

Scala with Cats
November 2017

Copyright 2014-17 Noel Welsh and Dave Gurnell. CC-BY-SA 3.0.

Artwork by Jenny Clements.

Published by Underscore Consulঞng LLP, Brighton, UK.

Contents

Preface 1

Versions . 2

Template Projects . 2

Convenঞons Used in This Book 3

Typographical Convenঞons 3

Source Code . 3

Callout Boxes . 4

Acknowledgements . 4

Backers . 4

Part I. Theory 7

1 Introducঞon 9

1.1 Anatomy of a Type Class . 10

1.1.1 The Type Class . 10

1.1.2 Type Class Instances 10

1.1.3 Type Class Interfaces 11

1.2 Working with Implicits . 13

iii

1.2.1 Packaging Implicits 13

1.2.2 Implicit Scope . 14

1.2.3 Recursive Implicit Resoluঞon 15

1.3 Exercise: Printable Library 18

1.4 Meet Cats . 20

1.4.1 Imporঞng Type Classes 20

1.4.2 Imporঞng Default Instances 21

1.4.3 Imporঞng Interface Syntax 22

1.4.4 Imporঞng All The Things! 22

1.4.5 Defining Custom Instances 23

1.4.6 Exercise: Cat Show 24

1.5 Example: Eq . 24

1.5.1 Equality, Liberty, and Fraternity 25

1.5.2 Comparing Ints . 25

1.5.3 Comparing Opঞons 26

1.5.4 Comparing Custom Types 28

1.5.5 Exercise: Equality, Liberty, and Felinity 28

1.6 Controlling Instance Selecঞon 29

1.6.1 Variance . 29

1.7 Summary . 32

2 Monoids and Semigroups 35

2.1 Definiঞon of a Monoid . 37

2.2 Definiঞon of a Semigroup 38

2.3 Exercise: The Truth About Monoids 39

2.4 Exercise: All Set for Monoids 40

2.5 Monoids in Cats . 40

2.5.1 The Monoid Type Class 40

2.5.2 Monoid Instances . 41

2.5.3 Monoid Syntax . 42

2.5.4 Exercise: Adding All The Things 43

2.6 Applicaঞons of Monoids . 43

2.6.1 Big Data . 44

2.6.2 Distributed Systems 44

2.6.3 Monoids in the Small 45

2.7 Summary . 45

3 Functors 47

3.1 Examples of Functors . 47

3.2 More Examples of Functors 49

3.3 Definiঞon of a Functor . 54

3.4 Aside: Higher Kinds and Type Constructors 55

3.5 Functors in Cats . 57

3.5.1 The Functor Type Class 57

3.5.2 Functor Syntax . 58

3.5.3 Instances for Custom Types 60

3.5.4 Exercise: Branching out with Functors 61

3.6 Contravariant and Invariant Functors 61

3.6.1 Contravariant Functors and the contramapMethod . . 62

3.6.2 Invariant functors and the imap method 65

3.7 Contravariant and Invariant in Cats 68

3.7.1 Contravariant in Cats 68

3.7.2 Invariant in Cats . 69

3.8 Aside: Parঞal Unificaঞon . 70

3.8.1 Unifying Type Constructors 70

3.8.2 Le[-to-Right Eliminaঞon 71

3.9 Summary . 74

4 Monads 77

4.1 What is a Monad? . 77

4.1.1 Definiঞon of a Monad 82

4.1.2 Exercise: Geমng Func-y 83

4.2 Monads in Cats . 84

4.2.1 The Monad Type Class 84

4.2.2 Default Instances . 85

4.2.3 Monad Syntax . 86

4.3 The Idenঞty Monad . 88

4.3.1 Exercise: Monadic Secret Idenঞঞes 91

4.4 Either . 91

4.4.1 Le[and Right Bias 91

4.4.2 Creaঞng Instances 92

4.4.3 Transforming Eithers 94

4.4.4 Error Handling . 96

4.4.5 Exercise: What is Best? 98

4.5 Aside: Error Handling and MonadError 98

4.5.1 The MonadError Type Class 98

4.5.2 Raising and Handling Errors 99

4.5.3 Instances of MonadError 101

4.5.4 Exercise: Abstracঞng 101

4.6 The Eval Monad . 101

4.6.1 Eager, Lazy, Memoized, Oh My! 101

4.6.2 Eval’s Models of Evaluaঞon 103

4.6.3 Eval as a Monad . 105

4.6.4 Trampolining and Eval.defer 107

4.6.5 Exercise: Safer Folding using Eval 108

4.7 The Writer Monad . 108

4.7.1 Creaঞng and Unpacking Writers 109

4.7.2 Composing and Transforming Writers 111

4.7.3 Exercise: Show Your Working 113

4.8 The Reader Monad . 114

4.8.1 Creaঞng and Unpacking Readers 115

4.8.2 Composing Readers 115

4.8.3 Exercise: Hacking on Readers 116

4.8.4 When to Use Readers? 118

4.9 The State Monad . 119

4.9.1 Creaঞng and Unpacking State 119

4.9.2 Composing and Transforming State 120

4.9.3 Exercise: Post-Order Calculator 123

4.10 Defining Custom Monads 126

4.10.1 Exercise: Branching out Further with Monads 127

4.11 Summary . 128

5 Monad Transformers 129

5.1 Exercise: Composing Monads 130

5.2 A Transformaঞve Example 131

5.3 Monad Transformers in Cats 133

5.3.1 The Monad Transformer Classes 133

5.3.2 Building Monad Stacks 134

5.3.3 Construcঞng and Unpacking Instances 136

5.3.4 Default Instances . 137

5.3.5 Usage Pa�erns . 138

5.4 Exercise: Monads: Transform and Roll Out 140

5.5 Summary . 141

6 Semigroupal and Applicaঞve 143

6.1 Semigroupal . 144

6.1.1 Joining Two Contexts 145

6.1.2 Joining Three or More Contexts 145

6.2 Apply Syntax . 146

6.2.1 Fancy Functors and Apply Syntax 148

6.3 Semigroupal Applied to Different Types 149

6.3.1 Semigroupal Applied to Monads 151

6.4 Validated . 152

6.4.1 Creaঞng Instances of Validated 153

6.4.2 Combining Instances of Validated 154

6.4.3 Methods of Validated 156

6.4.4 Exercise: Form Validaঞon 158

6.5 Apply and Applicaঞve . 159

6.5.1 The Hierarchy of Sequencing Type Classes 160

6.6 Summary . 162

7 Foldable and Traverse 165

7.1 Foldable . 165

7.1.1 Folds and Folding . 166

7.1.2 Exercise: Reflecঞng on Folds 167

7.1.3 Exercise: Scaf-fold-ing Other Methods 167

7.1.4 Foldable in Cats . 168

7.2 Traverse . 172

7.2.1 Traversing with Futures 172

7.2.2 Traversing with Applicaঞves 175

7.2.3 Traverse in Cats . 178

7.3 Summary . 180

Part II. Case Studies 181

8 Case Study: Tesঞng Asynchronous Code 183

8.1 Abstracঞng over Type Constructors 185

8.2 Abstracঞng over Monads 186

8.3 Summary . 187

9 Case Study: Map-Reduce 189

9.1 Parallelizing map and fold . 189

9.2 Implemenঞng foldMap . 191

9.3 Parallelising foldMap . 193

9.3.1 Futures, Thread Pools, and ExecuঞonContexts 193

9.3.2 Dividing Work . 196

9.3.3 Implemenঞng parallelFoldMap 197

9.3.4 parallelFoldMap with more Cats 197

9.4 Summary . 198

10 Case Study: Data Validaঞon 199

10.1 Sketching the Library Structure 200

10.2 The Check Datatype . 203

10.3 Basic Combinators . 204

10.4 Transforming Data . 205

10.4.1 Predicates . 206

10.4.2 Checks . 208

10.4.3 Recap . 210

10.5 Kleislis . 211

10.6 Summary . 215

11 Case Study: CRDTs 217

11.1 Eventual Consistency . 217

11.2 The GCounter . 218

11.2.1 Simple Counters . 218

11.2.2 GCounters . 220

11.2.3 Exercise: GCounter Implementaঞon 221

11.3 Generalisaঞon . 222

11.3.1 Implementaঞon . 224

11.3.2 Exercise: BoundedSemiLaমce Instances 225

11.3.3 Exercise: Generic GCounter 225

11.4 Abstracঞng GCounter to a Type Class 225

11.5 Abstracঞng a Key Value Store 227

11.6 Summary . 228

Part III. Soluঞons to Exercises 231

A Soluঞons for: Introducঞon 233

A.1 Printable Library . 233

A.2 Printable Library Part 2 . 234

A.3 Printable Library Part 3 . 235

A.4 Cat Show . 236

A.5 Equality, Liberty, and Felinity 237

B Soluঞons for: Monoids and Semigroups 239

B.1 The Truth About Monoids 239

B.2 All Set for Monoids . 240

B.3 Adding All The Things . 241

B.4 Adding All The Things Part 2 242

B.5 Adding All The Things Part 3 243

C Soluঞons for: Functors 245

C.1 Branching out with Functors 245

C.2 Showing off with Contramap 246

C.3 Showing off with Contramap Part 2 247

C.4 Transformaঞve Thinking with imap 248

C.5 Transformaঞve Thinking with imap Part 2 248

C.6 Transformaঞve Thinking with imap Part 3 248

D Soluঞons for: Monads 251

D.1 Geমng Func-y . 251

D.2 Monadic Secret Idenঞঞes 252

D.3 What is Best? . 253

D.4 Safer Folding using Eval . 254

D.5 Show Your Working . 255

D.6 Hacking on Readers . 256

D.7 Hacking on Readers Part 2 257

D.8 Hacking on Readers Part 3 257

D.9 Post-Order Calculator . 258

D.10Post-Order Calculator Part 2 259

D.11Post-Order Calculator Part 3 259

D.12Branching out Further with Monads 260

E Soluঞons for: Monad Transformers 263

E.1 Monads: Transform and Roll Out 263

E.2 Monads: Transform and Roll Out Part 2 263

E.3 Monads: Transform and Roll Out Part 3 264

E.4 Monads: Transform and Roll Out Part 4 264

F Soluঞons for: Semigroupal and Applicaঞve 267

F.1 The Product of Monads . 267

F.2 Form Validaঞon . 268

F.3 Form Validaঞon Part 2 . 269

F.4 Form Validaঞon Part 3 . 270

F.5 Form Validaঞon Part 4 . 270

F.6 Form Validaঞon Part 5 . 271

G Soluঞons for: Foldable and Traverse 273

G.1 Reflecঞng on Folds . 273

G.2 Scaf-fold-ing Other Methods 274

G.3 Traversing with Vectors . 275

G.4 Traversing with Vectors Part 2 276

G.5 Traversing with Opঞons . 276

G.6 Traversing with Validated 277

H Soluঞons for: Case Study: Tesঞng Asynchronous Code 279

H.1 Abstracঞng over Type Constructors 279

H.2 Abstracঞng over Type Constructors Part 2 280

H.3 Abstracঞng over Monads 280

H.4 Abstracঞng over Monads Part 2 281

I Soluঞons for: Case Study: Map-Reduce 283

I.1 Implemenঞng foldMap . 283

I.2 Implemenঞng foldMap Part 2 283

I.3 Implemenঞng parallelFoldMap 284

I.4 parallelFoldMap with more Cats 286

J Soluঞons for: Case Study: Data Validaঞon 289

J.1 Basic Combinators . 289

J.2 Basic Combinators Part 2 290

J.3 Basic Combinators Part 3 290

J.4 Basic Combinators Part 4 294

J.5 Basic Combinators Part 5 295

J.6 Checks . 296

J.7 Checks Part 2 . 297

J.8 Checks Part 3 . 298

J.9 Recap . 298

J.10 Recap Part 2 . 301

J.11 Kleislis . 304

J.12 Kleislis Part 2 . 304

K Soluঞons for: Case Study: CRDTs 307

K.1 GCounter Implementaঞon 307

K.2 BoundedSemiLaমce Instances 308

K.3 Generic GCounter . 308

K.4 Abstracঞng GCounter to a Type Class 309

K.5 Abstracঞng a Key Value Store 310

Preface

The aims of this book are two-fold: to introduce monads, functors, and other
funcঞonal programming pa�erns as a way to structure program design, and to
explain how these concepts are implemented in Cats.

Monads, and related concepts, are the funcঞonal programming equivalent
of object-oriented design pa�erns—architectural building blocks that turn up
over and over again in code. They differ from object-oriented pa�erns in two
main ways:

• they are formally, and thus precisely, defined; and
• they are extremely (extremely) general.

This generality means they can be difficult to understand. Everyone finds ab-
stracঞon difficult. However, it is generality that allows concepts like monads
to be applied in such a wide variety of situaঞons.

In this bookwe aim to show the concepts in a number of differentways, to help
you build a mental model of how they work and where they are appropriate.
We have extended case studies, a simple graphical notaঞon, many smaller ex-
amples, and of course the mathemaঞcal definiঞons. Between them we hope
you’ll find something that works for you.

Ok, let’s get started!

1

http://typelevel.org/cats

2

Versions

This book is wri�en for Scala 2.12.3 and Cats 1.0.0. Here is a minimal
build.sbt containing the relevant dependencies and seমngs¹:

scalaVersion := "2.12.3"

libraryDependencies +=

"org.typelevel" %% "cats-core" % "1.0.0"

scalacOptions ++= Seq(

"-Xfatal-warnings",

"-Ypartial-unification"

)

Template Projects

For convenience, we have created a Giter8 template to get you started. To
clone the template type the following:

$ sbt new underscoreio/cats-seed.g8

This will generate a sandbox project with Cats as a dependency. See the gen-
erated README.md for instrucঞons on how to run the sample code and/or start
an interacঞve Scala console.

The cats-seed template is as minimal as it gets. If you’d prefer a more
ba�eries-included starঞng point, check out Typelevel’s sbt-catalysts tem-
plate:

$ sbt new typelevel/sbt-catalysts.g8

This will generate a project with a suite of library dependencies and compiler
plugins, togetherwith templates for unit tests and tut-enabled documentaঞon.
See the project pages for catalysts and sbt-catalysts for more informaঞon.

¹We assume you are using SBT 0.13.13 or newer.

https://github.com/tpolecat/tut
https://github.com/typelevel/catalysts
https://github.com/typelevel/sbt-catalysts

3

Convenঞons Used in This Book

This book contains a lot of technical informaঞon and program code. We use
the following typographical convenঞons to reduce ambiguity and highlight im-
portant concepts:

Typographical Convenঞons

New terms and phrases are introduced in italics. A[er their iniঞal introducঞon
they are wri�en in normal roman font.

Terms from program code, filenames, and file contents, are wri�en in
monospace font. Note that we do not disঞnguish between singular and
plural forms. For example, we might write String or Strings to refer to
java.lang.String.

References to external resources are wri�en as hyperlinks. References to API
documentaঞon are wri�en using a combinaঞon of hyperlinks and monospace
font, for example: scala.Option.

Source Code

Source code blocks are wri�en as follows. Syntax is highlighted appropriately
where applicable:

object MyApp extends App {

println("Hello world!") // Print a fine message to the user!

}

Most code passes through tut to ensure it compiles. tut uses the Scala console
behind the scenes, so we someঞmes show console-style output as comments:

"Hello Cats!".toUpperCase

// res0: String = HELLO CATS!

https://underscore.io
http://www.scala-lang.org/api/current/scala/Option.html
https://github.com/tpolecat/tut

4

Callout Boxes

We use two types of callout box to highlight parঞcular content:

Tip callouts indicate handy summaries, recipes, or best pracঞces.

Advanced callouts provide addiঞonal informaঞon on corner cases or
underlying mechanisms. Feel free to skip these on your first read-
through—come back to them later for extra informaঞon.

Acknowledgements

We’d like to thank our colleagues at Underscore, our friends at Typelevel,
and everyone who helped contribute to this book. Special thanks to Jenny
Clements for her fantasঞc artwork and Richard Dallaway for his proof reading
experঞse. Here is an alphabeঞcal list of contributors:

Alessandro Marrella, Cody Koeninger, Connie Chen, Conor Fennell, Dani Rey,
Daniela Sfregola, Danielle Ashley, David Casঞllo, David Piggo�, Dennis Hun-
ziker, Deokhwan Kim, Edd Steel, Evgeny Veretennikov, Francis Devereux,
Ghislain Vaillant, Gregor Ihmor, Henk-Jan Meijer, Janne Pelkonen, Jason Sco�,
Javier Arrieta, Jenny Clements, Jérémie Jost, Joachim Hofer, Jonathon Fergu-
son, Lance Paine, Leif Wickland, ltbs, Marc Prud’hommeaux, Marঞn Carolan,
Mr-SD, Narayan Iyer, Niccolo’ Paravanঞ, niqdev, Noor Nashid, Pablo Francisco
Pérez Hidalgo, Pawel Jurczenko, Phil Derome, Philip Schwarz, Riccardo Sirigu,
Richard Dallaway, Rodney Jacobsen, Rodrigo B. de Oliveira, Seoh Char, Sergio
Magnacco, Tim McIver, Toby Weston, Victor Osolovskiy, and Yinka Erinle.

If you spot an error or potenঞal improvement, please raise an issue or submit
a PR on the book’s Github page.

Backers

We’d also like to extend very special thanks to our backers—fine people who
helped fund the development of the book by buying a copy beforewe released

https://github.com/underscoreio/advanced-scala

5

it as open source. This book wouldn’t exist without you:

A ba�le-hardened technologist, Aaron Pritzlaff, Abhishek Srivastava, Alek-
sey “Daron” Terekhin, Algolia, Allen George (@allenageorge), Andrew John-
son, Andrew Kerr, Andy Dwelly, Anler, anthony@dribble.ai, Aravindh Sri-
daran, Araxis Ltd, ArtemK, Arthur Kushka (@arhelmus), Artur Zhurat, Arturas
Smorgun, Aমla Mravik, Axel Gschaider, Bamboo Le, bamine, Barry Kern, Ben
Darfler (@bdarfler), Ben Le�on, Benjamin Neil, Benoit Hericher, Bernt An-
dreas Langøien, Bill Leck, Blaze K, Boniface Kabaso, Brian Wongchaowart,
BryanDragon, @cannedprimates, Ceschiaম (@6qat), Chris Gojlo, Chris Phelps,
@CliffRedmond, Cody Koeninger, Constanঞn Gonciulea, Dadepo Aderemi,
Damir Vandic, Damon Rolfs, Dan Todor, Daniel Arndt, Daniela Sfregola, David
Greco, David Poltorak, Dennis Hunziker, Dennis Vriend, Derek Morr, Dim-
itrios Liapis, Don McNamara, Doug Clinton, Doug Lindholm (dlindhol), Edgar
Mueller, Edward J Renauer Jr, Emiliano Marঞnez, esthom, Eঞenne Peiniau,
Fede Silva, Filipe Azevedo, Franck Rasolo, Gary Coady, George Ball, Ger-
ald Loeffler, Integraঞonal, Giles Taylor, Guilherme Dantas (@gamsd), Har-
ish Hurchurn, Hisham Ismail, Iurii Susuk, Ivan (SkyWriter) Kasatenko, Ivano
Pagano, Jacob Baumbach, James Morris, Jan Vincent Liwanag, Javier Gon-
zalez, Jeff Gentry, Joel Chovanec, Jon Bates, Jorge Aliss (@jaliss), Juan Ma-
cias (@1macias1), Juan Ortega, Juan Pablo Romero Méndez, Jungsun Kim,
Kaushik Chakraborty (@kaychaks), Keith Mannock, Ken Hoffman, Kevin Es-
ler, Kevin Kyyro, kgillies, Klaus Rehm, Kostas Skourঞs, Lance Linder, Liang,
Guang Hua, Loïc Girault, Luke Tebbs, Makis A, Malcolm Robbins, Mansur
Ashraf (@mansur_ashraf), Marcel Lüthi, Marek Prochera @hicolour, Mari-
anudo (Mariano Navas), Mark Eibes, Mark van Rensburg, Marঞjn Blankesঞjn,
Marঞn Studer, Ma�hew Edwards, Ma�hew Pflueger, mauropalsgraaf, mbarak,
Mehitabel, Michael Pigg, Mikael Moghadam, Mike Gehard (@mikegehard),
MonadicBind, arjun.mukherjee@gmail.com, Stephen Arbogast, Narayan Iyer,
@natewave, Netanel Rabinowitz, Nick Peterson, Nicolas Sitbon, Oier Blasco
Linares, Oliver Daff, Oliver Schrenk, Olly Shaw, P Villela, pandaforme, Patrick
Garrity, Pawel Wlodarski from JUG Lodz, @peel, Peter Perhac, Phil Glover,
Philipp Leser-Wolf, Rachel Bowyer, Radu Gancea (@radusw), Rajit Singh,
Ramin Alidousঞ, Raymond Tay, Riccardo Sirigu, Richard (Yin-Wu) Chuo,
Rob Vermazeren, Robert “Kemichal” Andersson, Robin Taylor (@badgermind),
Rongcui Dong, Rui Morais, Rupert Bates, Rustem Suniev, Sanjiv Sahayam,

6

Shane Delmore, Stefan Planঞkow, SundyWiliam Yaputra, Tal Pressman, Tamas
Neltz, theLXK, Tim Pigden, Tobias Lutz, Tom Duhourq, @tomzalt, Utz West-
ermann, Vadym Shalts, Val Akkapeddi, Vasanth Loka, Vladimir Bacvanski,
Vladimir Bystrov aka udav_pit, William Benton, Wojciech Langiewicz, Yann Ol-
livier (@ya2o), Yoshiro Naito, zero323, and zeronone.

Part I

Theory

7

Chapter 1

Introducঞon

Cats contains a wide variety of funcঞonal programming tools and allows de-
velopers to pick and choose the ones we want to use. The majority of these
tools are delivered in the form of type classes that we can apply to exisঞng
Scala types.

Type classes are a programming pa�ern originaঞng in Haskell¹. They allow us
to extend exisঞng libraries with new funcঞonality, without using tradiঞonal
inheritance, and without altering the original library source code.

In this chapter we will refresh our memory of type classes from Underscore’s
Essenঞal Scala book, and take a first look at the Cats codebase. We will look
at two example type classes—Show and Eq—using them to idenঞfy pa�erns
that lay the foundaঞons for the rest of the book.

We’ll finish by tying type classes back into algebraic data types, pa�ern match-
ing, value classes, and type aliases, presenঞng a structured approach to func-
ঞonal programming in Scala.

¹The word “class” doesn’t strictly mean class in the Scala or Java sense.

9

http://underscore.io/books/essential-scala

10 CHAPTER 1. INTRODUCTION

1.1 Anatomy of a Type Class

There are three important components to the type class pa�ern: the type class
itself, instances for parঞcular types, and the interfacemethods that we expose
to users.

1.1.1 The Type Class

A type class is an interface or API that represents some funcঞonality we want
to implement. In Cats a type class is represented by a trait with at least one
type parameter. For example, we can represent generic “serialize to JSON”
behaviour as follows:

// Define a very simple JSON AST

sealed trait Json

final case class JsObject(get: Map[String, Json]) extends Json

final case class JsString(get: String) extends Json

final case class JsNumber(get: Double) extends Json

case object JsNull extends Json

// The "serialize to JSON" behaviour is encoded in this trait

trait JsonWriter[A] {

def write(value: A): Json

}

JsonWriter is our type class in this example, with Json and its subtypes pro-
viding supporঞng code.

1.1.2 Type Class Instances

The instances of a type class provide implementaঞons for the types we care
about, including types from the Scala standard library and types from our do-
main model.

In Scala we define instances by creaঞng concrete implementaঞons of the type
class and tagging them with the implicit keyword:

1.1. ANATOMY OF A TYPE CLASS 11

final case class Person(name: String, email: String)

object JsonWriterInstances {

implicit val stringWriter: JsonWriter[String] =

new JsonWriter[String] {

def write(value: String): Json =

JsString(value)

}

implicit val personWriter: JsonWriter[Person] =

new JsonWriter[Person] {

def write(value: Person): Json =

JsObject(Map(

"name" -> JsString(value.name),

"email" -> JsString(value.email)

))

}

// etc...

}

1.1.3 Type Class Interfaces

A type class interface is any funcঞonality we expose to users. Interfaces are
generic methods that accept instances of the type class as implicit parameters.

There are two common ways of specifying an interface: Interface Objects and
Interface Syntax.

Interface Objects

The simplest way of creaঞng an interface is to place methods in a singleton
object:

object Json {

def toJson[A](value: A)(implicit w: JsonWriter[A]): Json =

w.write(value)

}

To use this object, we import any type class instances we care about and call
the relevant method:

12 CHAPTER 1. INTRODUCTION

import JsonWriterInstances._

Json.toJson(Person("Dave", "dave@example.com"))

// res4: Json = JsObject(Map(name -> JsString(Dave), email -> JsString

(dave@example.com)))

The compiler spots that we’ve called the toJson method without providing
the implicit parameters. It tries to fix this by searching for type class instances
of the relevant types and inserঞng them at the call site:

Json.toJson(Person("Dave", "dave@example.com"))(personWriter)

Interface Syntax

We can alternaঞvely use extension methods to extend exisঞng types with in-
terface methods². Cats refers to this as “syntax” for the type class:

object JsonSyntax {

implicit class JsonWriterOps[A](value: A) {

def toJson(implicit w: JsonWriter[A]): Json =

w.write(value)

}

}

We use interface syntax by imporঞng it alongside the instances for the types
we need:

import JsonWriterInstances._

import JsonSyntax._

Person("Dave", "dave@example.com").toJson

// res6: Json = JsObject(Map(name -> JsString(Dave), email -> JsString

(dave@example.com)))

Again, the compiler searches for candidates for the implicit parameters and
fills them in for us:

²You may occasionally see extension methods referred to as “type enrichment” or “pimping”.
These are older terms that we don’t use anymore.

1.2. WORKINGWITH IMPLICITS 13

Person("Dave", "dave@example.com").toJson(personWriter)

The implicitly Method

The Scala standard library provides a generic type class interface called im-

plicitly. Its definiঞon is very simple:

def implicitly[A](implicit value: A): A =

value

We can use implicitly to summon any value from implicit scope. We pro-
vide the type we want and implicitly does the rest:

import JsonWriterInstances._

// import JsonWriterInstances._

implicitly[JsonWriter[String]]

// res8: JsonWriter[String] = JsonWriterInstances$$anon$1@38ee55c4

Most type classes in Cats provide other means to summon instances. How-
ever, implicitly is a good fallback for debugging purposes. We can insert a
call to implicitlywithin the general flow of our code to ensure the compiler
can find an instance of a type class and ensure that there are no ambiguous
implicit errors.

1.2 Working with Implicits

Working with type classes in Scala means working with implicit values and im-
plicit parameters. There are a few rules we need to know to do this effecঞvely.

1.2.1 Packaging Implicits

In a curious quirk of the language, any definiঞons marked implicit in Scala
must be placed inside an object or trait rather than at the top level. In the ex-
ample above we packaged our type class instances in an object called Json-

14 CHAPTER 1. INTRODUCTION

WriterInstances. We could equally have placed them in a companion ob-
ject to JsonWriter. Placing instances in a companion object to the type class
has special significance in Scala because it plays into something called implicit
scope.

1.2.2 Implicit Scope

As we saw above, the compiler searches for candidate type class instances by
type. For example, in the following expression it will look for an instance of
type JsonWriter[String]:

Json.toJson("A string!")

The compiler searches for candidate instances in the implicit scope at the call
site, which roughly consists of:

• local or inherited definiঞons;

• imported definiঞons;

• definiঞons in the companion object of the type class or the parameter
type (in this case JsonWriter or String).

Definiঞons are only included in implicit scope if they are tagged with the im-
plicit keyword. Furthermore, if the compiler sees mulঞple candidate defini-
ঞons, it fails with an ambiguous implicit values error:

implicit val writer1: JsonWriter[String] =

JsonWriterInstances.stringWriter

implicit val writer2: JsonWriter[String] =

JsonWriterInstances.stringWriter

Json.toJson("A string")

// <console>:23: error: ambiguous implicit values:

// both value stringWriter in object JsonWriterInstances of type =>

JsonWriter[String]

// and value writer1 of type => JsonWriter[String]

1.2. WORKINGWITH IMPLICITS 15

// match expected type JsonWriter[String]

// Json.toJson("A string")

// ^

The precise rules of implicit resoluঞon are more complex than this, but the
complexity is largely irrelevant for this book³. For our purposes, we can pack-
age type class instances in roughly four ways:

1. by placing them in an object such as JsonWriterInstances;
2. by placing them in a trait;
3. by placing them in the companion object of the type class;
4. by placing them in the companion object of the parameter type.

With opঞon 1we bring instances into scope by importing them. With opঞon
2 we bring them into scope with inheritance. With opঞons 3 and 4, instances
are always in implicit scope, regardless of where we try to use them.

1.2.3 Recursive Implicit Resoluঞon

The power of type classes and implicits lies in the compiler’s ability to combine
implicit definiঞons when searching for candidate instances.

Earlier we insinuated that all type class instances are implicit vals. This
was a simplificaঞon. We can actually define instances in two ways:

1. by defining concrete instances as implicit vals of the required
type⁴;

2. by defining implicitmethods to construct instances from other type
class instances.

Why would we construct instances from other instances? As a moঞvaঞonal
example, consider defining a JsonWriter for Options. We would need a
JsonWriter[Option[A]] for every A we care about in our applicaঞon. We
could try to brute force the problem by creaঞng a library of implicit vals:

³If you’re interested in the finer rules of implicit resoluঞon in Scala, start by taking a look at
this Stack Overflow post on implicit scope and this blog post on implicit priority.

⁴implicit objects are treated the same way.

https://stackoverflow.com/questions/5598085/where-does-scala-look-for-implicits
http://eed3si9n.com/revisiting-implicits-without-import-tax

16 CHAPTER 1. INTRODUCTION

implicit val optionIntWriter: JsonWriter[Option[Int]] =

???

implicit val optionPersonWriter: JsonWriter[Option[Person]] =

???

// and so on...

However, this approach clearly doesn’t scale. We end up requiring two im-

plicit vals for every type A in our applicaঞon: one for A and one for Op-
tion[A].

Fortunately, we can abstract the code for handling Option[A] into a common
constructor based on the instance for A:

• if the opঞon is Some(aValue), write aValue using the writer for A;

• if the opঞon is None, return JsNull.

Here is the same code wri�en out as an implicit def:

implicit def optionWriter[A]

(implicit writer: JsonWriter[A]): JsonWriter[Option[A]] =

new JsonWriter[Option[A]] {

def write(option: Option[A]): Json =

option match {

case Some(aValue) => writer.write(aValue)

case None => JsNull

}

}

This method constructs a JsonWriter for Option[A] by relying on an implicit
parameter to fill in the A-specific funcঞonality. When the compiler sees an
expression like this:

Json.toJson(Option("A string"))

it searches for an implicit JsonWriter[Option[String]]. It finds the im-
plicit method for JsonWriter[Option[A]]:

1.2. WORKINGWITH IMPLICITS 17

Json.toJson(Option("A string"))(optionWriter[String])

and recursively searches for a JsonWriter[String] to use as the parameter
to optionWriter:

Json.toJson(Option("A string"))(optionWriter(stringWriter))

In this way, implicit resoluঞon becomes a search through the space of possible
combinaঞons of implicit definiঞons, to find a combinaঞon that summons a
type class instance of the correct overall type.

Implicit Conversions

When you create a type class instance constructor using an implicit

def, be sure to mark the parameters to the method as implicit pa-
rameters. Without this keyword, the compiler won’t be able to fill in the
parameters during implicit resoluঞon.

implicit methods with non-implicit parameters form a different
Scala pa�ern called an implicit conversion. This is also different from
the previous secঞon on Interface Syntax, because in that case the
JsonWriter is an implicit class with extension methods. Implicit con-
version is an older programming pa�ern that is frowned upon in mod-
ern Scala code. Fortunately, the compiler will warn you when you do
this. You have to manually enable implicit conversions by imporঞng
scala.language.implicitConversions in your file:

18 CHAPTER 1. INTRODUCTION

implicit def optionWriter[A]

(writer: JsonWriter[A]): JsonWriter[Option[A]] =

???

// <console>:18: warning: implicit conversion method

optionWriter should be enabled

// by making the implicit value scala.language.

implicitConversions visible.

// This can be achieved by adding the import clause 'import

scala.language.implicitConversions'

// or by setting the compiler option -language:

implicitConversions.

// See the Scaladoc for value scala.language.implicitConversions

for a discussion

// why the feature should be explicitly enabled.

// implicit def optionWriter[A]

// ^

// error: No warnings can be incurred under -Xfatal-warnings.

1.3 Exercise: Printable Library

Scala provides a toString method to let us convert any value to a String.
However, this method comes with a few disadvantages: it is implemented for
every type in the language, many implementaঞons are of limited use, and we
can’t opt-in to specific implementaঞons for specific types.

Let’s define a Printable type class to work around these problems:

1. Define a type class Printable[A] containing a single method format.
format should accept a value of type A and return a String.

2. Create an object PrintableInstances containing instances of
Printable for String and Int.

3. Define an object Printable with two generic interface methods:

format accepts a value of type A and a Printable of the correspond-
ing type. It uses the relevant Printable to convert the A to a String.

print accepts the same parameters as format and returns Unit. It
prints the A value to the console using println.

1.3. EXERCISE: PRINTABLE LIBRARY 19

See the soluঞon

Using the Library

The code above forms a general purpose prinঞng library that we can use in
mulঞple applicaঞons. Let’s define an “applicaঞon” now that uses the library.

First we’ll define a data type to represent a well-known type of furry animal:

final case class Cat(name: String, age: Int, color: String)

Next we’ll create an implementaঞon of Printable for Cat that returns con-
tent in the following format:

NAME is a AGE year-old COLOR cat.

Finally, use the type class on the console or in a short demo app: create a Cat
and print it to the console:

// Define a cat:

val cat = Cat(/* ... */)

// Print the cat!

See the soluঞon

Be�er Syntax

Let’s make our prinঞng library easier to use by defining some extension meth-
ods to provide be�er syntax:

1. Create an object called PrintableSyntax.

2. Inside PrintableSyntax define an implicit class Print-

ableOps[A] to wrap up a value of type A.

3. In PrintableOps define the following methods:

• format accepts an implicit Printable[A] and returns a String
representaঞon of the wrapped A;

20 CHAPTER 1. INTRODUCTION

• print accepts an implicit Printable[A] and returns Unit. It
prints the wrapped A to the console.

4. Use the extension methods to print the example Cat you created in the
previous exercise.

See the soluঞon

1.4 Meet Cats

In the previous secঞon we saw how to implement type classes in Scala. In this
secঞon we will look at how type classes are implemented in Cats.

Cats is wri�en using a modular structure that allows us to choose which type
classes, instances, and interface methods we want to use. Let’s take a first
look using cats.Show as an example.

Show is Cats’ equivalent of the Printable type class we defined in the last
secঞon. It provides a mechanism for producing developer-friendly console
output without using toString. Here’s an abbreviated definiঞon:

package cats

trait Show[A] {

def show(value: A): String

}

1.4.1 Imporঞng Type Classes

The type classes in Cats are defined in the cats package. We can import Show
directly from this package:

import cats.Show

The companion object of every Cats type class has an apply method that
locates an instance for any type we specify:

http://typelevel.org/cats/api/cats/Show.html
http://typelevel.org/cats/api/cats/

1.4. MEET CATS 21

val showInt = Show.apply[Int]

// <console>:13: error: could not find implicit value for parameter

instance: cats.Show[Int]

// val showInt = Show.apply[Int]

// ^

Oops—that didn’t work! The applymethod uses implicits to look up individual
instances, so we’ll have to bring some instances into scope.

1.4.2 Imporঞng Default Instances

The cats.instances package provides default instances for awide variety of
types. We can import these as shown in the table below. Each import provides
instances of all Cats’ type classes for a specific parameter type:

• cats.instances.int provides instances for Int
• cats.instances.string provides instances for String
• cats.instances.list provides instances for List
• cats.instances.option provides instances for Option
• cats.instances.all provides all instances that are shipped out of

the box with Cats

See the cats.instances package for a complete list of available imports.

Let’s import the instances of Show for Int and String:

import cats.instances.int._ // for Show

import cats.instances.string._ // for Show

val showInt: Show[Int] = Show.apply[Int]

val showString: Show[String] = Show.apply[String]

That’s be�er! We now have access to two instances of Show, and can use
them to print Ints and Strings:

http://typelevel.org/cats/api/cats/instances/
http://typelevel.org/cats/api/cats/instances/package$$int$
http://typelevel.org/cats/api/cats/instances/package$$string$
http://typelevel.org/cats/api/cats/instances/package$$list$
http://typelevel.org/cats/api/cats/instances/package$$option$
http://typelevel.org/cats/api/cats/instances/package$$all$
http://typelevel.org/cats/api/cats/instances/

22 CHAPTER 1. INTRODUCTION

val intAsString: String =

showInt.show(123)

// intAsString: String = 123

val stringAsString: String =

showString.show("abc")

// stringAsString: String = abc

1.4.3 Imporঞng Interface Syntax

We can make Show easier to use by imporঞng the interface syntax from
cats.syntax.show. This adds an extension method called show to any type
for which we have an instance of Show in scope:

import cats.syntax.show._ // for show

val shownInt = 123.show

// shownInt: String = 123

val shownString = "abc".show

// shownString: String = abc

Cats provides separate syntax imports for each type class. We will introduce
these as we encounter them in later secঞons and chapters.

1.4.4 Imporঞng All The Things!

In this book we will use specific imports to show you exactly which instances
and syntax you need in each example. However, this can be ঞme consuming
for many use cases. You should feel free to take one of the following shortcuts
to simplify your imports:

• import cats._ imports all of Cats’ type classes in one go;

• import cats.instances.all._ imports all of the type class in-
stances for the standard library in one go;

http://typelevel.org/cats/api/cats/syntax/package$$show$

1.4. MEET CATS 23

• import cats.syntax.all._ imports all of the syntax in one go;

• import cats.implicits._ imports all of the standard type class in-
stances and all of the syntax in one go.

Most people start their files with the following imports, reverঞng to more spe-
cific imports only if they encounter naming conflicts or problems with ambigu-
ous implicits:

import cats._

import cats.implicits._

1.4.5 Defining Custom Instances

We can define an instance of Show simply by implemenঞng the trait for a given
type:

import java.util.Date

implicit val dateShow: Show[Date] =

new Show[Date] {

def show(date: Date): String =

s"${date.getTime}ms since the epoch."

}

However, Cats also provides a couple of convenient methods to simplify the
process. There are two construcঞon methods on the companion object of
Show that we can use to define instances for our own types:

object Show {

// Convert a function to a `Show` instance:

def show[A](f: A => String): Show[A] =

???

// Create a `Show` instance from a `toString` method:

def fromToString[A]: Show[A] =

24 CHAPTER 1. INTRODUCTION

???

}

These allow us to quickly construct instanceswith less ceremony than defining
them from scratch:

implicit val dateShow: Show[Date] =

Show.show(date => s"${date.getTime}ms since the epoch.")

As you can see, the code using construcঞon methods is much terser than the
code without. Many type classes in Cats provide helper methods like these
for construcঞng instances, either from scratch or by transforming exisঞng in-
stances for other types.

1.4.6 Exercise: Cat Show

Re-implement the Cat applicaঞon from the previous secঞon using Show in-
stead of Printable.

See the soluঞon

1.5 Example: Eq

Wewill finish off this chapter by looking at another useful type class: cats.Eq.
Eq is designed to support type-safe equality and address annoyances using
Scala’s built-in == operator.

Almost every Scala developer has wri�en code like this before:

List(1, 2, 3).map(Option(_)).filter(item => item == 1)

// res0: List[Option[Int]] = List()

Ok, many of you won’t have made such a simple mistake as this, but the prin-
ciple is sound. The predicate in the filter clause always returns false be-
cause it is comparing an Int to an Option[Int].

http://typelevel.org/cats/api/cats/kernel/Eq.html

1.5. EXAMPLE: EQ 25

This is programmer error—we should have compared item to Some(1) instead
of 1. However, it’s not technically a type error because == works for any pair
of objects, no ma�er what types we compare. Eq is designed to add some
type safety to equality checks and work around this problem.

1.5.1 Equality, Liberty, and Fraternity

We can use Eq to define type-safe equality between instances of any given
type:

package cats

trait Eq[A] {

def eqv(a: A, b: A): Boolean

// other concrete methods based on eqv...

}

The interface syntax, defined in cats.syntax.eq, provides two methods for
performing equality checks provided there is an instance Eq[A] in scope:

• === compares two objects for equality;
• =!= compares two objects for inequality.

1.5.2 Comparing Ints

Let’s look at a few examples. First we import the type class:

import cats.Eq

Now let’s grab an instance for Int:

import cats.instances.int._ // for Eq

val eqInt = Eq[Int]

We can use eqInt directly to test for equality:

http://typelevel.org/cats/api/cats/syntax/package$$eq$

26 CHAPTER 1. INTRODUCTION

eqInt.eqv(123, 123)

// res2: Boolean = true

eqInt.eqv(123, 234)

// res3: Boolean = false

Unlike Scala’s ==method, if we try to compare objects of different types using
eqv we get a compile error:

eqInt.eqv(123, "234")

// <console>:18: error: type mismatch;

// found : String("234")

// required: Int

// eqInt.eqv(123, "234")

// ^

We can also import the interface syntax in cats.syntax.eq to use the ===
and =!= methods:

import cats.syntax.eq._ // for === and =!=

123 === 123

// res5: Boolean = true

123 =!= 234

// res6: Boolean = true

Again, comparing values of different types causes a compiler error:

123 === "123"

// <console>:20: error: type mismatch;

// found : String("123")

// required: Int

// 123 === "123"

// ^

1.5.3 Comparing Opঞons

Now for a more interesঞng example—Option[Int]. To compare values of
type Option[Int] we need to import instances of Eq for Option as well as

http://typelevel.org/cats/api/cats/syntax/package$$eq$

1.5. EXAMPLE: EQ 27

Int:

import cats.instances.int._ // for Eq

import cats.instances.option._ // for Eq

Now we can try some comparisons:

Some(1) === None

// <console>:26: error: value === is not a member of Some[Int]

// Some(1) === None

// ^

We have received an error here because the types don’t quite match up. We
have Eq instances in scope for Int and Option[Int] but the values we are
comparing are of type Some[Int]. To fix the issue we have to re-type the
arguments as Option[Int]:

(Some(1) : Option[Int]) === (None : Option[Int])

// res9: Boolean = false

We can do this in a friendlier fashion using the Option.apply and Op-

tion.empty methods from the standard library:

Option(1) === Option.empty[Int]

// res10: Boolean = false

or using special syntax from cats.syntax.option:

import cats.syntax.option._ // for some and none

1.some === none[Int]

// res11: Boolean = false

1.some =!= none[Int]

// res12: Boolean = true

http://typelevel.org/cats/api/cats/syntax/package$$option$

28 CHAPTER 1. INTRODUCTION

1.5.4 Comparing Custom Types

Wecan define our own instances of Eq using the Eq.instancemethod, which
accepts a funcঞon of type (A, A) => Boolean and returns an Eq[A]:

import java.util.Date

import cats.instances.long._ // for Eq

implicit val dateEq: Eq[Date] =

Eq.instance[Date] { (date1, date2) =>

date1.getTime === date2.getTime

}

val x = new Date() // now

val y = new Date() // a bit later than now

x === x

// res13: Boolean = true

x === y

// res14: Boolean = false

1.5.5 Exercise: Equality, Liberty, and Felinity

Implement an instance of Eq for our running Cat example:

final case class Cat(name: String, age: Int, color: String)

Use this to compare the following pairs of objects for equality and inequality:

val cat1 = Cat("Garfield", 38, "orange and black")

val cat2 = Cat("Heathcliff", 33, "orange and black")

val optionCat1 = Option(cat1)

val optionCat2 = Option.empty[Cat]

See the soluঞon

1.6. CONTROLLING INSTANCE SELECTION 29

1.6 Controlling Instance Selecঞon

When working with type classes we must consider two issues that control
instance selecঞon:

• What is the relaঞonship between an instance defined on a type and its
subtypes?

