5
A \/\/
;5) S\
- b 4V, v 4 %
RERK: gl
OXDIRE R
ORKOKR KKK D
4Vt % ERKHORIETS
AR AR
S ORI
JAKIAPSE A A IO NS _
PO AR OB R
VAl o A VAV AVAV ATAYAE 05 S5 i 35 8 ATA VAT A WAV AVAT A
AVAV,.V, A NSRS X7 WAY/
\ B AVAVAVAVAVA o) O RS ;VAVAVAVA AY/
A VAW AVAT AT A SO v vian i b i VA, aw s a VA
- 3‘%?&\!&';"%; ERRE] Q';V;vmg\%,
N AN TRXA XA

scikit-learn Cookbook

Over 50 recipes to incorporate scikit-learn into every step of the
data science pipeline, from feature extraction to model building
and model evaluation

Trent Hauck

PUBLISHING

scikit-learn Cookbook

Over 50 recipes to incorporate scikit-learn into every step
of the data science pipeline, from feature extraction to
model building and model evaluation

Trent Hauck

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

scikit-learn Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1271014

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78398-948-5

www . packtpub.com

Credits

Author
Trent Hauck

Reviewers
Anoop Thomas Mathew

Xingzhong

Commissioning Editor
Kunal Parikh

Acquisition Editor
Owen Roberts

Content Development Editor
Dayan Hyames

Technical Editors
Mrunal M. Chavan

Dennis John

Copy Editors
Janbal Dharmaraj

Sayanee Mukherjee

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Bridget Braund

Amy Johnson

Indexer
Tejal Soni

Graphics
Sheetal Aute

Ronak Dhruv
Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

About the Author

Trent Hauck is a data scientist living and working in the Seattle area. He grew up

in Wichita, Kansas and received his undergraduate and graduate degrees from the
University of Kansas.

He is the author of the book Instant Data Intensive Apps with pandas How-to,

Packt Publishing—a book that can get you up to speed quickly with pandas and
other associated technologies.

First, a big thanks to the Python software community, the people behind
scikit-learn in particular; the skill with which the code is developed is
responsible for a lot of good work that gets done.

Personally, I'd like to thank my family, friends, and coworkers.

About the Reviewers

Anoop Thomas Mathew is a software architect with years of experience in working
with Python and software development in general. With the title of Chief Technology Officer
at Profoundis Inc., he leads the engineering efforts at Profoundis and is now focusing on
https://vibeapp.co. He has spoken at conferences such as The Fifth Elephant 2012,
PyCon 2012, FOSSMeet 2013, PyCon 2013, and FOSSMeet 2014 to name a few. He blogs
athttp://infiniteloop. in.

He is the author of the book, Code Explorer's Guide to the Open Source Jungle, available online
athttps://leanpub.com/opensourcebook.

To my beloved.

Xingzhong is a PhD candidate in Electrical Engineering at Stevens Institute of Technology,
Hoboken, New Jersey, where he works as a research assistant, designing and implementing
machine-learning models in computer vision and signal processing applications.

Although Python is his primary programming language, occasionally, for fun and curiosity, his
works might be written on golang, Scala, JavaScript, and so on. As a self-confessed technology
geek, he is passionate about exploring new software and hardware.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www . Packt Pub . com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@epacktpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[a] PACKT

http://PacktLib.PacktPub.com

®

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print, and bookmark content

» On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www . PacktPub. com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Premodel Workflow 7
Introduction 8
Getting sample data from external sources 8
Creating sample data for toy analysis 10
Scaling data to the standard normal 13
Creating binary features through thresholding 16
Working with categorical variables 17
Binarizing label features 20
Imputing missing values through various strategies 22
Using Pipelines for multiple preprocessing steps 25
Reducing dimensionality with PCA 28
Using factor analysis for decomposition 31
Kernel PCA for nonlinear dimensionality reduction 33
Using truncated SVD to reduce dimensionality 36
Decomposition to classify with DictionaryLearning 39
Putting it all together with Pipelines 41
Using Gaussian processes for regression 44
Defining the Gaussian process object directly 50
Using stochastic gradient descent for regression 51
Chapter 2: Working with Linear Models 55
Introduction 55
Fitting a line through data 56
Evaluating the linear regression model 58
Using ridge regression to overcome linear regression's shortfalls 63
Optimizing the ridge regression parameter 66

Table of Contents

Using sparsity to regularize models 70
Taking a more fundamental approach to regularization with LARS 72
Using linear methods for classification - logistic regression 75
Directly applying Bayesian ridge regression 79
Using boosting to learn from errors 81
Chapter 3: Building Models with Distance Metrics 85
Introduction 85
Using KMeans to cluster data 86
Optimizing the number of centroids 90
Assessing cluster correctness 93
Using MiniBatch KMeans to handle more data 97
Quantizing an image with KMeans clustering 929
Finding the closest objects in the feature space 102
Probabilistic clustering with Gaussian Mixture Models 105
Using KMeans for outlier detection 111
Using k-NN for regression 115
Chapter 4: Classifying Data with scikit-learn 119
Introduction 119
Doing basic classifications with Decision Trees 120
Tuning a Decision Tree model 125
Using many Decision Trees - random forests 130
Tuning a random forest model 134
Classifying data with support vector machines 140
Generalizing with multiclass classification 145
Using LDA for classification 147
Working with QDA - a nonlinear LDA 151
Using Stochastic Gradient Descent for classification 153
Classifying documents with Naive Bayes 154
Label propagation with semi-supervised learning 157
Chapter 5: Postmodel Workflow 161
Introduction 161
K-fold cross validation 162
Automatic cross validation 164
Cross validation with ShuffleSplit 165
Stratified k-fold 169
Poor man's grid search 172
Brute force grid search 175
Using dummy estimators to compare results 177
Regression model evaluation 180

Table of Contents

Feature selection 184
Feature selection on L1 norms 187
Persisting models with joblib 191

Index 195

Preface

This book is designed in the same way that many data science and analytics projects play out.
First, we need to acquire data; the data is often messy, incomplete, or not correct in some way.
Therefore, we spend the first chapter talking about strategies for dealing with bad data and
ways to deal with other problems that arise from data. For example, what happens if we have
too many features? How do we handle that? The first chapter is your guide. The meat of the
book will walk you through various algorithms and how to implement them into your workflow.
And finally, we'll end with the postmodel workflow. This chapter is fairly agnostic to the other
chapters and can be applied to the various algorithms you'll learn up until the final chapter.

