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Preface

The aims of this book are two-fold: to introduce monads, functors, and other
functional programming patterns as a way to structure program design, and to
explain how these concepts are implemented in Cats.

Monads, and related concepts, are the functional programming equivalent
of object-oriented design patterns—architectural building blocks that turn up
over and over again in code. They differ from object-oriented patterns in two
main ways:

e they are formally, and thus precisely, defined; and
o they are extremely (extremely) general.

This generality means they can be difficult to understand. Everyone finds ab-
straction difficult. However, it is generality that allows concepts like monads
to be applied in such a wide variety of situations.

In this book we aim to show the concepts in a number of different ways, to help
you build a mental model of how they work and where they are appropriate.
We have extended case studies, a simple graphical notation, many smaller ex-
amples, and of course the mathematical definitions. Between them we hope
you'll find something that works for you.

Ok, let's get started!


http://typelevel.org/cats

Versions

This book is written for Scala 2.12.3 and Cats 1.0.0. Here is a minimal
build.sbt containing the relevant dependencies and settings':

scalaVersion := "2.12.3"

libraryDependencies +=
"org.typelevel" %% "cats-core" % "1.0.0"

scalacOptions ++= Seq(
"-Xfatal-warnings",
"-Ypartial-unification"

)

Template Projects

For convenience, we have created a Giter8 template to get you started. To
clone the template type the following:

$ sbt new underscoreio/cats-seed.g8

This will generate a sandbox project with Cats as a dependency. See the gen-
erated README . md for instructions on how to run the sample code and/or start
an interactive Scala console.

The cats-seed template is as minimal as it gets. If you'd prefer a more
batteries-included starting point, check out Typelevel’s sbt-catalysts tem-
plate:

$ sbt new typelevel/sbt-catalysts.g8

This will generate a project with a suite of library dependencies and compiler
plugins, together with templates for unit tests and tut-enabled documentation.
See the project pages for catalysts and sbt-catalysts for more information.

"We assume you are using SBT 0.13.13 or newer.


https://github.com/tpolecat/tut
https://github.com/typelevel/catalysts
https://github.com/typelevel/sbt-catalysts

Conventions Used in This Book

This book contains a lot of technical information and program code. We use
the following typographical conventions to reduce ambiguity and highlight im-
portant concepts:

Typographical Conventions

New terms and phrases are introduced in italics. After their initial introduction
they are written in normal roman font.

Terms from program code, filenames, and file contents, are written in
monospace font. Note that we do not distinguish between singular and
plural forms. For example, we might write String or Strings to refer to
java.lang.String.

References to external resources are written as hyperlinks. References to API
documentation are written using a combination of hyperlinks and monospace
font, for example: scala.Option.

Source Code

Source code blocks are written as follows. Syntax is highlighted appropriately
where applicable:

object MyApp extends App {
println("Hello world!") // Print a fine message to the user!

}

Most code passes through tut to ensure it compiles. tut uses the Scala console
behind the scenes, so we sometimes show console-style output as comments:

"Hello Cats!".toUpperCase
// res0: String = HELLO CATS!


https://underscore.io
http://www.scala-lang.org/api/current/scala/Option.html
https://github.com/tpolecat/tut

Callout Boxes

We use two types of callout box to highlight particular content:

Tip callouts indicate handy summaries, recipes, or best practices.

Advanced callouts provide additional information on corner cases or
underlying mechanisms. Feel free to skip these on your first read-
through—come back to them later for extra information.
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Chapter 1

Introduction

Cats contains a wide variety of functional programming tools and allows de-
velopers to pick and choose the ones we want to use. The majority of these
tools are delivered in the form of type classes that we can apply to existing
Scala types.

Type classes are a programming pattern originating in Haskell*. They allow us
to extend existing libraries with new functionality, without using traditional
inheritance, and without altering the original library source code.

In this chapter we will refresh our memory of type classes from Underscore’s
Essential Scala book, and take a first look at the Cats codebase. We will look
at two example type classes—Show and Eq—using them to identify patterns
that lay the foundations for the rest of the book.

WEe'll finish by tying type classes back into algebraic data types, pattern match-
ing, value classes, and type aliases, presenting a structured approach to func-
tional programming in Scala.

'The word “class” doesn't strictly mean class in the Scala or Java sense.


http://underscore.io/books/essential-scala

10 CHAPTER 1. INTRODUCTION

1.1 Anatomy of a Type Class

There are three important components to the type class pattern: the type class
itself, instances for particular types, and the interface methods that we expose
to users.

1.1.1 The Type Class

A type class is an interface or API that represents some functionality we want
to implement. In Cats a type class is represented by a trait with at least one
type parameter. For example, we can represent generic “serialize to JSON”
behaviour as follows:

// Define a very simple JSON AST

sealed trait Json

final case class JsObject(get: Map[String, Json]) extends Json
final case class JsString(get: String) extends Json

final case class JsNumber(get: Double) extends Json

case object JsNull extends Json

// The "serialize to JSON" behaviour is encoded in this trait
trait JsonWriter[A] {
def write(value: A): Json

}

JsonWriter is our type class in this example, with Json and its subtypes pro-
viding supporting code.

1.1.2 Type Class Instances

The instances of a type class provide implementations for the types we care
about, including types from the Scala standard library and types from our do-
main model.

In Scala we define instances by creating concrete implementations of the type
class and tagging them with the implicit keyword:
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final case class Person(name: String, email: String)

object JsonWriterInstances {
implicit val stringWriter: JsonWriter[String]
new JsonWriter[String] {
def write(value: String): Json =
JsString(value)

implicit val personWriter: JsonWriter[Person] =
new JsonWriter[Person] {
def write(value: Person): Json =
JsObject (Map(
"name" -> JsString(value.name),
"email" -> JsString(value.email)

1.1.3 Type Class Interfaces

A type class interface is any functionality we expose to users. Interfaces are
generic methods that accept instances of the type class as implicit parameters.

There are two common ways of specifying an interface: Interface Objects and
Interface Syntax.

Interface Objects
The simplest way of creating an interface is to place methods in a singleton

object:

object Json {
def toJson[A](value: A)(implicit w: JsonWriter[A]): Json =
w.write(value)

To use this object, we import any type class instances we care about and call
the relevant method:
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import JsonWriterInstances.

Json.toJson(Person("Dave", "dave@example.com"))
// resd: Json = JsObject(Map(name -> JsString(Dave), email -> JsString
(dave@example.com)))

The compiler spots that we've called the toJson method without providing
the implicit parameters. It tries to fix this by searching for type class instances
of the relevant types and inserting them at the call site:

Json.toJson(Person("Dave", "dave@example.com")) (personWriter)

Interface Syntax

We can alternatively use extension methods to extend existing types with in-
terface methods®. Cats refers to this as “syntax” for the type class:

object JsonSyntax {
implicit class JsonWriterOps[A](value: A) {
def toJson(implicit w: JsonWriter[A]): Json =
w.write(value)

We use interface syntax by importing it alongside the instances for the types
we need:

import JsonWriterInstances.
import JsonSyntax.

Person("Dave", "dave@example.com").toJson
// res6: Json = JsObject(Map(name -> JsString(Dave), email -> JsString
(dave@example.com)))

Again, the compiler searches for candidates for the implicit parameters and
fills them in for us:

*You may occasionally see extension methods referred to as “type enrichment” or “pimping”.
These are older terms that we don’t use anymore.
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Person("Dave", "dave@example.com").toJson(personWriter)

The implicitly Method

The Scala standard library provides a generic type class interface called im-
plicitly. Its definition is very simple:

def implicitly[A](implicit value: A): A =
value

We can use implicitly to summon any value from implicit scope. We pro-
vide the type we want and implicitly does the rest:

import JsonWriterInstances.
// import JsonWriterInstances.

implicitly[JsonWriter[String]]
// res8: JsonWriter[String] = JsonWriterInstances$$anon$1@38ee55c4

Most type classes in Cats provide other means to summon instances. How-
ever, implicitly is a good fallback for debugging purposes. We can insert a
call to implicitly within the general flow of our code to ensure the compiler
can find an instance of a type class and ensure that there are no ambiguous
implicit errors.

1.2 Working with Implicits

Working with type classes in Scala means working with implicit values and im-
plicit parameters. There are a few rules we need to know to do this effectively.

1.2.1 Packaging Implicits

In a curious quirk of the language, any definitions marked implicit in Scala
must be placed inside an object or trait rather than at the top level. In the ex-
ample above we packaged our type class instances in an object called Json-
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WriterInstances. We could equally have placed them in a companion ob-
jectto JsonWriter. Placing instances in a companion object to the type class
has special significance in Scala because it plays into something called implicit
scope.

1.2.2 Implicit Scope

As we saw above, the compiler searches for candidate type class instances by
type. For example, in the following expression it will look for an instance of
type JsonWriter[String]:

Json.toJson("A string!")

The compiler searches for candidate instances in the implicit scope at the call
site, which roughly consists of:

e |ocal or inherited definitions;
e imported definitions;

e definitions in the companion object of the type class or the parameter
type (in this case JsonWriter or String).

Definitions are only included in implicit scope if they are tagged with the im-
plicit keyword. Furthermore, if the compiler sees multiple candidate defini-
tions, it fails with an ambiguous implicit values error:

implicit val writerl: JsonWriter[String]
JsonWriterInstances.stringWriter

implicit val writer2: JsonWriter[String]
JsonWriterInstances.stringWriter

Json.toJson("A string")

// <console>:23: error: ambiguous implicit values:

// both value stringWriter in object JsonWriterInstances of type =>
JsonWriter([String]

// and value writerl of type => JsonWriter[String]
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// match expected type JsonWriter[String]
// Json.toJson("A string")
// ~

The precise rules of implicit resolution are more complex than this, but the
complexity is largely irrelevant for this book®. For our purposes, we can pack-
age type class instances in roughly four ways:

by placing them in an object such as JsonWriterInstances;
by placing them in a trait;

by placing them in the companion object of the type class;

by placing them in the companion object of the parameter type.

Howbd e

With option 1 we bring instances into scope by importing them. With option
2 we bring them into scope with inheritance. With options 3 and 4, instances
are always in implicit scope, regardless of where we try to use them.

1.2.3 Recursive Implicit Resolution

The power of type classes and implicits lies in the compiler’s ability to combine
implicit definitions when searching for candidate instances.

Earlier we insinuated that all type class instances are implicit vals. This
was a simplification. We can actually define instances in two ways:

1. by defining concrete instances as implicit vals of the required
type’;

2. by defining implicit methods to construct instances from other type
class instances.

Why would we construct instances from other instances? As a motivational
example, consider defining a JsonWriter for Options. We would need a
JsonWriter[Option[A]] for every A we care about in our application. We
could try to brute force the problem by creating a library of implicit vals:

°If you're interested in the finer rules of implicit resolution in Scala, start by taking a look at
this Stack Overflow post on implicit scope and this blog post on implicit priority.
“implicit objects are treated the same way.


https://stackoverflow.com/questions/5598085/where-does-scala-look-for-implicits
http://eed3si9n.com/revisiting-implicits-without-import-tax
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implicit val optionIntWriter: JsonWriter[Option[Int]] =
?7?

implicit val optionPersonWriter: JsonWriter[Option[Person]] =
27?7

// and so on...

However, this approach clearly doesn’t scale. We end up requiring two im-
plicit vals for every type A in our application: one for A and one for Op-
tion[A].

Fortunately, we can abstract the code for handling Option[A] into a common
constructor based on the instance for A:

e if the option is Some (aValue), write aValue using the writer for A;

e if the option is None, return JsNull.

Here is the same code written out as an implicit def:

implicit def optionWriter[A]
(implicit writer: JsonWriter[A]): JsonWriter[Option[A]] =
new JsonWriter[Option[A]] {
def write(option: Option[A]): Json =
option match {
case Some(aValue) => writer.write(aValue)
case None => JsNull

This method constructs a JsonWriter for Option[A] by relying on an implicit
parameter to fill in the A-specific functionality. When the compiler sees an
expression like this:

Json.toJson(Option("A string"))

it searches for an implicit JsonWriter[Option[String]]. It finds the im-
plicit method for JsonWriter[Option[A]]:



1.2. WORKING WITH IMPLICITS 17

Json.toJson(Option("A string")) (optionWriter[String])

and recursively searches for a JsonWriter[String] to use as the parameter
to optionWriter:

Json.toJson(Option("A string")) (optionWriter(stringWriter))

In this way, implicit resolution becomes a search through the space of possible
combinations of implicit definitions, to find a combination that summons a
type class instance of the correct overall type.

Implicit Conversions

When you create a type class instance constructor using an implicit
def, be sure to mark the parameters to the method as implicit pa-
rameters. Without this keyword, the compiler won't be able to fill in the
parameters during implicit resolution.

implicit methods with non-implicit parameters form a different
Scala pattern called an implicit conversion. This is also different from
the previous section on Interface Syntax, because in that case the
JsonWriterisanimplicit class with extension methods. Implicit con-
version is an older programming pattern that is frowned upon in mod-
ern Scala code. Fortunately, the compiler will warn you when you do
this. You have to manually enable implicit conversions by importing
scala.language.implicitConversions in your file:
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implicit def optionWriter[A]

(writer: JsonWriter[A]): JsonWriter[Option[A]] =
?7?

// <console>:18: warning: implicit conversion method
optionWriter should be enabled

// by making the implicit value scala.language.
implicitConversions visible.

// This can be achieved by adding the import clause 'import
scala.language.implicitConversions'

// or by setting the compiler option -language:
implicitConversions.

// See the Scaladoc for value scala.language.implicitConversions

for a discussion

// why the feature should be explicitly enabled.

// implicit def optionWriter[A]

// ~

// error: No warnings can be incurred under -Xfatal-warnings.

1.3 Exercise: Printable Library

Scala provides a toString method to let us convert any value to a String.
However, this method comes with a few disadvantages: it is implemented for
every type in the language, many implementations are of limited use, and we
can’t opt-in to specific implementations for specific types.

Let’s define a Printable type class to work around these problems:

1. Define atype class Printable[A] containing a single method format.
format should accept a value of type A and return a String.

2. Create an object PrintableInstances containing instances of
Printable for String and Int.
3. Define an object Printable with two generic interface methods:

format accepts a value of type A and a Printab'le of the correspond-
ing type. It uses the relevant Printable to convert the A to a String.

print accepts the same parameters as format and returns Unit. It
prints the A value to the console using println.
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See the solution
Using the Library

The code above forms a general purpose printing library that we can use in
multiple applications. Let’s define an “application” now that uses the library.

First we'll define a data type to represent a well-known type of furry animal:

final case class Cat(name: String, age: Int, color: String)

Next we'll create an implementation of Printable for Cat that returns con-
tent in the following format:

NAME is a AGE year-old COLOR cat.

Finally, use the type class on the console or in a short demo app: create a Cat
and print it to the console:

// Define a cat:
val cat = Cat(/* ... */)

// Print the cat!

See the solution
Better Syntax

Let’s make our printing library easier to use by defining some extension meth-
ods to provide better syntax:
1. Create an object called PrintableSyntax.

2. Inside PrintableSyntax define an implicit class Print-
ableOps[A] to wrap up a value of type A.

3. In PrintableOps define the following methods:

o format accepts animplicit Printable[A] and returns a String
representation of the wrapped A;
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e print accepts an implicit Printable[A] and returns Unit. It
prints the wrapped A to the console.

4. Use the extension methods to print the example Cat you created in the
previous exercise.

See the solution

1.4 Meet Cats

In the previous section we saw how to implement type classes in Scala. In this
section we will look at how type classes are implemented in Cats.

Cats is written using a modular structure that allows us to choose which type
classes, instances, and interface methods we want to use. Let’s take a first
look using cats.Show as an example.

Show is Cats’ equivalent of the Printable type class we defined in the last
section. It provides a mechanism for producing developer-friendly console
output without using toString. Here’s an abbreviated definition:

package cats

trait Show[A] {
def show(value: A): String
}

1.4.1 Importing Type Classes

The type classes in Cats are defined in the cats package. We can import Show
directly from this package:

import cats.Show

The companion object of every Cats type class has an apply method that
locates an instance for any type we specify:


http://typelevel.org/cats/api/cats/Show.html
http://typelevel.org/cats/api/cats/
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val showInt = Show.apply[Int]

// <console>:13: error: could not find implicit value for parameter
instance: cats.Show[Int]

// val showInt = Show.apply[Int]

// ~

Oops—that didn’t work! The apply method uses implicits to look up individual
instances, so we'll have to bring some instances into scope.

1.4.2 Importing Default Instances

The cats.instances package provides default instances for a wide variety of
types. We canimport these as shown in the table below. Each import provides
instances of all Cats’ type classes for a specific parameter type:

e cats.instances.int provides instances for Int

e cats.instances.string provides instances for String

e cats.instances.list provides instances for List

e cats.instances.option provides instances for Option

e cats.instances.all provides all instances that are shipped out of
the box with Cats

See the cats.instances package for a complete list of available imports.

Let's import the instances of Show for Int and String:

import cats.instances.int._ // for Show
import cats.instances.string._// for Show

val showInt: Show[Int] Show.apply[Int]
val showString: Show[String] = Show.apply[String]

That's better! We now have access to two instances of Show, and can use
them to print Ints and Strings:


http://typelevel.org/cats/api/cats/instances/
http://typelevel.org/cats/api/cats/instances/package$$int$
http://typelevel.org/cats/api/cats/instances/package$$string$
http://typelevel.org/cats/api/cats/instances/package$$list$
http://typelevel.org/cats/api/cats/instances/package$$option$
http://typelevel.org/cats/api/cats/instances/package$$all$
http://typelevel.org/cats/api/cats/instances/
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val intAsString: String =
showInt.show(123)
// intAsString: String = 123

val stringAsString: String =

showString.show("abc")
// stringAsString: String = abc

1.4.3 Importing Interface Syntax

We can make Show easier to use by importing the interface syntax from
cats.syntax.show. This adds an extension method called show to any type
for which we have an instance of Show in scope:

import cats.syntax.show. // for show

val shownInt = 123.show
// shownInt: String = 123

val shownString = "abc".show

// shownString: String = abc

Cats provides separate syntax imports for each type class. We will introduce
these as we encounter them in later sections and chapters.

1.4.4 Importing All The Things!

In this book we will use specific imports to show you exactly which instances
and syntax you need in each example. However, this can be time consuming
for many use cases. You should feel free to take one of the following shortcuts
to simplify your imports:

e import cats._ imports all of Cats’ type classes in one go;

e import cats.instances.all. imports all of the type class in-
stances for the standard library in one go;


http://typelevel.org/cats/api/cats/syntax/package$$show$
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e import cats.syntax.all. imports all of the syntax in one go;

e import cats.implicits._ imports all of the standard type class in-
stances and all of the syntax in one go.

Most people start their files with the following imports, reverting to more spe-
cificimports only if they encounter naming conflicts or problems with ambigu-
ous implicits:

import cats._
import cats.implicits.

1.4.5 Defining Custom Instances

We can define an instance of Show simply by implementing the trait for a given
type:

import java.util.Date

implicit val dateShow: Show[Date] =
new Show[Date] {
def show(date: Date): String =
s"${date.getTime}ms since the epoch."

However, Cats also provides a couple of convenient methods to simplify the
process. There are two construction methods on the companion object of
Show that we can use to define instances for our own types:

object Show {
// Convert a function to a “Show™ instance:
def show[A](f: A => String): Show[A] =
?7?

// Create a "Show™ instance from a "toString® method:
def fromToString[A]: Show[A] =
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?7?

These allow us to quickly construct instances with less ceremony than defining
them from scratch:

implicit val dateShow: Show[Date] =
Show.show(date => s"${date.getTime}ms since the epoch.")

As you can see, the code using construction methods is much terser than the
code without. Many type classes in Cats provide helper methods like these
for constructing instances, either from scratch or by transforming existing in-
stances for other types.

1.4.6 Exercise: Cat Show
Re-implement the Cat application from the previous section using Show in-
stead of Printable.

See the solution

1.5 Example: Eq

We will finish off this chapter by looking at another useful type class: cats.Eq.
Eq is designed to support type-safe equality and address annoyances using
Scala’s built-in == operator.

Almost every Scala developer has written code like this before:

List(1, 2, 3).map(Option( )).filter(item => item == 1)
// res@: List[Option[Int]] = List()

Ok, many of you won't have made such a simple mistake as this, but the prin-
ciple is sound. The predicate in the filter clause always returns false be-
cause it is comparing an Int to an Option[Int].


http://typelevel.org/cats/api/cats/kernel/Eq.html
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This is programmer error—we should have compared itemto Some (1) instead
of 1. However, it’s not technically a type error because == works for any pair
of objects, no matter what types we compare. Eq is designed to add some
type safety to equality checks and work around this problem.

1.5.1 Equality, Liberty, and Fraternity

We can use Eq to define type-safe equality between instances of any given
type:

package cats

trait Eq[A] {
def eqv(a: A, b: A): Boolean
// other concrete methods based on eqv...

}

The interface syntax, defined in cats.syntax.eq, provides two methods for
performing equality checks provided there is an instance Eq[A] in scope:

e === compares two objects for equality;
e =!=compares two objects for inequality.

1.5.2 Comparing Ints
Let's look at a few examples. First we import the type class:

import cats.Eq

Now let’s grab an instance for Int:

import cats.instances.int. // for Eq

val eqInt = Eq[Int]

We can use eqInt directly to test for equality:


http://typelevel.org/cats/api/cats/syntax/package$$eq$
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eqInt.eqv (123, 123)
// res2: Boolean = true

eqInt.eqv (123, 234)
// res3: Boolean = false

Unlike Scala’s == method, if we try to compare objects of different types using
eqv we get a compile error:

eqInt.eqv (123, "234")
// <console>:18: error: type mismatch;

// found : String("234")

// required: Int

// eqIlnt.eqv (123, "234")
// ~

We can also import the interface syntax in cats.syntax.eq to use the ===
and =!= methods:

import cats.syntax.eq._ // for === and =!=

123 === 123
// res5: Boolean = true

123 =!= 234
// res6: Boolean = true

Again, comparing values of different types causes a compiler error:

123 === "123"

// <console>:20: error: type mismatch;
// found : String("123")

// required: Int

// 123 === "123"

// ~

1.5.3 Comparing Options

Now for a more interesting example—Option[Int]. To compare values of
type Option[Int] we need to import instances of Eq for Option as well as


http://typelevel.org/cats/api/cats/syntax/package$$eq$

1.5. EXAMPLE: EQ 27

Int:

import cats.instances.int. // for Eq
import cats.instances.option. // for Eq

Now we can try some comparisons:

Some(1l) === None

// <console>:26: error: value === is not a member of Some[Int]
// Some(1l) === None

// ~

We have received an error here because the types don't quite match up. We
have Eq instances in scope for Int and Option[Int] but the values we are
comparing are of type Some[Int]. To fix the issue we have to re-type the
arguments as Option[Int]:

(Some(1l) : Option[Int]) === (None : Option[Int])
// res9: Boolean = false

We can do this in a friendlier fashion using the Option.apply and Op-
tion.empty methods from the standard library:

Option(1l) === Option.empty[Int]
// reslO: Boolean = false

or using special syntax from cats.syntax.option:

import cats.syntax.option._// for some and none

1.some === none[Int]
// resll: Boolean = false

1.some =!'= none[Int]
// resl2: Boolean = true


http://typelevel.org/cats/api/cats/syntax/package$$option$
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1.5.4 Comparing Custom Types

We can define our own instances of Eq using the Eq. instance method, which
accepts a function of type (A, A) => Boolean and returns an Eq[A]:

import java.util.Date
import cats.instances.long. // for Eq

implicit val dateEq: Eq[Date] =
Eq.instance[Date] { (datel, date2) =>
datel.getTime === date2.getTime
}

val x = new Date() // now
val y = new Date() // a bit later than now

X === X
// resl3: Boolean

true

X ===y
// resld: Boolean = false

1.5.5 Exercise: Equality, Liberty, and Felinity

Implement an instance of Eq for our running Cat example:

final case class Cat(name: String, age: Int, color: String)

Use this to compare the following pairs of objects for equality and inequality:

val catl = Cat("Garfield", 38, "orange and black")
val cat2 Cat("Heathcliff", 33, "orange and black")

val optionCatl Option(catl)
val optionCat2 = Option.empty[Cat]

See the solution
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1.6 Controlling Instance Selection

When working with type classes we must consider two issues that control
instance selection:

¢ What is the relationship between an instance defined on a type and its
subtypes?

For example, if we define a JsonWriter[Option[Int]], will the ex-
pression Json.toJson(Some(1)) select this instance? (Remember
that Some is a subtype of Option).

¢ How do we choose between type class instances when there are many
available?

What if we define two JsonWriters for Person? When we write
Json.toJson(aPerson), which instance is selected?

1.6.1 Variance

When we define type classes we can add variance annotations to the type
parameter to affect the variance of the type class and the compiler’s ability to
select instances during implicit resolution.

To recap Essential Scala, variance relates to subtypes. We say that B is a sub-
type of A if we can use a value of type B anywhere we expect a value of type
A.

Co- and contravariance annotations arise when working with type construc-

tors. For example, we denote covariance with a + symbol:

trait F[+A] // the "+" means "covariant"

Covariance

Covariance means that the type F[B] is a subtype of the type F[A] if Bis a
subtype of A. This is useful for modelling many types, including collections like
List and Option:
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trait List[+A]
trait Option[+A]

The covariance of Scala collections allows us to substitute collections of one
type for another in our code. For example, we can use a List[Circle] any-
where we expect a List[Shape] because Circle is a subtype of Shape:

sealed trait Shape
case class Circle(radius: Double) extends Shape

val circles: List[Circle] = ???
val shapes: List[Shape] = circles

What about contravariance? We write contravariant type constructors with a
- symbol like this:

trait F[-A]

Contravariance

Confusingly, contravariance means that the type F[B] is a subtype of F[A] if
Ais a subtype of B. This is useful for modelling types that represent processes,
like our JsonWriter type class above:

trait JsonWriter[-A] {
def write(value: A): Json

}
// defined trait JsonWriter

Let's unpack this a bit further. Remember that variance is all about the ability
to substitute one value for another. Consider a scenario where we have two
values, one of type Shape and one of type Circle, and two JsonWriters,
one for Shape and one for Circle:

val shape: Shape = ?7?
val circle: Circle = ???

val shapeWriter: JsonWriter[Shape] = 7?7
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val circleWriter: JsonWriter[Circle] = ??7?

def format[A](value: A, writer: JsonWriter[A]): Json =
writer.write(value)

Now ask yourself the question: “Which combinations of value and writer can |
pass to format?” We can combine circle with either writer because all Cir-
cles are Shapes. Conversely, we can't combine shape with circleWriter
because not all Shapes are Circles.

This relationship is what we formally model using contravariance. Json-
Writer[Shape] is a subtype of JsonWriter[Circle] because Circleis a
subtype of Shape. This means we can use shapeWriter anywhere we expect
tosee a JsonWriter[Circle].

Invariance

Invariance is actually the easiest situation to describe. It's what we get when
we don't write a + or - in a type constructor:

trait F[A]

This means the types F[A] and F[B] are never subtypes of one another, no
matter what the relationship between A and B. This is the default semantics
for Scala type constructors.

When the compiler searches for an implicit it looks for one matching the type
or subtype. Thus we can use variance annotations to control type class in-
stance selection to some extent.

There are two issues that tend to arise. Let’s imagine we have an algebraic
data type like:

sealed trait A
final case object B extends A
final case object C extends A

The issues are:
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1. Will an instance defined on a supertype be selected if one is available?
For example, can we define an instance for A and have it work for values
of type B and C?

2. Will an instance for a subtype be selected in preference to that of a
supertype. For instance, if we define an instance for A and B, and we
have a value of type B, will the instance for B be selected in preference
to A?

It turns out we can’t have both at once. The three choices give us behaviour
as follows:

Type Class Variance Invariant Covariant Contravariant
Supertype instance used? No No Yes
More specific type preferred? No Yes No

It's clear there is no perfect system. Cats generally prefers to use invariant type
classes. This allows us to specify more specific instances for subtypes if we
want. It does mean that if we have, for example, a value of type Some[Int],
our type class instance for Option will not be used. We can solve this problem
with a type annotation like Some (1) : Option[Int] or by using “smart con-
structors” like the Option.apply, Option.empty, some, and none methods
we saw in Section 1.5.3.

1.7 Summary

In this chapter we took a first look at type classes. We implemented our own
Printable type class using plain Scala before looking at two examples from
Cats—Show and Eq.

We have now seen the general patterns in Cats type classes:

e The type classes themselves are generic traits in the cats package.


http://typelevel.org/cats/api/cats/
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e Each type class has a companion object with, an apply method for ma-
terializing instances, one or more construction methods for creating in-
stances, and a collection of other relevant helper methods.

e Default instances are provided via objects in the cats.instances
package, and are organized by parameter type rather than by type class.

e Many type classes have syntax provided via the cats. syntax package.

In the remaining chapters of Part | we will look at several broad and power-
ful type classes—Semigroup, Monoid, Functor, Monad, Semigroupal, Ap-
plicative, Traverse, and more. In each case we will learn what function-
ality the type class provides, the formal rules it follows, and how it is imple-
mented in Cats. Many of these type classes are more abstract than Show or
Eq. While this makes them harder to learn, it makes them far more useful for
solving general problems in our code.


http://typelevel.org/cats/api/cats/instances/
http://typelevel.org/cats/api/cats/syntax/
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Chapter 2

Monoids and Semigroups

In this section we explore our first type classes, monoid and semigroup. These
allow us to add or combine values. There are instances for Ints, Strings,
Lists, Options, and many more. Let's start by looking at a few simple types
and operations to see what common principles we can extract.

Integer addition

Addition of Ints is a binary operation that is closed, meaning that adding two
Ints always produces another Int:

2 +1
// res@: Int = 3

There is also the identity element 0 with the property thata + 0 == 0 + a
== aforany Int a:

2 +0
// resl: Int = 2
0+ 2
// res2: Int = 2

There are also other properties of addition. For instance, it doesn’'t matter in
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what order we add elements because we always get the same result. This is a
property known as associativity:

(1 +2) +3
// res3: Int =6
1+ (2 + 3)
// res4: Int =6

Integer multiplication

The same properties for addition also apply for multiplication, provided we
use 1 as the identity instead of 0:

1*3
// res5: Int = 3

3 *1
// res6: Int = 3

Multiplication, like addition, is associative:

(1 *2) *3
// res7: Int =6
1% (2 *3)
// res8: Int =6

String and sequence concatenation

We can also add Strings, using string concatenation as our binary operator:

"One" ++ "two"
// res9: String = Onetwo

and the empty string as the identity:
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Wi b "Hello"
// reslO: String = Hello

"Hello" ++ ""
// resll: String = Hello

Once again, concatenation is associative:

("One" ++ "Two") ++ "Three"
// resl2: String = OneTwoThree

"One" ++ ("Two" ++ "Three")
// resl3: String = OneTwoThree

Note that we used ++ above instead of the more usual + to suggest a parallel
with sequences. We can do the same with other types of sequence, using
concatenation as the binary operator and the empty sequence as our identity.

2.1 Definition of a Monoid

We've seen a number of “addition” scenarios above each with an associative
binary addition and an identity element. It will be no surprise to learn that this
is a monoid. Formally, a monoid for a type A is:

e an operation combine with type (A, A) => A
e an element empty of type A

This definition translates nicely into Scala code. Here is a simplified version of
the definition from Cats:

trait Monoid[A] {
def combine(x: A, y: A): A
def empty: A

}

In addition to providing the combine and empty operations, monoids must
formally obey several laws. For all values x, y, and z, in A, combine must be
associative and empty must be an identity element:
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def associativeLaw[A](x: A, y: A, z: A)
(implicit m: Monoid[A]): Boolean = {
m.combine(x, m.combine(y, z)) ==
m.combine(m.combine(x, y), z)

}
def identityLaw[A](x: A)
(implicit m: Monoid[A]): Boolean = {
(m.combine(x, m.empty) == x) &&
(m.combine(m.empty, x) == x)

Integer subtraction, for example, is not a monoid because subtraction is not
associative:

(1-2) -3
// resl5: Int = -4

1- (2 - 3)
// resl6: Int

[}
N

In practice we only need to think about laws when we are writing our own
Monoid instances. Unlawful instances are dangerous because they can yield
unpredictable results when used with the rest of Cats’ machinery. Most of
the time we can rely on the instances provided by Cats and assume the library
authors know what they’re doing.

2.2 Definition of a Semigroup

A semigroup is just the combine part of a monoid. While many semigroups
are also monoids, there are some data types for which we cannot define an
empty element. For example, we have just seen that sequence concatena-
tion and integer addition are monoids. However, if we restrict ourselves to
non-empty sequences and positive integers, we are no longer able to define
a sensible empty element. Cats has a NonEmptyList data type that has an
implementation of Semigroup but no implementation of Monoid.

A more accurate (though still simplified) definition of Cats’ Monoid is:


http://typelevel.org/cats/api/cats/data/NonEmptyList.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html

2.3. EXERCISE: THE TRUTH ABOUT MONOIDS 39

trait Semigroup[A] {
def combine(x: A, y: A): A
}

trait Monoid[A] extends Semigroup[A] {
def empty: A
}

WEe'll see this kind of inheritance often when discussing type classes. It pro-
vides modularity and allows us to re-use behaviour. If we define a Monoid
for a type A, we get a Semigroup for free. Similarly, if a method requires a
parameter of type Semigroup[B], we can pass a Monoid[B] instead.

2.3 Exercise: The Truth About Monoids

We've seen a few examples of monoids but there are plenty more to be found.
Consider Boolean. How many monoids can you define for this type? For each
monoid, define the combine and empty operations and convince yourself that
the monoid laws hold. Use the following definitions as a starting point:

trait Semigroup[A] {
def combine(x: A, y: A): A
}

trait Monoid[A] extends Semigroup[A] {
def empty: A
}

object Monoid {
def apply[A]l(implicit monoid: Monoid[A]) =
monoid

See the solution
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2.4 Exercise: All Set for Monoids

What monoids and semigroups are there for sets?

See the solution

2.5 Monoids in Cats

Now we've seen what monoids are, let's look at their implementation in Cats.
Once again we'll look at the three main aspects of the implementation: the
type class, the instances, and the interface.

2.5.1 The Monoid Type Class

The monoid type class is cats.kernel.Monoid, which is aliased as
cats.Monoid. Monoid extends cats.kernel.Semigroup, which is aliased
as cats.Semigroup. When using Cats we normally import type classes from
the cats package:

import cats.Monoid
import cats.Semigroup

Cats Kernel?

Cats Kernel is a subproject of Cats providing a small set of typeclasses
for libraries that don'’t require the full Cats toolbox. While these core
type classes are technically defined in the cats. kernel package, they
are all aliased to the cats package so we rarely need to be aware of the
distinction.

The Cats Kernel type classes covered in this book are Eq, Semigroup,
and Monoid. All the other type classes we cover are part of the main
Cats project and are defined directly in the cats package.


http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/
http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/Eq.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/
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2.5.2 Monoid Instances

Monoid follows the standard Cats pattern for the user interface: the compan-
ion object has an apply method that returns the type class instance for a
particular type. For example, if we want the monoid instance for String, and
we have the correct implicits in scope, we can write the following:

import cats.Monoid
import cats.instances.string. // for Monoid

Monoid[String].combine("Hi ", "there")
// res0: String = Hi there

Monoid[String].empty

// resl: String = ""

which is equivalent to:

Monoid.apply[String].combine("Hi ", "there")
// res2: String = Hi there

Monoid.apply[String].empty

// res3: String = ""

As we know, Monoid extends Semigroup. If we don’t need empty we can
equivalently write:

import cats.Semigroup

Semigroup[String].combine("Hi ", "there")
// res4: String = Hi there

The type class instances for Monoid are organised under cats.instances in
the standard way described in Chapter 1. For example, if we want to pull in
instances for Int we import from cats.instances.int:


http://typelevel.org/cats/api/cats/instances/package$$int$
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import cats.Monoid
import cats.instances.int._ // for Monoid

Monoid[Int].combine(32, 10)
// res5: Int = 42

Similarly, we can assemble a Monoid[Option[Int]] using instances from
cats.instances.int and cats.instances.option:

import cats.Monoid
import cats.instances.int. // for Monoid
import cats.instances.option._// for Monoid

val a = Option(22)
// a: Option[Int] = Some(22)

val b = Option(20)
// b: Option[Int] = Some(20)

Monoid[Option[Int]].combine(a, b)
// res6: Option[Int] = Some(42)

Refer back to Chapter 1 for a more comprehensive list of imports.

2.5.3 Monoid Syntax

Cats provides syntax for the combine method in the form of the |+| operator.
Because combine technically comes from Semigroup, we access the syntax
by importing from cats.syntax.semigroup:

import cats.instances.string. // for Monoid
import cats.syntax.semigroup. // for |[+]

val stringResult = "Hi " |+| "there" |+| Monoid[String].empty
// stringResult: String = Hi there

import cats.instances.int. // for Monoid

val intResult = 1 |+]| 2 |+| Monoid[Int].empty


http://typelevel.org/cats/api/cats/instances/package$$int$
http://typelevel.org/cats/api/cats/instances/package$$option$
http://typelevel.org/cats/api/cats/syntax/package$$semigroup$

2.6. APPLICATIONS OF MONOIDS 43

// intResult: Int = 3

2.5.4 Exercise: Adding All The Things

The cutting edge SuperAdder v3.5a-32 is the world’s first choice for adding
together numbers. The main function in the program has signature def
add(items: List[Int]): Int. In a tragic accident this code is deleted!
Rewrite the method and save the day!