For example, if we define a JsonWriter[Option[Int]], will the ex-
pression Json.toJson(Some(1)) select this instance? (Remember
that Some is a subtype of Option).

• How do we choose between type class instances when there are many
available?

What if we define two JsonWriters for Person? When we write
Json.toJson(aPerson), which instance is selected?

1.6.1 Variance

When we define type classes we can add variance annotaঞons to the type
parameter to affect the variance of the type class and the compiler’s ability to
select instances during implicit resoluঞon.

To recap Essenঞal Scala, variance relates to subtypes. We say that B is a sub-
type of A if we can use a value of type B anywhere we expect a value of type
A.

Co- and contravariance annotaঞons arise when working with type construc-
tors. For example, we denote covariance with a + symbol:

trait F[+A] // the "+" means "covariant"

Covariance

Covariance means that the type F[B] is a subtype of the type F[A] if B is a
subtype of A. This is useful for modelling many types, including collecঞons like
List and Option:

30 CHAPTER 1. INTRODUCTION

trait List[+A]

trait Option[+A]

The covariance of Scala collecঞons allows us to subsঞtute collecঞons of one
type for another in our code. For example, we can use a List[Circle] any-
where we expect a List[Shape] because Circle is a subtype of Shape:

sealed trait Shape

case class Circle(radius: Double) extends Shape

val circles: List[Circle] = ???

val shapes: List[Shape] = circles

What about contravariance? We write contravariant type constructors with a
- symbol like this:

trait F[-A]

Contravariance

Confusingly, contravariance means that the type F[B] is a subtype of F[A] if
A is a subtype of B. This is useful for modelling types that represent processes,
like our JsonWriter type class above:

trait JsonWriter[-A] {

def write(value: A): Json

}

// defined trait JsonWriter

Let’s unpack this a bit further. Remember that variance is all about the ability
to subsঞtute one value for another. Consider a scenario where we have two
values, one of type Shape and one of type Circle, and two JsonWriters,
one for Shape and one for Circle:

val shape: Shape = ???

val circle: Circle = ???

val shapeWriter: JsonWriter[Shape] = ???

1.6. CONTROLLING INSTANCE SELECTION 31

val circleWriter: JsonWriter[Circle] = ???

def format[A](value: A, writer: JsonWriter[A]): Json =

writer.write(value)

Now ask yourself the quesঞon: “Which combinaঞons of value and writer can I
pass to format?” We can combine circlewith either writer because all Cir-
cles are Shapes. Conversely, we can’t combine shape with circleWriter

because not all Shapes are Circles.

This relaঞonship is what we formally model using contravariance. Json-

Writer[Shape] is a subtype of JsonWriter[Circle] because Circle is a
subtype of Shape. This means we can use shapeWriter anywhere we expect
to see a JsonWriter[Circle].

Invariance

Invariance is actually the easiest situaঞon to describe. It’s what we get when
we don’t write a + or - in a type constructor:

trait F[A]

This means the types F[A] and F[B] are never subtypes of one another, no
ma�er what the relaঞonship between A and B. This is the default semanঞcs
for Scala type constructors.

When the compiler searches for an implicit it looks for one matching the type
or subtype. Thus we can use variance annotaঞons to control type class in-
stance selecঞon to some extent.

There are two issues that tend to arise. Let’s imagine we have an algebraic
data type like:

sealed trait A

final case object B extends A

final case object C extends A

The issues are:

32 CHAPTER 1. INTRODUCTION

1. Will an instance defined on a supertype be selected if one is available?
For example, canwe define an instance for A and have it work for values
of type B and C?

2. Will an instance for a subtype be selected in preference to that of a
supertype. For instance, if we define an instance for A and B, and we
have a value of type B, will the instance for B be selected in preference
to A?

It turns out we can’t have both at once. The three choices give us behaviour
as follows:

Type Class Variance Invariant Covariant Contravariant

Supertype instance used? No No Yes
More specific type preferred? No Yes No

It’s clear there is no perfect system. Cats generally prefers to use invariant type
classes. This allows us to specify more specific instances for subtypes if we
want. It does mean that if we have, for example, a value of type Some[Int],
our type class instance for Optionwill not be used. We can solve this problem
with a type annotaঞon like Some(1) : Option[Int] or by using “smart con-
structors” like the Option.apply, Option.empty, some, and none methods
we saw in Secঞon 1.5.3.

1.7 Summary

In this chapter we took a first look at type classes. We implemented our own
Printable type class using plain Scala before looking at two examples from
Cats—Show and Eq.

We have now seen the general pa�erns in Cats type classes:

• The type classes themselves are generic traits in the cats package.

http://typelevel.org/cats/api/cats/

1.7. SUMMARY 33

• Each type class has a companion object with, an applymethod for ma-
terializing instances, one or more construcࢼon methods for creaঞng in-
stances, and a collecঞon of other relevant helper methods.

• Default instances are provided via objects in the cats.instances

package, and are organized by parameter type rather than by type class.

• Many type classes have syntax provided via the cats.syntax package.

In the remaining chapters of Part I we will look at several broad and power-
ful type classes—Semigroup, Monoid, Functor, Monad, Semigroupal, Ap-
plicative, Traverse, and more. In each case we will learn what funcঞon-
ality the type class provides, the formal rules it follows, and how it is imple-
mented in Cats. Many of these type classes are more abstract than Show or
Eq. While this makes them harder to learn, it makes them far more useful for
solving general problems in our code.

http://typelevel.org/cats/api/cats/instances/
http://typelevel.org/cats/api/cats/syntax/

34 CHAPTER 1. INTRODUCTION

Chapter 2

Monoids and Semigroups

In this secঞonwe explore our first type classes,monoid and semigroup. These
allow us to add or combine values. There are instances for Ints, Strings,
Lists, Options, and many more. Let’s start by looking at a few simple types
and operaঞons to see what common principles we can extract.

Integer addiঞon

Addiঞon of Ints is a binary operaঞon that is closed, meaning that adding two
Ints always produces another Int:

2 + 1

// res0: Int = 3

There is also the idenࢼty element 0 with the property that a + 0 == 0 + a

== a for any Int a:

2 + 0

// res1: Int = 2

0 + 2

// res2: Int = 2

There are also other properঞes of addiঞon. For instance, it doesn’t ma�er in

35

36 CHAPTER 2. MONOIDS AND SEMIGROUPS

what order we add elements because we always get the same result. This is a
property known as associaࢼvity:

(1 + 2) + 3

// res3: Int = 6

1 + (2 + 3)

// res4: Int = 6

Integer mulঞplicaঞon

The same properঞes for addiঞon also apply for mulঞplicaঞon, provided we
use 1 as the idenঞty instead of 0:

1 * 3

// res5: Int = 3

3 * 1

// res6: Int = 3

Mulঞplicaঞon, like addiঞon, is associaঞve:

(1 * 2) * 3

// res7: Int = 6

1 * (2 * 3)

// res8: Int = 6

String and sequence concatenaঞon

We can also add Strings, using string concatenaঞon as our binary operator:

"One" ++ "two"

// res9: String = Onetwo

and the empty string as the idenঞty:

2.1. DEFINITION OF A MONOID 37

"" ++ "Hello"

// res10: String = Hello

"Hello" ++ ""

// res11: String = Hello

Once again, concatenaঞon is associaঞve:

("One" ++ "Two") ++ "Three"

// res12: String = OneTwoThree

"One" ++ ("Two" ++ "Three")

// res13: String = OneTwoThree

Note that we used ++ above instead of the more usual + to suggest a parallel
with sequences. We can do the same with other types of sequence, using
concatenaঞon as the binary operator and the empty sequence as our idenঞty.

2.1 Definiঞon of a Monoid

We’ve seen a number of “addiঞon” scenarios above each with an associaঞve
binary addiঞon and an idenঞty element. It will be no surprise to learn that this
is a monoid. Formally, a monoid for a type A is:

• an operaঞon combine with type (A, A) => A

• an element empty of type A

This definiঞon translates nicely into Scala code. Here is a simplified version of
the definiঞon from Cats:

trait Monoid[A] {

def combine(x: A, y: A): A

def empty: A

}

In addiঞon to providing the combine and empty operaঞons, monoids must
formally obey several laws. For all values x, y, and z, in A, combine must be
associaঞve and empty must be an idenঞty element:

38 CHAPTER 2. MONOIDS AND SEMIGROUPS

def associativeLaw[A](x: A, y: A, z: A)

(implicit m: Monoid[A]): Boolean = {

m.combine(x, m.combine(y, z)) ==

m.combine(m.combine(x, y), z)

}

def identityLaw[A](x: A)

(implicit m: Monoid[A]): Boolean = {

(m.combine(x, m.empty) == x) &&

(m.combine(m.empty, x) == x)

}

Integer subtracঞon, for example, is not a monoid because subtracঞon is not
associaঞve:

(1 - 2) - 3

// res15: Int = -4

1 - (2 - 3)

// res16: Int = 2

In pracঞce we only need to think about laws when we are wriঞng our own
Monoid instances. Unlawful instances are dangerous because they can yield
unpredictable results when used with the rest of Cats’ machinery. Most of
the ঞme we can rely on the instances provided by Cats and assume the library
authors know what they’re doing.

2.2 Definiঞon of a Semigroup

A semigroup is just the combine part of a monoid. While many semigroups
are also monoids, there are some data types for which we cannot define an
empty element. For example, we have just seen that sequence concatena-
ঞon and integer addiঞon are monoids. However, if we restrict ourselves to
non-empty sequences and posiঞve integers, we are no longer able to define
a sensible empty element. Cats has a NonEmptyList data type that has an
implementaঞon of Semigroup but no implementaঞon of Monoid.

A more accurate (though sঞll simplified) definiঞon of Cats’ Monoid is:

http://typelevel.org/cats/api/cats/data/NonEmptyList.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html

2.3. EXERCISE: THE TRUTH ABOUT MONOIDS 39

trait Semigroup[A] {

def combine(x: A, y: A): A

}

trait Monoid[A] extends Semigroup[A] {

def empty: A

}

We’ll see this kind of inheritance o[en when discussing type classes. It pro-
vides modularity and allows us to re-use behaviour. If we define a Monoid

for a type A, we get a Semigroup for free. Similarly, if a method requires a
parameter of type Semigroup[B], we can pass a Monoid[B] instead.

2.3 Exercise: The Truth About Monoids

We’ve seen a few examples of monoids but there are plenty more to be found.
Consider Boolean. Howmanymonoids can you define for this type? For each
monoid, define the combine and empty operaঞons and convince yourself that
the monoid laws hold. Use the following definiঞons as a starঞng point:

trait Semigroup[A] {

def combine(x: A, y: A): A

}

trait Monoid[A] extends Semigroup[A] {

def empty: A

}

object Monoid {

def apply[A](implicit monoid: Monoid[A]) =

monoid

}

See the soluঞon

40 CHAPTER 2. MONOIDS AND SEMIGROUPS

2.4 Exercise: All Set for Monoids

What monoids and semigroups are there for sets?

See the soluঞon

2.5 Monoids in Cats

Now we’ve seen what monoids are, let’s look at their implementaঞon in Cats.
Once again we’ll look at the three main aspects of the implementaঞon: the
type class, the instances, and the interface.

2.5.1 The Monoid Type Class

The monoid type class is cats.kernel.Monoid, which is aliased as
cats.Monoid. Monoid extends cats.kernel.Semigroup, which is aliased
as cats.Semigroup. When using Cats we normally import type classes from
the cats package:

import cats.Monoid

import cats.Semigroup

Cats Kernel?

Cats Kernel is a subproject of Cats providing a small set of typeclasses
for libraries that don’t require the full Cats toolbox. While these core
type classes are technically defined in the cats.kernel package, they
are all aliased to the cats package so we rarely need to be aware of the
disঞncঞon.

The Cats Kernel type classes covered in this book are Eq, Semigroup,
and Monoid. All the other type classes we cover are part of the main
Cats project and are defined directly in the cats package.

http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/
http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/Eq.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/

2.5. MONOIDS IN CATS 41

2.5.2 Monoid Instances

Monoid follows the standard Cats pa�ern for the user interface: the compan-
ion object has an apply method that returns the type class instance for a
parঞcular type. For example, if we want the monoid instance for String, and
we have the correct implicits in scope, we can write the following:

import cats.Monoid

import cats.instances.string._ // for Monoid

Monoid[String].combine("Hi ", "there")

// res0: String = Hi there

Monoid[String].empty

// res1: String = ""

which is equivalent to:

Monoid.apply[String].combine("Hi ", "there")

// res2: String = Hi there

Monoid.apply[String].empty

// res3: String = ""

As we know, Monoid extends Semigroup. If we don’t need empty we can
equivalently write:

import cats.Semigroup

Semigroup[String].combine("Hi ", "there")

// res4: String = Hi there

The type class instances for Monoid are organised under cats.instances in
the standard way described in Chapter 1. For example, if we want to pull in
instances for Int we import from cats.instances.int:

http://typelevel.org/cats/api/cats/instances/package$$int$

42 CHAPTER 2. MONOIDS AND SEMIGROUPS

import cats.Monoid

import cats.instances.int._ // for Monoid

Monoid[Int].combine(32, 10)

// res5: Int = 42

Similarly, we can assemble a Monoid[Option[Int]] using instances from
cats.instances.int and cats.instances.option:

import cats.Monoid

import cats.instances.int._ // for Monoid

import cats.instances.option._ // for Monoid

val a = Option(22)

// a: Option[Int] = Some(22)

val b = Option(20)

// b: Option[Int] = Some(20)

Monoid[Option[Int]].combine(a, b)

// res6: Option[Int] = Some(42)

Refer back to Chapter 1 for a more comprehensive list of imports.

2.5.3 Monoid Syntax

Cats provides syntax for the combinemethod in the form of the |+| operator.
Because combine technically comes from Semigroup, we access the syntax
by imporঞng from cats.syntax.semigroup:

import cats.instances.string._ // for Monoid

import cats.syntax.semigroup._ // for |+|

val stringResult = "Hi " |+| "there" |+| Monoid[String].empty

// stringResult: String = Hi there

import cats.instances.int._ // for Monoid

val intResult = 1 |+| 2 |+| Monoid[Int].empty

http://typelevel.org/cats/api/cats/instances/package$$int$
http://typelevel.org/cats/api/cats/instances/package$$option$
http://typelevel.org/cats/api/cats/syntax/package$$semigroup$

2.6. APPLICATIONS OF MONOIDS 43

// intResult: Int = 3

2.5.4 Exercise: Adding All The Things

The cuমng edge SuperAdder v3.5a-32 is the world’s first choice for adding
together numbers. The main funcঞon in the program has signature def

add(items: List[Int]): Int. In a tragic accident this code is deleted!
Rewrite the method and save the day!

See the soluঞon

Well done! SuperAdder’s market share conঞnues to grow, and now
there is demand for addiঞonal funcঞonality. People now want to add
List[Option[Int]]. Change add so this is possible. The SuperAdder code
base is of the highest quality, so make sure there is no code duplicaঞon!

See the soluঞon

SuperAdder is entering the POS (point-of-sale, not the other POS) market.
Now we want to add up Orders:

case class Order(totalCost: Double, quantity: Double)

We need to release this code really soon so we can’t make any modificaঞons
to add. Make it so!

See the soluঞon

2.6 Applicaঞons of Monoids

We now know what a monoid is—an abstracঞon of the concept of adding or
combining—but where is it useful? Here are a few big ideas where monoids
play a major role. These are explored in more detail in case studies later in the
book.

44 CHAPTER 2. MONOIDS AND SEMIGROUPS

2.6.1 Big Data

In big data applicaঞons like Spark and Hadoop we distribute data analysis over
many machines, giving fault tolerance and scalability. This means each ma-
chine will return results over a porঞon of the data, and we must then combine
these results to get our final result. In the vast majority of cases this can be
viewed as a monoid.

If we want to calculate how many total visitors a web site has received, that
means calculaঞng an Int on each porঞon of the data. We know the monoid
instance of Int is addiঞon, which is the right way to combine parঞal results.

If we want to find out how many unique visitors a website has received, that’s
equivalent to building a Set[User] on each porঞon of the data. We know the
monoid instance for Set is the set union, which is the right way to combine
parঞal results.

If we want to calculate 99% and 95% response ঞmes from our server logs, we
can use a data structure called a QTree for which there is a monoid.

Hopefully you get the idea. Almost every analysis that we might want to do
over a large data set is a monoid, and therefore we can build an expressive
and powerful analyঞcs system around this idea. This is exactly what Twi�er’s
Algebird and Summingbird projects have done. We explore this idea further
in the map-reduce case study.

2.6.2 Distributed Systems

In a distributed system, different machines may end up with different views of
data. For example, one machine may receive an update that other machines
did not receive. We would like to reconcile these different views, so every
machine has the same data if no more updates arrive. This is called eventual
consistency.

A parঞcular class of data types support this reconciliaঞon. These data types
are called commutaঞve replicated data types (CRDTs). The key operaঞon is
the ability to merge two data instances, with a result that captures all the in-
formaঞon in both instances. This operaঞon relies on having amonoid instance.
We explore this idea further in the CRDT case study.

2.7. SUMMARY 45

2.6.3 Monoids in the Small

The two examples above are cases where monoids inform the enঞre system
architecture. There are also many cases where having a monoid aroundmakes
it easier to write a small code fragment. We’ll see lots of examples in the case
studies in this book.

2.7 Summary

We hit a big milestone in this chapter—we covered our first type classes with
fancy funcঞonal programming names:

• a Semigroup represents an addiঞon or combinaঞon operaঞon;
• a Monoid extends a Semigroup by adding an idenঞty or “zero” element.

We can use Semigroups and Monoids by imporঞng three things: the type
classes themselves, the instances for the types we care about, and the semi-
group syntax to give us the |+| operator:

import cats.Monoid

import cats.instances.string._ // for Monoid

import cats.syntax.semigroup._ // for |+|

"Scala" |+| " with " |+| "Cats"

// res0: String = Scala with Cats

With the correct instances in scope, we can set about adding anything we
want:

import cats.instances.int._ // for Monoid

import cats.instances.option._ // for Monoid

Option(1) |+| Option(2)

// res1: Option[Int] = Some(3)

import cats.instances.map._ // for Monoid

46 CHAPTER 2. MONOIDS AND SEMIGROUPS

val map1 = Map("a" -> 1, "b" -> 2)

val map2 = Map("b" -> 3, "d" -> 4)

map1 |+| map2

// res3: Map[String,Int] = Map(b -> 5, d -> 4, a -> 1)

import cats.instances.tuple._ // for Monoid

val tuple1 = ("hello", 123)

val tuple2 = ("world", 321)

tuple1 |+| tuple2

// res6: (String, Int) = (helloworld,444)

We can also write generic code that works with any type for which we have
an instance of Monoid:

def addAll[A](values: List[A])

(implicit monoid: Monoid[A]): A =

values.foldRight(monoid.empty)(_ |+| _)

addAll(List(1, 2, 3))

// res7: Int = 6

addAll(List(None, Some(1), Some(2)))

// res8: Option[Int] = Some(3)

Monoids are a great gateway to Cats. They’re easy to understand and simple
to use. However, they’re just the ঞp of the iceberg in terms of the abstracঞons
Cats enables us to make. In the next chapter we’ll look at functors, the type
class personificaঞon of the beloved map method. That’s where the fun really
begins!

Chapter 3

Functors

In this chapter we will invesঞgate functors, an abstracঞon that allows us to
represent sequences of operaঞonswithin a context such as a List, an Option,
or any one of a thousand other possibiliঞes. Functors on their own aren’t so
useful, but special cases of functors such as monads and applicaঞve functors
are some of the most commonly used abstracঞons in Cats.

3.1 Examples of Functors

Informally, a functor is anything with a map method. You probably know lots
of types that have this: Option, List, and Either, to name a few.

We typically first encounter map when iteraঞng over Lists. However, to un-
derstand functors we need to think of themethod in another way. Rather than
traversing the list, we should think of it as transforming all of the values inside
in one go. We specify the funcঞon to apply, and map ensures it is applied to
every item. The values change but the structure of the list remains the same:

List(1, 2, 3).map(n => n + 1)

// res0: List[Int] = List(2, 3, 4)

Similarly, when we map over an Option, we transform the contents but leave

47

48 CHAPTER 3. FUNCTORS

Either[E, A]

map

Either[E, B]A => B

Option[A]

map

Option[B]A => B

List[A]

map

List[B]A => B

Figure 3.1: Type chart: mapping over List, Opঞon, and Either

the Some or None context unchanged. The same principle applies to Either

with its Left and Right contexts. This general noঞon of transformaঞon, along
with the common pa�ern of type signatures shown in Figure 3.1, is what con-
nects the behaviour of map across different data types.

Because map leaves the structure of the context unchanged, we can call it
repeatedly to sequence mulঞple computaঞons on the contents of an iniঞal
data structure:

List(1, 2, 3).

map(n => n + 1).

map(n => n * 2).

map(n => n + "!")

// res1: List[String] = List(4!, 6!, 8!)

We should think of map not as an iteraঞon pa�ern, but as a way of sequencing
computaঞons on values ignoring some complicaঞon dictated by the relevant
data type:

3.2. MORE EXAMPLES OF FUNCTORS 49

Future[A] Future[B]A => B

map

Figure 3.2: Type chart: mapping over a Future

• Option—the value may or may not be present;
• Either—there may be a value or an error;
• List—there may be zero or more values.

3.2 More Examples of Functors

The mapmethods of List, Option, and Either apply funcঞons eagerly. How-
ever, the idea of sequencing computaঞons is more general than this. Let’s
invesঞgate the behaviour of some other functors that apply the pa�ern in
different ways.

Futures

Future is a functor that sequences asynchronous computaঞons by queueing
them and applying them as their predecessors complete. The type signature
of its map method, shown in Figure 3.2, has the same shape as the signatures
above. However, the behaviour is very different.

When we work with a Future we have no guarantees about its internal state.
The wrapped computaঞon may be ongoing, complete, or rejected. If the Fu-
ture is complete, our mapping funcঞon can be called immediately. If not,
some underlying thread pool queues the funcঞon call and comes back to it
later. We don’t know when our funcঞons will be called, but we do know what
order they will be called in. In this way, Future provides the same sequencing
behaviour seen in List, Option, and Either:

50 CHAPTER 3. FUNCTORS

import scala.concurrent.{Future, Await}

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

val future: Future[String] =

Future(123).

map(n => n + 1).

map(n => n * 2).

map(n => n + "!")

Await.result(future, 1.second)

// res3: String = 248!

Futures and Referenࢼal Transparency

Note that Scala’s Futures aren’t a great example of pure funcঞonal pro-
gramming because they aren’t referenࢼally transparent. Future always
computes and caches a result and there’s no way for us to tweak this
behaviour. This means we can get unpredictable results when we use
Future to wrap side-effecঞng computaঞons. For example:

3.2. MORE EXAMPLES OF FUNCTORS 51

import scala.util.Random

val future1 = {

// Initialize Random with a fixed seed:

val r = new Random(0L)

// nextInt has the side-effect of moving to

// the next random number in the sequence:

val x = Future(r.nextInt)

for {

a <- x

b <- x

} yield (a, b)

}

val future2 = {

val r = new Random(0L)

for {

a <- Future(r.nextInt)

b <- Future(r.nextInt)

} yield (a, b)

}

val result1 = Await.result(future1, 1.second)

// result1: (Int, Int) = (-1155484576,-1155484576)

val result2 = Await.result(future2, 1.second)

// result2: (Int, Int) = (-1155484576,-723955400)

Ideally we would like result1 and result2 to contain the same value.
However, the computaঞon for future1 calls nextInt once and the
computaঞon for future2 calls it twice. Because nextInt returns a dif-
ferent result every ঞme we get a different result in each case.

This kind of discrepancy makes it hard to reason about programs involv-
ing Futures and side-effects. There also are other problemaঞc aspects
of Future's behaviour, such as the way it always starts computaঞons
immediately rather than allowing the user to dictate when the program
should run. For more informaঞon see this excellent Reddit answer by

https://www.reddit.com/r/scala/comments/3zofjl/why_is_future_totally_unusable/

52 CHAPTER 3. FUNCTORS

X => A X => BA => B

map

Figure 3.3: Type chart: mapping over a Funcঞon1

Rob Norris.

If Future isn’t referenঞally transparent, perhaps we should look at another
similar data-type that is. You should recognise this one…

Funcঞons (?!)

It turns out that single argument funcঞons are also functors. To see this we
have to tweak the types a li�le. A funcঞon A => B has two type parameters:
the parameter type A and the result type B. To coerce them to the correct
shape we can fix the parameter type and let the result type vary:

• start with X => A;
• supply a funcঞon A => B;
• get back X => B.

If we alias X => A as MyFunc[A], we see the same pa�ern of types we saw
with the other examples in this chapter. We also see this in Figure 3.3:

• start with MyFunc[A];
• supply a funcঞon A => B;
• get back MyFunc[B].

In other words, “mapping” over a Function1 is funcঞon composiঞon:

import cats.instances.function._ // for Functor

import cats.syntax.functor._ // for map

val func1: Int => Double =

(x: Int) => x.toDouble

3.2. MORE EXAMPLES OF FUNCTORS 53

val func2: Double => Double =

(y: Double) => y * 2

(func1 map func2)(1) // composition using map

// res7: Double = 2.0

(func1 andThen func2)(1) // composition using andThen

// res8: Double = 2.0

func2(func1(1)) // composition written out by hand

// res9: Double = 2.0

How does this relate to our general pa�ern of sequencing operaঞons? If we
think about it, funcঞon composiঞon is sequencing. We start with a funcঞon
that performs a single operaঞon and every ঞme we use map we append an-
other operaঞon to the chain. Calling map doesn’t actually run any of the oper-
aঞons, but if we can pass an argument to the final funcঞon all of the operaঞons
are run in sequence. We can think of this as lazily queueing up operaঞons sim-
ilar to Future:

val func =

((x: Int) => x.toDouble).

map(x => x + 1).

map(x => x * 2).

map(x => x + "!")

func(123)

// res10: String = 248.0!

Parࢼal Unificaࢼon

For the above examples to work we need to add the following compiler
opঞon to build.sbt:

scalacOptions += "-Ypartial-unification"

otherwise we’ll get a compiler error:

54 CHAPTER 3. FUNCTORS

F[A] F[B]A => B

map

Figure 3.4: Type chart: generalised functor map

func1.map(func2)

// <console>: error: value map is not a member of Int => Double

// func1.map(func2)

^

We’ll look at why this happens in detail in Secঞon 3.8.

3.3 Definiঞon of a Functor

Every example we’ve looked at so far is a functor: a class that encapsulates
sequencing computaঞons. Formally, a functor is a type F[A]with an operaঞon
map with type (A => B) => F[B]. The general type chart is shown in Figure
3.4.

Cats encodes Functor as a type class, cats.Functor, so the method looks a
li�le different. It accepts the iniঞal F[A] as a parameter alongside the trans-
formaঞon funcঞon. Here’s a simplified version of the definiঞon:

package cats

import scala.language.higherKinds

trait Functor[F[_]] {

def map[A, B](fa: F[A])(f: A => B): F[B]

}

If you haven’t seen syntax like F[_] before, it’s ঞme to take a brief de-
tour to discuss type constructors and higher kinded types. We’ll explain that
scala.language import as well.

http://typelevel.org/cats/api/cats/Functor.html

3.4. ASIDE: HIGHER KINDS AND TYPE CONSTRUCTORS 55

Functor Laws

Functors guarantee the same semanঞcs whether we sequence many
small operaঞons one by one, or combine them into a larger funcঞon
before mapping. To ensure this is the case the following laws must hold:

Idenࢼty: calling mapwith the idenঞty funcঞon is the same as doing noth-
ing:

fa.map(a => a) == fa

Composiࢼon: mapping with two funcঞons f and g is the same as map-
ping with f and then mapping with g:

fa.map(g(f(_))) == fa.map(f).map(g)

3.4 Aside: Higher Kinds and Type Constructors

Kinds are like types for types. They describe the number of “holes” in a type.
We disঞnguish between regular types that have no holes and “type construc-
tors” that have holes we can fill to produce types.

For example, List is a type constructor with one hole. We fill that hole by
specifying a parameter to produce a regular type like List[Int] or List[A].
The trick is not to confuse type constructors with generic types. List is a type
constructor, List[A] is a type:

List // type constructor, takes one parameter

List[A] // type, produced using a type parameter

There’s a close analogy here with funcঞons and values. Funcঞons are “value
constructors”—they produce values when we supply parameters:

math.abs // function, takes one parameter

math.abs(x) // value, produced using a value parameter

56 CHAPTER 3. FUNCTORS

In Scala we declare type constructors using underscores. Oncewe’ve declared
them, however, we refer to them as simple idenঞfiers:

// Declare F using underscores:

def myMethod[F[_]] = {

// Reference F without underscores:

val functor = Functor.apply[F]

// ...

}

This is analogous to specifying a funcঞon’s parameters in its definiঞon and
omiমng them when referring to it:

// Declare f specifying parameters:

val f = (x: Int) => x * 2

// Reference f without parameters:

val f2 = f andThen f

Armedwith this knowledge of type constructors, we can see that the Cats def-
iniঞon of Functor allows us to create instances for any single-parameter type
constructor, such as List, Option, Future, or a type alias such as MyFunc.

Language Feature Imports

Higher kinded types are considered an advanced language feature in
Scala. Whenever we declare a type constructor with A[_] syntax, we
need to “enable” the higher kinded type language feature to suppress
warnings from the compiler. We can either do this with a “language
import” as above:

import scala.language.higherKinds

or by adding the following to scalacOptions in build.sbt:

3.5. FUNCTORS IN CATS 57

scalacOptions += "-language:higherKinds"

We’ll use the language import in this book to ensure we are as explicit
as possible. In pracঞce, however, we find the scalacOptions flag to
be simpler and less verbose.

3.5 Functors in Cats

Let’s look at the implementaঞon of functors in Cats. We’ll examine the aspects
we did for monoids: the type class, the instances, and the syntax.

3.5.1 The Functor Type Class

The functor type class is cats.Functor. We obtain instances using the stan-
dard Functor.apply method on the companion object. As usual, default in-
stances are arranged by type in the cats.instances package:

import scala.language.higherKinds

import cats.Functor

import cats.instances.list._ // for Functor

import cats.instances.option._ // for Functor

val list1 = List(1, 2, 3)

// list1: List[Int] = List(1, 2, 3)

val list2 = Functor[List].map(list1)(_ * 2)

// list2: List[Int] = List(2, 4, 6)

val option1 = Option(123)

// option1: Option[Int] = Some(123)

val option2 = Functor[Option].map(option1)(_.toString)

// option2: Option[String] = Some(123)

Functor also provides the liftmethod, which converts a funcঞon of type A
=> B to one that operates over a functor and has type F[A] => F[B]:

http://typelevel.org/cats/api/cats/Functor.html
http://typelevel.org/cats/api/cats/instances/

58 CHAPTER 3. FUNCTORS

val func = (x: Int) => x + 1

// func: Int => Int = <function1>

val liftedFunc = Functor[Option].lift(func)

// liftedFunc: Option[Int] => Option[Int] = cats.Functor$$Lambda$11698

/1371437204@27fbe7ae

liftedFunc(Option(1))

// res0: Option[Int] = Some(2)

3.5.2 Functor Syntax

The main method provided by the syntax for Functor is map. It’s difficult to
demonstrate this with Options and Lists as they have their own built-in map
methods and the Scala compiler will always prefer a built-in method over an
extension method. We’ll work around this with two examples.

First let’s look at mapping over funcঞons. Scala’s Function1 type doesn’t
have a map method (it’s called andThen instead) so there are no naming con-
flicts:

import cats.instances.function._ // for Functor

import cats.syntax.functor._ // for map

val func1 = (a: Int) => a + 1

val func2 = (a: Int) => a * 2

val func3 = (a: Int) => a + "!"

val func4 = func1.map(func2).map(func3)

func4(123)

// res1: String = 248!

Let’s look at another example. This ঞme we’ll abstract over functors so we’re
not working with any parঞcular concrete type. We can write a method that
applies an equaঞon to a number no ma�er what functor context it’s in:

def doMath[F[_]](start: F[Int])

(implicit functor: Functor[F]): F[Int] =

start.map(n => n + 1 * 2)

3.5. FUNCTORS IN CATS 59

import cats.instances.option._ // for Functor

import cats.instances.list._ // for Functor

doMath(Option(20))

// res3: Option[Int] = Some(22)

doMath(List(1, 2, 3))

// res4: List[Int] = List(3, 4, 5)

To illustrate how this works, let’s take a look at the definiঞon of the map

method in cats.syntax.functor. Here’s a simplified version of the code:

implicit class FunctorOps[F[_], A](src: F[A]) {

def map[B](func: A => B)

(implicit functor: Functor[F]): F[B] =

functor.map(src)(func)

}

The compiler can use this extension method to insert a mapmethod wherever
no built-in map is available:

foo.map(value => value + 1)

Assuming foo has no built-in map method, the compiler detects the potenঞal
error and wraps the expression in a FunctorOps to fix the code:

new FunctorOps(foo).map(value => value + 1)

The map method of FunctorOps requires an implicit Functor as a parameter.
This means this code will only compile if we have a Functor for expr1 in
scope. If we don’t, we get a compiler error:

final case class Box[A](value: A)

val box = Box[Int](123)

box.map(value => value + 1)

// <console>:34: error: value map is not a member of Box[Int]

60 CHAPTER 3. FUNCTORS

// box.map(value => value + 1)

// ^

3.5.3 Instances for Custom Types

We can define a functor simply by defining its map method. Here’s an ex-
ample of a Functor for Option, even though such a thing already exists in
cats.instances. The implementaঞon is trivial—we simply call Option's
map method:

implicit val optionFunctor: Functor[Option] =

new Functor[Option] {

def map[A, B](value: Option[A])(func: A => B): Option[B] =

value.map(func)

}

Someঞmes we need to inject dependencies into our instances. For exam-
ple, if we had to define a custom Functor for Future (another hypotheঞcal
example—Cats provides one in cats.instances.future) we would need to
account for the implicit ExecutionContext parameter on future.map. We
can’t add extra parameters to functor.map so we have to account for the
dependency when we create the instance:

import scala.concurrent.{Future, ExecutionContext}

implicit def futureFunctor

(implicit ec: ExecutionContext): Functor[Future] =

new Functor[Future] {

def map[A, B](value: Future[A])(func: A => B): Future[B] =

value.map(func)

}

Whenever we summon a Functor for Future, either directly using Func-

tor.apply or indirectly via the map extensionmethod, the compilerwill locate
futureFunctor by implicit resoluঞon and recursively search for an Execu-

tionContext at the call site. This is what the expansion might look like:

http://typelevel.org/cats/api/cats/instances/

3.6. CONTRAVARIANT AND INVARIANT FUNCTORS 61

// We write this:

Functor[Future]

// The compiler expands to this first:

Functor[Future](futureFunctor)

// And then to this:

Functor[Future](futureFunctor(executionContext))

3.5.4 Exercise: Branching out with Functors

Write a Functor for the following binary tree data type. Verify that the code
works as expected on instances of Branch and Leaf:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])

extends Tree[A]

final case class Leaf[A](value: A) extends Tree[A]

See the soluঞon

3.6 Contravariant and Invariant Functors

As we have seen, we can think of Functor's map method as “appending” a
transformaঞon to a chain. We’re now going to look at two other type classes,
one represenঞng prepending operaঞons to a chain, and one represenঞng build-
ing a bidirecࢼonal chain of operaঞons. These are called contravariant and invari-
ant functors respecঞvely.

This Secࢼon is Opࢼonal!

You don’t need to know about contravariant and invariant functors to
understand monads, which are the most important pa�ern in this book
and the focus of the next chapter. However, contravariant and invariant

62 CHAPTER 3. FUNCTORS

F[B] F[A]A => B

contramap

Figure 3.5: Type chart: the contramap method

do come in handy in our discussion of Semigroupal and Applicative
in Chapter 6.

If you want to move on to monads now, feel free to skip straight to
Chapter 4. Come back here before you read Chapter 6.

3.6.1 Contravariant Functors and the contramapMethod

The first of our type classes, the contravariant functor, provides an operaঞon
called contramap that represents “prepending” an operaঞon to a chain. The
general type signature is shown in Figure 3.5.

The contramapmethod only makes sense for data types that represent trans-
formaࢼons. For example, we can’t define contramap for an Option because
there is no way of feeding a value in an Option[B] backwards through a func-
ঞon A => B. However, we can define contramap for the Printable type
class we discussed in Chapter 1:

trait Printable[A] {

def format(value: A): String

}

A Printable[A] represents a transformaঞon from A to String. Its con-
tramap method accepts a funcঞon func of type B => A and creates a new
Printable[B]:

trait Printable[A] {

def format(value: A): String

3.6. CONTRAVARIANT AND INVARIANT FUNCTORS 63

def contramap[B](func: B => A): Printable[B] =

???

}

def format[A](value: A)(implicit p: Printable[A]): String =

p.format(value)

3.6.1.1 Exercise: Showing off with Contramap

Implement the contramap method for Printable above. Start with the fol-
lowing code template and replace the ??? with a working method body:

trait Printable[A] {

def format(value: A): String

def contramap[B](func: B => A): Printable[B] =

new Printable[B] {

def format(value: B): String =

???

}

}

If you get stuck, think about the types. You need to turn value, which is of
type B, into a String. What funcঞons and methods do you have available and
in what order do they need to be combined?

See the soluঞon

For tesঞng purposes, let’s define some instances of Printable for String
and Boolean:

implicit val stringPrintable: Printable[String] =

new Printable[String] {

def format(value: String): String =

"\"" + value + "\""

}

implicit val booleanPrintable: Printable[Boolean] =

new Printable[Boolean] {

64 CHAPTER 3. FUNCTORS

def format(value: Boolean): String =

if(value) "yes" else "no"

}

format("hello")

// res3: String = "hello"

format(true)

// res4: String = yes

Now define an instance of Printable for the following Box case class. You’ll
need to write this as an implicit def as described in Secঞon 1.2.3:

final case class Box[A](value: A)

Rather than wriঞng out the complete definiঞon from scratch (new Print-

able[Box] etc…), create your instance from an exisঞng instance using con-
tramap.

See the soluঞon

Your instance should work as follows:

format(Box("hello world"))

// res5: String = "hello world"

format(Box(true))

// res6: String = yes

If we don’t have a Printable for the type inside the Box, calls to format

should fail to compile:

format(Box(123))

// <console>:21: error: could not find implicit value for parameter p:

Printable[Box[Int]]

// format(Box(123))

// ^

3.6. CONTRAVARIANT AND INVARIANT FUNCTORS 65

F[A] F[B]A => B

,

B => A

imap

Figure 3.6: Type chart: the imap method

3.6.2 Invariant functors and the imapmethod

Invariant functors implement a method called imap that is informally equiva-
lent to a combinaঞon of map and contramap. If map generates new type class
instances by appending a funcঞon to a chain, and contramap generates them
by prepending an operaঞon to a chain, imap generates them via a pair of bidi-
recঞonal transformaঞons.

The most intuiঞve examples of this are a type class that represents encoding
and decoding as some data type, such as Play JSON’s Format and scodec’s
Codec. We can build our own Codec by enhancing Printable to support
encoding and decoding to/from a String:

trait Codec[A] {

def encode(value: A): String

def decode(value: String): A

def imap[B](dec: A => B, enc: B => A): Codec[B] = ???

}

def encode[A](value: A)(implicit c: Codec[A]): String =

c.encode(value)

def decode[A](value: String)(implicit c: Codec[A]): A =

c.decode(value)

The type chart for imap is shown in Figure 3.6. If we have a Codec[A] and a
pair of funcঞons A => B and B => A, the imap method creates a Codec[B]:

As an example use case, imagine we have a basic Codec[String], whose
encode and decode methods are both a no-op:

https://www.playframework.com/documentation/2.6.x/ScalaJsonCombinators#Format
http://scodec.org/guide/Core+Algebra.html#Codec

66 CHAPTER 3. FUNCTORS

implicit val stringCodec: Codec[String] =

new Codec[String] {

def encode(value: String): String = value

def decode(value: String): String = value

}

We can construct many useful Codecs for other types by building off of
stringCodec using imap:

implicit val intCodec: Codec[Int] =

stringCodec.imap(_.toInt, _.toString)

implicit val booleanCodec: Codec[Boolean] =

stringCodec.imap(_.toBoolean, _.toString)

Coping with Failure

Note that the decode method of our Codec type class doesn’t account
for failures. If we want to model more sophisঞcated relaঞonships we
can move beyond functors to look at lenses and opࢼcs.

Opঞcs are beyond the scope of this book. However, Julien Truffaut’s
library Monocle provides a great starঞng point for further invesঞgaঞon.

3.6.2.1 Transformaঞve Thinking with imap

Implement the imap method for Codec above.

See the soluঞon

Demonstrate your imap method works by creaঞng a Codec for Double.

See the soluঞon

Finally, implement a Codec for the following Box type:

case class Box[A](value: A)

See the soluঞon

Your instances should work as follows:

http://julien-truffaut.github.io/Monocle/

3.6. CONTRAVARIANT AND INVARIANT FUNCTORS 67

encode(123.4)

// res0: String = 123.4

decode[Double]("123.4")

// res1: Double = 123.4

encode(Box(123.4))

// res2: String = 123.4

decode[Box[Double]]("123.4")

// res3: Box[Double] = Box(123.4)

What’s With the Names?

What’s the relaঞonship between the terms “contravariance”, “invari-
ance”, and “covariance” and these different kinds of functor?

If you recall from Secঞon 1.6.1, variance affects subtyping, which is es-
senঞally our ability to use a value of one type in place of a value of
another type without breaking the code.

Subtyping can be viewed as a conversion. If B is a subtype of A, we can
always convert a B to an A.

Equivalently we could say that B is a subtype of A if there exists a func-
ঞon A => B. A standard covariant functor captures exactly this. If F is
a covariant functor, wherever we have an F[A] and a conversion A =>

B we can always convert to an F[B].

A contravariant functor captures the opposite case. If F is a contravari-
ant functor, whenever we have a F[A] and a conversion B => Awe can
convert to an F[B].

Finally, invariant functors capture the case where we can convert from
F[A] to F[B] via a funcঞon A => B and vice versa via a funcঞon B =>

A.