What this book covers

Chapter 1, Premodel Workflow, walks you through the preparatory step of preparing a dataset
for modeling and shows how scikit-learn can help to ameliorate the burden of preprocessing.

Chapter 2, Working with Linear Models, discusses how many problems can be viewed as
linear models upon the appropriate application of a transformation, and therefore walks you
through what may be the most used class of models.

Chapter 3, Building Models with Distance Metrics, encompasses a large number of topics
that largely work by measuring the similarity between the data points. Because similarity and
distance are often synonymous, clustering can often be used as long as a distance function
can be defined.

Chapter 4, Classifying Data with scikit-learn, focuses on the various methods within scikit-learn
that are used to determine a data point as some member between 1 and N classes.

Chapter 5, Postmodel Workflow, teaches us how we can take a basic model produced from
one of the recipes and tune it so that we can achieve better results than we could with the
basic model.

Preface

What you need for this book

Here are the contents of the requirements. txt file that will get the environment set up.
This will allow you to follow along with the code in the book.

I've also included a conda requirements file; this method may be easier for less-experienced
Python developers:

dateutil==2.1
ipython==2.2.0
ipython-notebook==2.1.0
jinja2==2.7.3
markupsafe==0.18
matplotlib==1.3.1
numpy==1.8.1
patsy==0.3.0
pandas==0.14.1
pip==1.5.6
pydot==1.0.28
pyparsing==1.5.6
pytz==2014.4
pyzmg==14.3.1
scikit-learn==0.15.0
scipy==0.14.0
setuptools==3.6
six==1.7.3

ssl match hostname==3.4.0.2
tornado==3.2.2

Who this book is for

This book can help budding analysts who are familiar with Python to take the next step
into machine learning with scikit-learn. It is assumed that you are familiar with Python,

but beyond that we'll touch on many of the important aspects of scikit-learn. On top of that,
we'll discuss enough theory to help you ask the next question after you've figured out the
nuances of scikit-learn.

Sections

This book contains the following sections:

Getting ready

This section tells us what to expect in the recipe, and describes how to set up any software or
any preliminary settings needed for the recipe.

—21

Preface

How to do it...
This section characterizes the steps to be followed for "cooking" the recipe.

How it works...

This section usually consists of a brief and detailed explanation of what happened in the
previous section.

There's more...

This consists of additional information about the recipe in order to make the reader more
anxious about the recipe.

See also
This section may contain references to the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "From within IPython, run
datasets. *?, which will list everything available within the datasets module."

Any command-line input or output is written as follows:

>>> transformed = dl.fit transform(iris datal[::2])
>>> transformed[:5]
New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "Notice the peak around O.
This will naturally lead to the zero coefficients in lasso regression."

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Preface

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub. com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Downloading the color images of this book

We also provide you a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from: https://www.packtpub.com/sites/default/
files/downloads/94850S_GraphicsBundle.pdf.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http: //www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http: //www.packtpub.com/support.

Preface

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any aspect
of the book, and we will do our best to address it.

Premodel Workflow

This chapter will cover the following topics:

» Getting sample data from external sources

» Creating sample data for toy analysis

» Confirming the characteristics of created data

» Scaling data to the standard normal

» Creating binary features through thresholding

» Working with categorical variables

» Binarizing label features

» Imputing missing values through various strategies
» Using Pipelines for multiple preprocessing steps

» Reducing dimensionality with PCA

» Using factor analytics for decomposition

» Kernel PCA for nonlinear dimensionality reduction
» Using truncated SVD to reduce dimensionality

» Decomposition to classify with DictionaryLearning
» Putting it all together with Pipelines

» Using Gaussian processes for regression

» Defining the Gaussian process object directly

» Using stochastic gradient descent for regression

Premodel Workflow

Introduction

This chapter discusses setting data, preparing data, and premodel dimensionality reduction.
These are not the attractive parts of machine learning (ML), but they often turn out to be
what determines if a model will work or not.

There are three main parts to the chapter. Firstly, we'll create fake data; this might seem
trivial, but creating fake data and fitting models to fake data is an important step in model
testing. It's more useful in situations where we implement an algorithm from scratch, but I'll
cover it here for completeness, and in the event you don't have data of your own, you can just
create it. Secondly, we'll look at broadly handling data transformations as a preprocessing
step, which includes data imputation, categorical variable encoding, and so on. Thirdly,

we'll look at situations where we have a large number of features relative to the number of
observations we have.

This chapter, especially the first half, will set the stage for the later chapters. In order to use
scikit-learn, data is required. The first two sections will discuss acquiring the data; the rest of
the first half will discuss preparing this data for use.

M This book is written using scikit-learn 0.15, NumPy 1.9, and pandas 0.13.
Q There are other packages used as well, so it's advisable that you refer to
the installation instructions included in this book.

