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Preface

Deep Learning in the World Today

Hello and welcome! This book will introduce you to deep learning via PyTorch,
an open source library released by Facebook in 2017. Unless you’ve had your
head stuck in the ground in a very good impression of an ostrich the past few
years, you can’t have helped but notice that neural networks are everywhere
these days. They’ve gone from being the really cool bit of computer science that
people learn about and then do nothing with to being carried around with us in
our phones every day to improve our pictures or listen to our voice commands.
Our email software reads our email and produces context-sensitive replies, our
speakers listen out for us, cars drive by themselves, and the computer has finally
bested humans at Go. We’re also seeing the technology being used for more
nefarious ends in authoritarian countries, where neural network—backed sentinels
can pick faces out of crowds and make a decision on whether they should be
apprehended.

And yet, despite the feeling that this has all happened so fast, the concepts of
neural networks and deep learning go back a long way. The proof that such a
network could function as a way of replacing any mathematical function in an
approximate way, which underpins the idea that neural networks can be trained
for many different tasks, dates back to 1989,1 and convolutional neural networks
were being used to recognize digits on check in the late ’90s. There’s been a
solid foundation building up all this time, so why does it feel like an explosion
occurred in the last 10 years?

There are many reasons, but prime among them has to be the surge in graphical
processing units (GPUs) performance and their increasing affordability.
Designed originally for gaming, GPUs need to perform countless millions of
matrix operations per second in order to render all the polygons for the driving
or shooting game you’re playing on your console or PC, operations that a
standard CPU just isn’t optimized for. A 2009 paper, “Large-Scale Deep
Unsupervised Learning Using Graphics Processors” by Rajat Raina et al.,
pointed out that training neural networks was also based on performing lots of



matrix operations, and so these add-on graphics cards could be used to speed up
training as well as make larger, deeper neural network architectures feasible for
the first time. Other important techniques such as Dropout (which we will look
at in Chapter 3) were also introduced in the last decade as ways to not just speed
up training but make training more generalized (so that the network doesn’t just
learn to recognize the training data, a problem called overfitting that we’ll
encounter in the next chapter). In the last couple of years, companies have taken
this GPU-based approach to the next level, with Google creating what it
describes as tensor processing units (TPUs), which are devices custom-built for
performing deep learning as fast as possible, and are even available to the
general public as part of their Google Cloud ecosystem.

Another way to chart deep learning’s progress over the past decade is through
the ImageNet competition. A massive database of over 14 million pictures,
manually labeled into 20,000 categories, ImageNet is a treasure trove of labeled
data for machine learning purposes. Since 2010, the yearly ImageNet Large
Scale Visual Recognition Challenge has sought to test all comers against a
1,000-category subset of the database, and until 2012, error rates for tackling the
challenge rested around 25%. That year, however, a deep convolutional neural
network won the competition with an error of 16%, massively outperforming all
other entrants. In the years that followed, that error rate got pushed down further
and further, to the point that in 2015, the ResNet architecture obtained a result of
3.6%, which beat the average human performance on ImageNet (5%). We had
been outclassed.

But What Is Deep Learning Exactly, and Do |
Need a PhD to Understand It?

Deep learning’s definition often is more confusing than enlightening. A way of
defining it is to say that deep learning is a machine learning technique that uses
multiple and numerous layers of nonlinear transforms to progressively extract
features from raw input. Which is true, but it doesn’t really help, does it? I prefer
to describe it as a technique to solve problems by providing the inputs and
desired outputs and letting the computer find the solution, normally using a
neural network.



One thing about deep learning that scares off a lot of people is the mathematics.
Look at just about any paper in the field and you’ll be subjected to almost
impenetrable amounts of notation with Greek letters all over the place, and
you’ll likely run screaming for the hills. Here’s the thing: for the most part, you
don’t need to be a math genius to use deep learning techniques. In fact, for most
day-to-day basic uses of the technology, you don’t need to know much at all, and
to really understand what’s going on (as you’ll see in Chapter 2), you only have
to stretch a little to understand concepts that you probably learned in high
school. So don’t be too scared about the math. By the end of Chapter 3, you’ll be
able to put together an image classifier that rivals what the best minds in 2015
could offer with just a few lines of code.

PyTorch

As I mentioned back at the start, PyTorch is an open source offering from
Facebook that facilitates writing deep learning code in Python. It has two
lineages. First, and perhaps not entirely surprisingly given its name, it derives
many features and concepts from Torch, which was a Lua-based neural network
library that dates back to 2002. Its other major parent is Chainer, created in Japan
in 2015. Chainer was one of the first neural network libraries to offer an eager
approach to differentiation instead of defining static graphs, allowing for greater
flexibility in the way networks are created, trained, and operated. The
combination of the Torch legacy plus the ideas from Chainer has made PyTorch
popular over the past couple of years.?

The library also comes with modules that help with manipulating text, images,
and audio (torchtext, torchvision, and torchaudio), along with built-in
variants of popular architectures such as ResNet (with weights that can be
downloaded to provide assistance with techniques like transfer learning, which
you’ll see in Chapter 4).

Aside from Facebook, PyTorch has seen quick acceptance by industry, with
companies such as Twitter, Salesforce, Uber, and NVIDIA using it in various
ways for their deep learning work. Ah, but I sense a question coming....

What About TensorFlow?



Yes, let’s address the rather large, Google-branded elephant in the corner. What
does PyTorch offer that TensorFlow doesn’t? Why should you learn PyTorch
instead?

The answer is that traditional TensorFlow works in a different way than PyTorch
that has major implications for code and debugging. In TensorFlow, you use the
library to build up a graph representation of the neural network architecture and
then you execute operations on that graph, which happens within the TensorFlow
library. This method of declarative programming is somewhat at odds with
Python’s more imperative paradigm, meaning that Python TensorFlow programs
can look and feel somewhat odd and difficult to understand. The other issue is
that the static graph declaration can make dynamically altering the architecture
during training and inference time a lot more complicated and stuffed with
boilerplate than with PyTorch’s approach.

For these reasons, PyTorch has become popular in research-oriented
communities. The number of papers submitted to the International Conference
on Learning Representations that mention PyTorch has jumped 200% in the past
year, and the number of papers mentioning TensorFlow has increased almost
equally. PyTorch is definitely here to stay.

However, things are changing in more recent versions of TensorFlow. A new
feature called eager execution has been recently added to the library that allows
it to work similarly to PyTorch and will be the paradigm promoted in
TensorFlow 2.0. But as it’s new resources outside of Google that help you learn
this new method of working with TensorFlow are thin on the ground, plus you’d
need years of work out there to understand the other paradigm in order to get the
most out of the library.

But none of this should make you think poorly of TensorFlow; it remains an
industry-proven library with support from one of the biggest companies on the
planet. PyTorch (backed, of course, by a different biggest company on the
planet) is, I would say, a more streamlined and focused approach to deep
learning and differential programming. Because it doesn’t have to continue
supporting older, crustier APIs, it is easier to teach and become productive in
PyTorch than in TensorFlow.

Where does Keras fit in with this? So many good questions! Keras is a high-
level deep learning library that originally supported Theano and TensorFlow, and



now also supports certain other frames such as Apache MXNet. It provides
certain features such as training, validation, and test loops that the lower-level
frameworks leave as an exercise for the developer, as well as simple methods of
building up neural network architectures. It has contributed hugely to the take-up
of TensorFlow, and is now part of TensorFlow itself (as tf.keras) as well as
continuing to be a separate project. PyTorch, in comparison, is something of a
middle ground between the low level of raw TensorFlow and Keras; we will
have to write our own training and inference routines, but creating neural
networks is almost as straightforward (and I would say that PyTorch’s approach
to making and reusing architectures is much more logical to a Python developer
than some of Keras’s magic).

As you’ll see in this book, although PyTorch is common in more research-
oriented positions, with the advent of PyTorch 1.0, it’s perfectly suited to
production use cases.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLSs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values
determined by context.



TIP

This element signifies a tip or suggestion.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

Supplemental material (including code examples and exercises) is available for
download at https://oreil.ly/pytorch-github.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require
permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming PyTorch for
Deep Learning by Ian Pointer (O’Reilly). Copyright 2019 Ian Pointer, 978-1-
492-04535-9.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.
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Chapter 1. Getting Started with
PyTorch

In this chapter we set up all we need for working with PyTorch. Once we’ve
done that, every chapter following will build on this initial foundation, so it’s
important that we get it right. This leads to our first fundamental question:
should you build a custom deep learning computer or just use one of the many
cloud-based resources available?

Building a Custom Deep Learning Machine

There is an urge when diving into deep learning to build yourself a monster for
all your compute needs. You can spend days looking over different types of
graphics cards, learning the memory lanes possible CPU selections will offer
you, the best sort of memory to buy, and just how big an SSD drive you can
purchase to make your disk access as fast as possible. I am not claiming any
immunity from this; I spent a month a couple of years ago making a list of parts
and building a new computer on my dining room table.

My advice, especially if you’re new to deep learning, is this: don’t do it. You can
easily spend several thousands of dollars on a machine that you may not use all
that much. Instead, I recommend that you work through this book by using cloud
resources (in either Amazon Web Services, Google Cloud, or Microsoft Azure)
and only then start thinking about building your own machine if you feel that
you require a single machine for 24/7 operation. You do not need to make a
massive investment in hardware to run any of the code in this book.

You might not ever need to build a custom machine for yourself. There’s
something of a sweet spot, where it can be cheaper to build a custom rig if you
know your calculations are always going to be restricted to a single machine
(with at most a handful of GPUs). However, if your compute starts to require
spanning multiple machines and GPUs, the cloud becomes appealing again.
Given the cost of putting a custom machine together, I’d think long and hard



before diving in.

If I haven’t managed to put you off from building your own, the following
sections provide suggestions for what you would need to do so.

GPU

The heart of every deep learning box, the GPU, is what is going to power the
majority of PyTorch’s calculations, and it’s likely going to be the most expensive
component in your machine. In recent years, the prices of GPUs have increased,
and the supplies have dwindled, because of their use in mining cryptocurrency
like Bitcoin. Thankfully, that bubble seems to be receding, and supplies of GPUs
are back to being a little more plentiful.

At the time of this writing, I recommend obtaining the NVIDIA GeForce RTX
2080 Ti. For a cheaper option, feel free to go for the 1080 Ti (though if you are
weighing the decision to get the 1080 Ti for budgetary reasons, I again suggest
that you look at cloud options instead). Although AMD-manufactured GPU
cards do exist, their support in PyTorch is currently not good enough to
recommend anything other than an NVIDIA card. But keep a lookout for their
ROCm technology, which should eventually make them a credible alternative in
the GPU space.

CPU/Motherboard

You’ll probably want to spring for a Z370 series motherboard. Many people will
tell you that the CPU doesn’t matter for deep learning and that you can get by
with a lower-speed CPU as long as you have a powerful GPU. In my experience,
you’ll be surprised at how often the CPU can become a bottleneck, especially
when working with augmented data.

RAM

More RAM is good, as it means you can keep more data inside without having to
hit the much slower disk storage (especially important during your training
stages). You should be looking at a minimum of 64GB DDR4 memory for your
machine.



Storage

Storage for a custom rig should be installed in two classes: first, an M2-interface
solid-state drive (SSD)—as big as you can afford—for your hot data to keep
access as fast as possible when you’re actively working on a project. For the
second class of storage, add in a 4TB Serial ATA (SATA) drive for data that
you’re not actively working on, and transfer to hot and cold storage as required.

I recommend that you take a look at PCPartPicker to glance at other people’s
deep learning machines (you can see all the weird and wild case ideas, too!).
You’ll get a feel for lists of machine parts and associated prices, which can
fluctuate wildly, especially for GPU cards.

Now that you’ve looked at your local, physical machine options, it’s time to
head to the clouds.

Deep Learning in the Cloud

OK, so why is the cloud option better, you might ask? Especially if you’ve
looked at the Amazon Web Services (AWS) pricing scheme and worked out that
building a deep learning machine will pay for itself within six months? Think
about it: if you’re just starting out, you are not going to be using that machine
24/7 for those six months. You’re just not. Which means that you can shut off
the cloud machine and pay pennies for the data being stored in the meantime.

And if you’re starting out, you don’t need to go all out and use one of NVIDIA’s
leviathan Tesla V100 cards attached to your cloud instance straightaway. You
can start out with one of the much cheaper (sometimes even free) K80-based
instances and move up to the more powerful card when you’re ready. That is a
trifle less expensive than buying a basic GPU card and upgrading to a 2080Ti on
your custom box. Plus if you want to add eight V100 cards to a single instance,
you can do it with just a few clicks. Try doing that with your own hardware.

The other issue is maintenance. If you get yourself into the good habit of re-
creating your cloud instances on a regular basis (ideally starting anew every time
you come back to work on your experiments), you’ll almost always have a
machine that is up to date. If you have your own machine, updating is up to you.
This is where I confess that I do have my own custom deep learning machine,
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and I ignored the Ubuntu installation on it for so long that it fell out of supported
updates, resulting in an eventual day spent trying to get the system back to a
place where it was receiving updates again. Embarrassing.

Anyway, you’ve made the decision to go to the cloud. Hurrah! Next: which
provider?

Google Colaboratory

But wait—before we look at providers, what if you don’t want to do any work at
all? None of that pesky building a machine or having to go through all the
trouble of setting up instances in the cloud? Where’s the really lazy option?
Google has the right thing for you. Colaboratory (or Colab) is a mostly free,
zero-installation-required custom Jupyter Notebook environment. You’ll need a
Google account to set up your own notebooks. Figure 1-1 shows a screenshot of
a notebook created in Colab.

What makes Colab a great way to dive into deep learning is that it includes
preinstalled versions of TensorFlow and PyTorch, so you don’t have to do any
setup beyond typing import torch, and every user can get free access to a
NVIDIA T4 GPU for up to 12 hours of continuous runtime. For free. To put that
in context, empirical research suggests that you get about half the speed of a
1080 Ti for training, but with an extra 5GB of memory so you can store larger
models. It also offers the ability to connect to more recent GPUs and Google’s
custom TPU hardware in a paid option, but you can pretty much do every
example in this book for nothing with Colab. For that reason, I recommend using
Colab alongside this book to begin with, and then you can decide to branch out
to dedicated cloud instances and/or your own personal deep learning server if
needed.


https://colab.research.google.com

Welcome To Colaboratory B S
File Edit View Insert Runtime Tools Help
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Table of contents Code snippets Files X « Get[ing Started

The document you are reading is a Jupyter notebook, hosted in Colaboratory. It is not a static page, but an

Introducing Colaboratory interactive environment that lets you write and execute code in Python and other languages.

Getting Started For example, here is a code cell with a short Python script that computes a value, stores it in a variable, and
prints the result:
More Resources

[ ] seconds_in_a _day = 24 * 60 * 60
Machine Learning Examples: Seedbank seconds_in_a_day

SECTION 86400

To execute the code in the above cell, select it with a click and then either press the [> button to the left of
the code, or use the keyboard shortcut "3 /Ctrl+Enter".

All cells modify the same global state, so variables that you define by executing a cell can be used in other
cells:

[ ] seconds_in_a_week = 7 * seconds_in_a_day
seconds_in_a_week

604800

For more information about working with Colaboratory notebooks, see Overview of Colaboratory.

More Resources

Learn how to make the most of Python, Jupyter, Colaboratory, and related tools with these resources:

Working with Notebooks in Colaboratory

« Overview of Colaboratory
¢ Guide to Markdown

Figure 1-1. Google Colab(oratory)

Colab is the zero-effort approach, but you may want to have a little more control
over how things are installed or get Secure Shell (SSH) access to your instance
on the cloud, so let’s have a look at what the main cloud providers offer.

Cloud Providers

Each of the big three cloud providers (Amazon Web Services, Google Cloud
Platform, and Microsoft’s Azure) offers GPU-based instances (also referred to as
virtual machines or VMs) and official images to deploy on those instances. They
have all you need to get up and running without having to install drivers and
Python libraries yourself. Let’s have a run-through of what each provider offers.

Amazon Web Services

AWS, the 800-pound gorilla of the cloud market, is more than happy to fulfill
your GPU needs and offers the P2 and P3 instance types to help you out. (The
G3 instance type tends to be used more in actual graphics-based applications like



video encoding, so we won’t cover it here.) The P2 instances use the older
NVIDIA K80 cards (a maximum of 16 can be connected to one instance), and
the P3 instances use the blazing-fast NVIDIA V100 cards (and you can strap
eight of those onto one instance if you dare).

If you’re going to use AWS, my recommendation for this book is to go with the
p2.xlarge class. This will cost you just 90 cents an hour at the time of this
writing and provides plenty of power for working through the examples. You
may want to bump up to the P3 classes when you start working on some meaty
Kaggle competitions.

Creating a running deep learning box on AWS is incredibly easy:
1. Sign into the AWS console.
Select EC2 and click Launch Instance.
Search for the Deep Learning AMI (Ubuntu) option and select it.

Choose p2.xlarge as your instance type.

ok

Launch the instance, either by creating a new key pair or reusing an
existing key pair.

6. Connect to the instance by using SSH and redirecting port 8888 on your
local machine to the instance:

ssh -L localhost:8888:1localhost:8888 \

-1 your .pem filename ubuntu@your instance DNS

7. Start Jupyter Notebook by entering jupyter notebook. Copy the URL
that gets generated and paste it into your browser to access Jupyter.

Remember to shut down your instance when you’re not using it! You can do this
by right-clicking the instance in the web interface and selecting the Shutdown
option. This will shut down the instance, and you won’t be charged for the
instance while it’s not running. However, you will be charged for the storage
space that you have allocated for it even if the instance is turned off, so be aware
of that. To delete the instance and storage entirely, select the Terminate option
instead.



Azure

Like AWS, Azure offers a mixture of cheaper K80-based instances and more
expensive Tesla V100 instances. Azure also offers instances based on the older
P100 hardware as a halfway point between the other two. Again, I recommend
the instance type that uses a single K80 (NC6) for this book, which also costs 90
cents per hour, and move onto other NC, NCv2 (P100), or NCv3 (V100) types as
you need them.

Here’s how you set up the VM in Azure:

1. Log in to the Azure portal and find the Data Science Virtual Machine
image in the Azure Marketplace.

2. Click the Get It Now button.

3. Fill in the details of the VM (give it a name, choose SSD disk over
HDD, an SSH username/password, the subscription you’ll be billing the
instance to, and set the location to be the nearest to you that offers the
NC instance type).

4. Click the Create option. The instance should be provisioned in about
five minutes.

5. You can use SSH with the username/password that you specified to that
instance’s public Domain Name System (DNS) name.

6. Jupyter Notebook should run when the instance is provisioned; navigate

to http://dns name of instance:8000 and use the username/password
combination that you used for SSH to log in.

Google Cloud Platform

In addition to offering K80, P100, and V100-backed instances like Amazon and
Azure, Google Cloud Platform (GCP) offers the aforementioned TPUs for those
who have tremendous data and compute requirements. You don’t need TPUs for
this book, and they are pricey, but they will work with PyTorch 1.0, so don’t
think that you have to use TensorFlow in order to take advantage of them if you
have a project that requires their use.

Getting started with Google Cloud is also pretty easy:



1. Search for Deep Learning VM on the GCP Marketplace.

Click Launch on Compute Engine.

Give the instance a name and assign it to the region closest to you.
Set the machine type to 8 vCPUs.

Set GPU to 1 K80.

Ensure that PyTorch 1.0 is selected in the Framework section.

N o Uk W N

Select the “Install NVIDIA GPU automatically on first startup?”
checkbox.

8. Set Boot disk to SSD Persistent Disk.

9. Click the Deploy option. The VM will take about 5 minutes to fully
deploy.

10. To connect to Jupyter on the instance, make sure you’re logged into the
correct project in gcloud and issue this command:

gcloud compute ssh _INSTANCE_NAME_ -- -L 8080:localhost:8080

The charges for Google Cloud should work out to about 70 cents an hour,
making it the cheapest of the three major cloud providers.

Which Cloud Provider Should | Use?

If you have nothing pulling you in any direction, I recommend Google Cloud
Platform (GCP); it’s the cheapest option, and you can scale all the way up to
using TPUs if required, with a lot more flexibility than either the AWS or Azure
offerings. But if you have resources on one of the other two platforms already,
you’ll be absolutely fine running in those environments.

Once you have your cloud instance running, you’ll be able to log in to its copy
of Jupyter Notebook, so let’s take a look at that next.

Using Jupyter Notebook



If you haven’t come across it before, here’s the lowdown on Jupyter Notebook:
this browser-based environment allows you to mix live code with text, images,
and visualizations and has become one of the de facto tools of data scientists all
over the world. Notebooks created in Jupyter can be easily shared; indeed, you’ll
find all the notebooks in this book. You can see a screenshot of Jupyter
Notebook in action in Figure 1-2.

We won’t be using any advanced features of Jupyter in this book; all you need to
know is how to create a new notebook and that Shift-Enter runs the contents of a
cell. But if you’ve never used it before, I suggest browsing the Jupyter
documentation before you get to Chapter 2.

— Jupyter Class Activation Mappings Last Checkpoint: 23/12/2017 (unsaved changes) [ Logout
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Class Activation Mappings

Have you ever wondered just how a neural network model like ResNet decides on its decision to determine that an image is a
cat or a flower in the field? Class Activation Mappings (CAM) can provide some insight into this process by overlaying a
heatmap over the original image to show us where our model thought most strongly that this cat was indeed a cat.

Firstly, we're going to need a picture of a cat. And thankfully, here's one | took earlier of a rather suspicious cat that is
wondering why the strange man is back in his house again.
In [1]: %matplotlib inline
from PIL import Image
from matplotlib.pyplot import imshow
from torchvision import models, transforms
from torch.autograd import Variable
from torch.nn import functional as F
from torch import topk

import numpy as np
import skimage.transform

In [2]: image = Image.open('casper2.jpg")
imshow(image)

Figure 1-2. Jupyter Notebook

Before we get into using PyTorch, we’ll cover one last thing: how to install
everything manually.

Installing PyTorch from Scratch

Perhaps you want a little more control over your software than using one of the
preceding cloud-provided images. Or you need a particular version of PyTorch
for your code. Or, despite all my cautionary warnings, you really want that rig in
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your basement. Let’s look at how to install PyTorch on a Linux server in general.

You can use PyTorch with Python 2.x, but I strongly recommend against doing so. While the
Python 2.x to 3.x upgrade saga has been running for over a decade now, more and more
packages are beginning to drop Python 2.x support. So unless you have a good reason, make
sure your system is running Python 3.

Download CUDA

Although PyTorch can be run entirely in CPU mode, in most cases, GPU-
powered PyTorch is required for practical usage, so we’re going to need GPU
support. This is fairly straightforward; assuming you have an NVIDIA card, this
is provided by their Compute Unified Device Architecture (CUDA) APIL.
Download the appropriate package format for your flavor of Linux and install
the package.

For Red Hat Enterprise Linux (RHEL) 7:

sudo rpm -1 cuda-repo-rhel7-10-0local-10.0.130-410.48-1.0-1.x86_64.rpm
sudo yum clean all
sudo yum install cuda

For Ubuntu 18.04:

sudo dpkg -1 cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb
sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub

sudo apt-get update

sudo apt-get install cuda

Anaconda

Python has a variety of packaging systems, all of which have good and not-so-
good points. Like the developers of PyTorch, I recommend that you install
Anaconda, a packaging system dedicated to producing the best distribution of
packages for data scientists. Like CUDA, it’s fairly easy to install.

Head to Anaconda and pick out the installation file for your machine. Because
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it’s a massive archive that executes via a shell script on your system, I encourage
you to run md5sum on the file you’ve downloaded and check it against the list of
signatures before you execute it with bash Anaconda3-VERSION-Linux-

x86_64.sh to make sure that the signature on your machine matches the one on
the web page. This ensures that the downloaded file hasn’t been tampered with
and means it’s safe to run on your system. The script will present several
prompts about locations it’ll be installing into; unless there’s a good reason, just
accept the defaults.

NOTE

You might be wondering, “Can I do this on my MacBook?” Sadly, most Macs come with
either Intel or AMD GPUs these days and don’t really have the support for running PyTorch in
GPU-accelerated mode. I recommend using Colab or a cloud provider rather than attempting to
use your Mac locally.

Finally, PyTorch! (and Jupyter Notebook)

Now that you have Anaconda installed, getting set up with PyTorch is simple:

conda install pytorch torchvision -c pytorch

This installs PyTorch and the torchvision library that we use in the next couple
of chapters to create deep learning architectures that work with images.
Anaconda has also installed Jupyter Notebook for us, so we can begin by starting
it:

jupyter notebook

Head to http://YOUR-IP-ADDRESS:8888 in your browser, create a new notebook,
and enter the following:

import
print(torch.cuda.is_available())
print(torch.rand(2,2))

This should produce output similar to this:
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True

0.6040 0.6647

0.9286 0.4210
[torch.FloatTensor of size 2x2]

If cuda.is_available() returns False, you need to debug your CUDA
installation so PyTorch can see your graphics card. The values of the tensor will
be different on your instance.

But what is this tensor? Tensors are at the heart of almost everything in PyTorch,
so you need to know what they are and what they can do for you.

Tensors

A tensor is both a container for numbers as well as a set of rules that define
transformations between tensors that produce new tensors. It’s probably easiest
for us to think about tensors as multidimensional arrays. Every tensor has a rank
that corresponds to its dimensional space. A simple scalar (e.g., 1) can be
represented as a tensor of rank 0, a vector is rank 1, an n X n matrix is rank 2,
and so on. In the previous example, we created a rank 2 tensor with random

values by using torch.rand(). We can also create them from lists:

x = torch.tensor([[0,0,1],[1,1,1],[0,0,0]])
X
>tensor([[0, 0, 1],

[1, 1J 1]J

[0, 0, 011

We can change an element in a tensor by using standard Python indexing:

x[0][0] = 5
>tensor([[5, 0, 1],
[1, 1, 17,

[0, 0, 611)

You can use special creation functions to generate particular types of tensors. In
particular, ones() and zeroes() will generate tensors filled with 1s and Os,
respectively:



torch.zeros(2,2)
> tensor([[0., 0.],
(0., 0.1D

You can perform standard mathematical operations with tensors (e.g., adding
two tensors together):

tensor.ones(1,2) + tensor.ones(1,2)
> tensor([[2., 2.]])

And if you have a tensor of rank 0, you can pull out the value with item():

torch.rand(1).item()
> 0.34106671810150146

Tensors can live in the CPU or on the GPU and can be copied between devices
by using the to() function:

cpu_tensor = tensor.rand(2)
cpu_tensor.device
> device(type='cpu')

gpu_tensor = cpu_tensor.to("cuda")
gpu_tensor.device
> device(type='cuda', index=0)

Tensor Operations

If you look at the PyTorch documentation, you’ll see that there are a lot of
functions that you can apply to tensors—everything from finding the maximum
element to applying a Fourier transform. In this book, you don’t need to know all
of those in order to turn images, text, and audio into tensors and manipulate them
to perform our operations, but you will need some. I definitely recommend that
you give the documentation a glance, especially after finishing this book. Now
we’re going to go through all the functions that will be used in upcoming
chapters.

First, we often need to find the maximum item in a tensor as well as the index
that contains the maximum value (as this often corresponds to the class that the
neural network has decided upon in its final prediction). These can be done with
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the max() and argmax() functions. We can also use item() to extract a standard
Python value from a 1D tensor.

torch.rand(2,2).max()

> tensor(0.4726)
torch.rand(2,2).max().item()
> 0.8649941086769104

Sometimes, we’d like to change the type of a tensor; for example, from a
LongTensor to a FloatTensor. We can do this with to():

long_tensor = torch.tensor([[0,0,1],[1,1,1],[0,0,0]1])
long_tensor.type()
> 'torch.LongTensor'

float_tensor = torch.tensor([[0,0,1],[1,1,1],[0,0,0]]).to(dtype=torch.float32)
float_tensor.type()
> 'torch.FloatTensor'

Most functions that operate on a tensor and return a tensor create a new tensor to
store the result. However, if you want to save memory, look to see if an in-place
function is defined, which should be the same name as the original function but
with an appended underscore (_).

random_tensor = torch.rand(2,2)

random_tensor.log2()

>tensor([[-1.9001, -1.5013],
[-1.8836, -0.5320]])

random_tensor.log2_()

> tensor([[-1.9001, -1.5013],
[-1.8836, -0.5320]])

Another common operation is reshaping a tensor. This can often occur because
your neural network layer may require a slightly different input shape than what
you currently have to feed into it. For example, the Modified National Institute
of Standards and Technology (MNIST) dataset of handwritten digits is a
collection of 28 x 28 images, but the way it’s packaged is in arrays of length
784. To use the networks we are constructing, we need to turn those back into 1
x 28 x 28 tensors (the leading 1 is the number of channels—normally red, green,
and blue—but as MNIST digits are just grayscale, we have only one channel).
We can do this with either view() or reshape():



flat_tensor = torch.rand(784)

viewed_tensor = flat_tensor.view(1,28,28)
viewed_tensor.shape

> torch.Size([1, 28, 28])

reshaped_tensor = flat_tensor.reshape(1,28,28)
reshaped_tensor.shape

> torch.Size([1, 28, 28])

Note that the reshaped tensor’s shape has to have the same number of total

elements as the original. If you try flat_tensor.reshape(3,28,28), you'll see
an error like this:

RuntimeError Traceback (most recent call last)
<ipython-input-26-774c70ba5c08> in <module>()
----> 1 flat_tensor.reshape(3,28,28)

RuntimeError: shape '[3, 28, 28]' is invalid for input of size 784

Now you might wonder what the difference is between view() and reshape().
The answer is that view() operates as a view on the original tensor, so if the
underlying data is changed, the view will change too (and vice versa). However,
view() can throw errors if the required view is not contiguous; that is, it doesn’t
share the same block of memory it would occupy if a new tensor of the required
shape was created from scratch. If this happens, you have to call

tensor.contiguous() before you can use view(). However, reshape() does
all that behind the scenes, so in general, I recommend using reshape() rather
than view().

Finally, you might need to rearrange the dimensions of a tensor. You will likely
come across this with images, which often are stored as [height, width,
channel] tensors, but PyTorch prefers to deal with these in a [channel,

height, width]. You can user permute() to deal with these in a fairly
straightforward manner:

hwc_tensor = torch.rand(640, 480, 3)
chw_tensor = hwc_tensor.permute(2,0,1)
chw_tensor.shape

> torch.Size([3, 640, 480])

Here, we’ve just applied permute to a [640,480,3] tensor, with the arguments



being the indexes of the tensor’s dimensions, so we want the final dimension (2,
due to zero indexing) to be at the front of our tensor, followed by the remaining
two dimensions in their original order.

Tensor Broadcasting

Borrowed from NumPy, broadcasting allows you to perform operations between
a tensor and a smaller tensor. You can broadcast across two tensors if, starting
backward from their trailing dimensions:

e The two dimensions are equal.
¢ One of the dimensions is 1.

In our use of broadcasting, it works because 1 has a dimension of 1, and as there
are no other dimensions, the 1 can be expanded to cover the other tensor. If we

tried to add a [2,2] tensor to a [3,3] tensor, we’d get this error message:

The size of tensor a (2) must match the size of
tensor b (3) at non-singleton dimension 1

But we could add a [1,3] tensor to the [3,3] tensor without any trouble.
Broadcasting is a handy little feature that increases brevity of code, and is often
faster than manually expanding the tensor yourself.

That wraps up everything concerning tensors that you need to get started! We’ll
cover a few other operations as we come across them later in the book, but this is
enough for you to dive into Chapter 2.

Conclusion

Whether it’s in the cloud or on your local machine, you should now have
PyTorch installed. I’ve introduced the fundamental building block of the library,
the tensor, and you’ve had a brief look at Jupyter Notebook. This is all you need
to get started! In the next chapter, you use everything you’ve seen so far to start
building neural networks and classifying images, so make you sure you’re
comfortable with tensors and Jupyter before moving on.



Further Reading

e Project Jupyter documentation

PyTorch documentation

AWS Deep Learning AMIs

Azure Data Science Virtual Machines

Google Deep Learning VM Image
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Chapter 2. Image Classification
with PyTorch

After you’ve set up PyTorch, deep learning textbooks normally throw a bunch of
jargon at you before doing anything interesting. I try to keep that to a minimum
and work through an example, albeit one that can easily be expanded as you get
more comfortable working with PyTorch. We use this example throughout the
book to demonstrate how to debug a model (Chapter 7) or deploy it to
production (Chapter 8).

What we’re going to construct from now until the end of Chapter 4 is an image
classifier. Neural networks are commonly used as image classifiers; the network
is given a picture and asked what is, to us, a simple question: “What is this?”

Let’s get started with building our PyTorch application.

Our Classification Problem

Here we build a simple classifier that can tell the difference between fish and
cats. We’ll be iterating over the design and how we build our model to make it
more and more accurate.

Figures 2-1 and 2-2 show a fish and a cat in all their glory. I'm not sure whether
the fish has a name, but the cat is called Helvetica.

Let’s begin with a discussion of the traditional challenges involved in
classification.



Figure 2-1. A fish!

Figure 2-2. Helvetica in a box

Traditional Challenges

How would you go about writing a program that could tell a fish from a cat?
Maybe you’d write a set of rules describing that a cat has a tail, or that a fish has
scales, and apply those rules to an image to determine what you’re looking at.



But that would take time, effort, and skill. Plus, what happens if you encounter
something like a Manx cat; while it is clearly a cat, it doesn’t have a tail.

You can see how these rules are just going get more and more complicated to
describe all possible scenarios. Also, I’ll admit that I’m absolutely terrible at
graphics programming, so the idea of having to manually code all these rules
fills me with dread.

What we’re after is a function that, given the input of an image, returns cat or
fish. That function is hard for us to construct by exhaustively listing all the
criteria. But deep learning essentially makes the computer do all the hard work
of constructing all those rules that we just talked about—provided we create a
structure, give the network lots of data, and give it a way to work out whether it
is getting the right answer. So that’s what we’re going to do. Along the way,
you’ll learn some key concepts of how to use PyTorch.

But First, Data

First, we need data. How much data? Well, that depends. The idea that for any
deep learning technique to work, you need vast quantities of data to train the
neural network is not necessarily true, as you’ll see in Chapter 4. However, right
now we’re going to be training from scratch, which often does require access to
a large quantity of data. We need a lot of pictures of fish and cats.

Now, we could spend some time downloading many images from something like
Google image search, but in this instance we have a shortcut: a standard
collection of images used to train neural networks, called ImageNet. It contains
more than 14 million images and 20,000 image categories. It’s the standard that
all image classifiers judge themselves against. So I take images from there,
though feel free to download other ones yourself if you prefer.

Along with the data, PyTorch needs a way to determine what is a cat and what is
a fish. That’s easy enough for us, but it’s somewhat harder for the computer
(which is why we are building the program in the first place!). We use a label
attached to the data, and training in this manner is called supervised learning.
(When you don’t have access to any labels, you have to use, perhaps
unsurprisingly, unsupervised learning methods for training.)

Now, if we’re using ImageNet data, its labels aren’t going to be all that useful,



because they contain too much information for us. A label of tabby cat or trout
is, to the computer, separate from cat or fish. We’ll need to relabel these.
Because ImageNet is such a vast collection of images, I have pulled together a
list of image URLSs and labels for both fish and cats.

You can run the download.py script in that directory, and it will download the
images from the URLs and place them in the appropriate locations for training.
The relabeling is simple; the script stores cat pictures in the directory train/cat
and fish pictures in train/fish. If you’d prefer to not use the script for
downloading, just create these directories and put the appropriate pictures in the
right locations. We now have our data, but we need to get it into a format that
PyTorch can understand.

PyTorch and Data Loaders

Loading and converting data into formats that are ready for training can often
end up being one of the areas in data science that sucks up far too much of our
time. PyTorch has developed standard conventions of interacting with data that
make it fairly consistent to work with, whether you’re working with images,
text, or audio.

The two main conventions of interacting with data are datasets and data loaders.
A dataset is a Python class that allows us to get at the data we’re supplying to
the neural network. A data loader is what feeds data from the dataset into the
network. (This can encompass information such as, How many worker processes
are feeding data into the network? or How many images are we passing in at
once?)

Let’s look at the dataset first. Every dataset, no matter whether it includes
images, audio, text, 3D landscapes, stock market information, or whatever, can
interact with PyTorch if it satisfies this abstract Python class:

class Dataset(object):
def __ getitem__(self, index):
raise NotImplementedError

def __len_ (self):
raise NotImplementedError
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This is fairly straightforward: we have to implement a method that returns the
size of our dataset (Llen), and implement a method that can retrieve an item from
our dataset in a (label, tensor) pair. This is called by the data loader as it is
pushing data into the neural network for training. So we have to write a body for
getitem that can take an image and transform it into a tensor and return that and
the label back so PyTorch can operate on it. This is fine, but you can imagine
that this scenario comes up a lot, so maybe PyTorch can make things easier for
us?

