

Programming	PyTorch	for	Deep
Learning

Creating	and	Deploying	Deep	Learning	Applications

Ian	Pointer

Programming	PyTorch	for	Deep	Learning
by	Ian	Pointer

Copyright	©	2019	Ian	Pointer.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com).	For
more	information,	contact	our	corporate/institutional	sales	department:	800-998-
9938	or	corporate@oreilly.com.

Development	Editor:	Melissa	Potter

Acquisitions	Editor:	Jonathan	Hassell

Production	Editor:	Katherine	Tozer

Copyeditor:	Sharon	Wilkey

Proofreader:	Christina	Edwards

Indexer:	WordCo	Indexing	Services,	Inc.

Interior	Designer:	David	Futato

Cover	Designer:	Susan	Thompson

Illustrator:	Rebecca	Demarest

September	2019:	First	Edition

Revision	History	for	the	First	Edition

2019-09-20:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492045359	for	release

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492045359

details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.
Programming	PyTorch	for	Deep	Learning,	the	cover	image,	and	related	trade
dress	are	trademarks	of	O’Reilly	Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	author,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	author	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	author	disclaim	all	responsibility	for	errors	or
omissions,	including	without	limitation	responsibility	for	damages	resulting
from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-492-04535-9

[LSI]

Preface

Deep	Learning	in	the	World	Today
Hello	and	welcome!	This	book	will	introduce	you	to	deep	learning	via	PyTorch,
an	open	source	library	released	by	Facebook	in	2017.	Unless	you’ve	had	your
head	stuck	in	the	ground	in	a	very	good	impression	of	an	ostrich	the	past	few
years,	you	can’t	have	helped	but	notice	that	neural	networks	are	everywhere
these	days.	They’ve	gone	from	being	the	really	cool	bit	of	computer	science	that
people	learn	about	and	then	do	nothing	with	to	being	carried	around	with	us	in
our	phones	every	day	to	improve	our	pictures	or	listen	to	our	voice	commands.
Our	email	software	reads	our	email	and	produces	context-sensitive	replies,	our
speakers	listen	out	for	us,	cars	drive	by	themselves,	and	the	computer	has	finally
bested	humans	at	Go.	We’re	also	seeing	the	technology	being	used	for	more
nefarious	ends	in	authoritarian	countries,	where	neural	network–backed	sentinels
can	pick	faces	out	of	crowds	and	make	a	decision	on	whether	they	should	be
apprehended.

And	yet,	despite	the	feeling	that	this	has	all	happened	so	fast,	the	concepts	of
neural	networks	and	deep	learning	go	back	a	long	way.	The	proof	that	such	a
network	could	function	as	a	way	of	replacing	any	mathematical	function	in	an
approximate	way,	which	underpins	the	idea	that	neural	networks	can	be	trained
for	many	different	tasks,	dates	back	to	1989, 	and	convolutional	neural	networks
were	being	used	to	recognize	digits	on	check	in	the	late	’90s.	There’s	been	a
solid	foundation	building	up	all	this	time,	so	why	does	it	feel	like	an	explosion
occurred	in	the	last	10	years?

There	are	many	reasons,	but	prime	among	them	has	to	be	the	surge	in	graphical
processing	units	(GPUs)	performance	and	their	increasing	affordability.
Designed	originally	for	gaming,	GPUs	need	to	perform	countless	millions	of
matrix	operations	per	second	in	order	to	render	all	the	polygons	for	the	driving
or	shooting	game	you’re	playing	on	your	console	or	PC,	operations	that	a
standard	CPU	just	isn’t	optimized	for.	A	2009	paper,	“Large-Scale	Deep
Unsupervised	Learning	Using	Graphics	Processors”	by	Rajat	Raina	et	al.,
pointed	out	that	training	neural	networks	was	also	based	on	performing	lots	of

1

matrix	operations,	and	so	these	add-on	graphics	cards	could	be	used	to	speed	up
training	as	well	as	make	larger,	deeper	neural	network	architectures	feasible	for
the	first	time.	Other	important	techniques	such	as	Dropout	(which	we	will	look
at	in	Chapter	3)	were	also	introduced	in	the	last	decade	as	ways	to	not	just	speed
up	training	but	make	training	more	generalized	(so	that	the	network	doesn’t	just
learn	to	recognize	the	training	data,	a	problem	called	overfitting	that	we’ll
encounter	in	the	next	chapter).	In	the	last	couple	of	years,	companies	have	taken
this	GPU-based	approach	to	the	next	level,	with	Google	creating	what	it
describes	as	tensor	processing	units	(TPUs),	which	are	devices	custom-built	for
performing	deep	learning	as	fast	as	possible,	and	are	even	available	to	the
general	public	as	part	of	their	Google	Cloud	ecosystem.

Another	way	to	chart	deep	learning’s	progress	over	the	past	decade	is	through
the	ImageNet	competition.	A	massive	database	of	over	14	million	pictures,
manually	labeled	into	20,000	categories,	ImageNet	is	a	treasure	trove	of	labeled
data	for	machine	learning	purposes.	Since	2010,	the	yearly	ImageNet	Large
Scale	Visual	Recognition	Challenge	has	sought	to	test	all	comers	against	a
1,000-category	subset	of	the	database,	and	until	2012,	error	rates	for	tackling	the
challenge	rested	around	25%.	That	year,	however,	a	deep	convolutional	neural
network	won	the	competition	with	an	error	of	16%,	massively	outperforming	all
other	entrants.	In	the	years	that	followed,	that	error	rate	got	pushed	down	further
and	further,	to	the	point	that	in	2015,	the	ResNet	architecture	obtained	a	result	of
3.6%,	which	beat	the	average	human	performance	on	ImageNet	(5%).	We	had
been	outclassed.

But	What	Is	Deep	Learning	Exactly,	and	Do	I
Need	a	PhD	to	Understand	It?
Deep	learning’s	definition	often	is	more	confusing	than	enlightening.	A	way	of
defining	it	is	to	say	that	deep	learning	is	a	machine	learning	technique	that	uses
multiple	and	numerous	layers	of	nonlinear	transforms	to	progressively	extract
features	from	raw	input.	Which	is	true,	but	it	doesn’t	really	help,	does	it?	I	prefer
to	describe	it	as	a	technique	to	solve	problems	by	providing	the	inputs	and
desired	outputs	and	letting	the	computer	find	the	solution,	normally	using	a
neural	network.

One	thing	about	deep	learning	that	scares	off	a	lot	of	people	is	the	mathematics.
Look	at	just	about	any	paper	in	the	field	and	you’ll	be	subjected	to	almost
impenetrable	amounts	of	notation	with	Greek	letters	all	over	the	place,	and
you’ll	likely	run	screaming	for	the	hills.	Here’s	the	thing:	for	the	most	part,	you
don’t	need	to	be	a	math	genius	to	use	deep	learning	techniques.	In	fact,	for	most
day-to-day	basic	uses	of	the	technology,	you	don’t	need	to	know	much	at	all,	and
to	really	understand	what’s	going	on	(as	you’ll	see	in	Chapter	2),	you	only	have
to	stretch	a	little	to	understand	concepts	that	you	probably	learned	in	high
school.	So	don’t	be	too	scared	about	the	math.	By	the	end	of	Chapter	3,	you’ll	be
able	to	put	together	an	image	classifier	that	rivals	what	the	best	minds	in	2015
could	offer	with	just	a	few	lines	of	code.

PyTorch
As	I	mentioned	back	at	the	start,	PyTorch	is	an	open	source	offering	from
Facebook	that	facilitates	writing	deep	learning	code	in	Python.	It	has	two
lineages.	First,	and	perhaps	not	entirely	surprisingly	given	its	name,	it	derives
many	features	and	concepts	from	Torch,	which	was	a	Lua-based	neural	network
library	that	dates	back	to	2002.	Its	other	major	parent	is	Chainer,	created	in	Japan
in	2015.	Chainer	was	one	of	the	first	neural	network	libraries	to	offer	an	eager
approach	to	differentiation	instead	of	defining	static	graphs,	allowing	for	greater
flexibility	in	the	way	networks	are	created,	trained,	and	operated.	The
combination	of	the	Torch	legacy	plus	the	ideas	from	Chainer	has	made	PyTorch
popular	over	the	past	couple	of	years.

The	library	also	comes	with	modules	that	help	with	manipulating	text,	images,
and	audio	(torchtext,	torchvision,	and	torchaudio),	along	with	built-in
variants	of	popular	architectures	such	as	ResNet	(with	weights	that	can	be
downloaded	to	provide	assistance	with	techniques	like	transfer	learning,	which
you’ll	see	in	Chapter	4).

Aside	from	Facebook,	PyTorch	has	seen	quick	acceptance	by	industry,	with
companies	such	as	Twitter,	Salesforce,	Uber,	and	NVIDIA	using	it	in	various
ways	for	their	deep	learning	work.	Ah,	but	I	sense	a	question	coming….

What	About	TensorFlow?

2

Yes,	let’s	address	the	rather	large,	Google-branded	elephant	in	the	corner.	What
does	PyTorch	offer	that	TensorFlow	doesn’t?	Why	should	you	learn	PyTorch
instead?

The	answer	is	that	traditional	TensorFlow	works	in	a	different	way	than	PyTorch
that	has	major	implications	for	code	and	debugging.	In	TensorFlow,	you	use	the
library	to	build	up	a	graph	representation	of	the	neural	network	architecture	and
then	you	execute	operations	on	that	graph,	which	happens	within	the	TensorFlow
library.	This	method	of	declarative	programming	is	somewhat	at	odds	with
Python’s	more	imperative	paradigm,	meaning	that	Python	TensorFlow	programs
can	look	and	feel	somewhat	odd	and	difficult	to	understand.	The	other	issue	is
that	the	static	graph	declaration	can	make	dynamically	altering	the	architecture
during	training	and	inference	time	a	lot	more	complicated	and	stuffed	with
boilerplate	than	with	PyTorch’s	approach.

For	these	reasons,	PyTorch	has	become	popular	in	research-oriented
communities.	The	number	of	papers	submitted	to	the	International	Conference
on	Learning	Representations	that	mention	PyTorch	has	jumped	200%	in	the	past
year,	and	the	number	of	papers	mentioning	TensorFlow	has	increased	almost
equally.	PyTorch	is	definitely	here	to	stay.

However,	things	are	changing	in	more	recent	versions	of	TensorFlow.	A	new
feature	called	eager	execution	has	been	recently	added	to	the	library	that	allows
it	to	work	similarly	to	PyTorch	and	will	be	the	paradigm	promoted	in
TensorFlow	2.0.	But	as	it’s	new	resources	outside	of	Google	that	help	you	learn
this	new	method	of	working	with	TensorFlow	are	thin	on	the	ground,	plus	you’d
need	years	of	work	out	there	to	understand	the	other	paradigm	in	order	to	get	the
most	out	of	the	library.

But	none	of	this	should	make	you	think	poorly	of	TensorFlow;	it	remains	an
industry-proven	library	with	support	from	one	of	the	biggest	companies	on	the
planet.	PyTorch	(backed,	of	course,	by	a	different	biggest	company	on	the
planet)	is,	I	would	say,	a	more	streamlined	and	focused	approach	to	deep
learning	and	differential	programming.	Because	it	doesn’t	have	to	continue
supporting	older,	crustier	APIs,	it	is	easier	to	teach	and	become	productive	in
PyTorch	than	in	TensorFlow.

Where	does	Keras	fit	in	with	this?	So	many	good	questions!	Keras	is	a	high-
level	deep	learning	library	that	originally	supported	Theano	and	TensorFlow,	and

now	also	supports	certain	other	frames	such	as	Apache	MXNet.	It	provides
certain	features	such	as	training,	validation,	and	test	loops	that	the	lower-level
frameworks	leave	as	an	exercise	for	the	developer,	as	well	as	simple	methods	of
building	up	neural	network	architectures.	It	has	contributed	hugely	to	the	take-up
of	TensorFlow,	and	is	now	part	of	TensorFlow	itself	(as	tf.keras)	as	well	as
continuing	to	be	a	separate	project.	PyTorch,	in	comparison,	is	something	of	a
middle	ground	between	the	low	level	of	raw	TensorFlow	and	Keras;	we	will
have	to	write	our	own	training	and	inference	routines,	but	creating	neural
networks	is	almost	as	straightforward	(and	I	would	say	that	PyTorch’s	approach
to	making	and	reusing	architectures	is	much	more	logical	to	a	Python	developer
than	some	of	Keras’s	magic).

As	you’ll	see	in	this	book,	although	PyTorch	is	common	in	more	research-
oriented	positions,	with	the	advent	of	PyTorch	1.0,	it’s	perfectly	suited	to
production	use	cases.

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(including	code	examples	and	exercises)	is	available	for
download	at	https://oreil.ly/pytorch-github.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-
ROM	of	examples	from	O’Reilly	books	does	require	permission.	Answering	a
question	by	citing	this	book	and	quoting	example	code	does	not	require
permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Programming	PyTorch	for
Deep	Learning	by	Ian	Pointer	(O’Reilly).	Copyright	2019	Ian	Pointer,	978-1-
492-04535-9.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

https://oreil.ly/pytorch-github
mailto:permissions@oreilly.com

O’Reilly	Online	Learning

NOTE
For	almost	40	years,	O’Reilly	Media	has	provided	technology	and	business	training,
knowledge,	and	insight	to	help	companies	succeed.

Our	unique	network	of	experts	and	innovators	share	their	knowledge	and
expertise	through	books,	articles,	conferences,	and	our	online	learning	platform.
O’Reilly’s	online	learning	platform	gives	you	on-demand	access	to	live	training
courses,	in-depth	learning	paths,	interactive	coding	environments,	and	a	vast
collection	of	text	and	video	from	O’Reilly	and	200+	other	publishers.	For	more
information,	please	visit	http://oreilly.com.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	https://oreil.ly/prgrming-
pytorch-for-dl.

Email	bookquestions@oreilly.com	to	comment	or	ask	technical	questions	about
this	book.

http://oreilly.com
http://oreilly.com
https://oreil.ly/prgrming-pytorch-for-dl
mailto:bookquestions@oreilly.com

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
A	big	thank	you	to	my	editor,	Melissa	Potter,	my	family,	and	Tammy	Edlund	for
all	their	help	in	making	this	book	possible.	Thank	you,	also,	to	the	technical
reviewers	who	provided	valuable	feedback	throughout	the	writing	process,
including	Phil	Rhodes,	David	Mertz,	Charles	Givre,	Dominic	Monn,	Ankur
Patel,	and	Sarah	Nagy.

1 	See	“Approximation	by	Superpositions	of	Sigmoidal	Functions”,	by	George	Cybenko	(1989).

2 	Note	that	PyTorch	borrows	ideas	from	Chainer,	but	not	actual	code.

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
https://oreil.ly/BQ8-9

Chapter	1.	Getting	Started	with
PyTorch

In	this	chapter	we	set	up	all	we	need	for	working	with	PyTorch.	Once	we’ve
done	that,	every	chapter	following	will	build	on	this	initial	foundation,	so	it’s
important	that	we	get	it	right.	This	leads	to	our	first	fundamental	question:
should	you	build	a	custom	deep	learning	computer	or	just	use	one	of	the	many
cloud-based	resources	available?

Building	a	Custom	Deep	Learning	Machine
There	is	an	urge	when	diving	into	deep	learning	to	build	yourself	a	monster	for
all	your	compute	needs.	You	can	spend	days	looking	over	different	types	of
graphics	cards,	learning	the	memory	lanes	possible	CPU	selections	will	offer
you,	the	best	sort	of	memory	to	buy,	and	just	how	big	an	SSD	drive	you	can
purchase	to	make	your	disk	access	as	fast	as	possible.	I	am	not	claiming	any
immunity	from	this;	I	spent	a	month	a	couple	of	years	ago	making	a	list	of	parts
and	building	a	new	computer	on	my	dining	room	table.

My	advice,	especially	if	you’re	new	to	deep	learning,	is	this:	don’t	do	it.	You	can
easily	spend	several	thousands	of	dollars	on	a	machine	that	you	may	not	use	all
that	much.	Instead,	I	recommend	that	you	work	through	this	book	by	using	cloud
resources	(in	either	Amazon	Web	Services,	Google	Cloud,	or	Microsoft	Azure)
and	only	then	start	thinking	about	building	your	own	machine	if	you	feel	that
you	require	a	single	machine	for	24/7	operation.	You	do	not	need	to	make	a
massive	investment	in	hardware	to	run	any	of	the	code	in	this	book.

You	might	not	ever	need	to	build	a	custom	machine	for	yourself.	There’s
something	of	a	sweet	spot,	where	it	can	be	cheaper	to	build	a	custom	rig	if	you
know	your	calculations	are	always	going	to	be	restricted	to	a	single	machine
(with	at	most	a	handful	of	GPUs).	However,	if	your	compute	starts	to	require
spanning	multiple	machines	and	GPUs,	the	cloud	becomes	appealing	again.
Given	the	cost	of	putting	a	custom	machine	together,	I’d	think	long	and	hard

before	diving	in.

If	I	haven’t	managed	to	put	you	off	from	building	your	own,	the	following
sections	provide	suggestions	for	what	you	would	need	to	do	so.

GPU
The	heart	of	every	deep	learning	box,	the	GPU,	is	what	is	going	to	power	the
majority	of	PyTorch’s	calculations,	and	it’s	likely	going	to	be	the	most	expensive
component	in	your	machine.	In	recent	years,	the	prices	of	GPUs	have	increased,
and	the	supplies	have	dwindled,	because	of	their	use	in	mining	cryptocurrency
like	Bitcoin.	Thankfully,	that	bubble	seems	to	be	receding,	and	supplies	of	GPUs
are	back	to	being	a	little	more	plentiful.

At	the	time	of	this	writing,	I	recommend	obtaining	the	NVIDIA	GeForce	RTX
2080	Ti.	For	a	cheaper	option,	feel	free	to	go	for	the	1080	Ti	(though	if	you	are
weighing	the	decision	to	get	the	1080	Ti	for	budgetary	reasons,	I	again	suggest
that	you	look	at	cloud	options	instead).	Although	AMD-manufactured	GPU
cards	do	exist,	their	support	in	PyTorch	is	currently	not	good	enough	to
recommend	anything	other	than	an	NVIDIA	card.	But	keep	a	lookout	for	their
ROCm	technology,	which	should	eventually	make	them	a	credible	alternative	in
the	GPU	space.

CPU/Motherboard
You’ll	probably	want	to	spring	for	a	Z370	series	motherboard.	Many	people	will
tell	you	that	the	CPU	doesn’t	matter	for	deep	learning	and	that	you	can	get	by
with	a	lower-speed	CPU	as	long	as	you	have	a	powerful	GPU.	In	my	experience,
you’ll	be	surprised	at	how	often	the	CPU	can	become	a	bottleneck,	especially
when	working	with	augmented	data.

RAM
More	RAM	is	good,	as	it	means	you	can	keep	more	data	inside	without	having	to
hit	the	much	slower	disk	storage	(especially	important	during	your	training
stages).	You	should	be	looking	at	a	minimum	of	64GB	DDR4	memory	for	your
machine.

Storage
Storage	for	a	custom	rig	should	be	installed	in	two	classes:	first,	an	M2-interface
solid-state	drive	(SSD)—as	big	as	you	can	afford—for	your	hot	data	to	keep
access	as	fast	as	possible	when	you’re	actively	working	on	a	project.	For	the
second	class	of	storage,	add	in	a	4TB	Serial	ATA	(SATA)	drive	for	data	that
you’re	not	actively	working	on,	and	transfer	to	hot	and	cold	storage	as	required.

I	recommend	that	you	take	a	look	at	PCPartPicker	to	glance	at	other	people’s
deep	learning	machines	(you	can	see	all	the	weird	and	wild	case	ideas,	too!).
You’ll	get	a	feel	for	lists	of	machine	parts	and	associated	prices,	which	can
fluctuate	wildly,	especially	for	GPU	cards.

Now	that	you’ve	looked	at	your	local,	physical	machine	options,	it’s	time	to
head	to	the	clouds.

Deep	Learning	in	the	Cloud
OK,	so	why	is	the	cloud	option	better,	you	might	ask?	Especially	if	you’ve
looked	at	the	Amazon	Web	Services	(AWS)	pricing	scheme	and	worked	out	that
building	a	deep	learning	machine	will	pay	for	itself	within	six	months?	Think
about	it:	if	you’re	just	starting	out,	you	are	not	going	to	be	using	that	machine
24/7	for	those	six	months.	You’re	just	not.	Which	means	that	you	can	shut	off
the	cloud	machine	and	pay	pennies	for	the	data	being	stored	in	the	meantime.

And	if	you’re	starting	out,	you	don’t	need	to	go	all	out	and	use	one	of	NVIDIA’s
leviathan	Tesla	V100	cards	attached	to	your	cloud	instance	straightaway.	You
can	start	out	with	one	of	the	much	cheaper	(sometimes	even	free)	K80-based
instances	and	move	up	to	the	more	powerful	card	when	you’re	ready.	That	is	a
trifle	less	expensive	than	buying	a	basic	GPU	card	and	upgrading	to	a	2080Ti	on
your	custom	box.	Plus	if	you	want	to	add	eight	V100	cards	to	a	single	instance,
you	can	do	it	with	just	a	few	clicks.	Try	doing	that	with	your	own	hardware.

The	other	issue	is	maintenance.	If	you	get	yourself	into	the	good	habit	of	re-
creating	your	cloud	instances	on	a	regular	basis	(ideally	starting	anew	every	time
you	come	back	to	work	on	your	experiments),	you’ll	almost	always	have	a
machine	that	is	up	to	date.	If	you	have	your	own	machine,	updating	is	up	to	you.
This	is	where	I	confess	that	I	do	have	my	own	custom	deep	learning	machine,

https://pcpartpicker.com

and	I	ignored	the	Ubuntu	installation	on	it	for	so	long	that	it	fell	out	of	supported
updates,	resulting	in	an	eventual	day	spent	trying	to	get	the	system	back	to	a
place	where	it	was	receiving	updates	again.	Embarrassing.

Anyway,	you’ve	made	the	decision	to	go	to	the	cloud.	Hurrah!	Next:	which
provider?

Google	Colaboratory
But	wait—before	we	look	at	providers,	what	if	you	don’t	want	to	do	any	work	at
all?	None	of	that	pesky	building	a	machine	or	having	to	go	through	all	the
trouble	of	setting	up	instances	in	the	cloud?	Where’s	the	really	lazy	option?
Google	has	the	right	thing	for	you.	Colaboratory	(or	Colab)	is	a	mostly	free,
zero-installation-required	custom	Jupyter	Notebook	environment.	You’ll	need	a
Google	account	to	set	up	your	own	notebooks.	Figure	1-1	shows	a	screenshot	of
a	notebook	created	in	Colab.

What	makes	Colab	a	great	way	to	dive	into	deep	learning	is	that	it	includes
preinstalled	versions	of	TensorFlow	and	PyTorch,	so	you	don’t	have	to	do	any
setup	beyond	typing	import torch,	and	every	user	can	get	free	access	to	a
NVIDIA	T4	GPU	for	up	to	12	hours	of	continuous	runtime.	For	free.	To	put	that
in	context,	empirical	research	suggests	that	you	get	about	half	the	speed	of	a
1080	Ti	for	training,	but	with	an	extra	5GB	of	memory	so	you	can	store	larger
models.	It	also	offers	the	ability	to	connect	to	more	recent	GPUs	and	Google’s
custom	TPU	hardware	in	a	paid	option,	but	you	can	pretty	much	do	every
example	in	this	book	for	nothing	with	Colab.	For	that	reason,	I	recommend	using
Colab	alongside	this	book	to	begin	with,	and	then	you	can	decide	to	branch	out
to	dedicated	cloud	instances	and/or	your	own	personal	deep	learning	server	if
needed.

https://colab.research.google.com

Figure	1-1.	Google	Colab(oratory)

Colab	is	the	zero-effort	approach,	but	you	may	want	to	have	a	little	more	control
over	how	things	are	installed	or	get	Secure	Shell	(SSH)	access	to	your	instance
on	the	cloud,	so	let’s	have	a	look	at	what	the	main	cloud	providers	offer.

Cloud	Providers
Each	of	the	big	three	cloud	providers	(Amazon	Web	Services,	Google	Cloud
Platform,	and	Microsoft’s	Azure)	offers	GPU-based	instances	(also	referred	to	as
virtual	machines	or	VMs)	and	official	images	to	deploy	on	those	instances.	They
have	all	you	need	to	get	up	and	running	without	having	to	install	drivers	and
Python	libraries	yourself.	Let’s	have	a	run-through	of	what	each	provider	offers.

Amazon	Web	Services
AWS,	the	800-pound	gorilla	of	the	cloud	market,	is	more	than	happy	to	fulfill
your	GPU	needs	and	offers	the	P2	and	P3	instance	types	to	help	you	out.	(The
G3	instance	type	tends	to	be	used	more	in	actual	graphics-based	applications	like

video	encoding,	so	we	won’t	cover	it	here.)	The	P2	instances	use	the	older
NVIDIA	K80	cards	(a	maximum	of	16	can	be	connected	to	one	instance),	and
the	P3	instances	use	the	blazing-fast	NVIDIA	V100	cards	(and	you	can	strap
eight	of	those	onto	one	instance	if	you	dare).

If	you’re	going	to	use	AWS,	my	recommendation	for	this	book	is	to	go	with	the
p2.xlarge	class.	This	will	cost	you	just	90	cents	an	hour	at	the	time	of	this
writing	and	provides	plenty	of	power	for	working	through	the	examples.	You
may	want	to	bump	up	to	the	P3	classes	when	you	start	working	on	some	meaty
Kaggle	competitions.

Creating	a	running	deep	learning	box	on	AWS	is	incredibly	easy:

1.	 Sign	into	the	AWS	console.

2.	 Select	EC2	and	click	Launch	Instance.

3.	 Search	for	the	Deep	Learning	AMI	(Ubuntu)	option	and	select	it.

4.	 Choose	p2.xlarge	as	your	instance	type.

5.	 Launch	the	instance,	either	by	creating	a	new	key	pair	or	reusing	an
existing	key	pair.

6.	 Connect	to	the	instance	by	using	SSH	and	redirecting	port	8888	on	your
local	machine	to	the	instance:

ssh -L localhost:8888:localhost:8888 \

-i your .pem filename ubuntu@your instance DNS

7.	 Start	Jupyter	Notebook	by	entering	jupyter notebook.	Copy	the	URL
that	gets	generated	and	paste	it	into	your	browser	to	access	Jupyter.

Remember	to	shut	down	your	instance	when	you’re	not	using	it!	You	can	do	this
by	right-clicking	the	instance	in	the	web	interface	and	selecting	the	Shutdown
option.	This	will	shut	down	the	instance,	and	you	won’t	be	charged	for	the
instance	while	it’s	not	running.	However,	you	will	be	charged	for	the	storage
space	that	you	have	allocated	for	it	even	if	the	instance	is	turned	off,	so	be	aware
of	that.	To	delete	the	instance	and	storage	entirely,	select	the	Terminate	option
instead.

Azure
Like	AWS,	Azure	offers	a	mixture	of	cheaper	K80-based	instances	and	more
expensive	Tesla	V100	instances.	Azure	also	offers	instances	based	on	the	older
P100	hardware	as	a	halfway	point	between	the	other	two.	Again,	I	recommend
the	instance	type	that	uses	a	single	K80	(NC6)	for	this	book,	which	also	costs	90
cents	per	hour,	and	move	onto	other	NC,	NCv2	(P100),	or	NCv3	(V100)	types	as
you	need	them.

Here’s	how	you	set	up	the	VM	in	Azure:

1.	 Log	in	to	the	Azure	portal	and	find	the	Data	Science	Virtual	Machine
image	in	the	Azure	Marketplace.

2.	 Click	the	Get	It	Now	button.

3.	 Fill	in	the	details	of	the	VM	(give	it	a	name,	choose	SSD	disk	over
HDD,	an	SSH	username/password,	the	subscription	you’ll	be	billing	the
instance	to,	and	set	the	location	to	be	the	nearest	to	you	that	offers	the
NC	instance	type).

4.	 Click	the	Create	option.	The	instance	should	be	provisioned	in	about
five	minutes.

5.	 You	can	use	SSH	with	the	username/password	that	you	specified	to	that
instance’s	public	Domain	Name	System	(DNS)	name.

6.	 Jupyter	Notebook	should	run	when	the	instance	is	provisioned;	navigate
to	http://dns name of instance:8000	and	use	the	username/password
combination	that	you	used	for	SSH	to	log	in.

Google	Cloud	Platform
In	addition	to	offering	K80,	P100,	and	V100-backed	instances	like	Amazon	and
Azure,	Google	Cloud	Platform	(GCP)	offers	the	aforementioned	TPUs	for	those
who	have	tremendous	data	and	compute	requirements.	You	don’t	need	TPUs	for
this	book,	and	they	are	pricey,	but	they	will	work	with	PyTorch	1.0,	so	don’t
think	that	you	have	to	use	TensorFlow	in	order	to	take	advantage	of	them	if	you
have	a	project	that	requires	their	use.

Getting	started	with	Google	Cloud	is	also	pretty	easy:

1.	 Search	for	Deep	Learning	VM	on	the	GCP	Marketplace.

2.	 Click	Launch	on	Compute	Engine.

3.	 Give	the	instance	a	name	and	assign	it	to	the	region	closest	to	you.

4.	 Set	the	machine	type	to	8	vCPUs.

5.	 Set	GPU	to	1	K80.

6.	 Ensure	that	PyTorch	1.0	is	selected	in	the	Framework	section.

7.	 Select	the	“Install	NVIDIA	GPU	automatically	on	first	startup?”
checkbox.

8.	 Set	Boot	disk	to	SSD	Persistent	Disk.

9.	 Click	the	Deploy	option.	The	VM	will	take	about	5	minutes	to	fully
deploy.

10.	 To	connect	to	Jupyter	on	the	instance,	make	sure	you’re	logged	into	the
correct	project	in	gcloud	and	issue	this	command:

gcloud compute ssh _INSTANCE_NAME_ -- -L 8080:localhost:8080

The	charges	for	Google	Cloud	should	work	out	to	about	70	cents	an	hour,
making	it	the	cheapest	of	the	three	major	cloud	providers.

Which	Cloud	Provider	Should	I	Use?
If	you	have	nothing	pulling	you	in	any	direction,	I	recommend	Google	Cloud
Platform	(GCP);	it’s	the	cheapest	option,	and	you	can	scale	all	the	way	up	to
using	TPUs	if	required,	with	a	lot	more	flexibility	than	either	the	AWS	or	Azure
offerings.	But	if	you	have	resources	on	one	of	the	other	two	platforms	already,
you’ll	be	absolutely	fine	running	in	those	environments.

Once	you	have	your	cloud	instance	running,	you’ll	be	able	to	log	in	to	its	copy
of	Jupyter	Notebook,	so	let’s	take	a	look	at	that	next.

Using	Jupyter	Notebook

If	you	haven’t	come	across	it	before,	here’s	the	lowdown	on	Jupyter	Notebook:
this	browser-based	environment	allows	you	to	mix	live	code	with	text,	images,
and	visualizations	and	has	become	one	of	the	de	facto	tools	of	data	scientists	all
over	the	world.	Notebooks	created	in	Jupyter	can	be	easily	shared;	indeed,	you’ll
find	all	the	notebooks	in	this	book.	You	can	see	a	screenshot	of	Jupyter
Notebook	in	action	in	Figure	1-2.

We	won’t	be	using	any	advanced	features	of	Jupyter	in	this	book;	all	you	need	to
know	is	how	to	create	a	new	notebook	and	that	Shift-Enter	runs	the	contents	of	a
cell.	But	if	you’ve	never	used	it	before,	I	suggest	browsing	the	Jupyter
documentation	before	you	get	to	Chapter	2.

Figure	1-2.	Jupyter	Notebook

Before	we	get	into	using	PyTorch,	we’ll	cover	one	last	thing:	how	to	install
everything	manually.

Installing	PyTorch	from	Scratch
Perhaps	you	want	a	little	more	control	over	your	software	than	using	one	of	the
preceding	cloud-provided	images.	Or	you	need	a	particular	version	of	PyTorch
for	your	code.	Or,	despite	all	my	cautionary	warnings,	you	really	want	that	rig	in

https://oreil.ly/iBh4V
https://oreil.ly/-Yhff

your	basement.	Let’s	look	at	how	to	install	PyTorch	on	a	Linux	server	in	general.

WARNING
You	can	use	PyTorch	with	Python	2.x,	but	I	strongly	recommend	against	doing	so.	While	the
Python	2.x	to	3.x	upgrade	saga	has	been	running	for	over	a	decade	now,	more	and	more
packages	are	beginning	to	drop	Python	2.x	support.	So	unless	you	have	a	good	reason,	make
sure	your	system	is	running	Python	3.

Download	CUDA
Although	PyTorch	can	be	run	entirely	in	CPU	mode,	in	most	cases,	GPU-
powered	PyTorch	is	required	for	practical	usage,	so	we’re	going	to	need	GPU
support.	This	is	fairly	straightforward;	assuming	you	have	an	NVIDIA	card,	this
is	provided	by	their	Compute	Unified	Device	Architecture	(CUDA)	API.
Download	the	appropriate	package	format	for	your	flavor	of	Linux	and	install
the	package.

For	Red	Hat	Enterprise	Linux	(RHEL)	7:

sudo rpm -i cuda-repo-rhel7-10-0local-10.0.130-410.48-1.0-1.x86_64.rpm
sudo yum clean all
sudo yum install cuda

For	Ubuntu	18.04:

sudo dpkg -i cuda-repo-ubuntu1804-10-0-local-10.0.130-410.48_1.0-1_amd64.deb
sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub
sudo apt-get update
sudo apt-get install cuda

Anaconda
Python	has	a	variety	of	packaging	systems,	all	of	which	have	good	and	not-so-
good	points.	Like	the	developers	of	PyTorch,	I	recommend	that	you	install
Anaconda,	a	packaging	system	dedicated	to	producing	the	best	distribution	of
packages	for	data	scientists.	Like	CUDA,	it’s	fairly	easy	to	install.

Head	to	Anaconda	and	pick	out	the	installation	file	for	your	machine.	Because

https://oreil.ly/Gx_q2
https://oreil.ly/9hAxg

it’s	a	massive	archive	that	executes	via	a	shell	script	on	your	system,	I	encourage
you	to	run	md5sum	on	the	file	you’ve	downloaded	and	check	it	against	the	list	of
signatures	before	you	execute	it	with	bash Anaconda3-VERSION-Linux-
x86_64.sh	to	make	sure	that	the	signature	on	your	machine	matches	the	one	on
the	web	page.	This	ensures	that	the	downloaded	file	hasn’t	been	tampered	with
and	means	it’s	safe	to	run	on	your	system.	The	script	will	present	several
prompts	about	locations	it’ll	be	installing	into;	unless	there’s	a	good	reason,	just
accept	the	defaults.

NOTE
You	might	be	wondering,	“Can	I	do	this	on	my	MacBook?”	Sadly,	most	Macs	come	with
either	Intel	or	AMD	GPUs	these	days	and	don’t	really	have	the	support	for	running	PyTorch	in
GPU-accelerated	mode.	I	recommend	using	Colab	or	a	cloud	provider	rather	than	attempting	to
use	your	Mac	locally.

Finally,	PyTorch!	(and	Jupyter	Notebook)
Now	that	you	have	Anaconda	installed,	getting	set	up	with	PyTorch	is	simple:

conda install pytorch torchvision -c pytorch

This	installs	PyTorch	and	the	torchvision	library	that	we	use	in	the	next	couple
of	chapters	to	create	deep	learning	architectures	that	work	with	images.
Anaconda	has	also	installed	Jupyter	Notebook	for	us,	so	we	can	begin	by	starting
it:

jupyter notebook

Head	to	http://YOUR-IP-ADDRESS:8888	in	your	browser,	create	a	new	notebook,
and	enter	the	following:

import torch
print(torch.cuda.is_available())
print(torch.rand(2,2))

This	should	produce	output	similar	to	this:

https://oreil.ly/anuhu

True
 0.6040 0.6647
 0.9286 0.4210
[torch.FloatTensor of size 2x2]

If	cuda.is_available()	returns	False,	you	need	to	debug	your	CUDA
installation	so	PyTorch	can	see	your	graphics	card.	The	values	of	the	tensor	will
be	different	on	your	instance.

But	what	is	this	tensor?	Tensors	are	at	the	heart	of	almost	everything	in	PyTorch,
so	you	need	to	know	what	they	are	and	what	they	can	do	for	you.

Tensors
A	tensor	is	both	a	container	for	numbers	as	well	as	a	set	of	rules	that	define
transformations	between	tensors	that	produce	new	tensors.	It’s	probably	easiest
for	us	to	think	about	tensors	as	multidimensional	arrays.	Every	tensor	has	a	rank
that	corresponds	to	its	dimensional	space.	A	simple	scalar	(e.g.,	1)	can	be
represented	as	a	tensor	of	rank	0,	a	vector	is	rank	1,	an	n	×	n	matrix	is	rank	2,
and	so	on.	In	the	previous	example,	we	created	a	rank	2	tensor	with	random
values	by	using	torch.rand().	We	can	also	create	them	from	lists:

x = torch.tensor([[0,0,1],[1,1,1],[0,0,0]])
x
>tensor([[0, 0, 1],
 [1, 1, 1],
 [0, 0, 0]])

We	can	change	an	element	in	a	tensor	by	using	standard	Python	indexing:

x[0][0] = 5
>tensor([[5, 0, 1],
 [1, 1, 1],
 [0, 0, 0]])

You	can	use	special	creation	functions	to	generate	particular	types	of	tensors.	In
particular,	ones()	and	zeroes()	will	generate	tensors	filled	with	1s	and	0s,
respectively:

torch.zeros(2,2)
> tensor([[0., 0.],
 [0., 0.]])

You	can	perform	standard	mathematical	operations	with	tensors	(e.g.,	adding
two	tensors	together):

tensor.ones(1,2) + tensor.ones(1,2)
> tensor([[2., 2.]])

And	if	you	have	a	tensor	of	rank	0,	you	can	pull	out	the	value	with	item():

torch.rand(1).item()
> 0.34106671810150146

Tensors	can	live	in	the	CPU	or	on	the	GPU	and	can	be	copied	between	devices
by	using	the	to()	function:

cpu_tensor = tensor.rand(2)
cpu_tensor.device
> device(type='cpu')

gpu_tensor = cpu_tensor.to("cuda")
gpu_tensor.device
> device(type='cuda', index=0)

Tensor	Operations
If	you	look	at	the	PyTorch	documentation,	you’ll	see	that	there	are	a	lot	of
functions	that	you	can	apply	to	tensors—everything	from	finding	the	maximum
element	to	applying	a	Fourier	transform.	In	this	book,	you	don’t	need	to	know	all
of	those	in	order	to	turn	images,	text,	and	audio	into	tensors	and	manipulate	them
to	perform	our	operations,	but	you	will	need	some.	I	definitely	recommend	that
you	give	the	documentation	a	glance,	especially	after	finishing	this	book.	Now
we’re	going	to	go	through	all	the	functions	that	will	be	used	in	upcoming
chapters.

First,	we	often	need	to	find	the	maximum	item	in	a	tensor	as	well	as	the	index
that	contains	the	maximum	value	(as	this	often	corresponds	to	the	class	that	the
neural	network	has	decided	upon	in	its	final	prediction).	These	can	be	done	with

https://oreil.ly/1Ev0-

the	max()	and	argmax()	functions.	We	can	also	use	item()	to	extract	a	standard
Python	value	from	a	1D	tensor.

torch.rand(2,2).max()
> tensor(0.4726)
torch.rand(2,2).max().item()
> 0.8649941086769104

Sometimes,	we’d	like	to	change	the	type	of	a	tensor;	for	example,	from	a
LongTensor	to	a	FloatTensor.	We	can	do	this	with	to():

long_tensor = torch.tensor([[0,0,1],[1,1,1],[0,0,0]])
long_tensor.type()
> 'torch.LongTensor'
float_tensor = torch.tensor([[0,0,1],[1,1,1],[0,0,0]]).to(dtype=torch.float32)
float_tensor.type()
> 'torch.FloatTensor'

Most	functions	that	operate	on	a	tensor	and	return	a	tensor	create	a	new	tensor	to
store	the	result.	However,	if	you	want	to	save	memory,	look	to	see	if	an	in-place
function	is	defined,	which	should	be	the	same	name	as	the	original	function	but
with	an	appended	underscore	(_).

random_tensor = torch.rand(2,2)
random_tensor.log2()
>tensor([[-1.9001, -1.5013],
 [-1.8836, -0.5320]])
random_tensor.log2_()
> tensor([[-1.9001, -1.5013],
 [-1.8836, -0.5320]])

Another	common	operation	is	reshaping	a	tensor.	This	can	often	occur	because
your	neural	network	layer	may	require	a	slightly	different	input	shape	than	what
you	currently	have	to	feed	into	it.	For	example,	the	Modified	National	Institute
of	Standards	and	Technology	(MNIST)	dataset	of	handwritten	digits	is	a
collection	of	28	×	28	images,	but	the	way	it’s	packaged	is	in	arrays	of	length
784.	To	use	the	networks	we	are	constructing,	we	need	to	turn	those	back	into	1
×	28	×	28	tensors	(the	leading	1	is	the	number	of	channels—normally	red,	green,
and	blue—but	as	MNIST	digits	are	just	grayscale,	we	have	only	one	channel).
We	can	do	this	with	either	view()	or	reshape():

flat_tensor = torch.rand(784)
viewed_tensor = flat_tensor.view(1,28,28)
viewed_tensor.shape
> torch.Size([1, 28, 28])
reshaped_tensor = flat_tensor.reshape(1,28,28)
reshaped_tensor.shape
> torch.Size([1, 28, 28])

Note	that	the	reshaped	tensor’s	shape	has	to	have	the	same	number	of	total
elements	as	the	original.	If	you	try	flat_tensor.reshape(3,28,28),	you’ll	see
an	error	like	this:

RuntimeError Traceback (most recent call last)
<ipython-input-26-774c70ba5c08> in <module>()
----> 1 flat_tensor.reshape(3,28,28)

RuntimeError: shape '[3, 28, 28]' is invalid for input of size 784

Now	you	might	wonder	what	the	difference	is	between	view()	and	reshape().
The	answer	is	that	view()	operates	as	a	view	on	the	original	tensor,	so	if	the
underlying	data	is	changed,	the	view	will	change	too	(and	vice	versa).	However,
view()	can	throw	errors	if	the	required	view	is	not	contiguous;	that	is,	it	doesn’t
share	the	same	block	of	memory	it	would	occupy	if	a	new	tensor	of	the	required
shape	was	created	from	scratch.	If	this	happens,	you	have	to	call
tensor.contiguous()	before	you	can	use	view().	However,	reshape()	does
all	that	behind	the	scenes,	so	in	general,	I	recommend	using	reshape()	rather
than	view().

Finally,	you	might	need	to	rearrange	the	dimensions	of	a	tensor.	You	will	likely
come	across	this	with	images,	which	often	are	stored	as	[height, width,
channel]	tensors,	but	PyTorch	prefers	to	deal	with	these	in	a	[channel,
height, width].	You	can	user	permute()	to	deal	with	these	in	a	fairly
straightforward	manner:

hwc_tensor = torch.rand(640, 480, 3)
chw_tensor = hwc_tensor.permute(2,0,1)
chw_tensor.shape
> torch.Size([3, 640, 480])

Here,	we’ve	just	applied	permute	to	a	[640,480,3]	tensor,	with	the	arguments

being	the	indexes	of	the	tensor’s	dimensions,	so	we	want	the	final	dimension	(2,
due	to	zero	indexing)	to	be	at	the	front	of	our	tensor,	followed	by	the	remaining
two	dimensions	in	their	original	order.

Tensor	Broadcasting
Borrowed	from	NumPy,	broadcasting	allows	you	to	perform	operations	between
a	tensor	and	a	smaller	tensor.	You	can	broadcast	across	two	tensors	if,	starting
backward	from	their	trailing	dimensions:

The	two	dimensions	are	equal.

One	of	the	dimensions	is	1.

In	our	use	of	broadcasting,	it	works	because	1	has	a	dimension	of	1,	and	as	there
are	no	other	dimensions,	the	1	can	be	expanded	to	cover	the	other	tensor.	If	we
tried	to	add	a	[2,2]	tensor	to	a	[3,3]	tensor,	we’d	get	this	error	message:

The size of tensor a (2) must match the size of
tensor b (3) at non-singleton dimension 1

But	we	could	add	a	[1,3]	tensor	to	the	[3,3]	tensor	without	any	trouble.
Broadcasting	is	a	handy	little	feature	that	increases	brevity	of	code,	and	is	often
faster	than	manually	expanding	the	tensor	yourself.

That	wraps	up	everything	concerning	tensors	that	you	need	to	get	started!	We’ll
cover	a	few	other	operations	as	we	come	across	them	later	in	the	book,	but	this	is
enough	for	you	to	dive	into	Chapter	2.

Conclusion
Whether	it’s	in	the	cloud	or	on	your	local	machine,	you	should	now	have
PyTorch	installed.	I’ve	introduced	the	fundamental	building	block	of	the	library,
the	tensor,	and	you’ve	had	a	brief	look	at	Jupyter	Notebook.	This	is	all	you	need
to	get	started!	In	the	next	chapter,	you	use	everything	you’ve	seen	so	far	to	start
building	neural	networks	and	classifying	images,	so	make	you	sure	you’re
comfortable	with	tensors	and	Jupyter	before	moving	on.

Further	Reading
Project	Jupyter	documentation

PyTorch	documentation

AWS	Deep	Learning	AMIs

Azure	Data	Science	Virtual	Machines

Google	Deep	Learning	VM	Image

https://jupyter.org/documentation
https://pytorch.org/docs/stable
https://oreil.ly/G9Ldx
https://oreil.ly/YjzVB
https://oreil.ly/NFpeG

Chapter	2.	Image	Classification
with	PyTorch

After	you’ve	set	up	PyTorch,	deep	learning	textbooks	normally	throw	a	bunch	of
jargon	at	you	before	doing	anything	interesting.	I	try	to	keep	that	to	a	minimum
and	work	through	an	example,	albeit	one	that	can	easily	be	expanded	as	you	get
more	comfortable	working	with	PyTorch.	We	use	this	example	throughout	the
book	to	demonstrate	how	to	debug	a	model	(Chapter	7)	or	deploy	it	to
production	(Chapter	8).

What	we’re	going	to	construct	from	now	until	the	end	of	Chapter	4	is	an	image
classifier.	Neural	networks	are	commonly	used	as	image	classifiers;	the	network
is	given	a	picture	and	asked	what	is,	to	us,	a	simple	question:	“What	is	this?”

Let’s	get	started	with	building	our	PyTorch	application.

Our	Classification	Problem
Here	we	build	a	simple	classifier	that	can	tell	the	difference	between	fish	and
cats.	We’ll	be	iterating	over	the	design	and	how	we	build	our	model	to	make	it
more	and	more	accurate.

Figures	2-1	and	2-2	show	a	fish	and	a	cat	in	all	their	glory.	I’m	not	sure	whether
the	fish	has	a	name,	but	the	cat	is	called	Helvetica.

Let’s	begin	with	a	discussion	of	the	traditional	challenges	involved	in
classification.

Figure	2-1.	A	fish!

Figure	2-2.	Helvetica	in	a	box

Traditional	Challenges
How	would	you	go	about	writing	a	program	that	could	tell	a	fish	from	a	cat?
Maybe	you’d	write	a	set	of	rules	describing	that	a	cat	has	a	tail,	or	that	a	fish	has
scales,	and	apply	those	rules	to	an	image	to	determine	what	you’re	looking	at.

But	that	would	take	time,	effort,	and	skill.	Plus,	what	happens	if	you	encounter
something	like	a	Manx	cat;	while	it	is	clearly	a	cat,	it	doesn’t	have	a	tail.

You	can	see	how	these	rules	are	just	going	get	more	and	more	complicated	to
describe	all	possible	scenarios.	Also,	I’ll	admit	that	I’m	absolutely	terrible	at
graphics	programming,	so	the	idea	of	having	to	manually	code	all	these	rules
fills	me	with	dread.

What	we’re	after	is	a	function	that,	given	the	input	of	an	image,	returns	cat	or
fish.	That	function	is	hard	for	us	to	construct	by	exhaustively	listing	all	the
criteria.	But	deep	learning	essentially	makes	the	computer	do	all	the	hard	work
of	constructing	all	those	rules	that	we	just	talked	about—provided	we	create	a
structure,	give	the	network	lots	of	data,	and	give	it	a	way	to	work	out	whether	it
is	getting	the	right	answer.	So	that’s	what	we’re	going	to	do.	Along	the	way,
you’ll	learn	some	key	concepts	of	how	to	use	PyTorch.

But	First,	Data
First,	we	need	data.	How	much	data?	Well,	that	depends.	The	idea	that	for	any
deep	learning	technique	to	work,	you	need	vast	quantities	of	data	to	train	the
neural	network	is	not	necessarily	true,	as	you’ll	see	in	Chapter	4.	However,	right
now	we’re	going	to	be	training	from	scratch,	which	often	does	require	access	to
a	large	quantity	of	data.	We	need	a	lot	of	pictures	of	fish	and	cats.

Now,	we	could	spend	some	time	downloading	many	images	from	something	like
Google	image	search,	but	in	this	instance	we	have	a	shortcut:	a	standard
collection	of	images	used	to	train	neural	networks,	called	ImageNet.	It	contains
more	than	14	million	images	and	20,000	image	categories.	It’s	the	standard	that
all	image	classifiers	judge	themselves	against.	So	I	take	images	from	there,
though	feel	free	to	download	other	ones	yourself	if	you	prefer.

Along	with	the	data,	PyTorch	needs	a	way	to	determine	what	is	a	cat	and	what	is
a	fish.	That’s	easy	enough	for	us,	but	it’s	somewhat	harder	for	the	computer
(which	is	why	we	are	building	the	program	in	the	first	place!).	We	use	a	label
attached	to	the	data,	and	training	in	this	manner	is	called	supervised	learning.
(When	you	don’t	have	access	to	any	labels,	you	have	to	use,	perhaps
unsurprisingly,	unsupervised	learning	methods	for	training.)

Now,	if	we’re	using	ImageNet	data,	its	labels	aren’t	going	to	be	all	that	useful,

because	they	contain	too	much	information	for	us.	A	label	of	tabby	cat	or	trout
is,	to	the	computer,	separate	from	cat	or	fish.	We’ll	need	to	relabel	these.
Because	ImageNet	is	such	a	vast	collection	of	images,	I	have	pulled	together	a
list	of	image	URLs	and	labels	for	both	fish	and	cats.

You	can	run	the	download.py	script	in	that	directory,	and	it	will	download	the
images	from	the	URLs	and	place	them	in	the	appropriate	locations	for	training.
The	relabeling	is	simple;	the	script	stores	cat	pictures	in	the	directory	train/cat
and	fish	pictures	in	train/fish.	If	you’d	prefer	to	not	use	the	script	for
downloading,	just	create	these	directories	and	put	the	appropriate	pictures	in	the
right	locations.	We	now	have	our	data,	but	we	need	to	get	it	into	a	format	that
PyTorch	can	understand.

PyTorch	and	Data	Loaders
Loading	and	converting	data	into	formats	that	are	ready	for	training	can	often
end	up	being	one	of	the	areas	in	data	science	that	sucks	up	far	too	much	of	our
time.	PyTorch	has	developed	standard	conventions	of	interacting	with	data	that
make	it	fairly	consistent	to	work	with,	whether	you’re	working	with	images,
text,	or	audio.

The	two	main	conventions	of	interacting	with	data	are	datasets	and	data	loaders.
A	dataset	is	a	Python	class	that	allows	us	to	get	at	the	data	we’re	supplying	to
the	neural	network.	A	data	loader	is	what	feeds	data	from	the	dataset	into	the
network.	(This	can	encompass	information	such	as,	How	many	worker	processes
are	feeding	data	into	the	network?	or	How	many	images	are	we	passing	in	at
once?)

Let’s	look	at	the	dataset	first.	Every	dataset,	no	matter	whether	it	includes
images,	audio,	text,	3D	landscapes,	stock	market	information,	or	whatever,	can
interact	with	PyTorch	if	it	satisfies	this	abstract	Python	class:

class Dataset(object):
 def __getitem__(self, index):
 raise NotImplementedError

 def __len__(self):
 raise NotImplementedError

https://oreil.ly/NbtEU

This	is	fairly	straightforward:	we	have	to	implement	a	method	that	returns	the
size	of	our	dataset	(len),	and	implement	a	method	that	can	retrieve	an	item	from
our	dataset	in	a	(label,	tensor)	pair.	This	is	called	by	the	data	loader	as	it	is
pushing	data	into	the	neural	network	for	training.	So	we	have	to	write	a	body	for
getitem	that	can	take	an	image	and	transform	it	into	a	tensor	and	return	that	and
the	label	back	so	PyTorch	can	operate	on	it.	This	is	fine,	but	you	can	imagine
that	this	scenario	comes	up	a	lot,	so	maybe	PyTorch	can	make	things	easier	for
us?

Building	a	Training	Dataset
The	torchvision	package	includes	a	class	called	ImageFolder	that	does	pretty
much	everything	for	us,	providing	our	images	are	in	a	structure	where	each
directory	is	a	label	(e.g.,	all	cats	are	in	a	directory	called	cat).	For	our	cats	and
fish	example,	here’s	what	you	need:

import torchvision
from torchvision import transforms

train_data_path = "./train/"

transforms = transforms.Compose([
 transforms.Resize(64),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
])

train_data = torchvision.datasets.ImageFolder
(root=train_data_path,transform=transforms)

A	little	bit	more	is	going	on	here	because	torchvision	also	allows	you	to
specify	a	list	of	transforms	that	will	be	applied	to	an	image	before	it	gets	fed	into
the	neural	network.	The	default	transform	is	to	take	image	data	and	turn	it	into	a
tensor	(the	transforms.ToTensor()	method	seen	in	the	preceding	code),	but
we’re	also	doing	a	couple	of	other	things	that	might	not	seem	obvious.

Firstly,	GPUs	are	built	to	be	fast	at	performing	calculations	that	are	a	standard
size.	But	we	probably	have	an	assortment	of	images	at	many	resolutions.	To
increase	our	processing	performance,	we	scale	every	incoming	image	to	the

same	resolution	of	64	×	64	via	the	Resize(64)	transform.	We	then	convert	the
images	to	a	tensor,	and	finally,	we	normalize	the	tensor	around	a	specific	set	of
mean	and	standard	deviation	points.

Normalizing	is	important	because	a	lot	of	multiplication	will	be	happening	as	the
input	passes	through	the	layers	of	the	neural	network;	keeping	the	incoming
values	between	0	and	1	prevents	the	values	from	getting	too	large	during	the
training	phase	(known	as	the	exploding	gradient	problem).	And	that	magic
incarnation	is	just	the	mean	and	standard	deviation	of	the	ImageNet	dataset	as	a
whole.	You	could	calculate	it	specifically	for	this	fish	and	cat	subset,	but	these
values	are	decent	enough.	(If	you	were	working	on	a	completely	different
dataset,	you’d	have	to	calculate	that	mean	and	deviation,	although	many	people
just	use	these	ImageNet	constants	and	report	acceptable	results.)

The	composable	transforms	also	allow	us	to	easily	do	things	like	image	rotation
and	skewing	for	data	augmentation,	which	we’ll	come	back	to	in	Chapter	4.

NOTE
We’re	resizing	the	images	to	64	×	64	in	this	example.	I’ve	made	that	arbitrary	choice	in	order
to	make	the	computation	in	our	upcoming	first	network	fast.	Most	existing	architectures	that
you’ll	see	in	Chapter	3	use	224	×	224	or	299	×	299	for	their	image	inputs.	In	general,	the	larger
the	input	size,	the	more	data	for	the	network	to	learn	from.	The	flip	side	is	that	you	can	often
fit	a	smaller	batch	of	images	within	the	GPU’s	memory.

We’re	not	quite	done	with	datasets	yet.	But	why	do	we	need	more	than	just	a
training	dataset?

Building	Validation	and	Test	Datasets
Our	training	data	is	set	up,	but	we	need	to	repeat	the	same	steps	for	our
validation	data.	What’s	the	difference	here?	One	danger	of	deep	learning	(and	all
machine	learning,	in	fact)	is	the	concept	of	overfitting:	your	model	gets	really
good	at	recognizing	what	it	has	been	trained	on,	but	cannot	generalize	to
examples	it	hasn’t	seen.	So	it	sees	a	picture	of	a	cat,	and	unless	all	other	pictures
of	cats	resemble	that	picture	very	closely,	the	model	doesn’t	think	it’s	a	cat,
despite	it	obviously	being	so.	To	prevent	our	network	from	doing	this,	we

download	a	validation	set	in	download.py,	which	is	a	series	of	cat	and	fish
pictures	that	do	not	occur	in	the	training	set.	At	the	end	of	each	training	cycle
(also	known	as	an	epoch),	we	compare	against	this	set	to	make	sure	our	network
isn’t	getting	things	wrong.	But	don’t	worry—the	code	for	this	is	incredibly	easy
because	it’s	just	the	earlier	code	with	a	few	variable	names	changed:

val_data_path = "./val/"
val_data = torchvision.datasets.ImageFolder(root=val_data_path,
 transform=transforms)

We	just	reused	the	transforms	chain	instead	of	having	to	define	it	once	again.