See the solution

Well done! SuperAdder's market share continues to grow, and now
there is demand for additional functionality. People now want to add
List[Option[Int]]. Change add so this is possible. The SuperAdder code
base is of the highest quality, so make sure there is no code duplication!

See the solution

SuperAdder is entering the POS (point-of-sale, not the other POS) market.
Now we want to add up Orders:

case class Order(totalCost: Double, quantity: Double)

We need to release this code really soon so we can’t make any modifications
to add. Make it so!

See the solution

2.6 Applications of Monoids

We now know what a monoid is—an abstraction of the concept of adding or
combining—but where is it useful? Here are a few big ideas where monoids
play a major role. These are explored in more detail in case studies later in the
book.
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2.6.1 BigData

In big data applications like Spark and Hadoop we distribute data analysis over
many machines, giving fault tolerance and scalability. This means each ma-
chine will return results over a portion of the data, and we must then combine
these results to get our final result. In the vast majority of cases this can be
viewed as a monoid.

If we want to calculate how many total visitors a web site has received, that
means calculating an Int on each portion of the data. We know the monoid
instance of Int is addition, which is the right way to combine partial results.

If we want to find out how many unique visitors a website has received, that’s
equivalent to building a Set [User] on each portion of the data. We know the
monoid instance for Set is the set union, which is the right way to combine
partial results.

If we want to calculate 99% and 95% response times from our server logs, we
can use a data structure called a QTree for which there is a monoid.

Hopefully you get the idea. Almost every analysis that we might want to do
over a large data set is a monoid, and therefore we can build an expressive
and powerful analytics system around this idea. This is exactly what Twitter’s
Algebird and Summingbird projects have done. We explore this idea further
in the map-reduce case study.

2.6.2 Distributed Systems

In a distributed system, different machines may end up with different views of
data. For example, one machine may receive an update that other machines
did not receive. We would like to reconcile these different views, so every
machine has the same data if no more updates arrive. This is called eventual
consistency.

A particular class of data types support this reconciliation. These data types
are called commutative replicated data types (CRDTs). The key operation is
the ability to merge two data instances, with a result that captures all the in-
formation in both instances. This operation relies on having a monoid instance.
We explore this idea further in the CRDT case study.
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2.6.3 Monoids in the Small

The two examples above are cases where monoids inform the entire system
architecture. There are also many cases where having a monoid around makes
it easier to write a small code fragment. We'll see lots of examples in the case
studies in this book.

2.7 Summary

We hit a big milestone in this chapter—we covered our first type classes with
fancy functional programming names:

e aSemigroup represents an addition or combination operation;
e aMonoid extends a Semigroup by adding an identity or “zero” element.

We can use Semigroups and Monoids by importing three things: the type
classes themselves, the instances for the types we care about, and the semi-
group syntax to give us the |+| operator:

import cats.Monoid
import cats.instances.string._ // for Monoid
import cats.syntax.semigroup. // for |+|

"Scala" [+]| " with " |+| "Cats"
// res0: String = Scala with Cats

With the correct instances in scope, we can set about adding anything we
want:

import cats.instances.int. // for Monoid
import cats.instances.option. // for Monoid

Option(1l) |+| Option(2)
// resl: Option[Int] = Some(3)

import cats.instances.map._// for Monoid
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val mapl
val map2

Map(*a® -> 1, "b" -> 2)
Map("b" -> 3, "d" -> 4)

mapl |+| map2
// res3: Map[String,Int] = Map(b -> 5, d -> 4, a -> 1)

import cats.instances.tuple._  // for Monoid

val tuplel
val tuple2

("hello", 123)
("world", 321)

tuplel [+] tuple2
// res6: (String, Int) = (helloworld,444)

We can also write generic code that works with any type for which we have
an instance of Monoid:

def addAll[A] (values: List[A])
(implicit monoid: Monoid[A]): A =
values.foldRight (monoid.empty)( |[+]| )

addAll(List(1, 2, 3))
// res7: Int = 6

addAll(List(None, Some(1l), Some(2)))
// res8: Option[Int] = Some(3)

Monoids are a great gateway to Cats. They're easy to understand and simple
to use. However, they're just the tip of the iceberg in terms of the abstractions
Cats enables us to make. In the next chapter we'll look at functors, the type
class personification of the beloved map method. That's where the fun really
begins!



Chapter 3

Functors

In this chapter we will investigate functors, an abstraction that allows us to
represent sequences of operations within a context suchasalList,an Option,
or any one of a thousand other possibilities. Functors on their own aren’t so
useful, but special cases of functors such as monads and applicative functors
are some of the most commonly used abstractions in Cats.

3.1 Examples of Functors

Informally, a functor is anything with a map method. You probably know lots
of types that have this: Option, List, and Either, to name a few.

We typically first encounter map when iterating over Lists. However, to un-
derstand functors we need to think of the method in another way. Rather than
traversing the list, we should think of it as transforming all of the values inside
in one go. We specify the function to apply, and map ensures it is applied to
every item. The values change but the structure of the list remains the same:

List(1, 2, 3).map(n =>n + 1)
// res@: List[Int] = List(2, 3, 4)

Similarly, when we map over an Option, we transform the contents but leave
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Ot =+ 93

List[A] = List[B]
Option[A] A =>B Option[B]
Either[E, A] = Either[E,

Figure 3.1: Type chart: mapping over List, Option, and Either

the Some or None context unchanged. The same principle applies to Either
withits Left and Right contexts. This general notion of transformation, along
with the common pattern of type signatures shown in Figure 3.1, is what con-
nects the behaviour of map across different data types.

Because map leaves the structure of the context unchanged, we can call it
repeatedly to sequence multiple computations on the contents of an initial
data structure:

List(1, 2, 3).
map(n =>n + 1).
map(n => n * 2).
map(n =>n + "!")
// resl: List[String] = List(4!, 6!, 8!)

We should think of map not as an iteration pattern, but as a way of sequencing
computations on values ignoring some complication dictated by the relevant
data type:
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Future[A] = Future[B]

Figure 3.2: Type chart: mapping over a Future

e Option—the value may or may not be present;
e Either—there may be a value or an error;
o List—there may be zero or more values.

3.2 More Examples of Functors

The map methods of List, Option, and Either apply functions eagerly. How-
ever, the idea of sequencing computations is more general than this. Let’s
investigate the behaviour of some other functors that apply the pattern in
different ways.

Futures

Future is a functor that sequences asynchronous computations by queueing
them and applying them as their predecessors complete. The type signature
of its map method, shown in Figure 3.2, has the same shape as the signatures
above. However, the behaviour is very different.

When we work with a Future we have no guarantees about its internal state.
The wrapped computation may be ongoing, complete, or rejected. If the Fu-
ture is complete, our mapping function can be called immediately. If not,
some underlying thread pool queues the function call and comes back to it
later. We don’t know when our functions will be called, but we do know what
order they will be called in. In this way, Future provides the same sequencing
behaviour seen in List, Option, and Either:
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import scala.concurrent.{Future, Await}
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.

val future: Future[String] =
Future(123).
map(n => n + 1)
map(n => n * 2).
map(n =>n + "!")

Await.result(future, 1.second)
// res3: String = 248!

Futures and Referential Transparency

Note that Scala’s Futures aren’t a great example of pure functional pro-
gramming because they aren't referentially transparent. Future always
computes and caches a result and there’s no way for us to tweak this
behaviour. This means we can get unpredictable results when we use
Future to wrap side-effecting computations. For example:
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import scala.util.Random

val futurel = {
// Initialize Random with a fixed seed:
val r = new Random(OL)

// nextInt has the side-effect of moving to
// the next random number in the sequence:
val x = Future(r.nextInt)

for {
a <- X
b <- x
} yield (a, b)

val future2 = {
val r = new Random(OL)

for {
a <- Future(r.nextInt)
b <- Future(r.nextInt)
} yield (a, b)
}

val resultl = Await.result(futurel, 1l.second)
// resultl: (Int, Int) = (-1155484576,-1155484576)

val result2 = Await.result(future2, 1l.second)
// result2: (Int, Int) = (-1155484576,-723955400)

Ideally we would like resultl and result?2 to contain the same value.
However, the computation for futurel calls nextInt once and the
computation for future?2 calls it twice. Because nextInt returns a dif-
ferent result every time we get a different result in each case.

This kind of discrepancy makes it hard to reason about programs involv-
ing Futures and side-effects. There also are other problematic aspects
of Future's behaviour, such as the way it always starts computations
immediately rather than allowing the user to dictate when the program
should run. For more information see this excellent Reddit answer by


https://www.reddit.com/r/scala/comments/3zofjl/why_is_future_totally_unusable/
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Figure 3.3: Type chart: mapping over a Function1

Rob Norris.

If Future isn't referentially transparent, perhaps we should look at another
similar data-type that is. You should recognise this one...

Functions (?!)

It turns out that single argument functions are also functors. To see this we
have to tweak the types a little. A function A => B has two type parameters:
the parameter type A and the result type B. To coerce them to the correct
shape we can fix the parameter type and let the result type vary:

e start with X => A;
e supply a function A => B;
e getback X => B.

If we alias X => A as MyFunc[A], we see the same pattern of types we saw
with the other examples in this chapter. We also see this in Figure 3.3:

o start with MyFunc[A];
e supply a function A => B;
e get back MyFunc[B].

In other words, “mapping” over a Functionl is function composition:

import cats.instances.function. // for Functor
import cats.syntax.functor. // for map

val funcl: Int => Double =
(x: Int) => x.toDouble
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val func2: Double => Double =
(y: Double) =>y * 2

(funcl map func2)(1) // composition using map
// res7: Double = 2.0

(funcl andThen func2) (1) // composition using andThen
// res8: Double = 2.0

func2(funcl(1)) // composition written out by hand
// res9: Double = 2.0

How does this relate to our general pattern of sequencing operations? If we
think about it, function composition is sequencing. We start with a function
that performs a single operation and every time we use map we append an-
other operation to the chain. Calling map doesn’t actually run any of the oper-
ations, but if we can pass an argument to the final function all of the operations
are run in sequence. We can think of this as lazily queueing up operations sim-
ilar to Future:

val func =
((x: Int) => x.toDouble).
map(x => x + 1)
map(x => x * 2).
map(x => x + "!I")

func(123)

// reslO: String = 248.0!

Partial Unification

For the above examples to work we need to add the following compiler
option to build. sbt:

scalacOptions += "-Ypartial-unification"

otherwise we'll get a compiler error:
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FLA] A =>B F[B]

Figure 3.4: Type chart: generalised functor map

funcl.map(func2)
// <console>: error: value map is not a member of Int => Double
// funcl.map(func2)

A

We'll look at why this happens in detail in Section 3.8.

3.3 Definition of a Functor

Every example we've looked at so far is a functor: a class that encapsulates
sequencing computations. Formally, a functoris atype F[A] with an operation
map with type (A => B) => F[B]. The general type chart is shown in Figure
3.4.

Cats encodes Functor as a type class, cats.Functor, so the method looks a
little different. It accepts the initial F[A] as a parameter alongside the trans-
formation function. Here’s a simplified version of the definition:

package cats
import scala.language.higherKinds

trait Functor[F[ 1] {
def map[A, B](fa: F[A])(f: A => B): F[B]
}

If you haven't seen syntax like F[ 1 before, it's time to take a brief de-
tour to discuss type constructors and higher kinded types. We'll explain that
scala.language import as well.


http://typelevel.org/cats/api/cats/Functor.html
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Functor Laws

Functors guarantee the same semantics whether we sequence many
small operations one by one, or combine them into a larger function
before mapping. To ensure this is the case the following laws must hold:

Identity: calling map with the identity function is the same as doing noth-

ing:

fa.map(a => a) == fa

Composition: mapping with two functions f and g is the same as map-
ping with f and then mapping with g:

fa.map(g(f(_))) == fa.map(f).map(g)

3.4 Aside: Higher Kinds and Type Constructors

Kinds are like types for types. They describe the number of “holes” in a type.
We distinguish between regular types that have no holes and “type construc-
tors” that have holes we can fill to produce types.

For example, List is a type constructor with one hole. We fill that hole by
specifying a parameter to produce a regular type like List[Int] or List[A].
The trick is not to confuse type constructors with generic types. List is atype
constructor, List[A] is a type:

List // type constructor, takes one parameter
List[A] // type, produced using a type parameter

There’s a close analogy here with functions and values. Functions are “value
constructors”—they produce values when we supply parameters:

math.abs // function, takes one parameter
math.abs(x) // value, produced using a value parameter
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In Scala we declare type constructors using underscores. Once we've declared
them, however, we refer to them as simple identifiers:

// Declare F using underscores:
def myMethod[F[ 1] = {

// Reference F without underscores:
val functor = Functor.apply[F]

7 ooc
}

This is analogous to specifying a function’s parameters in its definition and
omitting them when referring to it:

// Declare f specifying parameters:
val f = (x: Int) => x * 2

// Reference f without parameters:
val f2 = f andThen f

Armed with this knowledge of type constructors, we can see that the Cats def-
inition of Functor allows us to create instances for any single-parameter type
constructor, such as List, Option, Future, or a type alias such as MyFunc.

Language Feature Imports

Higher kinded types are considered an advanced language feature in
Scala. Whenever we declare a type constructor with A[ ] syntax, we
need to “enable” the higher kinded type language feature to suppress
warnings from the compiler. We can either do this with a “language
import” as above:

import scala.language.higherKinds

or by adding the following to scalacOptions in build. sbt:
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scalacOptions += "-language:higherKinds"

WE'll use the language import in this book to ensure we are as explicit
as possible. In practice, however, we find the scalacOptions flag to
be simpler and less verbose.

3.5 Functors in Cats

Let’s look at the implementation of functors in Cats. We'll examine the aspects
we did for monoids: the type class, the instances, and the syntax.

3.5.1 The Functor Type Class

The functor type class is cats.Functor. We obtain instances using the stan-
dard Functor.apply method on the companion object. As usual, default in-
stances are arranged by type in the cats.instances package:

import scala.language.higherKinds

import cats.Functor

import cats.instances.list.  // for Functor
import cats.instances.option._ // for Functor

val listl = List(1, 2, 3)
// listl: List[Int] = List(1, 2, 3)

val list2 = Functor[List].map(listl)(_ * 2)
// list2: List[Int] = List(2, 4, 6)

val optionl = Option(123)
// optionl: Option[Int] = Some(123)

val option2 = Functor[Option].map(optionl)( .toString)

// option2: Option[String] = Some(123)

Functor also provides the 1ift method, which converts a function of type A
=> B to one that operates over a functor and has type F[A] => F[B]:


http://typelevel.org/cats/api/cats/Functor.html
http://typelevel.org/cats/api/cats/instances/
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val func = (x: Int) => x + 1
// func: Int => Int = <functionl>

val liftedFunc = Functor[Option].lift(func)
// liftedFunc: Option[Int] => Option[Int] = cats.Functor$$Lambda$11698
/1371437204@27fbe7ae

liftedFunc(Option(1))
// res@: Option[Int] = Some(2)

3.5.2 Functor Syntax

The main method provided by the syntax for Functor is map. It's difficult to
demonstrate this with Options and Lists as they have their own built-in map
methods and the Scala compiler will always prefer a built-in method over an
extension method. We'll work around this with two examples.

First let’s look at mapping over functions. Scala's Functionl type doesn't
have a map method (it’s called andThen instead) so there are no naming con-
flicts:

import cats.instances.function. // for Functor
import cats.syntax.functor. // for map

val funcl = (a: Int) =>a + 1

val func2 = (a: Int) =>a * 2

val func3 = (a: Int) =>a + "!"

val func4 = funcl.map(func2).map(func3)

func4(123)
// resl: String = 248!

Let's look at another example. This time we’'ll abstract over functors so we're
not working with any particular concrete type. We can write a method that
applies an equation to a number no matter what functor context it’s in:

def doMath[F[ ]](start: F[Int])
(implicit functor: Functor[F]): F[Int] =
start.map(n =>n + 1 * 2)
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import cats.instances.option. // for Functor
import cats.instances.list.  // for Functor

doMath(Option(20))
// res3: Option[Int] = Some(22)

doMath(List(1, 2, 3))
// resd4: List[Int] = List(3, 4, 5)

To illustrate how this works, let’s take a look at the definition of the map
method in cats.syntax. functor. Here’s a simplified version of the code:

implicit class FunctorOps[F[_], Al(src: F[A]) {
def map[B]l(func: A => B)
(implicit functor: Functor[F]): F[B] =
functor.map(src) (func)

The compiler can use this extension method to insert a map method wherever
no built-in map is available:

foo.map(value => value + 1)

Assuming foo has no built-in map method, the compiler detects the potential
error and wraps the expression in a Functor0Ops to fix the code:

new FunctorOps(foo).map(value => value + 1)

The map method of FunctorOps requires an implicit Functor as a parameter.
This means this code will only compile if we have a Functor for exprl in
scope. If we don't, we get a compiler error:

final case class Box[A](value: A)
val box = Box[Int](123)

box.map(value => value + 1)
// <console>:34: error: value map is not a member of Box[Int]
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// box.map(value => value + 1)
// ~

3.5.3 Instances for Custom Types

We can define a functor simply by defining its map method. Here's an ex-
ample of a Functor for Option, even though such a thing already exists in
cats.instances. The implementation is trivial—we simply call Option's
map method:

implicit val optionFunctor: Functor[Option] =
new Functor[Option] {
def map[A, Bl(value: Option[A])(func: A => B): Option[B] =
value.map(func)

Sometimes we need to inject dependencies into our instances. For exam-
ple, if we had to define a custom Functor for Future (another hypothetical
example—Cats provides one in cats.instances. future) we would need to
account for the implicit ExecutionContext parameter on future.map. We
can’t add extra parameters to functor.map so we have to account for the
dependency when we create the instance:

import scala.concurrent.{Future, ExecutionContext}

implicit def futureFunctor
(implicit ec: ExecutionContext): Functor[Future] =
new Functor[Future] {
def map[A, Bl(value: Future[A])(func: A => B): Future[B] =
value.map(func)

Whenever we summon a Functor for Future, either directly using Func-
tor.apply orindirectly via the map extension method, the compiler will locate
futureFunctor by implicit resolution and recursively search for an Execu-
tionContext at the call site. This is what the expansion might look like:


http://typelevel.org/cats/api/cats/instances/
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// We write this:
Functor[Future]

// The compiler expands to this first:
Functor[Future] (futureFunctor)

// And then to this:
Functor[Future] (futureFunctor(executionContext))

3.5.4 Exercise: Branching out with Functors

Write a Functor for the following binary tree data type. Verify that the code
works as expected on instances of Branch and Leaf:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])
extends Tree[A]

final case class Leaf[A]l(value: A) extends Tree[A]

See the solution

3.6 Contravariant and Invariant Functors

As we have seen, we can think of Functor's map method as “appending” a
transformation to a chain. We're now going to look at two other type classes,
one representing prepending operations to a chain, and one representing build-
ing a bidirectional chain of operations. These are called contravariant and invari-
ant functors respectively.

This Section is Optional!

You don’t need to know about contravariant and invariant functors to
understand monads, which are the most important pattern in this book
and the focus of the next chapter. However, contravariant and invariant
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F[B] A =>

Figure 3.5: Type chart: the contramap method

do come in handy in our discussion of Semigroupal and Applicative
in Chapter 6.

If you want to move on to monads now, feel free to skip straight to
Chapter 4. Come back here before you read Chapter 6.

3.6.1 Contravariant Functors and the contramap Method

The first of our type classes, the contravariant functor, provides an operation
called contramap that represents “prepending” an operation to a chain. The
general type signature is shown in Figure 3.5.

The contramap method only makes sense for data types that represent trans-
formations. For example, we can’t define contramap for an Option because
there is no way of feeding a value in an Option[B] backwards through a func-
tion A => B. However, we can define contramap for the Printable type
class we discussed in Chapter 1:

trait Printable[A] {
def format(value: A): String
}

A Printable[A] represents a transformation from A to String. Its con-
tramap method accepts a function func of type B => A and creates a new
Printable[B]:

trait Printable[A] {
def format(value: A): String
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def contramap[B](func: B => A): Printable[B] =
?7?

}

def format[A](value: A)(implicit p: Printable[A]): String =
p.format(value)

3.6.1.1 Exercise: Showing off with Contramap

Implement the contramap method for Printable above. Start with the fol-
lowing code template and replace the ??? with a working method body:

trait Printable[A] {
def format(value: A): String

def contramap[B](func: B => A): Printable[B] =
new Printable[B] {

def format(value: B): String =
77?7

If you get stuck, think about the types. You need to turn value, which is of
type B, into a String. What functions and methods do you have available and
in what order do they need to be combined?

See the solution

For testing purposes, let’s define some instances of Printable for String
and Boolean:

implicit val stringPrintable: Printable[String] =
new Printable[String] {
def format(value: String): String =
"\"" + value + "\""

}

implicit val booleanPrintable: Printable[Boolean] =
new Printable[Boolean] {
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def format(value: Boolean): String =
if(value) "yes" else "no

format("hello")
// res3: String = "hello"

format(true)
// res4: String = yes

Now define an instance of Printable for the following Box case class. You'll
need to write this as an implicit def as described in Section 1.2.3:

final case class Box[A](value: A)

Rather than writing out the complete definition from scratch (new Print-
able[Box] etc...), create your instance from an existing instance using con-
tramap.

See the solution
Your instance should work as follows:

format (Box("hello world"))
// res5: String = "hello world"

format (Box(true))
// res6: String = yes

If we don't have a Printable for the type inside the Box, calls to format
should fail to compile:

format (Box(123))

// <console>:21: error: could not find implicit value for parameter p:
Printable[Box[Int]]

// format (Box(123))

// ~
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Figure 3.6: Type chart: the imap method

3.6.2 Invariant functors and the imap method

Invariant functors implement a method called imap that is informally equiva-
lent to a combination of map and contramap. If map generates new type class
instances by appending a function to a chain, and cont ramap generates them
by prepending an operation to a chain, imap generates them via a pair of bidi-
rectional transformations.

The most intuitive examples of this are a type class that represents encoding
and decoding as some data type, such as Play JSON's Format and scodec'’s
Codec. We can build our own Codec by enhancing Printable to support
encoding and decoding to/from a String:

trait Codec[A] {

def encode(value: A): String

def decode(value: String): A

def imap[B](dec: A => B, enc: B => A): Codec[B] = ???
}

def encode[A] (value: A)(implicit c: Codec[A]): String
c.encode(value)

def decode[A] (value: String) (implicit c: Codec[A]): A
c.decode(value)

The type chart for imap is shown in Figure 3.6. If we have a Codec[A] and a
pair of functions A => B and B => A, the imap method creates a Codec[B]:

As an example use case, imagine we have a basic Codec[String], whose
encode and decode methods are both a no-op:


https://www.playframework.com/documentation/2.6.x/ScalaJsonCombinators#Format
http://scodec.org/guide/Core+Algebra.html#Codec
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implicit val stringCodec: Codec[String] =
new Codec[String] {
def encode(value: String): String = value
def decode(value: String): String = value

}

We can construct many useful Codecs for other types by building off of
stringCodec using imap:

implicit val intCodec: Codec[Int] =
stringCodec.imap( .toInt, .toString)

implicit val booleanCodec: Codec[Boolean] =
stringCodec.imap( .toBoolean, .toString)

Coping with Failure

Note that the decode method of our Codec type class doesn't account
for failures. If we want to model more sophisticated relationships we
can move beyond functors to look at lenses and optics.

Optics are beyond the scope of this book. However, Julien Truffaut’s
library Monocle provides a great starting point for further investigation.

3.6.2.1 Transformative Thinking with imap

Implement the imap method for Codec above.

See the solution

Demonstrate your imap method works by creating a Codec for Double.
See the solution

Finally, implement a Codec for the following Box type:
case class Box[A](value: A)

See the solution

Your instances should work as follows:


http://julien-truffaut.github.io/Monocle/
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encode(123.4)
// res@: String = 123.4

decode[Double] ("123.4")
// resl: Double = 123.4

encode(Box(123.4))
// res2: String = 123.4

decode[Box[Double]]("123.4")
// res3: Box[Double] = Box(123.4)

What'’s With the Names?

» o«

What's the relationship between the terms “contravariance”, “invari-
ance”, and “covariance” and these different kinds of functor?

If you recall from Section 1.6.1, variance affects subtyping, which is es-
sentially our ability to use a value of one type in place of a value of
another type without breaking the code.

Subtyping can be viewed as a conversion. If B is a subtype of A, we can
always convert a B to an A.

Equivalently we could say that B is a subtype of A if there exists a func-
tion A => B. A standard covariant functor captures exactly this. If F is
a covariant functor, wherever we have an F[A] and a conversion A =>
B we can always convert to an F[B].

A contravariant functor captures the opposite case. If F is a contravari-
ant functor, whenever we have a F[A] and a conversion B => A we can
convert to an F[B].

Finally, invariant functors capture the case where we can convert from
F[A] to F[B] via a function A => B and vice versa via a function B =>
A.

67
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3.7 Contravariant and Invariant in Cats

Let's look at the implementation of contravariant and invariant functors in Cats,
provided by the cats.Contravariant and cats.Invariant type classes.
Here's a simplified version of the code:

trait Contravariant([F[ ]1 {
def contramap[A, Bl(fa: F[A])(f: B => A): F[B]
}

trait Invariant[F[ 1] {

def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]
}

3.7.1 Contravariant in Cats

We can summon instances of Contravariant using the Contravari-
ant.apply method. Cats provides instances for data types that consume
parameters, including Eq, Show, and Functionl. Here’s an example:

import cats.Contravariant
import cats.Show
import cats.instances.string.

val showString = Show[String]

val showSymbol = Contravariant[Show].
contramap(showString) ((sym: Symbol) => s"'${sym.name}")

showSymbol.show('dave)
// res2: String = 'dave

More conveniently, we can use cats.syntax.contravariant, which pro-
vides a contramap extension method:

import cats.syntax.contravariant. // for contramap

showString.contramap[Symbol] ( .name).show('dave)


http://typelevel.org/cats/api/cats/Contravariant.html
http://typelevel.org/cats/api/cats/Invariant.html
http://typelevel.org/cats/api/cats/syntax/package$$contravariant$
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// res3: String = dave

3.7.2 Invariant in Cats

Among other types, Cats provides an instance of Invariant for Monoid. This
is a little different from the Codec example we introduced in Section 3.6.2. If
you recall, this is what Monoid looks like:

package cats

trait Monoid[A] {

def empty: A

def combine(x: A, y: A): A
}

Imagine we want to produce a Monoid for Scala’s Symbol type. Cats doesn't
provide a Monoid for Symbol but it does provide a Monoid for a similar type:
String. We can write our new semigroup with an empty method that relies
on the empty String, and a combine method that works as follows:

accept two Symbols as parameters;

convert the Symbols to Strings;

combine the Strings using Monoid[String];
convert the result back to a Symbol.

HwDd e

We can implement combine using imap, passing functions of type String =>
Symbol and Symbol => String as parameters. Here’ the code, written out
using the imap extension method provided by cats.syntax.invariant:

import cats.Monoid

import cats.instances.string. // for Monoid
import cats.syntax.invariant. // for imap
import cats.syntax.semigroup._ // for |+|

implicit val symbolMonoid: Monoid[Symbol] =
Monoid[String].imap(Symbol.apply) ( .name)


http://www.scala-lang.org/api/2.12.1/scala/Symbol.html
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Monoid[Symbol].empty
// res5: Symbol = '

‘a |+| 'few |+| 'words
// res6: Symbol = 'afewwords

3.8 Aside: Partial Unification

In Section 3.2 we saw a curious compiler error. The following code compiled
perfectly if we had the -Ypartial-unification compiler flag enabled:

import cats.Functor
import cats.instances.function._ // for Functor

import cats.syntax.functor. // for map
val funcl = (x: Int) => x.toDouble
val func2 = (y: Double) =>y * 2

val func3 = funcl.map(func2)
// func3: Int => Double = scala.runtime.AbstractFunctionl$$Lambda$7404
/290370740@246b5bc6

but failed if the flag was missing:

val func3 = funcl.map(func2)
// <console>: error: value map is not a member of Int => Double
// val func3 = funcl.map(func2)

~

Obviously “partial unification” is some kind of optional compiler behaviour,
without which our code will not compile. We should take a moment to de-
scribe this behaviour and discuss some gotchas and workarounds.

3.8.1 Unifying Type Constructors

In order to compile an expression like funcl.map (func2) above, the compiler
has to search fora Functor for Functionl. However, Functor accepts atype
constructor with one parameter:
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trait Functor[F[_ 1] {
def map[A, B](fa: F[A])(func: A => B): F[B]
}

and Functionl has two type parameters (the function argument and the re-
sult type):

trait Functionl[-A, +B] {
def apply(arg: A): B
}

The compiler has to fix one of the two parameters of Functionl to create a
type constructor of the correct kind to pass to Functor. It has two options to
choose from:

type F[A] Int => A
type F[A] = A => Double

We know that the former of these is the correct choice. However, earlier ver-
sions of the Scala compiler were not able to make this inference. This infa-
mous limitation, known as SI-2712, prevented the compiler from “unifying”
type constructors of different arities. This compiler limitation is now fixed,
although we have to enable the fix via a compiler flag in build.sbt:

scalacOptions += "-Ypartial-unification"

3.8.2 Left-to-Right Elimination

The partial unification in the Scala compiler works by fixing type parameters
from left to right. In the above example, the compiler fixes the Int in Int =>
Double and looks for a Functor for functions of type Int => ?:

type F[A] = Int => A

val functor = Functor[F]


https://issues.scala-lang.org/browse/SI-2712
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This left-to-right elimination works for a wide variety of common scenarios,
including Functors for types such as Functionl and Either:

import cats.instances.either. // for Functor

val either: Either[String, Int] = Right(123)
// either: Either[String,Int] = Right(123)

either.map(_ + 1)
// res2: scala.util.Either[String,Int] = Right(124)

However, there are situations where left-to-right elimination is not the correct
choice. One example is the Or type in Scalactic, which is a conventionally left-
biased equivalent of Either:

type PossibleResult = ActualResult Or Error

Another example is the Contravariant functor for Functionl.

While the covariant Functor for Functionl implements andThen-style left-
to-right function composition, the Contravariant functor implements com-
pose-style right-to-left composition. In other words, the following expres-
sions are all equivalent:

val func3a: Int => Double
a => func2(funcl(a))

val func3b: Int => Double
func2.compose(funcl)

// Hypothetical example. This won't actually compile:
val func3c: Int => Double =
func2.contramap(funcl)

If we try this for real, however, our code won't compile:

import cats.syntax.contravariant. // for contramap

val func3c = func2.contramap(funcl)


http://scalactic.org
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Figure 3.7: Type chart: contramapping over a Function1

// <console>:27: error: value contramap is not a member of Double =>
Double

// val func3c = func2.contramap(funcl)
// ~

The problem here is that the Contravariant for Functionl fixes the return
type and leaves the parameter type varying, requiring the compiler to elimi-
nate type parameters from right to left, as shown below and in Figure 3.7:

type F[A] = A => Double

The compiler fails simply because of its left-to-right bias. We can prove this
by creating a type alias that flips the parameters on Function1:

type <=[B, A] = A =>B

type F[A] = Double <= A

If we re-type func?2 as an instance of <=, we reset the required order of elimi-
nation and we can call contramap as desired:

val func2b: Double <= Double = func2

val func3c = func2b.contramap(funcl)
// func3c: Double <= Int = scala.runtime.
AbstractFunctionl$$Lambda$7404/290370740@2d89ff6b

The difference between func2 and func2b is purely syntactic—both refer to
the same value and the type aliases are otherwise completely compatible. In-
credibly, however, this simple rephrasing is enough to give the compiler the
hint it needs to solve the problem.
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It is rare that we have to do this kind of right-to-left elimination. Most multi-
parameter type constructors are designed to be right-biased, requiring the left-
to-right elimination that is supported by the compiler out of the box. However,
it is useful to know about -Ypartial-unification and this quirk of elimina-
tion order in case you ever come across an odd scenario like the one above.

3.9 Summary

Functors represent sequencing behaviours. We covered three types of functor
in this chapter:

e Regular covariant Functors, with their map method, represent the abil-
ity to apply functions to a value in some context. Successive calls to
map apply these functions in sequence, each accepting the result of its
predecessor as a parameter.

e Contravariant functors, with their contramap method, represent the
ability to “prepend” functions to a function-like context. Successive
calls to contramap sequence these functions in the opposite order to
map.

e Invariant functors, with their imap method, represent bidirectional
transformations.

Regular Functors are by far the most common of these type classes, but even
then it is rare to use them on their own. Functors form a foundational building
block of several more interesting abstractions that we use all the time. In
the following chapters we will look at two of these abstractions: monads and
applicative functors.

Functors for collections are extremely important, as they transform each el-
ement independently of the rest. This allows us to parallelise or distribute
transformations on large collections, a technique leveraged heavily in “map-
reduce” frameworks like Hadoop. We will investigate this approach in more
detail in the Map-reduce case study later in the book.


http://hadoop.apache.org
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The Contravariant and Invariant type classes are less widely applicable
but are still useful for building data types that represent transformations. We
will revisit them to discuss the Semigroupal type class later in Chapter 6.
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Chapter 4

Monads

Monads are one of the most common abstractions in Scala. Many Scala pro-
grammers quickly become intuitively familiar with monads, even if we don't
know them by name.

Informally, a monad is anything with a constructor and a flatMap method. All
of the functors we saw in the last chapter are also monads, including Option,
List, and Future. We even have special syntax to support monads: for com-
prehensions. However, despite the ubiquity of the concept, the Scala standard
library lacks a concrete type to encompass “things that can be flatMapped”.
This type class is one of the benefits brought to us by Cats.

In this chapter we will take a deep dive into monads. We will start by moti-
vating them with a few examples. We'll proceed to their formal definition and
their implementation in Cats. Finally, we'll tour some interesting monads that
you may not have seen, providing introductions and examples of their use.

4.1 Whatis a Monad?

This is the question that has been posed in a thousand blog posts, with ex-
planations and analogies involving concepts as diverse as cats, Mexican food,
space suits full of toxic waste, and monoids in the category of endofunctors
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(whatever that means). We're going to solve the problem of explaining monads
once and for all by stating very simply:

A monad is a mechanism for sequencing computations.

That was easy! Problem solved, right? But then again, last chapter we said
functors were a control mechanism for exactly the same thing. Ok, maybe we
need some more discussion...

In Section 3.1 we said that functors allow us to sequence computations ignor-
ing some complication. However, functors are limited in that they only allow
this complication to occur once at the beginning of the sequence. They don't
account further complications at each step in the sequence.

This is where monads come in. A monad’s flatMap method allows us to spec-
ify what happens next, taking into account an intermediate complication. The
flatMap method of Option takes intermediate Options into account. The
flatMap method of List handles intermediate Lists. And so on. In each
case, the function passed to flatMap specifies the application-specific part
of the computation, and flatMap itself takes care of the complication allow-
ing us to flatMap again. Let’s ground things by looking at some examples.

Options
Option allows us to sequence computations that may or may not return val-

ues. Here are some examples:

def parseInt(str: String): Option[Int] =
scala.util.Try(str.toInt).toOption

def divide(a: Int, b: Int): Option[Int] =

if(b == 0) None else Some(a / b)

Each of these methods may “fail” by returning None. The flatMap method
allows us to ignore this when we sequence operations:
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Option[A] A => Option[B] Option[B]

Figure 4.1: Type chart: flatMap for Option

def stringDivideBy(aStr: String, bStr: String): Option[Int] =
parseInt(aStr).flatMap { aNum =>
parseInt(bStr).flatMap { bNum =>
divide(aNum, bNum)
}
}

We know the semantics well:

o the first call to parselInt returns a None or a Some;

o if it returns a Some, the flatMap method calls our function and passes
us the integer aNum;

o the second call to parseInt returns a None or a Some;

o if it returns a Some, the flatMap method calls our function and passes
us bNum;

e the call to divide returns a None or a Some, which is our result.

At each step, flatMap chooses whether to call our function, and our function
generates the next computation in the sequence. This is shown in Figure 4.1.

The result of the computation is an Option, allowing us to call flatMap again
and so the sequence continues. This results in the fail-fast error handling be-
haviour that we know and love, where a None at any step results in a None
overall:

stringDivideBy("6", "2")
// resl: Option[Int] = Some(3)

stringDivideBy("6", "0")
// res2: Option[Int] = None
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stringDivideBy("6", "foo")
// res3: Option[Int] = None

stringDivideBy("bar", "2")
// res4: Option[Int] = None

Every monad is also a functor (see below for proof), so we can rely on both
flatMap and map to sequence computations that do and don’t introduce a
new monad. Plus, if we have both flatMap and map we can use for compre-
hensions to clarify the sequencing behaviour:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =
for {
aNum <- parselnt(aStr)
bNum <- parseInt(bStr)
ans <- divide(aNum, bNum)
} yield ans

Lists

When we first encounter flatMap as budding Scala developers, we tend to
think of it as a pattern for iterating over Lists. This is reinforced by the syntax
of for comprehensions, which look very much like imperative for loops:

for {
X <- (1 to 3).tolList
y <- (4 to 5).tolist
} yield (x, y)
// res5: List[(Int, Int)] = List((1,4), (1,5), (2,4), (2,5), (3,4),
(3,5))

However, there is another mental model we can apply that highlights the
monadic behaviour of List. If we think of Lists as sets of intermediate re-
sults, flatMap becomes a construct that calculates permutations and combi-
nations.

