Getting Started with sbt

Contents

Preface
Installing sbt
Tipsand Notes
Installing sbt on Maco L
Installing from a third-party package
Installing from a universal package
Typesafe Activator
Installing manually
Installing sbt on Windows
Windows installer
Installing from a universal package
Typesafe Activator
Installing manually oL
Installing sbt on Linux oL
Installing from a universal package
Ubuntu and other Debian-based distributions
Red Hat Enterprise Linux and other RPM-based distributions . .

Typesafe Activator
Installing manually L.

Installing sbt manually 0L

Windows e e 9

Installing Typesafe Activator (including sbt) 10
Hello, World 11
Create a project directory with source code 11
Build definitiono 12
Setting the sbt version oL 12
Directory structure L 12
Base directoryo 12
Source code 13
sbt build definition files 0L 13
Build products 14
Configuring version control, 14
Running 14
Interactive modeo 14
Batchmode o 15
Continuous build and test 15
Common commands 15
Tab completion L oo 16
History Commands 16
.sbt build definition oo 17
Three Flavors of Build Definition 17
What is a Build Definition? 17
How build.sbt defines settings 18
Keys . . . o 19
Defining tasks and settings 20
Keys in sbt interactive mode L oL 21
Imports in build.sbt oo 21
Adding library dependencies L. 22
SCOPES « . v 22
The whole story about keys 23
SCOPE AXES . .« . . . 23

Global scope 24

Delegation 24
Referring to scoped keys when running sbt 25
Examples of scoped key notation 25
Inspecting scopes oo 26
Referring to scopes in a build definition 27
When to specify ascope oL 29
More kinds of setting 29
Refresher: Settings L. 29
Appending to previous values: +=and ++= 29
Computing a value based on other keys’ values 30
Appending with dependencies: +=and ++=. 32
Library dependencieso oo 33
Unmanaged dependencies 33
Managed Dependencies 34
Multi-project builds Lo 37
Multiple projects 37
Dependencies Lo 38
Default root project L. 39
Navigating projects interactively 40
Common code L 40
Using plugins L 41
What is a plugin? o o 41
Declaring a plugin Lo 41
Enabling and disabling auto plugins 41
Global plugins 43
Available Plugins oo 43
Custom settings and tasks oo 44
Definingakey. 44
Implementing a tasko 0oL 44
Execution semantics of taskso oo 45

Turn them into plugins 49

Organizing the build 0oL 50
sbt isrecursive L Lo 50
Tracking dependencies in one place 51
When to use .scalafiles 52
Defining auto plugins oL oL 52

Getting Started summary L L Lo L 52
sbt: The Core Concepts 53
Advanced Notes 53

Appendix: Bare .sbt build definition 54
What is a bare .sbt build definition 54
(Pre 0.13.7) Settings must be separated by blank lines 54

Appendix: .scala build definition L. 54
Relating build.sbt to Build.scala 55
The build definition project in interactive mode 57
Reminder: it’s all immutable 57

Preface

sbt uses a small number of concepts to support flexible and powerful build
definitions. There are not that many concepts, but sbt is not exactly like other
build systems and there are details you will stumble on if you haven’t read the
documentation.

The Getting Started Guide covers the concepts you need to know to create and
maintain an sbt build definition.

It is highly recommended to read the Getting Started Guide!

If you are in a huge hurry, the most important conceptual background can be
found in .sbt build definition, scopes, and more kinds of setting. But we don’t
promise that it’s a good idea to skip the other pages in the guide.

It’s best to read in order, as later pages in the Getting Started Guide build on
concepts introduced earlier.

Thanks for trying out sbt and have fun!

Basic-Def.html
Scopes.html
More-About-Settings.html

Installing sbt

To create an sbt project, you'll need to take these steps:

Install sbt and create a script to launch it.
e Setup a simple hello world project

— Create a project directory with source files in it.
— Create your build definition.

e Move on to running to learn how to run sbt.
e Then move on to .sbt build definition to learn more about build definitions.

Ultimately, the installation of sbt boils down to a launcher JAR and a shell
script, but depending on your platform, we provide several ways to make the
process less tedious. Head over to the installation steps for Mac, Windows,
Linux, Typesafe Activator, or manual installation.

Tips and Notes

If you have any trouble running sbt, see Setup Notes on terminal encodings,
HTTP proxies, and JVM options.

Installing sbt on Mac
Installing from a third-party package

Note: Third-party packages may not provide the latest version.
Please make sure to report any issues with these packages to the
relevant maintainers.

Macports

$ port install sbt

Homebrew

$ brew install sbt

Installing from a universal package

Download ZIP or TGZ package, and expand it.

Hello.html
Running.html
Basic-Def.html
Installing-sbt-on-Mac.html
Installing-sbt-on-Windows.html
Installing-sbt-on-Linux.html
Activator-Installation.html
Manual-Installation.html
../docs/Setup-Notes.html
http://macports.org/
http://mxcl.github.com/homebrew/
https://dl.bintray.com/sbt/native-packages/sbt/0.13.7/sbt-0.13.7.zip
https://dl.bintray.com/sbt/native-packages/sbt/0.13.7/sbt-0.13.7.tgz

Typesafe Activator

See the Typesafe Activator instructions.

Installing manually

See instruction to install manually.

Installing sbt on Windows
Windows installer

Download msi installer and install it.

Installing from a universal package

Download ZIP or TGZ package and expand it.

Typesafe Activator

See the Typesafe Activator instructions.

Installing manually

See instruction to install manually.

Installing sbt on Linux
Installing from a universal package

Download ZIP or TGZ package and expand it.

Ubuntu and other Debian-based distributions

DEB package is officially supported by sbt.

Ubuntu and other Debian-based distributions use the DEB format, but usually
you don’t install your software from a local DEB file. Instead they come with
package managers both for the command line (e.g. apt-get, aptitude) or with
a graphical user interface (e.g. Synaptic). Run the following from the terminal
to install sbt (You’ll need superuser privileges to do so, hence the sudo).

Activator-Installation.html
https://dl.bintray.com/sbt/native-packages/sbt/0.13.7/sbt-0.13.7.msi
https://dl.bintray.com/sbt/native-packages/sbt/0.13.7/sbt-0.13.7.zip
https://dl.bintray.com/sbt/native-packages/sbt/0.13.7/sbt-0.13.7.tgz
Activator-Installation.html
https://dl.bintray.com/sbt/native-packages/sbt/0.13.7/sbt-0.13.7.zip
https://dl.bintray.com/sbt/native-packages/sbt/0.13.7/sbt-0.13.7.tgz
https://dl.bintray.com/sbt/debian/sbt-0.13.7.deb

echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a /etc/apt/sources.list.d/sbt.list
sudo apt-get update
sudo apt-get install sbt

Package managers will check a number of configured repositories for packages
to offer for installation. sbt binaries are published to Bintray, and conveniently
Bintray provides an APT repository. You just have to add the repository to the
places your package manager will check. Once sbt is installed, you’ll be able to
manage the package in aptitude or Synaptic after you updated their package
cache. You should also be able to see the added repository at the bottom of the
list in System Settings -> Software & Updates -> Other Software:

(> Software & Updates

Ubuntu Software | Other Software = Updates Authentication Additional Drivers

™ Canonical Partners
Software packaged by Canonical For their partners

Canonical Partners (Source Code)
software packaged by Canonical for their partners

Independent
Provided by third-party software developers

Independent (Source Code)
Provided by third-party software developers

http://dl.bintray.com/fsbt/debian [

Add... EdiL... Remove Add Volume...
Reverk Close

Figure 1: Ubuntu Software & Updates Screenshot

Red Hat Enterprise Linux and other RPM-based distributions

RPM package is officially supported by sbt.

Red Hat Enterprise Linux and other RPM-based distributions use the RPM
format. Run the following from the terminal to install sbt (You’ll need superuser
privileges to do so, hence the sudo).

https://dl.bintray.com/sbt/rpm/sbt-0.13.7.rpm

curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintray-sbt-rpm.repo
sudo yum install sbt

sbt binaries are published to Bintray, and conveniently Bintray provides an
RPM repository. You just have to add the repository to the places your package
manager will check.

Note: Please report any issues with these to the sbt-launcher-
package project.

Gentoo

In the official tree there is no ebuild for sbt. But there are ebuilds to merge sbt
from binaries. To merge sbt from this ebuilds you can do:

mkdir -p /usr/local/portage && cd /usr/local/portage

git clone git://github.com/whiter4bbit/overlays.git

echo "PORTDIR_OVERLAY=$PORTDIR_OVERLAY /usr/local/portage/overlays" >> /etc/make.conf
emerge sbt-bin

Note: Please report any issues with the ebuild here.

Typesafe Activator

See the Typesafe Activator instructions.

Installing manually

See instructions to install manually.

Installing sbt manually

Manual installation requires downloading sbt-launch.jar and creating a script
to start it.

Unix

Put sbt-launch.jar in ~/bin.

Create a script to run the jar, by creating ~/bin/sbt with these contents:

https://github.com/sbt/sbt-launcher-package
https://github.com/sbt/sbt-launcher-package
https://github.com/whiter4bbit/overlays/tree/master/dev-java/sbt-bin
https://github.com/whiter4bbit/overlays/issues
Activator-Installation.html
Manual-Installation.html
https://repo.typesafe.com/typesafe/ivy-releases/org.scala-sbt/sbt-launch/0.13.7/sbt-launch.jar
https://repo.typesafe.com/typesafe/ivy-releases/org.scala-sbt/sbt-launch/0.13.7/sbt-launch.jar

SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled —-XX:MaxPermSize=256M"
java $SBT_OPTS -jar “dirname $0°/sbt-launch.jar "$@"

Make the script executable:

$ chmod u+x ~/bin/sbt

Windows

Manual installation for Windows varies by terminal type and whether Cygwin
is used. In all cases, put the batch file or script on the path so that you can
launch sbt in any directory by typing sbt at the command prompt. Also, adjust
JVM settings according to your machine if necessary.

Non-Cygwin For non-Cygwin users using the standard Windows terminal,
create a batch file sbt.bat:

set SCRIPT_DIR=%~dpO
java -Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M -jar "%SCRIF

and put the downloaded sbt-launch.jar in the same directory as the batch file.