In	addition	to	a	validation	set,	we	should	also	create	a	test	set.	This	is	used	to	test
the	model	after	all	training	has	been	completed:

test_data_path = "./test/"
test_data = torchvision.datasets.ImageFolder(root=test_data_path,
 transform=transforms)

Distinguishing	the	types	of	sets	can	be	a	little	confusing,	so	I’ve	compiled	a	table
to	indicate	which	set	is	used	for	which	part	of	model	training;	see	Table	2-1.

Table	2-1.	Dataset	types

Training
set Used	in	the	training	pass	to	update	the	model

Validation
set

Used	to	evaluate	how	the	model	is	generalizing	to	the	problem	domain,	rather	than	fitting
to	the	training	data;	not	used	to	update	the	model	directly

Test	set A	final	dataset	that	provides	a	final	evaluation	of	the	model’s	performance	after	training
is	complete

We	can	then	build	our	data	loaders	with	a	few	more	lines	of	Python:

batch_size=64
train_data_loader = data.DataLoader(train_data, batch_size=batch_size)
val_data_loader = data.DataLoader(val_data, batch_size=batch_size)
test_data_loader = data.DataLoader(test_data, batch_size=batch_size)

The	new	thing	to	note	from	this	code	is	batch_size.	This	tells	us	how	many

images	will	go	through	the	network	before	we	train	and	update	it.	We	could,	in
theory,	set	the	batch_size	to	the	number	of	images	in	the	test	and	training	sets
so	the	network	sees	every	image	before	it	updates.	In	practice,	we	tend	not	to	do
this	because	smaller	batches	(more	commonly	known	as	mini-batches	in	the
literature)	require	less	memory	than	having	to	store	all	the	information	about
every	image	in	the	dataset,	and	the	smaller	batch	size	ends	up	making	training
faster	as	we’re	updating	our	network	much	more	quickly.

By	default,	PyTorch’s	data	loaders	are	set	to	a	batch_size	of	1.	You	will	almost
certainly	want	to	change	that.	Although	I’ve	chosen	64	here,	you	might	want	to
experiment	to	see	how	big	of	a	minibatch	you	can	use	without	exhausting	your
GPU’s	memory.	You	may	also	want	to	experiment	with	some	of	the	additional
parameters:	you	can	specify	how	datasets	are	sampled,	whether	the	entire	set	is
shuffled	on	each	run,	and	how	many	worker	processes	are	used	to	pull	data	out
of	the	dataset.	This	can	all	be	found	in	the	PyTorch	documentation.

That	covers	getting	data	into	PyTorch,	so	let’s	now	introduce	a	simple	neural
network	to	actually	start	classifying	our	images.

Finally,	a	Neural	Network!
We’re	going	to	start	with	the	simplest	deep	learning	network:	an	input	layer,
which	will	work	on	the	input	tensors	(our	images);	our	output	layer,	which	will
be	the	size	of	the	number	of	our	output	classes	(2);	and	a	hidden	layer	between
them.	In	our	first	example,	we’ll	use	fully	connected	layers.	Figure	2-3	illustrates
what	that	looks	like	with	an	input	layer	of	three	nodes,	a	hidden	layer	of	three
nodes,	and	our	two-node	output.

https://oreil.ly/XORs1

Figure	2-3.	A	simple	neural	network

As	you	can	see,	in	this	fully	connected	example,	every	node	in	a	layer	affects
every	node	in	the	next	layer,	and	each	connection	has	a	weight	that	determines
the	strength	of	the	signal	from	that	node	going	into	the	next	layer.	(It	is	these
weights	that	will	be	updated	when	we	train	the	network,	normally	from	a	random
initialization.)	As	an	input	passes	through	the	network,	we	(or	PyTorch)	can
simply	do	a	matrix	multiplication	of	the	weights	and	biases	of	that	layer	onto	the
input.	Before	feeding	it	into	the	next	function,	that	result	goes	into	an	activation
function,	which	is	simply	a	way	of	inserting	nonlinearity	into	our	system.

Activation	Functions
Activation	functions	sound	complicated,	but	the	most	common	activation
function	you’ll	come	across	in	the	literature	these	days	is	ReLU,	or	rectified
linear	unit.	Which	again	sounds	complicated!	But	all	it	turns	out	to	be	is	a
function	that	implements	max(0,x),	so	the	result	is	0	if	the	input	is	negative,	or
just	the	input	(x)	if	x	is	positive.	Simple!

Another	activation	function	you’ll	likely	come	across	is	softmax,	which	is	a	little
more	complicated	mathematically.	Basically	it	produces	a	set	of	values	between
0	and	1	that	adds	up	to	1	(probabilities!)	and	weights	the	values	so	it	exaggerates
differences—that	is,	it	produces	one	result	in	a	vector	higher	than	everything
else.	You’ll	often	see	it	being	used	at	the	end	of	a	classification	network	to
ensure	that	that	network	makes	a	definite	prediction	about	what	class	it	thinks

the	input	belongs	to.

With	all	these	building	blocks	in	place,	we	can	start	to	build	our	first	neural
network.

Creating	a	Network
Creating	a	network	in	PyTorch	is	a	very	Pythonic	affair.	We	inherit	from	a	class
called	torch.nn.Network	and	fill	out	the	__init__	and	forward	methods:

class SimpleNet(nn.Module):

def __init__(self):
 super(Net, self).__init__()
 self.fc1 = nn.Linear(12288, 84)
 self.fc2 = nn.Linear(84, 50)
 self.fc3 = nn.Linear(50,2)

def forward(self):
 x = x.view(-1, 12288)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = F.softmax(self.fc3(x))
 return x

simplenet = SimpleNet()

Again,	this	is	not	too	complicated.	We	do	any	setup	required	in	init(),	in	this
case	calling	our	superclass	constructor	and	the	three	fully	connected	layers
(called	Linear	in	PyTorch,	as	opposed	to	Dense	in	Keras).	The	forward()
method	describes	how	data	flows	through	the	network	in	both	training	and
making	predictions	(inference).	First,	we	have	to	convert	the	3D	tensor	(x	and	y
plus	three-channel	color	information—red,	green,	blue)	in	an	image,	remember!
—into	a	1D	tensor	so	that	it	can	be	fed	into	the	first	Linear	layer,	and	we	do	that
using	the	view().	From	there,	you	can	see	that	we	apply	the	layers	and	the
activation	functions	in	order,	finally	returning	the	softmax	output	to	give	us	our
prediction	for	that	image.

The	numbers	in	the	hidden	layers	are	somewhat	arbitrary,	with	the	exception	of
the	output	of	the	final	layer,	which	is	2,	matching	up	with	our	two	classes	of	cat
or	fish.	In	general,	you	want	the	data	in	your	layers	to	be	compressed	as	it	goes

down	the	stack.	If	a	layer	is	going	to,	say,	50	inputs	to	100	outputs,	then	the
network	might	learn	by	simply	passing	the	50	connections	to	50	of	the	100
outputs	and	consider	its	job	done.	By	reducing	the	size	of	the	output	with	respect
to	the	input,	we	force	that	part	of	the	network	to	learn	a	representation	of	the
original	input	with	fewer	resources,	which	hopefully	means	that	it	extracts	some
features	of	the	images	that	are	important	to	the	problem	we’re	trying	to	solve;	for
example,	learning	to	spot	a	fin	or	a	tail.

We	have	a	prediction,	and	we	can	compare	that	with	the	actual	label	of	the
original	image	to	see	whether	the	prediction	was	correct.	But	we	need	some	way
of	allowing	PyTorch	to	quantify	not	just	whether	a	prediction	is	right	or	wrong,
but	just	how	wrong	or	right	it	is.	This	is	handled	by	a	loss	function.

Loss	Functions
Loss	functions	are	one	of	the	key	pieces	of	an	effective	deep	learning	solution.
PyTorch	uses	loss	functions	to	determine	how	it	will	update	the	network	to	reach
the	desired	results.

Loss	functions	can	be	as	complicated	or	as	simple	as	you	desire.	PyTorch	comes
complete	with	a	comprehensive	collection	of	them	that	will	cover	most	of	the
applications	you’re	likely	to	encounter,	plus	of	course	you	can	write	your	own	if
you	have	a	very	custom	domain.	In	our	case,	we’re	going	to	use	a	built-in	loss
function	called	CrossEntropyLoss,	which	is	recommended	for	multiclass
categorization	tasks	like	we’re	doing	here.	Another	loss	function	you’re	likely	to
come	across	is	MSELoss,	which	is	a	standard	mean	squared	loss	that	you	might
use	when	making	a	numerical	prediction.

One	thing	to	be	aware	of	with	CrossEntropyLoss	is	that	it	also	incorporates
softmax()	as	part	of	its	operation,	so	our	forward()	method	becomes	the
following:

def forward(self):
 # Convert to 1D vector
 x = x.view(-1, 12288)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

Now	let’s	look	at	how	a	neural	network’s	layers	are	updated	during	the	training
loop.

Optimizing
Training	a	network	involves	passing	data	through	the	network,	using	the	loss
function	to	determine	the	difference	between	the	prediction	and	the	actual	label,
and	then	using	that	information	to	update	the	weights	of	the	network	in	an
attempt	to	make	the	loss	function	return	as	small	a	loss	as	possible.	To	perform
the	updates	on	the	neural	network,	we	use	an	optimizer.

If	we	just	had	one	weight,	we	could	plot	a	graph	of	the	loss	value	against	the
value	of	the	weight,	and	it	might	look	something	like	Figure	2-4.

Figure	2-4.	A	2D	plot	of	loss

If	we	start	at	a	random	position,	marked	in	Figure	2-4	by	the	X,	with	our	weight
value	on	the	x-axis	and	the	loss	function	on	the	y-axis,	we	need	to	get	to	the
lowest	point	on	the	curve	to	find	our	optimal	solution.	We	can	move	by	altering
the	value	of	the	weight,	which	will	give	us	a	new	value	for	the	loss	function.	To
know	how	good	a	move	we’re	making,	we	can	check	against	the	gradient	of	the

curve.	One	common	way	to	visualize	the	optimizer	is	like	rolling	a	marble,
trying	to	find	the	lowest	point	(or	minima)	in	a	series	of	valleys.	This	is	perhaps
clearer	if	we	extend	our	view	to	two	parameters,	creating	a	3D	graph	as	shown	in
Figure	2-5.

Figure	2-5.	A	3D	plot	of	loss

And	in	this	case,	at	every	point,	we	can	check	the	gradients	of	all	the	potential
moves	and	choose	the	one	that	moves	us	most	down	the	hill.

You	need	to	be	aware	of	a	couple	of	issues,	though.	The	first	is	the	danger	of
getting	trapped	in	local	minima,	areas	that	look	like	they’re	the	shallowest	parts
of	the	loss	curve	if	we	check	our	gradients,	but	actually	shallower	areas	exist
elsewhere.	If	we	go	back	to	our	1D	curve	in	Figure	2-4,	we	can	see	that	if	we
end	up	in	the	minima	on	the	left	by	taking	short	hops	down,	we’d	never	have	any
reason	to	leave	that	position.	And	if	we	took	giant	hops,	we	might	find	ourselves
getting	onto	the	path	that	leads	to	the	actual	lowest	point,	but	because	we	keep
making	jumps	that	are	so	big,	we	keep	bouncing	all	over	the	place.

The	size	of	our	hops	is	known	as	the	learning	rate,	and	is	often	the	key
parameter	that	needs	to	be	tweaked	in	order	to	get	your	network	learning
properly	and	efficiently.	You’ll	see	a	way	of	determining	a	good	learning	rate	in
Chapter	4,	but	for	now,	you’ll	be	experimenting	with	different	values:	try
something	like	0.001	to	begin	with.	As	just	mentioned,	large	learning	rates	will

cause	your	network	to	bounce	all	over	the	place	in	training,	and	it	will	not
converge	on	a	good	set	of	weights.

As	for	the	local	minima	problem,	we	make	a	slight	alteration	to	our	taking	all	the
possible	gradients	and	indicate	sample	random	gradients	during	a	batch.	Known
as	stochastic	gradient	descent	(SGD),	this	is	the	traditional	approach	to
optimizing	neural	networks	and	other	machine	learning	techniques.	But	other
optimizers	are	available,	and	indeed	for	deep	learning,	preferable.	PyTorch	ships
with	SGD	and	others	such	as	AdaGrad	and	RMSProp,	as	well	as	Adam,	the
optimizer	we	will	be	using	for	the	majority	of	the	book.

One	of	the	key	improvements	that	Adam	makes	(as	does	RMSProp	and
AdaGrad)	is	that	it	uses	a	learning	rate	per	parameter,	and	adapts	that	learning
rate	depending	on	the	rate	of	change	of	those	parameters.	It	keeps	an
exponentially	decaying	list	of	gradients	and	the	square	of	those	gradients	and
uses	those	to	scale	the	global	learning	rate	that	Adam	is	working	with.	Adam	has
been	empirically	shown	to	outperform	most	other	optimizers	in	deep	learning
networks,	but	you	can	swap	out	Adam	for	SGD	or	RMSProp	or	another
optimizer	to	see	if	using	a	different	technique	yields	faster	and	better	training	for
your	particular	application.

Creating	an	Adam-based	optimizer	is	simple.	We	call	optim.Adam()	and	pass	in
the	weights	of	the	network	that	it	will	be	updating	(obtained	via
simplenet.parameters())	and	our	example	learning	rate	of	0.001:

import torch.optim as optim
optimizer = optim.Adam(simplenet.parameters(), lr=0.001)

The	optimizer	is	the	last	piece	of	the	puzzle,	so	we	can	finally	start	training	our
network.

Training
Here’s	our	complete	training	loop,	which	combines	everything	you’ve	seen	so
far	to	train	the	network.	We’re	going	to	write	this	as	a	function	so	parts	such	as
the	loss	function	and	optimizer	can	be	passed	in	as	parameters.	It	looks	quite
generic	at	this	point:

for epoch in range(epochs):
 for batch in train_loader:
 optimizer.zero_grad()
 input, target = batch
 output = model(input)
 loss = loss_fn(output, target)
 loss.backward()
 optimizer.step()

It’s	fairly	straightforward,	but	you	should	note	a	few	things.	We	take	a	batch
from	our	training	set	on	every	iteration	of	the	loop,	which	is	handled	by	our	data
loader.	We	then	run	those	through	our	model	and	compute	the	loss	from	the
expected	output.	To	compute	the	gradients,	we	call	the	backward()	method	on
the	model.	The	optimizer.step()	method	uses	those	gradients	afterward	to
perform	the	adjustment	of	the	weights	that	we	talked	about	in	the	previous
section.

What	is	that	zero_grad()	call	doing,	though?	It	turns	out	that	the	calculated
gradients	accumulate	by	default,	meaning	that	if	we	didn’t	zero	the	gradients	at
the	end	of	the	batch’s	iteration,	the	next	batch	would	have	to	deal	with	this
batch’s	gradients	as	well	as	its	own,	and	the	batch	after	that	would	have	to	cope
with	the	previous	two,	and	so	on.	This	isn’t	helpful,	as	we	want	to	look	at	only
the	gradients	of	the	current	batch	for	our	optimization	in	each	iteration.	We	use
zero_grad()	to	make	sure	they	are	reset	to	zero	after	we’re	done	with	our	loop.

That’s	the	abstracted	version	of	the	training	loop,	but	we	have	to	address	a	few
more	things	before	we	can	write	our	complete	function.

Making	It	Work	on	the	GPU
If	you’ve	run	any	of	the	code	so	far,	you	might	have	noticed	that	it’s	not	all	that
fast.	What	about	that	shiny	GPU	that’s	sitting	attached	to	our	instance	in	the
cloud	(or	the	very	expensive	machine	we’ve	put	together	on	our	desktop)?
PyTorch,	by	default,	does	CPU-based	calculations.	To	take	advantage	of	the
GPU,	we	need	to	move	our	input	tensors	and	the	model	itself	to	the	GPU	by
explicitly	using	the	to()	method.	Here’s	an	example	that	copies	the	SimpleNet
to	the	GPU:

if torch.cuda.is_available():

 device = torch.device("cuda")
else
 device = torch.device("cpu")

model.to(device)

Here,	we	copy	the	model	to	the	GPU	if	PyTorch	reports	that	one	is	available,	or
otherwise	keep	the	model	on	the	CPU.	By	using	this	construction,	we	can
determine	whether	a	GPU	is	available	at	the	start	of	our	code	and	use
tensor|model.to(device)	throughout	the	rest	of	the	program,	being	confident
that	it	will	go	to	the	correct	place.

NOTE
In	earlier	versions	of	PyTorch,	you	would	use	the	cuda()	method	to	copy	data	to	the	GPU
instead.	If	you	come	across	that	method	when	looking	at	other	people’s	code,	just	be	aware	that
it’s	doing	the	same	thing	as	to()!

And	that	wraps	up	all	the	steps	required	for	training.	We’re	almost	done!

Putting	It	All	Together
You’ve	seen	a	lot	of	different	pieces	of	code	throughout	this	chapter,	so	let’s
consolidate	it.	We	put	it	all	together	to	create	a	generic	training	method	that	takes
in	a	model,	as	well	as	training	and	validation	data,	along	with	learning	rate	and
batch	size	options,	and	performs	training	on	that	model.	We	use	this	code
throughout	the	rest	of	the	book:

def train(model, optimizer, loss_fn, train_loader, val_loader,
epochs=20, device="cpu"):
 for epoch in range(epochs):
 training_loss = 0.0
 valid_loss = 0.0
 model.train()
 for batch in train_loader:
 optimizer.zero_grad()
 inputs, target = batch
 inputs = inputs.to(device)
 target = targets.to(device)

 output = model(inputs)
 loss = loss_fn(output, target)
 loss.backward()
 optimizer.step()
 training_loss += loss.data.item()
 training_loss /= len(train_iterator)

 model.eval()
 num_correct = 0
 num_examples = 0
 for batch in val_loader:
 inputs, targets = batch
 inputs = inputs.to(device)
 output = model(inputs)
 targets = targets.to(device)
 loss = loss_fn(output,targets)
 valid_loss += loss.data.item()
 correct = torch.eq(torch.max(F.softmax(output), dim=1)[1],
 target).view(-1)
 num_correct += torch.sum(correct).item()
 num_examples += correct.shape[0]
 valid_loss /= len(valid_iterator)

 print('Epoch: {}, Training Loss: {:.2f},
 Validation Loss: {:.2f},
 accuracy = {:.2f}'.format(epoch, training_loss,
 valid_loss, num_correct / num_examples))

That’s	our	training	function,	and	we	can	kick	off	training	by	calling	it	with	the
required	parameters:

train(simplenet, optimizer, torch.nn.CrossEntropyLoss(),
 train_data_loader, test_data_loader,device)

The	network	will	train	for	20	epochs	(you	can	adjust	this	by	passing	in	a	value
for	epoch	to	train()),	and	you	should	get	a	printout	of	the	model’s	accuracy	on
the	validation	set	at	the	end	of	each	epoch.

You	have	trained	your	first	neural	network—congratulations!	You	can	now	use	it
to	make	predictions,	so	let’s	look	at	how	to	do	that.

Making	Predictions
Way	back	at	the	start	of	the	chapter,	I	said	we	would	make	a	neural	network	that

could	classify	whether	an	image	is	a	cat	or	a	fish.	We’ve	now	trained	one	to	do
just	that,	but	how	do	we	use	it	to	generate	a	prediction	for	a	single	image?	Here’s
a	quick	bit	of	Python	code	that	will	load	an	image	from	the	filesystem	and	print
out	whether	our	network	says	cat	or	fish:

from PIL import Image

labels = ['cat','fish']

img = Image.open(FILENAME)
img = transforms(img)
img = img.unsqueeze(0)

prediction = simplenet(img)
prediction = prediction.argmax()
print(labels[prediction])

Most	of	this	code	is	straightforward;	we	reuse	the	transform	pipeline	we	made
earlier	to	convert	the	image	into	the	correct	form	for	our	neural	network.
However,	because	our	network	uses	batches,	it	actually	expects	a	4D	tensor,	with
the	first	dimension	denoting	the	different	images	within	a	batch.	We	don’t	have	a
batch,	but	we	can	create	a	batch	of	length	1	by	using	unsqueeze(0),	which	adds
a	new	dimension	at	the	front	of	our	tensor.

Getting	predictions	is	as	simple	as	passing	our	batch	into	the	model.	We	then
have	to	find	out	the	class	with	the	higher	probability.	In	this	case,	we	could
simply	convert	the	tensor	to	an	array	and	compare	the	two	elements,	but	there
are	often	many	more	than	that.	Helpfully,	PyTorch	provides	the	argmax()
function,	which	returns	the	index	of	the	highest	value	of	the	tensor.	We	then	use
that	to	index	into	our	labels	array	and	print	out	our	prediction.	As	an	exercise,
use	the	preceding	code	as	a	basis	to	work	out	predictions	on	the	test	set	that	we
created	at	the	start	of	the	chapter.	You	don’t	need	to	use	unsqueeze()	because
you	get	batches	from	the	test_data_loader.

That’s	about	all	you	need	to	know	about	making	predictions	for	now;	we	return
to	this	in	Chapter	8	when	we	harden	things	for	production	usage.

In	addition	to	making	predictions,	we	probably	would	like	to	be	able	to	reload
the	model	at	any	point	in	the	future	with	our	trained	parameters,	so	let’s	take	a
look	at	how	that’s	done	with	PyTorch.

Model	Saving
If	you’re	happy	with	the	performance	of	a	model	or	need	to	stop	for	any	reason,
you	can	save	the	current	state	of	a	model	in	Python’s	pickle	format	by	using	the
torch.save()	method.	Conversely,	you	can	load	a	previously	saved	iteration	of
a	model	by	using	the	torch.load()	method.

Saving	our	current	parameters	and	model	structure	would	therefore	work	like
this:

torch.save(simplenet, "/tmp/simplenet")

And	we	can	reload	as	follows:

simplenet = torch.load("/tmp/simplenet")

This	stores	both	the	parameters	and	the	structure	of	the	model	to	a	file.	This
might	be	a	problem	if	you	change	the	structure	of	the	model	at	a	later	point.	For
this	reason,	it’s	more	common	to	save	a	model’s	state_dict	instead.	This	is	a
standard	Python	dict	that	contains	the	maps	of	each	layer’s	parameters	in	the
model.	Saving	the	state_dict	looks	like	this:

torch.save(model.state_dict(), PATH)

To	restore,	create	an	instance	of	the	model	first	and	then	use	load_state_dict.
For	SimpleNet:

simplenet = SimpleNet()
simplenet_state_dict = torch.load("/tmp/simplenet")
simplenet.load_state_dict(simplenet_state_dict)

The	benefit	here	is	that	if	you	extend	the	model	in	some	fashion,	you	can	supply
a	strict=False	parameter	to	load_state_dict	that	assigns	parameters	to
layers	in	the	model	that	do	exist	in	the	state_dict,	but	does	not	fail	if	the
loaded	state_dict	has	layers	missing	or	added	from	the	model’s	current
structure.	Because	it’s	just	a	normal	Python	dict,	you	can	change	the	key	names
to	fit	your	model,	which	can	be	handy	if	you	are	pulling	in	parameters	from	a

completely	different	model	altogether.

Models	can	be	saved	to	a	disk	during	a	training	run	and	reloaded	at	another	point
so	that	training	can	continue	where	you	left	off.	That	is	quite	useful	when	using
something	like	Google	Colab,	which	lets	you	have	continuous	access	to	a	GPU
for	only	around	12	hours.	By	keeping	track	of	time,	you	can	save	the	model
before	the	cutoff	and	continue	training	in	a	new	12-hour	session.

Conclusion
You’ve	taken	a	whirlwind	tour	through	the	basics	of	neural	networks	and	learned
how,	using	PyTorch,	you	can	train	them	with	a	dataset,	make	predictions	on
other	images,	and	save/restore	models	to	and	from	disk.

Before	you	read	the	next	chapter,	experiment	with	the	SimpleNet	architecture
we	created	here.	Adjust	the	number	of	parameters	in	the	Linear	layers,	and
maybe	add	another	layer	or	two.	Have	a	look	at	the	various	activation	functions
available	in	PyTorch	and	swap	out	ReLU	for	something	else.	See	what	happens	to
training	if	you	adjust	the	learning	rate	or	switch	out	the	optimizer	from	Adam	to
another	option	(perhaps	try	vanilla	SGD).	Maybe	alter	the	batch	size	and	the
initial	size	of	the	image	as	it	gets	turned	into	a	1D	tensor	at	the	start	of	the
forward	pass.	A	lot	of	deep	learning	work	is	still	in	the	phase	of	artisanal
construction;	learning	rates	are	tinkered	with	by	hand	until	a	network	is	trained
appropriately,	so	it’s	good	to	get	a	handle	on	how	all	the	moving	parts	interact.

You	might	be	a	little	disappointed	with	the	accuracy	of	the	SimpleNet
architecture,	but	don’t	worry!	Chapter	3	provides	some	definite	improvements	as
we	introduce	the	convolutional	neural	network	in	place	of	the	very	simple
network	we’ve	been	using	so	far.

Further	Reading
PyTorch	documentation

“Adam:	A	Method	for	Stochastic	Optimization”	by	Diederik	P.	Kingma
and	Jimmy	Ba	(2014)

https://oreil.ly/x6pO7
https://arxiv.org/abs/1412.6980

“An	Overview	of	Gradient	Descent	Optimization	Algorithms”	by
Sebstian	Ruder	(2016)

https://arxiv.org/abs/1609.04747

Chapter	3.	Convolutional	Neural
Networks

After	experimenting	with	the	fully	connected	neural	networks	in	Chapter	2,	you
probably	noticed	a	few	things.	If	you	attempted	to	add	more	layers	or	vastly
increase	the	number	of	parameters,	you	almost	certainly	ran	out	of	memory	on
your	GPU.	In	addition,	it	took	a	while	to	train	to	anything	resembling	somewhat
decent	accuracy,	and	even	that	wasn’t	much	to	shout	about,	especially
considering	the	hype	surrounding	deep	learning.	What’s	going	on?

It’s	true	that	a	fully	connected	or	(feed-forward)	network	can	function	as	a
universal	approximator,	but	the	theory	doesn’t	say	how	long	it’ll	take	you	to
train	it	to	become	that	approximation	to	the	function	you’re	really	after.	But	we
can	do	better,	especially	with	images.	In	this	chapter,	you’ll	learn	about
convolutional	neural	networks	(CNNs)	and	how	they	form	the	backbone	of	the
most	accurate	image	classifiers	around	today	(we	take	a	look	at	a	couple	of	them
in	some	detail	along	the	way).	We	build	up	a	new	convolutional-based
architecture	for	our	fish	versus	cat	application	and	show	that	it	is	quicker	to	train
and	more	accurate	than	what	we	were	doing	in	the	previous	chapter.	Let’s	get
started!

Our	First	Convolutional	Model
This	time	around,	I’m	going	to	share	the	final	model	architecture	first,	and	then
discuss	all	the	new	pieces.	And	as	I	mentioned	in	Chapter	2,	the	training	method
we	created	is	independent	of	the	model,	so	you	can	go	ahead	and	test	this	model
out	first	and	then	come	back	for	the	explanation!

class CNNNet(nn.Module):

 def __init__(self, num_classes=2):
 super(CNNNet, self).__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),

 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(64, 192, kernel_size=5, padding=2),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(192, 384, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(384, 256, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(256, 256, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
)
 self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
 self.classifier = nn.Sequential(
 nn.Dropout(),
 nn.Linear(256 * 6 * 6, 4096),
 nn.ReLU(),
 nn.Dropout(),
 nn.Linear(4096, 4096),
 nn.ReLU(),
 nn.Linear(4096, num_classes)
)

 def forward(self, x):
 x = self.features(x)
 x = self.avgpool(x)
 x = torch.flatten(x, 1)
 x = self.classifier(x)
 return x

The	first	thing	to	notice	is	the	use	of	nn.Sequential().	This	allows	us	to	create
a	chain	of	layers.	When	we	use	one	of	these	chains	in	forward(),	the	input	goes
through	each	element	of	the	array	of	layers	in	succession.	You	can	use	this	to
break	your	model	into	more	logical	arrangements.	In	this	network,	we	have	two
chains:	the	features	block	and	the	classifier.	Let’s	take	a	look	at	the	new
layers	we’re	introducing,	starting	with	Conv2d.

Convolutions
The	Conv2d	layer	is	a	2D	convolution.	If	we	have	a	grayscale	image,	it	consists
of	an	array,	x	pixels	wide	and	y	pixels	high,	with	each	entry	having	a	value	that
indicates	whether	it’s	black	or	white	or	somewhere	in	between	(we	assume	an	8-
bit	image,	so	each	value	can	vary	from	0	to	255).	For	this	example	we	look	at	a

small,	square	image	that’s	4	pixels	high	and	wide:

Next	we	introduce	something	called	a	filter,	or	convolutional	kernel.	This	is
another	matrix,	most	likely	smaller,	which	we	will	drag	across	our	image.	Here’s
our	2	×	2	filter:

To	produce	our	output,	we	take	the	smaller	filter	and	pass	it	over	the	original
input,	like	a	magnifying	glass	over	a	piece	of	paper.	Starting	from	the	top	left,
our	first	calculation	is	as	follows:

And	all	we	do	is	multiply	each	element	in	the	matrix	by	its	corresponding
member	in	the	other	matrix	and	sum	the	result:	(10	×	1)	+	(11	×	0)	+	(2	×	1)	+
(123	×	0)	=	12.	Having	done	that,	we	move	the	filter	across	and	begin	again.	But
how	much	should	we	move	the	filter?	In	this	case,	we	move	the	filter	across	by
2,	meaning	that	our	second	calculation	is:

This	gives	us	an	output	of	13.	We	now	move	our	filter	down	and	back	to	the	left
and	repeat	the	process,	giving	us	this	final	result	(or	feature	map):

In	Figure	3-1,	you	can	see	how	this	works	graphically,	with	a	3	×	3	kernel	being
dragged	across	a	4	×	4	tensor	and	producing	a	2	×	2	output	(though	each
segment	is	based	on	nine	elements	instead	of	the	four	in	our	first	example).

Figure	3-1.	How	a	3	×	3	kernel	operates	across	a	4	×	4	input

A	convolutional	layer	will	have	many	of	these	filters,	the	values	of	which	are
filled	in	by	the	training	of	the	network,	and	all	the	filters	in	the	layer	share	the
same	bias	values.	Let’s	go	back	to	how	we’re	invoking	the	Conv2d	layer	and	see
some	of	the	other	options	that	we	can	set:

nn.Conv2d(in_channels,out_channels, kernel_size, stride, padding)

The	in_channels	is	the	number	of	input	channels	we’ll	be	receiving	in	the
layer.	At	the	beginning	of	the	network,	we’re	taking	in	the	RGB	image	as	input,
so	the	number	of	input	channels	is	three.	out_channels	is,	unsurprisingly,	the
number	of	output	channels,	which	corresponds	to	the	number	of	filters	in	our
conv	layer.	Next	is	kernel_size,	which	describes	the	height	and	width	of	our
filter. 	This	can	be	a	single	scalar	specifying	a	square	(e.g.,	in	the	first	conv
layer,	we’re	setting	up	an	11	×	11	filter),	or	you	can	use	a	tuple	(such	as	(3,5)	for
a	3	×	5	filter).

The	next	two	parameters	seem	harmless	enough,	but	they	can	have	big	effects	on
the	downstream	layers	of	your	network,	and	even	what	that	particular	layer	ends
up	looking	at.	stride	indicates	how	many	steps	across	the	input	we	move	when

1

we	adjust	the	filter	to	a	new	position.	In	our	example,	we	end	up	with	a	stride	of
2,	which	has	the	effect	of	making	a	feature	map	that	is	half	the	size	of	the	input.
But	we	could	have	also	moved	with	a	stride	of	1,	which	would	give	us	a	feature
map	output	of	4	×	4,	the	same	size	of	the	input.	We	can	also	pass	in	a	tuple	(a,b)
that	would	allow	us	to	move	a	across	and	b	down	on	each	step.	Now,	you	might
be	wondering,	what	happens	when	it	gets	to	the	end?	Let’s	take	a	look.	If	we
drag	our	filter	along	with	a	stride	of	1,	we	eventually	get	to	this	point:

We	don’t	have	enough	elements	in	our	input	to	do	a	full	convolution.	So	what
happens?	This	is	where	the	padding	parameter	comes	in.	If	we	give	a	padding
value	of	1,	our	input	looks	a	bit	like	this:

Now	when	we	get	to	the	edge,	our	values	covered	by	the	filter	are	as	follows:

If	you	don’t	set	padding,	any	edge	cases	that	PyTorch	encounters	in	the	last
columns	of	the	input	are	simply	thrown	away.	It’s	up	to	you	to	set	padding
appropriately.	Just	as	with	stride	and	kernel_size,	you	can	also	pass	in	a
tuple	for	height	×	weight	padding	instead	of	a	single	number	that	pads	the
same	in	both	directions.

That’s	what	the	Conv2d	layers	are	doing	in	our	model.	But	what	about	those
MaxPool2d	layers?

Pooling
In	conjunction	with	the	convolution	layers,	you	will	often	see	pooling	layers.
These	layers	reduce	the	resolution	of	the	network	from	the	previous	input	layer,
which	gives	us	fewer	parameters	in	lower	layers.	This	compression	results	in
faster	computation	for	a	start,	and	it	helps	prevent	overfitting	in	the	network.

In	our	model,	we’re	using	MaxPool2d	with	a	kernel	size	of	3	and	a	stride	of	2.
Let’s	have	a	look	at	how	that	works	with	an	example.	Here’s	a	5	×	3	input:

Using	the	kernel	size	of	3	×	3	and	a	stride	of	2,	we	get	two	3	×	3	tensors	from	the
pooling:

In	MaxPool	we	take	the	maximum	value	from	each	of	these	tensors,	giving	us	an
output	tensor	of	[6,9].	Just	as	in	the	convolutional	layers,	there’s	a	padding
option	to	MaxPool	that	creates	a	border	of	zero	values	around	the	tensor	in	case
the	stride	goes	outside	the	tensor	window.

As	you	can	imagine,	you	can	pool	with	other	functions	aside	from	taking	the
maximum	value	from	a	kernel.	A	popular	alternative	is	to	take	the	average	of	the
tensor	values,	which	allows	all	of	the	tensor	data	to	contribute	to	the	pool	instead
of	just	one	value	in	the	max	case	(and	if	you	think	about	an	image,	you	can
imagine	that	you	might	want	to	consider	the	nearest	neighbors	of	a	pixel).	Also,
PyTorch	provides	AdaptiveMaxPool	and	AdaptiveAvgPool	layers,	which	work

independently	of	the	incoming	input	tensor’s	dimensions	(we	have	an
AdaptiveAvgPool	in	our	model,	for	example).	I	recommend	using	these	in
model	architectures	that	you	construct	over	the	standard	MaxPool	or	AvgPool
layers,	because	they	allow	you	to	create	architectures	that	can	work	with
different	input	dimensions;	this	is	handy	when	working	with	disparate	datasets.

We	have	one	more	new	component	to	talk	about,	one	that	is	incredibly	simple
yet	important	for	training.

Dropout
One	recurring	issue	with	neural	networks	is	their	tendency	to	overfit	to	training
data,	and	a	large	amount	of	ongoing	work	is	done	in	the	deep	learning	world	to
identify	approaches	that	allow	networks	to	learn	and	generalize	to	nontraining
data	without	simply	learning	how	to	just	respond	to	the	training	inputs.	The
Dropout	layer	is	a	devilishly	simple	way	of	doing	this	that	has	the	benefit	of
being	easy	to	understand	and	effective:	what	if	we	just	don’t	train	a	random
bunch	of	nodes	within	the	network	during	a	training	cycle?	Because	they	won’t
be	updated,	they	won’t	have	the	chance	to	overfit	to	the	input	data,	and	because
it’s	random,	each	training	cycle	will	ignore	a	different	selection	of	the	input,
which	should	help	generalization	even	further.

By	default,	the	Dropout	layers	in	our	example	CNN	network	are	initialized	with
0.5,	meaning	that	50%	of	the	input	tensor	is	randomly	zeroed	out.	If	you	want	to
change	that	to	20%,	add	the	p	parameter	to	the	initialization	call:
Dropout(p=0.2).

NOTE
Dropout	should	take	place	only	during	training.	If	it	was	happening	during	inference	time,
you’d	lose	a	chunk	of	your	network’s	reasoning	power,	which	is	not	what	we	want!
Thankfully,	PyTorch’s	implementation	of	Dropout	works	out	which	mode	you’re	running	in
and	passes	all	the	data	through	the	Dropout	layer	at	inference	time.

Having	looked	at	our	little	CNN	model	and	examined	the	layer	types	in	depth,
let’s	take	a	look	at	other	models	that	have	been	made	in	the	past	ten	years.

History	of	CNN	Architectures
Although	CNN	models	have	been	around	for	decades	(LeNet-5	was	used	for
digit	recognition	on	check	in	the	late	1990s,	for	example),	it	wasn’t	until	GPUs
became	widely	available	that	deep	CNN	networks	became	practical.	Even	then,
it	has	been	only	seven	years	since	deep	learning	networks	started	to	overwhelm
all	other	existing	approaches	in	image	classification.	In	this	section,	we	take	a
little	journey	back	through	the	last	few	years	to	talk	about	some	milestones	in
CNN-based	learning	and	investigate	some	new	techniques	along	the	way.

AlexNet
AlexNet	was,	in	many	ways,	the	architecture	that	changed	everything.	It	was
released	in	2012	and	destroyed	all	other	entries	in	that	year’s	ImageNet
competition	with	a	top-5	error	rate	of	15.3%	(the	second	place	entry	had	a	top-5
error	of	26.2%,	just	to	give	you	an	idea	of	how	much	better	it	was	than	other
state-of-the-art	methods).	AlexNet	was	one	of	the	first	architectures	to	introduce
the	concepts	of	MaxPool	and	Dropout,	and	even	popularize	the	then	less-well-
known	ReLU	activation	function.	It	was	one	of	the	first	architectures	to
demonstrate	that	many	layers	were	possible	and	efficient	to	train	on	a	GPU.
Although	it’s	not	state	of	the	art	anymore,	it	remains	an	important	milestone	in
deep	learning	history.

What	does	the	AlexNet	architecture	look	like?	Aha,	well,	it’s	time	to	let	you	in
on	a	little	secret.	The	network	we’ve	been	using	in	this	chapter	so	far?	It’s
AlexNet.	Surprise!	That’s	why	we	used	the	standard	MaxPool2d	instead	of
AdaptiveMaxPool2d,	to	match	the	original	AlexNet	definition.

Inception/GoogLeNet
Let’s	skip	ahead	to	the	winner	of	the	2014	ImageNet	competition.	The
GoogLeNet	architecture	introduced	the	Inception	module	that	addressed	some	of
the	deficiencies	of	AlexNet.	In	that	network,	the	kernels	of	the	convolutional
layers	are	fixed	at	a	certain	resolution.	We	might	expect	that	an	image	will	have
details	that	are	important	at	both	the	macro-	and	microscale.	It	may	be	easier	to
determine	whether	an	object	is	a	car	with	a	large	kernel,	but	to	determine
whether	it’s	an	SUV	or	a	hatchback	may	require	a	smaller	kernel.	And	to

determine	the	model,	we	might	need	an	even	smaller	kernel	to	make	out	details
such	as	logos	and	insignias.

The	Inception	network	instead	runs	a	series	of	convolutions	of	different	sizes	all
on	the	same	input,	and	concatenates	all	of	the	filters	together	to	pass	on	to	the
next	layer.	Before	it	does	any	of	those,	though,	it	does	a	1	×	1	convolution	as	a
bottleneck	that	compresses	the	input	tensor,	meaning	that	the	3	×	3	and	5	×	5
kernels	operate	on	a	fewer	number	of	filters	than	they	would	if	the	1	×	1
convolution	wasn’t	present.	You	can	see	an	Inception	module	illustrated	in
Figure	3-2.

Figure	3-2.	An	Inception	module

The	original	GoogLeNet	architecture	uses	nine	of	these	modules	stacked	on	top
of	each	other,	forming	a	deep	network.	Despite	the	depth,	it	uses	fewer
parameters	overall	than	AlexNet	while	delivering	a	human-like	performance	of
an	6.67%	top-5	error	rate.

VGG
The	second-place	entry	in	2014’s	ImageNet	was	from	the	University	of	Oxford

—the	Visual	Geometry	Group	(VGG)	network.	In	contrast	to	GoogLeNet,	VGG
is	a	simpler	stack	of	convolutional	layers.	Coming	in	various	configurations	of
longer	stacks	of	convolutional	filters	combined	with	two	large	hidden	linear
layers	before	the	final	classification	layer,	it	shows	off	the	power	of	simple	deep
architectures	(scoring	an	8.8%	top-5	error	in	its	VGG-16	configuration).
Figure	3-3	shows	the	layers	of	the	VGG-16	from	end	to	end.

The	downside	of	the	VGG	approach	is	that	the	final	fully	connected	layers	make
the	network	balloon	to	a	large	size,	weighing	in	at	138	million	parameters	in
comparison	with	GoogLeNet’s	7	million.	Having	said	that,	the	VGG	network	is
still	quite	popular	in	the	deep	learning	world	despite	its	huge	size,	as	it’s	easy	to
reason	about	because	of	its	simpler	construction	and	the	early	availability	of
trained	weights.	You’ll	often	see	it	used	in	style	transfer	applications	(e.g.,
turning	a	photo	into	a	Van	Gogh	painting)	as	its	combination	of	convolutional
filters	do	appear	to	capture	that	sort	of	information	in	a	way	that’s	easier	to
observe	than	the	more	complex	networks.

Figure	3-3.	VGG-16

ResNet
A	year	later,	Microsoft’s	ResNet	architecture	won	the	ImageNet	2015
competition	with	a	top-5	score	of	4.49%	in	its	ResNet-152	variant	and	3.57%	in
an	ensemble	model	(essentially	beyond	human	ability	at	this	point).	The
innovation	that	ResNet	brought	was	an	improvement	on	the	Inception-style
stacking	bundle	of	layers	approach,	wherein	each	bundle	performed	the	usual
CNN	operations	but	also	added	the	incoming	input	to	the	output	of	the	block,	as
shown	in	Figure	3-4.

The	advantage	of	this	set	up	is	that	each	block	passes	through	the	original	input
to	the	next	layer,	allowing	the	“signal”	of	the	training	data	to	traverse	through
deeper	networks	than	possible	in	either	VGG	or	Inception.	(This	loss	of	weight
changes	in	deep	networks	is	known	as	a	vanishing	gradient	because	of	the
gradient	changes	in	backpropagation	tending	to	zero	during	the	training	process.)

Figure	3-4.	A	ResNet	block

Other	Architectures	Are	Available!
Since	2015	or	so,	plenty	of	other	architectures	have	incrementally	improved	the
accuracy	on	ImageNet,	such	as	DenseNet	(an	extension	of	the	ResNet	idea	that
allows	for	the	construction	of	1,000-layer	monster	architectures),	but	also	a	lot	of
work	has	gone	into	creating	architectures	such	as	SqueezeNet	and	MobileNet,
which	offer	reasonable	accuracy	but	are	tiny	compared	to	architectures	such	as
VGG,	ResNet,	or	Inception.

Another	big	area	of	research	is	getting	neural	networks	to	start	designing	neural
networks	themselves.	The	most	successful	attempt	so	far	is,	of	course,	from
Google,	whose	AutoML	system	generated	an	architecture	called	NASNet	that	has
a	top-5	error	rate	of	3.8%	on	ImageNet,	which	is	state	of	the	art	as	I	type	this	at
the	start	of	2019	(along	with	another	autogenerated	architecture	from	Google
called	PNAS).	In	fact,	the	organizers	of	the	ImageNet	competition	have	decided
to	call	a	halt	to	further	competitions	in	this	space	because	the	architectures	have
already	gone	beyond	human	levels	of	ability.

That	brings	us	to	the	state	of	the	art	as	of	the	time	this	book	goes	to	press,	so	let’s
take	a	look	at	how	we	can	use	these	models	instead	of	defining	our	own.

Using	Pretrained	Models	in	PyTorch
Obviously,	having	to	define	a	model	each	time	you	want	to	use	one	would	be	a
chore,	especially	once	you	move	away	from	AlexNet,	so	PyTorch	provides	many
of	the	most	popular	models	by	default	in	the	torchvision	library.	For	AlexNet,
all	you	need	to	do	is	this:

import torchvision.models as models
alexnet = models.alexnet(num_classes=2)

Definitions	for	VGG,	ResNet,	Inception,	DenseNet,	and	SqueezeNet	variants	are
also	available.	That	gives	you	the	model	definition,	but	you	can	also	go	a	step
further	and	call	models.alexnet(pretrained=True)	to	download	a	pretrained
set	of	weights	for	AlexNet,	allowing	you	to	use	it	immediately	for	classification
with	no	extra	training.	(But	as	you’ll	see	in	the	next	chapter,	you	will	likely	want
to	do	some	additional	training	to	improve	the	accuracy	on	your	particular

dataset.)

Having	said	that,	there	is	something	to	be	said	for	building	the	models	yourself
at	least	once	to	get	a	feel	for	how	they	fit	together.	It’s	a	good	way	to	get	some
practice	building	model	architectures	within	PyTorch,	and	of	course	you	can
compare	with	the	provided	models	to	make	sure	that	what	you	come	up	with
matches	the	actual	definition.	But	how	do	you	find	out	what	that	structure	is?

Examining	a	Model’s	Structure
If	you’re	curious	about	how	one	of	these	models	is	constructed,	there’s	an	easy
way	to	get	PyTorch	to	help	you	out.	As	an	example,	here’s	a	look	at	the	entire
ResNet-18	architecture,	which	we	get	by	simply	calling	the	following:

print(model)

ResNet(
 (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3),
 bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
track_running_stats=True)
 (relu): ReLU(inplace)
 (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1,
 dilation=1, ceil_mode=False)
 (layer1): Sequential(
 (0): BasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
 (1): BasicBlock(
 (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

 track_running_stats=True)
)
)
 (layer2): Sequential(
 (0): BasicBlock(
 (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (downsample): Sequential(
 (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2),
 bias=False)
 (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (1): BasicBlock(
 (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (layer3): Sequential(
 (0): BasicBlock(
 (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (downsample): Sequential(
 (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2),
 bias=False)
 (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)

)
)
 (1): BasicBlock(
 (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (layer4): Sequential(
 (0): BasicBlock(
 (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (downsample): Sequential(
 (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2),
 bias=False)
 (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (1): BasicBlock(
 (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
 (relu): ReLU(inplace)
 (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1),
 padding=(1, 1), bias=False)
 (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True,
 track_running_stats=True)
)
)
 (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
 (fc): Linear(in_features=512, out_features=1000, bias=True)
)

There’s	almost	nothing	here	you	haven’t	already	seen	in	this	chapter,	with	the

exception	of	BatchNorm2d.	Let’s	have	a	look	at	what	that	does	in	one	of	those
layers.

BatchNorm
BatchNorm,	short	for	batch	normalization,	is	a	simple	layer	that	has	one	task	in
life:	using	two	learned	parameters	(meaning	that	it	will	be	trained	along	with	the
rest	of	the	network)	to	try	to	ensure	that	each	minibatch	that	goes	through	the
network	has	a	mean	centered	around	zero	with	a	variance	of	1.	You	might	ask
why	we	need	to	do	this	when	we’ve	already	normalized	our	input	by	using	the
transform	chain	in	Chapter	2.	For	smaller	networks,	BatchNorm	is	indeed	less
useful,	but	as	they	get	larger,	the	effect	of	any	layer	on	another,	say	20	layers
down,	can	be	vast	because	of	repeated	multiplication,	and	you	may	end	up	with
either	vanishing	or	exploding	gradients,	both	of	which	are	fatal	to	the	training
process.	The	BatchNorm	layers	make	sure	that	even	if	you	use	a	model	such	as
ResNet-152,	the	multiplications	inside	your	network	don’t	get	out	of	hand.

You	might	be	wondering:	if	we	have	BatchNorm	in	our	network,	why	are	we
normalizing	the	input	at	all	in	the	training	loop’s	transformation	chain?	After	all,
shouldn’t	BatchNorm	do	the	work	for	us?	And	the	answer	here	is	yes,	you	could
do	that!	But	it’ll	take	longer	for	the	network	to	learn	how	to	get	the	inputs	under
control,	as	they’ll	have	to	discover	the	initial	transform	themselves,	which	will
make	training	longer.

I	recommend	that	you	instantiate	all	of	the	architectures	we’ve	talked	about	so
far	and	use	print(model)	to	see	which	layers	they	use	and	in	what	order
operations	happen.	After	that,	there’s	another	key	question:	which	of	these
architectures	should	I	use?

Which	Model	Should	You	Use?
The	unhelpful	answer	is,	whichever	one	works	best	for	you,	naturally!	But	let’s
dig	in	a	little.	First,	although	I	suggest	that	you	try	the	NASNet	and	PNAS
architectures	at	the	moment,	I	wouldn’t	wholeheartedly	recommend	them,
despite	their	impressive	results	on	ImageNet.	They	can	be	surprisingly	memory-
hungry	in	operation,	and	the	transfer	learning	technique,	which	you	learn	about
in	Chapter	4,	is	not	quite	as	effective	compared	to	the	human-built	architectures

including	ResNet.

I	suggest	that	you	have	a	look	around	the	image-based	competitions	on	Kaggle,	a
website	that	runs	hundreds	of	data	science	competitions,	and	see	what	the
winning	entries	are	using.	More	than	likely	you’ll	end	up	seeing	a	bunch	of
ResNet-based	ensembles.	Personally,	I	like	and	use	the	ResNet	architectures
over	and	above	any	of	the	others	listed	here,	first	because	they	offer	good
accuracy,	and	second	because	it’s	easy	to	start	out	experimenting	with	a	ResNet-
34	model	for	fast	iteration	and	then	move	to	larger	ResNets	(and	more
realistically,	an	ensemble	of	different	ResNet	architectures,	just	as	Microsoft
used	in	their	ImageNet	win	in	2015)	once	I	feel	I	have	something	promising.

Before	we	end	the	chapter,	I	have	some	breaking	news	concerning	downloading
pretrained	models.

One-Stop	Shopping	for	Models:	PyTorch	Hub
A	recent	announcement	in	the	PyTorch	world	provides	an	additional	route	to	get
models:	PyTorch	Hub.	This	is	supposed	to	become	a	central	location	for
obtaining	any	published	model	in	the	future,	whether	it’s	for	operating	on
images,	text,	audio,	video,	or	any	other	type	of	data.	To	obtain	a	model	in	this
fashion,	you	use	the	torch.hub	module:

model = torch.hub.load('pytorch/vision', 'resnet50', pretrained=True)

The	first	parameter	points	to	a	GitHub	owner	and	repository	(with	an	optional
tag/branch	identifier	in	the	string	as	well);	the	second	is	the	model	requested	(in
this	case,	resnet50);	and	finally,	the	third	indicates	whether	to	download
pretrained	weights.	You	can	also	use	torch.hub.list('pytorch/vision')	to
discover	all	the	models	inside	that	repository	that	are	available	to	download.

PyTorch	Hub	is	brand	new	as	of	mid-2019,	so	there	aren’t	a	huge	number	of
models	available	as	I	write	this,	but	I	expect	it	to	become	a	popular	way	to
distribute	and	download	models	by	the	end	of	the	year.	All	the	models	in	this
chapter	can	be	loaded	through	the	pytorch/vision	repo	in	PytorchHub,	so	feel
free	to	use	this	loading	process	instead	of	torchvision.models.

https://www.kaggle.com

Conclusion
In	this	chapter,	you’ve	taken	a	quick	walk-through	of	how	CNN-based	neural
networks	work,	including	features	such	as	Dropout,	MaxPool,	and	BatchNorm.
You’ve	also	looked	at	the	most	popular	architectures	used	in	industry	today.
Before	moving	on	to	the	next	chapter,	play	with	the	architectures	we’ve	been
talking	about	and	see	how	they	compare.	(Don’t	forget,	you	don’t	need	to	train
them!	Just	download	the	weights	and	test	the	model.)

We’re	going	to	close	out	our	look	at	computer	vision	by	using	these	pretrained
models	as	a	starting	point	for	a	custom	solution	for	our	cats	versus	fish	problem
that	uses	transfer	learning.

Further	Reading
AlexNet:	“ImageNet	Classification	with	Deep	Convolutional	Neural
Networks”	by	Alex	Krizhevsky	et	al.	(2012)

VGG:	“Very	Deep	Convolutional	Networks	for	Large-Scale	Image
Recognition”	by	Karen	Simonyan	and	Andrew	Zisserman	(2014)

Inception:	“Going	Deeper	with	Convolutions”	by	Christian	Szegedy	et
al.	(2014)

ResNet:	“Deep	Residual	Learning	for	Image	Recognition”	by	Kaiming
He	et	al.	(2015)

NASNet:	“Learning	Transferable	Architectures	for	Scalable	Image
Recognition”	by	Barret	Zoph	et	al.	(2017)

1 	Kernel	and	filter	tend	to	be	used	interchangeably	in	the	literature.	If	you	have	experience	in	graphics
processing,	kernel	is	probably	more	familiar	to	you,	but	I	prefer	filter.

https://oreil.ly/CsoFv
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1707.07012

Chapter	4.	Transfer	Learning	and
Other	Tricks

Having	looked	over	the	architectures	in	the	previous	chapter,	you	might	wonder
whether	you	could	download	an	already	trained	model	and	train	it	even	further.
And	the	answer	is	yes!	It’s	an	incredibly	powerful	technique	in	deep	learning
circles	called	transfer	learning,	whereby	a	network	trained	for	one	task	(e.g.,
ImageNet)	is	adapted	to	another	(fish	versus	cats).

Why	would	you	do	this?	It	turns	out	that	an	architecture	trained	on	ImageNet
already	knows	an	awful	lot	about	images,	and	in	particular,	quite	a	bit	about
whether	something	is	a	cat	or	a	fish	(or	a	dog	or	a	whale).	Because	you’re	no
longer	starting	from	an	essentially	blank	neural	network,	with	transfer	learning
you’re	likely	to	spend	much	less	time	in	training,	and	you	can	get	away	with	a
vastly	smaller	training	dataset.	Traditional	deep	learning	approaches	take	huge
amounts	of	data	to	generate	good	results.	With	transfer	learning,	you	can	build
human-level	classifiers	with	a	few	hundred	images.

Transfer	Learning	with	ResNet
Now,	the	obvious	thing	to	do	is	to	create	a	ResNet	model	as	we	did	in	Chapter	3
and	just	slot	it	into	our	existing	training	loop.	And	you	can	do	that!	There’s
nothing	magical	in	the	ResNet	model;	it’s	built	up	from	the	same	building	blocks
that	you’ve	already	seen.	However,	it’s	a	big	model,	and	although	you	will	see
some	improvement	over	a	baseline	ResNet	with	your	data,	you	will	need	a	lot	of
data	to	make	sure	that	the	training	signal	gets	to	all	parts	of	the	architecture	and
trains	them	significantly	toward	your	new	classification	task.	We’re	trying	to
avoid	using	a	lot	of	data	in	this	approach.

Here’s	the	thing,	though:	we’re	not	dealing	with	an	architecture	that	has	been
initialized	with	random	parameters,	as	we	have	done	in	the	past.	Our	pretrained
ResNet	model	already	has	a	bunch	of	information	encoded	into	it	for	image
recognition	and	classification	needs,	so	why	bother	attempting	to	retrain	it?

Instead,	we	fine-tune	the	network.	We	alter	the	architecture	slightly	to	include	a
new	network	block	at	the	end,	replacing	the	standard	1,000-category	linear
layers	that	normally	perform	ImageNet	classification.	We	then	freeze	all	the
existing	ResNet	layers,	and	when	we	train,	we	update	only	the	parameters	in	our
new	layers,	but	still	take	the	activations	from	our	frozen	layers.	This	allows	us	to
quickly	train	our	new	layers	while	preserving	the	information	that	the	pretrained
layers	already	contain.