For example, in the for comprehension above there are three possible values
of x and two possible values of y. This means there are six possible values
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of (x, y). flatMap is generating these combinations from our code, which
states the sequence of operations:

e getx
e gety
e create atuple (x, y)

Futures

Future is a monad that sequences computations without worrying that they
are asynchronous:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.

def doSomethingLongRunning: Future[Int] = ??7?
def doSomethingElseLongRunning: Future[Int] = ??77?

def doSomethingVeryLongRunning: Future[Int]
for {
resultl <- doSomethingLongRunning
result2 <- doSomethingElselLongRunning
} yield resultl + result2

Again, we specify the code to run at each step, and flatMap takes care of all
the horrifying underlying complexities of thread pools and schedulers.

If you've made extensive use of Future, you'll know that the code above is
running each operation in sequence. This becomes clearer if we expand out
the for comprehension to show the nested calls to flatMap:

def doSomethingVeryLongRunning: Future[Int] =
doSomethingLongRunning.flatMap { resultl =>
doSomethingElseLongRunning.map { result2 =>
resultl + result2
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O= &9+ &9

Future[A] => Future[B] Future[B]

Figure 4.2: Type chart: flatMap for Future

Each Future in our sequence is created by a function that receives the result
from a previous Future. In other words, each step in our computation can
only start once the previous step is finished. This is born out by the type chart
for flatMap in Figure 4.2, which shows the function parameter of type A =>
Future[B].

We can run futures in parallel, of course, but that is another story and shall be
told another time. Monads are all about sequencing.

4.1.1 Definition of a Monad

While we have only talked about flatMap above, monadic behaviour is for-
mally captured in two operations:

e pure, of type A => F[A];
e flatMap', of type (F[A], A => F[B]) => F[B].

pure abstracts over constructors, providing a way to create a new monadic
context from a plain value. flatMap provides the sequencing step we have
already discussed, extracting the value from a context and generating the next
context in the sequence. Here is a simplified version of the Monad type class
in Cats:

'In some libraries and languages, notably Scalaz and Haskell, pure is referred to as point or
return and flatMap is referred to as bind or >>=. This is purely a difference in terminology.
WEe'll use the term flatMap for compatibility with Cats and the Scala standard library.
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import scala.language.higherKinds

trait Monad[F[ 1] {
def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]
}

Monad Laws

pure and flatMap must obey a set of laws that allow us to sequence
operations freely without unintended glitches and side-effects:

Left identity: calling pure and transforming the result with func is the
same as calling func:

pure(a).flatMap(func) == func(a)

Right identity: passing pure to flatMap is the same as doing nothing:

m.flatMap(pure) ==m

Associativity: flatMapping over two functions f and g is the same as
flatMapping over f and then flatMapping over g:

m.flatMap(f).flatMap(g) == m.flatMap(x => f(x).flatMap(g))

4.1.2 Exercise: Getting Func-y

Every monad is also a functor. We can define map in the same way for every
monad using the existing methods, flatMap and pure:

import scala.language.higherKinds

trait Monad[F[ 1] {
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def pure[A]l(a: A): F[A]
def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =
7?77

Try defining map yourself now.

See the solution

4.2 Monads in Cats

It's time to give monads our standard Cats treatment. As usual we'll look at
the type class, instances, and syntax.

4.2.1 The Monad Type Class

The monad type class is cats.Monad. Monad extends two other type classes:
FlatMap, which provides the flatMap method, and Applicative, which pro-
vides pure. Applicative also extends Functor, which gives every Monad a
map method as we saw in the exercise above. We'll discuss Applicatives in
Chapter 6.

Here are some examples using pure and flatMap, and map directly:

import cats.Monad
import cats.instances.option. // for Monad
import cats.instances.list.  // for Monad

val optl = Monad[Option].pure(3)
// optl: Option[Int] = Some(3)

val opt2 = Monad[Option].flatMap(optl)(a => Some(a + 2))
// opt2: Option[Int] = Some(5)

val opt3 = Monad[Option].map(opt2)(a => 100 * a)
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// opt3: Option[Int] = Some(500)

val listl = Monad[List].pure(3)
// listl: List[Int] = List(3)

val list2 = Monad[List].
flatMap(List(1, 2, 3))(a => List(a, a*10))
// list2: List[Int] = List(1, 10, 2, 20, 3, 30)

val list3 = Monad[List].map(list2)(a => a + 123)
// list3: List[Int] = List(124, 133, 125, 143, 126, 153)

Monad provides many other methods, including all of the methods from Func-
tor. See the scaladoc for more information.

4.2.2 Default Instances

Cats provides instances for all the monads in the standard library (Option,
List, Vector and so on) via cats.instances:

import cats.instances.option. // for Monad

Monad[Option].flatMap(Option(1l))(a => Option(a*2))
// res@: Option[Int] = Some(2)

import cats.instances.list._ // for Monad

Monad[List].flatMap(List(1l, 2, 3))(a => List(a, a*10))
// resl: List[Int] = List(1l, 10, 2, 20, 3, 30)

import cats.instances.vector._ // for Monad

Monad[Vector].flatMap(Vector(1l, 2, 3))(a => Vector(a, a*10))
// res2: Vector[Int] = Vector(1l, 10, 2, 20, 3, 30)

Cats also provides a Monad for Future. Unlike the methods on the Future
class itself, the pure and flatMap methods on the monad can’t accept implicit
ExecutionContext parameters (because the parameters aren't part of the
definitions in the Monad trait). To work around this, Cats requires us to have
an ExecutionContext in scope when we summon a Monad for Future:


http://typelevel.org/cats/api/cats/Monad.html
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import cats.instances.future. // for Monad
import scala.concurrent._
import scala.concurrent.duration.

val fm = Monad[Future]

// <console>:37: error: could not find implicit value for parameter
instance: cats.Monad[scala.concurrent.Future]

// val fm = Monad[Future]

// ~

Bringing the ExecutionContext into scope fixes the implicit resolution re-
quired to summon the instance:

import scala.concurrent.ExecutionContext.Implicits.global
val fm = Monad[Future]

// fm: cats.Monad[scala.concurrent.Future] = cats.instances.
FutureInstances$$anon$1@71738c4a

The Monad instance uses the captured ExecutionContext for subsequent
calls to pure and flatMap:

val future = fm.flatMap(fm.pure(1l))(x => fm.pure(x + 2))

Await.result(future, 1l.second)
// res3: Int =3

In addition to the above, Cats provides a host of new monads that we don'’t
have in the standard library. We'll familiarise ourselves with some of these in
a moment.

4.2.3 Monad Syntax

The syntax for monads comes from three places:

e cats.syntax.flatMap provides syntax for flatMap;
e cats.syntax.functor provides syntax for map;


http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
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e cats.syntax.applicative provides syntax for pure.

In practice it's often easier to import everything in one go from
cats.implicits. However, we'll use the individual imports here for
clarity.

We can use pure to construct instances of a monad. We'll often need to spec-
ify the type parameter to disambiguate the particular instance we want.

import cats.instances.option. // for Monad
import cats.instances.list._ // for Monad
import cats.syntax.applicative. // for pure

1.pure[Option]
// resd: Option[Int] = Some(1l)

1.pure[List]
// res5: List[Int] = List(1)

It's difficult to demonstrate the flatMap and map methods directly on Scala
monads like Option and List, because they define their own explicit versions
of those methods. Instead we'll write a generic function that performs a cal-
culation on parameters that come wrapped in a monad of the user’s choice:

import cats.Monad

import cats.syntax.functor. // for map
import cats.syntax.flatMap. // for flatMap
import scala.language.higherKinds

def sumSquare[F[ ]: Monad](a: F[Int], b: F[Int]): F[Int] =
a.flatMap(x => b.map(y => x*x + y*y))

import cats.instances.option. // for Monad
import cats.instances.list._ // for Monad

sumSquare(Option(3), Option(4))
// res8: Option[Int] = Some(25)

sumSquare(List(1, 2, 3), List(4, 5))
// res9: List[Int] = List(17, 26, 20, 29, 25, 34)


http://typelevel.org/cats/api/cats/syntax/package$$applicative$
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We can rewrite this code using for comprehensions. The compiler will “do the
right thing” by rewriting our comprehension in terms of flatMap and map and
inserting the correct implicit conversions to use our Monad:

def sumSquare[F[ ]1: Monad]l(a: F[Int], b: F[Int]): F[Int] =
for {
X <- a
y <-b
} yield x*x + y*y

sumSquare(Option(3), Option(4))
// reslO: Option[Int] = Some(25)

sumSquare(List(1, 2, 3), List(4, 5))
// resll: List[Int] = List(17, 26, 20, 29, 25, 34)

That's more or less everything we need to know about the generalities of mon-
ads in Cats. Now let’s take a look at some useful monad instances that we
haven't seen in the Scala standard library.

4.3 The Identity Monad

In the previous section we demonstrated Cats’ flatMap and map syntax by
writing a method that abstracted over different monads:

import scala.language.higherKinds

import cats.Monad

import cats.syntax.functor. // for map
import cats.syntax.flatMap._ // for flatMap

def sumSquare[F[ ]: Monad](a: F[Int], b: F[Int]): F[Int] =
for {
X <- a
y <-b
} yield x*x + y*y

This method works well on Options and Lists but we can't call it passing in
plain values:
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sumSquare(3, 4)

// <console>:22: error: no type parameters for method sumSquare: (a: F
[Int], b: F[Int])(implicit evidence$l: cats.Monad[F])F[Int] exist
so that it can be applied to arguments (Int, Int)

// --- because ---

// argument expression's type is not compatible with formal parameter
type;

// found : Int

// required: ?F[Int]

// sumSquare(3, 4)

// ~

// <console>:22: error: type mismatch;

// found : Int(3)

// required: F[Int]

// sumSquare(3, 4)

// ~

// <console>:22: error: type mismatch;

// found : Int(4)

// required: F[Int]

// sumSquare(3, 4)

// ~

It would be incredibly useful if we could use sumSquare with parameters that
were either in a monad or not in a monad at all. This would allow us to abstract
over monadic and non-monadic code. Fortunately, Cats provides the Id type
to bridge the gap:

import cats.Id

sumSquare(3 : Id[Int], 4 : Id[Int])
// res2: cats.Id[Int] = 25

Id allows us to call our monadic method using plain values. However, the
exact semantics are difficult to understand. We cast the parameters to sum-
Square as Id[Int] and received an Id[Int] back as a result!

What's going on? Here is the definition of Id to explain:
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package cats

type Id[A] = A

Id is actually a type alias that turns an atomic type into a single-parameter
type constructor. We can cast any value of any type to a corresponding Id:

"Dave" : Id[String]
// res3: cats.Id[String] = Dave

123 : Id[Int]
// res4: cats.Id[Int] = 123

List(1l, 2, 3) : Id[List[Int]]
// res5: cats.Id[List[Int]] = List(1, 2, 3)

Cats provides instances of various type classes for 1d, including Functor and
Monad. These let us call map, flatMap, and pure passing in plain values:

val a = Monad[Id].pure(3)
// a: cats.Id[Int] = 3

val b = Monad[Id].flatMap(a)( + 1)
// b: cats.Id[Int] = 4

import cats.syntax.functor. // for map
import cats.syntax.flatMap._ // for flatMap

for {
X <- a
y <-b
} yield x + y
// res6: cats.Id[Int] = 7

The ability to abstract over monadic and non-monadic code is extremely pow-
erful. For example, we can run code asynchronously in production using Fu-
ture and synchronously in test using Id. We'll see this in our first case study
in Chapter 8.
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4.3.1 Exercise: Monadic Secret Identities
Implement pure, map, and flatMap for Id! What interesting discoveries do
you uncover about the implementation?

See the solution

4.4 Either

Let's look at another useful monad: the Either type from the Scala standard
library. In Scala 2.11 and earlier, many people didn't consider Either a monad
because it didn't have map and flatMap methods. In Scala 2.12, however,
Either became right biased.

4.4.1 Left and Right Bias

In Scala 2.11, Either had no default map or flatMap method. This made the
Scala 2.11 version of Either inconvenient to use in for comprehensions. We
had to insert calls to . right in every generator clause:

val eitherl: Either[String, Int] = Right(10)
val either2: Either[String, Int] Right(32)

for {
a <- eitherl.right
b <- either2.right
} yield a + b
// res0: scala.util.Either[String,Int] = Right(42)

In Scala 2.12, Either was redesigned. The modern Either makes the deci-
sion that the right side represents the success case and thus supports map and
flatMap directly. This makes for comprehensions much more pleasant:

for {
a <- eitherl
b <- either2
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} yield a + b
// resl: scala.util.Either[String,Int] = Right(42)

Cats back-ports this behaviour to Scala 2.11 via the cats.syntax.either
import, allowing us to use right-biased Either in all supported versions of
Scala. In Scala 2.12+ we can either omit this import or leave it in place without
breaking anything:

import cats.syntax.either. // for map and flatMap

for {
a <- eitherl
b <- either2
} yield a + b

4.4.2 Creating Instances

In addition to creating instances of Left and Right directly, we
can also import the asLeft and asRight extension methods from
cats.syntax.either:

import cats.syntax.either. // for asRight

val a = 3.asRight[String]
// a: Either[String,Int] = Right(3)

val b = 4.asRight[String]
// b: Either[String,Int] = Right(4)

for {
X <- a
y <-b
} yield x*x + y*y
// resd: scala.util.Either[String,Int] = Right(25)

These “smart constructors” have advantages over Left.apply and
Right.apply because they return results of type Either instead of Left
and Right. This helps avoid type inference bugs caused by over-narrowing,
like the bug in the example below:


http://typelevel.org/cats/api/cats/syntax/package$$either$
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def countPositive(nums: List[Int]) =
nums.foldLeft(Right(0)) { (accumulator, num) =>
if(num > 0) {
accumulator.map(_ + 1)

} else {
Left("Negative. Stopping!")
}
}

// <console>:21: error: type mismatch;
// found : scala.util.Either[Nothing, Int]
// required: scala.util.Right[Nothing,Int]
// accumulator.map(_ + 1)
// -
// <console>:23: error: type mismatch;
// found : scala.util.Left[String,Nothing]
// required: scala.util.Right[Nothing,Int]
// Left("Negative. Stopping!")
// ~

This code fails to compile for two reasons:

1. the compiler infers the type of the accumulator as Right instead of
Either;

2. we didn't specify type parameters for Right.apply so the compiler
infers the left parameter as Nothing.

Switching to asRight avoids both of these problems. asRight has a return
type of Either, and allows us to completely specify the type with only one
type parameter:

def countPositive(nums: List[Int]) =
nums.foldLeft(0.asRight[String]) { (accumulator, num) =>
if(num > 0) {
accumulator.map(_ + 1)
} else {
Left("Negative. Stopping!")
}

countPositive(List(1l, 2, 3))
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// res5: Either[String,Int] = Right(3)

countPositive(List(1, -2, 3))
// res6: Either[String,Int] = Left(Negative. Stopping!)

cats.syntax.either adds some useful extension methods to the Either
companion object. The catchOnly and catchNonFatal methods are great
for capturing Exceptions as instances of Either:

Either.catchOnly[NumberFormatException] ("foo".toInt)
// res7: Either[NumberFormatException,Int] = Left(java.lang.
NumberFormatException: For input string: "foo")

Either.catchNonFatal(sys.error("Badness"))

// res8: Either[Throwable,Nothing] = Left(java.lang.RuntimeException:
Badness)

There are also methods for creating an Either from other data types:

Either.fromTry(scala.util.Try("foo".toInt))
// res9: Either[Throwable,Int] = Left(java.lang.NumberFormatException:
For input string: "foo")

Either.fromOption[String, Int](None, "Badness")
// reslQ: Either[String,Int] = Left(Badness)

4.4.3 Transforming Eithers

cats.syntax.either also adds some useful methods for instances of Ei -
ther. We can use orElse and getOrElse to extract values from the right
side or return a default:

import cats.syntax.either._

"Error".asLeft[Int].getOrElse(0)
// resll: Int =0
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"Error".asLeft[Int].orElse(2.asRight[String])
// resl2: Either[String,Int] = Right(2)

The ensure method allows us to check whether the right-hand value satisfies
a predicate:

-1.asRight[String].ensure("Must be non-negative!")(_ > 0)
// resl3: Either[String,Int] = Left(Must be non-negative!)

The recover and recoverWith methods provide similar error handling to
their namesakes on Future:

"error".asLeft[Int].recover {
case str: String => -1

}
// resld: Either[String,Int] = Right(-1)

"error".asLeft[Int].recoverWith {

case str: String => Right(-1)

}
// resl5: Either[String,Int] = Right(-1)

There are leftMap and bimap methods to complement map:

"foo".asLeft[Int].leftMap(_.reverse)
// resl6: Either[String,Int] = Left(oof)

6.asRight[String].bimap(_ .reverse, _ * 7)
// resl7: Either[String,Int] = Right(42)

"bar".asLeft[Int].bimap(_.reverse, _ * 7)
// resl8: Either[String,Int] = Left(rab)

The swap method lets us exchange left for right:

123.asRight[String]
// resl9: Either[String,Int] = Right(123)
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123.asRight[String].swap
// res20: scala.util.Either[Int,String] = Left(123)

Finally, Cats adds a host of conversion methods: toOption, toList, toTry,
toValidated, and so on.

4.4.4 Error Handling

Either is typically used to implement fail-fast error handling. We sequence
computations using flatMap as usual. If one computation fails, the remaining
computations are not run:

for {
a <- l.asRight[String]
b <- 0.asRight[String]
c <- if(b == 0) "DIVO".asLeft[Int]
else (a / b).asRight[String]
} yield c¢ * 100
// res2l: scala.util.Either[String,Int] = Left(DIVO)

When using Either for error handling, we need to determine what type we
want to use to represent errors. We could use Throwab'le for this:

type Result[A] = Either[Throwable, Al

This gives us similar semantics to scala.util.Try. The problem, however, is
that Throwable is an extremely broad type. We have (almost) no idea about
what type of error occurred.

Another approach is to define an algebraic data type to represent errors that
may occur in our program:

sealed trait LoginError extends Product with Serializable

final case class UserNotFound(username: String)
extends LoginError

final case class PasswordIncorrect(username: String)
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extends LoginError
case object UnexpectedError extends LoginError
case class User(username: String, password: String)

type LoginResult = Either[LoginError, User]

This approach solves the problems we saw with Throwable. It gives us a fixed
set of expected error types and a catch-all for anything else that we didn't ex-
pect. We also get the safety of exhaustivity checking on any pattern matching
we do:

// Choose error-handling behaviour based on type:
def handleError(error: LoginError): Unit =
error match {
case UserNotFound(u) =>
println(s"User not found: $u")

case PasswordIncorrect(u) =>
println(s"Password incorrect: $u")

case UnexpectedError =>
println(s"Unexpected error")
val resultl: LoginResult = User("dave", "passwOrd").asRight

// resultl: LoginResult = Right(User(dave,passwOrd))

val result2: LoginResult = UserNotFound("dave").asLeft
// result2: LoginResult = Left(UserNotFound(dave))

resultl.fold(handleError, println)
// User(dave,passwOrd)

result2.fold(handleError, println)
// User not found: dave
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445 Exercise: What is Best?
Is the error handling strategy in the previous examples well suited for all pur-
poses? What other features might we want from error handling?

See the solution

4.5 Aside: Error Handling and MonadError

Cats provides an additional type class called MonadError that abstracts over
Either-like data types that are used for error handling. MonadError provides
extra operations for raising and handling errors.

This Section is Optional!

You won't need to use MonadError unless you need to abstract over
error handling monads. For example, you can use MonadError to ab-
stract over Future and Try, or over Either and EitherT (which we
will meet in Chapter 5).

If you don’t need this kind of abstraction right now, feel free to skip
onwards to Section 4.6.

4.5.1 The MonadError Type Class
Here is a simplified version of the definition of MonadError:

package cats
trait MonadError[F[ ], E] extends Monad[F] {
// Lift an error into the "F° context:

def raiseError[A]l(e: E): F[A]

// Handle an error, potentially recovering from it:
def handleError[A](fa: F[A])(f: E => A): F[A]

// Test an instance of “F°
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// failing if the predicate is not satisfied:
def ensure[A](fa: F[A])(e: E)(f: A => Boolean): F[A]
}

MonadError is defined in terms of two type parameters:

e Fis the type of the monad;
e Eis the type of error contained within F.

To demonstrate how these parameters fit together, here's an example where
we instantiate the type class for Either:

import cats.MonadError
import cats.instances.either._ // for MonadError

type ErrorOr[A] = Either[String, A]

val monadError = MonadError[ErrorOr, String]

ApplicativeError

In reality, MonadError extends another type class called Applica-
tiveError. However, we won't encounter Applicatives until Chap-
ter 6. The semantics are the same for each type class so we can ignore
this detail for now.

4.5.2 Raising and Handling Errors

The two most important methods of MonadError are raiseError and han-
dleError. raiseError is like the pure method for Monad except that it cre-
ates an instance representing a failure:

val success = monadError.pure(42)
// success: ErrorOr[Int] = Right(42)
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val failure = monadError.raiseError("Badness")
// failure: ErrorOr[Nothing] = Left(Badness)

handleError is the complement of raiseError. It allows us to consume an
error and (possibly) turn it into a success, similar to the recover method of
Future:

monadError.handleError(failure) {
case "Badness" =>
monadError.pure("It's ok")

case other =>
monadError.raiseError("It's not ok")

}
// res2: ErrorOr[ErrorOr[String]] = Right(Right(It's ok))

There is also a third useful method called ensure that implements filter-
like behaviour. We test the value of a successful monad with a predicate and
specify an error to raise if the predicate returns false:

import cats.syntax.either. // for asRight

monadError.ensure(success) ("Number too low!")( > 16000)
// res3: ErrorOr[Int] = Left(Number too low!)

Cats provides syntax for raiseError and handleEr-
ror via cats.syntax.applicativeError and ensure via
cats.syntax.monadError:

import cats.syntax.applicative. // for pure
import cats.syntax.applicativeError. // for raiseError etc
import cats.syntax.monadError. // for ensure

val success = 42.pure[ErrorOr]
// success: ErrorOr[Int] = Right(42)

val failure = "Badness".raiseError[ErrorOr, Int]
// failure: ErrorOr[Int] = Left(Badness)
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success.ensure("Number to low!")( > 1000)
// resd: Either[String,Int] = Left(Number to low!)

There are other useful variants of these methods. See the source of
cats.MonadError and cats.ApplicativeError for more information.

4.5.3 Instances of MonadError

Cats provides instances of MonadError for numerous data types including
Either, Future, and Try. The instance for Either is customisable to any
error type, whereas the instances for Future and Try always represent errors
as Throwables:

import scala.util.Try
import cats.instances.try_._ // for MonadError

val exn: Throwable =
new RuntimeException("It's all gone wrong")

exn.raiseError[Try, Int]
// res6: scala.util.Try[Int] = Failure(java.lang.RuntimeException: It'
s all gone wrong)

4.5.4 Exercise: Abstracting

4.6 The Eval Monad

cats.Eval is a monad that allows us to abstract over different models of eval-
uation. We typically hear of two such models: eager and lazy. Eval throws in
a further distinction of whether or not a result is memoized.

4.6.1 Eager, Lazy, Memoized, Oh My!

What do these terms mean?
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Eager computations happen immediately whereas lazy computations happen
on access. Memoized computations are run once on first access, after which

the results are cached.

For example, Scala vals are eager and memoized. We can see this using a
computation with a visible side-effect. In the following example, the code
to compute the value of x happens at the definition site rather than on ac-
cess (eager). Accessing x recalls the stored value without re-running the code

(memoized).

val x = {
println("Computing X")
math.random

}

// Computing X

// x: Double = 0.0657586956104027

x // first access
// res@: Double = 0.0657586956104027

x // second access
// resl: Double = 0.0657586956104027

By contrast, defs are lazy and not memoized. The code to compute y below is
not run until we access it (lazy), and is re-run on every access (not memoized):

def y = {
println("Computing Y")
math.random

}

// y: Double

y // first access
// Computing Y
// res2: Double = 0.9184384488125138

y // second access
// Computing Y
// res3: Double = 0.20807113447602488

Last but not least, lazy vals are lazy and memoized. The code to compute
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z below is not run until we access it for the first time (lazy). The result is then
cached and re-used on subsequent accesses (memoized):

lazy val z = {
println("Computing Z")
math.random

}

// z: Double = <lazy>

z // first access

// Computing Z

// res4: Double = 0.1783014120350146

z // second access
// res5: Double = 0.1783014120350146

4.6.2 Eval’s Models of Evaluation

Eval has three subtypes: Now, Later, and Always. We construct these with
three constructor methods, which create instances of the three classes and
return them typed as Eval:

import cats.Eval

val now = Eval.now(math.random + 1000)
// now: cats.Eval[Double] = Now(1000.885603643474)

val later = Eval.later(math.random + 2000)
// later: cats.Eval[Double] = cats.Later@679671c

val always = Eval.always(math.random + 3000)
// always: cats.Eval[Double] = cats.Always@396fe27e

We can extract the result of an Eval using its value method:

now.value
// res6: Double = 1000.885603643474

later.value
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// res7: Double = 2000.1770874422618

always.value
// res8: Double = 3000.637554292833

Each type of Eval calculates its result using one of the evaluation models
defined above. Eval.now captures a value right now. Its semantics are similar
to a val—eager and memoized:

val x = Eval.now {
println("Computing X")
math.random
}
// Computing X
// x: cats.Eval[Double] = Now(0.08016953141772554)

x.value // first access
// res9: Double = 0.08016953141772554

x.value // second access
// reslO: Double = 0.08016953141772554

Eval.always captures a lazy computation, similar to a def:

val y = Eval.always {
println("Computing Y")
math.random

}
// y: cats.Eval[Double] = cats.Always@471ed97c

y.value // first access
// Computing Y
// resll: Double = 0.9455576109936167

y.value // second access
// Computing Y
// resl2: Double = 0.5996336572386713

Finally, Eval. later captures a lazy, memoized computation, similar to a lazy
val:
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val z = Eval.later {
println("Computing Z")
math.random
}
// z: cats.Eval[Double] = cats.Later@78b2f4e7

z.value // first access

// Computing Z

// resl3: Double = 0.3353381222323517
z.value // second access

// resld: Double = 0.3353381222323517

The three behaviours are summarized below:

Scala Cats Properties

val Now eager, memoized
lazy val Later lazy, memoized
def Always lazy, not memoized

4.6.3 Eval as a Monad

Like all monads, Eval's map and flatMap methods add computations to a
chain. In this case, however, the chain is stored explicitly as a list of functions.
The functions aren'’t run until we call Eval's value method to request a re-
sult:

val greeting = Eval.
always { println("Step 1"); "Hello" }.
map { str => println("Step 2"); s"$str world" }
// greeting: cats.Eval[String] = cats.Eval$$anon$8@157f7b8c

greeting.value

// Step 1

// Step 2

// resl5: String = Hello world

Note that, while the semantics of the originating Eval instances are main-
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tained, mapping functions are always called lazily on demand (def semantics):

val ans = for {
a <- Eval.now { println("Calculating A"); 40 }
b <- Eval.always { println("Calculating B"); 2 }
} yield {
println("Adding A and B")
a+hb
}
// Calculating A
// ans: cats.Eval[Int] = cats.Eval$$anon$8@37c1363d

ans.value // first access
// Calculating B

// Adding A and B

// resl6: Int = 42

ans.value // second access
// Calculating B

// Adding A and B

// resl7: Int = 42

Eval has a memoize method that allows us to memoize a chain of computa-
tions. The result of the chain up to the call to memoize is cached, whereas
calculations after the call retain their original semantics:

val saying = Eval.
always { println("Step 1"); "The cat" }.
map { str => println("Step 2"); s"$str sat on" }.
memoize.
map { str => println("Step 3"); s"$str the mat" }
// saying: cats.Eval[String] = cats.Eval$$anon$8@2196a9al

saying.value // first access

// Step 1

// Step 2

// Step 3

// resl8: String = The cat sat on the mat

saying.value // second access
// Step 3
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// resl9: String = The cat sat on the mat

4.6.4 Trampolining and Eval.defer

One useful property of Eval is that its map and flatMap methods are tram-
polined. This means we can nest calls to map and flatMap arbitrarily without
consuming stack frames. We call this property “stack safety”.

For example, consider this function for calculating factorials:

def factorial(n: BigInt): BigInt =
if(n == 1) n else n * factorial(n - 1)

It is relatively easy to make this method stack overflow:

factorial(560000)
// java.lang.StackOverflowError
//

We can rewrite the method using Eval to make it stack safe:

def factorial(n: BigInt): Eval[BigInt] =
if(n == 1) {
Eval.now(n)
} else {
factorial(n - 1).map(_ * n)

}

factorial(560000).value
// java.lang.StackOverflowError
//

Oops! That didn't work—our stack still blew up! This is because we're still mak-
ing all the recursive calls to factorial before we start working with Eval's
map method. We can work around this using Eval.defer, which takes an ex-
isting instance of Eval and defers its evaluation. The defer method is tram-
polined like map and flatMap, so we can use it as a quick way to make an
existing operation stack safe:
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def factorial(n: BigInt): Eval[BigInt] =
if(n == 1) {
Eval.now(n)
} else {
Eval.defer(factorial(n - 1).map(_ * n))

}

factorial(50000).value
// res20: BigInt =
33473205095971448369154760940714864779127732238104548077301003219901680221443656

Eval is a useful tool to enforce stack safety when working on very large com-
putations and data structures. However, we must bear in mind that trampolin-
ingis not free. It avoids consuming stack by creating a chain of function objects
on the heap. There are still limits on how deeply we can nest computations,
but they are bounded by the size of the heap rather than the stack.

4.6.5 Exercise: Safer Folding using Eval

The naive implementation of foldRight below is not stack safe. Make it so
using Eval:

def foldRight[A, Bl(as: List[A], acc: B)(fn: (A, B) => B): B =
as match {
case head :: tail =>
fn(head, foldRight(tail, acc)(fn))
case Nil =>
acc

See the solution

4.7 The Writer Monad

cats.data.Writer is a monad that lets us carry a log along with a compu-
tation. We can use it to record messages, errors, or additional data about a
computation, and extract the log alongside the final result.


http://typelevel.org/cats/api/cats/data/#Writer%5BS,A%5D=cats.data.WriterT%5Bcats.Eval,S,A%5D
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One common use for Writers is recording sequences of steps in multi-
threaded computations where standard imperative logging techniques can re-
sult in interleaved messages from different contexts. With Writer the log for
the computation is tied to the result, so we can run concurrent computations
without mixing logs.

Cats Data Types

Writer is the first data type we've seen from the cats.data package.
This package provides instances of various type classes that produce
useful semantics. Other examples from cats.data include the monad
transformers that we will see in the next chapter, and the Validated
type we will encounter in Chapter 6.

4.7.1 Creating and Unpacking Writers

AWriter[W, A] carries two values: a log of type W and a result of type A. We
can create a Writer from values of each type as follows:

import cats.data.Writer
import cats.instances.vector._ // for Monoid

Writer(Vector(
"It was the best of times",
"it was the worst of times"

), 1859)
// res0: cats.data.WriterT[cats.Id,scala.collection.immutable.Vector[
String],Int] = WriterT((Vector(It was the best of times, it was

the worst of times),1859))

Notice that the type reported on the console is actually WriterT[Id, Vec-
tor[String], Int] instead of Writer[Vector[String], Int] as we
might expect. In the spirit of code reuse, Cats implements Writer in terms
of another type, WriterT. WriterT is an example of a new concept called a
monad transformer, which we will cover in the next chapter.

Let’s try to ignore this detail for now. Writer is a type alias for WriterT, so
we can read types like WriterT[Id, W, A] asWriter[W, A]:


http://typelevel.org/cats/api/cats/data/
http://typelevel.org/cats/api/cats/data/Validated.html
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type Writer[W, A] = WriterT[Id, W, Al

For convenience, Cats provides a way of creatingWriters specifying only the
log or the result. If we only have a result we can use the standard pure syntax.
To do this we must have aMonoid[W] in scope so Cats knows how to produce
an empty log:

import cats.instances.vector.  // for Monoid
import cats.syntax.applicative. // for pure

type Logged[A] = Writer[Vector[String], A]

123.pure[Logged]
// res2: Logged[Int] = WriterT((Vector(),123))

If we have a log and no result we can create aWriter[Unit] using the tell
syntax from cats.syntax.writer:

import cats.syntax.writer._// for tell

Vector("msgl", "msg2", "msg3").tell
// res3: cats.data.Writer[scala.collection.immutable.Vector[String],
Unit] = WriterT((Vector(msgl, msg2, msg3),()))

If we have both a result and a log, we can either use Writer.apply or we can
use the writer syntax from cats.syntax.writer:

import cats.syntax.writer. // for writer

val a = Writer(Vector("msgl", "msg2", "msg3"), 123)
// a: cats.data.WriterT[cats.Id,scala.collection.immutable.Vector[
String],Int] = WriterT((Vector(msgl, msg2, msg3),123))

val b = 123.writer(Vector("msgl", "msg2", "msg3"))
// b: cats.data.Writer[scala.collection.immutable.Vector[String],Int]
= WriterT((Vector(msgl, msg2, msg3),123))

We can extract the result and log from aWriter using the value andwritten
methods respectively:


http://typelevel.org/cats/api/cats/syntax/package$$writer$
http://typelevel.org/cats/api/cats/syntax/package$$writer$
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val aResult: Int =
a.value
// aResult: Int = 123

val alLog: Vector[String] =
a.written
// alLog: Vector[String] = Vector(msgl, msg2, msg3)

We can extract both values at the same time using the run method:

val (log, result) = b.run

// log: scala.collection.immutable.Vector[String] = Vector(msgl, msg2,
msg3)

// result: Int = 123

4.7.2 Composing and Transforming Writers

The log in aWriter is preserved when we map or flatMap over it. flatMap
appends the logs from the source Writer and the result of the user’s sequenc-
ing function. For this reason it’s good practice to use a log type that has an
efficient append and concatenate operations, such as a Vector:

val writerl = for {
a <- 10.pure[Logged]
~ <- Vector("a", "b", "c").tell
b <- 32.writer(Vector("x", "y", "z"))
} yield a + b
// writerl: cats.data.WriterT[cats.Id,Vector[String],Int] = WriterT((
Vector(a, b, c, x, y, z),42))

writerl.run
// res4: cats.Id[(Vector[String], Int)] = (Vector(a, b, ¢, x, y, 2z)
,42)

In addition to transforming the result with map and flatMap, we can transform
the log in aWriter with the mapWritten method:
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val writer2 = writerl.mapWritten(_.map(_.toUpperCase))
// writer2: cats.data.WriterT[cats.Id,scala.collection.immutable.
Vector[String],Int] = WriterT((Vector(A, B, C, X, Y, Z),42))

writer2.run
// res5: cats.Id[(scala.collection.immutable.Vector[String], Int)] = (
Vector(A, B, C, X, Y, Z),42)

We can transform both log and result simultaneously using bimap or mapBoth.
bimap takes two function parameters, one for the log and one for the result.
mapBoth takes a single function that accepts two parameters:

val writer3 = writerl.bimap(
log => log.map(_.toUpperCase),
res => res * 100
)
// writer3: cats.data.WriterT[cats.Id,scala.collection.immutable.
Vector[String],Int] = WriterT((Vector(A, B, C, X, Y, Z),4200))

writer3.run
// res6: cats.Id[(scala.collection.immutable.Vector[String], Int)] = (
Vector(A, B, C, X, Y, Z),4200)

val writerd = writerl.mapBoth { (log, res) =>
val log2 = log.map(_+ "!'")
val res2 = res * 1000
(log2, res2)
}
// writerd: cats.data.WriterT[cats.Id,scala.collection.immutable.
Vector[String],Int] = WriterT((Vector(a!, b!, c!, x!, y!, z!)
,42000))

writer4.run
// res7: cats.Id[(scala.collection.immutable.Vector[String], Int)] = (
Vector(a!, b!, c!, x!, y!, z!),42000)

Finally, we can clear the log with the reset method and swap log and result
with the swap method:
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val writer5 = writerl.reset
// writer5: cats.data.WriterT[cats.Id,Vector[String],Int] = WriterT((
Vector(),42))

writer5.run
// res8: cats.Id[(Vector[String], Int)] = (Vector(),b42)

val writer6 = writerl.swap
// writer6: cats.data.WriterT[cats.Id,Int,Vector[String]]
((42,vector(a, b, c, x, y, z)))

WriterT

writer6.run
// res9: cats.Id[(Int, Vector[String]l)] = (42,Vector(a, b, c, x, vy, z)
)

4.7.3 Exercise: Show Your Working
Writers are useful for logging operations in multi-threaded environments.
Let's confirm this by computing (and logging) some factorials.

The factorial function below computes a factorial and prints out the inter-
mediate steps as it runs. The slowly helper function ensures this takes a while
to run, even on the very small examples below:

def slowly[A](body: => A) =
try body finally Thread.sleep(100)

def factorial(n: Int): Int = {

val ans = slowly(if(n == 0) 1 else n * factorial(n - 1))
println(s"fact $n $ans")
ans

}

Here's the output—a sequence of monotonically increasing values:

factorial(5)
// fact 01
// fact 11
// fact 2 2
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// fact 3 6

// fact 4 24

// fact 5 120

// resll: Int = 120

If we start several factorials in parallel, the log messages can become inter-
leaved on standard out. This makes it difficult to see which messages come
from which computation:

import scala.concurrent.
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._

Await.result(Future.sequence(Vector(
Future(factorial(3)),
Future(factorial(3))

)), 5.seconds)

// fact 0 1

// fact

// fact

// fact

// fact

// fact

// fact

// fact

// resl4: scala.collection.immutable.Vector[Int] =

// Vector(120, 120)

W W NN R BRP OO
SO OO NN BRFE P

Rewrite factorial so it captures the log messagesinaWriter. Demonstrate
that this allows us to reliably separate the logs for concurrent computations.