68 CHAPTER 3. FUNCTORS

3.7 Contravariant and Invariant in Cats

Let’s look at the implementaঞon of contravariant and invariant functors in Cats,
provided by the cats.Contravariant and cats.Invariant type classes.
Here’s a simplified version of the code:

trait Contravariant[F[_]] {

def contramap[A, B](fa: F[A])(f: B => A): F[B]

}

trait Invariant[F[_]] {

def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]

}

3.7.1 Contravariant in Cats

We can summon instances of Contravariant using the Contravari-

ant.apply method. Cats provides instances for data types that consume
parameters, including Eq, Show, and Function1. Here’s an example:

import cats.Contravariant

import cats.Show

import cats.instances.string._

val showString = Show[String]

val showSymbol = Contravariant[Show].

contramap(showString)((sym: Symbol) => s"'${sym.name}")

showSymbol.show('dave)

// res2: String = 'dave

More conveniently, we can use cats.syntax.contravariant, which pro-
vides a contramap extension method:

import cats.syntax.contravariant._ // for contramap

showString.contramap[Symbol](_.name).show('dave)

http://typelevel.org/cats/api/cats/Contravariant.html
http://typelevel.org/cats/api/cats/Invariant.html
http://typelevel.org/cats/api/cats/syntax/package$$contravariant$

3.7. CONTRAVARIANT AND INVARIANT IN CATS 69

// res3: String = dave

3.7.2 Invariant in Cats

Among other types, Cats provides an instance of Invariant for Monoid. This
is a li�le different from the Codec example we introduced in Secঞon 3.6.2. If
you recall, this is what Monoid looks like:

package cats

trait Monoid[A] {

def empty: A

def combine(x: A, y: A): A

}

Imagine we want to produce a Monoid for Scala’s Symbol type. Cats doesn’t
provide a Monoid for Symbol but it does provide a Monoid for a similar type:
String. We can write our new semigroup with an empty method that relies
on the empty String, and a combine method that works as follows:

1. accept two Symbols as parameters;
2. convert the Symbols to Strings;
3. combine the Strings using Monoid[String];
4. convert the result back to a Symbol.

We can implement combine using imap, passing funcঞons of type String =>

Symbol and Symbol => String as parameters. Here’ the code, wri�en out
using the imap extension method provided by cats.syntax.invariant:

import cats.Monoid

import cats.instances.string._ // for Monoid

import cats.syntax.invariant._ // for imap

import cats.syntax.semigroup._ // for |+|

implicit val symbolMonoid: Monoid[Symbol] =

Monoid[String].imap(Symbol.apply)(_.name)

http://www.scala-lang.org/api/2.12.1/scala/Symbol.html

70 CHAPTER 3. FUNCTORS

Monoid[Symbol].empty

// res5: Symbol = '

'a |+| 'few |+| 'words

// res6: Symbol = 'afewwords

3.8 Aside: Parঞal Unificaঞon

In Secঞon 3.2 we saw a curious compiler error. The following code compiled
perfectly if we had the -Ypartial-unification compiler flag enabled:

import cats.Functor

import cats.instances.function._ // for Functor

import cats.syntax.functor._ // for map

val func1 = (x: Int) => x.toDouble

val func2 = (y: Double) => y * 2

val func3 = func1.map(func2)

// func3: Int => Double = scala.runtime.AbstractFunction1$$Lambda$7404

/290370740@246b5bc6

but failed if the flag was missing:

val func3 = func1.map(func2)

// <console>: error: value map is not a member of Int => Double

// val func3 = func1.map(func2)

^

Obviously “parঞal unificaঞon” is some kind of opঞonal compiler behaviour,
without which our code will not compile. We should take a moment to de-
scribe this behaviour and discuss some gotchas and workarounds.

3.8.1 Unifying Type Constructors

In order to compile an expression like func1.map(func2) above, the compiler
has to search for a Functor for Function1. However, Functor accepts a type
constructor with one parameter:

3.8. ASIDE: PARTIAL UNIFICATION 71

trait Functor[F[_]] {

def map[A, B](fa: F[A])(func: A => B): F[B]

}

and Function1 has two type parameters (the funcঞon argument and the re-
sult type):

trait Function1[-A, +B] {

def apply(arg: A): B

}

The compiler has to fix one of the two parameters of Function1 to create a
type constructor of the correct kind to pass to Functor. It has two opঞons to
choose from:

type F[A] = Int => A

type F[A] = A => Double

We know that the former of these is the correct choice. However, earlier ver-
sions of the Scala compiler were not able to make this inference. This infa-
mous limitaঞon, known as SI-2712, prevented the compiler from “unifying”
type constructors of different ariঞes. This compiler limitaঞon is now fixed,
although we have to enable the fix via a compiler flag in build.sbt:

scalacOptions += "-Ypartial-unification"

3.8.2 Le[-to-Right Eliminaঞon

The parঞal unificaঞon in the Scala compiler works by fixing type parameters
from le[to right. In the above example, the compiler fixes the Int in Int =>

Double and looks for a Functor for funcঞons of type Int => ?:

type F[A] = Int => A

val functor = Functor[F]

https://issues.scala-lang.org/browse/SI-2712

72 CHAPTER 3. FUNCTORS

This le[-to-right eliminaঞon works for a wide variety of common scenarios,
including Functors for types such as Function1 and Either:

import cats.instances.either._ // for Functor

val either: Either[String, Int] = Right(123)

// either: Either[String,Int] = Right(123)

either.map(_ + 1)

// res2: scala.util.Either[String,Int] = Right(124)

However, there are situaঞons where le[-to-right eliminaঞon is not the correct
choice. One example is the Or type in Scalacঞc, which is a convenঞonally le[-
biased equivalent of Either:

type PossibleResult = ActualResult Or Error

Another example is the Contravariant functor for Function1.

While the covariant Functor for Function1 implements andThen-style le[-
to-right funcঞon composiঞon, the Contravariant functor implements com-
pose-style right-to-le[composiঞon. In other words, the following expres-
sions are all equivalent:

val func3a: Int => Double =

a => func2(func1(a))

val func3b: Int => Double =

func2.compose(func1)

// Hypothetical example. This won't actually compile:

val func3c: Int => Double =

func2.contramap(func1)

If we try this for real, however, our code won’t compile:

import cats.syntax.contravariant._ // for contramap

val func3c = func2.contramap(func1)

http://scalactic.org

3.8. ASIDE: PARTIAL UNIFICATION 73

A => X B => XB => A

contramap

Figure 3.7: Type chart: contramapping over a Funcঞon1

// <console>:27: error: value contramap is not a member of Double =>

Double

// val func3c = func2.contramap(func1)

// ^

The problem here is that the Contravariant for Function1 fixes the return
type and leaves the parameter type varying, requiring the compiler to elimi-
nate type parameters from right to le[, as shown below and in Figure 3.7:

type F[A] = A => Double

The compiler fails simply because of its le[-to-right bias. We can prove this
by creaঞng a type alias that flips the parameters on Funcঞon1:

type <=[B, A] = A => B

type F[A] = Double <= A

If we re-type func2 as an instance of <=, we reset the required order of elimi-
naঞon and we can call contramap as desired:

val func2b: Double <= Double = func2

val func3c = func2b.contramap(func1)

// func3c: Double <= Int = scala.runtime.

AbstractFunction1$$Lambda$7404/290370740@2d89ff6b

The difference between func2 and func2b is purely syntacঞc—both refer to
the same value and the type aliases are otherwise completely compaঞble. In-
credibly, however, this simple rephrasing is enough to give the compiler the
hint it needs to solve the problem.

74 CHAPTER 3. FUNCTORS

It is rare that we have to do this kind of right-to-le[eliminaঞon. Most mulঞ-
parameter type constructors are designed to be right-biased, requiring the le[-
to-right eliminaঞon that is supported by the compiler out of the box. However,
it is useful to know about -Ypartial-unification and this quirk of elimina-
ঞon order in case you ever come across an odd scenario like the one above.

3.9 Summary

Functors represent sequencing behaviours. We covered three types of functor
in this chapter:

• Regular covariant Functors, with their mapmethod, represent the abil-
ity to apply funcঞons to a value in some context. Successive calls to
map apply these funcঞons in sequence, each accepঞng the result of its
predecessor as a parameter.

• Contravariant functors, with their contramapmethod, represent the
ability to “prepend” funcঞons to a funcঞon-like context. Successive
calls to contramap sequence these funcঞons in the opposite order to
map.

• Invariant functors, with their imap method, represent bidirecঞonal
transformaঞons.

Regular Functors are by far the most common of these type classes, but even
then it is rare to use them on their own. Functors form a foundaঞonal building
block of several more interesঞng abstracঞons that we use all the ঞme. In
the following chapters we will look at two of these abstracঞons: monads and
applicaࢼve functors.

Functors for collecঞons are extremely important, as they transform each el-
ement independently of the rest. This allows us to parallelise or distribute
transformaঞons on large collecঞons, a technique leveraged heavily in “map-
reduce” frameworks like Hadoop. We will invesঞgate this approach in more
detail in the Map-reduce case study later in the book.

http://hadoop.apache.org

3.9. SUMMARY 75

The Contravariant and Invariant type classes are less widely applicable
but are sঞll useful for building data types that represent transformaঞons. We
will revisit them to discuss the Semigroupal type class later in Chapter 6.

76 CHAPTER 3. FUNCTORS

Chapter 4

Monads

Monads are one of the most common abstracঞons in Scala. Many Scala pro-
grammers quickly become intuiঞvely familiar with monads, even if we don’t
know them by name.

Informally, a monad is anything with a constructor and a flatMapmethod. All
of the functors we saw in the last chapter are also monads, including Option,
List, and Future. We even have special syntax to support monads: for com-
prehensions. However, despite the ubiquity of the concept, the Scala standard
library lacks a concrete type to encompass “things that can be flatMapped”.
This type class is one of the benefits brought to us by Cats.

In this chapter we will take a deep dive into monads. We will start by moঞ-
vaঞng them with a few examples. We’ll proceed to their formal definiঞon and
their implementaঞon in Cats. Finally, we’ll tour some interesঞng monads that
you may not have seen, providing introducঞons and examples of their use.

4.1 What is a Monad?

This is the quesঞon that has been posed in a thousand blog posts, with ex-
planaঞons and analogies involving concepts as diverse as cats, Mexican food,
space suits full of toxic waste, and monoids in the category of endofunctors

77

78 CHAPTER 4. MONADS

(whatever thatmeans). We’re going to solve the problem of explainingmonads
once and for all by staঞng very simply:

A monad is a mechanism for sequencing computaࢼons.

That was easy! Problem solved, right? But then again, last chapter we said
functors were a control mechanism for exactly the same thing. Ok, maybe we
need some more discussion…

In Secঞon 3.1 we said that functors allow us to sequence computaঞons ignor-
ing some complicaঞon. However, functors are limited in that they only allow
this complicaঞon to occur once at the beginning of the sequence. They don’t
account further complicaঞons at each step in the sequence.

This is where monads come in. A monad’s flatMapmethod allows us to spec-
ify what happens next, taking into account an intermediate complicaঞon. The
flatMap method of Option takes intermediate Options into account. The
flatMap method of List handles intermediate Lists. And so on. In each
case, the funcঞon passed to flatMap specifies the applicaঞon-specific part
of the computaঞon, and flatMap itself takes care of the complicaঞon allow-
ing us to flatMap again. Let’s ground things by looking at some examples.

Opঞons

Option allows us to sequence computaঞons that may or may not return val-
ues. Here are some examples:

def parseInt(str: String): Option[Int] =

scala.util.Try(str.toInt).toOption

def divide(a: Int, b: Int): Option[Int] =

if(b == 0) None else Some(a / b)

Each of these methods may “fail” by returning None. The flatMap method
allows us to ignore this when we sequence operaঞons:

4.1. WHAT IS A MONAD? 79

Option[A]

flatMap

Option[B]A => Option[B]

Figure 4.1: Type chart: flatMap for Opঞon

def stringDivideBy(aStr: String, bStr: String): Option[Int] =

parseInt(aStr).flatMap { aNum =>

parseInt(bStr).flatMap { bNum =>

divide(aNum, bNum)

}

}

We know the semanঞcs well:

• the first call to parseInt returns a None or a Some;
• if it returns a Some, the flatMap method calls our funcঞon and passes

us the integer aNum;
• the second call to parseInt returns a None or a Some;
• if it returns a Some, the flatMap method calls our funcঞon and passes

us bNum;
• the call to divide returns a None or a Some, which is our result.

At each step, flatMap chooses whether to call our funcঞon, and our funcঞon
generates the next computaঞon in the sequence. This is shown in Figure 4.1.

The result of the computaঞon is an Option, allowing us to call flatMap again
and so the sequence conঞnues. This results in the fail-fast error handling be-
haviour that we know and love, where a None at any step results in a None
overall:

stringDivideBy("6", "2")

// res1: Option[Int] = Some(3)

stringDivideBy("6", "0")

// res2: Option[Int] = None

80 CHAPTER 4. MONADS

stringDivideBy("6", "foo")

// res3: Option[Int] = None

stringDivideBy("bar", "2")

// res4: Option[Int] = None

Every monad is also a functor (see below for proof), so we can rely on both
flatMap and map to sequence computaঞons that do and don’t introduce a
new monad. Plus, if we have both flatMap and map we can use for compre-
hensions to clarify the sequencing behaviour:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =

for {

aNum <- parseInt(aStr)

bNum <- parseInt(bStr)

ans <- divide(aNum, bNum)

} yield ans

Lists

When we first encounter flatMap as budding Scala developers, we tend to
think of it as a pa�ern for iteraঞng over Lists. This is reinforced by the syntax
of for comprehensions, which look very much like imperaঞve for loops:

for {

x <- (1 to 3).toList

y <- (4 to 5).toList

} yield (x, y)

// res5: List[(Int, Int)] = List((1,4), (1,5), (2,4), (2,5), (3,4),

(3,5))

However, there is another mental model we can apply that highlights the
monadic behaviour of List. If we think of Lists as sets of intermediate re-
sults, flatMap becomes a construct that calculates permutaঞons and combi-
naঞons.

For example, in the for comprehension above there are three possible values
of x and two possible values of y. This means there are six possible values

4.1. WHAT IS A MONAD? 81

of (x, y). flatMap is generaঞng these combinaঞons from our code, which
states the sequence of operaঞons:

• get x
• get y
• create a tuple (x, y)

Futures

Future is a monad that sequences computaঞons without worrying that they
are asynchronous:

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

def doSomethingLongRunning: Future[Int] = ???

def doSomethingElseLongRunning: Future[Int] = ???

def doSomethingVeryLongRunning: Future[Int] =

for {

result1 <- doSomethingLongRunning

result2 <- doSomethingElseLongRunning

} yield result1 + result2

Again, we specify the code to run at each step, and flatMap takes care of all
the horrifying underlying complexiঞes of thread pools and schedulers.

If you’ve made extensive use of Future, you’ll know that the code above is
running each operaঞon in sequence. This becomes clearer if we expand out
the for comprehension to show the nested calls to flatMap:

def doSomethingVeryLongRunning: Future[Int] =

doSomethingLongRunning.flatMap { result1 =>

doSomethingElseLongRunning.map { result2 =>

result1 + result2

}

}

82 CHAPTER 4. MONADS

Future[A] Future[B]A => Future[B]

flatMap

Figure 4.2: Type chart: flatMap for Future

Each Future in our sequence is created by a funcঞon that receives the result
from a previous Future. In other words, each step in our computaঞon can
only start once the previous step is finished. This is born out by the type chart
for flatMap in Figure 4.2, which shows the funcঞon parameter of type A =>

Future[B].

We can run futures in parallel, of course, but that is another story and shall be
told another ঞme. Monads are all about sequencing.

4.1.1 Definiঞon of a Monad

While we have only talked about flatMap above, monadic behaviour is for-
mally captured in two operaঞons:

• pure, of type A => F[A];
• flatMap¹, of type (F[A], A => F[B]) => F[B].

pure abstracts over constructors, providing a way to create a new monadic
context from a plain value. flatMap provides the sequencing step we have
already discussed, extracঞng the value from a context and generaঞng the next
context in the sequence. Here is a simplified version of the Monad type class
in Cats:

¹In some libraries and languages, notably Scalaz and Haskell, pure is referred to as point or
return and flatMap is referred to as bind or >>=. This is purely a difference in terminology.
We’ll use the term flatMap for compaঞbility with Cats and the Scala standard library.

4.1. WHAT IS A MONAD? 83

import scala.language.higherKinds

trait Monad[F[_]] {

def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

}

Monad Laws

pure and flatMap must obey a set of laws that allow us to sequence
operaঞons freely without unintended glitches and side-effects:

Le[idenࢼty: calling pure and transforming the result with func is the
same as calling func:

pure(a).flatMap(func) == func(a)

Right idenࢼty: passing pure to flatMap is the same as doing nothing:

m.flatMap(pure) == m

Associaࢼvity: flatMapping over two funcঞons f and g is the same as
flatMapping over f and then flatMapping over g:

m.flatMap(f).flatMap(g) == m.flatMap(x => f(x).flatMap(g))

4.1.2 Exercise: Geমng Func-y

Every monad is also a functor. We can define map in the same way for every
monad using the exisঞng methods, flatMap and pure:

import scala.language.higherKinds

trait Monad[F[_]] {

84 CHAPTER 4. MONADS

def pure[A](a: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =

???

}

Try defining map yourself now.

See the soluঞon

4.2 Monads in Cats

It’s ঞme to give monads our standard Cats treatment. As usual we’ll look at
the type class, instances, and syntax.

4.2.1 The Monad Type Class

The monad type class is cats.Monad. Monad extends two other type classes:
FlatMap, which provides the flatMapmethod, and Applicative, which pro-
vides pure. Applicative also extends Functor, which gives every Monad a
map method as we saw in the exercise above. We’ll discuss Applicatives in
Chapter 6.

Here are some examples using pure and flatMap, and map directly:

import cats.Monad

import cats.instances.option._ // for Monad

import cats.instances.list._ // for Monad

val opt1 = Monad[Option].pure(3)

// opt1: Option[Int] = Some(3)

val opt2 = Monad[Option].flatMap(opt1)(a => Some(a + 2))

// opt2: Option[Int] = Some(5)

val opt3 = Monad[Option].map(opt2)(a => 100 * a)

http://typelevel.org/cats/api/cats/Monad.html

4.2. MONADS IN CATS 85

// opt3: Option[Int] = Some(500)

val list1 = Monad[List].pure(3)

// list1: List[Int] = List(3)

val list2 = Monad[List].

flatMap(List(1, 2, 3))(a => List(a, a*10))

// list2: List[Int] = List(1, 10, 2, 20, 3, 30)

val list3 = Monad[List].map(list2)(a => a + 123)

// list3: List[Int] = List(124, 133, 125, 143, 126, 153)

Monad provides many other methods, including all of the methods from Func-

tor. See the scaladoc for more informaঞon.

4.2.2 Default Instances

Cats provides instances for all the monads in the standard library (Option,
List, Vector and so on) via cats.instances:

import cats.instances.option._ // for Monad

Monad[Option].flatMap(Option(1))(a => Option(a*2))

// res0: Option[Int] = Some(2)

import cats.instances.list._ // for Monad

Monad[List].flatMap(List(1, 2, 3))(a => List(a, a*10))

// res1: List[Int] = List(1, 10, 2, 20, 3, 30)

import cats.instances.vector._ // for Monad

Monad[Vector].flatMap(Vector(1, 2, 3))(a => Vector(a, a*10))

// res2: Vector[Int] = Vector(1, 10, 2, 20, 3, 30)

Cats also provides a Monad for Future. Unlike the methods on the Future

class itself, the pure and flatMapmethods on themonad can’t accept implicit
ExecutionContext parameters (because the parameters aren’t part of the
definiঞons in the Monad trait). To work around this, Cats requires us to have
an ExecutionContext in scope when we summon a Monad for Future:

http://typelevel.org/cats/api/cats/Monad.html
http://typelevel.org/cats/api/cats/instances/

86 CHAPTER 4. MONADS

import cats.instances.future._ // for Monad

import scala.concurrent._

import scala.concurrent.duration._

val fm = Monad[Future]

// <console>:37: error: could not find implicit value for parameter

instance: cats.Monad[scala.concurrent.Future]

// val fm = Monad[Future]

// ^

Bringing the ExecutionContext into scope fixes the implicit resoluঞon re-
quired to summon the instance:

import scala.concurrent.ExecutionContext.Implicits.global

val fm = Monad[Future]

// fm: cats.Monad[scala.concurrent.Future] = cats.instances.

FutureInstances$$anon$1@71738c4a

The Monad instance uses the captured ExecutionContext for subsequent
calls to pure and flatMap:

val future = fm.flatMap(fm.pure(1))(x => fm.pure(x + 2))

Await.result(future, 1.second)

// res3: Int = 3

In addiঞon to the above, Cats provides a host of new monads that we don’t
have in the standard library. We’ll familiarise ourselves with some of these in
a moment.

4.2.3 Monad Syntax

The syntax for monads comes from three places:

• cats.syntax.flatMap provides syntax for flatMap;
• cats.syntax.functor provides syntax for map;

http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
http://typelevel.org/cats/api/cats/syntax/package$$functor$

4.2. MONADS IN CATS 87

• cats.syntax.applicative provides syntax for pure.

In pracঞce it’s o[en easier to import everything in one go from
cats.implicits. However, we’ll use the individual imports here for
clarity.

We can use pure to construct instances of a monad. We’ll o[en need to spec-
ify the type parameter to disambiguate the parঞcular instance we want.

import cats.instances.option._ // for Monad

import cats.instances.list._ // for Monad

import cats.syntax.applicative._ // for pure

1.pure[Option]

// res4: Option[Int] = Some(1)

1.pure[List]

// res5: List[Int] = List(1)

It’s difficult to demonstrate the flatMap and map methods directly on Scala
monads like Option and List, because they define their own explicit versions
of those methods. Instead we’ll write a generic funcঞon that performs a cal-
culaঞon on parameters that come wrapped in a monad of the user’s choice:

import cats.Monad

import cats.syntax.functor._ // for map

import cats.syntax.flatMap._ // for flatMap

import scala.language.higherKinds

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

a.flatMap(x => b.map(y => x*x + y*y))

import cats.instances.option._ // for Monad

import cats.instances.list._ // for Monad

sumSquare(Option(3), Option(4))

// res8: Option[Int] = Some(25)

sumSquare(List(1, 2, 3), List(4, 5))

// res9: List[Int] = List(17, 26, 20, 29, 25, 34)

http://typelevel.org/cats/api/cats/syntax/package$$applicative$
http://typelevel.org/cats/api/cats/implicits$.html

88 CHAPTER 4. MONADS

We can rewrite this code using for comprehensions. The compiler will “do the
right thing” by rewriঞng our comprehension in terms of flatMap and map and
inserঞng the correct implicit conversions to use our Monad:

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

for {

x <- a

y <- b

} yield x*x + y*y

sumSquare(Option(3), Option(4))

// res10: Option[Int] = Some(25)

sumSquare(List(1, 2, 3), List(4, 5))

// res11: List[Int] = List(17, 26, 20, 29, 25, 34)

That’s more or less everything we need to know about the generaliঞes of mon-
ads in Cats. Now let’s take a look at some useful monad instances that we
haven’t seen in the Scala standard library.

4.3 The Idenঞty Monad

In the previous secঞon we demonstrated Cats’ flatMap and map syntax by
wriঞng a method that abstracted over different monads:

import scala.language.higherKinds

import cats.Monad

import cats.syntax.functor._ // for map

import cats.syntax.flatMap._ // for flatMap

def sumSquare[F[_]: Monad](a: F[Int], b: F[Int]): F[Int] =

for {

x <- a

y <- b

} yield x*x + y*y

This method works well on Options and Lists but we can’t call it passing in
plain values:

4.3. THE IDENTITY MONAD 89

sumSquare(3, 4)

// <console>:22: error: no type parameters for method sumSquare: (a: F

[Int], b: F[Int])(implicit evidence$1: cats.Monad[F])F[Int] exist

so that it can be applied to arguments (Int, Int)

// --- because ---

// argument expression's type is not compatible with formal parameter

type;

// found : Int

// required: ?F[Int]

// sumSquare(3, 4)

// ^

// <console>:22: error: type mismatch;

// found : Int(3)

// required: F[Int]

// sumSquare(3, 4)

// ^

// <console>:22: error: type mismatch;

// found : Int(4)

// required: F[Int]

// sumSquare(3, 4)

// ^

It would be incredibly useful if we could use sumSquarewith parameters that
were either in a monad or not in a monad at all. This would allow us to abstract
over monadic and non-monadic code. Fortunately, Cats provides the Id type
to bridge the gap:

import cats.Id

sumSquare(3 : Id[Int], 4 : Id[Int])

// res2: cats.Id[Int] = 25

Id allows us to call our monadic method using plain values. However, the
exact semanঞcs are difficult to understand. We cast the parameters to sum-

Square as Id[Int] and received an Id[Int] back as a result!

What’s going on? Here is the definiঞon of Id to explain:

90 CHAPTER 4. MONADS

package cats

type Id[A] = A

Id is actually a type alias that turns an atomic type into a single-parameter
type constructor. We can cast any value of any type to a corresponding Id:

"Dave" : Id[String]

// res3: cats.Id[String] = Dave

123 : Id[Int]

// res4: cats.Id[Int] = 123

List(1, 2, 3) : Id[List[Int]]

// res5: cats.Id[List[Int]] = List(1, 2, 3)

Cats provides instances of various type classes for Id, including Functor and
Monad. These let us call map, flatMap, and pure passing in plain values:

val a = Monad[Id].pure(3)

// a: cats.Id[Int] = 3

val b = Monad[Id].flatMap(a)(_ + 1)

// b: cats.Id[Int] = 4

import cats.syntax.functor._ // for map

import cats.syntax.flatMap._ // for flatMap

for {

x <- a

y <- b

} yield x + y

// res6: cats.Id[Int] = 7

The ability to abstract over monadic and non-monadic code is extremely pow-
erful. For example, we can run code asynchronously in producঞon using Fu-
ture and synchronously in test using Id. We’ll see this in our first case study
in Chapter 8.

4.4. EITHER 91

4.3.1 Exercise: Monadic Secret Idenঞঞes

Implement pure, map, and flatMap for Id! What interesঞng discoveries do
you uncover about the implementaঞon?

See the soluঞon

4.4 Either

Let’s look at another useful monad: the Either type from the Scala standard
library. In Scala 2.11 and earlier, many people didn’t consider Either a monad
because it didn’t have map and flatMap methods. In Scala 2.12, however,
Either became right biased.

4.4.1 Le[and Right Bias

In Scala 2.11, Either had no default map or flatMap method. This made the
Scala 2.11 version of Either inconvenient to use in for comprehensions. We
had to insert calls to .right in every generator clause:

val either1: Either[String, Int] = Right(10)

val either2: Either[String, Int] = Right(32)

for {

a <- either1.right

b <- either2.right

} yield a + b

// res0: scala.util.Either[String,Int] = Right(42)

In Scala 2.12, Either was redesigned. The modern Either makes the deci-
sion that the right side represents the success case and thus supports map and
flatMap directly. This makes for comprehensions much more pleasant:

for {

a <- either1

b <- either2

92 CHAPTER 4. MONADS

} yield a + b

// res1: scala.util.Either[String,Int] = Right(42)

Cats back-ports this behaviour to Scala 2.11 via the cats.syntax.either

import, allowing us to use right-biased Either in all supported versions of
Scala. In Scala 2.12+ we can either omit this import or leave it in place without
breaking anything:

import cats.syntax.either._ // for map and flatMap

for {

a <- either1

b <- either2

} yield a + b

4.4.2 Creaঞng Instances

In addiঞon to creaঞng instances of Left and Right directly, we
can also import the asLeft and asRight extension methods from
cats.syntax.either:

import cats.syntax.either._ // for asRight

val a = 3.asRight[String]

// a: Either[String,Int] = Right(3)

val b = 4.asRight[String]

// b: Either[String,Int] = Right(4)

for {

x <- a

y <- b

} yield x*x + y*y

// res4: scala.util.Either[String,Int] = Right(25)

These “smart constructors” have advantages over Left.apply and
Right.apply because they return results of type Either instead of Left
and Right. This helps avoid type inference bugs caused by over-narrowing,
like the bug in the example below:

http://typelevel.org/cats/api/cats/syntax/package$$either$

4.4. EITHER 93

def countPositive(nums: List[Int]) =

nums.foldLeft(Right(0)) { (accumulator, num) =>

if(num > 0) {

accumulator.map(_ + 1)

} else {

Left("Negative. Stopping!")

}

}

// <console>:21: error: type mismatch;

// found : scala.util.Either[Nothing,Int]

// required: scala.util.Right[Nothing,Int]

// accumulator.map(_ + 1)

// ^

// <console>:23: error: type mismatch;

// found : scala.util.Left[String,Nothing]

// required: scala.util.Right[Nothing,Int]

// Left("Negative. Stopping!")

// ^

This code fails to compile for two reasons:

1. the compiler infers the type of the accumulator as Right instead of
Either;

2. we didn’t specify type parameters for Right.apply so the compiler
infers the le[parameter as Nothing.

Switching to asRight avoids both of these problems. asRight has a return
type of Either, and allows us to completely specify the type with only one
type parameter:

def countPositive(nums: List[Int]) =

nums.foldLeft(0.asRight[String]) { (accumulator, num) =>

if(num > 0) {

accumulator.map(_ + 1)

} else {

Left("Negative. Stopping!")

}

}

countPositive(List(1, 2, 3))

94 CHAPTER 4. MONADS

// res5: Either[String,Int] = Right(3)

countPositive(List(1, -2, 3))

// res6: Either[String,Int] = Left(Negative. Stopping!)

cats.syntax.either adds some useful extension methods to the Either

companion object. The catchOnly and catchNonFatal methods are great
for capturing Exceptions as instances of Either:

Either.catchOnly[NumberFormatException]("foo".toInt)

// res7: Either[NumberFormatException,Int] = Left(java.lang.

NumberFormatException: For input string: "foo")

Either.catchNonFatal(sys.error("Badness"))

// res8: Either[Throwable,Nothing] = Left(java.lang.RuntimeException:

Badness)

There are also methods for creaঞng an Either from other data types:

Either.fromTry(scala.util.Try("foo".toInt))

// res9: Either[Throwable,Int] = Left(java.lang.NumberFormatException:

For input string: "foo")

Either.fromOption[String, Int](None, "Badness")

// res10: Either[String,Int] = Left(Badness)

4.4.3 Transforming Eithers

cats.syntax.either also adds some useful methods for instances of Ei-
ther. We can use orElse and getOrElse to extract values from the right
side or return a default:

import cats.syntax.either._

"Error".asLeft[Int].getOrElse(0)

// res11: Int = 0

4.4. EITHER 95

"Error".asLeft[Int].orElse(2.asRight[String])

// res12: Either[String,Int] = Right(2)

The ensuremethod allows us to check whether the right-hand value saঞsfies
a predicate:

-1.asRight[String].ensure("Must be non-negative!")(_ > 0)

// res13: Either[String,Int] = Left(Must be non-negative!)

The recover and recoverWith methods provide similar error handling to
their namesakes on Future:

"error".asLeft[Int].recover {

case str: String => -1

}

// res14: Either[String,Int] = Right(-1)

"error".asLeft[Int].recoverWith {

case str: String => Right(-1)

}

// res15: Either[String,Int] = Right(-1)

There are leftMap and bimap methods to complement map:

"foo".asLeft[Int].leftMap(_.reverse)

// res16: Either[String,Int] = Left(oof)

6.asRight[String].bimap(_.reverse, _ * 7)

// res17: Either[String,Int] = Right(42)

"bar".asLeft[Int].bimap(_.reverse, _ * 7)

// res18: Either[String,Int] = Left(rab)

The swap method lets us exchange le[for right:

123.asRight[String]

// res19: Either[String,Int] = Right(123)

96 CHAPTER 4. MONADS

123.asRight[String].swap

// res20: scala.util.Either[Int,String] = Left(123)

Finally, Cats adds a host of conversion methods: toOption, toList, toTry,
toValidated, and so on.

4.4.4 Error Handling

Either is typically used to implement fail-fast error handling. We sequence
computaঞons using flatMap as usual. If one computaঞon fails, the remaining
computaঞons are not run:

for {

a <- 1.asRight[String]

b <- 0.asRight[String]

c <- if(b == 0) "DIV0".asLeft[Int]

else (a / b).asRight[String]

} yield c * 100

// res21: scala.util.Either[String,Int] = Left(DIV0)

When using Either for error handling, we need to determine what type we
want to use to represent errors. We could use Throwable for this:

type Result[A] = Either[Throwable, A]

This gives us similar semanঞcs to scala.util.Try. The problem, however, is
that Throwable is an extremely broad type. We have (almost) no idea about
what type of error occurred.

Another approach is to define an algebraic data type to represent errors that
may occur in our program:

sealed trait LoginError extends Product with Serializable

final case class UserNotFound(username: String)

extends LoginError

final case class PasswordIncorrect(username: String)

4.4. EITHER 97

extends LoginError

case object UnexpectedError extends LoginError

case class User(username: String, password: String)

type LoginResult = Either[LoginError, User]

This approach solves the problems we sawwith Throwable. It gives us a fixed
set of expected error types and a catch-all for anything else that we didn’t ex-
pect. We also get the safety of exhausঞvity checking on any pa�ern matching
we do:

// Choose error-handling behaviour based on type:

def handleError(error: LoginError): Unit =

error match {

case UserNotFound(u) =>

println(s"User not found: $u")

case PasswordIncorrect(u) =>

println(s"Password incorrect: $u")

case UnexpectedError =>

println(s"Unexpected error")

}

val result1: LoginResult = User("dave", "passw0rd").asRight

// result1: LoginResult = Right(User(dave,passw0rd))

val result2: LoginResult = UserNotFound("dave").asLeft

// result2: LoginResult = Left(UserNotFound(dave))

result1.fold(handleError, println)

// User(dave,passw0rd)

result2.fold(handleError, println)

// User not found: dave

98 CHAPTER 4. MONADS

4.4.5 Exercise: What is Best?

Is the error handling strategy in the previous examples well suited for all pur-
poses? What other features might we want from error handling?

See the soluঞon

4.5 Aside: Error Handling and MonadError

Cats provides an addiঞonal type class called MonadError that abstracts over
Either-like data types that are used for error handling. MonadError provides
extra operaঞons for raising and handling errors.

This Secࢼon is Opࢼonal!

You won’t need to use MonadError unless you need to abstract over
error handling monads. For example, you can use MonadError to ab-
stract over Future and Try, or over Either and EitherT (which we
will meet in Chapter 5).

If you don’t need this kind of abstracঞon right now, feel free to skip
onwards to Secঞon 4.6.

4.5.1 The MonadError Type Class

Here is a simplified version of the definiঞon of MonadError:

package cats

trait MonadError[F[_], E] extends Monad[F] {

// Lift an error into the `F` context:

def raiseError[A](e: E): F[A]

// Handle an error, potentially recovering from it:

def handleError[A](fa: F[A])(f: E => A): F[A]

// Test an instance of `F`,

4.5. ASIDE: ERROR HANDLING AND MONADERROR 99

// failing if the predicate is not satisfied:

def ensure[A](fa: F[A])(e: E)(f: A => Boolean): F[A]

}

MonadError is defined in terms of two type parameters:

• F is the type of the monad;
• E is the type of error contained within F.

To demonstrate how these parameters fit together, here’s an example where
we instanঞate the type class for Either:

import cats.MonadError

import cats.instances.either._ // for MonadError

type ErrorOr[A] = Either[String, A]

val monadError = MonadError[ErrorOr, String]

ApplicaࢼveError

In reality, MonadError extends another type class called Applica-

tiveError. However, we won’t encounter Applicatives unঞl Chap-
ter 6. The semanঞcs are the same for each type class so we can ignore
this detail for now.

4.5.2 Raising and Handling Errors

The two most important methods of MonadError are raiseError and han-
dleError. raiseError is like the pure method for Monad except that it cre-
ates an instance represenঞng a failure:

val success = monadError.pure(42)

// success: ErrorOr[Int] = Right(42)

100 CHAPTER 4. MONADS

val failure = monadError.raiseError("Badness")

// failure: ErrorOr[Nothing] = Left(Badness)

handleError is the complement of raiseError. It allows us to consume an
error and (possibly) turn it into a success, similar to the recover method of
Future:

monadError.handleError(failure) {

case "Badness" =>

monadError.pure("It's ok")

case other =>

monadError.raiseError("It's not ok")

}

// res2: ErrorOr[ErrorOr[String]] = Right(Right(It's ok))

There is also a third useful method called ensure that implements filter-
like behaviour. We test the value of a successful monad with a predicate and
specify an error to raise if the predicate returns false:

import cats.syntax.either._ // for asRight

monadError.ensure(success)("Number too low!")(_ > 1000)

// res3: ErrorOr[Int] = Left(Number too low!)

Cats provides syntax for raiseError and handleEr-

ror via cats.syntax.applicativeError and ensure via
cats.syntax.monadError:

import cats.syntax.applicative._ // for pure

import cats.syntax.applicativeError._ // for raiseError etc

import cats.syntax.monadError._ // for ensure

val success = 42.pure[ErrorOr]

// success: ErrorOr[Int] = Right(42)

val failure = "Badness".raiseError[ErrorOr, Int]

// failure: ErrorOr[Int] = Left(Badness)

http://typelevel.org/cats/api/cats/syntax/package$$applicativeError$
http://typelevel.org/cats/api/cats/syntax/package$$monadError$

4.6. THE EVAL MONAD 101

success.ensure("Number to low!")(_ > 1000)

// res4: Either[String,Int] = Left(Number to low!)

There are other useful variants of these methods. See the source of
cats.MonadError and cats.ApplicativeError for more informaঞon.

4.5.3 Instances of MonadError

Cats provides instances of MonadError for numerous data types including
Either, Future, and Try. The instance for Either is customisable to any
error type, whereas the instances for Future and Try always represent errors
as Throwables:

import scala.util.Try

import cats.instances.try_._ // for MonadError

val exn: Throwable =

new RuntimeException("It's all gone wrong")

exn.raiseError[Try, Int]

// res6: scala.util.Try[Int] = Failure(java.lang.RuntimeException: It'

s all gone wrong)

4.5.4 Exercise: Abstracঞng

4.6 The Eval Monad

cats.Eval is a monad that allows us to abstract over differentmodels of eval-
uaࢼon. We typically hear of two such models: eager and lazy. Eval throws in
a further disঞncঞon of whether or not a result is memoized.

4.6.1 Eager, Lazy, Memoized, Oh My!

What do these terms mean?

http://typelevel.org/cats/api/cats/MonadError.html
http://typelevel.org/cats/api/cats/ApplicativeError.html
http://typelevel.org/cats/api/cats/Eval.html

102 CHAPTER 4. MONADS

Eager computaঞons happen immediately whereas lazy computaঞons happen
on access. Memoized computaঞons are run once on first access, a[er which
the results are cached.

For example, Scala vals are eager and memoized. We can see this using a
computaঞon with a visible side-effect. In the following example, the code
to compute the value of x happens at the definiঞon site rather than on ac-
cess (eager). Accessing x recalls the stored value without re-running the code
(memoized).

val x = {

println("Computing X")

math.random

}

// Computing X

// x: Double = 0.0657586956104027

x // first access

// res0: Double = 0.0657586956104027

x // second access

// res1: Double = 0.0657586956104027

By contrast, defs are lazy and not memoized. The code to compute y below is
not run unঞl we access it (lazy), and is re-run on every access (not memoized):

def y = {

println("Computing Y")

math.random

}

// y: Double

y // first access

// Computing Y

// res2: Double = 0.9184384488125138

y // second access

// Computing Y

// res3: Double = 0.20807113447602488

Last but not least, lazy vals are lazy and memoized. The code to compute

4.6. THE EVAL MONAD 103

z below is not run unঞl we access it for the first ঞme (lazy). The result is then
cached and re-used on subsequent accesses (memoized):

lazy val z = {

println("Computing Z")

math.random

}

// z: Double = <lazy>

z // first access

// Computing Z

// res4: Double = 0.1783014120350146

z // second access

// res5: Double = 0.1783014120350146

4.6.2 Eval’s Models of Evaluaঞon

Eval has three subtypes: Now, Later, and Always. We construct these with
three constructor methods, which create instances of the three classes and
return them typed as Eval:

import cats.Eval

val now = Eval.now(math.random + 1000)

// now: cats.Eval[Double] = Now(1000.885603643474)

val later = Eval.later(math.random + 2000)

// later: cats.Eval[Double] = cats.Later@679671c

val always = Eval.always(math.random + 3000)

// always: cats.Eval[Double] = cats.Always@396fe27e

We can extract the result of an Eval using its value method:

now.value

// res6: Double = 1000.885603643474

later.value

104 CHAPTER 4. MONADS

// res7: Double = 2000.1770874422618

always.value

// res8: Double = 3000.637554292833

Each type of Eval calculates its result using one of the evaluaঞon models
defined above. Eval.now captures a value right now. Its semanঞcs are similar
to a val—eager and memoized:

val x = Eval.now {

println("Computing X")

math.random

}

// Computing X

// x: cats.Eval[Double] = Now(0.08016953141772554)

x.value // first access

// res9: Double = 0.08016953141772554

x.value // second access

// res10: Double = 0.08016953141772554

Eval.always captures a lazy computaঞon, similar to a def:

val y = Eval.always {

println("Computing Y")

math.random

}

// y: cats.Eval[Double] = cats.Always@471ed97c

y.value // first access

// Computing Y

// res11: Double = 0.9455576109936167

y.value // second access

// Computing Y

// res12: Double = 0.5996336572386713

Finally, Eval.later captures a lazy, memoized computaঞon, similar to a lazy
val:

4.6. THE EVAL MONAD 105

val z = Eval.later {

println("Computing Z")

math.random

}

// z: cats.Eval[Double] = cats.Later@78b2f4e7

z.value // first access

// Computing Z

// res13: Double = 0.3353381222323517

z.value // second access

// res14: Double = 0.3353381222323517

The three behaviours are summarized below:

Scala Cats Properঞes

val Now eager, memoized
lazy val Later lazy, memoized
def Always lazy, not memoized

4.6.3 Eval as a Monad

Like all monads, Eval's map and flatMap methods add computaঞons to a
chain. In this case, however, the chain is stored explicitly as a list of funcঞons.
The funcঞons aren’t run unঞl we call Eval's value method to request a re-
sult:

val greeting = Eval.

always { println("Step 1"); "Hello" }.

map { str => println("Step 2"); s"$str world" }

// greeting: cats.Eval[String] = cats.Eval$$anon$8@157f7b8c

greeting.value

// Step 1

// Step 2

// res15: String = Hello world

Note that, while the semanঞcs of the originaঞng Eval instances are main-

106 CHAPTER 4. MONADS

tained, mapping funcঞons are always called lazily on demand (def semanঞcs):

val ans = for {

a <- Eval.now { println("Calculating A"); 40 }

b <- Eval.always { println("Calculating B"); 2 }

} yield {

println("Adding A and B")

a + b

}

// Calculating A

// ans: cats.Eval[Int] = cats.Eval$$anon$8@37c1363d

ans.value // first access

// Calculating B

// Adding A and B

// res16: Int = 42

ans.value // second access

// Calculating B

// Adding A and B

// res17: Int = 42

Eval has a memoize method that allows us to memoize a chain of computa-
ঞons. The result of the chain up to the call to memoize is cached, whereas
calculaঞons a[er the call retain their original semanঞcs:

val saying = Eval.

always { println("Step 1"); "The cat" }.

map { str => println("Step 2"); s"$str sat on" }.

memoize.

map { str => println("Step 3"); s"$str the mat" }

// saying: cats.Eval[String] = cats.Eval$$anon$8@2196a9a1

saying.value // first access

// Step 1

// Step 2

// Step 3

// res18: String = The cat sat on the mat

saying.value // second access

// Step 3

4.6. THE EVAL MONAD 107

// res19: String = The cat sat on the mat

4.6.4 Trampolining and Eval.defer

One useful property of Eval is that its map and flatMap methods are tram-
polined. This means we can nest calls to map and flatMap arbitrarily without
consuming stack frames. We call this property “stack safety”.