Cygwin with the standard Windows termnial If using Cygwin with the
standard Windows terminal, create a bash script ~/bin/sbt:

SBT_OPTS="-Xms512M -Xmx1536M —-Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M"
java $SBT_OPTS -jar sbt-launch.jar "$a@"

Replace sbt-launch.jar with the path to your downloaded sbt-launch.jar and
remember to use cygpath if necessary. Make the script executable:

$ chmod u+x ~/bin/sbt

Cygwin with an Ansi terminal Cygwin with an Ansi terminal (supports
Ansi escape sequences and is configurable via stty), create a bash script
~/bin/sbt:

SBT_OPTS="-Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=256M"

stty -icanon min 1 -echo > /dev/null 2>&1

java -Djline.terminal=jline.UnixTerminal -Dsbt.cygwin=true $SBT_OPTS -jar sbt-launch.jar "$Q"
stty icanon echo > /dev/null 2>&1

https://repo.typesafe.com/typesafe/ivy-releases/org.scala-sbt/sbt-launch/0.13.7/sbt-launch.jar
https://repo.typesafe.com/typesafe/ivy-releases/org.scala-sbt/sbt-launch/0.13.7/sbt-launch.jar

Replace sbt-launch.jar with the path to your downloaded sbt-launch.jar and
remember to use cygpath if necessary. Then, make the script executable:

$ chmod u+x ~/bin/sbt

In order for backspace to work correctly in the scala console, you need to make
sure your backspace key is sending the erase character as configured by stty. For
the default cygwin terminal (mintty) you can find a setting under Options ->
Keys “Backspace sends "H” which will need to be checked if your erase key is
the cygwin default of "H.

Note: Other configurations are currently unsupported. Please sub-
mit a pull request implementing or describing that support.

Installing Typesafe Activator (including sbt)

Typesafe Activator is a custom version of sbt which adds two extra commands,
activator ui and activator new. The activator command is a superset of
sbt, in short.

You can obtain Activator from typesafe.com.

If you see a command line such as sbt ~test in the documentation, you will
also be able to type activator ~test. Any Activator project can be opened in
sbt and vice versa because Activator is “sbt powered.”

The Activator download includes an activator script and an activator-launch. jar,
which are equivalent to the sbt script and launch jar described under man-

ual installation. Here are the differences between Activator and a manual
installation of sbt:

e typing activator with no arguments will attempt to guess whether to
enter activator shell or activator ui mode; type activator shell
to force the command line prompt.

e activator new allows you to create projects from a large catalog of tem-
plate projects, for example the play-scala template is a skeleton Play
Framework Scala app.

e activator ui launches a quick start UI that can be used to work through
tutorials from the template catalog (many templates in the catalog have
accompanying tutorials).

Activator offers two downloads; the small “minimal” download contains only
the wrapper script and launch jar, while the large “full” download contains a
preloaded Ivy cache with jars for Scala, Akka, and the Play Framework.

10

https://repo.typesafe.com/typesafe/ivy-releases/org.scala-sbt/sbt-launch/0.13.7/sbt-launch.jar
https://github.com/sbt/sbt/blob/0.13/CONTRIBUTING.md
https://github.com/sbt/sbt/blob/0.13/CONTRIBUTING.md
http://typesafe.com/get-started
Manual-Installation.html
Manual-Installation.html
Manual-Installation.html
Manual-Installation.html
https://typesafe.com/activator/templates
https://typesafe.com/activator/templates
https://playframework.com
https://playframework.com

Hello, World

This page assumes you’ve installed sbt.

Create a project directory with source code

A valid sbt project can be a directory containing a single source file. Try creating
a directory hello with a file hw.scala, containing the following:

object Hi {
def main(args: Array[String]) = println("Hi!")
X

Now from inside the hello directory, start sbt and type run at the sbt interactive
console. On Linux or OS X the commands might look like this:

$ mkdir hello

$ cd hello

$ echo 'object Hi { def main(args: Array[String]) = println("Hi!") }' > hw.scala
$ sbt

> run
Hi!

In this case, sbt works purely by convention. sbt will find the following auto-
matically:

e Sources in the base directory

e Sources in src/main/scala or src/main/java

o Tests in src/test/scala or src/test/java

e Data files in src/main/resources or src/test/resources
e jarsin 1ib

By default, sbt will build projects with the same version of Scala used to run

sbt itself.

You can run the project with sbt run or enter the Scala REPL with sbt
console. sbt console sets up your project’s classpath so you can try out live
Scala examples based on your project’s code.

11

Setup.html
http://www.scala-lang.org/node/2097

Build definition

Most projects will need some manual setup. Basic build settings go in a file
called build.sbt, located in the project’s base directory.

For example, if your project is in the directory hello, in hello/build.sbt you
might write:

lazy val root = (project in file(".")).

settings(
name := "hello",
version := "1.0",
scalaVersion := "2.11.4"
)

In .sbt build definition you’ll learn more about how to write a build.sbt file.

If you plan to package your project in a jar, you will want to set at least the
name and version in a build.sbt.

Setting the sbt version

You can force a particular version of sbt by creating a file hello/project/build.properties.
In this file, write:

sbt.version=0.13.7

to force the use of sbt 0.13.7. sbt is 99% source compatible from release to
release. Still, setting the sbt version in project/build.properties avoids any
potential confusion.

Directory structure

This page assumes you’ve installed sbt and seen the Hello, World example.

Base directory
In sbt’s terminology, the “base directory” is the directory containing the

project. So if you created a project hello containing hello/build.sbt and
hello/hw.scala as in the Hello, World example, hello is your base directory.

12

Basic-Def.html
Setup.html
Hello.html
Hello.html

Source code

Source code can be placed in the project’s base directory as with
hello/hw.scala. However, most people don’t do this for real projects;
too much clutter.

sbt uses the same directory structure as Maven for source files by default (all
paths are relative to the base directory):

src/
main/
resources/
<files to include in main jar here>
scala/
<main Scala sources>
java/
<main Java sources>
test/
resources
<files to include in test jar here>
scala/
<test Scala sources>
java/

<test Java sources>

Other directories in src/ will be ignored. Additionally, all hidden directories
will be ignored.

sbt build definition files

You've already seen build.sbt in the project’s base directory. Other sbt files
appear in a project subdirectory.

project can contain .scala files, which are combined with .sbt files to form
the complete build definition. See organizing the build for more.

build.sbt
project/
Build.scala

You may see .sbt files inside project/ but they are not equivalent to .sbt files
in the project’s base directory. Explaining this will come later, since you’ll need
some background information first.

13

https://maven.apache.org/
Organizing-Build.html
Organizing-Build.html

Build products

Generated files (compiled classes, packaged jars, managed files, caches, and
documentation) will be written to the target directory by default.

Configuring version control

Your .gitignore (or equivalent for other version control systems) should con-
tain:

target/

Note that this deliberately has a trailing / (to match only directories) and it
deliberately has no leading / (to match project/target/ in addition to plain
target/).

Running

This page describes how to use sbt once you have set up your project. It assumes
you’ve installed sbt and created a Hello, World or other project.

Interactive mode

Run sbt in your project directory with no arguments:
$ sbt

Running sbt with no command line arguments starts it in interactive mode.
Interactive mode has a command prompt (with tab completion and history!).

For example, you could type compile at the sbt prompt:
> compile

To compile again, press up arrow and then enter.
To run your program, type run.

To leave interactive mode, type exit or use Ctrl+D (Unix) or Ctrl+Z (Win-
dows).

14

Setup.html
Hello.html

Batch mode

You can also run sbt in batch mode, specifying a space-separated list of sbt
commands as arguments. For sbt commands that take arguments, pass the
command and arguments as one argument to sbt by enclosing them in quotes.
For example,

$ sbt clean compile "testOnly TestA TestB"

In this example, testOnly has arguments, TestA and TestB. The commands
will be run in sequence (clean, compile, then testOnly).

Continuous build and test
To speed up your edit-compile-test cycle, you can ask sbt to automatically re-
compile or run tests whenever you save a source file.

Make a command run when one or more source files change by prefixing the
command with ~. For example, in interactive mode try:

> ~ compile

Press enter to stop watching for changes.
You can use the ~ prefix with either interactive mode or batch mode.

See Triggered Execution for more details.

Common commands

Here are some of the most common sbt commands. For a more complete list,
see Command Line Reference.

clean

Deletes all generated files (in the target directory).

compile

Compiles the main sources (in src/main/scala and src/main/java directories).
test

Compiles and runs all tests.

console

Starts the Scala interpreter with a classpath including the compiled sources
and all dependencies. To return to sbt, type :quit, Ctrl+D (Unix), or Ctrl+Z
(Windows).

15

../docs/Triggered-Execution.html
../docs/Command-Line-Reference.html

run <argument>*
Runs the main class for the project in the same virtual machine as sbt.
package

Creates a jar file containing the files in src/main/resources and the classes com-
piled from src/main/scala and src/main/java.

help <command>

Displays detailed help for the specified command. If no command is provided,
displays brief descriptions of all commands.

reload

Reloads the build definition (build.sbt, project/.scala, project/.sbt files). Needed
if you change the build definition.

Tab completion

Interactive mode has tab completion, including at an empty prompt. A special
sbt convention is that pressing tab once may show only a subset of most likely
completions, while pressing it more times shows more verbose choices.

History Commands

Interactive mode remembers history, even if you exit sbt and restart it. The
simplest way to access history is with the up arrow key. The following commands
are also supported:

!

Show history command help.

Il

Execute the previous command again.
I:

Show all previous commands.

I'n

Show the last n commands.

n

Execute the command with index n, as shown by the !: command.
I-n

Execute the nth command before this one.

16

Istring
Execute the most recent command starting with ‘string.’
I7string

Execute the most recent command containing ‘string.’

.sbt build definition

This page describes sbt build definitions, including some “theory” and the syntax
of build.sbt. It assumes you know how to use sbt and have read the previous
pages in the Getting Started Guide.

Three Flavors of Build Definition

There are three flavors of build definition:

1. Multi-project .sbt build definition
2. Bare .sbt build definition
3. .scala build definition

This page discusses the newest multi-project .sbt build definition, which com-
bines the strength of the two older flavors, and is suitable for all cases. You
might come across the other older flavors when dealing with builds in the wild.
See bare .sbt build definition and .scala build definition (later in Getting Started)
for more on other flavors.

In addition, a build definition can contain files ending in .scala, located in the
project/ subdirectory of the base directory to define commonly used functions
and values.

What is a Build Definition?

After examining a set of directories and processing build definition files, sbt ends
up with Project definitions.

In build.sbt you might create a Project definition of the project located in the
current directory like this:

lazy val root = (project in file("."))

Each project is associated with an immutable map (set of key-value pairs) de-
scribing the project.

