition table, the filesystem, all the 
inodes, all the blocks (even the free space), and all the data from one 
to the other.



Chapter 5: Repairs and Renovations

104

We’ve all made a typo in /etc/rc.conf that prevented a system 
from booting. Fixing that typo on a system mirrored with UFS2 and 
gmirror(8) required booting into single-user mode, fixing the typo, 
and rebooting. This made one of the disks out of sync with the other. 
At the reboot, FreeBSD noticed the discrepancy and brought the back-
up disk into sync by copying every single sector of the current drive 
onto the backup. You might have changed one or two sectors on the 
disk, but gmirror(8) had to copy the whole thing. This might take 
hours or days.

ZFS knows precisely how much of each disk is in use. When ZFS 
reassembles a replacement storage provider, it copies only the data 
actually needed on that provider. If you replace a ZFS disk that was 
only one-third data, ZFS copies only that one-third of a disk of data to 
the replacement.

Fixing a rc.conf typo on a ZFS-mirrored disk requires sysadmin 
intervention very similar to that needed on a gmirror(8) system. 
You get into single-user mode. You fix the typo. You reboot. The 
difference is, ZFS knows exactly which blocks changed on the disk. If 
only one of the disks was powered on during single user mode (un-
likely, but it could happen), the two disks would be out of sync. Rather 
than try to copy the entire disk, ZFS updates only the blocks needed 
to resynchronize the disks. The system will probably repair the mirror 
before you can type a command to see how it’s doing.

ZFS reconstruction is called resilvering. Like other ZFS integrity 
operations, resilvering takes place only on live filesystems. You could 
resilver in single-user mode, but it makes as much sense as installing 
software in single-user mode.

Resilvering happens automatically when you replace a storage pro-
vider. It also happens when a drive temporarily fails and is restored, 
such as when a controller restarts or an external disk shelf reboots. 



Chapter 5: Repairs and Renovations

105

While resilvering a replacement storage provider can take quite a 
while, resilvering after a brief outage probably takes only seconds.

If you use a RAID-Z pool normally while resilvering, resilvering 
can greatly slow down. Resilvering and scrubbing are performed in 
order by transaction groups, while normal read-write operations are 
pretty random. ZFS’ resilver rate is throttled so that it won’t impact 
normal system function.

Expanding Pools

Data expands to fill all available space. No matter how much disk 
space you give a pool, eventually you’ll want more. To increase a pool’s 
size, add a VDEV to the pool. For redundant pools, you can replace 
storage providers with larger providers.

When you expand a pool, ZFS automatically starts writing data 
to the new space. As the pool ages, ZFS tries to evenly balance avail-
able space between the various providers. ZFS biases the writes to the 
drives so that they will all become full simultaneously. A pool with one 
empty VDEV and three nearly full ones has little choice but to put new 
data on the empty VDEV, however. If you frequently create and delete 
files, per-disk load eventually levels out.

Every VDEV within a zpool should be identical. If your pool is 
built from a bunch of mirrors, don’t go adding a RAID-Z3 to the pool.

Add providers to VDEVs with the zpool attach command and 
VDEVs to pools with the zpool add command.

You can’t remove a device from a non-mirror VDEV or any VDEV 
from a pool. The –n flag to zpool add performs a “dry run,” showing 
you the results of what running the command would be without ac-
tually changing the pool. Running your zpool add command with the 
–n flag and carefully studying the resulting pool configuration can give 
you warning you’re about to shoot yourself in the foot.



Chapter 5: Repairs and Renovations

106

Adding VDEVs to Striped Pools

Striped pools, with no redundancy, can be expanded up to the limits of 
the hardware. Each non-redundant VDEV you add to a pool increases 
the odds of a catastrophic failure, however, exactly like the RAID-0 
device it resembles. Remember, the failure of a single VDEV in a pool 
destroys the entire pool. In a striped pool, each disk is a standalone 
VDEV.

Here’s a striped pool with three providers.
# zpool status scratch
…
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
scratch	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0

Use the zpool add command to add a storage provider to the 
scratch pool.
# zpool add scratch gpt/zfs3

The pool status now shows four storage providers, and you have 
your additional disk space.

Adding VDEVs to Striped Mirror Pools

You can add providers to a mirrored VDEV, but extra disks don’t 
increase the available space. They become additional mirrors of each 
other. To add space to a pool that uses mirrored VDEVs, add a new 
mirror VDEV to the pool.

The zpool db currently has two mirror VDEVs in it.



Chapter 5: Repairs and Renovations

107

# zpool status db
...
NAME	 STATE	 READ	 WRITE	 CKSUM
db	 ONLINE	 0	 0	 0
mirror-0	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0

mirror-1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
gpt/zfs3	 ONLINE	 0	 0	 0

We need more space, so we want to add a third mirror VDEV. Use 
the zpool add command to create a new mirror device and add it to 
the pool. Here we use the providers gpt/zfs4 and gpt/zfs5 to create a 
new mirror and add it to the pool.
# zpool add db mirror gpt/zfs4 gpt/zfs5

The pool’s status now shows a new mirror VDEV, mirror-2, con-
taining two storage providers. As you write and delete data, the pool 
gradually shifts load among all three VDEVs. To view how a pool 
currently distributes data between the VDEVs, use zpool list -v.

Adding VDEVs to Striped RAID-Z Pools

You cannot add providers to any RAID-Z VDEV. To expand a RAID-
Z-based pool, you must add additional VDEVs to the pool, or replace 
each member disk with a larger one. Best practice is to make all of the 
RAID-Z VDEVs use the same number of drives.

Here’s a RAID-Z pool that we want to expand with another VDEV.

NAME	 STATE	 READ	 WRITE	 CKSUM
db	 ONLINE	 0	 0	 0
raidz1-0	 ONLINE	 0	 0	 0
gpt/zfs0	ONLINE	 0	 0	 0
gpt/zfs1	ONLINE	 0	 0	 0
gpt/zfs2	ONLINE	 0	 0	 0



Chapter 5: Repairs and Renovations

108

Again, we use the zpool add command to create a new VDEV and 
add it to the pool.
# zpool add db raidz1 gpt/zfs3 gpt/zfs4 gpt/zfs5

A check of the pool status shows a new VDEV, raidz1-1, contain-
ing three providers. ZFS starts striping data across the new provider 
immediately.

If you want to add a new VDEV to a RAID-Z2 or RAID-Z3-based 
pool, use the same command with the desired RAID-Z type and the 
appropriate number of providers.

Remember, you cannot add providers to a RAID-Z VDEV—the 
configuration of a RAID-Z VDEV is fixed in concrete. Many people 
try to add a disk to a RAID-Z VDEV by using zpool add. The zpool 
add command adds new VDEVs to a pool. If you use –f to demand 
zpool add put one new disk in your RAID-Z-based pool, you get a 
malformed pool with one RAID-Z member and one stripe member. 
The resulting pool is not maintainable and is irreparable. Fixing it re-
quires backing up your data, then destroying and recreating the pool.

You can use zpool attach to expand mirrored and striped VDEVs, 
but it doesn’t work on RAID-Z pools. You cannot add providers to a 
RAID-Z VDEV.

Hardware Status

Most ZFS configurations tolerate a certain amount of hardware failure. 
When the underlying storage providers fail, ZFS does its best to warn 
you. Listen to it.

The zpool status command displays the condition of the storage 
hardware in the STATE field. You get one STATE field for the entire 
pool, near the top. Lower down, where zpool status lists each VDEV 
and storage provider, the STATE column lets you narrow down where 
a fault lies.



Chapter 5: Repairs and Renovations

109

Errors percolate upwards. If a single storage provider fails, the pool 
develops a related failure. The big screaming failure message at the top 
of zpool status is your clue to look into the individual providers to 
see the underlying error.

Pools and VDEVs can have six states. Underlying providers can 
have at least three of these states.

Online

An online pool, VDEV, or provider is working normally.

Degraded

A degraded pool is missing at least one storage provider. That provider 
is either totally offline, missing, or generating errors more quickly than 
ZFS tolerates. A degraded pool retains enough resiliency to continue 
working, but one more failure might shut it down.

If a storage provider has too many I/O errors, ZFS would prefer to 
totally shut down (fault) the device. ZFS really tries to avoid faulting 
devices that provide necessary resiliency to a pool, however. If the last 
working provider in a mirror starts showing many errors, or a provid-
er fails in a RAID-Z1 VDEV that already has a dead storage provider, 
ZFS puts that provider into degraded mode when it would normally 
put it in a faulted mode.

Faulted

Faulted storage providers are either corrupt or generate more errors 
than ZFS can tolerate. A faulted storage provider takes with it the last 
known good copy of the data. If your two-disk mirror loses both disks, 
or your RAID-Z1 loses two disks, the VDEV faults. A faulted VDEV 
takes its whole pool with it.



Chapter 5: Repairs and Renovations

110

Unavail
Unavail means that ZFS can’t open the storage provider. Maybe the 
device isn’t attached to the system anymore, or perhaps it was badly 
imported (see “Moving Pools” later this chapter). In any case, it’s not 
there, so ZFS can’t use it. An unavailable device might take the whole 
VDEV, and hence the whole pool, with it.

An unavailable device impacts the VDEV’s state depending on the 
resiliency in the VDEV. If a pool still has enough resilience to func-
tion, the pool becomes degraded. If the VDEV can no longer function, 
it faults.

Unavailable devices appear in the pool’s status by the GUID as-
signed to them rather than the provider’s device node.

Offline

Offline devices have been deliberately turned off by the sysadmin. You 
have no end of reasons for turning off a drive in a large array.

Removed
Some hardware can detect when a drive is physically removed from 
the system while the system is running. Such hardware lets ZFS set the 
Removed status when a drive is pulled. When you reattach the drive, 
ZFS tries to bring the provider back online.

Errors through the ZFS Stack

Here’s a server with a couple disconnected storage providers. This 
doesn’t belong to Lucas’ or Jude’s system; it belongs to Lucas’ friend’s 
system.12 Note the errors on the providers, the type of VDEV, and the 
state of the pool as a whole.

12	  And now that Lucas has a good example of a problem, he can 
tell that friend that this zpool is wounded. Although, to be certain 
he has good examples, he’ll probably wait until he finishes this book. 
Being Lucas’ friend kind of sucks.



Chapter 5: Repairs and Renovations

111

# zpool status
  pool: FreeNAS02
 state: DEGRADED
status: One or more devices could not be opened.  Sufficient replicas 
	   exist for the pool to continue functioning in a degraded 
	   state.
action: Attach the missing device and online it using ‘zpool online’.
   see: http://illumos.org/msg/ZFS-8000-2Q
  scan: scrub repaired 0 in 15h57m with 0 errors on Sun Feb  8 
15:57:55 2015
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
FreeNAS02	 DEGRADED	 0	 0	 0
raidz2-0	 DEGRADED	 0	 0	 0
15881943619...	UNAVAIL	 0	 0	 0	 was /dev/gpt/zfs0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
gpt/zfs3	 ONLINE	 0	 0	 0
gpt/zfs4	 ONLINE	 0	 0	 0
gpt/zfs5	 ONLINE	 0	 0	 0
gpt/zfs6	 ONLINE	 0	 0	 0
gpt/zfs7	 ONLINE	 0	 0	 0
gpt/zfs8	 ONLINE	 0	 0	 0
gpt/zfs9	 ONLINE	 0	 0	 0
14768132704...	UNAVAIL	 0	 0	 0	 was /dev/gpt/zfs10
gpt/zfs11	 ONLINE	 0	 0	 0
gpt/zfs12	 ONLINE	 0	 0	 0
gpt/zfs13	 ONLINE	 0	 0	 0

This RAID-Z2 pool is in a degraded state. It’s missing two pro-
viders, /dev/gpt/zfs0 and /dev/gpt/zfs10. A RAID-Z2 VDEV can 
handle up to two disk failures, and will continue to function despite 
the missing drives. 

A degraded pool has limited self-healing abilities, however. A 
pool without redundancy does not have the information necessary for 
ZFS to repair files. Our sample pool above has lost two disks out of its 
RAID-Z2 VDEV. It has zero redundancy. If a file suffers from bit rot, 
ZFS can’t fix it. When you try to access that file, ZFS returns an error. 
Redundancy at the dataset layer (with the copies property) might let 
ZFS heal the file.

If this pool experiences another drive failure, the pool will no lon-
ger have a complete copy of its data and will fault.



Chapter 5: Repairs and Renovations

112

Restoring Devices

If ZFS is kind enough to announce its problems, the least you can do 
is try to fix them. The repair process depends on whether the drive is 
missing or failed.

Missing Drives

A drive disconnected during operation shows up as either removed or 
faulted. Maybe you removed a drive to check its serial number. Per-
haps a cable came loose. It might have been gremlins. In any case, you 
probably want to plug it back in.

If the hardware notices that the drive is removed, rather than just 
saying it’s missing, the hardware also notices when the drive returns. 
ZFS attempts to reactivate restored drives.

Hardware that doesn’t notify the operating system when drives 
are added or removed needs sysadmin intervention to restore service. 
Use the zfs online command to bring a reconnected drive back into 
service.
# zfs online gpt/zfs5

If the drive is offline because it’s failed, though, you must replace it 
rather than just turn it back on.

Replacing Drives

The hardest part of drive replacement often has nothing to do with 
ZFS: you must find the bad drive. We advise using the physical loca-
tion of the disk in the GPT label for the disk when you first install the 
drive to make later replacement easier. If you must identify a failed 
drive without this information, use gpart list and smartctl to get the 
disk’s serial number and manufacturer, then search the chassis for that 



Chapter 5: Repairs and Renovations

113

drive. It’s the same process discussed in Chapter 0, in reverse, with the 
added pressure of unscheduled downtime. Worst case, you can find 
the serial number of every drive that is still working, and process of 
elimination will reveal which drive is missing.

Now don’t you wish you’d done the work in advance?
Once you find the failed drive and arrange its replacement, that’s 

where we can start to use ZFS.

Faulted Drives

Use the command zpool replace to remove a drive from a resilient 
VDEV and swap a new drive in. The drive doesn’t have to be failed—it 
could be a perfectly healthy drive that you want to replace so that you 
can, say, do maintenance on the disk shelf. Here’s a RAID-Z1 pool 
with a bad drive.

NAME	 STATE	 READ	 WRITE	 CKSUM
db	 DEGRADED	 0	 0	 0
raidz1-0	 DEGRADED	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
gpt/zfs3	 FAULTED	 0	 0	 0
gpt/zfs4	 ONLINE	 0	 0	 0

The /var/log/messages log includes many warnings about the 
physical disk underlying gpt/zfs3. This disk needs to be put out of our 
misery. Use zpool replace to remove the faulted provider from the 
VDEV and replace it with a new device. Give the pool name, the failed 
provider, and the new provider.
# zpool replace db gpt/zfs3 gpt/zfs5

This command might take a long time, depending on the disk’s 
capacity and speed and the amount of data on the disk. You can view 
the status of the replacement by checking the pool’s status.



Chapter 5: Repairs and Renovations

114

# zpool status db
  pool: db
 state: DEGRADED
status: One or more devices is currently being 
	 resilvered.  The pool will continue to 
	 function, possibly in a degraded state.
action: Wait for the resilver to complete.
  scan: resilver in progress since Mon Mar 16
	 12:04:50 2015
	 195M scanned out of 254M at 19.5M/s, 0h0m to go
	 47.3M resilvered, 76.56% done
config:

NAME	 STATE	 READ	 WRITE	 CKSUM
db	 ONLINE	 0	 0	 0
raidz1-0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
replacing-2	ONLINE	 0	 0	 0
gpt/zfs3	 FAULTED	 0	 0	 0
gpt/zfs5	 ONLINE	 0	 0	 0	 (resilvering)
gpt/zfs4	 ONLINE	 0	 0	 0

The resilvering time estimates given assume that disk activity is 
fairly constant. Starting a big database dump halfway through the 
resilvering process delays everything.

Replacing the Same Slot

Perhaps your hard drive array is full, and you don’t have the space to 
slot in a new hard drive with a new device node. You must physically 
remove the failed hard drive, mount the replacement in its space, par-
tition and label the drive, and replace the provider. That’s only slightly 
more complex.

This method has more risks, however. With zpool replace, the 
faulted provider remains as online as it can manage until resilvering 
finishes. If you lose a second disk in your RAID-Z1 during resilvering, 
there’s a chance the pool has enough data integrity to survive. If you 
replace the faulty provider before starting the rebuild, you lose that 



Chapter 5: Repairs and Renovations

115

safety line. If your hardware doesn’t give you the flexibility you need 
for a safer replacement, though, check your backups and proceed.

Start by taking the failed provider offline. This tells ZFS to stop 
trying to read or write to the device.
# zpool offline gpt/zfs3

You can now remove the failed drive from the array and install its 
replacement. Partition the provider as needed. If you’re unsure of par-
titioning, you can copy an existing disk’s partition table to another disk 
with something like gpart backup da0 | gpart restore da9. Use the 
new provider label in zpool replace. If the label on the new provider 
is identical to the label on the drive you removed, you don’t have to 
repeat the provider name. Here we replace gpt/zfs3 with a new disk, 
also labeled gpt/zfs3.
# zpool replace db gpt/zfs3

If you’re labeling your disks by serial number, as we recommend in 
Chapter 0, you won’t have this issue.

Replacing Unavail Drives

If a drive status is UNAVAIL, ZFS identifies the missing drive by its 
GUID and gives the previous device name off to the side. The zpool 
can still function, but you really need to replace the drive.

NAME	 STATE	 READ	 WRITE	 CKSUM
db	 DEGRADED	 0	 0	 0
RAID-Z1-0	 DEGRADED	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
137922168...	 UNAVAIL	 0	 0	 0	 was /dev/gpt/zfs3
gpt/zfs4	 ONLINE	 0	 0	 0

I’ve installed a new drive, which shows up in /var/run/dmesg.boot 
as da5, and created a freebsd-zfs partition on it. This new provider 
gets the GPT label zfs3. The pool won’t automatically identify this 



Chapter 5: Repairs and Renovations

116

provider as its replacement—it knows that the previous provider was 
/dev/gpt/zfs3, but the new /dev/gpt/zfs3 lacks the on-disk metadata 
that identifies it as a ZFS volume.

To slip this new provider into the zpool, use zpool replace again. 
Use the GUID instead of the previous device name.

# zpool replace db 13792229702739533691 gpt/zfs3

Checking the zpool’s status shows the pool resilvering. Once the 
resilver completes, the pool is fully restored.

Replacing Mirror Providers

Sometimes a disk doesn’t totally fail, but generates so many errors that 
it’s clearly about to die. When this disk is in a mirrored virtual device, 
it might be better to keep the failing provider in place while you add 
the replacement disk. This maximizes redundancy throughout the 
replacement process. It does require that your hardware be able to use 
three disks instead of the usual two. If your system can handle only 
two disks, then stick with zpool replace.

Here we have a pool with a single mirror VDEV containing 
two providers, gpt/zfs0 and gpt/zfs1. We must replace the dying 
gpt/zfs0 with gpt/zfs2. Rather than going straight to zpool replace, 
start by attaching the replacement disk to pool. The zpool attach 
command tells this pool to add another layer of mirroring to the pool. 
Give the pool name, a device to be mirrored, and the new device. 

# zpool attach db gpt/zfs1 gpt/zfs2

Here we attach a provider to the pool db. One of the existing pro-
viders is gpt/zfs1, and we’re attaching gpt/zfs2. Look at zpool status 
db and you’ll see the pool resilvering to synchronize the new provider 
with the other disks in the mirror. Once the new provider is syn-
chronized with the pool, remove the failing provider from the virtual 
device.



Chapter 5: Repairs and Renovations

117

# zpool detach db gpt/zfs0

The failing disk behind gpt/zfs0 is no longer in use.
You can also use this technique to transform a single-disk pool 

into a mirrored virtual device.