Getting sample data from external sources

If possible, try working with a familiar dataset while working through this book; in order to level
the field, built-in datasets will be used. The built-in datasets can be used as stand-ins to test
several different modeling techniques such as regression and classification. These are, for the
most part, famous datasets. This is very useful as papers in various fields will often use these
datasets for authors to put forth how their model fits as compared to other models.

| recommend you use IPython to run these commands as they are
presented. Muscle memory is important, and it's best to get to the
s . .
~ point where basic commands take no extra mental effort. An even
better way might be to run IPython Notebook. If you do, make sure
to use the $matplotlib inline command; this will allow you
to see the plots in Notebook.

Chapter 1

Getting ready

The datasets in scikit-learn are contained within the datasets module. Use the following
command to import these datasets:

>>> from sklearn import datasets
>>> import numpy as np

From within IPython, run datasets. *?, which will list everything available within the
datasets module.

How to do it...

There are two main types of data within the datasets module. Smaller test datasets

are included in the sklearn package and can be viewed by running datasets.load *?.
Larger datasets are also available for download as required. The latter are not included in
sklearn by default; however, at times, they are better to test models and algorithms due
to sufficient complexity to represent realistic situations.

Datasets are included with sklearn by default; to view these datasets, run datasets.
load_*?. There are other types of datasets that must be fetched. These datasets are
larger, and therefore, they do not come within the package. This said, they are often
better to test algorithms that might be used in the wild.

First, load the boston dataset and examine it:

>>> boston = datasets.load boston()
>>> print boston.DESCR #output omitted due to length

DESCR will present a basic overview of the data to give you some context.
Next, fetch a dataset:

>>> housing = datasets.fetch california housing()
downloading Cal. housing from http://lib.stat.cmu.edu [...]

>>> print housing.DESCR #output omitted due to length

When these datasets are loaded, they aren't loaded as NumPy arrays. They are of type Bunch.
A Bunch is a common data structure in Python. It's essentially a dictionary with the keys
added to the object as attributes.

Premodel Workflow

To access the data using the (surprise!) data attribute, which is a NumPy array containing the
independent variables, the target attribute has the dependent variable:

>>> X, y = boston.data, boston.target

There are various implementations available on the Web for the Bunch object; it's not too
difficult to write on your own. scikit-learn defines Bunch (as of this writing) in the base module.

It's available in GitHub at https://github.com/scikit-learn/scikit-learn/blob/
master/sklearn/datasets/base.py.

There's more...

When you fetch a dataset from an external source it will, by default, place the data in your
home directory under scikit learn data/; this behavior is configurable in two ways:

» To modify the default behavior, set the SCIKIT LEARN DATA environment variable
to point to the desired folder.

» The first argument of the fetch methods is data_home, which will specify the home
folder on a case-by-case basis.

It is easy to check the default location by calling datasets.get_data_home ().

See also

The UCI Machine Learning Repository is a great place to find sample datasets. Many of the
datasets in scikit-learn are hosted here; however, there are more datasets available. Other
notable sources include KDD, your local government agency, and Kaggle competitions.

Creating sample data for toy analysis

I will again implore you to use some of your own data for this book, but in the event you cannot,
we'll learn how we can use scikit-learn to create toy data.

Getting ready

Very similar to getting built-in datasets, fetching new datasets, and creating sample datasets,
the functions that are used follow the naming convention make <the data sets.Justto
be clear, this data is purely artificial:

>>> datasets.make *?
datasets.make biclusters
datasets.make blobs

]

Chapter 1

datasets.make checkerboard
datasets.make circles
datasets.make classification

To save typing, import the datasets module as d, and numpy as np:

>>> import sklearn.datasets as d
>>> import numpy as np

How to do it...

This section will walk you through the creation of several datasets; the following How
it works... section will confirm the purported characteristics of the datasets. In addition
to the sample datasets, these will be used throughout the book to create data with the
necessary characteristics for the algorithms on display.

First, the stalwart—regression:
>>> reg data = d.make regression()

By default, this will generate a tuple with a 100 x 100 matrix - 100 samples by 100 features.
However, by default, only 10 features are responsible for the target data generation. The
second member of the tuple is the target variable.

It is also possible to get more involved. For example, to generate a 1000 x 10 matrix with five
features responsible for the target creation, an underlying bias factor of 1.0, and 2 targets,
the following command will be run:

>>> complex reg data = d.make regression(1000, 10, 5, 2, 1.0)
>>> complex reg datal[0].shape
(1000, 10)

Classification datasets are also very simple to create. It's simple to create a base classification
set, but the basic case is rarely experienced in practice—most users don't convert, most
transactions aren't fraudulent, and so on. Therefore, it's useful to explore classification on
unbalanced datasets:

>>> classification set = d.make classification(weights=[0.1])
>>> np.bincount(classification set[1])
array([10, 90])

Clusters will also be covered. There are actually several functions to create datasets that can
be modeled by different cluster algorithms. For example, blobs are very easy to create and
can be modeled by K-Means:

>>> blobs = d.make blobs()

s

Premodel Workflow

This will look like the following;:

A blob with 3 centers.

“ 3 -:.it:;ﬂ‘a'u'ﬁ:'-"

°
-18

-15

Let's walk you through how scikit-learn produces the regression dataset by taking a look at
the source code (with some modifications for clarity). Any undefined variables are assumed
to have the default value of make regression.

It's actually surprisingly simple to follow.

First, a random array is generated with the size specified when the function is called:
>>> X = np.random.randn(n_samples, n features)

Given the basic dataset, the target dataset is then generated:

>>> ground truth = np.zeroes((np_samples, n target))
>>> ground_ truth[:n informative, :] = 100*np.random.rand(n_informative,
n_targets)

The dot product of X and ground_truth are taken to get the final target values. Bias, if any,
is added at this time:

>>> y = np.dot (X, ground truth) + bias

The dot product is simply a matrix multiplication. So, our final dataset

will have n_samples, which is the number of rows from the dataset,
i and n_target, which is the number of target variables.