First,	let’s	create	a	pretrained	ResNet-50	model:

from torchvision import models
transfer_model = models.ResNet50(pretrained=True)

Next,	we	need	to	freeze	the	layers.	The	way	we	do	this	is	simple:	we	stop	them
from	accumulating	gradients	by	using	requires_grad().	We	need	to	do	this	for
every	parameter	in	the	network,	but	helpfully,	PyTorch	provides	a
parameters()	method	that	makes	this	rather	easy:

for name, param in transfer_model.named_parameters():
 param.requires_grad = False

TIP
You	might	not	want	to	freeze	the	BatchNorm	layers	in	a	model,	as	they	will	be	trained	to
approximate	the	mean	and	standard	deviation	of	the	dataset	that	the	model	was	originally
trained	on,	not	the	dataset	that	you	want	to	fine-tune	on.	Some	of	the	signal	from	your	data
may	end	up	being	lost	as	BatchNorm	corrects	your	input.	You	can	look	at	the	model	structure
and	freeze	only	layers	that	aren’t	BatchNorm	like	this:

for name, param in transfer_model.named_parameters():
 if("bn" not in name):
 param.requires_grad = False

Then	we	need	to	replace	the	final	classification	block	with	a	new	one	that	we
will	train	for	detecting	cats	or	fish.	In	this	example,	we	replace	it	with	a	couple
of	Linear	layers,	a	ReLU,	and	Dropout,	but	you	could	have	extra	CNN	layers
here	too.	Happily,	the	definition	of	PyTorch’s	implementation	of	ResNet	stores

the	final	classifier	block	as	an	instance	variable,	fc,	so	all	we	need	to	do	is
replace	that	with	our	new	structure	(other	models	supplied	with	PyTorch	use
either	fc	or	classifier,	so	you’ll	probably	want	to	check	the	definition	in	the
source	if	you’re	trying	this	with	a	different	model	type):

transfer_model.fc = nn.Sequential(nn.Linear(transfer_model.fc.in_features,500),
nn.ReLU(),
nn.Dropout(), nn.Linear(500,2))

In	the	preceding	code,	we	take	advantage	of	the	in_features	variable	that
allows	us	to	grab	the	number	of	activations	coming	into	a	layer	(2,048	in	this
case).	You	can	also	use	out_features	to	discover	the	activations	coming	out.
These	are	handy	functions	for	when	you’re	snapping	together	networks	like
building	bricks;	if	the	incoming	features	on	a	layer	don’t	match	the	outgoing
features	of	the	previous	layer,	you’ll	get	an	error	at	runtime.

Finally,	we	go	back	to	our	training	loop	and	then	train	the	model	as	per	usual.
You	should	see	some	large	jumps	in	accuracy	even	within	a	few	epochs.

Transfer	learning	is	a	key	technique	for	improving	the	accuracy	of	your	deep
learning	application,	but	we	can	employ	a	bunch	of	other	tricks	in	order	to	boost
the	performance	of	our	model.	Let’s	take	a	look	at	some	of	them.

Finding	That	Learning	Rate
You	might	remember	from	Chapter	2	that	I	introduced	the	concept	of	a	learning
rate	for	training	neural	networks,	mentioned	that	it	was	one	of	the	most
important	hyperparameters	you	can	alter,	and	then	waved	away	what	you	should
use	for	it,	suggesting	a	rather	small	number	and	for	you	to	experiment	with
different	values.	Well…the	bad	news	is,	that	really	is	how	a	lot	of	people
discover	the	optimum	learning	rate	for	their	architectures,	usually	with	a
technique	called	grid	search,	exhaustively	searching	their	way	through	a	subset
of	learning	rate	values,	comparing	the	results	against	a	validation	dataset.	This	is
incredibly	time-consuming,	and	although	people	do	it,	many	others	err	on	the
side	of	the	practioner’s	lore.	For	example,	a	learning	rate	value	that	has
empirically	been	observed	to	work	with	the	Adam	optimizer	is	3e-4.	This	is
known	as	Karpathy’s	constant,	after	Andrej	Karpathy	(currently	director	of	AI	at

Tesla)	tweeted	about	it	in	2016.	Unfortunately,	fewer	people	read	his	next	tweet:
“I	just	wanted	to	make	sure	that	people	understand	that	this	is	a	joke.”	The	funny
thing	is	that	3e-4	tends	to	be	a	value	that	can	often	provide	good	results,	so	it’s	a
joke	with	a	hint	of	reality	about	it.

On	the	one	hand,	you	have	slow	and	cumbersome	searching,	and	on	the	other,
obscure	and	arcane	knowledge	gained	from	working	on	countless	architectures
until	you	get	a	feel	for	what	a	good	learning	rate	would	be—artisanal	neural
networks,	even.	Is	there	a	better	way	than	these	two	extremes?

Thankfully,	the	answer	is	yes,	although	you’ll	be	surprised	by	how	many	people
don’t	use	this	better	method.	A	somewhat	obscure	paper	by	Leslie	Smith,	a
research	scientist	at	the	US	Naval	Research	Laboratory,	contained	an	approach
for	finding	an	appropriate	learning	rate. 	But	it	wasn’t	until	Jeremy	Howard
brought	the	technique	to	the	fore	in	his	fast.ai	course	that	it	started	to	catch	on	in
the	deep	learning	community.	The	idea	is	quite	simple:	over	the	course	of	an
epoch,	start	out	with	a	small	learning	rate	and	increase	to	a	higher	learning	rate
over	each	mini-batch,	resulting	in	a	high	rate	at	the	end	of	the	epoch.	Calculate
the	loss	for	each	rate	and	then,	looking	at	a	plot,	pick	the	learning	rate	that	gives
the	greatest	decline.	For	example,	look	at	the	graph	in	Figure	4-1.

Figure	4-1.	Learning	rate	against	loss

In	this	case,	we	should	look	at	using	a	learning	rate	of	around	1e-2	(marked
within	the	circle),	as	that	is	roughly	the	point	where	the	gradient	of	the	descent	is
steepest.

1

https://oreil.ly/WLw3q

NOTE
Note	that	you’re	not	looking	for	the	bottom	of	the	curve,	which	might	be	the	more	intuitive
place;	you’re	looking	for	the	point	that	is	getting	to	the	bottom	the	fastest.

Here’s	a	simplified	version	of	what	the	fast.ai	library	does	under	the	covers:

import math
def find_lr(model, loss_fn, optimizer, init_value=1e-8, final_value=10.0):
 number_in_epoch = len(train_loader) - 1
 update_step = (final_value / init_value) ** (1 / number_in_epoch)
 lr = init_value
 optimizer.param_groups[0]["lr"] = lr
 best_loss = 0.0
 batch_num = 0
 losses = []
 log_lrs = []
 for data in train_loader:
 batch_num += 1
 inputs, labels = data
 inputs, labels = inputs, labels
 optimizer.zero_grad()
 outputs = model(inputs)
 loss = loss_fn(outputs, labels)

 # Crash out if loss explodes

 if batch_num > 1 and loss > 4 * best_loss:
 return log_lrs[10:-5], losses[10:-5]

 # Record the best loss

 if loss < best_loss or batch_num == 1:
 best_loss = loss

 # Store the values

 losses.append(loss)
 log_lrs.append(math.log10(lr))

 # Do the backward pass and optimize

 loss.backward()
 optimizer.step()

 # Update the lr for the next step and store

 lr *= update_step
 optimizer.param_groups[0]["lr"] = lr
 return log_lrs[10:-5], losses[10:-5]

What’s	going	on	here	is	that	we	iterate	through	the	batches,	training	almost	as
usual;	we	pass	our	inputs	through	the	model	and	then	we	get	the	loss	from	that
batch.	We	record	what	our	best_loss	is	so	far,	and	compare	the	new	loss
against	it.	If	our	new	loss	is	more	than	four	times	the	best_loss,	we	crash	out	of
the	function,	returning	what	we	have	so	far	(as	the	loss	is	probably	tending	to
infinity).	Otherwise,	we	keep	appending	the	loss	and	logs	of	the	current	learning
rate,	and	update	the	learning	rate	with	the	next	step	along	the	way	to	the
maximal	rate	at	the	end	of	the	loop.	The	plot	can	then	be	shown	using	the
matplotlib	plt	function:

logs,losses = find_lr()
plt.plot(logs,losses)
found_lr = 1e-2

Note	that	we	return	slices	of	the	lr	logs	and	losses.	We	do	that	simply	because
the	first	bits	of	training	and	the	last	few	(especially	if	the	learning	rate	becomes
very	large	quite	quickly)	tend	not	to	tell	us	much	information.

The	implementation	in	fast.ai’s	library	also	includes	weighted	smoothing,	so	you
get	smooth	lines	in	your	plot,	whereas	this	snippet	produces	spiky	output.
Finally,	remember	that	because	this	function	does	actually	train	the	model	and
messes	with	the	optimizer’s	learning	rate	settings,	you	should	save	and	reload
your	model	beforehand	to	get	back	to	the	state	it	was	in	before	you	called
find_lr()	and	also	reinitialize	the	optimizer	you’ve	chosen,	which	you	can	do
now,	passing	in	the	learning	rate	you’ve	determined	from	looking	at	the	graph!

That	gets	us	a	good	value	for	our	learning	rate,	but	we	can	do	even	better	with
differential	learning	rates.

Differential	Learning	Rates
In	our	training	so	far,	we	have	applied	one	learning	rate	to	the	entire	model.
When	training	a	model	from	scratch,	that	probably	makes	sense,	but	when	it

comes	to	transfer	learning,	we	can	normally	get	a	little	better	accuracy	if	we	try
something	different:	training	different	groups	of	layers	at	different	rates.	Earlier
in	the	chapter,	we	froze	all	the	pretrained	layers	in	our	model	and	trained	just	our
new	classifier,	but	we	may	want	to	fine-tune	some	of	the	layers	of,	say,	the
ResNet	model	we’re	using.	Perhaps	adding	some	training	to	the	layers	just
preceding	our	classifier	will	make	our	model	just	a	little	more	accurate.	But	as
those	preceding	layers	have	already	been	trained	on	the	ImageNet	dataset,
maybe	they	need	only	a	little	bit	of	training	as	compared	to	our	newer	layers?
PyTorch	offers	a	simple	way	of	making	this	happen.	Let’s	modify	our	optimizer
for	the	ResNet-50	model:

optimizer = optimizer.Adam([
{ 'params': transfer_model.layer4.parameters(), 'lr': found_lr /3},
{ 'params': transfer_model.layer3.parameters(), 'lr': found_lr /9},
], lr=found_lr)

That	sets	the	learning	rate	for	layer4	(just	before	our	classifier)	to	a	third	of	the
found	learning	rate	and	a	ninth	for	layer3.	That	combination	has	empirically
worked	out	quite	well	in	my	work,	but	obviously	feel	free	to	experiment.	There’s
one	more	thing,	though.	As	you	may	remember	from	the	beginning	of	this
chapter,	we	froze	all	these	pretrained	layers.	It’s	all	very	well	to	give	them	a
different	learning	rate,	but	as	of	right	now,	the	model	training	won’t	touch	them
at	all	because	they	don’t	accumulate	gradients.	Let’s	change	that:

unfreeze_layers = [transfer_model.layer3, transfer_model.layer4]
for layer in unfreeze_layers:
 for param in layer.parameters():
 param.requires_grad = True

Now	that	the	parameters	in	these	layers	take	gradients	once	more,	the	differential
learning	rates	will	be	applied	when	you	fine-tine	the	model.	Note	that	you	can
freeze	and	unfreeze	parts	of	the	model	at	will	and	do	further	fine-tuning	on	every
layer	separately	if	you’d	like!

Now	that	we’ve	looked	at	the	learning	rates,	let’s	investigate	a	different	aspect	of
training	our	models:	the	data	that	we	feed	into	them.

Data	Augmentation
One	of	the	dreaded	phrases	in	data	science	is,	Oh	no,	my	model	has	overfit	on	the
data!	As	I	mentioned	in	Chapter	2,	overfitting	occurs	when	the	model	decides	to
reflect	the	data	presented	in	the	training	set	rather	than	produce	a	generalized
solution.	You’ll	often	hear	people	talking	about	how	a	particular	model
memorized	the	dataset,	meaning	the	model	learned	the	answers	and	went	on	to
perform	poorly	on	production	data.

The	traditional	way	of	guarding	against	this	is	to	amass	large	quantities	of	data.
By	seeing	more	data,	the	model	gets	a	more	general	idea	of	the	problem	it	is
trying	to	solve.	If	you	view	the	situation	as	a	compression	problem,	then	if	you
prevent	the	model	from	simply	being	able	to	store	all	the	answers	(by
overwhelming	its	storage	capacity	with	so	much	data),	it’s	forced	to	compress
the	input	and	therefore	produce	a	solution	that	cannot	simply	be	storing	the
answers	within	itself.	This	is	fine,	and	works	well,	but	say	we	have	only	a
thousand	images	and	we’re	doing	transfer	learning.	What	can	we	do?

One	approach	that	we	can	use	is	data	augmentation.	If	we	have	an	image,	we
can	do	a	number	of	things	to	that	image	that	should	prevent	overfitting	and	make
the	model	more	general.	Consider	the	images	of	Helvetica	the	cat	in	Figures	4-2
and	4-3.

Figure	4-2.	Our	original	image

Figure	4-3.	A	flipped	Helvetica

Obviously	to	us,	they’re	the	same	image.	The	second	one	is	just	a	mirrored	copy
of	the	first.	The	tensor	representation	is	going	to	be	different,	as	the	RGB	values
will	be	in	different	places	in	the	3D	image.	But	it’s	still	a	cat,	so	the	model
training	on	this	image	will	hopefully	learn	to	recognize	a	cat	shape	on	the	left	or
right	side	of	the	frame,	rather	than	simply	associating	the	entire	image	with	cat.
Doing	this	in	PyTorch	is	simple.	You	may	remember	this	snippet	of	code	from
Chapter	2:

transforms = transforms.Compose([
 transforms.Resize(64),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225])
])

This	forms	a	transformation	pipeline	that	all	images	go	through	as	they	enter	the
model	for	training.	But	the	torchivision.transforms	library	contains	many
other	transformation	functions	that	can	be	used	to	augment	training	data.	Let’s
have	a	look	at	some	of	the	more	useful	ones	and	see	what	happens	to	Helvetica
with	some	of	the	less	obvious	transforms	as	well.

Torchvision	Transforms
torchvision	comes	complete	with	a	large	collection	of	potential	transforms	that
can	be	used	for	data	augmentation,	plus	two	ways	of	constructing	new

transformations.	In	this	section,	we	look	at	the	most	useful	ones	that	come
supplied	as	well	as	a	couple	of	custom	transformations	that	you	can	use	in	your
own	applications.

torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)

ColorJitter	randomly	changes	the	brightness,	contrast,	saturation,	and	hue	of
an	image.	For	brightness,	contrast,	and	saturation,	you	can	supply	either	a	float
or	a	tuple	of	floats,	all	nonnegative	in	the	range	0	to	1,	and	the	randomness	will
either	be	between	0	and	the	supplied	float	or	it	will	use	the	tuple	to	generate
randomness	between	the	supplied	pair	of	floats.	For	hue,	a	float	or	float	tuple
between	–0.5	and	0.5	is	required,	and	it	will	generate	random	hue	adjustments
between	[-hue,hue]	or	[min,	max].	See	Figure	4-4	for	an	example.

Figure	4-4.	ColorJitter	applied	at	0.5	for	all	parameters

If	you	want	to	flip	your	image,	these	two	transforms	randomly	reflect	an	image
on	either	the	horizontal	or	vertical	axis:

torchvision.transforms.RandomHorizontalFlip(p=0.5)
torchvision.transforms.RandomVerticalFlip(p=0.5)

Either	supply	a	float	from	0	to	1	for	the	probability	of	the	reflection	to	occur	or
accept	the	default	of	a	50%	chance	of	reflection.	A	vertically	flipped	cat	is
shown	in	Figure	4-5.

Figure	4-5.	Vertical	flip

RandomGrayscale	is	a	similar	type	of	transformation,	except	that	it	randomly
turns	the	image	grayscale,	depending	on	the	parameter	p	(the	default	is	10%):

torchvision.transforms.RandomGrayscale(p=0.1)

RandomCrop	and	RandomResizeCrop,	as	you	might	expect,	perform	random
crops	on	the	image	of	size,	which	can	either	be	an	int	for	height	and	width,	or	a
tuple	containing	different	heights	and	widths.	Figure	4-6	shows	an	example	of	a
RandomCrop	in	action.

torchvision.transforms.RandomCrop(size, padding=None,
pad_if_needed=False, fill=0, padding_mode='constant')
torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0),
ratio=(0.75, 1.3333333333333333), interpolation=2)

Now	you	need	to	be	a	little	careful	here,	because	if	your	crops	are	too	small,	you
run	the	risk	of	cutting	out	important	parts	of	the	image	and	making	the	model
train	on	the	wrong	thing.	For	instance,	if	a	cat	is	playing	on	a	table	in	an	image,
and	the	crop	takes	out	the	cat	and	just	leaves	part	of	the	table	to	be	classified	as
cat,	that’s	not	great.	While	the	RandomResizeCrop	will	resize	the	crop	to	fill	the
given	size,	RandomCrop	may	take	a	crop	close	to	the	edge	and	into	the	darkness
beyond	the	image.

NOTE
RandomResizeCrop	is	using	Bilinear	interpolation,	but	you	can	also	select	nearest	neighbor	or
bicubic	interpolation	by	changing	the	interpolation	parameter.	See	the	PIL	filters	page	for
further	details.

As	you	saw	in	Chapter	3,	we	can	add	padding	to	maintain	the	required	size	of
the	image.	By	default,	this	is	constant	padding,	which	fills	out	the	otherwise
empty	pixels	beyond	the	image	with	the	value	given	in	fill.	However,	I
recommend	that	you	use	the	reflect	padding	instead,	as	empirically	it	seems	to
work	a	little	better	than	just	throwing	in	empty	constant	space.

Figure	4-6.	RandomCrop	with	size=100

If	you’d	like	to	randomly	rotate	an	image,	RandomRotation	will	vary	between
[-degrees, degrees]	if	degrees	is	a	single	float	or	int,	or	(min,max)	if	it	is	a
tuple:

torchvision.transforms.RandomRotation(degrees, resample=False,expand=False,
center=None)

If	expand	is	set	to	True,	this	function	will	expand	the	output	image	so	that	it	can
include	the	entire	rotation;	by	default,	it’s	set	to	crop	to	within	the	input
dimensions.	You	can	specify	a	PIL	resampling	filter,	and	optionally	provide	an
(x,y)	tuple	for	the	center	of	rotation;	otherwise	the	transform	will	rotate	about
the	center	of	the	image.	Figure	4-7	is	a	RandomRotation	transformation	with
degrees	set	to	45.

https://oreil.ly/rNOtN

Figure	4-7.	RandomRotation	with	degrees	=	45

Pad	is	a	general-purpose	padding	transform	that	adds	padding	(extra	height	and
width)	onto	the	borders	of	an	image:

torchvision.transforms.Pad(padding, fill=0, padding_mode=constant)

A	single	value	in	padding	will	apply	padding	on	that	length	in	all	directions.	A
two-tuple	padding	will	produce	padding	in	the	length	of	(left/right,	top/bottom),
and	a	four-tuple	will	produce	padding	for	(left,	top,	right,	bottom).	By	default,
padding	is	set	to	constant	mode,	which	copies	the	value	of	fill	into	the
padding	slots.	The	other	choices	are	edge,	which	pads	the	last	values	of	the	edge
of	the	image	into	the	padding	length;	reflect,	which	reflects	the	values	of	the
image	(except	the	edge)	into	the	border;	and	symmetric,	which	is	reflection
but	includes	the	last	value	of	the	image	at	the	edge.	Figure	4-8	shows	padding
set	to	25	and	padding_mode	set	to	reflect.	See	how	the	box	repeats	at	the
edges.

Figure	4-8.	Pad	with	padding	=	25	and	padding_mode	=	reflect

RandomAffine	allows	you	to	specify	random	affine	translations	of	the	image
(scaling,	rotations,	translations,	and/or	shearing,	or	any	combination).	Figure	4-9
shows	an	example	of	an	affine	transformation.

torchvision.transforms.RandomAffine(degrees, translate=None, scale=None,
shear=None, resample=False, fillcolor=0)

Figure	4-9.	RandomAffine	with	degrees	=	10	and	shear	=	50

The	degrees	parameter	is	either	a	single	float	or	int	or	a	tuple.	In	single	form,	it

produces	random	rotations	between	(–degrees,	degrees).	With	a	tuple,	it	will
produce	random	rotations	between	(min,	max).	degrees	has	to	be	explicitly	set	to
prevent	rotations	from	occurring—there’s	no	default	setting.	translate	is	a
tuple	of	two	multipliers	(horizontal_multipler,	vertical_multiplier).	At
transform	time,	a	horizontal	shift,	dx,	is	sampled	in	the	range	–image_width ×
horizontal_multiplier < dx < img_width × horizontal_width,	and	a
vertical	shift	is	sampled	in	the	same	way	with	respect	to	the	image	height	and	the
vertical	multiplier.

Scaling	is	handled	by	another	tuple,	(min,	max),	and	a	uniform	scaling	factor	is
randomly	sampled	from	those.	Shearing	can	be	either	a	single	float/int	or	a	tuple,
and	randomly	samples	in	the	same	manner	as	the	degrees	parameter.	Finally,
resample	allows	you	to	optionally	provide	a	PIL	resampling	filter,	and
fillcolor	is	an	optional	int	specifying	a	fill	color	for	areas	inside	the	final
image	that	lie	outside	the	final	transform.

As	for	what	transforms	you	should	use	in	a	data	augmentation	pipeline,	I
definitely	recommend	using	the	various	random	flips,	color	jittering,	rotation,
and	crops	to	start.

Other	transformations	are	available	in	torchvision;	check	the	documentation
for	more	details.	But	of	course	you	may	find	yourself	wanting	to	create	a
transformation	that	is	particular	to	your	data	domain	that	isn’t	included	by
default,	so	PyTorch	provides	various	ways	of	defining	custom	transformations,
as	you’ll	see	next.

Color	Spaces	and	Lambda	Transforms
This	may	seem	a	little	odd	to	even	bring	up,	but	so	far	all	our	image	work	has
been	in	the	fairly	standard	24-bit	RGB	color	space,	where	every	pixel	has	an	8-
bit	red,	green,	and	blue	value	to	indicate	the	color	of	that	pixel.	However,	other
color	spaces	are	available!

A	popular	alternative	is	HSV,	which	has	three	8-bit	values	for	hue,	saturation,
and	value.	Some	people	feel	this	system	more	accurately	models	human	vision
than	the	traditional	RGB	color	space.	But	why	does	this	matter?	A	mountain	in
RGB	is	a	mountain	in	HSV,	right?

https://oreil.ly/b0Q0A

Well,	there’s	some	evidence	from	recent	deep	learning	work	in	colorization	that
other	color	spaces	can	produce	slightly	higher	accuracy	than	RGB.	A	mountain
may	be	a	mountain,	but	the	tensor	that	gets	formed	in	each	space’s	representation
will	be	different,	and	one	space	may	capture	something	about	your	data	better
than	another.

When	combined	with	ensembles,	you	could	easily	create	a	series	of	models	that
combines	the	results	of	training	on	RGB,	HSV,	YUV,	and	LAB	color	spaces	to
wring	out	a	few	more	percentage	points	of	accuracy	from	your	prediction
pipeline.

One	slight	problem	is	that	PyTorch	doesn’t	offer	a	transform	that	can	do	this.	But
it	does	provide	a	couple	of	tools	that	we	can	use	to	randomly	change	an	image
from	standard	RGB	into	HSV	(or	another	color	space).	First,	if	we	look	in	the
PIL	documentation,	we	see	that	we	can	use	Image.convert()	to	translate	a	PIL
image	from	one	color	space	to	another.	We	could	write	a	custom	transform
class	to	carry	out	this	conversion,	but	PyTorch	adds	a	transforms.Lambda	class
so	that	we	can	easily	wrap	any	function	and	make	it	available	to	the	transform
pipeline.	Here’s	our	custom	function:

def _random_colour_space(x):
 output = x.convert("HSV")
 return output

This	is	then	wrapped	in	a	transforms.Lambda	class	and	can	be	used	in	any
standard	transformation	pipeline	like	we’ve	seen	before:

colour_transform = transforms.Lambda(lambda x: _random_colour_space(x))

That’s	fine	if	we	want	to	convert	every	image	into	HSV,	but	really	we	don’t	want
that.	We’d	like	it	to	randomly	change	images	in	each	batch,	so	it’s	probable	that
the	image	will	be	presented	in	different	color	spaces	in	different	epochs.	We
could	update	our	original	function	to	generate	a	random	number	and	use	that	to
generate	a	random	probability	of	changing	the	image,	but	instead	we’re	even
lazier	and	use	RandomApply:

random_colour_transform = torchvision.transforms.RandomApply([colour_transform])

By	default,	RandomApply	fills	in	a	parameter	p	with	a	value	of	0.5,	so	there’s	a
50/50	chance	of	the	transform	being	applied.	Experiment	with	adding	more	color
spaces	and	the	probability	of	applying	the	transformation	to	see	what	effect	it	has
on	our	cat	and	fish	problem.

Let’s	look	at	another	custom	transform	that	is	a	little	more	complicated.

Custom	Transform	Classes
Sometimes	a	simple	lambda	isn’t	enough;	maybe	we	have	some	initialization	or
state	that	we	want	to	keep	track	of,	for	example.	In	these	cases,	we	can	create	a
custom	transform	that	operates	on	either	PIL	image	data	or	a	tensor.	Such	a	class
has	to	implement	two	methods:	__call__,	which	the	transform	pipeline	will
invoke	during	the	transformation	process;	and	__repr__,	which	should	return	a
string	representation	of	the	transform,	along	with	any	state	that	may	be	useful	for
diagnostic	purposes.

In	the	following	code,	we	implement	a	transform	class	that	adds	random
Gaussian	noise	to	a	tensor.	When	the	class	is	initialized,	we	pass	in	the	mean	and
standard	distribution	of	the	noise	we	require,	and	during	the	__call__	method,
we	sample	from	this	distribution	and	add	it	to	the	incoming	tensor:

class Noise():
 """Adds gaussian noise to a tensor.

 >>> transforms.Compose([
 >>> transforms.ToTensor(),
 >>> Noise(0.1, 0.05)),
 >>>])

 """
 def __init__(self, mean, stddev):
 self.mean = mean
 self.stddev = stddev

 def __call__(self, tensor):
 noise = torch.zeros_like(tensor).normal_(self.mean, self.stddev)
 return tensor.add_(noise)

 def __repr__(self):
 repr = f"{self.__class__.__name__ }(mean={self.mean},
 stddev={self.stddev})"
 return repr

If	we	add	this	to	a	pipeline,	we	can	see	the	results	of	the	__repr__	method	being
called:

transforms.Compose([Noise(0.1, 0.05))])
>> Compose(
 Noise(mean=0.1,sttdev=0.05)
)

Because	transforms	don’t	have	any	restrictions	and	just	inherit	from	the	base
Python	object	class,	you	can	do	anything.	Want	to	completely	replace	an	image
at	runtime	with	something	from	Google	image	search?	Run	the	image	through	a
completely	different	neural	network	and	pass	that	result	down	the	pipeline?
Apply	a	series	of	image	transforms	that	turn	the	image	into	a	crazed	reflective
shadow	of	its	former	self?	All	possible,	if	not	entirely	recommended.	Although	it
would	be	interesting	to	see	whether	Photoshop’s	Twirl	transformation	effect
would	make	accuracy	worse	or	better!	Why	not	give	it	a	go?

Aside	from	transformations,	there	are	a	few	more	ways	of	squeezing	as	much
performance	from	a	model	as	possible.	Let’s	look	at	more	examples.

Start	Small	and	Get	Bigger!
Here’s	a	tip	that	seems	odd,	but	obtains	real	results:	start	small	and	get	bigger.
What	I	mean	is	if	you’re	training	on	256	×	256	images,	create	a	few	more
datasets	in	which	the	images	have	been	scaled	to	64	×	64	and	128	×	128.	Create
your	model	with	the	64	×	64	dataset,	fine-tune	as	normal,	and	then	train	the
exact	same	model	with	the	128	×	128	dataset.	Not	from	scratch,	but	using	the
parameters	that	have	already	been	trained.	Once	it	looks	like	you’ve	squeezed
the	most	out	of	the	128	×	128	data,	move	on	to	your	target	256	×	256	data.
You’ll	probably	find	a	percentage	point	or	two	improvement	in	accuracy.

While	we	don’t	know	exactly	why	this	works,	the	working	theory	is	that	by
training	at	the	lower	resolutions,	the	model	learns	about	the	overall	structure	of
the	image	and	can	refine	that	knowledge	as	the	incoming	images	expand.	But
that’s	just	a	theory.	However,	that	doesn’t	stop	it	from	being	a	good	little	trick	to
have	up	your	sleeve	when	you	need	to	squeeze	every	last	bit	of	performance
from	a	model.

If	you	don’t	want	to	have	multiple	copies	of	a	dataset	hanging	around	in	storage,

you	can	use	torchvision	transforms	to	do	this	on	the	fly	using	the	Resize
function:

resize = transforms.Compose([transforms.Resize(64),
 …_other augmentation transforms_…
 transforms.ToTensor(),
 transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])

The	penalty	you	pay	here	is	that	you	end	up	spending	more	time	in	training,	as
PyTorch	has	to	apply	the	resize	every	time.	If	you	resized	all	the	images
beforehand,	you’d	likely	get	a	quicker	training	run,	at	the	expense	of	filling	up
your	hard	drive.	But	isn’t	that	trade-off	always	the	way?

The	concept	of	starting	small	and	then	getting	bigger	also	applies	to
architectures.	Using	a	ResNet	architecture	like	ResNet-18	or	ResNet-34	to	test
out	approaches	to	transforms	and	get	a	feel	for	how	training	is	working	provides
a	much	tighter	feedback	loop	than	if	you	start	out	using	a	ResNet-101	or	ResNet-
152	model.	Start	small,	build	upward,	and	you	can	potentially	reuse	the	smaller
model	runs	at	prediction	time	by	adding	them	to	an	ensemble	model.

Ensembles
What’s	better	than	one	model	making	predictions?	Well,	how	about	a	bunch	of
them?	Ensembling	is	a	technique	that	is	fairly	common	in	more	traditional
machine	learning	methods,	and	it	works	rather	well	in	deep	learning	too.	The
idea	is	to	obtain	a	prediction	from	a	series	of	models,	and	combine	those
predictions	to	produce	a	final	answer.	Because	different	models	will	have
different	strengths	in	different	areas,	hopefully	a	combination	of	all	their
predictions	will	produce	a	more	accurate	result	than	one	model	alone.

There	are	plenty	of	approaches	to	ensembles,	and	we	won’t	go	into	all	of	them
here.	Instead,	here’s	a	simple	way	of	getting	started	with	ensembles,	one	that	has
eeked	out	another	1%	of	accuracy	in	my	experience;	simply	average	the
predictions:

Assuming you have a list of models in models, and input is your input tensor

predictions = [m[i].fit(input) for i in models]
avg_prediction = torch.stack(b).mean(0).argmax()

The	stack	method	concatenates	the	array	of	tensors	together,	so	if	we	were
working	on	the	cat/fish	problem	and	had	four	models	in	our	ensemble,	we’d	end
up	with	a	4	×	2	tensor	constructed	from	the	four	1	×	2	tensors.	And	mean	does
what	you’d	expect,	taking	the	average,	although	we	have	to	pass	in	a	dimension
of	0	to	ensure	that	it	takes	an	average	across	the	first	dimension	instead	of
simply	adding	up	all	the	tensor	elements	and	producing	a	scalar	output.	Finally,
argmax	picks	out	the	tensor	index	with	the	highest	element,	as	you’ve	seen
before.

It’s	easy	to	imagine	more	complex	approaches.	Perhaps	weights	could	be	added
to	each	individual	model’s	prediction,	and	those	weights	adjusted	if	a	model	gets
an	answer	right	or	wrong.	What	models	should	you	use?	I’ve	found	that	a
combination	of	ResNets	(e.g.,	34,	50,	101)	work	quite	well,	and	there’s	nothing
to	stop	you	from	saving	your	model	regularly	and	using	different	snapshots	of
the	model	across	time	in	your	ensemble!

Conclusion
As	we	come	to	the	end	of	Chapter	4,	we’re	leaving	images	behind	to	move	on	to
text.	Hopefully	you	not	only	understand	how	convolutional	neural	networks
work	on	images,	but	also	have	a	deep	bag	of	tricks	in	hand,	including	transfer
learning,	learning	rate	finding,	data	augmentation,	and	ensembling,	which	you
can	bring	to	bear	on	your	particular	application	domain.

Further	Reading
If	you’re	interested	in	learning	more	in	the	image	realm,	check	out	the	fast.ai
course	by	Jeremy	Howard,	Rachel	Thomas,	and	Sylvain	Gugger.	This	chapter’s
learning	rate	finder	is,	as	I	mentioned,	a	simplified	version	of	the	one	they	use,
but	the	course	goes	into	further	detail	about	many	of	the	techniques	in	this
chapter.	The	fast.ai	library,	built	on	PyTorch,	allows	you	to	bring	them	to	bear	on
your	image	(and	text!)	domains	easily.

Torchvision	documentation

PIL/Pillow	documentation

https://fast.ai
https://oreil.ly/vNnST
https://oreil.ly/Jlisb

“Cyclical	Learning	Rates	for	Training	Neural	Networks”	by	Leslie	N.
Smith	(2015)

“ColorNet:	Investigating	the	Importance	of	Color	Spaces	for	Image
Classification”	by	Shreyank	N.	Gowda	and	Chun	Yuan	(2019)

1 	See	“Cyclical	Learning	Rates	for	Training	Neural	Networks”	by	Leslie	Smith	(2015).

https://arxiv.org/abs/1506.01186
https://arxiv.org/abs/1902.00267
https://arxiv.org/abs/1506.01186

Chapter	5.	Text	Classification

We’re	leaving	images	behind	for	now	and	turning	our	attention	to	another	area
where	deep	learning	has	proven	to	be	a	significant	advance	on	traditional
techniques:	natural	language	processing	(NLP).	A	good	example	of	this	is
Google	Translate.	Originally,	the	code	that	handled	translation	was	a	weighty
500,000	lines	of	code.	The	new,	TensorFlow-based	system	has	approximately
500,	and	it	performs	better	than	the	old	method.

Recent	breakthroughs	also	have	occurred	in	bringing	transfer	learning	(which
you	learned	about	in	Chapter	4)	to	NLP	problems.	New	architectures	such	as	the
Transformer	architecture	have	led	to	the	creation	of	networks	like	OpenAI’s
GPT-2,	the	larger	variant	of	which	produces	text	that	is	almost	human-like	in
quality	(and	in	fact,	OpenAI	has	not	released	the	weights	of	this	model	for	fear
of	it	being	used	maliciously).

This	chapter	provides	a	whirlwind	tour	of	recurrent	neural	networks	and
embeddings.	Then	we	explore	the	torchtext	library	and	how	to	use	it	for	text
processing	with	an	LSTM-based	model.

Recurrent	Neural	Networks
If	we	look	back	at	how	we’ve	been	using	our	CNN-based	architectures	so	far,	we
can	see	they	have	always	been	working	on	one	complete	snapshot	of	time.	But
consider	these	two	sentence	fragments:

The cat sat on the mat.

She got up and impatiently climbed on the chair, meowing for food.

Say	you	were	to	feed	those	two	sentences,	one	after	the	other,	into	a	CNN	and
ask,	where	is	the	cat?	You’d	have	a	problem,	because	the	network	has	no
concept	of	memory.	This	is	incredibly	important	when	it	comes	to	dealing	with
data	that	has	a	temporal	domain	(e.g.,	text,	speech,	video,	and	time-series	data).
Recurrent	neural	networks	(RNNs)	answer	this	problem	by	giving	neural

1

networks	a	memory	via	hidden	state.

What	does	an	RNN	look	like?	My	favorite	explanation	is,	“Imagine	a	neural
network	crossed	with	a	for	loop.”	Figure	5-1	shows	a	diagram	of	a	classical
RNN	structure.

Figure	5-1.	An	RNN

We	add	input	at	a	time	step	of	t,	and	we	get	a	hidden	output	state	of	ht,	and	the
output	also	gets	fed	back	into	the	RNN	for	the	next	time	step.	We	can	unroll	this
network	to	take	a	deeper	look	at	what’s	going	on,	as	shown	in	Figure	5-2.

Figure	5-2.	An	unrolled	RNN

What	we	have	here	is	a	grouping	of	fully	connected	layers	(with	shared
parameters),	a	series	of	inputs,	and	our	output.	Input	data	is	fed	into	the	network,
and	the	next	item	in	the	sequence	is	predicted	as	output.	In	the	unrolled	view,	we
can	see	that	the	RNN	can	be	thought	of	as	a	pipeline	of	fully	connected	layers,
with	the	successive	input	being	fed	into	the	next	layer	in	the	sequence	(with	the
usual	nonlinearities	such	as	ReLU	being	inserted	between	the	layers).	When	we

have	our	completed	predicted	sequence,	we	then	have	to	backpropagate	the	error
back	through	the	RNN.	Because	this	involves	stepping	back	through	the
network’s	steps,	this	process	is	known	as	backpropagation	through	time.	The
error	is	calculated	on	the	entire	sequence,	then	the	network	is	unfolded	as	in
Figure	5-2,	and	the	gradients	are	calculated	for	each	time	step	and	combined	to
update	the	shared	parameters	of	the	network.	You	can	imagine	it	as	doing
backprop	on	individual	networks	and	summing	all	the	gradients	together.

That’s	the	theory	behind	RNNs.	But	this	simple	structure	has	problems	that	we
need	to	talk	about	and	how	they	were	overcome	with	newer	architectures.

Long	Short-Term	Memory	Networks
In	practice,	RNNs	were	and	are	particularly	susceptible	to	the	vanishing	gradient
problem	we	talked	about	in	Chapter	2,	or	the	potentially	worse	scenario	of	the
exploding	gradient,	where	your	error	tends	off	toward	infinity.	Neither	is	good,
so	RNNs	couldn’t	be	brought	to	bear	on	many	of	the	problems	they	were
considered	suitable	for.	That	all	changed	in	1997	when	Sepp	Hochreiter	and
Jürgen	Schmidhuber	introduced	the	Long	Short-Term	Memory	(LSTM)	variant
of	the	RNN.

Figure	5-3	diagrams	an	LSTM	layer.	I	know,	there’s	a	lot	going	on	here,	but	it’s
not	too	complex.	Honest.

Figure	5-3.	An	LSTM

OK,	I	admit,	it	is	quite	intimidating.	The	key	is	to	think	about	the	three	gates
(input,	output,	and	forget).	In	a	standard	RNN,	we	“remember”	everything

forever.	But	that’s	not	how	our	brains	work	(sadly!),	and	the	LSTM’s	forget	gate
allows	us	to	model	the	idea	that	as	we	continue	in	our	input	chain,	the	beginning
of	the	chain	becomes	less	important.	And	how	much	the	LSTM	forgets	is
something	that	is	learned	during	training,	so	if	it’s	in	the	network’s	best	interest
to	be	very	forgetful,	the	forget	gate	parameters	will	do	so.

The	cell	ends	up	being	the	“memory”	of	the	network	layer;	and	the	input,	output,
and	forget	gates	will	determine	how	data	flows	through	the	layer.	The	data	may
simply	pass	through,	it	may	“write”	to	the	cell,	and	that	data	may	(or	may	not!)
flow	through	to	the	next	layer,	modified	by	the	output	gate.

This	assemblage	of	parts	was	enough	to	solve	the	vanishing	gradient	problem,
and	also	has	the	virtue	of	being	Turing-complete,	so	theoretically,	you	can	do
any	calculation	that	you	can	do	on	a	computer	with	one	of	these.

But	things	didn’t	stop	there,	of	course.	Several	developments	have	occurred	in
the	RNN	space	since	LSTMs,	and	we’ll	cover	some	of	the	major	ones	in	the	next
sections.

Gated	Recurrent	Units
Since	1997,	many	variants	of	the	base	LSTM	network	have	been	created,	most
of	which	you	probably	don’t	need	to	know	about	unless	you’re	curious.
However,	one	variant	that	came	along	in	2014,	the	gated	recurrent	unit	(GRU),	is
worth	knowing	about,	as	it	has	become	quite	popular	in	some	circles.	Figure	5-4
shows	the	makeup	of	a	GRU	architecture.

Figure	5-4.	A	GRU

The	main	takeaway	is	that	the	GRU	has	merged	the	forget	gate	with	the	output
gate.	This	means	that	it	has	fewer	parameters	than	an	LSTM	and	so	tends	to	be
quicker	to	train	and	uses	fewer	resources	at	runtime.	For	these	reasons,	and	also
that	they’re	essentially	a	drop-in	replacement	for	LSTMs,	they’ve	become	quite
popular.	However,	strictly	speaking,	they	are	less	powerful	than	LSTMs	because
of	the	merging	of	the	forget	and	output	gates,	so	in	general	I	recommend	playing
with	both	GRUs	or	LSTMs	in	your	network	and	seeing	which	one	performs
better.	Or	just	accept	that	the	LSTM	may	be	a	little	slower	in	training,	but	may
end	up	being	the	best	choice	in	the	end.	You	don’t	have	to	follow	the	latest	fad—
honest!

biLSTM
Another	common	variant	of	the	LSTM	is	the	bidirectional	LSTM	or	biLSTM	for
short.	As	you’ve	seen	so	far,	traditional	LSTMs	(and	RNNs	in	general)	can	look
to	the	past	as	they	are	trained	and	make	decisions.	Unfortunately,	sometimes	you
need	to	see	the	future	as	well.	This	is	particularly	the	case	in	applications	like
translation	and	handwriting	recognition,	where	what	comes	after	the	current	state
can	be	just	as	important	as	the	previous	state	for	determining	output.

A	biLSTM	solves	this	problem	in	the	simplest	of	ways:	it’s	essentially	two
stacked	LSTMs,	with	the	input	being	sent	in	the	forward	direction	in	one	LSTM
and	reversed	in	the	second.	Figure	5-5	shows	how	a	biLSTM	works	across	its
input	bidirectionally	to	produce	the	output.

Figure	5-5.	A	biLSTM

PyTorch	makes	it	easy	to	create	biLSTMs	by	passing	in	a	bidirectional=True
parameter	when	creating	an	LSTM()	unit,	as	you’ll	see	later	in	the	chapter.

That	completes	our	tour	throughout	the	RNN-based	architectures.	In	Chapter	9,
we	return	to	the	question	of	architecture	when	we	look	at	the	Transformer-based
BERT	and	GPT-2	models.

Embeddings
We’re	almost	at	the	point	where	we	can	start	writing	some	code!	But	before	we
do,	one	little	detail	may	have	occurred	to	you:	how	do	we	represent	words	in	a
network?	After	all,	we’re	feeding	tensors	of	numbers	into	a	network	and	getting
tensors	out.	With	images,	it	seemed	a	fairly	obvious	thing	to	convert	them	into
tensors	representing	the	red/green/blue	component	values,	and	they’re	already
naturally	thought	of	as	arrays	as	they	come	with	a	height	and	width	baked	in.	But
words?	Sentences?	How	is	that	going	to	work?

The	simplest	approach	is	still	one	that	you’ll	find	in	many	approaches	to	NLP,
and	it’s	called	one-hot	encoding.	It’s	pretty	simple!	Let’s	look	at	our	first
sentence	from	the	start	of	the	chapter:

The cat sat on the mat.

If	we	consider	that	this	is	the	entire	vocabulary	of	our	world,	we	have	a	tensor	of
[the, cat, sat, on, mat].	One-hot	encoding	simply	means	that	we	create	a
vector	that	is	the	size	of	the	vocabulary,	and	for	each	word	in	it,	we	allocate	a
vector	with	one	parameter	set	to	1	and	the	rest	to	0:

the — [1 0 0 0 0]
cat — [0 1 0 0 0]
sat — [0 0 1 0 0]
on — [0 0 0 1 0]
mat — [0 0 0 0 1]

We’ve	now	converted	the	words	into	vectors,	and	we	can	feed	them	into	our
network.	Additionally,	we	may	add	extra	symbols	into	our	vocabulary,	such	as
UNK	(unknown,	for	words	not	in	the	vocabulary)	and	START/STOP	to	signify	the
beginning	and	ends	of	sentences.

One-hot	encoding	has	a	few	limitations	that	become	clearer	when	we	add
another	word	into	our	example	vocabulary:	kitty.	From	our	encoding	scheme,
kitty	would	be	represented	by	[0 0 0 0 0 1]	(with	all	the	other	vectors	being
padded	with	a	zero).	First,	you	can	see	that	if	we	are	going	to	model	a	realistic
set	of	words,	our	vectors	are	going	to	be	very	long	with	almost	no	information	in
them.	Second,	and	perhaps	more	importantly,	we	know	that	a	very	strong
relationship	exists	between	the	words	kitty	and	cat	(also	with	dammit,	but
thankfully	that’s	been	skipped	from	our	vocab	here!),	and	this	is	impossible	to
represent	with	one-hot	encoding;	the	two	words	are	completely	different	things.

An	approach	that	has	become	more	popular	recently	is	replacing	one-hot
encoding	with	an	embedding	matrix	(of	course,	a	one-hot	encoding	is	an
embedding	matrix	itself,	just	one	that	doesn’t	contain	any	information	about
relationships	between	words).	The	idea	is	to	squash	the	dimensionality	of	the
vector	space	down	to	something	a	little	more	manageable	and	take	advantage	of
the	space	itself.

For	example,	if	we	have	an	embedding	in	a	2D	space,	perhaps	cat	could	be
represented	by	the	tensor	[0.56, 0.45]	and	kitten	by	[0.56, 0.445],	whereas
mat	could	be	[0.2, -0.1].	We	cluster	similar	words	together	in	the	vector
space	and	can	do	distance	checks	such	as	Euclidean	or	cosine	distance	functions
to	determine	how	close	words	are	to	each	other.	And	how	do	we	determine
where	words	fall	in	the	vector	space?	An	embedding	layer	is	no	different	from
any	other	layer	you’ve	seen	so	far	in	building	neural	networks;	we	initialize	the
vector	space	randomly,	and	hopefully	the	training	process	updates	the	parameters
so	that	similar	words	or	concepts	gravitate	toward	each	other.

A	famous	example	of	embedding	vectors	is	word2vec,	which	was	released	by
Google	in	2013. 	This	was	a	set	of	word	embeddings	trained	using	a	shallow
neural	network,	and	it	revealed	that	the	transformation	into	vector	space	seemed
to	capture	something	about	the	concepts	underpinning	the	words.	In	its
commonly	cited	finding,	if	you	pulled	the	vectors	for	King,	Man,	and	Woman
and	then	subtracted	the	vector	for	Man	from	King	and	added	the	vector	for
Woman,	you	would	get	a	result	that	was	the	vector	representation	for	Queen.
Since	word2vec,	other	pretrained	embeddings	have	become	available,	such	as
ELMo,	GloVe,	and	fasttext.

As	for	using	embeddings	in	PyTorch,	it’s	really	simple:

2

embed = nn.Embedding(vocab_size, dimension_size)

This	will	contain	a	tensor	of	vocab_size	x	dimension_size	initialized
randomly.	I	prefer	to	think	that	it’s	just	a	giant	array	or	lookup	table.	Each	word
in	your	vocabulary	indexes	into	an	entry	that	is	a	vector	of	dimension_size,	so
if	we	go	back	to	our	cat	and	its	epic	adventures	on	the	mat,	we’d	have	something
like	this:

cat_mat_embed = nn.Embedding(5, 2)
cat_tensor = Tensor([1])
cat_mat_embed.forward(cat_tensor)

> tensor([[1.7793, -0.3127]], grad_fn=<EmbeddingBackward>)

We	create	our	embedding,	a	tensor	that	contains	the	position	of	cat	in	our
vocabulary,	and	pass	it	through	the	layer’s	forward()	method.	That	gives	us	our
random	embedding.	The	result	also	points	out	that	we	have	a	gradient	function
that	we	can	use	for	updating	the	parameters	after	we	combine	it	with	a	loss
function.

We’ve	now	gone	through	all	the	theory	and	can	get	started	on	building
something!

torchtext
Just	like	torchvision,	PyTorch	provides	an	official	library,	torchtext,	for
handling	text-processing	pipelines.	However,	torchtext	is	not	quite	as	battle-
tested	or	has	as	many	eyes	on	it	as	torchvision,	which	means	it’s	not	quite	as
easy	to	use	or	as	well-documented.	But	it	is	still	a	powerful	library	that	can
handle	a	lot	of	the	mundane	work	of	building	up	text-based	datasets,	so	we’ll	be
using	it	for	the	rest	of	the	chapter.

Installing	torchtext	is	fairly	simple.	You	use	either	standard	pip:

pip install torchtext

or	a	specific	conda	channel:

conda install -c derickl torchtext

You’ll	also	want	to	install	spaCy	(an	NLP	library),	and	pandas	if	you	don’t	have
them	on	your	system	(again,	either	using	pip	or	conda).	We	use	spaCy	for
processing	our	text	in	the	torchtext	pipeline,	and	pandas	for	exploring	and
cleaning	up	our	data.

Getting	Our	Data:	Tweets!
In	this	section,	we	build	a	sentiment	analysis	model,	so	let’s	grab	a	dataset.
torchtext	provides	a	bunch	of	built-in	datasets	via	the	torchtext.datasets
module,	but	we’re	going	to	work	on	one	from	scratch	to	get	a	feel	for	building	a
custom	dataset	and	feeding	it	into	a	model	we’ve	created.	We	use	the
Sentiment140	dataset.	This	is	based	on	tweets	from	Twitter,	with	every	tweet
ranked	as	0	for	negative,	2	for	neutral,	and	4	for	positive.

Download	the	zip	archive	and	unzip.	We	use	the	file
training.1600000.processed.noemoticon.csv.	Let’s	look	at	the	file	using	pandas:

import pandas as pd
tweetsDF = pd.read_csv("training.1600000.processed.noemoticon.csv",
 header=None)

You	may	at	this	point	get	an	error	like	this:

UnicodeDecodeError: 'utf-8' codec can't decode bytes in
position 80-81: invalid continuation byte

Congratulations—you’re	now	a	real	data	scientist	and	you	get	to	deal	with	data
cleaning!	From	the	error	message,	it	appears	that	the	default	C-based	CSV	parser
that	pandas	uses	doesn’t	like	some	of	the	Unicode	in	the	file,	so	we	need	to
switch	to	the	Python-based	parser:

tweetsDF = pd.read_csv("training.1600000.processed.noemoticon.csv",
engine="python", header=None)

Let’s	take	a	look	at	the	structure	of	the	data	by	displaying	the	first	five	rows:

>>> tweetDF.head(5)

http://help.sentiment140.com/for-students

0 0 1467810672 ... NO_QUERY scotthamilton is upset that ...
1 0 1467810917 ... NO_QUERY mattycus @Kenichan I dived many times ...
2 0 1467811184 ... NO_QUERY ElleCTF my whole body feels itchy
3 0 1467811193 ... NO_QUERY Karoli @nationwideclass no, it's ...
4 0 1467811372 ... NO_QUERY joy_wolf @Kwesidei not the whole crew

Annoyingly,	we	don’t	have	a	header	field	in	this	CSV	(again,	welcome	to	the
world	of	a	data	scientist!),	but	by	looking	at	the	website	and	using	our	intuition,
we	can	see	that	what	we’re	interested	in	is	the	last	column	(the	tweet	text)	and
the	first	column	(our	labeling).	However,	the	labels	aren’t	great,	so	let’s	do	a
little	feature	engineering	to	work	around	that.	Let’s	see	what	counts	we	have	in
our	training	set:

>>> tweetsDF[0].value_counts()
4 800000
0 800000
Name: 0, dtype: int64

Curiously,	there	are	no	neutral	values	in	the	training	dataset.	This	means	that	we
could	formulate	the	problem	as	a	binary	choice	between	0	and	1	and	work	out
our	predictions	from	there,	but	for	now	we	stick	to	the	original	plan	that	we	may
possibly	have	neutral	tweets	in	the	future.	To	encode	the	classes	as	numbers
starting	from	0,	we	first	create	a	column	of	type	category	from	the	label
column:

tweetsDF["sentiment_cat"] = tweetsDF[0].astype('category')

Then	we	encode	those	classes	as	numerical	information	in	another	column:

tweetsDF["sentiment"] = tweetsDF["sentiment_cat"].cat.codes

We	then	save	the	modified	CSV	back	to	disk:

tweetsDF.to_csv("train-processed.csv", header=None, index=None)

I	recommend	that	you	save	another	CSV	that	has	a	small	sample	of	the	1.6
million	tweets	for	you	to	test	things	out	on	too:

tweetsDF.sample(10000).to_csv("train-processed-sample.csv", header=None,

 index=None)

Now	we	need	to	tell	torchtext	what	we	think	is	important	for	the	purposes	of
creating	a	dataset.

Defining	Fields
torchtext	takes	a	straightforward	approach	to	generating	datasets:	you	tell	it
what	you	want,	and	it’ll	process	the	raw	CSV	(or	JSON)	for	you.	You	do	this	by
first	defining	fields.	The	Field	class	has	a	considerable	number	of	parameters
that	can	be	assigned	to	it,	and	although	you	probably	won’t	use	all	of	them	at
once,	Table	5-1	provides	a	handy	guide	as	to	what	you	can	do	with	a	Field.

Table	5-1.	Field	parameter	types

Parameter Description Default

sequential
Whether	the	field	represents	sequential	data	(i.e.,	text).	If	set	to
False,	no	tokenization	is	applied. True

use_vocab
Whether	to	include	a	Vocab	object.	If	set	to	False,	the	field
should	contain	numerical	data. True

init_token
A	token	that	will	be	added	to	the	start	of	this	field	to	indicate	the
beginning	of	the	data. None

eos_token End-of-sentence	token	appended	to	the	end	of	each	sequence. None

fix_length
If	set	to	an	integer,	all	entries	will	be	padded	to	this	length.	If
None,	sequence	lengths	will	be	flexible. None

dtype The	type	of	the	tensor	batch. torch.long

lower Convert	the	sequence	into	lowercase. False

tokenize
The	function	that	will	perform	sequence	tokenization.	If	set	to
spacy,	the	spaCy	tokenizer	will	be	used. string.split

pad_token The	token	that	will	be	used	as	padding. <pad>

unk_token
The	token	that	will	be	used	to	represent	words	that	are	not	present
in	the	Vocab	dict. <unk>

pad_first Pad	at	the	start	of	the	sequence. False

truncate_first Truncate	at	the	beginning	of	the	sequence	(if	necessary). False

As	we	noted,	we’re	interested	in	only	the	labels	and	the	tweets	text.	We	define
these	by	using	the	Field	datatype:

from torchtext import data

LABEL = data.LabelField()
TWEET = data.Field(tokenize='spacy', lower=true)

We’re	defining	LABEL	as	a	LabelField,	which	is	a	subclass	of	Field	that	sets
sequential	to	False	(as	it’s	our	numerical	category	class).	TWEET	is	a	standard
Field	object,	where	we	have	decided	to	use	the	spaCy	tokenizer	and	convert	all
the	text	to	lowercase,	but	otherwise	we’re	using	the	defaults	as	listed	in	the
previous	table.	If,	when	running	through	this	example,	the	step	of	building	the
vocabulary	is	taking	a	very	long	time,	try	removing	the	tokenize	parameter	and
rerunning.	This	will	use	the	default	of	simply	splitting	on	whitespace,	which	will
speed	up	the	tokenization	step	considerably,	though	the	created	vocabulary	will
not	be	as	good	as	the	one	spaCy	creates.

Having	defined	those	fields,	we	now	need	to	produce	a	list	that	maps	them	onto
the	list	of	rows	that	are	in	the	CSV:

 fields = [('score',None), ('id',None),('date',None),('query',None),
 ('name',None),
 ('tweet', TWEET),('category',None),('label',LABEL)]

Armed	with	our	declared	fields,	we	now	use	TabularDataset	to	apply	that
definition	to	the	CSV:

twitterDataset = torchtext.data.TabularDataset(
 path="training-processed.csv",
 format="CSV",
 fields=fields,
 skip_header=False)

This	may	take	some	time,	especially	with	the	spaCy	parser.	Finally,	we	can	split
into	training,	testing,	and	validation	sets	by	using	the	split()	method:

(train, test, valid) = twitterDataset.split(split_ratio=[0.8,0.1,0.1])

(len(train),len(test),len(valid))
> (1280000, 160000, 160000)

Here’s	an	example	pulled	from	the	dataset:

>vars(train.examples[7])

{'label': '6681',
 'tweet': ['woah',
 ',',
 'hell',
 'in',
 'chapel',
 'thrill',
 'is',
 'closed',
 '.',
 'no',
 'more',
 'sweaty',
 'basement',
 'dance',
 'parties',
 '?',
 '?']}

In	a	surprising	turn	of	serendipity,	the	randomly	selected	tweet	references	the
closure	of	a	club	in	Chapel	Hill	I	frequently	visited.	See	if	you	find	anything	as
weird	on	your	dive	through	the	data!