See the solution

4.8 The Reader Monad

cats.data.Readerisamonad that allows us to sequence operations that de-
pend on some input. Instances of Reader wrap up functions of one argument,
providing us with useful methods for composing them.


http://typelevel.org/cats/api/cats/data/?search=reader#Reader%5BA,B%5D=cats.data.package.ReaderT%5Bcats.Id,A,B%5D
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One common use for Readers is dependency injection. If we have a number
of operations that all depend on some external configuration, we can chain
them together using a Reader to produce one large operation that accepts
the configuration as a parameter and runs our program in the order specified.

4.8.1 Creating and Unpacking Readers

We can create a Reader[A, B] from a function A => B using the
Reader.apply constructor:

import cats.data.Reader

case class Cat(name: String, favoriteFood: String)
// defined class Cat

val catName: Reader[Cat, String] =
Reader(cat => cat.name)
// catName: cats.data.Reader[Cat,String] = Kleisli(<functionl>)

We can extract the function again using the Reader's run method and call it
using apply as usual:

catName.run(Cat("Garfield", "lasagne"))
// res0: cats.Id[String] = Garfield

So far so simple, but what advantage do Readers give us over the raw func-
tions?

4.8.2 Composing Readers

The power of Readers comes from their map and flatMap methods, which
represent different kinds of function composition. We typically create a set of
Readers that accept the same type of configuration, combine them with map
and flatMap, and then call run to inject the config at the end.

The map method simply extends the computation in the Reader by passing its
result through a function:
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val greetKitty: Reader[Cat, String] =
catName.map(name => s"Hello ${name}")

greetKitty.run(Cat("Heathcliff", "junk food"))
// resl: cats.Id[String] = Hello Heathcliff

The flatMap method is more interesting. It allows us to combine readers that
depend on the same input type. To illustrate this, let's extend our greeting
example to also feed the cat:

val feedKitty: Reader[Cat, String] =
Reader(cat => s"Have a nice bowl of ${cat.favoriteFood}")

val greetAndFeed: Reader[Cat, String] =
for {
greet <- greetKitty
feed <- feedKitty
} yield s"$greet. $feed."

greetAndFeed(Cat("Garfield", "lasagne"))
// res3: cats.Id[String] = Hello Garfield. Have a nice bowl of lasagne

greetAndFeed(Cat("Heathcliff", "junk food"))
// resd: cats.Id[String] = Hello Heathcliff. Have a nice bowl of junk
food.

4.8.3 Exercise: Hacking on Readers

The classic use of Readers is to build programs that accept a configuration
as a parameter. Let’s ground this with a complete example of a simple login
system. Our configuration will consist of two databases: a list of valid users
and a list of their passwords:

case class Db(
usernames: Map[Int, String],
passwords: Map[String, String]
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Start by creating a type alias DbReader for a Reader that consumes a Db as
input. This will make the rest of our code shorter.

See the solution

Now create methods that generate DbReaders to look up the username for
an Int user ID, and look up the password for a String username. The type
signatures should be as follows:

def findUsername(userId: Int): DbReader[Option[Stringl] =
7?7?

def checkPassword(
username: String,

password: String): DbReader[Boolean] =
77?7

See the solution

Finally create a checkLogin method to check the password for a given user
ID. The type signature should be as follows:

def checkLogin(
userld: Int,

password: String): DbReader[Boolean] =
?7?

See the solution

You should be able to use checkLogin as follows:

val users = Map(
1 -> "dade",
2 -> "kate",
3 -> "margo"

val passwords = Map(
"dade" -> "zerocool",
"kate" -> "acidburn",
"margo" -> "secret"
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)
val db = Db(users, passwords)

checkLogin(1l, "zerocool").run(db)
// reslO: cats.Id[Boolean] = true

checkLogin(4, "davinci").run(db)
// resll: cats.Id[Boolean] = false

4.8.4 When to Use Readers?

Readers provide a tool for doing dependency injection. We write steps of our
program as instances of Reader, chain them together with map and flatMap,
and build a function that accepts the dependency as input.

There are many ways of implementing dependency injection in Scala, from
simple techniques like methods with multiple parameter lists, through implicit
parameters and type classes, to complex techniques like the cake pattern and
DI frameworks.

Readers are most useful in situations where:

e we are constructing a batch program that can easily be represented by
a function;

e we need to defer injection of a known parameter or set of parameters;

e we want to be able to test parts of the program in isolation.

By representing the steps of our program as Readers we can test them as
easily as pure functions, plus we gain access to the map and flatMap combi-
nators.

For more advanced problems where we have lots of dependencies, or where
a program isn't easily represented as a pure function, other dependency injec-
tion techniques tend to be more appropriate.
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Kleisli Arrows

You may have noticed from console output that Reader is implemented
in terms of another type called Kleisli. Kleisli arrows provide a more
general form of Reader that generalise over the type constructor of the
result type. We will encounter Kleislis again in Chapter 5.

4.9 The State Monad

cats.data.State allows us to pass additional state around as part of a com-
putation. We define State instances representing atomic state operations
and thread them together using map and flatMap. In this way we can model
mutable state in a purely functional way, without using mutation.

4.9.1 Creating and Unpacking State

Boiled down to their simplest form, instances of State[S, A] represent func-

tions of type S => (S, A).Sis the type of the state and A is the type of the
result.

import cats.data.State

val a = State[Int, String] { state =>
(state, s"The state is $state")
}
// a: cats.data.State[Int,String] = cats.data.IndexedStateT@12c18313

In other words, an instance of State is a function that does two things:

e transforms an input state to an output state;
e computes a result.

We can “run” our monad by supplying an initial state. State provides three
methods—run, runS, and runA—that return different combinations of state
and result. Each method returns an instance of Eval, which State uses to
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maintain stack safety. We call the value method as usual to extract the actual
result:

// Get the state and the result:

val (state, result) = a.run(10).value
// state: Int = 10

// result: String = The state is 10

// Get the state, ignore the result:
val state = a.runS(10).value
// state: Int = 10

// Get the result, ignore the state:
val result = a.runA(10).value
// result: String = The state is 10

4.9.2 Composing and Transforming State

As we've seen with Reader and Writer, the power of the State monad
comes from combining instances. The map and flatMap methods thread the
state from one instance to another. Each individual instance represents an
atomic state transformation, and their combination represents a complete se-
guence of changes:

val stepl = State[Int, String] { num =>
val ans = num + 1
(ans, s"Result of stepl: $ans")
}
// stepl: cats.data.State[Int,String] = cats.data.
IndexedStateT@7c6e31c4

val step2 = State[Int, String]l { num =>
val ans = num * 2
(ans, s"Result of step2: $ans")
}
// step2: cats.data.State[Int,String] = cats.data.
IndexedStateT@7428b330

val both = for {
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a <- stepl
b <- step2
} yield (a, b)
// both: cats.data.IndexedStateT[cats.Eval,Int,Int,(String, String)] =
cats.data.IndexedStateT@716401f3

val (state, result) = both.run(20).value

// state: Int = 42

// result: (String, String) = (Result of stepl: 21,Result of step2:
42)

As you can see, in this example the final state is the result of applying both
transformations in sequence. State is threaded from step to step even though
we don't interact with it in the for comprehension.

The general model for using the State monad is to represent each step of a
computation as an instance and compose the steps using the standard monad
operators. Cats provides several convenience constructors for creating primi-
tive steps:

e get extracts the state as the result;

e set updates the state and returns unit as the result;

e pure ignores the state and returns a supplied result;

e inspect extracts the state via a transformation function;
o modify updates the state using an update function.

val getDemo = State.get[Int]
// getDemo: cats.data.State[Int,Int] = cats.data.
IndexedStateT@4df6baba

getDemo.run(10).value
// res3: (Int, Int) = (10,10)

val setDemo = State.set[Int](30)
// setDemo: cats.data.State[Int,Unit] = cats.data.
IndexedStateT@4620d0ef

setDemo.run(10).value
// resd4: (Int, Unit) = (30,())
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val pureDemo = State.pure[Int, String]("Result")
// pureDemo: cats.data.State[Int,String] = cats.data.
IndexedStateT@988d7b2

pureDemo.run(10).value
// res5: (Int, String) = (10,Result)

val inspectDemo = State.inspect[Int, String](_ + "!")
// inspectDemo: cats.data.State[Int,String] = cats.data.
IndexedStateT@13734a20

inspectDemo.run(10).value
// res6: (Int, String) = (10,10!)

val modifyDemo = State.modify[Int](_ + 1)
// modifyDemo: cats.data.State[Int,Unit] = cats.data.
IndexedStateT@79493b6e

modifyDemo.run(10).value
// res7: (Int, Unit) = (11,())

We can assemble these building blocks using a for comprehension. We typi-
cally ignore the result of intermediate stages that only represent transforma-
tions on the state:

import State._

val program: State[Int, (Int, Int, Int)] = for {
a <- get[Int]
<- set[Int](a + 1)
b <- get[Int]
<- modify[Int]( + 1)
c <- inspect[Int, Int](_ * 1000)
} yield (a, b, c)
// program: cats.data.State[Int,(Int, Int, Int)] = cats.data.
IndexedStateT@b8a0617

val (state, result) = program.run(1l).value
// state: Int = 3
// result: (Int, Int, Int) = (1,2,3000)
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4.9.3 Exercise: Post-Order Calculator

The State monad allows us to implement simple interpreters for complex ex-
pressions, passing the values of mutable registers along with the result. We
can see a simple example of this by implementing a calculator for post-order
integer arithmetic expressions.

In case you haven't heard of post-order expressions before (don’t worry if you
haven't), they are a mathematical notation where we write the operator after
its operands. So, for example, instead of writing 1 + 2 we would write:

12+

Although post-order expressions are difficult for humans to read, they are easy
to evaluate in code. All we need to do is traverse the symbols from left to right,
carrying a stack of operands with us as we go:

e when we see a number, we push it onto the stack;
e when we see an operator, we pop two operands off the stack, operate

on them, and push the result in their place.

This allows us to evaluate complex expressions without using parentheses. For
example, we can evaluate (1 + 2) * 3) as follows:

12+ 3 * // see 1, push onto stack
3 * // see 2, push onto stack

s

+ 3 * // see +, pop 1 and 2 off of stack,
// push (1 + 2) = 3 in their place
33 % // see 3, push onto stack
g & // see 3, push onto stack
* // see *, pop 3 and 3 off of stack,
// push (3 * 3) = 9 in their place

Let’s write an interpreter for these expressions. We can parse each symbol
into a State instance representing a transformation on the stack and an inter-
mediate result. The State instances can be threaded together using flatMap
to produce an interpreter for any sequence of symbols.
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Start by writing a function evalOne that parses a single symbol into an in-
stance of State. Use the code below as a template. Don’t worry about error
handling for now—if the stack is in the wrong configuration, it's OK to throw
an exception.

import cats.data.State
type CalcState[A] = State[List[Int], A]

def evalOne(sym: String): CalcState[Int] = ??77?

If this seems difficult, think about the basic form of the State instances you're
returning. Each instance represents a functional transformation from a stack
to a pair of a stack and a result. You can ignore any wider context and focus
on just that one step:

State[List[Int], Int] { oldStack =>
val newStack = someTransformation(oldStack)
val result = someCalculation
(newStack, result)

Feel free to write your Stack instances in this form or as sequences of the
convenience constructors we saw above.

See the solution

evalOne allows us to evaluate single-symbol expressions as follows. We call
runA supplying Nil as an initial stack, and call value to unpack the resulting
Eval instance:

evalOne("42").runA(Nil).value
// res3: Int = 42

We can represent more complex programs using evalOne, map, and flatMap.
Note that most of the work is happening on the stack, so we ignore the results
of the intermediate steps for evalOne("1") and evalOne("2"):
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val program = for {
<- evalOne("1")
<- evalOne("2")
ans <- evalOne("+")
} yield ans
// program: cats.data.IndexedStateT[cats.Eval,List[Int],List[Int],Int]
= cats.data.IndexedStateT@7983547b

program.runA(Nil).value
// res4: Int = 3

Generalise this example by writing an evalAll method that computes the
result of a List[String]. Use evalOne to process each symbol, and thread
the resulting State monads together using flatMap. Your function should
have the following signature:

def evalAll(input: List[String]): CalcState[Int] =
?7?

See the solution

We can use evalAll to conveniently evaluate multi-stage expressions:

val program = evalAll(List("1", "2", "+", "3", "*"))
// program: CalcState[Int] = cats.data.IndexedStateT@fO@albee

program.runA(Nil).value
// res6: Int =9

Because evalOne and evalAll both return instances of State, we can thread
these results together using flatMap. evalOne produces a simple stack trans-
formation and evalAll produces a complex one, but they’re both pure func-
tions and we can use them in any order as many times as we like:

val program = for {
<- evalAll(List("1", "2", "+"))
<- evalAll(List("3", "4", "+"))
ans <- evalOne("*")
} yield ans
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// program: cats.data.IndexedStateT[cats.Eval,List[Int],List[Int],Int]
= cats.data.IndexedStateT@18dd0fa3

program.runA(Nil).value
// res7: Int = 21

Complete the exercise by implementing an evalInput function that splits an
input String into symbols, calls evalAll, and runs the result with an initial
stack.

See the solution

4.10 Defining Custom Monads

We can define a Monad for a custom type by providing implementations of
three methods: flatMap, pure, and a method we haven't seen yet called
tailRecM. Here is an implementation of Monad for Option as an example:

import cats.Monad
import scala.annotation.tailrec

val optionMonad = new Monad[Option] {
def flatMap[A, B](opt: Option[A])
(fn: A => Option[B]): Option[B] =
opt flatMap fn

def pure[A]l(opt: A): Option[A] =
Some (opt)

@tailrec
def tailRecM[A, Bl(a: A)
(fn: A => Option[Either[A, B]]): Option[B] =
fn(a) match {
case None => None
case Some(Left(al)) => tailRecM(al) (fn)
case Some(Right(b)) => Some(b)
}
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The tailRecM method is an optimisation used in Cats to limit the amount
of stack space consumed by nested calls to flatMap. The technique comes
from a 2015 paper by PureScript creator Phil Freeman. The method should
recursively call itself until the result of fn returns a Right.

If we can make tailRecM tail-recursive, Cats is able to guarantee stack safety
in recursive situations such as folding over large lists (see Section 7.1). If we
can’'t make tailRecM tail-recursive, Cats cannot make these guarantees and
extreme use cases may result in StackOverflowErrors. All of the built-in
monads in Cats have tail-recursive implementations of tailRecM, although
writing one for custom monads can be a challenge... as we shall see.

4.10.1 Exercise: Branching out Further with Monads

Let’s write a Monad for our Tree data type from last chapter. Here's the type
again:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])
extends Tree[A]

final case class Leaf[A](value: A) extends Tree[A]

def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =
Branch(left, right)

def leaf[A](value: A): Treel[A] =
Leaf(value)

Verify that the code works on instances of Branch and Leaf, and that the
Monad provides Functor-like behaviour for free.

Also verify that having a Monad in scope allows us to use for comprehensions,
despite the fact that we haven't directly implemented flatMap or map on
Tree.

Don't feel you have to make tailRecMtail-recursive. Doing so is quite difficult.
We've included both tail-recursive and non-tail-recursive implementations in
the solutions so you can check your work.


http://functorial.com/stack-safety-for-free/index.pdf

128 CHAPTER 4. MONADS

See the solution

4.11 Summary

In this chapter we've seen monads up-close. We saw that flatMap can be
viewed as an operator for sequencing computations, dictating the order in
which operations must happen. From this viewpoint, Option represents a
computation that can fail without an error message, Either represents com-
putations that can fail with a message, List represents multiple possible re-
sults, and Future represents a computation that may produce a value at some
point in the future.

We've also seen some of the custom types and data structures that Cats pro-
vides, including Id, Reader,Writer, and State. These cover a wide range of
use cases.

Finally, in the unlikely event that we have to implement a custom monad, we've
learned about defining our own instance using tailRecM. tailRecMis an odd
wrinkle that is a concession to building a functional programming library that is
stack-safe by default. We don’t need to understand tailRecM to understand
monads, but having it around gives us benefits of which we can be grateful
when writing monadic code.
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Monad Transformers

Monads are like burritos, which means that once you acquire a taste, you'll
find yourself returning to them again and again. This is not without issues. As
burritos can bloat the waist, monads can bloat the code base through nested
for-comprehensions.

Imagine we are interacting with a database. We want to look up a user record.
The user may or may not be present, so we return an Option[User]. Our
communication with the database could fail for many reasons (network issues,
authentication problems, and so on), so this result is wrapped up in an Either,
giving us a final result of Either[Error, Option[User]].

To use this value we must nest flatMap calls (or equivalently, for-
comprehensions):

def lookupUserName(id: Long): Either[Error, Option[String]] =
for {
optUser <- lookupUser(id)
} yield {
for { user <- optUser } yield user.name

}

This quickly becomes very tedious.

129


http://blog.plover.com/prog/burritos.html
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5.1 Exercise: Composing Monads

A question arises. Given two arbitrary monads, can we combine them in some
way to make a single monad? That is, do monads compose? We can try to
write the code but we soon hit problems:

import cats.Monad

import cats.syntax.applicative. // for pure
import cats.syntax.flatMap._ // for flatMap
import scala.language.higherKinds

// Hypothetical example. This won't actually compile:
def compose[M1[ ]: Monad, M2[ ]: Monad] = {
type Composed[A] = M1[M2[A]]

new Monad[Composed] {
def pure[A]l(a: A): Composed[A] =
a.pure[M2].pure[M1]

def flatMap[A, B](fa: Composed[A])
(f: A => Composed[B]): Composed[B] =
// Problem! How do we write flatMap?
77

It is impossible to write a general definition of flatMap without knowing
something about M1 or M2. However, if we do know something about one
or other monad, we can typically complete this code. For example, if we fix
M2 above to be Option, a definition of flatMap comes to light:

def flatMap[A, B](fa: Composed[A])
(f: A => Composed[B]): Composed[B] =
fa.flatMap(_.fold(None.pure[M1])(f))

Notice that the definition above makes use of None—an Option-specific con-
cept that doesn’t appear in the general Monad interface. We need this extra
detail to combine Option with other monads. Similarly, there are things about
other monads that help us write composed flatMap methods for them. This
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is the idea behind monad transformers: Cats defines transformers for a vari-
ety of monads, each providing the extra knowledge we need to compose that
monad with others. Let’s look at some examples.

5.2 A Transformative Example

Cats provides transformers for many monads, each named with a T suffix: Ei -
therT composes Either with other monads, OptionT composes Option,and
so on.

Here's an example that uses OptionT to compose List and Option. We can
useOptionT[List, Al],aliasedtoListOption[A] for convenience, to trans-
formaList[Option[A]] into a single monad:

import cats.data.OptionT

type ListOption[A] = OptionT[List, Al

Note how we build ListOption from the inside out: we pass List, the type
of the outer monad, as a parameter to OptionT, the transformer for the inner
monad.

We can create instances of ListOption using the OptionT constructor, or
more conveniently using pure:

import cats.Monad
import cats.instances.list. // for Monad
import cats.syntax.applicative. // for pure

val resultl: ListOption[Int] = OptionT(List(Option(10)))
// resultl: ListOption[Int] = OptionT(List(Some(10)))

val result2: ListOption[Int] = 32.pure[ListOption]

// result2: ListOption[Int] = OptionT(List(Some(32)))

The map and flatMap methods combine the corresponding methods of List
and Option into single operations:
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resultl.flatMap { (x: Int) =>
result2.map { (y: Int) =>
X +y
}
}
// resl: cats.data.OptionT[List,Int] = OptionT(List(Some(42)))

This is the basis of all monad transformers. The combined map and flatMap
methods allow us to use both component monads without having to recur-
sively unpack and repack values at each stage in the computation. Now let'’s
look at the API in more depth.

Complexity of Imports

The imports in the code samples above hint at how everything bolts
together.

We import cats.syntax.applicative to get the pure syntax. pure
requires an implicit parameter of type Applicative[ListOption].
We haven't met Applicatives yet, but all Monads are also Applica-
tives so we can ignore that difference for now.

In order to generate our Applicative[ListOption] we need in-
stances of Applicative for List and OptionT. OptionT is a Cats data
type so its instance is provided by its companion object. The instance
for List comes from cats.instances.list.

Notice we're not importing cats.syntax.functor or
cats.syntax.flatMap. This is because OptionT is a concrete
data type with its own explicit map and flatMap methods. It wouldn't
cause problems if we imported the syntax—the compiler would ignore
it in favour of the explicit methods.

Remember that we're subjecting ourselves to these shenanigans be-
cause we're stubbornly refusing to use the universal Cats import,
cats.implicits. If we did use that import, all of the instances and
syntax we needed would be in scope and everything would just work.


http://typelevel.org/cats/api/cats/syntax/package$$applicative$
http://typelevel.org/cats/api/cats/instances/package$$list$
http://typelevel.org/cats/api/cats/syntax/package$$functor$
http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
http://typelevel.org/cats/api/cats/implicits$.html
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5.3 Monad Transformers in Cats

Each monad transformer is a data type, defined in cats.data, that allows
us to wrap stacks of monads to produce new monads. We use the monads
we've built via the Monad type class. The main concepts we have to cover to
understand monad transformers are:

¢ the available transformer classes;

e how to build stacks of monads using transformers;

e how to construct instances of a monad stack; and

e how to pull apart a stack to access the wrapped monads.

5.3.1 The Monad Transformer Classes

By convention, in Cats a monad Foo will have a transformer class called FooT.
In fact, many monads in Cats are defined by combining a monad transformer
with the Id monad. Concretely, some of the available instances are:

e cats.data.OptionT for Option;
e cats.data.EitherT for Either;
e cats.data.ReaderT for Reader;
e cats.data.WriterT forWriter;
e cats.data.StateT for State;

e cats.data.IdT for the Id monad.

Kleisli Arrows

In Section 4.8 we mentioned that the Reader monad was a specialisa-
tion of a more general concept called a “kleisli arrow”, represented in
Cats as cats.data.Kleisli.

We can now reveal that Kleisli and ReaderT are, in fact, the same
thing! ReaderT is actually a type alias for Kleisli. Hence, we were
creating Readers last chapter and seeing Kleislis on the console.


http://typelevel.org/cats/api/cats/data/
http://typelevel.org/cats/api/cats/data/OptionT.html
http://typelevel.org/cats/api/cats/data/EitherT.html
http://typelevel.org/cats/api/cats/data/?search=reader#ReaderT%5BF%5B_%5D,A,B%5D=cats.data.Kleisli%5BF,A,B%5D
http://typelevel.org/cats/api/cats/data/WriterT.html
http://typelevel.org/cats/api/cats/data/StateT.html
http://typelevel.org/cats/api/cats/data/IdT.html
http://typelevel.org/cats/api/cats/Id.html
http://typelevel.org/cats/api/cats/data/Kleisli.html
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5.3.2 Building Monad Stacks

All of these monad transformers follow the same convention. The transformer
itself represents the inner monad in a stack, while the first type parameter
specifies the outer monad. The remaining type parameters are the types we've
used to form the corresponding monads.

For example, our ListOption type above is an alias for OptionT[List, Al
but the result is effectively a List[0ption[A]]. In other words, we build
monad stacks from the inside out:

type ListOption[A] = OptionT[List, Al

Many monads and all transformers have at least two type parameters, so we
often have to define type aliases for intermediate stages.

For example, suppose we want to wrap Either around Option. Optionisthe
innermost type so we want to use the OptionT monad transformer. We need
to use Either as the first type parameter. However, Either itself has two
type parameters and monads only have one. We need a type alias to convert
the type constructor to the correct shape:

// Alias Either to a type constructor with one parameter:
type ErrorOr[A] = Either[String, A]

// Build our final monad stack using OptionT:
type ErrorOrOption[A] = OptionT[ErrorOr, A]

ErrorOrOptionisamonad,justlike ListOption. We can use pure, map, and
flatMap as usual to create and transform instances:

import cats.instances.either. // for Monad

val a = 10.pure[ErrorOrOption]
// a: ErrorOrOption[Int] = OptionT(Right(Some(10)))

val b = 32.pure[ErrorOrOption]
// b: ErrorOrOption[Int] = OptionT(Right(Some(32)))
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val ¢ = a.flatMap(x => b.map(y => x + y))
// c: cats.data.OptionT[ErrorOr,Int] = OptionT(Right(Some(42)))

Things become even more confusing when we want to stack three or more
monads.

For example, let’s create a Future of an Either of Option. Once again we
build this from the inside out with an OptionT of an EitherT of Future. How-
ever, we can't define this in one line because EitherT has three type param-
eters:

case class EitherT[F[ ], E, Al(stack: F[Either[E, A]]l) {
// etc...

The three type parameters are as follows:

e F[ 1 isthe outer monad in the stack (Either is the inner);
e Eisthe error type for the Either;
e Ais the result type for the Either.

This time we create an alias for EitherT that fixes Future and Error and
allows A to vary:

import scala.concurrent.Future
import cats.data.{EitherT, OptionT}

type FutureEither[A] = EitherT[Future, String, Al
type FutureEitherOption[A] = OptionT[FutureEither, A]

Our mammoth stack now composes three monads and our map and flatMap
methods cut through three layers of abstraction:

import cats.instances.future._ // for Monad

import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration._
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val futureEitherOr: FutureEitherOption[Int] =
for {
a <- 10.pure[FutureEitherOption]
b <- 32.pure[FutureEitherOption]
} yield a + b

Kind Projector

If you frequently find yourself defining multiple type aliases when build-
ing monad stacks, you may want to try the Kind Projector compiler plu-
gin. Kind Projector enhances Scala’s type syntax to make it easier to
define partially applied type constructors. For example:

import cats.instances.option. // for Monad
// import cats.instances.option.

123.pure[EitherT[Option, String, ?]]
// res7: cats.data.EitherT[Option,String,Int] = EitherT(Some(
Right(123)))

Kind Projector can’t simplify all type declarations down to a single line,
but it can reduce the number of intermediate type definitions needed
to keep our code readable.

5.3.3 Constructing and Unpacking Instances

As we saw above, we can create transformed monad stacks using the relevant
monad transformer’s apply method or the usual pure syntax*:

// Create using apply:

val errorStackl = OptionT[ErrorOr, Int](Right(Some(10)))

// errorStackl: cats.data.OptionT[ErrorOr,Int] = OptionT(Right(Some
(10)))

!Cats provides an instance of MonadError for EitherT, allowing us to create instances
using raiseError as well as pure.


https://github.com/non/kind-projector
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// Create using pure:
val errorStack2 = 32.pure[ErrorOrOption]
// errorStack2: ErrorOrOption[Int] = OptionT(Right(Some(32)))

Once we've finished with a monad transformer stack, we can unpack it using
its value method. This returns the untransformed stack. We can then manip-
ulate the individual monads in the usual way:

// Extracting the untransformed monad stack:
errorStackl.value
// resll: ErrorOr[Option[Int]] = Right(Some(10))

// Mapping over the Either in the stack:
errorStack2.value.map(_ .getOrElse(-1))
// resl3: scala.util.Either[String,Int] = Right(32)

Each call to value unpacks a single monad transformer. We may need more
than one call to completely unpack a large stack. For example, to Await the
FutureEitherOption stack above, we need to call value twice:

futureEitherOr
// resld: FutureEitherOption[Int] = OptionT(EitherT(Future(Success(
Right(Some(42))))))

val intermediate = futureEitherOr.value
// intermediate: FutureEither[Option[Int]] = EitherT(Future(Success(
Right(Some(42)))))

val stack = intermediate.value
// stack: scala.concurrent.Future[Either[String,Option[Int]]] = Future

(Success (Right(Some(42))))

Await.result(stack, 1.second)
// resl5: Either[String,Option[Int]] = Right(Some(42))

5.3.4 Default Instances

Many monads in Cats are defined using the corresponding transformer and
the Id monad. This is reassuring as it confirms that the APIs for monads and
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transformers are identical. Reader, Writer, and State are all defined in this
way:

type Reader[E, A] ReaderT[Id, E, A] // = Kleisli[Id, E, A]
type Writer[W, A] WriterT[Id, W, Al
type State[S, A] = StateT[Id, S, A]

In other cases monad transformers are defined separately to their correspond-
ing monads. In these cases, the methods of the transformer tend to mirror the
methods on the monad. For example, OptionT defines getOrElse, and Ei-
therT defines fold, bimap, swap, and other useful methods.

5.3.5 Usage Patterns

Widespread use of monad transformers is sometimes difficult because they
fuse monads together in predefined ways. Without careful thought, we can
end up having to unpack and repack monads in different configurations to
operate on them in different contexts.

We can cope with this in multiple ways. One approach involves creating a
single “super stack” and sticking to it throughout our code base. This works
if the code is simple and largely uniform in nature. For example, in a web
application, we could decide that all request handlers are asynchronous and
all can fail with the same set of HTTP error codes. We could design a custom
ADT representing the errors and use a fusion Future and Either everywhere
in our code:

sealed abstract class HttpError

final case class NotFound(item: String) extends HttpError
final case class BadRequest(msg: String) extends HttpError
// etc...

type FutureEither[A] = EitherT[Future, HttpError, Al
The “super stack” approach starts to fail in larger, more heterogeneous code

bases where different stacks make sense in different contexts. Another design
pattern that makes more sense in these contexts uses monad transformers
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as local “glue code”. We expose untransformed stacks at module boundaries,
transform them to operate on them locally, and untransform them before pass-
ing them on. This allows each module of code to make its own decisions about
which transformers to use:

import cats.data.Writer
type Logged[A] = Writer[List[String]l, A]

// Methods generally return untransformed stacks:
def parseNumber(str: String): Logged[Option[Int]] =
util.Try(str.toInt).toOption match {
case Some(num) => Writer(List(s"Read $str"), Some(num))
case None => Writer(List(s"Failed on $str"), None)

// Consumers use monad transformers locally to simplify composition:
def addAll(a: String, b: String, c: String): Logged[Option[Int]] = {
import cats.data.OptionT

val result = for {
a <- OptionT(parseNumber(a))
b <- OptionT(parseNumber(b))
Cc <- OptionT(parseNumber(c))
} yield a + b + ¢

result.value

// This approach doesn't force OptionT on other users' code:

val resultl = addAll("1", "2", "3")

// resultl: Logged[Option[Int]] = WriterT((List(Read 1, Read 2, Read
3),Some(6)))

val result2 = addAll("1", "a", "3")
// result2: Logged[Option[Int]] WriterT((List(Read 1, Failed on a),
None))

Unfortunately, there aren't one-size-fits-all approaches to working with
monad transformers. The best approach for you may depend on a lot of fac-
tors: the size and experience of your team, the complexity of your code base,
and so on. You may need to experiment and gather feedback from colleagues
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to determine whether monad transformers are a good fit.

5.4 Exercise: Monads: Transform and Roll Out

The Autobots, well-known robots in disguise, frequently send messages dur-
ing battle requesting the power levels of their team mates. This helps them
coordinate strategies and launch devastating attacks. The message sending
method looks like this:

def getPowerLevel(autobot: String): Response[Int] =
?7?

Transmissions take time in Earth’s viscous atmosphere, and messages are oc-
casionally lost due to satellite malfunction or sabotage by pesky Decepticons®.
Responses are therefore represented as a stack of monads:

type Response[A] = Future[Either[String, A]]
// defined type alias Response

Optimus Prime is getting tired of the nested for comprehensions in his neural
matrix. Help him by rewriting Response using a monad transformer.

See the solution
Now test the code by implementing getPowerLevel to retrieve data from a

set of imaginary allies. Here’s the data we'll use:

val powerLevels = Map(

"Jazz" -> 6,
"Bumblebee" -> 8,
"Hot Rod" -> 10

If an Autobot isn’t in the powerLevels map, return an error message reporting
that they were unreachable. Include the name in the message for good effect.

’It is a well known fact that Autobot neural nets are implemented in Scala. Decepticon
brains are, of course, dynamically typed.
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See the solution

Two autobots can perform a special move if their combined power level is
greater than 15. Write a second method, canSpecialMove, that accepts the
names of two allies and checks whether a special move is possible. If either
ally is unavailable, fail with an appropriate error message:

def canSpecialMove(allyl: String, ally2: String): Response[Boolean] =
27?7

See the solution

Finally, write a method tacticalReport that takes two ally names and prints
a message saying whether they can perform a special move:

def tacticalReport(allyl: String, ally2: String): String =
77?7

See the solution

You should be able to use report as follows:

tacticalReport("Jazz", "Bumblebee")
// res28: String = Jazz and Bumblebee need a recharge.

tacticalReport("Bumblebee", "Hot Rod")
// res29: String = Bumblebee and Hot Rod are ready to roll out!

tacticalReport("Jazz", "Ironhide")
// res30: String = Comms error: Ironhide unreachable

5.5 Summary

In this chapter we introduced monad transformers, which eliminate the need
for nested for comprehensions and pattern matching when working with
“stacks” of nested monads.
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Each monad transformer, such as FutureT, OptionT or EitherT, provides
the code needed to merge its related monad with other monads. The trans-
former is a data structure that wraps a monad stack, equipping it with map and
flatMap methods that unpack and repack the whole stack.

The type signatures of monad transformers are written from the in-
side out, so an EitherT[Option, String, A] is a wrapper for an Op-
tion[Either[String, Al]. Itis often useful to use type aliases when writ-
ing transformer types for deeply nested monads.

With this look at monad transformers, we have now covered everything
we need to know about monads and the sequencing of computations using
flatMap. In the next chapter we will switch tack and discuss two new type
classes, Semigroupal and Applicative, that support new kinds of operation
such as zipping independent values within a context.



Chapter 6

Semigroupal and Applicative

In previous chapters we saw how functors and monads let us sequence opera-
tions using map and flatMap. While functors and monads are both immensely
useful abstractions, there are certain types of program flow that they cannot
represent.

One such example is form validation. When we validate a form we want to
return all the errors to the user, not stop on the first error we encounter. If we
model this with a monad like Either, we fail fast and lose errors. For example,
the code below fails on the first call to parseInt and doesn’t go any further:

import cats.syntax.either._ // for catchOnly

def parseInt(str: String): Either[String, Int] =
Either.catchOnly[NumberFormatException] (str.toInt).
leftMap( => s"Couldn't read $str")

for {
a <- parselnt("a")
b <- parseInt("b")
c <- parseInt("c")
} yield (a + b + ¢)
// resl: scala.util.Either[String,Int] = Left(Couldn't read a)

Another example is the concurrent evaluation of Futures. If we have several
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long-running independent tasks, it makes sense to execute them concurrently.
However, monadic comprehension only allows us to run them in sequence.
map and flatMap aren’t quite capable of capturing what we want because
they make the assumption that each computation is dependent on the previous
one:

// context2 is dependent on valuel:
contextl.flatMap(valuel => context2)

The calls to parselInt and Future.apply above are independent of one an-
other, but map and flatMap can't exploit this. We need a weaker construct—
one that doesn't guarantee sequencing—to achieve the result we want. In this
chapter we will look at two type classes that support this pattern:

e Semigroupal encompasses the notion of composing pairs of contexts.
Cats provides a cats.syntax.apply module that makes use of Semi -
groupal and Functor to allow users to sequence functions with mul-
tiple arguments.

e Applicative extends Semigroupal and Functor. It provides a way
of applying functions to parameters within a context. Applicative is
the source of the pure method we introduced in Chapter 4.

Applicatives are often formulated in terms of function application, instead of
the semigroupal formulation that is emphasised in Cats. This alternative for-
mulation provides a link to other libraries and languages such as Scalaz and
Haskell. We'll take a look at different formulations of Applicative, as well as
the relationships between Semigroupal, Functor, Applicative, and Monad,
towards the end of the chapter.

6.1 Semigroupal

cats.Semigroupal is a type class that allows us to combine contexts®. If

!It is also the winner of Underscore’s 2017 award for the most difficult functional program-
ming term to work into a coherent English sentence.


http://typelevel.org/cats/api/cats/syntax/package$$semigroupal$
http://typelevel.org/cats/api/cats/kernel/Semigroupal.html
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we have two objects of type F[A] and F[B], a Semigroupal[F] allows us to
combine them to form an F[ (A, B)]. Its definition in Cats is:

trait Semigroupall[F[ 11 {
def product[A, Bl(fa: F[A], fb: F[B]): F[(A, B)]
}

As we discussed at the beginning of this chapter, the parameters fa and fb
are independent of one another: we can compute them in either order be-
fore passing them to product. This is in contrast to flatMap, which imposes
a strict order on its parameters. This gives us more freedom when defining
instances of Semigroupal than we get when defining Monads.