Due to NumPy's broadcasting, bias can be a scalar value, and this value will be added to
every sample.

Sk

Chapter 1

Finally, it's a simple matter of adding any noise and shuffling the dataset. Voila, we have a
dataset perfect to test regression.

Scaling data to the standard normal

A preprocessing step that is almost recommended is to scale columns to the standard
normal. The standard normal is probably the most important distribution of all statistics.

If you've ever been introduced to statistics, you must have almost certainly seen z-scores.
In truth, that's all this recipe is about—transforming our features from their endowed
distribution into z-scores.

Getting ready

The act of scaling data is extremely useful. There are a lot of machine learning algorithms,
which perform differently (and incorrectly) in the event the features exist at different scales.
For example, SVMs perform poorly if the data isn't scaled because it uses a distance function
in its optimization, which is biased if one feature varies from O to 10,000 and the other varies
from O to 1.

The preprocessing module contains several useful functions to scale features:

>>> from sklearn import preprocessing
>>> import numpy as np # we'll need it later

How to do it...

Continuing with the boston dataset, run the following commands:

>>> X[:, :3].mean(axis=0) #mean of the first 3 features
array([3.59376071, 11.36363636, 11.13677866])

>>> X[:, :3].std(axis=0)

array([8.58828355, 23.29939569, 6.853570581])

There's actually a lot to learn from this initially. Firstly, the first feature has the smallest mean
but varies even more than the third feature. The second feature has the largest mean and
standard deviation—it takes the widest spread of values:

>>> X 2 = preprocessing.scale(X[:, :3])

>>> X_2.mean(axis=0)
array([6.34099712e-17, -6.34319123e-16, -2.68291099e-15])

>>> X 2.std(axis=0)
array([1., 1., 1.1)

[}

Premodel Workflow

The center and scaling function is extremely simple. It merely subtracts the mean and divides
by the standard deviation:

X—X

X =
(o2

In addition to a function, there is also a center and scaling class that is easy to invoke,
and this is particularly useful when used in conjunction with the Pipelines mentioned later.
It's also useful for the center and scaling class to persist across individual scaling:

>>> my scaler = preprocessing.StandardScaler()

>>> my scaler.fit(X[:, :3])

>>> my scaler.transform(X[:, :3]).mean(axis=0)

array([6.34099712e-17, -6.34319123e-16, -2.68291099%e-15])

Scaling features to mean 0, and standard deviation 1 isn't the only useful type of scaling.
Preprocessing also contains a MinMaxScaler class, which will scale the data within a
certain range:

>>> my minmax scaler = preprocessing.MinMaxScaler ()
>>> my minmax scaler.fit(X[:, :3])

>>> my minmax scaler.transform(X[:, :3]).max(axis=0)
array ([1., 1., 1.1)

It's very simple to change the minimum and maximum values of the MinMaxScaler class
from its default of 0 and 1, respectively:

>>> my odd scaler = preprocessing.MinMaxScaler (feature range=(-3.14,
3.14))
Furthermore, another option is normalization. This will scale each sample to have a length of

1. This is different from the other types of scaling done previously, where the features were
scaled. Normalization is illustrated in the following command:

>>> normalized X = preprocessing.normalize(X[:, :3])

If it's not apparent why this is useful, consider the Euclidian distance (a measure of similarity)
between three of the samples, where one sample has the values (1, 1, 0), another has (3, 3,
0), and the final has (1, -1, 0).

Chapter 1

The distance between the 1%t and 3™ vector is less than the distance between the 15t and 2"
though the 1%t and 3™ are orthogonal, whereas the 1%t and 2" only differ by a scalar factor of
3. Since distances are often used as measures of similarity, not normalizing the data first will
be misleading..

There's more...

Imputation is a very deep subject. Here are a few things to consider when using
scikit-learn's implementation.

Creating idempotent scalar objects

It is possible to scale the mean and/or variance in the StandardScaler instance.
For instance, it's possible (though not useful) to create a StandardScaler instance,
which simply performs the identity transformation:

>>> my useless scaler = preprocessing.StandardScaler (with mean=False,
with std=False)
>>> transformed sd = my useless scaler
.fit transform(X[:, :3]).std(axis=0)
>>> original sd = X[:, :3].std(axis=0)
>>> np.array equal (transformed sd, original sd)

Handling sparse imputations

Sparse matrices aren't handled differently from normal matrices when doing scaling. This is
because to mean center the data, the data will have its Os altered to nonzero values, thus the
matrix will no longer be sparse:

>>> matrix = scipy.sparse.eye(1000)
>>> preprocessing.scale (matrix)

ValueError: Cannot center sparse matrices: pass 'with mean=False' instead
See docstring for motivation and alternatives.

As noted in the error, it is possible to scale a sparse matrix with std only:

>>> preprocessing.scale(matrix, with mean=False)
<1000x1000 sparse matrix of type '<type 'numpy.float64'>'
with 1000 stored elements in Compressed Sparse Row format>

The other option is to call todense () on the array. However, this is dangerous because the
matrix is already sparse for a reason, and it will potentially cause a memory error.

]

Premodel Workflow

Creating binary features through

thresholding

In the last recipe, we looked at transforming our data into the standard normal distribution.
Now, we'll talk about another transformation, one that is quite different.

Instead of working with the distribution to standardize it, we'll purposely throw away data;
but, if we have good reason, this can be a very smart move. Often, in what is ostensibly
continuous data, there are discontinuities that can be determined via binary features.

Getting ready

Creating binary features and outcomes is a very useful method, but it should be used with
caution. Let's use the boston dataset to learn how to create turn values in binary outcomes.

First, load the boston dataset:

>>> from sklearn import datasets
>>> boston = datasets.load boston()
>>> import numpy as np

How to do it...