Building a Training Dataset

The torchvision package includes a class called ImageFolder that does pretty
much everything for us, providing our images are in a structure where each
directory is a label (e.g., all cats are in a directory called cat). For our cats and
fish example, here’s what you need:

import
from import transforms
train_data_path = "./train/"

transforms = transforms.Compose([
transforms.Resize(64),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225] )

D)

train_data = torchvision.datasets.ImageFolder
(root=train_data_path,transform=transforms)

A little bit more is going on here because torchvision also allows you to
specify a list of transforms that will be applied to an image before it gets fed into
the neural network. The default transform is to take image data and turn it into a
tensor (the transforms.ToTensor () method seen in the preceding code), but
we’re also doing a couple of other things that might not seem obvious.

Firstly, GPUs are built to be fast at performing calculations that are a standard
size. But we probably have an assortment of images at many resolutions. To
increase our processing performance, we scale every incoming image to the



same resolution of 64 x 64 via the Resize(64) transform. We then convert the
images to a tensor, and finally, we normalize the tensor around a specific set of
mean and standard deviation points.

Normalizing is important because a lot of multiplication will be happening as the
input passes through the layers of the neural network; keeping the incoming
values between 0 and 1 prevents the values from getting too large during the
training phase (known as the exploding gradient problem). And that magic
incarnation is just the mean and standard deviation of the ImageNet dataset as a
whole. You could calculate it specifically for this fish and cat subset, but these
values are decent enough. (If you were working on a completely different
dataset, you’d have to calculate that mean and deviation, although many people
just use these ImageNet constants and report acceptable results.)

The composable transforms also allow us to easily do things like image rotation
and skewing for data augmentation, which we’ll come back to in Chapter 4.

NOTE

We’re resizing the images to 64 x 64 in this example. I’ve made that arbitrary choice in order
to make the computation in our upcoming first network fast. Most existing architectures that
you’ll see in Chapter 3 use 224 x 224 or 299 x 299 for their image inputs. In general, the larger
the input size, the more data for the network to learn from. The flip side is that you can often
fit a smaller batch of images within the GPU’s memory.

We’re not quite done with datasets yet. But why do we need more than just a
training dataset?

Building Validation and Test Datasets

Our training data is set up, but we need to repeat the same steps for our
validation data. What’s the difference here? One danger of deep learning (and all
machine learning, in fact) is the concept of overfitting: your model gets really
good at recognizing what it has been trained on, but cannot generalize to
examples it hasn’t seen. So it sees a picture of a cat, and unless all other pictures
of cats resemble that picture very closely, the model doesn’t think it’s a cat,
despite it obviously being so. To prevent our network from doing this, we



download a validation set in download.py, which is a series of cat and fish
pictures that do not occur in the training set. At the end of each training cycle
(also known as an epoch), we compare against this set to make sure our network
isn’t getting things wrong. But don’t worry—the code for this is incredibly easy
because it’s just the earlier code with a few variable names changed:

val _data_path = "./val/"
val_data = torchvision.datasets.ImageFolder(root=val_data_path,
transform=transforms)

We just reused the transforms chain instead of having to define it once again.

In addition to a validation set, we should also create a test set. This is used to test
the model after all training has been completed:

test_data_path = "./test/"
test_data = torchvision.datasets.ImageFolder(root=test_data_path,
transform=transforms)

Distinguishing the types of sets can be a little confusing, so I’ve compiled a table
to indicate which set is used for which part of model training; see Table 2-1.

Table 2-1. Dataset types

Trainin . .
st € Used in the training pass to update the model

Validation Used to evaluate how the model is generalizing to the problem domain, rather than fitting
set to the training data; not used to update the model directly

A final dataset that provides a final evaluation of the model’s performance after training

Test set .
is complete

We can then build our data loaders with a few more lines of Python:

batch_size=64

train_data_loader = data.DatalLoader(train_data, batch_size=batch_size)
val _data_loader = data.Dataloader(val _data, batch_size=batch_size)
test_data_loader = data.DatalLoader(test_data, batch_size=batch_size)

The new thing to note from this code is batch_size. This tells us how many



images will go through the network before we train and update it. We could, in
theory, set the batch_s1ize to the number of images in the test and training sets
so the network sees every image before it updates. In practice, we tend not to do
this because smaller batches (more commonly known as mini-batches in the
literature) require less memory than having to store all the information about
every image in the dataset, and the smaller batch size ends up making training
faster as we’re updating our network much more quickly.

By default, PyTorch’s data loaders are set to a batch_size of 1. You will almost
certainly want to change that. Although I’ve chosen 64 here, you might want to
experiment to see how big of a minibatch you can use without exhausting your
GPU’s memory. You may also want to experiment with some of the additional
parameters: you can specify how datasets are sampled, whether the entire set is
shuffled on each run, and how many worker processes are used to pull data out
of the dataset. This can all be found in the PyTorch documentation.

That covers getting data into PyTorch, so let’s now introduce a simple neural
network to actually start classifying our images.

Finally, a Neural Network!

We’re going to start with the simplest deep learning network: an input layer,
which will work on the input tensors (our images); our output layer, which will
be the size of the number of our output classes (2); and a hidden layer between
them. In our first example, we’ll use fully connected layers. Figure 2-3 illustrates
what that looks like with an input layer of three nodes, a hidden layer of three
nodes, and our two-node output.
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Input —» Output

Figure 2-3. A simple neural network

As you can see, in this fully connected example, every node in a layer affects
every node in the next layer, and each connection has a weight that determines
the strength of the signal from that node going into the next layer. (It is these
weights that will be updated when we train the network, normally from a random
initialization.) As an input passes through the network, we (or PyTorch) can
simply do a matrix multiplication of the weights and biases of that layer onto the
input. Before feeding it into the next function, that result goes into an activation
function, which is simply a way of inserting nonlinearity into our system.

Activation Functions

Activation functions sound complicated, but the most common activation
function you’ll come across in the literature these days is ReLU, or rectified
linear unit. Which again sounds complicated! But all it turns out to be is a
function that implements max(0,x), so the result is O if the input is negative, or
just the input (x) if x is positive. Simple!

Another activation function you’ll likely come across is softmax, which is a little
more complicated mathematically. Basically it produces a set of values between
0 and 1 that adds up to 1 (probabilities!) and weights the values so it exaggerates
differences—that is, it produces one result in a vector higher than everything
else. You’ll often see it being used at the end of a classification network to
ensure that that network makes a definite prediction about what class it thinks



the input belongs to.

With all these building blocks in place, we can start to build our first neural
network.

Creating a Network

Creating a network in PyTorch is a very Pythonic affair. We inherit from a class

called torch.nn.Network and fill out the __init__ and forward methods:
class SimpleNet(nn.Module):

def __init__(self):
super(Net, self). _init_ ()

self.fcl = nn.Linear(12288, 84)
self.fc2 = nn.Linear(84, 50)
self.fc3 = nn.Linear(50,2)

def forward(self):
X = x.view(-1, 12288)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.softmax(self.fc3(x))
return x

simplenet = SimpleNet()

Again, this is not too complicated. We do any setup required in init(), in this
case calling our superclass constructor and the three fully connected layers
(called Linear in PyTorch, as opposed to Dense in Keras). The forward()
method describes how data flows through the network in both training and
making predictions (inference). First, we have to convert the 3D tensor (x and y
plus three-channel color information—red, green, blue) in an image, remember!
—into a 1D tensor so that it can be fed into the first Linear layer, and we do that
using the view(). From there, you can see that we apply the layers and the
activation functions in order, finally returning the softmax output to give us our
prediction for that image.

The numbers in the hidden layers are somewhat arbitrary, with the exception of
the output of the final layer, which is 2, matching up with our two classes of cat
or fish. In general, you want the data in your layers to be compressed as it goes



down the stack. If a layer is going to, say, 50 inputs to 100 outputs, then the
network might learn by simply passing the 50 connections to 50 of the 100
outputs and consider its job done. By reducing the size of the output with respect
to the input, we force that part of the network to learn a representation of the
original input with fewer resources, which hopefully means that it extracts some
features of the images that are important to the problem we’re trying to solve; for
example, learning to spot a fin or a tail.

We have a prediction, and we can compare that with the actual label of the
original image to see whether the prediction was correct. But we need some way
of allowing PyTorch to quantify not just whether a prediction is right or wrong,
but just how wrong or right it is. This is handled by a loss function.

Loss Functions

Loss functions are one of the key pieces of an effective deep learning solution.
PyTorch uses loss functions to determine how it will update the network to reach
the desired results.

Loss functions can be as complicated or as simple as you desire. PyTorch comes
complete with a comprehensive collection of them that will cover most of the
applications you’re likely to encounter, plus of course you can write your own if
you have a very custom domain. In our case, we’re going to use a built-in loss
function called CrossEntropyLoss, which is recommended for multiclass
categorization tasks like we’re doing here. Another loss function you’re likely to
come across is MSELoss, which is a standard mean squared loss that you might
use when making a numerical prediction.

One thing to be aware of with CrossEntropyLoss is that it also incorporates

softmax() as part of its operation, so our forward() method becomes the
following:

def forward(self):

# Convert to 1D vector
x.view(-1, 12288)
F.relu(self.fc1(x))
F.relu(self.fc2(x))
self.fc3(x)
return x

X X X X
nmn mnn



Now let’s look at how a neural network’s layers are updated during the training
loop.

Optimizing

Training a network involves passing data through the network, using the loss
function to determine the difference between the prediction and the actual label,
and then using that information to update the weights of the network in an

attempt to make the loss function return as small a loss as possible. To perform
the updates on the neural network, we use an optimizer.

If we just had one weight, we could plot a graph of the loss value against the
value of the weight, and it might look something like Figure 2-4.
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Figure 2-4. A 2D plot of loss

If we start at a random position, marked in Figure 2-4 by the X, with our weight
value on the x-axis and the loss function on the y-axis, we need to get to the

lowest point on the curve to find our optimal solution. We can move by altering
the value of the weight, which will give us a new value for the loss function. To
know how good a move we’re making, we can check against the gradient of the



curve. One common way to visualize the optimizer is like rolling a marble,
trying to find the lowest point (or minima) in a series of valleys. This is perhaps
clearer if we extend our view to two parameters, creating a 3D graph as shown in
Figure 2-5.
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Figure 2-5. A 3D plot of loss

And in this case, at every point, we can check the gradients of all the potential
moves and choose the one that moves us most down the hill.

You need to be aware of a couple of issues, though. The first is the danger of
getting trapped in local minima, areas that look like they’re the shallowest parts
of the loss curve if we check our gradients, but actually shallower areas exist
elsewhere. If we go back to our 1D curve in Figure 2-4, we can see that if we
end up in the minima on the left by taking short hops down, we’d never have any
reason to leave that position. And if we took giant hops, we might find ourselves
getting onto the path that leads to the actual lowest point, but because we keep
making jumps that are so big, we keep bouncing all over the place.

The size of our hops is known as the learning rate, and is often the key
parameter that needs to be tweaked in order to get your network learning
properly and efficiently. You’ll see a way of determining a good learning rate in
Chapter 4, but for now, you’ll be experimenting with different values: try
something like 0.001 to begin with. As just mentioned, large learning rates will



cause your network to bounce all over the place in training, and it will not
converge on a good set of weights.

As for the local minima problem, we make a slight alteration to our taking all the
possible gradients and indicate sample random gradients during a batch. Known
as stochastic gradient descent (SGD), this is the traditional approach to
optimizing neural networks and other machine learning techniques. But other
optimizers are available, and indeed for deep learning, preferable. PyTorch ships
with SGD and others such as AdaGrad and RMSProp, as well as Adam, the
optimizer we will be using for the majority of the book.

One of the key improvements that Adam makes (as does RMSProp and
AdaGrad) is that it uses a learning rate per parameter, and adapts that learning
rate depending on the rate of change of those parameters. It keeps an
exponentially decaying list of gradients and the square of those gradients and
uses those to scale the global learning rate that Adam is working with. Adam has
been empirically shown to outperform most other optimizers in deep learning
networks, but you can swap out Adam for SGD or RMSProp or another
optimizer to see if using a different technique yields faster and better training for
your particular application.

Creating an Adam-based optimizer is simple. We call optim.Adam() and pass in
the weights of the network that it will be updating (obtained via
simplenet.parameters()) and our example learning rate of 0.001:

import as
optimizer = optim.Adam(simplenet.parameters(), lr=0.001)

The optimizer is the last piece of the puzzle, so we can finally start training our
network.

Training

Here’s our complete training loop, which combines everything you’ve seen so
far to train the network. We’re going to write this as a function so parts such as
the loss function and optimizer can be passed in as parameters. It looks quite
generic at this point:



for epoch in range(epochs):

for batch in train_loader:
optimizer.zero_grad()
input, target = batch
output = model(input)
loss = loss_fn(output, target)
loss.backward()
optimizer.step()

It’s fairly straightforward, but you should note a few things. We take a batch
from our training set on every iteration of the loop, which is handled by our data
loader. We then run those through our model and compute the loss from the
expected output. To compute the gradients, we call the backward() method on
the model. The optimizer.step() method uses those gradients afterward to
perform the adjustment of the weights that we talked about in the previous
section.

What is that zero_grad() call doing, though? It turns out that the calculated
gradients accumulate by default, meaning that if we didn’t zero the gradients at
the end of the batch’s iteration, the next batch would have to deal with this
batch’s gradients as well as its own, and the batch after that would have to cope
with the previous two, and so on. This isn’t helpful, as we want to look at only
the gradients of the current batch for our optimization in each iteration. We use

zero_grad() to make sure they are reset to zero after we’re done with our loop.

That’s the abstracted version of the training loop, but we have to address a few
more things before we can write our complete function.

Making It Work on the GPU

If you’ve run any of the code so far, you might have noticed that it’s not all that
fast. What about that shiny GPU that’s sitting attached to our instance in the
cloud (or the very expensive machine we’ve put together on our desktop)?
PyTorch, by default, does CPU-based calculations. To take advantage of the
GPU, we need to move our input tensors and the model itself to the GPU by
explicitly using the to() method. Here’s an example that copies the SimpleNet
to the GPU:

if torch.cuda.is_available():



device = torch.device("cuda")
else
device = torch.device("cpu")

model. to(device)

Here, we copy the model to the GPU if PyTorch reports that one is available, or
otherwise keep the model on the CPU. By using this construction, we can
determine whether a GPU is available at the start of our code and use

tensor |model. to(device) throughout the rest of the program, being confident
that it will go to the correct place.

NOTE

In earlier versions of PyTorch, you would use the cuda() method to copy data to the GPU
instead. If you come across that method when looking at other people’s code, just be aware that

it’s doing the same thing as to()!

And that wraps up all the steps required for training. We’re almost done!

Putting It All Together

You’ve seen a lot of different pieces of code throughout this chapter, so let’s
consolidate it. We put it all together to create a generic training method that takes
in a model, as well as training and validation data, along with learning rate and
batch size options, and performs training on that model. We use this code
throughout the rest of the book:

def train(model, optimizer, loss_fn, train_loader, val_loader,
epochs=20, device="cpu"):
for epoch in range(epochs):
training_loss = 0.0
valid_loss = 0.0
model.train()
for batch in train_loader:
optimizer.zero_grad()
inputs, target = batch
inputs = inputs.to(device)
target = targets.to(device)



output = model(inputs)

loss = loss_fn(output, target)

loss.backward()

optimizer.step()

training_loss += loss.data.item()
training_loss /= len(train_iterator)

model.eval()
num_correct = 0
num_examples = 0
for batch in val_loader:
inputs, targets = batch
inputs = inputs.to(device)
output = model(inputs)
targets = targets.to(device)
loss = loss_fn(output,targets)
valid_loss += loss.data.item()
correct = torch.eq(torch.max(F.softmax(output), dim=1)[1],
target).view(-1)
num_correct += torch.sum(correct).item()
num_examples += correct.shape[0]
valid_loss /= len(valid_iterator)

print('Epoch: {}, Training Loss: {:.2f},
Validation Loss: {:.2f},

accuracy = {:.2f}'.format(epoch, training_loss,
valid_loss, num_correct / num_examples))

That’s our training function, and we can kick off training by calling it with the
required parameters:

train(simplenet, optimizer, torch.nn.CrossEntropyLoss(),
train_data_loader, test data_loader,device)

The network will train for 20 epochs (you can adjust this by passing in a value

for epoch to train()), and you should get a printout of the model’s accuracy on
the validation set at the end of each epoch.

You have trained your first neural network—congratulations! You can now use it
to make predictions, so let’s look at how to do that.

Making Predictions

Way back at the start of the chapter, I said we would make a neural network that



could classify whether an image is a cat or a fish. We’ve now trained one to do
just that, but how do we use it to generate a prediction for a single image? Here’s
a quick bit of Python code that will load an image from the filesystem and print
out whether our network says cat or fish:

from import Image

labels = ['cat','fish']

img = Image.open(FILENAME)
img = transforms(img)
img = img.unsqueeze(0)

prediction = simplenet(img)
prediction = prediction.argmax()
print(labels[prediction])

Most of this code is straightforward; we reuse the transform pipeline we made
earlier to convert the image into the correct form for our neural network.
However, because our network uses batches, it actually expects a 4D tensor, with
the first dimension denoting the different images within a batch. We don’t have a
batch, but we can create a batch of length 1 by using unsqueeze(0), which adds
a new dimension at the front of our tensor.

Getting predictions is as simple as passing our batch into the model. We then
have to find out the class with the higher probability. In this case, we could
simply convert the tensor to an array and compare the two elements, but there
are often many more than that. Helpfully, PyTorch provides the argmax()
function, which returns the index of the highest value of the tensor. We then use
that to index into our labels array and print out our prediction. As an exercise,
use the preceding code as a basis to work out predictions on the test set that we
created at the start of the chapter. You don’t need to use unsqueeze() because
you get batches from the test_data_loader.

That’s about all you need to know about making predictions for now; we return
to this in Chapter 8 when we harden things for production usage.

In addition to making predictions, we probably would like to be able to reload
the model at any point in the future with our trained parameters, so let’s take a
look at how that’s done with PyTorch.



Model Saving

If you’re happy with the performance of a model or need to stop for any reason,
you can save the current state of a model in Python’s pickle format by using the

torch.save() method. Conversely, you can load a previously saved iteration of
a model by using the torch.load() method.

Saving our current parameters and model structure would therefore work like
this:

torch.save(simplenet, "/tmp/simplenet")
And we can reload as follows:
simplenet = torch.load("/tmp/simplenet")

This stores both the parameters and the structure of the model to a file. This
might be a problem if you change the structure of the model at a later point. For

this reason, it’s more common to save a model’s state _dict instead. This is a
standard Python dict that contains the maps of each layer’s parameters in the
model. Saving the state_dict looks like this:

torch.save(model.state_dict(), PATH)

To restore, create an instance of the model first and then use load_state dict.
For SimpleNet:

simplenet = SimpleNet()
simplenet_state dict = torch.load("/tmp/simplenet")
simplenet.load _state dict(simplenet_state_dict)

The benefit here is that if you extend the model in some fashion, you can supply
a strict=False parameter to load_state_dict that assigns parameters to
layers in the model that do exist in the state_dict, but does not fail if the
loaded state_dict has layers missing or added from the model’s current

structure. Because it’s just a normal Python dict, you can change the key names
to fit your model, which can be handy if you are pulling in parameters from a



completely different model altogether.

Models can be saved to a disk during a training run and reloaded at another point
so that training can continue where you left off. That is quite useful when using
something like Google Colab, which lets you have continuous access to a GPU
for only around 12 hours. By keeping track of time, you can save the model
before the cutoff and continue training in a new 12-hour session.

Conclusion

You’ve taken a whirlwind tour through the basics of neural networks and learned
how, using PyTorch, you can train them with a dataset, make predictions on
other images, and save/restore models to and from disk.

Before you read the next chapter, experiment with the SimpleNet architecture
we created here. Adjust the number of parameters in the Linear layers, and
maybe add another layer or two. Have a look at the various activation functions
available in PyTorch and swap out ReLU for something else. See what happens to
training if you adjust the learning rate or switch out the optimizer from Adam to
another option (perhaps try vanilla SGD). Maybe alter the batch size and the
initial size of the image as it gets turned into a 1D tensor at the start of the
forward pass. A lot of deep learning work is still in the phase of artisanal
construction; learning rates are tinkered with by hand until a network is trained
appropriately, so it’s good to get a handle on how all the moving parts interact.

You might be a little disappointed with the accuracy of the SimpleNet
architecture, but don’t worry! Chapter 3 provides some definite improvements as
we introduce the convolutional neural network in place of the very simple
network we’ve been using so far.

Further Reading

¢ PyTorch documentation

e “Adam: A Method for Stochastic Optimization” by Diederik P. Kingma
and Jimmy Ba (2014)


https://oreil.ly/x6pO7
https://arxiv.org/abs/1412.6980

e “An Overview of Gradient Descent Optimization Algorithms” by
Sebstian Ruder (2016)


https://arxiv.org/abs/1609.04747

Chapter 3. Convolutional Neural
Networks

After experimenting with the fully connected neural networks in Chapter 2, you
probably noticed a few things. If you attempted to add more layers or vastly
increase the number of parameters, you almost certainly ran out of memory on
your GPU. In addition, it took a while to train to anything resembling somewhat
decent accuracy, and even that wasn’t much to shout about, especially
considering the hype surrounding deep learning. What’s going on?

It’s true that a fully connected or (feed-forward) network can function as a
universal approximator, but the theory doesn’t say how long it’ll take you to
train it to become that approximation to the function you’re really after. But we
can do better, especially with images. In this chapter, you’ll learn about
convolutional neural networks (CNNs) and how they form the backbone of the
most accurate image classifiers around today (we take a look at a couple of them
in some detail along the way). We build up a new convolutional-based
architecture for our fish versus cat application and show that it is quicker to train
and more accurate than what we were doing in the previous chapter. Let’s get
started!

Our First Convolutional Model

This time around, I’m going to share the final model architecture first, and then
discuss all the new pieces. And as I mentioned in Chapter 2, the training method
we created is independent of the model, so you can go ahead and test this model
out first and then come back for the explanation!

class CNNNet(nn.Module):

def __init__(self, num_classes=2):

super (CNNNet, self)._ init__ ()

self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),



nn.RelLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.RelLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.RelLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.RelLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.RelLU(),
nn.Dropout(),
nn.Linear (4096, 4096),
nn.RelLU(),
nn.Linear (4096, num_classes)

)

def forward(self, x):

x = self.features(x)
self.avgpool(x)
torch.flatten(x, 1)
x = self.classifier(x)
return x

xX X
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The first thing to notice is the use of nn.Sequential(). This allows us to create
a chain of layers. When we use one of these chains in forward(), the input goes
through each element of the array of layers in succession. You can use this to
break your model into more logical arrangements. In this network, we have two
chains: the features block and the classifier. Let’s take a look at the new
layers we’re introducing, starting with Conv2d.

Convolutions

The Conv2d layer is a 2D convolution. If we have a grayscale image, it consists
of an array, x pixels wide and y pixels high, with each entry having a value that
indicates whether it’s black or white or somewhere in between (we assume an 8-
bit image, so each value can vary from 0 to 255). For this example we look at a



small, square image that’s 4 pixels high and wide:

‘10 11 9 3]
2 123 4 0
45 237 23 99
|20 67 22 255

Next we introduce something called a filter, or convolutional kernel. This is
another matrix, most likely smaller, which we will drag across our image. Here’s

our 2 x 2 filter:
! ]
1 O

To produce our output, we take the smaller filter and pass it over the original
input, like a magnifying glass over a piece of paper. Starting from the top left,
our first calculation is as follows:

10 11 10

2 123 10
And all we do is multiply each element in the matrix by its corresponding
member in the other matrix and sum the result: (10 x 1) + (11 x0) + (2 x 1) +
(123 x 0) = 12. Having done that, we move the filter across and begin again. But

how much should we move the filter? In this case, we move the filter across by
2, meaning that our second calculation is:

9 3|1 0

4 0J11 0
This gives us an output of 13. We now move our filter down and back to the left
and repeat the process, giving us this final result (or feature map):

!12 13]
65 45



In Figure 3-1, you can see how this works graphically, with a 3 x 3 kernel being
dragged across a 4 x 4 tensor and producing a 2 x 2 output (though each
segment is based on nine elements instead of the four in our first example).

.

Figure 3-1. How a 3 x 3 kernel operates across a 4 x 4 input

A convolutional layer will have many of these filters, the values of which are
filled in by the training of the network, and all the filters in the layer share the
same bias values. Let’s go back to how we’re invoking the Conv2d layer and see
some of the other options that we can set:

nn.Conv2d(in_channels,out_channels, kernel_size, stride, padding)

The in_channels is the number of input channels we’ll be receiving in the
layer. At the beginning of the network, we’re taking in the RGB image as input,
so the number of input channels is three. out_channels is, unsurprisingly, the
number of output channels, which corresponds to the number of filters in our
conv layer. Next is kernel_size, which describes the height and width of our
filter.! This can be a single scalar specifying a square (e.g., in the first conv
layer, we’re setting up an 11 x 11 filter), or you can use a tuple (such as (3,5) for
a 3 x 5 filter).

The next two parameters seem harmless enough, but they can have big effects on
the downstream layers of your network, and even what that particular layer ends

up looking at. stride indicates how many steps across the input we move when



we adjust the filter to a new position. In our example, we end up with a stride of
2, which has the effect of making a feature map that is half the size of the input.
But we could have also moved with a stride of 1, which would give us a feature
map output of 4 x 4, the same size of the input. We can also pass in a tuple (a,b)
that would allow us to move a across and b down on each step. Now, you might
be wondering, what happens when it gets to the end? Let’s take a look. If we
drag our filter along with a stride of 1, we eventually get to this point:

3 ?
0 ?
We don’t have enough elements in our input to do a full convolution. So what

happens? This is where the padding parameter comes in. If we give a padding
value of 1, our input looks a bit like this:

o 0 0 0 0 O
010 11 9 3 O
0 2 123 4 0 O
0 45 237 23 99 O
0 20 67 22 255 O
0o 0 0 0 0 O

Now when we get to the edge, our values covered by the filter are as follows:

3 0

00
If you don’t set padding, any edge cases that PyTorch encounters in the last
columns of the input are simply thrown away. It’s up to you to set padding

appropriately. Just as with stride and kernel_size, you can also pass in a

tuple for height x weight padding instead of a single number that pads the
same in both directions.

That’s what the Conv2d layers are doing in our model. But what about those
MaxPool2d layers?



Pooling

In conjunction with the convolution layers, you will often see pooling layers.
These layers reduce the resolution of the network from the previous input layer,
which gives us fewer parameters in lower layers. This compression results in
faster computation for a start, and it helps prevent overfitting in the network.

In our model, we’re using MaxPool2d with a kernel size of 3 and a stride of 2.
Let’s have a look at how that works with an example. Here’s a 5 x 3 input:

12141
5 6 1 2 5
5 009 6

Using the kernel size of 3 x 3 and a stride of 2, we get two 3 % 3 tensors from the
pooling:

© N B O O N

In MaxPool we take the maximum value from each of these tensors, giving us an
output tensor of [6,9]. Just as in the convolutional layers, there’s a padding
option to MaxPool that creates a border of zero values around the tensor in case
the stride goes outside the tensor window.

As you can imagine, you can pool with other functions aside from taking the
maximum value from a kernel. A popular alternative is to take the average of the
tensor values, which allows all of the tensor data to contribute to the pool instead
of just one value in the max case (and if you think about an image, you can
imagine that you might want to consider the nearest neighbors of a pixel). Also,
PyTorch provides AdaptiveMaxPool and AdaptiveAvgPool layers, which work



independently of the incoming input tensor’s dimensions (we have an
AdaptiveAvgPool in our model, for example). I recommend using these in
model architectures that you construct over the standard MaxPool or AvgPool
layers, because they allow you to create architectures that can work with
different input dimensions; this is handy when working with disparate datasets.

We have one more new component to talk about, one that is incredibly simple
yet important for training.

Dropout

One recurring issue with neural networks is their tendency to overfit to training
data, and a large amount of ongoing work is done in the deep learning world to
identify approaches that allow networks to learn and generalize to nontraining
data without simply learning how to just respond to the training inputs. The
Dropout layer is a devilishly simple way of doing this that has the benefit of
being easy to understand and effective: what if we just don’t train a random
bunch of nodes within the network during a training cycle? Because they won’t
be updated, they won’t have the chance to overfit to the input data, and because
it’s random, each training cycle will ignore a different selection of the input,
which should help generalization even further.

By default, the Dropout layers in our example CNN network are initialized with
0.5, meaning that 50% of the input tensor is randomly zeroed out. If you want to
change that to 20%, add the p parameter to the initialization call:
Dropout(p=0.2).

NOTE

Dropout should take place only during training. If it was happening during inference time,
you’d lose a chunk of your network’s reasoning power, which is not what we want!
Thankfully, PyTorch’s implementation of Dropout works out which mode you’re running in
and passes all the data through the Dropout layer at inference time.

Having looked at our little CNN model and examined the layer types in depth,
let’s take a look at other models that have been made in the past ten years.



History of CNN Architectures

Although CNN models have been around for decades (LeNet-5 was used for
digit recognition on check in the late 1990s, for example), it wasn’t until GPUs
became widely available that deep CNN networks became practical. Even then,
it has been only seven years since deep learning networks started to overwhelm
all other existing approaches in image classification. In this section, we take a
little journey back through the last few years to talk about some milestones in
CNN-based learning and investigate some new techniques along the way.

AlexNet

AlexNet was, in many ways, the architecture that changed everything. It was
released in 2012 and destroyed all other entries in that year’s ImageNet
competition with a top-5 error rate of 15.3% (the second place entry had a top-5
error of 26.2%, just to give you an idea of how much better it was than other
state-of-the-art methods). AlexNet was one of the first architectures to introduce
the concepts of MaxPool and Dropout, and even popularize the then less-well-
known ReLU activation function. It was one of the first architectures to
demonstrate that many layers were possible and efficient to train on a GPU.
Although it’s not state of the art anymore, it remains an important milestone in
deep learning history.

What does the AlexNet architecture look like? Aha, well, it’s time to let you in
on a little secret. The network we’ve been using in this chapter so far? It’s
AlexNet. Surprise! That’s why we used the standard MaxPool2d instead of
AdaptiveMaxPool2d, to match the original AlexNet definition.

Inception/GoogLeNet

Let’s skip ahead to the winner of the 2014 ImageNet competition. The
GoogLeNet architecture introduced the Inception module that addressed some of
the deficiencies of AlexNet. In that network, the kernels of the convolutional
layers are fixed at a certain resolution. We might expect that an image will have
details that are important at both the macro- and microscale. It may be easier to
determine whether an object is a car with a large kernel, but to determine
whether it’s an SUV or a hatchback may require a smaller kernel. And to



determine the model, we might need an even smaller kernel to make out details
such as logos and insignias.

The Inception network instead runs a series of convolutions of different sizes all
on the same input, and concatenates all of the filters together to pass on to the
next layer. Before it does any of those, though, it does a 1 x 1 convolution as a
bottleneck that compresses the input tensor, meaning that the 3 x 3and 5 x 5
kernels operate on a fewer number of filters than they would if the 1 x 1
convolution wasn’t present. You can see an Inception module illustrated in
Figure 3-2.

Concatenation

3*3 Conv 5*5 Conv 1*1 Conv
1*1 Conv f T T
1*1 Conv 1*1 Conv 3 * 3 Maxpool
Previous
Layer

Figure 3-2. An Inception module

The original GoogLeNet architecture uses nine of these modules stacked on top
of each other, forming a deep network. Despite the depth, it uses fewer
parameters overall than AlexNet while delivering a human-like performance of
an 6.67% top->5 error rate.

VGG

The second-place entry in 2014’°s ImageNet was from the University of Oxford



—the Visual Geometry Group (VGG) network. In contrast to Googl.eNet, VGG
is a simpler stack of convolutional layers. Coming in various configurations of
longer stacks of convolutional filters combined with two large hidden linear
layers before the final classification layer, it shows off the power of simple deep
architectures (scoring an 8.8% top-5 error in its VGG-16 configuration).

Figure 3-3 shows the layers of the VGG-16 from end to end.

The downside of the VGG approach is that the final fully connected layers make
the network balloon to a large size, weighing in at 138 million parameters in
comparison with GoogLeNet’s 7 million. Having said that, the VGG network is
still quite popular in the deep learning world despite its huge size, as it’s easy to
reason about because of its simpler construction and the early availability of
trained weights. You’ll often see it used in style transfer applications (e.g.,
turning a photo into a Van Gogh painting) as its combination of convolutional
filters do appear to capture that sort of information in a way that’s easier to
observe than the more complex networks.
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Figure 3-3. VGG-16

ResNet

A year later, Microsoft’s ResNet architecture won the ImageNet 2015
competition with a top-5 score of 4.49% in its ResNet-152 variant and 3.57% in
an ensemble model (essentially beyond human ability at this point). The
innovation that ResNet brought was an improvement on the Inception-style
stacking bundle of layers approach, wherein each bundle performed the usual
CNN operations but also added the incoming input to the output of the block, as
shown in Figure 3-4.

The advantage of this set up is that each block passes through the original input
to the next layer, allowing the “signal” of the training data to traverse through
deeper networks than possible in either VGG or Inception. (This loss of weight
changes in deep networks is known as a vanishing gradient because of the
gradient changes in backpropagation tending to zero during the training process.)

conv3-64

conv3-64

Figure 3-4. A ResNet block



Other Architectures Are Available!

Since 2015 or so, plenty of other architectures have incrementally improved the
accuracy on ImageNet, such as DenseNet (an extension of the ResNet idea that
allows for the construction of 1,000-layer monster architectures), but also a lot of
work has gone into creating architectures such as SqueezeNet and MobileNet,
which offer reasonable accuracy but are tiny compared to architectures such as
VGG, ResNet, or Inception.

Another big area of research is getting neural networks to start designing neural
networks themselves. The most successful attempt so far is, of course, from
Google, whose AutoML system generated an architecture called NASNet that has
a top-5 error rate of 3.8% on ImageNet, which is state of the art as I type this at
the start of 2019 (along with another autogenerated architecture from Google
called PNAS). In fact, the organizers of the ImageNet competition have decided
to call a halt to further competitions in this space because the architectures have
already gone beyond human levels of ability.

That brings us to the state of the art as of the time this book goes to press, so let’s
take a look at how we can use these models instead of defining our own.

Using Pretrained Models in PyTorch

Obviously, having to define a model each time you want to use one would be a
chore, especially once you move away from AlexNet, so PyTorch provides many
of the most popular models by default in the torchvision library. For AlexNet,
all you need to do is this:

import as
alexnet = models.alexnet(num_classes=2)

Definitions for VGG, ResNet, Inception, DenseNet, and SqueezeNet variants are
also available. That gives you the model definition, but you can also go a step
further and call models.alexnet(pretrained=True) to download a pretrained
set of weights for AlexNet, allowing you to use it immediately for classification
with no extra training. (But as you’ll see in the next chapter, you will likely want
to do some additional training to improve the accuracy on your particular



dataset.)

Having said that, there is something to be said for building the models yourself
at least once to get a feel for how they fit together. It’s a good way to get some
practice building model architectures within PyTorch, and of course you can
compare with the provided models to make sure that what you come up with
matches the actual definition. But how do you find out what that structure is?

Examining a Model’s Structure

If you’re curious about how one of these models is constructed, there’s an easy
way to get PyTorch to help you out. As an example, here’s a look at the entire
ResNet-18 architecture, which we get by simply calling the following:

print(model)

ResNet(
(convl): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1,
dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): BasicBlock(
(convl): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
)
(1): BasicBlock(
(convl): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1le-05, momentum=0.1, affine=True,



track_running_stats=True)
)
)
(layer2): Sequential(
(0): BasicBlock(
(convl): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1le-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1le-05, momentum=0.1, affine=True,
track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2),
bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
)
)
(1): BasicBlock(
(convl): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
)
)
(layer3): Sequential(
(0): BasicBlock(
(convl): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(128, 256, kernel _size=(1, 1), stride=(2, 2),
bias=False)
(1): BatchNorm2d(256, eps=1le-05, momentum=0.1, affine=True,
track_running_stats=True)



)
)
(1): BasicBlock(
(convl): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1le-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
)
)
(layer4): Sequential(
(0): BasicBlock(
(convl): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2),
padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1le-05, momentum=0.1, affine=True,
track_running_stats=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2),
bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
)
)
(1): BasicBlock(
(convl): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1le-05, momentum=0.1, affine=True,
track_running_stats=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=512, out_features=1000, bias=True)

)

There’s almost nothing here you haven’t already seen in this chapter, with the



exception of BatchNorm2d. Let’s have a look at what that does in one of those
layers.

BatchNorm

BatchNorm, short for batch normalization, is a simple layer that has one task in
life: using two learned parameters (meaning that it will be trained along with the
rest of the network) to try to ensure that each minibatch that goes through the
network has a mean centered around zero with a variance of 1. You might ask
why we need to do this when we’ve already normalized our input by using the
transform chain in Chapter 2. For smaller networks, BatchNorm is indeed less
useful, but as they get larger, the effect of any layer on another, say 20 layers
down, can be vast because of repeated multiplication, and you may end up with
either vanishing or exploding gradients, both of which are fatal to the training
process. The BatchNorm layers make sure that even if you use a model such as
ResNet-152, the multiplications inside your network don’t get out of hand.