6.1.1 Joining Two Contexts

While Semigroup allows us to join values, Semigroupal allows us to join con-
texts. Let’s join some Options as an example:

import cats.Semigroupal
import cats.instances.option. // for Semigroupal

Semigroupal[Option].product(Some(123), Some("abc"))
// res0: Option[(Int, String)] = Some((123,abc))

If both parameters are instances of Some, we end up with a tuple of the values
within. If either parameter evaluates to None, the entire result is None:

Semigroupal[Option].product(None, Some("abc"))
// resl: Option[(Nothing, String)] = None

Semigroupal[Option].product(Some(123), None)
// res2: Option[(Int, Nothing)] = None

6.1.2 Joining Three or More Contexts

The companion object for Semigroupal defines a set of methods on top of
product. For example, the methods tuple2 through tuple22 generalise
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product to different arities:

import cats.instances.option._ // for Semigroupal

Semigroupal.tuple3(Option(1l), Option(2), Option(3))
// res3: Option[(Int, Int, Int)] = Some((1,2,3))

Semigroupal.tuple3(Option(1l), Option(2), Option.empty[Int])
// resd: Option[(Int, Int, Int)] = None

The methods map2 through map22 apply a user-specified function to the val-
ues inside 2 to 22 contexts:

Semigroupal.map3(Option(1l), Option(2), Option(3))( + + )
// res5: Option[Int] = Some(6)

Semigroupal.map2(Option(1l), Option.empty[Int])( + )
// res6: Option[Int] = None

There are also methods contramap2 through contramap22 and imap2
through imap22, that require instances of Contravariant and Invariant
respectively.

6.2 Apply Syntax

Cats provides a convenient apply syntax that provides a shorthand for the
methods described above. We import the syntax from cats.syntax.apply.
Here's an example:

import cats.instances.option._// for Semigroupal
import cats.syntax.apply. // for tupled and mapN

The tupled method is implicitly added to the tuple of Options. It uses the
Semigroupal for Option to zip the values inside the Options, creating a sin-
gle Option of a tuple:


http://typelevel.org/cats/api/cats/syntax/package$$semigroupal$
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(Option(123), Option("abc")).tupled
// res7: Option[(Int, String)] = Some((123,abc))

We can use the same trick on tuples of up to 22 values. Cats defines a separate
tupled method for each arity:

(Option(123), Option("abc"), Option(true)).tupled
// res8: Option[(Int, String, Boolean)] = Some((123,abc,true))

In addition to tupled, Cats’ apply syntax provides a method called mapN that
accepts an implicit Functor and a function of the correct arity to combine the
values:

case class Cat(name: String, born: Int, color: String)

Option("Garfield"),
Option(1978),
Option("Orange & black")
) .mapN(Cat.apply)
// res9: Option[Cat] = Some(Cat(Garfield,1978,0range & black))

Internally mapN uses the Semigroupal to extract the values from the Option
and the Functor to apply the values to the function.

It’s nice to see that this syntax is type checked. If we supply a function that

accepts the wrong number or types of parameters, we get a compile error:

val add: (Int, Int) => Int = (a, b) =>a + b
// add: (Int, Int) => Int = <function2>

(Option(1l), Option(2), Option(3)).mapN(add)
// <console>:27: error: type mismatch;

// found : (Int, Int) => Int

// required: (Int, Int, Int) => 7

// (Option(1l), Option(2), Option(3)).mapN(add)
// ~

(Option("cats"), Option(true)).mapN(add)
// <console>:27: error: type mismatch;
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(Int, Int) => Int

(String, Boolean) => ?

(Option("cats"), Option(true)).mapN(add)

~

6.2.1 Fancy Functors and Apply Syntax

Apply syntax also has contramapN and imapN methods that accept Contravari-
ant and Invariant functors. For example, we can combine Monoids using In-
variant. Here’s an example:

import
import
import
import
import
import

cats.
cats.
cats.
cats.
cats.
cats.

Monoid
instances.int._
instances.invariant._
instances.list.
instances.string.

syntax.apply.

case class Cat(
name: String,
year0fBirth: Int,
favoriteFoods: List[String]

val tupleToCat:

Cat.apply

val catToTuple: Cat => (String, Int, List[String])

(String, Int, List[String]) => Cat

// for Monoid
// for Semigroupal
// for Monoid
// for Monoid
// for imapN

cat => (cat.name, cat.yearOfBirth, cat.favoriteFoods)

implicit val catMonoid: Monoid[Cat] = (
Monoid[String],
Monoid[Int],
Monoid[List[String]]

) .imapN(tupleToCat) (catToTuple)

Our Monoid allows us to create “empty” Cats, and add Cats together using
the syntax from Chapter 2:
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import cats.syntax.semigroup. // for |+|

val garfield = Cat("Garfield", 1978, List("Lasagne"))
val heathcliff Cat("Heathcliff", 1988, List("Junk Food"))

garfield |+| heathcliff
// resl7: Cat = Cat(GarfieldHeathcliff,3966,List(Lasagne, Junk Food))

6.3 Semigroupal Applied to Different Types

Semigroupal doesn't always provide the behaviour we expect, particularly
for types that also have instances of Monad. We have seen the behaviour of
the Semigroupal for Option. Let's look at some examples for other types.

Future

The semantics for Future provide parallel as opposed to sequential execution:

import cats.Semigroupal

import cats.instances.future. // for Semigroupal

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global
import scala.language.higherKinds

val futurePair = Semigroupal[Future].
product(Future("Hello"), Future(123))

Await.result(futurePair, 1.second)
// resl: (String, Int) = (Hello,123)

The two Futures start executing the moment we create them, so they are
already calculating results by the time we call product. We can use apply
syntax to zip fixed numbers of Futures:

import cats.syntax.apply. // for mapN

case class Cat(
name: String,
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year0fBirth: Int,
favoriteFoods: List[String]

)

val futureCat = (
Future("Garfield"),
Future(1978),
Future(List("Lasagne"))
) .mapN(Cat.apply)

Await.result(futureCat, 1.second)
// res4: Cat = Cat(Garfield,1978,List(Lasagne))

List

Combining Lists with Semigroupal produces some potentially unexpected
results. We might expect code like the following to zip the lists, but we actually
get the cartesian product of their elements:

import cats.Semigroupal
import cats.instances.list. // for Semigroupal

Semigroupal[List].product(List(1, 2), List(3, 4))
// res5: List[(Int, Int)] = List((1,3), (1,4), (2,3), (2,4))

This is perhaps surprising. Zipping lists tends to be a more common operation.
We'll see why we get this behaviour in a moment.

Either

We opened this chapter with a discussion of fail-fast versus accumulating
error-handling. We might expect product applied to Either to accumulate
errors instead of fail fast. Again, perhaps surprisingly, we find that product
implements the same fail-fast behaviour as flatMap:

import cats.instances.either. // for Semigroupal
type ErrorOr[A] = Either[Vector[String], A]

Semigroupal[ErrorOr].product(
Left(Vector("Error 1)),
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Left(Vector("Error 2"))
)
// res7: ErrorOr[(Nothing, Nothing)] = Left(Vector(Error 1))

In this example product sees the first failure and stops, even though it is pos-
sible to examine the second parameter and see that it is also a failure.

6.3.1 Semigroupal Applied to Monads

The reason for the surprising results for List and Either is that they are
both monads. To ensure consistent semantics, Cats’ Monad (which extends
Semigroupal) provides a standard definition of product in terms of map and
flatMap. This gives what we might think of as unexpected and less useful be-
haviour for a number of data types. The consistency of semantics is important
for higher level abstractions, but we don’t know about those yet.

Even our results for Future are a trick of the light. flatMap provides se-
guential ordering, so product provides the same. The parallel execution we
observe occurs because our constituent Futures start running before we call
product. This is equivalent to the classic create-then-flatMap pattern:

val a Future("Future 1")
val b = Future("Future 2")

for {
X <- a
y <-b
} yield (x, y)

So why bother with Semigroupal at all? The answer is that we can create
useful data types that have instances of Semigroupal (and Applicative)
but not Monad. This frees us to implement product in different ways. We'll
examine this further in a moment when we look at an alternative data type for
error handling.

6.3.1.1 Exercise: The Product of Monads

Implement product in terms of flatMap:
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import cats.Monad

def product[M[_]: Monad, A, B](x: M[A], y: M[B]): M[(A, B)] =
77?7

See the solution

6.4 Validated

By now we are familiar with the fail-fast error handling behaviour of Either.
Furthermore, because Either is a monad, we know that the semantics of
product are the same as those for flatMap. In fact, it is impossible for us
to design a monadic data type that implements error accumulating semantics
without breaking the consistency of these two methods.

Fortunately, Cats provides a data type called Validated that has an instance
of Semigroupal but no instance of Monad. The implementation of product
is therefore free to accumulate errors:

import cats.Semigroupal
import cats.data.Validated
import cats.instances.list._// for Monoid

type AlLlErrorsOr[A] = Validated[List[String], A]

Semigroupal[AllErrorsOr].product(
Validated.invalid(List("Error 1")),
Validated.invalid(List("Error 2"))
)
// resl: AlLlErrorsOr[(Nothing, Nothing)] = Invalid(List(Error 1, Error
2))

Validated complements Either nicely. Between the two we have support
for both of the common types of error handling: fail-fast and accumulating.
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6.4.1 Creating Instances of Validated

Validated has two subtypes, Validated.Valid and Validated.Invalid,
that correspond loosely to Right and Left. There are a lot of ways to cre-
ate instances of these types. We can create them directly using their apply
methods:

val v = Validated.Valid(123)
// v: cats.data.Validated.Valid[Int] = Valid(123)

val i = Validated.Invalid(List("Badness"))

// i: cats.data.Validated.Invalid[List[String]] = Invalid(List(Badness
))

However, it is often easier to use the valid and invalid smart constructors,
which widen the return type to Validated:

val v = Validated.valid[List[String], Int](123)
// v: cats.data.Validated[List[String],Int] = Valid(123)

val i = Validated.invalid[List[String], Int](List("Badness"))

// i: cats.data.Validated[List[String],Int] = Invalid(List(Badness))

As a third option we can import the valid and invalid extension methods
from cats.syntax.validated:

import cats.syntax.validated. // for valid and invalid

123.valid[List[String]]
// res2: cats.data.Validated[List[String],Int]

Valid(123)

List("Badness").invalid[Int]
// res3: cats.data.Validated[List[String],Int] = Invalid(List(Badness)
)

As a fourth option we can use pure and raiseError from
cats.syntax.applicative and cats.syntax.applicativeError
respectively:


http://typelevel.org/cats/api/cats/syntax/package$$applicative$
http://typelevel.org/cats/api/cats/syntax/package$$applicativeError$
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import cats.syntax.applicative. // for pure
import cats.syntax.applicativeError. // for raiseError

type ErrorsOr[A] = Validated[List[String], Al

123.pure[Errors0Or]
// res5: ErrorsOr[Int] = Valid(123)

List("Badness").raiseError[ErrorsOr, Int]
// res6: ErrorsOr[Int] = Invalid(List(Badness))

Finally, there are helper methods to create instances of Validated from dif-
ferent sources. We can create them from Exceptions, as well as instances of
Try, Either, and Option:

Validated.catchOnly[NumberFormatException] ("foo".toInt)
// res7: cats.data.Validated[NumberFormatException,Int] = Invalid(java
.lang.NumberFormatException: For input string: "foo")

Validated.catchNonFatal(sys.error("Badness"))
// res8: cats.data.Validated[Throwable,Nothing] = Invalid(java.lang.
RuntimeException: Badness)

Validated.fromTry(scala.util.Try("foo".toInt))
// res9: cats.data.Validated[Throwable,Int] = Invalid(java.lang.
NumberFormatException: For input string: "foo")

Validated.fromEither[String, Int](Left("Badness"))
// reslO: cats.data.Validated[String,Int] = Invalid(Badness)

Validated.fromOption[String, Int](None, "Badness")
// resll: cats.data.Validated[String,Int] = Invalid(Badness)

6.4.2 Combining Instances of Validated

We can combine instances of Validated using any of the methods or syntax
described for Semigroupal above.

All of these techniques require an instance of Semigroupal to be in scope. As
with Either, we need to fix the error type to create a type constructor with
the correct number of parameters for Semigroupal:
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type AlLlErrorsOr[A] = Validated[String, A]

Validated accumulates errors using a Semigroup, so we need one of those
in scope to summon the Semigroupal. If no Semigroup is visible at the call
site, we get an annoyingly unhelpful compilation error:

Semigroupal[AllErrorsOr]

// <console>:28: error: could not find implicit value for parameter
instance: cats.Semigroupal[AllErrorsOr]

// Semigroupal[AllErrorsOr]

// ~

Once we import a Semigroup for the error type, everything works as ex-
pected:

import cats.instances.string. // for Semigroup

Semigroupal[AllErrorsOr]
// resl3: cats.Semigroupal[AllErrorsOr] = cats.data.
ValidatedInstances$$anon$1@5e3850f5

As long as the compiler has all the implicits in scope to summon a Semi-
groupal of the correct type, we can use apply syntax or any of the other
Semigroupal methods to accumulate errors as we like:

import cats.syntax.apply. // for tupled

"Error 1".invalid[Int],
"Error 2".invalid[Int]

) .tupled
// resld: cats.data.Validated[String, (Int, Int)] = Invalid(Error 1
Error 2)

As you can see, String isn’t an ideal type for accumulating errors. We com-
monly use Lists or Vectors instead:
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import cats.instances.vector._// for Semigroupal

Vector(404).invalid[Int],
Vector(500).invalid[Int]
) .tupled
// resl5: cats.data.Validated[scala.collection.immutable.Vector[Int], (
Int, Int)] = Invalid(Vector(404, 500))

The cats.data package also provides the NonEmptyList and NonEmptyVec-
tor types that prevent us failing without at least one error:

import cats.data.NonEmptyVector

NonEmptyVector.of ("Error 1").invalid[Int],
NonEmptyVector.of ("Error 2").invalid[Int]
) .tupled
// resl6: cats.data.Validated[cats.data.NonEmptyVector[String], (Int,
Int)] = Invalid(NonEmptyVector(Error 1, Error 2))

6.4.3 Methods of Validated

Validated comes with a suite of methods that closely resemble those avail-
able for Either, including the methods from cats.syntax.either. We can
use map, leftMap, and bimap to transform the values inside the valid and
invalid sides:

123.valid.map(_ * 100)
// resl7: cats.data.Validated[Nothing,Int] = Valid(12300)

"?".invalid.leftMap(_ .toString)
// resl8: cats.data.Validated[String,Nothing] = Invalid(?)

123.valid[String].bimap(_+ "!",  * 100)
// resl9: cats.data.Validated[String,Int]

Valid(12300)

"?".invalid[Int].bimap(_+ "!", _ * 100)
// res20: cats.data.Validated[String,Int] = Invalid(?!)


http://typelevel.org/cats/api/cats/data/NonEmptyList.html
http://typelevel.org/cats/api/cats/data/NonEmptyVector.html
http://typelevel.org/cats/api/cats/data/NonEmptyVector.html
http://typelevel.org/cats/api/cats/syntax/package$$either$
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We can’'t flatMap because Validated isn't a monad. However, Cats does
provide a stand-in for flatMap called andThen. The type signature of
andThen is identical to that of flatMap, but it has a different name because
it is not a lawful implementation with respect to the monad laws:

32.valid.andThen { a =>
10.valid.map { b =>
a+b
}
}
// res2l: cats.data.Validated[Nothing,Int] = Valid(42)

If we want to do more than just flatMap, we can convert back and forth be-
tween Validated and Either using the toEither and toValidated meth-
ods. Note that toValidated comes from [cats.syntax.either]:

import cats.syntax.either._ // for toValidated
// import cats.syntax.either.

"Badness".invalid[Int]
// res22: cats.data.Validated[String,Int] = Invalid(Badness)

"Badness".invalid[Int].toEither
// res23: Either[String,Int] = Left(Badness)

"Badness".invalid[Int].toEither.toValidated
// res24: cats.data.Validated[String,Int] = Invalid(Badness)

As with Either, we can use the ensure method to fail with a specified error
if a predicate does not hold:

// 123.valid[String].ensure("Negative!")( > 0)

Finally, we can call getOrElse or fold to extract values from the Valid and
Invalid cases:
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"fail".invalid[Int].getOrElse(0)
// res26: Int =0

"fail".invalid[Int].fold(_+ "!!!", .toString)
// res27: String = fail!!!

6.4.4 Exercise: Form Validation

Let's get used to Validated by implementing a simple HTML registration
form. We receive request data from the client in a Map[String, String]
and we want to parse it to create a User object:

case class User(name: String, age: Int)

Our goal is to implement code that parses the incoming data enforcing the
following rules:

o the name and age must be specified;
e the name must not be blank;
o the age must be a valid non-negative integer.

If all the rules pass our parser we should return a User. If any rules fail we
should return a List of the error messages.

To implement this example we'll need to combine rules in sequence and in
parallel. We'll use Either to combine computations in sequence using fail-fast
semantics, and Validated to combine them in parallel using accumulating
semantics.

Let's start with some sequential combination. We'll define two methods to
read the "name" and "age" fields:

o readName will take a Map[String, String] parameter, extract the
"name" field, check the relevant validation rules, and return an Ei-
ther[List[String], String].
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o readAge will take a Map[String, String] parameter, extract the
"age" field, check the relevant validation rules, and return an Ei-
ther[List[String], Int].

We'll build these methods up from smaller building blocks. Start by defining a
method getValue that reads a String from the Map given a field name.

See the solution

Next define a method parseInt that consumes a String and parses it as an
Int.

See the solution

Next implement the validation checks: nonBlank to check Strings, and non-
Negative to check Ints.

See the solution

Now combine getValue, parseInt, nonBlank and nonNegative to create
readName and readAge:

See the solution

Finally, use a Semigroupal to combine the results of readName and readAge
to produce a User. Make sure you switch from Either to Validated to ac-
cumulate errors.

See the solution

6.5 Apply and Applicative

Semigroupals aren’t mentioned frequently in the wider functional program-
ming literature. They provide a subset of the functionality of a related type
class called an applicative functor (“applicative” for short).

Semigroupal and Applicative effectively provide alternative encodings of
the same notion of joining contexts. Both encodings are introduced in the
same 2008 paper by Conor McBride and Ross Paterson’.

*Semigroupal is referred to as “monoidal” in the paper.


http://www.staff.city.ac.uk/~ross/papers/Applicative.html
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Cats models applicatives using two type classes. The first, cats.Apply, ex-
tends Semigroupal and Functor and adds an ap method that applies a pa-
rameter to a function within a context. The second, cats.Applicative, ex-
tends Apply, adds the pure method introduced in Chapter 4. Here'’s a simpli-
fied definition in code:

trait Apply[F[ 1] extends Semigroupal[F] with Functor[F] {
def ap[A, Bl(ff: F[A => B])(fa: F[A]): F[B]

def product[A, B](fa: F[A]l, fb: F[B]): F[(A, B)] =
ap(map(fa)(a => (b: B) => (a, b)))(fb)
}

trait Applicative[F[ 1] extends Apply[F] {
def pure[A]l(a: A): F[A]
}

Breaking this down, the ap method applies a parameter fa to a function ff
within a context F[ 1. The product method from Semigroupal is defined in
terms of ap and map.

Don'’t worry too much about the implementation of product—it’s difficult to
read and the details aren’t particuarly important. The main point is that there
is a tight relationship between product, ap, and map that allows any one of
them to be defined in terms of the other two.

Applicative also introduces the pure method. This is the same pure we
saw in Monad. It constructs a new applicative instance from an unwrapped
value. In this sense, Applicative is related to Apply as Monoid is related to
Semigroup.

6.5.1 The Hierarchy of Sequencing Type Classes

With the introduction of Apply and Applicative, we can zoom out and see
a whole family of type classes that concern themselves with sequencing com-
putations in different ways. Figure 6.1 shows the relationship between the
type classes covered in this book®.

*See Rob Norris’ infographic for a the complete picture.


http://typelevel.org/cats/api/cats/Apply.html
http://typelevel.org/cats/api/cats/Applicative.html
https://github.com/tpolecat/cats-infographic
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Cartesian Functor

product map

Apply

Applicative FlatMap
pure flatMap

Monad

Figure 6.1: Monad type class hierarchy

Each type class in the hierarchy represents a particular set of sequencing se-
mantics, introduces a set of characteristic methods, and defines the function-
ality of its supertypes in terms of them:

e every monad is an applicative;
e every applicative a semigroupal;
e andsoon.

Because of the lawful nature of the relationships between the type classes,
the inheritance relationships are constant across all instances of a type class.
Apply defines product in terms of ap and map; Monad defines product, ap,
and map, in terms of pure and flatMap.

To illustrate this let’s consider two hypothetical data types:

e Foo is a monad. It has an instance of the Monad type class that imple-
ments pure and flatMap and inherits standard definitions of product,
map, and ap;

e Bar is an applicative functor. It has an instance of Applicative that
implements pure and ap and inherits standard definitions of product
and map.
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What can we say about these two data types without knowing more about
their implementation?

We know strictly more about Foo than Bar: Monad is a subtype of Applica-
tive, so we can guarantee properties of Foo (namely flatMap) that we cannot
guarantee with Bar. Conversely, we know that Bar may have a wider range
of behaviours than Foo. It has fewer laws to obey (no flatMap), so it can
implement behaviours that Foo cannot.

This demonstrates the classic trade-off of power (in the mathematical sense)
versus constraint. The more constraints we place on a data type, the more
guarantees we have about its behaviour, but the fewer behaviours we can
model.

Monads happen to be a sweet spot in this trade-off. They are flexible enough
to model a wide range of behaviours and restrictive enough to give strong guar-
antees about those behaviours. However, there are situations where monads
aren't the right tool for the job. Sometimes we want Thai food, and burritos
just won't satisfy.

Whereas monads impose a strict sequencing on the computations they model,
applicatives and semigroupals impose no such restriction. This puts them in a
different sweet spot in the hierarchy. We can use them to represent classes
of parallel / independent computations that monads cannot.

We choose our semantics by choosing our data structures. If we choose a
monad, we get strict sequencing. If we choose an applicative, we lose the
ability to flatMap. This is the trade-off enforced by the consistency laws. So
choose your types carefully!

6.6 Summary

While monads and functors are the most widely used sequencing data types
we've covered in this book, semigroupals and applicatives are the most general.
These type classes provide a generic mechanism to combine values and apply
functions within a context, from which we can fashion monads and a variety
of other combinators.
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Semigroupal and Applicative are most commonly used as a means of com-
bining independent values such as the results of validation rules. Cats provides
the Validated type for this specific purpose, along with apply syntax as a con-
venient way to express the combination of rules.

We have almost covered all of the functional programming concepts on our
agenda for this book. The next chapter covers Traverse and Foldable, two
powerful type classes for converting between data types. After that we'll look
at several case studies that bring together all of the concepts from Part I.
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Chapter 7

Foldable and Traverse

In this chapter we'll look at two type classes that capture iteration over collec-
tions:

e Foldable abstracts the familiar foldLeft and foldRight operations;
e Traverse is a higher-level abstraction that uses Applicatives to it-
erate with less pain than folding.

We'll start by looking at Foldable, and then examine cases where folding
becomes complex and Traverse becomes convenient.

7.1 Foldable

The Foldable type class captures the foldLeft and foldRight methods
we're used to in sequences like Lists, Vectors, and Streams. Using Fold-
able, we can write generic folds that work with a variety of sequence types.
We can also invent new sequences and plug them into our code. Foldable
gives us great use cases for Monoids and the Eval monad.
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7.1.1 Folds and Folding

Let’s start with a quick recap of the general concept of folding. We supply an
accumulator value and a binary function to combine it with each item in the
sequence:

def show[A](list: List[A]): String =
list.foldLeft("nil") ((accum, item) => s"$item then $accum")

show(Nil)
// res0: String = nil

show(List (1, 2, 3))
// resl: String = 3 then 2 then 1 then nil

The foldLeft method works recursively down the sequence. Our binary
function is called repeatedly for each item, the result of each call becoming
the accumulator for the next. When we reach the end of the sequence, the
final accumulator becomes our final result.

Depending on the operation we're performing, the order in which we fold may
be important. Because of this there are two standard variants of fold:

e foldLeft traverses from “left” to “right” (start to finish);
e foldRight traverses from “right” to “left” (finish to start).

Figure 7.1 illustrates each direction.

foldLeft and foldRight are equivalent if our binary operation is associative.
For example, we can sum a List[Int] by folding in either direction, using 0
as our accumulator and addition as our operation:

List(1l, 2, 3).foldLeft(0)(_ + )
// res2: Int = 6

List(1, 2, 3).foldRight(0)( + )
// res3: Int =6
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Figure 7.1: lllustration of foldLeft and foldRight

If we provide a non-associative operator the order of evaluation makes a dif-
ference. For example, if we fold using subtraction, we get different results in
each direction:

List(1, 2, 3).foldLeft(0)(_ - )
// res4: Int = -6

List(1, 2, 3).foldRight(0)( - )
// res5: Int = 2

7.1.2 Exercise: Reflecting on Folds
Try using foldLeft and foldRight with an empty list as the accumulator and
: 1 as the binary operator. What results do you get in each case?

See the solution

7.1.3 Exercise: Scaf-fold-ing Other Methods

foldLeft and foldRight are very general methods. We can use them to im-
plement many of the other high-level sequence operations we know. Prove
this to yourself by implementing substitutes for List's map, flatMap, fil-
ter, and sum methods in terms of foldRight.

See the solution
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7.1.4 Foldable in Cats

Cats’ Foldable abstracts foldLeft and foldRight into a type class. In-
stances of Foldable define these two methods and inherit a host of derived
methods. Cats provides out-of-the-box instances of Foldable for a handful
of Scala data types: List, Vector, Stream, and Option.

We can summon instances as usual using Foldable.apply and call their im-
plementations of foldLeft directly. Here is an example using List:

import cats.Foldable
import cats.instances.list._// for Foldable

val ints = List(1, 2, 3)

Foldable[List].foldLeft(ints, 0)( + )
// resl: Int =6

Other sequences like Vector and Stream work in the same way. Here is an
example using Option, which is treated like a sequence of zero or one ele-
ments:

import cats.instances.option. // for Foldable
val maybeInt = Option(123)

Foldable[Option].foldLeft(maybeInt, 10)( * )
// res3: Int = 1230

7.1.4.1 Folding Right

Foldable defines foldRight differently to foldLeft, in terms of the Eval
monad:

def foldRight[A, B](fa: F[A], 1lb: Eval[B])
(f: (A, Eval[B]) => Eval[B]): Evall[B]

Using Eval means folding is always stack safe, even when the collection’s de-
fault definition of foldRight is not. For example, the default implementation
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of foldRight for Stream is not stack safe. The longer the stream, the larger
the stack requirements for the fold. A sufficiently large stream will trigger a
StackOverflowError:

import cats.Eval
import cats.Foldable

def bigData = (1 to 100000).toStream

bigData.foldRight(OL)(_ + )
// java.lang.StackOverflowError ...

Using Foldable forces us to use stack safe operations, which fixes the over-
flow exception:

import cats.instances.stream._ // for Foldable

val eval: Eval[Long] =
Foldable[Stream].
foldRight(bigData, Eval.now(OL)) { (num, eval) =>
eval.map(_ + num)

}

eval.value
// res7: Long = 5000050000

Stack Safety in the Standard Library

Stack safety isn’t typically an issue when using the standard library. The
most commonly used collection types, such as List and Vector, pro-
vide stack safe implementations of foldRight:

(1 to 100000).toList.foldRight(6OL)( + )
// res8: Long = 5000050000

(1 to 100000).toVector.foldRight(OL)( + )
// res9: Long = 5000050000

We've called out Stream because it is an exception to this rule. What-
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ever data type we're using, though, it’s useful to know that Eval has our
back.

7.1.4.2 Folding with Monoids

Foldable provides us with a host of useful methods defined on top of
foldLeft. Many of these are facsimiles of familiar methods from the stan-
dard library: find, exists, forall, toList, isEmpty, nonEmpty, and so on:

Foldable[Option].nonEmpty(Option(42))
// reslO: Boolean = true

Foldable[List].find(List(1, 2, 3))(_ % 2 == 0)

// resll: Option[Int] = Some(2)

In addition to these familiar methods, Cats provides two methods that make
use of Monoids:

e combineAll (and its alias fold) combines all elements in the sequence
using their Monoid;
o foldMap maps a user-supplied function over the sequence and com-

bines the results using a Monoid.

For example, we can use combineAll to sum over a List[Int]:

import cats.instances.int._ // for Monoid
Foldable[List].combineAll(List(1, 2, 3))

// resl2: Int =6

Alternatively, we can use foldMap to convert each Int to a String and con-
catenate them:



7.1. FOLDABLE 171

import cats.instances.string. // for Monoid

Foldable[List].foldMap(List(1, 2, 3))(_.toString)
// resl3: String = 123

Finally, we can compose Foldables to support deep traversal of nested se-
qguences:

import cats.instances.vector._ // for Monoid
val ints = List(Vector(l, 2, 3), Vector(4, 5, 6))

(Foldable[List] compose Foldable[Vector]).combineAll(ints)
// resl5: Int = 21

7.1.4.3 Syntax for Foldable

Every method in Foldable is available in syntax form via
cats.syntax.foldable. In each case, the first argument to the method on
Foldable becomes the receiver of the method call:

import cats.syntax.foldable. // for combineAll and foldMap

List(1, 2, 3).combineAll
// resle: Int =6

List(1, 2, 3).foldMap( .toString)
// resl7: String = 123

Explicits over Implicits

Remember that Scala will only use an instance of Foldable if the
method isn’t explicitly available on the receiver. For example, the fol-
lowing code will use the version of foldLeft defined on List:

List(1, 2, 3).foldLeft(0)(_ + )
// resl8: Int =6


http://typelevel.org/cats/api/cats/syntax/package$$foldable$
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whereas the following generic code will use Foldable:

import scala.language.higherKinds

def sum[F[ ]: Foldablel]l(values: F[Int]): Int =
values.foldLeft(0)( + )

// sum: [F[_]](values: F[Int])(implicit evidence$l: cats.
Foldable[F])Int

We typically don’t need to worry about this distinction. It's a feature!
We call the method we want and the compiler uses a Foldable when
needed to ensure our code works as expected. If we need a stack-safe
implementation of foldRight, using Eval as the accumulator is enough
to force the compiler to select the method from Cats.

7.2 Traverse

foldLeft and foldRight are flexible iteration methods but they require us
to do a lot of work to define accumulators and combinator functions. The
Traverse type class is a higher level tool that leverages Applicatives to
provide a more convenient, more lawful, pattern for iteration.

7.2.1 Traversing with Futures

We can demonstrate Traverse using the Future.traverse and Fu-
ture.sequence methods in the Scala standard library. These methods pro-
vide Future-specific implementations of the traverse pattern. As an example,
suppose we have a list of server hostnames and a method to poll a host for its
uptime:

import scala.concurrent._
import scala.concurrent.duration.
import scala.concurrent.ExecutionContext.Implicits.global

val hostnames = List(
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"alpha.example.com",
"beta.example.com",
"gamma.demo.com"

def getUptime(hostname: String): Future[Int] =
Future(hostname.length * 60) // just for demonstration

Now, suppose we want to poll all of the hosts and collect all of their
uptimes. We can't simply map over hostnames because the result—a
List[Future[Int]]—would contain more than one Future. We need to
reduce the results to a single Future to get something we can block on. Let’s
start by doing this manually using a fold:

val allUptimes: Future[List[Int]] =
hostnames.foldLeft(Future(List.empty[Int])) {
(accum, host) =>

val uptime = getUptime(host)

for {
accum <- accum
uptime <- uptime

} yield accum :+ uptime

Await.result(allUptimes, 1l.second)
// res2: List[Int] = List (1020, 960, 840)

Intuitively, we iterate over hostnames, call func for each item, and combine
the results into a list. This sounds simple, but the code is fairly unwieldy be-
cause of the need to create and combine Futures at every iteration. We can
improve on things greatly using Future.traverse, which is tailor-made for
this pattern:

val allUptimes: Future[List[Int]] =
Future.traverse(hostnames) (getUptime)

Await.result(allUptimes, 1.second)
// res3: List[Int] = List (1020, 960, 840)

This is much clearer and more concise—let’s see how it works. If we ignore
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distractions like CanBuildFromand ExecutionContext, the implementation
of Future.traverse in the standard library looks like this:

def traverse[A, Bl(values: List[A])
(func: A => Future[B]): Future[List[B]] =
values.foldLeft(Future(List.empty[A])) { (accum, host) =>
val item = func(host)
for {
accum <- accum
item <- item
} yield accum :+ item

}

This is essentially the same as our example code above. Future.traverseis
abstracting away the pain of folding and defining accumulators and combina-
tion functions. It gives us a clean high-level interface to do what we want:

e start witha List[Al;
e provide a function A => Future[B];
e end up with a Future[List[B]].

The standard library also provides another method, Future.sequence, that
assumes we're starting with a List[Future[B]] and don't need to provide
an identity function:

object Future {
def sequence[B](futures: List[Future[B]]): Future[List[B]] =
traverse(futures) (identity)

// etc...
}

In this case the intuitive understanding is even simpler:

e start witha List[Future[A]l];
e end up with a Future[List[A]].
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Future.traverse and Future.sequence solve a very specific problem:
they allow us to iterate over a sequence of Futures and accumulate a re-
sult. The simplified examples above only work with Lists, but the real Fu-
ture.traverse and Future. sequence work with any standard Scala collec-
tion.

Cats’ Traverse type class generalises these patterns to work with any type
of Applicative: Future, Option, Validated, and so on. We'll approach
Traverse in the next sections in two steps: first we'll generalise over the
Applicative, then we'll generalise over the sequence type. We'll end up
with an extremely valuable tool that trivialises many operations involving se-
guences and other data types.

7.2.2 Traversing with Applicatives

If we squint, we'll see that we can rewrite traverse in terms of an Applica-
tive. Our accumulator from the example above:

Future(List.empty[Int])

is equivalent to Applicative.pure:

import cats.Applicative
import cats.instances.future.  // for Applicative
import cats.syntax.applicative. // for pure

List.empty[Int].pure[Future]

Our combinator, which used to be this:

def oldCombine(
accum : Future[List[Int]],
host : String
): Future[List[Int]] = {
val uptime = getUptime(host)
for {
accum <- accum
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uptime <- uptime
} yield accum :+ uptime

}

is now equivalent to Semigroupal.combine:

import cats.syntax.apply. // for mapN

// Combining accumulator and hostname using an Applicative:
def newCombine(accum: Future[List[Int]],
host: String): Future[List[Int]] =
(accum, getUptime(host)).mapN(_ :+ )

By substituting these snippets back into the definition of traverse we can
generalise it to to work with any Applicative:

import scala.language.higherKinds

def listTraverse[F[ 1: Applicative, A, B]
(list: List[A]l)(func: A => F[B]): F[List[B]] =
list.foldLeft(List.empty[B].pure[F]) { (accum, item) =>
(accum, func(item)).mapN(_ :+ )

def listSequence[F[ ]: Applicative, B]
(list: List[F[B]]): F[List[B]] =
listTraverse(list) (identity)

We can use listTraverse to re-implement our uptime example:

val totalUptime = listTraverse(hostnames) (getUptime)

Await.result(totalUptime, 1.second)
// resll: List[Int] = List (1020, 960, 840)

or we can use it with with other Applicative data types as shown in the
following exercises.
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7.2.2.1 Exercise: Traversing with Vectors
What is the result of the following?
import cats.instances.vector._// for Applicative

listSequence(List(Vector(1l, 2), Vector(3, 4)))

See the solution

What about a list of three parameters?

listSequence(List(Vector(1l, 2), Vector(3, 4), Vector(5, 6)))

See the solution

7.2.2.2 Exercise: Traversing with Options
Here's an example that uses Options:

import cats.instances.option. // for Applicative

def process(inputs: List[Int]) =

listTraverse(inputs)(n => if(n % 2 == 0) Some(n) else None)
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What is the return type of this method? What does it produce for the following

inputs?

process(List(2, 4, 6))
process(List(1, 2, 3))

See the solution

7.2.2.3 Exercise: Traversing with Validated

Finally, here is an example that uses Validated:
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import cats.data.Validated
import cats.instances.list._ // for Monoid

type ErrorsOr[A] = Validated[List[String], Al

def process(inputs: List[Int]): ErrorsOr[List[Int]] =
listTraverse(inputs) { n =>
if(n % 2 == 0) {
Validated.valid(n)
} else {
Validated.invalid(List(s"$n is not even"))
)
}

What does this method produce for the following inputs?

process(List(2, 4, 6))
process(List(1, 2, 3))

See the solution

7.2.3 Traverse in Cats

Our listTraverse and listSequence methods work with any type of Ap-
plicative, but they only work with one type of sequence: List. We can
generalise over different sequence types using a type class, which brings us
to Cats’ Traverse. Here's the abbreviated definition:

package cats

trait Traverse[F[ 11 {
def traverse[G[_]: Applicative, A, B]
(inputs: F[A])(func: A => G[B]): G[F[BI]]

def sequence[G[_]: Applicative, B]
(inputs: F[G[B]]): G[F[B]] =
traverse(inputs) (identity)
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Cats provides instances of Traverse for List, Vector, Stream, Option, Ei-
ther, and a variety of other types. We can summon instances as usual using
Traverse.apply andusethe traverse and sequence methods as described
in the previous section:

import cats.Traverse
import cats.instances.future._ // for Applicative
import cats.instances.list. // for Traverse

val totalUptime: Future[List[Int]] =
Traverse[List].traverse(hostnames) (getUptime)

Await.result(totalUptime, 1.second)
// resl: List[Int] = List(1020, 960, 840)

val numbers = List(Future(l), Future(2), Future(3))

val numbers2: Future[List[Int]] =
Traverse[List].sequence(numbers)

Await.result(numbers2, 1.second)
// res3: List[Int] = List(1l, 2, 3)

There are also syntax versions of the methods, imported Vvia
cats.syntax.traverse:

import cats.syntax.traverse. // for sequence and traverse

Await.result(hostnames.traverse(getUptime), 1l.second)
// resd: List[Int] = List(1020, 960, 840)

Await.result(numbers.sequence, 1.second)
// res5: List[Int] = List(1l, 2, 3)

As you can see, this is much more compact and readable than the foldLeft
code we started with earlier this chapter!


http://typelevel.org/cats/api/cats/syntax/package$$traverse$
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7.3 Summary

In this chapter we were introduced to Foldable and Traverse, two type
classes for iterating over sequences.