17

Running.html
Bare-Def.html
Full-Def.html
../api/sbt/Project.html

For example, one key is name and it maps to a string value, the name of your
project.

Build definition files do not affect sbt’s map directly.

Instead, the build definition creates a huge list of objects with type Setting[T]
where T is the type of the value in the map. A Setting describes a transforma-
tion to the map, such as adding a new key-value pair or appending to an existing
value. (In the spirit of functional programming with immutable data structures
and values, a transformation returns a new map — it does not update the old
map in-place.)

Here is how you associate the Setting[String] for the name of the project
located in the current directory:

lazy val root = (project in file(".")).
settings(
name := "hello"

)

This Setting[String] transforms the map by adding (or replacing) the name
key, giving it the value "hello". The transformed map becomes sbt’s new map.

To create the map, sbt first sorts the list of settings so that all changes to the
same key are made together, and values that depend on other keys are processed
after the keys they depend on. Then sbt walks over the sorted list of Settings
and applies each one to the map in turn.

Summary: A build definition defines Projects with a list of Setting[T], where
a Setting[T] is a transformation affecting sbt’s map of key-value pairs and T
is the type of each value.

How build.sbt defines settings

build.sbt defines a Project, which holds a list of Scala expressions called
settings.

Here’s an example:

lazy val commonSettings = Seq(

organization := '"com.example",
version := "0.1.0",
scalaVersion := "2.11.4"

lazy val root = (project in file(".")).
settings(commonSettings: _*).

18

settings(
name := "hello"

)

Each Setting is defined with a Scala expression. The expressions in settings
are independent of one another, and they are expressions, rather than complete
Scala statements.

build.sbt may also be interspersed with vals, lazy vals, and defs. Top-level
objects and classes are not allowed in build.sbt. Those should go in the
project/ directory as full Scala source files.

On the left, name, version, and scalaVersion are keys. A key is an instance
of SettingKey[T], TaskKey [T], or InputKey [T] where T is the expected value
type. The kinds of key are explained below.

Keys have a method called :=, which returns a Setting[T]. You could use a
Java-like syntax to call the method:

lazy val root = (project in file(".")).
settings(
name. :=("hello")

)

But Scala allows name := "hello" instead (in Scala, a single-parameter method
can use either syntax).

The := method on key name returns a Setting, specifically a Setting[String].
String also appears in the type of name itself, which is SettingKey [String]. In
this case, the returned Setting[String] is a transformation to add or replace
the name key in sbt’s map, giving it the value "hello".

If you use the wrong value type, the build definition will not compile:

lazy val root = (project in file(".")).
settings(
name := 42 // will not compile

)

Keys
Types There are three flavors of key:

e SettingKey[T]: a key for a value computed once (the value is computed
when loading the project, and kept around).

e TaskKey[T]: a key for a value, called a task, that has to be recomputed
each time, potentially with side effects.

o InputKey[T]: a key for a task that has command line arguments as input.
Check out Input Tasks for more details.

19

../docs/Input-Tasks.html

Built-in Keys The built-in keys are just fields in an object called Keys. A
build.sbt implicitly has an import sbt.Keys._, so sbt.Keys.name can be
referred to as name.

Custom Keys Custom keys may be defined with their respective creation
methods: settingKey, taskKey, and inputKey. Each method expects the type
of the value associated with the key as well as a description. The name of the
key is taken from the val the key is assigned to. For example, to define a key
for a new task called hello,

lazy val hello = taskKey[Unit] ("An example task")

Here we have used the fact that an .sbt file can contain vals and defs in
addition to settings. All such definitions are evaluated before settings regardless
of where they are defined in the file. vals and defs must be separated from
settings by blank lines.

Note: Typically, lazy vals are used instead of vals to avoid initial-
ization order problems.

Task vs Setting keys A TaskKey[T] is said to define a task. Tasks are
operations such as compile or package. They may return Unit (Unit is Scala
for void), or they may return a value related to the task, for example package
is a TaskKey[File] and its value is the jar file it creates.

Each time you start a task execution, for example by typing compile at the
interactive sbt prompt, sbt will re-run any tasks involved exactly once.

sbt’s map describing the project can keep around a fixed string value for a
setting such as name, but it has to keep around some executable code for a task
such as compile — even if that executable code eventually returns a string, it
has to be re-run every time.

A given key always refers to either a task or a plain setting. That is, “taskiness”
(whether to re-run each time) is a property of the key, not the value.

Defining tasks and settings

Using :=, you can assign a value to a setting and a computation to a task. For
a setting, the value will be computed once at project load time. For a task, the
computation will be re-run each time the task is executed.

For example, to implement the hello task from the previous section:

20

../sxr/sbt/Keys.scala.html

lazy val hello = taskKey[Unit] ("An example task")

lazy val root = (project in file(".")).
settings(
hello := { println("Hello!") }
)

We already saw an example of defining settings when we defined the project’s
name,

lazy val root = (project in file(".")).
settings(
name := "hello"

)

Types for tasks and settings From a type-system perspective, the Setting
created from a task key is slightly different from the one created from a setting
key. taskKey := 42 results in a Setting[Task[T]] while settingKey := 42
results in a Setting[T]. For most purposes this makes no difference; the task
key still creates a value of type T when the task executes.

The T vs. Task[T] type difference has this implication: a setting can’t depend
on a task, because a setting is evaluated only once on project load and is not
re-run. More on this in more kinds of setting, coming up soon.

Keys in sbt interactive mode

In sbt’s interactive mode, you can type the name of any task to execute that
task. This is why typing compile runs the compile task. compile is a task key.

If you type the name of a setting key rather than a task key, the value of
the setting key will be displayed. Typing a task key name executes the task
but doesn’t display the resulting value; to see a task’s result, use show <task
name> rather than plain <task name>. The convention for keys names is to
use camelCase so that the command line name and the Scala identifiers are the
same.

To learn more about any key, type inspect <keyname> at the sbt interactive
prompt. Some of the information inspect displays won’t make sense yet, but
at the top it shows you the setting’s value type and a brief description of the
setting.

Imports in build.sbt

You can place import statements at the top of build.sbt; they need not be
separated by blank lines.

21

More-About-Settings.html

There are some implied default imports, as follows:

import sbt._

import Process._

import Keys._

(In addition, if you have .scala files, the contents of any Build or Plugin ob-

jects in those files will be imported. More on that when we get to .scala build
definition.)

Adding library dependencies

To depend on third-party libraries, there are two options. The first is to drop
jars in 1ib/ (unmanaged dependencies) and the other is to add managed depen-
dencies, which will look like this in build.sbt:

val derby = "org.apache.derby" % "derby" % "10.4.1.3"

lazy val commonSettings = Seq(

organization := '"com.example",
version := "0.1.0",
scalaVersion := "2.11.4"

lazy val root = (project in file(".")).
settings(commonSettings: _*).

settings(
name := "hello",
libraryDependencies += derby
)

This is how you add a managed dependency on the Apache Derby library, version
10.4.1.3.

The libraryDependencies key involves two complexities: += rather than :=
and the % method. += appends to the key’s old value rather than replacing it,
this is explained in more kinds of setting. The % method is used to construct
an Ivy module ID from strings, explained in Library dependencies.

We'll skip over the details of library dependencies until later in the Getting
Started Guide. There’s a whole page covering it later on.

Scopes

This page describes scopes. It assumes you’'ve read and understood the previous
page, .sbt build definition.

22

Full-Def.html
Full-Def.html
Full-Def.html
More-About-Settings.html
Library-Dependencies.html
Library-Dependencies.html
Basic-Def.html

The whole story about keys

Previously we pretended that a key like name corresponded to one entry in sbt’s
map of key-value pairs. This was a simplification.

In truth, each key can have an associated value in more than one context, called
a “scope.”

Some concrete examples:

¢ if you have multiple projects in your build definition, a key can have a
different value in each project.

e the compile key may have a different value for your main sources and
your test sources, if you want to compile them differently.

o the packageOptions key (which contains options for creating jar pack-
ages) may have different values when packaging class files (packageBin)
or packaging source code (packageSrc).

There is no single value for a given key name, because the value may differ
according to scope.

However, there is a single value for a given scoped key.

If you think about sbt processing a list of settings to generate a key-value map
describing the project, as discussed earlier, the keys in that key-value map
are scoped keys. Each setting defined in the build definition (for example in
build.sbt) applies to a scoped key as well.

Often the scope is implied or has a default, but if the defaults are wrong, you’ll
need to mention the desired scope in build.sbt.

Scope axes

A scope azis is a type, where each instance of the type can define its own scope
(that is, each instance can have its own unique values for keys).

There are three scope axes:

e Projects
¢ Configurations
o Tasks

Scoping by project axis If you put multiple projects in a single build, each
project needs its own settings. That is, keys can be scoped according to the
project.

The project axis can also be set to “entire build”, so a setting applies to the
entire build rather than a single project. Build-level settings are often used as
a fallback when a project doesn’t define a project-specific setting.

23

Basic-Def.html
Basic-Def.html
Multi-Project.html

Scoping by configuration axis A configuration defines a flavor of build,
potentially with its own classpath, sources, generated packages, etc. The con-
figuration concept comes from Ivy, which sbt uses for managed dependencies
Library Dependencies, and from MavenScopes.

Some configurations you’ll see in sbt:

e Compile which defines the main build (src/main/scala).
e Test which defines how to build tests (src/test/scala).
e Runtime which defines the classpath for the run task.

By default, all the keys associated with compiling, packaging, and running are
scoped to a configuration and therefore may work differently in each configu-
ration. The most obvious examples are the task keys compile, package, and
run; but all the keys which affect those keys (such as sourceDirectories or
scalacOptions or fullClasspath) are also scoped to the configuration.

Scoping by task axis Settings can affect how a task works. For example,
the packageSrc task is affected by the packageOptions setting.

To support this, a task key (such as packageSrc) can be a scope for another
key (such as packageOptions).

The various tasks that build a package (packageSrc, packageBin, packageDoc)
can share keys related to packaging, such as artifactName and packageOptions.
Those keys can have distinct values for each packaging task.

Global scope

Each scope axis can be filled in with an instance of the axis type (for example
the task axis can be filled in with a task), or the axis can be filled in with the
special value Global.

Global means what you would expect: the setting’s value applies to all instances
of that axis. For example if the task axis is Global, then the setting would apply
to all tasks.

Delegation

A scoped key may be undefined, if it has no value associated with it in its scope.