Similar to scaling, there are two ways to binarize features in scikit-learn:

» preprocessing.binarize #(a function)

» preprocessing.Binarizer #(a class)

The boston dataset's target variable is the median value of houses in thousands. This
dataset is good to test regression and other continuous predictors, but consider a situation
where we want to simply predict if a house's value is more than the overall mean. To do this,
we will want to create a threshold value of the mean. If the value is greater than the mean,
produce a 1; if it is less, produce a O:

>>> from sklearn import preprocessing

>>> new target = preprocessing.binarize(boston.target,
threshold=boston.target.mean())

>>> new target[:5]

array([1., o0., 1., 1., 1.1)

This was easy, but let's check to make sure it worked correctly:

>>> (boston.target[:5] > boston.target.mean()) .astype(int)
array([1, 0, 1, 1, 1])

6]

Chapter 1

Given the simplicity of the operation in NumPy, it's a fair question to ask why you will want
to use the built-in functionality of scikit-learn. Pipelines, covered in the Using Pipelines
for multiple preprocessing steps recipe, will go far to explain this; in anticipation of this,
let's use the Binarizer class:

>>> bin = preprocessing.Binarizer (boston.target.mean())
>>> new_target = bin.fit_ transform(boston.target)

>>> new_target[:5]

array([1., 0., 1., 1., 1.1)

Hopefully, this is pretty obvious; but under the hood, scikit-learn creates a conditional mask
that is True if the value in the array in question is more than the threshold. It then updates
the array to 1 where the condition is met, and O where it is not.

There's more...

Let's also learn about sparse matrices and the £it method.

Sparse matrices

Sparse matrices are special in that zeros aren't stored; this is done in an effort to save space
in memory. This creates an issue for the binarizer, so to combat it, a special condition for the
binarizer for sparse matrices is that the threshold cannot be less than zero:

>>> from scipy.sparse import coo

>>> spar = coo.coo_matrix(np.random.binomial (1, .25, 100))

>>> preprocessing.binarize (spar, threshold=-1)

ValueError: Cannot binarize a sparse matrix with threshold < 0

The fit method

The £it method exists for the binarizer transformation, but it will not fit anything, it will simply
return the object.

Working with categorical variables

Categorical variables are a problem. On one hand they provide valuable information; on the
other hand, it's probably text—either the actual text or integers corresponding to the text—like
an index in a lookup table.

So, we clearly need to represent our text as integers for the model's sake, but we can't just use
the id field or naively represent them. This is because we need to avoid a similar problem to the
Creating binary features through thresholding recipe. If we treat data that is continuous, it must
be interpreted as continuous.

[}

Premodel Workflow

Getting ready

The boston dataset won't be useful for this section. While it's useful for feature binarization,
it won't suffice for creating features from categorical variables. For this, the iris dataset
will suffice.

For this to work, the problem needs to be turned on its head. Imagine a problem where the
goal is to predict the sepal width; therefore, the species of the flower will probably be useful
as a feature.

Let's get the data sorted first:

>>> from sklearn import datasets
>>> iris = datasets.load iris()
>>> X = iris.data

>>> y = iris.target

Now, with X and Y being as they normally will be, we'll operate on the data as one:

>>> import numpy as np
>>> d = np.column stack((X, y))

How to do it...

Convert the text columns to three features:

>>> from sklearn import preprocessing

>>> text encoder = preprocessing.OneHotEncoder ()

>>> text encoder.fit transform(d[:, -1:]).toarray() [:5]
array([[1., 0., 0.1,

[1., 0., 0.1,
[1., 0., 0.1,
[1., 0., 0.1,
[1., 0., 0.11)

The encoder creates additional features for each categorical variable, and the value returned
is a sparse matrix. The result is a sparse matrix by definition; each row of the new features has
0 everywhere, except for the column whose value is associated with the feature's category.
Therefore, it makes sense to store this data in a sparse matrix.

text encoder is now a standard scikit-learn model, which means that it can be used again:

>>> text encoder.transform(np.ones((3, 1))).toarray()
array([[0., 1., 0.1,

[0., 1., 0.1,

[o., 1., 0.11)

]

Chapter 1

There's more...

Other options exist to create categorical variables in scikit-learn and Python at large.
DictVectorizer is a good option if you like to limit the dependencies of your projects
to only scikit-learn and you have a fairly simple encoding scheme. However, if you require
more sophisticated categorical encoding, patsy is a very good option.

DictVectorizer

Another option is to use DictVectorizer. This can be used to directly convert strings
to features:

>>> from sklearn.feature extraction import DictVectorizer
>>> dv = DictVectorizer()
>>> my dict = [{'species': iris.target names[i]} for i in yl
>>> dv.fit transform(my dict).toarray() [:5]
array([[1., 0., 0.1,
[-1,
.1
.1
11

.7 .7

o7 o7

.7 .7

H R R PR
o o o o

[
[
[.7 7

s
‘Q Dictionaries can be viewed as a sparse matrix. They only contain

entries for the nonzero values.

Patsy

patsy is another package useful to encode categorical variables. Often used in conjunction
with StatsModels, patsy can turn an array of strings into a design matrix.

M This section does not directly pertain to scikit-learn; therefore,
Q skipping it is okay without impacting the understanding of how
scikit-learn works.

For example, dm = patsy.design matrix("x + y") will create the appropriate
columns if x or y are strings. If they aren't, C (x) inside the formula will signify that it
is a categorical variable.