Building	a	Vocabulary
Traditionally,	at	this	point	we	would	build	a	one-hot	encoding	of	each	word	that
is	present	in	the	dataset—a	rather	tedious	process.	Thankfully,	torchtext	will
do	this	for	us,	and	will	also	allow	a	max_size	parameter	to	be	passed	in	to	limit
the	vocabulary	to	the	most	common	words.	This	is	normally	done	to	prevent	the
construction	of	a	huge,	memory-hungry	model.	We	don’t	want	our	GPUs	too
overwhelmed,	after	all.	Let’s	limit	the	vocabulary	to	a	maximum	of	20,000
words	in	our	training	set:

vocab_size = 20000

TWEET.build_vocab(train, max_size = vocab_size)

We	can	then	interrogate	the	vocab	class	instance	object	to	make	some
discoveries	about	our	dataset.	First,	we	ask	the	traditional	“How	big	is	our
vocabulary?”:

len(TWEET.vocab)
> 20002

Wait,	wait,	what?	Yes,	we	specified	20,000,	but	by	default,	torchtext	will	add
two	more	special	tokens,	<unk>	for	unknown	words	(e.g.,	those	that	get	cut	off
by	the	20,000	max_size	we	specified),	and	<pad>,	a	padding	token	that	will	be
used	to	pad	all	our	text	to	roughly	the	same	size	to	help	with	efficient	batching
on	the	GPU	(remember	that	a	GPU	gets	its	speed	from	operating	on	regular
batches).	You	can	also	specify	eos_token	or	init_token	symbols	when	you
declare	a	field,	but	they’re	not	included	by	default.

Now	let’s	take	a	look	at	the	most	common	words	in	the	vocabulary:

>TWEET.vocab.freqs.most_common(10)
[('!', 44802),
 ('.', 40088),
 ('I', 33133),
 (' ', 29484),
 ('to', 28024),
 ('the', 24389),
 (',', 23951),
('a', 18366),
 ('i', 17189),
('and', 14252)]

Pretty	much	what	you’d	expect,	as	we’re	not	removing	stop-words	with	our
spaCy	tokenizer.	(Because	it’s	just	140	characters,	we’d	be	in	danger	of	losing
too	much	information	from	our	model	if	we	did.)

We	are	almost	finished	with	our	datasets.	We	just	need	to	create	a	data	loader	to
feed	into	our	training	loop.	torchtext	provides	the	BucketIterator	method
that	will	produce	what	it	calls	a	Batch,	which	is	almost,	but	not	quite,	like	the
data	loader	we	used	on	images.	(You’ll	see	shortly	that	we	have	to	update	our
training	loop	to	deal	with	some	of	the	oddities	of	the	Batch	interface.)

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train, valid, test),
batch_size = 32,
device = device)

Putting	everything	together,	here’s	the	complete	code	for	building	up	our
datasets:

from torchtext import data

device = "cuda"
LABEL = data.LabelField()
TWEET = data.Field(tokenize='spacy', lower=true)

fields = [('score',None), ('id',None),('date',None),('query',None),
 ('name',None),
 ('tweet', TWEET),('category',None),('label',LABEL)]

twitterDataset = torchtext.data.TabularDataset(
 path="training-processed.csv",
 format="CSV",
 fields=fields,
 skip_header=False)

(train, test, valid) = twitterDataset.split(split_ratio=[0.8,0.1,0.1])

vocab_size = 20002
TWEET.build_vocab(train, max_size = vocab_size)

train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits(
(train, valid, test),
batch_size = 32,
device = device)

With	our	data	processing	sorted,	we	can	move	on	to	defining	our	model.

Creating	Our	Model
We	use	the	Embedding	and	LSTM	modules	in	PyTorch	that	we	talked	about	in	the
first	half	of	this	chapter	to	build	a	simple	model	for	classifying	tweets:

import torch.nn as nn

class OurFirstLSTM(nn.Module):
 def __init__(self, hidden_size, embedding_dim, vocab_size):

 super(OurFirstLSTM, self).__init__()

 self.embedding = nn.Embedding(vocab_size, embedding_dim)
 self.encoder = nn.LSTM(input_size=embedding_dim,
 hidden_size=hidden_size, num_layers=1)
 self.predictor = nn.Linear(hidden_size, 2)

 def forward(self, seq):
 output, (hidden,_) = self.encoder(self.embedding(seq))
 preds = self.predictor(hidden.squeeze(0))
 return preds

model = OurFirstLSTM(100,300, 20002)
model.to(device)

All	we	do	in	this	model	is	create	three	layers.	First,	the	words	in	our	tweets	are
pushed	into	an	Embedding	layer,	which	we	have	established	as	a	300-
dimensional	vector	embedding.	That’s	then	fed	into	a	LSTM	with	100	hidden
features	(again,	we’re	compressing	down	from	the	300-dimensional	input	like
we	did	with	images).	Finally,	the	output	of	the	LSTM	(the	final	hidden	state	after
processing	the	incoming	tweet)	is	pushed	through	a	standard	fully	connected
layer	with	three	outputs	to	correspond	to	our	three	possible	classes	(negative,
positive,	or	neutral).	Next	we	turn	to	the	training	loop!

Updating	the	Training	Loop
Because	of	some	torchtext’s	quirks,	we	need	to	write	a	slightly	modified
training	loop.	First,	we	create	an	optimizer	(we	use	Adam	as	usual)	and	a	loss
function.	Because	we	were	given	three	potential	classes	for	each	tweet,	we	use
CrossEntropyLoss()	as	our	loss	function.	However,	it	turns	out	that	only	two
classes	are	present	in	the	dataset;	if	we	assumed	there	would	be	only	two	classes,
we	could	in	fact	change	the	output	of	the	model	to	produce	a	single	number
between	0	and	1	and	then	use	binary	cross-entropy	(BCE)	loss	(and	we	can
combine	the	sigmoid	layer	that	squashes	output	between	0	and	1	plus	the	BCE
layer	into	a	single	PyTorch	loss	function,	BCEWithLogitsLoss()).	I	mention
this	because	if	you’re	writing	a	classifier	that	must	always	be	one	state	or	the
other,	it’s	a	better	fit	than	the	standard	cross-entropy	loss	that	we’re	about	to	use.

optimizer = optim.Adam(model.parameters(), lr=2e-2)
criterion = nn.CrossEntropyLoss()

def train(epochs, model, optimizer, criterion, train_iterator, valid_iterator):
 for epoch in range(1, epochs + 1):

 training_loss = 0.0
 valid_loss = 0.0
 model.train()
 for batch_idx, batch in enumerate(train_iterator):
 opt.zero_grad()
 predict = model(batch.tweet)
 loss = criterion(predict,batch.label)
 loss.backward()
 optimizer.step()
 training_loss += loss.data.item() * batch.tweet.size(0)
 training_loss /= len(train_iterator)

 model.eval()
 for batch_idx,batch in enumerate(valid_iterator):
 predict = model(batch.tweet)
 loss = criterion(predict,batch.label)
 valid_loss += loss.data.item() * x.size(0)

 valid_loss /= len(valid_iterator)
 print('Epoch: {}, Training Loss: {:.2f},
 Validation Loss: {:.2f}'.format(epoch, training_loss, valid_loss))

The	main	thing	to	be	aware	of	in	this	new	training	loop	is	that	we	have	to
reference	batch.tweet	and	batch.label	to	get	the	particular	fields	we’re
interested	in;	they	don’t	fall	out	quite	as	nicely	from	the	enumerator	as	they	do	in
torchvision.

Once	we’ve	trained	our	model	by	using	this	function,	we	can	use	it	to	classify
some	tweets	to	do	simple	sentiment	analysis.

Classifying	Tweets
Another	hassle	of	torchtext	is	that	it’s	a	bit	of	a	pain	to	get	it	to	predict	things.
What	you	can	do	is	emulate	the	processing	pipeline	that	happens	internally	and
make	the	required	prediction	on	the	output	of	that	pipeline,	as	shown	in	this
small	function:

def classify_tweet(tweet):
 categories = {0: "Negative", 1:"Positive"}

 processed = TWEET.process([TWEET.preprocess(tweet)])
 return categories[model(processed).argmax().item()]

We	have	to	call	preprocess(),	which	performs	our	spaCy-based	tokenization.
After	that,	we	can	call	process()	to	the	tokens	into	a	tensor	based	on	our
already-built	vocabulary.	The	only	thing	we	have	to	be	careful	about	is	that
torchtext	is	expecting	a	batch	of	strings,	so	we	have	to	turn	it	into	a	list	of	lists
before	handing	it	off	to	the	processing	function.	Then	we	feed	it	into	the	model.
This	will	produce	a	tensor	that	looks	like	this:

tensor([[0.7828, -0.0024]]

The	tensor	element	with	the	highest	value	corresponds	to	the	model’s	chosen
class,	so	we	use	argmax()	to	get	the	index	of	that,	and	then	item()	to	turn	that
zero-dimension	tensor	into	a	Python	integer	that	we	index	into	our	categories
dictionary.

With	our	model	trained,	let’s	look	at	how	to	do	some	of	the	other	tricks	and
techniques	that	you	learned	for	images	in	Chapters	2–4.

Data	Augmentation
You	might	wonder	exactly	how	you	can	augment	text	data.	After	all,	you	can’t
really	flip	it	horizontally	as	you	can	an	image!	But	you	can	use	some	techniques
with	text	that	will	provide	the	model	with	a	little	more	information	for	training.
First,	you	could	replace	words	in	the	sentence	with	synonyms,	like	so:

The cat sat on the mat

could	become

The cat sat on the rug

Aside	from	the	cat’s	insistence	that	a	rug	is	much	softer	than	a	mat,	the	meaning
of	the	sentence	hasn’t	changed.	But	mat	and	rug	will	be	mapped	to	different
indices	in	the	vocabulary,	so	the	model	will	learn	that	the	two	sentences	map	to
the	same	label,	and	hopefully	that	there’s	a	connection	between	those	two	words,

as	everything	else	in	the	sentences	is	the	same.

In	early	2019,	the	paper	“EDA:	Easy	Data	Augmentation	Techniques	for
Boosting	Performance	on	Text	Classification	Tasks”	suggested	three	other
augmentation	strategies:	random	insertion,	random	swap,	and	random	deletion.
Let’s	take	a	look	at	each	of	them.

Random	Insertion
A	random	insertion	technique	looks	at	a	sentence	and	then	randomly	inserts
synonyms	of	existing	nonstop-words	into	the	sentence	n	times.	Assuming	you
have	a	way	of	getting	a	synonym	of	a	word	and	a	way	of	eliminating	stop-words
(common	words	such	as	and,	it,	the,	etc.),	shown,	but	not	implemented,	in	this
function	via	get_synonyms()	and	get_stopwords(),	an	implementation	of	this
would	be	as	follows:

def random_insertion(sentence,n):
 words = remove_stopwords(sentence)
 for _ in range(n):
 new_synonym = get_synonyms(random.choice(words))
 sentence.insert(randrange(len(sentence)+1), new_synonym)
 return sentence

An	example	of	this	in	practice	where	it	replaces	cat	could	look	like	this:

The cat sat on the mat
The cat mat sat on feline the mat

Random	Deletion
As	the	name	suggests,	random	deletion	deletes	words	from	a	sentence.	Given	a
probability	parameter	p,	it	will	go	through	the	sentence	and	decide	whether	to
delete	a	word	or	not	based	on	that	random	probability:

def random_deletion(words, p=0.5):
 if len(words) == 1:
 return words
 remaining = list(filter(lambda x: random.uniform(0,1) > p,words))
 if len(remaining) == 0:
 return [random.choice(words)]
 else

3

 return remaining

The	implementation	deals	with	the	edge	cases—if	there’s	only	one	word,	the
technique	returns	it;	and	if	we	end	up	deleting	all	the	words	in	the	sentence,	the
technique	samples	a	random	word	from	the	original	set.

Random	Swap
The	random	swap	augmentation	takes	a	sentence	and	then	swaps	words	within	it
n	times,	with	each	iteration	working	on	the	previously	swapped	sentence.	Here’s
an	implementation:

def random_swap(sentence, n=5):
 length = range(len(sentence))
 for _ in range(n):
 idx1, idx2 = random.sample(length, 2)
 sentence[idx1], sentence[idx2] = sentence[idx2], sentence[idx1]
 return sentence

We	sample	two	random	numbers	based	on	the	length	of	the	sentence,	and	then
just	keep	swapping	until	we	hit	n.

The	techniques	in	the	EDA	paper	average	about	a	3%	improvement	in	accuracy
when	used	with	small	amounts	of	labeled	examples	(roughly	500).	If	you	have
more	than	5,000	examples	in	your	dataset,	the	paper	suggests	that	this
improvement	may	fall	to	0.8%	or	lower,	due	to	the	model	obtaining	better
generalization	from	the	larger	amounts	of	data	available	over	the	improvements
that	EDA	can	provide.

Back	Translation
Another	popular	approach	for	augmenting	datasets	is	back	translation.	This
involves	translating	a	sentence	from	our	target	language	into	one	or	more	other
languages	and	then	translating	all	of	them	back	to	the	original	language.	We	can
use	the	Python	library	googletrans	for	this	purpose.	Install	it	with	pip,	as	it
doesn’t	appear	to	be	in	conda	at	the	time	of	this	writing:

pip install googletrans

Then,	we	can	translate	our	sentence	from	English	to	French,	and	then	back	to
English:

import googletrans
import googletrans.Translator

translator = Translator()

sentences = ['The cat sat on the mat']

translation_fr = translator.translate(sentences, dest='fr')
fr_text = [t.text for t in translations_fr]
translation_en = translator.translate(fr_text, dest='en')
en_text = [t.text for t in translation_en]
print(en_text)

>> ['The cat sat on the carpet']

That	gives	us	an	augmented	sentence	from	English	to	French	and	back	again,	but
let’s	go	a	step	further	and	select	a	language	at	random:

import random

available_langs = list(googletrans.LANGUAGES.keys())
tr_lang = random.choice(available_langs)
print(f"Translating to {googletrans.LANGUAGES[tr_lang]}")

translations = translator.translate(sentences, dest=tr_lang)
t_text = [t.text for t in translations]
print(t_text)

translations_en_random = translator.translate(t_text, src=tr_lang, dest='en')
en_text = [t.text for t in translations_en_random]
print(en_text)

In	this	case,	we	use	random.choice	to	grab	a	random	language,	translate	to	that
language,	and	then	translate	back	as	before.	We	also	pass	in	the	language	to	the
src	parameter	just	to	help	the	language	detection	of	Google	Translate	along.	Try
it	out	and	see	how	much	it	resembles	the	old	game	of	Telephone.

You	need	to	be	aware	of	a	few	limits.	First,	you	can	translate	only	up	to	15,000
characters	at	a	time,	though	that	shouldn’t	be	too	much	of	a	problem	if	you’re
just	translating	sentences.	Second,	if	you	are	going	to	use	this	on	a	large	dataset,
you	want	to	do	your	data	augmentation	on	a	cloud	instance	rather	than	your

home	computer,	because	if	Google	bans	your	IP,	you	won’t	be	able	to	use
Google	Translate	for	normal	use!	Make	sure	that	you	send	a	few	batches	at	a
time	rather	than	the	entire	dataset	at	once.	This	should	also	allow	you	to	restart
translation	batches	if	there’s	an	error	on	the	Google	Translate	backend	as	well.

Augmentation	and	torchtext
You	might	have	noticed	that	everything	I’ve	said	so	far	about	augmentation
hasn’t	involved	torchtext.	Sadly,	there’s	a	reason	for	that.	Unlike	torchvision
or	torchaudio,	torchtext	doesn’t	offer	a	transform	pipeline,	which	is	a	little
annoying.	It	does	offer	a	way	of	performing	pre-	and	post-processing,	but	this
operates	only	on	the	token	(word)	level,	which	is	perhaps	enough	for	synonym
replacement,	but	doesn’t	provide	enough	control	for	something	like	back
translation.	And	if	you	do	try	to	hijack	the	pipelines	for	augmentation,	you
should	probably	do	it	in	the	preprocessing	pipeline	instead	of	the	post-processing
one,	as	all	you’ll	see	in	that	one	is	the	tensor	that	consists	of	integers,	which
you’ll	have	to	map	to	words	via	the	vocab	rules.

For	these	reasons,	I	suggest	not	even	bothering	with	spending	your	time	trying	to
twist	torchtext	into	knots	to	do	data	augmentation.	Instead,	do	the
augmentation	outside	PyTorch	using	techniques	such	as	back	translation	to
generate	new	data	and	feed	that	into	the	model	as	if	it	were	real	data.

That’s	augmentation	covered,	but	there’s	an	elephant	in	the	room	that	we	should
address	before	wrapping	up	the	chapter.

Transfer	Learning?
You	might	be	wondering	why	we	haven’t	talked	about	transfer	learning	yet.
After	all,	it’s	a	key	technique	that	allows	us	to	create	accurate	image-based
models,	so	why	can’t	we	do	that	here?	Well,	it	turns	out	that	it	has	been	a	little
harder	to	get	transfer	learning	working	on	LSTM	networks.	But	not	impossible.
We’ll	return	to	the	subject	in	Chapter	9,	where	you’ll	see	how	to	get	transfer
learning	working	with	both	the	LSTM-	and	Transformer-based	networks.

Conclusion

In	this	chapter,	we	covered	a	text-processing	pipeline	that	covers	encoding	and
embeddings,	a	simple	LSTM-based	neural	network	to	perform	classification,
along	with	some	data	augmentation	strategies	for	text-based	data.	You	have
plenty	to	experiment	with	so	far.	I’ve	chosen	to	make	every	tweet	lowercase
during	the	tokenization	phase.	This	is	a	popular	approach	in	NLP,	but	it	does
throw	away	potential	information	in	the	tweet.	Think	about	it:	“Why	is	this	NOT
WORKING?”	to	our	eyes	is	even	more	suggestive	of	a	negative	sentiment	than
“Why	is	this	not	working?”	but	we’ve	thrown	away	that	difference	between	the
two	tweets	before	it	even	hits	the	model.	So	definitely	try	running	with	case
sensitivity	left	in	the	tokenized	text.	And	try	removing	stop-words	from	your
input	text	to	see	whether	that	helps	improve	the	accuracy.	Traditional	NLP
methods	make	a	big	point	of	removing	them,	but	I’ve	often	found	that	deep
learning	techniques	can	perform	better	when	leaving	them	in	the	input	(which
we’ve	done	in	this	chapter).	This	is	because	they	provide	more	context	for	the
model	to	learn	from,	whereas	sentences	that	have	been	reduced	to	only	important
words	may	be	missing	nuances	in	the	text.

You	may	also	want	to	alter	the	size	of	the	embedding	vector.	Larger	vectors
mean	that	the	embedding	can	capture	more	information	about	the	word	it’s
modeling	at	the	cost	of	using	more	memory.	Try	going	from	100-	to	1,000-
dimensional	embeddings	and	see	how	that	affects	training	time	and	accuracy.

Finally,	you	can	also	play	with	the	LSTM.	We’ve	used	a	simple	approach,	but
you	can	increase	num_layers	to	create	stacked	LSTMs,	increase	or	decrease	the
number	of	hidden	features	in	the	layer,	or	set	bidirectional=true	to	create	a
biLSTM.	Replacing	the	entire	LSTM	with	a	GRU	layer	would	also	be	an
interesting	thing	to	try;	does	it	train	faster?	Is	it	more	accurate?	Experiment	and
see	what	you	find!

In	the	meantime,	we	move	on	from	text	and	into	the	audio	realm	with
torchaudio.

Further	Reading
“Long	Short-term	Memory”	by	S.	Hochreiter	and	J.	Schmidhuber
(1997)

https://oreil.ly/WKcxO

“Learning	Phrase	Representations	Using	RNN	Encoder-Decoder	for
Statistical	Machine	Translation”	by	Kyunghyun	Cho	et	al.	(2014)

“Bidirectional	LSTM-CRF	Models	for	Sequence	Tagging”	by	Zhiheng
Huang	et	al.	(2015)

“Attention	Is	All	You	Need”	by	Ashish	Vaswani	et	al.	(2017)

1 	Note	that	it’s	not	impossible	to	do	these	things	with	CNNs;	a	lot	of	in-depth	research	in	the	last	few
years	has	been	done	to	apply	CNN-based	networks	in	the	temporal	domain.	We	won’t	cover	them
here,	but	“Temporal	Convolutional	Networks:	A	Unified	Approach	to	Action	Segmentation”	by	Colin
Lea,	et	al.	(2016)	provides	further	information.	And	seq2seq!

2 	See	“Efficient	Estimation	of	Word	Representations	in	Vector	Space”	by	Tomas	Mikolov	et	al.
(2013).

3 	See	“EDA:	Easy	Data	Augmentation	Techniques	for	Boosting	Performance	on	Text	Classification
Tasks”	by	Jason	W.	Wei	and	Kai	Zou	(2019).

https://arxiv.org/abs/1406.1078
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1608.08242
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1901.11196

Chapter	6.	A	Journey	into	Sound

One	of	the	most	successful	applications	of	deep	learning	is	something	that	we
carry	around	with	us	every	day.	Whether	it’s	Siri	or	Google	Now,	the	engines
that	power	both	systems	and	Amazon’s	Alexa	are	neural	networks.	In	this
chapter,	we’ll	take	a	look	at	PyTorch’s	torchaudio	library.	You’ll	learn	how	to
use	it	to	construct	a	pipeline	for	classifying	audio	data	with	a	convolutional-
based	model.	After	that,	I’ll	suggest	a	different	approach	that	will	allow	you	to
use	some	of	the	tricks	you	learned	for	images	and	obtain	good	accuracy	on	the
ESC-50	audio	dataset.

But	first,	let’s	take	a	look	at	sound	itself.	What	is	it?	How	is	it	often	represented
in	data	form,	and	does	that	provide	us	with	any	clues	as	to	what	type	of	neural
net	we	should	use	to	gain	insight	from	our	data?

Sound
Sound	is	created	via	the	vibration	of	air.	All	the	sounds	we	hear	are
combinations	of	high	and	low	pressure	that	we	often	represent	in	a	waveform,
like	the	one	in	Figure	6-1.	In	this	image,	the	wave	above	the	origin	is	high
pressure,	and	the	part	below	is	low	pressure.

Figure	6-1.	Sine	wave

Figure	6-2	shows	a	more	complex	waveform	of	a	complete	song.

Figure	6-2.	Song	waveform

In	digital	sound,	we	sample	this	waveform	many	times	a	second,	traditionally
44,100	for	CD-quality	sound,	and	store	the	amplitude	values	of	the	wave	during
each	sample	point.	At	a	time	t,	we	have	a	single	value	stored.	This	is	slightly
different	from	an	image,	which	requires	two	values,	x	and	y,	to	store	a	value	(for
a	grayscale	image).	If	we	use	convolutional	filters	in	our	neural	network,	we
need	a	1D	filter	rather	than	the	2D	filters	we	were	using	for	images.

Now	that	you	know	a	little	more	about	sound,	let’s	look	at	the	dataset	we	use	so
you	can	get	a	little	more	familiar	with	it.

The	ESC-50	Dataset
The	Environmental	Sound	Classification	(ESC)	dataset	is	a	collection	of	field
recordings,	each	of	which	is	5	seconds	long	and	assigned	to	one	of	50	classes
(e.g.,	a	dog	barking,	snoring,	a	knock	on	a	door).	We	use	this	set	for	the	rest	of
the	chapter	to	experiment	with	two	ways	of	classifying	audio,	as	well	as	to
explore	using	torchaudio	to	simplify	loading	and	manipulating	audio.

Obtaining	the	Dataset
The	ESC-50	dataset	is	a	set	of	WAV	files.	You	can	download	it	either	by	cloning
the	Git	repository:

git clone https://github.com/karoldvl/ESC-50

https://github.com/karoldvl/ESC-50

Or	you	can	download	the	entire	repo	just	by	using	curl:

curl https://github.com/karoldvl/ESC-50/archive/master.zip

All	the	WAV	files	are	stored	in	the	audio	directory	with	filenames	like	this:

1-100032-A-0.wav

We	care	about	the	final	number	in	the	filename,	because	that	tells	us	what	class
this	sound	clip	has	been	assigned	to.	The	other	parts	of	the	filename	don’t	matter
to	us	but	mostly	relate	to	the	larger	Freesound	dataset	from	which	ESC-50	has
been	drawn	(with	one	exception	that	I’ll	come	back	to	shortly).	If	you’re
interested	in	finding	out	more,	the	README	document	in	the	ESC-50	repo	goes
into	further	detail.

Now	that	we’ve	downloaded	the	dataset,	let’s	look	at	some	of	the	sounds	it
contains.

Playing	Audio	in	Jupyter
If	you	want	to	actually	hear	a	sound	from	ESC-50,	then	instead	of	loading	one	of
the	files	into	a	standard	music	player	such	as	iTunes,	you	can	use	Jupyter’s	built-
in	player	for	audio,	IPython.display.Audio:

import IPython.display as display
display.Audio('ESC-50/audio/1-100032-A-0.wav')

The	function	will	read	in	our	WAV	files	and	MP3	files.	You	can	also	generate
tensors,	convert	them	into	NumPy	arrays,	and	play	those	directly.	Play	some	of
the	files	in	the	ESC-50	directory	to	get	a	feel	for	the	sounds	available.	Once
you’ve	done	that,	we’ll	explore	the	dataset	in	depth	a	little	more.

Exploring	ESC-50
When	dealing	with	a	new	dataset,	it’s	always	a	good	idea	to	get	a	feeling	for	the
shape	of	the	data	before	you	dive	right	into	building	models.	In	classification
tasks,	for	example,	you’ll	want	to	know	whether	your	dataset	actually	contains

examples	from	all	the	possible	classes,	and	ideally	that	all	classes	are	present	in
equal	numbers.	Let’s	take	a	look	at	how	ESC-50	breaks	down.

NOTE
If	your	dataset	has	an	unbalanced	amount	of	data,	a	simple	solution	is	to	randomly	duplicate
the	smaller	class	examples	until	you	have	increased	them	to	the	number	of	the	other	classes.
Although	this	feels	like	fake	accounting,	it’s	surprisingly	effective	(and	cheap!)	in	practice.

We	know	that	the	final	set	of	digits	in	each	filename	describes	the	class	it
belongs	to,	so	what	we	need	to	do	is	grab	a	list	of	the	files	and	count	up	the
occurrences	of	each	class:

import glob
from collections import Counter

esc50_list = [f.split("-")[-1].replace(".wav","")
 for f in
 glob.glob("ESC-50/audio/*.wav")]
Counter(esc50_list)

First,	we	build	up	a	list	of	our	ESC-50	filenames.	Because	we	care	about	only
the	class	number	at	the	end	of	the	filename,	we	chop	off	the	.wav	extension	and
split	the	filename	on	the	-	separator.	We	finally	take	the	last	element	in	that	split
string.	If	you	inspect	esc50_list,	you’ll	get	a	bunch	of	strings	that	range	from	0
to	49.	We	could	write	more	code	that	builds	a	dict	and	counts	all	the
occurrences	for	us,	but	I’m	lazy,	so	I’m	using	a	Python	convenience	function,
Counter,	that	does	all	that	for	us.

Here’s	the	output!

Counter({'15': 40,
 '22': 40,
 '36': 40,
 '44': 40,
 '23': 40,
 '31': 40,
 '9': 40,
 '13': 40,
 '4': 40,

 '3': 40,
 '27': 40,
 …})

We	have	one	of	those	rare	things,	a	perfectly	balanced	dataset.	Let’s	break	out
the	champagne	and	install	a	few	more	libraries	that	we’re	going	to	need	shortly.

SoX	and	LibROSA
Most	of	the	audio	processing	that	torchaudio	carries	out	relies	on	two	other
pieces	of	software:	SoX	and	LibROSA.	LibROSA	is	a	Python	library	for	audio
analysis,	including	generating	mel	spectrograms	(You’ll	see	what	these	are	a
little	later	in	the	chapter),	detecting	beats,	and	even	generating	music.

SoX,	on	the	other	hand,	is	a	program	that	you	might	already	be	familiar	with	if
you’ve	been	using	Linux	for	years.	In	fact,	SoX	is	so	old	that	it	predates	Linux
itself;	its	first	release	was	in	July	1991,	compared	to	the	Linux	debut	in
September	1991.	I	remember	using	it	back	in	1997	to	convert	WAV	files	into
MP3s	on	my	first	ever	Linux	box.	But	it’s	still	useful!

If	you’re	installing	torchaudio	via	conda,	you	can	skip	to	the	next	section.	If
you’re	using	pip,	you’ll	probably	need	to	install	SoX	itself.	For	a	Red	Hat-based
system,	enter	the	following:

yum install sox

Or	on	a	Debian-based	system,	you’ll	use	this:

apt intall sox

Once	SoX	is	installed,	you	can	move	on	to	obtaining	torchaudio	itself.

torchaudio
Installing	torchaudio	can	be	performed	with	either	conda	or	pip:

conda install -c derickl torchaudio
pip install torchaudio

1

https://github.com/librosa/librosa

In	comparison	with	torchvision,	torchaudio	is	similar	to	torchtext	in	that
it’s	not	quite	as	well	loved,	maintained,	or	documented.	I’d	expect	this	to	change
in	the	near	future	as	PyTorch	gets	more	popular	and	better	text	and	audio
handling	pipelines	are	created.	Still,	torchaudio	is	plenty	for	our	needs;	we	just
have	to	write	some	custom	dataloaders	(which	we	didn’t	have	to	do	for	audio	or
text	processing).

Anyhow,	the	core	of	torchaudio	is	found	within	load()	and	save().	We’re
concerned	only	with	load()	in	this	chapter,	but	you’ll	need	to	use	save()	if
you’re	generating	new	audio	from	your	input	(e.g.,	a	text-to-speech	model).
load()	takes	a	file	specified	in	filepath	and	returns	a	tensor	representation	of
the	audio	file	and	the	sample	rate	of	that	audio	file	as	a	separate	variable.

We	now	have	the	means	for	loading	one	of	the	WAV	files	from	the	ESC-50
dataset	and	turning	it	into	a	tensor.	Unlike	our	earlier	work	with	text	and	images,
we	need	to	write	a	bit	more	code	before	we	can	get	on	with	creating	and	training
a	model.	We	need	to	write	a	custom	dataset.

Building	an	ESC-50	Dataset
We’ve	talked	about	datasets	in	Chapter	2,	but	torchvision	and	torchtext	did
all	the	heavy	lifting	for	us,	so	we	didn’t	have	to	worry	too	much	about	the
details.	As	you	may	remember,	a	custom	dataset	has	to	implement	two	class
methods,	__getitem__	and	__len__,	so	that	the	data	loader	can	get	a	batch	of
tensors	and	their	labels,	as	well	as	a	total	count	of	tensors	in	the	dataset.	We	also
have	an	__init__	method	for	setting	up	things	like	file	paths	that’ll	be	used	over
and	over	again.

Here’s	our	first	pass	at	the	ESC-50	dataset:

class ESC50(Dataset):

 def __init__(self,path):
 # Get directory listing from path
 files = Path(path).glob('*.wav')
 # Iterate through the listing and create a list of tuples (filename, label)
 self.items = [(f,int(f.name.split("-")[-1]
 .replace(".wav",""))) for f in files]
 self.length = len(self.items)

 def __getitem__(self, index):
 filename, label = self.items[index]
 audio_tensor, sample_rate = torchaudio.load(filename)
 return audio_tensor, label

 def __len__(self):
 return self.length

The	majority	of	the	work	in	the	class	happens	when	a	new	instance	of	it	is
created.	The	__init__	method	takes	the	path	parameter,	finds	all	the	WAV	files
inside	that	path,	and	then	produces	tuples	of	(filename, label)	by	using	the
same	string	split	we	used	earlier	in	the	chapter	to	get	the	label	of	that	audio
sample.	When	PyTorch	requests	an	item	from	the	dataset,	we	index	into	the
items	list,	use	torchaudio.load	to	make	torchaudio	load	in	the	audio	file,
turn	it	into	a	tensor,	and	then	return	both	the	tensor	and	the	label.

And	that’s	enough	for	us	to	start	with.	For	a	sanity	check,	let’s	create	an	ESC50
object	and	extract	the	first	item:

test_esc50 = ESC50(PATH_TO_ESC50)
tensor, label = list(test_esc50)[0]

tensor
tensor([-0.0128, -0.0131, -0.0143, ..., 0.0000, 0.0000, 0.0000])

tensor.shape
torch.Size([220500])

label
'15'

We	can	construct	a	data	loader	by	using	standard	PyTorch	constructs:

example_loader = torch.utils.data.DataLoader(test_esc50, batch_size = 64,
shuffle = True)

But	before	we	do	that,	we	have	to	go	back	to	our	data.	As	you	might	remember,
we	should	always	create	training,	validation,	and	test	sets.	At	the	moment,	we
have	just	one	directory	with	all	the	data,	which	is	no	good	for	our	purposes.	A
60/20/20	split	of	data	into	training,	validation,	and	test	collections	should	suffice.
Now,	we	could	do	this	by	taking	random	samples	of	our	entire	dataset	(taking

care	to	sample	without	replacement	and	making	sure	that	our	newly	constructed
datasets	are	still	balanced),	but	again	the	ESC-50	dataset	saves	us	from	having	to
do	much	work.	The	compilers	of	the	dataset	separated	the	data	into	five	equal
balanced	folds,	indicated	by	the	first	digit	in	the	filename.	We’ll	have	folds
1,2,3	be	the	training	set,	4	the	validation	set,	and	5	the	test	set.	But	feel	free	to
mix	it	up	if	you	don’t	want	to	be	boring	and	consecutive!	Move	each	of	the	folds
to	test,	train,	and	validation	directories:

mv 1* ../train
mv 2* ../train
mv 3* ../train
mv 4* ../valid
mv 5* ../test

Now	we	can	create	the	individual	datasets	and	loaders:

from pathlib import Path

bs=64
PATH_TO_ESC50 = Path.cwd() / 'esc50'
path = 'test.md'
test

train_esc50 = ESC50(PATH_TO_ESC50 / "train")
valid_esc50 = ESC50(PATH_TO_ESC50 / "valid")
test_esc50 = ESC50(PATH_TO_ESC50 / "test")

train_loader = torch.utils.data.DataLoader(train_esc50, batch_size = bs,
 shuffle = True)
valid_loader = torch.utils.data.DataLoader(valid_esc50, batch_size = bs,
 shuffle = True)
test_loader = torch.utils.data.DataLoader(test_esc50, batch_size = bs,
 shuffle = True)

We	have	our	data	all	set	up,	so	we’re	all	ready	to	look	at	a	classification	model.

A	CNN	Model	for	ESC-50
For	our	first	attempt	at	classifying	sounds,	we	build	a	model	that	borrows
heavily	from	a	paper	called	“Very	Deep	Convolutional	Networks	For	Raw
Waveforms.” 	You’ll	see	that	it	uses	a	lot	of	our	building	blocks	from	Chapter	3,2

but	instead	of	using	2D	layers,	we’re	using	1D	variants,	as	we	have	one	fewer
dimension	in	our	audio	input:

class AudioNet(nn.Module):
 def __init__(self):
 super(AudioNet, self).__init__()
 self.conv1 = nn.Conv1d(1, 128, 80, 4)
 self.bn1 = nn.BatchNorm1d(128)
 self.pool1 = nn.MaxPool1d(4)
 self.conv2 = nn.Conv1d(128, 128, 3)
 self.bn2 = nn.BatchNorm1d(128)
 self.pool2 = nn.MaxPool1d(4)
 self.conv3 = nn.Conv1d(128, 256, 3)
 self.bn3 = nn.BatchNorm1d(256)
 self.pool3 = nn.MaxPool1d(4)
 self.conv4 = nn.Conv1d(256, 512, 3)
 self.bn4 = nn.BatchNorm1d(512)
 self.pool4 = nn.MaxPool1d(4)
 self.avgPool = nn.AvgPool1d(30)
 self.fc1 = nn.Linear(512, 10)

 def forward(self, x):
 x = self.conv1(x)
 x = F.relu(self.bn1(x))
 x = self.pool1(x)
 x = self.conv2(x)
 x = F.relu(self.bn2(x))
 x = self.pool2(x)
 x = self.conv3(x)
 x = F.relu(self.bn3(x))
 x = self.pool3(x)
 x = self.conv4(x)
 x = F.relu(self.bn4(x))
 x = self.pool4(x)
 x = self.avgPool(x)
 x = x.permute(0, 2, 1)
 x = self.fc1(x)
 return F.log_softmax(x, dim = 2)

We	also	need	an	optimizer	and	a	loss	function.	For	the	optimizer,	we	use	Adam
as	before,	but	what	loss	function	do	you	think	we	should	use?	(If	you	answered
CrossEntropyLoss,	give	yourself	a	gold	star!)

audio_net = AudioNet()
audio_net.to(device)

Having	created	our	model,	we	save	our	weights	and	use	the	find_lr()	function
from	Chapter	4:

audio_net.save("audionet.pth")
import torch.optim as optim
optimizer = optim.Adam(audionet.parameters(), lr=0.001)
logs,losses = find_lr(audio_net, nn.CrossEntropyLoss(), optimizer)
plt.plot(logs,losses)

From	the	plot	in	Figure	6-3,	we	determine	that	the	appropriate	learning	rate	is
around	1e-5	(based	on	where	the	descent	looks	steepest).	We	set	that	to	be	our
learning	rate	and	reload	our	model’s	initial	weights:

Figure	6-3.	AudioNet	learning	rate	plot

lr = 1e-5
model.load("audionet.pth")
import torch.optim as optim
optimizer = optim.Adam(audionet.parameters(), lr=lr)

We	train	the	model	for	20	epochs:

train(audio_net, optimizer, torch.nn.CrossEntropyLoss(),
train_data_loader, valid_data_loader, epochs=20)

After	training,	you	should	find	that	the	model	attains	around	13%–17%	accuracy
on	our	dataset.	That’s	better	than	the	2%	we	could	expect	if	we	were	just	picking
one	of	the	50	classes	at	random.	But	perhaps	we	can	do	better;	let’s	investigate	a
different	way	of	looking	at	our	audio	data	that	may	yield	better	results.

This	Frequency	Is	My	Universe
If	you	look	back	at	the	GitHub	page	for	ESC-50,	you’ll	see	a	leaderboard	of
network	architectures	and	their	accuracy	scores.	You’ll	notice	that	in
comparison,	we’re	not	doing	great.	We	could	extend	the	model	we’ve	created	to
be	deeper,	and	that	would	likely	increase	our	accuracy	a	little,	but	for	a	real
increase	in	performance,	we	need	to	switch	domains.	In	audio	processing,	you
can	work	on	the	pure	waveform	as	we’ve	been	doing;	but	most	of	the	time,
you’ll	work	in	the	frequency	domain.	This	different	representation	transforms	the
raw	waveform	into	a	view	that	shows	all	of	the	frequencies	of	sound	at	a	given
point	in	time.	This	is	perhaps	a	more	information-rich	representation	to	present
to	a	neural	network,	as	it’ll	be	able	to	work	on	those	frequencies	directly,	rather
than	having	to	work	out	how	to	map	the	raw	waveform	signal	into	something	the
model	can	use.

Let’s	look	at	how	to	generate	frequency	spectrograms	with	LibROSA.

Mel	Spectrograms
Traditionally,	getting	into	the	frequency	domain	requires	applying	the	Fourier
transform	on	the	audio	signal.	We’re	going	to	go	beyond	that	a	little	by
generating	our	spectrograms	in	the	mel	scale.	The	mel	scale	defines	a	scale	of
pitches	that	are	equal	in	distance	from	another,	where	1000	mels	=	1000	Hz.
This	scale	is	commonly	used	in	audio	processing,	especially	in	speech
recognition	and	classification	applications.	Producing	a	mel	spectrogram	with
LibROSA	requires	two	lines	of	code:

sample_data, sr = librosa.load("ESC-50/train/1-100032-A-0.wav", sr=None)
spectrogram = librosa.feature.melspectrogram(sample_data, sr=sr)

This	results	in	a	NumPy	array	containing	the	spectrogram	data.	If	we	display	this
spectrogram	as	shown	in	Figure	6-4,	we	can	see	the	frequencies	in	our	sound:

librosa.display.specshow(spectrogram, sr=sr, x_axis='time', y_axis='mel')

Figure	6-4.	Mel	spectrogram

However,	not	a	lot	of	information	is	present	in	the	image.	We	can	do	better!	If
we	convert	the	spectrogram	to	a	logarithmic	scale,	we	can	see	a	lot	more	of	the
audio’s	structure,	due	to	the	scale	being	able	to	represent	a	wider	range	of	values.
And	this	is	common	enough	in	audio	procressing	that	LibROSA	includes	a
method	for	it:

log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)

This	computes	a	scaling	factor	of	10 * log10(spectrogram / ref).	ref
defaults	to	1.0,	but	here	we’re	passing	in	np.max()	so	that	spectrogram / ref
will	fall	within	the	range	of	[0,1].	Figure	6-5	shows	the	new	spectrogram.

Figure	6-5.	Log	mel	spectrogram

We	now	have	a	log-scaled	mel	spectrogram!	If	you	call
log_spectrogram.shape,	you’ll	see	it’s	a	2D	tensor,	which	makes	sense
because	we’ve	plotted	images	with	the	tensor.	We	could	create	a	new	neural
network	architecture	and	feed	this	new	data	into	it,	but	I	have	a	diabolical	trick
up	my	sleeve.	We	literally	just	generated	images	of	the	spectrogram	data.	Why
don’t	we	work	on	those	instead?

This	might	seem	silly	at	first;	after	all,	we	have	the	underlying	spectrogram	data,
and	that’s	more	exact	than	the	image	representation	(to	our	eyes,	knowing	that	a
data	point	is	58	rather	than	60	means	more	to	us	than	a	different	shade	of,	say,
purple).	And	if	we	were	starting	from	scratch,	that’d	definitely	be	the	case.	But!
We	have,	just	lying	around	the	place,	already-trained	networks	such	as	ResNet
and	Inception	that	we	know	are	amazing	at	recognizing	structure	and	other	parts
of	images.	We	can	construct	image	representations	of	our	audio	and	use	a
pretrained	network	to	make	big	jumps	in	accuracy	with	very	little	training	by
using	the	super	power	of	transfer	learning	once	again.	This	could	be	useful	with
our	dataset,	as	we	don’t	have	a	lot	of	examples	(only	2,000!)	to	train	our
network.

This	trick	can	be	employed	across	many	disparate	datasets.	If	you	can	find	a	way
of	cheaply	turning	your	data	into	an	image	representation,	it’s	worth	doing	that
and	throwing	a	ResNet	network	against	it	to	get	a	baseline	of	what	transfer
learning	can	do	for	you,	so	you	know	what	you	have	to	beat	by	using	a	different
approach.	Armed	with	this,	let’s	create	a	new	dataset	that	will	generate	these
images	for	us	on	demand.

A	New	Dataset
Now	throw	away	the	original	ESC50	dataset	class	and	build	a	new	one,
ESC50Spectrogram.	Although	this	will	share	some	code	with	the	older	class,
quite	a	lot	more	is	going	on	in	the	__get_item__	method	in	this	version.	We
generate	the	spectrogram	by	using	LibROSA,	and	then	we	do	some	fancy
matplotlib	footwork	to	get	the	data	into	a	NumPy	array.	We	apply	the	array	to
our	transformation	pipeline	(which	just	uses	ToTensor)	and	return	that	and	the
item’s	label.	Here’s	the	code:

class ESC50Spectrogram(Dataset):

def __init__(self,path):
 files = Path(path).glob('*.wav')
 self.items = [(f,int(f.name.split("-")[-1].replace(".wav","")))
 for f in files]
 self.length = len(self.items)
 self.transforms = torchvision.transforms.Compose(
 [torchvision.transforms.ToTensor()])

def __getitem__(self, index):
 filename, label = self.items[index]
 audio_tensor, sample_rate = librosa.load(filename, sr=None)
 spectrogram = librosa.feature.melspectrogram(audio_tensor, sr=sample_rate)
 log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
 librosa.display.specshow(log_spectrogram, sr=sample_rate,
 x_axis='time', y_axis='mel')
 plt.gcf().canvas.draw()
 audio_data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
 audio_data = audio_data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
 return (self.transforms(audio_data), label)

def __len__(self):
 return self.length

We’re	not	going	to	spend	too	much	time	on	this	version	of	the	dataset	because	it
has	a	large	flaw,	which	I	demonstrate	with	Python’s	process_time()	method:

oldESC50 = ESC50("ESC-50/train/")
start_time = time.process_time()
oldESC50.__getitem__(33)
end_time = time.process_time()
old_time = end_time - start_time

newESC50 = ESC50Spectrogram("ESC-50/train/")
start_time = time.process_time()
newESC50.__getitem__(33)
end_time = time.process_time()
new_time = end_time - start_time

old_time = 0.004786839000075815
new_time = 0.39544327499993415

The	new	dataset	is	almost	one	hundred	times	slower	than	our	original	one	that
just	returned	the	raw	audio!	That	will	make	training	incredibly	slow,	and	may
even	negate	any	of	the	benefits	we	could	get	from	using	transfer	learning.

We	can	use	a	couple	of	tricks	to	get	around	most	of	our	troubles	here.	The	first
approach	would	be	to	add	a	cache	to	store	the	generated	spectrogram	in	memory,
so	we	don’t	have	to	regenerate	it	every	time	the	__getitem__	method	is	called.
Using	Python’s	functools	package,	we	can	do	this	easily:

import functools

class ESC50Spectrogram(Dataset):
 #skipping init code

 @functools.lru_cache(maxsize=<size of dataset>)
 def __getitem__(self, index):

Provided	you	have	enough	memory	to	store	the	entire	contents	of	the	dataset	into
RAM,	this	may	be	good	enough.	We’ve	set	up	a	least	recently	used	(LRU)	cache
that	will	keep	the	contents	in	memory	for	as	long	as	possible,	with	indices	that
haven’t	been	accessed	recently	being	the	first	for	ejection	from	the	cache	when
memory	gets	tight.	However,	if	you	don’t	have	enough	memory	to	store
everything,	you’ll	hit	slowdowns	on	every	batch	iteration	as	ejected
spectrograms	need	to	be	regenerated.

My	preferred	approach	is	to	precompute	all	the	possible	plots	and	then	create	a
new	custom	dataset	class	that	loads	these	images	from	the	disk.	(You	can	even
add	the	LRU	cache	annotation	as	well	for	further	speed-up.)

We	don’t	need	to	do	anything	fancy	for	precomputing,	just	a	method	that	saves
the	plots	into	the	same	directory	it’s	traversing:

def precompute_spectrograms(path, dpi=50):
 files = Path(path).glob('*.wav')
 for filename in files:
 audio_tensor, sample_rate = librosa.load(filename, sr=None)
 spectrogram = librosa.feature.melspectrogram(audio_tensor, sr=sr)
 log_spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
 librosa.display.specshow(log_spectrogram, sr=sr, x_axis='time',
 y_axis='mel')
 plt.gcf().savefig("{}{}_{}.png".format(filename.parent,dpi,
 filename.name),dpi=dpi)

This	method	is	simpler	than	our	previous	dataset	because	we	can	use
matplotlib’s	savefig	method	to	save	a	plot	directly	to	disk	rather	than	having

to	mess	around	with	NumPy.	We	also	provide	an	additional	input	parameter,	dpi,
which	allows	us	to	control	the	quality	of	the	generated	output.	Run	this	on	all	the
train,	test,	and	valid	paths	that	we	have	already	set	up	(it	will	likely	take	a
couple	of	hours	to	get	through	all	the	images).

All	we	need	now	is	a	new	dataset	that	reads	these	images.	We	can’t	use	the
standard	ImageDataLoader	from	Chapters	2–4,	as	the	PNG	filename	scheme
doesn’t	match	the	directory	structure	that	it	uses.	But	no	matter,	we	can	just	open
an	image	by	using	the	Python	Imaging	Library:

from PIL import Image

 class PrecomputedESC50(Dataset):
 def __init__(self,path,dpi=50, transforms=None):
 files = Path(path).glob('{}*.wav.png'.format(dpi))
 self.items = [(f,int(f.name.split("-")[-1]
 .replace(".wav.png",""))) for f in files]
 self.length = len(self.items)
 if transforms=None:
 self.transforms =
 torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
 else:
 self.transforms = transforms

 def __getitem__(self, index):
 filename, label = self.items[index]
 img = Image.open(filename)
 return (self.transforms(img), label)

 def __len__(self):
 return self.length

This	code	is	much	simpler,	and	hopefully	that’s	also	reflected	in	the	time	it	takes
to	get	an	entry	from	the	dataset:

start_time = time.process_time()
b.__getitem__(33)
end_time = time.process_time()
end_time - start_time
>> 0.0031465259999094997

Obtaining	an	element	from	this	dataset	takes	roughly	the	same	time	as	in	our
original	audio-based	one,	so	we	won’t	be	losing	anything	by	moving	to	our

image-based	approach,	except	for	the	one-time	cost	of	precomputing	all	the
images	before	creating	the	database.	We’ve	also	supplied	a	default	transform
pipeline	that	turns	an	image	into	a	tensor,	but	it	can	be	swapped	out	for	a
different	pipeline	during	initialization.	Armed	with	these	optimizations,	we	can
start	to	apply	transfer	learning	to	the	problem.

A	Wild	ResNet	Appears
As	you	may	remember	from	Chapter	4,	transfer	learning	requires	that	we	take	a
model	that	has	already	been	trained	on	a	particular	dataset	(in	the	case	of	images,
likely	ImageNet),	and	then	fine-tune	it	on	our	particular	data	domain,	the	ESC-
50	dataset	that	we’re	turning	into	spectrogram	images.	You	might	be	wondering
whether	a	model	that	is	trained	on	normal	photographs	is	of	any	use	to	us.	It
turns	out	that	the	pretrained	models	do	learn	a	lot	of	structure	that	can	be	applied
to	domains	that	at	first	glance	might	seem	wildly	different.	Here’s	our	code	from
Chapter	4	that	initializes	a	model:

from torchvision import models
spec_resnet = models.ResNet50(pretrained=True)

for param in spec_resnet.parameters():
 param.requires_grad = False

spec_resnet.fc = nn.Sequential(nn.Linear(spec_resnet.fc.in_features,500),
nn.ReLU(),
nn.Dropout(), nn.Linear(500,50))

This	initializes	us	with	a	pretrained	(and	frozen)	ResNet50	model	and	swaps	out
the	head	of	the	model	for	an	untrained	Sequential	module	that	ends	with	a
Linear	with	an	output	of	50,	one	for	each	of	the	classes	in	the	ESC-50	dataset.
We	also	need	to	create	a	DataLoader	that	takes	our	precomputed	spectrograms.
When	we	create	our	ESC-50	dataset,	we’ll	also	want	to	normalize	the	incoming
images	with	the	standard	ImageNet	standard	deviation	and	mean,	as	that’s	what
the	pretrained	ResNet-50	architecture	was	trained	with.	We	can	do	that	by
passing	in	a	new	pipeline:

esc50pre_train = PreparedESC50(PATH, transforms=torchvision.transforms
.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize

(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])]))

esc50pre_valid = PreparedESC50(PATH, transforms=torchvision.transforms
.Compose([torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize
(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])]))

esc50_train_loader = (esc50pre_train, bs, shuffle=True)
esc50_valid_loader = (esc50pre_valid, bs, shuffle=True)

With	our	data	loaders	set	up,	we	can	move	on	to	finding	a	learning	rate	and	get
ready	to	train.

Finding	a	Learning	Rate
We	need	to	find	a	learning	rate	to	use	in	our	model.	As	in	Chapter	4,	we’ll	save
the	model’s	initial	parameters	and	use	our	find_lr()	function	to	find	a	decent
learning	rate	for	training.	Figure	6-6	shows	the	plot	of	the	losses	against	the
learning	rate.

spec_resnet.save("spec_resnet.pth")
loss_fn = nn.CrossEntropyLoss()
optimizer = optim.Adam(spec_resnet.parameters(), lr=lr)
logs,losses = find_lr(spec_resnet, loss_fn, optimizer)
plt.plot(logs, losses)

Figure	6-6.	A	SpecResNet	learning	rate	plot

Looking	at	the	graph	of	the	learning	rate	plotted	against	loss,	it	seems	like	1e-2

is	a	good	place	to	start.	As	our	ResNet-50	model	is	somewhat	deeper	than	our
previous	one,	we’re	also	going	to	use	differential	learning	rates	of	[1e-2,1e-
4,1e-8],	with	the	highest	learning	rate	applied	to	our	classifier	(as	it	requires	the
most	training!)	and	slower	rates	for	the	already-trained	backbone.	Again,	we	use
Adam	as	our	optimizer,	but	feel	free	to	experiment	with	the	others	available.

Before	we	apply	those	differential	rates,	though,	we	train	for	a	few	epochs	that
update	only	the	classifier,	as	we	froze	the	ResNet-50	backbone	when	we	created
our	network:

optimizer = optim.Adam(spec_resnet.parameters(), lr=[1e-2,1e-4,1e-8])

train(spec_resnet, optimizer, nn.CrossEntropyLoss(),
esc50_train_loader, esc50_val_loader,epochs=5,device="cuda")

We	now	unfreeze	the	backbone	and	apply	our	differential	rates:

for param in spec_resnet.parameters():
 param.requires_grad = True

optimizer = optim.Adam(spec_resnet.parameters(), lr=[1e-2,1e-4,1e-8])

train(spec_resnet, optimizer, nn.CrossEntropyLoss(),
esc50_train_loader, esc50_val_loader,epochs=20,device="cuda")

> Epoch 19, accuracy = 0.80

As	you	can	see,	with	a	validation	accuracy	of	around	80%,	we’re	already	vastly
outperforming	our	original	AudioNet	model.	The	power	of	transfer	learning
strikes	again!	Feel	free	to	train	for	more	epochs	to	see	if	your	accuracy	continues
to	improve.	If	we	look	at	the	ESC-50	leaderboard,	we’re	closing	in	on	human-
level	accuracy.	And	that’s	just	with	ResNet-50.	You	could	try	with	ResNet-101
and	perhaps	an	ensemble	of	different	architectures	to	push	the	score	up	even
higher.

And	there’s	data	augmentation	to	consider.	Let’s	take	a	look	at	a	few	ways	of
doing	that	in	both	domains	that	we’ve	been	working	in	so	far.

Audio	Data	Augmentation

When	we	were	looking	at	images	in	Chapter	4,	we	saw	that	we	could	improve
the	accuracy	of	our	classifier	by	making	changes	to	our	incoming	pictures.	By
flipping	them,	cropping	them,	or	applying	other	transformations,	we	made	our
neural	network	work	harder	in	the	training	phase	and	obtained	a	more
generalized	model	at	the	end	of	it,	one	that	was	not	simply	fitting	to	the	data
presented	(the	scourge	of	overfitting,	don’t	forget).	Can	we	do	the	same	here?
Yes!	In	fact,	there	are	two	approaches	that	we	can	use—one	obvious	approach
that	works	on	the	original	audio	waveform,	and	a	perhaps	less-obvious	idea	that
arises	from	our	decision	to	use	a	ResNet-based	classifier	on	images	of	mel
spectrograms.	Let’s	take	a	look	at	audio	transforms	first.

torchaudio	Transforms
In	a	similar	manner	to	torchvision,	torchaudio	includes	a	transforms
module	that	perform	transformations	on	incoming	data.	However,	the	number	of
transformations	offered	is	somewhat	sparse,	especially	compared	to	the	plethora
that	we	get	when	we’re	working	with	images.	If	you’re	interested,	have	a	look	at
the	documentation	for	a	full	list,	but	the	only	one	we	look	at	here	is
torchaudio.transforms.PadTrim.	In	the	ESC-50	dataset,	we	are	fortunate	in
that	every	audio	clip	is	the	same	length.	That	isn’t	something	that	happens	in	the
real	world,	but	our	neural	networks	like	(and	sometimes	insist	on,	depending	on
how	they’re	constructed)	input	data	to	be	regular.	PadTrim	will	take	an	incoming
audio	tensor	and	either	pad	it	out	to	the	required	length,	or	trim	it	down	so	it
doesn’t	exceed	that	length.	If	we	wanted	to	trim	down	a	clip	to	a	new	length,
we’d	use	PadTrim	like	this:

audio_tensor, rate = torchaudio.load("test.wav")
audio_tensor.shape
trimmed_tensor = torchaudio.transforms.PadTrim(max_len=1000)(audio_orig)

However,	if	you’re	looking	for	augmentation	that	actually	changes	how	the
audio	sounds	(e.g.,	adding	an	echo,	noise,	or	changing	the	tempo	of	the	clip),
then	the	torchaudio.transforms	module	is	of	no	use	to	you.	Instead,	we	need
to	use	SoX.