Reattaching Unavail and Removed Drives

An UNAVAIL drive might not have catastrophically failed. It might 
have come unplugged. If you go to the server and find that wiggling 
the drive tray makes it light up, you can tell the zpool to reactivate the 
disk. You can also reactivate a drive with a status of REMOVED. In 
either case use the zpool online command, the pool name, and the 
GUID of the missing provider.
# zpool online db 718035988381613979

ZFS will resilver the reactivated drive and resume normal function.

Log and Cache Device Maintenance

We advise using high-endurance SSD drives for your ZFS Intent Log 
(write cache) and L2ARC (read cache). All too often you’ll find that 
“high endurance” is not the same as “high enough endurance,” and 
you might need to replace the device. Log devices use the same status 
keywords as regular storage providers—faulted, offline, and so on. You 
might also need to insert a log device or, less commonly, remove the 
log device.

While the examples show log devices, cache devices work exactly 
the same way.

Adding a Log or Cache Device

To add a log or cache device to an existing pool, use zpool add, the 
pool name, and the device type and providers. Here we add the log 
device gpt/zlog0 to the pool db.



Chapter 5: Repairs and Renovations

118

# zpool add db log gpt/zlog0

The pool immediately begins using the new log or cache device.
To add a mirrored log device, use the mirror keyword and the 

providers. Mirroring the ZIL provides redundancy for writes, helping 
guarantee that data written to disk survives a hardware failure. Here 
we mirror the devices gpt/zlog0 and gpt/zlog1 and tell the pool db to 
use the mirror as a log device.
# zpool add db log mirror gpt/zlog0 gpt/zlog1

Most often, a mirrored cache device isn’t a good use of fast disk. 
ZFS handles the death of a cache device fairly well. Striping the cache 
across multiple devices reduces load on any single device and hence 
reduces the chance of failure.

Removing Log and Cache Devices

When you remove a log or cache device from a ZFS pool, ZFS stops 
writing new data to the log, clears out the buffer of data from the log, 
and releases the device.

To remove a standalone log or cache device, use zpool remove, 
the pool name, and the device name. We previously added the device 
gpt/zlog0 as a log device for the pool db. Let’s remove it.
# zpool remove db gpt/zlog0

Removing a mirrored log device is slightly more complex. You 
must know the mirror name before you can remove it. Look at the 
pool status.



Chapter 5: Repairs and Renovations

119

# zpool status db
...
NAME	 STATE	 READ	 WRITE	 CKSUM
db	 ONLINE	 0	 0	 0
mirror-0	 ONLINE	 0	 0	 0
gpt/zfs0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0

mirror-1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
gpt/zfs3	 ONLINE	 0	 0	 0

logs
mirror-2	 ONLINE	 0	 0	 0
gpt/zlog0	 ONLINE	 0	 0	 0
gpt/zlog1	 ONLINE	 0	 0	 0

The log device is called mirror-2. Remove it as you would a stand-
alone device.
# zpool remove db mirror-2

The pool clears the log and removes the device from the pool.

Replacing Failed Log and Cache Devices

Replace a failed log or cache device, even a mirror member, exact-
ly as you would any other failed devices. Here we replace the device 
gpt/zlog0 with gpt/zlog2.
# zpool replace db gpt/zlog0 gpt/zlog2

The log device resilvers and carries on.

Exporting and Importing Drives

You can move ZFS filesystem drives between machines, even machines 
running different operating systems. You aren’t restricted to similar 
architectures, either—ZFS even lets you move disks between different 
endian hardware! This offers an easy migration path between, say, 
Sparc OpenSolaris and FreeBSD. ZFS uses its own on-disk metadata 
to track the role of each provider in a pool, so you don’t need to track 
drive order, device nodes, or any of the usual disk issues. Unplug your 



Chapter 5: Repairs and Renovations

120

drives, throw them in a bag, drive across town, and plug them back in. 
Bringing a pool back online is called importing.

ZFS can run on storage providers other than disks, however. 
Suppose you use GPT disk partitions on your ZFS disks, as we recom-
mend. You might then decide to move those disks from your FreeBSD 
host to another operating system or another hardware architecture. If 
the new operating system or hardware doesn’t recognize GPT parti-
tions, the new host won’t be able to find the pools to import them!

Before you import a pool, though, you must export it.

Exporting Pools

Export is roughly analogous to cleanly unmounting a traditional 
filesystem. ZFS marks the providers as inactive and completes all 
pending transactions. If you have a ZFS Intent Log (Chapter 2), the 
log is purged. Everything is written to the provider, the filesystem is 
unmounted, and the system is notified that these providers are now 
free for reuse.

Use zpool export and the pool name to export a pool. Here, we 
export the pool db.
# zpool export db

This command should run silently. Run zpool list to verify the 
pool is no longer on the system.

The system will refuse to export an active filesystem. Shut down 
any daemons writing to the dataset and change your shell’s working di-
rectory away from the dataset. Stop tailing files. You can use fstat(1) 
or lsof(8) to identify processes using filesystems on that dataset.

Importing Pools
To see inactive pools attached to a system, run zpool import. This 
doesn’t actually import any pools, but only shows what’s available for 
import.



Chapter 5: Repairs and Renovations

121

# zpool import
   pool: db
 id: 8407636206040904802
  state: ONLINE
 action: The pool can be imported using its name or 
	     numeric identifier.
 config:

db	 ONLINE
raidz1-0	 ONLINE
gpt/zfs1	 ONLINE
gpt/zfs2	 ONLINE
gpt/zfs3	 ONLINE
gpt/zfs4	 ONLINE

This shows that the pool db, also known by a long numerical iden-
tifier, can be imported. You see the pool configuration at the bottom 
exactly as you would for an active pool.

The status ONLINE does not mean that the pool is active, but 
rather that the providers are all ready for use. As far as ZFS knows, this 
pool is ready to go.

Import the pool with zpool import and the pool name or numerical ID.
# zpool import db

If you have multiple inactive pools with the same name, import the 
pool by ID number instead.
# zpool import 8407636206040904802

You cannot import a pool if a pool of that name already exists, 
unless you rename the pool.

Renaming Imported Pools

Some of us reuse pool names between machines. When Lucas needs 
a dedicated pool for a database he always calls it db, because it’s short 
and he’s lazy. This is great for standardization—everyone knows exact-
ly where the database files live. It’s an annoyance when moving disks 
to another machine, though. Each machine can have only one pool of 
each name. 



Chapter 5: Repairs and Renovations

122

ZFS lets you permanently rename a pool by giving the new name 
after the existing name. Here we import the pool called db under the 
name olddb.
# zpool import db olddb

Datasets from the imported pool can be found in /olddb. These 
renames are permanent. You can export and reimport the pool with its 
new name forever.

To temporarily mount a pool at a location other than its usual 
mount point, use the –R flag and an alternate root path.
# zpool import -R /dunno data

This temporarily adds the path /dunno to all datasets in the im-
ported pool. Exporting the pool removes the extra path and unsets the 
altroot property.

Use the altroot property when you don’t know what’s in a pool 
and you don’t want to chance overlaying it on your existing datasets 
or filesystems. Remember, BSD filesystems are stackable! You can 
also use it in an alternate boot environment, where the imported pool 
might overlay the running root filesystem and hide the tools you need 
to manage the pool.

Incomplete Pools

You can’t import a pool if it doesn’t have enough members to provide 
all the needed data. Much as you can’t use a RAID-Z1 if it’s missing 
two disks, you can’t import a RAID-Z1 with more than one missing 
disk.



Chapter 5: Repairs and Renovations

123

# zpool import
   pool: db
 id: 8407636206040904802
  state: UNAVAIL
 status: One or more devices are missing from the 
	    system.
 action: The pool cannot be imported. Attach the missing
	    devices and try again.
    see: http://illumos.org/msg/ZFS-8000-3C
 config:

db	 UNAVAIL	 insufficient replicas
RAID-Z1-0	 UNAVAIL	 insufficient replicas
gpt/zfs1	 ONLINE
4300284214136283306	 UNAVAIL	 cannot open
gpt/zfs3	 ONLINE
3061272315720693424	 UNAVAIL	 cannot open

This is a four-provider RAID-Z1, but two of the providers are 
missing. Check that the reinstalled disks are all correctly attached and 
try again.

Special Imports

Pool imports are highly useful in recovering from damaged systems. 
ZFS lets you work around many errors and problems when importing 
pools. This section takes you through some special cases of imports.

Destroying a pool doesn’t actually destroy any data. It marks the 
pools as destroyed, but the pools and all their metadata remain on the 
hard drives until overwritten. To tell ZFS to search for destroyed but 
importable pools, add the -D flag.
# zpool import -D

The pool’s status will show up as ONLINE (DESTROYED). The 
ONLINE means that the pool has everything it needs to function. Use 
the -D flag and the pool name or ID number to resurrect it.
# zpool import -D 8407636206040904802

If a pool is missing too many storage providers, you cannot import 
it. You cannot zpool online detached drives. Check the drive trays 



Chapter 5: Repairs and Renovations

124

and make sure the drives you want to import are attached and pow-
ered on. The next time you run zpool import, reconnected drives will 
show up.

If a pool is missing its log device, add the -m flag to import it 
without that device. An exported pool should have everything on the 
storage providers.
# zpool import -m db

You can set pool properties when you import, by using the -o 
flag. Here we import and rename a database pool, and also make it 
read-only.
# zpool import -o readonly=on db olddb

We can now copy files from the old pool without damaging the 
pristine copy of the data.

You might want to import a damaged pool, to try to recover some 
part of the data on it. The –F flag tells zpool import to roll back the 
last few transactions. This might return the pool to an importable 
state. You’ll lose the contents of the rolled back transactions, but if 
this works, those transactions were probably causing your problems 
anyway.

Larger Providers

One interesting fact about ZFS is that it permits replacing providers 
with larger providers. If your redundant storage pool uses 4 TB disks 
you can replace them with, say, 10 TB models and increase the size of 
your pool. This requires replacing successive providers with larger ones.

A pool calculates its size by the smallest disk in each VDEV. If your 
mirror has a 4 TB disk and a 10 TB disk in a single VDEV, the mirror 
VDEV will only have 4 TB of space. There’s no sensible way to mirror 
10 TB of data on a 4 TB disk! If you replace the 4 TB disk, however, 
you’ll be able to expand the mirror to the size of the smallest disk.



Chapter 5: Repairs and Renovations

125

One question to ask is: do you want your pools to automatically 
expand when they can, or do you want to manually activate the expan-
sion? ZFS can automatically make the expansion work, but you need 
to set the autoexpand property for each pool before starting. ZFS leaves 
this off by default because you can never shrink a pool. (Having to 
turn on autoexpand won’t hurt you, but having it on by default might 
leave you with a pool too large for any of your other disks.)
# zpool set autoexpand=on db

Without this property set, you must run a command to expand the 
pool after you replace the providers.

Replacing all the providers in a pool isn’t complicated, but it does 
involve a certain amount of tediousness. Take this RAID-Z1 pool with 
three providers.

NAME	 STATE	 READ	 WRITE	 CKSUM
db	 ONLINE	 0	 0	 0
raidz1-0	 ONLINE	 0	 0	 0
gpt/zfs1	 ONLINE	 0	 0	 0
gpt/zfs2	 ONLINE	 0	 0	 0
gpt/zfs3	 ONLINE	 0	 0	 0

Each of those providers is a single tiny disk.
# zpool list db
NAME  SIZE  ALLOC   FREE   FRAG  EXPANDSZ  CAP  DEDUP  HEALTH  ALTROOT

db    59.5G  1.43G  58.1G  1%           -   2%  1.00x  ONLINE  -

If the hardware has enough physical space, add new drives and 
create replacement providers. If you’re short on physical space, offline 
the providers and replace the hard drives. Here we offline and replace 
the drives.

This pool has three providers: gpt/zfs1, gpt/zfs2, and gpt/zfs3. 
We first replace gpt/zfs1. Running gpart show -l shows that this 
provider is on drive da1.



Chapter 5: Repairs and Renovations

126

 If you need to offline the drive to add the replacement drive, start 
by identifying the physical location of drive da1. Prepare the replace-
ment drive as required by your hardware, then offline the pool from 
the provider.
# zpool offline db gpt/zfs1

This should return silently. Checking zpool status shows this pro-
vider is offline. You can remove this hard drive from the system.

Insert the replacement drive, either in the space where the old 
drive was removed or a new slot. The new drive should appear in 
/var/run/dmesg.boot. On this system, the new drive shows up as 
/dev/da4. Create the desired partitioning on that drive and label it. 
If you’re not using serial numbers in your labels, but labeling only by 
physical location, you can use the same label. (Again, we use these 
short labels here because they’re easier to read while learning.)
# gpart create -s gpt da4
da4 created
# gpart add –a 1m -t freebsd-zfs -l zfs1 da4

Now tell the pool to replace the failed device.
# zpool replace -f db gpt/zfs1

Let the pool finish resilvering before replacing any other providers. 
Replacing a non-redundant unit during a resilvering will only cause 
pain. If you’re using RAID-Z2 or RAID-Z3 it is possible to replace 
multiple disks simultaneously, but it’s risky. An additional disk failure 
might make the VDEV fail. Without the redundancy provided by the 
additional providers, ZFS cannot heal itself. Each disk’s I/O limits will 
probably throttle resilvering speed. 

After your first provider resilvers, swap out your next smaller 
provider. You will see no change in disk space until you swap out every 
provider in the VDEV. To be sure you’ve replaced every providers with 
a larger one, check zpool list.



Chapter 5: Repairs and Renovations

127

# zpool list db
NAME  SIZE  ALLOC   FREE   FRAG  EXPANDSZ  CAP  DEDUP  HEALTH  ALTROOT

db    59.5G  1.70G  57.8G    0%      240G   2%  1.00x  ONLINE  -

Note that we now have new space in EXPANDSZ. This pool can be 
grown.

If you set the pool to autoexpand before you started, it should 
grow on its own. If not, manually expand each device in the pool with 
zpool online -e.
# zpool online -e db gpt/zfs1
# zpool online -e db gpt/zfs2
# zpool online -e db gpt/zfs3

This pool now has more space.

Zpool Versions and Upgrades

The FreeBSD and OpenZFS teams constantly improve their software, 
adding new features to ZFS and to FreeBSD’s ZFS support. Some of 
these improvements require changes or additions to the zpools. When 
you upgrade your host’s operating system, the host might gain ZFS 
features that the existing pools don’t support. Before you can use those 
new features, you must upgrade the storage pools. Pools continue to 
function if you don’t upgrade them, but they won’t take advantage of 
new features that require on-disk format changes.

You might choose to not upgrade your pools when you upgrade 
your operating system, however. If you’re upgrading a system from 
FreeBSD 11 to FreeBSD 12, you might leave the disks in the pool 
format for FreeBSD 11. If you need to roll back the upgrade, the 
operating system will still be able to read the pools. Operating system 
upgrades are reversible. Pool upgrades are not.



Chapter 5: Repairs and Renovations

128

ZFS Versions and Feature Flags

Originally, ZFS used version numbers to indicate which features a 
pool or operating system version supported. Version numbers started 
at 1 and increased by one for every ZFS improvement that touched the 
on-disk format. When Sun Microsystems acted as the central coordi-
nator of all ZFS development, a single incrementing version number 
made sense. The version number in OpenZFS is set to 5000, and pools 
use feature flags instead. We discuss feature flags in detail in Chapter 3.

The two questions for feature flags are: “What features does your 
pool currently support?” and “What features does your operating sys-
tem support?” Check the pool properties to see what’s on your disks, 
as discussed in Chapter 3. To see all the feature flags your FreeBSD 
release supports, run zpool upgrade -v.
# zpool upgrade -v
This system supports ZFS pool feature flags.
The following features are supported:
FEAT DESCRIPTION
-------------------------------------------------------
------
async_destroy                     (read-only compatible)

Destroy filesystems asynchronously.
empty_bpobj                       (read-only compatible)

Snapshots use less space.
lz4_compress

LZ4 compression algorithm support.
...

The features marked “read-only compatible” mean that hosts that 
don’t support these feature flags can import these pools, but only as 
read-only. See “Pool Import and Export” earlier this chapter for a dis-
cussion of moving pools between hosts.

The FreeBSD release notes for each version indicate new ZFS 
features. You do read the release notes carefully before upgrading, 
don’t you? If you somehow miss that part of the documentation, zpool 



Chapter 5: Repairs and Renovations

129

status tells you which pools could use an upgrade. (Remember, just 
because a pool can take an upgrade doesn’t mean that you should do 
the upgrade. If you might need to revert an operating system upgrade, 
leave your pool features alone!)
# zpool status db
 pool:  db
state:  ONLINE
status: Some supported features are not enabled on the 

pool. The pool can still be used, but some fea-
tures are unavailable.

action: Enable all features using ‘zpool upgrade’. Once 
this is done, the pool may no longer be acces-
sible by software that does not support the 
features. See zpool-features(7) for details.

...

You’ll also get a list of the new features supported by the upgrade. 
Upgrade your pools by running zpool upgrade on the pool.
# zpool upgrade zroot

Pool upgrades non-reversibly add new fields to the existing pool 
layout. An upgrade doesn’t rewrite existing data, however. While the 
new feature might have problems, the mere availability of that feature 
flag on the disk is very low risk.

If you plan to move disks to a system running an older operat-
ing system, or to an operating system running an older version of 
OpenZFS, you can enable pool features more selectively. Moving disks 
from a FreeBSD 11 system to a FreeBSD 10 system requires carefully 
checking pool features. Enable a single feature by setting its property 
to enabled.
# zpool set feature@large_blocks=enabled data

This pool now supports the large_blocks feature.



Chapter 5: Repairs and Renovations

130

Zpool Upgrades and the Boot Loader

FreeBSD’s boot loader must understand the ZFS pool you’re boot-
ing from. This means it must recognize the pool’s features. Any time 
you update the pool containing the /boot filesystem, you must update 
the boot loader on the disks. Use gpart(8) to update the boot loader. 
If you boot from a ZFS mirror on the disks da0 and da1, you’ll update 
the loaders on both disks like so:
# gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
# gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da1

The system might not boot without this update. The zpool upgrade 
command prints a reminder to perform the update, but you’re free to 
ignore it if you like. If you render your system unbootable, you might 
try to boot from the newest FreeBSD-current ISO or a live CD and 
copy its boot loader to your system.

FreeBSD ZFS Pool Limitations

FreeBSD does not yet support all ZFS features. Most unsupported 
features don’t work because of fundamental differences between the 
FreeBSD and Solaris architectures. People are actively developing 
solutions that will let FreeBSD support all of ZFS’ features. We expect 
some of these to become supported after this book goes to press.

At this time, hot spares do not work. Hot spares let ZFS automati-
cally swap a failed drive with an assigned standby on the system. This 
depends on the forthcoming zfsd(8) implementation, which is still a 
work in progress.

Now that you can fill a pool with data and repair the hardware, let’s 
play with a couple of ZFS’ more useful features, clones and snapshots.



131

Chapter 6: Disk Space Management
ZFS makes it easy to answer questions like “How much free disk does 
this pool have?” The question “What’s using up all my space?” is much 
harder to answer thanks to snapshots, clones, reservations, ZVOLs, 
and referenced data. These features might also cause problems when 
trying to use traditional filesystem management methods on ZFS data-
sets. It’s possible to find you don’t have enough space to delete files, 
which is terribly confusing until you understand what’s happening.

ZFS offers ways to improve disk space utilization. Rather than re-
quiring the system administrator to compress individual files, ZFS can 
use compression at the filesystem level. ZFS can also perform dedupli-
cation of files, vastly improving disk usage at the cost of memory. We’ll 
see how to evaluate these options and determine when to use each.

But let’s start by considering ZFS’ disk space usage.

Reading ZFS Disk Usage

The df(1) program shows the amount of free space on each partition, 
while du(1) shows how much disk is used in a partition or directory 
tree. For decades, sysadmins have used these tools to see what’s eating 
their free space. They’re great for traditional filesystems. ZFS requires 
different ways of thinking, however.