For each scope, sbt has a fallback search path made up of other scopes. Typically,
if a key has no associated value in a more-specific scope, sbt will try to get a
value from a more general scope, such as the Global scope or the entire-build
scope.

24

Library-Dependencies.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope

This feature allows you to set a value once in a more general scope, allowing
multiple more-specific scopes to inherit the value.

You can see the fallback search path or “delegates” for a key using the inspect
command, as described below. Read on.

Referring to scoped keys when running sbt

On the command line and in interactive mode, sbt displays (and parses) scoped
keys like this:

{<build-uri>}<project-id>/config:intask: :key

e {<build-uri>}/<project-id> identifies the project axis. The
<project-id> part will be missing if the project axis has “entire
build” scope.

e config identifies the configuration axis.

e intask identifies the task axis.

¢ key identifies the key being scoped.

* can appear for each axis, referring to the Global scope.

If you omit part of the scoped key, it will be inferred as follows:

e the current project will be used if you omit the project.
e a key-dependent configuration will be auto-detected if you omit the con-
figuration or task.

For more details, see Interacting with the Configuration System.

Examples of scoped key notation

e fullClasspath specifies just a key, so the default scopes are used: current
project, a key-dependent configuration, and global task scope.

e test:fullClasspath specifies the configuration, so this is fullClasspath
in the test configuration, with defaults for the other two scope axes.

e *:fullClasspath specifies Global for the configuration, rather than the
default configuration.

e doc::fullClasspath specifies the fullClasspath key scoped to the doc
task, with the defaults for the project and configuration axes.

e {file:/home/hp/checkout/hello/}default-aea33a/test:fullClasspath
specifies a project, {file:/home/hp/checkout/hello/}default-aea33a,
where the project is identified with the build {file: /home/hp/checkout/hello/}
and then a project id inside that build default-aea33a. Also specifies
configuration test, but leaves the default task axis.

25

../docs/Inspecting-Settings.html

o {file:/home/hp/checkout/hello/}/test:fullClasspath sets the

project axis to “entire build” where the build is {file: /home/hp/checkout/hello/}.
e {.}/test:fullClasspath sets the project axis to “entire build” where

the build is {.}. {.} can be written ThisBuild in Scala code.
e {file:/home/hp/checkout/hello/}/compile:doc: :fullClasspath

sets all three scope axes.

Inspecting scopes

In sbt’s interactive mode, you can use the inspect command to understand keys
and their scopes. Try inspect test:fullClasspath:

$ sbt

> inspect test:fullClasspath

[info] Task: scala.collection.Seq[sbt.Attributed[java.io.Filell]
[info] Description:

[info] The exported classpath, consisting of build products and unmanaged and managed, internal
[info] Provided by:

[info] {file:/home/hp/checkout/hello/}default-aeal33a/test:fullClasspath
[info] Dependencies:

[info] test:exportedProducts

[info] test:dependencyClasspath
[info] Reverse dependencies:

[info] test:runMain

[info] test:run

[info] test:testLoader

[info] test:console

[info] Delegates:

[info] test:fullClasspath

[info] runtime:fullClasspath

[info] compile:fullClasspath

[info] *:fullClasspath

[infol {.}/test:fullClasspath

[info]l {.}/runtime:fullClasspath
[info] {.}/compile:fullClasspath
[info] {.}/*:fullClasspath

[info] =*/test:fullClasspath

[info]l] */runtime:fullClasspath

[info] */compile:fullClasspath

[info] */*:fullClasspath

[info] Related:

[info] compile:fullClasspath

[info]l] compile:fullClasspath(for doc)
[info] test:fullClasspath(for doc)
[info] runtime:fullClasspath

26

On the first line, you can see this is a task (as opposed to a setting, as ex-
plained in .sbt build definition). The value resulting from the task will have
type scala.collection.Seq[sbt.Attributed[java.io.File]].

“Provided by” points you to the scoped key that defines the value, in this case
{file:/home/hp/checkout/hello/}default-aea33a/test:fullClasspath
(which is the fullClasspath key scoped to the test configuration and the
{file:/home/hp/checkout/hello/}default-aeald3a project).

“Dependencies” may not make sense yet; stay tuned for the next page.

You can also see the delegates; if the value were not defined, sbt would search
through:

e two other configurations (runtime:fullClasspath, compile:fullClasspath).
In these scoped keys, the project is unspecified meaning “current project”
and the task is unspecified meaning Global

o configuration set to Global (*:fullClasspath), since project is still un-
specified it’s “current project” and task is still unspecified so Global

o project set to {.} or ThisBuild (meaning the entire build, no specific
project)

o project axis set to Global (*/test:fullClasspath) (remember, an
unspecified project means current, so searching Global here is new;
i.e. * and “no project shown” are different for the project axis; i.e.
*/test:fullClasspath is not the same as test:fullClasspath)

e both project and configuration set to Global (*/*:fullClasspath) (re-
member that unspecified task means Global already, so */*:fullClasspath
uses Global for all three axes)

Try inspect fullClasspath (as opposed to the above example, inspect
test:fullClasspath) to get a sense of the difference. Because the configuration
is omitted, it is autodetected as compile. inspect compile:fullClasspath
should therefore look the same as inspect fullClasspath.

Try inspect *:fullClasspath for another contrast. fullClasspath is not
defined in the Global configuration by default.

Again, for more details, see Interacting with the Configuration System.

Referring to scopes in a build definition

If you create a setting in build.sbt with a bare key, it will be scoped to the
current project, configuration Global and task Global:

lazy val root = (project in file(".")).
settings(
name := "hello"

)

27

Basic-Def.html
More-About-Settings.html
../docs/Inspecting-Settings.html

Run sbt and inspect name to see that it’s provided by {file:/home/hp/checkout/hello/}default-aea33a/*
that is, the project is {file:/home/hp/checkout/hello/}default-aea33a,

the configuration is * (meaning global), and the task is not shown (which also

means global).

Keys have an overloaded method called in used to set the scope. The argument
to in can be an instance of any of the scope axes. So for example, though
there’s no real reason to do this, you could set the name scoped to the Compile
configuration:

name in Compile := "hello"

or you could set the name scoped to the packageBin task (pointless! just an
example):

name in packageBin := "hello"

or you could set the name with multiple scope axes, for example in the
packageBin task in the Compile configuration:

name in (Compile, packageBin) := "hello"
or you could use Global for all axes:
name in Global := "hello"

(name in Global implicitly converts the scope axis Global to a scope with all
axes set to Global; the task and configuration are already Global by default,
so here the effect is to make the project Global, that is, define */*:name rather
than {file:/home/hp/checkout/hello/}default-aea33a/*:name)

If you aren’t used to Scala, a reminder: it’s important to understand that in
and := are just methods, not magic. Scala lets you write them in a nicer way,
but you could also use the Java style:

name. in(Compile).:=("hello")

There’s no reason to use this ugly syntax, but it illustrates that these are in fact
methods.

28

When to specify a scope

You need to specify the scope if the key in question is normally scoped. For
example, the compile task, by default, is scoped to Compile and Test configu-
rations, and does not exist outside of those scopes.

To change the value associated with the compile key, you need to write compile
in Compile or compile in Test. Using plain compile would define a new
compile task scoped to the current project, rather than overriding the standard
compile tasks which are scoped to a configuration.

If you get an error like “Reference to undefined setting”, often you've failed to
specify a scope, or you've specified the wrong scope. The key you’re using may
be defined in some other scope. sbt will try to suggest what you meant as part
of the error message; look for “Did you mean compile:compile?”

One way to think of it is that a name is only part of a key. In reality, all keys
consist of both a name, and a scope (where the scope has three axes). The
entire expression packageOptions in (Compile, packageBin) is a key name,
in other words. Simply packageOptions is also a key name, but a different one
(for keys with no in, a scope is implicitly assumed: current project, global config,
global task).

More kinds of setting

This page explains other ways to create a Setting, beyond the basic := method.
It assumes you've read .sbt build definition and scopes.

Refresher: Settings

Remember, a build definition creates a list of Setting, which is then used to
transform sbt’s description of the build (which is a map of key-value pairs). A
Setting is a transformation with sbt’s earlier map as input and a new map as
output. The new map becomes sbt’s new state.

Different settings transform the map in different ways. Earlier, you read about
the := method.

The Setting which := creates puts a fixed, constant value in the new, trans-
formed map. For example, if you transform a map with the setting name :=
"hello" the new map has the string "hello" stored under the key name.

Appending to previous values: += and ++=
Assignment with :=is the simplest transformation, but keys have other methods

as well. If the T in SettingKey[T] is a sequence, i.e. the key’s value type is a
sequence, you can append to the sequence rather than replacing it.

29

Basic-Def.html
Scopes.html
Basic-Def.html
Basic-Def.html

o += will append a single element to the sequence.
o ++= will concatenate another sequence.

For example, the key sourceDirectories in Compile has a Seq[File] as
its value. By default this key’s value would include src/main/scala. If you
wanted to also compile source code in a directory called source (since you just
have to be nonstandard), you could add that directory:

sourceDirectories in Compile += new File("source"
Or, using the file() function from the sbt package for convenience:
sourceDirectories in Compile += file("source"

(file() just creates a new File.)

You could use ++= to add more than one directory at a time:
sourceDirectories in Compile ++= Seq(file("sources1"), file("sources2"))

Where Seq(a, b, ¢, ...) isstandard Scala syntax to construct a sequence.

To replace the default source directories entirely, you use := of course:

sourceDirectories in Compile := Seq(file("sourcesl"), file("sources2"))

Computing a value based on other keys’ values

Reference the value of another task or setting by calling value on the key for
the task or setting. The value method is special and may only be called in the
argument to :=, +=, or ++=.

As a first example, consider defining the project organization to be the same as
the project name.

// mame our organization after our project (both are SettingKey[Stringl)
organization := name.value

Or, set the name to the name of the project’s directory:

// name ts a Key[String], baseDirectory ts a Keyl[File]
// mame the project after the directory it's inside
name := baseDirectory.value.getName

30

This transforms the value of baseDirectory using the standard getName
method of java.io.File.

Using multiple inputs is similar. For example,
name := "project " + name.value + " from " + organization.value + " version " + version.vali

This sets the name in terms of its previous value as well as the organization and
version settings.

Settings with dependencies In the setting name := baseDirectory.value.getName,
name will have a dependency on baseDirectory. If you place the above in
build.sbt and run the sbt interactive console, then type inspect name, you

should see (in part):

[info] Dependencies:
[info] *:baseDirectory

This is how sbt knows which settings depend on which other settings. Remember
that some settings describe tasks, so this approach also creates dependencies
between tasks.