SoX	Effect	Chains

https://oreil.ly/d1kp6

Why	it’s	not	part	of	the	transforms	module,	I’m	really	not	sure,	but
torchaudio.sox_effects.SoxEffectsChain	allows	you	to	create	a	chain	of
one	or	more	SoX	effects	and	apply	those	to	an	input	file.	The	interface	is	a	bit
fiddly,	so	let’s	see	it	in	action	in	a	new	version	of	the	dataset	that	changes	the
pitch	of	the	audio	file:

class ESC50WithPitchChange(Dataset):

 def __init__(self,path):
 # Get directory listing from path
 files = Path(path).glob('*.wav')
 # Iterate through the listing and create a list of tuples (filename, label)
 self.items = [(f,f.name.split("-")[-1].replace(".wav","")) for f in files]
 self.length = len(self.items)
 self.E = torchaudio.sox_effects.SoxEffectsChain()
 self.E.append_effect_to_chain("pitch", [0.5])

 def __getitem__(self, index):
 filename, label = self.items[index]
 self.E.set_input_file(filename)
 audio_tensor, sample_rate = self.E.sox_build_flow_effects()
 return audio_tensor, label

 def __len__(self):
 return self.length

In	our	__init__	method,	we	create	a	new	instance	variable,	E,	a
SoxEffectsChain,	that	will	contain	all	the	effects	that	we	want	to	apply	to	our
audio	data.	We	then	add	a	new	effect	by	using	append_effect_to_chain,
which	takes	a	string	indicating	the	name	of	the	effect,	and	an	array	of	parameters
to	send	to	sox.	You	can	get	a	list	of	available	effects	by	calling
torchaudio.sox_effects.effect_names().	If	we	were	to	add	another	effect,
it	would	take	place	after	the	pitch	effect	we	have	already	set	up,	so	if	you	want	to
create	a	list	of	separate	effects	and	randomly	apply	them,	you’ll	need	to	create
separate	chains	for	each	one.

When	it	comes	to	selecting	an	item	to	return	to	the	data	loader,	things	are	a	little
different.	Instead	of	using	torchaudio.load(),	we	refer	to	our	effects	chain	and
point	it	to	the	file	by	using	set_input_file.	But	note	that	this	doesn’t	load	the
file!	Instead,	we	have	to	use	sox_build_flow_effects(),	which	kicks	off	SoX
in	the	background,	applies	the	effects	in	the	chain,	and	returns	the	tensor	and

sample	rate	information	we	would	have	otherwise	obtained	from	load().

The	number	of	things	that	SoX	can	do	is	pretty	staggering,	and	I	won’t	go	into
more	detail	on	all	the	possible	effects	you	could	use.	I	suggest	having	a	look	at
the	SoX	documentation	in	conjunction	with	list_effects()	to	see	the
possibilities.

These	transformations	allow	us	to	alter	the	original	audio,	but	we’ve	spent	quite
a	bit	of	this	chapter	building	up	a	processing	pipeline	that	works	on	images	of
mel	spectrograms.	We	could	do	what	we	did	to	generate	the	initial	dataset	for
that	pipeline,	by	creating	altered	audio	samples	and	then	creating	the
spectrograms	from	them,	but	at	that	point	we’re	creating	an	awful	lot	of	data	that
we	will	need	to	mix	together	at	run-time.	Thankfully,	we	can	do	some
transformations	on	the	spectrograms	themselves.

SpecAugment
Now,	you	might	be	thinking	at	this	point:	“Wait,	these	spectrograms	are	just
images!	We	can	use	any	image	transform	we	want	on	them!”	And	yes!	Gold	star
for	you	in	the	back.	But	we	do	have	to	be	a	little	careful;	it’s	possible,	for
example,	that	a	random	crop	may	cut	out	enough	frequencies	that	it	potentially
changes	the	output	class.	This	is	much	less	of	an	issue	in	our	ESC-50	dataset,	but
if	you	were	doing	something	like	speech	recognition,	that	would	definitely	be
something	you’d	have	to	consider	when	applying	augmentations.	Another
intriguing	possibility	is	that	because	we	know	that	all	the	spectrograms	have	the
same	structure	(they’re	always	going	to	be	a	frequency	graph!),	we	could	create
image-based	transforms	that	work	specifically	around	that	structure.

In	2019,	Google	released	a	paper	on	SpecAugment, 	which	reported	new	state-
of-the-art	results	on	many	audio	datasets.	The	team	obtained	these	results	by
using	three	new	data	augmentation	techniques	that	they	applied	directly	to	a	mel
spectrogram:	time	warping,	frequency	masking,	and	time	masking.	We	won’t
look	at	time	warping	because	the	benefit	derived	from	it	is	small,	but	we’ll
implement	custom	transforms	for	masking	time	and	frequency.

Frequency	masking
Frequency	masking	randomly	removes	a	frequency	or	set	of	frequencies	from

3

https://oreil.ly/uLBTF

our	audio	input.	This	attempts	to	make	the	model	work	harder;	it	cannot	simply
memorize	an	input	and	its	class,	because	the	input	will	have	different	frequencies
masked	during	each	batch.	The	model	will	instead	have	to	learn	other	features
that	can	determine	how	to	map	the	input	to	a	class,	which	hopefully	should	result
in	a	more	accurate	model.

In	our	mel	spectrograms,	this	is	shown	by	making	sure	that	nothing	appears	in
the	spectrograph	for	that	frequency	at	any	time	step.	Figure	6-7	shows	what	this
looks	like:	essentially,	a	blank	line	drawn	across	a	natural	spectrogram.

Here’s	the	code	for	a	custom	Transform	that	implements	frequency	masking:

class FrequencyMask(object):
 """
 Example:
 >>> transforms.Compose([
 >>> transforms.ToTensor(),
 >>> FrequencyMask(max_width=10, use_mean=False),
 >>>])

 """

 def __init__(self, max_width, use_mean=True):
 self.max_width = max_width
 self.use_mean = use_mean

 def __call__(self, tensor):
 """
 Args:
 tensor (Tensor): Tensor image of
 size (C, H, W) where the frequency
 mask is to be applied.

 Returns:
 Tensor: Transformed image with Frequency Mask.
 """
 start = random.randrange(0, tensor.shape[2])
 end = start + random.randrange(1, self.max_width)
 if self.use_mean:
 tensor[:, start:end, :] = tensor.mean()
 else:
 tensor[:, start:end, :] = 0
 return tensor

 def __repr__(self):
 format_string = self.__class__.__name__ + "(max_width="

 format_string += str(self.max_width) + ")"
 format_string += 'use_mean=' + (str(self.use_mean) + ')')

 return format_string

When	the	transform	is	applied,	PyTorch	will	call	the	__call__	method	with	the
tensor	representation	of	the	image	(so	we	need	to	place	it	in	a	Compose	chain
after	the	image	has	been	converted	to	a	tensor,	not	before).	We’re	assuming	that
the	tensor	will	be	in	channels	×	height	×	width	format,	and	we	want	to	set	the
height	values	in	a	small	range,	to	either	zero	or	the	mean	of	the	image	(because
we’re	using	log	mel	spectrograms,	the	mean	should	be	the	same	as	zero,	but	we
include	both	options	so	you	can	experiment	to	see	if	one	works	better	than	the
other).	The	range	is	provided	by	the	max_width	parameter,	and	our	resulting
pixel	mask	will	be	between	1	and	max_pixels	wide.	We	also	need	to	pick	a
random	starting	point	for	the	mask,	which	is	what	the	start	variable	is	for.
Finally,	the	complicated	part	of	this	transform—we	apply	our	generated	mask:

tensor[:, start:end, :] = tensor.mean()

This	isn’t	quite	so	bad	when	we	break	it	down.	Our	tensor	has	three	dimensions,
but	we	want	to	apply	this	transform	across	all	the	red,	green,	and	blue	channels,
so	we	use	the	bare	:	to	select	everything	in	that	dimension.	Using	start:end,
we	select	our	height	range,	and	then	we	select	everything	in	the	width	channel,
as	we	want	to	apply	our	mask	across	every	time	step.	And	then	on	the	righthand
side	of	the	expression,	we	set	the	value;	in	this	case,	tensor.mean().	If	we	take
a	random	tensor	from	the	ESC-50	dataset	and	apply	the	transform	to	it,	we	can
see	in	Figure	6-7	that	this	class	is	creating	the	required	mask.

torchvision.transforms.Compose([FrequencyMask(max_width=10, use_mean=False),
torchvision.transforms.ToPILImage()])(torch.rand(3,250,200))

Figure	6-7.	Frequency	mask	applied	to	a	random	ESC-50	sample

Next	we’ll	turn	our	attention	to	time	masking.

Time	masking
With	our	frequency	mask	complete,	we	can	turn	to	the	time	mask,	which	does	the
same	as	the	frequency	mask,	but	in	the	time	domain.	The	code	here	is	mostly	the
same:

class TimeMask(object):
 """
 Example:
 >>> transforms.Compose([
 >>> transforms.ToTensor(),
 >>> TimeMask(max_width=10, use_mean=False),
 >>>])

 """

 def __init__(self, max_width, use_mean=True):
 self.max_width = max_width
 self.use_mean = use_mean

 def __call__(self, tensor):
 """
 Args:
 tensor (Tensor): Tensor image of
 size (C, H, W) where the time mask
 is to be applied.

 Returns:
 Tensor: Transformed image with Time Mask.
 """
 start = random.randrange(0, tensor.shape[1])
 end = start + random.randrange(0, self.max_width)
 if self.use_mean:
 tensor[:, :, start:end] = tensor.mean()
 else:
 tensor[:, :, start:end] = 0
 return tensor

 def __repr__(self):
 format_string = self.__class__.__name__ + "(max_width="
 format_string += str(self.max_width) + ")"
 format_string += 'use_mean=' + (str(self.use_mean) + ')')
 return format_string

As	you	can	see,	this	class	is	similar	to	the	frequency	mask.	The	only	difference	is
that	our	start	variable	now	ranges	at	some	point	on	the	height	axis,	and	when
we’re	doing	our	masking,	we	do	this:

tensor[:, :, start:end] = 0

This	indicates	that	we	select	all	the	values	of	the	first	two	dimensions	of	our
tensor	and	the	start:end	range	in	the	last	dimension.	And	again,	we	can	apply
this	to	a	random	tensor	from	ESC-50	to	see	that	the	mask	is	being	applied
correctly,	as	shown	in	Figure	6-8.

torchvision.transforms.Compose([TimeMask(max_width=10, use_mean=False),
torchvision.transforms.ToPILImage()])(torch.rand(3,250,200))

Figure	6-8.	Time	mask	applied	to	a	random	ESC-50	sample

To	finish	our	augmentation,	we	create	a	new	wrapper	transformation	that	ensures
that	one	or	both	of	the	masks	is	applied	to	a	spectrogram	image:

class PrecomputedTransformESC50(Dataset):
 def __init__(self,path,dpi=50):
 files = Path(path).glob('{}*.wav.png'.format(dpi))
 self.items = [(f,f.name.split("-")[-1].replace(".wav.png",""))
 for f in files]
 self.length = len(self.items)
 self.transforms = transforms.Compose([
 transforms.ToTensor(),
 RandomApply([FrequencyMask(self.max_freqmask_width)]p=0.5),
 RandomApply([TimeMask(self.max_timemask_width)]p=0.5)
])

 def __getitem__(self, index):
 filename, label = self.items[index]
 img = Image.open(filename)
 return (self.transforms(img), label)

 def __len__(self):
 return self.length

Try	rerunning	the	training	loop	with	this	data	augmentation	and	see	if	you,	like
Google,	achieve	better	accuracy	with	these	masks.	But	maybe	there’s	still	more
that	we	can	try	with	this	dataset?

Further	Experiments
So	far,	we’ve	created	two	neural	networks—one	based	on	the	raw	audio
waveform,	and	the	other	based	on	the	images	of	mel	spectrograms—to	classify
sounds	from	the	ESC-50	dataset.	Although	you’ve	seen	that	the	ResNet-powered
model	is	more	accurate	using	the	power	of	transfer	learning,	it	would	be	an
interesting	experiment	to	create	a	combination	of	the	two	networks	to	see
whether	that	increases	or	decreases	the	accuracy.	A	simple	way	of	doing	this
would	be	to	revisit	the	ensembling	approach	from	Chapter	4:	just	combine	and
average	the	predictions.	Also,	we	skipped	over	the	idea	of	building	a	network
based	on	the	raw	data	we	were	getting	from	the	spectrograms.	If	a	model	is
created	that	works	on	that	data,	does	it	help	overall	accuracy	if	it	is	introduced	to
the	ensemble?	We	can	also	use	other	versions	of	ResNet,	or	we	could	create	new
architectures	that	use	different	pretrained	models	such	as	VGG	or	Inception	as	a
backbone.	Explore	some	of	these	options	and	see	what	happens;	in	my
experiments,	SpecAugment	improves	ESC-50	classification	accuracy	by	around
2%.

Conclusion
In	this	chapter,	we	used	two	very	different	strategies	for	audio	classification,
took	a	brief	tour	of	PyTorch’s	torchaudio	library,	and	saw	how	to	precompute
transformations	on	datasets	when	doing	transformations	on	the	fly	would	have	a
severe	impact	on	training	time.	We	discussed	two	approaches	to	data
augmentation.	As	an	unexpected	bonus,	we	again	stepped	through	how	to	train
an	image-based	model	by	using	transfer	learning	to	quickly	generate	a	classifier
with	decent	accuracy	compared	to	the	others	on	the	ESC-50	leaderboard.

This	wraps	up	our	tour	through	images,	test,	and	audio,	though	we	return	to	all
three	in	Chapter	9	when	we	look	at	some	applications	that	use	PyTorch.	Next	up,
though,	we	look	at	how	to	debug	models	when	they’re	not	training	quite	right	or
fast	enough.

Further	Reading
“Interpreting	and	Explaining	Deep	Neural	Networks	for	Classification
of	Audio	Signals”	by	Sören	Becker	et	al.	(2018)

“CNN	Architectures	for	Large-Scale	Audio	Classification”	by	Shawn
Hershey	et	al.	(2016)

1 	Understanding	all	of	what	SoX	can	do	is	beyond	the	scope	of	this	book,	and	won’t	be	necessary	for
what	we’re	going	to	be	doing	in	the	rest	of	this	chapter.

2 	See	“Very	Deep	Convolutional	Neural	Networks	for	Raw	Waveforms”	by	Wei	Dai	et	al.	(2016).

3 	See	“SpecAugment:	A	Simple	Data	Augmentation	Method	for	Automatic	Speech	Recognition”	by
Daniel	S.	Park	et	al.	(2019).

https://arxiv.org/abs/1807.03418
https://arxiv.org/abs/1609.09430v2
http://sox.sourceforge.net
https://arxiv.org/pdf/1610.00087.pdf
https://arxiv.org/abs/1904.08779

Chapter	7.	Debugging	PyTorch
Models

We’ve	created	a	lot	of	models	so	far	in	this	book,	but	in	this	chapter,	we	have	a
brief	look	at	interpreting	them	and	working	out	what’s	going	on	underneath	the
covers.	We	take	a	look	at	using	class	activation	mapping	with	PyTorch	hooks	to
determine	the	focus	of	a	model’s	decision	about	how	to	connect	PyTorch	to
Google’s	TensorBoard	for	debugging	purposes.	I	show	how	to	use	flame	graphs
to	identify	the	bottlenecks	in	transforms	and	training	pipelines,	as	well	as
provide	a	worked	example	of	speeding	up	a	slow	transformation.	Finally,	we
look	at	how	to	trade	compute	for	memory	when	working	with	larger	models
using	checkpointing.	First,	though,	a	brief	word	about	your	data.

It’s	3	a.m.	What	Is	Your	Data	Doing?
Before	we	delve	into	all	the	shiny	things	like	TensorBoard	or	gradient
checkpointing	to	use	massive	models	on	a	single	GPU,	ask	yourself	this:	do	you
understand	your	data?	If	you’re	classifying	inputs,	do	you	have	a	balanced
sample	across	all	the	available	labels?	In	the	training,	validation,	and	test	sets?

And	furthermore,	are	you	sure	your	labels	are	right?	Important	image-based
datasets	such	as	MNIST	and	CIFAR-10	(Canadian	Institute	for	Advanced
Research)	are	known	to	contain	some	incorrect	labels.	You	should	check	yours,
especially	if	categories	are	similar	to	one	another,	like	dog	breeds	or	plant
varieties.	Simply	doing	a	sanity	check	of	your	data	may	end	up	saving	a	lot	of
time	if	you	discover	that,	say,	one	category	of	labels	has	only	tiny	images,
whereas	all	the	others	have	large-resolution	examples.

Once	you’ve	made	sure	your	data	is	in	good	condition,	then	yes,	let’s	head	over
to	TensorBoard	to	start	checking	out	some	possible	issues	in	your	model.

TensorBoard

TensorBoard	is	a	web	application	designed	for	visualizing	various	aspects	of
neural	networks.	It	allows	for	easy,	real-time	viewing	of	statistics	such	as
accuracy,	losses	activation	values,	and	really	anything	you	want	to	send	across
the	wire.	Although	it	was	written	with	TensorFlow	in	mind,	it	has	such	an
agnostic	and	fairly	straightforward	API	that	working	with	it	in	PyTorch	is	not
that	different	from	how	you’d	use	it	in	TensorFlow.	Let’s	install	it	and	see	how
we	can	use	it	to	gain	some	insights	about	our	models.

NOTE
When	reading	up	on	PyTorch,	you’ll	likely	come	across	references	to	an	application	called
Visdom,	which	is	Facebook’s	alternative	to	TensorBoard.	Before	PyTorch	v1.1,	the	way	to
support	visualizations	was	to	use	Visdom	with	PyTorch	while	third-party	libraries	such	as
tensorboardX	were	available	to	integrate	with	TensorBoard.	While	Visdom	continues	be
maintained,	the	inclusion	of	an	official	TensorBoard	integration	in	v1.1	and	above	suggests
that	the	developers	of	PyTorch	have	recognized	that	TensorBoard	is	the	de	facto	neural	net
visualizer	tool.

Installing	TensorBoard
Installing	TensorBoard	can	be	done	with	either	pip	or	conda:

pip install tensorboard
conda install tensorboard

NOTE
PyTorch	requires	v1.14	or	above	of	TensorBoard.

TensorBoard	can	then	be	started	on	the	command	line:

tensorboard --logdir=runs

You	can	then	go	to	http://[your-machine]:6006,	where	you’ll	see	the	welcome
screen	shown	in	Figure	7-1.	We	can	now	send	data	to	the	application.

https://oreil.ly/rZqv2

Figure	7-1.	TensorBoard

Sending	Data	to	TensorBoard
The	module	for	using	TensorBoard	with	PyTorch	is	located	in
torch.utils.tensorboard:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
writer.add_scalar('example', 3)

We	use	the	SummaryWriter	class	to	talk	to	TensorBoard	using	the	standard
location	for	logging	output,	./runs,	and	we	can	send	a	scalar	by	using
add_scalar	with	a	tag.	Because	SummaryWriter	works	asynchronously,	it	may
take	a	moment,	but	you	should	see	TensorBoard	update	as	shown	in	Figure	7-2.

Figure	7-2.	Example	data	point	in	TensorBoard

Not	very	exciting,	is	it?	Let’s	write	a	loop	that	sends	updates	from	an	initial
starting	point:

import random
value = 10
writer.add_scalar('test_loop', value, 0)
for i in range(1,10000):
 value += random.random() - 0.5
 writer.add_scalar('test_loop', value, i)

By	passing	where	we	are	in	our	loop,	as	shown	in	Figure	7-3,	TensorBoard	gives
us	a	plot	of	the	random	walk	we’re	doing	from	10.	If	we	run	the	code	again,
we’ll	see	that	it	has	generated	a	different	run	inside	the	display,	and	we	can
select	on	the	left	side	of	the	web	page	whether	we	want	to	see	all	our	runs	or	just
some	in	particular.

Figure	7-3.	Plotting	a	random	walk	in	TensorBoard

We	can	use	this	to	replace	our	print	statements	in	the	training	loop.	We	can	also
send	the	model	itself	to	get	a	representation	in	TensorBoard!

import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms,models

writer = SummaryWriter()
model = models.resnet18(False)
writer.add_graph(model,torch.rand([1,3,224,224]))

def train(model, optimizer, loss_fn, train_data_loader, test_data_loader,
epochs=20):
 model = model.train()
 iteration = 0

 for epoch in range(epochs):
 model.train()
 for batch in train_loader:
 optimizer.zero_grad()
 input, target = batch
 output = model(input)

 loss = loss_fn(output, target)
 writer.add_scalar('loss', loss, epoch)
 loss.backward()
 optimizer.step()

 model.eval()
 num_correct = 0
 num_examples = 0
 for batch in val_loader:
 input, target = batch
 output = model(input)
 correct = torch.eq(torch.max(F.softmax(output), dim=1)[1],
target).view(-1)
 num_correct += torch.sum(correct).item()
 num_examples += correct.shape[0]
 print("Epoch {}, accuracy = {:.2f}".format(epoch,
 num_correct / num_examples)
 writer.add_scalar('accuracy', num_correct / num_examples, epoch)
 iterations += 1

When	it	comes	to	using	add_graph(),	we	need	to	send	in	a	tensor	to	trace
through	the	model	as	well	as	the	model	itself.	Once	that	happens,	though,	you
should	see	GRAPHS	appear	in	TensorBoard,	and	as	shown	in	Figure	7-4,	clicking
the	large	ResNet	block	reveals	further	detail	of	the	model’s	structure.

Figure	7-4.	Visualizing	ResNet

We	now	have	the	ability	to	send	accuracy	and	loss	information	as	well	as	model

structure	to	TensorBoard.	By	aggregating	multiple	runs	of	accuracy	and	loss
information,	we	can	see	whether	anything	is	different	in	a	particular	run
compared	to	others,	which	is	a	useful	clue	when	trying	to	work	out	why	a
training	run	produced	poor	results.	We	return	to	TensorBoard	shortly,	but	first
let’s	look	at	other	features	that	PyTorch	makes	available	for	debugging.

PyTorch	Hooks
PyTorch	has	hooks,	which	are	functions	that	can	be	attached	to	either	a	tensor	or
a	module	on	the	forward	or	backward	pass.	When	PyTorch	encounters	a	module
with	a	hook	during	a	pass,	it	will	call	the	registered	hooks.	A	hook	registered	on
a	tensor	will	be	called	when	its	gradient	is	being	calculated.

Hooks	are	potentially	powerful	ways	of	manipulating	modules	and	tensors
because	you	can	completely	replace	the	output	of	what	comes	into	the	hook	if
you	so	desire.	You	could	change	the	gradient,	mask	off	activations,	replace	all
the	biases	in	the	module,	and	so	on.	In	this	chapter,	though,	we’re	just	going	to
use	them	as	a	way	of	obtaining	information	about	the	network	as	data	flows
through.

Given	a	ResNet-18	model,	we	can	attach	a	forward	hook	on	a	particular	part	of
the	model	by	using	register_forward_hook:

def print_hook(self, module, input, output):
 print(f"Shape of input is {input.shape}")

model = models.resnet18()
hook_ref = model.fc.register_forward_hook(print_hook)
model(torch.rand([1,3,224,224]))
hook_ref.remove()
model(torch.rand([1,3,224,224]))

If	you	run	this	code	you	should	see	text	printed	out	showing	the	shape	of	the
input	to	the	linear	classifier	layer	of	the	model.	Note	that	the	second	time	you
pass	a	random	tensor	through	the	model,	you	shouldn’t	see	the	print	statement.
When	we	add	a	hook	to	a	module	or	tensor,	PyTorch	returns	a	reference	to	that
hook.	We	should	always	save	that	reference	(here	we	do	it	in	hook_ref)	and
then	call	remove()	when	we’re	finished.	If	you	don’t	store	the	reference,	then	it
will	just	hang	out	and	take	up	valuable	memory	(and	potentially	waste	compute

resources	during	a	pass).	Backward	hooks	work	in	the	same	way,	except	you	call
register_backward_hook()	instead.

Of	course,	if	we	can	print()	something,	we	can	certainly	send	it	to
TensorBoard!	Let’s	see	how	to	use	both	hooks	and	TensorBoard	to	get	important
stats	on	our	layers	during	training.

Plotting	Mean	and	Standard	Deviation
To	start,	we	set	up	a	function	that	will	send	the	mean	and	standard	deviation	of
an	output	layer	to	TensorBoard:

def send_stats(i, module, input, output):
 writer.add_scalar(f"{i}-mean",output.data.std())
 writer.add_scalar(f"{i}-stddev",output.data.std())

We	can’t	use	this	by	itself	to	set	up	a	forward	hook,	but	using	the	Python
function	partial(),	we	can	create	a	series	of	forward	hooks	that	will	attach
themselves	to	a	layer	with	a	set	i	value	that	will	make	sure	that	the	correct
values	are	routed	to	the	right	graphs	in	TensorBoard:

from functools import partial

for i,m in enumerate(model.children()):
 m.register_forward_hook(partial(send_stats, i))

Note	that	we’re	using	model.children(),	which	will	attach	only	to	each	top-
level	block	of	the	model,	so	if	we	have	an	nn.Sequential()	layer	(which	we
will	have	in	a	ResNet-based	model),	we’ll	attach	a	hook	to	only	that	block	and
not	one	for	each	individual	module	within	the	nn.Sequential	list.

If	we	train	our	model	with	our	usual	training	function,	we	should	see	the
activations	start	streaming	into	TensorBoard,	as	shown	in	Figure	7-5.	You’ll
have	to	switch	to	wall-clock	time	within	the	UI	as	we’re	no	longer	sending	step
information	back	to	TensorBoard	with	the	hook	(as	we’re	getting	the	module
information	only	when	the	PyTorch	hook	is	called).

Figure	7-5.	Mean	and	standard	deviation	of	modules	in	TensorBoard

Now,	I	mentioned	in	Chapter	2	that,	ideally,	layers	in	a	neural	network	should
have	a	mean	of	0	and	a	standard	deviation	of	1	to	make	sure	that	our	calculations
don’t	run	off	to	infinity	or	to	zero.	Have	a	look	at	the	layers	in	TensorBoard.	Do
they	look	like	they’re	remaining	in	that	value	range?	Does	the	plot	sometimes
spike	and	then	collapse?	If	so,	that	could	be	a	signal	that	the	network	is	having
difficulty	training.	In	Figure	7-5,	our	mean	is	close	to	zero,	but	our	standard
deviation	is	also	pretty	close	to	zero	as	well.	If	this	is	happening	in	many	layers
of	your	network,	it	may	be	a	sign	that	your	activation	functions	(e.g.,	ReLU)	are
not	quite	suited	to	your	problem	domain.	It	might	be	worth	experimenting	with
other	functions	to	see	if	they	improve	the	model’s	performance;	PyTorch’s
LeakyReLU	is	a	good	alternative	offering	similar	activations	to	the	standard	ReLU
but	lets	more	information	through,	which	might	help	in	training.

That	about	wraps	up	our	look	at	TensorBoard,	but	the	“Further	Reading”	will
point	you	to	more	resources.	In	the	meantime,	let’s	see	how	we	can	get	a	model
to	explain	how	it	came	to	a	decision.

Class	Activation	Mapping
Class	activation	mapping	(CAM)	is	a	technique	for	visualizing	the	activations	of
a	network	after	it	has	classified	an	incoming	tensor.	In	image-based	classifiers,
it’s	often	shown	as	a	heatmap	on	top	of	the	original	image,	as	shown	in	Figure	7-
6.

Figure	7-6.	Class	activation	mapping	with	Casper

From	the	heatmap,	we	can	get	an	intuitive	idea	of	how	the	network	reached	the
decision	of	Persian	Cat	from	the	available	ImageNet	classes.	The	activations	of
the	network	are	at	their	highest	around	the	face	and	body	of	the	cat	and	low
elsewhere	in	the	image.

To	generate	the	heatmap,	we	capture	the	activations	of	the	final	convolutional
layer	of	a	network,	just	before	it	goes	into	the	Linear	layer,	as	this	allows	us	to
see	what	the	combined	CNN	layers	thinks	are	important	as	we	head	into	the	final
mapping	from	image	to	classes.	Thankfully,	with	PyTorch’s	hook	feature,	this	is
fairly	straightforward.	We	wrap	up	the	hook	in	a	class,	SaveActivations:

class SaveActivations():
 activations=None
 def __init__(self, m):
 self.hook = m.register_forward_hook(self.hook_fn)
 def hook_fn(self, module, input, output):
 self.features = output.data
 def remove(self):
 self.hook.remove()

We	then	push	our	image	of	Casper	through	the	network	(normalizing	for
ImageNet),	apply	softmax	to	turn	the	output	tensor	into	probabilities,	and	use
torch.topk()	as	a	way	of	pulling	out	both	the	max	probability	and	its	index:

import torch
from torchvision import models, transforms
from torch.nn import functional as F

casper = Image.open("casper.jpg")
Imagenet mean/std

normalize = transforms.Normalize(
 mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225]
)

preprocess = transforms.Compose([
 transforms.Resize((224,224)),
 transforms.ToTensor(),
 normalize
])

display_transform = transforms.Compose([
 transforms.Resize((224,224))])

casper_tensor = preprocess(casper)

model = models.resnet18(pretrained=True)
model.eval()
casper_activations = SaveActivations(model.layer_4)
prediction = model(casper_tensor.unsqueeze(0))
pred_probabilities = F.softmax(prediction).data.squeeze()
casper_activations.remove()
torch.topk(pred_probabilities,1)

NOTE
I	haven’t	explained	torch.nn.functional	yet,	but	the	best	way	to	think	about	it	is	that	it
contains	the	implementation	of	the	functions	provided	in	torch.nn.	For	example,	if	you	create
an	instance	of	torch.nn.softmax(),	you	get	an	object	with	a	forward()	method	that
performs	softmax.	If	you	look	in	the	actual	source	for	torch.nn.softmax(),	you’ll	see	that
all	that	method	does	is	call	F.softmax().	As	we	don’t	need	softmax	here	to	be	part	of	a
network,	we’re	just	calling	the	underlying	function.

If	we	now	access	casper_activations.activations,	we’ll	see	that	it	has	been
populated	by	a	tensor,	which	contains	the	activations	of	the	final	convolutional
layer	we	need.	We	then	do	this:

fts = sf[0].features[idx]
 prob = np.exp(to_np(log_prob))
 preds = np.argmax(prob[idx])
 fts_np = to_np(fts)
 f2=np.dot(np.rollaxis(fts_np,0,3), prob[idx])
 f2-=f2.min()
 f2/=f2.max()
 f2
plt.imshow(dx)
plt.imshow(scipy.misc.imresize(f2, dx.shape), alpha=0.5, cmap='jet');

This	calculates	the	dot	product	of	the	activations	from	Casper	(we	index	into	0
because	of	the	batching	in	the	first	dimension	of	the	input	tensor,	remember).	As
mentioned	in	Chapter	1,	PyTorch	stores	image	data	in	C	×	H	×	W	format,	so	we
next	need	to	rearrange	the	dimensions	back	to	H	×	W	×	C	for	displaying	the
image.	We	then	remove	the	minimums	from	the	tensor	and	scale	by	the
maximum	to	ensure	that	we’re	focusing	on	only	the	highest	activations	in	the
resulting	heatmap	(i.e.,	what	speaks	to	Persian	Cat).	Finally,	we	use	some
matplot	magic	to	display	Casper	and	then	the	tensor	on	top,	resized	and	given	a
standard	jet	color	map.	Note	that	by	replacing	idx	with	a	different	class,	you
can	see	the	heatmap	indicating	which	activations	(if	any)	are	present	in	the
image	when	classified.	So	if	the	model	predicts	car,	you	can	see	which	parts	of
the	image	were	used	to	make	that	decision.	The	second-highest	probability	for
Casper	is	Angora	Rabbit,	and	we	can	see	from	the	CAM	for	that	index	that	it
focused	on	his	very	fluffy	fur!

That	wraps	up	our	look	into	what	a	model	is	doing	when	it	makes	a	decision.
Next,	we’re	going	to	investigate	what	a	model	spends	most	of	its	time	doing
while	it’s	in	a	training	loop	or	during	inference.

Flame	Graphs
In	contrast	to	TensorBoard,	flame	graphs	weren’t	created	specifically	for	neural
networks.	Nope,	not	even	TensorFlow.	In	fact,	flame	graphs	trace	their	origin

back	to	2011,	when	an	engineer	named	Brendan	Gregg,	working	at	a	company
called	Joyent,	came	up	with	the	technique	to	help	debug	an	issue	he	was	having
with	MySQL.	The	idea	was	to	take	massive	stacktraces	and	turn	them	into	a
single	image,	which	by	itself	delivers	a	picture	of	what	is	happening	on	a	CPU
over	a	period	of	time.

NOTE
Brendan	Gregg	now	works	for	Netflix	and	has	a	huge	amount	of	performance-related	work
available	to	read	and	digest.

Using	an	example	of	MySQL	inserting	a	row	into	a	table,	we	sample	the	stack
hundreds	or	thousand	of	times	a	second.	Each	time	we	sample,	we	get	a
stacktrace	that	shows	us	all	the	functions	in	the	stack	at	that	point	in	time.	So	if
we	are	in	a	function	that	has	been	called	by	another	function,	we’ll	get	a	trace
that	includes	both	the	callee	and	caller	functions.	A	sample	trace	looks	like	this:

65.00% 0.00% mysqld [kernel.kallsyms] [k] entry_SYSCALL_64_fastpath
 |
 ---entry_SYSCALL_64_fastpath
 |
 |--18.75%-- sys_io_getevents
 | read_events
 | schedule
 | __schedule
 | finish_task_switch
 |
 |--10.00%-- sys_fsync
 | do_fsync
 | vfs_fsync_range
 | ext4_sync_file
 | |
 | |--8.75%-- jbd2_complete_transaction
 | | jbd2_log_wait_commit
 | | |
 | | |--6.25%-- _cond_resched
 | | | preempt_schedule_common
 | | | __schedule

There’s	a	lot	of	this	information;	that’s	just	a	tiny	sample	of	a	400KB	set	of	stack
traces.	Even	with	this	collation	(which	may	not	be	present	in	all	stacktraces),	it’s

http://www.brendangregg.com

difficult	to	see	what’s	going	on	here.

The	flame	graph	version,	on	the	other	hand,	is	simple	and	clear,	as	you	can	see	in
Figure	7-7.	The	y-axis	is	stack	height,	and	the	x-axis	is,	while	not	time,	a
representation	of	how	often	that	function	is	on	the	stack	when	it	has	been
sampled.	So	if	we	had	a	function	at	the	top	of	the	stack	that	was	covering,	say,
80%	of	the	graph,	we’d	know	that	the	program	is	spending	an	awful	lot	of
running	time	in	that	function	and	that	maybe	we	should	look	at	the	function	to
see	just	what	is	making	it	take	so	long.

Figure	7-7.	MySQL	flame	graph

You	might	ask,	“What	does	this	have	to	do	with	deep	learning?”	Fair	enough;	it’s
a	common	trope	in	deep	learning	research	that	when	training	slows	down,	you
just	buy	another	10	GPUs	or	give	Google	a	lot	more	money	for	TPU	pods.	But
maybe	your	training	pipeline	isn’t	GPU	bound	after	all.	Perhaps	you	have	a
really	slow	transformation,	and	when	you	get	all	those	shiny	new	graphics	cards,
they	don’t	end	up	helping	as	much	as	you’d	have	thought.	Flame	graphs	provide
a	simple,	at-a-glance	way	of	identifying	CPU-bound	bottlenecks,	and	these	often
occur	in	practical	deep	learning	solutions.	For	example,	remember	all	those
image-based	transforms	we	talked	about	in	Chapter	4?	Most	of	them	use	the
Python	Imaging	Library	and	are	totally	CPU	bound.	With	large	datasets,	you’ll
be	doing	those	transforms	over	and	over	again	within	the	training	loop!	So	while

they’re	not	often	brought	up	in	the	context	of	deep	learning,	flame	graphs	are	a
great	tool	to	have	in	your	box.	If	nothing	else,	you	can	use	them	as	evidence	to
your	boss	that	you	really	are	GPU	bound	and	you	need	all	those	TPU	credits	by
next	Thursday!	We’ll	look	at	getting	flame	graphs	from	your	training	cycles	and
at	fixing	a	slow	transformation	by	moving	it	from	the	CPU	to	the	GPU.

Installing	py-spy
There	are	many	ways	to	generate	the	stacktraces	that	can	be	turned	into	flame
graphs.	The	one	in	the	previous	section	was	generated	using	the	Linux	tool	perf,
which	is	a	complex	and	powerful	tool.	We’ll	take	a	somewhat	easier	option	and
use	py-spy,	a	Rust-based	stack	profiler,	to	directly	generate	flame	graphs.	Install
it	via	pip:

pip install py-spy

You	can	find	the	process	identifier	(PID)	of	a	running	process	and	attach	py-spy
by	using	a	--pid	argument:

py-spy --flame profile.svg --pid 12345

Or	you	can	pass	in	a	Python	script,	which	is	how	we	run	it	in	this	chapter.	First,
let’s	run	it	on	a	simple	Python	script:

import torch
import torchvision

def get_model():
 return torchvision.models.resnet18(pretrained=True)

def get_pred(model):
 return model(torch.rand([1,3,224,224]))

model = get_model()

for i in range(1,10000):
 get_pred(model)

Save	this	as	flametest.py	and	let’s	run	py-spy	on	it,	sampling	99	times	a	second
and	running	for	30	seconds:

py-spy -r 99 -d 30 --flame profile.svg -- python t.py

Open	the	profile.svg	file	in	your	browser,	and	let’s	take	a	look	at	the	resulting
graph.

Reading	Flame	Graphs
Figure	7-8	shows	what	the	graph	should	look	like,	roughly	speaking	(because	of
sampling,	it	may	not	look	exactly	like	this	on	your	machine).	The	first	thing
you’ll	probably	notice	is	that	the	graph	is	going	down	instead	of	up.	py-spy
writes	out	flame	graphs	in	icicle	format,	so	the	stack	looks	like	stalactites	instead
of	the	flames	of	the	classic	flame	graph.	I	prefer	the	normal	format,	but	py-spy
doesn’t	give	us	the	option	to	change	it,	and	it	doesn’t	make	that	much	difference.

Figure	7-8.	Flame	graph	on	ResNet	loading	and	inference

At	a	glance,	you	should	see	that	most	of	the	execution	time	is	spent	in	various
forward()	calls,	which	makes	sense	because	we	are	making	lots	of	predictions
with	the	model.	What	about	those	tiny	blocks	on	the	left?	If	you	click	them,	you
should	find	that	the	SVG	file	zooms	in	as	shown	in	Figure	7-9.

Figure	7-9.	Zoomed	flame	graph

Here,	we	can	see	the	script	setting	up	the	ResNet-18	module	and	also	calling
load_state_dict()	to	load	the	saved	weights	from	disk	(because	we	called	it
with	pretrained=True).	You	can	click	Reset	Zoom	to	go	back	to	the	full	flame
graph.	Also,	a	search	bar	on	the	right	will	highlight	matching	bars	in	purple,	if
you’re	trying	to	hunt	down	a	function.	Try	it	with	resnet,	and	it’ll	show	you
every	function	call	on	the	stack	with	resnet	in	its	name.	This	can	be	useful	for
finding	functions	that	aren’t	on	the	stack	much	or	seeing	how	much	that	pattern
appears	in	the	graph	overall.

Play	around	with	the	SVG	for	a	bit	and	see	how	much	CPU	time	things	like
BatchNorm	and	pooling	are	taking	up	in	this	toy	example.	Next,	we’ll	look	at	a
way	to	use	flame	graphs	to	find	an	issue,	fix	it,	and	verify	it	with	another	flame
graph.

Fixing	a	Slow	Transformation
In	real-world	situations,	part	of	your	data	pipeline	may	be	causing	a	slowdown.
This	is	a	particular	problem	if	you	have	a	slow	transformation,	as	it	will	be
called	many	times	during	a	training	batch,	causing	a	massive	bottleneck	in
creating	your	model.	Here’s	an	example	transformation	pipeline	and	a	data
loader:

import torch
import torchvision
from torch import optim

import torch.nn as nn
from torchvision import datasets, transforms, models
import torch.utils.data
from PIL import Image
import numpy as np

device = "cuda:0"
model = models.resnet18(pretrained=True)
model.to(device)

class BadRandom(object):
 def __call__(self, img):
 img_np = np.array(img)
 random = np.random.random_sample(img_np.shape)
 out_np = img_np + random
 out = Image.fromarray(out_np.astype('uint8'), 'RGB')
 return out

 def __repr__(self):
 str = f"{self.__class__.__name__ }"
 return str

train_data_path = "catfish/train"
image_transforms =
torchvision.transforms.Compose(
 [transforms.Resize((224,224)),BadRandom(), transforms.ToTensor()])

We’re	not	going	to	run	a	full	training	loop;	instead,	we	simulate	10	epochs	of
just	pulling	the	images	from	the	training	data	loader:

train_data = torchvision.datasets.ImageFolder(root=train_data_path,
transform=image_transforms)
batch_size=32
train_data_loader = torch.utils.data.DataLoader(train_data,
batch_size=batch_size)

optimizer = optim.Adam(model.parameters(), lr=2e-2)
criterion = nn.CrossEntropyLoss()

def train(model, optimizer, loss_fn, train_loader, val_loader,
epochs=20, device='cuda:0'):
 model.to(device)
 for epoch in range(epochs):
 print(f"epoch {epoch}")
 model.train()
 for batch in train_loader:
 optimizer.zero_grad()

 ww, target = batch
 ww = ww.to(device)
 target= target.to(device)
 output = model(ww)
 loss = loss_fn(output, target)
 loss.backward()
 optimizer.step()

 model.eval()
 num_correct = 0
 num_examples = 0
 for batch in val_loader:
 input, target = batch
 input = input.to(device)
 target= target.to(device)
 output = model(input)
 correct = torch.eq(torch.max(output, dim=1)[1], target).view(-1)
 num_correct += torch.sum(correct).item()
 num_examples += correct.shape[0]
 print("Epoch {}, accuracy = {:.2f}"
 .format(epoch, num_correct / num_examples))

train(model,optimizer,criterion,
train_data_loader,train_data_loader,epochs=10)

Let’s	run	that	code	under	py-spy	as	before:

py-spy -r 99 -d 120 --flame slowloader.svg -- python slowloader.py

If	you	open	the	resulting	slowloader.svg,	you	should	hopefully	see	something
like	Figure	7-10.	Although	the	flame	graph	is	mostly	occupied	with	loading	the
images	and	converting	them	to	tensors,	we	are	spending	16.87%	of	the	sampled
runtime	in	applying	random	noise.	Looking	at	the	code,	our	implementation	of
BadRandom	is	applying	noise	at	the	PIL	stage	rather	than	at	the	tensor	stage,	so
we’re	at	the	mercy	of	the	imaging	library	and	NumPy	rather	than	PyTorch	itself.
So	our	first	idea	would	likely	be	to	rewrite	the	transform	so	that	it	operates	on
tensors	instead	of	the	PIL	images.	That’s	likely	to	be	faster,	but	not	always—and
the	important	thing	when	making	performance	changes	is	always	to	measure
everything.

Figure	7-10.	Flame	graph	with	BadRandom

But	here’s	a	curious	thing,	which	has	been	present	all	the	way	through	the	book,
though	I’ve	not	drawn	attention	to	it	until	now:	have	you	noticed	that	we	pull
batches	from	the	data	loader	and	then	put	those	batches	onto	the	GPU?	Because
the	transforms	occur	as	the	loader	gets	batches	from	the	dataset	class,	those
transforms	are	always	going	to	happen	on	the	CPU.	In	some	cases,	that	can	lead
to	some	crazy	lateral	thinking.	We	are	applying	random	noise	on	every	image.
What	if	we	could	apply	random	noise	on	every	image	at	once?

Here’s	the	bit	that	might	seem	mind-bending	at	first:	we’re	adding	random	noise
to	an	image.	We	can	write	that	as	x	+	y,	with	x	being	our	image	and	y	our	noise.
We	know	that	both	image	and	noise	are	3D	(width,	height,	channels),	so	all
we’re	doing	here	is	matrix	multiplication.	And	in	a	batch,	we’ll	be	doing	this	z
times.	We’re	just	iterating	over	each	image	as	we	pull	them	out	of	the	loader.	But
consider	that	at	the	end	of	the	loading	process,	the	images	are	transformed	into
tensors,	a	batch	of	[z,	c,	h,	w].	Well,	couldn’t	you	just	add	a	random	tensor	of
shape	[z,	c,	h,	w]	and	get	the	random	noise	applied	that	way?	Instead	of	applying
the	noise	in	sequence,	it	happens	all	at	once.	We	now	have	a	matrix	operation,
and	a	very	expensive	GPU	that	just	happens	to	be	rather	good	at	matrix
operations.	Try	this	in	Jupyter	Notebook	to	see	the	difference	between	CPU	and
GPU	tensor	matrix	operations:

cpu_t1 = torch.rand(64,3,224,224)
cpu_t2 = torch.rand(64,3,224,224)
%timeit cpu_t1 + cpu_t2
>> 5.39 ms ± 4.29 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

gpu_t1 = torch.rand(64,3,224,224).to("cuda")
gpu_t2 = torch.rand(64,3,224,224).to("cuda")
%timeit gpu_t1 + gpu_t2
>> 297 µs ± 338 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

That’s	just	under	20	times	faster.	Instead	of	performing	this	transformation	in	our
data	loader,	we	can	take	it	out	and	perform	the	matrix	operations	after	we	have
the	entire	batch	at	our	disposal:

def add_noise_gpu(tensor, device):
 random_noise = torch_rand_like(tensor).to(device)
 return tensor.add_(random_noise)

In	our	training	loop,	add	this	line	after	input.to(device):

input = add_noise_gpu(input, device)

Then	remove	the	BadRandom	transform	from	the	transform	pipeline	and	test
again	with	py-spy.	The	new	flame	graph	is	shown	in	Figure	7-11.	It’s	so	fast
that	it	no	longer	even	shows	up	under	our	sampling	frequency.	We’ve	just	sped
up	the	code	by	almost	17%!	Now,	not	all	standard	transforms	can	be	written	in	a
GPU-friendly	way,	but	if	it’s	possible	and	the	transform	is	slowing	you	down,
then	it’s	definitely	an	option	worth	considering.

Figure	7-11.	Flame	graph	with	GPU-accelerated	random	noise

Now	that	we’ve	considered	compute,	it’s	time	to	look	at	the	other	elephant	in	the
room:	memory,	especially	memory	on	the	GPU.

Debugging	GPU	Issues
In	this	section,	we	drill	down	deeper	into	the	GPU	itself.	One	thing	you’ll	soon
discover	in	training	larger	deep	learning	models	is	that	the	shiny	GPU	that
you’ve	spent	so	much	money	on	(or,	more	wisely,	attached	to	a	cloud-based
instance)	is	brought	to	its	knees	regularly,	bitterly	complaining	about	running	out
of	memory.	But	that	GPU	has	gigabytes	and	gigabytes	of	storage!	How	could
you	possibly	run	out?

Models	tend	to	soak	up	a	lot	of	memory.	ResNet-152,	for	example,	has	about	60
million	activations,	all	of	which	take	up	precious	space	on	your	GPU.	Let’s	see
how	to	peer	inside	the	GPU	to	determine	what	could	be	going	on	when	you’re
running	low	on	memory.

Checking	Your	GPU
Assuming	you	are	using	an	NVIDIA	GPU	(check	your	alternate	GPU	supplier’s
drivers	website	for	their	own	utilities	if	you’re	using	something	different),	the
CUDA	installation	includes	a	rather	useful	command-line	tool	called	nvidia-
smi.	When	run	with	no	arguments,	this	tool	can	give	you	a	snapshot	of	the
memory	being	used	on	the	GPU,	and	even	better,	what	is	using	it!	Figure	7-12
shows	output	from	running	nvidia-smi	within	the	terminal.	Within	a	notebook,
you	can	call	out	to	the	utility	by	using	!nvidia-smi.

Figure	7-12.	Output	from	nvidia-smi

This	example	is	taken	from	my	home	machine	running	a	1080	Ti.	I’m	running	a
bunch	of	notebooks,	each	of	which	is	taking	up	a	chunk	of	memory,	but	one	is

using	4GB!	You	can	get	the	current	PID	of	a	notebook	by	using	os.getpid().	It
turns	out	that	the	process	using	the	most	memory	was	actually	an	experimental
notebook	I	was	using	to	test	out	the	GPU	transforms	in	the	previous	section!	You
can	imagine	that	with	the	model,	batch	data,	and	data	for	the	forward	and
backward	passes,	things	get	tight	memory-wise	rather	quickly.

NOTE
I	also	have	a	couple	of	processes	running	that	are,	perhaps	surprisingly,	doing	graphics—
namely,	the	X	server	and	GNOME.	Unless	you’ve	built	a	local	machine,	you	almost	certainly
won’t	see	these.

In	addition,	PyTorch	will	dedicate	a	chunk	of	memory	to	itself	and	CUDA	per
process	that	is	around	0.5GB	of	memory.	This	means	that	it’s	a	better	idea	to
work	on	one	project	at	a	time	and	not	leave	Jupyter	Notebook	running	all	over
the	place	as	I	have	here	(you	can	use	the	Kernel	menu	to	shut	down	the	Python
process	connected	to	a	notebook).

Running	nvidia-smi	by	itself	will	give	you	the	current	snapshot	of	the	GPU’s
usage,	but	you	can	get	continual	output	by	using	the	-l	flag.	Here’s	an	example
command	that	will	dump	the	timestamp,	used	memory,	free	memory,	total
memory,	and	GPU	utilization	every	5	seconds:

nvidia-smi --query-gpu=timestamp,
memory.used, memory.free,memory.total,utilization.gpu --format=csv -l 5

If	you	really	think	that	your	GPU	is	using	up	more	memory	than	it	should	be,
you	can	try	getting	Python’s	garbage	collector	involved.	If	you	have	a
tensor_to_be_deleted	that	you	no	longer	need	and	want	it	gone	from	the
GPU,	then	a	tip	from	the	bowels	of	the	fast.ai	library	is	to	give	it	a	shove	with
del:

import gc
del tensor_to_be_deleted
gc.collect()

If	you’re	doing	a	lot	of	work	inside	Jupyter	Notebook	creating	and	re-creating

models,	you	may	find	that	deleting	some	references	and	invoking	the	garbage
collector	by	using	gc.collect()	will	claw	back	some	memory.	If	you’re	still
having	trouble	with	memory,	read	on,	because	there	may	be	an	answer	to	your
woes!

Gradient	Checkpointing
Despite	all	the	deletion	and	garbage	collection	tricks	presented	in	the	previous
section,	you	might	still	find	yourself	running	out	of	memory.	The	next	thing	to
do	for	most	applications	is	to	reduce	the	batch	size	of	data	going	through	a
model	during	the	training	loop.	This	will	work,	but	you’re	going	to	increase
training	time	for	each	epoch,	and	it’s	likely	that	the	model	will	not	be	as	good	as
an	equivalent	one	trained	with	enough	memory	to	handle	the	larger	batch	sizes,
because	you’ll	be	seeing	more	of	the	dataset	on	every	pass.	However,	we	can
trade	compute	against	memory	for	large	models	in	PyTorch	by	using	gradient
checkpointing.

One	of	the	problems	when	dealing	with	bigger	models	is	that	the	forward	and
backward	passes	create	lots	of	intermediate	state,	all	of	which	occupy	GPU
memory.	The	goal	of	gradient	checkpointing	is	to	reduce	the	amount	of	state	that
may	be	on	the	GPU	at	any	one	time	by	segmenting	the	model.	This	approach
means	that	you	can	have	between	four	and	ten	times	the	batch	size	with	a
nonsegmented	model,	with	that	being	offset	by	the	training	being	more	compute-
intensive.	During	the	forward	pass,	PyTorch	saves	the	inputs	and	the	parameters
to	a	segment,	but	doesn’t	actually	do	the	forward	pass	itself.	During	the
backward	pass,	these	are	retrieved	by	PyTorch,	and	the	forward	pass	is	computed
for	that	segment.	The	intermediate	values	are	passed	onto	the	next	segment,	but
those	have	to	be	performed	on	only	a	segment-by-segment	basis.

Chopping	up	a	model	into	these	segments	is	handled	by
torch.utils.checkpoint.checkpoint_sequential().	It	works	on
nn.Sequential	layers	or	generated	lists	of	layers,	with	the	proviso	that	they
need	to	be	in	sequence	of	how	they	occur	in	the	model.	Here’s	how	it	would
work	on	the	features	module	in	AlexNet:

from torch.utils.checkpoint import checkpoint_sequential
import torch.nn as nn

class CheckpointedAlexNet(nn.Module):

 def __init__(self, num_classes=1000, chunks=2):
 super(CheckpointedAlexNet, self).__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(64, 192, kernel_size=5, padding=2),
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(192, 384, kernel_size=3, padding=1),
 nn.ReLU(inplace=True),
 nn.Conv2d(384, 256, kernel_size=3, padding=1),
 nn.ReLU(inplace=True),
 nn.Conv2d(256, 256, kernel_size=3, padding=1),
 nn.ReLU(inplace=True),
 nn.MaxPool2d(kernel_size=3, stride=2),
)
 self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
 self.classifier = nn.Sequential(
 nn.Dropout(),
 nn.Linear(256 * 6 * 6, 4096),
 nn.ReLU(inplace=True),
 nn.Dropout(),
 nn.Linear(4096, 4096),
 nn.ReLU(inplace=True),
 nn.Linear(4096, num_classes),
)

 def forward(self, x):
 x = checkpoint_sequential(self.features, chunks, x)
 x = self.avgpool(x)
 x = x.view(x.size(0), 256 * 6 * 6)
 x = self.classifier(x)
 return x

As	you	can	see,	not	much	is	different	here,	making	checkpointing	an	easy
addition	to	models	when	required.	We’ve	added	a	chunks	parameter	to	the	new
version	of	the	model,	with	the	default	being	to	split	it	into	two	segments.	All	we
then	need	to	do	is	make	a	call	to	checkpoint_sequential	with	the	features
module,	the	number	of	segments,	and	our	inputs.	And	that’s	it!

One	slight	kink	in	checkpointing	is	that	it	doesn’t	behave	well	with	BatchNorm
or	Dropout	layers	because	of	how	they	interact	with	the	forward	pass.	To	work
around	that,	you	can	just	checkpoint	parts	of	the	model	before	and	after	those

layers.	In	our	CheckpointedAlexNet,	we	could	perhaps	break	the	classifier
module	into	two	parts:	one	containing	the	Dropout	layers	that	are
uncheckpointed,	and	a	final	nn.Sequential	module	containing	our	Linear
layers	that	we	could	checkpoint	in	the	same	way	we	did	with	features.

If	you	find	yourself	with	diminishing	batch	sizes	in	order	to	get	a	model	to	run,
consider	checkpointing	before	you	ask	for	a	larger	GPU!

Conclusion
Hopefully,	you’re	now	equipped	to	go	hunting	in	search	of	answers	when
training	your	model	doesn’t	go	as	planned.	From	sanitizing	data	to	running	flame
graph	or	TensorBoard	visualizations,	you	have	a	lot	of	tools	at	your	disposal;
you’ve	also	seen	ways	of	trading	memory	for	compute	with	GPU	transforms,
and	vice	versa	using	checkpointing.

Armed	with	a	properly	trained,	debugged	model,	we’re	on	our	way	to	that
harshest	of	realms:	production.

Further	Reading
TensorBoard	documentation

TensorBoard	GitHub

Fast.ai	Lesson	10:	Looking	Inside	The	Model

Investigation	into	BatchNorm	within	a	ResNet	model

Deeper	dive	into	generating	flame	graphs	with	Brendan	Gregg

nvidia-smi	documentation

PyTorch	gradient	checkpointing	documentation

https://oreil.ly/MELKl
https://oreil.ly/21bIM
https://oreil.ly/K4dz-
https://oreil.ly/EXdK3
https://oreil.ly/4Ectg
https://oreil.ly/W1g0n
https://oreil.ly/v0apy

Chapter	8.	PyTorch	in	Production

Now	that	you’ve	learned	how	to	use	PyTorch	to	classify	images,	text,	and	sound,
the	next	step	is	to	look	at	how	to	deploy	PyTorch	applications	in	production.	In
this	chapter,	we	create	applications	that	run	inference	on	PyTorch	models	over
HTTP	and	gRPC.	We	then	package	those	applications	into	Docker	containers
and	deploy	them	to	a	Kubernetes	cluster	running	on	Google	Cloud.

In	the	second	half,	we	look	at	TorchScript,	a	new	technology	introduced	in
PyTorch	1.0	that	allows	us	to	use	just-in-time	(JIT)	tracing	to	produce	optimized
models	that	can	be	run	from	C++.	We	also	have	a	brief	look	at	how	to	compress
models	with	quantization.	First	up,	let’s	look	at	model	serving.