For example, consider this funcঞon for calculaঞng factorials:

def factorial(n: BigInt): BigInt =

if(n == 1) n else n * factorial(n - 1)

It is relaঞvely easy to make this method stack overflow:

factorial(50000)

// java.lang.StackOverflowError

// ...

We can rewrite the method using Eval to make it stack safe:

def factorial(n: BigInt): Eval[BigInt] =

if(n == 1) {

Eval.now(n)

} else {

factorial(n - 1).map(_ * n)

}

factorial(50000).value

// java.lang.StackOverflowError

// ...

Oops! That didn’t work—our stack sঞll blew up! This is becausewe’re sঞll mak-
ing all the recursive calls to factorial before we start working with Eval's
map method. We can work around this using Eval.defer, which takes an ex-
isঞng instance of Eval and defers its evaluaঞon. The defer method is tram-
polined like map and flatMap, so we can use it as a quick way to make an
exisঞng operaঞon stack safe:

108 CHAPTER 4. MONADS

def factorial(n: BigInt): Eval[BigInt] =

if(n == 1) {

Eval.now(n)

} else {

Eval.defer(factorial(n - 1).map(_ * n))

}

factorial(50000).value

// res20: BigInt =

3347320509597144836915476094071486477912773223810454807730100321990168022144365641697381231071916930879848043819020829989361638474306669374263057284536378403832575628212335998726824407823597235604085385444137338375356856553637116832740516607615516592140615607546129420179056747966549862924222002254155351071815980161547645181061667497021799653747497254113933819163882350063030764425687485727139465108190987490964348626858922980787003103100896286115455397991161294065232739697149721103126114286073379350968783735581183060955172890660383359253285163596173088527981195739949529945030635444247849264102899006955963488352990055767655092917547592078804480762256241516513045904631806851740676636001232955645406572422517547342818312102919571559378742364111719451383859303800641313297631250...

Eval is a useful tool to enforce stack safety when working on very large com-
putaঞons and data structures. However, we must bear in mind that trampolin-
ing is not free. It avoids consuming stack by creaঞng a chain of funcঞon objects
on the heap. There are sঞll limits on how deeply we can nest computaঞons,
but they are bounded by the size of the heap rather than the stack.

4.6.5 Exercise: Safer Folding using Eval

The naive implementaঞon of foldRight below is not stack safe. Make it so
using Eval:

def foldRight[A, B](as: List[A], acc: B)(fn: (A, B) => B): B =

as match {

case head :: tail =>

fn(head, foldRight(tail, acc)(fn))

case Nil =>

acc

}

See the soluঞon

4.7 The Writer Monad

cats.data.Writer is a monad that lets us carry a log along with a compu-
taঞon. We can use it to record messages, errors, or addiঞonal data about a
computaঞon, and extract the log alongside the final result.

http://typelevel.org/cats/api/cats/data/#Writer%5BS,A%5D=cats.data.WriterT%5Bcats.Eval,S,A%5D

4.7. THE WRITER MONAD 109

One common use for Writers is recording sequences of steps in mulঞ-
threaded computaঞons where standard imperaঞve logging techniques can re-
sult in interleaved messages from different contexts. With Writer the log for
the computaঞon is ঞed to the result, so we can run concurrent computaঞons
without mixing logs.

Cats Data Types

Writer is the first data type we’ve seen from the cats.data package.
This package provides instances of various type classes that produce
useful semanঞcs. Other examples from cats.data include the monad
transformers that we will see in the next chapter, and the Validated

type we will encounter in Chapter 6.

4.7.1 Creaঞng and Unpacking Writers

A Writer[W, A] carries two values: a log of type W and a result of type A. We
can create a Writer from values of each type as follows:

import cats.data.Writer

import cats.instances.vector._ // for Monoid

Writer(Vector(

"It was the best of times",

"it was the worst of times"

), 1859)

// res0: cats.data.WriterT[cats.Id,scala.collection.immutable.Vector[

String],Int] = WriterT((Vector(It was the best of times, it was

the worst of times),1859))

Noঞce that the type reported on the console is actually WriterT[Id, Vec-

tor[String], Int] instead of Writer[Vector[String], Int] as we
might expect. In the spirit of code reuse, Cats implements Writer in terms
of another type, WriterT. WriterT is an example of a new concept called a
monad transformer, which we will cover in the next chapter.

Let’s try to ignore this detail for now. Writer is a type alias for WriterT, so
we can read types like WriterT[Id, W, A] as Writer[W, A]:

http://typelevel.org/cats/api/cats/data/
http://typelevel.org/cats/api/cats/data/Validated.html

110 CHAPTER 4. MONADS

type Writer[W, A] = WriterT[Id, W, A]

For convenience, Cats provides a way of creaঞng Writers specifying only the
log or the result. If we only have a result we can use the standard pure syntax.
To do this we must have a Monoid[W] in scope so Cats knows how to produce
an empty log:

import cats.instances.vector._ // for Monoid

import cats.syntax.applicative._ // for pure

type Logged[A] = Writer[Vector[String], A]

123.pure[Logged]

// res2: Logged[Int] = WriterT((Vector(),123))

If we have a log and no result we can create a Writer[Unit] using the tell
syntax from cats.syntax.writer:

import cats.syntax.writer._ // for tell

Vector("msg1", "msg2", "msg3").tell

// res3: cats.data.Writer[scala.collection.immutable.Vector[String],

Unit] = WriterT((Vector(msg1, msg2, msg3),()))

If we have both a result and a log, we can either use Writer.apply or we can
use the writer syntax from cats.syntax.writer:

import cats.syntax.writer._ // for writer

val a = Writer(Vector("msg1", "msg2", "msg3"), 123)

// a: cats.data.WriterT[cats.Id,scala.collection.immutable.Vector[

String],Int] = WriterT((Vector(msg1, msg2, msg3),123))

val b = 123.writer(Vector("msg1", "msg2", "msg3"))

// b: cats.data.Writer[scala.collection.immutable.Vector[String],Int]

= WriterT((Vector(msg1, msg2, msg3),123))

We can extract the result and log from a Writer using the value and written
methods respecঞvely:

http://typelevel.org/cats/api/cats/syntax/package$$writer$
http://typelevel.org/cats/api/cats/syntax/package$$writer$

4.7. THE WRITER MONAD 111

val aResult: Int =

a.value

// aResult: Int = 123

val aLog: Vector[String] =

a.written

// aLog: Vector[String] = Vector(msg1, msg2, msg3)

We can extract both values at the same ঞme using the run method:

val (log, result) = b.run

// log: scala.collection.immutable.Vector[String] = Vector(msg1, msg2,

msg3)

// result: Int = 123

4.7.2 Composing and Transforming Writers

The log in a Writer is preserved when we map or flatMap over it. flatMap
appends the logs from the source Writer and the result of the user’s sequenc-
ing funcঞon. For this reason it’s good pracঞce to use a log type that has an
efficient append and concatenate operaঞons, such as a Vector:

val writer1 = for {

a <- 10.pure[Logged]

_ <- Vector("a", "b", "c").tell

b <- 32.writer(Vector("x", "y", "z"))

} yield a + b

// writer1: cats.data.WriterT[cats.Id,Vector[String],Int] = WriterT((

Vector(a, b, c, x, y, z),42))

writer1.run

// res4: cats.Id[(Vector[String], Int)] = (Vector(a, b, c, x, y, z)

,42)

In addiঞon to transforming the result with map and flatMap, we can transform
the log in a Writer with the mapWritten method:

112 CHAPTER 4. MONADS

val writer2 = writer1.mapWritten(_.map(_.toUpperCase))

// writer2: cats.data.WriterT[cats.Id,scala.collection.immutable.

Vector[String],Int] = WriterT((Vector(A, B, C, X, Y, Z),42))

writer2.run

// res5: cats.Id[(scala.collection.immutable.Vector[String], Int)] = (

Vector(A, B, C, X, Y, Z),42)

We can transform both log and result simultaneously using bimap or mapBoth.
bimap takes two funcঞon parameters, one for the log and one for the result.
mapBoth takes a single funcঞon that accepts two parameters:

val writer3 = writer1.bimap(

log => log.map(_.toUpperCase),

res => res * 100

)

// writer3: cats.data.WriterT[cats.Id,scala.collection.immutable.

Vector[String],Int] = WriterT((Vector(A, B, C, X, Y, Z),4200))

writer3.run

// res6: cats.Id[(scala.collection.immutable.Vector[String], Int)] = (

Vector(A, B, C, X, Y, Z),4200)

val writer4 = writer1.mapBoth { (log, res) =>

val log2 = log.map(_ + "!")

val res2 = res * 1000

(log2, res2)

}

// writer4: cats.data.WriterT[cats.Id,scala.collection.immutable.

Vector[String],Int] = WriterT((Vector(a!, b!, c!, x!, y!, z!)

,42000))

writer4.run

// res7: cats.Id[(scala.collection.immutable.Vector[String], Int)] = (

Vector(a!, b!, c!, x!, y!, z!),42000)

Finally, we can clear the log with the reset method and swap log and result
with the swap method:

4.7. THE WRITER MONAD 113

val writer5 = writer1.reset

// writer5: cats.data.WriterT[cats.Id,Vector[String],Int] = WriterT((

Vector(),42))

writer5.run

// res8: cats.Id[(Vector[String], Int)] = (Vector(),42)

val writer6 = writer1.swap

// writer6: cats.data.WriterT[cats.Id,Int,Vector[String]] = WriterT

((42,Vector(a, b, c, x, y, z)))

writer6.run

// res9: cats.Id[(Int, Vector[String])] = (42,Vector(a, b, c, x, y, z)

)

4.7.3 Exercise: Show Your Working

Writers are useful for logging operaঞons in mulঞ-threaded environments.
Let’s confirm this by compuঞng (and logging) some factorials.

The factorial funcঞon below computes a factorial and prints out the inter-
mediate steps as it runs. The slowly helper funcঞon ensures this takes awhile
to run, even on the very small examples below:

def slowly[A](body: => A) =

try body finally Thread.sleep(100)

def factorial(n: Int): Int = {

val ans = slowly(if(n == 0) 1 else n * factorial(n - 1))

println(s"fact $n $ans")

ans

}

Here’s the output—a sequence of monotonically increasing values:

factorial(5)

// fact 0 1

// fact 1 1

// fact 2 2

114 CHAPTER 4. MONADS

// fact 3 6

// fact 4 24

// fact 5 120

// res11: Int = 120

If we start several factorials in parallel, the log messages can become inter-
leaved on standard out. This makes it difficult to see which messages come
from which computaঞon:

import scala.concurrent._

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

Await.result(Future.sequence(Vector(

Future(factorial(3)),

Future(factorial(3))

)), 5.seconds)

// fact 0 1

// fact 0 1

// fact 1 1

// fact 1 1

// fact 2 2

// fact 2 2

// fact 3 6

// fact 3 6

// res14: scala.collection.immutable.Vector[Int] =

// Vector(120, 120)

Rewrite factorial so it captures the logmessages in a Writer. Demonstrate
that this allows us to reliably separate the logs for concurrent computaঞons.

See the soluঞon

4.8 The Reader Monad

cats.data.Reader is a monad that allows us to sequence operaঞons that de-
pend on some input. Instances of Readerwrap up funcঞons of one argument,
providing us with useful methods for composing them.

http://typelevel.org/cats/api/cats/data/?search=reader#Reader%5BA,B%5D=cats.data.package.ReaderT%5Bcats.Id,A,B%5D

4.8. THE READER MONAD 115

One common use for Readers is dependency injecঞon. If we have a number
of operaঞons that all depend on some external configuraঞon, we can chain
them together using a Reader to produce one large operaঞon that accepts
the configuraঞon as a parameter and runs our program in the order specified.

4.8.1 Creaঞng and Unpacking Readers

We can create a Reader[A, B] from a funcঞon A => B using the
Reader.apply constructor:

import cats.data.Reader

case class Cat(name: String, favoriteFood: String)

// defined class Cat

val catName: Reader[Cat, String] =

Reader(cat => cat.name)

// catName: cats.data.Reader[Cat,String] = Kleisli(<function1>)

We can extract the funcঞon again using the Reader's runmethod and call it
using apply as usual:

catName.run(Cat("Garfield", "lasagne"))

// res0: cats.Id[String] = Garfield

So far so simple, but what advantage do Readers give us over the raw func-
ঞons?

4.8.2 Composing Readers

The power of Readers comes from their map and flatMap methods, which
represent different kinds of funcঞon composiঞon. We typically create a set of
Readers that accept the same type of configuraঞon, combine them with map
and flatMap, and then call run to inject the config at the end.

The mapmethod simply extends the computaঞon in the Reader by passing its
result through a funcঞon:

116 CHAPTER 4. MONADS

val greetKitty: Reader[Cat, String] =

catName.map(name => s"Hello ${name}")

greetKitty.run(Cat("Heathcliff", "junk food"))

// res1: cats.Id[String] = Hello Heathcliff

The flatMapmethod is more interesঞng. It allows us to combine readers that
depend on the same input type. To illustrate this, let’s extend our greeঞng
example to also feed the cat:

val feedKitty: Reader[Cat, String] =

Reader(cat => s"Have a nice bowl of ${cat.favoriteFood}")

val greetAndFeed: Reader[Cat, String] =

for {

greet <- greetKitty

feed <- feedKitty

} yield s"$greet. $feed."

greetAndFeed(Cat("Garfield", "lasagne"))

// res3: cats.Id[String] = Hello Garfield. Have a nice bowl of lasagne

.

greetAndFeed(Cat("Heathcliff", "junk food"))

// res4: cats.Id[String] = Hello Heathcliff. Have a nice bowl of junk

food.

4.8.3 Exercise: Hacking on Readers

The classic use of Readers is to build programs that accept a configuraঞon
as a parameter. Let’s ground this with a complete example of a simple login
system. Our configuraঞon will consist of two databases: a list of valid users
and a list of their passwords:

case class Db(

usernames: Map[Int, String],

passwords: Map[String, String]

)

4.8. THE READER MONAD 117

Start by creaঞng a type alias DbReader for a Reader that consumes a Db as
input. This will make the rest of our code shorter.

See the soluঞon

Now create methods that generate DbReaders to look up the username for
an Int user ID, and look up the password for a String username. The type
signatures should be as follows:

def findUsername(userId: Int): DbReader[Option[String]] =

???

def checkPassword(

username: String,

password: String): DbReader[Boolean] =

???

See the soluঞon

Finally create a checkLogin method to check the password for a given user
ID. The type signature should be as follows:

def checkLogin(

userId: Int,

password: String): DbReader[Boolean] =

???

See the soluঞon

You should be able to use checkLogin as follows:

val users = Map(

1 -> "dade",

2 -> "kate",

3 -> "margo"

)

val passwords = Map(

"dade" -> "zerocool",

"kate" -> "acidburn",

"margo" -> "secret"

118 CHAPTER 4. MONADS

)

val db = Db(users, passwords)

checkLogin(1, "zerocool").run(db)

// res10: cats.Id[Boolean] = true

checkLogin(4, "davinci").run(db)

// res11: cats.Id[Boolean] = false

4.8.4 When to Use Readers?

Readers provide a tool for doing dependency injecঞon. Wewrite steps of our
program as instances of Reader, chain them together with map and flatMap,
and build a funcঞon that accepts the dependency as input.

There are many ways of implemenঞng dependency injecঞon in Scala, from
simple techniques like methods with mulঞple parameter lists, through implicit
parameters and type classes, to complex techniques like the cake pa�ern and
DI frameworks.

Readers are most useful in situaঞons where:

• we are construcঞng a batch program that can easily be represented by
a funcঞon;

• we need to defer injecঞon of a known parameter or set of parameters;

• we want to be able to test parts of the program in isolaঞon.

By represenঞng the steps of our program as Readers we can test them as
easily as pure funcঞons, plus we gain access to the map and flatMap combi-
nators.

For more advanced problems where we have lots of dependencies, or where
a program isn’t easily represented as a pure funcঞon, other dependency injec-
ঞon techniques tend to be more appropriate.

4.9. THE STATE MONAD 119

Kleisli Arrows

You may have noঞced from console output that Reader is implemented
in terms of another type called Kleisli. Kleisli arrows provide a more
general form of Reader that generalise over the type constructor of the
result type. We will encounter Kleislis again in Chapter 5.

4.9 The State Monad

cats.data.State allows us to pass addiঞonal state around as part of a com-
putaঞon. We define State instances represenঞng atomic state operaঞons
and thread them together using map and flatMap. In this way we can model
mutable state in a purely funcঞonal way, without using mutaঞon.

4.9.1 Creaঞng and Unpacking State

Boiled down to their simplest form, instances of State[S, A] represent func-
ঞons of type S => (S, A). S is the type of the state and A is the type of the
result.

import cats.data.State

val a = State[Int, String] { state =>

(state, s"The state is $state")

}

// a: cats.data.State[Int,String] = cats.data.IndexedStateT@12c18313

In other words, an instance of State is a funcঞon that does two things:

• transforms an input state to an output state;
• computes a result.

We can “run” our monad by supplying an iniঞal state. State provides three
methods—run, runS, and runA—that return different combinaঞons of state
and result. Each method returns an instance of Eval, which State uses to

http://typelevel.org/cats/api/cats/data/#State%5BS,A%5D=cats.data.StateT%5Bcats.Eval,S,A%5D

120 CHAPTER 4. MONADS

maintain stack safety. We call the valuemethod as usual to extract the actual
result:

// Get the state and the result:

val (state, result) = a.run(10).value

// state: Int = 10

// result: String = The state is 10

// Get the state, ignore the result:

val state = a.runS(10).value

// state: Int = 10

// Get the result, ignore the state:

val result = a.runA(10).value

// result: String = The state is 10

4.9.2 Composing and Transforming State

As we’ve seen with Reader and Writer, the power of the State monad
comes from combining instances. The map and flatMap methods thread the
state from one instance to another. Each individual instance represents an
atomic state transformaঞon, and their combinaঞon represents a complete se-
quence of changes:

val step1 = State[Int, String] { num =>

val ans = num + 1

(ans, s"Result of step1: $ans")

}

// step1: cats.data.State[Int,String] = cats.data.

IndexedStateT@7c6e31c4

val step2 = State[Int, String] { num =>

val ans = num * 2

(ans, s"Result of step2: $ans")

}

// step2: cats.data.State[Int,String] = cats.data.

IndexedStateT@7428b330

val both = for {

4.9. THE STATE MONAD 121

a <- step1

b <- step2

} yield (a, b)

// both: cats.data.IndexedStateT[cats.Eval,Int,Int,(String, String)] =

cats.data.IndexedStateT@716401f3

val (state, result) = both.run(20).value

// state: Int = 42

// result: (String, String) = (Result of step1: 21,Result of step2:

42)

As you can see, in this example the final state is the result of applying both
transformaঞons in sequence. State is threaded from step to step even though
we don’t interact with it in the for comprehension.

The general model for using the State monad is to represent each step of a
computaঞon as an instance and compose the steps using the standard monad
operators. Cats provides several convenience constructors for creaঞng primi-
ঞve steps:

• get extracts the state as the result;
• set updates the state and returns unit as the result;
• pure ignores the state and returns a supplied result;
• inspect extracts the state via a transformaঞon funcঞon;
• modify updates the state using an update funcঞon.

val getDemo = State.get[Int]

// getDemo: cats.data.State[Int,Int] = cats.data.

IndexedStateT@4df6ba6a

getDemo.run(10).value

// res3: (Int, Int) = (10,10)

val setDemo = State.set[Int](30)

// setDemo: cats.data.State[Int,Unit] = cats.data.

IndexedStateT@4620d0ef

setDemo.run(10).value

// res4: (Int, Unit) = (30,())

122 CHAPTER 4. MONADS

val pureDemo = State.pure[Int, String]("Result")

// pureDemo: cats.data.State[Int,String] = cats.data.

IndexedStateT@988d7b2

pureDemo.run(10).value

// res5: (Int, String) = (10,Result)

val inspectDemo = State.inspect[Int, String](_ + "!")

// inspectDemo: cats.data.State[Int,String] = cats.data.

IndexedStateT@13734a20

inspectDemo.run(10).value

// res6: (Int, String) = (10,10!)

val modifyDemo = State.modify[Int](_ + 1)

// modifyDemo: cats.data.State[Int,Unit] = cats.data.

IndexedStateT@79493b6e

modifyDemo.run(10).value

// res7: (Int, Unit) = (11,())

We can assemble these building blocks using a for comprehension. We typi-
cally ignore the result of intermediate stages that only represent transforma-
ঞons on the state:

import State._

val program: State[Int, (Int, Int, Int)] = for {

a <- get[Int]

_ <- set[Int](a + 1)

b <- get[Int]

_ <- modify[Int](_ + 1)

c <- inspect[Int, Int](_ * 1000)

} yield (a, b, c)

// program: cats.data.State[Int,(Int, Int, Int)] = cats.data.

IndexedStateT@b8a0617

val (state, result) = program.run(1).value

// state: Int = 3

// result: (Int, Int, Int) = (1,2,3000)

4.9. THE STATE MONAD 123

4.9.3 Exercise: Post-Order Calculator

The State monad allows us to implement simple interpreters for complex ex-
pressions, passing the values of mutable registers along with the result. We
can see a simple example of this by implemenঞng a calculator for post-order
integer arithmeঞc expressions.

In case you haven’t heard of post-order expressions before (don’t worry if you
haven’t), they are a mathemaঞcal notaঞon where we write the operator a[er
its operands. So, for example, instead of wriঞng 1 + 2 we would write:

1 2 +

Although post-order expressions are difficult for humans to read, they are easy
to evaluate in code. All we need to do is traverse the symbols from le[to right,
carrying a stack of operands with us as we go:

• when we see a number, we push it onto the stack;

• when we see an operator, we pop two operands off the stack, operate
on them, and push the result in their place.

This allows us to evaluate complex expressionswithout using parentheses. For
example, we can evaluate (1 + 2) * 3) as follows:

1 2 + 3 * // see 1, push onto stack

2 + 3 * // see 2, push onto stack

+ 3 * // see +, pop 1 and 2 off of stack,

// push (1 + 2) = 3 in their place

3 3 * // see 3, push onto stack

3 * // see 3, push onto stack

* // see *, pop 3 and 3 off of stack,

// push (3 * 3) = 9 in their place

Let’s write an interpreter for these expressions. We can parse each symbol
into a State instance represenঞng a transformaঞon on the stack and an inter-
mediate result. The State instances can be threaded together using flatMap
to produce an interpreter for any sequence of symbols.

124 CHAPTER 4. MONADS

Start by wriঞng a funcঞon evalOne that parses a single symbol into an in-
stance of State. Use the code below as a template. Don’t worry about error
handling for now—if the stack is in the wrong configuraঞon, it’s OK to throw
an excepঞon.

import cats.data.State

type CalcState[A] = State[List[Int], A]

def evalOne(sym: String): CalcState[Int] = ???

If this seems difficult, think about the basic form of the State instances you’re
returning. Each instance represents a funcঞonal transformaঞon from a stack
to a pair of a stack and a result. You can ignore any wider context and focus
on just that one step:

State[List[Int], Int] { oldStack =>

val newStack = someTransformation(oldStack)

val result = someCalculation

(newStack, result)

}

Feel free to write your Stack instances in this form or as sequences of the
convenience constructors we saw above.

See the soluঞon

evalOne allows us to evaluate single-symbol expressions as follows. We call
runA supplying Nil as an iniঞal stack, and call value to unpack the resulঞng
Eval instance:

evalOne("42").runA(Nil).value

// res3: Int = 42

We can represent more complex programs using evalOne, map, and flatMap.
Note that most of the work is happening on the stack, so we ignore the results
of the intermediate steps for evalOne("1") and evalOne("2"):

4.9. THE STATE MONAD 125

val program = for {

_ <- evalOne("1")

_ <- evalOne("2")

ans <- evalOne("+")

} yield ans

// program: cats.data.IndexedStateT[cats.Eval,List[Int],List[Int],Int]

= cats.data.IndexedStateT@7983547b

program.runA(Nil).value

// res4: Int = 3

Generalise this example by wriঞng an evalAll method that computes the
result of a List[String]. Use evalOne to process each symbol, and thread
the resulঞng State monads together using flatMap. Your funcঞon should
have the following signature:

def evalAll(input: List[String]): CalcState[Int] =

???

See the soluঞon

We can use evalAll to conveniently evaluate mulঞ-stage expressions:

val program = evalAll(List("1", "2", "+", "3", "*"))

// program: CalcState[Int] = cats.data.IndexedStateT@f0a1bee

program.runA(Nil).value

// res6: Int = 9

Because evalOne and evalAll both return instances of State, we can thread
these results together using flatMap. evalOne produces a simple stack trans-
formaঞon and evalAll produces a complex one, but they’re both pure func-
ঞons and we can use them in any order as many ঞmes as we like:

val program = for {

_ <- evalAll(List("1", "2", "+"))

_ <- evalAll(List("3", "4", "+"))

ans <- evalOne("*")

} yield ans

126 CHAPTER 4. MONADS

// program: cats.data.IndexedStateT[cats.Eval,List[Int],List[Int],Int]

= cats.data.IndexedStateT@18dd0fa3

program.runA(Nil).value

// res7: Int = 21

Complete the exercise by implemenঞng an evalInput funcঞon that splits an
input String into symbols, calls evalAll, and runs the result with an iniঞal
stack.

See the soluঞon

4.10 Defining CustomMonads

We can define a Monad for a custom type by providing implementaঞons of
three methods: flatMap, pure, and a method we haven’t seen yet called
tailRecM. Here is an implementaঞon of Monad for Option as an example:

import cats.Monad

import scala.annotation.tailrec

val optionMonad = new Monad[Option] {

def flatMap[A, B](opt: Option[A])

(fn: A => Option[B]): Option[B] =

opt flatMap fn

def pure[A](opt: A): Option[A] =

Some(opt)

@tailrec

def tailRecM[A, B](a: A)

(fn: A => Option[Either[A, B]]): Option[B] =

fn(a) match {

case None => None

case Some(Left(a1)) => tailRecM(a1)(fn)

case Some(Right(b)) => Some(b)

}

}

4.10. DEFINING CUSTOMMONADS 127

The tailRecM method is an opঞmisaঞon used in Cats to limit the amount
of stack space consumed by nested calls to flatMap. The technique comes
from a 2015 paper by PureScript creator Phil Freeman. The method should
recursively call itself unঞl the result of fn returns a Right.

If we can make tailRecM tail-recursive, Cats is able to guarantee stack safety
in recursive situaঞons such as folding over large lists (see Secঞon 7.1). If we
can’t make tailRecM tail-recursive, Cats cannot make these guarantees and
extreme use cases may result in StackOverflowErrors. All of the built-in
monads in Cats have tail-recursive implementaঞons of tailRecM, although
wriঞng one for custom monads can be a challenge… as we shall see.

4.10.1 Exercise: Branching out Further with Monads

Let’s write a Monad for our Tree data type from last chapter. Here’s the type
again:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])

extends Tree[A]

final case class Leaf[A](value: A) extends Tree[A]

def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =

Branch(left, right)

def leaf[A](value: A): Tree[A] =

Leaf(value)

Verify that the code works on instances of Branch and Leaf, and that the
Monad provides Functor-like behaviour for free.

Also verify that having a Monad in scope allows us to use for comprehensions,
despite the fact that we haven’t directly implemented flatMap or map on
Tree.

Don’t feel you have tomake tailRecM tail-recursive. Doing so is quite difficult.
We’ve included both tail-recursive and non-tail-recursive implementaঞons in
the soluঞons so you can check your work.

http://functorial.com/stack-safety-for-free/index.pdf

128 CHAPTER 4. MONADS

See the soluঞon

4.11 Summary

In this chapter we’ve seen monads up-close. We saw that flatMap can be
viewed as an operator for sequencing computaঞons, dictaঞng the order in
which operaঞons must happen. From this viewpoint, Option represents a
computaঞon that can fail without an error message, Either represents com-
putaঞons that can fail with a message, List represents mulঞple possible re-
sults, and Future represents a computaঞon that may produce a value at some
point in the future.

We’ve also seen some of the custom types and data structures that Cats pro-
vides, including Id, Reader, Writer, and State. These cover a wide range of
use cases.

Finally, in the unlikely event thatwe have to implement a custommonad, we’ve
learned about defining our own instance using tailRecM. tailRecM is an odd
wrinkle that is a concession to building a funcঞonal programming library that is
stack-safe by default. We don’t need to understand tailRecM to understand
monads, but having it around gives us benefits of which we can be grateful
when wriঞng monadic code.

Chapter 5

Monad Transformers

Monads are like burritos, which means that once you acquire a taste, you’ll
find yourself returning to them again and again. This is not without issues. As
burritos can bloat the waist, monads can bloat the code base through nested
for-comprehensions.

Imagine we are interacঞng with a database. We want to look up a user record.
The user may or may not be present, so we return an Option[User]. Our
communicaঞon with the database could fail for many reasons (network issues,
authenঞcaঞon problems, and so on), so this result is wrapped up in an Either,
giving us a final result of Either[Error, Option[User]].

To use this value we must nest flatMap calls (or equivalently, for-
comprehensions):

def lookupUserName(id: Long): Either[Error, Option[String]] =

for {

optUser <- lookupUser(id)

} yield {

for { user <- optUser } yield user.name

}

This quickly becomes very tedious.

129

http://blog.plover.com/prog/burritos.html

130 CHAPTER 5. MONAD TRANSFORMERS

5.1 Exercise: Composing Monads

A quesঞon arises. Given two arbitrary monads, can we combine them in some
way to make a single monad? That is, do monads compose? We can try to
write the code but we soon hit problems:

import cats.Monad

import cats.syntax.applicative._ // for pure

import cats.syntax.flatMap._ // for flatMap

import scala.language.higherKinds

// Hypothetical example. This won't actually compile:

def compose[M1[_]: Monad, M2[_]: Monad] = {

type Composed[A] = M1[M2[A]]

new Monad[Composed] {

def pure[A](a: A): Composed[A] =

a.pure[M2].pure[M1]

def flatMap[A, B](fa: Composed[A])

(f: A => Composed[B]): Composed[B] =

// Problem! How do we write flatMap?

???

}

}

It is impossible to write a general definiঞon of flatMap without knowing
something about M1 or M2. However, if we do know something about one
or other monad, we can typically complete this code. For example, if we fix
M2 above to be Option, a definiঞon of flatMap comes to light:

def flatMap[A, B](fa: Composed[A])

(f: A => Composed[B]): Composed[B] =

fa.flatMap(_.fold(None.pure[M1])(f))

Noঞce that the definiঞon above makes use of None—an Option-specific con-
cept that doesn’t appear in the general Monad interface. We need this extra
detail to combine Optionwith other monads. Similarly, there are things about
other monads that help us write composed flatMap methods for them. This

5.2. A TRANSFORMATIVE EXAMPLE 131

is the idea behind monad transformers: Cats defines transformers for a vari-
ety of monads, each providing the extra knowledge we need to compose that
monad with others. Let’s look at some examples.

5.2 A Transformaঞve Example

Cats provides transformers for many monads, each named with a T suffix: Ei-
therT composes Eitherwith othermonads, OptionT composes Option, and
so on.

Here’s an example that uses OptionT to compose List and Option. We can
use OptionT[List, A], aliased to ListOption[A] for convenience, to trans-
form a List[Option[A]] into a single monad:

import cats.data.OptionT

type ListOption[A] = OptionT[List, A]

Note how we build ListOption from the inside out: we pass List, the type
of the outer monad, as a parameter to OptionT, the transformer for the inner
monad.

We can create instances of ListOption using the OptionT constructor, or
more conveniently using pure:

import cats.Monad

import cats.instances.list._ // for Monad

import cats.syntax.applicative._ // for pure

val result1: ListOption[Int] = OptionT(List(Option(10)))

// result1: ListOption[Int] = OptionT(List(Some(10)))

val result2: ListOption[Int] = 32.pure[ListOption]

// result2: ListOption[Int] = OptionT(List(Some(32)))

The map and flatMap methods combine the corresponding methods of List
and Option into single operaঞons:

132 CHAPTER 5. MONAD TRANSFORMERS

result1.flatMap { (x: Int) =>

result2.map { (y: Int) =>

x + y

}

}

// res1: cats.data.OptionT[List,Int] = OptionT(List(Some(42)))

This is the basis of all monad transformers. The combined map and flatMap

methods allow us to use both component monads without having to recur-
sively unpack and repack values at each stage in the computaঞon. Now let’s
look at the API in more depth.

Complexity of Imports

The imports in the code samples above hint at how everything bolts
together.

We import cats.syntax.applicative to get the pure syntax. pure
requires an implicit parameter of type Applicative[ListOption].
We haven’t met Applicatives yet, but all Monads are also Applica-

tives so we can ignore that difference for now.

In order to generate our Applicative[ListOption] we need in-
stances of Applicative for List and OptionT. OptionT is a Cats data
type so its instance is provided by its companion object. The instance
for List comes from cats.instances.list.

Noঞce we’re not imporঞng cats.syntax.functor or
cats.syntax.flatMap. This is because OptionT is a concrete
data type with its own explicit map and flatMap methods. It wouldn’t
cause problems if we imported the syntax—the compiler would ignore
it in favour of the explicit methods.

Remember that we’re subjecঞng ourselves to these shenanigans be-
cause we’re stubbornly refusing to use the universal Cats import,
cats.implicits. If we did use that import, all of the instances and
syntax we needed would be in scope and everything would just work.

http://typelevel.org/cats/api/cats/syntax/package$$applicative$
http://typelevel.org/cats/api/cats/instances/package$$list$
http://typelevel.org/cats/api/cats/syntax/package$$functor$
http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
http://typelevel.org/cats/api/cats/implicits$.html

5.3. MONAD TRANSFORMERS IN CATS 133

5.3 Monad Transformers in Cats

Each monad transformer is a data type, defined in cats.data, that allows
us to wrap stacks of monads to produce new monads. We use the monads
we’ve built via the Monad type class. The main concepts we have to cover to
understand monad transformers are:

• the available transformer classes;
• how to build stacks of monads using transformers;
• how to construct instances of a monad stack; and
• how to pull apart a stack to access the wrapped monads.

5.3.1 The Monad Transformer Classes

By convenঞon, in Cats a monad Foo will have a transformer class called FooT.
In fact, many monads in Cats are defined by combining a monad transformer
with the Id monad. Concretely, some of the available instances are:

• cats.data.OptionT for Option;
• cats.data.EitherT for Either;
• cats.data.ReaderT for Reader;
• cats.data.WriterT for Writer;
• cats.data.StateT for State;
• cats.data.IdT for the Id monad.

Kleisli Arrows

In Secঞon 4.8 we menঞoned that the Reader monad was a specialisa-
ঞon of a more general concept called a “kleisli arrow”, represented in
Cats as cats.data.Kleisli.

We can now reveal that Kleisli and ReaderT are, in fact, the same
thing! ReaderT is actually a type alias for Kleisli. Hence, we were
creaঞng Readers last chapter and seeing Kleislis on the console.

http://typelevel.org/cats/api/cats/data/
http://typelevel.org/cats/api/cats/data/OptionT.html
http://typelevel.org/cats/api/cats/data/EitherT.html
http://typelevel.org/cats/api/cats/data/?search=reader#ReaderT%5BF%5B_%5D,A,B%5D=cats.data.Kleisli%5BF,A,B%5D
http://typelevel.org/cats/api/cats/data/WriterT.html
http://typelevel.org/cats/api/cats/data/StateT.html
http://typelevel.org/cats/api/cats/data/IdT.html
http://typelevel.org/cats/api/cats/Id.html
http://typelevel.org/cats/api/cats/data/Kleisli.html

134 CHAPTER 5. MONAD TRANSFORMERS

5.3.2 Building Monad Stacks

All of these monad transformers follow the same convenঞon. The transformer
itself represents the inner monad in a stack, while the first type parameter
specifies the outermonad. The remaining type parameters are the typeswe’ve
used to form the corresponding monads.

For example, our ListOption type above is an alias for OptionT[List, A]

but the result is effecঞvely a List[Option[A]]. In other words, we build
monad stacks from the inside out:

type ListOption[A] = OptionT[List, A]

Many monads and all transformers have at least two type parameters, so we
o[en have to define type aliases for intermediate stages.

For example, suppose wewant to wrap Either around Option. Option is the
innermost type so we want to use the OptionTmonad transformer. We need
to use Either as the first type parameter. However, Either itself has two
type parameters and monads only have one. We need a type alias to convert
the type constructor to the correct shape:

// Alias Either to a type constructor with one parameter:

type ErrorOr[A] = Either[String, A]

// Build our final monad stack using OptionT:

type ErrorOrOption[A] = OptionT[ErrorOr, A]

ErrorOrOption is a monad, just like ListOption. We can use pure, map, and
flatMap as usual to create and transform instances:

import cats.instances.either._ // for Monad

val a = 10.pure[ErrorOrOption]

// a: ErrorOrOption[Int] = OptionT(Right(Some(10)))

val b = 32.pure[ErrorOrOption]

// b: ErrorOrOption[Int] = OptionT(Right(Some(32)))

5.3. MONAD TRANSFORMERS IN CATS 135

val c = a.flatMap(x => b.map(y => x + y))

// c: cats.data.OptionT[ErrorOr,Int] = OptionT(Right(Some(42)))

Things become even more confusing when we want to stack three or more
monads.

For example, let’s create a Future of an Either of Option. Once again we
build this from the inside outwith an OptionT of an EitherT of Future. How-
ever, we can’t define this in one line because EitherT has three type param-
eters:

case class EitherT[F[_], E, A](stack: F[Either[E, A]]) {

// etc...

}

The three type parameters are as follows:

• F[_] is the outer monad in the stack (Either is the inner);
• E is the error type for the Either;
• A is the result type for the Either.

This ঞme we create an alias for EitherT that fixes Future and Error and
allows A to vary:

import scala.concurrent.Future

import cats.data.{EitherT, OptionT}

type FutureEither[A] = EitherT[Future, String, A]

type FutureEitherOption[A] = OptionT[FutureEither, A]

Our mammoth stack now composes three monads and our map and flatMap
methods cut through three layers of abstracঞon:

import cats.instances.future._ // for Monad

import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

136 CHAPTER 5. MONAD TRANSFORMERS

val futureEitherOr: FutureEitherOption[Int] =

for {

a <- 10.pure[FutureEitherOption]

b <- 32.pure[FutureEitherOption]

} yield a + b

Kind Projector

If you frequently find yourself defining mulঞple type aliases when build-
ing monad stacks, you may want to try the Kind Projector compiler plu-
gin. Kind Projector enhances Scala’s type syntax to make it easier to
define parঞally applied type constructors. For example:

import cats.instances.option._ // for Monad

// import cats.instances.option._

123.pure[EitherT[Option, String, ?]]

// res7: cats.data.EitherT[Option,String,Int] = EitherT(Some(

Right(123)))

Kind Projector can’t simplify all type declaraঞons down to a single line,
but it can reduce the number of intermediate type definiঞons needed
to keep our code readable.

5.3.3 Construcঞng and Unpacking Instances

As we saw above, we can create transformed monad stacks using the relevant
monad transformer’s apply method or the usual pure syntax¹:

// Create using apply:

val errorStack1 = OptionT[ErrorOr, Int](Right(Some(10)))

// errorStack1: cats.data.OptionT[ErrorOr,Int] = OptionT(Right(Some

(10)))

¹Cats provides an instance of MonadError for EitherT, allowing us to create instances
using raiseError as well as pure.

https://github.com/non/kind-projector

5.3. MONAD TRANSFORMERS IN CATS 137

// Create using pure:

val errorStack2 = 32.pure[ErrorOrOption]

// errorStack2: ErrorOrOption[Int] = OptionT(Right(Some(32)))

Once we’ve finished with a monad transformer stack, we can unpack it using
its valuemethod. This returns the untransformed stack. We can then manip-
ulate the individual monads in the usual way:

// Extracting the untransformed monad stack:

errorStack1.value

// res11: ErrorOr[Option[Int]] = Right(Some(10))

// Mapping over the Either in the stack:

errorStack2.value.map(_.getOrElse(-1))

// res13: scala.util.Either[String,Int] = Right(32)

Each call to value unpacks a single monad transformer. We may need more
than one call to completely unpack a large stack. For example, to Await the
FutureEitherOption stack above, we need to call value twice:

futureEitherOr

// res14: FutureEitherOption[Int] = OptionT(EitherT(Future(Success(

Right(Some(42))))))

val intermediate = futureEitherOr.value

// intermediate: FutureEither[Option[Int]] = EitherT(Future(Success(

Right(Some(42)))))

val stack = intermediate.value

// stack: scala.concurrent.Future[Either[String,Option[Int]]] = Future

(Success(Right(Some(42))))

Await.result(stack, 1.second)

// res15: Either[String,Option[Int]] = Right(Some(42))

5.3.4 Default Instances

Many monads in Cats are defined using the corresponding transformer and
the Id monad. This is reassuring as it confirms that the APIs for monads and

138 CHAPTER 5. MONAD TRANSFORMERS

transformers are idenঞcal. Reader, Writer, and State are all defined in this
way:

type Reader[E, A] = ReaderT[Id, E, A] // = Kleisli[Id, E, A]

type Writer[W, A] = WriterT[Id, W, A]

type State[S, A] = StateT[Id, S, A]

In other cases monad transformers are defined separately to their correspond-
ing monads. In these cases, the methods of the transformer tend to mirror the
methods on the monad. For example, OptionT defines getOrElse, and Ei-

therT defines fold, bimap, swap, and other useful methods.

5.3.5 Usage Pa�erns

Widespread use of monad transformers is someঞmes difficult because they
fuse monads together in predefined ways. Without careful thought, we can
end up having to unpack and repack monads in different configuraঞons to
operate on them in different contexts.

We can cope with this in mulঞple ways. One approach involves creaঞng a
single “super stack” and sঞcking to it throughout our code base. This works
if the code is simple and largely uniform in nature. For example, in a web
applicaঞon, we could decide that all request handlers are asynchronous and
all can fail with the same set of HTTP error codes. We could design a custom
ADT represenঞng the errors and use a fusion Future and Either everywhere
in our code:

sealed abstract class HttpError

final case class NotFound(item: String) extends HttpError

final case class BadRequest(msg: String) extends HttpError

// etc...

type FutureEither[A] = EitherT[Future, HttpError, A]

The “super stack” approach starts to fail in larger, more heterogeneous code
bases where different stacks make sense in different contexts. Another design
pa�ern that makes more sense in these contexts uses monad transformers

5.3. MONAD TRANSFORMERS IN CATS 139

as local “glue code”. We expose untransformed stacks at module boundaries,
transform them to operate on them locally, and untransform them before pass-
ing them on. This allows eachmodule of code to make its own decisions about
which transformers to use:

import cats.data.Writer

type Logged[A] = Writer[List[String], A]

// Methods generally return untransformed stacks:

def parseNumber(str: String): Logged[Option[Int]] =

util.Try(str.toInt).toOption match {

case Some(num) => Writer(List(s"Read $str"), Some(num))

case None => Writer(List(s"Failed on $str"), None)

}

// Consumers use monad transformers locally to simplify composition:

def addAll(a: String, b: String, c: String): Logged[Option[Int]] = {

import cats.data.OptionT

val result = for {

a <- OptionT(parseNumber(a))

b <- OptionT(parseNumber(b))

c <- OptionT(parseNumber(c))

} yield a + b + c

result.value

}

// This approach doesn't force OptionT on other users' code:

val result1 = addAll("1", "2", "3")

// result1: Logged[Option[Int]] = WriterT((List(Read 1, Read 2, Read

3),Some(6)))

val result2 = addAll("1", "a", "3")

// result2: Logged[Option[Int]] = WriterT((List(Read 1, Failed on a),

None))

Unfortunately, there aren’t one-size-fits-all approaches to working with
monad transformers. The best approach for you may depend on a lot of fac-
tors: the size and experience of your team, the complexity of your code base,
and so on. You may need to experiment and gather feedback from colleagues

140 CHAPTER 5. MONAD TRANSFORMERS

to determine whether monad transformers are a good fit.