For example, if you inspect compile you’ll see it depends on another key
compileInputs, and if you inspect compileInputs it in turn depends on
other keys. Keep following the dependency chains and magic happens. When
you type compile sbt automatically performs an update, for example. It Just
Works because the values required as inputs to the compile computation require
sbt to do the update computation first.

In this way, all build dependencies in sbt are automatic rather than explicitly
declared. If you use a key’s value in another computation, then the computation
depends on that key. It just works!

When settings are undefined Whenever a setting uses :=, +=, or ++= to
create a dependency on itself or another key’s value, the value it depends on
must exist. If it does not, sbt will complain. It might say “Reference to undefined
setting”, for example. When this happens, be sure you're using the key in the
scope that defines it.

It’s possible to create cycles, which is an error; sbt will tell you if you do this.

Tasks based on other keys’ values You can compute values of some tasks or
settings to define or append value for another task. It’s done by using Def . task
and taskValue, as argument to :=, += or ++=.

As a first example, consider appending a source generator using the project base
directory and compilation classpath.

31

Scopes.html

sourceGenerators in Compile += Def.task {
myGenerator (baseDirectory.value, (managedClasspath in Compile).value)
}.taskValue

Tasks with dependencies As noted in .sbt build definition, task keys create
a Setting[Task[T]] rather than a Setting[T] when you build a setting with
:=, etc. Tasks can use settings as inputs, but settings cannot use tasks as inputs.

Take these two keys (from Keys):

val scalacOptions = taskKey[Seq[Stringl] ("Options for the Scala compiler.")
val checksums = settingKey[Seq[String]] ("The list of checksums to generate and to verify for

(scalacOptions and checksums have nothing to do with each other, they are
just two keys with the same value type, where one is a task.)

It is possible to compile a build.sbt that aliases scalacOptions to checksums,
but not the other way. For example, this is allowed:

// The scalacOptions task may be defined in terms of the checksums setting
scalacOptions := checksums.value

There is no way to go the other direction. That is, a setting key can’t depend
on a task key. That’s because a setting key is only computed once on project
load, so the task would not be re-run every time, and tasks expect to re-run
every time.

// The checksums setting may not be defined in terms of the scalacOptions task
checksums := scalacOptions.value

Appending with dependencies: += and ++=

Other keys can be used when appending to an existing setting or task, just like
they can for assigning with :=.

For example, say you have a coverage report named after the project, and you
want to add it to the files removed by clean:

cleanFiles += file("coverage-report-" + name.value + ".txt")

32

Basic-Def.html
../sxr/sbt/Keys.scala.html

Library dependencies

This page assumes you've already read the earlier Getting Started pages, in
particular .sbt build definition, scopes, and more kinds of setting.

Library dependencies can be added in two ways:

o unmanaged dependencies are jars dropped into the 1ib directory
e managed dependencies are configured in the build definition and down-
loaded automatically from repositories

Unmanaged dependencies

Most people use managed dependencies instead of unmanaged. But unmanaged
can be simpler when starting out.

Unmanaged dependencies work like this: add jars to 1ib and they will be placed
on the project classpath. Not much else to it!

You can place test jars such as ScalaCheck, Specs2, and ScalaTest in 1ib as
well.

Dependencies in 1ib go on all the classpaths (for compile, test, run, and
console). If you wanted to change the classpath for just one of those, you
would adjust dependencyClasspath in Compile or dependencyClasspath in
Runtime for example.

There’s nothing to add to build.sbt to use unmanaged dependencies, though
you could change the unmanagedBase key if you’d like to use a different directory
rather than 1ib.

To use custom_1ib instead of 1ib:
unmanagedBase := baseDirectory.value / "custom_lib"

baseDirectory is the project’s root directory, so here you’re changing
unmanagedBase depending on baseDirectory using the special value method
as explained in more kinds of setting.

There’s also an unmanagedJars task which lists the jars from the unmanagedBase
directory. If you wanted to use multiple directories or do something else complex,
you might need to replace the whole unmanagedJars task with one that does
something else, e.g. empty the list for Compile configuration regardless of the
files in 1ib directory:

unmanagedJars in Compile := Seq.empty[sbt.Attributed[java.io.Filell

33

Basic-Def.html
Scopes.html
More-About-Settings.html
http://scalacheck.org/
http://specs2.org
http://www.scalatest.org/
More-About-Settings.html

Managed Dependencies

sbt uses Apache Ivy to implement managed dependencies, so if you're familiar
with Ivy or Maven, you won’t have much trouble.

The libraryDependencies key Most of the time, you can simply list your
dependencies in the setting libraryDependencies. It’s also possible to write
a Maven POM file or Ivy configuration file to externally configure your depen-
dencies, and have sbt use those external configuration files. You can learn more
about that here.

Declaring a dependency looks like this, where groupId, artifactId, and

revision are strings:

libraryDependencies += groupID % artifactID % revision

or like this, where configuration can be a string or Configuration val:

libraryDependencies += groupID % artifactID % revision % configuration
libraryDependencies is declared in Keys like this:

val libraryDependencies = settingKey[Seq[ModuleID]] ("Declares managed dependencies.")
The % methods create ModuleID objects from strings, then you add those

ModulelID to libraryDependencies.

Of course, sbt (via Ivy) has to know where to download the module. If your
module is in one of the default repositories sbt comes with, this will just work.
For example, Apache Derby is in the standard Maven2 repository:

libraryDependencies += "org.apache.derby" % "derby" % "10.4.1.3"

If you type that in build.sbt and then update, sbt should download Derby to
~/.ivy2/cache/org.apache.derby/. (By the way, update is a dependency of
compile so there’s no need to manually type update most of the time.)

Of course, you can also use ++= to add a list of dependencies all at once:
libraryDependencies ++= Seq(
groupID ¥ artifactID % revision,

groupID Y, otherID % otherRevision
)

In rare cases you might find reasons to use := with libraryDependencies as
well.

34

https://ant.apache.org/ivy/
../docs/Library-Management.html#external-maven-ivy
../sxr/sbt/Configurations.scala.html#sbt.Configuration
../sxr/sbt/Keys.scala.html#sbt.Keys.libraryDependencies

Getting the right Scala version with %% If you use groupID %%
artifactID % revision rather than groupID ¥ artifactID % revision
(the difference is the double %% after the groupID), sbt will add your project’s
Scala version to the artifact name. This is just a shortcut. You could write this
without the %%:

libraryDependencies += "org.scala-tools" ¥ "scala-stm_2.11.1" % "0.3"

Assuming the scalaVersion for your build is 2.11.1, the following is identical
(note the double %7 after "org.scala-tools"):

libraryDependencies += "org.scala-tools" %J% "scala-stm" % "0.3"

The idea is that many dependencies are compiled for multiple Scala versions,
and you'd like to get the one that matches your project to ensure binary com-
patibility.

The complexity in practice is that often a dependency will work with a slightly
different Scala version; but %% is not smart about that. So if the dependency is
available for 2.10.1 but you're using scalaVersion := "2.10.4", you won’t
be able to use %% even though the 2.10.1 dependency likely works. If %%
stops working, just go see which versions the dependency is really built for, and
hardcode the one you think will work (assuming there is one).

See Cross Building for some more detail on this.

Ivy revisions The revision in groupID % artifactID J revision does
not have to be a single fixed version. Ivy can select the latest revision of a
module according to constraints you specify. Instead of a fixed revision like
"1.6.1", you specify "latest.integration", "2.9.+" or "[1.0,)". See the
Ivy revisions documentation for details.

Resolvers Not all packages live on the same server; sbt uses the standard
Maven2 repository by default. If your dependency isn’t on one of the default
repositories, you’ll have to add a resolver to help Ivy find it.

To add an additional repository, use
resolvers += name at location

with the special at between two strings.

For example:

resolvers += "Sonatype 0SS Snapshots" at "https://oss.sonatype.org/content/repositories/snaj

35

../docs/Cross-Build.html
https://ant.apache.org/ivy/history/2.3.0/ivyfile/dependency.html#revision

The resolvers key is defined in Keys like this:
val resolvers = settingKey[Seq[Resolver]] ("The user-defined additional resolvers for automa

The at method creates a Resolver object from two strings.

sbt can search your local Maven repository if you add it as a repository:

resolvers += "Local Maven Repository" at "file://"+Path.userHome.absolutePath+"/.m2/repositc
or, for convenience:

resolvers += Resolver.mavenLocal

See Resolvers for details on defining other types of repositories.

Overriding default resolvers resolvers does not contain the default re-
solvers; only additional ones added by your build definition.

sbt combines resolvers with some default repositories to form externalResolvers.

Therefore, to change or remove the default resolvers, you would need to override
externalResolvers instead of resolvers.

Per-configuration dependencies Often a dependency is used by your test
code (in src/test/scala, which is compiled by the Test configuration) but not
your main code.

If you want a dependency to show up in the classpath only for the Test config-

uration and not the Compile configuration, add % "test" like this:
libraryDependencies += "org.apache.derby" % "derby" % "10.4.1.3" % "test"
You may also use the type-safe version of Test configuration as follows:

libraryDependencies += "org.apache.derby" % "derby" % "10.4.1.3" % Test

Now, if you type show compile:dependencyClasspath at the sbt inter-
active prompt, you should not see the derby jar. But if you type show
test:dependencyClasspath, you should see the derby jar in the list.

Typically, test-related dependencies such as ScalaCheck, Specs2, and ScalaTest
would be defined with % "test".

There are more details and tips-and-tricks related to library dependencies on
this page.

36

../sxr/sbt/Keys.scala.html#sbt.Keys.resolvers
../docs/Resolvers.html
http://scalacheck.org/
http://specs2.org
http://www.scalatest.org/
../docs/Library-Management.html

Multi-project builds

This page introduces multiple projects in a single build.

Please read the earlier pages in the Getting Started Guide first, in particular
you need to understand build.sbt before reading this page.

Multiple projects
It can be useful to keep multiple related projects in a single build, especially if
they depend on one another and you tend to modify them together.

Each sub-project in a build has its own source directories, generates its own jar
file when you run package, and in general works like any other project.