Model	Serving
We’ve	spent	the	last	six	chapters	building	models	in	PyTorch,	but	building	a
model	is	only	part	of	building	a	deep	learning	application.	After	all,	a	model	may
have	amazing	accuracy	(or	other	relevant	metric),	but	if	it	never	makes	any
predictions,	is	it	worth	anything?	What	we	want	is	an	easy	way	to	package	our
models	so	they	can	respond	to	requests	(either	over	the	web	or	other	means,	as
we’ll	see)	and	can	be	run	in	production	with	the	minimum	of	effort.

Thankfully,	Python	allows	us	to	get	a	web	service	up	and	running	quickly	with
the	Flask	framework.	In	this	section,	we	build	a	simple	service	that	loads	our
ResNet-based	cat	or	fish	model,	accepts	requests	that	include	an	image	URL,
and	returns	a	JSON	response	that	indicates	whether	the	image	contains	a	cat	or	a
fish.

NOTE
What	happens	if	we	send	the	model	a	picture	of	a	dog?	The	model	will	tell	you	that	it	is	either
a	fish	or	a	cat.	It	has	no	concept	of	anything	but	the	available	choices	and	will	always	pick	one.
Some	deep	learning	practitioners	add	an	extra	class,	Unknown,	during	training	and	throw	in
labeled	examples	that	aren’t	any	of	the	required	classes.	This	works	to	a	certain	extent,	but	it
essentially	tries	to	make	the	neural	net	learn	everything	that	isn’t	a	cat	or	fish,	which	is	difficult
for	you	and	me	to	express,	let	alone	a	series	of	matrix	calculations!	Another	option	is	to	look	at

the	probability	output	generated	by	the	final	softmax.	If	the	model	is	producing	a	prediction
that	is	roughly	50/50	cat/fish	or	spread	out	across	your	classes,	then	maybe	suggest	Unknown.

Building	a	Flask	Service
Let’s	get	a	web	service-enabled	version	of	our	model	up	and	running.	Flask	is	a
popular	framework	for	creating	web	services	with	Python,	and	we’ll	be	using	it
as	a	base	throughout	this	chapter.	Install	the	Flask	library	with	either	pip	or
conda:

conda install -c anaconda flask
pip install flask

Create	a	new	directory	called	catfish	and	copy	your	model	definition	inside	as
model.py:

from torchvision import models

CatfishClasses = ["cat","fish"]

CatfishModel = models.ResNet50()
CatfishModel.fc = nn.Sequential(nn.Linear(transfer_model.fc.in_features,500),
 nn.ReLU(),
 nn.Dropout(), nn.Linear(500,2))

Note	that	we	do	not	specify	a	pretrained	model	here,	because	we	will	be	loading
our	saved	weights	in	the	Flask	server	startup	process.	Then	create	another
Python	script,	catfish_server.py,	where	we	will	start	our	web	service:

from flask import Flask, jsonify
from . import CatfishModel
from torchvision import transforms
import torch
import os

def load_model():
 return model

app = Flask(__name__)

@app.route("/")
def status():

 return jsonify({"status": "ok"})

@app.route("/predict", methods=['GET', 'POST'])
def predict():
 img_url = request.image_url
 img_tensor = open_image(BytesIO(response.content))
 prediction = model(img_tensor)
 predicted_class = CatfishClasses[torch.argmax(prediction)]
 return jsonify({"image": img_url, "prediction": predicted_class})

if __name__ == '__main__':
 app.run(host=os.environ["CATFISH_HOST"], port=os.environ["CATFISH_PORT"])

You	can	start	up	a	web	server	on	the	command	line	by	setting	the	CATFISH_HOST
and	CATFISH_PORT	environment	variables:

CATFISH_HOST=127.0.0.1 CATFISH_PORT=8080 python catfish_server.py

If	you	point	your	web	browser	at	http://127.0.0.1:8080,	you	should	get	a
status: "ok"	JSON	response	as	shown	in	Figure	8-1.

Figure	8-1.	OK	response	from	CATFISH

CAUTION
We	discuss	this	in	more	detail	later	in	this	chapter,	but	don’t	deploy	a	Flask	service	directly	to
production	because	the	built-in	server	is	not	adequate	for	production	usage.

To	make	a	prediction,	find	an	image	URL	and	send	it	as	a	GET	request	with	the
image_url	parameter	to	the	/predict	path.	You	should	see	a	JSON	response
showing	the	URL	and	the	predicted	class,	as	shown	in	Figure	8-2.

http://127.0.0.1:8080

Figure	8-2.	Prediction	from	CATFISH

The	magic	in	Flask	is	in	the	@app.route()	annotations.	These	allow	us	to	attach
normal	Python	functions	that	will	be	run	when	a	user	hits	a	particular	endpoint.
In	our	predict()	method,	we	pull	out	the	img_url	parameter	from	either	a	GET
or	POST	HTTP	request,	open	that	URL	as	a	PIL	image,	and	push	it	through	a
simple	torchvision	transform	pipeline	to	resize	it	and	turn	the	image	into	a
tensor.

This	gives	us	a	tensor	of	shape	[3,224,224],	but	because	of	the	way	our	model
works,	we	need	to	turn	it	into	a	batch	of	size	1—that	is,	[1,3,224,224].	So	we
use	unsqueeze()	again	to	expand	our	tensor	by	inserting	a	new	empty	axis	in
front	of	the	existing	dimensions.	We	can	then	pass	it	through	the	model	as	usual,
which	gives	us	our	prediction	tensor.	As	we	have	done	previously,	we	use
torch.argmax()	to	find	the	element	of	the	tensor	with	the	highest	value	and	use
that	to	index	into	the	CatfishClasses	array.	Finally,	we	return	a	JSON	response
with	the	name	of	the	class	and	the	image	URL	we	performed	the	prediction	on.

If	you	experiment	with	the	server	at	this	point,	you	might	be	a	little	disappointed
with	the	classification	performance.	Didn’t	we	spend	a	lot	of	time	training	it?
Yes,	we	did,	but	in	re-creating	the	model,	we	have	simply	created	a	set	of	layers
with	the	standard	PyTorch	initialization!	So	no	wonder	it’s	not	good.	Let’s	flesh
out	load_model()	to	load	in	our	parameters.

NOTE
We’re	returning	only	the	predicted	class	here,	not	the	complete	set	of	predictions	across	all
classes.	You	could	certainly	return	the	prediction	tensor	as	well,	though	be	aware	that	the
complete	tensor	output	makes	it	a	little	easier	for	attackers	to	build	up	a	replica	of	your	model
through	more	information	leakage.

Setting	Up	the	Model	Parameters

In	Chapter	2,	we	talked	about	the	two	ways	to	save	a	model	after	training,	either
by	writing	the	entire	model	to	disk	with	torch.save()	or	by	saving	the
state_dict()	of	all	the	weights	and	biases	of	the	model	(but	not	the	structure).
For	our	production-based	service,	we	need	to	load	in	an	already-trained	model,
so	what	should	we	use?

In	my	opinion,	you	should	go	for	the	state_dict	approach.	Saving	the	entire
model	is	an	attractive	option,	but	you	will	become	incredibly	sensitive	to	any
changes	in	the	model	structure	or	even	the	directory	structure	of	the	training
setup.	That’s	likely	to	cause	a	problem	with	loading	it	up	in	a	separate	service
that	runs	elsewhere.	If	we’re	making	a	migration	to	a	slightly	different	layout,
we’d	like	to	not	have	to	rework	everything.

We’d	also	be	better	off	not	hardcoding	the	filename	of	the	saved	state_dicts()
so	we	can	decouple	model	updates	from	our	service.	This	means	we	can	restart
the	service	with	a	new	model	or	revert	to	an	earlier	model	with	ease.	We	pass	in
the	filename	as	a	parameter—but	where	should	it	point?	For	the	moment,
assume	that	we	can	set	an	environment	variable	called
CATFISH_MODEL_LOCATION,	and	use	that	in	load_model():

def load_model():
 m = CatfishModel()
 location = os.environ["CATFISH_MODEL_LOCATION"]
 m.load_state_dict(torch.load(location))
 return m

Now,	copy	in	one	of	the	model	weight	files	you	saved	in	Chapter	4	into	the
directory	and	set	CATFISH_MODEL_LOCATION	to	point	to	that	file:

export CATFISH_MODEL_LOCATION=catfishweights.pt

Restart	the	server,	and	you	should	see	that	the	service	is	a	lot	more	accurate!

We	now	have	a	working	minimal	web	service	(you’d	probably	want	a	little	more
error	handling,	but	I’m	leaving	that	as	an	exercise	for	you!).	But	how	do	we	get
that	running	on	a	server	in,	say,	AWS	or	Google	Cloud?	Or	just	on	somebody
else’s	laptop?	After	all,	we	have	installed	a	bunch	of	libraries	to	get	this	working.
We	can	use	Docker	to	package	everything	up	into	one	container	that	can	be
installed	in	any	Linux	(or	Windows,	with	the	new	Windows	Subsystem	for

Linux!)	environment	in	seconds.

Building	the	Docker	Container
Docker	has	become	one	of	the	de	facto	standards	for	application	packaging	in
the	past	few	years.	Cutting-edge	cluster	environments	such	as	Kubernetes	have
Docker	at	their	core	for	deploying	applications	(as	you’ll	see	later	in	the
chapter),	and	it’s	even	made	large	inroads	in	enterprises	as	well.

If	you	haven’t	come	across	Docker	before,	here’s	a	quick	explanation:	it’s
modeled	on	the	idea	of	shipping	containers.	You	specify	a	bundle	of	files
(typically,	using	a	Dockerfile)	that	Docker	uses	to	build	an	image,	and	Docker
then	runs	that	image	in	a	container,	which	is	an	isolated	process	on	your	system
that	can	see	only	the	files	you’ve	specified	and	the	programs	you’ve	told	it	to
run.	You	can	then	share	the	Dockerfile	so	people	can	build	their	own	images,	but
a	more	common	approach	is	to	push	the	created	image	to	a	registry,	which	is	a
list	of	Docker	images	that	can	be	downloaded	by	anybody	with	access.	These
registries	can	be	public	or	private;	the	Docker	corporation	runs	Docker	Hub,
which	is	a	public	registry	that	contains	over	100,000	Docker	images,	but	many
companies	run	private	registries	for	internal	use.

What	we	need	to	do	is	write	our	own	Dockerfile.	This	might	sound	a	little
overwhelming.	What	do	we	have	to	tell	Docker	to	install?	Our	code?	PyTorch?
Conda?	Python?	Linux	itself?	Thankfully,	Dockerfiles	can	inherit	from	other
images,	so	we	could,	for	example,	inherit	from	the	standard	Ubuntu	image	and
install	Python,	PyTorch,	and	everything	else	from	there.	But	we	can	do	better!	A
selection	of	Conda	images	is	available	to	choose	from	that	will	give	us	a	base
Linux,	Python,	and	Anaconda	installation	to	build	on.	Here’s	an	example
Dockerfile	that	can	be	used	to	build	a	container	image	for	our	service:

FROM continuumio/miniconda3:latest

ARG model_parameter_location
ARG model_parameter_name
ARG port
ARG host

ENV CATFISH_PORT=$port
ENV CATFISH_HOST=$host
ENV CATFISH_MODEL_LOCATION=/app/$model_parameter_name

https://hub.docker.com

RUN conda install -y flask \
 && conda install -c pytorch torchvision \
 && conda install waitress
RUN mkdir -p /app

COPY ./model.py /app
COPY ./server.py /app
COPY $model_location/$model_weights_name /app/
COPY ./run-model-service.sh /

EXPOSE $port

ENTRYPOINT ["/run-model-service.sh"]

A	few	things	are	happening	here,	so	let’s	take	a	look.	The	first	line	in	almost	all
Dockerfiles	will	be	FROM,	which	lists	the	Docker	image	that	this	file	inherits
from.	In	this	case,	it’s	continuumio/miniconda3:latest.	The	first	part	of	this
string	is	the	image	name.	Images	are	also	versioned,	so	everything	after	the
colon	is	a	tag	indicating	which	version	of	the	image	we	want	to	download.
There’s	also	a	magic	tag	latest,	which	we	use	here	to	download	the	latest
version	of	the	image	we’re	after.	You	may	want	to	pin	your	service	to	a
particular	version	so	you	aren’t	surprised	by	possible	later	changes	in	the	base
image	causing	issues	in	yours.

ARG	and	ENV	deal	with	variables.	ARG	specifies	a	variable	that	is	supplied	to
Docker	when	we’re	building	the	image,	and	then	the	variable	can	be	used	later	in
the	Dockerfile.	ENV	allows	you	to	specify	environment	variables	that	will	be
injected	into	the	container	at	runtime.	In	our	container,	we	use	ARG	to	specify,	for
example,	that	port	is	a	configurable	option,	and	then	use	ENV	to	ensure	that	the
configuration	is	available	to	our	script	at	startup.

Having	done	that,	RUN	and	COPY	allow	us	to	manipulate	the	image	we’ve
inherited	from.	RUN	runs	actual	commands	within	the	image,	and	any	changes	are
saved	as	a	new	layer	of	the	image	on	top	of	the	base	layer.	COPY	takes	something
from	the	Docker	build	context	(typically,	any	files	from	the	directory	that	the
build	command	has	issued	or	any	subdirectories)	and	inserts	it	into	a	location	on
the	image’s	filesystem.	Having	created	/app	by	using	RUN,	we	then	use	COPY	to
move	our	code	and	model	parameters	into	the	image.

EXPOSE	indicates	to	Docker	which	port	should	be	mapped	to	the	outside	world.
By	default,	no	ports	are	opened,	so	we	add	one	here,	taken	from	the	ARG
command	earlier	in	the	file.	Finally,	ENTRYPOINT	is	the	default	command	that	is
run	when	a	container	is	created.	Here	we’ve	specified	a	script,	but	we	haven’t
made	it	yet!	Let’s	do	that	before	we	build	our	Docker	image:

#!/bin/bash
#run-model-service.sh
cd /app
waitress-serve --call 'catfish_server:create_app'

Wait,	what’s	happening	here?	Where	did	waitress	come	from?	The	issue	is	that
when	we	were	running	our	Flask-based	server	before	it	used	a	simple	web	server
that	is	meant	only	for	debugging	purposes.	If	we	want	to	put	this	into	production,
we	need	a	production-grade	web	server.	Waitress	fulfills	that	requirement.	We
don’t	need	to	go	into	much	detail	about	it,	but	you	can	check	out	the	Waitress
documentation	if	you	want	to	learn	more.

With	all	that	set	up,	we	can	finally	create	our	image	by	using	docker build:

docker build -t catfish-service .

We	can	make	sure	that	the	image	is	available	on	our	system	by	using	docker
images:

>docker images
REPOSITORY TAG IMAGE ID
catfish-service latest e5de5ad808b6

Running	our	model	prediction	service	can	then	be	done	using	docker run:

docker run catfish-service -p 5000:5000

We	also	use	the	-p	argument	to	map	the	container’s	port	5000	to	our	computer’s
port	5000.	You	should	be	able	to	go	back	to	http://localhost:5000/predict	just	as
before.

One	thing	you	might	notice	when	running	docker images	locally	is	that	our

https://oreil.ly/x96Ir

Docker	image	is	over	4GB	in	size!	That’s	quite	big,	considering	we	didn’t	write
much	code.	Let’s	look	at	ways	to	make	that	image	smaller	and	make	our	image
more	practical	for	deployment	at	the	same	time.

Local	Versus	Cloud	Storage
Obviously,	the	easiest	answer	to	where	to	store	our	saved	model	parameters	is	on
the	local	filesystem,	whether	that’s	on	our	computer	or	the	filesystem	within	a
Docker	container.	But	there	are	a	couple	of	problems	with	this.	First,	the	model
is	hardcoded	into	the	image.	Also,	it’s	quite	possible	that	after	the	image	is	built
and	put	into	production,	we	need	to	update	the	model.	With	our	current
Dockerfile,	we	have	to	completely	rebuild	the	image,	even	if	the	model’s
structure	hasn’t	changed!	Second,	most	of	the	size	of	our	images	comes	from	the
size	of	the	parameter	file.	You	may	not	have	noticed	that	they	tend	to	be	quite
large!	Try	this	out	for	size:

ls -l
total 641504
-rw------- 1 ian ian 178728960 Feb 4 2018 resnet101-5d3b4d8f.pth
-rw------- 1 ian ian 241530880 Feb 18 2018 resnet152-b121ed2d.pth
-rw------- 1 ian ian 46827520 Sep 10 2017 resnet18-5c106cde.pth
-rw------- 1 ian ian 87306240 Dec 23 2017 resnet34-333f7ec4.pth
-rw------- 1 ian ian 102502400 Oct 1 2017 resnet50-19c8e357.pth

If	we	add	these	models	to	the	filesystem	on	every	build,	our	Docker	images	will
likely	be	quite	large,	which	makes	pushing	and	pulling	slower.	What	I	suggest	is
local	filesystems	or	Docker	volume-mapped	containers	if	you’re	running	on-
premises,	but	if	you’re	doing	a	cloud	deployment,	which	we	are	leading	up	to,	it
makes	sense	to	take	advantage	of	the	cloud.	Model	parameter	files	can	be
uploaded	to	Azure	Blob	Storage,	Amazon	Simple	Storage	Service	(Amazon	S3),
or	Google	Cloud	Storage	and	be	pulled	in	at	startup.

We	can	rewrite	our	load_model()	function	to	download	the	parameter	file	at
startup:

from urllib.request import urlopen
from shutil import copyfileobj
from tempfile import NamedTemporaryFile

def load_model():
 m = CatfishModel()
 parameter_url = os.environ["CATFISH_MODEL_LOCATION"]
 with urlopen(url) as fsrc, NamedTemporaryFile() as fdst:
 copyfileobj(fsrc, fdst)
 m.load_state_dict(torch.load(fdst))
 return m

There	are,	of	course,	many	ways	of	downloading	files	with	Python;	Flask	even
comes	with	the	requests	module	that	would	easily	download	the	file.	A
potential	issue,	though,	is	that	many	approaches	download	the	entire	file	into
memory	before	writing	it	to	disk.	Most	of	the	time,	that	makes	sense,	but	when
downloading	model	parameter	files,	they	could	get	into	the	gigabyte	range.	So	in
this	new	version	of	load_model(),	we	use	urlopen()	and	copyfileobj()	to
carry	out	the	copying,	and	NamedTemporaryFile()	to	give	us	a	destination	that
can	be	deleted	at	the	end	of	the	block,	as	by	that	point,	we’ve	already	loaded	the
parameters	in,	and	thus	no	longer	need	the	file!	This	allows	us	to	simplify	our
Dockerfile:

FROM continuumio/miniconda3:latest

ARG port
ARG host

ENV CATFISH_PORT=$port
RUN conda install -y flask \
 && conda install -c pytorch torch torchvision \
 && conda install waitress
RUN mkdir -p /app

COPY ./model.py /app
COPY ./server.py /app
COPY ./run-model-service.sh /

EXPOSE $port

ENTRYPOINT ["/run-model-service.sh"]

When	we	run	this	with	docker run,	we	pass	in	the	environment	variable:

docker run catfish-service --env CATFISH_MODEL_LOCATION=[URL]

The	service	now	pulls	the	parameters	from	the	URL,	and	the	Docker	image	is
probably	around	600MB–700MB	smaller	than	the	original	one.

NOTE
In	this	example,	we	assume	that	the	model	parameter	file	is	located	at	a	publicly	accessible
location.	If	you	are	deploying	a	model	service,	you	likely	won’t	be	in	that	situation	and	will
instead	be	pulling	from	a	cloud	storage	layer	like	Amazon	S3,	Google	Cloud	Storage,	or	Azure
Blob	Storage.	You’ll	have	to	use	the	respective	provider’s	APIs	to	download	the	file	and	obtain
credentials	to	gain	access	to	it,	both	of	which	we	don’t	discuss	here.

We	now	have	a	model	service	that’s	capable	of	talking	over	HTTP	with	JSON.
Now	we	need	to	make	sure	that	we	can	monitor	it	while	it	makes	predictions.

Logging	and	Telemetry
One	thing	that	we	don’t	have	in	our	current	service	is	any	concept	of	logging.
And	although	the	service	is	incredibly	simple	and	perhaps	doesn’t	need	copious
logging	(except	in	the	case	of	catching	our	error	states),	it	would	be	useful,	if	not
essential,	for	us	to	keep	track	of	what’s	actually	being	predicted.	At	some	point,
we’re	going	to	want	to	evaluate	the	model;	how	can	we	do	that	without
production	data?

Let’s	assume	that	we	have	a	method	send_to_log()	that	takes	a	Python	dict
and	sends	it	elsewhere	(perhaps,	say,	into	an	Apache	Kafka	cluster	that	backs	up
onto	cloud	storage).	We	could	send	appropriate	information	through	this	method
every	time	we	make	a	prediction:

import uuid
import logging
logging.basicConfig(level=logging.INFO)

def predict():
 img_url = request.image_url
 img_tensor = open_image(BytesIO(response.content))
 start_time = time.process_time()
 prediction = model(img_tensor)
 end_time = time.process_time()
 predicted_class = CatfishClasses[torch.argmax(prediction)]
 send_to_log(

 {"image": img_url,
 "prediction": predicted_class},
 "predict_tensor": prediction,
 "img_tensor": img_tensor,
 "predict_time": end_time-start_time,
 "uuid":uuid.uuid4()
 })
 return jsonify({"image": img_url, "prediction": predicted_class})

def send_to_log(log_line):
 logger.info(log_line)

With	a	few	additions	to	calculate	how	long	a	prediction	takes,	on	every	request,
this	method	now	sends	off	a	message	to	a	logger	or	an	external	resource,
providing	important	details	such	as	the	image	URL,	the	predicted	class,	the
actual	prediction	tensor,	and	even	the	complete	image	tensor	just	in	case	the
supplied	URL	is	transient.	We	also	include	a	generated	universally	unique
identifier	(UUID),	so	that	this	prediction	can	always	be	uniquely	referenced	at	a
later	time,	perhaps	if	its	predicted	class	needs	to	be	corrected.	In	an	actual
deployment,	you’d	include	things	like	user_ids	and	such	so	that	downstream
systems	can	provide	a	facility	for	users	to	indicate	whether	the	prediction	was
correct	or	incorrect,	sneakily	generating	more	training	data	for	further	training
iterations	of	the	model.

And	with	that,	we’re	ready	to	deploy	our	container	into	the	cloud.	Let’s	take	a
quick	look	at	using	Kubernetes	to	host	and	scale	our	service.

Deploying	on	Kubernetes
It’s	beyond	the	scope	of	this	book	to	go	too	deeply	into	Kubernetes,	so	we’ll
stick	to	the	basics,	including	how	to	get	a	service	quickly	up	and	running.
Kubernetes	(also	known	as	k8s)	is	rapidly	becoming	the	major	cluster
framework	in	the	cloud.	Born	from	Google’s	original	cluster	management
software,	Borg,	it	contains	all	the	parts	and	glue	to	form	a	resilient	and	reliable
way	of	running	services,	including	things	like	load	balancers,	resource	quotas,
scaling	policies,	traffic	management,	sharing	secrets,	and	more.

You	can	download	and	set	up	Kubernetes	on	your	local	machine	or	in	your	cloud
account,	but	the	recommended	way	is	to	use	a	hosted	service	where	management

1

of	Kubernetes	itself	is	handled	by	the	cloud	provider	and	you’re	just	left	with
scheduling	your	services.	We	use	the	Google	Kubernetes	Engine	(GKE)	service
for	our	deployment,	but	you	could	also	deploy	on	Amazon,	Azure,	or
DigitalOcean.

Setting	Up	on	Google	Kubernetes	Engine
To	use	GKE,	you	need	a	Google	Cloud	account.	In	addition,	running	services	on
GKE	isn’t	free.	On	the	bright	side,	if	you’re	new	to	Google	Cloud,	you’ll	get
$300	in	free	credit,	and	we’re	probably	not	going	to	burn	more	than	a	dollar	or
two.

Once	you	have	an	account,	download	the	gcloud	SDK	for	your	system.	Once
that’s	installed,	we	can	use	it	to	install	kubectl,	the	application	that	we’ll	use	to
interact	with	the	Kubernetes	cluster	we’ll	be	creating:

gcloud login
gcloud components install kubectl

We	then	need	to	create	a	new	project,	which	is	how	Google	Cloud	organizes
compute	resources	in	your	account:

gcloud projects create ml-k8s --set-as-default

Next,	we	rebuild	our	Docker	image	and	tag	it	so	it	can	be	pushed	up	to	the
internal	registry	that	Google	provides	(we	need	to	use	gcloud	to	authenticate),
and	then	we	can	use	docker push	to	send	our	container	image	up	to	the	cloud.
Note	that	we’re	also	tagging	our	service	with	a	v1	version	tag,	which	we	weren’t
doing	before:

docker build -t gcr.io/ml-k8s/catfish-service:v1 .
gcloud auth configure-docker
docker push gcr.io/ml-k8s/catfish-service:v1

Creating	a	k8s	Cluster
Now	we	can	create	our	Kubernetes	cluster.	In	the	following	command,	we’re
creating	one	with	two	n1-standard-1	nodes,	Google’s	cheapest	and	lowest-

https://cloud.google.com
https://cloud.google.com/sdk

powered	instances.	If	you’re	really	saving	pennies,	you	can	create	the	cluster
with	just	one	node.

gcloud container clusters create ml-cluster --num-nodes=2

This	may	take	a	couple	of	minutes	to	fully	initialize	the	new	cluster.	Once	it’s
ready,	we	can	use	kubectl	to	deploy	our	application!

kubectl run catfish-service
--image=gcr.io/ml-k8s/catfish-service:v1
--port 5000
--env CATFISH_MODEL_LOCATION=[URL]

Note	that	we’re	passing	the	location	of	the	model	parameter	file	as	an
environment	parameter	here,	just	as	we	did	with	the	docker run	command	on
our	local	machine.	Use	kubectl get pods	to	see	what	pods	are	running	on	the
cluster.	A	pod	is	a	group	of	one	or	more	containers	combined	with	a
specification	on	how	to	run	and	manage	those	containers.	For	our	purposes,	we
run	our	model	in	one	container	in	one	pod.	Here’s	what	you	should	see:

NAME READY STATUS RESTARTS AGE
gcr.io/ml-k8s/catfish-service:v1 1/1 Running 0 4m15s

Right,	so	now	we	can	see	that	our	application	is	running,	but	how	do	we	actually
talk	to	it?	To	do	that,	we	need	to	deploy	a	service,	in	this	case	a	load	balancer
that	maps	an	external	IP	address	to	our	internal	cluster:

kubectl expose deployment catfish-service
--type=LoadBalancer
--port 80
--target-port 5000

You	can	then	look	at	the	running	services	by	using	kubectl get services	to
get	the	external	IP:

kubectl get service

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
catfish-service 10.3.251.122 203.0.113.0 80:30877/TCP 3d

You	should	now	be	able	to	hit	http://external-ip/predict	just	as	you	could	on
your	local	machine.	Success!	We	can	also	check	in	on	our	pod’s	logs	without
logging	into	it:

kubectl logs catfish-service-xxdsd
>> log response

We	now	have	a	deployment	running	in	a	Kubernetes	cluster.	Let’s	explore	some
of	the	power	that	it	provides.

Scaling	Services
Say	we	decide	that	one	pod	isn’t	enough	to	handle	all	the	traffic	coming	into	our
prediction	service.	In	a	traditional	deployment,	we’d	have	to	bring	up	new
servers,	add	them	into	load	balancers,	and	work	out	what	to	do	if	one	of	the
servers	fails.	But	with	Kubernetes,	we	can	do	all	this	easily.	Let’s	make	sure	that
three	copies	of	the	service	are	running:

kubectl scale deployment hello-web --replicas=3

If	you	keep	looking	at	kubectl get pods,	you’ll	soon	see	that	Kubernetes	is
bringing	up	two	more	pods	from	your	Docker	image	and	wiring	them	into	the
load	balancer.	Even	better,	let’s	see	what	happens	if	we	delete	one	of	the	pods:

kubectl delete pod [PODNAME]
kubectl get pods

You’ll	see	that	the	pod	we’ve	specified	has	been	deleted.	But—you	should	also
see	that	a	new	pod	is	being	spun	up	to	replace	it!	We’ve	told	Kubernetes	that	we
should	be	running	three	copies	of	the	image,	and	because	we	deleted	one,	the
cluster	starts	up	a	new	pod	to	ensure	that	the	replica	count	is	what	we	requested.
This	also	carries	over	to	updating	our	application,	so	let’s	look	at	that	too.

Updates	and	Cleaning	Up
When	it	comes	to	pushing	an	update	to	our	service	code,	we	create	a	new	version
of	the	container	with	a	v2	tag:

docker build -t gcr.io/ml-k8s/catfish-service:v2 .
docker push gcr.io/ml-k8s/catfish-service:v2

Then	we	tell	the	cluster	to	use	the	new	image	for	the	deployment:

kubectl set image deployment/catfish-service
 catfish-service=gcr.io/ml-k8s/catfish-service:v2

Keep	monitoring	via	kubectl get pods	and	you’ll	see	that	new	pods	with	the
new	image	are	being	rolled	out,	and	the	pods	with	the	old	image	are	being
deleted.	Kubernetes	automatically	takes	care	of	draining	connections	and
removing	the	old	pods	from	the	load	balancer.

Finally,	if	you’re	finished	playing	around	with	the	cluster,	you	should	clean	up
so	you	don’t	get	any	further	surprise	charges:

kubectl delete service catfish-service
gcloud container clusters delete ml-k8s

That	wraps	up	our	mini-tour	of	Kubernetes;	you	now	know	just	enough	to	be
dangerous,	but	definitely	check	out	the	Kubernetes	website	as	a	starting	point	for
further	information	about	the	system	(and	trust	me,	there’s	a	lot	of	it!)

We’ve	covered	how	to	deploy	our	Python-based	code,	but	perhaps	surprisingly,
PyTorch	isn’t	limited	to	just	Python.	In	the	next	section,	you’ll	see	how
TorchScript	brings	in	the	wider	world	of	C++,	as	well	as	some	optimizations	to
our	normal	Python	models.

TorchScript
If	you	can	remember	as	far	back	as	the	introduction	(I	know!),	you	know	that	the
main	difference	between	PyTorch	and	TensorFlow	is	that	TensorfFlow	has	a
graph-based	representation	of	a	model,	whereas	PyTorch	has	an	eager	execution
with	tape-based	differentiation.	The	eager	method	allows	you	to	do	all	sorts	of
dynamic	approaches	to	specifying	and	training	models	that	makes	PyTorch
appealing	for	research	purposes.	On	the	other	hand,	the	graph-based
representation	may	be	static,	but	it	gains	power	from	that	stability;	optimizations
may	be	applied	to	the	graph	representation,	safe	in	the	knowledge	that	nothing	is

https://kubernetes.io

going	to	change.	And	just	as	TensorFlow	has	moved	to	support	eager	execution
in	version	2.0,	version	1.0	of	PyTorch	introduced	TorchScript,	which	is	a	way	of
bringing	the	advantages	of	graph-based	systems	without	completely	giving	up
the	flexibility	of	PyTorch.	This	is	done	in	two	ways	that	can	be	mixed	and
matched:	tracing	and	using	TorchScript	directly.

Tracing
PyTorch	1.0	comes	with	a	JIT	tracing	engine	that	will	turn	an	existing	PyTorch
module	or	function	into	a	TorchScript	one.	It	does	this	by	passing	an	example
tensor	through	the	module	and	returning	a	ScriptModule	result	that	contains	the
TorchScript	representation	of	the	original	code.

Let’s	have	a	look	at	tracing	AlexNet:

model = torchvision.models.AlexNet()
traced_model = torch.jit.trace(model,
 torch.rand(1, 3, 224, 224))

Now,	this	will	work,	but	you’ll	get	a	message	like	this	from	the	Python
interpreter	that	will	make	you	pause:

TracerWarning: Trace had nondeterministic nodes. Nodes:
%input.15 :
Float(1, 9216) = aten::dropout(%input.14, %174, %175),
scope: AlexNet/Sequential[classifier]/Dropout[0]
%input.18 :
Float(1, 4096) = aten::dropout(%input.17, %184, %185),
scope: AlexNet/Sequential[classifier]/Dropout[3]

This may cause errors in trace checking.
To disable trace checking, pass check_trace=False to torch.jit.trace()

_check_trace([example_inputs], func, executor_options,
module, check_tolerance, _force_outplace)
/home/ian/anaconda3/lib/
python3.6/site-packages/torch/jit/__init__.py:642:
TracerWarning: Output nr 1. of the traced function does not
match the corresponding output of the Python function. Detailed error:

Not within tolerance rtol=1e-05 atol=1e-05 at input[0, 22]
(0.010976361110806465 vs. -0.005604125093668699)
and 996 other locations (99.00%)

_check_trace([example_inputs], func,
executor_options, module, check_tolerance
_force_outplace)

What’s	going	on	here?	When	we	create	AlexNet	(or	other	models),	the	model	is
instantiated	in	training	mode.	During	training	in	many	models	such	as	AlexNet,
we	use	a	Dropout	layer	that	randomly	kills	activations	as	a	tensor	goes	through	a
network.	What	the	JIT	has	done	is	send	the	random	tensor	we’ve	generated
through	the	model	twice,	compared	them,	and	noted	that	the	Dropout	layers
don’t	match.	This	reveals	an	important	caveat	with	the	tracing	facility;	it	cannot
cope	with	nondeterminism	or	control	flow.	If	your	model	uses	these	features,
you’ll	have	to	use	TorchScript	directly	for	at	least	part	of	your	conversion.

In	AlexNet’s	case,	though,	the	fix	is	simple:	we’ll	switch	the	model	to	evaluation
mode	by	using	model.eval().	If	you	run	the	tracing	line	again,	you’ll	find	that
it	completes	without	any	complaining.	We	can	also	print()	the	traced	model	to
see	what	it	is	composed	of:

print(traced_model)

TracedModule[AlexNet](
(features): TracedModule[Sequential](
 (0): TracedModule[Conv2d]()
 (1): TracedModule[ReLU]()
 (2): TracedModule[MaxPool2d]()
 (3): TracedModule[Conv2d]()
 (4): TracedModule[ReLU]()
 (5): TracedModule[MaxPool2d]()
 (6): TracedModule[Conv2d]()
 (7): TracedModule[ReLU]()
 (8): TracedModule[Conv2d]()
 (9): TracedModule[ReLU]()
 (10): TracedModule[Conv2d]()
 (11): TracedModule[ReLU]()
 (12): TracedModule[MaxPool2d]()
)
(classifier): TracedModule[Sequential](
 (0): TracedModule[Dropout]()
 (1): TracedModule[Linear]()
 (2): TracedModule[ReLU]()
 (3): TracedModule[Dropout]()
 (4): TracedModule[Linear]()
 (5): TracedModule[ReLU]()
 (6): TracedModule[Linear]()

)
)

We	can	also	see	the	code	that	the	JIT	engine	has	created	if	we	call
print(traced_model.code):

def forward(self,
 input_1: Tensor) -> Tensor:
 input_2 = torch._convolution(input_1, getattr(self.features, "0").weight,
 getattr(self.features, "0").bias,
 [4, 4], [2, 2], [1, 1], False, [0, 0], 1, False, False, True)
 input_3 = torch.threshold_(input_2, 0., 0.)
 input_4, _0 = torch.max_pool2d_with_indices
 (input_3, [3, 3], [2, 2], [0, 0], [1, 1], False)
 input_5 = torch._convolution(input_4, getattr
 (self.features, "3").weight, getattr(self.features, "3").bias,
 [1, 1], [2, 2], [1, 1], False, [0, 0], 1, False, False, True)
 input_6 = torch.threshold_(input_5, 0., 0.)
 input_7, _1 = torch.max_pool2d_with_indices
 (input_6, [3, 3], [2, 2], [0, 0], [1, 1], False)
 input_8 = torch._convolution(input_7, getattr(self.features, "6").weight,
 getattr
 (self.features, "6").bias,
 [1, 1], [1, 1], [1, 1], False, [0, 0], 1, False, False, True)
 input_9 = torch.threshold_(input_8, 0., 0.)
 input_10 = torch._convolution(input_9, getattr
 (self.features, "8").weight, getattr(self.features, "8").bias,
 [1, 1], [1, 1], [1, 1], False, [0, 0], 1, False, False, True)
 input_11 = torch.threshold_(input_10, 0., 0.)
 input_12 = torch._convolution(input_11, getattr
 (self.features, "10").weight, getattr(self.features, "10").bias,
 [1, 1], [1, 1], [1, 1], False, [0, 0], 1, False, False, True)
 input_13 = torch.threshold_(input_12, 0., 0.)
 x, _2 = torch.max_pool2d_with_indices
 (input_13, [3, 3], [2, 2], [0, 0], [1, 1], False)
 _3 = ops.prim.NumToTensor(torch.size(x, 0))
 input_14 = torch.view(x, [int(_3), 9216])
 input_15 = torch.dropout(input_14, 0.5, False)
 _4 = torch.t(getattr(self.classifier, "1").weight)
 input_16 = torch.addmm(getattr(self.classifier, "1").bias,
 input_15, _4, beta=1, alpha=1)
 input_17 = torch.threshold_(input_16, 0., 0.)
 input_18 = torch.dropout(input_17, 0.5, False)
 _5 = torch.t(getattr(self.classifier, "4").weight)
 input_19 = torch.addmm(getattr(self.classifier, "4").bias,
 input_18, _5, beta=1, alpha=1)
 input = torch.threshold_(input_19, 0., 0.)
 _6 = torch.t(getattr(self.classifier, "6").weight)

 _7 = torch.addmm(getattr(self.classifier, "6").bias, input,
 _6, beta=1, alpha=1)
 return _7

The	model	(code	and	parameters)	can	then	be	saved	with	torch.jit.save:

torch.jit.save(traced_model, "traced_model")

That	covers	how	tracing	works.	Let’s	see	how	to	use	TorchScript.

Scripting
You	might	wonder	why	we	just	can’t	trace	everything.	Although	the	tracer	is
good	at	what	it	does,	it	has	limitations.	For	example,	a	simple	function	like	the
following	is	not	possible	to	trace	with	a	single	pass:

import torch

def example(x, y):
 if x.min() > y.min():
 r = x
 else:
 r = y
 return r

A	single	trace	through	the	function	will	take	us	down	one	pathway	and	not	the
other,	meaning	that	the	function	will	not	be	converted	correctly.	In	these	cases,
we	can	use	TorchScript,	which	is	a	limited	subset	of	Python,	and	produce	our
compiled	code.	We	use	an	annotation	to	tell	PyTorch	that	we	are	using
TorchScript,	so	the	TorchScript	implementation	would	look	like	this:

@torch.jit.script
def example(x, y):
 if x.min() > y.min():
 r = x
 else:
 r = y
 return r

Happily,	we’re	not	using	any	constructs	in	our	function	that	aren’t	in	TorchScript
or	referencing	any	global	state,	so	this	will	just	work.	If	we	were	creating	a	new

architecture,	we’d	need	to	inherit	from	torch.jit.ScriptModule	instead	of
nn.Module.	You	might	wonder	how	we	can	use	other	modules	(say,	CNN-based
layers)	if	all	modules	have	to	inherit	from	this	different	class.	Is	everything
slightly	different?	The	fix	is	that	we	can	mix	and	match	both	by	using	explicit
TorchScript	and	traced	objects	at	will.

Let’s	go	back	to	our	CNNNet/AlexNet	structure	from	Chapter	3	and	see	how	it
can	be	converted	into	TorchScript	using	a	combination	of	these	methods.	For	the
sake	of	brevity,	we’ll	implement	only	the	features	component:

class FeaturesCNNNet(torch.jit.ScriptModule):
 def __init__(self, num_classes=2):
 super(FeaturesCNNNet, self).__init__()
 self.features = torch.jit.trace(nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(64, 192, kernel_size=5, padding=2),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2),
 nn.Conv2d(192, 384, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(384, 256, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.Conv2d(256, 256, kernel_size=3, padding=1),
 nn.ReLU(),
 nn.MaxPool2d(kernel_size=3, stride=2)
), torch.rand(1,3,224,224))

 @torch.jit.script_method
 def forward(self, x):
 x = self.features(x)
 return x

There	are	two	things	to	note	here.	First,	inside	classes,	we	need	to	annotate	using
@torch.jit.script_method.	Second,	although	we	could	have	traced	each
separate	layer	individually,	we	took	advantage	of	the	nn.Sequential	wrapper
layer	to	fire	the	trace	through	just	that	instead.	You	could	implement	the
classifier	block	yourself	to	get	a	feel	for	how	this	mixing	works.	Remember
that	you’ll	need	to	switch	the	Dropout	layers	into	eval()	mode	instead	of
training,	and	your	input	trace	tensor	will	need	to	be	of	shape	[1, 256, 6, 6]
because	of	the	downsampling	that	the	features	block	carries	out.	And	yes,	you

can	save	this	network	by	using	torch.jit.save	just	as	we	did	for	the	traced
module.	Let’s	have	a	look	at	what	TorchScript	allows	and	forbids.

TorchScript	Limitations
The	biggest	restriction	in	TorchScript	compared	to	Python,	at	least	in	my	mind,
is	the	reduced	number	of	types	available.	Table	8-1	lists	what’s	available	and
what’s	not.

Table	8-1.	Available	Python	types	in	TorchScript

Type Description

tensor A	PyTorch	tensor	of	any	dtype,	dimension,	or	backend

tuple[T0,	T1,…] A	tuple	containing	subtypes	T0,	T1,	etc.	(e.g.,	tuple[tensor, tensor])

boolean Boolean

str String

int Int

float Float

list List	of	type	T

optional[T] Either	None	or	type	T

dict[K, V] dict	with	keys	of	type	K	and	values	of	type	V;	K	can	be	only	str,	int,	or	float

Another	thing	you	can’t	do	that	you	can	do	in	standard	Python	is	have	a	function
that	mixes	return	types.	The	following	is	illegal	in	TorchScript:

def maybe_a_string_or_int(x):
 if x > 3:
 return "bigger than 3!"
 else
 return 2

Of	course,	it’s	not	really	a	good	idea	in	Python,	either,	but	the	language’s
dynamic	typing	will	allow	it.	TorchScript	is	statically	typed	(which	helps	with

applying	optimizations),	so	you	simply	can’t	do	this	in	TorchScript	annotated
code.	Also,	TorchScript	assumes	that	every	parameter	passed	into	a	function	is	a
tensor,	which	can	result	in	some	weirdness	if	you’re	not	aware	of	what’s	going
on:

@torch.jit.script
def add_int(x,y):
 return x + y

print(add_int.code)
>> def forward(self,
 x: Tensor,
 y: Tensor) -> Tensor:
 return torch.add(x, y, alpha=1)

To	force	different	types,	we	need	to	use	Python	3’s	type	decorators:

@torch.jit.script
def add_int(x: int, y: int) -> int:
 return x + y
print(add_int.code)
>> def forward(self,
 x: int,
 y: int) -> int:
return torch.add(x, y)

As	you’ve	already	seen,	classes	are	supported,	but	there	are	a	few	twists.	All
methods	on	a	class	have	to	be	valid	TorchScript,	but	although	this	code	looks
valid,	it	will	fail:

@torch.jit.script
class BadClass:
 def __init__(self, x)
 self.x = x

 def set_y(y)
 self.y = y

This	is,	again,	a	consequence	of	TorchScript’s	static	typing.	All	instance
variables	have	to	be	declared	during	the	__init__	and	cannot	be	introduced
elsewhere.	Oh,	and	don’t	get	any	ideas	about	including	any	expressions	inside	a
class	that	aren’t	in	a	method—these	are	explicitly	banned	by	TorchScript.

A	useful	feature	of	TorchScript	being	a	subset	of	Python	is	that	translation	can	be
approached	in	a	piecemeal	approach,	and	the	intermediate	code	is	still	valid	and
executable	Python.	TorchScript-compliant	code	can	call	out	to	noncompliant
code,	and	while	you	won’t	be	able	to	execute	torch.jit.save()	until	all	the
noncompliant	code	is	converted,	you	can	still	run	everything	under	Python.

These	are	what	I	consider	the	major	nuances	of	TorchScript.	You	can	read	about
more	in	the	PyTorch	documentation,	which	goes	into	depth	about	things	like
scoping	(mostly	standard	Pythonic	rules),	but	the	outline	presented	here	is
enough	to	convert	all	the	models	you’ve	seen	so	far	in	this	book.	Instead	of
regurgitating	all	of	the	reference,	let’s	look	at	using	one	of	our	TorchScript-
enabled	models	in	C++.

Working	with	libTorch
In	addition	to	TorchScript,	PyTorch	1.0	introduced	libTorch,	a	C++	library	for
interacting	with	PyTorch.	Various	levels	of	C++	interaction	are	available.	The
lowest	levels	are	ATen	and	autograd,	the	C++	implementations	of	the	tensor	and
automatic	differentiation	that	PyTorch	itself	is	built	on.	On	top	of	those	are	a
C++	frontend,	which	duplicates	the	Pythonic	PyTorch	API	in	C++,	an	interface
to	TorchScript,	and	finally	an	extension	interface	that	allows	new	custom
C++/CUDA	operators	to	be	defined	and	exposed	to	PyTorch’s	Python
implementation.	We’re	concerned	with	only	the	C++	frontend	and	the	interface
to	TorchScript	in	this	book,	but	more	information	on	the	other	parts	is	available
in	the	PyTorch	documentation.	Let’s	start	by	getting	libTorch.

Obtaining	libTorch	and	Hello	World
Before	we	can	do	anything,	we	need	a	C++	compiler	and	a	way	of	building	C++
programs	on	our	machine.	This	is	one	of	the	few	parts	of	the	book	where
something	like	Google	Colab	isn’t	appropriate,	so	you	may	have	to	create	a	VM
in	Google	Cloud,	AWS,	or	Azure	if	you	don’t	have	easy	access	to	a	terminal
window.	(Everybody	who	ignored	my	advice	not	to	build	a	dedicated	machine	is
feeling	smug	right	now,	I	bet!)	The	requirements	for	libTorch	are	a	C++
compiler	and	CMake,	so	let’s	get	them	installed.	With	a	Debian-based	system,
use	this	command:

https://oreil.ly/sS0o7
https://oreil.ly/y6NP5

apt install cmake g++

If	you’re	using	a	Red	Hat–based	system,	use	this:

yum install cmake g++

Next,	we	need	to	download	libTorch	itself.	To	make	things	a	little	easier,	for
what	follows,	we’ll	use	the	CPU-based	distribution	of	libTorch,	rather	than
dealing	with	the	additional	CUDA	dependencies	that	the	GPU-enabled
distribution	brings.	Create	a	directory	called	torchscript_export	and	grab	the
distribution:

 wget https://download.pytorch.org/libtorch/cpu/libtorch-shared-with-deps-
latest.zip

Use	unzip	to	expand	the	ZIP	file	(it	should	create	a	new	libtorch	directory)	and
create	a	directory	called	helloworld.	In	this	directory,	we’re	going	to	add	a
minimal	CMakeLists.txt,	which	CMake	will	use	to	build	our	executable:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(helloworld)

find_package(Torch REQUIRED)

add_executable(helloworld helloworld.cpp)
target_link_libraries(helloworld "${TORCH_LIBRARIES}")
set_property(TARGET helloword PROPERTY CXX_STANDARD 11)

And	then	helloworld.cpp	is	as	follows:

#include <torch/torch.h>
#include <iostream>

int main() {
 torch::Tensor tensor = torch::ones({2, 2});
 std::cout << tensor << std::endl;
}

Create	a	build	directory	and	run	cmake,	making	sure	that	we	provide	an	absolute
path	to	the	libtorch	distribution:

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/absolute/path/to/libtorch ..
cd ..

We	can	now	run	plain	and	simple	make	to	create	our	executable:

make
./helloworld

1 1
1 1
[Variable[CPUType]{2,2}]

Congratulations	on	building	your	first	C++	program	with	libTorch!	Now,	let’s
expand	on	this	and	see	how	to	use	the	library	to	load	in	a	model	we’ve
previously	saved	with	torch.jit.save().

Importing	a	TorchScript	Model
We’re	going	to	export	our	full	CNNNet	model	from	Chapter	3	and	load	it	into
C++.	In	Python,	create	an	instance	of	the	CNNNet,	switch	it	to	eval()	mode	to
ignore	Dropout,	trace,	and	save	to	disk:

cnn_model = CNNNet()
cnn_model.eval()
cnn_traced = torch.jit.trace(cnn_model, torch.rand([1,3,224,224]))
torch.jit.save(cnn_traced, "cnnnet")

Over	in	the	C++	world,	create	a	new	directory	called	load-cnn	and	add	in	this
new	CMakeLists.txt	file:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(load-cnn)

find_package(Torch REQUIRED)

add_executable(load-cnn.cpp load-cnn.cpp)
target_link_libraries(load-cnn "${TORCH_LIBRARIES}")
set_property(TARGET load-cnn PROPERTY CXX_STANDARD 11)

Let’s	create	our	C++	program,	load-cnn.cpp:

#include <torch/script.h>
#include <iostream>
#include <memory>

int main(int argc, const char* argv[]) {

 std::shared_ptr<torch::jit::script::Module> module = torch::jit::load("cnnnet");

 assert(module != nullptr);
 std::cout << "model loaded ok\n";

 // Create a vector of inputs.
 std::vector<torch::jit::IValue> inputs;
 inputs.push_back(torch::rand({1, 3, 224, 224}));

 at::Tensor output = module->forward(inputs).toTensor();

 std::cout << output << '\n'
}

A	few	new	things	are	in	this	small	program,	though	most	of	it	should	remind	you
of	the	Python	PyTorch	API.	Our	first	act	is	to	load	in	our	TorchScript	model	with
torch::jit::load	(versus	torch.jit.load	in	Python).	We	do	a	null	pointer
check	to	make	sure	that	the	model	has	loaded	correctly,	and	then	we	move	on	to
testing	the	model	with	a	random	tensor.	Although	we	can	do	that	fairly	easily
with	torch::rand,	when	interacting	with	a	TorchScript	model,	we	have	to
create	a	vector	of	torch::jit::IValue	inputs	rather	than	just	a	normal	tensor
because	of	the	way	TorchScript	is	implemented	in	C++.	Once	that	is	done,	we
can	push	the	tensor	through	our	loaded	model	and	then	finally	write	the	result
back	to	standard	output.	We	compile	this	in	the	same	way	that	we	compiled	our
earlier	program:

mkdir build
cd build
cmake -DCMAKE_PREFIX_PATH=/absolute/path/to/libtorch ..
cd ..
make
./load-cnn

0.1775
0.9096

[Variable[CPUType]{2}]

And	voila!	A	C++	program	that	executes	a	custom	model	with	little	effort	on	our
part.	Be	aware	that	the	C++	interface	is	still	at	the	time	of	writing	in	beta	phase,
so	it’s	possible	that	some	of	the	details	here	may	change.	Make	sure	to	have	a
look	at	the	documentation	before	you	use	it	in	anger!

Conclusion
Hopefully	you	now	understand	how	to	take	your	trained	(and	debugged!)	model
and	turn	it	into	a	Dockerized	web	service	that	can	be	deployed	via	Kubernetes.
You’ve	also	seen	how	to	use	the	JIT	and	TorchScript	features	to	optimize	our
models	and	how	to	load	TorchScript	models	in	C++,	giving	us	the	promise	of
low-level	integration	of	neural	networks	as	well	as	in	Python.

Obviously,	with	just	one	chapter,	we	can’t	cover	everything	about	production
usage	of	model	serving.	We	got	to	the	point	of	deploying	our	service,	but	that’s
not	the	end	of	the	story;	there’s	the	constant	monitoring	of	the	service	to	make
sure	that	it	is	maintaining	accuracy,	retraining	and	testing	against	baselines,	and
more	complicated	versioning	schemes	than	the	ones	I’ve	introduced	here	for
both	the	service	and	the	model	parameters.	I	recommend	that	you	log	as	much
detail	as	you	possibly	can	and	take	advantage	of	that	logging	information	for
retraining	as	well	as	monitoring	purposes.

As	for	TorchScript,	it’s	still	early	days,	but	a	few	bindings	for	other	languages
(e.g.,	Go	and	Rust)	are	starting	to	appear;	by	2020	it	should	be	easy	to	wire	a
PyTorch	model	into	any	popular	language.

I’ve	intentionally	left	out	a	few	bits	and	pieces	that	don’t	quite	line	up	with	the
book’s	scope.	Back	in	the	introduction,	I	promised	that	you	could	do	everything
in	the	book	with	one	GPU,	so	we	haven’t	talked	about	PyTorch’s	support	for
distributed	training	and	inference.	Also,	if	you	read	about	PyTorch	model
exports,	you’re	almost	certainly	going	to	come	across	a	lot	of	references	to	the
Open	Neural	Network	Exchange	(ONNX).	This	standard,	jointly	authored	by
Microsoft	and	Facebook,	was	the	main	method	of	exporting	models	before	the
advent	of	TorchScript.	Models	can	be	exported	via	a	similar	tracing	method	to
TorchScript	and	then	imported	in	other	frameworks	such	as	Caffe2,	Microsoft

Cognitive	Toolkit,	and	MXNet.	ONNX	is	still	supported	and	actively	worked	in
PyTorch	v1.x,	but	it	appears	that	TorchScript	is	the	preferred	way	for	model
exporting.	See	the	“Further	Reading”	section	for	more	details	on	ONNX	if
you’re	interested.

Having	successfully	created,	debugged,	and	deployed	our	models,	we’ll	spend
the	final	chapter	looking	at	what	some	companies	have	been	doing	with
PyTorch.

Further	Reading
Flask	documentation

Waitress	documentation

Docker	documentationd

Kubernetes	(k8s)	documentation

TorchScript	documentation

Open	Neural	Network	Exchange

Using	ONNX	with	PyTorch

Distributed	training	with	PyTorch

1 	Cloud	Native	DevOps	with	Kubernetes	by	John	Arundel	and	Justin	Domingus	(O’Reilly)	is	a	great
deep	dive	into	this	framework.

http://flask.pocoo.org
https://oreil.ly/bnelI
https://docs.docker.com
https://oreil.ly/jMVcN
https://oreil.ly/sS0o7
https://onnx.ai
https://oreil.ly/UXz5S
https://oreil.ly/Q-Jao
https://oreil.ly/2BaE1iq

Chapter	9.	PyTorch	in	the	Wild

For	our	final	chapter,	we’ll	look	at	how	PyTorch	is	used	by	other	people	and
companies.	You’ll	also	learn	some	new	techniques	along	the	way,	including
resizing	pictures,	generating	text,	and	creating	images	that	can	fool	neural
networks.	In	a	slight	change	from	earlier	chapters,	we’ll	be	concentrating	on	how
to	get	up	and	running	with	existing	libraries	rather	than	starting	from	scratch	in
PyTorch.	I’m	hoping	that	this	will	be	a	springboard	for	further	exploration.

Let’s	start	by	examining	some	of	the	latest	approaches	for	squeezing	the	most
out	of	your	data.

Data	Augmentation:	Mixed	and	Smoothed
Way	back	in	Chapter	4,	we	looked	at	various	ways	of	augmenting	data	to	help
reduce	the	model	overfitting	on	the	training	dataset.	The	ability	to	do	more	with
less	data	is	naturally	an	area	of	high	activity	in	deep	learning	research,	and	in
this	section	we’ll	look	at	two	increasingly	popular	ways	to	squeeze	every	last
drop	of	signal	from	your	data.	Both	approaches	will	also	see	us	changing	how
we	calculate	our	loss	function,	so	it	will	be	a	good	test	of	the	more	flexible
training	loop	that	we	just	created.

mixup
mixup	is	an	intriguing	augmentation	technique	that	arises	from	looking	askew	at
what	we	want	our	model	to	do.	Our	normal	understanding	of	a	model	is	that	we
send	it	an	image	like	the	one	in	Figure	9-1	and	want	the	model	to	return	a	result
that	the	image	is	a	fox.

Figure	9-1.	A	fox

But	as	you	know,	we	don’t	get	just	that	from	the	model;	we	get	a	tensor	of	all	the
possible	classes	and,	hopefully,	the	element	of	that	tensor	with	the	highest	value
is	the	fox	class.	In	fact,	in	the	ideal	scenario,	we’d	have	a	tensor	that	is	all	0s
except	for	a	1	in	the	fox	class.

Except	that	is	difficult	for	a	neural	network	to	do!	There’s	always	going	to	be
uncertainty,	and	our	activation	functions	like	softmax	make	it	difficult	for	the
tensors	to	get	to	1	or	0.	mixup	takes	advantage	of	this	by	asking	a	question:	what
is	the	class	of	Figure	9-2?

Figure	9-2.	A	mixture	of	cat	and	fox

To	our	eyes,	this	may	be	a	bit	of	a	mess,	but	it	is	60%	cat	and	40%	fox.	What	if,
instead	of	trying	to	make	our	model	make	a	definitive	guess,	we	could	make	it
target	two	classes?	This	would	mean	that	our	output	tensor	won’t	run	into	the
problem	of	approaching	but	never	reaching	1	in	training,	and	we	could	alter	each
mixed	image	by	a	different	fraction,	improving	our	model’s	ability	to	generalize.