You might be wondering: if we have BatchNorm in our network, why are we
normalizing the input at all in the training loop’s transformation chain? After all,
shouldn’t BatchNorm do the work for us? And the answer here is yes, you could
do that! But it’ll take longer for the network to learn how to get the inputs under
control, as they’ll have to discover the initial transform themselves, which will
make training longer.

I recommend that you instantiate all of the architectures we’ve talked about so
far and use print(model) to see which layers they use and in what order
operations happen. After that, there’s another key question: which of these
architectures should I use?

Which Model Should You Use?

The unhelpful answer is, whichever one works best for you, naturally! But let’s
dig in a little. First, although I suggest that you try the NASNet and PNAS
architectures at the moment, I wouldn’t wholeheartedly recommend them,
despite their impressive results on ImageNet. They can be surprisingly memory-
hungry in operation, and the transfer learning technique, which you learn about
in Chapter 4, is not quite as effective compared to the human-built architectures



including ResNet.

I suggest that you have a look around the image-based competitions on Kaggle, a
website that runs hundreds of data science competitions, and see what the
winning entries are using. More than likely you’ll end up seeing a bunch of
ResNet-based ensembles. Personally, I like and use the ResNet architectures
over and above any of the others listed here, first because they offer good
accuracy, and second because it’s easy to start out experimenting with a ResNet-
34 model for fast iteration and then move to larger ResNets (and more
realistically, an ensemble of different ResNet architectures, just as Microsoft
used in their ImageNet win in 2015) once I feel I have something promising.

Before we end the chapter, I have some breaking news concerning downloading
pretrained models.

One-Stop Shopping for Models: PyTorch Hub

A recent announcement in the PyTorch world provides an additional route to get
models: PyTorch Hub. This is supposed to become a central location for
obtaining any published model in the future, whether it’s for operating on
images, text, audio, video, or any other type of data. To obtain a model in this
fashion, you use the torch.hub module:

model = torch.hub.load('pytorch/vision', 'resnet50', pretrained=True)

The first parameter points to a GitHub owner and repository (with an optional
tag/branch identifier in the string as well); the second is the model requested (in
this case, resnet50); and finally, the third indicates whether to download

pretrained weights. You can also use torch.hub.list('pytorch/vision') to
discover all the models inside that repository that are available to download.

PyTorch Hub is brand new as of mid-2019, so there aren’t a huge number of
models available as I write this, but I expect it to become a popular way to
distribute and download models by the end of the year. All the models in this

chapter can be loaded through the pytorch/vision repo in PytorchHub, so feel
free to use this loading process instead of torchvision.models.


https://www.kaggle.com

Conclusion

In this chapter, you’ve taken a quick walk-through of how CNN-based neural
networks work, including features such as Dropout, MaxPool, and BatchNorm.
You’ve also looked at the most popular architectures used in industry today.
Before moving on to the next chapter, play with the architectures we’ve been
talking about and see how they compare. (Don’t forget, you don’t need to train
them! Just download the weights and test the model.)

We’re going to close out our look at computer vision by using these pretrained
models as a starting point for a custom solution for our cats versus fish problem
that uses transfer learning.

Further Reading

e AlexNet: “ImageNet Classification with Deep Convolutional Neural
Networks” by Alex Krizhevsky et al. (2012)

e VGG: “Very Deep Convolutional Networks for Large-Scale Image
Recognition” by Karen Simonyan and Andrew Zisserman (2014)

e Inception: “Going Deeper with Convolutions” by Christian Szegedy et
al. (2014)

e ResNet: “Deep Residual Learning for Image Recognition” by Kaiming
He et al. (2015)

e NASNet: “Learning Transferable Architectures for Scalable Image
Recognition” by Barret Zoph et al. (2017)

1 Kernel and filter tend to be used interchangeably in the literature. If you have experience in graphics
processing, kernel is probably more familiar to you, but I prefer filter.


https://oreil.ly/CsoFv
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1707.07012

Chapter 4. Transfer Learning and
Other Tricks

Having looked over the architectures in the previous chapter, you might wonder
whether you could download an already trained model and train it even further.
And the answer is yes! It’s an incredibly powerful technique in deep learning
circles called transfer learning, whereby a network trained for one task (e.g.,
ImageNet) is adapted to another (fish versus cats).

Why would you do this? It turns out that an architecture trained on ImageNet
already knows an awful lot about images, and in particular, quite a bit about
whether something is a cat or a fish (or a dog or a whale). Because you’re no
longer starting from an essentially blank neural network, with transfer learning
you’re likely to spend much less time in training, and you can get away with a
vastly smaller training dataset. Traditional deep learning approaches take huge
amounts of data to generate good results. With transfer learning, you can build
human-level classifiers with a few hundred images.

Transfer Learning with ResNet

Now, the obvious thing to do is to create a ResNet model as we did in Chapter 3
and just slot it into our existing training loop. And you can do that! There’s
nothing magical in the ResNet model; it’s built up from the same building blocks
that you’ve already seen. However, it’s a big model, and although you will see
some improvement over a baseline ResNet with your data, you will need a lot of
data to make sure that the training signal gets to all parts of the architecture and
trains them significantly toward your new classification task. We’re trying to
avoid using a lot of data in this approach.

Here’s the thing, though: we’re not dealing with an architecture that has been
initialized with random parameters, as we have done in the past. Our pretrained
ResNet model already has a bunch of information encoded into it for image
recognition and classification needs, so why bother attempting to retrain it?



Instead, we fine-tune the network. We alter the architecture slightly to include a
new network block at the end, replacing the standard 1,000-category linear
layers that normally perform ImageNet classification. We then freeze all the
existing ResNet layers, and when we train, we update only the parameters in our
new layers, but still take the activations from our frozen layers. This allows us to
quickly train our new layers while preserving the information that the pretrained
layers already contain.

First, let’s create a pretrained ResNet-50 model:

from import models
transfer_model = models.ResNet50(pretrained=True)

Next, we need to freeze the layers. The way we do this is simple: we stop them
from accumulating gradients by using requires_grad(). We need to do this for
every parameter in the network, but helpfully, PyTorch provides a
parameters() method that makes this rather easy:

for name, param in transfer_model.named_parameters():
param.requires_grad = False

TIP

You might not want to freeze the BatchNorm layers in a model, as they will be trained to
approximate the mean and standard deviation of the dataset that the model was originally
trained on, not the dataset that you want to fine-tune on. Some of the signal from your data
may end up being lost as BatchNorm corrects your input. You can look at the model structure
and freeze only layers that aren’t BatchNorm like this:

for name, param in transfer_model.named_parameters():
if("bn" not in name):
param.requires_grad = False

Then we need to replace the final classification block with a new one that we
will train for detecting cats or fish. In this example, we replace it with a couple
of Linear layers, a ReLU, and Dropout, but you could have extra CNN layers
here too. Happily, the definition of PyTorch’s implementation of ResNet stores



the final classifier block as an instance variable, fc, so all we need to do is
replace that with our new structure (other models supplied with PyTorch use
either fc or classifier, so you’ll probably want to check the definition in the
source if you’re trying this with a different model type):

transfer_model.fc = nn.Sequential(nn.Linear(transfer_model.fc.in_features,500),
nn.ReLU(),
nn.Dropout(), nn.Linear(500,2))

In the preceding code, we take advantage of the in_features variable that
allows us to grab the number of activations coming into a layer (2,048 in this
case). You can also use out_features to discover the activations coming out.
These are handy functions for when you’re snapping together networks like
building bricks; if the incoming features on a layer don’t match the outgoing
features of the previous layer, you’ll get an error at runtime.

Finally, we go back to our training loop and then train the model as per usual.
You should see some large jumps in accuracy even within a few epochs.

Transfer learning is a key technique for improving the accuracy of your deep
learning application, but we can employ a bunch of other tricks in order to boost
the performance of our model. Let’s take a look at some of them.

Finding That Learning Rate

You might remember from Chapter 2 that I introduced the concept of a learning
rate for training neural networks, mentioned that it was one of the most
important hyperparameters you can alter, and then waved away what you should
use for it, suggesting a rather small number and for you to experiment with
different values. Well...the bad news is, that really is how a lot of people
discover the optimum learning rate for their architectures, usually with a
technique called grid search, exhaustively searching their way through a subset
of learning rate values, comparing the results against a validation dataset. This is
incredibly time-consuming, and although people do it, many others err on the
side of the practioner’s lore. For example, a learning rate value that has
empirically been observed to work with the Adam optimizer is 3e-4. This is
known as Karpathy’s constant, after Andrej Karpathy (currently director of Al at



Tesla) tweeted about it in 2016. Unfortunately, fewer people read his next tweet:

“I just wanted to make sure that people understand that this is a joke.” The funny
thing is that 3e-4 tends to be a value that can often provide good results, so it’s a

joke with a hint of reality about it.

On the one hand, you have slow and cumbersome searching, and on the other,
obscure and arcane knowledge gained from working on countless architectures
until you get a feel for what a good learning rate would be—artisanal neural
networks, even. Is there a better way than these two extremes?

Thankfully, the answer is yes, although you’ll be surprised by how many people
don’t use this better method. A somewhat obscure paper by Leslie Smith, a
research scientist at the US Naval Research Laboratory, contained an approach
for finding an appropriate learning rate.® But it wasn’t until Jeremy Howard
brought the technique to the fore in his fast.ai course that it started to catch on in
the deep learning community. The idea is quite simple: over the course of an
epoch, start out with a small learning rate and increase to a higher learning rate
over each mini-batch, resulting in a high rate at the end of the epoch. Calculate
the loss for each rate and then, looking at a plot, pick the learning rate that gives
the greatest decline. For example, look at the graph in Figure 4-1.

104 1073 1072 107* 107
learning rate (log scale)

Figure 4-1. Learning rate against loss

In this case, we should look at using a learning rate of around 1e-2 (marked
within the circle), as that is roughly the point where the gradient of the descent is
steepest.


https://oreil.ly/WLw3q

NOTE

Note that you’re not looking for the bottom of the curve, which might be the more intuitive
place; you’re looking for the point that is getting to the bottom the fastest.

Here’s a simplified version of what the fast.ai library does under the covers:

import math
def find_lr(model, loss_fn, optimizer, init_value=1e-8, final _value=10.0):
number_in_epoch = len(train_loader) - 1
update_step = (final_value / init_value) ** (1 / number_1in_epoch)
1r = init_value
optimizer.param_groups[0]["1lr"] = 1r
best_loss = 0.0
batch_num = 0
losses = []
log_1rs = []
for data in train_loader:
batch_num += 1
inputs, labels = data
inputs, labels = inputs, labels
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_fn(outputs, labels)

# Crash out if loss explodes

if batch_num > 1 and loss > 4 * best_loss:
return log_lrs[10:-5], losses[10:-5]

# Record the best loss

if loss < best_loss or batch_num ==
best_loss = loss

# Store the values

losses.append(loss)
log_lrs.append(math.log10(1lr))

# Do the backward pass and optimize

loss.backward()
optimizer.step()

# Update the lr for the next step and store



1r *= update_step
optimizer.param_groups[0]["1lr"] = 1r
return log_lrs[10:-5], losses[10:-5]

What’s going on here is that we iterate through the batches, training almost as
usual; we pass our inputs through the model and then we get the loss from that
batch. We record what our best_loss is so far, and compare the new loss
against it. If our new loss is more than four times the best_1loss, we crash out of
the function, returning what we have so far (as the loss is probably tending to
infinity). Otherwise, we keep appending the loss and logs of the current learning
rate, and update the learning rate with the next step along the way to the
maximal rate at the end of the loop. The plot can then be shown using the
matplotlib plt function:

logs,losses = find_1r()
plt.plot(logs,losses)
found _1lr = 1e-2

Note that we return slices of the 1r logs and losses. We do that simply because
the first bits of training and the last few (especially if the learning rate becomes
very large quite quickly) tend not to tell us much information.

The implementation in fast.ai’s library also includes weighted smoothing, so you
get smooth lines in your plot, whereas this snippet produces spiky output.
Finally, remember that because this function does actually train the model and
messes with the optimizer’s learning rate settings, you should save and reload
your model beforehand to get back to the state it was in before you called
find_1r() and also reinitialize the optimizer you’ve chosen, which you can do
now, passing in the learning rate you’ve determined from looking at the graph!

That gets us a good value for our learning rate, but we can do even better with
differential learning rates.

Differential Learning Rates

In our training so far, we have applied one learning rate to the entire model.
When training a model from scratch, that probably makes sense, but when it



comes to transfer learning, we can normally get a little better accuracy if we try
something different: training different groups of layers at different rates. Earlier
in the chapter, we froze all the pretrained layers in our model and trained just our
new classifier, but we may want to fine-tune some of the layers of, say, the
ResNet model we’re using. Perhaps adding some training to the layers just
preceding our classifier will make our model just a little more accurate. But as
those preceding layers have already been trained on the ImageNet dataset,
maybe they need only a little bit of training as compared to our newer layers?
PyTorch offers a simple way of making this happen. Let’s modify our optimizer
for the ResNet-50 model:

optimizer = optimizer.Adam([

{ 'params': transfer_model.layer4.parameters(), 'lr': found_lr /3},
{ 'params': transfer_model.layer3.parameters(), 'Lr': found_lr /9%,
1, lr=found_1r)

That sets the learning rate for layer4 (just before our classifier) to a third of the
found learning rate and a ninth for layer3. That combination has empirically
worked out quite well in my work, but obviously feel free to experiment. There’s
one more thing, though. As you may remember from the beginning of this
chapter, we froze all these pretrained layers. It’s all very well to give them a
different learning rate, but as of right now, the model training won’t touch them
at all because they don’t accumulate gradients. Let’s change that:

unfreeze_layers = [transfer_model.layer3, transfer_model.layer4]
for layer in unfreeze_layers:
for param in layer.parameters():
param.requires_grad = True

Now that the parameters in these layers take gradients once more, the differential
learning rates will be applied when you fine-tine the model. Note that you can
freeze and unfreeze parts of the model at will and do further fine-tuning on every
layer separately if you’d like!

Now that we’ve looked at the learning rates, let’s investigate a different aspect of
training our models: the data that we feed into them.



Data Augmentation

One of the dreaded phrases in data science is, Oh no, my model has overfit on the
data! As I mentioned in Chapter 2, overfitting occurs when the model decides to
reflect the data presented in the training set rather than produce a generalized
solution. You’ll often hear people talking about how a particular model
memorized the dataset, meaning the model learned the answers and went on to
perform poorly on production data.

The traditional way of guarding against this is to amass large quantities of data.
By seeing more data, the model gets a more general idea of the problem it is
trying to solve. If you view the situation as a compression problem, then if you
prevent the model from simply being able to store all the answers (by
overwhelming its storage capacity with so much data), it’s forced to compress
the input and therefore produce a solution that cannot simply be storing the
answers within itself. This is fine, and works well, but say we have only a
thousand images and we’re doing transfer learning. What can we do?

One approach that we can use is data augmentation. If we have an image, we
can do a number of things to that image that should prevent overfitting and make
the model more general. Consider the images of Helvetica the cat in Figures 4-2
and 4-3.

Figure 4-2. Our original image



Figure 4-3. A flipped Helvetica

Obviously to us, they’re the same image. The second one is just a mirrored copy
of the first. The tensor representation is going to be different, as the RGB values
will be in different places in the 3D image. But it’s still a cat, so the model
training on this image will hopefully learn to recognize a cat shape on the left or
right side of the frame, rather than simply associating the entire image with cat.
Doing this in PyTorch is simple. You may remember this snippet of code from
Chapter 2:

transforms = transforms.Compose([
transforms.Resize(64),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225] )

D)

This forms a transformation pipeline that all images go through as they enter the
model for training. But the torchivision.transforms library contains many
other transformation functions that can be used to augment training data. Let’s
have a look at some of the more useful ones and see what happens to Helvetica
with some of the less obvious transforms as well.

Torchvision Transforms

torchvision comes complete with a large collection of potential transforms that
can be used for data augmentation, plus two ways of constructing new



transformations. In this section, we look at the most useful ones that come
supplied as well as a couple of custom transformations that you can use in your
own applications.

torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)

ColorJitter randomly changes the brightness, contrast, saturation, and hue of
an image. For brightness, contrast, and saturation, you can supply either a float
or a tuple of floats, all nonnegative in the range 0 to 1, and the randomness will
either be between 0 and the supplied float or it will use the tuple to generate
randomness between the supplied pair of floats. For hue, a float or float tuple
between —0.5 and 0.5 is required, and it will generate random hue adjustments
between [-hue,hue] or [min, max]. See Figure 4-4 for an example.

Figure 4-4. ColorlJitter applied at 0.5 for all parameters

If you want to flip your image, these two transforms randomly reflect an image
on either the horizontal or vertical axis:

torchvision.transforms.RandomHorizontalFlip(p=0.5)
torchvision.transforms.RandomVerticalFlip(p=0.5)

Either supply a float from O to 1 for the probability of the reflection to occur or
accept the default of a 50% chance of reflection. A vertically flipped cat is
shown in Figure 4-5.



Figure 4-5. Vertical flip

RandomGrayscale is a similar type of transformation, except that it randomly
turns the image grayscale, depending on the parameter p (the default is 10%):

torchvision.transforms.RandomGrayscale(p=0.1)

RandomCrop and RandomResizeCrop, as you might expect, perform random
crops on the image of size, which can either be an int for height and width, or a
tuple containing different heights and widths. Figure 4-6 shows an example of a
RandomCrop in action.

torchvision.transforms.RandomCrop(size, padding=None,
pad_if_needed=False, fill=0, padding_mode='constant')
torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0),
ratio=(0.75, 1.3333333333333333), 1interpolation=2)

Now you need to be a little careful here, because if your crops are too small, you
run the risk of cutting out important parts of the image and making the model
train on the wrong thing. For instance, if a cat is playing on a table in an image,
and the crop takes out the cat and just leaves part of the table to be classified as
cat, that’s not great. While the RandomResizeCrop will resize the crop to fill the
given size, RandomCrop may take a crop close to the edge and into the darkness
beyond the image.



NOTE

RandomResizeCrop is using Bilinear interpolation, but you can also select nearest neighbor or
bicubic interpolation by changing the interpolation parameter. See the PIL filters page for
further details.

As you saw in Chapter 3, we can add padding to maintain the required size of
the image. By default, this is constant padding, which fills out the otherwise
empty pixels beyond the image with the value given in fill. However, I
recommend that you use the reflect padding instead, as empirically it seems to
work a little better than just throwing in empty constant space.

Figure 4-6. RandomCrop with size=100

If you’d like to randomly rotate an image, RandomRotation will vary between
[ -degrees, degrees] if degrees is a single float or int, or (min,max) if it is a
tuple:

torchvision.transforms.RandomRotation(degrees, resample=False,expand=False,
center=None)

If expand is set to True, this function will expand the output image so that it can
include the entire rotation; by default, it’s set to crop to within the input
dimensions. You can specify a PIL resampling filter, and optionally provide an
(x,y) tuple for the center of rotation; otherwise the transform will rotate about
the center of the image. Figure 4-7 is a RandomRotation transformation with
degrees set to 45.


https://oreil.ly/rNOtN

Figure 4-7. RandomRotation with degrees = 45

Pad is a general-purpose padding transform that adds padding (extra height and
width) onto the borders of an image:

torchvision.transforms.Pad(padding, fill=0, padding_mode=constant)

A single value in padding will apply padding on that length in all directions. A
two-tuple padding will produce padding in the length of (left/right, top/bottom),
and a four-tuple will produce padding for (left, top, right, bottom). By default,
padding is set to constant mode, which copies the value of fill into the
padding slots. The other choices are edge, which pads the last values of the edge
of the image into the padding length; reflect, which reflects the values of the
image (except the edge) into the border; and symmetric, which is reflection
but includes the last value of the image at the edge. Figure 4-8 shows padding

set to 25 and padding_mode set to reflect. See how the box repeats at the
edges.



Figure 4-8. Pad with padding = 25 and padding_mode = reflect

RandomAffine allows you to specify random affine translations of the image
(scaling, rotations, translations, and/or shearing, or any combination). Figure 4-9
shows an example of an affine transformation.

torchvision.transforms.RandomAffine(degrees, translate=None, scale=None,
shear=None, resample=False, fillcolor=0)

Figure 4-9. RandomAffine with degrees = 10 and shear = 50

The degrees parameter is either a single float or int or a tuple. In single form, it



produces random rotations between (—degrees, degrees). With a tuple, it will
produce random rotations between (min, max). degrees has to be explicitly set to
prevent rotations from occurring—there’s no default setting. translate is a
tuple of two multipliers (horizontal_multipler, vertical_multiplier). At
transform time, a horizontal shift, dx, is sampled in the range —image_width x
horizontal_multiplier < dx < img_width x horizontal_width, and a
vertical shift is sampled in the same way with respect to the image height and the
vertical multiplier.

Scaling is handled by another tuple, (min, max), and a uniform scaling factor is
randomly sampled from those. Shearing can be either a single float/int or a tuple,
and randomly samples in the same manner as the degrees parameter. Finally,
resample allows you to optionally provide a PIL resampling filter, and
fillcolor is an optional int specifying a fill color for areas inside the final
image that lie outside the final transform.

As for what transforms you should use in a data augmentation pipeline, I
definitely recommend using the various random flips, color jittering, rotation,
and crops to start.

Other transformations are available in torchvision; check the documentation
for more details. But of course you may find yourself wanting to create a
transformation that is particular to your data domain that isn’t included by
default, so PyTorch provides various ways of defining custom transformations,
as you’ll see next.

Color Spaces and Lambda Transforms

This may seem a little odd to even bring up, but so far all our image work has
been in the fairly standard 24-bit RGB color space, where every pixel has an 8-
bit red, green, and blue value to indicate the color of that pixel. However, other
color spaces are available!

A popular alternative is HSV, which has three 8-bit values for hue, saturation,
and value. Some people feel this system more accurately models human vision
than the traditional RGB color space. But why does this matter? A mountain in
RGB is a mountain in HSV, right?


https://oreil.ly/b0Q0A

Well, there’s some evidence from recent deep learning work in colorization that
other color spaces can produce slightly higher accuracy than RGB. A mountain
may be a mountain, but the tensor that gets formed in each space’s representation
will be different, and one space may capture something about your data better
than another.

When combined with ensembles, you could easily create a series of models that
combines the results of training on RGB, HSV, YUYV, and LAB color spaces to
wring out a few more percentage points of accuracy from your prediction
pipeline.

One slight problem is that PyTorch doesn’t offer a transform that can do this. But
it does provide a couple of tools that we can use to randomly change an image
from standard RGB into HSV (or another color space). First, if we look in the
PIL documentation, we see that we can use Image.convert() to translate a PIL
image from one color space to another. We could write a custom transform
class to carry out this conversion, but PyTorch adds a transforms.Lambda class
so that we can easily wrap any function and make it available to the transform
pipeline. Here’s our custom function:

def _random_colour_space(x):
output = x.convert("HSV")
return output

This is then wrapped in a transforms.Lambda class and can be used in any
standard transformation pipeline like we’ve seen before:

colour_transform = transforms.Lambda(lambda x: _random_colour_space(x))

That’s fine if we want to convert every image into HSV, but really we don’t want
that. We’d like it to randomly change images in each batch, so it’s probable that
the image will be presented in different color spaces in different epochs. We
could update our original function to generate a random number and use that to
generate a random probability of changing the image, but instead we’re even
lazier and use RandomApply:

random_colour_transform = torchvision.transforms.RandomApply([colour_transform])



By default, RandomAppy fills in a parameter p with a value of 0.5, so there’s a
50/50 chance of the transform being applied. Experiment with adding more color
spaces and the probability of applying the transformation to see what effect it has
on our cat and fish problem.

Let’s look at another custom transform that is a little more complicated.

Custom Transform Classes

Sometimes a simple lambda isn’t enough; maybe we have some initialization or
state that we want to keep track of, for example. In these cases, we can create a
custom transform that operates on either PIL image data or a tensor. Such a class
has to implement two methods: __call__, which the transform pipeline will
invoke during the transformation process; and __repr__, which should return a
string representation of the transform, along with any state that may be useful for
diagnostic purposes.

In the following code, we implement a transform class that adds random
Gaussian noise to a tensor. When the class is initialized, we pass in the mean and

standard distribution of the noise we require, and during the __call__ method,
we sample from this distribution and add it to the incoming tensor:

class Noise():
"""Adds gaussian noise to a tensor.

>>> transforms.Compose([

>>> transforms.ToTensor(),
>>> Noise(0.1, 0.05)),
>>> 1)

def __init__(self, mean, stddev):
self.mean = mean
self.stddev = stddev

def __call__(self, tensor):
noise = torch.zeros_like(tensor).normal_(self.mean, self.stddev)
return tensor.add_(noise)

def __repr__(self):
repr = f"{self.__class__._ name__ }(mean={self.mean},
stddev={self.stddev})"
return repr



If we add this to a pipeline, we can see the results of the __repr__ method being
called:

transforms.Compose([Noise(0.1, 0.05))])
>> Compose(

Noise(mean=0.1,sttdev=0.05)
)

Because transforms don’t have any restrictions and just inherit from the base
Python object class, you can do anything. Want to completely replace an image
at runtime with something from Google image search? Run the image through a
completely different neural network and pass that result down the pipeline?
Apply a series of image transforms that turn the image into a crazed reflective
shadow of its former self? All possible, if not entirely recommended. Although it
would be interesting to see whether Photoshop’s Twirl transformation effect
would make accuracy worse or better! Why not give it a go?

Aside from transformations, there are a few more ways of squeezing as much
performance from a model as possible. Let’s look at more examples.

Start Small and Get Bigger!

Here’s a tip that seems odd, but obtains real results: start small and get bigger.
What I mean is if you’re training on 256 x 256 images, create a few more
datasets in which the images have been scaled to 64 x 64 and 128 x 128. Create
your model with the 64 x 64 dataset, fine-tune as normal, and then train the
exact same model with the 128 x 128 dataset. Not from scratch, but using the
parameters that have already been trained. Once it looks like you’ve squeezed
the most out of the 128 x 128 data, move on to your target 256 % 256 data.
You’ll probably find a percentage point or two improvement in accuracy.

While we don’t know exactly why this works, the working theory is that by
training at the lower resolutions, the model learns about the overall structure of
the image and can refine that knowledge as the incoming images expand. But
that’s just a theory. However, that doesn’t stop it from being a good little trick to
have up your sleeve when you need to squeeze every last bit of performance
from a model.

If you don’t want to have multiple copies of a dataset hanging around in storage,



you can use torchvision transforms to do this on the fly using the Resize
function:

resize = transforms.Compose([ transforms.Resize(64),

.._other augmentation transforms_..

transforms.ToTensor(),

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

The penalty you pay here is that you end up spending more time in training, as
PyTorch has to apply the resize every time. If you resized all the images
beforehand, you’d likely get a quicker training run, at the expense of filling up
your hard drive. But isn’t that trade-off always the way?

The concept of starting small and then getting bigger also applies to
architectures. Using a ResNet architecture like ResNet-18 or ResNet-34 to test
out approaches to transforms and get a feel for how training is working provides
a much tighter feedback loop than if you start out using a ResNet-101 or ResNet-
152 model. Start small, build upward, and you can potentially reuse the smaller
model runs at prediction time by adding them to an ensemble model.

Ensembles

What’s better than one model making predictions? Well, how about a bunch of
them? Ensembling is a technique that is fairly common in more traditional
machine learning methods, and it works rather well in deep learning too. The
idea is to obtain a prediction from a series of models, and combine those
predictions to produce a final answer. Because different models will have
different strengths in different areas, hopefully a combination of all their
predictions will produce a more accurate result than one model alone.

There are plenty of approaches to ensembles, and we won’t go into all of them
here. Instead, here’s a simple way of getting started with ensembles, one that has
eeked out another 1% of accuracy in my experience; simply average the
predictions:

# Assuming you have a list of models in models, and input is your input tensor

predictions = [m[1].fit(input) for 1 in models]
avg_prediction = torch.stack(b).mean(0).argmax()



The stack method concatenates the array of tensors together, so if we were
working on the cat/fish problem and had four models in our ensemble, we’d end
up with a 4 x 2 tensor constructed from the four 1 x 2 tensors. And mean does
what you’d expect, taking the average, although we have to pass in a dimension
of 0 to ensure that it takes an average across the first dimension instead of
simply adding up all the tensor elements and producing a scalar output. Finally,
argmax picks out the tensor index with the highest element, as you’ve seen
before.

It’s easy to imagine more complex approaches. Perhaps weights could be added
to each individual model’s prediction, and those weights adjusted if a model gets
an answer right or wrong. What models should you use? I’ve found that a
combination of ResNets (e.g., 34, 50, 101) work quite well, and there’s nothing
to stop you from saving your model regularly and using different snapshots of
the model across time in your ensemble!

Conclusion

As we come to the end of Chapter 4, we’re leaving images behind to move on to
text. Hopefully you not only understand how convolutional neural networks
work on images, but also have a deep bag of tricks in hand, including transfer
learning, learning rate finding, data augmentation, and ensembling, which you
can bring to bear on your particular application domain.

Further Reading

If you’re interested in learning more in the image realm, check out the fast.ai
course by Jeremy Howard, Rachel Thomas, and Sylvain Gugger. This chapter’s
learning rate finder is, as I mentioned, a simplified version of the one they use,
but the course goes into further detail about many of the techniques in this
chapter. The fast.ai library, built on PyTorch, allows you to bring them to bear on
your image (and text!) domains easily.

e Torchvision documentation

e PIL/Pillow documentation


https://fast.ai
https://oreil.ly/vNnST
https://oreil.ly/Jlisb

e “Cyclical Learning Rates for Training Neural Networks” by Leslie N.
Smith (2015)

e “ColorNet: Investigating the Importance of Color Spaces for Image
Classification” by Shreyank N. Gowda and Chun Yuan (2019)

1 See “Cyclical Learning Rates for Training Neural Networks” by Leslie Smith (2015).


https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1902.00267
https://arxiv.org/abs/1506.01186

Chapter 5. Text Classification

We’re leaving images behind for now and turning our attention to another area
where deep learning has proven to be a significant advance on traditional
techniques: natural language processing (NLP). A good example of this is
Google Translate. Originally, the code that handled translation was a weighty
500,000 lines of code. The new, TensorFlow-based system has approximately
500, and it performs better than the old method.

Recent breakthroughs also have occurred in bringing transfer learning (which
you learned about in Chapter 4) to NLP problems. New architectures such as the
Transformer architecture have led to the creation of networks like OpenAI’s
GPT-2, the larger variant of which produces text that is almost human-like in
quality (and in fact, OpenAl has not released the weights of this model for fear
of it being used maliciously).

This chapter provides a whirlwind tour of recurrent neural networks and

embeddings. Then we explore the torchtext library and how to use it for text
processing with an LSTM-based model.

Recurrent Neural Networks

If we look back at how we’ve been using our CNN-based architectures so far, we
can see they have always been working on one complete snapshot of time. But
consider these two sentence fragments:

The cat sat on the mat.

She got up and impatiently climbed on the chair, meowing for food.

Say you were to feed those two sentences, one after the other, into a CNN and
ask, where is the cat? You’d have a problem, because the network has no
concept of memory. This is incredibly important when it comes to dealing with
data that has a temporal domain (e.g., text, speech, video, and time-series data).'
Recurrent neural networks (RNNs) answer this problem by giving neural



networks a memory via hidden state.

What does an RNN look like? My favorite explanation is, “Imagine a neural

network crossed with a for loop.” Figure 5-1 shows a diagram of a classical
RNN structure.

hidden(t)

input(t)
Figure 5-1. An RNN

We add input at a time step of t, and we get a hidden output state of ht, and the
output also gets fed back into the RNN for the next time step. We can unroll this
network to take a deeper look at what’s going on, as shown in Figure 5-2.

hidden(t-2) hidden(t-1) hidden(t)
RNN —_ RNN — RNN
input(t-2) input(t-1) input(t)

Figure 5-2. An unrolled RNN

What we have here is a grouping of fully connected layers (with shared
parameters), a series of inputs, and our output. Input data is fed into the network,
and the next item in the sequence is predicted as output. In the unrolled view, we
can see that the RNN can be thought of as a pipeline of fully connected layers,
with the successive input being fed into the next layer in the sequence (with the
usual nonlinearities such as ReLU being inserted between the layers). When we



have our completed predicted sequence, we then have to backpropagate the error
back through the RNN. Because this involves stepping back through the
network’s steps, this process is known as backpropagation through time. The
error is calculated on the entire sequence, then the network is unfolded as in
Figure 5-2, and the gradients are calculated for each time step and combined to
update the shared parameters of the network. You can imagine it as doing
backprop on individual networks and summing all the gradients together.

That’s the theory behind RNNs. But this simple structure has problems that we
need to talk about and how they were overcome with newer architectures.

Long Short-Term Memory Networks

In practice, RNNs were and are particularly susceptible to the vanishing gradient
problem we talked about in Chapter 2, or the potentially worse scenario of the
exploding gradient, where your error tends off toward infinity. Neither is good,
so RNNs couldn’t be brought to bear on many of the problems they were
considered suitable for. That all changed in 1997 when Sepp Hochreiter and
Jiirgen Schmidhuber introduced the Long Short-Term Memory (LSTM) variant
of the RNN.

Figure 5-3 diagrams an LSTM layer. I know, there’s a lot going on here, but it’s
not too complex. Honest.
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Figure 5-3. An LSTM

OK, I admit, it is quite intimidating. The key is to think about the three gates
(input, output, and forget). In a standard RNN, we “remember” everything



forever. But that’s not how our brains work (sadly!), and the LSTM’s forget gate
allows us to model the idea that as we continue in our input chain, the beginning
of the chain becomes less important. And how much the LSTM forgets is
something that is learned during training, so if it’s in the network’s best interest
to be very forgetful, the forget gate parameters will do so.

The cell ends up being the “memory” of the network layer; and the input, output,
and forget gates will determine how data flows through the layer. The data may
simply pass through, it may “write” to the cell, and that data may (or may not!)
flow through to the next layer, modified by the output gate.

This assemblage of parts was enough to solve the vanishing gradient problem,
and also has the virtue of being Turing-complete, so theoretically, you can do
any calculation that you can do on a computer with one of these.

But things didn’t stop there, of course. Several developments have occurred in
the RNN space since LSTMs, and we’ll cover some of the major ones in the next
sections.

Gated Recurrent Units

Since 1997, many variants of the base LSTM network have been created, most
of which you probably don’t need to know about unless you’re curious.
However, one variant that came along in 2014, the gated recurrent unit (GRU), is
worth knowing about, as it has become quite popular in some circles. Figure 5-4
shows the makeup of a GRU architecture.
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Figure 5-4. A GRU



The main takeaway is that the GRU has merged the forget gate with the output
gate. This means that it has fewer parameters than an LSTM and so tends to be
quicker to train and uses fewer resources at runtime. For these reasons, and also
that they’re essentially a drop-in replacement for LSTMs, they’ve become quite
popular. However, strictly speaking, they are less powerful than LSTMs because
of the merging of the forget and output gates, so in general I recommend playing
with both GRUs or LSTMs in your network and seeing which one performs
better. Or just accept that the LSTM may be a little slower in training, but may
end up being the best choice in the end. You don’t have to follow the latest fad—
honest!

biLSTM

Another common variant of the LSTM is the bidirectional LSTM or biLSTM for
short. As you’ve seen so far, traditional LSTMs (and RNNs in general) can look
to the past as they are trained and make decisions. Unfortunately, sometimes you
need to see the future as well. This is particularly the case in applications like
translation and handwriting recognition, where what comes after the current state
can be just as important as the previous state for determining output.

A biLSTM solves this problem in the simplest of ways: it’s essentially two
stacked LSTMs, with the input being sent in the forward direction in one LSTM
and reversed in the second. Figure 5-5 shows how a biLSTM works across its
input bidirectionally to produce the output.

Outputs

A

BiLSTM
layers

Inputs

Figure 5-5. A biLSTM



PyTorch makes it easy to create biLSTMs by passing in a bidirectional=True
parameter when creating an LSTM() unit, as you’ll see later in the chapter.

That completes our tour throughout the RNN-based architectures. In Chapter 9,
we return to the question of architecture when we look at the Transformer-based
BERT and GPT-2 models.

Embeddings

We’re almost at the point where we can start writing some code! But before we
do, one little detail may have occurred to you: how do we represent words in a
network? After all, we’re feeding tensors of numbers into a network and getting
tensors out. With images, it seemed a fairly obvious thing to convert them into
tensors representing the red/green/blue component values, and they’re already
naturally thought of as arrays as they come with a height and width baked in. But
words? Sentences? How is that going to work?

The simplest approach is still one that you’ll find in many approaches to NLP,
and it’s called one-hot encoding. It’s pretty simple! Let’s look at our first
sentence from the start of the chapter:

The cat sat on the mat.

If we consider that this is the entire vocabulary of our world, we have a tensor of
[the, cat, sat, on, mat]. One-hot encoding simply means that we create a
vector that is the size of the vocabulary, and for each word in it, we allocate a
vector with one parameter set to 1 and the rest to 0:

the - [1 00 0 0]
cat — [0 1 0 0 0]
sat - [0 010 0]
on —[00010]
mat — [0 0 0 0 1]

We’ve now converted the words into vectors, and we can feed them into our
network. Additionally, we may add extra symbols into our vocabulary, such as
UNK (unknown, for words not in the vocabulary) and START/STOP to signify the
beginning and ends of sentences.