Foldable abstracts the foldLeft and foldRight methods we know from
collections in the standard library. It adds stack-safe implementations of these
methods to a handful of extra data types, and defines a host of situationally
useful additions. That said, Foldable doesn’t introduce much that we didn’t
already know.

The real power comes from Traverse, which abstracts and generalises the
traverse and sequence methods we know from Future. Using these meth-
odswe canturnan F[G[A]] intoaG[F[A]] for any F with aninstance of Tra-
verse and any G with an instance of Applicative. In terms of the reduction
we get in lines of code, Traverse is one of the most powerful patterns in this
book. We can reduce folds of many lines down to a single foo.traverse.

...and with that, we've finished all of the theory in this book. There’s plenty
more to come, though, as we put everything we've learned into practice in a
series of in-depth case studies in Part II!
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Case Studies
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Chapter 8

Case Study: Testing
Asynchronous Code

WEe'll start with a straightforward case study: how to simplify unit tests for
asynchronous code by making them synchronous.

Let’s return to the example from Chapter 7 where we're measuring the uptime
on a set of servers. We'll flesh out the code into a more complete structure.
There will be two components. The firstis an UptimeClient that polls remote
servers for their uptime:

import scala.concurrent.Future

trait UptimeClient {
def getUptime(hostname: String): Future[Int]
}

We'll also have an UptimeService that maintains a list of servers and allows
the user to poll them for their total uptime:

import cats.instances.future. // for Applicative
import cats.instances.list.  // for Traverse
import cats.syntax.traverse. // for traverse

183



184 CHAPTER 8. CASE STUDY: TESTING ASYNCHRONOUS CODE

import scala.concurrent.ExecutionContext.Implicits.global

class UptimeService(client: UptimeClient) {
def getTotalUptime(hostnames: List[String]): Future[Int] =
hostnames.traverse(client.getUptime) .map( .sum)

We've modelled UptimeClient as a trait because we're going to want to stub
it out in unit tests. For example, we can write a test client that allows us to
provide dummy data rather than calling out to actual servers:

class TestUptimeClient(hosts: Map[String, Int]) extends UptimeClient {
def getUptime(hostname: String): Future[Int] =
Future.successful (hosts.getOrElse(hostname, 0))

Now, suppose we're writing unit tests for UptimeService. We want to test
its ability to sum values, regardless of where it is getting them from. Here'’s an
example:

def testTotalUptime() = {

val hosts = Map("hostl" -> 10, "host2" -> 6)

val client = new TestUptimeClient(hosts)

val service = new UptimeService(client)

val actual = service.getTotalUptime(hosts.keys.toList)
val expected = hosts.values.sum

assert(actual == expected)

}

// <console>:31: warning: scala.concurrent.Future[Int] and Int are
unrelated: they will most likely never compare equal

// assert(actual == expected)

// ~

// error: No warnings can be incurred under -Xfatal-warnings.

The code doesn’t compile because we've made a classic error'. We forgot
that our application code is asynchronous. Our actual result is of type Fu-
ture[Int] and out expected result is of type Int. We can’t compare them
directly!

Technically this is a warning not an error. It has been promoted to an error in our case
because we're using the -Xfatal-warnings flag on scalac.
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There are a couple of ways to solve this problem. We could alter our test
code to accommodate the asynchronousness. However, there is another al-
ternative. Let’s make our service code synchronous so our test works without
modification!

8.1 Abstracting over Type Constructors

We need to implement two versions of UptimeClient: an asynchronous one
for use in production and a synchronous one for use in our unit tests:

trait RealUptimeClient extends UptimeClient {
def getUptime(hostname: String): Future[Int]
}

trait TestUptimeClient extends UptimeClient {
def getUptime(hostname: String): Int
}

The question is: what result type should we give to the abstract method in
UptimeClient? We need to abstract over Future[Int] and Int:

trait UptimeClient {
def getUptime(hostname: String): ??77?
}

At first this may seem difficult. We want to retain the Int part from each
type but “throw away” the Future part in the test code. Fortunately, Cats
provides a solution in terms of the identity type, Id, that we discussed way
back in Section 4.3. Id allows us to “wrap” types in a type constructor without
changing their meaning:

package cats

type Id[A] = A

Id allows us to abstract over the return types in UptimeClient. Implement
this now:
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e write a trait definition for UptimeClient that accepts a type construc-
tor F[_] as a parameter;

e extend it with two traits, RealUptimeClient and TestUptimeClient,
that bind F to Future and Id respectively;

e write out the method signature for getUptime in each case to verify
that it compiles.

See the solution

You should now be able to flesh your definition of TestUptimeClient out
into a full class based on aMap[String, Int] as before.

See the solution

8.2 Abstracting over Monads

Let's turn our attention to UptimeService. We need to rewrite it to abstract
over the two types of UptimeClient. We'll do this in two stages: first we'll
rewrite the class and method signatures, then the method bodies. Starting
with the method signatures:

e comment out the body of getTotalUptime (replace it with 2?7 to
make everything compile);

e add atype parameter F[ ] to UptimeService and passitonto Upti-
meClient.

See the solution

Now uncomment the body of getTotalUptime. You should get a compilation
error similar to the following:
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// <console>:28: error: could not find implicit value for

// evidence parameter of type cats.Applicative[F]
// hostnames.traverse(client.getUptime) .map(_.sum)
// ~

The problem here is that traverse only works on sequences of values
that have an Applicative. In our original code we were traversing a
List[Future[Int]]. There is an applicative for Future so that was fine.
In this version we are traversing a List[F[Int]]. We need to prove to the
compiler that F has an Applicative. Do this by adding an implicit constructor
parameter to UptimeService.

See the solution

Finally, let’s turn our attention to our unit tests. Our test code now works as
intended without any modification. We create an instance of TestUptime-
Client and wrap it in an UptimeService. This effectively binds F to Id, al-
lowing the rest of the code to operate synchronously without worrying about
monads or applicatives:

def testTotalUptime() = {
val hosts = Map("hostl" -> 10, "host2" -> 6)
val client = new TestUptimeClient(hosts)
val service = new UptimeService(client)
val actual = service.getTotalUptime(hosts.keys.toList)
val expected = hosts.values.sum
assert(actual == expected)
}
testTotalUptime()

8.3 Summary

This case study provides an example of how Cats can help us abstract over
different computational scenarios. We used the Applicative type class to
abstract over asynchronous and synchronous code. Leaning on a functional
abstraction allows us to specify the sequence of computations we want to
perform without worrying about the details of the implementation.



188 CHAPTER 8. CASE STUDY: TESTING ASYNCHRONOUS CODE

Back in Figure 6.1, we showed a “stack” of computational type classes that
are meant for exactly this kind of abstraction. Type classes like Functor, Ap-
plicative, Monad, and Traverse provide abstract implementations of pat-
terns such as mapping, zipping, sequencing, and iteration. The mathematical
laws on those types ensure that they work together with a consistent set of
semantics.

We used Applicative in this case study because it was the least powerful
type class that did what we needed. If we had required flatMap, we could
have swapped out Applicative for Monad. If we had needed to abstract over
different sequence types, we could have used Traverse. There are also type
classes like ApplicativeError and MonadError that help model failures as
well as successful computations.

Let's move on now to a more complex case study where type classes will help
us produce something more interesting: a map-reduce-style framework for
parallel processing.
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Case Study: Map-Reduce

In this case study we're going to implement a simple-but-powerful parallel
processing framework using Monoids, Functors, and a host of other goodies.

If you have used Hadoop or otherwise worked in “big data” you will have heard
of MapReduce, which is a programming model for doing parallel data process-
ing across clusters of machines (aka “nodes”). As the name suggests, the model
is built around a map phase, which is the same map function we know from
Scala and the Functor type class, and a reduce phase, which we usually call
fold*in Scala.

9.1 Parallelizing map and fold

Recall the general signature for map is to apply a function A => B to a F[A],
returning a F[B]:

map transforms each individual element in a sequence independently. We can
easily parallelize map because there are no dependencies between the trans-
formations applied to different elements (the type signature of the function
A => B shows us this, assuming we don’t use side-effects not reflected in the

types).

In Hadoop there is also a shuffle phase that we will ignore here.
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O-Orre+ B

FLA] = F[B]

Figure 9.1: Type chart: functor map

Qe {o 7O 7+ 37

(B, A) => B B

Figure 9.2: Type chart: fold

What about fold? We can implement this step with an instance of Foldable.
Not every functor also has an instance of foldable but we can implement a
map-reduce system on top of any data type that has both of these type classes.
Our reduction step becomes a foldLeft over the results of the distributed
map.

By distributing the reduce step we lose control over the order of traversal.
Our overall reduction may not be entirely left-to-right—we may reduce left-
to-right across several subsequences and then combine the results. To ensure
correctness we need a reduction operation that is associative:

reduce(al, reduce(a2, a3)) == reduce(reduce(al, a2), a3)

If we have associativity, we can arbitrarily distribute work between our nodes
provided the subsequences at every node stay in the same order as the initial
dataset.

Our fold operation requires us to seed the computation with an element of
type B. Since fold may be split into an arbitrary number of parallel steps, the
seed should not affect the result of the computation. This naturally requires
the seed to be an identity element:
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reduce(seed, al) == reduce(al, seed) == al
In summary, our parallel fold will yield the correct results if:

e we require the reducer function to be associative;
e we seed the computation with the identity of this function.

What does this pattern sound like? That's right, we've come full circle back
to Monoid, the first type class we discussed in this book. We are not the
first to recognise the importance of monoids. The monoid design pattern for
map-reduce jobs is at the core of recent big data systems such as Twitter's
Summingbird.

In this project we're going to implement a very simple single-machine map-
reduce. We'll start by implementing a method called foldMap to model the
data-flow we need.

9.2 Implementing foldMap

We saw foldMap briefly back when we covered Foldable. It is one of the
derived operations that sits on top of foldLeft and foldRight. However,
rather than use Foldable, we will re-implement foldMap here ourselves as it
will provide useful insight into the structure of map-reduce.

Start by writing out the signature of foldMap. It should accept the following
parameters:

e asequence of type Vector[A];
e a function of type A => B, where there is a Monoid for B;

You will have to add implicit parameters or context bounds to complete the
type signature.

See the solution

Now implement the body of foldMap. Use the flow chart in Figure 9.3 as a
guide to the steps required:


http://arxiv.org/abs/1304.7544
http://arxiv.org/abs/1304.7544
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1. Initial data sequence
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2. Map step
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3. Fold/reduce step
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4. Final result

Figure 9.3: foldMap algorithm

1. start with a sequence of items of type A;
2. map over the list to produce a sequence of items of type B;
3. use the Monoid to reduce the items to a single B.

Here's some sample output for reference:

import cats.instances.int._ // for Monoid

foldMap(Vector(1l, 2, 3))(identity)
// res2: Int =6

import cats.instances.string. // for Monoid
// Mapping to a String uses the concatenation monoid:

foldMap(Vector(1l, 2, 3))(_.toString + "! ")
// resd: String = "1! 2! 3! "
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// Mapping over a String to produce a String:
foldMap("Hello world!".toVector)( .toString.toUpperCase)
// res6: String = HELLO WORLD'!

See the solution

9.3 Parallelising foldMap

Now we have a working single-threaded implementation of foldMap, let’s
look at distributing work to run in parallel. We'll use our single-threaded ver-
sion of foldMap as a building block.

We'll write a multi-CPU implementation that simulates the way we would dis-
tribute work in a map-reduce cluster as shown in Figure 9.4:

we start with an initial list of all the data we need to process;

we divide the data into batches, sending one batch to each CPU;

the CPUs run a batch-level map phase in parallel;

the CPUs run a batch-level reduce phase in parallel, producing a local

Hobd e

result for each batch;
5. we reduce the results for each batch to a single final result.

Scala provides some simple tools to distribute work amongst threads. We
could use the parallel collections library to implement a solution, but let’s chal-
lenge ourselves by diving a bit deeper and implementing the algorithm our-
selves using Futures.

9.3.1 Futures, Thread Pools, and ExecutionContexts

We already know a fair amount about the monadic nature of Futures. Let’s
take a moment for a quick recap, and to describe how Scala futures are sched-
uled behind the scenes.

Futures run on a thread pool, determined by an implicit ExecutionCon-
text parameter. Whenever we create a Future, whether through a call to
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1. Initial data sequence
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6. Final result

Figure 9.4: parallelFoldMap algorithm
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Future.apply or some other combinator, we must have an implicit Execu-
tionContext in scope:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global

val futurel = Future {
(1 to 100).toList.foldLeft(0)(_ + )
}

// futurel: scala.concurrent.Future[Int] = Future(<not completed>)

val future2 = Future {
(100 to 200).toList.foldLeft(0)( + )
}

// future2: scala.concurrent.Future[Int] = Future(<not completed>)

In this example we've imported a ExecutionContext.Implicits.global.
This default context allocates a thread pool with one thread per CPU in our
machine. When we create a Future the ExecutionContext schedules it for
execution. If there is a free thread in the pool, the Future starts executing im-
mediately. Most modern machines have at least two CPUs, so in our example
it is likely that futurel and future2 will execute in parellel.

Some combinators create new Futures that schedule work based on the re-
sults of other Futures. The map and flatMap methods, for example, schedule
computations that run as soon as their input values are computed and a CPU
is available:

val future3 = futurel.map(_.toString)
// future3: scala.concurrent.Future[String] = Future(<not completed>)

val future4 = for {
a <- futurel
b <- future2
} yield a + b
// futured: scala.concurrent.Future[Int] = Future(<not completed>)

As we saw in Section 7.2, we can convert a List[Future[A]] to a Fu-
ture[List[A]] using Future.sequence:
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Future.sequence(List(Future(1l), Future(2), Future(3)))
// res8: scala.concurrent.Future[List[Int]] = Future(<not completed>)

or an instance of Traverse:

import cats.instances.future. // for Applicative
import cats.instances.list.  // for Traverse
import cats.syntax.traverse. // for sequence

List(Future(l), Future(2), Future(3)).sequence
// res9: scala.concurrent.Future[List[Int]] = Future(<not completed>)

An ExecutionContext is required in either case. Finally, we can use
Await.result to block on a Future until a result is available:

import scala.concurrent._
import scala.concurrent.duration.

Await.result(Future(l), 1l.second) // wait for the result
// reslO: Int =1

There are also Monad and Monoid implementations for Future available from
cats.instances. future:

import cats.{Monad, Monoid}
import cats.instances.int._ // for Monoid
import cats.instances.future._ // for Monad and Monoid

Monad[Future].pure(42)

Monoid[Future[Int]].combine(Future(l), Future(2))

9.3.2 Dividing Work

Now we've refreshed our memory of Futures, let's look at how we can di-
vide work into batches. We can query the number of available CPUs on our
machine using an API call from the Java standard library:
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Runtime.getRuntime.availableProcessors
// resl5: Int = 2

We can partition a sequence (actually anything that implements Vector) using
the grouped method. We'll use this to split off batches of work for each CPU:

(1 to 10).toList.grouped(3).tolList
// resl6: List[List[Int]] = List(List(1, 2, 3), List(4, 5, 6), List(7,
8, 9), List(10))

9.3.3 Implementing parallelFoldMap

Implement a parallel version of foldMap called parallelFoldMap. Here is
the type signature:

def parallelFoldMap[A, B : Monoid]
(values: Vector[A])
(func: A => B): Future[B] = ?7??

Use the techniques described above to split the work into batches, one batch
per CPU. Process each batch in a parallel thread. Refer back to Figure 9.4 if
you need to review the overall algorithm.

For bonus points, process the batches for each CPU using your implementa-
tion of foldMap from above.

See the solution

9.3.4 parallelFoldMap with more Cats
Although we implemented foldMap ourselves above, the method is also avail-
able as part of the Foldable type class we discussed in Section 7.1.

Reimplement parallelFoldMap using Cats’ Foldable and Traverseable
type classes.

See the solution
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9.4 Summary

In this case study we implemented a system that imitates map-reduce as per-
formed on a cluster. Our algorithm followed three steps:

1. batch the data and send one batch to each “node”;
2. perform a local map-reduce on each batch;
3. combine the results using monoid addition.

Our toy system emulates the batching behaviour of real-world map-reduce
systems such as Hadoop. However, in reality we are running all of our work
on a single machine where communcation between nodes is negligible. We
don't actually need to batch data to gain efficient parallel processing of a list.
We can simply map using a Functor and reduce using a Monoid.

Regardless of the batching strategy, mapping and reducing with Monoids is a
powerful and general framework that isn’t limited to simple tasks like addition
and string concatenation. Most of the tasks data scientists perform in their
day-to-day analyses can be cast as monoids. There are monoids for all the
following:

e approximate sets such as the Bloom filter;

e set cardinality estimators, such as the HyperLoglLog algorithm;
e vectors and vector operations like stochastic gradient descent;
e quantile estimators such as the t-digest

to name but a few.
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Case Study: Data Validation

In this case study we will build a library for validation. What do we mean by
validation? Almost all programs must check their input meets certain criteria.
Usernames must not be blank, email addresses must be valid, and so on. This
type of validation often occurs in web forms, but it could be performed on
configuration files, on web service responses, and any other case where we
have to deal with data that we can’t guarantee is correct. Authentication, for
example, is just a specialised form of validation.

We want to build a library that performs these checks. What design goals
should we have? For inspiration, let’s look at some examples of the types of
checks we want to perform:

e A user must be over 18 years old or must have parental consent.

e A String ID must be parsable as a Int and the Int must correspond
to a valid record ID.

e Abidin an auction must apply to one or more items and have a positive
value.

e A username must contain at least four characters and all characters
must be alphanumeric.

199
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e An email address must contain a single @ sign. Split the string at the @.
The string to the left must not be empty. The string to the right must
be at least three characters long and contain a dot.

With these examples in mind we can state some goals:

e We should be able to associate meaningful messages with each valida-
tion failure, so the user knows why their data is not valid.

e We should be able to combine small checks into larger ones. Taking the
username example above, we should be able to express this by combin-
ing a check of length and a check for alphanumeric values.

e We should be able to transform data while we are checking it. There
is an example above requiring we parse data, changing its type from
Stringto Int.

o Finally, we should be able to accumulate all the failures in one go, so
the user can correct all the issues before resubmitting.

These goals assume we're checking a single piece of data. We will also need to
combine checks across multiple pieces of data. For a login form, for example,
we'll need to combine the check results for the username and the password.
This will turn out to be quite a small component of the library, so the majority
of our time will focus on checking a single data item.

10.1 Sketching the Library Structure

Let's start at the bottom, checking individual pieces of data. Before we start
coding let’s try to develop a feel for what we'll be building. We can use a
graphical notation to help us. We'll go through our goals one by one.

Providing error messages

Our first goal requires us to associate useful error messages with a check fail-
ure. The output of a check could be either the value being checked, if it passed
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Figure 10.1: A validation result

O= O

A => F[A]

Figure 10.2: A validation check

the check, or some kind of error message. We can abstractly represent this as
a value in a context, where the context is the possibility of an error message
as shown in Figure 10.1.

A check itself is therefore a function that transforms a value into a value in a
context as shown in Figure 10.2.

Combine checks

How do we combine smaller checks into larger ones? Is this an applicative or
semigroupal as shown in Figure 10.3?

Not really. With applicative combination, both checks are applied to the same
value and result in a tuple with the value repeated. What we want feels more
like a monoid as shown in Figure 10.4. We can define a sensible identity—a
check that always passes—and two binary combination operators—and and or:

We'll probably be using and and or about equally often with our validation

O» OO0 O= 00

=> F[A]

=> F[A] => F[(A, A)]

Figure 10.3: Applicative combination of checks
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OO O=O» OO

A => F[A] A => F[A] A => F[A]

Figure 10.4: Monoid combination of checks

O= vy~ ve*O» OO

A => F[B] => C A => F[C]
O= gy O vr=O)» OO
A => F[B] B => (A => F[C]) A => F[C]

Figure 10.5: Monadic combination of checks

library and it will be annoying to continuously switch between two monoids
for combining rules. We consequently won't actually use the monoid API: we'll
use two separate methods, and and or, instead.

Accumulating errors as we check

Monoids also feel like a good mechanism for accumulating error messages.
If we store messages as a List or NonEmptyList, we can even use a pre-
existing monoid from inside Cats.

Transforming data as we check it

In addition to checking data, we also have the goal of transforming it. This
seems like it should be a map or a flatMap depending on whether the trans-
form can fail or not, so it seems we also want checks to be a monad as shown
in Figure 10.5.

We've now broken down our library into familiar abstractions and are in a good
position to begin development.
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10.2 The Check Datatype

Our design revolves around a Check, which we said was a function from a
value to a value in a context. As soon as you see this description you should
think of something like

type Check[A] = A => Either[String, Al

Here we've represented the error message as a String. This is probably not
the best representation. We may want to accumulate messages ina List, for
example, or even use a different representation that allows for international-
ization or standard error codes.

We could attempt to build some kind of ErrorMessage type that holds all
the information we can think of. However, we can’t predict the user’s require-
ments. Instead let’s let the user specify what they want. We can do this by
adding a second type parameter to Check:

type Check[E, A] = A => Either[E, A]

We will probably want to add custom methods to Check so let’s declare it as
a trait instead of a type alias:

trait Check[E, A] {
def apply(value: A): Either[E, A]

// other methods...
}

As we said in Essential Scala, there are two functional programming patterns
that we should consider when defining a trait:

e we can make it a typeclass, or;
e we can make it an algebraic data type (and hence seal it).

Type classes allow us to unify disparate data types with a common interface.
This doesn't seem like what we're trying to do here. That leaves us with an


http://underscore.io/books/essential-scala
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e
oNe e

List[String] - List[String] => List[String]

Figure 10.6: Combining error messages

algebraic data type. Let’s keep that thought in mind as we explore the design
a bit further.

10.3 Basic Combinators

Let's add some combinator methods to Check, starting with and. This method
combines two checks into one, succeeding only if both checks succeed. Think
about implementing this method now. You should hit some problems. Read
on when you do!

trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =
?7?

// other methods...
}

The problem is: what do you do when both checks fail? The correct thing to
do is to return both errors, but we don't currently have any way to combine
Es. We need a type class that abstracts over the concept of “accumulating”
errors as shown in Figure 10.6 What type class do we know that looks like
this? What method or operator should we use to implement the ¢ operation?

See the solution
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There is another semantic issue that will come up quite quickly: should and
short-circuit if the first check fails. What do you think the most useful be-
haviour is?

See the solution

Use this knowledge to implement and. Make sure you end up with the be-
haviour you expect!

See the solution

Strictly speaking, Either[E, Al is the wrong abstraction for the output of
our check. Why is this the case? What other data type could we use instead?
Switch your implementation over to this new data type.

See the solution

Our implementation is looking pretty good now. Implement an or combinator
to complement and.

See the solution

With and and or we can implement many of checks we'll want in practice.
However, we still have a few more methods to add. We'll turn to map and
related methods next.

10.4 Transforming Data

One of our requirements is the ability to transform data. This allows us to
support additional scenarios like parsing input. In this section we'll extend our
check library with this additional functionality.

The obvious starting point is map. When we try to implement this, we imme-
diately run into a wall. Our current definition of Check requires the input and
output types to be the same:

type Check[E, A] = A => Either[E, A]

When we map over a check, what type do we assign to the result? It can't be
A and it can’t be B. We are at an impasse:
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def map(check: Check[E, Al)(func: A => B): Check[E, ??7]

To implement map we need to change the definition of Check. Specifically, we
need to a new type variable to separate the input type from the output:

type Check[E, A, B] = A => Either[E, B]
Checks can now represent operations like parsing a String as an Int:

val parseInt: Check[List[String], String, Int] =
N/ @ECo oo

However, splitting our input and output types raises another issue. Up until
now we have operated under the assumption that a Check always returns its
input when successful. We used this in and and or to ignore the output of the
left and right rules and simply return the original input on success:

(this(a), that(a)) match {
case And(left, right) =>
(left(a), right(a))
.mapN((resultl, result2) => Right(a))

// etc...
}

In our new formulation we can’t return Right(a) because its type is Ei-
ther[E, A] not Either[E, B]. We're forced to make an arbitrary choice
between returning Right (resultl) and Right (result2). The sameis true
of the or method. From this we can derive two things:

e we should strive to make the laws we adhere to explicit; and
e the code is telling us we have the wrong abstraction in Check.

10.4.1 Predicates

We can make progress by pulling apart the concept of a predicate, which can
be combined using logical operations such as and and or, and the concept of
a check, which can transform data.
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What we have called Check so far we will call Predicate. For Predicate
we can state the following identity law encoding the notion that a predicate
always returns its input if it succeeds:

For a predicate p of type Predicate[E, A] and elements al
and a2 of type A, if p(al) == Success(a2) thenal == a2.

Making this change gives us the following code:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup. // for |+|

import cats.syntax.apply. // for mapN

import cats.data.Validated._  // for Valid and Invalid

sealed trait Predicate[E, A] {
def and(that: Predicatel[E, Al): PredicatelE, A] =
And(this, that)

def or(that: Predicate[E, Al): Predicatel[E, A] =
Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
this match {
case Pure(func) =>
func(a)

case And(left, right) =>
(left(a), right(a)).mapN(( , ) => a)

case Or(left, right) =>
left(a) match {
case Valid(al) => Valid(a)
case Invalid(el) =>
right(a) match {
case Valid(a2) => Valid(a)
case Invalid(e2) => Invalid(el |+| e2)
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final case class And[E, A](
left: Predicate[E, Al,
right: Predicate[E, A]) extends Predicate[E, A]

final case class Or[E, Al(
left: Predicate[E, A],
right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](
func: A => Validated[E, A]) extends Predicate[E, A]

10.4.2 Checks

We'll use Check to represent a structure we build from a Predicate that also
allows transformation of its input. Implement Check with the following inter-
face:

sealed trait Check[E, A, B] {
def apply(a: A): Validated[E, B] =
777

def map[C](func: B => C): Check[E, A, C] =
?7?

See the solution

What about flatMap? The semantics are a bit unclear here. The method is
simple enough to declare but it's not so obvious what it means or how we
should implement apply. The general shape of flatMap is shown in Figure
10.7.

How do we relate F in the figure to Check in our code? Check has three type
variables while F only has one.

To unify the types we need to fix two of the type parameters. The idiomatic
choices are the error type E and the input type A. This gives us the relationships
shown in Figure 10.8. In other words, the semantics of applying a FlatMap
are:
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F[A] A => F[B] F[B]

Figure 10.7: Type chart for flatMap

Oy o O vr=|O)» OO

A => F[B] B => (A => F[C]) A => F[C]

Figure 10.8: Type chart for flatMap applied to Check

e given an input of type A, convert to F[B];
e use the output of type B to choose a Check[E, A, CI;

e return to the original input of type A and apply it to the chosen check
to generate the final result of type F[C].

This is quite an odd method. We can implement it, but it is hard to find a use
for it. Go ahead and implement flatMap for Check, and then we'll see a more
generally useful method.

See the solution

We can write a more useful combinator that chains together two Checks. The
output of the first check is connected to the input of the second. This is anal-
ogous to function composition using andThen:

val f: A =>B
val g: B =>C = ???
val h: A =>C = f andThen ¢

?7?

A Check is basically a function A => Validated[E, B] so we can define an
analagous andThen method:
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trait Check[E, A, B] {
def andThen[C] (that: Check[E, B, C]): Check[E, A, C]
}

Implement andThen now!

See the solution

10.4.3 Recap

We now have two algebraic data types, Predicate and Check, and a host
of combinators with their associated case class implementations. Look at the
following solution for a complete definition of each ADT.

See the solution

We have a complete implementation of Check and Predicate that do most
of what we originally set out to do. However, we are not finished yet. You
have probably recognised structure in Predicate and Check that we can ab-
stract over: Predicate has a monoid and Check has a monad. Furthermore,
in implementing Check you might have felt the implementation doesn’t do
much—all we do is call through to underlying methods on Predicate and
Validated.

There are a lot of ways this library could be cleaned up. However, let’s imple-
ment some examples to prove to ourselves that our library really does work,
and then we'll turn to improving it.

Implement checks for some of the examples given in the introduction:
e A username must contain at least four characters and consist entirely
of alphanumeric characters

e An email address must contain an @ sign. Split the string at the @. The
string to the left must not be empty. The string to the right must be at
least three characters long and contain a dot.

You might find the following predicates useful:



10.5. KLEISLIS 211

import cats.data.{NonEmptyList, Validated}
type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =
NonEmptyList(s, Nil)

def longerThan(n: Int): Predicate[Errors, String] =
Predicate.lift(
error(s"Must be longer than $n characters"),
str => str.size > n)

val alphanumeric: Predicate[Errors, String] =
Predicate.lift(
error(s"Must be all alphanumeric characters"),
str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =
Predicate.lift(
error(s"Must contain the character $char"),
str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =
Predicate.lift(
error(s"Must contain the character $char only once"),
str => str.filter(c => ¢ == char).size == 1)

See the solution

10.5 Kileislis

We'll finish off this case study by cleaning up the implementation of Check. A
justifiable criticism of our approach is that we've written a lot of code to do
very little. A Predicate is essentially a function A => Validated[E, A],
and a Check is basically a wrapper that lets us compose these functions.

We can abstract A => Validated[E, A] to A => F[B], which you'll recog-
nise as the type of function you pass to the flatMap method on a monad.
Imagine we have the following sequence of operations:
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OO I OLI e ®)

A => F[A] A => F[B] B => F[C]

Figure 10.9: Sequencing monadic transforms
e We lift some value into a monad (by using pure, for example). This is a
function with type A => F[A].

¢ We then sequence some transformations on the monad using flatMap.

We can illustrate this as shown in Figure 10.9. We can also write out this
example using the monad API as follows:

val aToB: A => F[B]
val bToC: B => F[C]

?7??

?7?

def example[A, C](a: A): F[C] =
aToB(a).flatMap(bToC)

Recall that Check is, in the abstract, allowing us to compose functions of type
A => F[B]. We can write the above in terms of andThen as:

val aToC = aToB andThen bToC

The result is a (wrapped) function aToC of type A => F[C] that we can sub-
sequently apply to a value of type A.

We have achieved the same thing as the example method without having to
reference an argument of type A. The andThen method on Check is analogous
to function composition, but is composing function A => F[B] instead of A

=> B.

The abstract concept of composing functions of type A => F[B] has a name:
a Kieisli.

Cats contains a data type cats.data.Kleisli that wraps a function just as
Check does. Kleisli has all the methods of Check plus some additional


http://typelevel.org/cats/api/cats/data/Kleisli.html
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ones. If Kleisli seems familiar to you, then congratulations. You've seen
through its disguise and recognised it as another concept from earlier in the
book: Kleisli is just another name for ReaderT.

Here is a simple example using Kleisli to transform an integer into a list of
integers through three steps:

import cats.data.Kleisli
import cats.instances.list._ // for Monad

These steps each transform an input Int into an output of type List[Int]:

val stepl: Kleisli[List, Int, Int]
Kleisli(x => List(x + 1, x - 1))

val step2: Kleisli[List, Int, Int]
Kleisli(x => List(x, -x))

val step3: Kleisli[List, Int, Int]
Kleisli(x => List(x * 2, x / 2))

We can combine the steps into a single pipeline that combines the underlying
Lists using flatMap:

val pipeline = stepl andThen step2 andThen step3

The result is a function that consumes a single Int and returns eight outputs,
each produced by a different combination of transformations from stepl,
step2, and step3:

pipeline.run(20)
// res2: List[Int] = List(42, 10, -42, -10, 38, 9, -38, -9)

The only notable difference between Kleisli and Check in terms of APl is
that Kleisli renames our apply method to run.

Let's replace Check with Kleisli in our validation examples. To do so we
need to make a few changes to Predicate. We must be able to convert
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a Predicate to a function, as Kleisli only works with functions. Some-
what more subtly, when we convert a Predicate to a function, it should
have type A => Either[E, A] rather than A => Validated[E, A] be-
cause Kleisli relies on the wrapped function returning a monad.

Add a method to Predicate called run that returns a function of the correct
type. Leave the rest of the code in Predicate the same.

See the solution

Now rewrite our username and email validation example in terms of Kleisli
and Predicate. Here are few tips in case you get stuck:

First, remember that the run method on Predicate takes an implicit param-
eter. If you call aPredicate. run(a) it will try to pass the implicit parameter
explicitly. If you want to create a function from a Predicate and immediately
apply that function, use aPredicate. run.apply(a)

Second, type inference can be tricky in this exercise. We found that the fol-
lowing definitions helped us to write code with fewer type declarations.

type Result[A] = Either[Errors, A]
type Check[A, B] = Kleisli[Result, A, B]

// Create a check from a function:
def check[A, B](func: A => Result[B]): Check[A, B] =
Kleisli(func)

// Create a check from a Predicate:
def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =
Kleisli[Result, A, A](pred.run)

See the solution

We have now written our code entirely in terms of Kleisli and Predicate,
completely removing Check. This is a good first step to simplifying our library.
There’s still plenty more to do, but we have a sophisticated building block from
Cats to work with. We'll leave further improvements up to the reader.
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10.6 Summary

This case study has been an exercise in removing rather than building abstrac-
tions. We started with a fairly complex Check type. Once we realised we
were conflating two concepts, we separated out Predicate leaving us with
something that could be implemented with Kleisli.

We made several design choices above that reasonable developers may dis-
agree with. Should the method that converts a Predicate to a function really
be called run instead of, say, toFunction? Should Predicate be a subtype
of Function to begin with? Many functional programmers prefer to avoid
subtyping because it plays poorly with implicit resolution and type inference,
but there could be an argument to use it here. As always the best decisions
depend on the context in which the library will be used.
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Chapter 11

Case Study: CRDTs

In this case study we will explore Commutative Replicated Data Types (CRDTs),
a family of data structures that can be used to reconcile eventually consistent
data.

WEe'll start by describing the utility and difficulty of eventually consistent sys-
tems, then show how we can use monoids and their extensions to solve the
issues that arise. Finally, we will model the solutions in Scala.

Our goal here is to focus on the implementation in Scala of a particular type
of CRDT. We're not aiming at a comprehensive survey of all CRDTs. CRDTs
are a fast-moving field and we advise you to read the literature to learn about
more.

11.1 Eventual Consistency

As soon as a system scales beyond a single machine we have to make a funda-
mental choice about how we manage data.

One approach is to build a system that is consistent, meaning that all machines
have the same view of data. For example, if a user changes their password
then all machines that store a copy of that password must accept the change
before we consider the operation to have completed successfully.
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Consistent systems are easy to work with but they have their disadvantages.
They tend to have high latency because a single change can result in many
messages being sent between machines. They also tend to have relatively low
uptime because outages can cut communications between machines creating
a network partition. When there is a network partition, a consistent system
may refuse further updates to prevent inconsistencies across machines.

An alternative approach is an eventually consistent system. This means that
at any particular point in time machines are allowed to have differing views
of data. However, if all machines can communicate and there are no further
updates they will eventually all have the same view of data.

Eventually consistent systems require less communication between machines
so latency can be lower. A partitioned machine can still accept updates and
reconcile its changes when the network is fixed, so systems can also can have
better uptime.

The big question is: how do we do this reconciliation between machines?
CRDTs provide one approach to the problem.

11.2 The GCounter

Let’s look at one particular CRDT implementation. Then we'll attempt to gen-
eralise properties to see if we can find a general pattern.

The data structure we will look at is called a GCounter. It is a distributed
increment-only counter that can be used, for example, to count the number
of visitors to a web site where requests are served by many web servers.

11.2.1 Simple Counters

To see why a straightforward counter won't work, imagine we have two
servers storing a simple count of visitors. Let’s call the machines A and B.
Each machine is storing an integer counter and the counters all start at zero
as shown in Figure 11.1.
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Machine A Machine B

0 0

Figure 11.1: Simple counters: initial state

Machine A Machine B

Incoming requests Incoming requests

3 2

Add counters

Figure 11.2: Simple counters: first round of requests and reconciliation

Now imagine we receive some web traffic. Our load balancer distributes five
incoming requests to A and B, A serving three visitors and B two. The ma-
chines have inconsistent views of the system state that they need to reconcile
to achieve consistency. One reconciliation strategy with simple counters is to
exchange counts and add them as shown in Figure 11.2.

So far so good, but things will start to fall apart shortly. Suppose A serves
a single visitor, which means we've seen six visitors in total. The machines
attempt to reconcile state again using addition leading to the answer shown
in Figure 11.3.

This is clearly wrong! The problem is that simple counters don’t give us enough
information about the history of interactions between the machines. Fortu-
nately we don’t need to store the complete history to get the correct answer—
just a summary of it. Let’s look at the GCounter see how it solves this problem.
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Machine A Machine B

Incoming request

6 5

Add counters

1 1 1 1 x Incorrect result!

Figure 11.3: Simple counters: second round of requests and (incorrect) recon-
ciliation

Machine A Machine B

A:0 A:0
B:0 B:0

Figure 11.4: GCounter: initial state

11.2.2 GCounters

The first clever idea in the GCounter is to have each machine storing a separate
counter for every machine it knows about (including itself). In the previous
example we had two machines, A and B. In this situation both machines would
store a counter for A and a counter for B as shown in Figure 11.4.