But	how	do	we	calculate	the	loss	function	of	this	mixed-up	image?	Well,	if	p	is
the	percentage	of	the	first	image	in	the	mixed	image,	then	we	have	a	simple
linear	combination	of	the	following:

p * loss(image1) + (1-p) * loss(image2)

It	has	to	predict	those	images,	right?	And	we	need	to	scale	according	to	how
much	of	those	images	is	in	the	final	mixed	image,	so	this	new	loss	function
seems	reasonable.	To	choose	p,	we	could	just	use	random	numbers	drawn	from	a
normal	or	uniform	distribution	as	we	would	do	in	many	other	cases.	However,
the	writers	of	the	mixup	paper	determined	that	samples	drawn	from	the	beta
distribution	work	out	much	better	in	practice. 	Don’t	know	what	the	beta
distribution	looks	like?	Well,	neither	did	I	until	I	saw	this	paper!	Figure	9-3
shows	how	it	looks	when	given	the	characteristics	described	in	the	paper.

Figure	9-3.	Beta	distribution,	where	⍺	=	β

The	U-shape	is	interesting	because	it	tells	us	that	most	of	the	time,	our	mixed
image	will	be	mainly	one	image	or	another.	Again,	this	makes	intuitive	sense	as
we	can	imagine	the	network	is	going	to	have	a	harder	time	working	out	a	50/50
mixup	than	a	90/10	one.

Here’s	a	modified	training	loop	that	takes	a	new	additional	data	loader,

1

mix_loader,	and	mixes	the	batches	together:

def train(model, optimizer, loss_fn, train_loader, val_loader,
epochs=20, device, mix_loader):
 for epoch in range(epochs):
 model.train()
 for batch in zip(train_loader,mix_loader):
 ((inputs, targets),(inputs_mix, targets_mix)) = batch
 optimizer.zero_grad()
 inputs = inputs.to(device)
 targets = targets.to(device)
 inputs_mix = inputs_mix.to(device)
 target_mix = targets_mix.to(device)

 distribution = torch.distributions.beta.Beta(0.5,0.5)
 beta = distribution.expand(torch.zeros(batch_size).shape).sample().to(device)

 # We need to transform the shape of beta
 # to be in the same dimensions as our input tensor
 # [batch_size, channels, height, width]

 mixup = beta[:, None, None, None]

 inputs_mixed = (mixup * inputs) + (1-mixup * inputs_mix)

 # Targets are mixed using beta as they have the same shape

 targets_mixed = (beta * targets) + (1-beta * inputs_mix)

 output_mixed = model(inputs_mixed)

 # Multiply losses by beta and 1-beta,
 # sum and get average of the two mixed losses

 loss = (loss_fn(output, targets) * beta
 + loss_fn(output, targets_mixed)
 * (1-beta)).mean()

 # Training method is as normal from herein on

 loss.backward()
 optimizer.step()
 …

What’s	happening	here	is	after	we	get	our	two	batches,	we	use
torch.distribution.Beta	to	generate	a	series	of	mix	parameters,	using	the
expand	method	to	produce	a	tensor	of	[1, batch_size].	We	could	iterate

through	the	batch	and	generate	the	parameters	one	by	one,	but	this	is	neater,	and
remember,	GPUs	love	matrix	multiplication,	so	it’ll	end	up	being	faster	to	do	all
the	calculations	across	the	batch	at	once	(this	is	shown	in	Chapter	7	when	fixing
our	BadRandom	transformation,	remember!).	We	multiply	the	entire	batch	by	this
tensor,	and	then	the	batch	to	mix	in	by	1 - mix_factor_tensor	using
broadcasting	(which	we	covered	in	Chapter	1).

We	then	take	the	losses	of	the	predictions	against	our	targets	for	both	images,
and	our	final	loss	is	the	mean	of	the	sum	of	those	losses.	What’s	happening
there?	Well,	if	you	look	at	the	source	code	for	CrossEntropyLoss,	you’ll	see	the
comment	The losses are averaged across observations for each
minibatch.	There’s	also	a	reduction	parameter	that	has	a	default	set	to	mean
(we’ve	used	the	default	so	far,	so	that’s	why	you	haven’t	seen	it	before!).	We
need	to	preserve	that	condition,	so	we	take	the	mean	of	our	combined	losses.

Now,	having	two	data	loaders	isn’t	too	much	trouble,	but	it	does	make	the	code	a
little	more	complicated.	If	you	run	this	code,	you	might	error	out	because	the
batches	are	not	balanced	as	final	batches	come	out	of	the	loaders,	meaning	that
you’ll	have	to	write	extra	code	to	handle	that	case.	The	authors	of	the	mixup
paper	suggest	that	you	could	replace	the	mix	data	loader	with	a	random	shuffle
of	the	incoming	batch.	We	can	do	this	with	torch.randperm():

shuffle = torch.randperm(inputs.size(0))
inputs_mix = inputs[shuffle]
targets_mix = targets[shuffle]

When	using	mixup	in	this	way,	be	aware	that	you	are	much	more	likely	to	get
collisions	where	you	end	up	applying	the	same	parameter	to	the	same	set	of
images,	potentially	reducing	the	accuracy	of	training.	For	example,	you	could
have	cat1	mixed	with	fish1,	and	draw	a	beta	parameter	of	0.3.	Then	later	in	the
same	batch,	you	pull	out	fish1	and	it	gets	mixed	with	cat1	with	a	parameter	of
0.7—making	it	the	same	mix!	Some	implementations	of	mixup—in	particular,
the	fast.ai	implementation—resolve	this	issue	by	replacing	our	mix	parameters
with	the	following:

mix_parameters = torch.max(mix_parameters, 1 - mix_parameters)

This	ensures	that	the	nonshuffled	batch	will	always	have	the	highest	component
when	being	merged	with	the	mix	batch,	thus	eliminating	that	potential	issue.

Oh,	and	one	more	thing:	we	performed	the	mixup	transformation	after	our	image
transformation	pipeline.	At	this	point,	our	batches	are	just	tensors	that	we’ve
added	together.	This	means	that	there’s	no	reason	mixup	training	should	be
restricted	to	images.	We	could	use	it	on	any	type	of	data	that’s	been	transformed
into	tensors,	whether	text,	image,	audio,	or	anything	else.

We	can	still	do	a	little	more	to	make	our	labels	work	harder	for	us.	Enter	another
approach	that	is	now	a	mainstay	of	state-of-the-art	models:	label	smoothing.

Label	Smoothing
In	a	similar	manner	to	mixup,	label	smoothing	helps	to	improve	model
performance	by	making	the	model	less	sure	of	its	predictions.	Instead	of	trying
to	force	it	to	predict	1	for	the	predicted	class	(which	has	all	the	problems	we
talked	about	in	the	previous	section),	we	instead	alter	it	to	predict	1	minus	a
small	value,	epsilon.	We	can	create	a	new	loss	function	implementation	that
wraps	up	our	existing	CrossEntropyLoss	function	with	this	functionality.	As	it
turns	out,	writing	a	custom	loss	function	is	just	another	subclass	of	nn.Module:

class LabelSmoothingCrossEntropyLoss(nn.Module):
 def __init__(self, epsilon=0.1):
 super(LabelSmoothingCrossEntropyLoss, self).__init__()
 self.epsilon = epsilon

 def forward(self, output, target):
 num_classes = output.size()[-1]
 log_preds = F.log_softmax(output, dim=-1)
 loss = (-log_preds.sum(dim=-1)).mean()
 nll = F.nll_loss(log_preds, target)
 final_loss = self.epsilon * loss / num_classes +
 (1-self.epsilon) * nll
 return final_loss

When	it	comes	to	computing	the	loss	function,	we	calculate	the	cross-entropy
loss	as	per	the	implementation	of	CrossEntropyLoss.	Our	final_loss	is
constructed	from	negative	log-likelihood	being	multiplied	by	1	minus	epsilon
(our	smoothed	label)	added	to	the	loss	multiplied	by	epsilon	divided	by	the

number	of	classes.	This	occurs	because	we	are	smoothing	not	only	the	label	for
the	predicted	class	to	be	1	minus	epsilon,	but	also	the	other	labels	so	that	they’re
not	being	forced	to	zero,	but	instead	a	value	between	zero	and	epsilon.

This	new	custom	loss	function	can	replace	CrossEntropyLoss	in	training
anywhere	we’ve	used	it	in	the	book,	and	when	combined	with	mixup,	it	is	an
incredibly	effective	way	of	getting	that	little	bit	more	from	your	input	data.

We’ll	now	turn	away	from	data	augmentation	to	have	a	look	at	another	hot	topic
in	current	deep	learning	trends:	generative	adversarial	networks.

Computer,	Enhance!
One	odd	consequence	of	the	increasing	power	of	deep	learning	is	that	for
decades,	we	computer	people	have	been	mocking	television	crime	shows	that
have	a	detective	click	a	button	to	make	a	blurry	camera	image	suddenly	become
a	sharp,	in-focus	picture.	How	we	laughed	and	cast	derision	on	shows	like	CSI
for	doing	this.	Except	we	can	now	actually	do	this,	at	least	up	to	a	point.	Here’s
an	example	of	this	witchcraft,	on	a	smaller	256	×	256	image	scaled	to	512	×	512,
in	Figures	9-4	and	9-5.

Figure	9-4.	Mailbox	at	256	×	256	resolution

Figure	9-5.	ESRGAN-enhanced	mailbox	at	512	×	512	resolution

The	neural	network	learns	how	to	hallucinate	new	details	to	fill	in	what’s	not
there,	and	the	effect	can	be	impressive.	But	how	does	this	work?

Introduction	to	Super-Resolution
Here’s	the	first	part	of	a	very	simple	super-resolution	model.	To	start,	it’s	pretty
much	exactly	the	same	as	any	model	you’ve	seen	so	far:

class OurFirstSRNet(nn.Module):

 def __init__(self):
 super(OurFirstSRNet, self).__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=8, stride=4, padding=2),
 nn.ReLU(inplace=True),
 nn.Conv2d(64, 192, kernel_size=2, padding=2),

 nn.ReLU(inplace=True),
 nn.Conv2d(192, 256, kernel_size=2, padding=2),
 nn.ReLU(inplace=True)
)

 def forward(self, x):
 x = self.features(x)
 return x

If	we	pass	a	random	tensor	through	the	network,	we	end	up	with	a	tensor	of
shape	[1, 256, 62, 62];	the	image	representation	has	been	compressed	into	a
much	smaller	vector.	Let’s	now	introduce	a	new	layer	type,
torch.nn.ConvTranspose2d.	You	can	think	of	this	as	a	layer	that	inverts	a
standard	Conv2d	transform	(with	its	own	learnable	parameters).	We’ll	add	a	new
nn.Sequential	layer,	upsample,	and	put	in	a	simple	list	of	these	new	layers	and
ReLU	activation	functions.	In	the	forward()	method,	we	pass	input	through	that
consolidated	layer	after	the	others:

class OurFirstSRNet(nn.Module):
 def __init__(self):
 super(OurFirstSRNet, self).__init__()
 self.features = nn.Sequential(
 nn.Conv2d(3, 64, kernel_size=8, stride=4, padding=2),
 nn.ReLU(inplace=True),
 nn.Conv2d(64, 192, kernel_size=2, padding=2),
 nn.ReLU(inplace=True),
 nn.Conv2d(192, 256, kernel_size=2, padding=2),
 nn.ReLU(inplace=True)

)
 self.upsample = nn.Sequential(
 nn.ConvTranspose2d(256,192,kernel_size=2, padding=2),
 nn.ReLU(inplace=True),
 nn.ConvTranspose2d(192,64,kernel_size=2, padding=2),
 nn.ReLU(inplace=True),
 nn.ConvTranspose2d(64,3, kernel_size=8, stride=4,padding=2),
 nn.ReLU(inplace=True)
)

 def forward(self, x):
 x = self.features(x)
 x = self.upsample(x)
 return x

If	you	now	test	the	model	with	a	random	tensor,	you’ll	get	back	a	tensor	of
exactly	the	same	size	that	went	in!	What	we’ve	built	here	is	known	as	an
autoencoder,	a	type	of	network	that	rebuilds	its	input,	usually	after	compressing
it	into	a	smaller	dimension.	That	is	what	we’ve	done	here;	the	features
sequential	layer	is	an	encoder	that	transforms	an	image	into	a	tensor	of	size	[1,
256, 62, 62],	and	the	upsample	layer	is	our	decoder	that	turns	it	back	into	the
original	shape.

Our	labels	for	training	the	image	would,	of	course,	be	our	input	images,	but	that
means	we	can’t	use	loss	functions	like	our	fairly	standard	CrossEntropyLoss,
because,	well,	we	don’t	have	classes!	What	we	want	is	a	loss	function	that	tells
us	how	different	our	output	image	is	from	our	input	image,	and	for	that,	taking
the	mean	squared	loss	or	mean	absolute	loss	between	the	pixels	of	the	image	is	a
common	approach.

NOTE
Although	calculating	the	loss	in	terms	of	pixels	makes	a	lot	of	sense,	it	turns	out	that	a	lot	of
the	most	successful	super-resolution	networks	use	augmented	loss	functions	that	try	to	capture
how	much	a	generated	image	looks	like	the	original,	tolerating	pixel	loss	for	better
performance	in	areas	like	texture	and	content	loss.	Some	of	the	papers	listed	in	“Further
Reading”	go	into	deeper	detail.

Now	that	gets	us	back	to	the	same	size	input	we	entered,	but	what	if	we	add
another	transposed	convolution	to	the	mix?

self.upsample = nn.Sequential(...
nn.ConvTranspose2d(3,3, kernel_size=2, stride=2)
nn.ReLU(inplace=True))

Try	it!	You	should	find	that	the	output	tensor	is	twice	as	big	as	the	input.	If	we
have	access	to	a	set	of	ground	truth	images	at	that	size	to	act	as	labels,	we	can
train	the	network	to	take	in	images	at	a	size	x	and	produce	images	for	a	size	2x.
In	practice,	we	tend	to	perform	this	upsampling	by	scaling	up	twice	as	much	as
we	need	to	and	then	adding	a	standard	convolutional	layer,	like	so:

self.upsample = nn.Sequential(......

nn.ConvTranspose2d(3,3, kernel_size=2, stride=2),
nn.ReLU(inplace=True),
nn.Conv2d(3,3, kernel_size=2, stride=2),
nn.ReLU(inplace=True))

We	do	this	because	the	transposed	convolution	has	a	tendency	to	add	jaggies	and
moiré	patterns	as	it	expands	the	image.	By	expanding	twice	and	then	scaling
back	down	to	our	required	size,	we	hopefully	provide	enough	information	to	the
network	to	smooth	those	out	and	make	the	output	look	more	realistic.

Those	are	the	basics	behind	super-resolution.	Most	current	high-performing
super-resolution	networks	are	trained	with	a	technique	called	the	generative
adversarial	network,	which	has	stormed	the	deep	learning	world	in	the	past	few
years.

An	Introduction	to	GANs
One	of	the	universal	problems	in	deep	learning	(or	any	machine	learning
application)	is	the	cost	of	producing	labeled	data.	In	this	book,	we’ve	mostly
avoided	the	problem	by	using	sample	datasets	that	are	all	carefully	labeled	(even
some	that	come	prepackaged	in	easy	training/validation/test	sets!).	But	in	the
real	world	producing	large	quantities	of	labeled	data.	Indeed,	techniques	that
you’ve	learned	a	lot	about	so	far,	like	transfer	learning,	have	all	been	about	doing
more	with	less.	But	sometimes	you	need	more,	and	generative	adversarial
networks	(GANs)	have	a	way	to	help.

GANs	were	introduced	by	Ian	Goodfellow	in	a	2014	paper	and	are	a	novel	way
of	providing	more	data	to	help	train	neural	networks.	And	the	approach	is	mainly
“we	know	you	love	neural	networks,	so	we	added	another.”

The	Forger	and	the	Critic
The	setup	of	a	GAN	is	as	follows.	Two	neural	networks	are	trained	together.	The
first	is	the	generator,	which	takes	random	noise	from	the	vector	space	of	the
input	tensors	and	produces	fake	data	as	output.	The	second	network	is	the
discriminator,	which	alternates	between	the	generated	fake	data	and	real	data.	Its
job	is	to	look	at	the	incoming	inputs	and	decide	whether	they’re	real	or	fake.	A
simple	conceptual	diagram	of	a	GAN	is	shown	in	Figure	9-6.

2

Figure	9-6.	A	simple	GAN	setup

The	great	thing	about	GANs	is	that	although	the	details	end	up	being	somewhat
complicated,	the	general	idea	is	easy	to	convey:	the	two	networks	are	in
opposition	to	each	other,	and	during	training	they	work	as	hard	as	they	can	to
defeat	the	other.	By	the	end	of	the	process,	the	generator	should	be	producing
data	that	matches	the	distribution	of	the	real	input	data	to	flummox	the
discriminator.	And	once	you	get	to	that	point,	you	can	use	the	generator	to
produce	more	data	for	all	your	needs,	while	the	discriminator	presumably	retires
to	the	neural	network	bar	to	drown	its	sorrows.

Training	a	GAN
Training	a	GAN	is	a	little	more	complicated	than	training	traditional	networks.
During	the	training	loop,	we	first	need	to	use	real	data	to	start	training	the
discriminator.	We	calculate	the	discriminator’s	loss	(using	BCE,	as	we	have	only
two	classes:	real	or	fake),	and	then	do	a	backward	pass	to	update	the	parameters
of	the	discriminator	as	usual.	But	this	time,	we	don’t	call	the	optimizer	to	update.
Instead,	we	generate	a	batch	of	data	from	our	generator	and	pass	that	through	the
model.	We	calculate	the	loss	and	do	another	backward	pass,	so	at	this	point	the
training	loop	has	calculated	the	losses	of	two	passes	through	the	model.	Now,	we
call	the	optimizer	to	update	based	on	these	accumulated	gradients.

In	the	second	half	of	training,	we	turn	to	the	generator.	We	give	the	generator
access	to	the	discriminator	and	then	generate	a	new	batch	of	data	(which	the
generator	insists	is	all	real!)	and	test	it	against	the	discriminator.	We	form	a	loss
against	this	output	data,	where	each	data	point	that	the	discriminator	says	is	fake
is	considered	a	wrong	answer—because	we’re	trying	to	fool	it—and	then	do	a

standard	backward/optimize	pass.

Here’s	a	generalized	implementation	in	PyTorch.	Note	that	the	generator	and
discriminator	are	just	standard	neural	networks,	so	theoretically	they	could	be
generating	images,	text,	audio,	or	whatever	type	of	data,	and	be	constructed	of
any	of	the	types	of	networks	you’ve	seen	so	far:

generator = Generator()
discriminator = Discriminator()

Set up separate optimizers for each network
generator_optimizer = ...
discriminator_optimizer = ...

def gan_train():
 for epoch in num_epochs:
 for batch in real_train_loader:
 discriminator.train()
 generator.eval()
 discriminator.zero_grad()

 preds = discriminator(batch)
 real_loss = criterion(preds, torch.ones_like(preds))
 discriminator.backward()

 fake_batch = generator(torch.rand(batch.shape))
 fake_preds = discriminator(fake_batch)
 fake_loss = criterion(fake_preds, torch.zeros_like(fake_preds))
 discriminator.backward()

 discriminator_optimizer.step()

 discriminator.eval()
 generator.train()
 generator.zero_grad()

 forged_batch = generator(torch.rand(batch.shape))
 forged_preds = discriminator(forged_batch)
 forged_loss = criterion(forged_preds, torch.ones_like(forged_preds))

 generator.backward()
 generator_optimizer.step()

Note	that	the	flexibility	of	PyTorch	helps	a	lot	here.	Without	a	dedicated	training
loop	that	is	perhaps	mainly	designed	for	more	standard	training,	building	up	a
new	training	loop	is	something	we’re	used	to,	and	we	know	all	the	steps	that	we

need	to	include.	In	some	other	frameworks,	training	GANs	is	a	bit	more	of	a
fiddly	process.	And	that’s	important,	because	training	GANs	is	a	difficult	enough
task	without	the	framework	getting	in	the	way.

The	Dangers	of	Mode	Collapse
In	an	ideal	world,	what	happens	during	training	is	that	the	discriminator	will	be
good	at	detecting	fakes	at	first,	because	it’s	training	on	real	data,	whereas	the
generator	is	allowed	access	to	only	the	discriminator	and	not	the	real	data	itself.
Eventually,	the	generator	will	learn	how	to	fool	the	discriminator,	and	then	it	will
soon	improve	rapidly	to	match	the	data	distribution	in	order	to	repeatedly
produce	forgeries	that	slip	past	the	critic.

But	one	thing	that	plagues	many	GAN	architectures	is	mode	collapse.	If	our	real
data	has	three	types	of	data,	then	maybe	our	generator	will	start	generating	the
first	type,	and	perhaps	it	starts	getting	rather	good	at	it.	The	discriminator	may
then	decide	that	anything	that	looks	like	the	first	type	is	actually	fake,	even	the
real	example	itself,	and	the	generator	then	starts	to	generate	something	that	looks
like	the	third	type.	The	discriminator	starts	rejecting	all	samples	of	the	third	type,
and	the	generator	picks	another	one	of	the	real	examples	to	generate.	The	cycle
continues	endlessly;	the	generator	never	manages	to	settle	into	a	period	where	it
can	generate	samples	from	across	the	distribution.

Reducing	mode	collapse	is	a	key	performance	issue	of	using	GANs	and	is	an	on-
going	research	area.	Some	approaches	include	adding	a	similarity	score	to	the
generated	data,	so	that	potential	collapse	can	be	detected	and	averted,	keeping	a
replay	buffer	of	generated	images	around	so	that	the	discriminator	doesn’t
overfit	onto	just	the	most	current	batch	of	generated	images,	allowing	actual
labels	from	the	real	dataset	to	be	added	to	the	generator	network,	and	so	on.

Next	we	round	off	this	section	by	examining	a	GAN	application	that	performs
super-resolution.

ESRGAN
The	Enhanced	Super-Resolution	Generative	Adversarial	Network	(ESRGAN)	is
a	network	developed	in	2018	that	produces	impressive	super-resolution	results.
The	generator	is	a	series	of	convolutional	network	blocks	with	a	combination	of

residual	and	dense	layer	connections	(so	a	mixture	of	both	ResNet	and
DenseNet),	with	BatchNorm	layers	removed	as	they	appear	to	create	artifacts	in
upsampled	images.	For	the	discriminator,	instead	of	simply	producing	a	result
that	says	this	is	real	or	this	is	fake,	it	predicts	a	probability	that	a	real	image	is
relatively	more	realistic	than	a	fake	one,	and	this	helps	to	make	the	model
produce	more	natural	results.

Running	ESRGAN
To	show	off	ESRGAN,	we’re	going	to	download	the	code	from	the	GitHub
repository.	Clone	that	using	git:

git clone https://github.com/xinntao/ESRGAN

We	then	need	to	download	the	weights	so	we	can	use	the	model	without	training.
Using	the	Google	Drive	link	in	the	README,	download	the
RRDB_ESRGAN_x4.pth	file	and	place	it	in	./models.	We’re	going	to	upsample	a
scaled-down	version	of	Helvetica	in	her	box,	but	feel	free	to	place	any	image
into	the	./LR	directory.	Run	the	supplied	test.py	script	and	you’ll	see	upsampled
images	being	generated	and	saved	into	the	results	directory.

That	wraps	it	up	for	super-resolution,	but	we	haven’t	quite	finished	with	images
yet.

Further	Adventures	in	Image	Detection
Our	image	classifications	in	Chapters	2–4	all	had	one	thing	in	common:	we
determined	that	the	image	belonged	to	a	single	class,	cat	or	fish.	And	obviously,
in	real-world	applications,	that	would	be	extended	to	a	much	larger	set	of
classes.	But	we’d	also	expect	images	to	potentially	include	both	a	cat	and	a	fish
(which	might	be	bad	news	for	the	fish),	or	any	of	the	classes	we’re	looking	for.
There	might	be	two	people	in	the	scene,	a	car,	and	a	boat,	and	we	not	only	want
to	determine	that	they’re	present	in	the	image,	but	also	where	they	are	in	the
image.	There	are	two	main	ways	to	do	this:	object	detection	and	segmentation.
We’ll	look	at	both	and	then	turn	to	Facebook’s	PyTorch	implementations	of
Faster	R-CNN	and	Mask	R-CNN	to	look	at	concrete	examples.

https://github.com/xinntao/ESRGAN

Object	Detection
Let’s	take	a	look	at	our	cat	in	a	box.	What	we	really	want	is	for	the	network	to
put	the	cat	in	a	box	in	another	box!	In	particular,	we	want	a	bounding	box	that
encompasses	everything	in	the	image	that	the	model	thinks	is	cat,	as	seen	in
Figure	9-7.

Figure	9-7.	Cat	in	a	box	in	a	bounding	box

But	how	can	we	get	our	networks	to	work	this	out?	Remember	that	these
networks	can	predict	anything	that	you	want	them	to.	What	if	alongside	our
prediction	of	a	class,	we	also	produce	four	more	outputs?	In	our	CATFISH
model,	we’d	have	a	Linear	layer	of	output	size	6	instead	of	2.	The	additional
four	outputs	will	define	a	rectangle	using	x ,	x ,	y ,	y 	coordinates.	Instead	of	just
supplying	images	as	training	data,	we’ll	also	have	to	augment	them	with
bounding	boxes	so	that	the	model	has	something	to	train	toward,	of	course.	Our
loss	function	will	now	be	a	combined	loss	of	the	cross-entropy	loss	of	our	class
prediction	and	a	mean	squared	loss	for	the	bounding	boxes.

There’s	no	magic	here!	We	just	design	the	model	to	give	us	what	we	need,	feed
in	data	that	has	enough	information	to	make	and	train	to	those	predictions,	and
include	a	loss	function	that	tells	our	network	how	well	or	badly	it’s	doing.

An	alternative	to	the	proliferation	of	bounding	boxes	is	segmentation.	Instead	of
producing	boxes,	our	network	outputs	an	image	mask	of	the	same	size	of	the
input;	the	pixels	in	the	mask	are	colored	depending	on	which	class	they	fall	into.
For	example,	grass	could	be	green,	roads	could	be	purple,	cars	could	be	red,	and

1 2 1 2

so	on.

As	we’re	outputting	an	image,	you’d	be	right	in	thinking	that	we’ll	probably	end
up	using	a	similar	sort	of	architecture	as	in	the	super-resolution	section.	There’s
a	lot	of	cross-over	between	the	two	topics,	and	one	model	type	that	has	become
popular	over	the	past	few	years	is	the	U-Net	architecture,	shown	in	Figure	9-8.

Figure	9-8.	Simplified	U-Net	architecture

As	you	can	see,	the	classic	U-Net	architecture	is	a	set	of	convolutional	blocks
that	scale	down	an	image	and	another	series	of	convolutions	that	scale	it	back	up
again	to	the	target	image.	However,	the	key	of	U-Net	is	the	lines	that	go	across
from	the	left	blocks	to	their	counterparts	on	the	righthand	side,	which	are
concatenated	with	the	output	tensors	as	the	image	is	scaled	back	up.	These
connections	allow	information	from	the	higher-level	convolutional	blocks	to
transfer	across,	preserving	details	that	might	be	removed	as	the	convolutional
blocks	reduce	the	input	image.

You’ll	find	U-Net-based	architectures	cropping	up	all	over	Kaggle	segmentation
competitions,	proving	in	some	ways	that	this	structure	is	a	good	one	for
segmentation.	Another	technique	that	has	been	applied	to	the	basic	setup	is	our
old	friend	transfer	learning.	In	this	approach,	the	first	part	of	the	U	is	taken	from
a	pretrained	model	such	as	ResNet	or	Inception,	and	the	other	side	of	the	U,	plus
skip	connections,	are	added	on	top	of	the	trained	network	and	fine-tuned	as
usual.

Let’s	take	a	look	at	some	existing	pretrained	models	that	can	deliver	state-of-the-

3

art	object	detection	and	segmentation,	direct	from	Facebook.

Faster	R-CNN	and	Mask	R-CNN
Facebook	Research	has	produced	the	maskrcnn-benchmark	library,	which
contains	reference	implementations	of	both	object	detection	and	segmentation
algorithms.	We’re	going	to	install	the	library	and	add	code	to	generate
predictions.	At	the	time	of	this	writing,	the	easiest	way	to	build	the	models	is	by
using	Docker	(this	may	change	when	PyTorch	1.2	is	released).	Clone	the
repository	from	https://github.com/facebookresearch/maskrcnn-benchmark	and
add	this	script,	predict.py,	into	the	demo	directory	to	set	up	a	prediction	pipeline
using	a	ResNet-101	backbone:

import matplotlib.pyplot as plt

from PIL import Image
import numpy as np
import sys
from maskrcnn_benchmark.config import cfg
from predictor import COCODemo

config_file = "../configs/caffe2/e2e_faster_rcnn_R_101_FPN_1x_caffe2.yaml"

cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.DEVICE", "cpu"])

coco_demo = COCODemo(
 cfg,
 min_image_size=500,
 confidence_threshold=0.7,
)

pil_image = Image.open(sys.argv[1])
image = np.array(pil_image)[:, :, [2, 1, 0]]
predictions = coco_demo.run_on_opencv_image(image)
predictions = predictions[:,:,::-1]

plt.imsave(sys.argv[2], predictions)

In	this	short	script,	we’re	first	setting	up	the	COCODemo	predictor,	making	sure
that	we	pass	in	the	configuration	that	sets	up	Faster	R-CNN	instead	of	Mask	R-
CNN	(which	will	produce	segmented	output).	We	then	open	an	image	file	set	on

https://github.com/facebookresearch/maskrcnn-benchmark

the	command	line,	but	we	have	to	turn	it	into	BGR	format	instead	of	RGB	format
as	the	predictor	is	trained	on	OpenCV	images	rather	than	the	PIL	images	we’ve
been	using	so	far.	Finally,	we	use	imsave	to	write	the	predictions	array	(the
original	image	plus	bounding	boxes)	to	a	new	file,	also	specified	on	the
command	line.	Copy	in	a	test	image	file	into	this	demo	directory	and	we	can	then
build	the	Docker	image:

docker build docker/

We	run	the	script	from	inside	the	Docker	container	and	produce	output	that	looks
like	Figure	9-7	(I	actually	used	the	library	to	generate	that	image).	Try
experimenting	with	different	confidence_threshold	values	and	different
pictures.	You	can	also	switch	to	the
e2e_mask_rcnn_R_101_FPN_1x_caffe2.yaml	configuration	to	try	out	Mask	R-
CNN	and	generate	segmentation	masks	as	well.

To	train	your	own	data	on	the	models,	you’ll	need	to	supply	your	own	dataset
that	provides	bounding	box	labels	for	each	image.	The	library	provides	a	helper
function	called	BoxList.	Here’s	a	skeleton	implementation	of	a	dataset	that	you
could	use	as	a	starting	point:

from maskrcnn_benchmark.structures.bounding_box import BoxList

class MyDataset(object):
 def __init__(self, path, transforms=None):
 self.images = # set up image list
 self.boxes = # read in boxes
 self.labels = # read in labels

 def __getitem__(self, idx):
 image = # Get PIL image from self.images
 boxes = # Create a list of arrays, one per box in x1, y1, x2, y2 format
 labels = # labels that correspond to the boxes

 boxlist = BoxList(boxes, image.size, mode="xyxy")
 boxlist.add_field("labels", labels)

 if self.transforms:
 image, boxlist = self.transforms(image, boxlist)

 return image, boxlist, idx

 def get_img_info(self, idx):
 return {"height": img_height, "width": img_width

You’ll	then	need	to	add	your	newly	created	dataset	to
maskrcnn_benchmark/data/datasets/init.py	and
maskrcnn_benchmark/config/paths_catalog.py.	Training	can	then	be	carried	out
using	the	supplied	train_net.py	script	in	the	repo.	Be	aware	that	you	may	have	to
decrease	the	batch	size	to	train	any	of	these	networks	on	a	single	GPU.

That	wraps	it	up	for	object	detection	and	segmentation,	though	see	“Further
Reading”	for	more	ideas,	including	the	wonderfully	entitled	You	Only	Look
Once	(YOLO)	architecture.	In	the	meantime,	we	look	at	how	to	maliciously
break	a	model.

Adversarial	Samples
You	have	probably	seen	articles	online	about	images	that	can	somehow	prevent
image	recognition	from	working	properly.	If	a	person	holds	up	an	image	to	the
camera,	the	neural	network	thinks	it	is	seeing	a	panda	or	something	like	that.
These	are	known	as	adversarial	samples,	and	they’re	interesting	ways	of
discovering	the	limitations	of	your	architectures	and	how	best	to	defend	against
them.

Creating	an	adversarial	sample	isn’t	too	difficult,	especially	if	you	have	access	to
the	model.	Here’s	a	simple	neural	network	that	classifies	images	from	the
popular	CIFAR-10	dataset.	There’s	nothing	special	about	this	model,	so	feel	free
to	swap	it	out	for	AlexNet,	ResNet,	or	any	other	network	presented	so	far	in	the
book:

class ModelToBreak(nn.Module):
 def __init__(self):
 super(ModelToBreak, self).__init__()
 self.conv1 = nn.Conv2d(3, 6, 5)
 self.pool = nn.MaxPool2d(2, 2)
 self.conv2 = nn.Conv2d(6, 16, 5)
 self.fc1 = nn.Linear(16 * 5 * 5, 120)
 self.fc2 = nn.Linear(120, 84)
 self.fc3 = nn.Linear(84, 10)

 def forward(self, x):

 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = x.view(-1, 16 * 5 * 5)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

Once	the	network	has	been	trained	on	CIFAR-10,	we	can	get	a	prediction	for	the
image	in	Figure	9-9.	Hopefully	the	training	has	gone	well	enough	to	report	that
it’s	a	frog	(if	not,	you	might	want	to	train	a	little	more!).	What	we’re	going	to	do
is	change	our	picture	of	a	frog	just	enough	that	the	neural	network	gets	confused
and	thinks	it’s	something	else,	even	though	we	can	still	recognize	that	it’s	clearly
a	frog.

Figure	9-9.	Our	frog	example

To	do	this,	we’ll	use	a	method	of	attack	called	the	fast	gradient	sign	method.
The	idea	is	to	take	the	image	we	want	to	misclassify	and	run	it	through	the
model	as	usual,	which	gives	us	an	output	tensor.	Typically	for	predictions,	we’d
look	to	see	which	of	the	tensor’s	values	was	the	highest	and	use	that	as	the	index
into	our	classes,	using	argmax().	But	this	time	we’re	going	to	pretend	that	we’re
training	the	network	again	and	backpropagate	that	result	back	through	the	model,
giving	us	the	gradient	changes	of	the	model	with	respect	to	the	original	input	(in
this	case,	our	picture	of	a	frog).

Having	done	that,	we	create	a	new	tensor	that	looks	at	these	gradients	and
replaces	an	entry	with	+1	if	the	gradient	is	positive	and	–1	if	the	gradient	is
negative.	That	gives	us	the	direction	of	travel	that	this	image	is	pushing	the

4

model’s	decision	boundaries.	We	then	multiply	by	a	small	scalar	(called	epsilon
in	the	paper)	to	produce	our	malicious	mask,	which	we	then	add	to	the	original
image,	creating	an	adversarial	example.

Here’s	a	simple	PyTorch	method	that	returns	the	fast	gradient	sign	tensors	for	an
input	batch	when	supplied	with	the	batch’s	labels,	plus	the	model	and	the	loss
function	used	to	evaluate	the	model:

def fgsm(input_tensor, labels, epsilon=0.02, loss_function, model):
 outputs = model(input_tensor)
 loss = loss_function(outputs, labels)
 loss.backward(retain_graph=True)
 fsgm = torch.sign(inputs.grad) * epsilon
 return fgsm

Epsilon	is	normally	found	via	experimentation.	By	playing	around	with	various
images,	I	discovered	that	0.02	works	well	for	this	model,	but	you	could	also	use
something	like	a	grid	or	random	search	to	find	the	value	that	turns	a	frog	into	a
ship!

Running	this	function	on	our	frog	and	our	model,	we	get	a	mask,	which	we	can
then	add	to	our	original	image	to	generate	our	adversarial	sample.	Have	a	look	at
Figure	9-10	to	see	what	it	looks	like!

model_to_break = # load our model to break here
adversarial_mask = fgsm(frog_image.unsqueeze(-1),
 batch_labels,
 loss_function,
 model_to_break)
adversarial_image = adversarial_mask.squeeze(0) + frog_image

Figure	9-10.	Our	adversarial	frog

Clearly,	our	created	image	is	still	a	frog	to	our	human	eyes.	(If	it	doesn’t	look
like	a	frog	to	you,	then	you	may	be	a	neural	network.	Report	yourself	for	a
Voight-Kampff	test	immediately.)	But	what	happens	if	we	get	a	prediction	from
the	model	on	this	new	image?

model_to_break(adversarial_image.unsqueeze(-1))
look up in labels via argmax()
>> 'cat'

We	have	defeated	the	model.	But	is	this	as	much	of	a	problem	as	it	first	appears?

Black-Box	Attacks
You	may	have	noticed	that	to	produce	an	image	that	fools	the	classifier,	we	need
to	know	a	lot	about	the	model	being	used.	We	have	the	entire	structure	of	the
model	in	front	of	us	as	well	as	the	loss	function	that	was	used	in	training	the
model,	and	we	need	to	do	forward	and	backward	passes	in	the	model	to	get	our
gradients.	This	is	a	classic	example	of	what’s	known	in	computer	security	as	a
white-box	attack,	where	we	can	peek	into	any	part	of	our	code	to	work	out
what’s	going	on	and	exploit	whatever	we	can	find.

So	does	this	matter?	After	all,	most	models	that	you’ll	encounter	online	won’t
allow	you	to	peek	inside.	Is	a	black-box	attack,	where	all	you	have	is	the	input
and	output,	actually	possible?	Well,	sadly,	yes.	Consider	that	we	have	a	set	of
inputs,	and	a	set	of	outputs	to	match	them	against.	The	outputs	are	labels,	and	it

is	possible	to	use	targeted	queries	of	models	to	train	a	new	model	that	you	can
use	as	a	local	proxy	and	carry	out	attacks	in	a	white-box	manner.	Just	as	you’ve
seen	with	transfer	learning,	the	attacks	on	the	proxy	model	can	work	effectively
on	the	actual	model.	Are	we	doomed?

Defending	Against	Adversarial	Attacks
How	can	we	defend	against	these	attacks?	For	something	like	classifying	an
image	as	a	cat	or	a	fish,	it’s	probably	not	the	end	of	the	world,	but	for	self-
driving	systems,	cancer-detection	applications,	and	so	forth,	it	could	literally
mean	the	difference	between	life	and	death.	Successfully	defending	against	all
types	of	adversarial	attacks	is	still	an	area	of	research,	but	highlights	so	far
include	distilling	and	validation.

Distilling	a	model	by	using	it	to	train	another	model	seems	to	help.	Using	label
smoothing	with	the	new	model,	as	outlined	earlier	in	this	chapter,	also	seems	to
help.	Making	the	model	less	sure	of	its	decisions	appears	to	smooth	out	the
gradients	somewhat,	making	the	gradient-based	attack	we’ve	outlined	in	this
chapter	less	effective.

A	stronger	approach	is	to	go	back	to	some	parts	of	the	early	computer	vision
days.	If	we	perform	input	validation	on	the	incoming	data,	we	can	possibly
prevent	the	adversarial	image	from	getting	to	the	model	in	the	first	place.	In	the
preceding	example,	the	generated	attack	image	has	a	few	pixels	that	are	very	out
of	place	to	what	our	eyes	are	expecting	when	we	see	a	frog.	Depending	on	the
domain,	we	could	have	a	filter	that	allows	in	only	images	that	pass	some	filtering
tests.	You	could	in	theory	make	a	neural	net	to	do	that	too,	because	then	the
attackers	have	to	try	to	break	two	different	models	with	the	same	image!

Now	we	really	are	done	with	images.	But	let’s	look	at	some	developments	in
text-based	networks	that	have	occurred	the	past	couple	of	years.

More	Than	Meets	the	Eye:	The	Transformer
Architecture
Transfer	learning	has	been	a	big	feature	in	allowing	image-based	networks	to
become	so	effective	and	prevalent	over	the	past	decade,	but	text	has	been	a	more

difficult	nut	to	crack.	In	the	last	couple	of	years,	though,	some	major	steps	have
been	taken	that	are	beginning	to	unlock	the	potential	of	using	transfer	learning	in
text	for	all	sorts	of	tasks,	such	as	generation,	classification,	and	answering
questions.	We’ve	also	seen	a	new	type	of	architecture	begin	to	take	center	stage:
the	Transformer	network.	These	networks	don’t	come	from	Cybertron,	but	the
technique	is	behind	the	most	powerful	text-based	networks	we’ve	seen,	with
OpenAI’s	GPT-2	model,	released	in	2019,	showing	a	scarily	impressive	quality
in	its	generated	text,	to	the	extent	that	OpenAI	initially	held	back	the	larger
version	of	the	model	to	prevent	it	from	being	used	for	nefarious	purposes.	We
look	at	the	general	theory	of	Transformer	and	then	dive	into	how	to	use	Hugging
Face’s	implementations	of	GPT-2	and	BERT.

Paying	Attention
The	initial	step	along	the	way	to	the	Transformer	architecture	was	the	attention
mechanism,	which	was	initially	introduced	to	RNNs	to	help	in	sequence-to-
sequence	applications	such	as	translation.

The	issue	attention	was	trying	to	solve	was	the	difficulty	in	translating	sentences
such	as	“The	cat	sat	on	the	mat	and	she	purred.”	We	know	that	she	in	that
sentence	refers	to	the	cat,	but	it’s	a	hard	concept	to	get	a	standard	RNN	to
understand.	It	may	have	the	hidden	state	that	we	talked	about	in	Chapter	5,	but
by	the	time	we	get	to	she,	we	already	have	a	lot	of	time	steps	and	hidden	state
for	each	step!

So	what	attention	does	is	add	an	extra	set	of	learnable	weights	attached	to	each
time	step	that	focuses	the	network	onto	a	particular	part	of	the	sentence.	The
weights	are	normally	pushed	through	a	softmax	layer	to	generate	probabilities
for	each	step	and	then	the	dot	product	of	the	attention	weights	is	calculated	with
the	previous	hidden	state.	Figure	9-11	shows	a	simplified	version	of	this	with
respect	to	our	sentence.

5

Figure	9-11.	An	attention	vector	pointing	to	cat

The	weights	ensure	that	when	the	hidden	state	gets	combined	with	the	current
state,	cat	will	be	a	major	part	of	determining	the	output	vector	at	the	time	step
for	she,	which	will	provide	useful	context	for	translating	into	French,	for
example!

We	won’t	go	into	all	the	details	about	how	attention	can	work	in	a	concrete
implementation,	but	know	the	concept	was	powerful	enough	that	it	kickstarted
the	impressive	growth	and	accuracy	of	Google	Translate	back	in	the	mid-2010s.
But	more	was	to	come.

Attention	Is	All	You	Need
In	the	groundbreaking	paper	“Attention	Is	All	You	Need,” 	Google	researchers
pointed	out	that	we’d	spent	all	this	time	bolting	attention	onto	an	already	slow
RNN-based	network	(compared	to	CNNs	or	linear	units,	anyhow).	What	if	we
didn’t	need	the	RNN	after	all?	The	paper	showed	that	with	stacked	attention-
based	encoders	and	decoders,	you	could	create	a	model	that	didn’t	rely	on	the
RNN’s	hidden	state	at	all,	leading	the	way	to	the	larger	and	faster	Transformer
that	dominates	textual	deep	learning	today.

The	key	idea	was	to	use	what	the	authors	called	multihead	attention,	which
parallelizes	the	attention	step	over	all	the	input	by	using	a	group	of	Linear
layers.	With	these,	and	borrowing	some	residual	connection	tricks	from	ResNet,
Transformer	quickly	began	to	supplant	RNNs	for	many	text-based	applications.
Two	important	Transformer	releases,	BERT	and	GPT-2,	represent	the	current

6

state-of-the-art	as	this	book	goes	to	print.

Luckily	for	us,	there’s	a	library	from	Hugging	Face	that	implements	both	of
them	in	PyTorch.	It	can	be	installed	using	pip	or	conda,	and	you	should	also	git
clone	the	repo	itself,	as	we’ll	be	using	some	of	the	utility	scripts	later!

pip install pytorch-transformers
conda install pytorch-transformers

First,	we’ll	have	a	look	at	BERT.

BERT
Google’s	2018	Bidirectional	Encoder	Representations	from	Transformers
(BERT)	model	was	one	of	the	first	successful	examples	of	bringing	transfer
learning	of	a	powerful	model	to	test.	BERT	itself	is	a	massive	Transformer-based
model	(weighing	in	at	110	million	parameters	in	its	smallest	version),	pretrained
on	Wikipedia	and	the	BookCorpus	dataset.	The	issue	that	both	Transformer	and
convolutional	networks	traditionally	have	when	working	with	text	is	that
because	they	see	all	of	the	data	at	once,	it’s	difficult	for	those	networks	to	learn
the	temporal	structure	of	language.	BERT	gets	around	this	in	its	pretraining	stage
by	masking	15%	of	the	text	input	at	random	and	forcing	the	model	to	predict	the
parts	that	have	been	masked.	Despite	being	conceptually	simple,	the
combination	of	the	massive	size	of	the	340	million	parameters	in	the	largest
model	with	the	Transformer	architecture	resulted	in	new	state-of-the-art	results
for	a	whole	series	of	text-related	benchmarks.

Of	course,	despite	being	created	by	Google	with	TensorFlow,	there	are
implementations	of	BERT	for	PyTorch.	Let’s	take	a	quick	look	at	one	now.

FastBERT
An	easy	way	to	start	using	the	BERT	model	in	your	own	classification
applications	is	to	use	the	FastBERT	library	that	mixes	Hugging	Face’s	repository
with	the	fast.ai	API	(which	you’ll	see	in	a	bit	more	detail	when	we	come	to
ULMFiT	shortly).	It	can	be	installed	via	pip	in	the	usual	manner:

pip install fast-bert

https://oreil.ly/xpDzq

Here’s	a	script	that	can	be	used	to	fine-tune	BERT	on	our	Sentiment140	Twitter
dataset	that	we	used	into	Chapter	5:

import torch
import logger

from pytorch_transformers.tokenization import BertTokenizer
from fast_bert.data import BertDataBunch
from fast_bert.learner import BertLearner
from fast_bert.metrics import accuracy

device = torch.device('cuda')
logger = logging.getLogger()
metrics = [{'name': 'accuracy', 'function': accuracy}]

tokenizer = BertTokenizer.from_pretrained
 ('bert-base-uncased',
 do_lower_case=True)

databunch = BertDataBunch([PATH_TO_DATA],
 [PATH_TO_LABELS],
 tokenizer,
 train_file=[TRAIN_CSV],
 val_file=[VAL_CSV],
 test_data=[TEST_CSV],
 text_col=[TEST_FEATURE_COL], label_col=[0],
 bs=64,
 maxlen=140,
 multi_gpu=False,
 multi_label=False)

learner = BertLearner.from_pretrained_model(databunch,
 'bert-base-uncased',
 metrics,
 device,
 logger,
 is_fp16=False,
 multi_gpu=False,
 multi_label=False)

learner.fit(3, lr='1e-2')

After	our	imports,	we	set	up	the	device,	logger,	and	metrics	objects,	which
are	required	by	the	BertLearner	object.	We	then	create	a	BERTTokenizer	for

tokenizing	our	input	data,	and	in	this	base	we’re	going	to	use	the	bert-base-
uncased	model	(which	has	12	layers	and	110	million	parameters).	Next,	we	need
a	BertDataBunch	object	that	contains	paths	to	the	training,	validation,	and	test
datasets,	where	to	find	the	label	column,	our	batch	size,	and	the	maximum	length
of	our	input	data,	which	in	our	case	is	simple	because	it	can	be	only	the	length	of
a	tweet,	at	that	time	140	characters.	Having	done	that,	we	will	set	up	a	BERT
model	by	using	the	BertLearner.from_pretrained_model	method.	This
passes	in	our	input	data,	our	BERT	model	type,	the	metric,	device,	and	logger
objects	we	set	up	at	the	start	of	the	script,	and	finally	some	flags	to	turn	off
training	options	that	we	don’t	need	but	aren’t	given	defaults	for	the	method
signature.

Finally,	the	fit()	method	takes	care	of	fine-tuning	the	BERT	model	on	our
input	data,	running	on	its	own	internal	training	loop.	In	this	example,	we’re
training	for	three	epochs	with	a	learning	rate	of	1e-2.	The	trained	PyTorch
model	can	be	accessed	afterward	using	learner.model.

And	that’s	how	to	get	up	and	running	with	BERT.	Now,	onto	the	competition.

GPT-2
Now,	while	Google	was	quietly	working	on	BERT,	OpenAI	was	working	on	its
own	version	of	a	Transformer-based	text	model.	Instead	of	using	masking	to
force	the	model	to	learn	language	structure,	the	model	constrains	the	attention
mechanism	within	the	architecture	to	simply	predict	the	next	word	in	a	sequence,
in	a	similar	style	to	the	RNNs	in	Chapter	5.	As	a	result,	GPT	was	somewhat	left
behind	by	the	impressive	performance	of	BERT,	but	in	2019	OpenAI	struck	back
with	GPT-2,	a	new	version	of	the	model	that	reset	the	bar	for	text	generation.

The	magic	behind	GPT-2	is	scale:	the	model	is	trained	on	text	from	over	8
million	websites,	and	the	largest	variant	of	GPT-2	weighs	in	at	1.5	billion
parameters.	And	while	it	still	doesn’t	dislodge	BERT	on	particular	benchmarks
for	things	like	question/answering	or	other	NLP	tasks,	its	ability	to	create
incredibly	realistic	text	from	a	basic	prompt	led	to	OpenAI	locking	the	full-size
model	behind	closed	doors	for	fear	of	it	being	weaponized.	They	have,	however,
released	smaller	versions	of	the	model,	clocking	in	at	117	and	340	million
parameters.

Here’s	an	example	of	the	output	that	GPT-2	can	generate.	Everything	in	italics
was	written	by	GPT-2’s	340M	model:

Jack	and	Jill	went	up	the	hill	on	a	bike	ride.	The	sky	was	a	grey	white	and	the
wind	was	blowing,	causing	a	heavy	snowfall.	It	was	really	difficult	to	drive
down	the	hill,	I	had	to	lean	forward	on	a	bit	of	gear	to	get	it	on.	But	then	there
was	a	moment	of	freedom	that	I	would	never	forget:	The	bike	was	at	a
complete	stop	on	the	mountain	side	and	I	was	in	the	middle	of	it.	I	didn’t	have
time	to	say	a	word,	but	I	did	lean	forward	and	touch	the	brakes	and	the	bike
started	to	go.

Aside	from	switching	from	Jack	and	Jill	to	I,	this	is	an	impressive	piece	of	text
generation.	For	short	pieces	of	text,	it	can	sometimes	be	indistinguishable	from
human-created	text.	It	does	reveal	the	machine	behind	the	curtain	as	the
generated	text	continues,	but	it’s	an	impressive	feat	that	could	be	writing	tweets
and	Reddit	comments	right	now.	Let’s	have	a	look	at	how	to	do	this	with
PyTorch.

Generating	Text	with	GPT-2
Like	BERT,	the	official	GPT-2	release	from	OpenAI	is	a	TensorFlow	model.
Also	like	BERT,	Hugging	Face	has	released	a	PyTorch	version	that	is	contained
within	the	same	library	(pytorch-transformers).	However,	a	burgeoning
ecosystem	has	been	built	around	the	original	TensorFlow	model	that	just	doesn’t
exist	currently	around	the	PyTorch	version.	So	just	this	once,	we’re	going	to
cheat:	we’re	going	to	use	some	of	the	TensorFlow-based	libraries	to	fine-tune	the
GPT-2	model,	and	then	export	the	weights	and	import	them	into	the	PyTorch
version	of	the	model.	To	save	us	from	too	much	setup,	we	also	do	all	the
TensorFlow	operations	in	a	Colab	notebook!	Let’s	get	started.

Open	a	new	Google	Colab	notebook	and	install	the	library	that	we’re	using,	Max
Woolf’s	gpt-2-simple,	which	wraps	up	GPT-2	fine-tuning	in	a	single	package.
Install	it	by	adding	this	into	a	cell:

!pip3 install gpt-2-simple

Next	up,	you	need	some	text.	In	this	example,	I’m	using	a	public	domain	text	of
PG	Wodehouse’s	My	Man	Jeeves.	I’m	also	not	going	to	do	any	further

processing	on	the	text	after	downloading	it	from	the	Project	Gutenberg	website
with	wget:

!wget http://www.gutenberg.org/cache/epub/8164/pg8164.txt

Now	we	can	use	the	library	to	train.	First,	make	sure	your	notebook	is	connected
to	a	GPU	(look	in	Runtime→Change	Runtime	Type),	and	then	run	this	code	in	a
cell:

import gpt_2_simple as gpt2

gpt2.download_gpt2(model_name="117M")

sess = gpt2.start_tf_sess()
gpt2.finetune(sess,
 "pg8164.txt",model_name="117M",
 steps=1000)

Replace	the	text	file	with	whatever	text	file	you’re	using.	As	the	model	trains,	it
will	spit	out	a	sample	every	hundred	steps.	In	my	case,	it	was	interesting	to	see	it
turn	from	spitting	out	vaguely	Shakespearian	play	scripts	to	something	that
ended	up	approaching	Wodehouse	prose.	This	will	likely	take	an	hour	or	two	to
train	for	1,000	epochs,	so	go	off	and	do	something	more	interesting	instead	while
the	cloud’s	GPUs	are	whirring	away.

Once	it	has	finished,	we	need	to	get	the	weights	out	of	Colab	and	into	your
Google	Drive	account	so	you	can	download	them	to	wherever	you’re	running
PyTorch	from:

gpt2.copy_checkpoint_to_gdrive()

That	will	point	you	to	open	a	new	web	page	to	copy	an	authentication	code	into
the	notebook.	Do	that,	and	the	weights	will	be	tarred	up	and	saved	to	your
Google	Drive	as	run1.tar.gz.

Now,	on	the	instance	or	notebook	where	you’re	running	PyTorch,	download	that
tarfile	and	extract	it.	We	need	to	rename	a	couple	of	files	to	make	these	weights
compatible	with	the	Hugging	Face	reimplementation	of	GPT-2:

mv encoder.json vocab.json

mv vocab.bpe merges.txt

We	now	need	to	convert	the	saved	TensorFlow	weights	into	ones	that	are
compatible	with	PyTorch.	Handily,	the	pytorch-transformers	repo	comes
with	a	script	to	do	that:

 python [REPO_DIR]/pytorch_transformers/convert_gpt2_checkpoint_to_pytorch.py
 --gpt2_checkpoint_path [SAVED_TENSORFLOW_MODEL_DIR]
 --pytorch_dump_folder_path [SAVED_TENSORFLOW_MODEL_DIR]

Creating	a	new	instance	of	the	GPT-2	model	can	then	be	performed	in	code	like
this:

from pytorch_transformers import GPT2LMHeadModel

model = GPT2LMHeadModel.from_pretrained([SAVED_TENSORFLOW_MODEL_DIR])

Or,	just	to	play	around	with	the	model,	you	can	use	the	run_gpt2.py	script	to	get
a	prompt	where	you	enter	text	and	get	generated	samples	back	from	the
PyTorch-based	model:

python [REPO_DIR]/pytorch-transformers/examples/run_gpt2.py
--model_name_or_path [SAVED_TENSORFLOW_MODEL_DIR]

Training	GPT-2	is	likely	to	become	easier	in	the	coming	months	as	Hugging
Face	incorporates	a	consistent	API	for	all	the	models	in	its	repo,	but	the
TensorFlow	method	is	the	easiest	to	get	started	with	right	now.

BERT	and	GPT-2	are	the	most	popular	names	in	text-based	learning	right	now,
but	before	we	wrap	up,	we	cover	the	dark	horse	of	the	current	state-of-the-art
models:	ULMFiT.

ULMFiT
In	contrast	to	the	behemoths	of	BERT	and	GPT-2,	ULMFiT	is	based	on	a	good
old	RNN.	No	Transformer	in	sight,	just	the	AWD-LSTM,	an	architecture
originally	created	by	Stephen	Merity.	Trained	on	the	WikiText-103	dataset,	it	has
proven	to	be	amendable	to	transfer	learning,	and	despite	the	old	type	of
architecture,	has	proven	to	be	competitive	with	BERT	and	GPT-2	in	the

classification	realm.