One-hot encoding has a few limitations that become clearer when we add
another word into our example vocabulary: kitty. From our encoding scheme,
kitty would be represented by [0 0 6 0 0 1] (with all the other vectors being
padded with a zero). First, you can see that if we are going to model a realistic
set of words, our vectors are going to be very long with almost no information in
them. Second, and perhaps more importantly, we know that a very strong
relationship exists between the words kitty and cat (also with dammit, but
thankfully that’s been skipped from our vocab here!), and this is impossible to
represent with one-hot encoding; the two words are completely different things.

An approach that has become more popular recently is replacing one-hot
encoding with an embedding matrix (of course, a one-hot encoding is an
embedding matrix itself, just one that doesn’t contain any information about
relationships between words). The idea is to squash the dimensionality of the
vector space down to something a little more manageable and take advantage of
the space itself.

For example, if we have an embedding in a 2D space, perhaps cat could be
represented by the tensor [0.56, 0.45] and kitten by [0.56, 0.445], whereas
mat could be [0.2, -0.1]. We cluster similar words together in the vector
space and can do distance checks such as Euclidean or cosine distance functions
to determine how close words are to each other. And how do we determine
where words fall in the vector space? An embedding layer is no different from
any other layer you’ve seen so far in building neural networks; we initialize the
vector space randomly, and hopefully the training process updates the parameters
so that similar words or concepts gravitate toward each other.

A famous example of embedding vectors is word2vec, which was released by
Google in 2013.2 This was a set of word embeddings trained using a shallow
neural network, and it revealed that the transformation into vector space seemed
to capture something about the concepts underpinning the words. In its
commonly cited finding, if you pulled the vectors for King, Man, and Woman
and then subtracted the vector for Man from King and added the vector for
Woman, you would get a result that was the vector representation for Queen.
Since word2vec, other pretrained embeddings have become available, such as
ELMo, GloVe, and fasttext.

As for using embeddings in PyTorch, it’s really simple:



embed = nn.Embedding(vocab_size, dimension_size)

This will contain a tensor of vocab_size x dimension_s1ize initialized
randomly. I prefer to think that it’s just a giant array or lookup table. Each word
in your vocabulary indexes into an entry that is a vector of dimension_size, so

if we go back to our cat and its epic adventures on the mat, we’d have something
like this:

cat_mat_embed = nn.Embedding(5, 2)
cat_tensor = Tensor([1])
cat_mat_embed.forward(cat_tensor)

> tensor([[ 1.7793, -0.3127]], grad_fn=<EmbeddingBackward>)

We create our embedding, a tensor that contains the position of cat in our

vocabulary, and pass it through the layer’s forward() method. That gives us our
random embedding. The result also points out that we have a gradient function
that we can use for updating the parameters after we combine it with a loss
function.

We’ve now gone through all the theory and can get started on building
something!

torchtext

Just like torchvision, PyTorch provides an official library, torchtext, for
handling text-processing pipelines. However, torchtext is not quite as battle-
tested or has as many eyes on it as torchvision, which means it’s not quite as
easy to use or as well-documented. But it is still a powerful library that can
handle a lot of the mundane work of building up text-based datasets, so we’ll be
using it for the rest of the chapter.

Installing torchtext is fairly simple. You use either standard pip:

pip install torchtext

or a specific conda channel:



conda install -c derickl torchtext

You’ll also want to install spaCy (an NLP library), and pandas if you don’t have
them on your system (again, either using pip or conda). We use spaCy for

processing our text in the torchtext pipeline, and pandas for exploring and
cleaning up our data.

Getting Our Data: Tweets!

In this section, we build a sentiment analysis model, so let’s grab a dataset.
torchtext provides a bunch of built-in datasets via the torchtext.datasets
module, but we’re going to work on one from scratch to get a feel for building a
custom dataset and feeding it into a model we’ve created. We use the
Sentiment140 dataset. This is based on tweets from Twitter, with every tweet
ranked as O for negative, 2 for neutral, and 4 for positive.

Download the zip archive and unzip. We use the file

training.1600000.processed.noemoticon.csv. Let’s look at the file using pandas:

import as
tweetsDF = pd.read_csv("training.1600000.processed.noemoticon.csv",
header=None)

You may at this point get an error like this:

UnicodeDecodeError: 'utf-8' codec can't decode bytes in
position 80-81: invalid continuation byte

Congratulations—you’re now a real data scientist and you get to deal with data
cleaning! From the error message, it appears that the default C-based CSV parser
that pandas uses doesn’t like some of the Unicode in the file, so we need to
switch to the Python-based parser:

tweetsDF = pd.read_csv("training.1600000.processed.noemoticon.csv",
engine="python", header=None)

Let’s take a look at the structure of the data by displaying the first five rows:

>>> tweetDF.head(5)


http://help.sentiment140.com/for-students

0 0 1467810672 ... NO_QUERY scotthamilton 1is upset that ...

1 0 1467810917 ... NO_QUERY mattycus I dived many times ...
2 0 1467811184 ... NO_QUERY E1lleCTF my whole body feels itchy

3 0 1467811193 ... NO_QUERY Karoli no, it's ...

4 0 1467811372 ... NO_QUERY joy_wolf not the whole crew

Annoyingly, we don’t have a header field in this CSV (again, welcome to the
world of a data scientist!), but by looking at the website and using our intuition,
we can see that what we’re interested in is the last column (the tweet text) and
the first column (our labeling). However, the labels aren’t great, so let’s do a
little feature engineering to work around that. Let’s see what counts we have in
our training set:

>>> tweetsDF[0].value_counts()
4 800000

0 800000

Name: 0, dtype: int64

Curiously, there are no neutral values in the training dataset. This means that we
could formulate the problem as a binary choice between 0 and 1 and work out
our predictions from there, but for now we stick to the original plan that we may
possibly have neutral tweets in the future. To encode the classes as numbers

starting from 0, we first create a column of type category from the label
column:

tweetsDF["sentiment_cat"] = tweetsDF[0].astype('category')

Then we encode those classes as numerical information in another column:
tweetsDF["sentiment"] = tweetsDF["sentiment_cat"].cat.codes

We then save the modified CSV back to disk:
tweetsDF.to_csv("train-processed.csv", header=None, index=None)

I recommend that you save another CSV that has a small sample of the 1.6
million tweets for you to test things out on too:

tweetsDF.sample(10000).to_csv("train-processed-sample.csv", header=None,



index=None)

Now we need to tell torchtext what we think is important for the purposes of
creating a dataset.

Defining Fields

torchtext takes a straightforward approach to generating datasets: you tell it
what you want, and it’ll process the raw CSV (or JSON) for you. You do this by
first defining fields. The Field class has a considerable number of parameters
that can be assigned to it, and although you probably won’t use all of them at
once, Table 5-1 provides a handy guide as to what you can do with a Field.

Table 5-1. Field parameter types

Parameter Description Default

Whether the field represents sequential data (i.e., text). If set to

sequential False, no tokenization is applied. True
Whether to include a Vocab object. If set to False, the field

use_vocab . . True
should contain numerical data.

L. A token that will be added to the start of this field to indicate the

init_token . None
beginning of the data.

eos_token End-of-sentence token appended to the end of each sequence. None

fix lenath If set to an integer, all entries will be padded to this length. If N

x-tend None, sequence lengths will be flexible. one
dtype The type of the tensor batch. torch.long
lower Convert the sequence into lowercase. False
. The function that will perform sequence tokenization. If set to . .

tokenize . . string.split
spacy, the spaCy tokenizer will be used.

pad_token The token that will be used as padding. <pad>
The token that will be used to represent words that are not present

unk_token <unk>

in the Vocab dict.

pad_first Pad at the start of the sequence. False



truncate_first Truncate at the beginning of the sequence (if necessary). False

As we noted, we’re interested in only the labels and the tweets text. We define
these by using the Field datatype:

from import data

LABEL
TWEET

data.LabelField()
data.Field(tokenize="'spacy', lower=true)

We’re defining LABEL as a LabelField, which is a subclass of Field that sets
sequential to False (as it’s our numerical category class). TWEET is a standard
Field object, where we have decided to use the spaCy tokenizer and convert all
the text to lowercase, but otherwise we’re using the defaults as listed in the
previous table. If, when running through this example, the step of building the
vocabulary is taking a very long time, try removing the tokenize parameter and
rerunning. This will use the default of simply splitting on whitespace, which will
speed up the tokenization step considerably, though the created vocabulary will
not be as good as the one spaCy creates.

Having defined those fields, we now need to produce a list that maps them onto
the list of rows that are in the CSV:

fields = [('score',None), ('id',None),('date',None),('query',None),
('name',None),
("tweet', TWEET),('category',None),('label',LABEL)]

Armed with our declared fields, we now use TabularDataset to apply that
definition to the CSV:

twitterDataset = torchtext.data.TabularDataset(
path="training-processed.csv",
format="CSV",
fields=fields,
skip_header=False)

This may take some time, especially with the spaCy parser. Finally, we can split
into training, testing, and validation sets by using the split() method:



(train, test, valid) = twitterDataset.split(split_ratio=[0.8,0.1,0.1])

(len(train),len(test),len(valid))
> (1280000, 160000, 160000)

Here’s an example pulled from the dataset:

>vars(train.examples[7])

{'label': '6681',
"tweet': ['woah',
"hell',
"in',
'chapel’,
"thrill',
'is',
'closed’,

1 1
. B

no',
'more',
'sweaty',
'basement’,
'dance’,
'parties’,
1o

27

In a surprising turn of serendipity, the randomly selected tweet references the
closure of a club in Chapel Hill I frequently visited. See if you find anything as
weird on your dive through the data!

Building a Vocabulary

Traditionally, at this point we would build a one-hot encoding of each word that
is present in the dataset—a rather tedious process. Thankfully, torchtext will
do this for us, and will also allow a max_s1ize parameter to be passed in to limit
the vocabulary to the most common words. This is normally done to prevent the
construction of a huge, memory-hungry model. We don’t want our GPUs too
overwhelmed, after all. Let’s limit the vocabulary to a maximum of 20,000
words in our training set:

vocab_size = 20000



TWEET.build_vocab(train, max_size = vocab_size)

We can then interrogate the vocab class instance object to make some
discoveries about our dataset. First, we ask the traditional “How big is our
vocabulary?”:

len(TWEET.vocab)
> 20002

Wait, wait, what? Yes, we specified 20,000, but by default, torchtext will add
two more special tokens, <unk> for unknown words (e.g., those that get cut off
by the 20,000 max_size we specified), and <pad>, a padding token that will be
used to pad all our text to roughly the same size to help with efficient batching
on the GPU (remember that a GPU gets its speed from operating on regular
batches). You can also specify eos_token or init_token symbols when you
declare a field, but they’re not included by default.

Now let’s take a look at the most common words in the vocabulary:

>TWEET.vocab.fregs.most_common(10)
, 44802),

.', 40088),
('I', 33133),

, 29484),
('to', 28024),
('the', 24389),

',', 23951),
('a', 18366),

'i', 17189),
('and', 14252)]

Pretty much what you’d expect, as we’re not removing stop-words with our
spaCy tokenizer. (Because it’s just 140 characters, we’d be in danger of losing
too much information from our model if we did.)

We are almost finished with our datasets. We just need to create a data loader to
feed into our training loop. torchtext provides the BucketIterator method

that will produce what it calls a Batch, which is almost, but not quite, like the
data loader we used on images. (You’ll see shortly that we have to update our

training loop to deal with some of the oddities of the Batch interface.)



train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train, valid, test),

batch_size = 32,

device = device)

Putting everything together, here’s the complete code for building up our
datasets:

from import data
device = "cuda"
LABEL = data.LabelField()

TWEET = data.Field(tokenize='spacy', lower=true)

fields = [('score',None), ('id',None),('date',None),("'query',None),
('name',None),
('"tweet', TWEET),('category',None),('label',LABEL)]

twitterDataset = torchtext.data.TabularDataset(
path="training-processed.csv",
format="CSV",
fields=fields,
skip_header=False)

(train, test, valid) = twitterDataset.split(split_ratio=[0.8,0.1,0.1])

vocab_size = 20002
TWEET.build_vocab(train, max_size = vocab_size)

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train, valid, test),

batch_size = 32,
device = device)

With our data processing sorted, we can move on to defining our model.

Creating Our Model
We use the Embedding and LSTM modules in PyTorch that we talked about in the
first half of this chapter to build a simple model for classifying tweets:

import as

class OurFirstLSTM(nn.Module):
def __init__(self, hidden_size, embedding_dim, vocab_size):



super (OurFirstLSTM, self)._ _init_ ()

self.embedding = nn.Embedding(vocab_size, embedding_dim)

self.encoder = nn.LSTM(input_size=embedding_dim,
hidden_size=hidden_size, num_layers=1)

self.predictor = nn.Linear(hidden_size, 2)

def forward(self, seq):
output, (hidden,_) = self.encoder(self.embedding(seq))
preds = self.predictor(hidden.squeeze(0))
return preds

model = OQurFirstLSTM(100,300, 20002)
model. to(device)

All we do in this model is create three layers. First, the words in our tweets are
pushed into an Embedding layer, which we have established as a 300-
dimensional vector embedding. That’s then fed into a LSTM with 100 hidden
features (again, we’re compressing down from the 300-dimensional input like
we did with images). Finally, the output of the LSTM (the final hidden state after
processing the incoming tweet) is pushed through a standard fully connected
layer with three outputs to correspond to our three possible classes (negative,
positive, or neutral). Next we turn to the training loop!

Updating the Training Loop

Because of some torchtext’s quirks, we need to write a slightly modified
training loop. First, we create an optimizer (we use Adam as usual) and a loss
function. Because we were given three potential classes for each tweet, we use
CrossEntropyLoss() as our loss function. However, it turns out that only two
classes are present in the dataset; if we assumed there would be only two classes,
we could in fact change the output of the model to produce a single number
between 0 and 1 and then use binary cross-entropy (BCE) loss (and we can
combine the sigmoid layer that squashes output between 0 and 1 plus the BCE
layer into a single PyTorch loss function, BCEWithLogitsLoss()). I mention
this because if you’re writing a classifier that must always be one state or the
other, it’s a better fit than the standard cross-entropy loss that we’re about to use.

optim.Adam(model.parameters(), lr=2e-2)
nn.CrossEntropyLoss()

optimizer
criterion



def train(epochs, model, optimizer, criterion, train_iterator, valid_iterator):
for epoch in range(1, epochs + 1):

training_loss = 0.0
valid_loss = 0.0
model.train()
for batch_1idx, batch in enumerate(train_1iterator):
opt.zero_grad()
predict = model(batch.tweet)
loss = criterion(predict,batch.label)
loss.backward()
optimizer.step()
training_loss += loss.data.item() * batch.tweet.size(0)
training_loss /= len(train_iterator)

model.eval()

for batch_1idx,batch in enumerate(valid_1iterator):
predict = model(batch.tweet)
loss = criterion(predict,batch.label)
valid_loss += loss.data.item() * x.size(0)

valid_loss /= len(valid_iterator)
print('Epoch: {}, Training Loss: {:.2f},
Validation Loss: {:.2f}'.format(epoch, training_loss, valid_loss))

The main thing to be aware of in this new training loop is that we have to
reference batch. tweet and batch.label to get the particular fields we’re
interested in; they don’t fall out quite as nicely from the enumerator as they do in
torchvision.

Once we’ve trained our model by using this function, we can use it to classify
some tweets to do simple sentiment analysis.

Classifying Tweets

Another hassle of torchtext is that it’s a bit of a pain to get it to predict things.
What you can do is emulate the processing pipeline that happens internally and
make the required prediction on the output of that pipeline, as shown in this
small function:

def classify_tweet(tweet):
categories = {0: "Negative", 1:"Positive"}



processed = TWEET.process([TWEET.preprocess(tweet)])
return categories[model(processed).argmax().item()]

We have to call preprocess(), which performs our spaCy-based tokenization.
After that, we can call process() to the tokens into a tensor based on our
already-built vocabulary. The only thing we have to be careful about is that
torchtext is expecting a batch of strings, so we have to turn it into a list of lists
before handing it off to the processing function. Then we feed it into the model.
This will produce a tensor that looks like this:

tensor([[ 0.7828, -0.0024]]

The tensor element with the highest value corresponds to the model’s chosen
class, so we use argmax() to get the index of that, and then item() to turn that
zero-dimension tensor into a Python integer that we index into our categories
dictionary.

With our model trained, let’s look at how to do some of the other tricks and
techniques that you learned for images in Chapters 2—4.

Data Augmentation

You might wonder exactly how you can augment text data. After all, you can’t
really flip it horizontally as you can an image! But you can use some techniques
with text that will provide the model with a little more information for training.
First, you could replace words in the sentence with synonyms, like so:

The cat sat on the mat
could become
The cat sat on the rug

Aside from the cat’s insistence that a rug is much softer than a mat, the meaning
of the sentence hasn’t changed. But mat and rug will be mapped to different
indices in the vocabulary, so the model will learn that the two sentences map to
the same label, and hopefully that there’s a connection between those two words,



as everything else in the sentences is the same.

In early 2019, the paper “EDA: Easy Data Augmentation Techniques for
Boosting Performance on Text Classification Tasks” suggested three other
augmentation strategies: random insertion, random swap, and random deletion.
Let’s take a look at each of them.3

Random Insertion

A random insertion technique looks at a sentence and then randomly inserts
synonyms of existing nonstop-words into the sentence n times. Assuming you
have a way of getting a synonym of a word and a way of eliminating stop-words
(common words such as and, it, the, etc.), shown, but not implemented, in this
function via get_synonyms() and get_stopwords(), an implementation of this
would be as follows:

def random_insertion(sentence,n):
words = remove_stopwords(sentence)
for _ in range(n):
new_synonym = get_synonyms(random.choice(words))
sentence.insert(randrange(len(sentence)+1), new_synonym)

return sentence

An example of this in practice where it replaces cat could look like this:

The cat sat on the mat
The cat mat sat on feline the mat

Random Deletion

As the name suggests, random deletion deletes words from a sentence. Given a
probability parameter p, it will go through the sentence and decide whether to
delete a word or not based on that random probability:

def random_deletion(words, p=0.5):
if len(words) ==
return words
remaining = list(filter(lambda x: random.uniform(0,1) > p,words))
if len(remaining) ==
return [random.choice(words)]
else



return remaining

The implementation deals with the edge cases—if there’s only one word, the
technique returns it; and if we end up deleting all the words in the sentence, the
technique samples a random word from the original set.

Random Swap

The random swap augmentation takes a sentence and then swaps words within it
n times, with each iteration working on the previously swapped sentence. Here’s
an implementation:

def random_swap(sentence, n=5):
length = range(len(sentence))
for _ in range(n):

idx1, 1dx2 = random.sample(length, 2)
sentence[1dx1], sentence[1dx2] = sentence[i1dx2], sentence[idx1]
return sentence

We sample two random numbers based on the length of the sentence, and then
just keep swapping until we hit n.

The techniques in the EDA paper average about a 3% improvement in accuracy
when used with small amounts of labeled examples (roughly 500). If you have
more than 5,000 examples in your dataset, the paper suggests that this
improvement may fall to 0.8% or lower, due to the model obtaining better
generalization from the larger amounts of data available over the improvements
that EDA can provide.

Back Translation

Another popular approach for augmenting datasets is back translation. This
involves translating a sentence from our target language into one or more other
languages and then translating all of them back to the original language. We can
use the Python library googletrans for this purpose. Install it with pip, as it
doesn’t appear to be in conda at the time of this writing:

pip install googletrans



Then, we can translate our sentence from English to French, and then back to
English:

import
import

translator = Translator()
sentences = ['The cat sat on the mat']

translation_fr = translator.translate(sentences, dest='fr')
fr_text = [t.text for t in translations_fr]

translation_en = translator.translate(fr_text, dest='en')
en_text = [t.text for t in translation_en]

print(en_text)

>> ['The cat sat on the carpet']

That gives us an augmented sentence from English to French and back again, but
let’s go a step further and select a language at random:

import

available_langs = list(googletrans.LANGUAGES.keys())
tr_lang = random.choice(available_langs)
print(f"Translating to {googletrans.LANGUAGES[tr_lang]}")

translations = translator.translate(sentences, dest=tr_lang)
t_text = [t.text for t in translations]
print(t_text)

translations_en_random = translator.translate(t_text, src=tr_lang, dest='en')
en_text = [t.text for t in translations_en_random]
print(en_text)

In this case, we use random. choice to grab a random language, translate to that
language, and then translate back as before. We also pass in the language to the
src parameter just to help the language detection of Google Translate along. Try
it out and see how much it resembles the old game of Telephone.

You need to be aware of a few limits. First, you can translate only up to 15,000
characters at a time, though that shouldn’t be too much of a problem if you’re
just translating sentences. Second, if you are going to use this on a large dataset,
you want to do your data augmentation on a cloud instance rather than your



home computer, because if Google bans your IP, you won’t be able to use
Google Translate for normal use! Make sure that you send a few batches at a
time rather than the entire dataset at once. This should also allow you to restart
translation batches if there’s an error on the Google Translate backend as well.

Augmentation and torchtext

You might have noticed that everything I’ve said so far about augmentation
hasn’t involved torchtext. Sadly, there’s a reason for that. Unlike torchvision
or torchaudio, torchtext doesn’t offer a transform pipeline, which is a little
annoying. It does offer a way of performing pre- and post-processing, but this
operates only on the token (word) level, which is perhaps enough for synonym
replacement, but doesn’t provide enough control for something like back
translation. And if you do try to hijack the pipelines for augmentation, you
should probably do it in the preprocessing pipeline instead of the post-processing
one, as all you’ll see in that one is the tensor that consists of integers, which
you’ll have to map to words via the vocab rules.

For these reasons, I suggest not even bothering with spending your time trying to
twist torchtext into knots to do data augmentation. Instead, do the
augmentation outside PyTorch using techniques such as back translation to
generate new data and feed that into the model as if it were real data.

That’s augmentation covered, but there’s an elephant in the room that we should
address before wrapping up the chapter.

Transfer Learning?

You might be wondering why we haven’t talked about transfer learning yet.
After all, it’s a key technique that allows us to create accurate image-based
models, so why can’t we do that here? Well, it turns out that it has been a little
harder to get transfer learning working on LSTM networks. But not impossible.
We’ll return to the subject in Chapter 9, where you’ll see how to get transfer
learning working with both the LSTM- and Transformer-based networks.

Conclusion



In this chapter, we covered a text-processing pipeline that covers encoding and
embeddings, a simple LSTM-based neural network to perform classification,
along with some data augmentation strategies for text-based data. You have
plenty to experiment with so far. I’ve chosen to make every tweet lowercase
during the tokenization phase. This is a popular approach in NLP, but it does
throw away potential information in the tweet. Think about it: “Why is this NOT
WORKING?” to our eyes is even more suggestive of a negative sentiment than
“Why is this not working?” but we’ve thrown away that difference between the
two tweets before it even hits the model. So definitely try running with case
sensitivity left in the tokenized text. And try removing stop-words from your
input text to see whether that helps improve the accuracy. Traditional NLP
methods make a big point of removing them, but I’ve often found that deep
learning techniques can perform better when leaving them in the input (which
we’ve done in this chapter). This is because they provide more context for the
model to learn from, whereas sentences that have been reduced to only important
words may be missing nuances in the text.

You may also want to alter the size of the embedding vector. Larger vectors
mean that the embedding can capture more information about the word it’s
modeling at the cost of using more memory. Try going from 100- to 1,000-
dimensional embeddings and see how that affects training time and accuracy.

Finally, you can also play with the LSTM. We’ve used a simple approach, but
you can increase num_layers to create stacked LSTMs, increase or decrease the

number of hidden features in the layer, or set bidirectional=true to create a
biLSTM. Replacing the entire LSTM with a GRU layer would also be an
interesting thing to try; does it train faster? Is it more accurate? Experiment and
see what you find!

In the meantime, we move on from text and into the audio realm with
torchaudio.

Further Reading

e “Long Short-term Memory” by S. Hochreiter and J. Schmidhuber
(1997)


https://oreil.ly/WKcxO

e “Learning Phrase Representations Using RNN Encoder-Decoder for
Statistical Machine Translation” by Kyunghyun Cho et al. (2014)

e “Bidirectional LSTM-CRF Models for Sequence Tagging” by Zhiheng
Huang et al. (2015)

e “Attention Is All You Need” by Ashish Vaswani et al. (2017)

1 Note that it’s not impossible to do these things with CNNs; a lot of in-depth research in the last few
years has been done to apply CNN-based networks in the temporal domain. We won’t cover them
here, but “Temporal Convolutional Networks: A Unified Approach to Action Segmentation” by Colin
Lea, et al. (2016) provides further information. And seq2seq!

2 See “Efficient Estimation of Word Representations in Vector Space” by Tomas Mikolov et al.
(2013).

3 See “EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification
Tasks” by Jason W. Wei and Kai Zou (2019).


https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1608.08242
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1901.11196

Chapter 6. A Journey into Sound

One of the most successful applications of deep learning is something that we
carry around with us every day. Whether it’s Siri or Google Now, the engines
that power both systems and Amazon’s Alexa are neural networks. In this
chapter, we’ll take a look at PyTorch’s torchaudio library. You’ll learn how to
use it to construct a pipeline for classifying audio data with a convolutional-
based model. After that, I’ll suggest a different approach that will allow you to
use some of the tricks you learned for images and obtain good accuracy on the
ESC-50 audio dataset.

But first, let’s take a look at sound itself. What is it? How is it often represented
in data form, and does that provide us with any clues as to what type of neural
net we should use to gain insight from our data?

Sound

Sound is created via the vibration of air. All the sounds we hear are
combinations of high and low pressure that we often represent in a waveform,
like the one in Figure 6-1. In this image, the wave above the origin is high
pressure, and the part below is low pressure.
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Figure 6-1. Sine wave

Figure 6-2 shows a more complex waveform of a complete song.
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Figure 6-2. Song waveform

In digital sound, we sample this waveform many times a second, traditionally
44,100 for CD-quality sound, and store the amplitude values of the wave during
each sample point. At a time t, we have a single value stored. This is slightly
different from an image, which requires two values, x and y, to store a value (for
a grayscale image). If we use convolutional filters in our neural network, we
need a 1D filter rather than the 2D filters we were using for images.

Now that you know a little more about sound, let’s look at the dataset we use so
you can get a little more familiar with it.

The ESC-50 Dataset

The Environmental Sound Classification (ESC) dataset is a collection of field
recordings, each of which is 5 seconds long and assigned to one of 50 classes
(e.g., a dog barking, snoring, a knock on a door). We use this set for the rest of
the chapter to experiment with two ways of classifying audio, as well as to

explore using torchaudio to simplify loading and manipulating audio.

Obtaining the Dataset

The ESC-50 dataset is a set of WAV files. You can download it either by cloning
the Git repository:

git clone https://github.com/karoldvl/ESC-50


https://github.com/karoldvl/ESC-50

Or you can download the entire repo just by using curl:
curl https://github.com/karoldvl/ESC-50/archive/master.zip

All the WAV files are stored in the audio directory with filenames like this:
1-100032-A-0.wav

We care about the final number in the filename, because that tells us what class
this sound clip has been assigned to. The other parts of the filename don’t matter
to us but mostly relate to the larger Freesound dataset from which ESC-50 has
been drawn (with one exception that I’ll come back to shortly). If you’re
interested in finding out more, the README document in the ESC-50 repo goes
into further detail.

Now that we’ve downloaded the dataset, let’s look at some of the sounds it
contains.

Playing Audio in Jupyter

If you want to actually hear a sound from ESC-50, then instead of loading one of
the files into a standard music player such as iTunes, you can use Jupyter’s built-

in player for audio, IPython.display.Audio:

import as
display.Audio('ESC-50/audio/1-100032-A-0.wav")

The function will read in our WAV files and MP3 files. You can also generate
tensors, convert them into NumPy arrays, and play those directly. Play some of
the files in the ESC-50 directory to get a feel for the sounds available. Once
you’ve done that, we’ll explore the dataset in depth a little more.

Exploring ESC-50

When dealing with a new dataset, it’s always a good idea to get a feeling for the
shape of the data before you dive right into building models. In classification
tasks, for example, you’ll want to know whether your dataset actually contains



examples from all the possible classes, and ideally that all classes are present in
equal numbers. Let’s take a look at how ESC-50 breaks down.

NOTE

If your dataset has an unbalanced amount of data, a simple solution is to randomly duplicate
the smaller class examples until you have increased them to the number of the other classes.
Although this feels like fake accounting, it’s surprisingly effective (and cheap!) in practice.

We know that the final set of digits in each filename describes the class it
belongs to, so what we need to do is grab a list of the files and count up the
occurrences of each class:

import
from import Counter

esc50_list = [f.split("-")[-1].replace(".wav","")
for f in
glob.glob("ESC-50/audio/*.wav")]
Counter(esc50_list)

First, we build up a list of our ESC-50 filenames. Because we care about only
the class number at the end of the filename, we chop off the .wav extension and

split the filename on the - separator. We finally take the last element in that split
string. If you inspect esc50_1ist, you’ll get a bunch of strings that range from 0
to 49. We could write more code that builds a dict and counts all the
occurrences for us, but I’'m lazy, so I’'m using a Python convenience function,
Counter, that does all that for us.

Here’s the output!

Counter({'15': 40,

'22"': 40,
'36': 40,
'44': 40,
'23": 40,
'31': 40,
'9': 40,

'13': 40,

'4': 40,



'3': 40,
'27': 40,
-})

We have one of those rare things, a perfectly balanced dataset. Let’s break out
the champagne and install a few more libraries that we’re going to need shortly.

SoX and LIbROSA

Most of the audio processing that torchaudio carries out relies on two other
pieces of software: SoX and LibROSA. LibROSA is a Python library for audio
analysis, including generating mel spectrograms (You’ll see what these are a
little later in the chapter), detecting beats, and even generating music.

SoX, on the other hand, is a program that you might already be familiar with if
you’ve been using Linux for years. In fact, SoX is so old that it predates Linux
itself; its first release was in July 1991, compared to the Linux debut in
September 1991. I remember using it back in 1997 to convert WAV files into
MP3s on my first ever Linux box. But it’s still useful!t

If you’re installing torchaudio via conda, you can skip to the next section. If

you’re using pip, you’ll probably need to install SoX itself. For a Red Hat-based
system, enter the following:

yum install sox
Or on a Debian-based system, you’ll use this:

apt intall sox

Once SoX is installed, you can move on to obtaining torchaudio itself.
torchaudio
Installing torchaudio can be performed with either conda or pip:

conda install -c derickl torchaudio
pip install torchaudio


https://github.com/librosa/librosa

In comparison with torchvision, torchaudio is similar to torchtext in that
it’s not quite as well loved, maintained, or documented. I’d expect this to change
in the near future as PyTorch gets more popular and better text and audio
handling pipelines are created. Still, torchaudio is plenty for our needs; we just
have to write some custom dataloaders (which we didn’t have to do for audio or
text processing).

Anyhow, the core of torchaudio is found within load() and save(). We’re
concerned only with load() in this chapter, but you’ll need to use save() if
you’re generating new audio from your input (e.g., a text-to-speech model).
load() takes a file specified in filepath and returns a tensor representation of
the audio file and the sample rate of that audio file as a separate variable.

We now have the means for loading one of the WAV files from the ESC-50
dataset and turning it into a tensor. Unlike our earlier work with text and images,
we need to write a bit more code before we can get on with creating and training
a model. We need to write a custom dataset.

Building an ESC-50 Dataset

We’ve talked about datasets in Chapter 2, but torchvision and torchtext did
all the heavy lifting for us, so we didn’t have to worry too much about the
details. As you may remember, a custom dataset has to implement two class
methods, __getitem__and __len__, so that the data loader can get a batch of
tensors and their labels, as well as a total count of tensors in the dataset. We also
have an __1init__ method for setting up things like file paths that’ll be used over
and over again.

Here’s our first pass at the ESC-50 dataset:

class ESC50(Dataset):

def __init__(self,path):
# Get directory listing from path
files = Path(path).glob('*.wav"')
# Iterate through the listing and create a list of tuples (filename, label)
self.items = [(f,int(f.name.split("-")[-1]
.replace(".wav",""))) for f in files]
self.length = len(self.items)



def __ getitem__(self, index):
filename, label = self.items[index]
audio_tensor, sample_rate = torchaudio.load(filename)
return audio_tensor, label

def __len_ (self):
return self.length

The majority of the work in the class happens when a new instance of it is
created. The __init__ method takes the path parameter, finds all the WAV files
inside that path, and then produces tuples of (filename, label) by using the
same string split we used earlier in the chapter to get the label of that audio
sample. When PyTorch requests an item from the dataset, we index into the
items list, use torchaudio. load to make torchaudio load in the audio file,
turn it into a tensor, and then return both the tensor and the label.

And that’s enough for us to start with. For a sanity check, let’s create an ESC50
object and extract the first item:

test_esc50 = ESC50(PATH_TO_ESC50)
tensor, label = list(test_esc50)[0]

tensor
tensor([-0.0128, -0.0131, -0.0143, ..., 0.0000, 0.0000, 0.0000])

tensor.shape
torch.Size([220500])

label
l15l

We can construct a data loader by using standard PyTorch constructs:

example_loader = torch.utils.data.Dataloader(test_esc50, batch_size = 64,
shuffle = True)

But before we do that, we have to go back to our data. As you might remember,
we should always create training, validation, and test sets. At the moment, we
have just one directory with all the data, which is no good for our purposes. A
60/20/20 split of data into training, validation, and test collections should suffice.
Now, we could do this by taking random samples of our entire dataset (taking



care to sample without replacement and making sure that our newly constructed
datasets are still balanced), but again the ESC-50 dataset saves us from having to
do much work. The compilers of the dataset separated the data into five equal
balanced folds, indicated by the first digit in the filename. We’ll have folds
1,2,3 be the training set, 4 the validation set, and 5 the test set. But feel free to
mix it up if you don’t want to be boring and consecutive! Move each of the folds
to test, train, and validation directories:

mv 1* .. /train
mv 2* .. /train
mv 3* .. /train
mv 4% .. /valid
mv 5% ,./test

Now we can create the individual datasets and loaders:

from import Path

bs=64

PATH_TO_ESC50 = Path.cwd() / 'esc50'
path = 'test.md'

test

ESC50(PATH_TO_ESC50 / "train")
ESC50(PATH_TO_ESC50 / "valid")

train_esc50
valid_esc50

test_esc50 ESC50(PATH_TO_ESC50 / "test")

train_loader = torch.utils.data.Dataloader(train_esc50, batch_size = bs,
shuffle = True)

valid_loader = torch.utils.data.DatalLoader(valid_esc50, batch_size = bs,

shuffle = True)
test_loader = torch.utils.data.DatalLoader(test_esc50, batch_size = bs,
shuffle = True)

We have our data all set up, so we’re all ready to look at a classification model.

A CNN Model for ESC-50

For our first attempt at classifying sounds, we build a model that borrows
heavily from a paper called “Very Deep Convolutional Networks For Raw
Waveforms.”? You’ll see that it uses a lot of our building blocks from Chapter 3,



but instead of using 2D layers, we’re using 1D variants, as we have one fewer
dimension in our audio input:

class AudioNet(nn.Module):
def __init__(self):

super (AudioNet, self). _init_ ()
self.convl = nn.Convid(1, 128, 80, 4)
self.bnl = nn.BatchNorm1d(128)
self.pooll = nn.MaxPool1d(4)
self.conv2 = nn.Conv1d(128, 128, 3)
self.bn2 = nn.BatchNorm1d(128)
self.pool2 = nn.MaxPool1d(4)
self.conv3 = nn.Conv1d(128, 256, 3)
self.bn3 = nn.BatchNorm1d(256)
self.pool3 = nn.MaxPool1d(4)
self.conv4 = nn.Convild(256, 512, 3)
self.bn4 = nn.BatchNormid(512)
self.pool4 = nn.MaxPool1d(4)
self.avgPool = nn.AvgPool1d(30)
self.fcl = nn.Linear(512, 10)

def forward(self, x):

= self.conv1(x)

= F.relu(self.bn1(x))
= self.pool1(x)

= self.conv2(x)

= F.relu(self.bn2(x))
= self.pool2(x)

= self.conv3(x)
F.relu(self.bn3(x))
= self.pool3(x)

= self.conv4(x)

= F.relu(self.bn4(x))
= self.pool4d(x)

= self.avgPool(x)

= X.permute(0, 2, 1)
= self.fcl(x)

return F.log_softmax(x, dim = 2)

X X X X X X X X X X X X X X X
1l

We also need an optimizer and a loss function. For the optimizer, we use Adam
as before, but what loss function do you think we should use? (If you answered

CrossEntropyloss, give yourself a gold star!)

audio_net = AudioNet()
audio_net.to(device)



Having created our model, we save our weights and use the find_lr () function
from Chapter 4:

audio_net.save("audionet.pth")

import as

optimizer = optim.Adam(audionet.parameters(), lr=0.001)
logs,losses = find_lr(audio_net, nn.CrossEntropylLoss(), optimizer)
plt.plot(logs,losses)

From the plot in Figure 6-3, we determine that the appropriate learning rate is
around le-5 (based on where the descent looks steepest). We set that to be our
learning rate and reload our model’s initial weights:

60

40

106 105  1e0-4 1203 102  le0-1

Learning rate

Figure 6-3. AudioNet learning rate plot

1r = le-5
model.load("audionet.pth")
import as

optimizer = optim.Adam(audionet.parameters(), lr=1r)
We train the model for 20 epochs:

train(audio_net, optimizer, torch.nn.CrossEntropyLoss(),
train_data_loader, valid_data_loader, epochs=20)

After training, you should find that the model attains around 13%-17% accuracy
on our dataset. That’s better than the 2% we could expect if we were just picking
one of the 50 classes at random. But perhaps we can do better; let’s investigate a
different way of looking at our audio data that may yield better results.