5.4 Exercise: Monads: Transform and Roll Out

The Autobots, well-known robots in disguise, frequently send messages dur-
ing ba�le requesঞng the power levels of their team mates. This helps them
coordinate strategies and launch devastaঞng a�acks. The message sending
method looks like this:

def getPowerLevel(autobot: String): Response[Int] =

???

Transmissions take ঞme in Earth’s viscous atmosphere, and messages are oc-
casionally lost due to satellite malfuncঞon or sabotage by pesky Decepঞcons².
Responses are therefore represented as a stack of monads:

type Response[A] = Future[Either[String, A]]

// defined type alias Response

Opঞmus Prime is geমng ঞred of the nested for comprehensions in his neural
matrix. Help him by rewriঞng Response using a monad transformer.

See the soluঞon

Now test the code by implemenঞng getPowerLevel to retrieve data from a
set of imaginary allies. Here’s the data we’ll use:

val powerLevels = Map(

"Jazz" -> 6,

"Bumblebee" -> 8,

"Hot Rod" -> 10

)

If an Autobot isn’t in the powerLevelsmap, return an errormessage reporঞng
that they were unreachable. Include the name in the message for good effect.

²It is a well known fact that Autobot neural nets are implemented in Scala. Decepঞcon
brains are, of course, dynamically typed.

5.5. SUMMARY 141

See the soluঞon

Two autobots can perform a special move if their combined power level is
greater than 15. Write a second method, canSpecialMove, that accepts the
names of two allies and checks whether a special move is possible. If either
ally is unavailable, fail with an appropriate error message:

def canSpecialMove(ally1: String, ally2: String): Response[Boolean] =

???

See the soluঞon

Finally, write a method tacticalReport that takes two ally names and prints
a message saying whether they can perform a special move:

def tacticalReport(ally1: String, ally2: String): String =

???

See the soluঞon

You should be able to use report as follows:

tacticalReport("Jazz", "Bumblebee")

// res28: String = Jazz and Bumblebee need a recharge.

tacticalReport("Bumblebee", "Hot Rod")

// res29: String = Bumblebee and Hot Rod are ready to roll out!

tacticalReport("Jazz", "Ironhide")

// res30: String = Comms error: Ironhide unreachable

5.5 Summary

In this chapter we introduced monad transformers, which eliminate the need
for nested for comprehensions and pa�ern matching when working with
“stacks” of nested monads.

142 CHAPTER 5. MONAD TRANSFORMERS

Each monad transformer, such as FutureT, OptionT or EitherT, provides
the code needed to merge its related monad with other monads. The trans-
former is a data structure that wraps a monad stack, equipping it with map and
flatMap methods that unpack and repack the whole stack.

The type signatures of monad transformers are wri�en from the in-
side out, so an EitherT[Option, String, A] is a wrapper for an Op-

tion[Either[String, A]]. It is o[en useful to use type aliases when writ-
ing transformer types for deeply nested monads.

With this look at monad transformers, we have now covered everything
we need to know about monads and the sequencing of computaঞons using
flatMap. In the next chapter we will switch tack and discuss two new type
classes, Semigroupal and Applicative, that support new kinds of operaঞon
such as zipping independent values within a context.

Chapter 6

Semigroupal and Applicaঞve

In previous chapters we saw how functors and monads let us sequence opera-
ঞons using map and flatMap. While functors andmonads are both immensely
useful abstracঞons, there are certain types of program flow that they cannot
represent.

One such example is form validaঞon. When we validate a form we want to
return all the errors to the user, not stop on the first error we encounter. If we
model this with a monad like Either, we fail fast and lose errors. For example,
the code below fails on the first call to parseInt and doesn’t go any further:

import cats.syntax.either._ // for catchOnly

def parseInt(str: String): Either[String, Int] =

Either.catchOnly[NumberFormatException](str.toInt).

leftMap(_ => s"Couldn't read $str")

for {

a <- parseInt("a")

b <- parseInt("b")

c <- parseInt("c")

} yield (a + b + c)

// res1: scala.util.Either[String,Int] = Left(Couldn't read a)

Another example is the concurrent evaluaঞon of Futures. If we have several

143

144 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

long-running independent tasks, it makes sense to execute them concurrently.
However, monadic comprehension only allows us to run them in sequence.
map and flatMap aren’t quite capable of capturing what we want because
theymake the assumpঞon that each computaঞon is dependent on the previous
one:

// context2 is dependent on value1:

context1.flatMap(value1 => context2)

The calls to parseInt and Future.apply above are independent of one an-
other, but map and flatMap can’t exploit this. We need a weaker construct—
one that doesn’t guarantee sequencing—to achieve the result we want. In this
chapter we will look at two type classes that support this pa�ern:

• Semigroupal encompasses the noঞon of composing pairs of contexts.
Cats provides a cats.syntax.applymodule that makes use of Semi-
groupal and Functor to allow users to sequence funcঞons with mul-
ঞple arguments.

• Applicative extends Semigroupal and Functor. It provides a way
of applying funcঞons to parameters within a context. Applicative is
the source of the pure method we introduced in Chapter 4.

Applicaঞves are o[en formulated in terms of funcঞon applicaঞon, instead of
the semigroupal formulaঞon that is emphasised in Cats. This alternaঞve for-
mulaঞon provides a link to other libraries and languages such as Scalaz and
Haskell. We’ll take a look at different formulaঞons of Applicaঞve, as well as
the relaঞonships between Semigroupal, Functor, Applicative, and Monad,
towards the end of the chapter.

6.1 Semigroupal

cats.Semigroupal is a type class that allows us to combine contexts¹. If

¹It is also the winner of Underscore’s 2017 award for the most difficult funcঞonal program-
ming term to work into a coherent English sentence.

http://typelevel.org/cats/api/cats/syntax/package$$semigroupal$
http://typelevel.org/cats/api/cats/kernel/Semigroupal.html

6.1. SEMIGROUPAL 145

we have two objects of type F[A] and F[B], a Semigroupal[F] allows us to
combine them to form an F[(A, B)]. Its definiঞon in Cats is:

trait Semigroupal[F[_]] {

def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]

}

As we discussed at the beginning of this chapter, the parameters fa and fb

are independent of one another: we can compute them in either order be-
fore passing them to product. This is in contrast to flatMap, which imposes
a strict order on its parameters. This gives us more freedom when defining
instances of Semigroupal than we get when defining Monads.

6.1.1 Joining Two Contexts

While Semigroup allows us to join values, Semigroupal allows us to join con-
texts. Let’s join some Options as an example:

import cats.Semigroupal

import cats.instances.option._ // for Semigroupal

Semigroupal[Option].product(Some(123), Some("abc"))

// res0: Option[(Int, String)] = Some((123,abc))

If both parameters are instances of Some, we end up with a tuple of the values
within. If either parameter evaluates to None, the enঞre result is None:

Semigroupal[Option].product(None, Some("abc"))

// res1: Option[(Nothing, String)] = None

Semigroupal[Option].product(Some(123), None)

// res2: Option[(Int, Nothing)] = None

6.1.2 Joining Three or More Contexts

The companion object for Semigroupal defines a set of methods on top of
product. For example, the methods tuple2 through tuple22 generalise

146 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

product to different ariঞes:

import cats.instances.option._ // for Semigroupal

Semigroupal.tuple3(Option(1), Option(2), Option(3))

// res3: Option[(Int, Int, Int)] = Some((1,2,3))

Semigroupal.tuple3(Option(1), Option(2), Option.empty[Int])

// res4: Option[(Int, Int, Int)] = None

The methods map2 through map22 apply a user-specified funcঞon to the val-
ues inside 2 to 22 contexts:

Semigroupal.map3(Option(1), Option(2), Option(3))(_ + _ + _)

// res5: Option[Int] = Some(6)

Semigroupal.map2(Option(1), Option.empty[Int])(_ + _)

// res6: Option[Int] = None

There are also methods contramap2 through contramap22 and imap2

through imap22, that require instances of Contravariant and Invariant

respecঞvely.

6.2 Apply Syntax

Cats provides a convenient apply syntax that provides a shorthand for the
methods described above. We import the syntax from cats.syntax.apply.
Here’s an example:

import cats.instances.option._ // for Semigroupal

import cats.syntax.apply._ // for tupled and mapN

The tupled method is implicitly added to the tuple of Options. It uses the
Semigroupal for Option to zip the values inside the Options, creaঞng a sin-
gle Option of a tuple:

http://typelevel.org/cats/api/cats/syntax/package$$semigroupal$

6.2. APPLY SYNTAX 147

(Option(123), Option("abc")).tupled

// res7: Option[(Int, String)] = Some((123,abc))

Wecan use the same trick on tuples of up to 22 values. Cats defines a separate
tupled method for each arity:

(Option(123), Option("abc"), Option(true)).tupled

// res8: Option[(Int, String, Boolean)] = Some((123,abc,true))

In addiঞon to tupled, Cats’ apply syntax provides a method called mapN that
accepts an implicit Functor and a funcঞon of the correct arity to combine the
values:

case class Cat(name: String, born: Int, color: String)

(

Option("Garfield"),

Option(1978),

Option("Orange & black")

).mapN(Cat.apply)

// res9: Option[Cat] = Some(Cat(Garfield,1978,Orange & black))

Internally mapN uses the Semigroupal to extract the values from the Option
and the Functor to apply the values to the funcঞon.

It’s nice to see that this syntax is type checked. If we supply a funcঞon that
accepts the wrong number or types of parameters, we get a compile error:

val add: (Int, Int) => Int = (a, b) => a + b

// add: (Int, Int) => Int = <function2>

(Option(1), Option(2), Option(3)).mapN(add)

// <console>:27: error: type mismatch;

// found : (Int, Int) => Int

// required: (Int, Int, Int) => ?

// (Option(1), Option(2), Option(3)).mapN(add)

// ^

(Option("cats"), Option(true)).mapN(add)

// <console>:27: error: type mismatch;

148 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

// found : (Int, Int) => Int

// required: (String, Boolean) => ?

// (Option("cats"), Option(true)).mapN(add)

// ^

6.2.1 Fancy Functors and Apply Syntax

Apply syntax also has contramapN and imapNmethods that accept Contravari-
ant and Invariant functors. For example, we can combine Monoids using In-
variant. Here’s an example:

import cats.Monoid

import cats.instances.int._ // for Monoid

import cats.instances.invariant._ // for Semigroupal

import cats.instances.list._ // for Monoid

import cats.instances.string._ // for Monoid

import cats.syntax.apply._ // for imapN

case class Cat(

name: String,

yearOfBirth: Int,

favoriteFoods: List[String]

)

val tupleToCat: (String, Int, List[String]) => Cat =

Cat.apply _

val catToTuple: Cat => (String, Int, List[String]) =

cat => (cat.name, cat.yearOfBirth, cat.favoriteFoods)

implicit val catMonoid: Monoid[Cat] = (

Monoid[String],

Monoid[Int],

Monoid[List[String]]

).imapN(tupleToCat)(catToTuple)

Our Monoid allows us to create “empty” Cats, and add Cats together using
the syntax from Chapter 2:

6.3. SEMIGROUPAL APPLIED TO DIFFERENT TYPES 149

import cats.syntax.semigroup._ // for |+|

val garfield = Cat("Garfield", 1978, List("Lasagne"))

val heathcliff = Cat("Heathcliff", 1988, List("Junk Food"))

garfield |+| heathcliff

// res17: Cat = Cat(GarfieldHeathcliff,3966,List(Lasagne, Junk Food))

6.3 Semigroupal Applied to Different Types

Semigroupal doesn’t always provide the behaviour we expect, parঞcularly
for types that also have instances of Monad. We have seen the behaviour of
the Semigroupal for Option. Let’s look at some examples for other types.

Future

The semanঞcs for Future provide parallel as opposed to sequenঞal execuঞon:

import cats.Semigroupal

import cats.instances.future._ // for Semigroupal

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

import scala.language.higherKinds

val futurePair = Semigroupal[Future].

product(Future("Hello"), Future(123))

Await.result(futurePair, 1.second)

// res1: (String, Int) = (Hello,123)

The two Futures start execuঞng the moment we create them, so they are
already calculaঞng results by the ঞme we call product. We can use apply
syntax to zip fixed numbers of Futures:

import cats.syntax.apply._ // for mapN

case class Cat(

name: String,

150 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

yearOfBirth: Int,

favoriteFoods: List[String]

)

val futureCat = (

Future("Garfield"),

Future(1978),

Future(List("Lasagne"))

).mapN(Cat.apply)

Await.result(futureCat, 1.second)

// res4: Cat = Cat(Garfield,1978,List(Lasagne))

List

Combining Lists with Semigroupal produces some potenঞally unexpected
results. Wemight expect code like the following to zip the lists, but we actually
get the cartesian product of their elements:

import cats.Semigroupal

import cats.instances.list._ // for Semigroupal

Semigroupal[List].product(List(1, 2), List(3, 4))

// res5: List[(Int, Int)] = List((1,3), (1,4), (2,3), (2,4))

This is perhaps surprising. Zipping lists tends to be a more common operaঞon.
We’ll see why we get this behaviour in a moment.

Either

We opened this chapter with a discussion of fail-fast versus accumulaঞng
error-handling. We might expect product applied to Either to accumulate
errors instead of fail fast. Again, perhaps surprisingly, we find that product
implements the same fail-fast behaviour as flatMap:

import cats.instances.either._ // for Semigroupal

type ErrorOr[A] = Either[Vector[String], A]

Semigroupal[ErrorOr].product(

Left(Vector("Error 1")),

6.3. SEMIGROUPAL APPLIED TO DIFFERENT TYPES 151

Left(Vector("Error 2"))

)

// res7: ErrorOr[(Nothing, Nothing)] = Left(Vector(Error 1))

In this example product sees the first failure and stops, even though it is pos-
sible to examine the second parameter and see that it is also a failure.

6.3.1 Semigroupal Applied to Monads

The reason for the surprising results for List and Either is that they are
both monads. To ensure consistent semanঞcs, Cats’ Monad (which extends
Semigroupal) provides a standard definiঞon of product in terms of map and
flatMap. This gives what we might think of as unexpected and less useful be-
haviour for a number of data types. The consistency of semanঞcs is important
for higher level abstracঞons, but we don’t know about those yet.

Even our results for Future are a trick of the light. flatMap provides se-
quenঞal ordering, so product provides the same. The parallel execuঞon we
observe occurs because our consঞtuent Futures start running before we call
product. This is equivalent to the classic create-then-flatMap pa�ern:

val a = Future("Future 1")

val b = Future("Future 2")

for {

x <- a

y <- b

} yield (x, y)

So why bother with Semigroupal at all? The answer is that we can create
useful data types that have instances of Semigroupal (and Applicative)
but not Monad. This frees us to implement product in different ways. We’ll
examine this further in a moment when we look at an alternaঞve data type for
error handling.

6.3.1.1 Exercise: The Product of Monads

Implement product in terms of flatMap:

152 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

import cats.Monad

def product[M[_]: Monad, A, B](x: M[A], y: M[B]): M[(A, B)] =

???

See the soluঞon

6.4 Validated

By now we are familiar with the fail-fast error handling behaviour of Either.
Furthermore, because Either is a monad, we know that the semanঞcs of
product are the same as those for flatMap. In fact, it is impossible for us
to design a monadic data type that implements error accumulaঞng semanঞcs
without breaking the consistency of these two methods.

Fortunately, Cats provides a data type called Validated that has an instance
of Semigroupal but no instance of Monad. The implementaঞon of product
is therefore free to accumulate errors:

import cats.Semigroupal

import cats.data.Validated

import cats.instances.list._ // for Monoid

type AllErrorsOr[A] = Validated[List[String], A]

Semigroupal[AllErrorsOr].product(

Validated.invalid(List("Error 1")),

Validated.invalid(List("Error 2"))

)

// res1: AllErrorsOr[(Nothing, Nothing)] = Invalid(List(Error 1, Error

2))

Validated complements Either nicely. Between the two we have support
for both of the common types of error handling: fail-fast and accumulaঞng.

6.4. VALIDATED 153

6.4.1 Creaঞng Instances of Validated

Validated has two subtypes, Validated.Valid and Validated.Invalid,
that correspond loosely to Right and Left. There are a lot of ways to cre-
ate instances of these types. We can create them directly using their apply
methods:

val v = Validated.Valid(123)

// v: cats.data.Validated.Valid[Int] = Valid(123)

val i = Validated.Invalid(List("Badness"))

// i: cats.data.Validated.Invalid[List[String]] = Invalid(List(Badness

))

However, it is o[en easier to use the valid and invalid smart constructors,
which widen the return type to Validated:

val v = Validated.valid[List[String], Int](123)

// v: cats.data.Validated[List[String],Int] = Valid(123)

val i = Validated.invalid[List[String], Int](List("Badness"))

// i: cats.data.Validated[List[String],Int] = Invalid(List(Badness))

As a third opঞon we can import the valid and invalid extension methods
from cats.syntax.validated:

import cats.syntax.validated._ // for valid and invalid

123.valid[List[String]]

// res2: cats.data.Validated[List[String],Int] = Valid(123)

List("Badness").invalid[Int]

// res3: cats.data.Validated[List[String],Int] = Invalid(List(Badness)

)

As a fourth opঞon we can use pure and raiseError from
cats.syntax.applicative and cats.syntax.applicativeError

respecঞvely:

http://typelevel.org/cats/api/cats/syntax/package$$applicative$
http://typelevel.org/cats/api/cats/syntax/package$$applicativeError$

154 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

import cats.syntax.applicative._ // for pure

import cats.syntax.applicativeError._ // for raiseError

type ErrorsOr[A] = Validated[List[String], A]

123.pure[ErrorsOr]

// res5: ErrorsOr[Int] = Valid(123)

List("Badness").raiseError[ErrorsOr, Int]

// res6: ErrorsOr[Int] = Invalid(List(Badness))

Finally, there are helper methods to create instances of Validated from dif-
ferent sources. We can create them from Exceptions, as well as instances of
Try, Either, and Option:

Validated.catchOnly[NumberFormatException]("foo".toInt)

// res7: cats.data.Validated[NumberFormatException,Int] = Invalid(java

.lang.NumberFormatException: For input string: "foo")

Validated.catchNonFatal(sys.error("Badness"))

// res8: cats.data.Validated[Throwable,Nothing] = Invalid(java.lang.

RuntimeException: Badness)

Validated.fromTry(scala.util.Try("foo".toInt))

// res9: cats.data.Validated[Throwable,Int] = Invalid(java.lang.

NumberFormatException: For input string: "foo")

Validated.fromEither[String, Int](Left("Badness"))

// res10: cats.data.Validated[String,Int] = Invalid(Badness)

Validated.fromOption[String, Int](None, "Badness")

// res11: cats.data.Validated[String,Int] = Invalid(Badness)

6.4.2 Combining Instances of Validated

We can combine instances of Validated using any of the methods or syntax
described for Semigroupal above.

All of these techniques require an instance of Semigroupal to be in scope. As
with Either, we need to fix the error type to create a type constructor with
the correct number of parameters for Semigroupal:

6.4. VALIDATED 155

type AllErrorsOr[A] = Validated[String, A]

Validated accumulates errors using a Semigroup, so we need one of those
in scope to summon the Semigroupal. If no Semigroup is visible at the call
site, we get an annoyingly unhelpful compilaঞon error:

Semigroupal[AllErrorsOr]

// <console>:28: error: could not find implicit value for parameter

instance: cats.Semigroupal[AllErrorsOr]

// Semigroupal[AllErrorsOr]

// ^

Once we import a Semigroup for the error type, everything works as ex-
pected:

import cats.instances.string._ // for Semigroup

Semigroupal[AllErrorsOr]

// res13: cats.Semigroupal[AllErrorsOr] = cats.data.

ValidatedInstances$$anon$1@5e3850f5

As long as the compiler has all the implicits in scope to summon a Semi-

groupal of the correct type, we can use apply syntax or any of the other
Semigroupal methods to accumulate errors as we like:

import cats.syntax.apply._ // for tupled

(

"Error 1".invalid[Int],

"Error 2".invalid[Int]

).tupled

// res14: cats.data.Validated[String,(Int, Int)] = Invalid(Error 1

Error 2)

As you can see, String isn’t an ideal type for accumulaঞng errors. We com-
monly use Lists or Vectors instead:

156 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

import cats.instances.vector._ // for Semigroupal

(

Vector(404).invalid[Int],

Vector(500).invalid[Int]

).tupled

// res15: cats.data.Validated[scala.collection.immutable.Vector[Int],(

Int, Int)] = Invalid(Vector(404, 500))

The cats.data package also provides the NonEmptyList and NonEmptyVec-
tor types that prevent us failing without at least one error:

import cats.data.NonEmptyVector

(

NonEmptyVector.of("Error 1").invalid[Int],

NonEmptyVector.of("Error 2").invalid[Int]

).tupled

// res16: cats.data.Validated[cats.data.NonEmptyVector[String],(Int,

Int)] = Invalid(NonEmptyVector(Error 1, Error 2))

6.4.3 Methods of Validated

Validated comes with a suite of methods that closely resemble those avail-
able for Either, including the methods from cats.syntax.either. We can
use map, leftMap, and bimap to transform the values inside the valid and
invalid sides:

123.valid.map(_ * 100)

// res17: cats.data.Validated[Nothing,Int] = Valid(12300)

"?".invalid.leftMap(_.toString)

// res18: cats.data.Validated[String,Nothing] = Invalid(?)

123.valid[String].bimap(_ + "!", _ * 100)

// res19: cats.data.Validated[String,Int] = Valid(12300)

"?".invalid[Int].bimap(_ + "!", _ * 100)

// res20: cats.data.Validated[String,Int] = Invalid(?!)

http://typelevel.org/cats/api/cats/data/NonEmptyList.html
http://typelevel.org/cats/api/cats/data/NonEmptyVector.html
http://typelevel.org/cats/api/cats/data/NonEmptyVector.html
http://typelevel.org/cats/api/cats/syntax/package$$either$

6.4. VALIDATED 157

We can’t flatMap because Validated isn’t a monad. However, Cats does
provide a stand-in for flatMap called andThen. The type signature of
andThen is idenঞcal to that of flatMap, but it has a different name because
it is not a lawful implementaঞon with respect to the monad laws:

32.valid.andThen { a =>

10.valid.map { b =>

a + b

}

}

// res21: cats.data.Validated[Nothing,Int] = Valid(42)

If we want to do more than just flatMap, we can convert back and forth be-
tween Validated and Either using the toEither and toValidated meth-
ods. Note that toValidated comes from [cats.syntax.either]:

import cats.syntax.either._ // for toValidated

// import cats.syntax.either._

"Badness".invalid[Int]

// res22: cats.data.Validated[String,Int] = Invalid(Badness)

"Badness".invalid[Int].toEither

// res23: Either[String,Int] = Left(Badness)

"Badness".invalid[Int].toEither.toValidated

// res24: cats.data.Validated[String,Int] = Invalid(Badness)

As with Either, we can use the ensure method to fail with a specified error
if a predicate does not hold:

// 123.valid[String].ensure("Negative!")(_ > 0)

Finally, we can call getOrElse or fold to extract values from the Valid and
Invalid cases:

158 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

"fail".invalid[Int].getOrElse(0)

// res26: Int = 0

"fail".invalid[Int].fold(_ + "!!!", _.toString)

// res27: String = fail!!!

6.4.4 Exercise: Form Validaঞon

Let’s get used to Validated by implemenঞng a simple HTML registraঞon
form. We receive request data from the client in a Map[String, String]

and we want to parse it to create a User object:

case class User(name: String, age: Int)

Our goal is to implement code that parses the incoming data enforcing the
following rules:

• the name and age must be specified;
• the name must not be blank;
• the age must be a valid non-negaঞve integer.

If all the rules pass our parser we should return a User. If any rules fail we
should return a List of the error messages.

To implement this example we’ll need to combine rules in sequence and in
parallel. We’ll use Either to combine computaঞons in sequence using fail-fast
semanঞcs, and Validated to combine them in parallel using accumulaঞng
semanঞcs.

Let’s start with some sequenঞal combinaঞon. We’ll define two methods to
read the "name" and "age" fields:

• readName will take a Map[String, String] parameter, extract the
"name" field, check the relevant validaঞon rules, and return an Ei-

ther[List[String], String].

6.5. APPLY AND APPLICATIVE 159

• readAge will take a Map[String, String] parameter, extract the
"age" field, check the relevant validaঞon rules, and return an Ei-

ther[List[String], Int].

We’ll build these methods up from smaller building blocks. Start by defining a
method getValue that reads a String from the Map given a field name.

See the soluঞon

Next define a method parseInt that consumes a String and parses it as an
Int.

See the soluঞon

Next implement the validaঞon checks: nonBlank to check Strings, and non-
Negative to check Ints.

See the soluঞon

Now combine getValue, parseInt, nonBlank and nonNegative to create
readName and readAge:

See the soluঞon

Finally, use a Semigroupal to combine the results of readName and readAge
to produce a User. Make sure you switch from Either to Validated to ac-
cumulate errors.

See the soluঞon

6.5 Apply and Applicaঞve

Semigroupals aren’t menঞoned frequently in the wider funcঞonal program-
ming literature. They provide a subset of the funcঞonality of a related type
class called an applicaࢼve functor (“applicaঞve” for short).

Semigroupal and Applicative effecঞvely provide alternaঞve encodings of
the same noঞon of joining contexts. Both encodings are introduced in the
same 2008 paper by Conor McBride and Ross Paterson².

²Semigroupal is referred to as “monoidal” in the paper.

http://www.staff.city.ac.uk/~ross/papers/Applicative.html

160 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

Cats models applicaঞves using two type classes. The first, cats.Apply, ex-
tends Semigroupal and Functor and adds an ap method that applies a pa-
rameter to a funcঞon within a context. The second, cats.Applicative, ex-
tends Apply, adds the pure method introduced in Chapter 4. Here’s a simpli-
fied definiঞon in code:

trait Apply[F[_]] extends Semigroupal[F] with Functor[F] {

def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]

def product[A, B](fa: F[A], fb: F[B]): F[(A, B)] =

ap(map(fa)(a => (b: B) => (a, b)))(fb)

}

trait Applicative[F[_]] extends Apply[F] {

def pure[A](a: A): F[A]

}

Breaking this down, the ap method applies a parameter fa to a funcঞon ff

within a context F[_]. The productmethod from Semigroupal is defined in
terms of ap and map.

Don’t worry too much about the implementaঞon of product—it’s difficult to
read and the details aren’t parঞcuarly important. The main point is that there
is a ঞght relaঞonship between product, ap, and map that allows any one of
them to be defined in terms of the other two.

Applicative also introduces the pure method. This is the same pure we
saw in Monad. It constructs a new applicaঞve instance from an unwrapped
value. In this sense, Applicative is related to Apply as Monoid is related to
Semigroup.

6.5.1 The Hierarchy of Sequencing Type Classes

With the introducঞon of Apply and Applicative, we can zoom out and see
a whole family of type classes that concern themselves with sequencing com-
putaঞons in different ways. Figure 6.1 shows the relaঞonship between the
type classes covered in this book³.

³See Rob Norris’ infographic for a the complete picture.

http://typelevel.org/cats/api/cats/Apply.html
http://typelevel.org/cats/api/cats/Applicative.html
https://github.com/tpolecat/cats-infographic

6.5. APPLY AND APPLICATIVE 161

Figure 6.1: Monad type class hierarchy

Each type class in the hierarchy represents a parঞcular set of sequencing se-
manঞcs, introduces a set of characterisঞc methods, and defines the funcঞon-
ality of its supertypes in terms of them:

• every monad is an applicaঞve;
• every applicaঞve a semigroupal;
• and so on.

Because of the lawful nature of the relaঞonships between the type classes,
the inheritance relaঞonships are constant across all instances of a type class.
Apply defines product in terms of ap and map; Monad defines product, ap,
and map, in terms of pure and flatMap.

To illustrate this let’s consider two hypotheঞcal data types:

• Foo is a monad. It has an instance of the Monad type class that imple-
ments pure and flatMap and inherits standard definiঞons of product,
map, and ap;

• Bar is an applicaঞve functor. It has an instance of Applicative that
implements pure and ap and inherits standard definiঞons of product
and map.

162 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

What can we say about these two data types without knowing more about
their implementaঞon?

We know strictly more about Foo than Bar: Monad is a subtype of Applica-
tive, sowe can guarantee properঞes of Foo (namely flatMap) thatwe cannot
guarantee with Bar. Conversely, we know that Bar may have a wider range
of behaviours than Foo. It has fewer laws to obey (no flatMap), so it can
implement behaviours that Foo cannot.

This demonstrates the classic trade-off of power (in the mathemaঞcal sense)
versus constraint. The more constraints we place on a data type, the more
guarantees we have about its behaviour, but the fewer behaviours we can
model.

Monads happen to be a sweet spot in this trade-off. They are flexible enough
tomodel awide range of behaviours and restricঞve enough to give strong guar-
antees about those behaviours. However, there are situaঞons where monads
aren’t the right tool for the job. Someঞmes we want Thai food, and burritos
just won’t saঞsfy.

Whereas monads impose a strict sequencing on the computaঞons they model,
applicaঞves and semigroupals impose no such restricঞon. This puts them in a
different sweet spot in the hierarchy. We can use them to represent classes
of parallel / independent computaঞons that monads cannot.

We choose our semanঞcs by choosing our data structures. If we choose a
monad, we get strict sequencing. If we choose an applicaঞve, we lose the
ability to flatMap. This is the trade-off enforced by the consistency laws. So
choose your types carefully!

6.6 Summary

While monads and functors are the most widely used sequencing data types
we’ve covered in this book, semigroupals and applicaঞves are themost general.
These type classes provide a generic mechanism to combine values and apply
funcঞons within a context, from which we can fashion monads and a variety
of other combinators.

6.6. SUMMARY 163

Semigroupal and Applicative are most commonly used as a means of com-
bining independent values such as the results of validaঞon rules. Cats provides
the Validated type for this specific purpose, alongwith apply syntax as a con-
venient way to express the combinaঞon of rules.

We have almost covered all of the funcঞonal programming concepts on our
agenda for this book. The next chapter covers Traverse and Foldable, two
powerful type classes for converঞng between data types. A[er that we’ll look
at several case studies that bring together all of the concepts from Part I.

164 CHAPTER 6. SEMIGROUPAL AND APPLICATIVE

Chapter 7

Foldable and Traverse

In this chapter we’ll look at two type classes that capture iteraঞon over collec-
ঞons:

• Foldable abstracts the familiar foldLeft and foldRight operaঞons;
• Traverse is a higher-level abstracঞon that uses Applicatives to it-

erate with less pain than folding.

We’ll start by looking at Foldable, and then examine cases where folding
becomes complex and Traverse becomes convenient.

7.1 Foldable

The Foldable type class captures the foldLeft and foldRight methods
we’re used to in sequences like Lists, Vectors, and Streams. Using Fold-
able, we can write generic folds that work with a variety of sequence types.
We can also invent new sequences and plug them into our code. Foldable
gives us great use cases for Monoids and the Eval monad.

165

166 CHAPTER 7. FOLDABLE AND TRAVERSE

7.1.1 Folds and Folding

Let’s start with a quick recap of the general concept of folding. We supply an
accumulator value and a binary funcࢼon to combine it with each item in the
sequence:

def show[A](list: List[A]): String =

list.foldLeft("nil")((accum, item) => s"$item then $accum")

show(Nil)

// res0: String = nil

show(List(1, 2, 3))

// res1: String = 3 then 2 then 1 then nil

The foldLeft method works recursively down the sequence. Our binary
funcঞon is called repeatedly for each item, the result of each call becoming
the accumulator for the next. When we reach the end of the sequence, the
final accumulator becomes our final result.

Depending on the operaঞon we’re performing, the order in which we fold may
be important. Because of this there are two standard variants of fold:

• foldLeft traverses from “le[” to “right” (start to finish);
• foldRight traverses from “right” to “le[” (finish to start).

Figure 7.1 illustrates each direcঞon.

foldLeft and foldRight are equivalent if our binary operaঞon is associaঞve.
For example, we can sum a List[Int] by folding in either direcঞon, using 0
as our accumulator and addiঞon as our operaঞon:

List(1, 2, 3).foldLeft(0)(_ + _)

// res2: Int = 6

List(1, 2, 3).foldRight(0)(_ + _)

// res3: Int = 6

7.1. FOLDABLE 167

1

1

2

2

3

3 0

3

5

6

+

+

+

1

2

3
1

2

3

0

1

3

+

+

+

6

Figure 7.1: Illustraঞon of foldLe[and foldRight

If we provide a non-associaঞve operator the order of evaluaঞon makes a dif-
ference. For example, if we fold using subtracঞon, we get different results in
each direcঞon:

List(1, 2, 3).foldLeft(0)(_ - _)

// res4: Int = -6

List(1, 2, 3).foldRight(0)(_ - _)

// res5: Int = 2

7.1.2 Exercise: Reflecঞng on Folds

Try using foldLeft and foldRightwith an empty list as the accumulator and
:: as the binary operator. What results do you get in each case?

See the soluঞon

7.1.3 Exercise: Scaf-fold-ing Other Methods

foldLeft and foldRight are very general methods. We can use them to im-
plement many of the other high-level sequence operaঞons we know. Prove
this to yourself by implemenঞng subsঞtutes for List's map, flatMap, fil-
ter, and sum methods in terms of foldRight.

See the soluঞon

168 CHAPTER 7. FOLDABLE AND TRAVERSE

7.1.4 Foldable in Cats

Cats’ Foldable abstracts foldLeft and foldRight into a type class. In-
stances of Foldable define these two methods and inherit a host of derived
methods. Cats provides out-of-the-box instances of Foldable for a handful
of Scala data types: List, Vector, Stream, and Option.

We can summon instances as usual using Foldable.apply and call their im-
plementaঞons of foldLeft directly. Here is an example using List:

import cats.Foldable

import cats.instances.list._ // for Foldable

val ints = List(1, 2, 3)

Foldable[List].foldLeft(ints, 0)(_ + _)

// res1: Int = 6

Other sequences like Vector and Stream work in the same way. Here is an
example using Option, which is treated like a sequence of zero or one ele-
ments:

import cats.instances.option._ // for Foldable

val maybeInt = Option(123)

Foldable[Option].foldLeft(maybeInt, 10)(_ * _)

// res3: Int = 1230

7.1.4.1 Folding Right

Foldable defines foldRight differently to foldLeft, in terms of the Eval
monad:

def foldRight[A, B](fa: F[A], lb: Eval[B])

(f: (A, Eval[B]) => Eval[B]): Eval[B]

Using Eval means folding is always stack safe, even when the collecঞon’s de-
fault definiঞon of foldRight is not. For example, the default implementaঞon

7.1. FOLDABLE 169

of foldRight for Stream is not stack safe. The longer the stream, the larger
the stack requirements for the fold. A sufficiently large stream will trigger a
StackOverflowError:

import cats.Eval

import cats.Foldable

def bigData = (1 to 100000).toStream

bigData.foldRight(0L)(_ + _)

// java.lang.StackOverflowError ...

Using Foldable forces us to use stack safe operaঞons, which fixes the over-
flow excepঞon:

import cats.instances.stream._ // for Foldable

val eval: Eval[Long] =

Foldable[Stream].

foldRight(bigData, Eval.now(0L)) { (num, eval) =>

eval.map(_ + num)

}

eval.value

// res7: Long = 5000050000

Stack Safety in the Standard Library

Stack safety isn’t typically an issue when using the standard library. The
most commonly used collecঞon types, such as List and Vector, pro-
vide stack safe implementaঞons of foldRight:

(1 to 100000).toList.foldRight(0L)(_ + _)

// res8: Long = 5000050000

(1 to 100000).toVector.foldRight(0L)(_ + _)

// res9: Long = 5000050000

We’ve called out Stream because it is an excepঞon to this rule. What-

170 CHAPTER 7. FOLDABLE AND TRAVERSE

ever data type we’re using, though, it’s useful to know that Eval has our
back.

7.1.4.2 Folding with Monoids

Foldable provides us with a host of useful methods defined on top of
foldLeft. Many of these are facsimiles of familiar methods from the stan-
dard library: find, exists, forall, toList, isEmpty, nonEmpty, and so on:

Foldable[Option].nonEmpty(Option(42))

// res10: Boolean = true

Foldable[List].find(List(1, 2, 3))(_ % 2 == 0)

// res11: Option[Int] = Some(2)

In addiঞon to these familiar methods, Cats provides two methods that make
use of Monoids:

• combineAll (and its alias fold) combines all elements in the sequence
using their Monoid;

• foldMap maps a user-supplied funcঞon over the sequence and com-
bines the results using a Monoid.

For example, we can use combineAll to sum over a List[Int]:

import cats.instances.int._ // for Monoid

Foldable[List].combineAll(List(1, 2, 3))

// res12: Int = 6

Alternaঞvely, we can use foldMap to convert each Int to a String and con-
catenate them:

7.1. FOLDABLE 171

import cats.instances.string._ // for Monoid

Foldable[List].foldMap(List(1, 2, 3))(_.toString)

// res13: String = 123

Finally, we can compose Foldables to support deep traversal of nested se-
quences:

import cats.instances.vector._ // for Monoid

val ints = List(Vector(1, 2, 3), Vector(4, 5, 6))

(Foldable[List] compose Foldable[Vector]).combineAll(ints)

// res15: Int = 21

7.1.4.3 Syntax for Foldable

Every method in Foldable is available in syntax form via
cats.syntax.foldable. In each case, the first argument to the method on
Foldable becomes the receiver of the method call:

import cats.syntax.foldable._ // for combineAll and foldMap

List(1, 2, 3).combineAll

// res16: Int = 6

List(1, 2, 3).foldMap(_.toString)

// res17: String = 123

Explicits over Implicits

Remember that Scala will only use an instance of Foldable if the
method isn’t explicitly available on the receiver. For example, the fol-
lowing code will use the version of foldLeft defined on List:

List(1, 2, 3).foldLeft(0)(_ + _)

// res18: Int = 6

http://typelevel.org/cats/api/cats/syntax/package$$foldable$

172 CHAPTER 7. FOLDABLE AND TRAVERSE

whereas the following generic code will use Foldable:

import scala.language.higherKinds

def sum[F[_]: Foldable](values: F[Int]): Int =

values.foldLeft(0)(_ + _)

// sum: [F[_]](values: F[Int])(implicit evidence$1: cats.

Foldable[F])Int

We typically don’t need to worry about this disঞncঞon. It’s a feature!
We call the method we want and the compiler uses a Foldable when
needed to ensure our code works as expected. If we need a stack-safe
implementaঞon of foldRight, using Eval as the accumulator is enough
to force the compiler to select the method from Cats.

7.2 Traverse

foldLeft and foldRight are flexible iteraঞon methods but they require us
to do a lot of work to define accumulators and combinator funcঞons. The
Traverse type class is a higher level tool that leverages Applicatives to
provide a more convenient, more lawful, pa�ern for iteraঞon.

7.2.1 Traversing with Futures

We can demonstrate Traverse using the Future.traverse and Fu-

ture.sequence methods in the Scala standard library. These methods pro-
vide Future-specific implementaঞons of the traverse pa�ern. As an example,
suppose we have a list of server hostnames and a method to poll a host for its
upঞme:

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

val hostnames = List(

7.2. TRAVERSE 173

"alpha.example.com",

"beta.example.com",

"gamma.demo.com"

)

def getUptime(hostname: String): Future[Int] =

Future(hostname.length * 60) // just for demonstration

Now, suppose we want to poll all of the hosts and collect all of their
upঞmes. We can’t simply map over hostnames because the result—a
List[Future[Int]]—would contain more than one Future. We need to
reduce the results to a single Future to get something we can block on. Let’s
start by doing this manually using a fold:

val allUptimes: Future[List[Int]] =

hostnames.foldLeft(Future(List.empty[Int])) {

(accum, host) =>

val uptime = getUptime(host)

for {

accum <- accum

uptime <- uptime

} yield accum :+ uptime

}

Await.result(allUptimes, 1.second)

// res2: List[Int] = List(1020, 960, 840)

Intuiঞvely, we iterate over hostnames, call func for each item, and combine
the results into a list. This sounds simple, but the code is fairly unwieldy be-
cause of the need to create and combine Futures at every iteraঞon. We can
improve on things greatly using Future.traverse, which is tailor-made for
this pa�ern:

val allUptimes: Future[List[Int]] =

Future.traverse(hostnames)(getUptime)

Await.result(allUptimes, 1.second)

// res3: List[Int] = List(1020, 960, 840)

This is much clearer and more concise—let’s see how it works. If we ignore

174 CHAPTER 7. FOLDABLE AND TRAVERSE

distracঞons like CanBuildFrom and ExecutionContext, the implementaঞon
of Future.traverse in the standard library looks like this:

def traverse[A, B](values: List[A])

(func: A => Future[B]): Future[List[B]] =

values.foldLeft(Future(List.empty[A])) { (accum, host) =>

val item = func(host)

for {

accum <- accum

item <- item

} yield accum :+ item

}

This is essenঞally the same as our example code above. Future.traverse is
abstracঞng away the pain of folding and defining accumulators and combina-
ঞon funcঞons. It gives us a clean high-level interface to do what we want:

• start with a List[A];
• provide a funcঞon A => Future[B];
• end up with a Future[List[B]].

The standard library also provides another method, Future.sequence, that
assumes we’re starঞng with a List[Future[B]] and don’t need to provide
an idenঞty funcঞon:

object Future {

def sequence[B](futures: List[Future[B]]): Future[List[B]] =

traverse(futures)(identity)

// etc...

}

In this case the intuiঞve understanding is even simpler:

• start with a List[Future[A]];
• end up with a Future[List[A]].

7.2. TRAVERSE 175

Future.traverse and Future.sequence solve a very specific problem:
they allow us to iterate over a sequence of Futures and accumulate a re-
sult. The simplified examples above only work with Lists, but the real Fu-
ture.traverse and Future.sequencework with any standard Scala collec-
ঞon.

Cats’ Traverse type class generalises these pa�erns to work with any type
of Applicative: Future, Option, Validated, and so on. We’ll approach
Traverse in the next secঞons in two steps: first we’ll generalise over the
Applicative, then we’ll generalise over the sequence type. We’ll end up
with an extremely valuable tool that trivialises many operaঞons involving se-
quences and other data types.

7.2.2 Traversing with Applicaঞves

If we squint, we’ll see that we can rewrite traverse in terms of an Applica-
tive. Our accumulator from the example above:

Future(List.empty[Int])

is equivalent to Applicative.pure:

import cats.Applicative

import cats.instances.future._ // for Applicative

import cats.syntax.applicative._ // for pure

List.empty[Int].pure[Future]

Our combinator, which used to be this:

def oldCombine(

accum : Future[List[Int]],

host : String

): Future[List[Int]] = {

val uptime = getUptime(host)

for {

accum <- accum

176 CHAPTER 7. FOLDABLE AND TRAVERSE

uptime <- uptime

} yield accum :+ uptime

}

is now equivalent to Semigroupal.combine:

import cats.syntax.apply._ // for mapN

// Combining accumulator and hostname using an Applicative:

def newCombine(accum: Future[List[Int]],

host: String): Future[List[Int]] =

(accum, getUptime(host)).mapN(_ :+ _)

By subsঞtuঞng these snippets back into the definiঞon of traverse we can
generalise it to to work with any Applicative:

import scala.language.higherKinds

def listTraverse[F[_]: Applicative, A, B]

(list: List[A])(func: A => F[B]): F[List[B]] =

list.foldLeft(List.empty[B].pure[F]) { (accum, item) =>

(accum, func(item)).mapN(_ :+ _)

}

def listSequence[F[_]: Applicative, B]

(list: List[F[B]]): F[List[B]] =

listTraverse(list)(identity)

We can use listTraverse to re-implement our upঞme example:

val totalUptime = listTraverse(hostnames)(getUptime)

Await.result(totalUptime, 1.second)

// res11: List[Int] = List(1020, 960, 840)

or we can use it with with other Applicative data types as shown in the
following exercises.