The rule with GCounters is that a given machine is only allowed to increment
its own counter. If A serves three visitors and B serves two visitors the counters
look as shown in Figure 11.5.

When two machines reconcile their counters the rule is to take the largest
value stored for each machine. In our example, the result of the first merge
will be as shown in Figure 11.6.

Subsequent incoming web requests are handled using the increment-own-
counter rule and subsequent merges are handled using the take-maximum-
value rule, producing the same correct values for each machine as shown in
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Machine A Machine B

Incoming requests A: Incoming requests

Figure 11.5: GCounter: first round of web requests

Machine A Machine B
Incoming requests A:3 A:0 Incoming requests
B:0 B:2

Merge, take max

w >
N W
w >
N W

Figure 11.6: GCounter: first reconciliation

Figure 11.7.

GCounters allow each machine to keep an accurate account of the state of
the whole system without storing the complete history of interactions. If a
machine wants to calculate the total traffic for the whole web site, it sums up
all the per-machine counters. The result is accurate or near-accurate depend-
ing on how recently we performed a reconciliation. Eventually, regardless of
network outages, the system will always converge on a consistent state.

11.2.3 Exercise: GCounter Implementation

We can implement a GCounter with the following interface, where we repre-
sent machine IDs as Strings.

final case class GCounter(counters: Map[String, Int]) {
def increment(machine: String, amount: Int) =
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Machine A Machine B
Incoming request A . 4 A . 3
B:2 B:2

Merge, take max

J Correct result!

w >
N B
w >
N

Figure 11.7: GCounter: second reconciliation

?7??

def merge(that: GCounter): GCounter =
?7?7?

def total: Int =
?7?

Finish the implementation!

See the solution

11.3 Generalisation

We've now created a distributed, eventually consistent, increment-only
counter. This is a useful achievement but we don’t want to stop here. In this
section we will attempt to abstract the operations in the GCounter so it will
work with more data types than just natural numbers.

The GCounter uses the following operations on natural numbers:

e addition (in increment and total);
e maximum (in merge);
e and the identity element O (in increment and merge).
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You can probably guess that there's a monoid in here somewhere, but let’s look
in more detail at the properties we're relying on.

As a refresher, in Chapter 2 we saw that monoids must satisfy two laws. The
binary operation + must be associative:

(a+b) +c==2a+ (b+c)
and the empty element must be an identity:
0+a==a+0 ==

We need an identity in increment to initialise the counter. We also rely on as-
sociativity to ensure the specific sequence of merges gives the correct value.

In total we implicitly rely on associativity and commutativity to ensure we
get the correct value no matter what arbitrary order we choose to sum the
per-machine counters. We also implicitly assume an identity, which allows us
to skip machines for which we do not store a counter.

The properties of merge are a bit more interesting. We rely on commutativity
to ensure that machine A merging with machine B yields the same result as
machine B merging with machine A. We need associativity to ensure we ob-
tain the correct result when three or more machines are merging data. We
need an identity element to initialise empty counters. Finally, we need an ad-
ditional property, called idempotency, to ensure that if two machines hold the
same data in a per-machine counter, merging data will not lead to an incorrect
result. Idempotent operations are ones that return the same result again and
again if they are executed multiple times. Formally, a binary operation max is
idempotent if the following relationship holds:

a max a = a

Written more compactly, we have:

Method Identity Commutative  Associative Idempotent
increment Y N Y N
merge Y Y Y Y

total Y Y Y N
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From this we can see that

e increment requires a monoid,;

e total requires a commutative monoid; and

e merge required an idempotent commutative monoid, also called a
bounded semilattice.

Since increment and get both use the same binary operation (addition) it's
usual to require the same commutative monoid for both.

This investigation demonstrates the powers of thinking about properties or
laws of abstractions. Now we have identified these properties we can sub-
stitute the natural numbers used in our GCounter with any data type with
operations satisfying these properties. A simple example is a set, with the bi-
nary operation being union and the identity element the empty set. With this
simple substitution of Int for Set[A] we can create a GSet type.

11.3.1 Implementation

Let's implement this generalisation in code. Remember increment and total
require a commutative monoid and merge requires a bounded semilattice (or
idempotent commutative monoid).

Cats provides a type class for both Monoid and CommutativeMonoid, but
doesn't provide one for bounded semilattice’. That’s why we'’re going to im-
plement our own BoundedSemilLattice type class.

import cats.kernel.CommutativeMonoid

trait BoundedSemilLattice[A] extends CommutativeMonoid[A] {
def combine(al: A, a2: A): A
def empty: A

}

In  the implementation above, BoundedSemilLattice[A] extends
CommutativeMonoid[A] because a bounded semilattice is a commuta-
tive monoid (a commutative idempotent one, to be exact).

A closely related library called Spire already provides that abstractions.


https://github.com/non/spire
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11.3.2 Exercise: BoundedSemilattice Instances

Implement BoundedSemilLattice type class instances for Ints and for Sets.
The instance for Int will technically only hold for non-negative numbers, but
you don’t need to model non-negativity explicitly in the types.

See the solution

11.3.3 Exercise: Generic GCounter

Using CommutativeMonoid and BoundedSemilLattice, generalise
GCounter.

When you implement this, look for opportunities to use methods and syn-
tax on Monoid to simplify your implementation. This is a good example of
how type class abstractions work at multiple levels in our code. We're using
monoids to design a large component—our CRDTs—but they are also useful in
the small, simplifying our code and making it shorter and clearer.

See the solution

11.4 Abstracting GCounter to a Type Class

We've created a generic GCounter that works with any value that has in-
stances of BoundedSemiLattice and CommutativeMonoid. However we're
still tied to a particular representation of the map from machine IDs to values.
There is no need to have this restriction, and indeed it can be useful to ab-
stract away from it. There are many key-value stores that we want to work
with, from a simple Map to a relational database.

If we define a GCounter type class we can abstract over different concrete
implementations. This allows us to, for example, seamlessly substitute an in-
memory store for a persistent store when we want to change performance
and durability tradeoffs.

There are a number of ways we can implement this. One approach is to de-
fine a GCounter type class with dependencies on CommutativeMonoid and



226 CHAPTER 11. CASE STUDY: CRDTS

BoundedSemiLattice. We define this as a type class that takes a type con-
structor with two type parameters represent the key and value types of the
map abstraction.

trait GCounter[F[_, 1,K, V] {
def increment(f: F[K, VI)(k: K, v: V)
(implicit m: CommutativeMonoid[V]): F[K, V]

def merge(fl: F[K, V], f2: F[K, VI)
(implicit b: BoundedSemilLattice[V]): F[K, VI

def total(f: F[K, V])

(implicit m: CommutativeMonoid[V]): V

object GCounter {
def apply[F[_, 1, K, V]
(implicit counter: GCounter[F, K, V]) =
counter

Try defining an instance of this type class for Map. You should be able to reuse
your code from the case class version of GCounter with some minor modifi-
cations.

See the solution

You should be able to use your instance as follows:

import cats.instances.int._ // for Monoid

val gl = Map("a" -> 7, "b" -> 3)
val g2 = Map("a" -> 2, "b" ->5)

val counter = GCounter[Map, String, Int]

val merged = counter.merge(gl, g2)
// merged: Map[String,Int] = Map(a -> 7, b -> 5)

val total = counter.total(merged)
// total: Int = 12
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The implementation strategy for the type class instance is a bit unsatisfying.
Although the structure of the implementation will be the same for most in-
stances we define, we won't get any code reuse.

11.5 Abstracting a Key Value Store

One solution is to capture the idea of a key-value store within a type class, and
then generate GCounter instances for any type that has a KeyValueStore
instance. Here’s the code for such a type class:

trait KeyValueStore[F[ , 11 {
def put[K, VI(f: F[K, VI)(k: K, v: V): F[K, V]

def get[K, VI(f: F[K, V])(k: K): Option[V]

def getOrElse[K, VI(f: F[K, V])(k: K, default: V): V =
get(f) (k).getOrElse(default)

def values[K, VI(f: F[K, V]): List[V]
}

Implement your own instance for Map.
See the solution

With our type class in place we can implement syntax to enhance data types
for which we have instances:

implicit class KvsOps[F[_,_1, K, VI(f: F[K, V]) {
def put(key: K, value: V)
(implicit kvs: KeyValueStore[F]): F[K, V] =
kvs.put(f) (key, value)

def get(key: K)(implicit kvs: KeyValueStore[F]): Option[V] =
kvs.get(f) (key)

def getOrElse(key: K, default: V)
(implicit kvs: KeyValueStore[F]): V =
kvs.getOrElse(f) (key, default)
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def values(implicit kvs: KeyValueStore[F]): List[V] =
kvs.values(f)

Now we can generate GCounter instances for any data type that has instances
of KeyValueStore and CommutativeMonoid using an implicit def:

implicit def gcounterInstance[F[_, 1, K, VI
(implicit kvs: KeyValueStore[F], km: CommutativeMonoid[F[K, V]]) =
new GCounter[F, K, V] {
def increment(f: F[K, V])(key: K, value: V)
(implicit m: CommutativeMonoid[V]): F[K, V] = {
val total = f.getOrElse(key, m.empty) |+| value
f.put(key, total)
}

def merge(fl: F[K, V], f2: F[K, VI)
(implicit b: BoundedSemiLattice[V]): F[K, V] =
f1l |+| f2

def total(f: F[K, VI1)(implicit m: CommutativeMonoid[V]): V =
f.values.combineAll

The complete code for this case study is quite long, but most of it is boilerplate
setting up syntax for operations on the type class. We can cut down on this
using compiler plugins such as Simulacrum and Kind Projector.

11.6 Summary

In this case study we've seen how we can use type classes to model a simple
CRDT, the GCounter, in Scala. Our implementation gives us a lot of flexibility
and code reuse: we aren't tied to the data type we “count”, nor to the data
type that maps machine IDs to counters.

The focus in this case study has been on using the tools that Scala provides,
not on exploring CRDTs. There are many other CRDTs, some of which operate


https://github.com/mpilquist/simulacrum
https://github.com/non/kind-projector
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in a similar manner to the GCounter, and some of which have very different
implementations. A fairly recent survey gives a good overview of many of the
basic CRDTs. However this is an active area of research and we encourage you
to read the recent publications in the field if CRDTs and eventually consistency
interest you.


https://hal.inria.fr/inria-00609399v2/document

230 CHAPTER 11. CASE STUDY: CRDTS



Part IlI

Solutions to Exercises
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Appendix A

Solutions for: Introduction

A.1 Printable Library

These steps define the three main components of our type class. First we
define Printable—the type class itself:

trait Printable[A] {
def format(value: A): String
}

Then we define some default instances of Printable and package them in
PrintablelInstances:

object PrintableInstances {
implicit val stringPrintable = new Printable[String] {
def format(input: String) = input
}

implicit val intPrintable = new Printable[Int] {
def format(input: Int) = input.toString
}
}

Finally we define an interface object, Printable:
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object Printable {
def format[A](input: A)(implicit p: Printable[A]): String =
p.format(input)

def print[A](input: A)(implicit p: Printable[A]): Unit =
println(format(input))

Return to the exercise

A.2 Printable Library Part 2

This is a standard use of the type class pattern. First we define a set of custom
data types for our application:

final case class Cat(name: String, age: Int, color: String)

Then we define type class instances for the types we care about. These either
go into the companion object of Cat or a separate object to act as a names-
pace:

import PrintableInstances.

implicit val catPrintable = new Printable[Cat] {
def format(cat: Cat) = {
val name = Printable.format(cat.name)
val age = Printable.format(cat.age)
val color = Printable.format(cat.color)
s"$name is a $age year-old $color cat."
}
}

Finally, we use the type class by bringing the relevant instances into scope
and using interface object/syntax. If we defined the instances in companion
objects Scala brings them into scope for us automatically. Otherwise we use
an import to access them:
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val cat = Cat("Garfield", 38, "ginger and black")
// cat: Cat = Cat(Garfield,38,ginger and black)

Printable.print(cat)
// Garfield is a 38 year-old ginger and black cat.

Return to the exercise

A.3 Printable Library Part 3

First we define an implicit class containing our extension methods:

object PrintableSyntax {
implicit class PrintableOps[A](value: A) {
def format(implicit p: Printable[A]): String =
Printable.format(value)

def print(implicit p: Printable[A]): Unit =
Printable.print(value)

With PrintableOps in scope, we can call the imaginary print and format
methods on any value for which Scala can locate an implicit instance of
Printable:

import PrintableSyntax.

Cat("Garfield", 38, "ginger and black").print
// Garfield is a 38 year-old ginger and black cat.

We get a compile error if we haven't defined an instance of Printable for the
relevant type:

import java.util.Date

new Date().print
// <console>:23: error: could not find implicit value for parameter p:
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Printable[java.util.Date]
// new Date().print
// ~

Return to the exercise

A.4 Cat Show

First let's import everything we need from Cats: the Show type class, the in-
stances for Int and String, and the interface syntax:

import cats.Show

import cats.instances.int. // for Show
import cats.instances.string. // for Show
import cats.syntax.show. // for show

Our definition of Cat remains the same:

final case class Cat(name: String, age: Int, color: String)

In the companion object we replace our Printable with an instance of Show
using one of the definition helpers discussed above:

implicit val catShow = Show.show[Cat] { cat =>
val name = cat.name.show
val age = cat.age.show
val color = cat.color.show
s"$name is a $age year-old $color cat."

Finally, we use the Show interface syntax to print our instance of Cat:

println(Cat("Garfield", 38, "ginger and black").show)
// Garfield is a 38 year-old ginger and black cat.

Return to the exercise
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A.5 Equality, Liberty, and Felinity

First we need our Cats imports. In this exercise we'll be using the Eq type class
and the Eq interface syntax. We'll bring instances of Eq into scope as we need
them below:

import cats.Eq
import cats.syntax.eq. // for ===

Our Cat class is the same as ever:

final case class Cat(name: String, age: Int, color: String)

We bring the Eq instances for Int and String into scope for the implementa-
tion of Eq[Cat]:

import cats.instances.int. // for Eq
import cats.instances.string. // for Eq

implicit val catEqual: Eq[Cat] =
Eq.instance[Cat] { (catl, cat2) =>

(catl.name === cat2.name ) &&
(catl.age === cat2.age ) &
(catl.color === cat2.color)

Finally, we test things out in a sample application:

val catl = Cat("Garfield", 38, "orange and black")
// catl: Cat = Cat(Garfield,38,orange and black)

val cat2 = Cat("Heathcliff", 32, "orange and black")
// cat2: Cat = Cat(Heathcliff,32,orange and black)

catl === cat2
// resl7: Boolean = false

catl =!= cat2
// resl8: Boolean = true
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import cats.instances.option. // for Eq

val optionCatl = Option(catl)
// optionCatl: Option[Cat] = Some(Cat(Garfield,38,orange and black))

val optionCat2 = Option.empty[Cat]
// optionCat2: Option[Cat] = None

optionCatl === optionCat2
// resl9: Boolean = false

optionCatl =!= optionCat2
// res20: Boolean = true

Return to the exercise
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Solutions for: Monoids and
Semigroups

B.1 The Truth About Monoids

There are four monoids for Boolean! First, we have and with operator && and
identity true:

implicit val booleanAndMonoid: Monoid[Boolean] =
new Monoid[Boolean] {
def combine(a: Boolean, b: Boolean) = a & b
def empty = true
}

Second, we have or with operator | | and identity false:

implicit val booleanOrMonoid: Monoid[Boolean] =
new Monoid[Boolean] {
def combine(a: Boolean, b: Boolean) =a || b
def empty = false
}

Third, we have exclusive or with identity false:

239



240 APPENDIX B. SOLUTIONS FOR: MONOIDS AND SEMIGROUPS

implicit val booleanEitherMonoid: Monoid[Boolean] =
new Monoid[Boolean] {
def combine(a: Boolean, b: Boolean) =
(a & !'b) [| ('a && b)

def empty = false
}

Finally, we have exclusive nor (the negation of exclusive or) with identity true:

implicit val booleanXnorMonoid: Monoid[Boolean] =
new Monoid[Boolean] {
def combine(a: Boolean, b: Boolean) =
('a || b) & (a || !b)

def empty = true
}

Showing that the identity law holds in each case is straightforward. Simi-

larly associativity of the combine operation can be shown by enumerating
the cases.

Return to the exercise

B.2 All Set for Monoids

Set union forms a monoid along with the empty set:

implicit def setUnionMonoid[A]: Monoid[Set[A]l] =
new Monoid[Set[A]] {
def combine(a: Set[A], b: Set[A]) = a union b
def empty = Set.empty[A]
}

We need to define setUnionMonoid as a method rather than a value so we
can accept the type parameter A. The type parameter allows us to use the
same definition to summon Monoids for Sets of any type of data:
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val intSetMonoid = Monoid[Set[Int]]
val strSetMonoid = Monoid[Set[String]]

intSetMonoid.combine(Set (1, 2), Set(2, 3))
// res2: Set[Int] = Set(1, 2, 3)

strSetMonoid.combine(Set("A", "B"), Set("B", "C"))
// res3: Set[String] = Set(A, B, ()

Set intersection forms a semigroup, but doesn’t form a monoid because it has
no identity element:

implicit def setIntersectionSemigroup[A]: Semigroup[Set[A]] =
new Semigroup[Set[A]] {
def combine(a: Set[A], b: Set[A]) =
a intersect b

Set complement and set difference are not associative, so they cannot be con-
sidered for either monoids or semigroups. However, symmetric difference
(the union less the intersection) does also form a monoid with the empty set:

implicit def symDiffMonoid[A]: Monoid[Set[A]]
new Monoid[Set[A]] {
def combine(a: Set[A], b: Set[A]): Set[A]
(a diff b) union (b diff a)
def empty: Set[A] = Set.empty
}

Return to the exercise

B.3 Adding All The Things

We can write the addition as a simple foldLeft using 0 and the + operator:
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def add(items: List[Int]): Int =
items.foldLeft(0)( + )

We can alternatively write the fold using Monoids, although there’s not a com-
pelling use case for this yet:

import cats.Monoid
import cats.instances.int._ // for Monoid
import cats.syntax.semigroup. // for |+|

def add(items: List[Int]): Int =

items.foldLeft(Monoid[Int].empty)( |+]| )

Return to the exercise

B.4 Adding All The Things Part 2

Now there is a use case for Monoids. We need a single method that adds
Ints and instances of Option[Int]. We can write this as a generic method
that accepts an implicit Monoid as a parameter:

import cats.Monoid
import cats.instances.int. // for Monoid
import cats.syntax.semigroup. // for |+]|

def add[A](items: List[A])(implicit monoid: Monoid[A]): A =

items.foldLeft(monoid.empty) (_ |+| _)

We can optionally use Scala’s context bound syntax to write the same code in
a friendlier way:

def add[A: Monoid](items: List[A]): A =
items.foldLeft(Monoid[A].empty)( |+]| )

We can use this code to add values of type Int and Option[Int] as re-
quested:
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import cats.instances.int._// for Monoid

add(List(1, 2, 3))
// res9: Int = 6

import cats.instances.option. // for Monoid

add(List(Some(1l), None, Some(2), None, Some(3)))
// reslO: Option[Int] = Some(6)

Note that if we try to add a list consisting entirely of Some values, we get a
compile error:

add(List(Some(1), Some(2), Some(3)))

// <console>:61: error: could not find implicit value for evidence
parameter of type cats.Monoid[Some[Int]]

// add(List(Some(1), Some(2), Some(3)))

// ~

This happens because the inferred type of the listis List[Some[Int]], while
Cats will only generate a Monoid for Option[Int]. We'll see how to get
around this in a moment.

Return to the exercise

B.5 Adding All The Things Part 3

Easy—we simply define a monoid instance for Order!

implicit val monoid: Monoid[Order] = new Monoid[Order] {
def combine(ol: Order, 02: Order) =
Order(
ol.totalCost + o02.totalCost,
ol.quantity + o2.quantity
)

def empty = Order(0, 0)
}

Return to the exercise
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Appendix C

Solutions for: Functors

C.1 Branching out with Functors

The semantics are similar to writing a Functor for List. We recurse over the
data structure, applying the function to every Leaf we find. The functor laws
intuitively require us to retain the same structure with the same pattern of
Branch and Leaf nodes:

import cats.Functor

implicit val treeFunctor: Functor[Tree] =
new Functor[Tree] {
def map[A, B]l(tree: Tree[A])(func: A => B): Tree[B] =
tree match {

case Branch(left, right) =>
Branch(map(left) (func), map(right) (func))

case Leaf(value) =>
Leaf (func(value))

Let's use our Functor to transform some Trees:
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Branch(Leaf(10), Leaf(20)).map(_ * 2)

// <console>:42: error: value map is not a member of wrapper.Branch]
Int]

// Branch(Leaf(10), Leaf(20)).map( * 2)

// ~

Oops! This falls foul of the same invariance problem we discussed in Section
1.6.1. The compiler can find a Functor instance for Tree but not for Branch
or Leaf. Let's add some smart constructors to compensate:

object Tree {
def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =
Branch(left, right)

def leaf[A]l(value: A): Tree[A] =
Leaf(value)

Now we can use our Functor properly:

Tree.leaf(100).map(_ * 2)
// reslO: wrapper.Tree[Int] = Leaf(200)

Tree.branch(Tree.leaf(10), Tree.leaf(20)).map(_* 2)

// resll: wrapper.Tree[Int] = Branch(Leaf(20),Leaf(40))

Return to the exercise

C.2 Showing off with Contramap

Here's a working implementation. We call func to turn the B into an A and
then use our original Printable to turn the A into a String. In a small
show of sleight of hand we use a self alias to distinguish the outer and in-
ner Printables:
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trait Printable[A] {
self =>

def format(value: A): String

def contramap[B](func: B => A): Printable[B] =
new Printable[B] {
def format(value: B): String =
self.format (func(value))

}

def format[A](value: A)(implicit p: Printable[A]): String =
p.format(value)

Return to the exercise

C.3 Showing off with Contramap Part 2

To make the instance generic across all types of Box, we base it on the
Printable for the type inside the Box. We can either write out the complete
definition by hand:

implicit def boxPrintable[A](implicit p: Printable[A]) =
new Printable[Box[A]] {
def format(box: Box[A]): String =
p.format(box.value)

or use contramap to base the new instance on the implicit parameter:

implicit def boxPrintable[A](implicit p: Printable[A]) =
p.contramap[Box[A]]l(_.value)

Using contramap is much simpler, and conveys the functional programming
approach of building solutions by combining simple building blocks using pure
functional combinators.

Return to the exercise
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C.4 Transformative Thinking with imap

Here's a working implementation:

trait Codec[A] {
def encode(value: A): String
def decode(value: String): A

def imap[Bl(dec: A => B, enc: B => A): Codec[B] = {
val self = this
new Codec[B] {
def encode(value: B): String =
self.encode(enc(value))

def decode(value: String): B
dec(self.decode(value))

Return to the exercise

C.5 Transformative Thinking with imap Part 2

We can implement this using the imap method of stringCodec:

implicit val doubleCodec: Codec[Double] =
stringCodec.imap[Double] ( .toDouble, .toString)

Return to the exercise

C.6 Transformative Thinking with imap Part 3

We need a generic Codec for Box[A] for any given A. We create this by calling
imap on a Codec[A], which we bring into scope using an implicit parameter:
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implicit def boxCodec[A](implicit c: Codec[A]): Codec[Box[A]] =
c.imap[Box[A]]l(Box( ), _.value)

Return to the exercise
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Appendix D

Solutions for: Monads

D.1 Getting Func-y

At first glance this seems tricky, but if we follow the types we'll see there’s only
one solution. We are passed a value of type F[A]. Given the tools available
there’s only one thing we can do: call flatMap:

trait Monad[F[ 11 {
def pure[A](value: A): F[A]

def flatMap[A, B]l(value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =
flatMap(value) (a => ??7)

We need a function of type A => F[B] as the second parameter. We have two
function building blocks available: the func parameter of type A => Band the
pure function of type A => F[A]. Combining these gives us our result:

trait Monad[F[ 1] {
def pure[A](value: A): F[A]
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def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =
flatMap(value) (a => pure(func(a)))

Return to the exercise

D.2 Monadic Secret Identities

Let’s start by defining the method signatures:

import cats.Id

def pure[A](value: A): Id[A] =
777

def map[A, B](initial: Id[A])(func: A => B): Id[B] =
777

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =
777

Now let’s look at each method in turn. The pure operation creates an Id[A]
from an A. But A and Id[A] are the same type! All we have to do is return the
initial value:

def pure[A](value: A): Id[A] =
value

pure(123)
// reslO: cats.Id[Int] = 123

The map method takes a parameter of type Id[A], applies a function of type
A => B, and returns an Id[B]. But Id[A] is simply A and Id[B] is simply B!
All we have to do is call the function—no packing or unpacking required:
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def map[A, B](initial: Id[A])(func: A => B): Id[B] =
func(initial)

map(123) (_ * 2)
// resll: cats.Id[Int] = 246

The final punch line is that, once we strip away the Id type constructors,
flatMap and map are actually identical:

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =
func(initial)
// flatMap: [A, Bl(initial: cats.Id[A])(func: A => cats.Id[B])cats.Id[
B

flatMap(123)(_ * 2)
// resl2: cats.Id[Int] = 246

This ties in with our understanding of functors and monads as sequencing type
classes. Each type class allows us to sequence operations ignoring some kind
of complication. In the case of Id there is no complication, making map and
flatMap the same thing.

Notice that we haven't had to write type annotations in the method bodies
above. The compiler is able to interpret values of type A as Id[A] and vice
versa by the context in which they are used.

The only restriction we've seen to this is that Scala cannot unify types and
type constructors when searching for implicits. Hence our need to re-type
Int as Id[Int] in the call to sumSquare at the opening of this section:

sumSquare(3 : Id[Int], 4 : Id[Int])

Return to the exercise

D.3 Whatis Best?

This is an open question. It's also kind of a trick question—the answer depends
on the semantics we're looking for. Some points to ponder:
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e Error recovery is important when processing large jobs. We don’t want
to run a job for a day and then find it failed on the last element.

e Error reporting is equally important. We need to know what went
wrong, not just that something went wrong.

e In a number of cases, we want to collect all the errors, not just the first
one we encountered. A typical example is validating a web form. It's a
far better experience to report all errors to the user when they submit
a form than to report them one at a time.

Return to the exercise

D.4 Safer Folding using Eval

The easiest way to fix this is to introduce a helper method called
foldRightEval. This is essentially our original method with every occur-
rence of B replaced with Eval[B], and a call to Eval.defer to protect the
recursive call:

import cats.Eval

def foldRightEval[A, Bl(as: List[A], acc: Eval[B])
(fn: (A, Eval[B]) => Eval[B]): Eval[B] =
as match {
case head :: tail =>
Eval.defer(fn(head, foldRightEval(tail, acc)(fn)))
case Nil =>
acc

We can redefine foldRight simply in terms of foldRightEval and the re-
sulting method is stack safe:

def foldRight[A, Bl(as: List[A], acc: B)(fn: (A, B) => B): B =
foldRightEval(as, Eval.now(acc)) { (a, b) =>
b.map(fn(a, ))
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}.value

foldRight((1 to 100000).toList, OL)(_ + )
// res22: Long = 5000050000

Return to the exercise

D.5 Show Your Working

We'll start by defining a type alias for Writer so we can use it with pure
syntax:

import cats.data.Writer
import cats.syntax.applicative. // for pure

type Logged[A] = Writer[Vector[String], A]

42 .pure[Logged]
// resl3: Logged[Int] = WriterT((Vector(),42))

WEe'll import the tell syntax as well:

import cats.syntax.writer._ // for tell
Vector("Message").tell

// resld: cats.data.Writer[scala.collection.immutable.Vector[String],
Unit] = WriterT((Vector(Message),()))

Finally, we'll import the Semigroup instance for Vector. We need this to map
and flatMap over Logged:

import cats.instances.vector._ // for Monoid
41.pure[Logged].map(_ + 1)

// resl5: cats.data.WriterT[cats.Id,Vector[String],Int] = WriterT((
Vector(),42))

With these in scope, the definition of factorial becomes:
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def factorial(n: Int): Logged[Int] =

for {
ans <- if(n == 0) {
1.pure[Logged]
} else {
slowly(factorial(n - 1).map(_ * n))
}
B <- Vector(s"fact $n $ans").tell
} yield ans

When we call factorial, we now have to run the return value to extract the
log and our factorial:

val (log, res) = factorial(5).run

// log: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2, fact 3
6, fact 4 24, fact 5 120)

// res: Int = 120

We can run several factorials in parallel as follows, capturing their logs in-
dependently without fear of interleaving:

val Vector((logA, ansA), (logB, ansB)) =
Await.result(Future.sequence(Vector(
Future(factorial(3).run),
Future(factorial(5).run)
)), 5.seconds)
// logA: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2, fact 3
6)
// ansA: Int = 6
// logB: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2, fact 3
6, fact 4 24, fact 5 120)
// ansB: Int = 120

Return to the exercise

D.6 Hacking on Readers

Our type alias fixes the Db type but leaves the result type flexible:
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type DbReader[A] = Reader[Db, A]

Return to the exercise

D.7 Hacking on Readers Part 2

Remember: the idea is to leave injecting the configuration until last. This
means setting up functions that accept the config as a parameter and check it
against the concrete user info we have been given:

def findUsername(userId: Int): DbReader[Option[String]] =
Reader(db => db.usernames.get(userId))

def checkPassword(
username: String,

password: String): DbReader[Boolean] =
Reader(db => db.passwords.get(username).contains(password))

Return to the exercise

D.8 Hacking on Readers Part 3

As you might expect, here we use flatMap to chain findUsername and
checkPassword. We use pure to lift a Boolean to a DbReader[Boolean]
when the username is not found:

import cats.syntax.applicative. // for pure

def checkLogin(

userld: Int,
password: String): DbReader[Boolean] =
for {

username <- findUsername(userId)
passwordOk <- username.map { username =>
checkPassword(username, password)
}.getOrElse {
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false.pure[DbReader]

}
} yield passwordOk

Return to the exercise

D.9 Post-Order Calculator

The stack operation required is different for operators and operands. For clar-
ity we'll implement evalOne in terms of two helper functions, one for each
case:

def evalOne(sym: String): CalcState[Int] =

sym match {
case "+" => operator(_+ )
case "-" => operator(_ - )
case "*" => operator(_ * )

case "/" => operator(_/ )

case num => operand(num.toInt)

Let's look at operand first. All we have to do is push a number onto the stack.
We also return the operand as an intermediate result:

def operand(num: Int): CalcState[Int] =
State[List[Int], Int] { stack =>
(num :: stack, num)

}

The operator functionis a little more complex. We have to pop two operands
off the stack (having the second operand at the top of the stack) and push
the result in their place. The code can fail if the stack doesn’t have enough
operands on it, but the exercise description allows us to throw an exception
in this case:
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def operator(func: (Int, Int) => Int): CalcState[Int] =
State[List[Int], Int] {
case b :: a :: tail =>
val ans = func(a, b)
(ans :: tail, ans)

case _ =>
sys.error("Fail!")

Return to the exercise

D.10 Post-Order Calculator Part 2

We implement evalAll by folding over the input. We start with a pure
CalcState that returns 0 if the list is empty. We flatMap at each stage,
ignoring the intermediate results as we saw in the example:

import cats.syntax.applicative. // for pure
def evalAll(input: List[String]): CalcState[Int] =
input.foldLeft(0.pure[CalcState]) { (a, b) =>

a.flatMap(_ => evalOne(b))
}

Return to the exercise

D.11 Post-Order Calculator Part 3

We've done all the hard work now. All we need to do is split the input into
terms and call runA and value to unpack the result:

def evalInput(input: String): Int =
evalAll(input.split(" ").toList).runA(Nil).value

evallnput("1l 2 + 3 4 + *")
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// res8: Int = 21

Return to the exercise

D.12 Branching out Further with Monads

The code for flatMap is similar to the code for map. Again, we recurse down
the structure and use the results from func to build a new Tree.

The code for tailRecM is fairly complex regardless of whether we make it
tail-recursive or not.

If we follow the types, the non-tail-recursive solution falls out:

import cats.Monad

implicit val treeMonad = new Monad[Tree] {
def pure[A](value: A): Tree[A] =
Leaf(value)

def flatMap[A, B](tree: Tree[A])
(func: A => Tree[B]): Tree[B] =
tree match {
case Branch(l, r) =>
Branch(flatMap(1l) (func), flatMap(r)(func))
case Leaf(value) =>
func(value)

}

def tailRecM[A, B](a: A)
(func: A => Tree[Either[A, B]]): Tree[B] =
flatMap(func(a)) {
case Left(value) =>
tailRecM(value) (func)
case Right(value) =>
Leaf(value)

The solution above is perfectly fine for this exercise. Its only downside is that
Cats cannot make guarantees about stack safety.
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The tail-recursive solution is much harder to write. We adapted this solu-
tion from this Stack Overflow post by Nazarii Bardiuk. It involves an explicit
depth first traversal of the tree, maintaining an open list of nodes to visit and
a closed list of nodes to use to reconstruct the tree:

import cats.Monad

implicit val treeMonad = new Monad[Tree] {
def pure[A](value: A): Tree[A] =
Leaf(value)

def flatMap[A, B](tree: Tree[Al])
(func: A => Tree[B]): Tree[B] =
tree match {
case Branch(l, r) =>
Branch(flatMap(l) (func), flatMap(r)(func))
case Leaf(value) =>
func(value)

def tailRecM[A, B](arg: A)
(func: A => Tree[Either[A, B]]): Tree[B] = {
@tailrec
def loop(
open: List[Tree[Either[A, B]1],
closed: List[Option[Tree[B]]1]): List[Tree[B]] =
open match {
case Branch(1l, r) :: next =>
loop(l :: r :: next, None :: closed)

case Leaf(Left(value)) :: next =>
loop(func(value) :: next, closed)

case Leaf(Right(value)) :: next =>
loop(next, Some(pure(value)) :: closed)

case Nil =>
closed.foldLeft(Nil: List[Tree[B]]) { (acc, maybeTree) =>
maybeTree.map(_ :: acc).getOrElse {
val left :: right :: tail = acc
branch(left, right) :: tail
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}

loop(List(func(arg)), Nil).head
}
}

Regardless of which version of tailRecM we define, we can use our Monad to
flatMap and map on Trees:

import cats.syntax.functor._ // for map
import cats.syntax.flatMap. // for flatMap

branch(leaf(100), leaf(200)).
flatMap(x => branch(leaf(x - 1), leaf(x + 1)))
// res3: wrapper.Tree[Int] = Branch(Branch(Leaf(99),Leaf(101)),Branch(
Leaf(199),Leaf(201)))

We can also transform Trees using for comprehensions:

for {
a <- branch(leaf(100), leaf(200))
b <- branch(leaf(a - 10), leaf(a + 10))
c <- branch(leaf(b - 1), leaf(b + 1))
} yield ¢
// res4: wrapper.Tree[Int] = Branch(Branch(Branch(Leaf(89),Leaf(91)),
Branch(Leaf(109),Leaf(111))),Branch(Branch(Leaf(189),Leaf(191)),
Branch(Leaf(209),Leaf(211))))

The monad for Option provides fail-fast semantics. The monad for List pro-
vides concatenation semantics. What are the semantics of flatMap for a bi-
nary tree? Every node in the tree has the potential to be replaced with a whole
subtree, producing a kind of “growing” or “feathering” behaviour, reminiscent
of list concatenation along two axes.

Return to the exercise
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Solutions for: Monad
Transformers

E.1 Monads: Transform and Roll Out

This is a relatively simple combination. We want Future on the outside and
Either on the inside, so we build from the inside out using an EitherT of
Future:

import cats.data.EitherT
import scala.concurrent.Future

type Response[A] = EitherT[Future, String, Al

Return to the exercise

E.2 Monads: Transform and Roll Out Part 2

import cats.instances.future._ // for Monad
import cats.syntax.flatMap.  // for flatMap
import scala.concurrent.ExecutionContext.Implicits.global
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type Response[A] = EitherT[Future, String, Al

def getPowerLevel(ally: String): Response[Int] = {
powerLevels.get(ally) match {
case Some(avg) => EitherT.right(Future(avg))
case None => EitherT.left(Future(s"$ally unreachable"))

Return to the exercise

E.3 Monads: Transform and Roll Out Part 3

We request the power level from each ally and use map and flatMap to com-
bine the results:

def canSpecialMove(allyl: String, ally2: String): Response[Boolean] =
for {
powerl <- getPowerLevel(allyl)
power2 <- getPowerLevel(ally2)
} yield (powerl + power2) > 15

Return to the exercise

E.4 Monads: Transform and Roll Out Part 4

We use the value method to unpack the monad stack and Await and fold
to unpack the Future and Either:

import scala.concurrent.Await
import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.duration.

def tacticalReport(allyl: String, ally2: String): String = {
val stack = canSpecialMove(allyl, ally2).value

Await.result(stack, 1l.second) match {
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case Left(msg) =>
s"Comms error: $msg"
case Right(true) =>

s"$allyl and $ally2 are ready to roll out!"

case Right(false) =>
s"$allyl and $ally2 need a recharge."