This Frequency Is My Universe

If you look back at the GitHub page for ESC-50, you’ll see a leaderboard of
network architectures and their accuracy scores. You’ll notice that in
comparison, we’re not doing great. We could extend the model we’ve created to
be deeper, and that would likely increase our accuracy a little, but for a real
increase in performance, we need to switch domains. In audio processing, you
can work on the pure waveform as we’ve been doing; but most of the time,
you’ll work in the frequency domain. This different representation transforms the
raw waveform into a view that shows all of the frequencies of sound at a given
point in time. This is perhaps a more information-rich representation to present
to a neural network, as it’ll be able to work on those frequencies directly, rather
than having to work out how to map the raw waveform signal into something the
model can use.

Let’s look at how to generate frequency spectrograms with LibROSA.

Mel Spectrograms

Traditionally, getting into the frequency domain requires applying the Fourier
transform on the audio signal. We’re going to go beyond that a little by
generating our spectrograms in the mel scale. The mel scale defines a scale of
pitches that are equal in distance from another, where 1000 mels = 1000 Hz.
This scale is commonly used in audio processing, especially in speech
recognition and classification applications. Producing a mel spectrogram with
LibROSA requires two lines of code:

sample_data, sr = librosa.load("ESC-50/train/1-100032-A-0.wav", sr=None)
spectrogram = librosa.feature.melspectrogram(sample_data, sr=sr)

This results in a NumPy array containing the spectrogram data. If we display this
spectrogram as shown in Figure 6-4, we can see the frequencies in our sound:

librosa.display.specshow(spectrogram, sr=sr, x_axis='time', y_axis='mel')
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Figure 6-4. Mel spectrogram

However, not a lot of information is present in the image. We can do better! If
we convert the spectrogram to a logarithmic scale, we can see a lot more of the
audio’s structure, due to the scale being able to represent a wider range of values.
And this is common enough in audio procressing that LibROSA includes a
method for it:

log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)

This computes a scaling factor of 10 * logl0(spectrogram / ref). ref
defaults to 1.0, but here we’re passing in np.max() so that spectrogram / ref
will fall within the range of [0,1]. Figure 6-5 shows the new spectrogram.
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Figure 6-5. Log mel spectrogram



We now have a log-scaled mel spectrogram! If you call
log_spectrogram.shape, you’ll see it’s a 2D tensor, which makes sense
because we’ve plotted images with the tensor. We could create a new neural
network architecture and feed this new data into it, but I have a diabolical trick
up my sleeve. We literally just generated images of the spectrogram data. Why
don’t we work on those instead?

This might seem silly at first; after all, we have the underlying spectrogram data,
and that’s more exact than the image representation (to our eyes, knowing that a
data point is 58 rather than 60 means more to us than a different shade of, say,
purple). And if we were starting from scratch, that’d definitely be the case. But!
We have, just lying around the place, already-trained networks such as ResNet
and Inception that we know are amazing at recognizing structure and other parts
of images. We can construct image representations of our audio and use a
pretrained network to make big jumps in accuracy with very little training by
using the super power of transfer learning once again. This could be useful with
our dataset, as we don’t have a lot of examples (only 2,000!) to train our
network.

This trick can be employed across many disparate datasets. If you can find a way
of cheaply turning your data into an image representation, it’s worth doing that
and throwing a ResNet network against it to get a baseline of what transfer
learning can do for you, so you know what you have to beat by using a different
approach. Armed with this, let’s create a new dataset that will generate these
images for us on demand.

A New Dataset

Now throw away the original ESC50 dataset class and build a new one,
ESC50Spectrogram. Although this will share some code with the older class,

quite a lot more is going on in the __get_1item__ method in this version. We
generate the spectrogram by using LibROSA, and then we do some fancy

matplotlib footwork to get the data into a NumPy array. We apply the array to
our transformation pipeline (which just uses ToTensor) and return that and the
item’s label. Here’s the code:

class ESC50Spectrogram(Dataset):



def __init__(self,path):
files = Path(path).glob('*.wav")
self.items = [(f,int(f.name.split("-")[-1].replace(".wav","")))
for f in files]
self.length = len(self.items)
self.transforms = torchvision.transforms.Compose(
[torchvision.transforms.ToTensor()])

def __ getitem__(self, index):
filename, label = self.items[index]
audio_tensor, sample_rate = librosa.load(filename, sr=None)

spectrogram = librosa.feature.melspectrogram(audio_tensor, sr=sample_rate)

log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)

librosa.display.specshow(log_spectrogram, sr=sample_rate,
x_axis="'time', y_axis='mel')

plt.gcf().canvas.draw()

audio_data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)

audio_data = audio_data.reshape(fig.canvas.get_width_height()[::-1] + (3,))

return (self.transforms(audio_data), label)

def __len_ (self):
return self.length

We’re not going to spend too much time on this version of the dataset because it
has a large flaw, which I demonstrate with Python’s process_time() method:

oldESC50 = ESC50("ESC-50/train/")
start_time = time.process_time()
oldESC50.__getitem__(33)

end_time = time.process_time()
old_time = end_time - start_time

newESC50 = ESC50Spectrogram("ESC-50/train/")
start_time = time.process_time()
newESC50.__getitem__ (33)

end_time = time.process_time()

new_time = end_time - start_time

0.004786839000075815
0.39544327499993415

old_time
new_time

The new dataset is almost one hundred times slower than our original one that
just returned the raw audio! That will make training incredibly slow, and may

even negate any of the benefits we could get from using transfer learning.



We can use a couple of tricks to get around most of our troubles here. The first
approach would be to add a cache to store the generated spectrogram in memory,
so we don’t have to regenerate it every time the __getitem__ method is called.
Using Python’s functools package, we can do this easily:

import

class ESC50Spectrogram(Dataset):
#skipping init code

.lru_cache(maxsize=<size of dataset>)
def __ getitem__(self, index):

Provided you have enough memory to store the entire contents of the dataset into
RAM, this may be good enough. We’ve set up a least recently used (LRU) cache
that will keep the contents in memory for as long as possible, with indices that
haven’t been accessed recently being the first for ejection from the cache when
memory gets tight. However, if you don’t have enough memory to store
everything, you’ll hit slowdowns on every batch iteration as ejected
spectrograms need to be regenerated.

My preferred approach is to precompute all the possible plots and then create a
new custom dataset class that loads these images from the disk. (You can even
add the LRU cache annotation as well for further speed-up.)

We don’t need to do anything fancy for precomputing, just a method that saves
the plots into the same directory it’s traversing:

def precompute_spectrograms(path, dpi=50):

files = Path(path).glob('*.wav"')

for filename in files:
audio_tensor, sample_rate = librosa.load(filename, sr=None)
spectrogram = librosa.feature.melspectrogram(audio_tensor, sr=sr)
log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
librosa.display.specshow(log_spectrogram, sr=sr, x_axis='time',

y_axis="mel")
plt.gcf().savefig("{}{}_{}.png".format(filename.parent,dpi,
filename.name),dpi=dpi)

This method is simpler than our previous dataset because we can use
matplotlib’s savefig method to save a plot directly to disk rather than having



to mess around with NumPy. We also provide an additional input parameter, dpti,
which allows us to control the quality of the generated output. Run this on all the

train, test, and valid paths that we have already set up (it will likely take a
couple of hours to get through all the images).

All we need now is a new dataset that reads these images. We can’t use the

standard ImageDatalLoader from Chapters 2—4, as the PNG filename scheme
doesn’t match the directory structure that it uses. But no matter, we can just open
an image by using the Python Imaging Library:

from import Image

class PrecomputedESC50(Dataset):
def __init__(self,path,dpi=50, transforms=None):
files = Path(path).glob('{}*.wav.png'.format(dpi))
self.items = [(f,int(f.name.split("-")[-1]
.replace(".wav.png",""))) for f in files]
self.length = len(self.items)
if transforms=None:
self.transforms =
torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
else:
self.transforms = transforms

def __ getitem__(self, index):
filename, label = self.items[index]
img = Image.open(filename)
return (self.transforms(img), label)

def __len_ (self):
return self.length

This code is much simpler, and hopefully that’s also reflected in the time it takes
to get an entry from the dataset:

start_time = time.process_time()
b.__getitem__(33)

end_time = time.process_time()
end_time - start_time

>> 0.0031465259999094997

Obtaining an element from this dataset takes roughly the same time as in our
original audio-based one, so we won’t be losing anything by moving to our



image-based approach, except for the one-time cost of precomputing all the
images before creating the database. We’ve also supplied a default transform
pipeline that turns an image into a tensor, but it can be swapped out for a
different pipeline during initialization. Armed with these optimizations, we can
start to apply transfer learning to the problem.

A Wild ResNet Appears

As you may remember from Chapter 4, transfer learning requires that we take a
model that has already been trained on a particular dataset (in the case of images,
likely ImageNet), and then fine-tune it on our particular data domain, the ESC-
50 dataset that we’re turning into spectrogram images. You might be wondering
whether a model that is trained on normal photographs is of any use to us. It
turns out that the pretrained models do learn a lot of structure that can be applied
to domains that at first glance might seem wildly different. Here’s our code from
Chapter 4 that initializes a model:

from import models
spec_resnet = models.ResNet50(pretrained=True)

for param in spec_resnet.parameters():
param.requires_grad = False

spec_resnet.fc = nn.Sequential(nn.Linear(spec_resnet.fc.in_features,b500),
nn.RelLU(),
nn.Dropout(), nn.Linear(500,50))

This initializes us with a pretrained (and frozen) ResNet50 model and swaps out
the head of the model for an untrained Sequential module that ends with a
Linear with an output of 50, one for each of the classes in the ESC-50 dataset.
We also need to create a DatalLoader that takes our precomputed spectrograms.
When we create our ESC-50 dataset, we’ll also want to normalize the incoming
images with the standard ImageNet standard deviation and mean, as that’s what
the pretrained ResNet-50 architecture was trained with. We can do that by
passing in a new pipeline:

esc50pre_train = PreparedESC50(PATH, transforms=torchvision.transforms
.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize



(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.2251)1))

esc50pre_valid = PreparedESC50(PATH, transforms=torchvision.transforms
.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize

(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.2251D1))

(esc50pre_train, bs, shuffle=True)
(esc50pre_valid, bs, shuffle=True)

esc50_train_loader
esc50_valid_loader

With our data loaders set up, we can move on to finding a learning rate and get
ready to train.

Finding a Learning Rate

We need to find a learning rate to use in our model. As in Chapter 4, we’ll save
the model’s initial parameters and use our find_1lr() function to find a decent
learning rate for training. Figure 6-6 shows the plot of the losses against the
learning rate.

spec_resnet.save("spec_resnet.pth")

loss_fn = nn.CrossEntropylLoss()

optimizer = optim.Adam(spec_resnet.parameters(), lr=1r)
logs,losses = find_lr(spec_resnet, loss_fn, optimizer)
plt.plot(logs, losses)
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Figure 6-6. A SpecResNet learning rate plot

Looking at the graph of the learning rate plotted against loss, it seems like 1e-2



is a good place to start. As our ResNet-50 model is somewhat deeper than our
previous one, we’re also going to use differential learning rates of [1e-2,1e-
4,1e-8], with the highest learning rate applied to our classifier (as it requires the
most training!) and slower rates for the already-trained backbone. Again, we use
Adam as our optimizer, but feel free to experiment with the others available.

Before we apply those differential rates, though, we train for a few epochs that
update only the classifier, as we froze the ResNet-50 backbone when we created
our network:

optimizer = optim.Adam(spec_resnet.parameters(), lr=[le-2,1e-4,1e-8])

train(spec_resnet, optimizer, nn.CrossEntropyLoss(),
esc50_train_loader, esc50_val_loader,epochs=5,device="cuda")

We now unfreeze the backbone and apply our differential rates:

for param in spec_resnet.parameters():
param.requires_grad = True

optimizer = optim.Adam(spec_resnet.parameters(), lr=[le-2,1e-4,1e-8])

train(spec_resnet, optimizer, nn.CrossEntropyLoss(),
esc50_train_loader, esc50 val_loader,epochs=20,device="cuda")

> Epoch 19, accuracy = 0.80

As you can see, with a validation accuracy of around 80%, we’re already vastly
outperforming our original AudioNet model. The power of transfer learning
strikes again! Feel free to train for more epochs to see if your accuracy continues
to improve. If we look at the ESC-50 leaderboard, we’re closing in on human-
level accuracy. And that’s just with ResNet-50. You could try with ResNet-101
and perhaps an ensemble of different architectures to push the score up even
higher.

And there’s data augmentation to consider. Let’s take a look at a few ways of
doing that in both domains that we’ve been working in so far.

Audio Data Augmentation



When we were looking at images in Chapter 4, we saw that we could improve
the accuracy of our classifier by making changes to our incoming pictures. By
flipping them, cropping them, or applying other transformations, we made our
neural network work harder in the training phase and obtained a more
generalized model at the end of it, one that was not simply fitting to the data
presented (the scourge of overfitting, don’t forget). Can we do the same here?
Yes! In fact, there are two approaches that we can use—one obvious approach
that works on the original audio waveform, and a perhaps less-obvious idea that
arises from our decision to use a ResNet-based classifier on images of mel
spectrograms. Let’s take a look at audio transforms first.

torchaudio Transforms

In a similar manner to torchvision, torchaudio includes a transforms
module that perform transformations on incoming data. However, the number of
transformations offered is somewhat sparse, especially compared to the plethora
that we get when we’re working with images. If you’re interested, have a look at
the documentation for a full list, but the only one we look at here is
torchaudio. transforms.PadTrim. In the ESC-50 dataset, we are fortunate in
that every audio clip is the same length. That isn’t something that happens in the
real world, but our neural networks like (and sometimes insist on, depending on
how they’re constructed) input data to be regular. PadTrim will take an incoming
audio tensor and either pad it out to the required length, or trim it down so it
doesn’t exceed that length. If we wanted to trim down a clip to a new length,
we’d use PadTrim like this:

audio_tensor, rate = torchaudio.load("test.wav")
audio_tensor.shape
trimmed_tensor = torchaudio.transforms.PadTrim(max_len=1000)(audio_orig)

However, if you’re looking for augmentation that actually changes how the
audio sounds (e.g., adding an echo, noise, or changing the tempo of the clip),

then the torchaudio. transforms module is of no use to you. Instead, we need
to use SoX.

SoX Effect Chains
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Why it’s not part of the transforms module, I’m really not sure, but
torchaudio.sox_effects.SoxEffectsChain allows you to create a chain of
one or more SoX effects and apply those to an input file. The interface is a bit
fiddly, so let’s see it in action in a new version of the dataset that changes the
pitch of the audio file:

class ESC50WithPitchChange(Dataset):

def __init__(self,path):
# Get directory listing from path
files = Path(path).glob('*.wav"')
# Iterate through the listing and create a list of tuples (filename, label)
self.items = [(f,f.name.split("-")[-1].replace(".wav","")) for f in files]
self.length = len(self.items)
self.E = torchaudio.sox_effects.SoxEffectsChain()
self.E.append_effect_to_chain("pitch", [0.5])

def __ getitem__(self, index):
filename, label = self.items[index]
self.E.set_input_file(filename)
audio_tensor, sample_rate = self.E.sox_build_flow_effects()
return audio_tensor, label

def __len_ (self):
return self.length

In our __init__ method, we create a new instance variable, E, a
SoxEffectsChain, that will contain all the effects that we want to apply to our
audio data. We then add a new effect by using append_effect_to_chain,
which takes a string indicating the name of the effect, and an array of parameters
to send to sox. You can get a list of available effects by calling

torchaudio.sox_effects.effect_names(). If we were to add another effect,
it would take place after the pitch effect we have already set up, so if you want to
create a list of separate effects and randomly apply them, you’ll need to create
separate chains for each one.

When it comes to selecting an item to return to the data loader, things are a little
different. Instead of using torchaudio.load(), we refer to our effects chain and
point it to the file by using set_input_f1ile. But note that this doesn’t load the
file! Instead, we have to use sox_build_flow_effects(), which kicks off SoX
in the background, applies the effects in the chain, and returns the tensor and



sample rate information we would have otherwise obtained from load().

The number of things that SoX can do is pretty staggering, and I won’t go into
more detail on all the possible effects you could use. I suggest having a look at
the SoX documentation in conjunction with list_effects() to see the
possibilities.

These transformations allow us to alter the original audio, but we’ve spent quite
a bit of this chapter building up a processing pipeline that works on images of
mel spectrograms. We could do what we did to generate the initial dataset for
that pipeline, by creating altered audio samples and then creating the
spectrograms from them, but at that point we’re creating an awful lot of data that
we will need to mix together at run-time. Thankfully, we can do some
transformations on the spectrograms themselves.

SpecAugment

Now, you might be thinking at this point: “Wait, these spectrograms are just
images! We can use any image transform we want on them!” And yes! Gold star
for you in the back. But we do have to be a little careful; it’s possible, for
example, that a random crop may cut out enough frequencies that it potentially
changes the output class. This is much less of an issue in our ESC-50 dataset, but
if you were doing something like speech recognition, that would definitely be
something you’d have to consider when applying augmentations. Another
intriguing possibility is that because we know that all the spectrograms have the
same structure (they’re always going to be a frequency graph!), we could create
image-based transforms that work specifically around that structure.

In 2019, Google released a paper on SpecAugment,® which reported new state-
of-the-art results on many audio datasets. The team obtained these results by
using three new data augmentation techniques that they applied directly to a mel
spectrogram: time warping, frequency masking, and time masking. We won’t
look at time warping because the benefit derived from it is small, but we’ll
implement custom transforms for masking time and frequency.

Frequency masking

Frequency masking randomly removes a frequency or set of frequencies from
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our audio input. This attempts to make the model work harder; it cannot simply
memorize an input and its class, because the input will have different frequencies
masked during each batch. The model will instead have to learn other features
that can determine how to map the input to a class, which hopefully should result
in a more accurate model.

In our mel spectrograms, this is shown by making sure that nothing appears in
the spectrograph for that frequency at any time step. Figure 6-7 shows what this
looks like: essentially, a blank line drawn across a natural spectrogram.

Here’s the code for a custom Transform that implements frequency masking:

class FrequencyMask(object):

nun

Example:

nun

def

def

def

>>> transforms.Compose([

>>> transforms.ToTensor(),

>>> FrequencyMask(max_width=10, use_mean=False),
>>> 1)

__init__(self, max_width, use_mean=True):
self.max_width = max_width
self.use_mean = use_mean

__call__(self, tensor):

Args:
tensor (Tensor): Tensor image of
size (C, H, W) where the frequency
mask is to be applied.

Returns:

Tensor: Transformed image with Frequency Mask.
start = random.randrange(0, tensor.shape[2])
end = start + random.randrange(1, self.max_width)
if self.use_mean:

tensor[:, start:end, :] = tensor.mean()
else:

tensor[:, start:end, :]
return tensor

0

__repr__(self):
format_string = self.__class__.__name__ + "(max_width=

"



format_string += str(self.max_width) + ")"
format_string += 'use_mean=' + (str(self.use_mean) + ')')

return format_string

When the transform is applied, PyTorch will call the __call__ method with the
tensor representation of the image (so we need to place it in a Compose chain
after the image has been converted to a tensor, not before). We’re assuming that
the tensor will be in channels x height x width format, and we want to set the
height values in a small range, to either zero or the mean of the image (because
we’re using log mel spectrograms, the mean should be the same as zero, but we
include both options so you can experiment to see if one works better than the
other). The range is provided by the max_width parameter, and our resulting
pixel mask will be between 1 and max_pixels wide. We also need to pick a
random starting point for the mask, which is what the start variable is for.
Finally, the complicated part of this transform—we apply our generated mask:

tensor[:, start:end, :] = tensor.mean()

This isn’t quite so bad when we break it down. Our tensor has three dimensions,
but we want to apply this transform across all the red, green, and blue channels,
so we use the bare : to select everything in that dimension. Using start:end,
we select our height range, and then we select everything in the width channel,
as we want to apply our mask across every time step. And then on the righthand
side of the expression, we set the value; in this case, tensor.mean(). If we take
a random tensor from the ESC-50 dataset and apply the transform to it, we can
see in Figure 6-7 that this class is creating the required mask.

torchvision.transforms.Compose([FrequencyMask(max_width=10, use_mean=False),
torchvision.transforms.ToPILImage()])(torch.rand(3,250,200))




Figure 6-7. Frequency mask applied to a random ESC-50 sample

Next we’ll turn our attention to time masking.

Time masking

With our frequency mask complete, we can turn to the time mask, which does the
same as the frequency mask, but in the time domain. The code here is mostly the
same:

class TimeMask(object):

nun

Example:
>>> transforms.Compose([
>>> transforms.ToTensor(),
>>> TimeMask(max_width=10, use_mean=False),
>>> 1)

nun

def __init__(self, max_width, use_mean=True):
self.max_width = max_width
self.use_mean = use_mean

def __call__(self, tensor):
Args:
tensor (Tensor): Tensor image of
size (C, H, W) where the time mask
is to be applied.

Returns:

Tensor: Transformed image with Time Mask.
start = random.randrange(0, tensor.shape[1])
end = start + random.randrange(0, self.max_width)
if self.use_mean:

tensor[:, :, start:end] = tensor.mean()
else:

tensor[:, :, start:end]
return tensor

0

def __repr__(self):
format_string = self.__class__.__name__ + "(max_width="
format_string += str(self.max_width) + ")"
format_string += 'use_mean=' + (str(self.use_mean) + ')')
return format_string



As you can see, this class is similar to the frequency mask. The only difference is
that our start variable now ranges at some point on the height axis, and when
we’re doing our masking, we do this:

tensor[:, :, start:end] = 0

This indicates that we select all the values of the first two dimensions of our
tensor and the start:end range in the last dimension. And again, we can apply
this to a random tensor from ESC-50 to see that the mask is being applied
correctly, as shown in Figure 6-8.

torchvision.transforms.Compose([TimeMask(max_width=10, use mean=False),
torchvision.transforms.ToPILImage()])(torch.rand(3,250,200))

Figure 6-8. Time mask applied to a random ESC-50 sample

To finish our augmentation, we create a new wrapper transformation that ensures
that one or both of the masks is applied to a spectrogram image:

class PrecomputedTransformESC50(Dataset):
def __init__(self,path,dpi=50):
files = Path(path).glob('{}*.wav.png'.format(dpi))
self.items = [(f,f.name.split("-")[-1].replace(".wav.png",""))
for f in files]
self.length = len(self.items)
self.transforms = transforms.Compose([
transforms.ToTensor(),
RandomApply([FrequencyMask(self.max_fregmask_width)]p=0.5),
RandomApply([TimeMask(self.max_timemask_width)]p=0.5)
D

def __ getitem__(self, index):
filename, label = self.items[index]
img = Image.open(filename)
return (self.transforms(img), label)



def __len__(self):
return self.length

Try rerunning the training loop with this data augmentation and see if you, like
Google, achieve better accuracy with these masks. But maybe there’s still more
that we can try with this dataset?

Further Experiments

So far, we’ve created two neural networks—one based on the raw audio
waveform, and the other based on the images of mel spectrograms—to classify
sounds from the ESC-50 dataset. Although you’ve seen that the ResNet-powered
model is more accurate using the power of transfer learning, it would be an
interesting experiment to create a combination of the two networks to see
whether that increases or decreases the accuracy. A simple way of doing this
would be to revisit the ensembling approach from Chapter 4: just combine and
average the predictions. Also, we skipped over the idea of building a network
based on the raw data we were getting from the spectrograms. If a model is
created that works on that data, does it help overall accuracy if it is introduced to
the ensemble? We can also use other versions of ResNet, or we could create new
architectures that use different pretrained models such as VGG or Inception as a
backbone. Explore some of these options and see what happens; in my
experiments, SpecAugment improves ESC-50 classification accuracy by around
2%.

Conclusion

In this chapter, we used two very different strategies for audio classification,
took a brief tour of PyTorch’s torchaudio library, and saw how to precompute
transformations on datasets when doing transformations on the fly would have a
severe impact on training time. We discussed two approaches to data
augmentation. As an unexpected bonus, we again stepped through how to train
an image-based model by using transfer learning to quickly generate a classifier
with decent accuracy compared to the others on the ESC-50 leaderboard.



This wraps up our tour through images, test, and audio, though we return to all
three in Chapter 9 when we look at some applications that use PyTorch. Next up,
though, we look at how to debug models when they’re not training quite right or
fast enough.

Further Reading

e “Interpreting and Explaining Deep Neural Networks for Classification
of Audio Signals” by Séren Becker et al. (2018)

e “CNN Architectures for Large-Scale Audio Classification” by Shawn
Hershey et al. (2016)

1 Understanding all of what SoX can do is beyond the scope of this book, and won’t be necessary for
what we’re going to be doing in the rest of this chapter.

2 See “Very Deep Convolutional Neural Networks for Raw Waveforms” by Wei Dai et al. (2016).

3 See “SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition” by
Daniel S. Park et al. (2019).


https://arxiv.org/abs/1807.03418
https://arxiv.org/abs/1609.09430v2
http://sox.sourceforge.net
https://arxiv.org/pdf/1610.00087.pdf
https://arxiv.org/abs/1904.08779

Chapter 7. Debugging PyTorch
Models

We’ve created a lot of models so far in this book, but in this chapter, we have a
brief look at interpreting them and working out what’s going on underneath the
covers. We take a look at using class activation mapping with PyTorch hooks to
determine the focus of a model’s decision about how to connect PyTorch to
Google’s TensorBoard for debugging purposes. I show how to use flame graphs
to identify the bottlenecks in transforms and training pipelines, as well as
provide a worked example of speeding up a slow transformation. Finally, we
look at how to trade compute for memory when working with larger models
using checkpointing. First, though, a brief word about your data.

It's 3 a.m. What Is Your Data Doing?

Before we delve into all the shiny things like TensorBoard or gradient
checkpointing to use massive models on a single GPU, ask yourself this: do you
understand your data? If you’re classifying inputs, do you have a balanced
sample across all the available labels? In the training, validation, and test sets?

And furthermore, are you sure your labels are right? Important image-based
datasets such as MNIST and CIFAR-10 (Canadian Institute for Advanced
Research) are known to contain some incorrect labels. You should check yours,
especially if categories are similar to one another, like dog breeds or plant
varieties. Simply doing a sanity check of your data may end up saving a lot of
time if you discover that, say, one category of labels has only tiny images,
whereas all the others have large-resolution examples.

Once you’ve made sure your data is in good condition, then yes, let’s head over
to TensorBoard to start checking out some possible issues in your model.

TensorBoard



TensorBoard is a web application designed for visualizing various aspects of
neural networks. It allows for easy, real-time viewing of statistics such as
accuracy, losses activation values, and really anything you want to send across
the wire. Although it was written with TensorFlow in mind, it has such an
agnostic and fairly straightforward API that working with it in PyTorch is not
that different from how you’d use it in TensorFlow. Let’s install it and see how
we can use it to gain some insights about our models.

NOTE

When reading up on PyTorch, you’ll likely come across references to an application called
Visdom, which is Facebook’s alternative to TensorBoard. Before PyTorch v1.1, the way to
support visualizations was to use Visdom with PyTorch while third-party libraries such as
tensorboardX were available to integrate with TensorBoard. While Visdom continues be
maintained, the inclusion of an official TensorBoard integration in v1.1 and above suggests
that the developers of PyTorch have recognized that TensorBoard is the de facto neural net
visualizer tool.

Installing TensorBoard

Installing TensorBoard can be done with either pip or conda:

pip install tensorboard
conda install tensorboard

NOTE

PyTorch requires v1.14 or above of TensorBoard.

TensorBoard can then be started on the command line:
tensorboard --logdir=runs

You can then go to http://[your-machine]:6006, where you’ll see the welcome
screen shown in Figure 7-1. We can now send data to the application.
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Figure 7-1. TensorBoard

Sending Data to TensorBoard

The module for using TensorBoard with PyTorch is located in
torch.utils.tensorboard:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
writer.add_scalar('example', 3)

We use the SummaryWriter class to talk to TensorBoard using the standard
location for logging output, ./runs, and we can send a scalar by using

add_scalar with a tag. Because SummaryWriter works asynchronously, it may
take a moment, but you should see TensorBoard update as shown in Figure 7-2.
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Figure 7-2. Example data point in TensorBoard

Not very exciting, is it? Let’s write a loop that sends updates from an initial
starting point:

import random
value = 10
writer.add_scalar('test_loop', value, 0)
for 1 in range(1,10000):
value += random.random() - 0.5
writer.add_scalar('test_loop', value, 1)

By passing where we are in our loop, as shown in Figure 7-3, TensorBoard gives
us a plot of the random walk we’re doing from 10. If we run the code again,
we’ll see that it has generated a different run inside the display, and we can
select on the left side of the web page whether we want to see all our runs or just
some in particular.
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Figure 7-3. Plotting a random walk in TensorBoard

We can use this to replace our print statements in the training loop. We can also
send the model itself to get a representation in TensorBoard!

import torch

import torchvision

from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms,models

writer = SummaryWriter()
model = models.resnetl18(False)
writer.add_graph(model,torch.rand([1,3,224,224]))

def train(model, optimizer, loss_fn, train_data_loader, test_data_loader,
epochs=20):

model = model.train()

iteration = 0

for epoch in range(epochs):
model.train()
for batch in train_loader:
optimizer.zero_grad()
input, target = batch
output = model(input)



loss = loss_fn(output, target)
writer.add_scalar('loss', loss, epoch)
loss.backward()

optimizer.step()

model.eval()
num_correct = 0
num_examples = 0
for batch in val_loader:
input, target = batch
output = model(input)
correct = torch.eq(torch.max(F.softmax(output), dim=1)[1],
target).view(-1)
num_correct += torch.sum(correct).item()
num_examples += correct.shape[0]
print("Epoch {}, accuracy = {:.2f}".format(epoch,
num_correct / num_examples)
writer.add_scalar('accuracy', num_correct / num_examples, epoch)
iterations += 1

When it comes to using add_graph(), we need to send in a tensor to trace
through the model as well as the model itself. Once that happens, though, you
should see GRAPHS appear in TensorBoard, and as shown in Figure 7-4, clicking
the large ResNet block reveals further detail of the model’s structure.
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Figure 7-4. Visualizing ResNet

We now have the ability to send accuracy and loss information as well as model



structure to TensorBoard. By aggregating multiple runs of accuracy and loss
information, we can see whether anything is different in a particular run
compared to others, which is a useful clue when trying to work out why a
training run produced poor results. We return to TensorBoard shortly, but first
let’s look at other features that PyTorch makes available for debugging.

PyTorch Hooks

PyTorch has hooks, which are functions that can be attached to either a tensor or
a module on the forward or backward pass. When PyTorch encounters a module
with a hook during a pass, it will call the registered hooks. A hook registered on
a tensor will be called when its gradient is being calculated.

Hooks are potentially powerful ways of manipulating modules and tensors
because you can completely replace the output of what comes into the hook if
you so desire. You could change the gradient, mask off activations, replace all
the biases in the module, and so on. In this chapter, though, we’re just going to
use them as a way of obtaining information about the network as data flows
through.

Given a ResNet-18 model, we can attach a forward hook on a particular part of
the model by using register_forward_hook:

def print_hook(self, module, input, output):
print(f"Shape of input is {input.shape}")

model = models.resnet18()

hook_ref = model.fc.register_forward_hook(print_hook)
model(torch.rand([1,3,224,224]))

hook_ref.remove()

model(torch.rand([1,3,224,224]))

If you run this code you should see text printed out showing the shape of the
input to the linear classifier layer of the model. Note that the second time you

pass a random tensor through the model, you shouldn’t see the print statement.
When we add a hook to a module or tensor, PyTorch returns a reference to that

hook. We should always save that reference (here we do it in hook_ref) and

then call remove() when we’re finished. If you don’t store the reference, then it
will just hang out and take up valuable memory (and potentially waste compute



resources during a pass). Backward hooks work in the same way, except you call
register_backward_hook() instead.

Of course, if we can print() something, we can certainly send it to
TensorBoard! Let’s see how to use both hooks and TensorBoard to get important
stats on our layers during training.

Plotting Mean and Standard Deviation

To start, we set up a function that will send the mean and standard deviation of
an output layer to TensorBoard:

def send stats(i, module, input, output):
writer.add _scalar(f"{i}-mean",output.data.std())
writer.add _scalar(f"{i}-stddev",output.data.std())

We can’t use this by itself to set up a forward hook, but using the Python
function partial(), we can create a series of forward hooks that will attach

themselves to a layer with a set 1 value that will make sure that the correct
values are routed to the right graphs in TensorBoard:

from import partial

for i1,m in enumerate(model.children()):
m.register_forward_hook(partial(send_stats, 1))

Note that we’re using model.children(), which will attach only to each top-
level block of the model, so if we have an nn.Sequential() layer (which we
will have in a ResNet-based model), we’ll attach a hook to only that block and
not one for each individual module within the nn.Sequential list.

If we train our model with our usual training function, we should see the
activations start streaming into TensorBoard, as shown in Figure 7-5. You’ll
have to switch to wall-clock time within the UI as we’re no longer sending step
information back to TensorBoard with the hook (as we’re getting the module
information only when the PyTorch hook is called).
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Figure 7-5. Mean and standard deviation of modules in TensorBoard

Now, I mentioned in Chapter 2 that, ideally, layers in a neural network should
have a mean of 0 and a standard deviation of 1 to make sure that our calculations
don’t run off to infinity or to zero. Have a look at the layers in TensorBoard. Do
they look like they’re remaining in that value range? Does the plot sometimes
spike and then collapse? If so, that could be a signal that the network is having
difficulty training. In Figure 7-5, our mean is close to zero, but our standard
deviation is also pretty close to zero as well. If this is happening in many layers
of your network, it may be a sign that your activation functions (e.g., ReLU) are
not quite suited to your problem domain. It might be worth experimenting with
other functions to see if they improve the model’s performance; PyTorch’s
LeakyReLU is a good alternative offering similar activations to the standard ReLU
but lets more information through, which might help in training.

That about wraps up our look at TensorBoard, but the “Further Reading” will
point you to more resources. In the meantime, let’s see how we can get a model
to explain how it came to a decision.



Class Activation Mapping

Class activation mapping (CAM) is a technique for visualizing the activations of
a network after it has classified an incoming tensor. In image-based classifiers,
it’s often shown as a heatmap on top of the original image, as shown in Figure 7-
6.
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Figure 7-6. Class activation mapping with Casper

From the heatmap, we can get an intuitive idea of how the network reached the
decision of Persian Cat from the available ImageNet classes. The activations of
the network are at their highest around the face and body of the cat and low
elsewhere in the image.

To generate the heatmap, we capture the activations of the final convolutional
layer of a network, just before it goes into the Linear layer, as this allows us to
see what the combined CNN layers thinks are important as we head into the final
mapping from image to classes. Thankfully, with PyTorch’s hook feature, this is

fairly straightforward. We wrap up the hook in a class, SaveActivations:

class SaveActivations():

activations=None

def __init__(self, m):
self.hook = m.register_forward_hook(self.hook_fn)

def hook_fn(self, module, input, output):
self.features = output.data

def remove(self):
self.hook.remove()



We then push our image of Casper through the network (normalizing for
ImageNet), apply softmax to turn the output tensor into probabilities, and use
torch. topk() as a way of pulling out both the max probability and its index:

import
from import models, transforms
from import functional as F

casper = Image.open("casper.jpg")
# Imagenet mean/std

normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]

)

preprocess = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
normalize

D)

display_transform = transforms.Compose([
transforms.Resize((224,224))])

casper_tensor = preprocess(casper)

model = models.resnet18(pretrained=True)

model.eval()

casper_activations = SaveActivations(model.layer_4)
prediction = model(casper_tensor.unsqueeze(0))
pred_probabilities = F.softmax(prediction).data.squeeze()
casper_activations.remove()
torch.topk(pred_probabilities,1)

NOTE

I haven’t explained torch.nn.functional yet, but the best way to think about it is that it
contains the implementation of the functions provided in torch.nn. For example, if you create
an instance of torch.nn.softmax(), you get an object with a forward() method that
performs softmax. If you look in the actual source for torch.nn.softmax(), you’ll see that
all that method does is call F.softmax(). As we don’t need softmax here to be part of a
network, we’re just calling the underlying function.