Chapter 6: Disk Space Management

132

Consider this (heavily trimmed) list of ZFS datasets.
# zfs list
NAME                 USED  AVAIL  REFER  MOUNTPOINT
zroot               17.5G   874G   144K  none
zroot/ROOT          1.35G   874G   144K  none
zroot/ROOT/default  1.35G   874G  1.35G  /
zroot/usr           12.5G   874G   454M  /usr
zroot/usr/local     1.84G   874G  1.84G  /usr/local
...

According to this, the zroot pool has 17.5 GB in use. At first glance 
you might think that zroot/ROOT and zroot/ROOT/default both use 
1.35 GB. You’d be wrong.

The dataset zroot/ROOT uses 1.35 GB of data. There’s 1.35 GB of 
data in this dataset. The dataset zroot/ROOT/default also uses 1.35 GB 
of data. The zroot/ROOT/default dataset is included in the zroot/ROOT 
dataset, however. It’s the same 1.35 GB of data.

Similarly, consider the 12.5 GB that zroot/usr uses. This dataset 
has child datasets, such as zroot/usr/local, zroot/usr/obj, and so 
on. Each of these datasets uses a chunk of data, often several gigabytes. 
The 12.5 GB that zroot/usr uses includes everything beneath it.

With ZFS, you can’t just add up the amount of used space to get 
the total.

The AVAIL column, or space available, is somewhat more reliable. 
The pool zroot has 874 GB of empty space. Once you start using snap-
shots and clones and all of the other ZFS goodness, you’ll find that this 
874 GB of space can contain many times that much data, thanks to 
referenced data.

Referenced Data

The amount of data included in a dataset is the referenced data. 
Look at the REFER column in the listing above. The zroot pool and 
zroot/ROOT both refer to 144 KB of space. That’s roughly enough to 



Chapter 6: Disk Space Management

133

say that “yes, this chunk of stuff exists.” It’s a placeholder. The dataset 
zroot/ROOT/default, however, references 1.35 GB of data.

The referenced data is stuff that exists within this filesystem or 
dataset. If you go into the zroot/ROOT/default filesystem, you’ll find 
1.35 GB of stuff.

So, you add up the referenced space and get the amount used? No, 
wrong again. Multiple ZFS datasets can refer to the same collection 
of data. That’s exactly how snapshots and clones work. That’s why ZFS 
can hold, for example, several 10 GB snapshots in 11 GB of space.

Clones use space much like snapshots, except in a more dynamic 
manner. Once you add in deduplication and compression, disk space 
usage gets complicated really quickly.

And then there are even issues around freeing space.

Freeing Space

In many ZFS deployments, deleting files doesn’t actually free up space. 
In most situations, deletions actually increase disk space usage by a 
tiny amount, thanks to snapshots and metadata. The space used by 
those files gets assigned to the most recent snapshot. To successfully 
manage ZFS, you have to understand how the underlying features 
work and what ZFS does when you delete data.

On a filesystem using snapshots and clones, newly freed space 
doesn’t appear immediately. Many ZFS operations free space asynchro-
nously, as ZFS updates all the blocks that refer to that space. The pool’s 
freeing property shows how much space ZFS still needs to reclaim 
from the pool. If you free up a whole bunch of space at once, you can 
watch the freeing property decrease and the free space increase. How 
quickly ZFS reclaims space depends on your hardware, the amount of 
load, pool design, fragmentation level, and how the space was used.



Chapter 6: Disk Space Management

134

Asynchronously freeing space is easily understood: you look at the 
freeing property and see how quickly it goes down. But to the uniniti-
ated, ZFS’ disk use can seem much weirder. Suppose you have a bunch 
of dataset snapshots, and their parent dataset gets full. (We cover snap-
shots in Chapter 7, but bear with us now.) You delete a couple of large 
ISOs from the dataset. Deleting those files won’t free up any space. 
Why not?

Those ISO files still exist in the older snapshots. ZFS knows that 
the files don’t exist on the current dataset, but if you go look in the 
snapshot directories you’ll see those files. ZFS must keep copies of 
those deleted files for the older snapshots as long as the snapshots 
refer to that data. Snapshots contents are read-only, so the only way to 
remove those large files is to remove the snapshots. If you have multi-
ple snapshots, disk usage gets more complex. And clones (Chapter 7), 
built on snapshots, behave the same way.

Understanding precisely how a particular dataset uses disk space 
requires spending some time with its properties.

Disk Space Detail

To see exactly where your disk space went, ask zfs list for more de-
tail on space usage with the -o space modifier.
# zfs list -o space
NAME	 AVAIL	 USED	 USEDSNAP	 USEDDS	USEDREFRESERV	USEDCHILD
zroot	 874G	 17.5G	 0	 144K	 0	 17.5G
zroot/ROOT	 874G	 1.35G	 0	 144K	 0	 1.35G
zroot/ROOT/default	874G	 1.35G	 0	 1.35G	 0	 0
zroot/usr	 874G	 12.5G	 0	 454M	 0	 12.0G

...

The AVAIL column shows the amount of space available to each 
of the datasets on this pool. ZFS shares the available space amongst all 
of the datasets in the pool. This is taken from the ZFS property avail-
able. We show how to limit usage with quotas and reservations later in 
this chapter.



Chapter 6: Disk Space Management

135

The USED column shows the amount of space taken up by this 
dataset and everything descended from it. Snapshots, ZVOLs, clones, 
regular files, and anything else that uses space counts against this 
amount. This value might lag behind changes for a few seconds as ZFS 
writes new files, creates snapshots and child datasets, or makes other 
changes. The value comes from the dataset’s used property.

The USEDBYSNAP column shows the amount of space used ex-
clusively by snapshots. When you first snapshot a dataset, the snapshot 
takes almost no space, because it’s nearly identical to the original data-
set. As the dataset changes, however, the snapshots grow. As multiple 
snapshots of the same dataset probably refer to the same data, it’s 
difficult to say if deleting a single snapshot will free up any part of this 
space. Completely removing all of this dataset’s snapshots will certain-
ly free up this amount of space, however. This value comes from the 
dataset’s usedbysnapshots property. Chapter 7 discusses snapshots.

The USEDDS column shows the amount of space used by files on 
this dataset. It excludes snapshots, reservations, child datasets, or other 
special ZFS features. It comes from the dataset’s usedbydataset prop-
erty. Chapter 4 covers datasets.

Under USEDBYREFRESERV you’ll see the space used by a refres-
ervation for this dataset, excluding its children. This value comes from 
the dataset’s usedbyrefreserv property. See “Reservations and Quotas” 
later in this chapter.

The USEDCHILD column shows how much space this dataset’s 
children use, as shown by the usedbychildren property.

Compare the entry for zroot/usr in zfs list from the previous 
section to the detailed space description. The zfs list result says 
that the dataset uses 12.5 GB and refers to 454 MB. By breaking the 
space-specific list into different categories, it’s very clear that this data-
set uses 454 MB, and the child datasets take up 12 GB.



Chapter 6: Disk Space Management

136

Use zfs list -o space whenever you investigate disk usage.

Pool Space Usage

Sometimes you don’t care about the space usage of individual datasets. 
Only the space available to the pool as a whole matters. If you look at 
a pool’s properties, you’ll see properties that look an awful lot like the 
amount of space used and free. They are, but a pool’s space properties 
include space required for parity information. They don’t reflect the 
amount of data you can fit on the pool.

If you have a mirror or a striped pool, the pool space information 
is fairly close to reality. If you’re using RAID-Z1, you’ll lose one pro-
vider of space to parity per virtual device in the pool. RAID-Z2 costs 
two disks per VDEV, and RAID-Z3 costs three disks per VDEV. While 
you could, in theory, use these properties, the pool’s current usage, and 
a bit of math to get a good guess as to how much space you’re using, 
there’s an easier way: ask zfs(8) about the pool’s root dataset.
# zfs list zroot
NAME    USED  AVAIL  REFER  MOUNTPOINT
zroot  37.7G   854G   144K  none

This pool is using 37.7 GB and has 854 GB free.

ZFS, df(1), and Other Traditional Tools

So ZFS has all kinds of fancy abilities to slice and dice its display of 
disk usage. After decades of using df(1) to look at disk usage, many 
of us are loathe to change. When you’re using ZFS, however, the 
venerable df(1) and many other tools are not merely less than opti-
mal—they’re actively incorrect and give wrong or confusing answers 
for ZFS. We’re going to use df(1) as an example, but many other tools 
have similar problems.

Traditional filesystems consist of a single partition. That partition 
has a size, based on the number of blocks allocated on the underlying 



Chapter 6: Disk Space Management

137

disk. The df(1) tool iterates over each mounted filesystem, and shows 
the size of the partition, how much of that space is currently used, and 
how much is remaining as free space.

Walking through the filesystems doesn’t work for ZFS, because 
datasets are not filesystems. ZFS exposes each dataset to the operat-
ing system as if it were a separate filesystem. A dataset does not have 
a maximum size (unless it has a quota). While you can set upper and 
lower limits on the size of a dataset, all ZFS datasets have access to all 
of the available free space in the pool. 

To offer some semblance of compatibility with the traditional 
df(1) tool, ZFS tells a little white lie. Since a ZFS dataset has no “size” 
in the traditional filesystem sense, it sums the used space, and the en-
tire pool’s available free space together, and presents that value as the 
“size” of the dataset. 

Look at our example pools in the previous section. The 
zroot/ROOT/default dataset uses 1.35 GB of space, and has 874 GB 
free. The total size is 875.35 GB. Then look at the zroot/usr dataset. It 
has used 12.5 GB, and has 874 GB free, for a total of 886.5 GB.

Now check some actual df(1) output for these datasets.
# df -h
Filesystem          Size  Used  Avail Capacity  Mounted on
zroot/ROOT/default  875G  1.4G  874G        0%  /
zroot/usr           874G  454M  874G        0%  /usr
...

The root filesystem is 875 GB, and /usr is 874 GB, giving these two 
partitions a total of 1749 GB, with 1748 GB free. Pretty impressive for 
a 1 TB disk, isn’t it? The “Capacity” column that showed what percent-
age of the filesystem is in use is similarly bogus.

As datasets grow larger, the amount of free space shrinks. Accord-
ing to df(1), the filesystem shrinks as space is used up, and grows 
when space is freed.



Chapter 6: Disk Space Management

138

Tools like df(1), and most other monitoring tools intended for 
traditional filesystems, give incorrect answers. Beware of them! While 
they might seem fine for a quick check, continuing to use these tools 
further ingrains bad habits. Bad systems administration habits cause 
pain and outages. When monitoring a dataset’s free space, make sure 
you are measuring the actual amount of free space, rather than the 
percentage used. If a traditional tool that shows “percent used” gives a 
meaningful result, it’s only by accident. Your monitoring system needs 
ZFS-specific tools.

This behavior has interesting side effects when viewed with other 
tools meant for traditional filesystems. A ZFS dataset mounted via 
Samba on a Windows machine will show only a minuscule amount of 
space used, and the remaining amount of space in the pool as the free 
space. As the pool fills with data, Windows sees the drive shrink.

When using ZFS, develop the habit of managing it with accurate 
tools.

Limiting Dataset Size

ZFS’ flexibility means that users and applications can use disk space 
if it’s available. This is very valuable, especially on long-lived systems, 
but sometimes that’s the exact behavior you don’t want. You don’t want 
datasets like /var/log expanding to fill your disk and, inversely, you 
want to be certain that critical datasets like your database get the space 
they need. If the main database runs out of space because Jude tem-
porarily stashed his collection of illicit potted fern photos in his home 
directory, you’ll have an unpleasant and unnecessary meeting.13 That’s 
where quotas and reservations come in.

13	  On the plus side, you’ll have an excuse to throw Jude under 
the bus. Metaphorically, if you prefer.



Chapter 6: Disk Space Management

139

A quota dictates the maximum amount of space a dataset and all 
its descendants can use up. If you set a quota of 100 GB on the dataset 
mounted as /home, the total amount of space used by /home and all the 
datasets and snapshots beneath it cannot exceed 100 GB.

A reservation dictates an amount of space set aside for a dataset. To 
ensure that a database always has room to write its files, use a reserva-
tion to carve out an amount of disk space just for that dataset.

We’ll discuss reservations first, then proceed to quotas.
Reservations
A reservation sets aside a chunk of disk space for a dataset and its 
children. The system will not allow other datasets to use that space. If 
a pool runs out of space, the reserved space will still be available for 
writes to that dataset.

Suppose we reserve 100 GB out of a 1 TB pool for /var/db, where 
our database stuffs its data files. This dataset has about 50 GB of data 
in it. A log file runs amok, and fills the rest of the pool. We’ll get errors 
from the other programs on the system saying that the disk is full—
but the database program will still have free space in /var/db. It might 
complain that it can’t write program logs to /var/log/db, but that’s a 
separate issue.

ZFS manages reservations with two ZFS properties: refreserva-
tion and reservation. A refreservation affects the dataset’s referenced 
data—that is, it excludes snapshots, clones, and other descendants. A 
reservation includes child datasets, snapshots, and so on. For an exam-
ple, look at this snippet from zfs list.
# zfs list
NAME                    USED  AVAIL  REFER  MOUNTPOINT
zroot/usr              12.5G   874G   454M  /usr
zroot/usr/local        1.84G   874G  1.84G  /usr/local
zroot/usr/obj          6.89G   874G  6.89G  /usr/obj
zroot/usr/ports        1.97G   874G   816M  /usr/ports
…



Chapter 6: Disk Space Management

140

The zroot/usr dataset is mounted as /usr. It “uses” 12.5 GB, 
including child datasets such as /usr/local, /usr/obj, and so on. It 
refers to only 454 MB, meaning that the amount of data on the main 
zroot/usr dataset is less than half a gigabyte.

If we set a reservation of 1 GB on zroot/usr, that’s basically moot. 
The existing files in the child datasets far exceed that, and the odds 
of something non-catastrophic trimming those children down to less 
than 1 GB are negligible.

If we set a refreservation of 1 GB on zroot/usr, though, it only 
affects files on zroot/usr. The child datasets are excluded. The dataset 
is currently half full, so it would have space to write more files.

That’s an extreme example, but somewhat artificial. Suppose you 
want to ensure that all of your users get at least 1 GB of disk space. 
Create a separate dataset for each user’s home directory and assign 
each a reservation.

You might also nest reservations. Suppose you have two data-
sets, zroot/var/log and zroot/var/log/db, the latter exclusively for 
your database server. You want to always have at least 10 GB for your 
database server logs, so you assign a reservation to zroot/var/log/db. 
Then you want 20 GB for generic server logs. If that 20 GB should 
include the database logs, use a reservation. If it should not include the 
database logs, use a refreservation.

A dataset might have both a reservation and a refreservation. You 
might say that the dataset zroot/var/log/db has a 10 GB refreserva-
tion for current log files, but set a much larger reservation so that you 
can take snapshots of the dataset and count their usage separately.

Attempting to violate a reservation generates an “out of space” 
error. When that error appears even though you know you still have 
free disk space, check your reservations. The datasets with reservations 
will show free space, but all others will be full.



Chapter 6: Disk Space Management

141

Viewing Reservations

You can check the reservations and refreservations separately, but 
we prefer to get all reservation information at once. You can view the 
specific list of properties by running zfs get -o reservation,refres-
ervation,usedbyrefreservation, but Lucas is too blasted lazy to type 
all that and he’s the lead author, so this example uses grep(1).

# zfs get all zroot/var/log/db | grep reserv
zroot/var/log/db  reservation           none   default
zroot/var/log/db  refreservation        none   default
zroot/var/log/db  usedbyrefreservation  0      -

This dataset has no reservation or refreservation set. Let’s set some.
The usedbyrefreservation property shows how much space on 

this dataset would be freed if the refreservation was removed.

Setting and Removing Reservations

Set a reservation just like you would any other ZFS property. Here we 
set a refreservation on /var/log/db and a reservation on /var/log.
# zfs set refreservation=10G zroot/var/log/db
# zfs set reservation=20G zroot/var/log

No matter what, this host will now have 10 GB reserved for data-
base logs and 20 GB for the log files, including the database directory. 
We used a refreservation for the database logs because we don’t 
want snapshots counted against that reservation.

To remove a reservation, set it to none.
# zfs set reservation=none zroot/var/log

Other datasets can now use that space.



Chapter 6: Disk Space Management

142

Quotas

A quota is a maximum amount of space that a dataset, user, or user 
group may use. All of these quotas are set on a per-dataset basis. We’ll 
start with dataset quotas, then investigate user and group quotas.

Dataset Quotas

Use a quota when you want to set a maximum amount of space that 
a dataset can consume. For example, you might decide that /tmp can 
only use up to 10 GB, or /home can only take up 200 GB, or any other 
limit that makes sense to you.

Like reservations, ZFS uses two properties for quotas: quota and 
refquota. The quota property sets a maximum amount of space that a 
dataset and all its children can use. The refquota property establishes 
the maximum amount of space that the dataset can use, excluding its 
children. If you want a quota that excludes snapshots and child data-
sets, use the refquota property.

Why would you want to use a refquota instead of a quota? Sup-
pose each user’s home directory is its own dataset, and users cannot 
create snapshots. Most can’t, and most of those who can don’t know 
how. If you automatically create snapshots, as we demonstrate in 
Chapter 7, then the space used by snapshots will get charged to the us-
er’s account. A user who runs out of disk space might delete some files 
but discover that they haven’t freed any space. It’s probably not fair to 
charge a user for disk space that they don’t control.14

14	  Sysadmins who consider “being fair to users” outside their 
normal remit can use refquotas as a way of reducing exposure to user 
cooties.



Chapter 6: Disk Space Management

143

Setting Quotas

To configure a quota on a dataset, assign the quota and/or refquota 
properties.

In the Reservations section we set aside 20 GB for the system logs 
in the zroot/var/log dataset, guaranteeing that the log would always 
have at least 20 GB of space. A more common issue is when logging 
runs amok and absorbs all available disk space, crashing the system. 
Your monitoring system should catch this error, but it also makes 
sense to establish a quota on the log dataset so that someone uncom-
menting /var/log/all.log in /etc/syslog.conf doesn’t crash the box 
a day later.

Here we set a quota on zroot/var/log.
# zfs set quota=100G zroot/var/log

The log files can use no more than 100 GB, including snapshots, 
child datasets, and everything else.

You can separately limit the amount of referenced data with a 
refquota. This excludes child datasets and snapshots. Limiting both 
the size of the entire dataset and the dataset’s referenced data can help 
you control the size of your snapshots. For example, setting a refquota 
of 10 GB and a quota of 100 GB would tell you that you could always 
have 10 snapshots even if the data completely changes. Similarly, if you 
want to exclude child datasets, use a refquota.

# zfs set refquota=50G zroot/var/log
# zfs set refquota=50G zroot/var/log/db
# zfs set quota=500G zroot/var/log

Here we have separate refquotas for two logging datasets, and a 
quota for both of the datasets together. If each dataset can reference up 
to 50 GB on its own, the 500 GB quota means that no matter how the 
data changes, you can have at least four snapshots of each.



Chapter 6: Disk Space Management

144

Viewing Quotas

To see the quotas on a dataset, check the quota and refquota proper-
ties.
# zfs get all zroot/home | grep quota
zroot/home  quota     none  default
zroot/home  refquota  none  default

The /home directory has no quotas on it. Users may fill your hard 
drive to its limits.

Quotas change the dataset’s maximum size and the free space in 
the dataset. This pool has several hundred gigabytes free, but zfs list 
on this dataset says otherwise.

# zfs list zroot/var/log
NAME            USED  AVAIL  REFER  MOUNTPOINT
zroot/var/log  25.0G  75.0G  5.01G  /var/log

The zroot/var/log dataset has 25 GB on it, and 75 GB free. ZFS 
knows that the dataset has a 100 GB quota on it, and it shows utili-
zation appropriately. You’ve just simulated a traditional partition by 
setting a quota—but don’t go running for df(1)! First, look at a child 
dataset of zroot/var/log.