For example, iris.target can be interpreted as a continuous variable if we don't know
better. Therefore, use the following command:

>>> import patsy
>>> patsy.dmatrix ("0 + C(species)", {'species': iris.target})
DesignMatrix with shape (150, 3)

[}

Premodel Workflow

C(species) [0] C(species) [1] C(species) [2]

RRrRRREBRERRBRRRBR
O O O OO O o oo
O O O O 0O o o o o

Binarizing label features

In this recipe, we'll look at working with categorical variables in a different way. In the event
that only one or two categories of the feature are important, it might be wise to avoid the
extra dimensionality, which might be created if there are several categories.

Getting ready

There's another way to work with categorical variables. Instead of dealing with the categorical
variables using OneHotEncoder, we can use LabelBinarizer. This is a combination of
thresholding and working with categorical variables.

To show how this works, load the iris dataset:

>>> from sklearn import datasets as d
>>> iris = d.load iris()
>>> target = iris.target

How to do it...

Import the LabelBinarizer () method and create an object:

>>> from sklearn.preprocessing import LabelBinarizer
>>> label binarizer = LabelBinarizer()

Now, simply transform the target outcomes to the new feature space:
>>> new target = label binarizer.fit transform(target)
Let's look at new_target and the 1label binarizer object to get a feel of what happened:

>>> new_ target.shape
(150, 3)

=]

Chapter 1

>>> new target[:5]
array([[1, 0, O],
[1, o, oI,
[1, o, oI,
[1, o, oI,
[1, o, 011)

>>> new target[-5:]

array([[0, O, 11,
o, o, 11,
o, o, 11,
[o, o, 11,
[o, o, 111)

>>> label binarizer.classes
array ([0, 1, 2])

The iris target has a cardinality of 3, that is, it has three unique values. When
LabelBinarizer converts the vector N x 1 into the vector N x C, where C is the
cardinality of the N x 1 dataset, it is important to note that once the object has been
fit, introducing unseen values in the transformation will throw an error:

>>> label binarizer.transform([4])

[...]

ValueError: classes [0 1 2] mismatch with the labels [4] found in the
data

There's more...

Zero and one do not have to represent the positive and negative instances of the target
value. For example, if we want positive values to be represented by 1,000, and negative
values to be represented by -1,000, we'd simply make the designation when we create
label binarizer

>>> label binarizer = LabelBinarizer (neg label=-1000, pos label=1000)
>>> label binarizer.fit transform(target) [:5]
array([[1000, -1000, -10001],

[1000, -1000, -1000],

[1000, -1000, -1000],

[1000, -1000, -1000],

[1000, -1000, -100011)

1
‘Q The only restriction on the positive and negative values

is that they must be integers.

Premodel Workflow

Imputing missing values through various

strategies

Data imputation is critical in practice, and thankfully there are many ways to deal with it.
In this recipe, we'll look at a few of the strategies. However, be aware that there might be
other approaches that fit your situation better.

This means scikit-learn comes with the ability to perform fairly common imputations; it will
simply apply some transformations to the existing data and fill the NAs. However, if the dataset
is missing data, and there's a known reason for this missing data—for example, response times
for a server that times out after 100ms—it might be better to take a statistical approach through
other packages such as the Bayesian treatment via PyMC, the Hazard Models via Lifelines, or
something home-grown.

Getting ready

The first thing to do to learn how to input missing values is to create missing values. NumPy's
masking will make this extremely simple:

>>> from sklearn import datasets

>>> import numpy as np

>>> iris = datasets.load iris()

>>> iris X = iris.data

>>> masking array = np.random.binomial (1, .25,
iris X.shape) .astype (bool)

>>> iris X[masking array] = np.nan

To unravel this a bit, in case NumPy isn't too familiar, it's possible to index arrays with other
arrays in NumPy. So, to create the random missing data, a random Boolean array is created,
which is of the same shape as the iris dataset. Then, it's possible to make an assignment
via the masked array. It's important to note that because a random array is used, it is likely
your masking array will be different from what's used here.

To make sure this works, use the following command (since we're using a random mask,
it might not match directly):

>>> masking array[:5]
array([[False, False, False, False],

[False, False, False, Falsel,

[False, False, False, Falsel,

[True, False, False, Falsel,

[False, False, False, Falsell], dtype=bool)
>>> iris X [:5]
array([[5.1, 3.5,

[4.9, 3.,

’ 0-2]l

1.4
1.4, 0.2],

=

Chapter 1

[4.7, 3.2, 1.3, 0.2],
[nan, 3.1, 1.5, 0.2],
[5., 3.6, 1.4, 0.211)

How to do it...

A theme prevalent throughout this book (due to the theme throughout scikit-learn) is reusable
classes that fit and transform datasets and that can subsequently be used to transform unseen
datasets. This is illustrated as follows:

>>> from sklearn import preprocessing

>>> impute = preprocessing.Imputer ()

>>> iris X prime = impute.fit transform(iris X)
>>> iris X prime[:5]

array([[5.1 , 3.5 , 1.4 , 0.2 1,
[4.9 ;3. , 1.4 , 0.2 1,
[4.7 , 3.2 , 1.3 , 0.2 1,
[5.87923077, 3.1 , 1.5 , 0.2 1,
[5. , 3.6 , 1.4 , 0.2 11)

Notice the difference in the position [3, O]:

>>> iris X prime[3, 0]
5.87923077

>>> iris XI[3, 0]

nan

The imputation works by employing different strategies. The default is mean, but in total
there are:

» mean (default)

» median

» most_ frequent (the mode)

scikit-learn will use the selected strategy to calculate the value for each non-missing value in
the dataset. It will then simply fill the missing values.