If we now access casper_activations.activations, we’ll see that it has been
populated by a tensor, which contains the activations of the final convolutional
layer we need. We then do this:

fts = sf[0].features[idx]
prob = np.exp(to_np(log_prob))
preds = np.argmax(prob[idx])
fts_np = to_np(fts)
f2=np.dot(np.rollaxis(fts_np,0,3), prob[idx])
f2-=f2.min()
f2/=f2.max()
f2
plt.imshow(dx)
plt.imshow(scipy.misc.imresize(f2, dx.shape), alpha=0.5, cmap='jet');

This calculates the dot product of the activations from Casper (we index into 0
because of the batching in the first dimension of the input tensor, remember). As
mentioned in Chapter 1, PyTorch stores image data in C x H x W format, so we
next need to rearrange the dimensions back to H x W x C for displaying the
image. We then remove the minimums from the tensor and scale by the
maximum to ensure that we’re focusing on only the highest activations in the
resulting heatmap (i.e., what speaks to Persian Cat). Finally, we use some
matplot magic to display Casper and then the tensor on top, resized and given a
standard jet color map. Note that by replacing idx with a different class, you
can see the heatmap indicating which activations (if any) are present in the
image when classified. So if the model predicts car, you can see which parts of
the image were used to make that decision. The second-highest probability for
Casper is Angora Rabbit, and we can see from the CAM for that index that it
focused on his very fluffy fur!

That wraps up our look into what a model is doing when it makes a decision.
Next, we’re going to investigate what a model spends most of its time doing
while it’s in a training loop or during inference.

Flame Graphs

In contrast to TensorBoard, flame graphs weren’t created specifically for neural
networks. Nope, not even TensorFlow. In fact, flame graphs trace their origin



back to 2011, when an engineer named Brendan Gregg, working at a company
called Joyent, came up with the technique to help debug an issue he was having
with MySQL. The idea was to take massive stacktraces and turn them into a
single image, which by itself delivers a picture of what is happening on a CPU
over a period of time.

NOTE

Brendan Gregg now works for Netflix and has a huge amount of performance-related work
available to read and digest.

Using an example of MySQL inserting a row into a table, we sample the stack
hundreds or thousand of times a second. Each time we sample, we get a
stacktrace that shows us all the functions in the stack at that point in time. So if
we are in a function that has been called by another function, we’ll get a trace
that includes both the callee and caller functions. A sample trace looks like this:

65.00% 0.00% mysqld [kernel.kallsyms] [k] entry_SYSCALL_64_fastpath
I
---entry_SYSCALL_64_fastpath
I
--18.75%-- sys_io_getevents
read_events
schedule
__schedule
finish_task_switch

|

|

|

|

|

|

|--10.00%-- sys_fsync
| do_fsync

| vfs_fsync_range

| ext4_sync_file

| I

| --8.75%-- jbd2_complete_transaction

| jbd2_log_wait_commit

| I

| |--6.25%-- _cond_resched

| | preempt_schedule_common
| | __schedule

There’s a lot of this information; that’s just a tiny sample of a 400KB set of stack
traces. Even with this collation (which may not be present in all stacktraces), it’s


http://www.brendangregg.com

difficult to see what’s going on here.

The flame graph version, on the other hand, is simple and clear, as you can see in
Figure 7-7. The y-axis is stack height, and the x-axis is, while not time, a
representation of how often that function is on the stack when it has been
sampled. So if we had a function at the top of the stack that was covering, say,
80% of the graph, we’d know that the program is spending an awful lot of
running time in that function and that maybe we should look at the function to
see just what is making it take so long.
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Figure 7-7. MySQL flame graph

You might ask, “What does this have to do with deep learning?” Fair enough; it’s
a common trope in deep learning research that when training slows down, you
just buy another 10 GPUs or give Google a lot more money for TPU pods. But
maybe your training pipeline isn’t GPU bound after all. Perhaps you have a
really slow transformation, and when you get all those shiny new graphics cards,
they don’t end up helping as much as you’d have thought. Flame graphs provide
a simple, at-a-glance way of identifying CPU-bound bottlenecks, and these often
occur in practical deep learning solutions. For example, remember all those
image-based transforms we talked about in Chapter 4? Most of them use the
Python Imaging Library and are totally CPU bound. With large datasets, you’ll
be doing those transforms over and over again within the training loop! So while



they’re not often brought up in the context of deep learning, flame graphs are a
great tool to have in your box. If nothing else, you can use them as evidence to
your boss that you really are GPU bound and you need all those TPU credits by
next Thursday! We’ll look at getting flame graphs from your training cycles and
at fixing a slow transformation by moving it from the CPU to the GPU.

Installing py-spy

There are many ways to generate the stacktraces that can be turned into flame
graphs. The one in the previous section was generated using the Linux tool perf,
which is a complex and powerful tool. We’ll take a somewhat easier option and
use py-spy, a Rust-based stack profiler, to directly generate flame graphs. Install
it via pip:

pip install py-spy

You can find the process identifier (PID) of a running process and attach py-spy
by using a - -pid argument:

py-spy --flame profile.svg --pid 12345

Or you can pass in a Python script, which is how we run it in this chapter. First,
let’s run it on a simple Python script:

import
import

def get_model():
return torchvision.models.resnet18(pretrained=True)

def get_pred(model):
return model(torch.rand([1,3,224,224]))

model = get_model()

for 1 in range(1,10000):
get_pred(model)

Save this as flametest.py and let’s run py-spy on it, sampling 99 times a second
and running for 30 seconds:



py-spy -r 99 -d 30 --flame profile.svg -- python t.py

Open the profile.svg file in your browser, and let’s take a look at the resulting
graph.

Reading Flame Graphs

Figure 7-8 shows what the graph should look like, roughly speaking (because of
sampling, it may not look exactly like this on your machine). The first thing
you’ll probably notice is that the graph is going down instead of up. py-spy
writes out flame graphs in icicle format, so the stack looks like stalactites instead
of the flames of the classic flame graph. I prefer the normal format, but py-spy
doesn’t give us the option to change it, and it doesn’t make that much difference.

Py-spy
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Figure 7-8. Flame graph on ResNet loading and inference

At a glance, you should see that most of the execution time is spent in various
forward() calls, which makes sense because we are making lots of predictions
with the model. What about those tiny blocks on the left? If you click them, you
should find that the SVG file zooms in as shown in Figure 7-9.
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Figure 7-9. Zoomed flame graph

Here, we can see the script setting up the ResNet-18 module and also calling
load_state_dict() to load the saved weights from disk (because we called it
with pretrained=True). You can click Reset Zoom to go back to the full flame
graph. Also, a search bar on the right will highlight matching bars in purple, if
you’re trying to hunt down a function. Try it with resnet, and it’ll show you
every function call on the stack with resnet in its name. This can be useful for
finding functions that aren’t on the stack much or seeing how much that pattern
appears in the graph overall.

Play around with the SVG for a bit and see how much CPU time things like
BatchNorm and pooling are taking up in this toy example. Next, we’ll look at a
way to use flame graphs to find an issue, fix it, and verify it with another flame
graph.

Fixing a Slow Transformation

In real-world situations, part of your data pipeline may be causing a slowdown.
This is a particular problem if you have a slow transformation, as it will be
called many times during a training batch, causing a massive bottleneck in
creating your model. Here’s an example transformation pipeline and a data
loader:

import
import
from import optim



import torch.nn as nn

from torchvision import datasets, transforms, models
import torch.utils.data

from PIL import Image

import numpy as np

device = "cuda:0"
model = models.resnet18(pretrained=True)
model. to(device)

class BadRandom(object):
def _ call__(self, img):
img_np = np.array(img)
random = np.random.random_sample(img_np.shape)
out_np = img_np + random
out = Image.fromarray(out_np.astype('uint8'), 'RGB')
return out

def __repr__(self):
str = f"{self.__class__.__name__ }"
return str

train_data_path = "catfish/train"

image_transforms =

torchvision.transforms.Compose(
[transforms.Resize((224,224)),BadRandom(), transforms.ToTensor()])

We’re not going to run a full training loop; instead, we simulate 10 epochs of
just pulling the images from the training data loader:

train_data = torchvision.datasets.ImageFolder(root=train_data_path,
transform=image_transforms)

batch_size=32

train_data_loader = torch.utils.data.Dataloader(train_data,
batch_size=batch_size)

optimizer = optim.Adam(model.parameters(), lr=2e-2)
criterion = nn.CrossEntropyLoss()

def train(model, optimizer, loss_fn, train_loader, val loader,
epochs=20, device='cuda:0'):
model. to(device)
for epoch in range(epochs):
print(f"epoch {epoch}")
model.train()
for batch in train_loader:
optimizer.zero_grad()



ww, target = batch

ww = ww.to(device)

target= target.to(device)
output = model(ww)

loss = loss_fn(output, target)
loss.backward()
optimizer.step()

model.eval()
num_correct = 0
num_examples = 0
for batch in val_loader:
input, target = batch
input = input.to(device)
target= target.to(device)
output = model(input)
correct = torch.eq(torch.max(output, dim=1)[1], target).view(-1)
num_correct += torch.sum(correct).item()
num_examples += correct.shape[0]
print("Epoch {}, accuracy = {:.2f}"
.format(epoch, num_correct / num_examples))

train(model,optimizer,criterion,
train_data_loader,train_data_loader,epochs=10)

Let’s run that code under py-spy as before:
py-spy -r 99 -d 120 --flame slowloader.svg -- python slowloader.py

If you open the resulting slowloader.svg, you should hopefully see something
like Figure 7-10. Although the flame graph is mostly occupied with loading the
images and converting them to tensors, we are spending 16.87% of the sampled
runtime in applying random noise. Looking at the code, our implementation of
BadRandonm is applying noise at the PIL stage rather than at the tensor stage, so
we’re at the mercy of the imaging library and NumPy rather than PyTorch itself.
So our first idea would likely be to rewrite the transform so that it operates on
tensors instead of the PIL images. That’s likely to be faster, but not always—and
the important thing when making performance changes is always to measure
everything.
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Figure 7-10. Flame graph with BadRandom

But here’s a curious thing, which has been present all the way through the book,
though I’ve not drawn attention to it until now: have you noticed that we pull
batches from the data loader and then put those batches onto the GPU? Because
the transforms occur as the loader gets batches from the dataset class, those
transforms are always going to happen on the CPU. In some cases, that can lead
to some crazy lateral thinking. We are applying random noise on every image.
What if we could apply random noise on every image at once?

Here’s the bit that might seem mind-bending at first: we’re adding random noise
to an image. We can write that as x + y, with x being our image and y our noise.
We know that both image and noise are 3D (width, height, channels), so all
we’re doing here is matrix multiplication. And in a batch, we’ll be doing this z
times. We’re just iterating over each image as we pull them out of the loader. But
consider that at the end of the loading process, the images are transformed into
tensors, a batch of [z, ¢, h, w]. Well, couldn’t you just add a random tensor of
shape [z, ¢, h, w] and get the random noise applied that way? Instead of applying
the noise in sequence, it happens all at once. We now have a matrix operation,
and a very expensive GPU that just happens to be rather good at matrix
operations. Try this in Jupyter Notebook to see the difference between CPU and
GPU tensor matrix operations:

cpu_t1 = torch.rand(64,3,224,224)

cpu_t2 = torch.rand(64,3,224,224)

%timeilt cpu_t1 + cpu_t2

>> 5.39 ms = 4.29 ps per loop (mean + std. dev. of 7 runs, 100 loops each)

gpu_t1 = torch.rand(64,3,224,224).to("cuda")

gpu_t2 = torch.rand(64,3,224,224).to("cuda")

%timeilt gpu_t1l + gpu_t2

>> 297 pus = 338 ns per loop (mean * std. dev. of 7 runs, 10000 loops each)



That’s just under 20 times faster. Instead of performing this transformation in our
data loader, we can take it out and perform the matrix operations after we have
the entire batch at our disposal:

def add_noise_gpu(tensor, device):
random_noise = torch_rand_like(tensor).to(device)
return tensor.add_(random_noise)

In our training loop, add this line after input.to(device):
input = add_noise_gpu(input, device)

Then remove the BadRandom transform from the transform pipeline and test
again with py-spy. The new flame graph is shown in Figure 7-11. It’s so fast
that it no longer even shows up under our sampling frequency. We’ve just sped
up the code by almost 17%! Now, not all standard transforms can be written in a
GPU-friendly way, but if it’s possible and the transform is slowing you down,
then it’s definitely an option worth considering.
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Figure 7-11. Flame graph with GPU-accelerated random noise

Now that we’ve considered compute, it’s time to look at the other elephant in the
room: memory, especially memory on the GPU.

Debugging GPU Issues

In this section, we drill down deeper into the GPU itself. One thing you’ll soon
discover in training larger deep learning models is that the shiny GPU that
you’ve spent so much money on (or, more wisely, attached to a cloud-based
instance) is brought to its knees regularly, bitterly complaining about running out
of memory. But that GPU has gigabytes and gigabytes of storage! How could
you possibly run out?



Models tend to soak up a lot of memory. ResNet-152, for example, has about 60
million activations, all of which take up precious space on your GPU. Let’s see
how to peer inside the GPU to determine what could be going on when you’re
running low on memory.

Checking Your GPU

Assuming you are using an NVIDIA GPU (check your alternate GPU supplier’s
drivers website for their own utilities if you’re using something different), the
CUDA installation includes a rather useful command-line tool called nvidia-
smi. When run with no arguments, this tool can give you a snapshot of the
memory being used on the GPU, and even better, what is using it! Figure 7-12
shows output from running nvidia-smi within the terminal. Within a notebook,
you can call out to the utility by using !nvidia-smi.

ian@ubuntu:~/notebooks$ nvidia-smi
Fri Jun 7 10:27:32 2019

o e +
| NVIDIA-SMI 396.54 Driver Version: 396.54

== o fmm e +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Capl Memory-Usage | GPU-Util Compute M. |
I i | I
| @ GeForce GTX 1@8... Off | 00000000:01:00.@ On | N/A |
| @% 26C P8 OW / 25eW |  8079MiB / 11176MiB | 0% Default |
Fmm e e o m o e +
e el +
| Processes: GPU Memory |
| GPU PID Type Process name Usage I
I I
I 0 2006 G /usr/lib/xorg/Xorg 32MiB |
I 0 2413 G /usr/bin/gnome-shell 58MiB |
I ) 3993 C  /home/ian/anaconda3/bin/python 1407MiB |
I ) 17301 C /home/ian/anaconda3/bin/python 527MiB |
I 7] 19205 C  /home/ian/anaconda3/bin/python 523MiB |
I 0 31226 C /home/ian/anaconda3/bin/python 885MiB |
I 0 32113 C /home/ian/anaconda3/bin/python 4633MiB |
e e +

Figure 7-12. Output from nvidia-smi

This example is taken from my home machine running a 1080 Ti. I’'m running a
bunch of notebooks, each of which is taking up a chunk of memory, but one is



using 4GB! You can get the current PID of a notebook by using os.getpid(). It
turns out that the process using the most memory was actually an experimental
notebook I was using to test out the GPU transforms in the previous section! You
can imagine that with the model, batch data, and data for the forward and
backward passes, things get tight memory-wise rather quickly.

NOTE

I also have a couple of processes running that are, perhaps surprisingly, doing graphics—
namely, the X server and GNOME. Unless you’ve built a local machine, you almost certainly
won’t see these.

In addition, PyTorch will dedicate a chunk of memory to itself and CUDA per
process that is around 0.5GB of memory. This means that it’s a better idea to
work on one project at a time and not leave Jupyter Notebook running all over
the place as I have here (you can use the Kernel menu to shut down the Python
process connected to a notebook).

Running nvidia-smi by itself will give you the current snapshot of the GPU’s
usage, but you can get continual output by using the -1 flag. Here’s an example
command that will dump the timestamp, used memory, free memory, total
memory, and GPU utilization every 5 seconds:

nvidia-smi --query-gpu=timestamp,
memory.used, memory.free,memory.total,utilization.gpu --format=csv -1 5

If you really think that your GPU is using up more memory than it should be,
you can try getting Python’s garbage collector involved. If you have a
tensor_to_be_deleted that you no longer need and want it gone from the
GPU, then a tip from the bowels of the fast.ai library is to give it a shove with
del:

import
del tensor_to_be deleted
gc.collect()

If you’re doing a lot of work inside Jupyter Notebook creating and re-creating



models, you may find that deleting some references and invoking the garbage
collector by using gc.collect() will claw back some memory. If you’re still
having trouble with memory, read on, because there may be an answer to your
woes!

Gradient Checkpointing

Despite all the deletion and garbage collection tricks presented in the previous
section, you might still find yourself running out of memory. The next thing to
do for most applications is to reduce the batch size of data going through a
model during the training loop. This will work, but you’re going to increase
training time for each epoch, and it’s likely that the model will not be as good as
an equivalent one trained with enough memory to handle the larger batch sizes,
because you’ll be seeing more of the dataset on every pass. However, we can
trade compute against memory for large models in PyTorch by using gradient
checkpointing.

One of the problems when dealing with bigger models is that the forward and
backward passes create lots of intermediate state, all of which occupy GPU
memory. The goal of gradient checkpointing is to reduce the amount of state that
may be on the GPU at any one time by segmenting the model. This approach
means that you can have between four and ten times the batch size with a
nonsegmented model, with that being offset by the training being more compute-
intensive. During the forward pass, PyTorch saves the inputs and the parameters
to a segment, but doesn’t actually do the forward pass itself. During the
backward pass, these are retrieved by PyTorch, and the forward pass is computed
for that segment. The intermediate values are passed onto the next segment, but
those have to be performed on only a segment-by-segment basis.

Chopping up a model into these segments is handled by
torch.utils.checkpoint.checkpoint_sequential(). It works on
nn.Sequential layers or generated lists of layers, with the proviso that they
need to be in sequence of how they occur in the model. Here’s how it would
work on the features module in AlexNet:

from import checkpoint_sequential
import as



class CheckpointedAlexNet(nn.Module):

def __init__(self, num_classes=1000, chunks=2):

super (CheckpointedAlexNet, self). _init_ ()

self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),

)

self.avgpool = nn.AdaptiveAvgPool2d((6, 6))

self.classifier = nn.Sequential(
nn.Dropout(),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear (4096, 4096),
nn.ReLU(inplace=True),
nn.Linear (4096, num_classes),

)

def forward(self, x):
x = checkpoint_sequential(self.features, chunks, x)
x = self.avgpool(x)
X = x.view(x.size(0), 256 * 6 * 6)
x = self.classifier(x)
return x

As you can see, not much is different here, making checkpointing an easy
addition to models when required. We’ve added a chunks parameter to the new
version of the model, with the default being to split it into two segments. All we

then need to do is make a call to checkpoint_sequential with the features
module, the number of segments, and our inputs. And that’s it!

One slight kink in checkpointing is that it doesn’t behave well with BatchNorm

or Dropout layers because of how they interact with the forward pass. To work
around that, you can just checkpoint parts of the model before and after those



layers. In our CheckpointedAlexNet, we could perhaps break the classifier
module into two parts: one containing the Dropout layers that are
uncheckpointed, and a final nn.Sequential module containing our Linear
layers that we could checkpoint in the same way we did with features.

If you find yourself with diminishing batch sizes in order to get a model to run,
consider checkpointing before you ask for a larger GPU!

Conclusion

Hopefully, you’re now equipped to go hunting in search of answers when
training your model doesn’t go as planned. From sanitizing data to running flame
graph or TensorBoard visualizations, you have a lot of tools at your disposal;
you’ve also seen ways of trading memory for compute with GPU transforms,
and vice versa using checkpointing.

Armed with a properly trained, debugged model, we’re on our way to that
harshest of realms: production.

Further Reading

e TensorBoard documentation

e TensorBoard GitHub

e Fast.ai Lesson 10: Looking Inside The Model

e Investigation into BatchNorm within a ResNet model

e Deeper dive into generating flame graphs with Brendan Gregg
e nvidia-smi documentation

e PyTorch gradient checkpointing documentation
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Chapter 8. PyTorch in Production

Now that you’ve learned how to use PyTorch to classify images, text, and sound,
the next step is to look at how to deploy PyTorch applications in production. In
this chapter, we create applications that run inference on PyTorch models over
HTTP and gRPC. We then package those applications into Docker containers
and deploy them to a Kubernetes cluster running on Google Cloud.

In the second half, we look at TorchScript, a new technology introduced in
PyTorch 1.0 that allows us to use just-in-time (JIT) tracing to produce optimized
models that can be run from C++. We also have a brief look at how to compress
models with quantization. First up, let’s look at model serving.

Model Serving

We’ve spent the last six chapters building models in PyTorch, but building a
model is only part of building a deep learning application. After all, a model may
have amazing accuracy (or other relevant metric), but if it never makes any
predictions, is it worth anything? What we want is an easy way to package our
models so they can respond to requests (either over the web or other means, as
we’ll see) and can be run in production with the minimum of effort.

Thankfully, Python allows us to get a web service up and running quickly with
the Flask framework. In this section, we build a simple service that loads our
ResNet-based cat or fish model, accepts requests that include an image URL,

and returns a JSON response that indicates whether the image contains a cat or a
fish.

NOTE

What happens if we send the model a picture of a dog? The model will tell you that it is either
a fish or a cat. It has no concept of anything but the available choices and will always pick one.
Some deep learning practitioners add an extra class, Unknown, during training and throw in
labeled examples that aren’t any of the required classes. This works to a certain extent, but it
essentially tries to make the neural net learn everything that isn’t a cat or fish, which is difficult
for you and me to express, let alone a series of matrix calculations! Another option is to look at



the probability output generated by the final softmax. If the model is producing a prediction
that is roughly 50/50 cat/fish or spread out across your classes, then maybe suggest Unknown.

Building a Flask Service

Let’s get a web service-enabled version of our model up and running. Flask is a
popular framework for creating web services with Python, and we’ll be using it
as a base throughout this chapter. Install the Flask library with either pip or
conda:

conda install -c anaconda flask
pip install flask

Create a new directory called catfish and copy your model definition inside as
model.py:

from import models
CatfishClasses = ["cat","fish"]

CatfishModel = models.ResNet50()

CatfishModel.fc = nn.Sequential(nn.Linear(transfer_model.fc.in_features,500),
nn.RelLU(),
nn.Dropout(), nn.Linear(500,2))

Note that we do not specify a pretrained model here, because we will be loading
our saved weights in the Flask server startup process. Then create another
Python script, catfish_server.py, where we will start our web service:

from import Flask, jsonify
from . import CatfishModel

from import transforms
import

import

def load_model():
return model

app = Flask(__name_ )

.route("/")
def status():



return jsonify({"status": "ok"})

.route("/predict", methods=['GET', 'POST'])

def predict():

img_url = request.image_url

img_tensor = open_image(BytesIO(response.content))

prediction = model(img_tensor)

predicted_class = CatfishClasses[torch.argmax(prediction)]

return jsonify({"image": img_url, "prediction": predicted_class})
if __name__ == '__main__':
app.run(host=os.environ["CATFISH_HOST"], port=os.environ["CATFISH_PORT"])

You can start up a web server on the command line by setting the CATFISH_HOST
and CATFISH_PORT environment variables:

CATFISH_HOST=127.0.0.1 CATFISH_PORT=8080 python catfish_server.py

If you point your web browser at http://127.0.0.1:8080, you should get a
status: "ok" JSON response as shown in Figure 8-1.
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status:  "ok"

Figure 8-1. OK response from CATFISH

CAUTION

We discuss this in more detail later in this chapter, but don’t deploy a Flask service directly to
production because the built-in server is not adequate for production usage.

To make a prediction, find an image URL and send it as a GET request with the

image_url parameter to the /predict path. You should see a JSON response
showing the URL and the predicted class, as shown in Figure 8-2.
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prediction: "cat"

Figure 8-2. Prediction from CATFISH

The magic in Flask is in the @app.route() annotations. These allow us to attach
normal Python functions that will be run when a user hits a particular endpoint.

In our predict() method, we pull out the img_url parameter from either a GET
or POST HTTP request, open that URL as a PIL image, and push it through a
simple torchvision transform pipeline to resize it and turn the image into a
tensor.

This gives us a tensor of shape [3,224,224], but because of the way our model
works, we need to turn it into a batch of size 1—that is, [1,3,224,224]. So we
use unsqueeze( ) again to expand our tensor by inserting a new empty axis in
front of the existing dimensions. We can then pass it through the model as usual,
which gives us our prediction tensor. As we have done previously, we use

torch.argmax() to find the element of the tensor with the highest value and use

that to index into the CatfishClasses array. Finally, we return a JSON response
with the name of the class and the image URL we performed the prediction on.

If you experiment with the server at this point, you might be a little disappointed
with the classification performance. Didn’t we spend a lot of time training it?
Yes, we did, but in re-creating the model, we have simply created a set of layers
with the standard PyTorch initialization! So no wonder it’s not good. Let’s flesh
out Load_model() to load in our parameters.

NOTE

We’re returning only the predicted class here, not the complete set of predictions across all
classes. You could certainly return the prediction tensor as well, though be aware that the
complete tensor output makes it a little easier for attackers to build up a replica of your model
through more information leakage.

Setting Up the Model Parameters



In Chapter 2, we talked about the two ways to save a model after training, either
by writing the entire model to disk with torch.save() or by saving the
state_dict() of all the weights and biases of the model (but not the structure).
For our production-based service, we need to load in an already-trained model,
so what should we use?

In my opinion, you should go for the state_dict approach. Saving the entire
model is an attractive option, but you will become incredibly sensitive to any
changes in the model structure or even the directory structure of the training
setup. That’s likely to cause a problem with loading it up in a separate service
that runs elsewhere. If we’re making a migration to a slightly different layout,
we’d like to not have to rework everything.

We’d also be better off not hardcoding the filename of the saved state_dicts()
so we can decouple model updates from our service. This means we can restart
the service with a new model or revert to an earlier model with ease. We pass in
the filename as a parameter—but where should it point? For the moment,
assume that we can set an environment variable called
CATFISH_MODEL_LOCATION, and use that in load_model():

def load_model():
m = CatfishModel()
location = os.environ["CATFISH MODEL_LOCATION"]
m.load_state_dict(torch.load(location))
return m

Now, copy in one of the model weight files you saved in Chapter 4 into the
directory and set CATFISH_MODEL_LOCATION to point to that file:

export CATFISH_MODEL_LOCATION=catfishweights.pt

Restart the server, and you should see that the service is a lot more accurate!

We now have a working minimal web service (you’d probably want a little more
error handling, but I’m leaving that as an exercise for you!). But how do we get
that running on a server in, say, AWS or Google Cloud? Or just on somebody
else’s laptop? After all, we have installed a bunch of libraries to get this working.
We can use Docker to package everything up into one container that can be
installed in any Linux (or Windows, with the new Windows Subsystem for



Linux!) environment in seconds.

Building the Docker Container

Docker has become one of the de facto standards for application packaging in
the past few years. Cutting-edge cluster environments such as Kubernetes have
Docker at their core for deploying applications (as you’ll see later in the
chapter), and it’s even made large inroads in enterprises as well.

If you haven’t come across Docker before, here’s a quick explanation: it’s
modeled on the idea of shipping containers. You specify a bundle of files
(typically, using a Dockerfile) that Docker uses to build an image, and Docker
then runs that image in a container, which is an isolated process on your system
that can see only the files you’ve specified and the programs you’ve told it to
run. You can then share the Dockerfile so people can build their own images, but
a more common approach is to push the created image to a registry, which is a
list of Docker images that can be downloaded by anybody with access. These
registries can be public or private; the Docker corporation runs Docker Hub,
which is a public registry that contains over 100,000 Docker images, but many
companies run private registries for internal use.

What we need to do is write our own Dockerfile. This might sound a little
overwhelming. What do we have to tell Docker to install? Our code? PyTorch?
Conda? Python? Linux itself? Thankfully, Dockerfiles can inherit from other
images, so we could, for example, inherit from the standard Ubuntu image and
install Python, PyTorch, and everything else from there. But we can do better! A
selection of Conda images is available to choose from that will give us a base
Linux, Python, and Anaconda installation to build on. Here’s an example
Dockerfile that can be used to build a container image for our service:

FROM continuumio/miniconda3:latest

ARG model_parameter_location
ARG model_parameter_name
ARG port

ARG host

ENV CATFISH_PORT=$port
ENV CATFISH_HOST=Shost
ENV CATFISH_MODEL_LOCATION=/app/Smodel_parameter_name
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RUN conda install -y flask \
&& conda install -c pytorch torchvision \
&& conda install waitress

RUN mkdir -p /app

COPY ./model.py /app

COPY ./server.py /app

COPY $model_location/$model_weights_name /app/
COPY ./run-model-service.sh /

EXPOSE S$port

ENTRYPOINT ["/run-model-service.sh"]

A few things are happening here, so let’s take a look. The first line in almost all
Dockerfiles will be FROM, which lists the Docker image that this file inherits
from. In this case, it’s continuumio/miniconda3: latest. The first part of this
string is the image name. Images are also versioned, so everything after the
colon is a tag indicating which version of the image we want to download.

There’s also a magic tag latest, which we use here to download the latest
version of the image we’re after. You may want to pin your service to a
particular version so you aren’t surprised by possible later changes in the base
image causing issues in yours.

ARG and ENV deal with variables. ARG specifies a variable that is supplied to
Docker when we’re building the image, and then the variable can be used later in

the Dockerfile. ENV allows you to specify environment variables that will be
injected into the container at runtime. In our container, we use ARG to specify, for

example, that port is a configurable option, and then use ENV to ensure that the
configuration is available to our script at startup.

Having done that, RUN and COPY allow us to manipulate the image we’ve
inherited from. RUN runs actual commands within the image, and any changes are
saved as a new layer of the image on top of the base layer. COPY takes something
from the Docker build context (typically, any files from the directory that the
build command has issued or any subdirectories) and inserts it into a location on
the image’s filesystem. Having created /app by using RUN, we then use COPY to
move our code and model parameters into the image.



EXPOSE indicates to Docker which port should be mapped to the outside world.
By default, no ports are opened, so we add one here, taken from the ARG
command earlier in the file. Finally, ENTRYPOINT is the default command that is
run when a container is created. Here we’ve specified a script, but we haven’t
made it yet! Let’s do that before we build our Docker image:

#!/bin/bash
#run-model-service.sh

cd /app
wailtress-serve --call 'catfish_server:create_app'

Wait, what’s happening here? Where did waitress come from? The issue is that
when we were running our Flask-based server before it used a simple web server
that is meant only for debugging purposes. If we want to put this into production,
we need a production-grade web server. Waitress fulfills that requirement. We
don’t need to go into much detail about it, but you can check out the Waitress
documentation if you want to learn more.

With all that set up, we can finally create our image by using docker build:

docker build -t catfish-service .

We can make sure that the image is available on our system by using docker
images:

>docker images
REPOSITORY TAG IMAGE ID
catfish-service latest e5de5ad808b6

Running our model prediction service can then be done using docker run:

docker run catfish-service -p 5000:5000

We also use the -p argument to map the container’s port 5000 to our computer’s
port 5000. You should be able to go back to http://localhost:5000/predict just as
before.

One thing you might notice when running docker 1images locally is that our
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Docker image is over 4GB in size! That’s quite big, considering we didn’t write
much code. Let’s look at ways to make that image smaller and make our image
more practical for deployment at the same time.

Local Versus Cloud Storage

Obviously, the easiest answer to where to store our saved model parameters is on
the local filesystem, whether that’s on our computer or the filesystem within a
Docker container. But there are a couple of problems with this. First, the model
is hardcoded into the image. Also, it’s quite possible that after the image is built
and put into production, we need to update the model. With our current
Dockerfile, we have to completely rebuild the image, even if the model’s
structure hasn’t changed! Second, most of the size of our images comes from the
size of the parameter file. You may not have noticed that they tend to be quite
large! Try this out for size:

1s -1

total 641504

“TW-=------ 1 1an ian 178728960 Feb 4 2018 resnet101-5d3b4d8f.pth
“TW------- 1 1an ian 241530880 Feb 18 2018 resnet152-bi21ed2d.pth
“TW-=------ 1 1an ian 46827520 Sep 10 2017 resnet18-5c106cde.pth
“TW-=------ 1 1an ian 87306240 Dec 23 2017 resnet34-333f7ec4.pth
“TW-=------ 1 1an ian 102502400 Oct 1 2017 resnet50-19c8e357.pth

If we add these models to the filesystem on every build, our Docker images will
likely be quite large, which makes pushing and pulling slower. What I suggest is
local filesystems or Docker volume-mapped containers if you’re running on-
premises, but if you’re doing a cloud deployment, which we are leading up to, it
makes sense to take advantage of the cloud. Model parameter files can be
uploaded to Azure Blob Storage, Amazon Simple Storage Service (Amazon S3),
or Google Cloud Storage and be pulled in at startup.

We can rewrite our load_model() function to download the parameter file at
startup:

from import urlopen
from import copyfileobj
from import NamedTemporaryFile



def load_model():
m = CatfishModel()
parameter_url = os.environ["CATFISH_MODEL_LOCATION"]
with urlopen(url) as fsrc, NamedTemporaryFile() as fdst:
copyfileobj(fsrc, fdst)
m.load_state_dict(torch.load(fdst))
return m

There are, of course, many ways of downloading files with Python; Flask even
comes with the requests module that would easily download the file. A
potential issue, though, is that many approaches download the entire file into
memory before writing it to disk. Most of the time, that makes sense, but when
downloading model parameter files, they could get into the gigabyte range. So in
this new version of load_model(), we use urlopen() and copyfileobj() to
carry out the copying, and NamedTemporaryFile() to give us a destination that
can be deleted at the end of the block, as by that point, we’ve already loaded the
parameters in, and thus no longer need the file! This allows us to simplify our
Dockerfile:

FROM continuumio/miniconda3:latest

ARG port
ARG host

ENV CATFISH_PORT=Sport

RUN conda install -y flask \
&& conda install -c pytorch torch torchvision \
&& conda install waitress

RUN mkdir -p /app

COPY ./model.py /app

COPY ./server.py /app

COPY ./run-model-service.sh /

EXPOSE S$port

ENTRYPOINT ["/run-model-service.sh"]

When we run this with docker run, we pass in the environment variable:

docker run catfish-service --env CATFISH_MODEL_LOCATION=[URL]



The service now pulls the parameters from the URL, and the Docker image is
probably around 600MB-700MB smaller than the original one.

NOTE

In this example, we assume that the model parameter file is located at a publicly accessible
location. If you are deploying a model service, you likely won’t be in that situation and will
instead be pulling from a cloud storage layer like Amazon S3, Google Cloud Storage, or Azure
Blob Storage. You’ll have to use the respective provider’s APIs to download the file and obtain
credentials to gain access to it, both of which we don’t discuss here.

We now have a model service that’s capable of talking over HTTP with JSON.
Now we need to make sure that we can monitor it while it makes predictions.

Logging and Telemetry

One thing that we don’t have in our current service is any concept of logging.
And although the service is incredibly simple and perhaps doesn’t need copious
logging (except in the case of catching our error states), it would be useful, if not
essential, for us to keep track of what’s actually being predicted. At some point,
we’re going to want to evaluate the model; how can we do that without
production data?

Let’s assume that we have a method send_to_log() that takes a Python dict
and sends it elsewhere (perhaps, say, into an Apache Kafka cluster that backs up
onto cloud storage). We could send appropriate information through this method
every time we make a prediction:

import
import
logging.basicConfig(level=1logging.INFOQ)

def predict():
img_url = request.image_url
img_tensor = open_image(BytesIO(response.content))
start_time = time.process_time()
prediction = model(img_tensor)
end_time = time.process_time()
predicted_class = CatfishClasses[torch.argmax(prediction)]
send_to_log(



{"image": img_url,

"prediction": predicted_class},
"predict_tensor": prediction,
"img_tensor": img_tensor,
"predict_time": end_time-start_time,
"uuid" :uuid.uuid4()

b

return jsonify({"image": img_url, "prediction": predicted_class})

def send_to_log(log_line):
logger.info(log_line)

With a few additions to calculate how long a prediction takes, on every request,
this method now sends off a message to a logger or an external resource,
providing important details such as the image URL, the predicted class, the
actual prediction tensor, and even the complete image tensor just in case the
supplied URL is transient. We also include a generated universally unique
identifier (UUID), so that this prediction can always be uniquely referenced at a
later time, perhaps if its predicted class needs to be corrected. In an actual
deployment, you’d include things like user_1ids and such so that downstream
systems can provide a facility for users to indicate whether the prediction was
correct or incorrect, sneakily generating more training data for further training
iterations of the model.

And with that, we’re ready to deploy our container into the cloud. Let’s take a
quick look at using Kubernetes to host and scale our service.

Deploying on Kubernetes

It’s beyond the scope of this book to go too deeply into Kubernetes, so we’ll
stick to the basics, including how to get a service quickly up and running.’
Kubernetes (also known as k8s) is rapidly becoming the major cluster
framework in the cloud. Born from Google’s original cluster management
software, Borg, it contains all the parts and glue to form a resilient and reliable
way of running services, including things like load balancers, resource quotas,
scaling policies, traffic management, sharing secrets, and more.

You can download and set up Kubernetes on your local machine or in your cloud
account, but the recommended way is to use a hosted service where management



of Kubernetes itself is handled by the cloud provider and you’re just left with
scheduling your services. We use the Google Kubernetes Engine (GKE) service
for our deployment, but you could also deploy on Amazon, Azure, or
DigitalOcean.