# zfs list zroot/var/log/db
NAME               USED  AVAIL  REFER  MOUNTPOINT
zroot/var/log/db  20.0G  85.0G  10.0G  /var/log/db

ZFS knows that the parent dataset has a quota of 100 GB, and 
therefore also sets that maximum size on the child datasets. If 
/var/log has 75 GB free, and /var/log/db has 85 GB free, does that 
mean that these two partitions have (75 + 85 =) 160 GB of free space? 
No, because like free space in a pool, these two entries both refer to 
the same free space. The dataset zroot/var/log/db entry seems to have 
more free space because data in its parent dataset is not reflected in the 
child dataset’s usage.



Chapter 6: Disk Space Management

145

Exceeded Quotas

If a user or process attempts to write something that would make the 
dataset exceed its quota, it will get a quota error.

# cp script.sh testscript.sh
cp: testscript.sh: Disc quota exceeded

You’ll need to free some space, but remember that snapshots might 
complicate that, as discussed in “Freeing Space” earlier in this chapter. 
If you’ve set both a quota and a refquota, the user might be able to 
delete files and free up space even though that increases the size of the 
filesystem’s snapshots.

User and Group Quotas

User and group quotas control how much data a user or a group can 
write to a dataset. Like dataset quotas, user and group quotas are con-
trolled on a per-dataset basis.

User and group quotas don’t apply to child filesystems, snapshots, 
and clones. You must apply quotas to each individual dataset you want 
them to affect.

Viewing Space Used and Existing Quotas per Dataset

The zfs userspace command lets you see how much space is used by 
each user in a dataset. Here we examine the zroot/home dataset on our 
test system. A system with complicated datasets might need several 
minutes to run du(1), but zfs userspace finds all the files owned by 
each user nearly instantaneously.

# zfs userspace zroot/home
TYPE        NAME      USED  QUOTA
POSIX User  179      7.29M   none
POSIX User  mwlucas  1.16G   none
POSIX User  root      298M   none

The user mwlucas has 1.16 GB of files—unsurprising. The root user 
has 298 MB of files in /home—somewhat surprising, but not shocking. 



Chapter 6: Disk Space Management

146

Somehow, though, user 179 has 7.29 MB of files in that dataset. This 
system has no user 179, which is why the user is shown by UID rather 
than username. A bit of digging shows that Lucas once used tar’s -p 
argument when extracting a source code tarball, preserving the origi-
nal file ownership.

None of these users have quotas.
The zfs groupspace command shows how much space files owned 

by each group use. For something more interesting, I’m checking the 
group ownerships on the zroot/usr/local dataset.

# zfs groupspace zroot/usr/local
TYPE         NAME         USED  QUOTA
POSIX Group  _tss        25.5K   none
POSIX Group  bin         93.5K   none
POSIX Group  kmem         128K   none
POSIX Group  messagebus   392K   none
POSIX Group  polkit       115K   none
POSIX Group  wheel       1.85G   none

If your server supports multiple groups, such as development 
teams, research groups, or devotees of different BSD variants, you can 
assign each group or user a quota to restrict their disk usage.

Assigning and Removing User and Group Quotas

Use the userquota and groupquota properties to assign user and group 
quotas. To specify the user or group the quota belongs to, give the 
property name, an @ sign, and the user or group name. Give the quota 
for the user mwlucas, for example, with userquota@mwlucas.

# zfs set userquota@mwlucas=1G zroot/home

The previous section showed that the mwlucas account had over a 
gigabyte of data in it. The mwlucas account is over quota, and that user 
gets an error whenever he tries to create a file.
$ touch test
touch: test: Disc quota exceeded



Chapter 6: Disk Space Management

147

Similarly, assign a group quota with the groupquota property, an @ 
sign, and the group name.

# zfs set groupquota@staff=10G zroot/home

If a user has repeatedly abused shared directories like /tmp, assign 
them a restrictive quota.

# zfs set userquota@mwlucas=10m zroot/tmp

This user can use features like SSH agent forwarding, but he can’t 
extract huge tarballs and monopolize the shared temporary space.

To remove a quota, set the quota to none.

Viewing Individual Quotas

If you’re interested in the quota set for a specific user or group, ask ZFS 
for that one property.

# zfs get userquota@mwlucas zroot/tmp
NAME       PROPERTY           VALUE          SOURCE
zroot/tmp  userquota@mwlucas  10M            local

Now you can let your teams squabble among themselves over their 
disk space usage, without taking up your precious time. Congratula-
tions!

ZFS Compression

You can’t increase the size of an existing disk, but you can change how 
your data uses that disk. For decades, sysadmins have compressed files 
to make them take up less space. We’ve written all kinds of shell scripts 
to run our preferred compression algorithm on the files we know can 
be safely compressed, and we’re always looking for additional files that 
can be compressed to save space. And we all know about that previ-
ously unknown log file that expands until it fills the partition and trips 
an alarm.15

15	  You don’t monitor disk space usage? Well, an outage is merely 
a different sort of alarm.



Chapter 6: Disk Space Management

148

ZFS takes away that problem by compressing files in real time, at the 
filesystem level. Those log files your daemon writes? ZFS can compress 
them as they’re written, rendering all those scripts irrelevant. This also 
amortizes the cost of compression as the system compresses everything 
on an ongoing basis rather than in a 3 AM frenzy of disk thrashing.

Compression imposes costs, however. Compression and decom-
pression require CPU time, so blindly enabling the tightest gzip com-
pression everywhere can add another constraint on disk performance. 
Any performance losses are most often more than made up by the 
reduction in disk activity, however. ZFS includes compression algo-
rithms specifically designed for filesystem use.

Enabling Compression

ZFS compression works on a per-dataset basis. You can enable com-
pression for some datasets but not others.

Enable and disable compression with the compression property. 
Here we check the compression setting.
# zfs get compress zroot/usr
NAME       PROPERTY     VALUE SOURCE
zroot/usr  compression  off   default

Enable compression by setting the compression property. The 
default compression algorithm, LZJB, isn’t the most effective algorithm 
ZFS offers. Use LZ4 compression in almost all cases. Here we enable 
LZ4 compression on all datasets on the zroot pool, but specify gzip-9 
on the zroot/var/cdr dataset.
# zfs set compress=lz4 zroot
# zfs set compress=gzip-9 zroot/var/cdr

ZFS compresses files when the files are written to disk. If you 
have a dataset full of text files, adding compression won’t make them 
shrink. To reduce disk space used by files, you must rewrite all the files 
after enabling compression.



Chapter 6: Disk Space Management

149

Compression Algorithms

ZFS supports several compression algorithms. The default, LZJB, was 
specifically designed for filesystem use. It can quickly compress and 
decompress blocks with a modest compression ratio. It’s not the best 
compression algorithm for routine use, however.

The LZ4 algorithm is a newer and faster filesystem-specific com-
pression algorithm. It outperforms LZJB in all ways. Not all data is 
compressible, but LZ4 quickly detects incompressible files and doesn’t 
try to compress them. When you enable compression for a dataset, use 
LZ4 unless you have a specific use case for gzip compression.

The ZLE algorithm compresses strings of zeroes in files. It’s a min-
imal compression system, and isn’t terribly useful for most files. LZ4 is 
far more effective than ZLE, even on files with many runs of zeroes.

For special cases, ZFS supports gzip compression. Gzip uses much 
more CPU time than LZ4, but can be more effective for some datasets. 
The additional CPU time gzip requires makes the filesystem slower, 
but for data that’s not accessed frequently the disk space savings might 
be worthwhile.

Gzip has nine compression levels, from 1 (the fastest but least ef-
fective) to 9 (the slowest but most aggressive). Specify a gzip compres-
sion level with a dash and the level.
# zfs set compress=gzip-1 zroot/var/log

If you specify gzip without a level, ZFS uses the gzip default of level 6.



Chapter 6: Disk Space Management

150

Compression Properties

Several properties offer insight into how well ZFS compresses your data.
The compressratio property shows how compression has affected 

this dataset and all its children, while the refcompressratio property 
allows you to see how compression has impacted this dataset’s refer-
enced data.

Datasets have two properties just for compression scenarios, logi-
calreferenced and logicalused. A dataset’s referenced space includes 
the effects of compression, but the logicalreferenced property ex-
cludes compression.

Similarly, the used property shows the amount of space actually 
consumed on the dataset and all its children, while logicalused shows 
the amount of uncompressed data in the dataset.

When you study all of these together, you can get a good idea of 
how compression has impacted your data.

Choosing an Algorithm

How can you tell if your data can benefit from compression, or how 
different algorithms affect file size? Get some of your typical data files 
and test them. Use du(1) or ls –ls to see a file’s actual size on the disk. 
In testing your own data, you’ll want to use a whole bunch of differ-
ent files of your actual data. For this example, Lucas used the Human 
Genome Project as downloaded from Project Gutenberg.
# du hgp.txt
280721  hgp.txt

Uncompressed, this file takes up 280,721 blocks, or about 274 MB.
Our test dataset is called db. We have no other data on this dataset, 

so we can accurately assess compression’s impact on this particular file. 
Now that we know the test file’s uncompressed size, enable compres-
sion and see what happens.



Chapter 6: Disk Space Management

151

# zfs set compression=on db

This activates LZJB compression. Check the file size now.
# du hgp.txt
280721  hgp.txt

The file size hasn’t changed, but we enabled compression. What’s 
going on? Remember, compression, deduplication, and similar fea-
tures work only on files written after the feature is enabled. We must 
remove the file and put it back.
# rm /db/*
# cp /home/mwl/hgp.txt /db

Wait a few seconds so that ZFS can write everything to disk, and 
see what happens.
# du /db/hgp.txt
139577  /db/hgp.txt

The file uses only 139,577 blocks, or about 136 MB. It’s shrunk 
about in half, as the dataset properties show.
# zfs get compressratio,refcompressratio db
NAME  PROPERTY          VALUE  SOURCE
db    compressratio     2.01x  -
db    refcompressratio  2.01x  -

The refcompressratio equals the compressratio because we have 
only one chunk of data on this dataset and only one dataset on this 
pool. On more complex pools, the values will probably differ.

So, the default algorithm reduced the size by half. Let’s try the 
more efficient lz4.
# zfs set compression=lz4 db

Recopy the file to trigger LZ4 compression, wait a few seconds for 
ZFS to do its accounting, and see what happens.
# du /db/hgp.txt
146076  /db/hgp.txt

LZ4 compresses this data to 142 MB. LZ4 is not as effective as 
LZJB on this particular file. That’s not terribly shocking—different 
algorithms work differently on different data.



Chapter 6: Disk Space Management

152

Would gzip improve things further?
# zfs set compress=gzip-1 db/text

Re-copy the test file to the dataset and check the disk usage.
# du /db/hgp.txt
74104   /db/hgp.txt

This data now uses about 72 MB, and the dataset now has a com-
pressratio of 3.78. Gzip is clearly a better match for this particular 
data. Compression almost quadrupled our effective disk space. While 
that’s fairly impressive, let’s turn up the volume.
# zfs set compress=gzip-9 db/text
# cp /home/mwl/hgp.txt /db/
# du /db/hgp.txt
63614   /db/hgp.txt

Cranking up the compression to gzip-9 reduces this 274 MB file 
to 62 MB, with a compressratio of 4.41. Gzip-9 more than quadruples 
how much data we can store.

This example cheats, though. Really, really cheats. As in, “writes 
the formulas on the palm of its hand before the physics test” cheats.

With the exception of the boilerplate added by Project Gutenberg, 
the Human Genome Project is composed entirely of four letters. It is 
perhaps the most redundant, most compressible real-world data that 
exists. You can’t expect that from most real-world data.16

When to Change Compression Algorithms

Generally, we recommend changing compression algorithms from LZ4 
only when a compelling need demands you do so and the additional 
CPU overhead and slower disk access don’t impact actual work.

16	  Yes, Mr. Pedantic, your real-world data is composed only of 
ones and zeroes. Go compress your data down to a single 0 and a 1 
and see how well that works for you.



Chapter 6: Disk Space Management

153

Not long ago, Lucas worked for a phone company. The company 
retained more than a decade of plain-text call detail records (CDRs) 
for every phone call that had ever been made through their equip-
ment. These records were routinely accessed for running reports in the 
middle of the night. Occasionally, a fraud investigator needed to access 
those reports with tools like grep(1) and awk(1). For this use case, en-
abling gzip-9 compression made perfect sense. Measured with du(1), 
ZFS compressed the files at roughly 8:1. If we’d needed to routinely in-
teract with these files, however, LZ4 and an extra few hundred dollars 
in hard drives would have made more sense.

Compression and Performance

Take a look at these properties for the example data.
# zfs get all db | grep reference
db/text  referenced         48.7M   -
db/text  logicalreferenced  220M    -

This dataset uses 48.7 MB of disk space. When you ignore the 
compression, the dataset has 220 MB of data. A compressed dataset 
can store more “logical data” than its size.

Here’s where the effectiveness of compression really comes into 
play. The slowest part of reading and writing data is getting it on the 
storage media. The physical media is the slowest part of a disk transac-
tion. Writing 48.7 MB to disk takes about 22% as long as writing 220 
MB. You can cut your storage times by 78% by enabling compression, 
at the cost of a little CPU time. If your disk can write 100 MB/s, then 
writing that 48.7 MB of compressed data will take about half a second. 
If you look at it from the perspective of the application that wrote the 
data, you actually wrote 220 MB in half a second, effectively 440 MB/s. 
We bet you didn’t think your laptop disk could manage that!



Chapter 6: Disk Space Management

154

If you are storing many small files, compression is less effective. 
Files smaller than the sector size get a whole block allocated to them 
anyway. If you want really, really effective compression, use a disk with 
actual 512-byte physical sectors and tell ZFS to use that sector size.

Compression isn’t perfect. Sequential and random access can 
change how well compression performs. Always test with your own 
data, in your environment. Compression works well enough that 
FreeBSD enables lz4 compression in its default install.

Most CPUs are mostly idle. Make the lazy critters crunch some 
data!

Deactivating Compression

To deactivate compression, set the dataset’s compression property to 
off.

Much as activating compression only affects newly written files, 
deactivating compression only affects new data. Compressed files 
remain compressed until rewritten. ZFS is smart enough to know that 
a file is compressed and to automatically decompress it when accessed, 
but it still has the overhead.

You cannot purge all traces of compression from a dataset except 
by rewriting all the files. You’re probably better off recreating the data-
set.

Deduplication

Files repeat the same data over and over again, arranged slightly dif-
ferently. Multiple files contain even more repetition. More than half of 
the data on your system might be duplicates of data found elsewhere. 
ZFS can identify duplicate data in your files, extract and document it, 
thus storing each piece of data only once. It’s very similar to compres-
sion. Deduplication can reduce disk use in certain cases.



Chapter 6: Disk Space Management

155

Many deduplication systems exist. At one extreme, you could 
deduplicate all data on a byte-by-byte level. You could deduplicate 
this book by identifying and recording the position of each letter and 
punctuation mark, but the record would grow larger than the actual 
book. At the other extreme, you could deduplicate multiple copies of 
entire files by recording each only once.

ZFS snapshots could be said to deduplicate filesystem data. For de-
duplicating files, ZFS deduplicates at the filesystem block level (shown 
by the recordsize property). This makes ZFS good at removing du-
plicates of identical files, but it realizes that files are duplicates only if 
their filesystem blocks line up exactly. Using smaller blocks improves 
how well deduplication works, but increases memory requirements. 
ZFS stores identical blocks only once and stores the deduplication 
table in memory.

Enable deduplication on a dataset-by-dataset basis. Every time any 
file on a deduplicated dataset is accessed by either reading or writing, 
the system must consult the deduplication table. For efficient dedupli-
cation, the system must have enough memory to hold the entire de-
duplication table. ZFS stores the deduplication table on disk, but if the 
host must consult the on-disk copy every time it wants to access a file, 
performance will slow to a drag. (A host must read the dedup table 
from disk at boot, so you’ll get disk thrashing at every reboot anyway.)

While deduplication sounds incredibly cool, you must know how 
well your data can deduplicate and how much memory deduplication 
requires before you even consider enabling it.

Deduplication Memory Needs

For a rough-and-dirty approximation, you can assume that 1 TB of 
deduplicated data uses about 5 GB of RAM. You can more closely 
approximate memory needs for your particular data by looking at your 



Chapter 6: Disk Space Management

156

data pool and doing some math. We recommend always doing the 
math and computing how much RAM your data needs, then using the 
most pessimistic result. If the math gives you a number above 5 GB, 
use your math. If not, assume 5 GB per terabyte.

If you short your system on RAM, performance will plummet like 
Wile E. Coyote.17 Don’t do that to yourself.

Each filesystem block on a deduplicated dataset uses about 320 
bytes of RAM. ZFS’ zdb(8) tool can analyze a pool to see how many 
blocks would be in use. Use the -b flag and the name of the pool you 
want to analyze.
# zdb -b data
Traversing all blocks to verify nothing leaked ...

loading space map for vdev 1 of 2, metaslab 33 of 174 
...
5.45G completed ( 341MB/s) estimated time remaining: 
	 0hr 00min 30sec

The “time remaining” counter actually isn’t completely terrible, 
which is good, because the process can run a very long time 
depending on disk speed and utilization. Once it runs out you’ll get a 
statistical analysis of the pool. 

bp count:      139025
ganged count:       0
bp logical:    18083569152   avg: 130074
bp physical:   18070658560   avg: 129981 compression:   1.00
bp allocated:  18076997120   avg: 130026 compression:   1.00
bp deduped:              0 ref>1:  0   deduplication:   1.00
SPA allocated: 18076997120  used:  1.81%

additional, non-pointer bps of type 0:     21
Dittoed blocks on same vdev: 1183

17	  Also like Wile E. Coyote, painting a tunnel on the wall won’t 
help.



Chapter 6: Disk Space Management

157

The “bp count” shows the total number of ZFS blocks stored in the 
pool. This pool uses 139,025 blocks. While ZFS uses a maximum block 
size of 128 KB by default, small files use smaller blocks. If a pool has 
many small files, you’ll need more memory.

In the third line from the bottom, the “used” entry shows that 
this pool is 1.81% (or 0.0181) used. Assume that the data in this pool 
will remain fairly consistent as it grows. Round up the number of 
used blocks to 140,000. Divide the used blocks by how full the block 
is, and we see that the full pool will have about (140,000 / 0.0181 = ) 
7,734,806 blocks. At 320 bytes per block, this data uses 2,475,138,121 
bytes of RAM, or roughly 2.3 GB.

That’s less than half the rule of thumb. Assume that the ZFS de-
duplication table on this pool will need 5 GB of RAM per terabyte of 
storage.

ZFS lets metadata like the deduplication table take up only 25% of 
the system’s memory. (Actually, it’s 25% of the Adaptive Replacement 
Cache, or ARC, but we’ll go into detail on that in FreeBSD Mastery: 
Advanced ZFS.) Each terabyte of deduplicated pool means that the 
system needs at least 20 GB of RAM. Even if you go with your more 
hopeful math based on block usage, where each terabyte of disk needs 
2.3 GB of RAM, the 25% limit means that each terabyte of deduplicat-
ed pool needs about 10 GB of RAM. (In FreeBSD Mastery: Advanced 
ZFS, we discuss adjusting this limit so that people who want to shoot 
themselves in the foot can do it well.)

Deduplication Effectiveness

ZFS can simulate deduplication and provide a good estimate on how 
well the data would deduplicate. Run zdb -S on your pool. You’ll get a 
nice histogram of block utilization and common elements, which you 
can completely ignore in favor of the last line.



Chapter 6: Disk Space Management

158

# zdb -S data
Simulated DDT histogram:
...
dedup = 3.68, compress = 1.00, copies = 1.00, 
	 dedup * compress / copies = 3.68

Our pool data can be deduplicated 3.68 times. If all the data in 
this pool were this deduplicatable, we could fit 3.68 TB of data in each 
terabyte of storage. This data is exceptionally redundant, however. 
For comparison, on Lucas’ desktop, the zroot pool that contains the 
FreeBSD operating system, user programs, and home directories, is 
about 1.06 deduplicatable.