For example, to redo the iris example with the median strategy, simply reinitialize impute
with the new strategy:

>>> impute = preprocessing.Imputer (strategy='median')
>>> iris X prime = impute.fit transform(iris X)
>>> iris X prime[:5]

s

Premodel Workflow

array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3., 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[5.8, 3.1, 1.5, 0.2],
[5. , 3.6, 1.4, 0.211)

If the data is missing values, it might be inherently dirty in other places. For instance, in the
example in the preceding How to do it... section, np . nan (the default missing value) was
used as the missing value, but missing values can be represented in many ways. Consider
a situation where missing values are - 1. In addition to the strategy to compute the missing
value, it's also possible to specify the missing value for the imputer. The default is Nan,
which will handle np .nan values.

To see an example of this, modify iris X to have -1 as the missing value. It sounds crazy,
but since the iris dataset contains measurements that are always possible, many people
will fill the missing values with -1 to signify they're not there:

>>> iris X[np.isnan(iris X)] = -1

>>> iris X[:5]

array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3., 1.4, 0.2],
[4.7, 3.2, 1.3, o0.2],
[-1. , 3.1, 1.5, o0.2],
[5., 3.6, 1.4, 0.2]1)

Filling these in is as simple as the following:

>>> impute = preprocessing.Imputer (missing values=-1)
>>> iris X prime = impute.fit transform(iris X)
>>> iris X prime[:5]

array([[5.1 , 3.5 , 1.4 , 0.2 1,
[4.9 ;3. , 1.4 , 0.2 1,
[4.7 , 3.2 , 1.3 , 0.2 1,
[5.87923077, 3.1 , 1.5 , 0.2 1,
[5. , 3.6 , 1.4 , 0.2 11)

There's more...

pandas also provides a functionality to fill missing data. It actually might be a bit more flexible,
but it is less reusable:

>>> import pandas as pd

>>> iris X[masking array] = np.nan

>>> iris df = pd.DataFrame(iris X, columns=iris.feature names)
>>> iris df.fillna(iris df.mean()) ['sepal length (cm)'].head(5)
0 5.100000

=

Chapter 1

1 4.900000
2 4.700000
3 5.879231
4 5.000000

Name: sepal length (cm), dtype: float64

To mention its flexibility, fi11na can be passed any sort of statistic, that is, the strategy is
more arbitrarily defined:

>>> iris df.fillna(iris df.max()) ['sepal length (cm)'].head(5)
5.1

.9

.7

.9

.0

Name: sepal length (cm), dtype: float64

B WN RO
(4, IR NN

Using Pipelines for multiple preprocessing

steps

Pipelines are (at least to me) something | don't think about using often, but are useful.
They can be used to tie together many steps into one object. This allows for easier tuning
and better access to the configuration of the entire model, not just one of the steps.

Getting ready

This is the first section where we'll combine multiple data processing steps into a single step.
In scikit-learn, this is known as a Pipeline. In this section, we'll first deal with missing data
via imputation; however, after that, we'll scale the data to get a mean of zero and a standard
deviation of one.

Let's create a dataset that is missing some values, and then we'll look at how to create
a Pipeline:

>>> from sklearn import datasets
>>> import numpy as np
>>> mat = datasets.make spd matrix(10)
>>> masking array = np.random.binomial(l, .1, mat.shape) .astype(bool)
>>> mat [masking array] = np.nan
>>> mat[:4, :4]
array([[0.56716186, -0.20344151, nan, -0.22579163],
[nan, 1.98881836, -2.25445983, 1.27024191],
[0.29327486, -2.25445983, 3.15525425, -1.64685403],
[-0.22579163, 1.27024191, -1.64685403, 1.32240835]1)

Great, now we can create a Pipeline.

Premodel Workflow

How to do it...

Without Pipelines, the process will look something like the following:

>>> from sklearn import preprocessing

>>> impute = preprocessing.Imputer ()

>>> scaler = preprocessing.StandardScaler ()

>>> mat imputed = impute.fit transform(mat)

>>> mat imputed[:4, :4]

array([[0.56716186, -0.20344151, -0.80554023, -0.22579163],
[0.04235695, 1.98881836, -2.25445983, 1.27024191],
[0.29327486, -2.25445983, 3.15525425, -1.64685403],
[-0.22579163, 1.27024191, -1.64685403, 1.32240835]1)

>>> mat imp and scaled = scaler.fit transform(mat imputed)

array([[2.235e+00, -6.291le-01, 1.427e-16, -7.496e-01],
[0.000e+00, 1.158e+00, -9.309e-01, 9.072e-011,
[1.068e+00, -2.30le+00, 2.545e+00, -2.323e+001]1,
[-1.142e+00, 5.721e-01, -5.405e-01, 9.650e-01]11)

Notice that the prior missing value is 0. This is expected because this value was imputed
using the mean strategy, and scaling subtracts the mean.

Now that we've looked at a non-Pipeline example, let's look at how we can incorporate
a Pipeline:

>>> from sklearn import pipeline
>>> pipe = pipeline.Pipeline([('impute', impute), ('scaler', scaler)])

Take a look at the Pipeline. As we can see, Pipeline defines the steps that designate the
progression of methods:

>>> pipe

Pipeline(steps=[('impute', Imputer(axis=0, copy=True, missing
values='NaN', strategy='mean', verbose=0)), ('scalar',
StandardScaler (copy=True, with mean=True, with std=True))])

This is the best part; simply call the fit transform method on the pipe object.
These separate steps are completed in a single step:

>>> new mat = pipe.fit transform(mat)

>>> new mat [:4, :4]

array([[2.235e+00, -6.291le-01, 1.427e-16, -7.496e-011,
[0.000e+00, 1.158e+00, -9.309e-01, 9.072e-01]1,
[1.068e+00, -2.301le+00, 2.545e+00, -2.323e+00],
[-1.142e+00, 5.721e-01, -5.405e-01, 9.650e-0111)

=]

Chapter 1
We can also confirm that the two different methods give the same result:

>>> np.array equal (new mat, mat imp and scaled)
True

Beautiful!