Setting Up on Google Kubernetes Engine

To use GKE, you need a Google Cloud account. In addition, running services on
GKE isn’t free. On the bright side, if you’re new to Google Cloud, you’ll get
$300 in free credit, and we’re probably not going to burn more than a dollar or
two.

Once you have an account, download the gcloud SDK for your system. Once

that’s installed, we can use it to install kubectl, the application that we’ll use to
interact with the Kubernetes cluster we’ll be creating:

gcloud login
gcloud components install kubectl

We then need to create a new project, which is how Google Cloud organizes
compute resources in your account:

gcloud projects create ml-k8s --set-as-default

Next, we rebuild our Docker image and tag it so it can be pushed up to the
internal registry that Google provides (we need to use gcloud to authenticate),
and then we can use docker push to send our container image up to the cloud.

Note that we’re also tagging our service with a v1 version tag, which we weren’t
doing before:

docker build -t gcr.io/ml-k8s/catfish-service:v1l .
gcloud auth configure-docker
docker push gcr.io/ml-k8s/catfish-service:vi

Creating a k8s Cluster

Now we can create our Kubernetes cluster. In the following command, we’re
creating one with two nl-standard-1 nodes, Google’s cheapest and lowest-
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powered instances. If you’re really saving pennies, you can create the cluster
with just one node.

gcloud container clusters create ml-cluster --num-nodes=2

This may take a couple of minutes to fully initialize the new cluster. Once it’s
ready, we can use kubectl to deploy our application!

kubectl run catfish-service
--image=gcr.io/ml-k8s/catfish-service:v1
--port 5000

--env CATFISH_MODEL_LOCATION=[URL]

Note that we’re passing the location of the model parameter file as an
environment parameter here, just as we did with the docker run command on
our local machine. Use kubectl get pods to see what pods are running on the
cluster. A pod is a group of one or more containers combined with a
specification on how to run and manage those containers. For our purposes, we
run our model in one container in one pod. Here’s what you should see:

NAME READY STATUS RESTARTS AGE
gcr.io/ml-k8s/catfish-service:vi 1/1  Running 0 4m15s

Right, so now we can see that our application is running, but how do we actually
talk to it? To do that, we need to deploy a service, in this case a load balancer
that maps an external IP address to our internal cluster:

kubectl expose deployment catfish-service
- -type=LoadBalancer

--port 80

--target-port 5000

You can then look at the running services by using kubectl get servicesto
get the external IP:
kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
catfish-service 10.3.251.122 203.0.113.0 80:30877/TCP 3d



You should now be able to hit http://external - ip/predict just as you could on
your local machine. Success! We can also check in on our pod’s logs without
logging into it:

kubectl logs catfish-service-xxdsd
>> log response

We now have a deployment running in a Kubernetes cluster. Let’s explore some
of the power that it provides.

Scaling Services

Say we decide that one pod isn’t enough to handle all the traffic coming into our
prediction service. In a traditional deployment, we’d have to bring up new
servers, add them into load balancers, and work out what to do if one of the
servers fails. But with Kubernetes, we can do all this easily. Let’s make sure that
three copies of the service are running:

kubectl scale deployment hello-web --replicas=3

If you keep looking at kubectl get pods, you’ll soon see that Kubernetes is
bringing up two more pods from your Docker image and wiring them into the
load balancer. Even better, let’s see what happens if we delete one of the pods:

kubectl delete pod [PODNAME]
kubectl get pods

You'’ll see that the pod we’ve specified has been deleted. But—you should also
see that a new pod is being spun up to replace it! We’ve told Kubernetes that we
should be running three copies of the image, and because we deleted one, the
cluster starts up a new pod to ensure that the replica count is what we requested.
This also carries over to updating our application, so let’s look at that too.

Updates and Cleaning Up

When it comes to pushing an update to our service code, we create a new version
of the container with a v2 tag:



docker build -t gcr.io/ml-k8s/catfish-service:v2 .
docker push gcr.io/ml-k8s/catfish-service:v2

Then we tell the cluster to use the new image for the deployment:

kubectl set image deployment/catfish-service
catfish-service=gcr.io0/ml-k8s/catfish-service:v2

Keep monitoring via kubectl get pods and you’ll see that new pods with the
new image are being rolled out, and the pods with the old image are being
deleted. Kubernetes automatically takes care of draining connections and
removing the old pods from the load balancer.

Finally, if you’re finished playing around with the cluster, you should clean up
so you don’t get any further surprise charges:

kubectl delete service catfish-service
gcloud container clusters delete ml-k8s

That wraps up our mini-tour of Kubernetes; you now know just enough to be
dangerous, but definitely check out the Kubernetes website as a starting point for
further information about the system (and trust me, there’s a lot of it!)

We’ve covered how to deploy our Python-based code, but perhaps surprisingly,
PyTorch isn’t limited to just Python. In the next section, you’ll see how
TorchScript brings in the wider world of C++, as well as some optimizations to
our normal Python models.

TorchScript

If you can remember as far back as the introduction (I know!), you know that the
main difference between PyTorch and TensorFlow is that TensorfFlow has a
graph-based representation of a model, whereas PyTorch has an eager execution
with tape-based differentiation. The eager method allows you to do all sorts of
dynamic approaches to specifying and training models that makes PyTorch
appealing for research purposes. On the other hand, the graph-based
representation may be static, but it gains power from that stability; optimizations
may be applied to the graph representation, safe in the knowledge that nothing is
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going to change. And just as TensorFlow has moved to support eager execution
in version 2.0, version 1.0 of PyTorch introduced TorchScript, which is a way of
bringing the advantages of graph-based systems without completely giving up
the flexibility of PyTorch. This is done in two ways that can be mixed and
matched: tracing and using TorchScript directly.

Tracing

PyTorch 1.0 comes with a JIT tracing engine that will turn an existing PyTorch
module or function into a TorchScript one. It does this by passing an example

tensor through the module and returning a ScriptModule result that contains the
TorchScript representation of the original code.

Let’s have a look at tracing AlexNet:

model = torchvision.models.AlexNet()
traced_model = torch.jit.trace(model,
torch.rand(1, 3, 224, 224))

Now, this will work, but you’ll get a message like this from the Python
interpreter that will make you pause:

TracerWarning: Trace had nondeterministic nodes. Nodes:
%input.15 :

Float(1, 9216) = aten::dropout(%input.14, %174, %175),
scope: AlexNet/Sequential[classifier]/Dropout[0]
%input.18 :

Float(1, 4096) = aten::dropout(%input.17, %184, %185),
scope: AlexNet/Sequential[classifier]/Dropout[3]

This may cause errors in trace checking.
To disable trace checking, pass check_trace=False to torch.jit.trace()

_check_trace([example_inputs], func, executor_options,

module, check_tolerance, _force_ outplace)

/home/ian/anaconda3/1lib/
python3.6/site-packages/torch/jit/__init__.py:642:

TracerWarning: Output nr 1. of the traced function does not

match the corresponding output of the Python function. Detailed error:

Not within tolerance rtol=1e-05 atol=1e-05 at input[0, 22]
(0.010976361110806465 vs. -0.005604125093668699)
and 996 other locations (99.00%)



_check_trace([example_inputs], func,
executor_options, module, check_tolerance
_force_outplace)

What’s going on here? When we create AlexNet (or other models), the model is
instantiated in training mode. During training in many models such as AlexNet,
we use a Dropout layer that randomly kills activations as a tensor goes through a
network. What the JIT has done is send the random tensor we’ve generated

through the model twice, compared them, and noted that the Dropout layers
don’t match. This reveals an important caveat with the tracing facility; it cannot
cope with nondeterminism or control flow. If your model uses these features,
you’ll have to use TorchScript directly for at least part of your conversion.

In AlexNet’s case, though, the fix is simple: we’ll switch the model to evaluation
mode by using model.eval(). If you run the tracing line again, you’ll find that

it completes without any complaining. We can also print() the traced model to
see what it is composed of:

print(traced_model)

TracedModule[AlexNet](

(features): TracedModule[Sequential](
(0): TracedModule[Conv2d]()
(1): TracedModule[ReLU]()

(2): TracedModule[MaxPool2d]()
(3): TracedModule[Conv2d]()
(4): TracedModule[ReLU]()

(5): TracedModule[MaxPool2d]()
(6): TracedModule[Conv2d]()
(7): TracedModule[ReLU]()

(8): TracedModule[Conv2d]()
(9): TracedModule[ReLU]()
(10): TracedModule[Conv2d]()
(11): TracedModule[ReLU]()
(12): TracedModule[MaxPool2d]()

)

(classifier): TracedModule[Sequential](
(0): TracedModule[Dropout]()
(1): TracedModule[Linear]()
(2): TracedModule[ReLU]()

(3): TracedModule[Dropout]()
(4): TracedModule[Linear]()
(5): TracedModule[ReLU]()

(6): TracedModule[Linear]()



We can also see the code that the JIT engine has created if we call
print(traced_model.code):

def forward(self,
input_1: Tensor) -> Tensor:
input_2 = torch._convolution(input_1, getattr(self.features, "0").weight,
getattr(self.features, "0").bias,
[4, 4], [2, 2], [1, 1], False, [0, O], 1, False, False, True)
input_3 = torch.threshold_(input_2, 0., 0.)
input_4, 0 = torch.max_pool2d_with_indices
(input_3, [3, 3], [2, 2], [0, 0], [1, 1], False)
input_5 = torch._convolution(input_4, getattr
(self.features, "3").weight, getattr(self.features, "3").bias,
[1, 11, [2, 2], [1, 1], False, [0, 0], 1, False, False, True)
input_6 = torch.threshold_(input_5, 0., 0.)
input_7, 1 = torch.max_pool2d_with_indices
(input_6, [3, 3], [2, 2], [0, 0], [1, 1], False)
input_8 = torch._convolution(input_7, getattr(self.features, "6").weight,
getattr
(self.features, "6").bias,
[1, 17, [1, 11, [1, 1], False, [0, 0], 1, False, False, True)
input_9 = torch.threshold_(input_8, 0., 0.)
input_10 = torch._convolution(input_9, getattr
(self.features, "8").weight, getattr(self.features, "8").bias,
[1, 17, [1, 11, [1, 1], False, [0, 0], 1, False, False, True)
input_11 = torch.threshold (input_10, 0., 0.)
input_12 = torch._convolution(input_11, getattr
(self.features, "10").weight, getattr(self.features, "10").bias,
[1, 11, [1, 11, [1, 1], False, [0, 0], 1, False, False, True)
input_13 = torch.threshold (input_12, 0., 0.)
X, _2 = torch.max_pool2d with_indices
(input_13, [3, 31, [2, 21, [0, o], [1, 1], False)
_3 = ops.prim.NumToTensor(torch.size(x, 0))
input_14 = torch.view(x, [int(_3), 9216])
input_15 = torch.dropout(input_14, 0.5, False)
_4 = torch.t(getattr(self.classifier, "1").weight)
input_16 = torch.addmm(getattr(self.classifier, "1").bias,
input_15, 4, beta=1, alpha=1)
input_17 = torch.threshold (input_16, 0., 0.)
input_18 = torch.dropout(input_17, 0.5, False)
_5 = torch.t(getattr(self.classifier, "4").weight)
input_19 = torch.addmm(getattr(self.classifier, "4").bias,
input_18, 5, beta=1, alpha=1)
input = torch.threshold_(input_19, 0.,

0.)
6 = torch.t(getattr(self.classifier, "6").



_7 = torch.addmm(getattr(self.classifier, "6").bias, input,
_6, beta=1, alpha=1)
return _7

The model (code and parameters) can then be saved with torch.jit.save:
torch.jit.save(traced_model, "traced model")

That covers how tracing works. Let’s see how to use TorchScript.

Scripting

You might wonder why we just can’t trace everything. Although the tracer is
good at what it does, it has limitations. For example, a simple function like the
following is not possible to trace with a single pass:

import

def example(x, y):
if x.min() > y.min():

r=x

else:
r=y

return r

A single trace through the function will take us down one pathway and not the
other, meaning that the function will not be converted correctly. In these cases,
we can use TorchScript, which is a limited subset of Python, and produce our
compiled code. We use an annotation to tell PyTorch that we are using
TorchScript, so the TorchScript implementation would look like this:

.jit.script
def example(x, y):
if x.min() > y.min():

r=x

else:
r=y

return r

Happily, we’re not using any constructs in our function that aren’t in TorchScript
or referencing any global state, so this will just work. If we were creating a new



architecture, we’d need to inherit from torch. jit.ScriptModule instead of

nn.Module. You might wonder how we can use other modules (say, CNN-based
layers) if all modules have to inherit from this different class. Is everything
slightly different? The fix is that we can mix and match both by using explicit
TorchScript and traced objects at will.

Let’s go back to our CNNNet/AlexNet structure from Chapter 3 and see how it
can be converted into TorchScript using a combination of these methods. For the

sake of brevity, we’ll implement only the features component:

class FeaturesCNNNet(torch.jit.ScriptModule):
def __init__(self, num_classes=2):

super (FeaturesCNNNet, self)._ _init_ ()

self.features = torch.jit.trace(nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.RelLU(),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.RelLU(),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(),
nn.MaxPool2d(kernel_size=3, stride=2)

), torch.rand(1,3,224,224))

.jit.script_method
def forward(self, x):
x = self.features(x)
return x

There are two things to note here. First, inside classes, we need to annotate using
@torch.jit.script_method. Second, although we could have traced each

separate layer individually, we took advantage of the nn.Sequential wrapper
layer to fire the trace through just that instead. You could implement the

classifier block yourself to get a feel for how this mixing works. Remember
that you’ll need to switch the Dropout layers into eval() mode instead of
training, and your input trace tensor will need to be of shape [1, 256, 6, 6]
because of the downsampling that the features block carries out. And yes, you



can save this network by using torch. jit.save just as we did for the traced
module. Let’s have a look at what TorchScript allows and forbids.

TorchScript Limitations

The biggest restriction in TorchScript compared to Python, at least in my mind,

is the reduced number of types available. Table 8-1 lists what’s available and
what’s not.

Table 8-1. Available Python types in TorchScript

Type Description
tensor A PyTorch tensor of any dtype, dimension, or backend

tuple[TO, T1,...] A tuple containing subtypes T0, T1, etc. (e.g., tuple[tensor, tensor])

boolean Boolean

str String

int Int

float Float

list List of type T

optional[T] Either None or type T

dict[K, V] dict with keys of type K and values of type V; K can be only str, int, or float

Another thing you can’t do that you can do in standard Python is have a function
that mixes return types. The following is illegal in TorchScript:

def maybe_a_string_or_int(x):
if x > 3:
return "bigger than 3!"
else
return 2

Of course, it’s not really a good idea in Python, either, but the language’s
dynamic typing will allow it. TorchScript is statically typed (which helps with



applying optimizations), so you simply can’t do this in TorchScript annotated
code. Also, TorchScript assumes that every parameter passed into a function is a
tensor, which can result in some weirdness if you’re not aware of what’s going
on:

.jit.script
def add_int(x,y):
return x + vy

print(add_int.code)
>> def forward(self,
x: Tensor,
y: Tensor) -> Tensor:
return torch.add(x, y, alpha=1)

To force different types, we need to use Python 3’s type decorators:

.jilt.script
def add_int(x: int, y: int) -> int:
return x + vy
print(add_int.code)
>> def forward(self,
x: int,
y: int) -> int:
return torch.add(x, y)

As you’ve already seen, classes are supported, but there are a few twists. All
methods on a class have to be valid TorchScript, but although this code looks
valid, it will fail:

.jit.script
class BadClass:
def __init__ (self, x)
self.x = x

def set_y(y)
self.y =y

This is, again, a consequence of TorchScript’s static typing. All instance
variables have to be declared during the __init__ and cannot be introduced
elsewhere. Oh, and don’t get any ideas about including any expressions inside a
class that aren’t in a method—these are explicitly banned by TorchScript.



A useful feature of TorchScript being a subset of Python is that translation can be
approached in a piecemeal approach, and the intermediate code is still valid and
executable Python. TorchScript-compliant code can call out to noncompliant
code, and while you won’t be able to execute torch. jit.save() until all the
noncompliant code is converted, you can still run everything under Python.

These are what I consider the major nuances of TorchScript. You can read about
more in the PyTorch documentation, which goes into depth about things like
scoping (mostly standard Pythonic rules), but the outline presented here is
enough to convert all the models you’ve seen so far in this book. Instead of
regurgitating all of the reference, let’s look at using one of our TorchScript-
enabled models in C++.

Working with libTorch

In addition to TorchScript, PyTorch 1.0 introduced 1ibTorch, a C++ library for
interacting with PyTorch. Various levels of C++ interaction are available. The
lowest levels are ATen and autograd, the C++ implementations of the tensor and
automatic differentiation that PyTorch itself is built on. On top of those are a
C++ frontend, which duplicates the Pythonic PyTorch API in C++, an interface
to TorchScript, and finally an extension interface that allows new custom
C++/CUDA operators to be defined and exposed to PyTorch’s Python
implementation. We’re concerned with only the C++ frontend and the interface
to TorchScript in this book, but more information on the other parts is available
in the PyTorch documentation. Let’s start by getting LibTorch.

Obtaining libTorch and Hello World

Before we can do anything, we need a C++ compiler and a way of building C++
programs on our machine. This is one of the few parts of the book where
something like Google Colab isn’t appropriate, so you may have to create a VM
in Google Cloud, AWS, or Azure if you don’t have easy access to a terminal
window. (Everybody who ignored my advice not to build a dedicated machine is
feeling smug right now, I bet!) The requirements for libTorch are a C++
compiler and CMake, so let’s get them installed. With a Debian-based system,
use this command:


https://oreil.ly/sS0o7
https://oreil.ly/y6NP5

apt install cmake g++
If you’re using a Red Hat-based system, use this:

yum install cmake g++

Next, we need to download libTorch itself. To make things a little easier, for
what follows, we’ll use the CPU-based distribution of 1ibTorch, rather than
dealing with the additional CUDA dependencies that the GPU-enabled
distribution brings. Create a directory called torchscript_export and grab the
distribution:

wget https://download.pytorch.org/libtorch/cpu/libtorch-shared-with-deps-
latest.zip

Use unzip to expand the ZIP file (it should create a new libtorch directory) and
create a directory called helloworld. In this directory, we’re going to add a
minimal CMakeLists.txt, which CMake will use to build our executable:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(helloworld)

find_package(Torch REQUIRED)

add_executable(helloworld helloworld.cpp)
target_link_libraries(helloworld "${TORCH_LIBRARIES}")
set_property(TARGET helloword PROPERTY CXX_STANDARD 11)

And then helloworld.cpp is as follows:

#include <torch/torch.h>
#include <iostreams

int main() {
torch::Tensor tensor = torch::ones({2, 2});
std::cout << tensor << std::endl;

}

Create a build directory and run cmake, making sure that we provide an absolute

path to the libtorch distribution:



mkdir build

cd build

cmake -DCMAKE_PREFIX_PATH=/absolute/path/to/libtorch ..
cd ..

We can now run plain and simple make to create our executable:

make
./helloworld

1 1
1 1
[ variable[CPUType]{2,2} ]

Congratulations on building your first C++ program with 1ibTorch! Now, let’s
expand on this and see how to use the library to load in a model we’ve
previously saved with torch. jit.save().

Importing a TorchScript Model

We’re going to export our full CNNNet model from Chapter 3 and load it into
C++. In Python, create an instance of the CNNNet, switch it to eval() mode to
ignore Dropout, trace, and save to disk:

cnn_model = CNNNet()

cnn_model.eval()

cnn_traced = torch.jit.trace(cnn_model, torch.rand([1,3,224,224]))
torch.jit.save(cnn_traced, "cnnnet")

Over in the C++ world, create a new directory called load-cnn and add in this
new CMakeLists.txt file:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(load-cnn)

find_package(Torch REQUIRED)
add_executable(load-cnn.cpp load-cnn.cpp)

target_link_libraries(load-cnn "${TORCH_LIBRARIES}")
set_property(TARGET load-cnn PROPERTY CXX_STANDARD 11)



Let’s create our C++ program, load-cnn.cpp:

#include <torch/script.h>
#include <iostream>
#include <memory>

int main(int argc, const char* argv[]) {
std::shared_ptr<torch::jit::script::Module> module = torch::jit::load("cnnnet");

assert(module != nullptr);
std::cout << "model loaded ok\n";

// Create a vector of inputs.
std::vector<torch::jit::IValue> inputs;
inputs.push_back(torch::rand({1, 3, 224, 224}));

at::Tensor output = module->forward(inputs).toTensor();

std::cout << output << '\n'

A few new things are in this small program, though most of it should remind you
of the Python PyTorch API. Our first act is to load in our TorchScript model with
torch::jit::load (versus torch.jit.load in Python). We do a null pointer
check to make sure that the model has loaded correctly, and then we move on to
testing the model with a random tensor. Although we can do that fairly easily
with torch: :rand, when interacting with a TorchScript model, we have to
create a vector of torch::jit::IValue inputs rather than just a normal tensor
because of the way TorchScript is implemented in C++. Once that is done, we
can push the tensor through our loaded model and then finally write the result
back to standard output. We compile this in the same way that we compiled our
earlier program:

mkdir build

cd build

cmake -DCMAKE_PREFIX_PATH=/absolute/path/to/libtorch ..
cd ..

make

./load-cnn

0.1775
0.9096



[ Variable[CPUTypel{2} ]

And voila! A C++ program that executes a custom model with little effort on our
part. Be aware that the C++ interface is still at the time of writing in beta phase,
so it’s possible that some of the details here may change. Make sure to have a
look at the documentation before you use it in anger!

Conclusion

Hopefully you now understand how to take your trained (and debugged!) model
and turn it into a Dockerized web service that can be deployed via Kubernetes.
You’ve also seen how to use the JIT and TorchScript features to optimize our
models and how to load TorchScript models in C++, giving us the promise of
low-level integration of neural networks as well as in Python.

Obviously, with just one chapter, we can’t cover everything about production
usage of model serving. We got to the point of deploying our service, but that’s
not the end of the story; there’s the constant monitoring of the service to make
sure that it is maintaining accuracy, retraining and testing against baselines, and
more complicated versioning schemes than the ones I’ve introduced here for
both the service and the model parameters. I recommend that you log as much
detail as you possibly can and take advantage of that logging information for
retraining as well as monitoring purposes.

As for TorchScript, it’s still early days, but a few bindings for other languages
(e.g., Go and Rust) are starting to appear; by 2020 it should be easy to wire a
PyTorch model into any popular language.

I’ve intentionally left out a few bits and pieces that don’t quite line up with the
book’s scope. Back in the introduction, I promised that you could do everything
in the book with one GPU, so we haven’t talked about PyTorch’s support for
distributed training and inference. Also, if you read about PyTorch model
exports, you’re almost certainly going to come across a lot of references to the
Open Neural Network Exchange (ONNX). This standard, jointly authored by
Microsoft and Facebook, was the main method of exporting models before the
advent of TorchScript. Models can be exported via a similar tracing method to
TorchScript and then imported in other frameworks such as Caffe2, Microsoft



Cognitive Toolkit, and MXNet. ONNX is still supported and actively worked in
PyTorch v1.x, but it appears that TorchScript is the preferred way for model
exporting. See the “Further Reading” section for more details on ONNX if
you’re interested.

Having successfully created, debugged, and deployed our models, we’ll spend
the final chapter looking at what some companies have been doing with
PyTorch.

Further Reading

¢ Flask documentation

e Waitress documentation

¢ Docker documentationd

e Kubernetes (k8s) documentation
e TorchScript documentation

e Open Neural Network Exchange
e Using ONNX with PyTorch

e Distributed training with PyTorch

1 Cloud Native DevOps with Kubernetes by John Arundel and Justin Domingus (O’Reilly) is a great
deep dive into this framework.


http://flask.pocoo.org
https://oreil.ly/bnelI
https://docs.docker.com
https://oreil.ly/jMVcN
https://oreil.ly/sS0o7
https://onnx.ai
https://oreil.ly/UXz5S
https://oreil.ly/Q-Jao
https://oreil.ly/2BaE1iq

Chapter 9. PyTorch in the Wild

For our final chapter, we’ll look at how PyTorch is used by other people and
companies. You’ll also learn some new techniques along the way, including
resizing pictures, generating text, and creating images that can fool neural
networks. In a slight change from earlier chapters, we’ll be concentrating on how
to get up and running with existing libraries rather than starting from scratch in
PyTorch. I’m hoping that this will be a springboard for further exploration.

Let’s start by examining some of the latest approaches for squeezing the most
out of your data.

Data Augmentation: Mixed and Smoothed

Way back in Chapter 4, we looked at various ways of augmenting data to help
reduce the model overfitting on the training dataset. The ability to do more with
less data is naturally an area of high activity in deep learning research, and in
this section we’ll look at two increasingly popular ways to squeeze every last
drop of signal from your data. Both approaches will also see us changing how
we calculate our loss function, so it will be a good test of the more flexible
training loop that we just created.

mixup

mixup is an intriguing augmentation technique that arises from looking askew at
what we want our model to do. Our normal understanding of a model is that we
send it an image like the one in Figure 9-1 and want the model to return a result
that the image is a fox.
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Figure 9-1. A fox

But as you know, we don’t get just that from the model; we get a tensor of all the
possible classes and, hopefully, the element of that tensor with the highest value
is the fox class. In fact, in the ideal scenario, we’d have a tensor that is all Os
except for a 1 in the fox class.

Except that is difficult for a neural network to do! There’s always going to be
uncertainty, and our activation functions like sof tmax make it difficult for the
tensors to get to 1 or 0. mixup takes advantage of this by asking a question: what
is the class of Figure 9-2?

Figure 9-2. A mixture of cat and fox



To our eyes, this may be a bit of a mess, but it is 60% cat and 40% fox. What if,
instead of trying to make our model make a definitive guess, we could make it
target two classes? This would mean that our output tensor won’t run into the
problem of approaching but never reaching 1 in training, and we could alter each
mixed image by a different fraction, improving our model’s ability to generalize.

But how do we calculate the loss function of this mixed-up image? Well, if p is
the percentage of the first image in the mixed image, then we have a simple
linear combination of the following:

p * loss(imagel) + (1-p) * loss(image?)

It has to predict those images, right? And we need to scale according to how
much of those images is in the final mixed image, so this new loss function
seems reasonable. To choose p, we could just use random numbers drawn from a
normal or uniform distribution as we would do in many other cases. However,
the writers of the mixup paper determined that samples drawn from the beta
distribution work out much better in practice.! Don’t know what the beta
distribution looks like? Well, neither did I until I saw this paper! Figure 9-3
shows how it looks when given the characteristics described in the paper.
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Figure 9-3. Beta distribution, where & = f3

The U-shape is interesting because it tells us that most of the time, our mixed
image will be mainly one image or another. Again, this makes intuitive sense as
we can imagine the network is going to have a harder time working out a 50/50
mixup than a 90/10 one.

Here’s a modified training loop that takes a new additional data loader,



mix_loader, and mixes the batches together:

def train(model, optimizer, loss_fn, train_loader, val_loader,
epochs=20, device, mix_loader):
for epoch in range(epochs):
model.train()
for batch in zip(train_loader,mix_loader):
((inputs, targets),(inputs_mix, targets_mix)) = batch
optimizer.zero_grad()
inputs = inputs.to(device)
targets = targets.to(device)
inputs_mix = inputs_mix.to(device)
target_mix = targets_mix.to(device)

distribution = torch.distributions.beta.Beta(0.5,0.5)
beta = distribution.expand(torch.zeros(batch_size).shape).sample().to(device)

# We need to transform the shape of beta

# to be in the same dimensions as our input tensor

# [batch_size, channels, height, width]

mixup = beta[:, None, None, None]

inputs_mixed = (mixup * inputs) + (1-mixup * inputs_mix)

# Targets are mixed using beta as they have the same shape
targets_mixed = (beta * targets) + (1-beta * inputs_mix)

output_mixed = model(inputs_mixed)

# Multiply losses by beta and 1-beta,
# sum and get average of the two mixed losses

loss = (loss_fn(output, targets) * beta
+ loss_fn(output, targets_mixed)
* (1-beta)).mean()

# Training method is as normal from herein on

loss.backward()
optimizer.step()

What’s happening here is after we get our two batches, we use
torch.distribution.Beta to generate a series of mix parameters, using the
expand method to produce a tensor of [1, batch_size]. We could iterate



through the batch and generate the parameters one by one, but this is neater, and
remember, GPUs love matrix multiplication, so it’ll end up being faster to do all
the calculations across the batch at once (this is shown in Chapter 7 when fixing
our BadRandom transformation, remember!). We multiply the entire batch by this
tensor, and then the batch to mix in by 1 - mix_factor_tensor using
broadcasting (which we covered in Chapter 1).

We then take the losses of the predictions against our targets for both images,
and our final loss is the mean of the sum of those losses. What’s happening
there? Well, if you look at the source code for CrossEntropyLoss, you’ll see the
comment The losses are averaged across observations for each
minibatch. There’s also a reduction parameter that has a default set to mean
(we’ve used the default so far, so that’s why you haven’t seen it before!). We
need to preserve that condition, so we take the mean of our combined losses.

Now, having two data loaders isn’t too much trouble, but it does make the code a
little more complicated. If you run this code, you might error out because the
batches are not balanced as final batches come out of the loaders, meaning that
you’ll have to write extra code to handle that case. The authors of the mixup
paper suggest that you could replace the mix data loader with a random shuffle

of the incoming batch. We can do this with torch.randperm():

shuffle = torch.randperm(inputs.size(0))
inputs_mix = inputs[shuffle]
targets_mix = targets[shuffle]

When using mixup in this way, be aware that you are much more likely to get
collisions where you end up applying the same parameter to the same set of
images, potentially reducing the accuracy of training. For example, you could
have catl mixed with fish1, and draw a beta parameter of 0.3. Then later in the
same batch, you pull out fish1 and it gets mixed with catl with a parameter of
0.7—making it the same mix! Some implementations of mixup—in particular,
the fast.ai implementation—resolve this issue by replacing our mix parameters
with the following:

mix_parameters = torch.max(mix_parameters, 1 - mix_parameters)



This ensures that the nonshuffled batch will always have the highest component
when being merged with the mix batch, thus eliminating that potential issue.

Oh, and one more thing: we performed the mixup transformation after our image
transformation pipeline. At this point, our batches are just tensors that we’ve
added together. This means that there’s no reason mixup training should be
restricted to images. We could use it on any type of data that’s been transformed
into tensors, whether text, image, audio, or anything else.

We can still do a little more to make our labels work harder for us. Enter another
approach that is now a mainstay of state-of-the-art models: label smoothing.

Label Smoothing

In a similar manner to mixup, label smoothing helps to improve model
performance by making the model less sure of its predictions. Instead of trying
to force it to predict 1 for the predicted class (which has all the problems we
talked about in the previous section), we instead alter it to predict 1 minus a
small value, epsilon. We can create a new loss function implementation that

wraps up our existing CrossEntropyLoss function with this functionality. As it
turns out, writing a custom loss function is just another subclass of nn.Module:

class LabelSmoothingCrossEntropyLoss(nn.Module):
def __init__(self, epsilon=0.1):
super(LabelSmoothingCrossEntropylLoss, self).__init__ ()
self.epsilon = epsilon

def forward(self, output, target):

num_classes = output.size()[-1]

log_preds = F.log_softmax(output, dim=-1)

loss = (-log_preds.sum(dim=-1)).mean()

nll = F.nll_loss(log_preds, target)

final_loss = self.epsilon * loss / num_classes +
(1-self.epsilon) * nll

return final_loss

When it comes to computing the loss function, we calculate the cross-entropy
loss as per the implementation of CrossEntropyLoss. Our final_loss is
constructed from negative log-likelihood being multiplied by 1 minus epsilon
(our smoothed label) added to the loss multiplied by epsilon divided by the



number of classes. This occurs because we are smoothing not only the label for
the predicted class to be 1 minus epsilon, but also the other labels so that they’re
not being forced to zero, but instead a value between zero and epsilon.

This new custom loss function can replace CrossEntropyLoss in training
anywhere we’ve used it in the book, and when combined with mixup, it is an
incredibly effective way of getting that little bit more from your input data.

We’ll now turn away from data augmentation to have a look at another hot topic
in current deep learning trends: generative adversarial networks.

Computer, Enhance!

One odd consequence of the increasing power of deep learning is that for
decades, we computer people have been mocking television crime shows that
have a detective click a button to make a blurry camera image suddenly become
a sharp, in-focus picture. How we laughed and cast derision on shows like CSI
for doing this. Except we can now actually do this, at least up to a point. Here’s
an example of this witchcraft, on a smaller 256 x 256 image scaled to 512 % 512,
in Figures 9-4 and 9-5.

Figure 9-4. Mailbox at 256 % 256 resolution



The neural network learns how to hallucinate new details to fill in what’s not
there, and the effect can be impressive. But how does this work?

Introduction to Super-Resolution

Here’s the first part of a very simple super-resolution model. To start, it’s pretty
much exactly the same as any model you’ve seen so far:

class OurFirstSRNet(nn.Module):

def __init__(self):
super (OurFirstSRNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=8, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.Conv2d(64, 192, kernel_size=2, padding=2),



nn.ReLU(inplace=True),
nn.Conv2d(192, 256, kernel_size=2, padding=2),
nn.ReLU(inplace=True)

)

def forward(self, x):
x = self.features(x)
return x

If we pass a random tensor through the network, we end up with a tensor of
shape [1, 256, 62, 62]; the image representation has been compressed into a
much smaller vector. Let’s now introduce a new layer type,
torch.nn.ConvTranspose2d. You can think of this as a layer that inverts a
standard Conv2d transform (with its own learnable parameters). We’ll add a new
nn.Sequential layer, upsample, and put in a simple list of these new layers and
ReLU activation functions. In the forward() method, we pass input through that
consolidated layer after the others:

class OurFirstSRNet(nn.Module):
def __init__(self):

super (OurFirstSRNet, self)._ _init__ ()

self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=8, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.Conv2d(64, 192, kernel_size=2, padding=2),
nn.ReLU(inplace=True),
nn.Conv2d(192, 256, kernel_size=2, padding=2),
nn.ReLU(inplace=True)

)

self.upsample = nn.Sequential(
nn.ConvTranspose2d(256,192,kernel_size=2, padding=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(192,64,kernel_size=2, padding=2),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(64,3, kernel_size=8, stride=4,padding=2),
nn.ReLU(inplace=True)

)

def forward(self, x):
x = self.features(x)
x = self.upsample(x)
return x



If you now test the model with a random tensor, you’ll get back a tensor of
exactly the same size that went in! What we’ve built here is known as an
autoencoder, a type of network that rebuilds its input, usually after compressing
it into a smaller dimension. That is what we’ve done here; the features
sequential layer is an encoder that transforms an image into a tensor of size [1,
256, 62, 62], and the upsample layer is our decoder that turns it back into the
original shape.

Our labels for training the image would, of course, be our input images, but that
means we can’t use loss functions like our fairly standard CrossEntropyLoss,
because, well, we don’t have classes! What we want is a loss function that tells
us how different our output image is from our input image, and for that, taking
the mean squared loss or mean absolute loss between the pixels of the image is a
common approach.

NOTE

Although calculating the loss in terms of pixels makes a lot of sense, it turns out that a lot of
the most successful super-resolution networks use augmented loss functions that try to capture
how much a generated image looks like the original, tolerating pixel loss for better
performance in areas like texture and content loss. Some of the papers listed in “Further
Reading” go into deeper detail.

Now that gets us back to the same size input we entered, but what if we add
another transposed convolution to the mix?

self.upsample = nn.Sequential(...
nn.ConvTranspose2d(3,3, kernel _size=2, stride=2)
nn.ReLU(inplace=True))

Try it! You should find that the output tensor is twice as big as the input. If we
have access to a set of ground truth images at that size to act as labels, we can
train the network to take in images at a size x and produce images for a size 2x.
In practice, we tend to perform this upsampling by scaling up twice as much as
we need to and then adding a standard convolutional layer, like so:

self.upsample = nn.Sequential(......



nn.ConvTranspose2d(3,3, kernel_size=2, stride=2),
nn.ReLU(inplace=True),

nn.Conv2d(3,3, kernel_size=2, stride=2),
nn.ReLU(inplace=True))

We do this because the transposed convolution has a tendency to add jaggies and
moiré patterns as it expands the image. By expanding twice and then scaling
back down to our required size, we hopefully provide enough information to the
network to smooth those out and make the output look more realistic.

Those are the basics behind super-resolution. Most current high-performing
super-resolution networks are trained with a technique called the generative
adversarial network, which has stormed the deep learning world in the past few
years.

An Introduction to GANs

One of the universal problems in deep learning (or any machine learning
application) is the cost of producing labeled data. In this book, we’ve mostly
avoided the problem by using sample datasets that are all carefully labeled (even
some that come prepackaged in easy training/validation/test sets!). But in the
real world producing large quantities of labeled data. Indeed, techniques that
you’ve learned a lot about so far, like transfer learning, have all been about doing
more with less. But sometimes you need more, and generative adversarial
networks (GANs) have a way to help.

GANSs were introduced by Ian Goodfellow in a 2014 paper and are a novel way
of providing more data to help train neural networks. And the approach is mainly
“we know you love neural networks, so we added another.”?