Return to the exercise
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Appendix F

Solutions for: Semigroupal and
Applicative

F.1 The Product of Monads

We can implement product in terms of map and flatMap like so:

import cats.syntax.flatMap. // for flatMap
import cats.syntax.functor. // for map

def product[M[ ]: Monad, A, Bl(x: M[A], y: M[B]): M[(A, B)]
x.flatMap(a => y.map(b => (a, b)))

Unsurprisingly, this code is equivalent to a for comprehension:

def product[M[_]: Monad, A, B](x: M[A], y: M[B]): M[(A, B)]
for {
a <- x
b <-vy
} yield (a, b)

The semantics of flatMap are what give rise to the behaviour for List and
Either:
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import cats.instances.list._ // for Semigroupal

product(List(1l, 2), List(3, 4))
// resl2: List[(Int, Int)] = List((1,3), (1,4), (2,3), (2,4))

type ErrorOr[A] = Either[Vector[String], Al
product[ErrorOr, Int, Int](
Left(Vector("Error 1)),

Left(Vector("Error 2"))

)
// resl3: ErrorOr[(Int, Int)] = Left(Vector(Error 1))

Return to the exercise

F.2 Form Validation

We'll be using Either and Validated so we'll start with some imports:

import cats.data.Validated

type FormData = Map[String, String]
type FailFast[A] = Either[List[String], A]
type FailSlow[A] = Validated[List[String], Al

The getValue rule extracts a String from the form data. We'll be using it in
sequence with rules for parsing Ints and checking values, so we'll define it to
return an Either:

def getValue(name: String)(data: FormData): FailFast[String] =
data.get(name).
toRight(List(s"$name field not specified"))

We can create and use an instance of getValue as follows:
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val getName = getValue("'name") _
// getName: FormData => FailFast[String] = <functionl>

getName (Map("name" -> "Dade Murphy"))
// res29: FailFast[String] = Right(Dade Murphy)

In the event of a missing field, our instance returns an error message containing
an appropriate field name:

getName (Map())
// res30: FailFast[String] = Left(List(name field not specified))

Return to the exercise

F.3 Form Validation Part 2

We'll use Either again here. We use Either.catchOnly to consume the
NumberFormatException from toInt, and we use leftMap to turn it into
an error message:

import cats.syntax.either. // for catchOnly
type NumFmtExn = NumberFormatException

def parseInt(name: String)(data: String): FailFast[Int] =
Either.catchOnly[NumFmtExn] (data.toInt).
leftMap(_ => List(s"$name must be an integer"))

Note that our solution accepts an extra parameter to name the field we're
parsing. This is useful for creating better error messages, but it’s fine if you
leave it out in your code.

If we provide valid input, parseInt converts it to an Int:

parselInt("age")("11")
// res33: FailFast[Int] = Right(11)

If we provide erroneous input, we get a useful error message:
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parselInt("age")("foo")
// res34: FailFast[Int] = Left(List(age must be an integer))

Return to the exercise

F.4 Form Validation Part 3

These definitions use the same patterns as above:

def nonBlank(name: String) (data: String): FailFast[String] =
Right(data).
ensure(List(s"$name cannot be blank"))(_.nonEmpty)
def nonNegative(name: String)(data: Int): FailFast[Int] =

Right(data).
ensure(List(s"$name must be non-negative"))( >= 0)

Here are some examples of use:

nonBlank("name") ("Dade Murphy")
// res36: FailFast[String] = Right(Dade Murphy)

nonBlank("name") ("")
// res37: FailFast[String] = Left(List(name cannot be blank))

nonNegative("age") (11)
// res38: FailFast[Int] = Right(11)

nonNegative("age")(-1)

// res39: FailFast[Int] = Left(List(age must be non-negative))

Return to the exercise

F.5 Form Validation Part 4

We use flatMap to combine the rules sequentially:
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def readName(data: FormData): FailFast[String] =
getValue("name") (data).
flatMap(nonBlank("name"))

def readAge(data: FormData): FailFast[Int] =
getValue("age") (data).
flatMap(nonBlank("age")).

flatMap(parselInt("age")).
flatMap(nonNegative("age"))

The rules pick up all the error cases we've seen so far:

readName (Map ("name" -> "Dade Murphy"))
// res4l: FailFast[String] = Right(Dade Murphy)

readName (Map ("name" -> ""))
// res42: FailFast[String] = Left(List(name cannot be blank))

readName (Map())
// res43: FailFast[String] = Left(List(name field not specified))

readAge(Map("age" -> "11"))
// resd44: FailFast[Int] = Right(11)

readAge(Map("age" -> "-1"))
// res45: FailFast[Int] = Left(List(age must be non-negative))

readAge(Map())
// resd6: FailFast[Int] = Left(List(age field not specified))

Return to the exercise

F.6 Form Validation Part 5

We can do this by switching from Either to Validated and using apply syn-
tax:
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import cats.instances.list._ // for Semigroupal
import cats.syntax.apply. // for mapN

def readUser(data: FormData): FailSlow[User] =
(
readName(data).toValidated,
readAge(data) .toValidated
) .mapN(User.apply)

readUser(Map("name" -> "Dave", "age" -> "37"))
// res48: FailSlow[User] = Valid(User(Dave,37))

readUser(Map("age" -> "-1"))
// resd49: FailSlow[User] = Invalid(List(name field not specified, age
must be non-negative))

The need to switch back and forth between Either and Validated is an-
noying. The choice of whether to use Either or Validated as a default is
determined by context. In application code, we typically find areas that favour
accumulating semantics and areas that favour fail-fast semantics. We pick the
data type that best suits our need and switch to the other as necessary in spe-
cific situations.

Return to the exercise



Appendix G

Solutions for: Foldable and
Traverse

G.1 Reflecting on Folds

Folding from left to right reverses the list:

List(1, 2, 3).foldLeft(List.empty[Int])((a, i) => 1 :: a)
// res6: List[Int] = List(3, 2, 1)

Folding right to left copies the list, leaving the order intact:

List(1, 2, 3).foldRight(List.empty[Int])((i, a) => 1 :: a)
// res7: List[Int] = List(1l, 2, 3)

Note that we have to carefully specify the type of the accumulator to avoid
a type error. We use List.empty[Int] to avoid inferring the accumulator

type as Nil.typeor List[Nothing]:

List(1l, 2, 3).foldRight(Nil)(_ :: )
// <console>:13: error: type mismatch;
// found : List[Int]
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// required: scala.collection.immutable.Nil.type
// List(1, 2, 3).foldRight(Nil)( :: )
// ~

Return to the exercise

G.2 Scaf-fold-ing Other Methods

Here are the solutions:

def map[A, B](list: List[A])(func: A => B): List[B] =
list.foldRight(List.empty[B]) { (item, accum) =>
func(item) :: accum

}

map(List(1, 2, 3))(_ * 2)
// res9: List[Int] = List(2, 4, 6)

def flatMap[A, B](list: List[A])(func: A => List[B]): List[B] =
list.foldRight(List.empty[B]) { (item, accum) =>
func(item) ::: accum

}

flatMap(List(1l, 2, 3))(a => List(a, a * 10, a * 100))
// resl0: List[Int] = List(1, 10, 100, 2, 20, 200, 3, 30, 300)

def filter[A](list: List[A])(func: A => Boolean): List[A] =
list.foldRight(List.empty[A]) { (item, accum) =>
if(func(item)) item :: accum else accum

}
filter(List(1, 2, 3))( % 2 == 1)

// resll: List[Int] = List(1l, 3)

We've provided two definitions of sum, one using scala.math.Numeric
(which recreates the built-in functionality accurately)...
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import scala.math.Numeric
def sumWithNumeric[A](list: List[A])
(implicit numeric: Numeric[A]): A =
list.foldRight (numeric.zero) (numeric.plus)
sumWithNumeric(List(1, 2, 3))

// resl3: Int = 6

and one using cats.Monoid (which is more appropriate to the content of this
book):

import cats.Monoid
def sumWithMonoid[A](list: List[A])
(implicit monoid: Monoid[A]): A =
list.foldRight(monoid.empty) (monoid.combine)
import cats.instances.int._ // for Monoid
sumWithMonoid (List(1, 2, 3))

// resle: Int =6

Return to the exercise

G.3 Traversing with Vectors

The argument is of type List[Vector[Int]], so we're using
the Applicative for Vector and the return type is going to be
Vector[List[Int]].

Vector is a monad, so its semigroupal combine function is based on flatMap.
We'll end up with a Vector of Lists of all the possible combinations of
List(1, 2) and List(3, 4):

listSequence(List(Vector(1l, 2), Vector(3, 4)))
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// resld: scala.collection.immutable.Vector[List[Int]] = Vector(List
(1, 3), List(1, 4), List(2, 3), List(2, 4))

Return to the exercise

G.4 Traversing with Vectors Part 2

With three items in the input list, we end up with combinations of three Ints:
one from the first item, one from the second, and one from the third:

listSequence(List(Vector(1l, 2), Vector(3, 4), Vector(5, 6)))

// resl6: scala.collection.immutable.Vector[List[Int]] = Vector(List
(1, 3, 5), List(1, 3, 6), List(1l, 4, 5), List(1l, 4, 6), List(2,
3, 5), List(2, 3, 6), List(2, 4, 5), List(2, 4, 6))

Return to the exercise

G.5 Traversing with Options

The arguments to listTraverse are of types List[Int] and Int =>
Option[Int], so the return type is Option[List[Int]]. Again, Optionis
a monad, so the semigroupal combine function follows from flatMap. The
semantics are therefore fail-fast error handling: if all inputs are even, we get
a list of outputs. Otherwise we get None:

process(List(2, 4, 6))
// res20: Option[List[Int]] = Some(List(2, 4, 6))

process(List(1, 2, 3))
// res2l: Option[List[Int]] = None

Return to the exercise
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G.6 Traversing with Validated

The return type here is ErrorsOr[List[Int]], which expands to
Validated[List[String], List[Int]]. The semantics for semigroupal
combine on validated are accumulating error handling, so the result is either
a list of even Ints, or a list of errors detailing which Ints failed the test:

process(List(2, 4, 6))
// res26: ErrorsOr[List[Int]] = Valid(List(2, 4, 6))

process(List(1, 2, 3))

// res27: ErrorsOr[List[Int]] = Invalid(List(1l is not even, 3 is not
even))

Return to the exercise
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Appendix H

Solutions for: Case Study: Testing
Asynchronous Code

H.1 Abstracting over Type Constructors

Here's the implementation:

import scala.language.higherKinds
import cats.Id

trait UptimeClient[F[ 1] {
def getUptime(hostname: String): F[Int]
}

trait RealUptimeClient extends UptimeClient[Future] {
def getUptime(hostname: String): Future[Int]
}

trait TestUptimeClient extends UptimeClient[Id] {

def getUptime(hostname: String): Id[Int]
}

Note that, because Id[A] is just a simple alias for A, we don't need to refer to
the typein TestUptimeClient as Id[Int]—we can simply write Int instead:
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trait TestUptimeClient extends UptimeClient[Id] {
def getUptime(hostname: String): Int
}

Of course, technically speaking we don't need to redeclare getUptime in
RealUptimeClient or TestUptimeClient. However, writing everything
out helps illustrate the technique.

Return to the exercise

H.2 Abstracting over Type Constructors Part 2

The final code is similar to our original implementation of TestUptimeClient,
except we no longer need the call to Future.successful:

class TestUptimeClient(hosts: Map[String, Int])
extends UptimeClient[Id] {
def getUptime(hostname: String): Int =
hosts.getOrElse(hostname, 0)

Return to the exercise

H.3 Abstracting over Monads

The code should look like this:

class UptimeService[F[_]](client: UptimeClient[F]) {

def getTotalUptime(hostnames: List[Stringl): F[Int] =
?7?

// hostnames.traverse(client.getUptime).map( .sum)

Return to the exercise
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H.4 Abstracting over Monads Part 2

We can write this as an implicit parameter:

import cats.Applicative
import cats.syntax.functor._ // for map

class UptimeService[F[ ]](client: UptimeClient[F])
(implicit a: Applicative[F]) {

def getTotalUptime(hostnames: List[Stringl): F[Int] =
hostnames.traverse(client.getUptime).map(_.sum)

or more tersely as a context bound:

class UptimeService[F[ ]: Applicative]
(client: UptimeClient[F]) {

def getTotalUptime(hostnames: List[Stringl): F[Int] =
hostnames.traverse(client.getUptime) .map( .sum)

Note that we need to import cats.syntax.functor as well as
cats.Applicative. Thisis because we're switching from using future.map
to the Cats’ generic extension method that requires an implicit Functor pa-
rameter.

Return to the exercise
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Appendix |

Solutions for: Case Study:
Map-Reduce

.1 Implementing foldMap

import cats.Monoid

/** Single-threaded map-reduce function.
* Maps “func® over “values® and reduces using a “Monoid[B]
w5

def foldMap[A, B: Monoid](values: Vector[A])(func: A => B): B =
?7?

Return to the exercise

.2 Implementing foldMap Part 2

We have to modify the type signature to accept a Monoid for B. With that
change we can use the Monoid empty and |+]| syntax as described in Section
2.5.3:

283



284 APPENDIX I. SOLUTIONS FOR: CASE STUDY: MAP-REDUCE

import cats.Monoid

import cats.instances.int._ // for Monoid
import cats.instances.string. // for Monoid
import cats.syntax.semigroup. // for |+]|

def foldMap[A, B : Monoid](as: Vector[A])(func: A => B): B =
as.map(func).foldLeft(Monoid[B].empty)(_ |+| _)

We can make a slight alteration to this code to do everything in one step:

def foldMap[A, B : Monoid](as: Vector[A])(func: A => B): B =
as.foldLeft(Monoid[B].empty)(_|+| func(_))

Return to the exercise

.3 Implementing parallelFoldMap

Here is an annotated solution that splits out each map and fold into a separate
line of code:

import scala.concurrent.duration.Duration

def parallelFoldMap[A, B: Monoid]
(values: Vector[A])
(func: A => B): Future[B] = {
// Calculate the number of items to pass to each CPU:
val numCores = Runtime.getRuntime.availableProcessors
val groupSize = (1.0 * values.size / numCores).ceil.toInt

// Create one group for each CPU:
val groups: Iterator[Vector[A]] =
values.grouped(groupSize)

// Create a future to foldMap each group:
val futures: Iterator[Future[B]] =
groups map { group =>
Future {
group.foldLeft(Monoid[B].empty) (_ |+| func( ))
}
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// foldMap over the groups to calculate a final result:

Future.sequence(futures) map { iterable =>
iterable.foldLeft(Monoid[B].empty)( |+]| )

}

val result: Future[Int] =
parallelFoldMap((1 to 1000000).toVector) (identity)

Await.result(result, 1.second)
// resl9: Int = 1784293664

We can re-use our definition of foldMap for a more concise solution. Note
that the local maps and reduces in steps 3 and 4 of Figure 9.4 are actually
equivalent to a single call to foldMap, shortening the entire algorithm as fol-
lows:

def parallelFoldMap[A, B: Monoid]
(values: Vector[A])
(func: A => B): Future[B] = {
val numCores = Runtime.getRuntime.availableProcessors
val groupSize = (1.0 * values.size / numCores).ceil.toInt

val groups: Iterator[Vector[A]] =
values.grouped(groupSize)

val futures: Iterator[Future[B]] =
groups.map(group => Future(foldMap(group) (func)))

Future.sequence(futures) map { iterable =>

iterable.foldLeft(Monoid[B].empty)(_ |+]| )
}

val result: Future[Int] =
parallelFoldMap((1 to 1000000).toVector) (identity)

Await.result(result, 1l.second)
// res2l: Int = 1784293664

Return to the exercise
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1.4 parallelFoldMap with more Cats

WEe'll restate all of the necessary imports for completeness:

import cats.Monoid
import cats.Foldable
import cats.Traverse

import cats.instances.int._ // for Monoid
import cats.instances.future._ // for Applicative and Monad
import cats.instances.vector._// for Foldable and Traverse

import cats.syntax.semigroup. // for |+]|
import cats.syntax.foldable. // for combineAll and foldMap
import cats.syntax.traverse. // for traverse

import scala.concurrent.
import scala.concurrent.duration._
import scala.concurrent.ExecutionContext.Implicits.global

Here'’s the implementation of parallelFoldMap delegating as much of the
method body to Cats as possible:

def parallelFoldMap[A, B: Monoid]
(values: Vector[A])
(func: A => B): Future[B] = {
val numCores = Runtime.getRuntime.availableProcessors
val groupSize = (1.0 * values.size / numCores).ceil.toInt

values
.grouped(groupSize)
.toVector
.traverse(group => Future(group.toVector.foldMap(func)))
.map(_.combineAll)

val future: Future[Int] =
parallelFoldMap((1 to 1000).toVector)(_ * 1000)

Await.result(future, 1.second)
// res3: Int = 500500000
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The call to vector.grouped returns an Iterable[Iterator[Int]]. We
sprinkle calls to toVector through the code to convert the data back
to a form that Cats can understand. The call to traverse creates a
Future[Vector[Int]] containing one Int per batch. The call to map then
combines the match using the combineAll method from Foldable.

Return to the exercise
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Appendix J

Solutions for: Case Study: Data
Validation

J.1 Basic Combinators

We need a Semigroup for E. Then we can combine values of E using the
combine method or its associated |+| syntax:

import cats.Semigroup
import cats.instances.list. _ // for Semigroup
import cats.syntax.semigroup._// for |+]|

val semigroup = Semigroup[List[String]]

// Combination using methods on Semigroup
semigroup.combine(List("Badness"), List("More badness"))
// res2: List[String] = List(Badness, More badness)

// Combination using Semigroup syntax

List("Oh noes") |+| List("Fail happened")
// resd: List[String] = List(0h noes, Fail happened)

Note we don’t need a full Monoid because we don't need the identity element.
We should always try to keep our constraints as small as possible!
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Return to the exercise

J.2 Basic Combinators Part 2

We want to report all the errors we can, so we should prefer not short-
circuiting whenever possible.

In the case of the and method, the two checks we're combining are indepen-
dent of one another. We can always run both rules and combine any errors
we see.

Return to the exercise

J.3 Basic Combinators Part 3

There are at least two implementation strategies.

In the first we represent checks as functions. The Check data type becomes a
simple wrapper for a function that provides our library of combinator methods.
For the sake of disambiguation, we'll call this implementation CheckF:

import cats.Semigroup
import cats.syntax.either. // for asLeft and asRight
import cats.syntax.semigroup. // for |+|

final case class CheckF[E, A]l(func: A => Either[E, A]) {
def apply(a: A): Either[E, A] =
func(a)

def and(that: CheckF[E, A])
(implicit s: Semigroup[E]): CheckF[E, A] =
CheckF { a =>
(this(a), that(a)) match {

case (Left(el), Left(e2)) => (el |+| e2).aslLeft
case (Left(e), Right(a)) => e.aslLeft

case (Right(a), Left(e)) => e.aslLeft

case (Right(al), Right(a2)) => a.asRight
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Let's test the behaviour we get. First we'll setup some checks:

import cats.instances.list. // for Semigroup

val a: CheckF[List[String], Int] =
CheckF { v =>
if(v > 2) v.asRight
else List("Must be > 2").asLeft
}

val b: CheckF[List[String], Int] =
CheckF { v =>
if(v < -2) v.asRight
else List("Must be < -2").asLeft
}

val check: CheckF[List[String], Int] =

a and b

Now run the check with some data:

check(5)

// res8: Either[List[String],Int] Left(List(Must be < -2))

check(0)
// res9: Either[List[String],Int]
-2))

Left(List(Must be > 2, Must be <

Excellent! Everything works as expected! We're running both checks and ac-
cumulating errors as required.

What happens if we try to create checks that fail with a type that we can't
accumulate? For example, there is no Semigroup instance for Nothing. What
happens if we create instances of CheckF[Nothing, A]?



292 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

val a: CheckF[Nothing, Int]
CheckF(v => v.asRight)

val b: CheckF[Nothing, Int]
CheckF(v => v.asRight)

We can create checks just fine but when we come to combine them we get an
error we might expect:

val check = a and b

// <console>:31: error: could not find implicit value for parameter s:
cats.Semigroup[Nothing]

// val check = a and b

// ~

Now let’s see another implementation strategy. In this approach we model
checks as an algebraic data type, with an explicit data type for each combinator.
WEe'll call this implementation Check:

sealed trait Check[E, A] {
def and(that: Check[E, A]): Check[E, A] =
And(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Either[E, A] =
this match {
case Pure(func) =>
func(a)

case And(left, right) =>
(left(a), right(a)) match {
case (Left(el), Left(e2)) => (el |+| e2).asLeft
case (Left(e), Right(a)) => e.aslLeft
case (Right(a), Left(e)) => e.asleft
case (Right(al), Right(a2)) => a.asRight

final case class And[E, A](
left: Check[E, A],
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right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](
func: A => Either[E, A]) extends Check[E, A]

Let's see an example:

val a: Check[List[String], Int] =
Pure { v =>
if(v > 2) v.asRight
else List("Must be > 2").asLeft
}

val b: Check[List[String], Int] =
Pure { v =>
if(v < -2) v.asRight
else List("Must be < -2").asLeft
}

val check: Check[List[String], Int] =
a and b

While the ADT implementation is more verbose than the function wrapper
implementation, it has the advantage of cleanly separating the structure of
the computation (the ADT instance we create) from the process that gives it
meaning (the apply method). From here we have a number of options:

e inspect and refactor checks after they are created;

e move the apply “interpreter” out into its own module;

e implement alternative interpreters providing other functionality (for ex-
ample visualizing checks).

Because of its flexibility, we will use the ADT implementation for the rest of
this case study.

Return to the exercise
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J.4 Basic Combinators Part 4

The implementation of apply for And is using the pattern for applicative func-
tors. Either has an Applicative instance, but it doesn’t have the semantics
we want. It fails fast instead of accumulating errors.

If we want to accumulate errors Validated is a more appropriate abstraction.
As a bonus, we get more code reuse because we can lean on the applicative
instance of Validated in the implementation of apply.

Here's the complete implementation:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // for |+]|
import cats.syntax.apply. // for mapN

sealed trait Check[E, Al {
def and(that: Check[E, A]): Check[E, A] =
And(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
this match {
case Pure(func) =>
func(a)

case And(left, right) =>
(left(a), right(a)).mapN((_, ) => a)

}
final case class And[E, A](
left: Check[E, Al,

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](
func: A => Validated[E, A]) extends Check[E, A]

Return to the exercise
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J.5 Basic Combinators Part 5

This reuses the same technique for and. We have to do a bit more work in
the apply method. Note that it's OK to short-circuit in this case because the
choice of rules is implicit in the semantics of “or”.

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup. // for |+|

import cats.syntax.apply. // for mapN

import cats.data.Validated._ // for Valid and Invalid

sealed trait Check[E, A] {
def and(that: Check[E, A]): Check[E, A] =
And(this, that)

def or(that: Check[E, A]): Check[E, A] =
Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
this match {
case Pure(func) =>
func(a)

case And(left, right) =>
(left(a), right(a)).mapN((_, ) => a)

case Or(left, right) =>
left(a) match {
case Valid(a) => Valid(a)
case Invalid(el) =>
right(a) match {
case Valid(a) => Valid(a)
case Invalid(e2) => Invalid(el |+| e2)

final case class And[E, A](
left: Check[E, Al,
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right: Check[E, A]) extends Check[E, A]
final case class Or[E, Al(

left: Check[E, Al,

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](
func: A => Validated[E, A]) extends Check[E, A]

Return to the exercise

J.6 Checks

If you follow the same strategy as Predicate you should be able to create
code similar to the below:

import cats.Semigroup
import cats.data.Validated

sealed trait Check[E, A, B] {
def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def map[C](f: B => C): Check[E, A, C] =
Map[E, A, B, Cl(this, f)

object Check {
def apply[E, Al(pred: Predicatel[E, Al): Check[E, A, A] =
Pure(pred)

final case class Map[E, A, B, CI(
check: Check[E, A, B],
func: B => C) extends Check[E, A, C] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, C] =
check(in).map(func)

final case class Pure[E, A](
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pred: Predicate[E, A]) extends Check[E, A, A] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, A] =
pred(in)

Return to the exercise

J.7 Checks Part 2

It's the same implementation strategy as before with one wrinkle: Validated
doesn’t have a flatMap method. To implement flatMap we must momentar-
ily switch to Either and then switch back to Validated. The withEither
method on Validated does exactly this. From here we can just follow the
types to implement apply.

import cats.Semigroup
import cats.data.Validated

sealed trait Check[E, A, B] {
def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def flatMap[C](f: B => Check[E, A, C]) =
FlatMap[E, A, B, C](this, f)

// other methods. ..
}

final case class FlatMap[E, A, B, CI(
check: Check[E, A, B],
func: B => Check[E, A, C]) extends Check[E, A, C] {
def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =
check(a) .withEither(_.flatMap(b => func(b)(a).toEither))
}

// other data types...

Return to the exercise
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J.8 Checks Part 3

Here's a minimal definition of andThen and its corresponding AndThen class:

sealed trait Check[E, A, B] {
import Check. _

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]
def andThen[C](that: Check[E, B, C]): Check[E, A, C] =

AndThen[E, A, B, C](this, that)

final case class AndThen[E, A, B, C](
checkl: Check[E, A, B],
check2: Check[E, B, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =
checkl(a).withEither( .flatMap(b => check2(b).toEither))

Return to the exercise

J.9 Recap

Here's our final implementaton, including some tidying and repackaging of the
code:

import cats.Semigroup
import cats.data.Validated

import cats.data.Validated.  // for Valid and Invalid
import cats.syntax.semigroup. // for |+|
import cats.syntax.apply._ // for mapN

import cats.syntax.validated._// for valid and invalid

Here is our complete implementation of Predicate, including the and and or
combinators and a Predicate.apply method to create a Predicate from a
function:
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sealed trait Predicate[E, A] {
import Predicate._

def and(that: Predicate[E, A]): Predicatel[E, A] =
And(this, that)

def or(that: Predicate[E, A]): Predicate[E, A] =
Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
this match {
case Pure(func) =>
func(a)

case And(left, right) =>
(left(a), right(a)).mapN((_, ) => a)

case Or(left, right) =>
left(a) match {
case Valid(al) => Valid(a)
case Invalid(el) =>
right(a) match {
case Valid(a2) => Valid(a)
case Invalid(e2) => Invalid(el |+| e2)

object Predicate {
final case class And[E, A](
left: Predicatel[E, A],
right: Predicate[E, A]) extends Predicatel[E, A]

final case class Or[E, A](
left: Predicate[E, Al,
right: Predicate[E, A]) extends Predicatel[E, A]

final case class Pure[E, A](
func: A => Validated[E, A]) extends Predicatel[E, Al

def apply[E, Al(f: A => Validated[E, A]): Predicate[E, A] =
Pure(f)
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def 1ift[E, Al(err: E, fn: A => Boolean): Predicate[E, A] =
Pure(a => if(fn(a)) a.valid else err.invalid)

Here is a complete implementation of Check. Due to a type inference bug in
Scala’s pattern matching, we've switched to implementing apply using inher-
itance:

sealed trait Check[E, A, B] {
import Check. _

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def map[C](f: B => C): Check[E, A, C] =
Map[E, A, B, Cl(this, f)

def flatMap[C](f: B => Check[E, A, C]) =
FlatMap[E, A, B, Cl(this, f)

def andThen[C] (next: Check[E, B, C]): Check[E, A, C] =
AndThen[E, A, B, C](this, next)

object Check {
final case class Map[E, A, B, CI(
check: Check[E, A, B],
func: B => C) extends Check[E, A, C] {

def apply(a: A)
(implicit s: Semigroup[E]l): Validated[E, C] =
check(a) map func

final case class FlatMap[E, A, B, Cl(
check: Check[E, A, B],
func: B => Check[E, A, C]) extends Check[E, A, C] {

def apply(a: A)
(implicit s: Semigroup[E]l): Validated[E, C] =
check(a) .withEither( .flatMap(b => func(b)(a).toEither))


https://issues.scala-lang.org/browse/SI-6680
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final case class AndThen[E, A, B, CI](
check: Check[E, A, B],
next: Check[E, B, C]) extends Check[E, A, C] {

def apply(a: A)
(implicit s: Semigroup[E]): Validated[E, C] =
check(a) .withEither( .flatMap(b => next(b).toEither))

final case class Purel[E, A, BI(
func: A => Validated[E, B]) extends Check[E, A, B] {

def apply(a: A)
(implicit s: Semigroup[E]): Validated[E, B] =
func(a)

final case class PurePredicate[E, A](
pred: Predicate[E, A]) extends Check[E, A, Al {

def apply(a: A)
(implicit s: Semigroup[El): Validated[E, A] =
pred(a)

def apply[E, Al(pred: Predicate[E, A]): Check[E, A, A] =
PurePredicate(pred)
def apply[E, A, B]

(func: A => Validated[E, B]): Check[E, A, B] =
Pure(func)

Return to the exercise

J.10 Recap Part 2

Here's our reference solution. Implementing this required more thought than
we expected. Switching between Check and Predicate at appropriate places
felt a bit like guesswork till we got the rule into our heads that Predicate
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doesn't transform its input. With this rule in mind things went fairly smoothly.
In later sections we'll make some changes that make the library easier to use.

import cats.data.{NonEmptyList, Validated}
import cats.syntax.apply. // for mapN
import cats.syntax.validated. // for valid and invalid

Here's the implementation of checkUsername:

// A username must contain at least four characters
// and consist entirely of alphanumeric characters

val checkUsername: Check[Errors, String, String] =
Check(longerThan(3) and alphanumeric)

And here’s the implementation of checkEmail, built up from a number of
smaller components:

// An email address must contain a single '@ sign.
// Split the string at the @ .

// The string to the left must not be empty.

// The string to the right must be

// at least three characters long and contain a dot.

val splitEmail: Check[Errors, String, (String, String)] =
Check(_.split('@') match {
case Array(name, domain) =>
(name, domain).validNel[String]

case other =>
"Must contain a single @ character".
invalidNel[(String, String)]
1)

val checkLeft: Check[Errors, String, String] =
Check(longerThan(0))

val checkRight: Check[Errors, String, String] =
Check(longerThan(3) and contains('.'))
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val joinEmail: Check[Errors, (String, String), String] =
Check { case (1, r) =>
(checkLeft(l), checkRight(r)).mapN(_+ "@" + )

val checkEmail: Check[Errors, String, String] =
splitEmail andThen joinEmail

Finally, here’s a check for a User that depends on checkUsername and
checkEmail:

final case class User(username: String, email: String)

def createUser(
username: String,
email: String): Validated[Errors, User] =
(checkUsername(username), checkEmail(email)).mapN(User)

We can check our work by creating a couple of example users:

createUser("Noel", "noel@underscore.io")
// resld: cats.data.Validated[wrapper.Errors,User] = Valid(User(Noel,
noel@underscore.io))

createUser("", "dave@underscore@io")

// resl5: cats.data.Validated[wrapper.Errors,User] = Invalid(
NonEmptyList(Must be longer than 3 characters, Must contain a
single @ character))

One distinct disadvantage of our example is that it doesn'’t tell us where the
errors came from. We can either achieve that through judicious manipulation
of error messages, or we can modify our library to track error locations as well
as messages. Tracking error locations is outside the scope of this case study,
so we'll leave this as an exercise to the reader.

Return to the exercise
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J.11 Kleislis

Here'’s an abbreviated definition of run. Like apply, the method must accept
an implicit Semigroup:

import cats.Semigroup
import cats.data.Validated

sealed trait Predicate[E, A] {
def run(implicit s: Semigroup[E]): A => Either[E, A] =
(a: A) => this(a).toEither

def apply(a: A): Validated[E, A] =
??? // etc...

// other methods. ..

Return to the exercise

J.12 Kleislis Part 2

Working around limitations of type inference can be quite frustrating when
writing this code, Working out when to convert between Predicates, func-
tions, and Validated, and Either simplifies things, but the process is still
complex:

import cats.data.{Kleisli, NonEmptyList, Validated}
import cats.instances.either.  // for Semigroupal
import cats.instances.list. // for Monad

Here is the preamble we suggested in the main text of the case study:

type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =
NonEmptyList(s, Nil)
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type Result[A] = Either[Errors, A]
type Check[A, B] = Kleisli[Result, A, B]

def check[A, B](func: A => Result[B]): Check[A, B] =
Kleisli(func)

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =
Kleisli[Result, A, Al(pred.run)

Our base predicate definitions are essenitally unchanged:

def longerThan(n: Int): Predicate[Errors, String] =
Predicate.lift(
error(s"Must be longer than $n characters"),
str => str.size > n)

val alphanumeric: Predicate[Errors, String] =
Predicate.lift(
error(s"Must be all alphanumeric characters"),
str => str.forall( .isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =
Predicate.lift(
error(s"Must contain the character $char"),
str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =
Predicate.lift(
error(s"Must contain the character $char only once"),
str => str.filter(c => ¢ == char).size == 1)

Our username and email examples are slightly different in that we make use
of check() and checkPred() in different situations:

val checkUsername: Check[String, String] =
checkPred(longerThan(3) and alphanumeric)

val splitEmail: Check[String, (String, String)] =
check( .split('@') match {
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case Array(name, domain) =>
Right((name, domain))

case other =>
Left(error("Must contain a single @ character"))

1)

val checkLeft: Check[String, String] =
checkPred(longerThan(0))

val checkRight: Check[String, String] =
checkPred(longerThan(3) and contains('.'))

val joinEmail: Check[(String, String), String] =
check {
case (1, r) =
(checkLeft(l), checkRight(r)).mapN(_ + "@" + _)

val checkEmail: Check[String, String] =
splitEmail andThen joinEmail

Finally, we can see that our createUser example works as expected using
Kleisli:

final case class User(username: String, email: String)

def createUser(
username: String,
email: String): Either[Errors, User] = (
checkUsername. run(username),
checkEmail. run(email)
) .mapN(User)

createUser("Noel", "noel@underscore.io")
// resl6: Either[Errors,User] = Right(User(Noel,noel@underscore.io))

createUser("", "dave@underscore@io")

// resl7: Either[Errors,User] = Left(NonEmptyList(Must be longer than
3 characters))

Return to the exercise



Appendix K

Solutions for: Case Study: CRDTs

K.1 GCounter Implementation

Hopefully the description above was clear enough that you can get to an im-
plementation like the one below.

final case class GCounter(counters: Map[String, Int]) {
def increment(machine: String, amount: Int) = {
val value = amount + counters.getOrElse(machine, 0)
GCounter(counters + (machine -> value))

}

def merge(that: GCounter): GCounter =
GCounter(that.counters ++ this.counters.map {
case (k, v) =>
k -> (v max that.counters.getOrElse(k, 0))
9]

def total: Int =
counters.values.sum

Return to the exercise

307
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K.2 BoundedSemilattice Instances

It's common to place the instances in the companion object of
BoundedSemilLattice so they are in the implicit scope without import-
ing them.

Implementing the instance for Set provides good practice with implicit meth-
ods.

trait BoundedSemilLattice[A] extends CommutativeMonoid[A] {
def combine(al: A, a2: A): A
def empty: A

}

object BoundedSemilLattice {
implicit val intInstance: BoundedSemiLattice[Int] =
new BoundedSemiLattice[Int] {
def combine(al: Int, a2: Int): Int =
al max a2

val empty: Int =
0
}

implicit def setInstance[A]: BoundedSemilLattice[Set[A]] =
new BoundedSemilLattice[Set[A]]{
def combine(al: Set[A], a2: Set[A]): Set[A] =

al union a2

val empty: Set[A] =
Set.empty[A]

Return to the exercise

K.3 Generic GCounter

Here’s a working implementation. Note the use of |+]| in the definition of
merge, which significantly simplifies the process of merging and maximising
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counters:
import cats.instances.list. // for Monoid
import cats.instances.map. // for Monoid

import cats.syntax.semigroup. // for |+|
import cats.syntax.foldable. // for combineAll

final case class GCounter[A](counters: Map[String,A]) {
def increment(machine: String, amount: A)
(implicit m: CommutativeMonoid[A]): GCounter[A] = {
val value = amount |+| counters.getOrElse(machine, m.empty)
GCounter(counters + (machine -> value))

def merge(that: GCounter[A])
(implicit b: BoundedSemilLattice[A]): GCounter[A] =
GCounter(this.counters |+| that.counters)

def total(implicit m: CommutativeMonoid[A]): A =
this.counters.values.tolList.combineAll

Return to the exercise

K.4 Abstracting GCounter to a Type Class

Here's the complete code for the instance. Write this definition in the com-
panion object for GCounter to place it in glocal implicit scope:

import cats.instances.list._ // for Monoid
import cats.instances.map._ // for Monoid
import cats.syntax.semigroup. // for |+]|

import cats.syntax.foldable. // for combineAll

implicit def mapInstance[K, V]: GCounter[Map, K, V] =
new GCounter[Map, K, V1 {
def increment(map: Map[K, V1) (key: K, value: V)
(implicit m: CommutativeMonoid[V]): Map[K, V] = {
val total = map.getOrElse(key, m.empty) |[+]| value
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map + (key -> total)
}

def merge(mapl: Map[K, V], map2: Map[K, VI])
(implicit b: BoundedSemilLattice[V]): Map[K, V] =
mapl |+| map2

def total(map: Map[K, V])
(implicit m: CommutativeMonoid[V]): V =
map.values.tolList.combineAll

Return to the exercise

K.5 Abstracting a Key Value Store

Here's the code for the instance. Write the definition in the companion object
for KeyValueStore to place it in global implicit scope:

implicit val mapInstance: KeyValueStore[Map] =
new KeyValueStore[Map] {
def put[K, VI(f: Map[K, V])(k: K, v: V): Map[K, V] =
f+ (k ->v)

def get[K, VI(f: Map[K, V])(k: K): Option[V] =
f.get(k)

override def getOrElse[K, V](f: Map[K, VI)
(k: K, default: V): V =
f.getOrElse(k, default)

def values[K, VI(f: Map[K, V]): List[V] =
f.values.tolList

Return to the exercise
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