That’s not bad. We still need a machine with 20 GB of RAM per 
terabyte of deduplicated pool, mind you, but we can now make a cost/
benefit calculation based on the current needs of hardware. You can 
also compare your test data’s deduplicatability with its compressibility.

Is the memory expense worth it? That depends on the cost of 
memory versus the cost of storage.

Every time we’ve assessed our data for deduplicatability and com-
pressibility, and then priced hardware for each situation, we’ve found 
that enhancing compression with faster disks and more CPU was more 
cost-effective than loads of memory for deduplication. Deduplication 
does not improve disk read speed, although it can improve cache hit 
rates. It only increases write speed when it finds a duplicate block. 
Deduplication also significantly increases the amount of time needed 
to free blocks, so destroying datasets and snapshots can become in-
credibly slow. Compression affects everything without imposing these 
penalties. 

Deduplication probably only makes sense when disk space is con-
strained, expensive, and very high performance. If you need to cram 
lots of deduplicable data onto a pool of SSDs, dedup might be for you.



Chapter 6: Disk Space Management

159

Everyone’s data is different, however, so check yours before making 
a decision.

Enabling Deduplication

The ZFS property dedup activates and deactivates deduplication.
# zfs set dedup=on data/data1

Deduplication is now active on this data set.
Like compression, deduplication only affects newly written data. 

Activating deduplication won’t magically deduplicate data already on 
the pool. For best results activate deduplication when first creating the 
dataset, before writing any data to it. 

Disabling Deduplication

To turn deduplication off, set the dataset’s dedup property to off.
# zfs set dedup=off data/data1

Like compression, disabling deduplication doesn’t magically 
reduplicate all of your files. Deduplicated files remain deduplicated. 
If you turned off dedup because it made system performance abysmal, 
turning it off won’t improve performance. Only removing deduplicat-
ed files will improve performance. You can’t purge all traces of dedup 
from a dataset. You’re better off using zfs send and zfs receive to 
send the data to a new dataset that doesn’t use deduplication.

Your best choice is probably to not use deduplication. Deduplica-
tion is a great technology, and the people who need it really do need it. 
Most of us don’t have deduplicable data, however. Don’t enable fea-
tures only because they’re cool.

Choosing a disk space management strategy correctly at the begin-
ning will save you much future pain.





161

Chapter 7: Snapshots and Clones
One of ZFS’ most powerful features is snapshots. A filesystem or 
zvol snapshot allows you to access a copy of the dataset as it existed 
at a precise moment. Snapshots are read-only, and never change. A 
snapshot is a frozen image of your files, which you can access at your 
leisure. While backups normally capture a system across a period 
of minutes or hours, running backups on a snapshot means that the 
backup gets a single consistent system image, eliminating those tar: 
file changed as we read it messages and its cousins.

While snapshots are read-only, you can roll the dataset back to the 
snapshot’s state. Take a snapshot before upgrading a system, and if the 
upgrade goes horribly wrong, you can fall back to the snapshot and 
yell at your vendor.

Snapshots are the root of many special ZFS features, such as 
clones. A clone is a fork of a filesystem based on a snapshot. New 
clones take no additional space, as they share all of their dataset blocks 
with the snapshot. As you alter the clone, ZFS allocates new storage 
to accommodate the changes. This lets you spin up several slightly 
different copies of a dataset without using a full ration of disk space 
for each. You want to know that your test environment tightly mirrors 
the production one? Clone your production filesystem and test on the 
clone.



Chapter 7: Snapshots and Clones

162

Snapshots also underpin replication, letting you send datasets 
from one host to another.

Best of all, ZFS’ copy-on-write nature means that snapshots are 
“free.” Creating a snapshot is instantaneous and consumes no addi-
tional space.

Copy-on-Write

In both ordinary filesystems and ZFS, files exist as blocks on the disk. 
In a traditional filesystem, changing the file means changing the file’s 
blocks. If the system crashes or loses power when the system is actively 
changing those blocks, the resulting shorn write creates a file that’s half 
the old version, half the new, and probably unusable.

ZFS never overwrites a file’s existing blocks. When something 
changes a file, ZFS identifies the blocks that must change and writes 
them to a new location on the disk. This is called copy-on-write, or 
COW. The old blocks remain untouched. A shorn write might lose 
the newest changes to the file, but the previous version of the file still 
exists intact.

Never losing a file is a great benefit of copy-on-write, but COW 
opens up other possibilities. ZFS creates snapshots by keeping track of 
the old versions of the changed blocks. That sounds deceptively simple, 
doesn’t it? It is. But like everything simple, the details are complicated. 
We talked about how ZFS stores data in Chapter 3, but let’s go deeper.

ZFS is almost an object-oriented filesystem. Metadata, indexing, 
and data are all different types of objects that can point to other ob-
jects. A ZFS pool is a giant tree of objects, rooted in the pool labels.

Each disk in a pool contains four copies of the ZFS label: two at 
the front of the drive and two at the end. Each label contains the pool 
name, a Globally Unique ID (GUID), and information on each mem-
ber of the VDEV. Each label also contains 128 KB for uberblocks.



Chapter 7: Snapshots and Clones

163

The uberblock is a fixed size object that contains a pointer to the 
Meta Object Set (MOS), the number of the transaction group that 
generated the uberblock, and a checksum.

The MOS records the top-level information about everything in 
the pool, including a pointer to a list of all of the root datasets in the 
pool. In turn each of these lists points to similar lists for their children, 
and to blocks that describe the files and directories stored in the data-
set. ZFS chains these lists and pointer objects as needed for your data. 
At the bottom of the tree, the leaf blocks contain the actual data stored 
on the pool.

Every object contains a checksum and a birth time. The checksum 
is used to make sure the object is valid. The birth time is the transac-
tion group (txg) number that created the block. Birth time is a critical 
part of snapshot infrastructure.

Modifying a block of data touches the whole tree. The modified 
block of data is written to a new location, so the block that points to it 
is updated. This pointer block is also written to a new location, so the 
next object up the tree needs updating. This percolates all the way up 
to the uberblock.

The uberblock is the root of the tree. Everything descends from it. 
ZFS can’t modify the uberblock without breaking the rules of copy-
on-write, so it rotates the uberblock. Each label reserves 128 KB for 
uberblocks. Disks with 512-byte sectors have 128 uberblocks, while 
disks with 4 KB sectors have 32 uberblocks. If you have a disk with 16 
KB sectors, it will have only eight uberblocks. Each filesystem update 
adds a new uberblock to this array. When the array fills up, the oldest 
uberblock gets overwritten.

When the system starts, ZFS scans all of the uberblocks, finds the 
newest one with a valid checksum, and uses that to import the pool. 
Even if the most recent update somehow got botched, the system can 



Chapter 7: Snapshots and Clones

164

import a consistent version of what the pool was like a few seconds be-
fore that. If the system failed during a write, the very last data is lost—
but that data never made it to disk anyway. It’s gone, and ZFS can’t 
help you. Using copy-on-write means that ZFS doesn’t suffer from the 
problems that make fsck(8) necessary for traditional filesystems.

How Snapshots Work

When the administrator tells ZFS to create a snapshot, ZFS copies the 
filesystem’s top-level metadata block. The live system uses the copy, 
leaving the original for use by the snapshot. Creating the snapshot 
requires copying only the one block, which means that ZFS can create 
snapshots almost instantly. ZFS won’t modify data or metadata inside 
the snapshot, making snapshots read-only. ZFS does record other 
metadata about the snapshot, such as the birth time.

Snapshots also require a new piece of ZFS metadata, the dead list. 
A dataset’s dead list records all the blocks that were used by the most 
recent snapshot but are no longer part of the dataset. When you delete 
a file from the dataset, the blocks used by that file get added to the 
dataset’s dead list. When you create a snapshot, the live dataset’s dead 
list is handed off to the snapshot and the live dataset gets a new, empty 
dead list.

Deleting, modifying, or overwriting a file on the live dataset means 
allocating new blocks for the new data and disconnecting blocks 
containing old data. Snapshots need some of those old data blocks, 
however. Before discarding an old block, the system checks to see if a 
snapshot still needs it. 



Chapter 7: Snapshots and Clones

165

ZFS compares the birth time of the old data block with the birth 
time of the most recent snapshot. Blocks younger than the snapshot 
can’t possibly be used by that snapshot and can be tossed into the recy-
cle bin. Blocks older than the snapshot birth time are still used by the 
snapshot, and so get added to the live dataset’s dead list.

After all this, a snapshot is merely a list of which blocks were in use 
in the live dataset at the time the snapshot was taken. Creating a snap-
shot tells ZFS to preserve those blocks, even if the files that use those 
blocks are removed from the live filesystem. 

This means that ZFS doesn’t keep copies of every version of every 
file. When you create a new file and delete it before taking a snapshot, 
the file is gone. Each snapshot contains a copy of each file as it exist-
ed when the snapshot was created. ZFS does not retain a history like 
DragonFly’s HAMMER.

Deleting a snapshot requires comparing block birth times to 
determine which blocks can now be freed and which are still in use. If 
you delete the most recent snapshot, the dataset’s current dead list gets 
updated to remove blocks required only by that snapshot.

Snapshots mean that data can stick around for a long time. If you 
took a snapshot one year ago, any blocks with a birth date more than 
a year ago are still in use, whether you deleted them 11 months ago or 
before lunch today. Deleting a six-month-old snapshot might not free 
up much space if the year-old snapshot needs most of those blocks.18

Only once no filesystems, volumes, or snapshots use a block, does 
it get freed. 

18	  Snapshots make you the data equivalent of a hoarder. Do try 
to not get buried in an avalanche of old newspapers.



Chapter 7: Snapshots and Clones

166

Using Snapshots

To experiment with snapshots, let’s create a new filesystem dataset and 
populate it with some files.
# zfs create -o mountpoint=/sheep mypool/sheep
# cd /sheep
# dd if=/dev/random of=randomfile bs=1m count=1
# fetch -o zfsbook.html http://www.zfsbook.com/
# date > date.txt

This gives us some data we can play with.

Creating a Snapshot

Use zfs snapshot to create a snapshot. Specify the dataset by its full 
path, then add @ and a snapshot name.
# zfs snapshot mypool/sheep@snap1

View snapshots with zfs list -t snapshot. To see the snapshots 
of a specific dataset, add the -r flag and the dataset name.
# zfs list -t snapshot -r mypool/sheep
NAME               USED  AVAIL  REFER  MOUNTPOINT
mypool/sheep@snap1    0      -  1.11M  -

Notice that the amount of space used by the snapshot (the USED 
column) is 0. Every block in the snapshot is still used by the live data-
set, so the snapshot uses no additional space.

Dataset Changes and Snapshot Space

Now change the dataset and see how it affects the snapshots. Here we 
append a megabyte of new crud to the random file and update the date 
file.
# dd if=/dev/random of=randomfile bs=1m count=1 oseek=1
# date > date.txt

Think back on how snapshots work. The file of random data grew 
by one megabyte, but that’s not in the old snapshot. The date file was 
replaced, so the snapshot should have held onto the blocks used by the 
older file. Let’s see what that does to the snapshot’s space usage.



Chapter 7: Snapshots and Clones

167

# zfs list -t snapshot -r mypool/sheep
NAME                USED  AVAIL  REFER  MOUNTPOINT
mypool/sheep@snap1   72K      -  1.11M  -

The snapshot now uses 72 KB. The only space consumed by the 
snapshot was for the replaced block from the date file. The snapshot 
doesn’t get charged for the new space sucked up by the larger random 
file, because no blocks were overwritten.

Now let’s create a second snapshot and see how much space it uses.
# zfs snapshot mypool/sheep@second
# zfs list -t snapshot -r mypool/sheep
NAME                USED  AVAIL  REFER  MOUNTPOINT
mypool/sheep@snap1   72K      -  1.11M  -
mypool/sheep@second    0      -  2.11M  -

The REFER column shows that the first snapshot gives you access 
to 1.11 MB of data, while the second lets you see 2.11 MB of data. The 
first snapshot uses 72 KB of space, while the second uses none. The 
second snapshot is still identical to the live dataset.

But not for long. Let’s change the live dataset by overwriting part of 
the random file and see how space usage changes.

# dd if=/dev/random of=randomfile bs=1m count=1 oseek=1
# zfs list -t snapshot -r mypool/sheep
NAME                  USED  AVAIL  REFER  MOUNTPOINT
mypool/sheep@snap1     72K      -  1.11M  -
mypool/sheep@second  1.07M      -  2.11M  -

We’ve overwritten one megabyte of the random data file. The first 
snapshot’s space usage hasn’t changed. The second snapshot shows 
that it’s using 1 MB of space to retain the overwritten data, plus some 
metadata overhead.

Recursive Snapshots

ZFS lets you create recursive snapshots, which take a snapshot of the 
dataset you specify and all its children. All of the snapshots have the 
same name. Use the -r flag to recursively snapshot a system. Here we 
snapshot the boot pool with a single command.



Chapter 7: Snapshots and Clones

168

# zfs snapshot -r zroot@beforeupgrade

We now have a separate snapshot for each dataset in this pool, 
each tagged with @beforeupgrade.
# zfs list -t snapshot
NAME                              USED  AVAIL  REFER  
MOUNTPOINT
zroot@beforeupgrade                  0      -   144K  -
zroot/ROOT@beforeupgrade             0      -   144K  -
zroot/ROOT/default@beforeupgrade     0      -  1.35G  -
zroot/usr@beforeupgrade              0      -   454M  -
zroot/usr/local@beforeupgrade        0      -  1.54G  -
…

We can now abuse this system with wild abandon, secure in know-
ing that a known good version of the system exists in snapshots.

Advanced Dataset and Snapshot Viewing

Once you grow accustomed to ZFS you’ll find that you’ve created a 
lot of datasets, and that each dataset has a whole bunch of snapshots. 
Trying to find the exact snapshots you want gets troublesome. While 
you can always fall back on grep(1), the ZFS command line tools have 
very powerful features for viewing and managing your datasets and 
snapshots. Combining options lets you zero in on exactly what you 
want to see. We started with zfs list in Chapter 4, but let’s plunge all 
the way in now.

Many of these options work for other types of datasets as well as 
snapshots. If you stack filesystems 19 layers deep, you’ll probably want 
to limit what you see. For most of us, though, snapshots are where 
these options really start to be useful. Many features also work with 
zpool(8) and pools, although pools don’t get as complicated as data-
sets.



Chapter 7: Snapshots and Clones

169

A plain zfs list displays filesystem and zvol datasets, but no 
snapshots.
# zfs list
NAME                USED  AVAIL  REFER  MOUNTPOINT
mypool             4.62G  13.7G    96K  none
mypool/ROOT         469M  13.7G    96K  none
mypool/ROOT/default 469M  13.7G   469M  /
mypool/avolume     4.13G  17.8G    64K  -
…

You can examine a single dataset by name.
# zfs list mypool/sheep
NAME           USED  AVAIL  REFER  MOUNTPOINT
mypool/sheep  2.11M  13.7G  2.11M  /mypool/sheep

To view a pool or dataset and all of its children, add the -r flag and 
the pool or dataset name. 
# zfs list -r mypool/var
NAME               USED  AVAIL  REFER  MOUNTPOINT
mypool/var        22.6G   854G  1.70G  /var
mypool/var/crash   355M   854G   355M  /var/crash
mypool/var/db      224M   854G   187M  /var/db
…

Once you get many datasets, you’ll want to narrow this further.

View Datasets by Type

To see only a particular type of dataset, use the -t flag and the dataset 
type. You can view filesystems, volumes, snapshots, and bookmarks.
# zfs list -t snapshot -r mypool
NAME                    USED  AVAIL  REFER  MOUNTPOINT
mypool@all                 0      -    96K  -
mypool/ROOT@all            0      -    96K  -
mypool/ROOT/default@all  84K      -   419M  -
mypool/avolume@all         0      -    64K  -
...

You can examine specific snapshots by giving the complete snap-
shot name.
# zfs list -t snapshot mypool/sheep@all
NAME             USED  AVAIL  REFER  MOUNTPOINT
mypool/sheep@all    0      -  2.11M  -



Chapter 7: Snapshots and Clones

170

Be sure you give the complete name, including the snapshot part. 
Here we tell zfs list to show only snapshots, and then give it the 
name of a filesystem dataset; zfs(8) very politely tells us to be consis-
tent in what we ask for.
# zfs list -t snapshot mypool/sheep
cannot open ‘mypool/sheep’: operation not applicable to 
datasets of this type

We used the -r flag before to show a dataset and all of its children. 
It also works with the list of snapshots.
# zfs list -r -t snapshot mypool/second
NAME                    USED  AVAIL  REFER  MOUNTPOINT
mypool/second@all          0      -    96K  -
mypool/second/baby@all     0      -    96K  -

To view absolutely everything, use -t all.
# zfs list -r -t all mypool/second
NAME                   USED  AVAIL  REFER  MOUNTPOINT
mypool/second          192K  13.5G    96K  legacy
mypool/second@all         0      -    96K  -
mypool/second/baby      96K  13.5G    96K  legacy
mypool/second/baby@all    0      -    96K  -

If you have many layers of datasets you might want a partially re-
cursive view. While -r shows all the children, the -d option limits the 
number of layers you see. Limit the depth to 1 and you get the snap-
shots of only a single dataset.
# zfs list -d 1 -t snapshot mypool/sheep
NAME                   USED  AVAIL  REFER  MOUNTPOINT
mypool/sheep@all          0      -  2.11M  -
mypool/sheep@snap2        0      -  2.11M  -
mypool/sheep@moresnap     0      -  2.11M  -
mypool/sheep@evenmore     0      -  2.11M  -

Limiting the depth to 2 would show the specified dataset, snap-
shots from the specified dataset, and the dataset’s children, but not its 
grandchild filesystems or its children’s snapshots.



Chapter 7: Snapshots and Clones

171

Modifying zfs list Output

You can control which information zfs list displays with the -o 
option and a list of columns or properties. When you use -o, zfs list 
displays only the information you request.

Look at any of the earlier zfs list output and you’ll see that the 
NAME column (predictably) shows the dataset name. Show only that 
column with -o. Here we recursively list all of the snapshots in mypool, 
showing only their name. 

# zfs list -r -t snapshot -o name mypool
NAME
mypool@all
mypool/ROOT@all
mypool/sheep@snap2
mypool/sheep@moresnap
mypool/sheep@evenmore
...

You can display any property as a column as well. Here we list 
some common filesystem properties for each dataset.

# zfs list -o name,atime,exec,setuid
NAME            ATIME  EXEC  SETUID
mypool             on    on      on
mypool/sheep       on    on      on
zroot             off    on      on
zroot/ROOT        off    on      on

Yes, filesystem properties have nothing to do with snapshots. But 
they’re a good example of this feature.

Finally, you can change the order zfs list shows datasets. Use -s 
and a property to sort by the property’s value. Use -S and a property 
to reverse sort the output by the property. List multiple properties in 
order, separated by commas.



Chapter 7: Snapshots and Clones

172

Listing Snapshots by Default

The zfs list command defaults to hiding snapshots and bookmarks. 
If you want to see these datasets by default, set the pool’s listsnap-
shots property to on. 

# zpool set listsnapshots=on zroot

Once you’ve run with this for a while, however, we’re highly confi-
dent you’ll turn it back off. Accumulated snapshots quickly overwhelm 
everything else.

Scripts and ZFS

Sysadmins like automation. One annoying thing about automation is 
when you must run a command and parse the output. Making output 
more human-friendly often makes it less automation-friendly. The 
ZFS developers were all too familiar with this problem, and included 
command-line options to eliminate most of it.

The -p option tells zfs(8) and zpool(8) to print exact values, 
rather than human-friendly ones. A pool doesn’t actually have 2 TB 
free—it’s just a number that rounds to that. Using p prints the actual 
value in all its glory.

The -H option tells zfs(8) and zpool(8) to not print headers, and 
to separate columns with a single tab, instead of making them line up 
nicely, the way humans like. You are human, aren’t you?