7.2. TRAVERSE 177

7.2.2.1 Exercise: Traversing with Vectors

What is the result of the following?

import cats.instances.vector._ // for Applicative

listSequence(List(Vector(1, 2), Vector(3, 4)))

See the soluঞon

What about a list of three parameters?

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))

See the soluঞon

7.2.2.2 Exercise: Traversing with Opঞons

Here’s an example that uses Options:

import cats.instances.option._ // for Applicative

def process(inputs: List[Int]) =

listTraverse(inputs)(n => if(n % 2 == 0) Some(n) else None)

What is the return type of thismethod? What does it produce for the following
inputs?

process(List(2, 4, 6))

process(List(1, 2, 3))

See the soluঞon

7.2.2.3 Exercise: Traversing with Validated

Finally, here is an example that uses Validated:

178 CHAPTER 7. FOLDABLE AND TRAVERSE

import cats.data.Validated

import cats.instances.list._ // for Monoid

type ErrorsOr[A] = Validated[List[String], A]

def process(inputs: List[Int]): ErrorsOr[List[Int]] =

listTraverse(inputs) { n =>

if(n % 2 == 0) {

Validated.valid(n)

} else {

Validated.invalid(List(s"$n is not even"))

}

}

What does this method produce for the following inputs?

process(List(2, 4, 6))

process(List(1, 2, 3))

See the soluঞon

7.2.3 Traverse in Cats

Our listTraverse and listSequence methods work with any type of Ap-
plicative, but they only work with one type of sequence: List. We can
generalise over different sequence types using a type class, which brings us
to Cats’ Traverse. Here’s the abbreviated definiঞon:

package cats

trait Traverse[F[_]] {

def traverse[G[_]: Applicative, A, B]

(inputs: F[A])(func: A => G[B]): G[F[B]]

def sequence[G[_]: Applicative, B]

(inputs: F[G[B]]): G[F[B]] =

traverse(inputs)(identity)

}

7.2. TRAVERSE 179

Cats provides instances of Traverse for List, Vector, Stream, Option, Ei-
ther, and a variety of other types. We can summon instances as usual using
Traverse.apply and use the traverse and sequencemethods as described
in the previous secঞon:

import cats.Traverse

import cats.instances.future._ // for Applicative

import cats.instances.list._ // for Traverse

val totalUptime: Future[List[Int]] =

Traverse[List].traverse(hostnames)(getUptime)

Await.result(totalUptime, 1.second)

// res1: List[Int] = List(1020, 960, 840)

val numbers = List(Future(1), Future(2), Future(3))

val numbers2: Future[List[Int]] =

Traverse[List].sequence(numbers)

Await.result(numbers2, 1.second)

// res3: List[Int] = List(1, 2, 3)

There are also syntax versions of the methods, imported via
cats.syntax.traverse:

import cats.syntax.traverse._ // for sequence and traverse

Await.result(hostnames.traverse(getUptime), 1.second)

// res4: List[Int] = List(1020, 960, 840)

Await.result(numbers.sequence, 1.second)

// res5: List[Int] = List(1, 2, 3)

As you can see, this is much more compact and readable than the foldLeft
code we started with earlier this chapter!

http://typelevel.org/cats/api/cats/syntax/package$$traverse$

180 CHAPTER 7. FOLDABLE AND TRAVERSE

7.3 Summary

In this chapter we were introduced to Foldable and Traverse, two type
classes for iteraঞng over sequences.

Foldable abstracts the foldLeft and foldRight methods we know from
collecঞons in the standard library. It adds stack-safe implementaঞons of these
methods to a handful of extra data types, and defines a host of situaঞonally
useful addiঞons. That said, Foldable doesn’t introduce much that we didn’t
already know.

The real power comes from Traverse, which abstracts and generalises the
traverse and sequencemethods we know from Future. Using these meth-
ods we can turn an F[G[A]] into a G[F[A]] for any Fwith an instance of Tra-
verse and any G with an instance of Applicative. In terms of the reducঞon
we get in lines of code, Traverse is one of the most powerful pa�erns in this
book. We can reduce folds of many lines down to a single foo.traverse.

…and with that, we’ve finished all of the theory in this book. There’s plenty
more to come, though, as we put everything we’ve learned into pracঞce in a
series of in-depth case studies in Part II!

Part II

Case Studies

181

Chapter 8

Case Study: Tesঞng
Asynchronous Code

We’ll start with a straigh�orward case study: how to simplify unit tests for
asynchronous code by making them synchronous.

Let’s return to the example from Chapter 7 where we’re measuring the upঞme
on a set of servers. We’ll flesh out the code into a more complete structure.
Therewill be two components. The first is an UptimeClient that polls remote
servers for their upঞme:

import scala.concurrent.Future

trait UptimeClient {

def getUptime(hostname: String): Future[Int]

}

We’ll also have an UptimeService that maintains a list of servers and allows
the user to poll them for their total upঞme:

import cats.instances.future._ // for Applicative

import cats.instances.list._ // for Traverse

import cats.syntax.traverse._ // for traverse

183

184 CHAPTER 8. CASE STUDY: TESTING ASYNCHRONOUS CODE

import scala.concurrent.ExecutionContext.Implicits.global

class UptimeService(client: UptimeClient) {

def getTotalUptime(hostnames: List[String]): Future[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

We’ve modelled UptimeClient as a trait because we’re going to want to stub
it out in unit tests. For example, we can write a test client that allows us to
provide dummy data rather than calling out to actual servers:

class TestUptimeClient(hosts: Map[String, Int]) extends UptimeClient {

def getUptime(hostname: String): Future[Int] =

Future.successful(hosts.getOrElse(hostname, 0))

}

Now, suppose we’re wriঞng unit tests for UptimeService. We want to test
its ability to sum values, regardless of where it is geমng them from. Here’s an
example:

def testTotalUptime() = {

val hosts = Map("host1" -> 10, "host2" -> 6)

val client = new TestUptimeClient(hosts)

val service = new UptimeService(client)

val actual = service.getTotalUptime(hosts.keys.toList)

val expected = hosts.values.sum

assert(actual == expected)

}

// <console>:31: warning: scala.concurrent.Future[Int] and Int are

unrelated: they will most likely never compare equal

// assert(actual == expected)

// ^

// error: No warnings can be incurred under -Xfatal-warnings.

The code doesn’t compile because we’ve made a classic error¹. We forgot
that our applicaঞon code is asynchronous. Our actual result is of type Fu-
ture[Int] and out expected result is of type Int. We can’t compare them
directly!

¹Technically this is a warning not an error. It has been promoted to an error in our case
because we’re using the -Xfatal-warnings flag on scalac.

8.1. ABSTRACTING OVER TYPE CONSTRUCTORS 185

There are a couple of ways to solve this problem. We could alter our test
code to accommodate the asynchronousness. However, there is another al-
ternaঞve. Let’s make our service code synchronous so our test works without
modificaঞon!

8.1 Abstracঞng over Type Constructors

We need to implement two versions of UptimeClient: an asynchronous one
for use in producঞon and a synchronous one for use in our unit tests:

trait RealUptimeClient extends UptimeClient {

def getUptime(hostname: String): Future[Int]

}

trait TestUptimeClient extends UptimeClient {

def getUptime(hostname: String): Int

}

The quesঞon is: what result type should we give to the abstract method in
UptimeClient? We need to abstract over Future[Int] and Int:

trait UptimeClient {

def getUptime(hostname: String): ???

}

At first this may seem difficult. We want to retain the Int part from each
type but “throw away” the Future part in the test code. Fortunately, Cats
provides a soluঞon in terms of the idenࢼty type, Id, that we discussed way
back in Secঞon 4.3. Id allows us to “wrap” types in a type constructor without
changing their meaning:

package cats

type Id[A] = A

Id allows us to abstract over the return types in UptimeClient. Implement
this now:

186 CHAPTER 8. CASE STUDY: TESTING ASYNCHRONOUS CODE

• write a trait definiঞon for UptimeClient that accepts a type construc-
tor F[_] as a parameter;

• extend it with two traits, RealUptimeClient and TestUptimeClient,
that bind F to Future and Id respecঞvely;

• write out the method signature for getUptime in each case to verify
that it compiles.

See the soluঞon

You should now be able to flesh your definiঞon of TestUptimeClient out
into a full class based on a Map[String, Int] as before.

See the soluঞon

8.2 Abstracঞng over Monads

Let’s turn our a�enঞon to UptimeService. We need to rewrite it to abstract
over the two types of UptimeClient. We’ll do this in two stages: first we’ll
rewrite the class and method signatures, then the method bodies. Starঞng
with the method signatures:

• comment out the body of getTotalUptime (replace it with ??? to
make everything compile);

• add a type parameter F[_] to UptimeService and pass it on to Upti-
meClient.

See the soluঞon

Now uncomment the body of getTotalUptime. You should get a compilaঞon
error similar to the following:

8.3. SUMMARY 187

// <console>:28: error: could not find implicit value for

// evidence parameter of type cats.Applicative[F]

// hostnames.traverse(client.getUptime).map(_.sum)

// ^

The problem here is that traverse only works on sequences of values
that have an Applicative. In our original code we were traversing a
List[Future[Int]]. There is an applicaঞve for Future so that was fine.
In this version we are traversing a List[F[Int]]. We need to prove to the
compiler that F has an Applicative. Do this by adding an implicit constructor
parameter to UptimeService.

See the soluঞon

Finally, let’s turn our a�enঞon to our unit tests. Our test code now works as
intended without any modificaঞon. We create an instance of TestUptime-
Client and wrap it in an UptimeService. This effecঞvely binds F to Id, al-
lowing the rest of the code to operate synchronously without worrying about
monads or applicaঞves:

def testTotalUptime() = {

val hosts = Map("host1" -> 10, "host2" -> 6)

val client = new TestUptimeClient(hosts)

val service = new UptimeService(client)

val actual = service.getTotalUptime(hosts.keys.toList)

val expected = hosts.values.sum

assert(actual == expected)

}

testTotalUptime()

8.3 Summary

This case study provides an example of how Cats can help us abstract over
different computaঞonal scenarios. We used the Applicative type class to
abstract over asynchronous and synchronous code. Leaning on a funcঞonal
abstracঞon allows us to specify the sequence of computaঞons we want to
perform without worrying about the details of the implementaঞon.

188 CHAPTER 8. CASE STUDY: TESTING ASYNCHRONOUS CODE

Back in Figure 6.1, we showed a “stack” of computaঞonal type classes that
are meant for exactly this kind of abstracঞon. Type classes like Functor, Ap-
plicative, Monad, and Traverse provide abstract implementaঞons of pat-
terns such as mapping, zipping, sequencing, and iteraঞon. The mathemaঞcal
laws on those types ensure that they work together with a consistent set of
semanঞcs.

We used Applicative in this case study because it was the least powerful
type class that did what we needed. If we had required flatMap, we could
have swapped out Applicative for Monad. If we had needed to abstract over
different sequence types, we could have used Traverse. There are also type
classes like ApplicativeError and MonadError that help model failures as
well as successful computaঞons.

Let’s move on now to a more complex case study where type classes will help
us produce something more interesঞng: a map-reduce-style framework for
parallel processing.

Chapter 9

Case Study: Map-Reduce

In this case study we’re going to implement a simple-but-powerful parallel
processing framework using Monoids, Functors, and a host of other goodies.

If you have usedHadoop or otherwise worked in “big data” youwill have heard
of MapReduce, which is a programming model for doing parallel data process-
ing across clusters ofmachines (aka “nodes”). As the name suggests, themodel
is built around a map phase, which is the same map funcঞon we know from
Scala and the Functor type class, and a reduce phase, which we usually call
fold¹ in Scala.

9.1 Parallelizing map and fold

Recall the general signature for map is to apply a funcঞon A => B to a F[A],
returning a F[B]:

map transforms each individual element in a sequence independently. We can
easily parallelize map because there are no dependencies between the trans-
formaঞons applied to different elements (the type signature of the funcঞon
A => B shows us this, assuming we don’t use side-effects not reflected in the
types).

¹In Hadoop there is also a shuffle phase that we will ignore here.

189

http://research.google.com/archive/map-reduce.html

190 CHAPTER 9. CASE STUDY: MAP-REDUCE

F[A] F[B]A => B

map

Figure 9.1: Type chart: functor map

F[A] B(B, A) => BB

foldLeft ,

Figure 9.2: Type chart: fold

What about fold? We can implement this step with an instance of Foldable.
Not every functor also has an instance of foldable but we can implement a
map-reduce system on top of any data type that has both of these type classes.
Our reducঞon step becomes a foldLeft over the results of the distributed
map.

By distribuঞng the reduce step we lose control over the order of traversal.
Our overall reducঞon may not be enঞrely le[-to-right—we may reduce le[-
to-right across several subsequences and then combine the results. To ensure
correctness we need a reducঞon operaঞon that is associaࢼve:

reduce(a1, reduce(a2, a3)) == reduce(reduce(a1, a2), a3)

If we have associaঞvity, we can arbitrarily distribute work between our nodes
provided the subsequences at every node stay in the same order as the iniঞal
dataset.

Our fold operaঞon requires us to seed the computaঞon with an element of
type B. Since fold may be split into an arbitrary number of parallel steps, the
seed should not affect the result of the computaঞon. This naturally requires
the seed to be an idenࢼty element:

9.2. IMPLEMENTING FOLDMAP 191

reduce(seed, a1) == reduce(a1, seed) == a1

In summary, our parallel fold will yield the correct results if:

• we require the reducer funcঞon to be associaঞve;
• we seed the computaঞon with the idenঞty of this funcঞon.

What does this pa�ern sound like? That’s right, we’ve come full circle back
to Monoid, the first type class we discussed in this book. We are not the
first to recognise the importance of monoids. The monoid design pa�ern for
map-reduce jobs is at the core of recent big data systems such as Twi�er’s
Summingbird.

In this project we’re going to implement a very simple single-machine map-
reduce. We’ll start by implemenঞng a method called foldMap to model the
data-flow we need.

9.2 Implemenঞng foldMap

We saw foldMap briefly back when we covered Foldable. It is one of the
derived operaঞons that sits on top of foldLeft and foldRight. However,
rather than use Foldable, we will re-implement foldMap here ourselves as it
will provide useful insight into the structure of map-reduce.

Start by wriঞng out the signature of foldMap. It should accept the following
parameters:

• a sequence of type Vector[A];
• a funcঞon of type A => B, where there is a Monoid for B;

You will have to add implicit parameters or context bounds to complete the
type signature.

See the soluঞon

Now implement the body of foldMap. Use the flow chart in Figure 9.3 as a
guide to the steps required:

http://arxiv.org/abs/1304.7544
http://arxiv.org/abs/1304.7544
https://github.com/twitter/summingbird

192 CHAPTER 9. CASE STUDY: MAP-REDUCE

4. Final result

3. Fold/reduce step

2. Map step

1. Initial data sequence

Figure 9.3: foldMap algorithm

1. start with a sequence of items of type A;
2. map over the list to produce a sequence of items of type B;
3. use the Monoid to reduce the items to a single B.

Here’s some sample output for reference:

import cats.instances.int._ // for Monoid

foldMap(Vector(1, 2, 3))(identity)

// res2: Int = 6

import cats.instances.string._ // for Monoid

// Mapping to a String uses the concatenation monoid:

foldMap(Vector(1, 2, 3))(_.toString + "! ")

// res4: String = "1! 2! 3! "

9.3. PARALLELISING FOLDMAP 193

// Mapping over a String to produce a String:

foldMap("Hello world!".toVector)(_.toString.toUpperCase)

// res6: String = HELLO WORLD!

See the soluঞon

9.3 Parallelising foldMap

Now we have a working single-threaded implementaঞon of foldMap, let’s
look at distribuঞng work to run in parallel. We’ll use our single-threaded ver-
sion of foldMap as a building block.

We’ll write a mulঞ-CPU implementaঞon that simulates the way we would dis-
tribute work in a map-reduce cluster as shown in Figure 9.4:

1. we start with an iniঞal list of all the data we need to process;
2. we divide the data into batches, sending one batch to each CPU;
3. the CPUs run a batch-level map phase in parallel;
4. the CPUs run a batch-level reduce phase in parallel, producing a local

result for each batch;
5. we reduce the results for each batch to a single final result.

Scala provides some simple tools to distribute work amongst threads. We
could use the parallel collecঞons library to implement a soluঞon, but let’s chal-
lenge ourselves by diving a bit deeper and implemenঞng the algorithm our-
selves using Futures.

9.3.1 Futures, Thread Pools, and ExecuঞonContexts

We already know a fair amount about the monadic nature of Futures. Let’s
take a moment for a quick recap, and to describe how Scala futures are sched-
uled behind the scenes.

Futures run on a thread pool, determined by an implicit ExecutionCon-
text parameter. Whenever we create a Future, whether through a call to

http://docs.scala-lang.org/overviews/parallel-collections/overview.html

194 CHAPTER 9. CASE STUDY: MAP-REDUCE

6. Final result

5. Reduce the batches

4. Reduce each batch in parallel

3. Map over the batches in parallel

2. Divide into batches for each CPU

1. Initial data sequence

Figure 9.4: parallelFoldMap algorithm

9.3. PARALLELISING FOLDMAP 195

Future.apply or some other combinator, we must have an implicit Execu-
tionContext in scope:

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

val future1 = Future {

(1 to 100).toList.foldLeft(0)(_ + _)

}

// future1: scala.concurrent.Future[Int] = Future(<not completed>)

val future2 = Future {

(100 to 200).toList.foldLeft(0)(_ + _)

}

// future2: scala.concurrent.Future[Int] = Future(<not completed>)

In this example we’ve imported a ExecutionContext.Implicits.global.
This default context allocates a thread pool with one thread per CPU in our
machine. When we create a Future the ExecutionContext schedules it for
execuঞon. If there is a free thread in the pool, the Future starts execuঞng im-
mediately. Most modern machines have at least two CPUs, so in our example
it is likely that future1 and future2 will execute in parellel.

Some combinators create new Futures that schedule work based on the re-
sults of other Futures. The map and flatMapmethods, for example, schedule
computaঞons that run as soon as their input values are computed and a CPU
is available:

val future3 = future1.map(_.toString)

// future3: scala.concurrent.Future[String] = Future(<not completed>)

val future4 = for {

a <- future1

b <- future2

} yield a + b

// future4: scala.concurrent.Future[Int] = Future(<not completed>)

As we saw in Secঞon 7.2, we can convert a List[Future[A]] to a Fu-

ture[List[A]] using Future.sequence:

196 CHAPTER 9. CASE STUDY: MAP-REDUCE

Future.sequence(List(Future(1), Future(2), Future(3)))

// res8: scala.concurrent.Future[List[Int]] = Future(<not completed>)

or an instance of Traverse:

import cats.instances.future._ // for Applicative

import cats.instances.list._ // for Traverse

import cats.syntax.traverse._ // for sequence

List(Future(1), Future(2), Future(3)).sequence

// res9: scala.concurrent.Future[List[Int]] = Future(<not completed>)

An ExecutionContext is required in either case. Finally, we can use
Await.result to block on a Future unঞl a result is available:

import scala.concurrent._

import scala.concurrent.duration._

Await.result(Future(1), 1.second) // wait for the result

// res10: Int = 1

There are also Monad and Monoid implementaঞons for Future available from
cats.instances.future:

import cats.{Monad, Monoid}

import cats.instances.int._ // for Monoid

import cats.instances.future._ // for Monad and Monoid

Monad[Future].pure(42)

Monoid[Future[Int]].combine(Future(1), Future(2))

9.3.2 Dividing Work

Now we’ve refreshed our memory of Futures, let’s look at how we can di-
vide work into batches. We can query the number of available CPUs on our
machine using an API call from the Java standard library:

9.3. PARALLELISING FOLDMAP 197

Runtime.getRuntime.availableProcessors

// res15: Int = 2

We can parঞঞon a sequence (actually anything that implements Vector) using
the groupedmethod. We’ll use this to split off batches of work for each CPU:

(1 to 10).toList.grouped(3).toList

// res16: List[List[Int]] = List(List(1, 2, 3), List(4, 5, 6), List(7,

8, 9), List(10))

9.3.3 Implemenঞng parallelFoldMap

Implement a parallel version of foldMap called parallelFoldMap. Here is
the type signature:

def parallelFoldMap[A, B : Monoid]

(values: Vector[A])

(func: A => B): Future[B] = ???

Use the techniques described above to split the work into batches, one batch
per CPU. Process each batch in a parallel thread. Refer back to Figure 9.4 if
you need to review the overall algorithm.

For bonus points, process the batches for each CPU using your implementa-
ঞon of foldMap from above.

See the soluঞon

9.3.4 parallelFoldMapwith more Cats

Although we implemented foldMap ourselves above, the method is also avail-
able as part of the Foldable type class we discussed in Secঞon 7.1.

Reimplement parallelFoldMap using Cats’ Foldable and Traverseable

type classes.

See the soluঞon

198 CHAPTER 9. CASE STUDY: MAP-REDUCE

9.4 Summary

In this case study we implemented a system that imitates map-reduce as per-
formed on a cluster. Our algorithm followed three steps:

1. batch the data and send one batch to each “node”;
2. perform a local map-reduce on each batch;
3. combine the results using monoid addiঞon.

Our toy system emulates the batching behaviour of real-world map-reduce
systems such as Hadoop. However, in reality we are running all of our work
on a single machine where communcaঞon between nodes is negligible. We
don’t actually need to batch data to gain efficient parallel processing of a list.
We can simply map using a Functor and reduce using a Monoid.

Regardless of the batching strategy, mapping and reducing with Monoids is a
powerful and general framework that isn’t limited to simple tasks like addiঞon
and string concatenaঞon. Most of the tasks data scienঞsts perform in their
day-to-day analyses can be cast as monoids. There are monoids for all the
following:

• approximate sets such as the Bloom filter;
• set cardinality esঞmators, such as the HyperLogLog algorithm;
• vectors and vector operaঞons like stochasঞc gradient descent;
• quanঞle esঞmators such as the t-digest

to name but a few.

Chapter 10

Case Study: Data Validaঞon

In this case study we will build a library for validaঞon. What do we mean by
validaঞon? Almost all programs must check their input meets certain criteria.
Usernames must not be blank, email addresses must be valid, and so on. This
type of validaঞon o[en occurs in web forms, but it could be performed on
configuraঞon files, on web service responses, and any other case where we
have to deal with data that we can’t guarantee is correct. Authenঞcaঞon, for
example, is just a specialised form of validaঞon.

We want to build a library that performs these checks. What design goals
should we have? For inspiraঞon, let’s look at some examples of the types of
checks we want to perform:

• A user must be over 18 years old or must have parental consent.

• A String ID must be parsable as a Int and the Int must correspond
to a valid record ID.

• A bid in an aucঞon must apply to one or more items and have a posiঞve
value.

• A username must contain at least four characters and all characters
must be alphanumeric.

199

200 CHAPTER 10. CASE STUDY: DATA VALIDATION

• An email address must contain a single @ sign. Split the string at the @.
The string to the le[must not be empty. The string to the right must
be at least three characters long and contain a dot.

With these examples in mind we can state some goals:

• We should be able to associate meaningful messages with each valida-
ঞon failure, so the user knows why their data is not valid.

• We should be able to combine small checks into larger ones. Taking the
username example above, we should be able to express this by combin-
ing a check of length and a check for alphanumeric values.

• We should be able to transform data while we are checking it. There
is an example above requiring we parse data, changing its type from
String to Int.

• Finally, we should be able to accumulate all the failures in one go, so
the user can correct all the issues before resubmiমng.

These goals assumewe’re checking a single piece of data. Wewill also need to
combine checks across mulঞple pieces of data. For a login form, for example,
we’ll need to combine the check results for the username and the password.
This will turn out to be quite a small component of the library, so the majority
of our ঞme will focus on checking a single data item.

10.1 Sketching the Library Structure

Let’s start at the bo�om, checking individual pieces of data. Before we start
coding let’s try to develop a feel for what we’ll be building. We can use a
graphical notaঞon to help us. We’ll go through our goals one by one.

Providing error messages

Our first goal requires us to associate useful error messages with a check fail-
ure. The output of a check could be either the value being checked, if it passed

10.1. SKETCHING THE LIBRARY STRUCTURE 201

F[A]

Figure 10.1: A validaঞon result

A => F[A]

Figure 10.2: A validaঞon check

the check, or some kind of error message. We can abstractly represent this as
a value in a context, where the context is the possibility of an error message
as shown in Figure 10.1.

A check itself is therefore a funcঞon that transforms a value into a value in a
context as shown in Figure 10.2.

Combine checks

How do we combine smaller checks into larger ones? Is this an applicaঞve or
semigroupal as shown in Figure 10.3?

Not really. With applicaঞve combinaঞon, both checks are applied to the same
value and result in a tuple with the value repeated. What we want feels more
like a monoid as shown in Figure 10.4. We can define a sensible idenঞty—a
check that always passes—and two binary combinaঞon operators—and and or:

We’ll probably be using and and or about equally o[en with our validaঞon

A => F[A] A => F[A] A => F[(A, A)]

,).tupled(

Figure 10.3: Applicaঞve combinaঞon of checks

202 CHAPTER 10. CASE STUDY: DATA VALIDATION

A => F[A] A => F[A] A => F[A]

|+|

Figure 10.4: Monoid combinaঞon of checks

A => F[B] B => (A => F[C]) A => F[C]

flatMap

A => F[B] B => C A => F[C]

map

Figure 10.5: Monadic combinaঞon of checks

library and it will be annoying to conঞnuously switch between two monoids
for combining rules. We consequentlywon’t actually use themonoid API: we’ll
use two separate methods, and and or, instead.

Accumulaঞng errors as we check

Monoids also feel like a good mechanism for accumulaঞng error messages.
If we store messages as a List or NonEmptyList, we can even use a pre-
exisঞng monoid from inside Cats.

Transforming data as we check it

In addiঞon to checking data, we also have the goal of transforming it. This
seems like it should be a map or a flatMap depending on whether the trans-
form can fail or not, so it seems we also want checks to be a monad as shown
in Figure 10.5.

We’ve now broken down our library into familiar abstracঞons and are in a good
posiঞon to begin development.

10.2. THE CHECK DATATYPE 203

10.2 The Check Datatype

Our design revolves around a Check, which we said was a funcঞon from a
value to a value in a context. As soon as you see this descripঞon you should
think of something like

type Check[A] = A => Either[String, A]

Here we’ve represented the error message as a String. This is probably not
the best representaঞon. We may want to accumulate messages in a List, for
example, or even use a different representaঞon that allows for internaঞonal-
izaঞon or standard error codes.

We could a�empt to build some kind of ErrorMessage type that holds all
the informaঞon we can think of. However, we can’t predict the user’s require-
ments. Instead let’s let the user specify what they want. We can do this by
adding a second type parameter to Check:

type Check[E, A] = A => Either[E, A]

We will probably want to add custom methods to Check so let’s declare it as
a trait instead of a type alias:

trait Check[E, A] {

def apply(value: A): Either[E, A]

// other methods...

}

As we said in Essenঞal Scala, there are two funcঞonal programming pa�erns
that we should consider when defining a trait:

• we can make it a typeclass, or;
• we can make it an algebraic data type (and hence seal it).

Type classes allow us to unify disparate data types with a common interface.
This doesn’t seem like what we’re trying to do here. That leaves us with an

http://underscore.io/books/essential-scala

204 CHAPTER 10. CASE STUDY: DATA VALIDATION

E • E => E

List[String] • List[String] => List[String]

Figure 10.6: Combining error messages

algebraic data type. Let’s keep that thought in mind as we explore the design
a bit further.

10.3 Basic Combinators

Let’s add some combinator methods to Check, starঞng with and. This method
combines two checks into one, succeeding only if both checks succeed. Think
about implemenঞng this method now. You should hit some problems. Read
on when you do!

trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

???

// other methods...

}

The problem is: what do you do when both checks fail? The correct thing to
do is to return both errors, but we don’t currently have any way to combine
Es. We need a type class that abstracts over the concept of “accumulaঞng”
errors as shown in Figure 10.6 What type class do we know that looks like
this? What method or operator should we use to implement the • operaঞon?

See the soluঞon

10.4. TRANSFORMING DATA 205

There is another semanঞc issue that will come up quite quickly: should and

short-circuit if the first check fails. What do you think the most useful be-
haviour is?

See the soluঞon

Use this knowledge to implement and. Make sure you end up with the be-
haviour you expect!

See the soluঞon

Strictly speaking, Either[E, A] is the wrong abstracঞon for the output of
our check. Why is this the case? What other data type could we use instead?
Switch your implementaঞon over to this new data type.

See the soluঞon

Our implementaঞon is looking pre�y good now. Implement an or combinator
to complement and.

See the soluঞon

With and and or we can implement many of checks we’ll want in pracঞce.
However, we sঞll have a few more methods to add. We’ll turn to map and
related methods next.

10.4 Transforming Data

One of our requirements is the ability to transform data. This allows us to
support addiঞonal scenarios like parsing input. In this secঞon we’ll extend our
check library with this addiঞonal funcঞonality.

The obvious starঞng point is map. When we try to implement this, we imme-
diately run into a wall. Our current definiঞon of Check requires the input and
output types to be the same:

type Check[E, A] = A => Either[E, A]

When we map over a check, what type do we assign to the result? It can’t be
A and it can’t be B. We are at an impasse:

206 CHAPTER 10. CASE STUDY: DATA VALIDATION

def map(check: Check[E, A])(func: A => B): Check[E, ???]

To implement mapwe need to change the definiঞon of Check. Specifically, we
need to a new type variable to separate the input type from the output:

type Check[E, A, B] = A => Either[E, B]

Checks can now represent operaঞons like parsing a String as an Int:

val parseInt: Check[List[String], String, Int] =

// etc...

However, spliমng our input and output types raises another issue. Up unঞl
now we have operated under the assumpঞon that a Check always returns its
input when successful. We used this in and and or to ignore the output of the
le[and right rules and simply return the original input on success:

(this(a), that(a)) match {

case And(left, right) =>

(left(a), right(a))

.mapN((result1, result2) => Right(a))

// etc...

}

In our new formulaঞon we can’t return Right(a) because its type is Ei-
ther[E, A] not Either[E, B]. We’re forced to make an arbitrary choice
between returning Right(result1) and Right(result2). The same is true
of the or method. From this we can derive two things:

• we should strive to make the laws we adhere to explicit; and
• the code is telling us we have the wrong abstracঞon in Check.

10.4.1 Predicates

We can make progress by pulling apart the concept of a predicate, which can
be combined using logical operaঞons such as and and or, and the concept of
a check, which can transform data.

10.4. TRANSFORMING DATA 207

What we have called Check so far we will call Predicate. For Predicate
we can state the following idenࢼty law encoding the noঞon that a predicate
always returns its input if it succeeds:

For a predicate p of type Predicate[E, A] and elements a1
and a2 of type A, if p(a1) == Success(a2) then a1 == a2.

Making this change gives us the following code:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // for |+|

import cats.syntax.apply._ // for mapN

import cats.data.Validated._ // for Valid and Invalid

sealed trait Predicate[E, A] {

def and(that: Predicate[E, A]): Predicate[E, A] =

And(this, that)

def or(that: Predicate[E, A]): Predicate[E, A] =

Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)).mapN((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(a1) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(a2) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}

}

208 CHAPTER 10. CASE STUDY: DATA VALIDATION

final case class And[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Or[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Predicate[E, A]

10.4.2 Checks

We’ll use Check to represent a structure we build from a Predicate that also
allows transformaঞon of its input. Implement Check with the following inter-
face:

sealed trait Check[E, A, B] {

def apply(a: A): Validated[E, B] =

???

def map[C](func: B => C): Check[E, A, C] =

???

}

See the soluঞon

What about flatMap? The semanঞcs are a bit unclear here. The method is
simple enough to declare but it’s not so obvious what it means or how we
should implement apply. The general shape of flatMap is shown in Figure
10.7.

How do we relate F in the figure to Check in our code? Check has three type
variables while F only has one.

To unify the types we need to fix two of the type parameters. The idiomaঞc
choices are the error type E and the input type A. This gives us the relaঞonships
shown in Figure 10.8. In other words, the semanঞcs of applying a FlatMap
are:

10.4. TRANSFORMING DATA 209

F[A] F[B]A => F[B]

flatMap

Figure 10.7: Type chart for flatMap

A => F[B] B => (A => F[C]) A => F[C]

flatMap

Figure 10.8: Type chart for flatMap applied to Check

• given an input of type A, convert to F[B];

• use the output of type B to choose a Check[E, A, C];

• return to the original input of type A and apply it to the chosen check
to generate the final result of type F[C].

This is quite an odd method. We can implement it, but it is hard to find a use
for it. Go ahead and implement flatMap for Check, and then we’ll see a more
generally useful method.

See the soluঞon

We can write a more useful combinator that chains together two Checks. The
output of the first check is connected to the input of the second. This is anal-
ogous to funcঞon composiঞon using andThen:

val f: A => B = ???

val g: B => C = ???

val h: A => C = f andThen g

A Check is basically a funcঞon A => Validated[E, B] so we can define an
analagous andThen method:

210 CHAPTER 10. CASE STUDY: DATA VALIDATION

trait Check[E, A, B] {

def andThen[C](that: Check[E, B, C]): Check[E, A, C]

}

Implement andThen now!

See the soluঞon

10.4.3 Recap

We now have two algebraic data types, Predicate and Check, and a host
of combinators with their associated case class implementaঞons. Look at the
following soluঞon for a complete definiঞon of each ADT.

See the soluঞon

We have a complete implementaঞon of Check and Predicate that do most
of what we originally set out to do. However, we are not finished yet. You
have probably recognised structure in Predicate and Check that we can ab-
stract over: Predicate has a monoid and Check has a monad. Furthermore,
in implemenঞng Check you might have felt the implementaঞon doesn’t do
much—all we do is call through to underlying methods on Predicate and
Validated.

There are a lot of ways this library could be cleaned up. However, let’s imple-
ment some examples to prove to ourselves that our library really does work,
and then we’ll turn to improving it.

Implement checks for some of the examples given in the introducঞon:

• A username must contain at least four characters and consist enঞrely
of alphanumeric characters

• An email address must contain an @ sign. Split the string at the @. The
string to the le[must not be empty. The string to the right must be at
least three characters long and contain a dot.

You might find the following predicates useful:

10.5. KLEISLIS 211

import cats.data.{NonEmptyList, Validated}

type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =

NonEmptyList(s, Nil)

def longerThan(n: Int): Predicate[Errors, String] =

Predicate.lift(

error(s"Must be longer than $n characters"),

str => str.size > n)

val alphanumeric: Predicate[Errors, String] =

Predicate.lift(

error(s"Must be all alphanumeric characters"),

str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char"),

str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char only once"),

str => str.filter(c => c == char).size == 1)

See the soluঞon

10.5 Kleislis

We’ll finish off this case study by cleaning up the implementaঞon of Check. A
jusঞfiable criঞcism of our approach is that we’ve wri�en a lot of code to do
very li�le. A Predicate is essenঞally a funcঞon A => Validated[E, A],
and a Check is basically a wrapper that lets us compose these funcঞons.

We can abstract A => Validated[E, A] to A => F[B], which you’ll recog-
nise as the type of funcঞon you pass to the flatMap method on a monad.
Imagine we have the following sequence of operaঞons:

212 CHAPTER 10. CASE STUDY: DATA VALIDATION

A => F[A]

flatMap flatMap

A => F[B] B => F[C]

Figure 10.9: Sequencing monadic transforms

• We li[some value into a monad (by using pure, for example). This is a
funcঞon with type A => F[A].

• We then sequence some transformaঞons on themonad using flatMap.

We can illustrate this as shown in Figure 10.9. We can also write out this
example using the monad API as follows:

val aToB: A => F[B] = ???

val bToC: B => F[C] = ???

def example[A, C](a: A): F[C] =

aToB(a).flatMap(bToC)

Recall that Check is, in the abstract, allowing us to compose funcঞons of type
A => F[B]. We can write the above in terms of andThen as:

val aToC = aToB andThen bToC

The result is a (wrapped) funcঞon aToC of type A => F[C] that we can sub-
sequently apply to a value of type A.

We have achieved the same thing as the example method without having to
reference an argument of type A. The andThenmethod on Check is analogous
to funcঞon composiঞon, but is composing funcঞon A => F[B] instead of A
=> B.

The abstract concept of composing funcঞons of type A => F[B] has a name:
a Kleisli.

Cats contains a data type cats.data.Kleisli that wraps a funcঞon just as
Check does. Kleisli has all the methods of Check plus some addiঞonal

http://typelevel.org/cats/api/cats/data/Kleisli.html

10.5. KLEISLIS 213

ones. If Kleisli seems familiar to you, then congratulaঞons. You’ve seen
through its disguise and recognised it as another concept from earlier in the
book: Kleisli is just another name for ReaderT.

Here is a simple example using Kleisli to transform an integer into a list of
integers through three steps:

import cats.data.Kleisli

import cats.instances.list._ // for Monad

These steps each transform an input Int into an output of type List[Int]:

val step1: Kleisli[List, Int, Int] =

Kleisli(x => List(x + 1, x - 1))

val step2: Kleisli[List, Int, Int] =

Kleisli(x => List(x, -x))

val step3: Kleisli[List, Int, Int] =

Kleisli(x => List(x * 2, x / 2))

We can combine the steps into a single pipeline that combines the underlying
Lists using flatMap:

val pipeline = step1 andThen step2 andThen step3

The result is a funcঞon that consumes a single Int and returns eight outputs,
each produced by a different combinaঞon of transformaঞons from step1,
step2, and step3:

pipeline.run(20)

// res2: List[Int] = List(42, 10, -42, -10, 38, 9, -38, -9)

The only notable difference between Kleisli and Check in terms of API is
that Kleisli renames our apply method to run.

Let’s replace Check with Kleisli in our validaঞon examples. To do so we
need to make a few changes to Predicate. We must be able to convert

214 CHAPTER 10. CASE STUDY: DATA VALIDATION

a Predicate to a funcঞon, as Kleisli only works with funcঞons. Some-
what more subtly, when we convert a Predicate to a funcঞon, it should
have type A => Either[E, A] rather than A => Validated[E, A] be-
cause Kleisli relies on the wrapped funcঞon returning a monad.

Add a method to Predicate called run that returns a funcঞon of the correct
type. Leave the rest of the code in Predicate the same.

See the soluঞon

Now rewrite our username and email validaঞon example in terms of Kleisli
and Predicate. Here are few ঞps in case you get stuck:

First, remember that the run method on Predicate takes an implicit param-
eter. If you call aPredicate.run(a) it will try to pass the implicit parameter
explicitly. If you want to create a funcঞon from a Predicate and immediately
apply that funcঞon, use aPredicate.run.apply(a)

Second, type inference can be tricky in this exercise. We found that the fol-
lowing definiঞons helped us to write code with fewer type declaraঞons.

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

// Create a check from a function:

def check[A, B](func: A => Result[B]): Check[A, B] =

Kleisli(func)

// Create a check from a Predicate:

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =

Kleisli[Result, A, A](pred.run)

See the soluঞon

We have now wri�en our code enঞrely in terms of Kleisli and Predicate,
completely removing Check. This is a good first step to simplifying our library.
There’s sঞll plenty more to do, but we have a sophisঞcated building block from
Cats to work with. We’ll leave further improvements up to the reader.

10.6. SUMMARY 215

10.6 Summary

This case study has been an exercise in removing rather than building abstrac-
ঞons. We started with a fairly complex Check type. Once we realised we
were conflaঞng two concepts, we separated out Predicate leaving us with
something that could be implemented with Kleisli.

We made several design choices above that reasonable developers may dis-
agree with. Should the method that converts a Predicate to a funcঞon really
be called run instead of, say, toFunction? Should Predicate be a subtype
of Function to begin with? Many funcঞonal programmers prefer to avoid
subtyping because it plays poorly with implicit resoluঞon and type inference,
but there could be an argument to use it here. As always the best decisions
depend on the context in which the library will be used.

216 CHAPTER 10. CASE STUDY: DATA VALIDATION

Chapter 11

Case Study: CRDTs

In this case study we will explore Commutaࢼve Replicated Data Types (CRDTs),
a family of data structures that can be used to reconcile eventually consistent
data.

We’ll start by describing the uঞlity and difficulty of eventually consistent sys-
tems, then show how we can use monoids and their extensions to solve the
issues that arise. Finally, we will model the soluঞons in Scala.

Our goal here is to focus on the implementaঞon in Scala of a parঞcular type
of CRDT. We’re not aiming at a comprehensive survey of all CRDTs. CRDTs
are a fast-moving field and we advise you to read the literature to learn about
more.

11.1 Eventual Consistency

As soon as a system scales beyond a single machine we have to make a funda-
mental choice about how we manage data.

One approach is to build a system that is consistent, meaning that all machines
have the same view of data. For example, if a user changes their password
then all machines that store a copy of that password must accept the change
before we consider the operaঞon to have completed successfully.

217

218 CHAPTER 11. CASE STUDY: CRDTS

Consistent systems are easy to work with but they have their disadvantages.
They tend to have high latency because a single change can result in many
messages being sent between machines. They also tend to have relaঞvely low
upঞme because outages can cut communicaঞons between machines creaঞng
a network parࢼࢼon. When there is a network parঞঞon, a consistent system
may refuse further updates to prevent inconsistencies across machines.

An alternaঞve approach is an eventually consistent system. This means that
at any parঞcular point in ঞme machines are allowed to have differing views
of data. However, if all machines can communicate and there are no further
updates they will eventually all have the same view of data.

Eventually consistent systems require less communicaঞon between machines
so latency can be lower. A parঞঞoned machine can sঞll accept updates and
reconcile its changes when the network is fixed, so systems can also can have
be�er upঞme.

The big quesঞon is: how do we do this reconciliaঞon between machines?
CRDTs provide one approach to the problem.

11.2 The GCounter

Let’s look at one parঞcular CRDT implementaঞon. Then we’ll a�empt to gen-
eralise properঞes to see if we can find a general pa�ern.

The data structure we will look at is called a GCounter. It is a distributed
increment-only counter that can be used, for example, to count the number
of visitors to a web site where requests are served by many web servers.

11.2.1 Simple Counters

To see why a straigh�orward counter won’t work, imagine we have two
servers storing a simple count of visitors. Let’s call the machines A and B.
Each machine is storing an integer counter and the counters all start at zero
as shown in Figure 11.1.

11.2. THE GCOUNTER 219

Machine BMachine A

0 0

Figure 11.1: Simple counters: iniঞal state

5 5

3 2

Machine BMachine A

Add counters

Incoming requestsIncoming requests

Figure 11.2: Simple counters: first round of requests and reconciliaঞon

Now imagine we receive some web traffic. Our load balancer distributes five
incoming requests to A and B, A serving three visitors and B two. The ma-
chines have inconsistent views of the system state that they need to reconcile
to achieve consistency. One reconciliaঞon strategy with simple counters is to
exchange counts and add them as shown in Figure 11.2.