A project is defined by declaring a lazy val of type Project. For example, :

lazy val util = project

lazy val core = project

The name of the val is used as the project’s ID and base directory name. The
ID is used to refer to the project at the command line. The base directory may
be changed from the default using the in method. For example, the following is
a more explicit way to write the previous example:

lazy val util = project.in(file("util"))

lazy val core = project in file("core"

Common settings To factor out common settings across multiple projects,
create a sequence named commonSettings and call settings method on each
project. Note _* is required to pass sequence into a vararg method.

lazy val commonSettings = Seq(

organization := '"com.example",
version := "0.1.0",
scalaVersion := "2.11.4"

lazy val core = (project in file("core")).
settings(commonSettings: _*).
settings(
// other settings
)

37

Basic-Def.html
../api/sbt/Project.html

lazy val util = (project in file("util")).
settings(commonSettings: _*).
settings(
// other settings
)

Now we can bump up version in one place, and it will be reflected across
subprojects when you reload the build.

Dependencies

Projects in the build can be completely independent of one another, but usually
they will be related to one another by some kind of dependency. There are two
types of dependencies: aggregate and classpath.

Aggregation Aggregation means that running a task on the aggregate project
will also run it on the aggregated projects. For example,

lazy val root = (project in file(".")).
aggregate(util, core)

lazy val util = project
lazy val core = project

In the above example, the root project aggregates util and core. Start up sbt
with two subprojects as in the example, and try compile. You should see that
all three projects are compiled.

In the project doing the aggregating, the root project in this case, you can control
aggregation per-task. For example, to avoid aggregating the update task:

lazy val root = (project in file(".")).
aggregate(util, core).
settings(
aggregate in update := false

)
[...]

aggregate in update is the aggregate key scoped to the update task. (See
scopes.)

Note: aggregation will run the aggregated tasks in parallel and with no defined
ordering between them.

38

Scopes.html

Classpath dependencies A project may depend on code in another project.
This is done by adding a dependsOn method call. For example, if core needed
util on its classpath, you would define core as:

lazy val core = project.dependsOn(util)

Now code in core can use classes from util. This also creates an ordering
between the projects when compiling them; util must be updated and compiled
before core can be compiled.

To depend on multiple projects, use multiple arguments to dependsOn, like
dependsOn(bar, baz).

Per-configuration classpath dependencies foo depends0On (bar)
means that the compile configuration in foo depends on the compile
configuration in bar. You could write this explicitly as dependsOn(bar %
"compile->compile").

The -> in "compile->compile" means “depends on” so "test->compile"
means the test configuration in foo would depend on the compile configuration
in bar.

Omitting the ->config part implies ->compile, so dependsOn(bar % "test")
means that the test configuration in foo depends on the Compile configuration
in bar.

A useful declaration is "test->test" which means test depends on test. This
allows you to put utility code for testing in bar/src/test/scala and then use
that code in foo/src/test/scala, for example.

You can have multiple configurations for a dependency, separated by semicolons.
For example, dependsOn(bar 7 "test->test;compile->compile").

Default root project

If a project is not defined for the root directory in the build, sbt creates a default
one that aggregates all other projects in the build.

Because project hello-foo is defined with base = file("foo"), it will be
contained in the subdirectory foo. Its sources could be directly under foo, like
foo/Foo.scala, or in foo/src/main/scala. The usual sbt directory structure
applies underneath foo with the exception of build definition files.

Any .sbt files in foo, say foo/build.sbt, will be merged with the build defi-
nition for the entire build, but scoped to the hello-foo project.

If your whole project is in hello, try defining a different version (version :=
"0.6")inhello/build.sbt, hello/foo/build.sbt, and hello/bar/build.sbt.

39

Directories.html

Now show version at the sbt interactive prompt. You should get something
like this (with whatever versions you defined):

> show version

[info]l hello-foo/*:version
[info]l 0.7

[info] hello-bar/*:version
[info]l 0.9

[info] hello/*:version
[info] 0.5

hello-foo/*:version was defined in hello/foo/build.sbt, hello-bar/*:version
was defined in hello/bar/build.sbt, and hello/*:version was defined in
hello/build.sbt. Remember the syntax for scoped keys. Each version key

is scoped to a project, based on the location of the build.sbt. But all three
build.sbt are part of the same build definition.

Each project’s settings can go in .sbt files in the base directory of that project,
while the . scala file can be as simple as the one shown above, listing the projects
and base directories. There is no need to put settings in the .scala file.

You may find it cleaner to put everything including settings in .scala files in
order to keep all build definition under a single project directory, however. It’s
up to you.

You cannot have a project subdirectory or project/#*.scala files in the sub-
projects. foo/project/Build.scala would be ignored.

Navigating projects interactively

At the sbt interactive prompt, type projects to list your projects and project
<projectname> to select a current project. When you run a task like compile,
it runs on the current project. So you don’t necessarily have to compile the root
project, you could compile only a subproject.

You can run a task in another project by explicitly specifying the project ID,
such as subProjectID/compile.

Common code

The definitions in .sbt files are not visible in other .sbt files. In order to share
code between . sbt files, define one or more Scala files in the project/ directory
of the build root.

See organizing the build for details.

40

Scopes.html
Organizing-Build.html

Using plugins

Please read the earlier pages in the Getting Started Guide first, in particular
you need to understand build.sbt and library dependencies, before reading this

page.

What is a plugin?

A plugin extends the build definition, most commonly by adding new settings.
The new settings could be new tasks. For example, a plugin could add a
codeCoverage task which would generate a test coverage report.

Declaring a plugin

If your project is in directory hello, and you're adding sbt-site plugin to the
build definition, create hello/project/site.sbt and declare the plugin depen-
dency by passing the plugin’s Ivy module ID to addSbtPlugin:

addSbtPlugin("com. typesafe.sbt" % "sbt-site" % "0.7.0")

If you're adding sbt-assembly, create hello/project/assembly.sbt with the
following:

addSbtPlugin("com.eed3si9n" ¥ "sbt-assembly" % "0.11.2")

Not every plugin is located on one of the default repositories and a plugin’s
documentation may instruct you to also add the repository where it can be
found:

resolvers += Resolver.sonatypeRepo("public")

Plugins usually provide settings that get added to a project to enable the plugin’s
functionality. This is described in the next section.

Enabling and disabling auto plugins

A plugin can declare that its settings be automatically added to the build defi-
nition, in which case you don’t have to do anything to add them.

As of sbt 0.13.5, there is a new auto plugins feature that enables plugins to
automatically, and safely, ensure their settings and dependencies are on a project.
Many auto plugins should have their default settings automatically, however
some may require explicit enablement.

If you're using an auto plugin that requires explicit enablement, then you you
have to add the following to your build.sbt:

41

Basic-Def.html
Library-Dependencies.html
../docs/Plugins.html

lazy val util = (project in file("util")).
enablePlugins(FooPlugin, BarPlugin).
settings(
name := "hello-util"

)

The enablePlugins method allows projects to explicitly define the auto plugins
they wish to consume.

Projects can also exclude plugins using the disablePlugins method. For ex-
ample, if we wish to remove the IvyPlugin settings from util, we modify our
build.sbt as follows:

lazy val util = (project in file("util")).
enablePlugins (FooPlugin, BarPlugin).
disablePlugins(plugins.IvyPlugin).
settings(
name := "hello-util"

)

Auto plugins should document whether they need to explicitly enabled. If you're
curious which auto plugins are enabled for a given project, just run the plugins
command on the sbt console.

For example:

> plugins

In file:/home/jsuereth/projects/sbt/test-ivy-issues/
sbt.plugins.IvyPlugin: enabled in scala-sbt-org
sbt.plugins.JvmPlugin: enabled in scala-sbt-org
sbt.plugins.CorePlugin: enabled in scala-sbt-org
sbt.plugins.JUnitXmlReportPlugin: enabled in scala-sbt-org

Here, the plugins output is showing that the sbt default plugins are all enabled.
sbt’s default settings are provided via three plugins:

1. CorePlugin: Provides the core parallelism controls for tasks.

2. IvyPlugin: Provides the mechanisms to publish/resolve modules.

3. JvmPlugin: Provides the mechanisms to compile/test/run/package
Java/Scala projects.

In addition, JUnitXmlReportPlugin provides an experimental support for gen-
erating junit-xml.

Older non-auto plugins often require settings to be added explictly, so that multi-
project build could have different types of projects. The plugin documentation

42

Multi-Project.html
Multi-Project.html

will indicate how to configure it, but typically for older plugins this involves
adding the base settings for the plugin and customizing as necessary.

For example, for the sbt-site plugin, create site.sbt with the following content
site.settings

to enable it for that project.
If the build defines multiple projects, instead add it directly to the project:

// don't use the site plugin for the “util” project
lazy val util = (project in file("util"))

// enable the site plugin for the “core” project
lazy val core = (project in file("core")).
settings(site.settings : _x*)

Global plugins

Plugins can be installed for all your projects at once by declaring them in
~/.sbt/0.13/plugins/. ~/.sbt/0.13/plugins/ is an sbt project whose class-
path is exported to all sbt build definition projects. Roughly speaking, any
.sbt or .scala files in ~/.sbt/0.13/plugins/ behave as if they were in the
project/ directory for all projects.

You can create ~/.sbt/0.13/plugins//build.sbt and put addSbtPlugin()
expressions in there to add plugins to all your projects at once. Because doing
so would increase the dependency on the machine environment, this feature
should be used sparingly. See Best Practices.

Available Plugins

There’s a list of available plugins.

Some especially popular plugins are:

« those for IDEs (to import an sbt project into your IDE)
e those supporting web frameworks, such as xsbt-web-plugin.

For more details, including ways of developing plugins, see Plugins. For best
practices, see Plugins-Best-Practices.

43

../docs/Best-Practices.html#global-vs-local-plugins
../docs/Community-Plugins.html
https://github.com/JamesEarlDouglas/xsbt-web-plugin
../docs/Plugins.html
../docs/Plugins-Best-Practices.html

Custom settings and tasks

This page gets you started creating your own settings and tasks.

To understand this page, be sure you’ve read earlier pages in the Getting Started
Guide, especially .build.sbt and more kinds of setting.

Defining a key

Keys is packed with examples illustrating how to define keys. Most of the keys
are implemented in Defaults.

Keys have one of three types. SettingKey and TaskKey are described in .sbt
build definition. Read about InputKey on the Input Tasks page.

Some examples from Keys:

val scalaVersion = settingKey[String] ("The version of Scala used for building.")
val clean = taskKey[Unit] ("Deletes files produced by the build, such as generated sources,

The key constructors have two string parameters: the name of the key
("scalaVersion") and a documentation string ("The version of scala used
for building.").

Remember from .sbt build definition that the type parameter T in
SettingKey[T] indicates the type of value a setting has. T in TaskKey[T]
indicates the type of the task’s result. Also remember from .sbt build definition
that a setting has a fixed value until project reload, while a task is re-computed
for every “task execution” (every time someone types a command at the sbt
interactive prompt or in batch mode).