The Forger and the Critic

The setup of a GAN is as follows. Two neural networks are trained together. The
first is the generator, which takes random noise from the vector space of the
input tensors and produces fake data as output. The second network is the
discriminator, which alternates between the generated fake data and real data. Its
job is to look at the incoming inputs and decide whether they’re real or fake. A
simple conceptual diagram of a GAN is shown in Figure 9-6.
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Figure 9-6. A simple GAN setup

The great thing about GAN:Ss is that although the details end up being somewhat
complicated, the general idea is easy to convey: the two networks are in
opposition to each other, and during training they work as hard as they can to
defeat the other. By the end of the process, the generator should be producing
data that matches the distribution of the real input data to flummox the
discriminator. And once you get to that point, you can use the generator to
produce more data for all your needs, while the discriminator presumably retires
to the neural network bar to drown its sorrows.

Training a GAN

Training a GAN is a little more complicated than training traditional networks.
During the training loop, we first need to use real data to start training the
discriminator. We calculate the discriminator’s loss (using BCE, as we have only
two classes: real or fake), and then do a backward pass to update the parameters
of the discriminator as usual. But this time, we don't call the optimizer to update.
Instead, we generate a batch of data from our generator and pass that through the
model. We calculate the loss and do another backward pass, so at this point the
training loop has calculated the losses of two passes through the model. Now, we
call the optimizer to update based on these accumulated gradients.

In the second half of training, we turn to the generator. We give the generator
access to the discriminator and then generate a new batch of data (which the
generator insists is all real!) and test it against the discriminator. We form a loss
against this output data, where each data point that the discriminator says is fake
is considered a wrong answer—because we’re trying to fool it—and then do a



standard backward/optimize pass.

Here’s a generalized implementation in PyTorch. Note that the generator and
discriminator are just standard neural networks, so theoretically they could be
generating images, text, audio, or whatever type of data, and be constructed of
any of the types of networks you’ve seen so far:

generator = Generator()
discriminator = Discriminator()

# Set up separate optimizers for each network
generator_optimizer = ...
discriminator_optimizer = ...

def gan_train():
for epoch in num_epochs:
for batch in real_train_loader:
discriminator.train()
generator.eval()
discriminator.zero_grad()

preds = discriminator(batch)
real_loss = criterion(preds, torch.ones_like(preds))
discriminator.backward()

fake_batch = generator(torch.rand(batch.shape))

fake_preds = discriminator(fake_batch)

fake_loss = criterion(fake_preds, torch.zeros_like(fake_preds))
discriminator.backward()

discriminator_optimizer.step()
discriminator.eval()

generator.train()
generator.zero_grad()

forged_batch = generator(torch.rand(batch.shape))
forged_preds = discriminator(forged_batch)
forged_loss = criterion(forged_preds, torch.ones_like(forged_preds))

generator.backward()
generator_optimizer.step()

Note that the flexibility of PyTorch helps a lot here. Without a dedicated training
loop that is perhaps mainly designed for more standard training, building up a
new training loop is something we’re used to, and we know all the steps that we



need to include. In some other frameworks, training GANSs is a bit more of a
fiddly process. And that’s important, because training GANS is a difficult enough
task without the framework getting in the way.

The Dangers of Mode Collapse

In an ideal world, what happens during training is that the discriminator will be
good at detecting fakes at first, because it’s training on real data, whereas the
generator is allowed access to only the discriminator and not the real data itself.
Eventually, the generator will learn how to fool the discriminator, and then it will
soon improve rapidly to match the data distribution in order to repeatedly
produce forgeries that slip past the critic.

But one thing that plagues many GAN architectures is mode collapse. If our real
data has three types of data, then maybe our generator will start generating the
first type, and perhaps it starts getting rather good at it. The discriminator may
then decide that anything that looks like the first type is actually fake, even the
real example itself, and the generator then starts to generate something that looks
like the third type. The discriminator starts rejecting all samples of the third type,
and the generator picks another one of the real examples to generate. The cycle
continues endlessly; the generator never manages to settle into a period where it
can generate samples from across the distribution.

Reducing mode collapse is a key performance issue of using GANs and is an on-
going research area. Some approaches include adding a similarity score to the
generated data, so that potential collapse can be detected and averted, keeping a
replay buffer of generated images around so that the discriminator doesn’t
overfit onto just the most current batch of generated images, allowing actual
labels from the real dataset to be added to the generator network, and so on.

Next we round off this section by examining a GAN application that performs
super-resolution.

ESRGAN

The Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) is
a network developed in 2018 that produces impressive super-resolution results.
The generator is a series of convolutional network blocks with a combination of



residual and dense layer connections (so a mixture of both ResNet and
DenseNet), with BatchNorm layers removed as they appear to create artifacts in
upsampled images. For the discriminator, instead of simply producing a result
that says this is real or this is fake, it predicts a probability that a real image is
relatively more realistic than a fake one, and this helps to make the model
produce more natural results.

Running ESRGAN

To show off ESRGAN, we’re going to download the code from the GitHub
repository. Clone that using git:

git clone https://github.com/xinntao/ESRGAN

We then need to download the weights so we can use the model without training.
Using the Google Drive link in the README, download the
RRDB_ESRGAN_x4.pth file and place it in ./models. We’re going to upsample a
scaled-down version of Helvetica in her box, but feel free to place any image
into the ./LR directory. Run the supplied test.py script and you’ll see upsampled
images being generated and saved into the results directory.

That wraps it up for super-resolution, but we haven’t quite finished with images
yet.

Further Adventures in Image Detection

Our image classifications in Chapters 2—4 all had one thing in common: we
determined that the image belonged to a single class, cat or fish. And obviously,
in real-world applications, that would be extended to a much larger set of
classes. But we’d also expect images to potentially include both a cat and a fish
(which might be bad news for the fish), or any of the classes we’re looking for.
There might be two people in the scene, a car, and a boat, and we not only want
to determine that they’re present in the image, but also where they are in the
image. There are two main ways to do this: object detection and segmentation.
We’ll look at both and then turn to Facebook’s PyTorch implementations of
Faster R-CNN and Mask R-CNN to look at concrete examples.
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Object Detection

Let’s take a look at our cat in a box. What we really want is for the network to
put the cat in a box in another box! In particular, we want a bounding box that
encompasses everything in the image that the model thinks is cat, as seen in
Figure 9-7.

Figure 9-7. Cat in a box in a bounding box

But how can we get our networks to work this out? Remember that these
networks can predict anything that you want them to. What if alongside our
prediction of a class, we also produce four more outputs? In our CATFISH
model, we’d have a Linear layer of output size 6 instead of 2. The additional
four outputs will define a rectangle using x;, x», y;, y» coordinates. Instead of just
supplying images as training data, we’ll also have to augment them with
bounding boxes so that the model has something to train toward, of course. Our
loss function will now be a combined loss of the cross-entropy loss of our class
prediction and a mean squared loss for the bounding boxes.

There’s no magic here! We just design the model to give us what we need, feed
in data that has enough information to make and train to those predictions, and
include a loss function that tells our network how well or badly it’s doing.

An alternative to the proliferation of bounding boxes is segmentation. Instead of
producing boxes, our network outputs an image mask of the same size of the

input; the pixels in the mask are colored depending on which class they fall into.
For example, grass could be green, roads could be purple, cars could be red, and



SO On.

As we’re outputting an image, you’d be right in thinking that we’ll probably end
up using a similar sort of architecture as in the super-resolution section. There’s
a lot of cross-over between the two topics, and one model type that has become
popular over the past few years is the U-Net architecture, shown in Figure 9-8.3
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Figure 9-8. Simplified U-Net architecture

As you can see, the classic U-Net architecture is a set of convolutional blocks
that scale down an image and another series of convolutions that scale it back up
again to the target image. However, the key of U-Net is the lines that go across
from the left blocks to their counterparts on the righthand side, which are
concatenated with the output tensors as the image is scaled back up. These
connections allow information from the higher-level convolutional blocks to
transfer across, preserving details that might be removed as the convolutional
blocks reduce the input image.

You’ll find U-Net-based architectures cropping up all over Kaggle segmentation
competitions, proving in some ways that this structure is a good one for
segmentation. Another technique that has been applied to the basic setup is our
old friend transfer learning. In this approach, the first part of the U is taken from
a pretrained model such as ResNet or Inception, and the other side of the U, plus
skip connections, are added on top of the trained network and fine-tuned as
usual.

Let’s take a look at some existing pretrained models that can deliver state-of-the-



art object detection and segmentation, direct from Facebook.

Faster R-CNN and Mask R-CNN

Facebook Research has produced the maskrcnn-benchmark library, which
contains reference implementations of both object detection and segmentation
algorithms. We’re going to install the library and add code to generate
predictions. At the time of this writing, the easiest way to build the models is by
using Docker (this may change when PyTorch 1.2 is released). Clone the
repository from https://github.com/facebookresearch/maskrcnn-benchmark and
add this script, predict.py, into the demo directory to set up a prediction pipeline
using a ResNet-101 backbone:

import as

from import Image

import as

import

from import cfg
from import COCODemo

config_file = "../configs/caffe2/e2e_faster_rcnn_R_101_FPN_1x_caffe2.yaml"

cfg.merge_from_file(config_file)
cfg.merge_from_1ist(["MODEL.DEVICE", "cpu"])

coco_demo = COCODemo(
cfg,
min_image_size=500,
confidence_threshold=0.7,

pil_image = Image.open(sys.argv[1])

image = np.array(pil_image)[:, :, [2, 1, 0]]
predictions = coco_demo.run_on_opencv_image(image)
predictions = predictions[:,:,::-1]

plt.imsave(sys.argv[2], predictions)
In this short script, we’re first setting up the COCODemo predictor, making sure

that we pass in the configuration that sets up Faster R-CNN instead of Mask R-
CNN (which will produce segmented output). We then open an image file set on
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the command line, but we have to turn it into BGR format instead of RGB format
as the predictor is trained on OpenCV images rather than the PIL images we’ve
been using so far. Finally, we use imsave to write the predictions array (the
original image plus bounding boxes) to a new file, also specified on the
command line. Copy in a test image file into this demo directory and we can then
build the Docker image:

docker build docker/

We run the script from inside the Docker container and produce output that looks
like Figure 9-7 (I actually used the library to generate that image). Try
experimenting with different confidence_threshold values and different
pictures. You can also switch to the
e2e_mask_rcnn_R_101_FPN_1x_caffe2.yaml configuration to try out Mask R-
CNN and generate segmentation masks as well.

To train your own data on the models, you’ll need to supply your own dataset
that provides bounding box labels for each image. The library provides a helper

function called BoxL1ist. Here’s a skeleton implementation of a dataset that you
could use as a starting point:

from import BoxList

class MyDataset(object):
def __init__(self, path, transforms=None):
self.images = # set up image list
self.boxes = # read in boxes
self.labels = # read in labels

def __ getitem__(self, idx):
image = # Get PIL image from self.images
boxes = # Create a list of arrays, one per box in x1, y1, x2, y2 format
labels = # labels that correspond to the boxes

boxlist = BoxList(boxes, image.size, mode="xyxy")
boxlist.add_field("labels", labels)

if self.transforms:
image, boxlist = self.transforms(image, boxlist)

return image, boxlist, 1idx



def get_img_info(self, idx):
return {"height": img_height, "width": img_width

You’ll then need to add your newly created dataset to
maskrcnn_benchmark/data/datasets/init.py and
maskrcnn_benchmark/config/paths_catalog.py. Training can then be carried out
using the supplied train_net.py script in the repo. Be aware that you may have to
decrease the batch size to train any of these networks on a single GPU.

That wraps it up for object detection and segmentation, though see “Further
Reading” for more ideas, including the wonderfully entitled You Only Look
Once (YOLO) architecture. In the meantime, we look at how to maliciously
break a model.

Adversarial Samples

You have probably seen articles online about images that can somehow prevent
image recognition from working properly. If a person holds up an image to the
camera, the neural network thinks it is seeing a panda or something like that.
These are known as adversarial samples, and they’re interesting ways of
discovering the limitations of your architectures and how best to defend against
them.

Creating an adversarial sample isn’t too difficult, especially if you have access to
the model. Here’s a simple neural network that classifies images from the
popular CIFAR-10 dataset. There’s nothing special about this model, so feel free
to swap it out for AlexNet, ResNet, or any other network presented so far in the
book:

class ModelToBreak(nn.Module):
def __init__(self):
super(ModelToBreak, self)._ _init_ ()
self.convl = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)

self.fcl = nn.Linear(l6 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):



self.pool(F.relu(self.convi(x)))
self.pool(F.relu(self.conv2(x)))
x.view(-1, 16 * 5 * §5)
F.relu(self.fc1(x))
F.relu(self.fc2(x))

self.fc3(x)

return x
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Once the network has been trained on CIFAR-10, we can get a prediction for the
image in Figure 9-9. Hopefully the training has gone well enough to report that
it’s a frog (if not, you might want to train a little more!). What we’re going to do
is change our picture of a frog just enough that the neural network gets confused
and thinks it’s something else, even though we can still recognize that it’s clearly
a frog.

Figure 9-9. Our frog example

To do this, we’ll use a method of attack called the fast gradient sign method.*
The idea is to take the image we want to misclassify and run it through the
model as usual, which gives us an output tensor. Typically for predictions, we’d
look to see which of the tensor’s values was the highest and use that as the index
into our classes, using argmax( ). But this time we’re going to pretend that we’re
training the network again and backpropagate that result back through the model,
giving us the gradient changes of the model with respect to the original input (in
this case, our picture of a frog).

Having done that, we create a new tensor that looks at these gradients and
replaces an entry with +1 if the gradient is positive and —1 if the gradient is
negative. That gives us the direction of travel that this image is pushing the



model’s decision boundaries. We then multiply by a small scalar (called epsilon
in the paper) to produce our malicious mask, which we then add to the original
image, creating an adversarial example.

Here’s a simple PyTorch method that returns the fast gradient sign tensors for an
input batch when supplied with the batch’s labels, plus the model and the loss
function used to evaluate the model:

def fgsm(input_tensor, labels, epsilon=0.02, loss_function, model):
outputs = model(input_tensor)
loss = loss_function(outputs, labels)
loss.backward(retain_graph=True)
fsgm = torch.sign(inputs.grad) * epsilon
return fgsm

Epsilon is normally found via experimentation. By playing around with various
images, I discovered that 0.02 works well for this model, but you could also use
something like a grid or random search to find the value that turns a frog into a
ship!

Running this function on our frog and our model, we get a mask, which we can
then add to our original image to generate our adversarial sample. Have a look at
Figure 9-10 to see what it looks like!

model_to_break = # load our model to break here
adversarial_mask = fgsm(frog_image.unsqueeze(-1),
batch_labels,
loss_function,
model_to_break)
adversarial_image = adversarial_mask.squeeze(0) + frog_image
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Figure 9-10. Our adversarial frog

Clearly, our created image is still a frog to our human eyes. (If it doesn’t look
like a frog to you, then you may be a neural network. Report yourself for a
Voight-Kampff test immediately.) But what happens if we get a prediction from
the model on this new image?

model_to_break(adversarial_image.unsqueeze(-1))
# look up in labels via argmax()
>> 'cat'

We have defeated the model. But is this as much of a problem as it first appears?

Black-Box Attacks

You may have noticed that to produce an image that fools the classifier, we need
to know a lot about the model being used. We have the entire structure of the
model in front of us as well as the loss function that was used in training the
model, and we need to do forward and backward passes in the model to get our
gradients. This is a classic example of what’s known in computer security as a
white-box attack, where we can peek into any part of our code to work out
what’s going on and exploit whatever we can find.

So does this matter? After all, most models that you’ll encounter online won’t
allow you to peek inside. Is a black-box attack, where all you have is the input
and output, actually possible? Well, sadly, yes. Consider that we have a set of
inputs, and a set of outputs to match them against. The outputs are labels, and it



is possible to use targeted queries of models to train a new model that you can
use as a local proxy and carry out attacks in a white-box manner. Just as you’ve
seen with transfer learning, the attacks on the proxy model can work effectively
on the actual model. Are we doomed?

Defending Against Adversarial Attacks

How can we defend against these attacks? For something like classifying an
image as a cat or a fish, it’s probably not the end of the world, but for self-
driving systems, cancer-detection applications, and so forth, it could literally
mean the difference between life and death. Successfully defending against all
types of adversarial attacks is still an area of research, but highlights so far
include distilling and validation.

Distilling a model by using it to train another model seems to help. Using label
smoothing with the new model, as outlined earlier in this chapter, also seems to
help. Making the model less sure of its decisions appears to smooth out the
gradients somewhat, making the gradient-based attack we’ve outlined in this
chapter less effective.

A stronger approach is to go back to some parts of the early computer vision
days. If we perform input validation on the incoming data, we can possibly
prevent the adversarial image from getting to the model in the first place. In the
preceding example, the generated attack image has a few pixels that are very out
of place to what our eyes are expecting when we see a frog. Depending on the
domain, we could have a filter that allows in only images that pass some filtering
tests. You could in theory make a neural net to do that too, because then the
attackers have to try to break two different models with the same image!

Now we really are done with images. But let’s look at some developments in
text-based networks that have occurred the past couple of years.

More Than Meets the Eye: The Transformer
Architecture

Transfer learning has been a big feature in allowing image-based networks to
become so effective and prevalent over the past decade, but text has been a more



difficult nut to crack. In the last couple of years, though, some major steps have
been taken that are beginning to unlock the potential of using transfer learning in
text for all sorts of tasks, such as generation, classification, and answering
questions. We’ve also seen a new type of architecture begin to take center stage:
the Transformer network. These networks don’t come from Cybertron, but the
technique is behind the most powerful text-based networks we’ve seen, with
OpenAl’s GPT-2 model, released in 2019, showing a scarily impressive quality
in its generated text, to the extent that OpenAl initially held back the larger
version of the model to prevent it from being used for nefarious purposes. We
look at the general theory of Transformer and then dive into how to use Hugging
Face’s implementations of GPT-2 and BERT.

Paying Attention

The initial step along the way to the Transformer architecture was the attention
mechanism, which was initially introduced to RNNs to help in sequence-to-
sequence applications such as translation.®

The issue attention was trying to solve was the difficulty in translating sentences
such as “The cat sat on the mat and she purred.” We know that she in that
sentence refers to the cat, but it’s a hard concept to get a standard RNN to
understand. It may have the hidden state that we talked about in Chapter 5, but
by the time we get to she, we already have a lot of time steps and hidden state
for each step!

So what attention does is add an extra set of learnable weights attached to each
time step that focuses the network onto a particular part of the sentence. The
weights are normally pushed through a softmax layer to generate probabilities
for each step and then the dot product of the attention weights is calculated with
the previous hidden state. Figure 9-11 shows a simplified version of this with
respect to our sentence.



RNN hidden states

The cat sat on the mat and she purred

|

Current word
Attention vector: [0, 1, 0, 0, 0, 0, 0, 0, 0]

Figure 9-11. An attention vector pointing to cat

The weights ensure that when the hidden state gets combined with the current
state, cat will be a major part of determining the output vector at the time step
for she, which will provide useful context for translating into French, for
example!

We won’t go into all the details about how attention can work in a concrete
implementation, but know the concept was powerful enough that it kickstarted
the impressive growth and accuracy of Google Translate back in the mid-2010s.
But more was to come.

Attention Is All You Need

In the groundbreaking paper “Attention Is All You Need,”® Google researchers
pointed out that we’d spent all this time bolting attention onto an already slow
RNN-based network (compared to CNNs or linear units, anyhow). What if we
didn’t need the RNN after all? The paper showed that with stacked attention-
based encoders and decoders, you could create a model that didn’t rely on the
RNN’s hidden state at all, leading the way to the larger and faster Transformer
that dominates textual deep learning today.

The key idea was to use what the authors called multihead attention, which
parallelizes the attention step over all the input by using a group of Linear
layers. With these, and borrowing some residual connection tricks from ResNet,
Transformer quickly began to supplant RNNs for many text-based applications.
Two important Transformer releases, BERT and GPT-2, represent the current



state-of-the-art as this book goes to print.

Luckily for us, there’s a library from Hugging Face that implements both of
them in PyTorch. It can be installed using pip or conda, and you should also git
clone the repo itself, as we’ll be using some of the utility scripts later!

pip install pytorch-transformers
conda install pytorch-transformers

First, we’ll have a look at BERT.

BERT

Google’s 2018 Bidirectional Encoder Representations from Transformers
(BERT) model was one of the first successful examples of bringing transfer
learning of a powerful model to test. BERT itself is a massive Transformer-based
model (weighing in at 110 million parameters in its smallest version), pretrained
on Wikipedia and the BookCorpus dataset. The issue that both Transformer and
convolutional networks traditionally have when working with text is that
because they see all of the data at once, it’s difficult for those networks to learn
the temporal structure of language. BERT gets around this in its pretraining stage
by masking 15% of the text input at random and forcing the model to predict the
parts that have been masked. Despite being conceptually simple, the
combination of the massive size of the 340 million parameters in the largest
model with the Transformer architecture resulted in new state-of-the-art results
for a whole series of text-related benchmarks.

Of course, despite being created by Google with TensorFlow, there are
implementations of BERT for PyTorch. Let’s take a quick look at one now.

FastBERT

An easy way to start using the BERT model in your own classification
applications is to use the FastBERT library that mixes Hugging Face’s repository
with the fast.ai API (which you’ll see in a bit more detail when we come to
ULMEFiT shortly). It can be installed via pip in the usual manner:

pip install fast-bert


https://oreil.ly/xpDzq

Here’s a script that can be used to fine-tune BERT on our Sentiment140 Twitter
dataset that we used into Chapter 5:

import

import

from import BertTokenizer
from import BertDataBunch

from import BertLearner

from import accuracy

device = torch.device('cuda')
logger = logging.getlLogger()
metrics = [{'name': 'accuracy', 'function': accuracy}]

tokenizer = BertTokenizer.from_pretrained
('bert-base-uncased',
do_lower_case=True)

databunch = BertDataBunch([PATH_TO_DATA],
[PATH_TO_LABELS],
tokenizer,
train_file=[TRAIN_CSV],
val_file=[VAL_CSV],
test_data=[TEST_CSV],
text_col=[TEST_FEATURE_COL], label col=[0],
bs=64,
maxlen=140,
multi_gpu=False,
multi_label=False)

learner = BertLearner.from_pretrained_model(databunch,
'bert-base-uncased’,
metrics,
device,
logger,
is_fpl6=False,
multi_gpu=False,
multi_label=False)

learner.fit(3, lr="1e-2")

After our imports, we set up the device, logger, and metrics objects, which
are required by the BertLearner object. We then create a BERTTokenizer for



tokenizing our input data, and in this base we’re going to use the bert-base-
uncased model (which has 12 layers and 110 million parameters). Next, we need
a BertDataBunch object that contains paths to the training, validation, and test
datasets, where to find the label column, our batch size, and the maximum length
of our input data, which in our case is simple because it can be only the length of
a tweet, at that time 140 characters. Having done that, we will set up a BERT
model by using the BertLearner.from_pretrained_model method. This
passes in our input data, our BERT model type, the metric, device, and logger
objects we set up at the start of the script, and finally some flags to turn off
training options that we don’t need but aren’t given defaults for the method
signature.

Finally, the fit() method takes care of fine-tuning the BERT model on our
input data, running on its own internal training loop. In this example, we’re
training for three epochs with a learning rate of 1e-2. The trained PyTorch
model can be accessed afterward using learner.model.

And that’s how to get up and running with BERT. Now, onto the competition.

GPT-2

Now, while Google was quietly working on BERT, OpenAl was working on its
own version of a Transformer-based text model. Instead of using masking to
force the model to learn language structure, the model constrains the attention
mechanism within the architecture to simply predict the next word in a sequence,
in a similar style to the RNNs in Chapter 5. As a result, GPT was somewhat left
behind by the impressive performance of BERT, but in 2019 OpenALl struck back
with GPT-2, a new version of the model that reset the bar for text generation.

The magic behind GPT-2 is scale: the model is trained on text from over 8
million websites, and the largest variant of GPT-2 weighs in at 1.5 billion
parameters. And while it still doesn’t dislodge BERT on particular benchmarks
for things like question/answering or other NLP tasks, its ability to create
incredibly realistic text from a basic prompt led to OpenAl locking the full-size
model behind closed doors for fear of it being weaponized. They have, however,
released smaller versions of the model, clocking in at 117 and 340 million
parameters.



Here’s an example of the output that GPT-2 can generate. Everything in italics
was written by GPT-2’s 340M model:

Jack and Jill went up the hill on a bike ride. The sky was a grey white and the
wind was blowing, causing a heavy snowfall. It was really difficult to drive
down the hill, I had to lean forward on a bit of gear to get it on. But then there
was a moment of freedom that I would never forget: The bike was at a
complete stop on the mountain side and I was in the middle of it. I didn’t have
time to say a word, but I did lean forward and touch the brakes and the bike
started to go.

Aside from switching from Jack and Jill to I, this is an impressive piece of text
generation. For short pieces of text, it can sometimes be indistinguishable from
human-created text. It does reveal the machine behind the curtain as the
generated text continues, but it’s an impressive feat that could be writing tweets
and Reddit comments right now. Let’s have a look at how to do this with
PyTorch.

Generating Text with GPT-2

Like BERT, the official GPT-2 release from OpenAl is a TensorFlow model.
Also like BERT, Hugging Face has released a PyTorch version that is contained
within the same library (pytorch-transformers). However, a burgeoning
ecosystem has been built around the original TensorFlow model that just doesn’t
exist currently around the PyTorch version. So just this once, we’re going to
cheat: we’re going to use some of the TensorFlow-based libraries to fine-tune the
GPT-2 model, and then export the weights and import them into the PyTorch
version of the model. To save us from too much setup, we also do all the
TensorFlow operations in a Colab notebook! Let’s get started.

Open a new Google Colab notebook and install the library that we’re using, Max
Woolf’s gpt-2-simple, which wraps up GPT-2 fine-tuning in a single package.
Install it by adding this into a cell:

Ipip3 install gpt-2-simple

Next up, you need some text. In this example, I’m using a public domain text of
PG Wodehouse’s My Man Jeeves. I’m also not going to do any further



processing on the text after downloading it from the Project Gutenberg website
with wget:

'wget http://www.gutenberg.org/cache/epub/8164/pg8164.txt

Now we can use the library to train. First, make sure your notebook is connected
to a GPU (look in Runtime — Change Runtime Type), and then run this code in a
cell:

import as
gpt2.download_gpt2(model_name="117M")

sess = gpt2.start_tf_sess()
gpt2.finetune(sess,
"pg8164.txt" ,model_name="117M",
steps=1000)

Replace the text file with whatever text file you’re using. As the model trains, it
will spit out a sample every hundred steps. In my case, it was interesting to see it
turn from spitting out vaguely Shakespearian play scripts to something that
ended up approaching Wodehouse prose. This will likely take an hour or two to
train for 1,000 epochs, so go off and do something more interesting instead while
the cloud’s GPUs are whirring away.

Once it has finished, we need to get the weights out of Colab and into your
Google Drive account so you can download them to wherever you’re running
PyTorch from:

gpt2.copy_checkpoint_to_gdrive()

That will point you to open a new web page to copy an authentication code into
the notebook. Do that, and the weights will be tarred up and saved to your
Google Drive as runl.tar.gz.

Now, on the instance or notebook where you’re running PyTorch, download that
tarfile and extract it. We need to rename a couple of files to make these weights
compatible with the Hugging Face reimplementation of GPT-2:

mv encoder.json vocab.json



mv vocab.bpe merges.txt

We now need to convert the saved TensorFlow weights into ones that are
compatible with PyTorch. Handily, the pytorch-transformers repo comes
with a script to do that:

python [REPO_DIR]/pytorch_transformers/convert_gpt2_checkpoint_to_pytorch.py
--gpt2_checkpoint_path [SAVED_TENSORFLOW_MODEL_DIR]
--pytorch_dump_folder_path [SAVED_TENSORFLOW_MODEL_DIR]

Creating a new instance of the GPT-2 model can then be performed in code like
this:

from import GPT2LMHeadModel

model = GPT2LMHeadModel.from_pretrained([SAVED_TENSORFLOW_MODEL_DIR])

Or, just to play around with the model, you can use the run_gpt2.py script to get
a prompt where you enter text and get generated samples back from the
PyTorch-based model:

python [REPO_DIR]/pytorch-transformers/examples/run_gpt2.py
--model_name_or_path [SAVED_TENSORFLOW_MODEL_DIR]

Training GPT-2 is likely to become easier in the coming months as Hugging
Face incorporates a consistent API for all the models in its repo, but the
TensorFlow method is the easiest to get started with right now.

BERT and GPT-2 are the most popular names in text-based learning right now,
but before we wrap up, we cover the dark horse of the current state-of-the-art
models: ULMFiT.

ULMFiT

In contrast to the behemoths of BERT and GPT-2, ULMFiT is based on a good
old RNN. No Transformer in sight, just the AWD-LSTM, an architecture
originally created by Stephen Merity. Trained on the WikiText-103 dataset, it has
proven to be amendable to transfer learning, and despite the old type of
architecture, has proven to be competitive with BERT and GPT-2 in the



classification realm.

While ULMFiT is, at heart, just another model that can be loaded and used in
PyTorch like any other, its natural home is within the fast.ai library, which sits on
top of PyTorch and provides many useful abstractions for getting to grips with
and being productive with deep learning quickly. To that end, we’ll look at how
to use ULMFiT with the fast.ai library on the Twitter dataset we used in

Chapter 5.

We first use fast.ai’s Data Block API to prepare our data for fine-tuning the
LSTM:

data_1lm = (TextList
.from_csv("./twitter-data/",
"train-processed.csv', cols=5,
vocab=data_1lm.vocab)
.split_by _rand_pct()
.label _from_df(cols=0)
.databunch())

This is fairly similar to the torchtext helpers from Chapter 5 and just produces
what fast.ai calls a databunch, from which its models and training routines can
easily grab data. Next, we create the model, but in fast.ai, this happens a little
differently. We create a learner that we interact with to train the model instead
of the model itself, though we pass that in as a parameter. We also supply a
dropout value (we’re using the one suggested in the fast.ai training materials):

learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3)

Once we have our learner object, we can find the optimal learning rate. This is
just like what we implemented in Chapter 4, except that it’s built into the library
and uses an exponentially moving average to smooth out the graph, which in our
implementation is pretty spiky:

learn.lr_find()
learn.recorder.plot()

From the plot in Figure 9-12, it looks like 1e-2 is where we’re starting to hit a
steep decline, so we’ll pick that as our learning rate. Fast.ai uses a method called



fit_one_cycle, which uses a 1cycle learning scheduler (see “Further Reading”
for more details on 1cycle) and very high learning rates to train a model in an
order of magnitude fewer epochs.
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Figure 9-12. ULMFiT learning rate plot

Here, we’re training for just one cycle and saving the fine-tuned head of the
network (the encoder):

learn.fit_one_cycle(1l, 1e-2)
learn.save_encoder('twitter_encoder")

With the fine-tuning of the language model completed (you may want to
experiment with more cycles in training), we build a new databunch for the
actual classification problem:

twitter_classifier_bunch = TextList
.from_csv("./twitter-data/",
"train-processed.csv', cols=5,
vocab=data_1lm.vocab)
.split_by _rand_pct()
.label_from_df(cols=0)
.databunch())

The only real difference here is that we supply the actual labels by using
label_from_df and we pass in a vocab object from the language model training
that we performed earlier to make sure they’re using the same mapping of words
to numbers, and then we’re ready to create a new text_classifier_learner,
where the library does all the model creation for you behind the scenes. We load
the fine-tuned encoder onto this new model and begin the process of training



again:

learn = text_classifier_learner(data_clas, drop_mult=0.5)
learn.load_encoder('fine_tuned_enc')

learn.lr_find()
learn.recorder.plot()

learn.fit_one_cycle(1l, 2e-2, moms=(0.8,0.7))

And with a tiny amount of code, we have a classifier that reports an accuracy of
76%. We could easily improve that by training the language model for more
cycles, adding differential learning rates and freezing parts of the model while
training, all of which fast.ai supports with methods defined on the learner.

What to Use?

Given that little whirlwind tour of the current cutting edge of text models in deep
learning, there’s probably one question on your mind: “That’s all great, but
which one should I actually use?” In general, if you’re working on a
classification problem, I suggest you start with ULMFiT. BERT is impressive,
but ULMFiT is competitive with BERT in terms of accuracy, and it has the
additional benefit that you don’t need to buy a huge number of TPU credits to
get the best out of it. A single GPU fine-tuning ULMFiT is likely to be enough
for most people.

And as for GPT-2, if you’re after generated text, then yes, it’s a better fit, but for
classification purposes, it’s going to be harder to approach ULMFiT or BERT
performance. One thing that I do think might be interesting is to let GPT-2 loose
on data augmentation; if you have a dataset like Sentiment140, which we’ve
been using throughout this book, why not fine-tune a GPT-2 model on that input
and use it to generate more data?

Conclusion

This chapter looked at the wider world of PyTorch, including libraries with
existing models that you can import into your own projects, some cutting-edge
data augmentation approaches that can be applied to any domain, as well as



adversarial samples that can ruin your model’s day and how to defend against
them. I hope that as we come to the end of our journey, you understand how
neural networks are assembled and how to get images, text, and audio to flow
through them as tensors. You should be able to train them, augment data,
experiment with learning rates, and even debug models when they’re not going
quite right. And once all that’s done, you know how to package them up in
Docker and get them serving requests from the wider world.

Where do we go from here? Consider having a look at the PyTorch forums and
the other documentation on the website. I definitely also recommend visiting the
fast.ai community even if you don’t end up using the library; it’s a hive of
activity, filled with good ideas and people experimenting with new approaches,
while also friendly to newcomers!

Keeping up with the cutting edge of deep learning is becoming harder and
harder. Most papers are published on arXiv, but the rate of papers being
published seems to be rising at an almost exponential level; as I was typing up
this conclusion, XL Net was released, which apparently beats BERT on various
tasks. It never ends! To try to help in this, I listed a few Twitter accounts here
where people often recommend interesting papers. I suggest following them to
get a taste of current and interesting work, and from there you can perhaps use a
tool such as arXiv Sanity Preserver to drink from the firehose when you feel
more comfortable diving in.

Finally, I trained a GPT-2 model on the book and it would like to say a few
words:

Deep learning is a key driver of how we work on today’s deep learning
applications, and deep learning is expected to continue to expand into new
fields such as image-based classification and in 2016, NVIDIA introduced the
CUDA LSTM architecture. With LSTMs now becoming more popular, LSTMs
were also a cheaper and easier to produce method of building for research
purposes, and CUDA has proven to be a very competitive architecture in the
deep learning market.

Thankfully, you can see there’s still a way to go before we authors are out of a
job. But maybe you can help change that!


https://arxiv.org
https://arxiv.org/abs/1906.08237
http://arxiv-sanity.com

Further Reading

e A survey of current super-resolution techniques
¢ lan Goodfellow’s lecture on GANs

e You Only Look Once (YOLO), a family of fast object detection models
with highly readable papers

e CleverHans, a library of adversarial generation techniques for
TensorFlow and PyTorch

e The Illustrated Transformer, an in-depth voyage through the
Transformer architecture

Some Twitter accounts to follow:

@jeremyphoward—Cofounder of fast.ai

@miles_brundage—Research scientist (policy) at OpenAl

@BrundageBot—Twitter bot that generates a daily summary of
interesting papers from arXiv (warning: often tweets out 50 papers a
day!)

@pytorch—Official PyTorch account

1 See “mixup: Beyond Empirical Risk Minimization” by Hongyi Zhang et al. (2017).
2 See “Generative Adversarial Networks” by Ian J. Goodfellow et al. (2014).

3 See “U-Net: Convolutional Networks for Biomedical Image Segmentation” by Olaf Ronneberger et
al. (2015).

4 See “Explaining and Harnessing Adversarial Examples” by Ian Goodfellow et al. (2014).

5 See “Neural Machine Translation by Jointly Learning to Align and Translate” by Dzmitry Bahdanau
et al. (2014).

6 See “Attention Is All You Need” by Ashish Vaswani et al. (2017).


https://arxiv.org/pdf/1902.06068.pdf
https://www.youtube.com/watch?v=Z6rxFNMGdn0
https://pjreddie.com/darknet/yolo
https://github.com/tensorflow/cleverhans
http://jalammar.github.io/illustrated-transformer
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
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The bird on the cover of Programming PyTorch for Deep Learning is a red-
headed woodpecker (Melanerpes erythrocephalus). Red-headed woodpeckers
are native to North America’s open forests and pine savannas. They migrate
throughout the eastern United States and southern Canada.

Red-headed woodpeckers don’t develop their striking red feathers until they
become adults. The adults have a black back and tail, red head and neck, and
white undersides. In contrast, the young woodpeckers have gray heads. At
maturity, these woodpeckers weigh 2—3 ounces, have a 16.5-inch wingspan, and
measure 7.5-9 inches long. Females can lay four to seven eggs at a time. They
breed in the spring, having up to two broods per season. Males help with
incubating and feeding.

Red-headed woodpeckers eat insects—which they can catch in midair—seeds,
fruits, berries, and nuts. They forage in trees and on the ground with that
characteristic pecking action. For the winter, red-headed woodpeckers store nuts
in holes and crevices in tree bark.

Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.
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