So far so good, but things will start to fall apart shortly. Suppose A serves
a single visitor, which means we’ve seen six visitors in total. The machines
a�empt to reconcile state again using addiঞon leading to the answer shown
in Figure 11.3.

This is clearly wrong! The problem is that simple counters don’t give us enough
informaঞon about the history of interacঞons between the machines. Fortu-
nately we don’t need to store the complete history to get the correct answer—
just a summary of it. Let’s look at the GCounter see how it solves this problem.

220 CHAPTER 11. CASE STUDY: CRDTS

11 11

6 5

Machine BMachine A

Add counters

Incorrect result!

Incoming request

Figure 11.3: Simple counters: second round of requests and (incorrect) recon-
ciliaঞon

Machine BMachine A

A:0
B:0

A:0
B:0

Figure 11.4: GCounter: iniঞal state

11.2.2 GCounters

The first clever idea in the GCounter is to have eachmachine storing a separate
counter for every machine it knows about (including itself). In the previous
example we had two machines, A and B. In this situaঞon both machines would
store a counter for A and a counter for B as shown in Figure 11.4.

The rule with GCounters is that a given machine is only allowed to increment
its own counter. IfA serves three visitors and B serves two visitors the counters
look as shown in Figure 11.5.

When two machines reconcile their counters the rule is to take the largest
value stored for each machine. In our example, the result of the first merge
will be as shown in Figure 11.6.

Subsequent incoming web requests are handled using the increment-own-
counter rule and subsequent merges are handled using the take-maximum-
value rule, producing the same correct values for each machine as shown in

11.2. THE GCOUNTER 221

A:3
B:0

A:0
B:2

Machine BMachine A

Incoming requestsIncoming requests

Figure 11.5: GCounter: first round of web requests

A:3
B:2

A:3
B:2

A:3
B:0

A:0
B:2

Machine BMachine A

Merge, take max

Incoming requestsIncoming requests

Figure 11.6: GCounter: first reconciliaঞon

Figure 11.7.

GCounters allow each machine to keep an accurate account of the state of
the whole system without storing the complete history of interacঞons. If a
machine wants to calculate the total traffic for the whole web site, it sums up
all the per-machine counters. The result is accurate or near-accurate depend-
ing on how recently we performed a reconciliaঞon. Eventually, regardless of
network outages, the system will always converge on a consistent state.

11.2.3 Exercise: GCounter Implementaঞon

We can implement a GCounter with the following interface, where we repre-
sent machine IDs as Strings.

final case class GCounter(counters: Map[String, Int]) {

def increment(machine: String, amount: Int) =

222 CHAPTER 11. CASE STUDY: CRDTS

A:4
B:2

A:4
B:2

A:4
B:2

A:3
B:2

Machine BMachine A

Merge, take max

Correct result!

Incoming request

Figure 11.7: GCounter: second reconciliaঞon

???

def merge(that: GCounter): GCounter =

???

def total: Int =

???

}

Finish the implementaঞon!

See the soluঞon

11.3 Generalisaঞon

We’ve now created a distributed, eventually consistent, increment-only
counter. This is a useful achievement but we don’t want to stop here. In this
secঞon we will a�empt to abstract the operaঞons in the GCounter so it will
work with more data types than just natural numbers.

The GCounter uses the following operaঞons on natural numbers:

• addiঞon (in increment and total);
• maximum (in merge);
• and the idenঞty element 0 (in increment and merge).

11.3. GENERALISATION 223

You can probably guess that there’s amonoid in here somewhere, but let’s look
in more detail at the properঞes we’re relying on.

As a refresher, in Chapter 2 we saw that monoids must saঞsfy two laws. The
binary operaঞon + must be associaঞve:

(a + b) + c == a + (b + c)

and the empty element must be an idenঞty:

0 + a == a + 0 == a

We need an idenঞty in increment to iniঞalise the counter. We also rely on as-
sociaঞvity to ensure the specific sequence of merges gives the correct value.

In total we implicitly rely on associaঞvity and commutaঞvity to ensure we
get the correct value no ma�er what arbitrary order we choose to sum the
per-machine counters. We also implicitly assume an idenঞty, which allows us
to skip machines for which we do not store a counter.

The properঞes of merge are a bit more interesঞng. We rely on commutaঞvity
to ensure that machine A merging with machine B yields the same result as
machine B merging with machine A. We need associaঞvity to ensure we ob-
tain the correct result when three or more machines are merging data. We
need an idenঞty element to iniঞalise empty counters. Finally, we need an ad-
diঞonal property, called idempotency, to ensure that if two machines hold the
same data in a per-machine counter, merging data will not lead to an incorrect
result. Idempotent operaঞons are ones that return the same result again and
again if they are executed mulঞple ঞmes. Formally, a binary operaঞon max is
idempotent if the following relaঞonship holds:

a max a = a

Wri�en more compactly, we have:

Method Idenঞty Commutaঞve Associaঞve Idempotent

increment Y N Y N
merge Y Y Y Y
total Y Y Y N

224 CHAPTER 11. CASE STUDY: CRDTS

From this we can see that

• increment requires a monoid;
• total requires a commutaঞve monoid; and
• merge required an idempotent commutaঞve monoid, also called a
bounded semila࣌ce.

Since increment and get both use the same binary operaঞon (addiঞon) it’s
usual to require the same commutaঞve monoid for both.

This invesঞgaঞon demonstrates the powers of thinking about properঞes or
laws of abstracঞons. Now we have idenঞfied these properঞes we can sub-
sঞtute the natural numbers used in our GCounter with any data type with
operaঞons saঞsfying these properঞes. A simple example is a set, with the bi-
nary operaঞon being union and the idenঞty element the empty set. With this
simple subsঞtuঞon of Int for Set[A] we can create a GSet type.

11.3.1 Implementaঞon

Let’s implement this generalisaঞon in code. Remember increment and total
require a commutaঞve monoid and merge requires a bounded semilaমce (or
idempotent commutaঞve monoid).

Cats provides a type class for both Monoid and CommutativeMonoid, but
doesn’t provide one for bounded semilaমce¹. That’s why we’re going to im-
plement our own BoundedSemiLattice type class.

import cats.kernel.CommutativeMonoid

trait BoundedSemiLattice[A] extends CommutativeMonoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

In the implementaঞon above, BoundedSemiLattice[A] extends
CommutativeMonoid[A] because a bounded semilaমce is a commuta-
ঞve monoid (a commutaঞve idempotent one, to be exact).

¹A closely related library called Spire already provides that abstracঞons.

https://github.com/non/spire

11.4. ABSTRACTING GCOUNTER TO A TYPE CLASS 225

11.3.2 Exercise: BoundedSemiLaমce Instances

Implement BoundedSemiLattice type class instances for Ints and for Sets.
The instance for Int will technically only hold for non-negaঞve numbers, but
you don’t need to model non-negaঞvity explicitly in the types.

See the soluঞon

11.3.3 Exercise: Generic GCounter

Using CommutativeMonoid and BoundedSemiLattice, generalise
GCounter.

When you implement this, look for opportuniঞes to use methods and syn-
tax on Monoid to simplify your implementaঞon. This is a good example of
how type class abstracঞons work at mulঞple levels in our code. We’re using
monoids to design a large component—our CRDTs—but they are also useful in
the small, simplifying our code and making it shorter and clearer.

See the soluঞon

11.4 Abstracঞng GCounter to a Type Class

We’ve created a generic GCounter that works with any value that has in-
stances of BoundedSemiLattice and CommutativeMonoid. However we’re
sঞll ঞed to a parঞcular representaঞon of the map from machine IDs to values.
There is no need to have this restricঞon, and indeed it can be useful to ab-
stract away from it. There are many key-value stores that we want to work
with, from a simple Map to a relaঞonal database.

If we define a GCounter type class we can abstract over different concrete
implementaঞons. This allows us to, for example, seamlessly subsঞtute an in-
memory store for a persistent store when we want to change performance
and durability tradeoffs.

There are a number of ways we can implement this. One approach is to de-
fine a GCounter type class with dependencies on CommutativeMonoid and

226 CHAPTER 11. CASE STUDY: CRDTS

BoundedSemiLattice. We define this as a type class that takes a type con-
structor with two type parameters represent the key and value types of the
map abstracঞon.

trait GCounter[F[_,_],K, V] {

def increment(f: F[K, V])(k: K, v: V)

(implicit m: CommutativeMonoid[V]): F[K, V]

def merge(f1: F[K, V], f2: F[K, V])

(implicit b: BoundedSemiLattice[V]): F[K, V]

def total(f: F[K, V])

(implicit m: CommutativeMonoid[V]): V

}

object GCounter {

def apply[F[_,_], K, V]

(implicit counter: GCounter[F, K, V]) =

counter

}

Try defining an instance of this type class for Map. You should be able to reuse
your code from the case class version of GCounter with some minor modifi-
caঞons.

See the soluঞon

You should be able to use your instance as follows:

import cats.instances.int._ // for Monoid

val g1 = Map("a" -> 7, "b" -> 3)

val g2 = Map("a" -> 2, "b" -> 5)

val counter = GCounter[Map, String, Int]

val merged = counter.merge(g1, g2)

// merged: Map[String,Int] = Map(a -> 7, b -> 5)

val total = counter.total(merged)

// total: Int = 12

11.5. ABSTRACTING A KEY VALUE STORE 227

The implementaঞon strategy for the type class instance is a bit unsaঞsfying.
Although the structure of the implementaঞon will be the same for most in-
stances we define, we won’t get any code reuse.

11.5 Abstracঞng a Key Value Store

One soluঞon is to capture the idea of a key-value store within a type class, and
then generate GCounter instances for any type that has a KeyValueStore
instance. Here’s the code for such a type class:

trait KeyValueStore[F[_,_]] {

def put[K, V](f: F[K, V])(k: K, v: V): F[K, V]

def get[K, V](f: F[K, V])(k: K): Option[V]

def getOrElse[K, V](f: F[K, V])(k: K, default: V): V =

get(f)(k).getOrElse(default)

def values[K, V](f: F[K, V]): List[V]

}

Implement your own instance for Map.

See the soluঞon

With our type class in place we can implement syntax to enhance data types
for which we have instances:

implicit class KvsOps[F[_,_], K, V](f: F[K, V]) {

def put(key: K, value: V)

(implicit kvs: KeyValueStore[F]): F[K, V] =

kvs.put(f)(key, value)

def get(key: K)(implicit kvs: KeyValueStore[F]): Option[V] =

kvs.get(f)(key)

def getOrElse(key: K, default: V)

(implicit kvs: KeyValueStore[F]): V =

kvs.getOrElse(f)(key, default)

228 CHAPTER 11. CASE STUDY: CRDTS

def values(implicit kvs: KeyValueStore[F]): List[V] =

kvs.values(f)

}

Nowwe can generate GCounter instances for any data type that has instances
of KeyValueStore and CommutativeMonoid using an implicit def:

implicit def gcounterInstance[F[_,_], K, V]

(implicit kvs: KeyValueStore[F], km: CommutativeMonoid[F[K, V]]) =

new GCounter[F, K, V] {

def increment(f: F[K, V])(key: K, value: V)

(implicit m: CommutativeMonoid[V]): F[K, V] = {

val total = f.getOrElse(key, m.empty) |+| value

f.put(key, total)

}

def merge(f1: F[K, V], f2: F[K, V])

(implicit b: BoundedSemiLattice[V]): F[K, V] =

f1 |+| f2

def total(f: F[K, V])(implicit m: CommutativeMonoid[V]): V =

f.values.combineAll

}

The complete code for this case study is quite long, but most of it is boilerplate
seমng up syntax for operaঞons on the type class. We can cut down on this
using compiler plugins such as Simulacrum and Kind Projector.

11.6 Summary

In this case study we’ve seen how we can use type classes to model a simple
CRDT, the GCounter, in Scala. Our implementaঞon gives us a lot of flexibility
and code reuse: we aren’t ঞed to the data type we “count”, nor to the data
type that maps machine IDs to counters.

The focus in this case study has been on using the tools that Scala provides,
not on exploring CRDTs. There are many other CRDTs, some of which operate

https://github.com/mpilquist/simulacrum
https://github.com/non/kind-projector

11.6. SUMMARY 229

in a similar manner to the GCounter, and some of which have very different
implementaঞons. A fairly recent survey gives a good overview of many of the
basic CRDTs. However this is an acঞve area of research andwe encourage you
to read the recent publicaঞons in the field if CRDTs and eventually consistency
interest you.

https://hal.inria.fr/inria-00609399v2/document

230 CHAPTER 11. CASE STUDY: CRDTS

Part III

Soluঞons to Exercises

231

Appendix A

Soluঞons for: Introducঞon

A.1 Printable Library

These steps define the three main components of our type class. First we
define Printable—the type class itself:

trait Printable[A] {

def format(value: A): String

}

Then we define some default instances of Printable and package them in
PrintableInstances:

object PrintableInstances {

implicit val stringPrintable = new Printable[String] {

def format(input: String) = input

}

implicit val intPrintable = new Printable[Int] {

def format(input: Int) = input.toString

}

}

Finally we define an interface object, Printable:

233

234 APPENDIX A. SOLUTIONS FOR: INTRODUCTION

object Printable {

def format[A](input: A)(implicit p: Printable[A]): String =

p.format(input)

def print[A](input: A)(implicit p: Printable[A]): Unit =

println(format(input))

}

Return to the exercise

A.2 Printable Library Part 2

This is a standard use of the type class pa�ern. First we define a set of custom
data types for our applicaঞon:

final case class Cat(name: String, age: Int, color: String)

Then we define type class instances for the types we care about. These either
go into the companion object of Cat or a separate object to act as a names-
pace:

import PrintableInstances._

implicit val catPrintable = new Printable[Cat] {

def format(cat: Cat) = {

val name = Printable.format(cat.name)

val age = Printable.format(cat.age)

val color = Printable.format(cat.color)

s"$name is a $age year-old $color cat."

}

}

Finally, we use the type class by bringing the relevant instances into scope
and using interface object/syntax. If we defined the instances in companion
objects Scala brings them into scope for us automaঞcally. Otherwise we use
an import to access them:

A.3. PRINTABLE LIBRARY PART 3 235

val cat = Cat("Garfield", 38, "ginger and black")

// cat: Cat = Cat(Garfield,38,ginger and black)

Printable.print(cat)

// Garfield is a 38 year-old ginger and black cat.

Return to the exercise

A.3 Printable Library Part 3

First we define an implicit class containing our extension methods:

object PrintableSyntax {

implicit class PrintableOps[A](value: A) {

def format(implicit p: Printable[A]): String =

Printable.format(value)

def print(implicit p: Printable[A]): Unit =

Printable.print(value)

}

}

With PrintableOps in scope, we can call the imaginary print and format

methods on any value for which Scala can locate an implicit instance of
Printable:

import PrintableSyntax._

Cat("Garfield", 38, "ginger and black").print

// Garfield is a 38 year-old ginger and black cat.

We get a compile error if we haven’t defined an instance of Printable for the
relevant type:

import java.util.Date

new Date().print

// <console>:23: error: could not find implicit value for parameter p:

236 APPENDIX A. SOLUTIONS FOR: INTRODUCTION

Printable[java.util.Date]

// new Date().print

// ^

Return to the exercise

A.4 Cat Show

First let’s import everything we need from Cats: the Show type class, the in-
stances for Int and String, and the interface syntax:

import cats.Show

import cats.instances.int._ // for Show

import cats.instances.string._ // for Show

import cats.syntax.show._ // for show

Our definiঞon of Cat remains the same:

final case class Cat(name: String, age: Int, color: String)

In the companion object we replace our Printable with an instance of Show
using one of the definiঞon helpers discussed above:

implicit val catShow = Show.show[Cat] { cat =>

val name = cat.name.show

val age = cat.age.show

val color = cat.color.show

s"$name is a $age year-old $color cat."

}

Finally, we use the Show interface syntax to print our instance of Cat:

println(Cat("Garfield", 38, "ginger and black").show)

// Garfield is a 38 year-old ginger and black cat.

Return to the exercise

A.5. EQUALITY, LIBERTY, AND FELINITY 237

A.5 Equality, Liberty, and Felinity

First we need our Cats imports. In this exercise we’ll be using the Eq type class
and the Eq interface syntax. We’ll bring instances of Eq into scope as we need
them below:

import cats.Eq

import cats.syntax.eq._ // for ===

Our Cat class is the same as ever:

final case class Cat(name: String, age: Int, color: String)

We bring the Eq instances for Int and String into scope for the implementa-
ঞon of Eq[Cat]:

import cats.instances.int._ // for Eq

import cats.instances.string._ // for Eq

implicit val catEqual: Eq[Cat] =

Eq.instance[Cat] { (cat1, cat2) =>

(cat1.name === cat2.name) &&

(cat1.age === cat2.age) &&

(cat1.color === cat2.color)

}

Finally, we test things out in a sample applicaঞon:

val cat1 = Cat("Garfield", 38, "orange and black")

// cat1: Cat = Cat(Garfield,38,orange and black)

val cat2 = Cat("Heathcliff", 32, "orange and black")

// cat2: Cat = Cat(Heathcliff,32,orange and black)

cat1 === cat2

// res17: Boolean = false

cat1 =!= cat2

// res18: Boolean = true

238 APPENDIX A. SOLUTIONS FOR: INTRODUCTION

import cats.instances.option._ // for Eq

val optionCat1 = Option(cat1)

// optionCat1: Option[Cat] = Some(Cat(Garfield,38,orange and black))

val optionCat2 = Option.empty[Cat]

// optionCat2: Option[Cat] = None

optionCat1 === optionCat2

// res19: Boolean = false

optionCat1 =!= optionCat2

// res20: Boolean = true

Return to the exercise

Appendix B

Soluঞons for: Monoids and
Semigroups

B.1 The Truth About Monoids

There are four monoids for Boolean! First, we have andwith operator && and
idenঞty true:

implicit val booleanAndMonoid: Monoid[Boolean] =

new Monoid[Boolean] {

def combine(a: Boolean, b: Boolean) = a && b

def empty = true

}

Second, we have or with operator || and idenঞty false:

implicit val booleanOrMonoid: Monoid[Boolean] =

new Monoid[Boolean] {

def combine(a: Boolean, b: Boolean) = a || b

def empty = false

}

Third, we have exclusive or with idenঞty false:

239

240 APPENDIX B. SOLUTIONS FOR: MONOIDS AND SEMIGROUPS

implicit val booleanEitherMonoid: Monoid[Boolean] =

new Monoid[Boolean] {

def combine(a: Boolean, b: Boolean) =

(a && !b) || (!a && b)

def empty = false

}

Finally, we have exclusive nor (the negaঞon of exclusive or) with idenঞty true:

implicit val booleanXnorMonoid: Monoid[Boolean] =

new Monoid[Boolean] {

def combine(a: Boolean, b: Boolean) =

(!a || b) && (a || !b)

def empty = true

}

Showing that the idenঞty law holds in each case is straigh�orward. Simi-
larly associaঞvity of the combine operaঞon can be shown by enumeraঞng
the cases.

Return to the exercise

B.2 All Set for Monoids

Set union forms a monoid along with the empty set:

implicit def setUnionMonoid[A]: Monoid[Set[A]] =

new Monoid[Set[A]] {

def combine(a: Set[A], b: Set[A]) = a union b

def empty = Set.empty[A]

}

We need to define setUnionMonoid as a method rather than a value so we
can accept the type parameter A. The type parameter allows us to use the
same definiঞon to summon Monoids for Sets of any type of data:

B.3. ADDING ALL THE THINGS 241

val intSetMonoid = Monoid[Set[Int]]

val strSetMonoid = Monoid[Set[String]]

intSetMonoid.combine(Set(1, 2), Set(2, 3))

// res2: Set[Int] = Set(1, 2, 3)

strSetMonoid.combine(Set("A", "B"), Set("B", "C"))

// res3: Set[String] = Set(A, B, C)

Set intersecঞon forms a semigroup, but doesn’t form a monoid because it has
no idenঞty element:

implicit def setIntersectionSemigroup[A]: Semigroup[Set[A]] =

new Semigroup[Set[A]] {

def combine(a: Set[A], b: Set[A]) =

a intersect b

}

Set complement and set difference are not associaঞve, so they cannot be con-
sidered for either monoids or semigroups. However, symmetric difference
(the union less the intersecঞon) does also form a monoid with the empty set:

implicit def symDiffMonoid[A]: Monoid[Set[A]] =

new Monoid[Set[A]] {

def combine(a: Set[A], b: Set[A]): Set[A] =

(a diff b) union (b diff a)

def empty: Set[A] = Set.empty

}

Return to the exercise

B.3 Adding All The Things

We can write the addiঞon as a simple foldLeft using 0 and the + operator:

242 APPENDIX B. SOLUTIONS FOR: MONOIDS AND SEMIGROUPS

def add(items: List[Int]): Int =

items.foldLeft(0)(_ + _)

We can alternaঞvely write the fold using Monoids, although there’s not a com-
pelling use case for this yet:

import cats.Monoid

import cats.instances.int._ // for Monoid

import cats.syntax.semigroup._ // for |+|

def add(items: List[Int]): Int =

items.foldLeft(Monoid[Int].empty)(_ |+| _)

Return to the exercise

B.4 Adding All The Things Part 2

Now there is a use case for Monoids. We need a single method that adds
Ints and instances of Option[Int]. We can write this as a generic method
that accepts an implicit Monoid as a parameter:

import cats.Monoid

import cats.instances.int._ // for Monoid

import cats.syntax.semigroup._ // for |+|

def add[A](items: List[A])(implicit monoid: Monoid[A]): A =

items.foldLeft(monoid.empty)(_ |+| _)

We can opঞonally use Scala’s context bound syntax to write the same code in
a friendlier way:

def add[A: Monoid](items: List[A]): A =

items.foldLeft(Monoid[A].empty)(_ |+| _)

We can use this code to add values of type Int and Option[Int] as re-
quested:

B.5. ADDING ALL THE THINGS PART 3 243

import cats.instances.int._ // for Monoid

add(List(1, 2, 3))

// res9: Int = 6

import cats.instances.option._ // for Monoid

add(List(Some(1), None, Some(2), None, Some(3)))

// res10: Option[Int] = Some(6)

Note that if we try to add a list consisঞng enঞrely of Some values, we get a
compile error:

add(List(Some(1), Some(2), Some(3)))

// <console>:61: error: could not find implicit value for evidence

parameter of type cats.Monoid[Some[Int]]

// add(List(Some(1), Some(2), Some(3)))

// ^

This happens because the inferred type of the list is List[Some[Int]], while
Cats will only generate a Monoid for Option[Int]. We’ll see how to get
around this in a moment.

Return to the exercise

B.5 Adding All The Things Part 3

Easy—we simply define a monoid instance for Order!

implicit val monoid: Monoid[Order] = new Monoid[Order] {

def combine(o1: Order, o2: Order) =

Order(

o1.totalCost + o2.totalCost,

o1.quantity + o2.quantity

)

def empty = Order(0, 0)

}

Return to the exercise

244 APPENDIX B. SOLUTIONS FOR: MONOIDS AND SEMIGROUPS

Appendix C

Soluঞons for: Functors

C.1 Branching out with Functors

The semanঞcs are similar to wriঞng a Functor for List. We recurse over the
data structure, applying the funcঞon to every Leaf we find. The functor laws
intuiঞvely require us to retain the same structure with the same pa�ern of
Branch and Leaf nodes:

import cats.Functor

implicit val treeFunctor: Functor[Tree] =

new Functor[Tree] {

def map[A, B](tree: Tree[A])(func: A => B): Tree[B] =

tree match {

case Branch(left, right) =>

Branch(map(left)(func), map(right)(func))

case Leaf(value) =>

Leaf(func(value))

}

}

Let’s use our Functor to transform some Trees:

245

246 APPENDIX C. SOLUTIONS FOR: FUNCTORS

Branch(Leaf(10), Leaf(20)).map(_ * 2)

// <console>:42: error: value map is not a member of wrapper.Branch[

Int]

// Branch(Leaf(10), Leaf(20)).map(_ * 2)

// ^

Oops! This falls foul of the same invariance problem we discussed in Secঞon
1.6.1. The compiler can find a Functor instance for Tree but not for Branch
or Leaf. Let’s add some smart constructors to compensate:

object Tree {

def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =

Branch(left, right)

def leaf[A](value: A): Tree[A] =

Leaf(value)

}

Now we can use our Functor properly:

Tree.leaf(100).map(_ * 2)

// res10: wrapper.Tree[Int] = Leaf(200)

Tree.branch(Tree.leaf(10), Tree.leaf(20)).map(_ * 2)

// res11: wrapper.Tree[Int] = Branch(Leaf(20),Leaf(40))

Return to the exercise

C.2 Showing off with Contramap

Here’s a working implementaঞon. We call func to turn the B into an A and
then use our original Printable to turn the A into a String. In a small
show of sleight of hand we use a self alias to disঞnguish the outer and in-
ner Printables:

C.3. SHOWING OFF WITH CONTRAMAP PART 2 247

trait Printable[A] {

self =>

def format(value: A): String

def contramap[B](func: B => A): Printable[B] =

new Printable[B] {

def format(value: B): String =

self.format(func(value))

}

}

def format[A](value: A)(implicit p: Printable[A]): String =

p.format(value)

Return to the exercise

C.3 Showing off with Contramap Part 2

To make the instance generic across all types of Box, we base it on the
Printable for the type inside the Box. We can either write out the complete
definiঞon by hand:

implicit def boxPrintable[A](implicit p: Printable[A]) =

new Printable[Box[A]] {

def format(box: Box[A]): String =

p.format(box.value)

}

or use contramap to base the new instance on the implicit parameter:

implicit def boxPrintable[A](implicit p: Printable[A]) =

p.contramap[Box[A]](_.value)

Using contramap is much simpler, and conveys the funcঞonal programming
approach of building soluঞons by combining simple building blocks using pure
funcঞonal combinators.

Return to the exercise

248 APPENDIX C. SOLUTIONS FOR: FUNCTORS

C.4 Transformaঞve Thinking with imap

Here’s a working implementaঞon:

trait Codec[A] {

def encode(value: A): String

def decode(value: String): A

def imap[B](dec: A => B, enc: B => A): Codec[B] = {

val self = this

new Codec[B] {

def encode(value: B): String =

self.encode(enc(value))

def decode(value: String): B =

dec(self.decode(value))

}

}

}

Return to the exercise

C.5 Transformaঞve Thinking with imap Part 2

We can implement this using the imap method of stringCodec:

implicit val doubleCodec: Codec[Double] =

stringCodec.imap[Double](_.toDouble, _.toString)

Return to the exercise

C.6 Transformaঞve Thinking with imap Part 3

We need a generic Codec for Box[A] for any given A. We create this by calling
imap on a Codec[A], which we bring into scope using an implicit parameter:

C.6. TRANSFORMATIVE THINKINGWITH IMAP PART 3 249

implicit def boxCodec[A](implicit c: Codec[A]): Codec[Box[A]] =

c.imap[Box[A]](Box(_), _.value)

Return to the exercise

250 APPENDIX C. SOLUTIONS FOR: FUNCTORS

Appendix D

Soluঞons for: Monads

D.1 Geমng Func-y

At first glance this seems tricky, but if we follow the types we’ll see there’s only
one soluঞon. We are passed a value of type F[A]. Given the tools available
there’s only one thing we can do: call flatMap:

trait Monad[F[_]] {

def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =

flatMap(value)(a => ???)

}

Weneed a funcঞon of type A => F[B] as the second parameter. Wehave two
funcঞon building blocks available: the func parameter of type A => B and the
pure funcঞon of type A => F[A]. Combining these gives us our result:

trait Monad[F[_]] {

def pure[A](value: A): F[A]

251

252 APPENDIX D. SOLUTIONS FOR: MONADS

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =

flatMap(value)(a => pure(func(a)))

}

Return to the exercise

D.2 Monadic Secret Idenঞঞes

Let’s start by defining the method signatures:

import cats.Id

def pure[A](value: A): Id[A] =

???

def map[A, B](initial: Id[A])(func: A => B): Id[B] =

???

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =

???

Now let’s look at each method in turn. The pure operaঞon creates an Id[A]
from an A. But A and Id[A] are the same type! All we have to do is return the
iniঞal value:

def pure[A](value: A): Id[A] =

value

pure(123)

// res10: cats.Id[Int] = 123

The map method takes a parameter of type Id[A], applies a funcঞon of type
A => B, and returns an Id[B]. But Id[A] is simply A and Id[B] is simply B!
All we have to do is call the funcঞon—no packing or unpacking required:

D.3. WHAT IS BEST? 253

def map[A, B](initial: Id[A])(func: A => B): Id[B] =

func(initial)

map(123)(_ * 2)

// res11: cats.Id[Int] = 246

The final punch line is that, once we strip away the Id type constructors,
flatMap and map are actually idenঞcal:

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =

func(initial)

// flatMap: [A, B](initial: cats.Id[A])(func: A => cats.Id[B])cats.Id[

B]

flatMap(123)(_ * 2)

// res12: cats.Id[Int] = 246

This ঞes inwith our understanding of functors andmonads as sequencing type
classes. Each type class allows us to sequence operaঞons ignoring some kind
of complicaঞon. In the case of Id there is no complicaঞon, making map and
flatMap the same thing.

Noঞce that we haven’t had to write type annotaঞons in the method bodies
above. The compiler is able to interpret values of type A as Id[A] and vice
versa by the context in which they are used.

The only restricঞon we’ve seen to this is that Scala cannot unify types and
type constructors when searching for implicits. Hence our need to re-type
Int as Id[Int] in the call to sumSquare at the opening of this secঞon:

sumSquare(3 : Id[Int], 4 : Id[Int])

Return to the exercise

D.3 What is Best?

This is an open quesঞon. It’s also kind of a trick quesঞon—the answer depends
on the semanঞcs we’re looking for. Some points to ponder:

254 APPENDIX D. SOLUTIONS FOR: MONADS

• Error recovery is important when processing large jobs. We don’t want
to run a job for a day and then find it failed on the last element.

• Error reporঞng is equally important. We need to know what went
wrong, not just that something went wrong.

• In a number of cases, we want to collect all the errors, not just the first
one we encountered. A typical example is validaঞng a web form. It’s a
far be�er experience to report all errors to the user when they submit
a form than to report them one at a ঞme.

Return to the exercise

D.4 Safer Folding using Eval

The easiest way to fix this is to introduce a helper method called
foldRightEval. This is essenঞally our original method with every occur-
rence of B replaced with Eval[B], and a call to Eval.defer to protect the
recursive call:

import cats.Eval

def foldRightEval[A, B](as: List[A], acc: Eval[B])

(fn: (A, Eval[B]) => Eval[B]): Eval[B] =

as match {

case head :: tail =>

Eval.defer(fn(head, foldRightEval(tail, acc)(fn)))

case Nil =>

acc

}

We can redefine foldRight simply in terms of foldRightEval and the re-
sulঞng method is stack safe:

def foldRight[A, B](as: List[A], acc: B)(fn: (A, B) => B): B =

foldRightEval(as, Eval.now(acc)) { (a, b) =>

b.map(fn(a, _))

D.5. SHOW YOURWORKING 255

}.value

foldRight((1 to 100000).toList, 0L)(_ + _)

// res22: Long = 5000050000

Return to the exercise

D.5 Show Your Working

We’ll start by defining a type alias for Writer so we can use it with pure

syntax:

import cats.data.Writer

import cats.syntax.applicative._ // for pure

type Logged[A] = Writer[Vector[String], A]

42.pure[Logged]

// res13: Logged[Int] = WriterT((Vector(),42))

We’ll import the tell syntax as well:

import cats.syntax.writer._ // for tell

Vector("Message").tell

// res14: cats.data.Writer[scala.collection.immutable.Vector[String],

Unit] = WriterT((Vector(Message),()))

Finally, we’ll import the Semigroup instance for Vector. We need this to map
and flatMap over Logged:

import cats.instances.vector._ // for Monoid

41.pure[Logged].map(_ + 1)

// res15: cats.data.WriterT[cats.Id,Vector[String],Int] = WriterT((

Vector(),42))

With these in scope, the definiঞon of factorial becomes:

256 APPENDIX D. SOLUTIONS FOR: MONADS

def factorial(n: Int): Logged[Int] =

for {

ans <- if(n == 0) {

1.pure[Logged]

} else {

slowly(factorial(n - 1).map(_ * n))

}

_ <- Vector(s"fact $n $ans").tell

} yield ans

When we call factorial, we now have to run the return value to extract the
log and our factorial:

val (log, res) = factorial(5).run

// log: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2, fact 3

6, fact 4 24, fact 5 120)

// res: Int = 120

We can run several factorials in parallel as follows, capturing their logs in-
dependently without fear of interleaving:

val Vector((logA, ansA), (logB, ansB)) =

Await.result(Future.sequence(Vector(

Future(factorial(3).run),

Future(factorial(5).run)

)), 5.seconds)

// logA: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2, fact 3

6)

// ansA: Int = 6

// logB: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2, fact 3

6, fact 4 24, fact 5 120)

// ansB: Int = 120

Return to the exercise

D.6 Hacking on Readers

Our type alias fixes the Db type but leaves the result type flexible:

D.7. HACKING ON READERS PART 2 257

type DbReader[A] = Reader[Db, A]

Return to the exercise

D.7 Hacking on Readers Part 2

Remember: the idea is to leave injecঞng the configuraঞon unঞl last. This
means seমng up funcঞons that accept the config as a parameter and check it
against the concrete user info we have been given:

def findUsername(userId: Int): DbReader[Option[String]] =

Reader(db => db.usernames.get(userId))

def checkPassword(

username: String,

password: String): DbReader[Boolean] =

Reader(db => db.passwords.get(username).contains(password))

Return to the exercise

D.8 Hacking on Readers Part 3

As you might expect, here we use flatMap to chain findUsername and
checkPassword. We use pure to li[a Boolean to a DbReader[Boolean]
when the username is not found:

import cats.syntax.applicative._ // for pure

def checkLogin(

userId: Int,

password: String): DbReader[Boolean] =

for {

username <- findUsername(userId)

passwordOk <- username.map { username =>

checkPassword(username, password)

}.getOrElse {

258 APPENDIX D. SOLUTIONS FOR: MONADS

false.pure[DbReader]

}

} yield passwordOk

Return to the exercise

D.9 Post-Order Calculator

The stack operaঞon required is different for operators and operands. For clar-
ity we’ll implement evalOne in terms of two helper funcঞons, one for each
case:

def evalOne(sym: String): CalcState[Int] =

sym match {

case "+" => operator(_ + _)

case "-" => operator(_ - _)

case "*" => operator(_ * _)

case "/" => operator(_ / _)

case num => operand(num.toInt)

}

Let’s look at operand first. All we have to do is push a number onto the stack.
We also return the operand as an intermediate result:

def operand(num: Int): CalcState[Int] =

State[List[Int], Int] { stack =>

(num :: stack, num)

}

The operator funcঞon is a li�lemore complex. We have to pop two operands
off the stack (having the second operand at the top of the stack) and push
the result in their place. The code can fail if the stack doesn’t have enough
operands on it, but the exercise descripঞon allows us to throw an excepঞon
in this case:

D.10. POST-ORDER CALCULATOR PART 2 259

def operator(func: (Int, Int) => Int): CalcState[Int] =

State[List[Int], Int] {

case b :: a :: tail =>

val ans = func(a, b)

(ans :: tail, ans)

case _ =>

sys.error("Fail!")

}

Return to the exercise

D.10 Post-Order Calculator Part 2

We implement evalAll by folding over the input. We start with a pure
CalcState that returns 0 if the list is empty. We flatMap at each stage,
ignoring the intermediate results as we saw in the example:

import cats.syntax.applicative._ // for pure

def evalAll(input: List[String]): CalcState[Int] =

input.foldLeft(0.pure[CalcState]) { (a, b) =>

a.flatMap(_ => evalOne(b))

}

Return to the exercise

D.11 Post-Order Calculator Part 3

We’ve done all the hard work now. All we need to do is split the input into
terms and call runA and value to unpack the result:

def evalInput(input: String): Int =

evalAll(input.split(" ").toList).runA(Nil).value

evalInput("1 2 + 3 4 + *")

260 APPENDIX D. SOLUTIONS FOR: MONADS

// res8: Int = 21

Return to the exercise

D.12 Branching out Further with Monads

The code for flatMap is similar to the code for map. Again, we recurse down
the structure and use the results from func to build a new Tree.

The code for tailRecM is fairly complex regardless of whether we make it
tail-recursive or not.

If we follow the types, the non-tail-recursive soluঞon falls out:

import cats.Monad

implicit val treeMonad = new Monad[Tree] {

def pure[A](value: A): Tree[A] =

Leaf(value)

def flatMap[A, B](tree: Tree[A])

(func: A => Tree[B]): Tree[B] =

tree match {

case Branch(l, r) =>

Branch(flatMap(l)(func), flatMap(r)(func))

case Leaf(value) =>

func(value)

}

def tailRecM[A, B](a: A)

(func: A => Tree[Either[A, B]]): Tree[B] =

flatMap(func(a)) {

case Left(value) =>

tailRecM(value)(func)

case Right(value) =>

Leaf(value)

}

}

The soluঞon above is perfectly fine for this exercise. Its only downside is that
Cats cannot make guarantees about stack safety.

D.12. BRANCHING OUT FURTHER WITH MONADS 261

The tail-recursive soluঞon is much harder to write. We adapted this solu-
ঞon from this Stack Overflow post by Nazarii Bardiuk. It involves an explicit
depth first traversal of the tree, maintaining an open list of nodes to visit and
a closed list of nodes to use to reconstruct the tree:

import cats.Monad

implicit val treeMonad = new Monad[Tree] {

def pure[A](value: A): Tree[A] =

Leaf(value)

def flatMap[A, B](tree: Tree[A])

(func: A => Tree[B]): Tree[B] =

tree match {

case Branch(l, r) =>

Branch(flatMap(l)(func), flatMap(r)(func))

case Leaf(value) =>

func(value)

}

def tailRecM[A, B](arg: A)

(func: A => Tree[Either[A, B]]): Tree[B] = {

@tailrec

def loop(

open: List[Tree[Either[A, B]]],

closed: List[Option[Tree[B]]]): List[Tree[B]] =

open match {

case Branch(l, r) :: next =>

loop(l :: r :: next, None :: closed)

case Leaf(Left(value)) :: next =>

loop(func(value) :: next, closed)

case Leaf(Right(value)) :: next =>

loop(next, Some(pure(value)) :: closed)

case Nil =>

closed.foldLeft(Nil: List[Tree[B]]) { (acc, maybeTree) =>

maybeTree.map(_ :: acc).getOrElse {

val left :: right :: tail = acc

branch(left, right) :: tail

}

https://stackoverflow.com/questions/44504790/cats-non-tail-recursive-tailrecm-method-for-monads

262 APPENDIX D. SOLUTIONS FOR: MONADS

}

}

loop(List(func(arg)), Nil).head

}

}

Regardless of which version of tailRecMwe define, we can use our Monad to
flatMap and map on Trees:

import cats.syntax.functor._ // for map

import cats.syntax.flatMap._ // for flatMap

branch(leaf(100), leaf(200)).

flatMap(x => branch(leaf(x - 1), leaf(x + 1)))

// res3: wrapper.Tree[Int] = Branch(Branch(Leaf(99),Leaf(101)),Branch(

Leaf(199),Leaf(201)))

We can also transform Trees using for comprehensions:

for {

a <- branch(leaf(100), leaf(200))

b <- branch(leaf(a - 10), leaf(a + 10))

c <- branch(leaf(b - 1), leaf(b + 1))

} yield c

// res4: wrapper.Tree[Int] = Branch(Branch(Branch(Leaf(89),Leaf(91)),

Branch(Leaf(109),Leaf(111))),Branch(Branch(Leaf(189),Leaf(191)),

Branch(Leaf(209),Leaf(211))))

The monad for Option provides fail-fast semanঞcs. The monad for List pro-
vides concatenaঞon semanঞcs. What are the semanঞcs of flatMap for a bi-
nary tree? Every node in the tree has the potenঞal to be replaced with a whole
subtree, producing a kind of “growing” or “feathering” behaviour, reminiscent
of list concatenaঞon along two axes.

Return to the exercise

Appendix E

Soluঞons for: Monad
Transformers

E.1 Monads: Transform and Roll Out

This is a relaঞvely simple combinaঞon. We want Future on the outside and
Either on the inside, so we build from the inside out using an EitherT of
Future:

import cats.data.EitherT

import scala.concurrent.Future

type Response[A] = EitherT[Future, String, A]

Return to the exercise

E.2 Monads: Transform and Roll Out Part 2

import cats.instances.future._ // for Monad

import cats.syntax.flatMap._ // for flatMap

import scala.concurrent.ExecutionContext.Implicits.global

263

264 APPENDIX E. SOLUTIONS FOR: MONAD TRANSFORMERS

type Response[A] = EitherT[Future, String, A]

def getPowerLevel(ally: String): Response[Int] = {

powerLevels.get(ally) match {

case Some(avg) => EitherT.right(Future(avg))

case None => EitherT.left(Future(s"$ally unreachable"))

}

}

Return to the exercise

E.3 Monads: Transform and Roll Out Part 3

We request the power level from each ally and use map and flatMap to com-
bine the results:

def canSpecialMove(ally1: String, ally2: String): Response[Boolean] =

for {

power1 <- getPowerLevel(ally1)

power2 <- getPowerLevel(ally2)

} yield (power1 + power2) > 15

Return to the exercise

E.4 Monads: Transform and Roll Out Part 4

We use the value method to unpack the monad stack and Await and fold

to unpack the Future and Either:

import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

def tacticalReport(ally1: String, ally2: String): String = {

val stack = canSpecialMove(ally1, ally2).value

Await.result(stack, 1.second) match {

E.4. MONADS: TRANSFORM AND ROLL OUT PART 4 265

case Left(msg) =>

s"Comms error: $msg"

case Right(true) =>

s"$ally1 and $ally2 are ready to roll out!"

case Right(false) =>

s"$ally1 and $ally2 need a recharge."

}

}

Return to the exercise

266 APPENDIX E. SOLUTIONS FOR: MONAD TRANSFORMERS

Appendix F

Soluঞons for: Semigroupal and
Applicaঞve

F.1 The Product of Monads

We can implement product in terms of map and flatMap like so:

import cats.syntax.flatMap._ // for flatMap

import cats.syntax.functor._ // for map

def product[M[_]: Monad, A, B](x: M[A], y: M[B]): M[(A, B)] =

x.flatMap(a => y.map(b => (a, b)))

Unsurprisingly, this code is equivalent to a for comprehension:

def product[M[_]: Monad, A, B](x: M[A], y: M[B]): M[(A, B)] =

for {

a <- x

b <- y

} yield (a, b)

The semanঞcs of flatMap are what give rise to the behaviour for List and
Either:

267

268 APPENDIX F. SOLUTIONS FOR: SEMIGROUPAL AND APPLICATIVE

import cats.instances.list._ // for Semigroupal

product(List(1, 2), List(3, 4))

// res12: List[(Int, Int)] = List((1,3), (1,4), (2,3), (2,4))

type ErrorOr[A] = Either[Vector[String], A]

product[ErrorOr, Int, Int](

Left(Vector("Error 1")),

Left(Vector("Error 2"))

)

// res13: ErrorOr[(Int, Int)] = Left(Vector(Error 1))

Return to the exercise

F.2 Form Validaঞon

We’ll be using Either and Validated so we’ll start with some imports:

import cats.data.Validated

type FormData = Map[String, String]

type FailFast[A] = Either[List[String], A]

type FailSlow[A] = Validated[List[String], A]

The getValue rule extracts a String from the form data. We’ll be using it in
sequence with rules for parsing Ints and checking values, so we’ll define it to
return an Either:

def getValue(name: String)(data: FormData): FailFast[String] =

data.get(name).

toRight(List(s"$name field not specified"))

We can create and use an instance of getValue as follows:

F.3. FORM VALIDATION PART 2 269

val getName = getValue("name") _

// getName: FormData => FailFast[String] = <function1>

getName(Map("name" -> "Dade Murphy"))

// res29: FailFast[String] = Right(Dade Murphy)

In the event of amissing field, our instance returns an errormessage containing
an appropriate field name:

getName(Map())

// res30: FailFast[String] = Left(List(name field not specified))

Return to the exercise

F.3 Form Validaঞon Part 2

We’ll use Either again here. We use Either.catchOnly to consume the
NumberFormatException from toInt, and we use leftMap to turn it into
an error message:

import cats.syntax.either._ // for catchOnly

type NumFmtExn = NumberFormatException

def parseInt(name: String)(data: String): FailFast[Int] =

Either.catchOnly[NumFmtExn](data.toInt).

leftMap(_ => List(s"$name must be an integer"))

Note that our soluঞon accepts an extra parameter to name the field we’re
parsing. This is useful for creaঞng be�er error messages, but it’s fine if you
leave it out in your code.