Keys may be defined in an .sbt file, a .scala file, or in an auto plugin. Any vals
found under autoImport object of an enabled auto plugin will be imported
automatically into your .sbt files.

Implementing a task
Once you've defined a key for your task, you’ll need to complete it with a task
definition. You could be defining your own task, or you could be planning to

redefine an existing task. Either way looks the same; use := to associate some
code with the task key:

val sampleStringTask = taskKey[String] ("A sample string task.")
val sampleIntTask = taskKey[Int] ("A sample int task.")

lazy val commonSettings = Seq(

44

Basic-Def.html
More-About-Settings.html
../sxr/sbt/Keys.scala.html
../sxr/sbt/Defaults.scala.html
Basic-Def.html
Basic-Def.html
../docs/Input-Tasks.html
../sxr/sbt/Keys.scala.html
Basic-Def.html
Basic-Def.html
Basic-Def.html
Organizing-Build.html
Using-Plugins.html

organization := '"com.example",
version := "0.1.0-SNAPSHOT"

lazy val library = (project in file("library")).
settings(commonSettings: _*).
settings(
sampleStringTask := System.getProperty("user.home"),
sampleIntTask := {
val sum = 1 + 2
println("sum: " + sum)
sum
}
)

If the task has dependencies, you’d reference their value using value, as dis-
cussed in more kinds of setting.

The hardest part about implementing tasks is often not sbt-specific; tasks are
just Scala code. The hard part could be writing the “body” of your task that
does whatever you're trying to do. For example, maybe you’re trying to format
HTML in which case you might want to use an HTML library (you would add a
library dependency to your build definition and write code based on the HTML
library, perhaps).

sbt has some utility libraries and convenience functions, in particular you can
often use the convenient APIs in IO to manipulate files and directories.

Execution semantics of tasks

When depending on other tasks from a custom task using value, an important
detail to note is the execution semantics of the tasks. By execution semantics,
we mean exactly when these tasks are evaluated.

We if take sampeIntTask for instance, each line in the body of the task should
be strictly evaluated one after the other. That is sequential semantics:

sampleIntTask := {

val sum = 1 + 2 // first
println("sum: " + sum) // second
sum // third

In reality JVM may inline the sum to 3, but the observable effect of the task
will remain identical as if each line were executed one after the other.

45

More-About-Settings.html
Using-Plugins.html
Using-Plugins.html
../api/index.html#sbt.IO\protect \char "0024\relax

Now suppose we define two more custom tasks startServer and stopServer,
and modify sampeIntTask as follows:

val startServer = taskKey[Unit] ("start server")

val stopServer = taskKey[Unit] ("stop server")

val sampleIntTask = taskKey[Int] ("A sample int task.")

val sampleStringTask = taskKey[String] ("A sample string task.")

lazy val commonSettings = Seq(
organization := '"com.example",
version := "0.1.0-SNAPSHOT"

lazy val library = (project in file("library")).
settings(commonSettings: _*).
settings(
startServer := {
println("starting...")
Thread.sleep(500)
},
stopServer := {
println("stopping...")
Thread.sleep(500)
3,
sampleIntTask := {
startServer.value
val sum = 1 + 2

println("sum: " + sum)
stopServer.value // THIS WON'T WORK
sum

3,

sampleStringTask := {
startServer.value
val s = sampleIntTask.value.toString
println("s: " + s)
s

Running sampleIntTask from sbt interactive prompt results to the following:

> sampleIntTask

stopping. ..

starting...

sum: 3

[success] Total time: 1 s, completed Dec 22, 2014 5:00:00 PM

46

To review what happened, let’s look at a graphical notation of sampleIntTask:

startServer

sampleIntTask

ffﬂFﬂETUET
Figure 2: task-dependency

Unlike plain Scala method calls, invoking value method on tasks will not
be evaluated strictly. Instead, they simply act as placeholders to denote
that sampleIntTask depends on startServer and stopServer tasks. When
sampleIntTask is invoked by you, sbt’s tasks engine will:

« evaluate the task dependencies before evaluating sampleIntTask (partial
ordering)

« try to evaluate task dependencies in parallel if they are independent (par-
allelization)

o each task dependency will be evaluated once and only once per command
execution (deduplication)

Deduplication of task depenencies To demonstrate the last point, we can
run sampleStringTask from sbt interactive prompt.

> sampleStringTask

stopping...

starting...

sum: 3

s: 3

[success] Total time: 1 s, completed Dec 22, 2014 5:30:00 PM

Because sampleStringTask depends on both startServer and sampleIntTask
task, and sampleIntTask also depends on startServer task, it appears twice
as task dependency. If this was a plain Scala method call it would be evaluated
twice, but since value is just denoting a task dependency, it will be evaluated
once. The following is a graphical notation of how sampeStringTask’s evaluta-
tion:

47

startserver

B sampleitringTask
zamplelntTask - 9

O 'i
stopServer

Figure 3: task-dependency

If we did not deduplicate the task dependencies, we will end up compiling test
source code many times when test task is invoked since compile in Test
appears many times as a task dependency of test in Test.

Cleanup task How should one implement stopServer task? The notion
of cleanup task does not fit into the execution model of tasks because tasks
are about tracking dependencies. The last operation should become the task
that depends on other intermediate tasks. For instance stopServer should
depend on sampleStringTask, at which point stopServer should be the
sampleStringTask.

lazy val library = (project in file("library")).
settings(commonSettings: _*).
settings(

startServer := {
println("starting...")
Thread.sleep(500)

1},

sampleIntTask := {
startServer.value
val sum = 1 + 2
println("sum: " + sum)
sum

1},

sampleStringTask := {
startServer.value
val s = sampleIntTask.value.toString
println("s: " + s)
S

1},

sampleStringTask := {
val old = sampleStringTask.value
println("stopping...")
Thread.sleep(500)

48

old

To demonstrate that it works, run sampleStringTask from the interactive
prompt:

> sampleStringTask

starting...

sum: 3

s: 3

stopping...

[success] Total time: 1 s, completed Dec 22, 2014 6:00:00 PM

startServer

»
»

' samplesStringTask sampleitringTask
sampleIntTask | Samples g

Figure 4: task-dependency

Use plain Scala Another way of making sure that something happens
after some other thing is to use Scala. Implement a simple function in
project/ServerUtil.scala for example, and you can write:

sampleIntTask := {
ServerUtil.startServer
try {
val sum = 1 + 2
println("sum: " + sum)
} finally {
ServerUtil.stopServer
}

sum

Since plain method calls follow sequential semantics, everything happens in
order. There’s no deduplication, so you have to be careful about that.

Turn them into plugins

If you find you have a lot of custom code, consider moving it to a plugin for
re-use across multiple builds.

49

It’s very easy to create a plugin, as teased earlier and discussed at more length
here.

This page has been a quick taste; there’s much much more about custom tasks
on the Tasks page.

Organizing the build

This page discusses the organization of the build structure.

Please read the earlier pages in the Getting Started Guide first, in particular you
need to understand build.sbt, Library dependencies, and Multi-project builds
before reading this page.

sbt is recursive
build.sbt conceals how sbt really works. sbt builds are defined with Scala code.
That code, itself, has to be built. What better way than with sbt?

The project directory is another build inside your build, which knows how to
build your build. To distinguish the builds, we sometimes use the term proper
build to refer to your build, and meta-build to refer to the build in project.
The projects inside the metabuild can do anything any other project can do.
Your build definition is an sbt project.

And the turtles go all the way down. If you like, you can tweak the build defini-
tion of the build definition project, by creating a project/project/ directory.

Here’s an illustration.

hello/ # your build's root project's base directory

Hello.scala # a source file in your build's root project
(could be in src/main/scala too)

build.sbt # build.sbt is part of the source code for
meta-build's root project inside project/;

the build definition for your build
project/ # base directory of meta-build's root project
Build.scala # a source file in the meta-build's root project,
that is, a source file in the build definition

the build definition for your build

build.sbt # this is part of the source code for

90

Using-Plugins.html
../docs/Plugins.html
../docs/Plugins.html
../docs/Tasks.html
Basic-Def.html
Library-Dependencies.html
Multi-Project.html

meta-meta-build's root project in project/project;
build definition's build definition

project/ # base directory of meta-meta-build's root project;
the build definition project for the build definition

Build.scala # source file in the root project of
meta-meta-build in project/project/

Don’t worry! Most of the time you are not going to need all that. But under-
standing the principle can be helpful.

By the way: any time files ending in .scala or .sbt are used, naming them
build.sbt and Build.scala are conventions only. This also means that mul-
tiple files are allowed.

Tracking dependencies in one place

One way of using the fact that .scala files under project becomes part of the
build definition is to create project/Dependencies.scala to track dependen-
cies in one place.

import sbt._

object Dependencies {

// Verstions
lazy val akkaVersion = "2.3.8"

// Libraries

val akkaActor = "com.typesafe.akka" %} "akka-actor" % akkaVersion
val akkaCluster = '"com.typesafe.akka" %% "akka-cluster" ¥ akkaVersion
val specs2core = "org.specs2" %) "specs2-core" Y "2.4.14"

// Projects
val backendDeps =
Seq(akkaActor, specs2core 7 Test)

The Dependencies object will be available in build.sbt. To use the vals under
it easier, import Dependencies. _.

import Dependencies. _

lazy val commonSettings = Seq(

version := "0.1.0",

ol

scalaVersion = "2.11.4"

lazy val backend = (project in file("backend")).
settings(commonSettings: _*).
settings(
libraryDependencies += backendDeps

)

This technique is useful when you have a multi-project build that’s getting large,
and you want to make sure that subprojects to have consistent dependencies.

When to use .scala files

In .scala files, you can write any Scala code, including top-level classes and
objects.

The recommended approach is to define most settings in a multi-project
build.sbt file, and using project/#*.scala files for task implementations or
to share values, such as keys. The use of .scala files also depends on how
comfortable you or your team are with Scala.

Defining auto plugins

For more advanced users, another way of organizing your build is to define
one-off auto plugins in project/*.scala. By defining triggered plugins, auto
plugins can be used as a convenient way to inject custom tasks and commands
across all subprojects.

Getting Started summary

This page wraps up the Getting Started Guide.

To use sbt, there are a small number of concepts you must understand. These
have some learning curve, but on the positive side, there isn’t much to sbt except
these concepts. sbt uses a small core of powerful concepts to do everything it
does.