Combined together, these options transform output from some-
thing easily understood by humans to something you can feed straight 
to a script.
# zfs list -t all -pH -r mypool
mypool  2670592  96529122918498304   /mypool
mypool/sheep  2351104 965291229184 2273280 /sheep
mypool/sheep@snap1  77824  -  1224704 -
mypool/sheep@second  0  -  2273280 -
...

Yes, that’s the real spacing. Orderly columns are for humans, silly.



Chapter 7: Snapshots and Clones

173

Per-Snapshot Space Use

An especially useful property for snapshots is the written property, 
which gives you an idea of how much new data that snapshot contains.
# zfs list -d 1 -t all -o name,used,refer,written \
	 mypool/sheep
NAME                   USED  REFER  WRITTEN
mypool/sheep          10.3M  6.11M    2.07M
mypool/sheep@all          0  2.11M    2.11M
mypool/sheep@snap2        0  2.11M        0
mypool/sheep@evenmore     0  2.11M        0
mypool/sheep@later    2.07M  5.11M    4.07M
mypool/sheep@rewrite  1.07M  5.11M    2.07M

Remember, snapshots appear in order by creation date. The live 
dataset appears first—while it probably has newer data than any snap-
shot, it was created before any of its snapshots. The snapshot @all is 
the oldest, then @snap2, and so on.

The first snapshot, @all, lets you access 2.11 MB of data (the RE-
FER column). This snapshot also contains 2.11 of newly written data. 
This is the difference between this snapshot and the snapshot before it.

Snapshots @snap2 and @evenmore have no new data. They’re un-
changed from the first snapshot.

Sometime in between the snapshots @evenmore and @later snap-
shots, the data grew. The snapshot @later lets you access 5.11 MB of 
data. It has 4.07 MB of new data.

The @rewrite snapshot also lets you access 5.11 MB of data, but 
it’s written 2.07 MB of new data. As the amount of data you can access 
is the same as the previous snapshot, some of the old data must have 
been overwritten.

The live filesystem has also overwritten 1 MB of data. That data is 
now included only in the @rewrite snapshot.



Chapter 7: Snapshots and Clones

174

Accessing Snapshots

The most convenient way to access the content of snapshots is via the 
snapshot directory, or snapdir. The root of each ZFS dataset has a hid-
den .zfs directory. That directory has a snapshot directory, which in 
turn has a directory for each snapshot.
# ls /mypool/sheep/.zfs
total 1
dr-xr-xr-x  2 root  wheel  2 Mar 29 00:30 shares
dr-xr-xr-x  2 root  wheel  2 Mar 30 16:27 snapshot
# ls -l /mypool/sheep/.zfs/snapshot
total 1
drwxr-xr-x  2 root  wheel  5 Mar 29 00:40 snap1
drwxr-xr-x  2 root  wheel  5 Mar 29 00:40 second

Go into that directory and you’ll find yourself inside the snapshot’s 
root directory. Each file in the snapshot is preserved exactly as it was 
when the snapshot was taken, down to the file access time. To recover 
individual files from a snapshot, copy them back into the main filesys-
tem.

Secret Snapdir

The .zfs snapdir is hidden by default. It won’t show up even if you run 
ls -lA. This prevents backup programs, rsync, and similar software 
from traversing into it. If you want the .zfs directory to show up, set 
the dataset’s snapdir property to visible.
# zfs set snapdir=visible mypool/sheep

Once someone runs cp -R on a dataset, recursively copies all your 
snapshots onto the filesystem, and blows everything up, hide it again 
by setting the snapdir property to hidden.



Chapter 7: Snapshots and Clones

175

Mounting Snapshots

You can mount a snapshot much like you’d mount any other filesystem. 
# mount -t zfs mypool/sheep@snap1 /mnt

You cannot access a snapshot via the hidden .zfs directory while it 
is manually mounted. Even a mounted snapshot is still read-only.

Deleting Snapshots

Snapshots prevent the blocks they use from being freed. This means 
you don’t get that space back until you stop using those blocks, by 
removing all snapshots that reference them.

Create a new snapshot, and then remove it:
# zfs snapshot mypool/sheep@deleteme
# zfs destroy mypool/sheep@deleteme

That wasn’t so hard, was it?
You can also add the verbose flag (-v), to get more detail about 

what’s being destroyed. While verbose mode doesn’t help much when 
you’re destroying a single snapshot, it becomes more valuable as you 
destroy more datasets or if you want to see what a command would do 
without actually running it.

Destruction Dry Runs

The noop flag, -n, does a “dry run” of the delete process. It describes 
what would happen if you delete the snapshot without actually delet-
ing it. Let’s return to those first few snapshots we took and see what 
would happen if we removed the first one.

# zfs destroy -vn mypool/sheep@snap1
would destroy mypool/sheep@snap1
would reclaim 72K

Deleting this snapshot would reclaim only 72 KB of space. The 
blocks that make up this snapshot are still used by the live filesystem 
and/or the second snapshot.



Chapter 7: Snapshots and Clones

176

Our second snapshot overwrote some of the data from the first 
snapshot. That changes the effect of deleting the snapshot.
# zfs destroy -vn mypool/sheep@second
would destroy mypool/sheep@second
would reclaim 1.07M

We would free the space used to store the overwritten version of 
the files.

Recursion and Ranges

Creating snapshots recursively can create a whole mess of snapshots. 
Fortunately, you can recursively destroy snapshots as well. 

# zfs destroy -rv mypool@all
will destroy mypool@all
will destroy mypool/second@all
will destroy mypool/second/baby@all
will destroy mypool/lamb@all
will destroy mypool/ROOT@all
...
will reclaim 84K

Recursively destroying snapshots is a great time to use -n before 
actually destroying any data.19 More than once, we’ve realized that we 
need a snapshot two seconds after deleting it.

Another handy feature is destroying a range of snapshots. You 
give two snapshots of the same dataset, and ZFS wipes them out and 
all snapshots taken between them. Run zfs destroy, but give the 
full name of the “from” snapshot, a percent sign, and the name of the 
“to” snapshot. Those two snapshots and everything between them get 
destroyed. 

The –n flag is handy to make sure this is going to do what you 
expect before you actually execute it. Plus you learn how much space 
you’ll get back.

19	  When shooting yourself in the foot, aim carefully. Safety first!



Chapter 7: Snapshots and Clones

177

Here, we destroy our two test snapshots. Note that the first snap-
shot is given by its full name, including the dataset: mypool/sheep@my-
firstsnapshot. The second snapshot has to be part of the same dataset, 
and it has to be a snapshot, so you need only the brief name of the 
snapshot: second.
# zfs destroy -vn mypool/sheep@snap1%second
would destroy mypool/sheep@snap1
would destroy mypool/sheep@second
would reclaim 1.14M

If you are sure, drop the -vn and truly destroy the snapshots:
# zfs destroy mypool/sheep@snap1%second

The snapshots are gone. Your users are now free to tell you that 
they needed that data.

Rolling Back

Snapshots don’t only show you how the filesystem existed at a point in 
the past. You can revert the entire dataset to its snapshot state. Going 
to do an upgrade? Create a snapshot first. If it doesn’t work, just roll 
back. Use the zfs rollback command to revert a filesystem to a snap-
shot. But once you go back, you can’t go forward again.

Here we create a filesystem with a series of changes, snapshotting 
each one.
# zfs create -o mountpoint=/delorean mypool/delorean
# echo “this is the past” > /delorean/timecapsule.txt
# zfs snapshot mypool/delorean@thepast
# echo “this is the present” > /delorean/timecapsule.txt
# zfs snapshot mypool/delorean@thepresent
# echo “I broke the future” > /delorean/timecapsule.txt

The file /delorean/timecapsule.txt has had three different sets of 
text in it. Two versions of that text are captured in snapshots. The third 
is not in a snapshot.



Chapter 7: Snapshots and Clones

178

# cat /delorean/timecapsule.txt
“I broke the future”

Oh no, the future is broken. Let’s return to the present. Run zfs 
rollback and give the name of the snapshot you want to use.

# zfs rollback mypool/delorean@thepresent

This takes less time than you might think. Remember, all the data 
and metadata is already on disk. ZFS only switches which set of meta-
data it uses. Once the rollback finishes, the live filesystem contains all 
the files from the chosen snapshot.

# cat /delorean/timecapsule.txt
“this is the present”

Your newer changes to the dataset are gone, and unrecoverable.
While this is a simple example, you can do the exact same thing 

for a software upgrade, a database migration, or any other risky opera-
tion. Operations that once required annoying restorations from offline 
backup can now be handled in a single command. 

You can only roll a filesystem back to the most recent snapshot. It 
is not possible to surf forwards and backwards like in the movies. If 
you want to return to an earlier snapshot, “thepast,” you must destroy 
all snapshots newer than your target.

# zfs rollback mypool/delorean@thepast
cannot rollback to ‘mypool/delorean@thepast’: more re-
cent snapshots or bookmarks exist
use ‘-r’ to force deletion of the following snapshots 
and bookmarks:
mypool/delorean@thepresent

The zfs rollback command can destroy all the intermediate snap-
shots for you if you use the recursive (-r) flag. This is not the same 
kind of multi-dataset recursion used in creating and destroying snap-
shots. Using rollback -r does not roll back the children. You must 
roll back each dataset separately.



Chapter 7: Snapshots and Clones

179

# zfs rollback -r mypool/delorean@thepast
# cat /delorean/timecapsule.txt
“this is the past”

You’ve gone back in time, and can now try your risky and painful 
upgrade again. Congratulations!

Diffing snapshots

Sometimes you really want to know what changed between the time 
the snapshot was taken and now. If the database server started crash-
ing at noon today, you probably want to compare the state of the 
filesystem right now with the 11 AM snapshot so you can see if any-
thing changed. You could use find(1) to look for files modified since 
the snapshot was created, or you could use diff(1) to compare the 
files from the snapshot with the ones from the live filesystem. ZFS 
already has this information, however, and makes it available with zfs 
diff.

To look at the difference between a snapshot and the live filesys-
tem, run zfs diff and give it a snapshot name.
# zfs diff mypool/sheep@later
M   /mypool/sheep/randomfile

Files can be in four states. A “-” means that the file was removed. 
A “+” means that the file was added. An “M” indicates that the file has 
been modified. And an “R” shows that the file has been renamed. Our 
example here shows that the file /mypool/sheep/randomfile was modi-
fied after the snapshot was taken.



Chapter 7: Snapshots and Clones

180

You can also compare two snapshots.
# zfs diff mypool/sheep@later @muchlater
M   /mypool/sheep/
+   /mypool/sheep/newfile
-   /mypool/sheep/zfsbook.html
R   /mypool/sheep/date.txt -> /mypool/sheep/olddate.txt
M   /mypool/sheep/randomfile

The directory /mypool/sheep was modified. The 
file /mypool/sheep/newfile was added, while the file 
/mypool/sheep/zfsbook.html was removed. We have a file rename 
and, again, the file randomfile was modified.

You can also get even more detail. If you add the -t flag, the output 
includes the change’s timestamp from the inode. The -F flag includes 
the type of the file. Check zfs(8) to get the full list of file types.

Automatic Snapshot Regimen

Snapshots are useful even if you create them only for special events. 
If you create snapshots automatically on a schedule, however, they 
become extremely useful. It’s simple enough to schedule creating a 
recursive snapshot of your system every 15 minutes. If you keep all 
of these snapshots, your pool fills up, however. Automated snapshots 
need rotating and discarding just like backup tapes.

Rotation Schedule

The hard part of scheduling the creation and destruction of snapshots 
is figuring out how you might use the snapshots. Who are your users? 
What applications might need snapshots? We can’t answer those ques-
tions for you.

One common setup is built around weekly, daily, hourly, and 
15-minute snapshots. You take weekly snapshots that you keep for 



Chapter 7: Snapshots and Clones

181

two months. Daily snapshots are retained for two weeks. Your hourly 
snapshots are retained for three days. Then you take snapshots every 
15 minutes and keep those for six hours.

Maybe you need only four 15-minute snapshots. Or you must re-
tain monthly snapshots for a year. The regimen right for you depends 
on many factors. How important is your data? How far back might 
you have to reach? How space constrained are you? How often do your 
files change, and how much new data gets written each day? Do you 
have IT audit controls that dictate how long certain data must be re-
tained? Talk with other people on your team, and figure out a schedule 
that works for your organization.

Once you have your desired schedule, ZFS tools can help you 
deploy it.

ZFS Tools

Many scripts and software packages can manage ZFS snapshots for 
you. We recommend ZFS Tools (https://github.com/bdrewery/zf-
stools), as it doesn’t use a configuration file. It does need cron(8), but 
you don’t have to mess with any kind of zfstools.conf. ZFS Tools 
takes its configuration from user-defined properties set within ZFS. 
This means that new datasets automatically inherit their snapshot 
configuration from their parent. When a system has dozens of datasets 
and you’re constantly creating and removing them, inherited configu-
ration saves lots of time.

Install ZFS Tools from packages.
# pkg install zfstools

ZFS Tools come with many scripts and applications, but right now 
we’re concerned with zfs-auto-snapshot.



Chapter 7: Snapshots and Clones

182

zfs-auto-snapshot

The zfs-auto-snapshot Ruby script creates and deletes snapshots. It 
takes two arguments, the name of the snapshot, and the number of 
those snapshots to keep. For example, running zfs-auto-snapshot 
frequent 4 creates a recursive snapshot named frequent, and keeps 
four snapshots of each dataset.

Combined with cron(8), zfs-auto-snapshot lets you create what-
ever snapshots you like, at any time interval desired, and then discard 
them as they age out.

ZFS Tools come with a default crontab to create snapshots on a 
schedule that the developers hope will fit most people’s needs. It starts 
by setting $PATH so that zfs-auto-snapshot can find Ruby. It then has 
entries to create 15-minute, hourly, daily, weekly, and monthly snap-
shots. Let’s look at each.
15,30,45 * * * * root /usr/local/sbin/zfs-auto-snapshot frequent 4

zfs-auto-snapshot runs on the 15th, 30th, and 45th  minute of each 
hour. It creates a snapshot called frequent on each dataset. When a 
dataset has more than four frequent snapshots, the oldest snapshots 
get removed until only four remain.

0    * * * * root /usr/local/sbin/zfs-auto-snapshot hourly   24

Every hour, on the hour, zfs-auto-snapshot creates a snapshot 
called hourly. It retains 24 of these snapshots, discarding the oldest.

7 0 * * * root /usr/local/sbin/zfs-auto-snapshot daily 7

Every day, at 7 minutes after midnight, zfs-auto-snapshot creates 
a daily snapshot. It retains seven dailies.

14 0 * * 7 root /usr/local/sbin/zfs-auto-snapshot weekly 4

On the 7th day of the week, at midnight, zfs-auto-snapshot takes a 
weekly snapshot. It retains four weekly snapshots.



Chapter 7: Snapshots and Clones

183

28   0 1 * * root /usr/local/sbin/zfs-auto-snapshot monthly  12

Monthly snapshots happen on the first day of the month, at 28 
minutes past midnight. We keep 12 of them.

These crontab entries are designed for /etc/crontab. If you use 
them in root’s crontab, you must remove the user (root) entry from 
each. In either case, be sure to include the PATH variable so zfs-auto-
tools can find Ruby.

Adjust the names and schedules to fit your environment and preju-
dices. Lucas always renames the frequent snapshots to 15min, because 
the word frequent is ambiguous. But he’s kind of a pain, so ignore what 
he thinks.

Enabling Automatic Snapshots

The zfs-auto-snapshot script only creates snapshots of datasets that 
have the com.sun:auto-snapshot property set to true. Datasets without 
this property, or that have it set to any value other than true, will not 
get snapshotted. Setting this property on a dataset lets all of the child 
datasets inherit it.

Here we set com.sun:auto-snapshot on the root dataset of the pool 
mypool.
# zfs set com.sun:auto-snapshot=true mypool

When zfs-auto-snapshot runs, it creates snapshots of every data-
set in mypool, with the name and intervals dictated by /etc/crontab.

Some datasets probably don’t need snapshots. We never snapshot 
the ports tree, for example. To turn off snapshots for a dataset and its 
children, set com.sun:auto-snapshot to false.
# zfs set com.sun:auto-snapshot=false mypool/usr/ports



Chapter 7: Snapshots and Clones

184

You can also disable just specific classes of snapshots. A dataset 
that doesn’t change frequently probably doesn’t need frequent or hour-
ly snapshots. zfs-auto-snapshot checks for sub-properties of com.
sun:auto-snapshot named after the snapshot period. For example, the 
property that controls your hourly snapshots is named com.sun:au-
to-snapshot:hourly. Set these properties to false to disable those 
snapshots.
# zfs set com.sun:auto-snapshot:frequent=false mypool/delorean
# zfs set com.sun:auto-snapshot:hourly=false mypool/delorean

Now zfs-auto-snapshot only takes daily, weekly, and monthly 
snapshots for that dataset and all of its children. You can re-enable the 
more frequent snapshots for a specific child by setting the property 
back to true on that child.

You may also decide that, while you need frequent snapshots of 
/usr/src since you are working on some important code, you don’t 
need to keep months-old copies of the source tree:
# zfs set com.sun:auto-snapshot:monthly=false mypool/usr/src

ZFS Tools’ zfs-auto-snapshot handles all snapshot rotation for 
you.

Viewing Automatic Snapshots

Automatic snapshots have names beginning with zfs-auto-snap and 
followed by the period and the timestamp.
# zfs list -t all -r db/db
NAME                                          USED  AVAIL  REFER  
MOUNTPOINT
db/db                                         587M  13.5G   561M  /
db/db@zfs-auto-snap_hourly-2015-04-08-16h00   224K  -       561M  -
db/db@zfs-auto-snap_hourly-2015-04-08-17h00   220K  -       561M  -
db/db@zfs-auto-snap_hourly-2015-04-08-18h00   200K  -       561M  -
db/db@zfs-auto-snap_frequent-2015-04-08-18h45 188K  -       561M  -
db/db@zfs-auto-snap_hourly-2015-04-08-19h00   172K  -       561M  -
db/db@zfs-auto-snap_frequent-2015-04-08-19h15 172K  -       561M  -
db/db@zfs-auto-snap_frequent-2015-04-08-19h30 180K  -       561M  -
db/db@zfs-auto-snap_frequent-2015-04-08-19h45 180K  -       561M  -

db/db@zfs-auto-snap_hourly-2015-04-08-20h00   180K  -       561M  -



Chapter 7: Snapshots and Clones

185

Getting Clever with zfs-auto-snap

There’s nothing magical about the snapshot names or the schedules 
used by zfs-auto-snap. Lucas once ran zfs-auto-snap hourly 2 at 
the command line and blew away lots of hourly snapshots. You can 
name your hourly snapshots monthly, and your yearly snapshots daily. 
If you’re short on people who detest you and all you stand for, this is a 
wonderful way to remedy that problem.

Holds

Sometimes, you want a specific snapshot to be retained despite any 
automatic retention schedule or a desperate late-night effort to clean 
the pool. Maybe there was an incident, or this is the starting point for 
some replication. If you need to keep a snapshot, place a hold on it, 
like your bank does when it doesn’t want you to spend your money. 

Use zfs hold, a tag name, and the snapshot name. A tag name is a 
human-readable label for this particular hold.
# zfs hold tag dataset@snapshot

This locks the snapshot and assigns your tag name. One snapshot 
can have many holds on it, so you can create holds for different pur-
poses.

Holds can also be recursive. To lock all of the snapshots of the 
same name on child datasets, using a common tag, use -r.
# zfs hold -r hostages mypool/test@holdme

The zfs holds command lists the holds on a snapshot, or recur-
sively lists all the holds on a hierarchy of snapshots.
# zfs holds -r mypool/test@holdme
NAME                     TAG       TIMESTAMP
mypool/test@holdme       hostages  Fri Apr 3 19:13 2015
mypool/test/sub1@holdme  hostages  Fri Apr 3 19:13 2015
mypool/test/sub2@holdme  hostages  Fri Apr 3 19:13 2015

A snapshot with a hold cannot be destroyed.