If we provide valid input, parseInt converts it to an Int:

parseInt("age")("11")

// res33: FailFast[Int] = Right(11)

If we provide erroneous input, we get a useful error message:

270 APPENDIX F. SOLUTIONS FOR: SEMIGROUPAL AND APPLICATIVE

parseInt("age")("foo")

// res34: FailFast[Int] = Left(List(age must be an integer))

Return to the exercise

F.4 Form Validaঞon Part 3

These definiঞons use the same pa�erns as above:

def nonBlank(name: String)(data: String): FailFast[String] =

Right(data).

ensure(List(s"$name cannot be blank"))(_.nonEmpty)

def nonNegative(name: String)(data: Int): FailFast[Int] =

Right(data).

ensure(List(s"$name must be non-negative"))(_ >= 0)

Here are some examples of use:

nonBlank("name")("Dade Murphy")

// res36: FailFast[String] = Right(Dade Murphy)

nonBlank("name")("")

// res37: FailFast[String] = Left(List(name cannot be blank))

nonNegative("age")(11)

// res38: FailFast[Int] = Right(11)

nonNegative("age")(-1)

// res39: FailFast[Int] = Left(List(age must be non-negative))

Return to the exercise

F.5 Form Validaঞon Part 4

We use flatMap to combine the rules sequenঞally:

F.6. FORM VALIDATION PART 5 271

def readName(data: FormData): FailFast[String] =

getValue("name")(data).

flatMap(nonBlank("name"))

def readAge(data: FormData): FailFast[Int] =

getValue("age")(data).

flatMap(nonBlank("age")).

flatMap(parseInt("age")).

flatMap(nonNegative("age"))

The rules pick up all the error cases we’ve seen so far:

readName(Map("name" -> "Dade Murphy"))

// res41: FailFast[String] = Right(Dade Murphy)

readName(Map("name" -> ""))

// res42: FailFast[String] = Left(List(name cannot be blank))

readName(Map())

// res43: FailFast[String] = Left(List(name field not specified))

readAge(Map("age" -> "11"))

// res44: FailFast[Int] = Right(11)

readAge(Map("age" -> "-1"))

// res45: FailFast[Int] = Left(List(age must be non-negative))

readAge(Map())

// res46: FailFast[Int] = Left(List(age field not specified))

Return to the exercise

F.6 Form Validaঞon Part 5

We can do this by switching from Either to Validated and using apply syn-
tax:

272 APPENDIX F. SOLUTIONS FOR: SEMIGROUPAL AND APPLICATIVE

import cats.instances.list._ // for Semigroupal

import cats.syntax.apply._ // for mapN

def readUser(data: FormData): FailSlow[User] =

(

readName(data).toValidated,

readAge(data).toValidated

).mapN(User.apply)

readUser(Map("name" -> "Dave", "age" -> "37"))

// res48: FailSlow[User] = Valid(User(Dave,37))

readUser(Map("age" -> "-1"))

// res49: FailSlow[User] = Invalid(List(name field not specified, age

must be non-negative))

The need to switch back and forth between Either and Validated is an-
noying. The choice of whether to use Either or Validated as a default is
determined by context. In applicaঞon code, we typically find areas that favour
accumulaঞng semanঞcs and areas that favour fail-fast semanঞcs. We pick the
data type that best suits our need and switch to the other as necessary in spe-
cific situaঞons.

Return to the exercise

Appendix G

Soluঞons for: Foldable and
Traverse

G.1 Reflecঞng on Folds

Folding from le[to right reverses the list:

List(1, 2, 3).foldLeft(List.empty[Int])((a, i) => i :: a)

// res6: List[Int] = List(3, 2, 1)

Folding right to le[copies the list, leaving the order intact:

List(1, 2, 3).foldRight(List.empty[Int])((i, a) => i :: a)

// res7: List[Int] = List(1, 2, 3)

Note that we have to carefully specify the type of the accumulator to avoid
a type error. We use List.empty[Int] to avoid inferring the accumulator
type as Nil.type or List[Nothing]:

List(1, 2, 3).foldRight(Nil)(_ :: _)

// <console>:13: error: type mismatch;

// found : List[Int]

273

274 APPENDIX G. SOLUTIONS FOR: FOLDABLE AND TRAVERSE

// required: scala.collection.immutable.Nil.type

// List(1, 2, 3).foldRight(Nil)(_ :: _)

// ^

Return to the exercise

G.2 Scaf-fold-ing Other Methods

Here are the soluঞons:

def map[A, B](list: List[A])(func: A => B): List[B] =

list.foldRight(List.empty[B]) { (item, accum) =>

func(item) :: accum

}

map(List(1, 2, 3))(_ * 2)

// res9: List[Int] = List(2, 4, 6)

def flatMap[A, B](list: List[A])(func: A => List[B]): List[B] =

list.foldRight(List.empty[B]) { (item, accum) =>

func(item) ::: accum

}

flatMap(List(1, 2, 3))(a => List(a, a * 10, a * 100))

// res10: List[Int] = List(1, 10, 100, 2, 20, 200, 3, 30, 300)

def filter[A](list: List[A])(func: A => Boolean): List[A] =

list.foldRight(List.empty[A]) { (item, accum) =>

if(func(item)) item :: accum else accum

}

filter(List(1, 2, 3))(_ % 2 == 1)

// res11: List[Int] = List(1, 3)

We’ve provided two definiঞons of sum, one using scala.math.Numeric

(which recreates the built-in funcঞonality accurately)…

G.3. TRAVERSINGWITH VECTORS 275

import scala.math.Numeric

def sumWithNumeric[A](list: List[A])

(implicit numeric: Numeric[A]): A =

list.foldRight(numeric.zero)(numeric.plus)

sumWithNumeric(List(1, 2, 3))

// res13: Int = 6

and one using cats.Monoid (which is more appropriate to the content of this
book):

import cats.Monoid

def sumWithMonoid[A](list: List[A])

(implicit monoid: Monoid[A]): A =

list.foldRight(monoid.empty)(monoid.combine)

import cats.instances.int._ // for Monoid

sumWithMonoid(List(1, 2, 3))

// res16: Int = 6

Return to the exercise

G.3 Traversing with Vectors

The argument is of type List[Vector[Int]], so we’re using
the Applicative for Vector and the return type is going to be
Vector[List[Int]].

Vector is a monad, so its semigroupal combine funcঞon is based on flatMap.
We’ll end up with a Vector of Lists of all the possible combinaঞons of
List(1, 2) and List(3, 4):

listSequence(List(Vector(1, 2), Vector(3, 4)))

276 APPENDIX G. SOLUTIONS FOR: FOLDABLE AND TRAVERSE

// res14: scala.collection.immutable.Vector[List[Int]] = Vector(List

(1, 3), List(1, 4), List(2, 3), List(2, 4))

Return to the exercise

G.4 Traversing with Vectors Part 2

With three items in the input list, we end up with combinaঞons of three Ints:
one from the first item, one from the second, and one from the third:

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))

// res16: scala.collection.immutable.Vector[List[Int]] = Vector(List

(1, 3, 5), List(1, 3, 6), List(1, 4, 5), List(1, 4, 6), List(2,

3, 5), List(2, 3, 6), List(2, 4, 5), List(2, 4, 6))

Return to the exercise

G.5 Traversing with Opঞons

The arguments to listTraverse are of types List[Int] and Int =>

Option[Int], so the return type is Option[List[Int]]. Again, Option is
a monad, so the semigroupal combine funcঞon follows from flatMap. The
semanঞcs are therefore fail-fast error handling: if all inputs are even, we get
a list of outputs. Otherwise we get None:

process(List(2, 4, 6))

// res20: Option[List[Int]] = Some(List(2, 4, 6))

process(List(1, 2, 3))

// res21: Option[List[Int]] = None

Return to the exercise

G.6. TRAVERSINGWITH VALIDATED 277

G.6 Traversing with Validated

The return type here is ErrorsOr[List[Int]], which expands to
Validated[List[String], List[Int]]. The semanঞcs for semigroupal
combine on validated are accumulaঞng error handling, so the result is either
a list of even Ints, or a list of errors detailing which Ints failed the test:

process(List(2, 4, 6))

// res26: ErrorsOr[List[Int]] = Valid(List(2, 4, 6))

process(List(1, 2, 3))

// res27: ErrorsOr[List[Int]] = Invalid(List(1 is not even, 3 is not

even))

Return to the exercise

278 APPENDIX G. SOLUTIONS FOR: FOLDABLE AND TRAVERSE

Appendix H

Soluঞons for: Case Study: Tesঞng
Asynchronous Code

H.1 Abstracঞng over Type Constructors

Here’s the implementaঞon:

import scala.language.higherKinds

import cats.Id

trait UptimeClient[F[_]] {

def getUptime(hostname: String): F[Int]

}

trait RealUptimeClient extends UptimeClient[Future] {

def getUptime(hostname: String): Future[Int]

}

trait TestUptimeClient extends UptimeClient[Id] {

def getUptime(hostname: String): Id[Int]

}

Note that, because Id[A] is just a simple alias for A, we don’t need to refer to
the type in TestUptimeClient as Id[Int]—we can simply write Int instead:

279

280APPENDIXH. SOLUTIONSFOR:CASESTUDY: TESTINGASYNCHRONOUSCODE

trait TestUptimeClient extends UptimeClient[Id] {

def getUptime(hostname: String): Int

}

Of course, technically speaking we don’t need to redeclare getUptime in
RealUptimeClient or TestUptimeClient. However, wriঞng everything
out helps illustrate the technique.

Return to the exercise

H.2 Abstracঞng over Type Constructors Part 2

The final code is similar to our original implementaঞon of TestUptimeClient,
except we no longer need the call to Future.successful:

class TestUptimeClient(hosts: Map[String, Int])

extends UptimeClient[Id] {

def getUptime(hostname: String): Int =

hosts.getOrElse(hostname, 0)

}

Return to the exercise

H.3 Abstracঞng over Monads

The code should look like this:

class UptimeService[F[_]](client: UptimeClient[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =

???

// hostnames.traverse(client.getUptime).map(_.sum)

}

Return to the exercise

H.4. ABSTRACTING OVER MONADS PART 2 281

H.4 Abstracঞng over Monads Part 2

We can write this as an implicit parameter:

import cats.Applicative

import cats.syntax.functor._ // for map

class UptimeService[F[_]](client: UptimeClient[F])

(implicit a: Applicative[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

or more tersely as a context bound:

class UptimeService[F[_]: Applicative]

(client: UptimeClient[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

Note that we need to import cats.syntax.functor as well as
cats.Applicative. This is because we’re switching from using future.map
to the Cats’ generic extension method that requires an implicit Functor pa-
rameter.

Return to the exercise

282APPENDIXH. SOLUTIONSFOR:CASESTUDY: TESTINGASYNCHRONOUSCODE

Appendix I

Soluঞons for: Case Study:
Map-Reduce

I.1 Implemenঞng foldMap

import cats.Monoid

/** Single-threaded map-reduce function.

* Maps `func` over `values` and reduces using a `Monoid[B]`.

*/

def foldMap[A, B: Monoid](values: Vector[A])(func: A => B): B =

???

Return to the exercise

I.2 Implemenঞng foldMap Part 2

We have to modify the type signature to accept a Monoid for B. With that
change we can use the Monoid empty and |+| syntax as described in Secঞon
2.5.3:

283

284 APPENDIX I. SOLUTIONS FOR: CASE STUDY: MAP-REDUCE

import cats.Monoid

import cats.instances.int._ // for Monoid

import cats.instances.string._ // for Monoid

import cats.syntax.semigroup._ // for |+|

def foldMap[A, B : Monoid](as: Vector[A])(func: A => B): B =

as.map(func).foldLeft(Monoid[B].empty)(_ |+| _)

We can make a slight alteraঞon to this code to do everything in one step:

def foldMap[A, B : Monoid](as: Vector[A])(func: A => B): B =

as.foldLeft(Monoid[B].empty)(_ |+| func(_))

Return to the exercise

I.3 Implemenঞng parallelFoldMap

Here is an annotated soluঞon that splits out each map and fold into a separate
line of code:

import scala.concurrent.duration.Duration

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

// Calculate the number of items to pass to each CPU:

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

// Create one group for each CPU:

val groups: Iterator[Vector[A]] =

values.grouped(groupSize)

// Create a future to foldMap each group:

val futures: Iterator[Future[B]] =

groups map { group =>

Future {

group.foldLeft(Monoid[B].empty)(_ |+| func(_))

}

I.3. IMPLEMENTING PARALLELFOLDMAP 285

}

// foldMap over the groups to calculate a final result:

Future.sequence(futures) map { iterable =>

iterable.foldLeft(Monoid[B].empty)(_ |+| _)

}

}

val result: Future[Int] =

parallelFoldMap((1 to 1000000).toVector)(identity)

Await.result(result, 1.second)

// res19: Int = 1784293664

We can re-use our definiঞon of foldMap for a more concise soluঞon. Note
that the local maps and reduces in steps 3 and 4 of Figure 9.4 are actually
equivalent to a single call to foldMap, shortening the enঞre algorithm as fol-
lows:

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

val groups: Iterator[Vector[A]] =

values.grouped(groupSize)

val futures: Iterator[Future[B]] =

groups.map(group => Future(foldMap(group)(func)))

Future.sequence(futures) map { iterable =>

iterable.foldLeft(Monoid[B].empty)(_ |+| _)

}

}

val result: Future[Int] =

parallelFoldMap((1 to 1000000).toVector)(identity)

Await.result(result, 1.second)

// res21: Int = 1784293664

Return to the exercise

286 APPENDIX I. SOLUTIONS FOR: CASE STUDY: MAP-REDUCE

I.4 parallelFoldMap with more Cats

We’ll restate all of the necessary imports for completeness:

import cats.Monoid

import cats.Foldable

import cats.Traverse

import cats.instances.int._ // for Monoid

import cats.instances.future._ // for Applicative and Monad

import cats.instances.vector._ // for Foldable and Traverse

import cats.syntax.semigroup._ // for |+|

import cats.syntax.foldable._ // for combineAll and foldMap

import cats.syntax.traverse._ // for traverse

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

Here’s the implementaঞon of parallelFoldMap delegaঞng as much of the
method body to Cats as possible:

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

values

.grouped(groupSize)

.toVector

.traverse(group => Future(group.toVector.foldMap(func)))

.map(_.combineAll)

}

val future: Future[Int] =

parallelFoldMap((1 to 1000).toVector)(_ * 1000)

Await.result(future, 1.second)

// res3: Int = 500500000

I.4. PARALLELFOLDMAPWITH MORE CATS 287

The call to vector.grouped returns an Iterable[Iterator[Int]]. We
sprinkle calls to toVector through the code to convert the data back
to a form that Cats can understand. The call to traverse creates a
Future[Vector[Int]] containing one Int per batch. The call to map then
combines the match using the combineAll method from Foldable.

Return to the exercise

288 APPENDIX I. SOLUTIONS FOR: CASE STUDY: MAP-REDUCE

Appendix J

Soluঞons for: Case Study: Data
Validaঞon

J.1 Basic Combinators

We need a Semigroup for E. Then we can combine values of E using the
combine method or its associated |+| syntax:

import cats.Semigroup

import cats.instances.list._ // for Semigroup

import cats.syntax.semigroup._ // for |+|

val semigroup = Semigroup[List[String]]

// Combination using methods on Semigroup

semigroup.combine(List("Badness"), List("More badness"))

// res2: List[String] = List(Badness, More badness)

// Combination using Semigroup syntax

List("Oh noes") |+| List("Fail happened")

// res4: List[String] = List(Oh noes, Fail happened)

Note we don’t need a full Monoid because we don’t need the idenঞty element.
We should always try to keep our constraints as small as possible!

289

290 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

Return to the exercise

J.2 Basic Combinators Part 2

We want to report all the errors we can, so we should prefer not short-
circuiঞng whenever possible.

In the case of the and method, the two checks we’re combining are indepen-
dent of one another. We can always run both rules and combine any errors
we see.

Return to the exercise

J.3 Basic Combinators Part 3

There are at least two implementaঞon strategies.

In the first we represent checks as funcঞons. The Check data type becomes a
simple wrapper for a funcঞon that provides our library of combinator methods.
For the sake of disambiguaঞon, we’ll call this implementaঞon CheckF:

import cats.Semigroup

import cats.syntax.either._ // for asLeft and asRight

import cats.syntax.semigroup._ // for |+|

final case class CheckF[E, A](func: A => Either[E, A]) {

def apply(a: A): Either[E, A] =

func(a)

def and(that: CheckF[E, A])

(implicit s: Semigroup[E]): CheckF[E, A] =

CheckF { a =>

(this(a), that(a)) match {

case (Left(e1), Left(e2)) => (e1 |+| e2).asLeft

case (Left(e), Right(a)) => e.asLeft

case (Right(a), Left(e)) => e.asLeft

case (Right(a1), Right(a2)) => a.asRight

}

J.3. BASIC COMBINATORS PART 3 291

}

}

Let’s test the behaviour we get. First we’ll setup some checks:

import cats.instances.list._ // for Semigroup

val a: CheckF[List[String], Int] =

CheckF { v =>

if(v > 2) v.asRight

else List("Must be > 2").asLeft

}

val b: CheckF[List[String], Int] =

CheckF { v =>

if(v < -2) v.asRight

else List("Must be < -2").asLeft

}

val check: CheckF[List[String], Int] =

a and b

Now run the check with some data:

check(5)

// res8: Either[List[String],Int] = Left(List(Must be < -2))

check(0)

// res9: Either[List[String],Int] = Left(List(Must be > 2, Must be <

-2))

Excellent! Everything works as expected! We’re running both checks and ac-
cumulaঞng errors as required.

What happens if we try to create checks that fail with a type that we can’t
accumulate? For example, there is no Semigroup instance for Nothing. What
happens if we create instances of CheckF[Nothing, A]?

292 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

val a: CheckF[Nothing, Int] =

CheckF(v => v.asRight)

val b: CheckF[Nothing, Int] =

CheckF(v => v.asRight)

We can create checks just fine but when we come to combine them we get an
error we might expect:

val check = a and b

// <console>:31: error: could not find implicit value for parameter s:

cats.Semigroup[Nothing]

// val check = a and b

// ^

Now let’s see another implementaঞon strategy. In this approach we model
checks as an algebraic data type, with an explicit data type for each combinator.
We’ll call this implementaঞon Check:

sealed trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Either[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)) match {

case (Left(e1), Left(e2)) => (e1 |+| e2).asLeft

case (Left(e), Right(a)) => e.asLeft

case (Right(a), Left(e)) => e.asLeft

case (Right(a1), Right(a2)) => a.asRight

}

}

}

final case class And[E, A](

left: Check[E, A],

J.3. BASIC COMBINATORS PART 3 293

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Either[E, A]) extends Check[E, A]

Let’s see an example:

val a: Check[List[String], Int] =

Pure { v =>

if(v > 2) v.asRight

else List("Must be > 2").asLeft

}

val b: Check[List[String], Int] =

Pure { v =>

if(v < -2) v.asRight

else List("Must be < -2").asLeft

}

val check: Check[List[String], Int] =

a and b

While the ADT implementaঞon is more verbose than the funcঞon wrapper
implementaঞon, it has the advantage of cleanly separaঞng the structure of
the computaঞon (the ADT instance we create) from the process that gives it
meaning (the apply method). From here we have a number of opঞons:

• inspect and refactor checks a[er they are created;
• move the apply “interpreter” out into its own module;
• implement alternaঞve interpreters providing other funcঞonality (for ex-

ample visualizing checks).

Because of its flexibility, we will use the ADT implementaঞon for the rest of
this case study.

Return to the exercise

294 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

J.4 Basic Combinators Part 4

The implementaঞon of apply for And is using the pa�ern for applicaঞve func-
tors. Either has an Applicative instance, but it doesn’t have the semanঞcs
we want. It fails fast instead of accumulaঞng errors.

If we want to accumulate errors Validated is a more appropriate abstracঞon.
As a bonus, we get more code reuse because we can lean on the applicaঞve
instance of Validated in the implementaঞon of apply.

Here’s the complete implementaঞon:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // for |+|

import cats.syntax.apply._ // for mapN

sealed trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)).mapN((_, _) => a)

}

}

final case class And[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Check[E, A]

Return to the exercise

J.5. BASIC COMBINATORS PART 5 295

J.5 Basic Combinators Part 5

This reuses the same technique for and. We have to do a bit more work in
the apply method. Note that it’s OK to short-circuit in this case because the
choice of rules is implicit in the semanঞcs of “or”.

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // for |+|

import cats.syntax.apply._ // for mapN

import cats.data.Validated._ // for Valid and Invalid

sealed trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def or(that: Check[E, A]): Check[E, A] =

Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)).mapN((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(a) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(a) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}

}

final case class And[E, A](

left: Check[E, A],

296 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

right: Check[E, A]) extends Check[E, A]

final case class Or[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Check[E, A]

Return to the exercise

J.6 Checks

If you follow the same strategy as Predicate you should be able to create
code similar to the below:

import cats.Semigroup

import cats.data.Validated

sealed trait Check[E, A, B] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def map[C](f: B => C): Check[E, A, C] =

Map[E, A, B, C](this, f)

}

object Check {

def apply[E, A](pred: Predicate[E, A]): Check[E, A, A] =

Pure(pred)

}

final case class Map[E, A, B, C](

check: Check[E, A, B],

func: B => C) extends Check[E, A, C] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, C] =

check(in).map(func)

}

final case class Pure[E, A](

J.7. CHECKS PART 2 297

pred: Predicate[E, A]) extends Check[E, A, A] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, A] =

pred(in)

}

Return to the exercise

J.7 Checks Part 2

It’s the same implementaঞon strategy as before with one wrinkle: Validated
doesn’t have a flatMapmethod. To implement flatMap we must momentar-
ily switch to Either and then switch back to Validated. The withEither
method on Validated does exactly this. From here we can just follow the
types to implement apply.

import cats.Semigroup

import cats.data.Validated

sealed trait Check[E, A, B] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def flatMap[C](f: B => Check[E, A, C]) =

FlatMap[E, A, B, C](this, f)

// other methods...

}

final case class FlatMap[E, A, B, C](

check: Check[E, A, B],

func: B => Check[E, A, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither(_.flatMap(b => func(b)(a).toEither))

}

// other data types...

Return to the exercise

298 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

J.8 Checks Part 3

Here’s a minimal definiঞon of andThen and its corresponding AndThen class:

sealed trait Check[E, A, B] {

import Check._

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def andThen[C](that: Check[E, B, C]): Check[E, A, C] =

AndThen[E, A, B, C](this, that)

}

final case class AndThen[E, A, B, C](

check1: Check[E, A, B],

check2: Check[E, B, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check1(a).withEither(_.flatMap(b => check2(b).toEither))

}

Return to the exercise

J.9 Recap

Here’s our final implementaton, including some ঞdying and repackaging of the
code:

import cats.Semigroup

import cats.data.Validated

import cats.data.Validated._ // for Valid and Invalid

import cats.syntax.semigroup._ // for |+|

import cats.syntax.apply._ // for mapN

import cats.syntax.validated._ // for valid and invalid

Here is our complete implementaঞon of Predicate, including the and and or
combinators and a Predicate.apply method to create a Predicate from a
funcঞon:

J.9. RECAP 299

sealed trait Predicate[E, A] {

import Predicate._

def and(that: Predicate[E, A]): Predicate[E, A] =

And(this, that)

def or(that: Predicate[E, A]): Predicate[E, A] =

Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a), right(a)).mapN((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(a1) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(a2) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}

}

object Predicate {

final case class And[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Or[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Predicate[E, A]

def apply[E, A](f: A => Validated[E, A]): Predicate[E, A] =

Pure(f)

300 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

def lift[E, A](err: E, fn: A => Boolean): Predicate[E, A] =

Pure(a => if(fn(a)) a.valid else err.invalid)

}

Here is a complete implementaঞon of Check. Due to a type inference bug in
Scala’s pa�ern matching, we’ve switched to implemenঞng apply using inher-
itance:

sealed trait Check[E, A, B] {

import Check._

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def map[C](f: B => C): Check[E, A, C] =

Map[E, A, B, C](this, f)

def flatMap[C](f: B => Check[E, A, C]) =

FlatMap[E, A, B, C](this, f)

def andThen[C](next: Check[E, B, C]): Check[E, A, C] =

AndThen[E, A, B, C](this, next)

}

object Check {

final case class Map[E, A, B, C](

check: Check[E, A, B],

func: B => C) extends Check[E, A, C] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, C] =

check(a) map func

}

final case class FlatMap[E, A, B, C](

check: Check[E, A, B],

func: B => Check[E, A, C]) extends Check[E, A, C] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither(_.flatMap(b => func(b)(a).toEither))

}

https://issues.scala-lang.org/browse/SI-6680

J.10. RECAP PART 2 301

final case class AndThen[E, A, B, C](

check: Check[E, A, B],

next: Check[E, B, C]) extends Check[E, A, C] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither(_.flatMap(b => next(b).toEither))

}

final case class Pure[E, A, B](

func: A => Validated[E, B]) extends Check[E, A, B] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, B] =

func(a)

}

final case class PurePredicate[E, A](

pred: Predicate[E, A]) extends Check[E, A, A] {

def apply(a: A)

(implicit s: Semigroup[E]): Validated[E, A] =

pred(a)

}

def apply[E, A](pred: Predicate[E, A]): Check[E, A, A] =

PurePredicate(pred)

def apply[E, A, B]

(func: A => Validated[E, B]): Check[E, A, B] =

Pure(func)

}

Return to the exercise

J.10 Recap Part 2

Here’s our reference soluঞon. Implemenঞng this required more thought than
we expected. Switching between Check and Predicate at appropriate places
felt a bit like guesswork ঞll we got the rule into our heads that Predicate

302 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

doesn’t transform its input. With this rule in mind things went fairly smoothly.
In later secঞons we’ll make some changes that make the library easier to use.

import cats.data.{NonEmptyList, Validated}

import cats.syntax.apply._ // for mapN

import cats.syntax.validated._ // for valid and invalid

Here’s the implementaঞon of checkUsername:

// A username must contain at least four characters

// and consist entirely of alphanumeric characters

val checkUsername: Check[Errors, String, String] =

Check(longerThan(3) and alphanumeric)

And here’s the implementaঞon of checkEmail, built up from a number of
smaller components:

// An email address must contain a single `@` sign.

// Split the string at the `@`.

// The string to the left must not be empty.

// The string to the right must be

// at least three characters long and contain a dot.

val splitEmail: Check[Errors, String, (String, String)] =

Check(_.split('@') match {

case Array(name, domain) =>

(name, domain).validNel[String]

case other =>

"Must contain a single @ character".

invalidNel[(String, String)]

})

val checkLeft: Check[Errors, String, String] =

Check(longerThan(0))

val checkRight: Check[Errors, String, String] =

Check(longerThan(3) and contains('.'))

J.10. RECAP PART 2 303

val joinEmail: Check[Errors, (String, String), String] =

Check { case (l, r) =>

(checkLeft(l), checkRight(r)).mapN(_ + "@" + _)

}

val checkEmail: Check[Errors, String, String] =

splitEmail andThen joinEmail

Finally, here’s a check for a User that depends on checkUsername and
checkEmail:

final case class User(username: String, email: String)

def createUser(

username: String,

email: String): Validated[Errors, User] =

(checkUsername(username), checkEmail(email)).mapN(User)

We can check our work by creaঞng a couple of example users:

createUser("Noel", "noel@underscore.io")

// res14: cats.data.Validated[wrapper.Errors,User] = Valid(User(Noel,

noel@underscore.io))

createUser("", "dave@underscore@io")

// res15: cats.data.Validated[wrapper.Errors,User] = Invalid(

NonEmptyList(Must be longer than 3 characters, Must contain a

single @ character))

One disঞnct disadvantage of our example is that it doesn’t tell us where the
errors came from. We can either achieve that through judicious manipulaঞon
of error messages, or we can modify our library to track error locaঞons as well
as messages. Tracking error locaঞons is outside the scope of this case study,
so we’ll leave this as an exercise to the reader.

Return to the exercise

304 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

J.11 Kleislis

Here’s an abbreviated definiঞon of run. Like apply, the method must accept
an implicit Semigroup:

import cats.Semigroup

import cats.data.Validated

sealed trait Predicate[E, A] {

def run(implicit s: Semigroup[E]): A => Either[E, A] =

(a: A) => this(a).toEither

def apply(a: A): Validated[E, A] =

??? // etc...

// other methods...

}

Return to the exercise

J.12 Kleislis Part 2

Working around limitaঞons of type inference can be quite frustraঞng when
wriঞng this code, Working out when to convert between Predicates, func-
ঞons, and Validated, and Either simplifies things, but the process is sঞll
complex:

import cats.data.{Kleisli, NonEmptyList, Validated}

import cats.instances.either._ // for Semigroupal

import cats.instances.list._ // for Monad

Here is the preamble we suggested in the main text of the case study:

type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =

NonEmptyList(s, Nil)

J.12. KLEISLIS PART 2 305

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

def check[A, B](func: A => Result[B]): Check[A, B] =

Kleisli(func)

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =

Kleisli[Result, A, A](pred.run)

Our base predicate definiঞons are essenitally unchanged:

def longerThan(n: Int): Predicate[Errors, String] =

Predicate.lift(

error(s"Must be longer than $n characters"),

str => str.size > n)

val alphanumeric: Predicate[Errors, String] =

Predicate.lift(

error(s"Must be all alphanumeric characters"),

str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char"),

str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char only once"),

str => str.filter(c => c == char).size == 1)

Our username and email examples are slightly different in that we make use
of check() and checkPred() in different situaঞons:

val checkUsername: Check[String, String] =

checkPred(longerThan(3) and alphanumeric)

val splitEmail: Check[String, (String, String)] =

check(_.split('@') match {

306 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

case Array(name, domain) =>

Right((name, domain))

case other =>

Left(error("Must contain a single @ character"))

})

val checkLeft: Check[String, String] =

checkPred(longerThan(0))

val checkRight: Check[String, String] =

checkPred(longerThan(3) and contains('.'))

val joinEmail: Check[(String, String), String] =

check {

case (l, r) =>

(checkLeft(l), checkRight(r)).mapN(_ + "@" + _)

}

val checkEmail: Check[String, String] =

splitEmail andThen joinEmail

Finally, we can see that our createUser example works as expected using
Kleisli:

final case class User(username: String, email: String)

def createUser(

username: String,

email: String): Either[Errors, User] = (

checkUsername.run(username),

checkEmail.run(email)

).mapN(User)

createUser("Noel", "noel@underscore.io")

// res16: Either[Errors,User] = Right(User(Noel,noel@underscore.io))

createUser("", "dave@underscore@io")

// res17: Either[Errors,User] = Left(NonEmptyList(Must be longer than

3 characters))

Return to the exercise

Appendix K

Soluঞons for: Case Study: CRDTs

K.1 GCounter Implementaঞon

Hopefully the descripঞon above was clear enough that you can get to an im-
plementaঞon like the one below.

final case class GCounter(counters: Map[String, Int]) {

def increment(machine: String, amount: Int) = {

val value = amount + counters.getOrElse(machine, 0)

GCounter(counters + (machine -> value))

}

def merge(that: GCounter): GCounter =

GCounter(that.counters ++ this.counters.map {

case (k, v) =>

k -> (v max that.counters.getOrElse(k, 0))

})

def total: Int =

counters.values.sum

}

Return to the exercise

307

308 APPENDIX K. SOLUTIONS FOR: CASE STUDY: CRDTS

K.2 BoundedSemiLaমce Instances

It’s common to place the instances in the companion object of
BoundedSemiLattice so they are in the implicit scope without import-
ing them.

Implemenঞng the instance for Set provides good pracঞce with implicit meth-
ods.

trait BoundedSemiLattice[A] extends CommutativeMonoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

object BoundedSemiLattice {

implicit val intInstance: BoundedSemiLattice[Int] =

new BoundedSemiLattice[Int] {

def combine(a1: Int, a2: Int): Int =

a1 max a2

val empty: Int =

0

}

implicit def setInstance[A]: BoundedSemiLattice[Set[A]] =

new BoundedSemiLattice[Set[A]]{

def combine(a1: Set[A], a2: Set[A]): Set[A] =

a1 union a2

val empty: Set[A] =

Set.empty[A]

}

}

Return to the exercise

K.3 Generic GCounter

Here’s a working implementaঞon. Note the use of |+| in the definiঞon of
merge, which significantly simplifies the process of merging and maximising

K.4. ABSTRACTING GCOUNTER TO A TYPE CLASS 309

counters:

import cats.instances.list._ // for Monoid

import cats.instances.map._ // for Monoid

import cats.syntax.semigroup._ // for |+|

import cats.syntax.foldable._ // for combineAll

final case class GCounter[A](counters: Map[String,A]) {

def increment(machine: String, amount: A)

(implicit m: CommutativeMonoid[A]): GCounter[A] = {

val value = amount |+| counters.getOrElse(machine, m.empty)

GCounter(counters + (machine -> value))

}

def merge(that: GCounter[A])

(implicit b: BoundedSemiLattice[A]): GCounter[A] =

GCounter(this.counters |+| that.counters)

def total(implicit m: CommutativeMonoid[A]): A =

this.counters.values.toList.combineAll

}

Return to the exercise

K.4 Abstracঞng GCounter to a Type Class

Here’s the complete code for the instance. Write this definiঞon in the com-
panion object for GCounter to place it in glocal implicit scope:

import cats.instances.list._ // for Monoid

import cats.instances.map._ // for Monoid

import cats.syntax.semigroup._ // for |+|

import cats.syntax.foldable._ // for combineAll

implicit def mapInstance[K, V]: GCounter[Map, K, V] =

new GCounter[Map, K, V] {

def increment(map: Map[K, V])(key: K, value: V)

(implicit m: CommutativeMonoid[V]): Map[K, V] = {

val total = map.getOrElse(key, m.empty) |+| value

310 APPENDIX K. SOLUTIONS FOR: CASE STUDY: CRDTS

map + (key -> total)

}

def merge(map1: Map[K, V], map2: Map[K, V])

(implicit b: BoundedSemiLattice[V]): Map[K, V] =

map1 |+| map2

def total(map: Map[K, V])

(implicit m: CommutativeMonoid[V]): V =

map.values.toList.combineAll

}

Return to the exercise

K.5 Abstracঞng a Key Value Store

Here’s the code for the instance. Write the definiঞon in the companion object
for KeyValueStore to place it in global implicit scope:

implicit val mapInstance: KeyValueStore[Map] =

new KeyValueStore[Map] {

def put[K, V](f: Map[K, V])(k: K, v: V): Map[K, V] =

f + (k -> v)

def get[K, V](f: Map[K, V])(k: K): Option[V] =

f.get(k)

override def getOrElse[K, V](f: Map[K, V])

(k: K, default: V): V =

f.getOrElse(k, default)

def values[K, V](f: Map[K, V]): List[V] =

f.values.toList

}

Return to the exercise

	Preface
	Versions
	Template Projects

	Conventions Used in This Book
	Typographical Conventions
	Source Code
	Callout Boxes

	Acknowledgements
	Backers

	Part I. Theory
	Introduction
	Anatomy of a Type Class
	The Type Class
	Type Class Instances
	Type Class Interfaces

	Working with Implicits
	Packaging Implicits
	Implicit Scope
	Recursive Implicit Resolution

	Exercise: Printable Library
	Meet Cats
	Importing Type Classes
	Importing Default Instances
	Importing Interface Syntax
	Importing All The Things!
	Defining Custom Instances
	Exercise: Cat Show

	Example: Eq
	Equality, Liberty, and Fraternity
	Comparing Ints
	Comparing Options
	Comparing Custom Types
	Exercise: Equality, Liberty, and Felinity

	Controlling Instance Selection
	Variance

	Summary

	Monoids and Semigroups
	Definition of a Monoid
	Definition of a Semigroup
	Exercise: The Truth About Monoids
	Exercise: All Set for Monoids
	Monoids in Cats
	The Monoid Type Class
	Monoid Instances
	Monoid Syntax
	Exercise: Adding All The Things

	Applications of Monoids
	Big Data
	Distributed Systems
	Monoids in the Small

	Summary

	Functors
	Examples of Functors
	More Examples of Functors
	Definition of a Functor
	Aside: Higher Kinds and Type Constructors
	Functors in Cats
	The Functor Type Class
	Functor Syntax
	Instances for Custom Types
	Exercise: Branching out with Functors

	Contravariant and Invariant Functors
	Contravariant Functors and the contramap Method
	Invariant functors and the imap method

	Contravariant and Invariant in Cats
	Contravariant in Cats
	Invariant in Cats

	Aside: Partial Unification
	Unifying Type Constructors
	Left-to-Right Elimination

	Summary

	Monads
	What is a Monad?
	Definition of a Monad
	Exercise: Getting Func-y

	Monads in Cats
	The Monad Type Class
	Default Instances
	Monad Syntax

	The Identity Monad
	Exercise: Monadic Secret Identities

	Either
	Left and Right Bias
	Creating Instances
	Transforming Eithers
	Error Handling
	Exercise: What is Best?

	Aside: Error Handling and MonadError
	The MonadError Type Class
	Raising and Handling Errors
	Instances of MonadError
	Exercise: Abstracting

	The Eval Monad
	Eager, Lazy, Memoized, Oh My!
	Eval's Models of Evaluation
	Eval as a Monad
	Trampolining and Eval.defer
	Exercise: Safer Folding using Eval

	The Writer Monad
	Creating and Unpacking Writers
	Composing and Transforming Writers
	Exercise: Show Your Working

	The Reader Monad
	Creating and Unpacking Readers
	Composing Readers
	Exercise: Hacking on Readers
	When to Use Readers?

	The State Monad
	Creating and Unpacking State
	Composing and Transforming State
	Exercise: Post-Order Calculator

	Defining Custom Monads
	Exercise: Branching out Further with Monads

	Summary

	Monad Transformers
	Exercise: Composing Monads
	A Transformative Example
	Monad Transformers in Cats
	The Monad Transformer Classes
	Building Monad Stacks
	Constructing and Unpacking Instances
	Default Instances
	Usage Patterns

	Exercise: Monads: Transform and Roll Out
	Summary

	Semigroupal and Applicative
	Semigroupal
	Joining Two Contexts
	Joining Three or More Contexts

	Apply Syntax
	Fancy Functors and Apply Syntax

	Semigroupal Applied to Different Types
	Semigroupal Applied to Monads

	Validated
	Creating Instances of Validated
	Combining Instances of Validated
	Methods of Validated
	Exercise: Form Validation

	Apply and Applicative
	The Hierarchy of Sequencing Type Classes

	Summary

	Foldable and Traverse
	Foldable
	Folds and Folding
	Exercise: Reflecting on Folds
	Exercise: Scaf-fold-ing Other Methods
	Foldable in Cats

	Traverse
	Traversing with Futures
	Traversing with Applicatives
	Traverse in Cats

	Summary

	Part II. Case Studies
	Case Study: Testing Asynchronous Code
	Abstracting over Type Constructors
	Abstracting over Monads
	Summary

	Case Study: Map-Reduce
	Parallelizing map and fold
	Implementing foldMap
	Parallelising foldMap
	Futures, Thread Pools, and ExecutionContexts
	Dividing Work
	Implementing parallelFoldMap
	parallelFoldMap with more Cats

	Summary

	Case Study: Data Validation
	Sketching the Library Structure
	The Check Datatype
	Basic Combinators
	Transforming Data
	Predicates
	Checks
	Recap

	Kleislis
	Summary

	Case Study: CRDTs
	Eventual Consistency
	The GCounter
	Simple Counters
	GCounters
	Exercise: GCounter Implementation

	Generalisation
	Implementation
	Exercise: BoundedSemiLattice Instances
	Exercise: Generic GCounter

	Abstracting GCounter to a Type Class
	Abstracting a Key Value Store
	Summary

	Part III. Solutions to Exercises
	Solutions for: Introduction
	Printable Library
	Printable Library Part 2
	Printable Library Part 3
	Cat Show
	Equality, Liberty, and Felinity

	Solutions for: Monoids and Semigroups
	The Truth About Monoids
	All Set for Monoids
	Adding All The Things
	Adding All The Things Part 2
	Adding All The Things Part 3

	Solutions for: Functors
	Branching out with Functors
	Showing off with Contramap
	Showing off with Contramap Part 2
	Transformative Thinking with imap
	Transformative Thinking with imap Part 2
	Transformative Thinking with imap Part 3

	Solutions for: Monads
	Getting Func-y
	Monadic Secret Identities
	What is Best?
	Safer Folding using Eval
	Show Your Working
	Hacking on Readers
	Hacking on Readers Part 2
	Hacking on Readers Part 3
	Post-Order Calculator
	Post-Order Calculator Part 2
	Post-Order Calculator Part 3
	Branching out Further with Monads

	Solutions for: Monad Transformers
	Monads: Transform and Roll Out
	Monads: Transform and Roll Out Part 2
	Monads: Transform and Roll Out Part 3
	Monads: Transform and Roll Out Part 4

	Solutions for: Semigroupal and Applicative
	The Product of Monads
	Form Validation
	Form Validation Part 2
	Form Validation Part 3
	Form Validation Part 4
	Form Validation Part 5

	Solutions for: Foldable and Traverse
	Reflecting on Folds
	Scaf-fold-ing Other Methods
	Traversing with Vectors
	Traversing with Vectors Part 2
	Traversing with Options
	Traversing with Validated

	Solutions for: Case Study: Testing Asynchronous Code
	Abstracting over Type Constructors
	Abstracting over Type Constructors Part 2
	Abstracting over Monads
	Abstracting over Monads Part 2

	Solutions for: Case Study: Map-Reduce
	Implementing foldMap
	Implementing foldMap Part 2
	Implementing parallelFoldMap
	parallelFoldMap with more Cats

	Solutions for: Case Study: Data Validation
	Basic Combinators
	Basic Combinators Part 2
	Basic Combinators Part 3
	Basic Combinators Part 4
	Basic Combinators Part 5
	Checks
	Checks Part 2
	Checks Part 3
	Recap
	Recap Part 2
	Kleislis
	Kleislis Part 2

	Solutions for: Case Study: CRDTs
	GCounter Implementation
	BoundedSemiLattice Instances
	Generic GCounter
	Abstracting GCounter to a Type Class
	Abstracting a Key Value Store