If you've read the whole Getting Started series, now you know what you need
to know.

92

../docs/Plugins.html

sbt:

The Core Concepts

the basics of Scala. It’s undeniably helpful to be familiar with Scala syn-
tax. Programming in Scala written by the creator of Scala is a great
introduction.

.sbt build definition

your build definition is one big list of Setting objects, where a Setting
transforms the set of key-value pairs sbt uses to perform tasks.

to create a Setting, call one of a few methods on a key: :=, += or ++=.
there is no mutable state, only transformation; for example, a Setting
transforms sbt’s collection of key-value pairs into a new collection. It
doesn’t change anything in-place.

each setting has a value of a particular type, determined by the key.
tasks are special settings where the computation to produce the key’s value
will be re-run each time you kick off a task. Non-tasks compute the value
once, when first loading the build definition.

Scopes

each key may have multiple values, in distinct scopes.

scoping may use three axes: configuration, project, and task.

scoping allows you to have different behaviors per-project, per-task, or
per-configuration.

a configuration is a kind of build, such as the main one (Compile) or the
test one (Test).

the per-project axis also supports “entire build” scope.

scopes fall back to or delegate to more general scopes.

put most of your configuration in build.sbt, but use .scala build defi-
nition files for defining classes and larger task implementations.

the build definition is an sbt project in its own right, rooted in the project
directory.

Plugins are extensions to the build definition

add plugins with the addSbtPlugin method in project/plugins.sbt
(NOT build.sbt in the project’s base directory).

If any of this leaves you wondering rather than nodding, please ask for help, go
back and re-read, or try some experiments in sbt’s interactive mode.

Good luck!

Advanced Notes

Since sbt is open source, don’t forget you can check out the source code too!

93

http://www.artima.com/shop/programming_in_scala_2ed
Basic-Def.html
Scopes.html
Using-Plugins.html
../docs/faq.html#getting-help
https://github.com/sbt/sbt

Appendix: Bare .sbt build definition

This page describes an old style of .sbt build definition. The current recom-
mendation is to use Multi-project .sbt build definition.

What is a bare .sbt build definition

Unlike Multi-project .sbt build definition and .scala build definition that explic-
itly define a Project definition, bare build definition implicitly defines one based
on the location of the .sbt file.

Instead of defining Projects, bare .sbt build definition consists of a list of
Setting[_] expressions.

name := "hello"
version := "1.0"
scalaVersion := "2.11.4"

(Pre 0.13.7) Settings must be separated by blank lines

Note: This blank line delimitation will no longer be needed after 0.13.7.
You can’t write a bare build.sbt like this:

// will NOT compile, no blank lines

name := "hello"
version := "1.0"
scalaVersion := "2.10.3"

sbt needs some kind of delimiter to tell where one expression stops and the next
begins.

Appendix: .scala build definition

This page describes an old style of .scala build definition. In the previous
versions of sbt, .scala was the only way to create multi-project build definition,
but sbt 0.13 added multi-project .sbt build definition, which is the recommended
style.

We assume you’ve read previous pages in the Getting Started Guide, especially
.sbt build definition and more kinds of setting.

o4

Basic-Def.html
Basic-Def.html
Full-Def.html
../api/sbt/Project.html
Basic-Def.html
Basic-Def.html
More-About-Settings.html

Relating build.sbt to Build.scala

To mix .sbt and .scala files in your build definition, you need to understand
how they relate.

The following two files illustrate. First, if your project is in hello, create
hello/project/Build.scala as follows:

import sbt._
import Keys. _

object HelloBuild extends Build {

val sampleKeyA = settingKey[String] ("demo key A")
val sampleKeyB = settingKey[String] ("demo key B")
val sampleKeyC = settingKey[String] ("demo key C")
val sampleKeyD = settingKey[String] ("demo key D")
override lazy val settings = super.settings ++
Seq(
sampleKeyA := "A: in Build.settings in Build.scala",
resolvers := Seq()
)
lazy val root = Project(id = "hello",
base = file("."),
settings = Seq(
sampleKeyB := "B: in the root project settings in Build.scala"
))
}
Now, create hello/build.sbt as follows:
sampleKeyC in ThisBuild := "C: in build.sbt scoped to ThisBuild"

sampleKeyD := "D: in build.sbt"

Start up the sbt interactive prompt. Type inspect sampleKeyA and you should
see (among other things):

[info] Setting: java.lang.String = A: in Build.settings in Build.scala
[info] Provided by:
[info] A{file:/home/hp/checkout/hello/}/*:sampleKeyA

and then inspect sampleKeyC and you should see:

%)

[info] Setting: java.lang.String = C: in build.sbt scoped to ThisBuild
[info] Provided by:
[info] {file:/home/hp/checkout/hello/}/*:sampleKeyC

Note that the “Provided by” shows the same scope for the two values. That is,
sampleKeyC in ThisBuild in a .sbt file is equivalent to placing a setting in
the Build.settings list in a .scala file. sbt takes build-scoped settings from
both places to create the build definition.

Now, inspect sampleKeyB:

[info] Setting: java.lang.String = B: in the root project settings in Build.scala
[info] Provided by:
[info] {file:/home/hp/checkout/hello/}hello/*:sampleKeyB

Note that sampleKeyB is scoped to the project ({file:/home/hp/checkout/hello/}hello)
rather than the entire build ({file:/home/hp/checkout/hello/}).

As you've probably guessed, inspect sampleKeyD matches sampleKeyB:

[info] Setting: java.lang.String = D: in build.sbt
[info] Provided by:
[info] {file:/home/hp/checkout/hello/}Yhello/*:sampleKeyD

sbt appends the settings from .sbt files to the settings from Build.settings
and Project.settings which means .sbt settings take precedence. Try
changing Build.scala so it sets key sampleC or sampleD, which are also
set in build.sbt. The setting in build.sbt should “win” over the one in
Build.scala.

One other thing you may have noticed: sampleKeyC and sampleKeyD were
available inside build.sbt. That’s because sbt imports the contents of your
Build object into your .sbt files. In this case import HelloBuild._ was
implicitly done for the build.sbt file.

In summary:

e In .scala files, you can add settings to Build.settings for sbt to find,
and they are automatically build-scoped.

e In .scala files, you can add settings to Project.settings for sbt to find,
and they are automatically project-scoped.

e Any Build object you write in a .scala file will have its contents imported
and available to .sbt files.

o The settings in .sbt files are appended to the settings in .scala files.

e The settings in .sbt files are project-scoped unless you explicitly specify
another scope.

96

The build definition project in interactive mode

You can switch the sbt interactive prompt to have the build definition project
in project/ as the current project. To do so, type reload plugins.

> reload plugins

[info] Set current project to default-a0e8e4 (in build file:/home/hp/checkout/hello/project/)
> show sources

[info] ArrayBuffer(/home/hp/checkout/hello/project/Build.scala)

> reload return

[info] Loading project definition from /home/hp/checkout/hello/project

[info] Set current project to hello (in build file:/home/hp/checkout/hello/)

> show sources

[info] ArrayBuffer(/home/hp/checkout/hello/hw.scala)
>

As shown above, you use reload return to leave the build definition project
and return to your regular project.

Reminder: it’s all immutable

It would be wrong to think that the settings in build.sbt are added to the
settings fields in Build and Project objects. Instead, the settings list from
Build and Project, and the settings from build.sbt, are concatenated into
another immutable list which is then used by sbt. The Build and Project
objects are “immutable configuration” forming only part of the complete build
definition.

In fact, there are other sources of settings as well. They are appended in this
order:

e Settings from Build.settings and Project.settings in your .scala
files.

¢ Your user-global settings; for example in ~/.sbt/0.13/global.sbt you
can define settings affecting all your projects.

o Settings injected by plugins, see using plugins coming up next.

e Settings from .sbt files in the project.

o Build definition projects (i.e. projects inside project) have settings from
global plugins (~/.sbt/0.13/plugins/) added. Using plugins explains
this more.

Later settings override earlier ones. The entire list of settings forms the build
definition.

o7

Using-Plugins.html
Using-Plugins.html

	Preface
	Installing sbt
	Tips and Notes

	Installing sbt on Mac
	Installing from a third-party package
	Installing from a universal package
	Typesafe Activator
	Installing manually

	Installing sbt on Windows
	Windows installer
	Installing from a universal package
	Typesafe Activator
	Installing manually

	Installing sbt on Linux
	Installing from a universal package
	Ubuntu and other Debian-based distributions
	Red Hat Enterprise Linux and other RPM-based distributions
	Gentoo
	Typesafe Activator
	Installing manually

	Installing sbt manually
	Unix
	Windows

	Installing Typesafe Activator (including sbt)
	Hello, World
	Create a project directory with source code
	Build definition
	Setting the sbt version

	Directory structure
	Base directory
	Source code
	sbt build definition files
	Build products
	Configuring version control

	Running
	Interactive mode
	Batch mode
	Continuous build and test
	Common commands
	Tab completion
	History Commands

	.sbt build definition
	Three Flavors of Build Definition
	What is a Build Definition?
	How build.sbt defines settings
	Keys
	Defining tasks and settings
	Keys in sbt interactive mode
	Imports in build.sbt
	Adding library dependencies

	Scopes
	The whole story about keys
	Scope axes
	Global scope
	Delegation
	Referring to scoped keys when running sbt
	Examples of scoped key notation
	Inspecting scopes
	Referring to scopes in a build definition
	When to specify a scope

	More kinds of setting
	Refresher: Settings
	Appending to previous values: += and ++=
	Computing a value based on other keys' values
	Appending with dependencies: += and ++=

	Library dependencies
	Unmanaged dependencies
	Managed Dependencies

	Multi-project builds
	Multiple projects
	Dependencies
	Default root project
	Navigating projects interactively
	Common code

	Using plugins
	What is a plugin?
	Declaring a plugin
	Enabling and disabling auto plugins
	Global plugins
	Available Plugins

	Custom settings and tasks
	Defining a key
	Implementing a task
	Execution semantics of tasks
	Turn them into plugins

	Organizing the build
	sbt is recursive
	Tracking dependencies in one place
	When to use .scala files
	Defining auto plugins

	Getting Started summary
	sbt: The Core Concepts
	Advanced Notes

	Appendix: Bare .sbt build definition
	What is a bare .sbt build definition
	(Pre 0.13.7) Settings must be separated by blank lines

	Appendix: .scala build definition
	Relating build.sbt to Build.scala
	The build definition project in interactive mode
	Reminder: it's all immutable