While	ULMFiT	is,	at	heart,	just	another	model	that	can	be	loaded	and	used	in
PyTorch	like	any	other,	its	natural	home	is	within	the	fast.ai	library,	which	sits	on
top	of	PyTorch	and	provides	many	useful	abstractions	for	getting	to	grips	with
and	being	productive	with	deep	learning	quickly.	To	that	end,	we’ll	look	at	how
to	use	ULMFiT	with	the	fast.ai	library	on	the	Twitter	dataset	we	used	in
Chapter	5.

We	first	use	fast.ai’s	Data	Block	API	to	prepare	our	data	for	fine-tuning	the
LSTM:

data_lm = (TextList
 .from_csv("./twitter-data/",
 'train-processed.csv', cols=5,
 vocab=data_lm.vocab)
 .split_by_rand_pct()
 .label_from_df(cols=0)
 .databunch())

This	is	fairly	similar	to	the	torchtext	helpers	from	Chapter	5	and	just	produces
what	fast.ai	calls	a	databunch,	from	which	its	models	and	training	routines	can
easily	grab	data.	Next,	we	create	the	model,	but	in	fast.ai,	this	happens	a	little
differently.	We	create	a	learner	that	we	interact	with	to	train	the	model	instead
of	the	model	itself,	though	we	pass	that	in	as	a	parameter.	We	also	supply	a
dropout	value	(we’re	using	the	one	suggested	in	the	fast.ai	training	materials):

learn = language_model_learner(data_lm, AWD_LSTM, drop_mult=0.3)

Once	we	have	our	learner	object,	we	can	find	the	optimal	learning	rate.	This	is
just	like	what	we	implemented	in	Chapter	4,	except	that	it’s	built	into	the	library
and	uses	an	exponentially	moving	average	to	smooth	out	the	graph,	which	in	our
implementation	is	pretty	spiky:

learn.lr_find()
learn.recorder.plot()

From	the	plot	in	Figure	9-12,	it	looks	like	1e-2	is	where	we’re	starting	to	hit	a
steep	decline,	so	we’ll	pick	that	as	our	learning	rate.	Fast.ai	uses	a	method	called

fit_one_cycle,	which	uses	a	1cycle	learning	scheduler	(see	“Further	Reading”
for	more	details	on	1cycle)	and	very	high	learning	rates	to	train	a	model	in	an
order	of	magnitude	fewer	epochs.

Figure	9-12.	ULMFiT	learning	rate	plot

Here,	we’re	training	for	just	one	cycle	and	saving	the	fine-tuned	head	of	the
network	(the	encoder):

learn.fit_one_cycle(1, 1e-2)
learn.save_encoder('twitter_encoder')

With	the	fine-tuning	of	the	language	model	completed	(you	may	want	to
experiment	with	more	cycles	in	training),	we	build	a	new	databunch	for	the
actual	classification	problem:

twitter_classifier_bunch = TextList
 .from_csv("./twitter-data/",
 'train-processed.csv', cols=5,
 vocab=data_lm.vocab)
 .split_by_rand_pct()
 .label_from_df(cols=0)
 .databunch())

The	only	real	difference	here	is	that	we	supply	the	actual	labels	by	using
label_from_df	and	we	pass	in	a	vocab	object	from	the	language	model	training
that	we	performed	earlier	to	make	sure	they’re	using	the	same	mapping	of	words
to	numbers,	and	then	we’re	ready	to	create	a	new	text_classifier_learner,
where	the	library	does	all	the	model	creation	for	you	behind	the	scenes.	We	load
the	fine-tuned	encoder	onto	this	new	model	and	begin	the	process	of	training

again:

learn = text_classifier_learner(data_clas, drop_mult=0.5)
learn.load_encoder('fine_tuned_enc')

learn.lr_find()
learn.recorder.plot()

learn.fit_one_cycle(1, 2e-2, moms=(0.8,0.7))

And	with	a	tiny	amount	of	code,	we	have	a	classifier	that	reports	an	accuracy	of
76%.	We	could	easily	improve	that	by	training	the	language	model	for	more
cycles,	adding	differential	learning	rates	and	freezing	parts	of	the	model	while
training,	all	of	which	fast.ai	supports	with	methods	defined	on	the	learner.

What	to	Use?
Given	that	little	whirlwind	tour	of	the	current	cutting	edge	of	text	models	in	deep
learning,	there’s	probably	one	question	on	your	mind:	“That’s	all	great,	but
which	one	should	I	actually	use?”	In	general,	if	you’re	working	on	a
classification	problem,	I	suggest	you	start	with	ULMFiT.	BERT	is	impressive,
but	ULMFiT	is	competitive	with	BERT	in	terms	of	accuracy,	and	it	has	the
additional	benefit	that	you	don’t	need	to	buy	a	huge	number	of	TPU	credits	to
get	the	best	out	of	it.	A	single	GPU	fine-tuning	ULMFiT	is	likely	to	be	enough
for	most	people.

And	as	for	GPT-2,	if	you’re	after	generated	text,	then	yes,	it’s	a	better	fit,	but	for
classification	purposes,	it’s	going	to	be	harder	to	approach	ULMFiT	or	BERT
performance.	One	thing	that	I	do	think	might	be	interesting	is	to	let	GPT-2	loose
on	data	augmentation;	if	you	have	a	dataset	like	Sentiment140,	which	we’ve
been	using	throughout	this	book,	why	not	fine-tune	a	GPT-2	model	on	that	input
and	use	it	to	generate	more	data?

Conclusion
This	chapter	looked	at	the	wider	world	of	PyTorch,	including	libraries	with
existing	models	that	you	can	import	into	your	own	projects,	some	cutting-edge
data	augmentation	approaches	that	can	be	applied	to	any	domain,	as	well	as

adversarial	samples	that	can	ruin	your	model’s	day	and	how	to	defend	against
them.	I	hope	that	as	we	come	to	the	end	of	our	journey,	you	understand	how
neural	networks	are	assembled	and	how	to	get	images,	text,	and	audio	to	flow
through	them	as	tensors.	You	should	be	able	to	train	them,	augment	data,
experiment	with	learning	rates,	and	even	debug	models	when	they’re	not	going
quite	right.	And	once	all	that’s	done,	you	know	how	to	package	them	up	in
Docker	and	get	them	serving	requests	from	the	wider	world.

Where	do	we	go	from	here?	Consider	having	a	look	at	the	PyTorch	forums	and
the	other	documentation	on	the	website.	I	definitely	also	recommend	visiting	the
fast.ai	community	even	if	you	don’t	end	up	using	the	library;	it’s	a	hive	of
activity,	filled	with	good	ideas	and	people	experimenting	with	new	approaches,
while	also	friendly	to	newcomers!

Keeping	up	with	the	cutting	edge	of	deep	learning	is	becoming	harder	and
harder.	Most	papers	are	published	on	arXiv,	but	the	rate	of	papers	being
published	seems	to	be	rising	at	an	almost	exponential	level;	as	I	was	typing	up
this	conclusion,	XLNet	was	released,	which	apparently	beats	BERT	on	various
tasks.	It	never	ends!	To	try	to	help	in	this,	I	listed	a	few	Twitter	accounts	here
where	people	often	recommend	interesting	papers.	I	suggest	following	them	to
get	a	taste	of	current	and	interesting	work,	and	from	there	you	can	perhaps	use	a
tool	such	as	arXiv	Sanity	Preserver	to	drink	from	the	firehose	when	you	feel
more	comfortable	diving	in.

Finally,	I	trained	a	GPT-2	model	on	the	book	and	it	would	like	to	say	a	few
words:

Deep	learning	is	a	key	driver	of	how	we	work	on	today’s	deep	learning
applications,	and	deep	learning	is	expected	to	continue	to	expand	into	new
fields	such	as	image-based	classification	and	in	2016,	NVIDIA	introduced	the
CUDA	LSTM	architecture.	With	LSTMs	now	becoming	more	popular,	LSTMs
were	also	a	cheaper	and	easier	to	produce	method	of	building	for	research
purposes,	and	CUDA	has	proven	to	be	a	very	competitive	architecture	in	the
deep	learning	market.

Thankfully,	you	can	see	there’s	still	a	way	to	go	before	we	authors	are	out	of	a
job.	But	maybe	you	can	help	change	that!

https://arxiv.org
https://arxiv.org/abs/1906.08237
http://arxiv-sanity.com

Further	Reading
A	survey	of	current	super-resolution	techniques

Ian	Goodfellow’s	lecture	on	GANs

You	Only	Look	Once	(YOLO),	a	family	of	fast	object	detection	models
with	highly	readable	papers

CleverHans,	a	library	of	adversarial	generation	techniques	for
TensorFlow	and	PyTorch

The	Illustrated	Transformer,	an	in-depth	voyage	through	the
Transformer	architecture

Some	Twitter	accounts	to	follow:

@jeremyphoward—Cofounder	of	fast.ai

@miles_brundage—Research	scientist	(policy)	at	OpenAI

@BrundageBot—Twitter	bot	that	generates	a	daily	summary	of
interesting	papers	from	arXiv	(warning:	often	tweets	out	50	papers	a
day!)

@pytorch—Official	PyTorch	account

1 	See	“mixup:	Beyond	Empirical	Risk	Minimization”	by	Hongyi	Zhang	et	al.	(2017).

2 	See	“Generative	Adversarial	Networks”	by	Ian	J.	Goodfellow	et	al.	(2014).

3 	See	“U-Net:	Convolutional	Networks	for	Biomedical	Image	Segmentation”	by	Olaf	Ronneberger	et
al.	(2015).

4 	See	“Explaining	and	Harnessing	Adversarial	Examples”	by	Ian	Goodfellow	et	al.	(2014).

5 	See	“Neural	Machine	Translation	by	Jointly	Learning	to	Align	and	Translate”	by	Dzmitry	Bahdanau
et	al.	(2014).

6 	See	“Attention	Is	All	You	Need”	by	Ashish	Vaswani	et	al.	(2017).

https://arxiv.org/pdf/1902.06068.pdf
https://www.youtube.com/watch?v=Z6rxFNMGdn0
https://pjreddie.com/darknet/yolo
https://github.com/tensorflow/cleverhans
http://jalammar.github.io/illustrated-transformer
https://arxiv.org/abs/1710.09412
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762

Index

Symbols

@app.route()	function,	Building	a	Flask	Service

@torch.jit.script_method,	Scripting

__call__,	Custom	Transform	Classes,	Frequency	masking

__getitem__,	Building	an	ESC-50	Dataset,	A	New	Dataset

__init__,	SoX	Effect	Chains,	TorchScript	Limitations

__len__,	Building	an	ESC-50	Dataset

__repr__,	Custom	Transform	Classes

A

AdaGrad,	Optimizing

Adam,	Optimizing,	A	CNN	Model	for	ESC-50

AdaptiveAvgPool	layer,	Pooling

AdaptiveMaxPool	layer,	Pooling

add_graph()	function,	Sending	Data	to	TensorBoard

adversarial	samples,	Adversarial	Samples-Defending	Against	Adversarial
Attacks

and	black	box	attacks,	Black-Box	Attacks

and	defending	against	adversarial	attacks,	Defending	Against	Adversarial
Attacks

AlexNet,	AlexNet,	Gradient	Checkpointing,	Tracing

Amazon	Web	Services	(see	AWS)

AMD,	GPU

Anaconda,	Anaconda

ApacheMXNet,	What	About	TensorFlow?

append_effect_to_chain,	SoX	Effect	Chains

ARG,	Building	the	Docker	Container

argmax()	function,	Tensor	Operations,	Making	Predictions,	Classifying	Tweets,
Adversarial	Samples

arXiv,	Conclusion

arXiv	Sanity	Preserver,	Conclusion

attacks

adversarial,	Defending	Against	Adversarial	Attacks

black-box,	Black-Box	Attacks

white-box,	Black-Box	Attacks

attention,	Paying	Attention

audio	(see	sound)

autoencoder,	Introduction	to	Super-Resolution

AutoML,	Other	Architectures	Are	Available!

AWS	(Amazon	Web	Services),	Amazon	Web	Services,	Deploying	on	Kubernetes

Azure,	Cloud	Providers,	Azure,	Deploying	on	Kubernetes

Azure	Blob	Storage,	Local	Versus	Cloud	Storage,	Local	Versus	Cloud	Storage

Azure	Marketplace,	Azure

B

back	translation,	Back	Translation

backpropagation	through	time,	Recurrent	Neural	Networks

backward()	function,	Training

BadRandom,	Fixing	a	Slow	Transformation,	mixup

BatchNorm	layer,	BatchNorm,	Transfer	Learning	with	ResNet,	ESRGAN

batch_size,	Building	Validation	and	Test	Datasets

BCEWithLogitsLoss()	function,	Updating	the	Training	Loop

BertLearner.from_pretrained_model,	FastBERT

best_loss,	Finding	That	Learning	Rate

Bidirectional	Encoder	Representations	from	Transformers	(BERT),	BERT-
FastBERT,	What	to	Use?

biLSTM	(bidirectional	LSTM),	biLSTM

Bitcoin,	GPU

black-box	attacks,	Black-Box	Attacks

BookCorpus	dataset,	BERT

Borg,	Deploying	on	Kubernetes

broadcasting,	tensor,	Tensor	Broadcasting

C

C++	compiler,	Obtaining	libTorch	and	Hello	World

C++	library	(see	libTorch)

Caffe2,	Conclusion

CAM	(class	activation	mapping),	Class	Activation	Mapping-Class	Activation
Mapping

Candadian	Institute	for	Advanced	Research	(CIFAR-10),	It’s	3	a.m.	What	Is
Your	Data	Doing?

Chainer,	PyTorch

challenges	with	image	classification,	Traditional	Challenges-Building	Validation
and	Test	Datasets

checkbox,	Google	Cloud	Platform

checkpoint_sequential,	Gradient	Checkpointing

CIFAR-10	(Candadian	Institute	for	Advanced	Research),	It’s	3	a.m.	What	Is
Your	Data	Doing?

CIFAR-10	dataset,	Adversarial	Samples

class	activation	mapping,	Debugging	PyTorch	Models,	Debugging	PyTorch
Models

class	activation	mapping	(CAM),	Class	Activation	Mapping-Class	Activation
Mapping

classifier,	Transfer	Learning	with	ResNet

cloud	platforms,	Deep	Learning	in	the	Cloud-Which	Cloud	Provider	Should	I
Use?

Amazon	Web	Services,	Amazon	Web	Services

Azure,	Azure

choosing,	Which	Cloud	Provider	Should	I	Use?

Google	Cloud	Platform,	Google	Cloud	Platform

providers,	Cloud	Providers-Which	Cloud	Provider	Should	I	Use?

cloud	storage

local	storage	versus,	Local	Versus	Cloud	Storage-Local	Versus	Cloud	Storage

pulling	from,	Local	Versus	Cloud	Storage

CMake,	Obtaining	libTorch	and	Hello	World

CNNs	(see	convolutional	neural	networks)

Colaboratory	(Colab),	Google	Colaboratory

collisions,	mixup

color	spaces

data	augmentation	with,	Color	Spaces	and	Lambda	Transforms

HSV,	Color	Spaces	and	Lambda	Transforms

RBG,	Color	Spaces	and	Lambda	Transforms

ColorJitter,	Torchvision	Transforms

Compute	Unified	Device	Architecture	(CUDA),	Download	CUDA,	Checking
Your	GPU

conda,	SoX	and	LibROSA,	Building	a	Flask	Service

Conv2d	layer,	Convolutions-Convolutions,	Introduction	to	Super-Resolution

convolutional	kernel,	Convolutions

convolutional	neural	networks	(CNNs),	Convolutional	Neural	Networks-
Conclusion

AlexNet,	AlexNet

architectures,	History	of	CNN	Architectures-Other	Architectures	Are
Available!

convolutions,	Convolutions-Convolutions

dropout,	Dropout

ESC-50	model,	A	CNN	Model	for	ESC-50

example,	Our	First	Convolutional	Model

history,	Deep	Learning	in	the	World	Today

Inception/GoogLeNet,	Inception/GoogLeNet

pooling,	Pooling

ResNet,	ResNet

VGG,	VGG

convolutions,	Convolutions-Convolutions

COPY,	Building	the	Docker	Container

copyfileobj(),	Local	Versus	Cloud	Storage

CPU,	CPU/Motherboard,	Fixing	a	Slow	Transformation

CrossEntropyLoss()	function,	Loss	Functions,	Updating	the	Training	Loop,	A
CNN	Model	for	ESC-50,	mixup,	Label	Smoothing

CUDA	(Compute	Unified	Device	Architecture),	Download	CUDA,	Checking
Your	GPU

cuda()	function,	Making	It	Work	on	the	GPU

cuda.is_available()	function,	Finally,	PyTorch!	(and	Jupyter	Notebook)

custom	deep	learning	machine

CPU/Motherboard,	CPU/Motherboard

GPU,	GPU

RAM,	RAM

storage,	Storage

custom	transform	classes,	Custom	Transform	Classes

D

data

augmentation	(see	data	augmentation)

building	training	data	set,	Building	a	Training	Dataset-Building	a	Training
Dataset

image	classification,	But	First,	Data

loading	and	converting,	PyTorch	and	Data	Loaders

torchtext,	Getting	Our	Data:	Tweets!

unbalanced,	Exploring	ESC-50

validation	and	test	datasets,	Building	Validation	and	Test	Datasets

data	augmentation,	Data	Augmentation-Start	Small	and	Get	Bigger!,	Data
Augmentation-Augmentation	and	torchtext

audio	(see	audio	data	augmentation)

back	translation,	Back	Translation

color	spaces	and	Lamba	transforms,	Color	Spaces	and	Lambda	Transforms

custom	transform	classes,	Custom	Transform	Classes

label	smoothing,	Label	Smoothing

mixed	and	smoothed,	Data	Augmentation:	Mixed	and	Smoothed-Label
Smoothing

mixup,	mixup-mixup

random	deletion,	Random	Deletion

random	insertion,	Random	Insertion

random	swap,	Random	Swap

starting	small	with,	Start	Small	and	Get	Bigger!

torchtext,	Augmentation	and	torchtext

torchvision	transforms,	Torchvision	Transforms-Torchvision	Transforms

transfer	learning	and,	Transfer	Learning?

datasets

defined,	PyTorch	and	Data	Loaders

for	frequency,	A	New	Dataset-A	New	Dataset

training,	Building	a	Training	Dataset-Building	a	Training	Dataset

types,	Building	Validation	and	Test	Datasets

validation/test,	Building	Validation	and	Test	Datasets

WikiText-103,	ULMFiT

DDR4,	RAM

debugging,	Debugging	PyTorch	Models-Conclusion

flame	graphs,	Flame	Graphs-Fixing	a	Slow	Transformation

GPU	issues,	Debugging	GPU	Issues-Gradient	Checkpointing

TensorBoard	and,	TensorBoard-Class	Activation	Mapping

decoder,	Introduction	to	Super-Resolution

deep	learning,	defined,	But	What	Is	Deep	Learning	Exactly,	and	Do	I	Need	a
PhD	to	Understand	It?

degrees	parameter,	Torchvision	Transforms

deletion,	random,	Random	Deletion

DenseNet,	Other	Architectures	Are	Available!

differential	learning	rates,	Differential	Learning	Rates

DigitalOcean,	Deploying	on	Kubernetes

discriminator	networks,	The	Forger	and	the	Critic,	The	Dangers	of	Mode
Collapse

distilling,	Defending	Against	Adversarial	Attacks

Docker,	Faster	R-CNN	and	Mask	R-CNN

Docker	container,	building,	Building	the	Docker	Container-Building	the	Docker
Container

Docker	Hub,	Building	the	Docker	Container

download.py	script,	But	First,	Data,	Building	Validation	and	Test	Datasets

Dropout,	Deep	Learning	in	the	World	Today,	Transfer	Learning	with	ResNet

Dropout	layer,	Dropout,	AlexNet,	Tracing

E

embedding	matrix,	Embeddings

embeddings,	for	text	classification,	Embeddings-Embeddings

encoder,	Introduction	to	Super-Resolution

encoding,	one-hot,	Embeddings

Enhanced	Super-Resolution	Generative	Adversarial	Network	(ESRGAN),
ESRGAN

ENTRYPOINT,	Building	the	Docker	Container

ENV,	Building	the	Docker	Container

Environmental	Sound	Classification	(ESC)	dataset,	The	ESC-50	Dataset-A	CNN
Model	for	ESC-50

building,	Building	an	ESC-50	Dataset

CNN	model	for,	A	CNN	Model	for	ESC-50

exploring,	Exploring	ESC-50

obtaining,	Obtaining	the	Dataset

playing	audio	in	Jupyter	for,	Playing	Audio	in	Jupyter

SoX	and	LibROSA	for,	SoX	and	LibROSA

torchaudio,	torchaudio

epsilon,	Adversarial	Samples

ESC-50,	A	Wild	ResNet	Appears

(see	also	Environmental	Sound	Classification	(ESC)	dataset)

exploding	gradient,	Long	Short-Term	Memory	Networks

EXPOSE,	Building	the	Docker	Container

F

Facebook,	Deep	Learning	in	the	World	Today,	TensorBoard

fast	gradient	sign	method	(fgsm),	Adversarial	Samples

fast.ai	library,	Finding	That	Learning	Rate,	ULMFiT

FastBERT,	FastBERT-FastBERT

Faster	R-CNN,	Faster	R-CNN	and	Mask	R-CNN-Faster	R-CNN	and	Mask	R-
CNN

fc,	Transfer	Learning	with	ResNet

feature	map,	Convolutions

filesytem,	Making	Predictions

filter,	Convolutions

find_lr()	function,	Finding	That	Learning	Rate,	Finding	a	Learning	Rate

fit()	function,	FastBERT

fit_one_cycle,	ULMFiT

flame	graphs,	Flame	Graphs-Fixing	a	Slow	Transformation

and	installing	py-spy,	Installing	py-spy

fixing	slow	transformations,	Fixing	a	Slow	Transformation-Fixing	a	Slow
Transformation

reading,	Reading	Flame	Graphs

Flask,	Building	a	Flask	Service-Building	a	Flask	Service

forward()	function,	Creating	a	Network,	Our	First	Convolutional	Model,
Reading	Flame	Graphs

Fourier	transform,	Tensor	Operations

frequency	domain,	This	Frequency	Is	My	Universe-Finding	a	Learning	Rate

and	frequency	masking,	Frequency	masking-Frequency	masking

and	learning	rate,	Finding	a	Learning	Rate

and	ResNet,	A	Wild	ResNet	Appears

dataset	for,	A	New	Dataset-A	New	Dataset

mel	spectrograms,	Mel	Spectrograms-Mel	Spectrograms

G

GANs	(see	generative	adversarial	networks)

gated	recurrent	units	(GRUs),	Gated	Recurrent	Units

gc.collect()	function,	Checking	Your	GPU

GCP	(Google	Cloud	Platform),	Cloud	Providers,	Google	Cloud	Platform

GCP	Marketplace,	Google	Cloud	Platform

generative	adversarial	networks	(GANs),	An	Introduction	to	GANs-Running
ESRGAN

and	ESRGAN,	ESRGAN

and	mode	collapse,	The	Dangers	of	Mode	Collapse

neural	networks,	The	Forger	and	the	Critic

training,	Training	a	GAN

generator	networks,	The	Forger	and	the	Critic

get_stopwords()	function,	Random	Insertion

get_synonyms()	function,	Random	Insertion

GKE	(Google	Kubernetes	Engine),	Deploying	on	Kubernetes,	Setting	Up	on
Google	Kubernetes	Engine

Google,	What	About	TensorFlow?

Google	Cloud	Platform	(GCP),	Cloud	Providers,	Google	Cloud	Platform

Google	Cloud	Storage,	Local	Versus	Cloud	Storage,	Local	Versus	Cloud	Storage

Google	Colaboratory,	Google	Colaboratory

Google	Kubernetes	Engine	(GKE),	Deploying	on	Kubernetes,	Setting	Up	on
Google	Kubernetes	Engine

Google	Translate,	Text	Classification,	Back	Translation

GoogLeNet,	Inception/GoogLeNet

googletrans,	Back	Translation

GPT-2,	More	Than	Meets	the	Eye:	The	Transformer	Architecture,	GPT-2-
Generating	Text	with	GPT-2,	What	to	Use?

GPU	(graphical	processing	unit)

checking,	Checking	Your	GPU

CNNs	and,	History	of	CNN	Architectures

for	custom	deep	learning	machine,	GPU

debugging	issues	with,	Debugging	GPU	Issues-Gradient	Checkpointing

flame	graphs,	Fixing	a	Slow	Transformation

gradient	checkpointing,	Gradient	Checkpointing-Gradient	Checkpointing

image	classification,	Making	It	Work	on	the	GPU

matrix	multiplication,	mixup

surge,	Deep	Learning	in	the	World	Today

gradient

exploding,	Long	Short-Term	Memory	Networks

vanishing,	Long	Short-Term	Memory	Networks

gradient	checkpointing,	Gradient	Checkpointing-Gradient	Checkpointing

Gregg,	Brendan,	Flame	Graphs

grid	search,	Finding	That	Learning	Rate

GRUs	(gated	recurrent	units),	Gated	Recurrent	Units

H

heatmap,	Class	Activation	Mapping

hooks,	PyTorch	Hooks

Howard,	Jeremy,	Finding	That	Learning	Rate

HSV	color	space,	Color	Spaces	and	Lambda	Transforms

I

image	classification,	Image	Classification	with	PyTorch-Conclusion

activation	functions,	Activation	Functions

and	data	loaders,	PyTorch	and	Data	Loaders

and	GPU,	Making	It	Work	on	the	GPU

building	training	dataset	for,	Building	a	Training	Dataset-Building	a	Training
Dataset

building	validation	and	test	datasets,	Building	Validation	and	Test	Datasets

challenges	with,	Traditional	Challenges-Building	Validation	and	Test	Datasets

creating	a	network,	Creating	a	Network

data	for,	But	First,	Data

example,	Our	Classification	Problem

loss	functions,	Loss	Functions

model	saving,	Model	Saving

neural	networks,	Finally,	a	Neural	Network!-Optimizing

optimizing,	Optimizing-Optimizing

predictions,	Making	Predictions

training	network	for,	Training

image	detection,	Further	Adventures	in	Image	Detection-Faster	R-CNN	and
Mask	R-CNN

Faster	R-CNN	and	Mask	R-CNN	for,	Faster	R-CNN	and	Mask	R-CNN-Faster
R-CNN	and	Mask	R-CNN

object	detection	for,	Object	Detection-Object	Detection

Image.convert()	function,	Color	Spaces	and	Lambda	Transforms

ImageFolder,	Building	a	Training	Dataset

ImageNet,	Deep	Learning	in	the	World	Today,	But	First,	Data,	A	Wild	ResNet
Appears

ImageNet	Large	Scale	Visual	Recognition	Challenge,	Deep	Learning	in	the
World	Today

import	torch,	Google	Colaboratory

imsave,	Faster	R-CNN	and	Mask	R-CNN

in-place	functions,	Tensor	Operations

Inception,	Inception/GoogLeNet,	Mel	Spectrograms,	Further	Experiments,
Object	Detection

init()	function,	Creating	a	Network

insertion,	random,	Random	Insertion

in_channels,	Convolutions

in_features,	Transfer	Learning	with	ResNet

item()	function,	Tensor	Operations,	Classifying	Tweets

J

JIT	(just-in-time)	tracing	engine,	Tracing

Joyent,	Flame	Graphs

Jupyter	Notebook,	Using	Jupyter	Notebook

on	AWS,	Amazon	Web	Services

on	Azure,	Azure

playing	ESC-50	audio,	Playing	Audio	in	Jupyter

just-in-time	(JIT)	tracing	engine,	Tracing

K

k80,	Deep	Learning	in	the	Cloud,	Azure

k8s	(see	Kubernetes)

Kaggle,	Which	Model	Should	You	Use?,	Object	Detection

Karpathy,	Andrej,	Finding	That	Learning	Rate

Karpathys	constant,	Finding	That	Learning	Rate

Keras,	What	About	TensorFlow?

Kubernetes	(k8s),	Building	the	Docker	Container,	Deploying	on	Kubernetes-
Updates	and	Cleaning	Up

cluster	creation,	Creating	a	k8s	Cluster

scaling	services,	Scaling	Services

setting	up	on	GKE,	Setting	Up	on	Google	Kubernetes	Engine

updates	and	cleaning	up	with,	Updates	and	Cleaning	Up

L

label	smoothing,	Label	Smoothing,	Defending	Against	Adversarial	Attacks

labelled,	labelling,	But	First,	Data,	Defining	Fields,	It’s	3	a.m.	What	Is	Your
Data	Doing?,	Black-Box	Attacks

label_from_df,	ULMFiT

Lambra	transforms,	Color	Spaces	and	Lambda	Transforms

layers

AdaptiveAvgPool	layer,	Pooling

AdaptiveMaxPool	layer,	Pooling

BatchNorm	layer,	BatchNorm,	Transfer	Learning	with	ResNet,	ESRGAN

Conv2d	layer,	Convolutions-Convolutions,	Introduction	to	Super-Resolution

Dropout	layer,	Dropout,	AlexNet,	Tracing

Linear	layer,	Transfer	Learning	with	ResNet

MaxPool	layer,	AlexNet

MaxPool2d	layer,	Pooling

nn.Sequential	layer,	Plotting	Mean	and	Standard	Deviation,	Gradient
Checkpointing,	Introduction	to	Super-Resolution

torch.nn.ConvTranspose2d	layer,	Introduction	to	Super-Resolution

upsample	layer,	Introduction	to	Super-Resolution

learning

deep	(see	deep	learning)

supervised,	But	First,	Data

transfer	(see	transfer	learning)

unsupervised,	But	First,	Data

learning	rates

and	frequency,	Finding	a	Learning	Rate

and	ResNet,	Finding	That	Learning	Rate-Finding	That	Learning	Rate

defined,	Optimizing

differential,	Differential	Learning	Rates

least	recently	used	(LRU)	cache,	A	New	Dataset

LeNet-5,	History	of	CNN	Architectures-Other	Architectures	Are	Available!

LibROSA,	SoX	and	LibROSA,	Mel	Spectrograms

libTorch,	Working	with	libTorch-Importing	a	TorchScript	Model

importing	TorchScript	model,	Importing	a	TorchScript	Model

installation	and	setup,	Obtaining	libTorch	and	Hello	World

Linear	layer,	Transfer	Learning	with	ResNet

list_effects()	function,	SoX	Effect	Chains

load()	function,	torchaudio

load_model()	function,	Building	a	Flask	Service,	Setting	Up	the	Model
Parameters,	Local	Versus	Cloud	Storage

load_state_dict()	function,	Reading	Flame	Graphs

local	storage,	cloud	versus,	Local	Versus	Cloud	Storage-Local	Versus	Cloud
Storage

logging,	Logging	and	Telemetry

log_spectogram.shape,	Mel	Spectrograms

Long	Short-Term	Memory	(LSTM)	Networks,	Long	Short-Term	Memory
Networks-Long	Short-Term	Memory	Networks

bidirectional,	biLSTM

gated	recurrent	units,	Gated	Recurrent	Units

ULMFiT	and,	ULMFiT

loss	functions,	Loss	Functions

LRU	(least	recently	used)	cache,	A	New	Dataset

LSTM	Networks	(see	Long	Short-Term	Memory	Networks)

Lua,	PyTorch

M

MacBook,	Anaconda

Mask	R-CNN,	Faster	R-CNN	and	Mask	R-CNN-Faster	R-CNN	and	Mask	R-
CNN

maskrcnn-benchmark	library,	Faster	R-CNN	and	Mask	R-CNN

matplotlib,	Finding	That	Learning	Rate,	A	New	Dataset

max()	function,	Tensor	Operations

MaxPool	layer,	AlexNet

MaxPool2d	layer,	Pooling

max_size	parameter,	Building	a	Vocabulary

max_width	parameter,	Frequency	masking

md5sum,	Anaconda

mean	function,	Ensembles

mean,	plotting,	Plotting	Mean	and	Standard	Deviation

mel	scale,	Mel	Spectrograms

mel	spectrograms,	Mel	Spectrograms-Mel	Spectrograms

Microsoft	Azure	(see	Azure)

MIcrosoft	Cognitive	Toolkit,	Conclusion

mixup,	mixup-mixup

MNIST,	It’s	3	a.m.	What	Is	Your	Data	Doing?

MobileNet,	Other	Architectures	Are	Available!

mode	collapse,	The	Dangers	of	Mode	Collapse

model	saving,	Model	Saving

model	serving,	Model	Serving-Logging	and	Telemetry

and	local	versus	cloud	storage,	Local	Versus	Cloud	Storage-Local	Versus
Cloud	Storage

building	a	flask	service,	Building	a	Flask	Service-Building	a	Flask	Service

Docker	containers,	Building	the	Docker	Container-Building	the	Docker
Container

logging	and	telemetry,	Logging	and	Telemetry

setting	up	model	parameters,	Setting	Up	the	Model	Parameters

model.children()	function,	Plotting	Mean	and	Standard	Deviation

model.eval()	function,	Tracing

models.alexnet(pretrained=True)	function,	Using	Pretrained	Models	in	PyTorch

Motherboard,	CPU/Motherboard

MSELoss,	Loss	Functions

multihead	attention,	Attention	Is	All	You	Need

MXNet,	Conclusion

MySQL,	Flame	Graphs

N

n1-standard-1	nodes,	Creating	a	k8s	Cluster

NamedTemporaryFile()	function,	Local	Versus	Cloud	Storage

NASNet,	Other	Architectures	Are	Available!

natural	language	processing	(NLP),	Text	Classification

NC6,	Azure

NCv2,	Azure

network,	creating,	Creating	a	Network

neural	networks

activation	functions,	Activation	Functions

creating,	Creating	a	Network

for	image	classification,	Finally,	a	Neural	Network!-Optimizing

history,	Deep	Learning	in	the	World	Today

loss	functions,	Loss	Functions

optimizing,	Optimizing-Optimizing

recurrent,	Recurrent	Neural	Networks-Recurrent	Neural	Networks

NLP	(natural	language	processing),	Text	Classification

nn.Module,	Label	Smoothing

nn.Sequential	layer,	Gradient	Checkpointing,	Introduction	to	Super-Resolution

nn.Sequential()	function,	Our	First	Convolutional	Model

nn.Sequential()	layer,	Plotting	Mean	and	Standard	Deviation

NumPy,	Tensor	Broadcasting

NVIDIA	GeForce	RTX	2080	Ti,	GPU,	Checking	Your	GPU

Nvidia	GTX	1080	Ti,	GPU,	Google	Colaboratory

Nvidia	RTX	2080	Ti,	GPU,	Deep	Learning	in	the	Cloud

nvidia-smi,	Checking	Your	GPU

O

object	detection,	Object	Detection-Object	Detection

OK,	Building	a	Flask	Service

one-hot	encoding,	Embeddings

ones()	function,	Tensors

ONNX	(Open	Neural	Network	Exchange),	Conclusion

OpenAI,	More	Than	Meets	the	Eye:	The	Transformer	Architecture,	GPT-2

optim.Adam()	function,	Optimizing

optimization	of	neural	networks,	Optimizing-Optimizing

optimizer.step()	function,	Training

out_channels,	Convolutions

out_features,	Transfer	Learning	with	ResNet

overfitting,	Building	Validation	and	Test	Datasets,	Data	Augmentation

P

P100,	Azure

P2,	P3,	Amazon	Web	Services

p2.xlarge,	Amazon	Web	Services

pad	token,	Building	a	Vocabulary

PadTrim,	torchaudio	Transforms

pandas,	torchtext

parameters()	function,	Transfer	Learning	with	ResNet

partial()	function,	Plotting	Mean	and	Standard	Deviation

PCPartPicker,	Storage

permute()	function,	Tensor	Operations

pip,	SoX	and	LibROSA,	Building	a	Flask	Service

plt	function,	Finding	That	Learning	Rate

pod,	Creating	a	k8s	Cluster

pooling	in	CNN,	Pooling

predict()	function,	Building	a	Flask	Service

predictions,	Faster	R-CNN	and	Mask	R-CNN

and	ensembling,	Ensembles

in	image	classification,	Making	Predictions

with	torchtext,	Classifying	Tweets

preprocess()	function,	Classifying	Tweets

pretrained	models,	Using	Pretrained	Models	in	PyTorch-Which	Model	Should
You	Use?

BatchNorm,	BatchNorm

choosing,	Which	Model	Should	You	Use?

examining	model	structure,	Examining	a	Model’s	Structure-Examining	a
Model’s	Structure

print()	function,	PyTorch	Hooks,	Tracing

print(model)	function,	BatchNorm

process()	function,	Classifying	Tweets

production,	deploying	PyTorch	applications	in,	PyTorch	in	Production-
Conclusion

building	a	flask	service,	Building	a	Flask	Service-Building	a	Flask	Service

deploying	on	Kubernetes,	Deploying	on	Kubernetes-Updates	and	Cleaning	Up

Docker	containers,	Building	the	Docker	Container-Building	the	Docker
Container

libTorch,	Working	with	libTorch-Importing	a	TorchScript	Model

local	versus	cloud	storage,	Local	Versus	Cloud	Storage-Local	Versus	Cloud
Storage

logging	and	telemetry,	Logging	and	Telemetry

model	serving,	Model	Serving-Logging	and	Telemetry

setting	up	model	parameters,	Setting	Up	the	Model	Parameters

TorchScript,	TorchScript-TorchScript	Limitations

py-spy,	Installing	py-spy,	Fixing	a	Slow	Transformation

Python,	Plotting	Mean	and	Standard	Deviation,	Model	Serving

Python	2.x,	Installing	PyTorch	from	Scratch

PyTorch	(generally),	Getting	Started	with	PyTorch-Conclusion

building	a	custom	deep	learning	machine,	Building	a	Custom	Deep	Learning
Machine-Storage

cloud	platforms	and,	Deep	Learning	in	the	Cloud-Which	Cloud	Provider
Should	I	Use?

installation,	Installing	PyTorch	from	Scratch-Finally,	PyTorch!	(and	Jupyter
Notebook)

origins,	PyTorch

tensors	and,	Tensors-Tensor	Broadcasting

PyTorch	Hub,	One-Stop	Shopping	for	Models:	PyTorch	Hub

pytorch-transformers,	Generating	Text	with	GPT-2

R

Raina,	Rajat,	Deep	Learning	in	the	World	Today

RAM,	RAM

random	deletion,	Random	Deletion

random	insertion,	Random	Insertion

random	swap,	Random	Swap

RandomAffine,	Torchvision	Transforms

RandomApply,	Color	Spaces	and	Lambda	Transforms

RandomCrop,	Torchvision	Transforms

RandomGrayscale,	Torchvision	Transforms

RandomResizeCrop,	Torchvision	Transforms

RBG	color	space,	Color	Spaces	and	Lambda	Transforms

README,	Obtaining	the	Dataset

rectified	linear	unit	(see	ReLU)

recurrent	neural	networks	(RNNs),	Recurrent	Neural	Networks-Recurrent	Neural

Networks,	Paying	Attention

Red	Hat	Enterprise	Linux	(RHEL)	7,	Download	CUDA

register_backward_hook()	function,	PyTorch	Hooks

ReLU	(rectified	linear	unit),	Activation	Functions,	Conclusion,	AlexNet,
Transfer	Learning	with	ResNet

remove()	function,	PyTorch	Hooks

requires_grad()	function,	Transfer	Learning	with	ResNet

resample,	Torchvision	Transforms

reshape()	function,	Tensor	Operations

reshaping	a	tensor,	Tensor	Operations

Resize(64)	transform,	Building	a	Training	Dataset

ResNet	architecture,	ResNet,	Which	Model	Should	You	Use?,	Mel
Spectrograms,	Object	Detection

and	frequency,	A	Wild	ResNet	Appears

and	learning	rate,	Finding	That	Learning	Rate-Finding	That	Learning	Rate

transfer	learning	with,	Transfer	Learning	with	ResNet-Transfer	Learning	with
ResNet

ResNet-152,	Debugging	GPU	Issues

ResNet-18,	PyTorch	Hooks

RHEL	(Red	Hat	Enterprise	Linux)	7,	Download	CUDA

RMSProp,	Optimizing

RNNs	(recurrent	neural	networks),	Recurrent	Neural	Networks-Recurrent	Neural
Networks,	Paying	Attention

ROCm,	GPU

RUN,	Building	the	Docker	Container

run_gpt2.py,	Generating	Text	with	GPT-2

S

Salesforce,	PyTorch

save()	function,	torchaudio

savefig,	A	New	Dataset

scaling,	Torchvision	Transforms,	Scaling	Services

scripting,	Scripting

Secure	Shell	(SSH),	Google	Colaboratory

segmentation,	Object	Detection

send_to_log()	function,	Logging	and	Telemetry

Sentiment140	dataset,	Getting	Our	Data:	Tweets!

seq2seq,	Recurrent	Neural	Networks

SimpleNet,	Conclusion

simplenet.parameters()	function,	Optimizing

slow	transformations,	fixing,	Fixing	a	Slow	Transformation-Fixing	a	Slow
Transformation

Smith,	Leslie,	Finding	That	Learning	Rate

softmax	function,	Activation	Functions

softmax()	function,	Loss	Functions

sound,	A	Journey	into	Sound-Conclusion

about,	Sound

and	ESC-50	dataset,	The	ESC-50	Dataset-A	CNN	Model	for	ESC-50

audio	data	augmentation,	Audio	Data	Augmentation-Time	masking

frequency	domain,	This	Frequency	Is	My	Universe-Finding	a	Learning	Rate

frequency	masking,	Frequency	masking-Frequency	masking

in	Jupyter	Notebook,	Playing	Audio	in	Jupyter

mel	spectrograms,	Mel	Spectrograms-Mel	Spectrograms

SoX	effect	chains,	SoX	Effect	Chains

SpecAugment,	SpecAugment-Time	masking

time	masking,	Time	masking-Time	masking

torchaudio,	torchaudio

torchaudio	transforms,	torchaudio	Transforms

SoX,	SoX	and	LibROSA

SoX	effect	chains,	SoX	Effect	Chains

sox_build_flow_effects(),	SoX	Effect	Chains

spaCy,	torchtext

SpecAugment,	SpecAugment-Time	masking

frequency	masking,	Frequency	masking-Frequency	masking

time	masking,	Time	masking-Time	masking

squeeze(0)	function,	Making	Predictions

SqueezeNet,	Other	Architectures	Are	Available!

SSH	(Secure	Shell),	Google	Colaboratory

stacktrace,	Flame	Graphs,	Flame	Graphs

standard	deviation,	plotting,	Plotting	Mean	and	Standard	Deviation

startup,	Building	the	Docker	Container,	Local	Versus	Cloud	Storage

state_dict()	function,	Setting	Up	the	Model	Parameters

stochastic	gradient	descent	(SGD),	Optimizing

storage

in	custom	deep	learning	machine,	Storage

local	versus	cloud,	Local	Versus	Cloud	Storage-Local	Versus	Cloud	Storage

SummaryWriter,	Sending	Data	to	TensorBoard

super-resolution,	Computer,	Enhance!-Running	ESRGAN

and	GANs,	An	Introduction	to	GANs-Running	ESRGAN

and	generator	and	discriminator	networks,	The	Forger	and	the	Critic

and	mode	collapse,	The	Dangers	of	Mode	Collapse

and	training	GANs,	Training	a	GAN

ESGRAN,	ESRGAN

example,	Introduction	to	Super-Resolution-Introduction	to	Super-Resolution

supervised	learning,	But	First,	Data

swap,	random,	Random	Swap

T

telemetry,	Logging	and	Telemetry

tensor	processing	units	(TPUs),	Deep	Learning	in	the	World	Today,	Google
Cloud	Platform

tensor.mean()	function,	Frequency	masking

TensorBoard,	TensorBoard-Class	Activation	Mapping

and	PyTorch	hooks,	PyTorch	Hooks

class	activation	mapping,	Class	Activation	Mapping-Class	Activation

Mapping

installing,	Installing	TensorBoard

plotting	mean	and	standard	deviation	with,	Plotting	Mean	and	Standard
Deviation

sending	data	to,	Sending	Data	to	TensorBoard-Sending	Data	to	TensorBoard

TensorFlow,	What	About	TensorFlow?,	TorchScript,	Generating	Text	with	GPT-
2

tensors,	Tensor	Operations-Tensor	Operations

broadcasting,	Tensor	Broadcasting

operations,	Tensor	Operations-Tensor	Operations

TeslaV100,	Deep	Learning	in	the	Cloud,	Azure

test	datasets,	building,	Building	Validation	and	Test	Datasets

text	classification,	Text	Classification-Conclusion

and	transfer	learning,	Transfer	Learning?

back	translation,	Back	Translation

biLSTM,	biLSTM

data	augmentation,	Data	Augmentation-Augmentation	and	torchtext

embeddings	for,	Embeddings-Embeddings

gated	recurrent	units,	Gated	Recurrent	Units

in	Long	Short-Term	Memory	Networks,	Long	Short-Term	Memory	Networks-
Long	Short-Term	Memory	Networks

random	deletion,	Random	Deletion

random	insertion,	Random	Insertion

random	swap,	Random	Swap

recurrent	neural	networks,	Recurrent	Neural	Networks-Recurrent	Neural
Networks

torchtext,	torchtext-Classifying	Tweets

text	generation,	with	GPT-2,	Generating	Text	with	GPT-2-Generating	Text	with
GPT-2

tf.keras,	What	About	TensorFlow?

Theano,	What	About	TensorFlow?

time	step,	Recurrent	Neural	Networks

to()	function,	Tensor	Operations,	Making	It	Work	on	the	GPU

top-5,	AlexNet,	ResNet

torch.argmax()	function,	Building	a	Flask	Service

torch.distribution.Beta,	mixup

torch.hub.list(pytorch/vision)	function,	One-Stop	Shopping	for	Models:	PyTorch
Hub

torch.jit.save,	Tracing,	Scripting

torch.jit.save()	function,	TorchScript	Limitations,	Obtaining	libTorch	and	Hello
World

torch.load()	function,	Model	Saving

torch.nn.ConvTranspose2d	layer,	Introduction	to	Super-Resolution

torch.save()	function,	Model	Saving,	Setting	Up	the	Model	Parameters

torch.topk()	function,	Class	Activation	Mapping

torch.utils.checkpoint_sequential()	function,	Gradient	Checkpointing

torch.utils.tensorboard,	Sending	Data	to	TensorBoard

torchaudio,	SoX	and	LibROSA,	torchaudio	Transforms

torchaudio	transforms,	torchaudio	Transforms

torchaudio.load(),	SoX	Effect	Chains

torchaudio.sox_effects.effect_names()	function,	SoX	Effect	Chains

torchaudio.sox_effects.SoxEffectsChain,	SoX	Effect	Chains

TorchScript,	TorchScript-TorchScript	Limitations

libTorch,	Importing	a	TorchScript	Model

limitations,	TorchScript	Limitations-TorchScript	Limitations

scripting,	Scripting

tracing,	Tracing-Tracing

torchtext,	torchtext-Classifying	Tweets

and	data	augmentation,	Augmentation	and	torchtext

building	vocabulary	for,	Building	a	Vocabulary-Building	a	Vocabulary

creating	model,	Creating	Our	Model

data	for,	Getting	Our	Data:	Tweets!

defining	fields	for,	Defining	Fields-Defining	Fields

predictions	with,	Classifying	Tweets

updating	training	loop,	Updating	the	Training	Loop

torchtext.datasets,	Getting	Our	Data:	Tweets!

torchvision,	Building	a	Training	Dataset

torchvision	transforms,	Torchvision	Transforms-Torchvision	Transforms

torchvision.models,	One-Stop	Shopping	for	Models:	PyTorch	Hub

TPUs	(tensor	processing	units),	Deep	Learning	in	the	World	Today,	Google
Cloud	Platform

tracing,	Tracing-Tracing

train()	function,	Putting	It	All	Together

train_net.py,	Faster	R-CNN	and	Mask	R-CNN

transfer	learning,	Transfer	Learning	and	Other	Tricks-Conclusion

and	data	augmentation,	Data	Augmentation-Start	Small	and	Get	Bigger!

and	differential	learning	rates,	Differential	Learning	Rates

and	U-Net	architecture,	Object	Detection

color	spaces	and	Lamba	transforms,	Color	Spaces	and	Lambda	Transforms

custom	transform	classes,	Custom	Transform	Classes

ensembling,	Ensembles

starting	small,	Start	Small	and	Get	Bigger!

torchvision	transforms,	Torchvision	Transforms-Torchvision	Transforms

with	ResNet,	Transfer	Learning	with	ResNet-Transfer	Learning	with	ResNet

transformations,	fixing	slow,	Fixing	a	Slow	Transformation-Fixing	a	Slow
Transformation

Transformer	architecture,	More	Than	Meets	the	Eye:	The	Transformer
Architecture-What	to	Use?

attention,	Paying	Attention

BERT,	BERT-FastBERT

choosing,	What	to	Use?

FastBERT,	FastBERT-FastBERT

GPT-2,	GPT-2-Generating	Text	with	GPT-2

multihead	attention,	Attention	Is	All	You	Need

ULMFiT,	ULMFiT-ULMFiT

transforms.ToTensor()	function,	Building	a	Training	Dataset

TWEET,	Defining	Fields,	Classifying	Tweets

Twitter,	Getting	Our	Data:	Tweets!

U

U-Net	architecture,	Object	Detection

Uber,	PyTorch

Ubuntu,	Download	CUDA

ULMFiT,	ULMFiT-ULMFiT,	What	to	Use?

unknown	word	token,	Building	a	Vocabulary

unsqueeze()	function,	Making	Predictions,	Building	a	Flask	Service

unsupervised	learning,	But	First,	Data

upsample	layer,	Introduction	to	Super-Resolution

urlopen()	function,	Local	Versus	Cloud	Storage

V

validation	datasets,	Building	Validation	and	Test	Datasets

vanishing	gradient,	Long	Short-Term	Memory	Networks

view()	function,	Tensor	Operations,	Creating	a	Network

Visdom,	TensorBoard

Visual	Geometry	Group	(VGG),	VGG,	Further	Experiments

W

Waitress	(web	server),	Building	the	Docker	Container

waveform,	Sound,	This	Frequency	Is	My	Universe,	Audio	Data	Augmentation

web,	Amazon	Web	Services

white-box	attack,	Black-Box	Attacks

WikiText-103	dataset,	ULMFiT

word2vec,	Embeddings

X

XLNet,	Conclusion

Z

Z370,	CPU/Motherboard

zeroes()	function,	Tensors

zero_grad()	function,	Training

About	the	Author
Ian	Pointer	is	a	data	engineer	specializing	in	machine	learning	solutions
(including	deep	learning	techniques)	for	multiple	Fortune	100	clients.	Ian	is
currently	at	Lucidworks,	where	he	works	on	cutting-edge	NLP	applications	and
engineering.

He	immigrated	to	the	United	States	from	the	United	Kingdom	in	2011	and
became	an	American	citizen	in	2017.

Colophon
The	bird	on	the	cover	of	Programming	PyTorch	for	Deep	Learning	is	a	red-
headed	woodpecker	(Melanerpes	erythrocephalus).	Red-headed	woodpeckers
are	native	to	North	America’s	open	forests	and	pine	savannas.	They	migrate
throughout	the	eastern	United	States	and	southern	Canada.

Red-headed	woodpeckers	don’t	develop	their	striking	red	feathers	until	they
become	adults.	The	adults	have	a	black	back	and	tail,	red	head	and	neck,	and
white	undersides.	In	contrast,	the	young	woodpeckers	have	gray	heads.	At
maturity,	these	woodpeckers	weigh	2–3	ounces,	have	a	16.5-inch	wingspan,	and
measure	7.5–9	inches	long.	Females	can	lay	four	to	seven	eggs	at	a	time.	They
breed	in	the	spring,	having	up	to	two	broods	per	season.	Males	help	with
incubating	and	feeding.

Red-headed	woodpeckers	eat	insects—which	they	can	catch	in	midair—seeds,
fruits,	berries,	and	nuts.	They	forage	in	trees	and	on	the	ground	with	that
characteristic	pecking	action.	For	the	winter,	red-headed	woodpeckers	store	nuts
in	holes	and	crevices	in	tree	bark.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.

The	cover	illustration	is	by	Susan	Thompson,	based	on	a	black-and-white
engraving	from	Pictorial	Museum	of	Animated	Nature.	The	cover	fonts	are
Gilroy	Semibold	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the
heading	font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s
Ubuntu	Mono.

	Preface
	Deep Learning in the World Today
	But What Is Deep Learning Exactly, and Do I Need a PhD to Understand It?
	PyTorch
	What About TensorFlow?

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Getting Started with PyTorch
	Building a Custom Deep Learning Machine
	GPU
	CPU/Motherboard
	RAM
	Storage

	Deep Learning in the Cloud
	Google Colaboratory
	Cloud Providers
	Which Cloud Provider Should I Use?

	Using Jupyter Notebook
	Installing PyTorch from Scratch
	Download CUDA
	Anaconda
	Finally, PyTorch! (and Jupyter Notebook)

	Tensors
	Tensor Operations
	Tensor Broadcasting

	Conclusion
	Further Reading

	2. Image Classification with PyTorch
	Our Classification Problem
	Traditional Challenges
	But First, Data
	PyTorch and Data Loaders
	Building a Training Dataset
	Building Validation and Test Datasets

	Finally, a Neural Network!
	Activation Functions
	Creating a Network
	Loss Functions
	Optimizing

	Training
	Making It Work on the GPU

	Putting It All Together
	Making Predictions
	Model Saving

	Conclusion
	Further Reading

	3. Convolutional Neural Networks
	Our First Convolutional Model
	Convolutions
	Pooling
	Dropout

	History of CNN Architectures
	AlexNet
	Inception/GoogLeNet
	VGG
	ResNet
	Other Architectures Are Available!

	Using Pretrained Models in PyTorch
	Examining a Model’s Structure
	BatchNorm
	Which Model Should You Use?

	One-Stop Shopping for Models: PyTorch Hub
	Conclusion
	Further Reading

	4. Transfer Learning and Other Tricks
	Transfer Learning with ResNet
	Finding That Learning Rate
	Differential Learning Rates
	Data Augmentation
	Torchvision Transforms
	Color Spaces and Lambda Transforms
	Custom Transform Classes
	Start Small and Get Bigger!

	Ensembles
	Conclusion
	Further Reading

	5. Text Classification
	Recurrent Neural Networks
	Long Short-Term Memory Networks
	Gated Recurrent Units
	biLSTM

	Embeddings
	torchtext
	Getting Our Data: Tweets!
	Defining Fields
	Building a Vocabulary
	Creating Our Model
	Updating the Training Loop
	Classifying Tweets

	Data Augmentation
	Random Insertion
	Random Deletion
	Random Swap
	Back Translation
	Augmentation and torchtext
	Transfer Learning?

	Conclusion
	Further Reading

	6. A Journey into Sound
	Sound
	The ESC-50 Dataset
	Obtaining the Dataset
	Playing Audio in Jupyter

	Exploring ESC-50
	SoX and LibROSA
	torchaudio
	Building an ESC-50 Dataset

	A CNN Model for ESC-50
	This Frequency Is My Universe
	Mel Spectrograms
	A New Dataset
	A Wild ResNet Appears
	Finding a Learning Rate

	Audio Data Augmentation
	torchaudio Transforms
	SoX Effect Chains
	SpecAugment

	Further Experiments
	Conclusion
	Further Reading

	7. Debugging PyTorch Models
	It’s 3 a.m. What Is Your Data Doing?
	TensorBoard
	Installing TensorBoard
	Sending Data to TensorBoard
	PyTorch Hooks
	Plotting Mean and Standard Deviation
	Class Activation Mapping

	Flame Graphs
	Installing py-spy
	Reading Flame Graphs
	Fixing a Slow Transformation

	Debugging GPU Issues
	Checking Your GPU
	Gradient Checkpointing

	Conclusion
	Further Reading

	8. PyTorch in Production
	Model Serving
	Building a Flask Service
	Setting Up the Model Parameters
	Building the Docker Container
	Local Versus Cloud Storage
	Logging and Telemetry

	Deploying on Kubernetes
	Setting Up on Google Kubernetes Engine
	Creating a k8s Cluster
	Scaling Services
	Updates and Cleaning Up

	TorchScript
	Tracing
	Scripting
	TorchScript Limitations

	Working with libTorch
	Obtaining libTorch and Hello World
	Importing a TorchScript Model

	Conclusion
	Further Reading

	9. PyTorch in the Wild
	Data Augmentation: Mixed and Smoothed
	mixup
	Label Smoothing

	Computer, Enhance!
	Introduction to Super-Resolution
	An Introduction to GANs
	The Forger and the Critic
	Training a GAN
	The Dangers of Mode Collapse
	ESRGAN

	Further Adventures in Image Detection
	Object Detection
	Faster R-CNN and Mask R-CNN

	Adversarial Samples
	Black-Box Attacks
	Defending Against Adversarial Attacks

	More Than Meets the Eye: The Transformer Architecture
	Paying Attention
	Attention Is All You Need
	BERT
	FastBERT
	GPT-2
	Generating Text with GPT-2
	ULMFiT
	What to Use?

	Conclusion
	Further Reading

	Index