Chapter 7: Snapshots and Clones

186

# zfs destroy mypool/test@holdme
cannot destroy snapshot mypool/test@holdme: dataset is busy

Release a hold on the dataset with zfs release, giving the tag and 
the dataset name.
# zfs release hostages mypool/test@holdme

You can now destroy the snapshot. If only getting the bank to re-
lease your funds was this easy!

Releasing a hold on a snapshot does not release any hold on its 
children, however.
# zfs destroy -r mypool/test@holdme
cannot destroy snapshot mypool/test/sub1@holdme: dataset is busy

cannot destroy snapshot mypool/test/sub2@holdme: dataset is busy

To recursively release all of the holds on a snapshot and its chil-
dren, use the -r flag.
# zfs release -r hostages mypool/test@holdme
# zfs destroy -r mypool/test@holdme

You can now destroy the child datasets.

Bookmarks

Newer versions of ZFS support bookmarks. Bookmarks are similar to 
snapshots, except they don’t keep the old data around. A bookmark is 
just the timestamp of the snapshot it was created from. Bookmarks are 
built on the new extensible_dataset feature flag.

ZFS requires a timestamp to do incremental replication. ZFS can 
easily gather up every block that has changed since the bookmark’s 
timestamp. This allows incremental replication, without having to 
keep the old snapshots around like used to be required.

Bookmarks are a dataset type related to snapshots, so we’re 
mentioning them here. They get full coverage in FreeBSD Mastery: 
Advanced ZFS.



Chapter 7: Snapshots and Clones

187

Clones

A clone is a new filesystem created from a snapshot. Initially it uses 
no new space, sharing all of its blocks with the snapshot that it was 
created from. While snapshots are read-only, clones are writable like 
any normal filesystem. 

A clone can be thought of as a “fork” or “branch” of a filesystem. 
If you have a filesystem that contains your web application, you can 
create a snapshot and clone that snapshot. The cloned filesystem can 
be your test instance of the application, letting you apply patches 
and changes without touching the production instance and without 
consuming extra disk space. You can run tests on the clone version, 
keeping it running alongside the live version.

Clones do not receive updates made in the original dataset. They’re 
based on a static snapshot. If you want a clone that has your recent up-
dates to the original dataset, you must take a new snapshot and create 
a new clone.

Clones initially use no disk space. When the clone diverges from 
the snapshot, any changes made to the cloned filesystem are stored 
as part of the clone, and it starts to consume space. You might have 
a multi-terabyte dataset for your big Enterprise Resource Planning 
(ERP) application, but a fully writable copy of that dataset takes up no 
space at all except for what you change.

Disk space is already cheap, but clones make it even cheaper.

Creating a Clone

Use zfs clone to create a clone. Give it two arguments, the source 
snapshot and the destination. If your pool has no mount point, you’ll 
need to set one on the clone to access its contents.
# zfs clone mypool/sheep@evenmore mypool/dolly

Look at our datasets now.



Chapter 7: Snapshots and Clones

188

# zfs list
NAME                USED  AVAIL  REFER  MOUNTPOINT
mypool             4.74G  13.5G    96K  none
...
mypool/sheep       10.3M  13.5G  6.10M  /mypool/sheep
mypool/dolly          8K  13.5G  2.11M  /mypool/dolly
mypool/second       192K  13.5G    96K  legacy
mypool/second/baby   96K  13.5G    96K  legacy
...

The dolly dataset looks like a normal dataset, except in its space 
usage. The REFER column shows that it has 2 MB of data, but under 
USED it takes up only 8 KB. The data it contains is from the original 
snapshot. A clone consumes space for only newly written data, wheth-
er it be new files or overwriting old ones.

Viewing Clones

Clones appear the same as a regular dataset. In zfs list, you won’t 
notice any difference between a clone and any other dataset.20 Clones 
record their source snapshot in their origin property, however.

# zfs get type,origin mypool/dolly
NAME          PROPERTY  VALUE                  SOURCE
mypool/dolly  type      filesystem             -
mypool/dolly  origin    mypool/sheep@evenmore  -

So a clone appears, in every way, to just be a regular dataset. The 
origin property is the only way to tell that this is a clone. The origin is 
the snapshot that this clone was created from.

To track down all of the clones on your system, use zfs list and 
check the origin property. We’re checking for any entries that don’t 
end in a dash.
# zfs list -o name,origin | grep -ve ‘-$’
NAME           ORIGIN
mypool/dolly   mypool/sheep@evenmore

This gives a list of all datasets that originate in snapshots.

20	  Clones look like their source material. That’s why they make 
such good assassins. No, wait—wrong clones. Sorry.



Chapter 7: Snapshots and Clones

189

Deleting Clones and Snapshots

Clones depend on blocks stored in the source snapshot. The existence 
of a clone prevents removing the source snapshot. If you try to remove 
the snapshot, zfs destroy tells you there’s a problem.

# zfs destroy mypool/sheep@evenmore
cannot destroy ‘mypool/sheep@evenmore’: snapshot has 
dependent clones
use ‘-R’ to destroy the following datasets:
mypool/dolly@zfs-auto-snap_frequent-2015-04-08-16h15
mypool/dolly

Add the -R flag, and destroying the snapshot takes all the depen-
dent clones with it. You can delete the clone itself like any other filesys-
tem dataset.
# zfs destroy mypool/dolly
cannot destroy ‘mypool/dolly’: filesystem has children
use ‘-r’ to destroy the following datasets:
mypool/dolly@zfs-auto-snap_frequent-2015-04-08-16h15

Oh, wait. The clone inherited the zfs-auto-snapshot property 
from its parent, so our snapshot automation caught it. If you didn’t 
want the clone snapshotted, you should have turned that property off. 
You can manually remove the clone’s snapshots, but zfs-auto-snap-
shot keeps creating new ones. You can also use the -r (recursive) flag 
to destroy the clone and all its snapshots.
# zfs destroy -rv mypool/dolly
will destroy mypool/dolly@zfs-auto-snap_frequent-2015-	
  04-08-16h15
will destroy mypool/dolly

Now we can erase the origin snapshot.
# zfs destroy -v mypool/sheep@evenmore
will destroy mypool/sheep@evenmore
will reclaim 0

Clones are powerful, but they complicate snapshot management.



Chapter 7: Snapshots and Clones

190

Promoting Clones

Now that you’ve finished testing the developmental version of your 
web app, you want to make the clone the live version, and discard the 
previous version. But this causes problems. You cannot destroy the 
original dataset, because the clone depends on the snapshot from that 
dataset. 

To solve this you “promote” the clone, telling ZFS to reverse the 
parent/child relationship between the original dataset and the clone. 
The clone becomes the filesystem. The previous parent becomes a 
clone. The student becomes the master. Any snapshots that the clone 
requires move, and become part of the clone instead. Snapshots 
created after the clone’s snapshot of origin still belong to the original 
parent.

Once the clone successfully switches places with the parent dataset, 
you can eliminate the original dataset.

ZFS also changes the space used by the new parent and the new 
clone. The datasets take up no extra space, but the accounting for that 
space changes. Clones get billed only for the amount of space where 
they differ from their snapshot of origin. The new parent dataset gets 
billed for pretty much everything, just like new human parents.

Let’s walk through promoting a clone. Here we clone the dataset 
mypool/wooly to a dataset called mypool/bonnie and modify the clone.

# zfs clone mypool/wooly@later mypool/bonnie
# date > /mypool/bonnie/date.txt
# dd if=/dev/random of=/mypool/bonnie/randomfile bs=1m 
count=8 oseek=4

Look at the clone’s disk usage.
# zfs list mypool/bonnie
NAME            USED  AVAIL  REFER  MOUNTPOINT
mypool/bonnie  8.07M  13.5G  12.1M  /mypool/bonnie



Chapter 7: Snapshots and Clones

191

The USED column shows the 8 MB of new data we wrote to 
the clone. The REFER column shows the dataset contains 12 MB of 
data—4 MB from the snapshot of origin, plus the new 8 MB of data we 
added.

We want to keep the bonnie dataset, and get rid of the original 
wooly dataset:

# zfs destroy -rv mypool/wooly
cannot destroy ‘mypool/wooly’: filesystem has dependent 
clones
use ‘-R’ to destroy the following datasets:
mypool/bonnie@zfs-auto-snap_frequent-2015-04-08-16h30
mypool/bonnie

ZFS knows that the dataset mypool/bonnie and its snapshot of 
origin depend on the mypool/wooly dataset. So we use the zfs promote 
command to make bonnie the filesystem, and turn the old dataset into 
the clone.

Before promoting the clone, run zfs list and check the space 
usage and parentage of both datasets involved.

# zfs list -t all -r mypool/wooly mypool/bonnie
NAME                     USED   AVAIL  REFER  MOUNTPOINT
mypool/bonnie            8.07M  13.5G  12.1M  /mypool/
bonnie
mypool/wooly             10.3M  13.5G  6.10M  /mypool/
sheep
mypool/wooly@all             0      -  2.11M  -
mypool/wooly@moresnap        0      -  2.11M  -
mypool/wooly@later       2.07M      -  5.11M  -
mypool/wooly@rewrite     1.07M      -  5.11M  -
mypool/wooly@muchlater       0      -  6.10M  -

We’ll come back to this list later. Now promote mypool/bonnie.
# zfs promote mypool/bonnie

The promotion should run silently. Go take a look at these two 
datasets again.



Chapter 7: Snapshots and Clones

192

# zfs list -t all -r mypool/wooly mypool/bonnie
NAME                    USED   AVAIL  REFER  MOUNTPOINT
mypool/bonnie           14.3M  13.5G  12.1M  /mypool/
bonnie
mypool/bonnie@all           0      -  2.11M  -
mypool/bonnie@moresnap      0      -  2.11M  -
mypool/bonnie@later     1.07M      -  5.11M  -
mypool/wooly            4.14M  13.5G  4.10M  /mypool/
sheep
mypool/wooly@rewrite    1.07M      -  5.11M  -
mypool/wooly@muchlater      0      -  6.10M  -

The snapshot that mypool/bonnie was based on, and all snapshots 
older than that snapshot of origin, now belong to mypool/bonnie. New-
er snapshots of mypool/wooly, taken after the snapshot mypool/bonnie 
was created from, still belong to mypool/wooly.

You can now destroy the old dataset and all of its snapshots.
# zfs destroy -rv mypool/wooly
will destroy mypool/wooly@muchlater
will destroy mypool/wooly@rewrite
will destroy mypool/wooly

Remember that once a clone is forked from the main filesystem, 
it does not get any updates from the parent. Any persistent data your 
application needs should go in a different dataset. It can be a child 
dataset, as Jude prefers. Lucas says that persistent data should go in a 
completely unrelated dataset, just so a recursive remove doesn’t touch 
it. Watch out for your persistent data in any way you prefer.



Chapter 7: Snapshots and Clones

193

Safely Managing Clones, Snapshots, and Recursion

You can take snapshots of datasets. You can create clones based on 
those snapshots. You can then take snapshots of the clones and cre-
ate more clones. Despite your best efforts, you’re likely to produce a 
massive tangle of interrelated clones and snapshots that exceed any 
human’s ability to mentally track. ZFS gives you a whole bunch of 
power and convenience, but clones make possible brand new types of 
mayhem that will churn your bowels.21

The -nv flags are vital to safe systems administration. Any time the 
merest thought of destroying a dataset begins to consider the possi-
bility of crossing your mind, do a verbose dry run with -nv. See what 
the destroy command would actually eliminate. Read the list. You 
might find that your recursive destroy pulls on a thread of clones that 
stretches all the way across the pool. 

Test before you leap. Always.
ZFS changes how you use disk space, but it’s still the sysadmin’s 

task to manage it. Let’s cover that next.

21	  Admittedly, the big shoes and red noses don’t help. No, wait—
that’s clowns. Sorry, never mind.





195

Chapter 8: Installing to ZFS
The whole point of learning about ZFS is to use the filesystem on a 
machine. Let’s discuss FreeBSD 10 installs on ZFS.

If you must install a whole slew of FreeBSD machines, such as at 
a server farm, we recommend the PC-BSD installer. Scripts like we 
demonstrate here are fine for occasional installs of a few machines, but 
if you’re configuring machines by the rack, you really need a PXE-
based installer.

Your hardware limits your choices. With rare exceptions, laptops 
have one hard drive. Running FreeBSD means using a single striped 
virtual device pool for storage. If you have hundreds of disks, you’ll 
need to consider how you want to separate your pools.

When you have many many disks, separate your operating system 
from your data. FreeBSD and a good selection of add-on software fits 
nicely on a mirrored pool or a RAID-Z. You don’t need RAID-Z3 for 
just the operating system! If you have hundreds of data storage disks, 
use separate pools for the operating system and data. With hundreds 
of disks, Lucas would want a few separate pools, but he’s an old fogey. 
Jude would pour them all into one giant pool. The only wrong choice 
is one that makes more work for you.

This chapter assumes you’re familiar with GPT partitioning, 
FreeBSD tools such as gpart(8), and FreeBSD partition types. If you’re 
not, check the FreeBSD documentation or perhaps read FreeBSD 
Mastery: Storage Essentials. (FMSE also covers installation scripts and 
other advanced installation techniques.)



Chapter 8: Installing to ZFS

196

Installing a ZFS-based system requires configuring storage pools, 
assigning datasets, and installing FreeBSD to the datasets. You can 
make separate choices in each step, so we’ll consider each separately.

But start with a reference FreeBSD install.

FreeBSD Reference Install

Before installing your custom FreeBSD system, install a small FreeBSD 
ZFS virtual machine as a reference platform. This offers lots of infor-
mation about a standard FreeBSD install. Installing your own system 
is great, but don’t abandon all the carefully considered defaults the 
installer uses. Your goal is probably to tweak the install in a way the 
installer doesn’t permit, not abandon all FreeBSD standards.

Boot your reference platform, become root, and run zpool histo-
ry to see how this ZFS was created.
# zpool history
History for ‘zroot’:
2015-04-08.07:18:30 zpool create -o altroot=/mnt -O com-
press=lz4 -O atime=off -m none -f zroot raidz1 da0p3.nop 
da1p3.nop da2p3.nop
2015-04-08.07:18:30 zfs create -o mountpoint=none zroot/
ROOT
2015-04-08.07:18:30 zfs create -o mountpoint=/ zroot/
ROOT/default
2015-04-08.07:18:30 zfs create -o mountpoint=/tmp -o ex-
ec=on -o setuid=off zroot/tmp
...

We’ll use this information throughout the installation process to 
tweak our install.

Custom ZFS Installation Partitioning

Boot into the FreeBSD installer image, and choose install. When you 
get to the point where you partition disks, select the command line 
rather than any automatic or guided method. You could also use some-
thing like mfsBSD for the version you want, if you have that handy.



Chapter 8: Installing to ZFS

197

Disk Partitioning

When the computer boots, it looks for an operating system on the 
storage media. For FreeBSD, this is a boot loader. FreeBSD provides 
the gptzfsboot(8) boot loader specifically for booting from ZFS pools. 
The hardware BIOS boots the boot loader, which activates the pool 
and fires up the FreeBSD kernel. Every disk in every virtual device in 
the boot pool should have a ZFS boot loader installed, which means 
the disks must be partitioned. The maximum size of the FreeBSD boot 
loader partition is just a smidgen over 512 KB for some daft reason, 
so assign 512 KB for the boot loader. Then we put in a 1 GB FreeBSD 
swap partition, and assign the remaining space for ZFS. The swap and 
ZFS partitions are aligned at 1 MB boundaries.

While I’m using these short names for the GPT labels for teaching 
purposes, we strongly encourage you to use location-based labels as 
discussed in Chapter 0.
# gpart add –a 1m -t freebsd-boot -s 512k -l zfsboot da0
da0p1 added
# gpart add –a 1m -t freebsd-swap -s 1g -a 1m -l swap0 da0
da0p2 added
# gpart add –a 1m -t freebsd-zfs -a 1m -l zfs0 da0
da0p3 added

Now install the FreeBSD ZFS bootloader onto this disk. Every disk 
you might boot from needs the bootloader.
# gpart bootcode -b /boot/pmbr -p /boot/gptzfsboot -i 1 da0
bootcode written to da0

Repeat this partitioning for every disk involved in the storage pool.

Pool Creation

Still at the disk formatting command prompt, assemble your disks into 
your root storage pool. It’s common to call the root pool something 
like system or zroot, or you might name it after the host. Do whatever 
fits for your environment. I’m calling the example pool zroot, so that it 
fits with the default used by the FreeBSD installer.



Chapter 8: Installing to ZFS

198

Look at the default FreeBSD install’s zpool history and consider 
what it shows.
2015-04-08.07:18:30 zpool create -o altroot=/mnt -O com-
press=lz4 -O atime=off -m none -f zroot raidz1 da0p3.nop 
da1p3.nop da2p3.nop

This is a FreeBSD 10.1 system. The installer mounts the boot pool 
temporarily at /mnt, and we really have to keep that for the installer 
to work. We want the other options, like setting compression to lz4 
and disabling atime. The -m none tells zpool(8) to not assign a mount 
point to this pool. Using -f tells zpool(8) to ignore any other ZFS 
information on these disks. The altroot property gives a temporary 
mount point, as discussed in Chapter 4. You’re reinstalling pools, not 
recycling them.

The 10.1 installer wasn’t yet updated to take advantage of the vfs.
zfs.min_auto_ashift sysctl, but I’m going to use it now.
# sysctl vfs.zfs.min_auto_ashift=12

ZFS will now use 4096-byte sectors. Create the pool. We’re stealing 
all of the default FreeBSD options, making only the changes we desire.
# zpool create -o altroot=/mnt -O compress=lz4 -O \
   atime=off -m none -f zroot mirror gpt/zfs0 gpt/zfs1 \
   cache gpt/zcache0 log gpt/zlog0

Chances are, FreeBSD’s default pool installation options are fine. 
You probably want to tweak the datasets.

Datasets

While you want to create your custom dataset configuration, do check 
FreeBSD’s installation defaults. They’re sensible for the average user, 
and allow use of advanced features like boot environment managers.

If you want to complete your install with the FreeBSD installer, 
you must give the installer a recognizable system. That means follow-
ing steps from the reference install, even if you’re not sure why a pool 



Chapter 8: Installing to ZFS

199

is exported and imported at the end of the dataset creation step. In 
sum, we recommend adding your own datasets, but leaving the de-
faults unchanged.

Here are a few bits from zpool history on a reference FreeBSD 
host, omitting the timestamps.
zfs create -o mountpoint=none zroot/ROOT
zfs create -o mountpoint=/ zroot/ROOT/default
zfs create -o mountpoint=/tmp -o exec=on -o setuid=off 
   zroot/tmp
zfs create -o mountpoint=/usr -o canmount=off zroot/usr
zfs create zroot/usr/home
zfs create -o setuid=off zroot/usr/ports
zfs create zroot/usr/src
zfs create -o mountpoint=/var -o canmount=off zroot/var
zfs create -o exec=off -o setuid=off zroot/var/crash
zfs create -o exec=off -o setuid=off zroot/var/log
zfs create -o atime=on zroot/var/mail
zfs create -o setuid=off zroot/var/tmp
zpool set bootfs=zroot/ROOT/default zroot
zpool set cachefile=/mnt/boot/zfs/zpool.cache zroot

You can easily add or change your own datasets to this, creating 
zroot/var/mysql or moving /home out from under /usr or whatever it 
is you desire.

Creating datasets is a lot of typing. We recommend creating instal-
lation scripts, as discussed in FreeBSD Mastery: Storage Essentials.

Once you have your datasets, exit the command-line partitioning 
and the installer will resume.

Post-Install Setup

Once the installer finishes copying files to your disks, setting up net-
working, and so on, you’ll get a chance to go into the installed system 
and make changes. Take that chance. You must change a few settings 
in the finished system.



Chapter 8: Installing to ZFS

200

Make sure that ZFS is started in /etc/rc.conf. This mounts your 
filesystem datasets at boot.
zfs_enable=yes

Edit /boot/loader.conf to tell FreeBSD to load ZFS and related 
kernel modules at boot.
zfs_load=”YES”

You can also make any other system changes you like here.
While some documentation refers to other required steps, such as 

copying the pool cache file, that’s no longer necessary.
Reboot when you’re finished, and you’ll come up in a new, custom-

ized FreeBSD install!

Manually Installing FreeBSD

If you have to go to a command line to partition your disks, you might 
as well install the FreeBSD files to the disk yourself. The FreeBSD dis-
tribution files are in /usr/freebsd-dist, and you write them to your 
disk with tar(1). Your installation target is mounted in /mnt.
# tar --unlink -xpJf base.txz -C /mnt
# tar --unlink -xpJf kernel.txz -C /mnt

You can install other distribution sets, but the base and kernel are 
the only critical ones.

Your installation needs an /etc/fstab, for the swap files if nothing 
else. Create it in /mnt/etc/fstab. You can also edit critical system files 
like /mnt/etc/rc.conf and /mnt/boot/loader.conf.

With a bit of work and testing, you can make your ZFS install as 
simple or as complex as you like.

Exactly like you can ZFS.



201

Afterword
A whole book on a filesystem? Are you mad?

ZFS is merely a filesystem, yes. But it includes features that many 
filesystems can’t even contemplate. You’d never try to wedge self-heal-
ing into extfs, or variable block size into UFS2. Copy on write must be 
built into the filesystem core—you can’t retrofit that into an existing 
filesystem.

By building on decades of experience with filesystems and target-
ing modern and future hardware, ZFS has not only changed the way 
we manage digital storage. It’s changed how we think about storage. 
ZFS’s flexibility and power has even rendered many long-hallowed 
“system administration best practices” obsolete. When your filesystem 
is an ally rather than a menace, everything gets amazingly easier.

The continued growth of OpenZFS brings new features, steady 
improvement, and a certain future that commercial vendors cannot 
provide. OpenZFS gets more exciting every week, with new features 
and greater performance. It also gets less exciting, in that it protects 
your data more and more with each release. We are fortunate enough 
to be a part of this great project, and are glad for this chance to share 
some of our excitement with you.



While Lucas used ZFS before writing this book, Jude uses lots 
of ZFS to deliver lots of content everywhere in the world. Jude is a 
FreeBSD doc committer, but Lucas has written big stacks of books. 
Together, we’ve created a stronger book than either of us could have 
alone. 

And stay tuned for more ZFS from us. In FreeBSD Mastery: 
Advanced ZFS, we’ll take you into strange new filesystem realms un-
imaginable just a few years ago.



About the Authors

Allan Jude is VP of operations at ScaleEngine Inc., a global Video 
Streaming CDN, where he makes extensive use of ZFS on FreeBSD. 

He is also the host of the weekly video podcasts 
BSD Now (with Kris Moore) and TechSNAP on 
JupiterBroadcasting.com. Allan is a FreeBSD 
committer, focused on improving the docu-
mention and implementing libucl and libxo 
throughout the base system. He taught FreeBSD 
and NetBSD at Mohawk College in Hamilton, 

Canada from 2007-2010 and has 13 years of BSD unix sysadmin expe-
rience.

Michael W Lucas is a full time author. His FreeBSD experience is 
almost as old as FreeBSD. He worked for twenty years as a sysadmin 

and network engineer at a variety of firms, 
most of which no longer exist. He’s written a 
whole stack of technology books, which have 
been translated into nine languages. (Yes, real 
languages. Ones that people actually speak.) 
You can find him lurking at various user 
groups around Detroit, Michigan, his dojo 

(zenmartialarts.com), or at https://www.michaelwlucas.com.

Find the authors on Twitter as @allanjude and @mwlauthor.





Never miss a new Lucas release!

Sign up for Michael W Lucas’ mailing list.
https://www.michaelwlucas.com/mailing-lists

More Tech Books from Michael W Lucas

Absolute BSD
Absolute OpenBSD (1st and 2nd edition)

Cisco Routers for the Desperate (1st and 2nd edition)
PGP and GPG

Absolute FreeBSD
Network Flow Analysis

the IT Mastery Series

SSH Mastery
DNSSEC Mastery

Sudo Mastery
FreeBSD Mastery: Storage Essentials

Networking for Systems Administrators
Tarsnap Mastery

FreeBSD Mastery: ZFS
FreeBSD Mastery: Advanced ZFS (coming 2015!)

FreeBSD Mastery: Specialty Filesystems (coming 2015!)





Adaptive Replacement Cache....................... 35
Advanced Format drive................................. 24
AES New Instructions.................................... 26
AESNI.............................................................. 26
AES-XTS.......................................................... 25
Ahrens, Matt..............................................3-4, 6
ALTROOT....................................................... 49
anticipatory scheduling................................. 27
ARC	.......... see “Adaptive Replacement Cache”
as (scheduling)................................................ 27
ashift............................................................53-54
atime (property)............................................. 87
autoexpand (property)................................. 125
AVAIL......................................................80, 134
available (property)...................................... 134

birth time...............................................163, 165
blocks............................................................... 21
Bonwick, Jeff..................................................... 3
bookmarks..................................................... 186
boot loader..............................................24, 130
bp count......................................................... 157

cache......................................see “Level 2 ARC”
camcontrol(8)................................................. 10
canmount (property)................................93-95
CAP	.................................................................. 49
CDDL................................................................. 3
checksum (property).............................. 99-100
checksums....................................................... 34
clones..........................................77, 79, 187-193
	 creating.......................................... 187-188
	 destroying.....................................189, 192
	 viewing..................................188, 191-192

Common Development and
	 Distribution License................................ 3
compression.................................... 32, 147-154
	 algorithms.............................149, 150-153
	 disabling................................................ 154
	 enabling................................................. 148
	 performance................................. 153-154
	 properties.............................................. 150
compression (property)................................. 86
compressratio (property).....................150, 152
copies (property)............................ 28, 100-101
copy on write................................... 34, 162-164
creation (property)......................................... 86

datasets................................................. 15, 76-84
	 destroying............................................... 83
	 inherited.................................................. 85
	 renaming............................................82-83
	 moving.................................................... 83
	 size, limiting.................see “reservations”
	 types......................................................... 77
	 viewing...............................................80-81
dataset integrity...................................... 99-102
dataset properties......................................84-89
	 changing.................................................. 86
	 filesystem...........................................87-88
	 inheritance.........................................89-90
	 parent/child relationships....... 89-90, 190
	 read-only................................................. 86
	 removing................................................. 91
	 sorting................................................... 171
	 user-defined............................................ 88
	 viewing...............................................84-85
dead list.................................................... 16-165
DEDUP............................................................ 49
dedup (property).......................................... 159
deduplication........................................ 154-159
	 effectiveness.................................. 157-159
	 enabling................................................. 159
	 disabling................................................ 159
	 memory needs.............................. 155-157
degraded.......................................................... 32
DEGRADED................................................. 109
df(1)..........................................16, 131, 136-138
dinosaur........................................................... 12
disk ident................................................... 11, 26
disk redundancy............................................... 8
disk replacement................................... 112-120
diskinfo(8)....................................................... 10
ditto blocks................................................ 21, 46
dnode............................................................... 46
DragonFly...................................................... 165
dry run...........................................105, 175-177
du(8)...............................................131, 150-152
dump(8)........................................................... 16

ECC RAM......................................................... 6
errors in ZFS......................................... 110-111
expand RAID-Z.............................................. 31
EXPANDSZ..................................................... 48
exec (property)................................................ 87
extfs	......................................1, 16, 19, 21, 45-46



FAT	......................................................19, 21, 45
FAULTED...................................................... 109
feature flags............................................ 128-130
filesystem (dataset)......................................... 77
	 and /etc/fstab.....................................96-97
	 mounting.................................... 91-93, 96
	 without mount points......................93-94
fletcher2......................................................... 100
fletcher4................................................... 99-100
footnotes.................... see “find them yourself ”
FRAG............................................................... 49
freeing space..................................133-134, 165
fsck(8)................................................ 64-65, 164
fstab	.............................................................96-97

GBDE............................................................... 25
GELI............................................................24-25
GEOM................................................ 4-5, 23, 28
GEOM scheduler............................................ 27
glabel................................................................ 26
Globally Unique ID.......................................... 9
gmirror(8)..................................................... 104
gnop(8)............................................................ 54
gpart(8)..................................... 52, 55, 195, 197
GPT	.................................................. 9, 25-26, 52
GPTID....................................................... 11, 26
gptzfsboot(8)................................................. 197
grep(1)....................................................141, 168
gsched(8)......................................................... 27
GUID
	 disk............................................................ 9
	 zpool...................................................... 162
GUID Partition Table....................................... 9
gzip	 ........................................................ 149-153

HAMMER..................................................... 165
hardware status..................................... 108-110
hash	.................................................................. 64
Hashed Message Authentication Code........ 26
HAST................................................................ 26
HBA.............................................................. 8, 27
HEALTH......................................................... 49
Highly Available Storage Technology.......... 26
HMAC............................................................. 26
host bus adapters.............................................. 8
Human Genome Project.............................. 150

“I told you so”.................................................... 8
index blocks..................................................... 45

inheritance......................................89-90, 94-95
inodes............................................................... 21
Input/Output Per Second.............................. 36
integrity checks............................................... 20
IOPS............................................................36-39

JBOD.................................................................. 7

KVM................................................................... 5

landline............................................................ 12
LBA	.................................................................. 17
Level 2 ARC............................................... 35, 43
	 adding to a pool........................... 117-118
	 creating...............................................61-62
	 mirroring................................................ 62
	 removing from a pool......................... 118
loader.conf..................................................... 200
log
	 compression.......................................... 148
	 Separate Intent Log................................ 61
Logical Block Address.................................... 17
logicalreferenced (property)....................... 150
logicalused (property).................................. 150
ls(1)	................................................................ 150
lze	 ................................................................ 149
lzjb	 ........................................................149, 151
lz4	 ........................................................149, 151

manual installation............................... 195-200
Master Boot Record................................. 25, 52
MBR................................................................. 25
Meta Object Set............................................ 163
metadata redundancy.................................. 102
mirroring......................................................... 47
mirror virtual device...................................... 30
	 adding to pools............................. 106-107
	 fault tolerance......................................... 41
	 performance......................................37-39
mount point.................................................... 17
	 multiple datasets with common
	 mount point.......................................94-95
MOUNTPOINT............................................. 80
mountpoint (property).............................94-96
mount(8).......................................................... 16
multipath..................................................... 9, 26
MySQL............................................................... 3



NAME.............................................................. 84
newfs(1)..................................................... 16, 82
NFS	.................................................................. 35
noparity.......................................................... 100
NTFS............................................................ 1, 45

ONLINE.......................................................... 49
OpenZFS...................................................... 4, 12
Oracle..............................................................3-4
“out of space”................................................... 98

parity....................................................30, 32, 47
partition............................................... 17, 24-25
	 alignment................................................ 51
	 why they suck......................................... 75
periodic.conf..............................................70-71
periodic(8)..................................................70-71
pig	 .................................................................. 23
Project Gutenberg........................................ 150
properties, dataset...... see “dataset properties”
properties, zpool........... see “zpool properties”
PROPERTY..................................................... 84
provider....................................................... 4, 27
	 reusing................................................63-64
pteradon........................................................... 12

quota........................................................75, 139
	 dataset........................................... 142-145
	 exceeding.............................................. 145
	 group............................................. 145-147
	 removing...............................143, 146-147
	 setting....................................143, 146-147
	 user................................................ 145-147
	 viewing..........................................144, 147

RAID.................................................................. 5
	 controller..........................................6-8, 32
	 hardware................................................6-8
	 vs RAID-Z.............................................. 33
RAID-1............................................................ 29
RAID-10.................................................... 29, 48
RAID-6............................................................ 29
RAID-60.......................................................... 29
RAID-Z............................................................ 28
	 adding disks..............................31, 48, 108
	 adding VDEVs............................. 107-108
	 performance............................... 37, 43-44
	 “rule of 2s”.............................................. 32
	 vs traditional RAID............................... 33

RAID-Z1 virtual device................................. 30
	 performance........................................... 39
RAID-Z2 virtual device................................. 31
	 performance............................... 40, 42-43
RAID-Z3 virtual device................................. 31
	 performance......................................42-43
RAM, ECC........................................................ 6
raw disk storage.............................................. 23
Raspberry Pi...................................................... 5
rc.conf....................................................104, 200
read cache.............................see “Level 2 ARC”
readonly (property)........................................ 88
recordsize (property).........................................
redundant_metadata (property)................. 102
refcompressratio (property)........................ 150
REFER................................................16, 80, 191
referenced data...................................... 132-133
refreservation........................................ 142-152
refreservation (property)..................... 138-141
REMOVED.............................................110155
replication................................................78, 162
reservation....................................... 75, 138-141
reservation (property).......................... 139-141
resilvering...................................................... 105
restore(8)......................................................... 16
rocket-driven roller skates............................. 47
root dataset...................................................... 16
	 set properties at creation....................... 69
root filesystem................................................. 17
rr (scheduling)................................................ 27

SAS	 .................................................................... 8
SATA.................................................................. 8
scripting ZFS................................................. 172
scrub........................................see “zpool scrub”
sector size...................................................51-53
	 512-byte..............................................51-54
	 4096-byte...........................................51-54
self-healing..............................................65, 111
Separate Intent Log............................ 34-35, 43
	 adding to a pool........................... 117-118
	 creating...............................................61-62
	 mirroring................................................ 62
	 removing from a pool......................... 118
serial number.................................................. 10
setuid (property)............................................. 88
sha256............................................................ 100
shorn write.................................................... 162
short stroke...................................................... 24



slices................................................................. 24
SLOG.........................see “Separate Intent Log”
snapdir........................................................... 174
snapshot..................... 77-78, 161-162, 164-186
	 accessing............................................... 174
	 automation.................................... 180-185
	 comparing..................................... 179-180
	 creating.................................................. 166
	 destroying.............................175, 191-192
	 holds............................................................
185-186................................................................
	 mounting.............................................. 175
	 ranges............................................ 176-177
	 recursive................167-168, 176-177, 178
	 rolling back to.............................. 177-178
	 show by default.................................... 172
	 space usage...................165, 166-167, 173
	 viewing..................................168-172, 184
Solaris........................................................... 3, 24
SOURCE.............................................. 68-69, 84
sparse volume.................................................. 98
spindles.......................................................36-37
SSD	 ........................................................ 8, 35-36
	 alignment................................................ 52
Star Trek............................................................. 3
storage pools................................................... 19
storage
	 on disks..............................................23-24
	 on GEOM devices.............................25-26
	 on partitions......................................24-25
stripe virtual device........................................ 29
	 adding to a pool................................... 106
	 performance........................................... 38
stripes..........................................................46-48
	 across virtual devices............................. 28
	 dynamically sized................................... 47
	 RAID....................................................... 47
	 redundancy....................................... 29, 47
Sun Microsystems........................................ 3, 6
superblocks...................................................... 22
sysctl.conf........................................................ 54

thin provisioning............................................ 98
top(1)................................................................ 36
transaction groups..................................46, 163
treachery.......................................................... 23
tunefs(8)........................................................... 76
txg	 ..........................................................46, 163

uberblock......................................... 46, 162-163
UFS, UFS2................ 1, 5, 15, 19, 21, 45-46, 75
umount(8)....................................................... 16
UNAVAIL...................................................... 110
USED................................................80, 135, 191
used (property).....................................135, 150
USEDBYSNAP.............................................. 135
usedbysnapshots (property)........................ 135
USEDCHILD................................................ 135
usedbychildren (property).......................... 135
USEDDS........................................................ 135
usedbydataset (property)............................. 135
USEDBYREFRESERV................................. 135
usedbyrefreserv (property)......................... 135

VALUE............................................................. 84
VDEV.................................. see “virtual device”
vfs.zfs.min_auto_ashift..........................53, 198
virtual devices........................................... 20, 28
	 add to a pool................................. 105-108
	 mirror............ see “mirror virtual device”
	 mismatched.......................................62-63
	 multiple in a pool................................... 50
	 raid-z1...........see “raid-z1 virtual device”
	 raid-z2...........see “raid-z2 virtual device”
	 raid-z3...........see “raid-z3 virtual device”
	 redundancy............................................. 28
	 removing from a pool........................... 51
	 repair....................................... 32, 112-117
	 stripe................ see “stripe virtual device”
volblocksize (property).................................. 97
volmode (property)........................................ 98
volsize (property)........................................... 97
volume............................................................. 77
	 creating.................................................... 82
	 properties, changing.............................. 99
	 recreate.................................................... 99
	 sparse....................................................... 98

Windows 3.1...................................................... 7
winter............................................................... 18
write back mode............................................... 8
write hole....................................................33-34
write cache....................................................... 25

Z File System.......................................... see ZFS
zdb(8).....................................................156, 158



ZFS	 .................................................................. 15
	 blocks....................................................... 45
	 compression................. see “compression”
	 index blocks............................................ 45
	 limits........................................................ 19
	 mount point............................................ 96
	 properties................................................ 18
	 redundancy............................................. 21
	 storage pool................................ 16, 19-20
	 zpool........................................................ 16
ZFS pool............................................ see “zpool”
ZFS Tools............................................... 181-185
zfs(8)................................................................. 76
	 clone..............................................187, 190
	 create..................................................81-82
	 diff.................................................. 179-180
	 destroy.......... 175-177, 186, 189, 191-192
	 get.............................................85, 141, 188
	 hold................................................ 185-186
	 groupspace............................................ 146
	 list..................80-81, 85-86, 136, 139, 144,
	 ................................167-173, 188, 190-192
	 mount...................................................... 80
	 promote......................................... 190-191
	 receive.................................................... 159
	 release.................................................... 186
	 send..................................................86, 159
	 set............................................................. 86
	 snapshot........................166-168, 175, 177 
	 userspace............................................... 146
zfs-auto-snapshot................................. 182-185
zfsd(8)............................................................ 130
ZIL	 ...........................see “Separate Intent Log”
znode................................................................ 46
zpool................................................................. 45
	 destroying..........................................71-72
	 disk alignment...................................51-54
	 expanding providers.................... 124-127
	 export............................................ 119-120
	 history...............................69-70, 196, 199
	 integrity..............................................64-67
	 label....................................................... 162
	 maintenance......................................70-71
	 multiple VDEVs..................................... 50
	 removing VDEVs................................... 51
	 renaming imports........................ 121-122
	 sector size................................................ 52
	 upgrade......................................... 127-130
	 versions................................................... 72
	 viewing...............................................48-50

zpool feature flags......................................72-74
	 read-only compatible............................ 74
	 viewing.................................................... 73
zpool import.......................................... 120-124
	 damaged pools..................................... 124
	 destroyed pools.................................... 123
	 incomplete pools.......................... 122-123
	 without log devices.............................. 124
zpool properties.........................................67-69
	 set at creation......................................... 69
	 setting.................................................68-69
	 viewing...............................................67-68
zpool scrub.................................................65-67
	 automation.........................................70-71
	 canceling................................................. 68
zpool versions....................... 127-130, 127-130
zpool(8)...................................................... 19, 55
	 add.........................................105-108, 118
	 attach.............................................105, 116
	 create..................................................56-64
	 destroy................................................71-72
	 detach.................................................... 117
	 export.................................................... 120
	 get........................................................67-68
	 history................................................69-70
	 import.................................................... 121
	 online.....................................115, 117, 127
	 list........................................................48-49
	 remove........................................... 118-119
	 replace...........................113, 115-116, 119
	 set............................................... 68-69, 129
	 scrub........................................................ 66
	 status................49-50, 56-62, 66, 119, 129
	 upgrade......................................... 128-129
zpool-features(8)............................................ 72
zvol	 ................................................see “volume”