Later in the book, we'll see just how powerful this concept is. It doesn't stop at preprocessing
steps. It can easily extend to dimensionality reduction as well, fitting different learning methods.
Dimensionality reduction is handled on it's own in the recipe Reducing dimensionality with PCA.

As mentioned earlier, almost every scikit-learn has a similar interface. The important ones
that allow Pipelines to function are:

» fit
» transform

» fit transform (a convenience method)

To be specific, if a Pipeline has N objects, the first N-1 objects must implement both £it and
transform, and the Nth object must implement at least £it. If this doesn't happen, an error
will be thrown.

Pipeline will work correctly if these conditions are met, but it is still possible that not every
method will work properly. For example, pipe has a method, inverse transform, which
does exactly what the name entails. However, because the impute step doesn't have an
inverse transform method, this method call will fail:

>>> pipe.inverse transform(new mat)
AttributeError: 'Imputer' object has no attribute 'inverse transform'

However, this is possible with the scalar object:

>>> scaler.inverse transform(new mat) [:4, :4]
array([[0.567, -0.203, -0.806, -0.226],

[0.042, 1.989, -2.254, 1.27 1,

[0.293, -2.254, 3.155, -1.647],
[-0.226, 1.27 , -1.647, 1.322]1])

Once a proper Pipeline is set up, it functions almost exactly how you'd expect. It's a series
of for loops that fit and transform at each intermediate step, feeding the output to the
subsequent transformation.

Premodel Workflow

To conclude this recipe, I'll try to answer the "why?" question. There are two main reasons:

» The first reason is convenience. The code becomes quite a bit cleaner; instead of
calling £it and transform over and over, it is offloaded to sklearn.

» The second, and probably the more important, reason is cross validation. Models
can become very complex. If a single step in Pipeline has tuning parameters, they
might need to be tested; with a single step, the code overhead to test the parameters
is low. However, five steps with all of their respective parameters can become difficult
to test. Pipelines ease a lot of the burden.

Reducing dimensionality with PCA

Now it's time to take the math up a level! Principal component analysis (PCA) is the first
somewhat advanced technique discussed in this book. While everything else thus far has been
simple statistics, PCA will combine statistics and linear algebra to produce a preprocessing step
that can help to reduce dimensionality, which can be the enemy of a simple model.

Getting ready

PCA is a member of the decomposition module of scikit-learn. There are several other
decomposition methods available, which will be covered later in this recipe.

Let's use the iris dataset, but it's better if you use your own data:

>>> from sklearn import datasets
>>> iris = datasets.load iris()
>>> iris X = iris.data

How to do it...

First, import the decomposition module:
>>> from sklearn import decomposition
Next, instantiate a default PCA object:

>>> pca = decomposition.PCA()
>>> pca
PCA (copy=True, n components=None, whiten=False)

=]

Chapter 1

Compared to other objects in scikit-learn, PCA takes relatively few arguments. Now that the
PCA object is created, simply transform the data by calling the £it_transform method,
with iris X asthe argument:

>>> iris pca = pca.fit_transform(iris_X)

>>> iris pcal:5]

array([[-2.684e+00, -3.266e-01, 2.151e-02, 1.006e-03],
[-2.715e+00, 1.696e-01, 2.035e-01, 9.960e-02],
[-2.890e+00, 1.373e-01, -2.471e-02, 1.930e-02],
[-2.746e+00, 3.111e-01, -3.767e-02, -7.596e-02],
[-2.729e+00, -3.339e-01, -9.623e-02, -6.313e-02]1])

Now that the PCA has been fit, we can see how well it has done at explaining the variance
(explained in the following How it works... section):

>>> pca.explained variance ratio
array([0.925, 0.053, 0.017, 0.005])

PCA has a general mathematic definition and a specific use case in data analysis. PCA finds
the set of orthogonal directions that represent the original data matrix.

Generally, PCA works by mapping the original dataset into a new space where the new column
vectors of the matrix are each orthogonal. From a data analysis perspective, PCA transforms
the covariance matrix of the data into column vectors that can "explain" certain percentages
of the variance. For example, with the iris dataset, 92.5 percent of the variance of the
overall dataset can be explained by the first component.

This is extremely useful because dimensionality is problematic in data analysis. Quite often,
algorithms applied to high-dimensional datasets will overfit on the initial training, and thus
loose generality to the test set. If most of the underlying structure of the data can be faithfully
represented by fewer dimensions, then it's generally considered a worthwhile trade-off.

To demonstrate this, we'll apply the PCA transformation to the iris dataset and only
include two dimensions. The iris dataset can normally be separated quite well using
all the dimensions:

>>> pca = decomposition.PCA(n_components=2)
>>> iris X prime = pca.fit_transform(iris_X)
>>> iris X prime.shape

(150, 2)

Our data matrix is now 150 x 2, instead of 150 x 4.

s

Premodel Workflow

The usefulness of two dimensions is that it is now very easy to plot.

PCA 2 Components

1.0 5 -]
-)
oo
05| e 0, 0 %,
.e o % Q’
a 0%04 og0®
0.0 P 25 oy
.o o
° Q.‘ Cbo%o‘;g‘. 3
05 ‘?‘ 0% **e." »
: H e
. Q L]
. L]
L]
-1.0
L
. .

.
.

The separability of the classes remain even after reducing the number of dimensionality by two.

We can see how much of the variance is represented by the two components that remain:

>>> pca.explained variance ratio .sum()
0.9776

There's more...

The PCA object can also be created with the amount of explained variance in mind from
the start. For example, if we want to be able to explain at least 98 percent of the variance,
the PCA object will be created as follows:

>>> pca = decomposition.PCA(n components=.98)
>>> iris X prime = pca.fit(iris X)

>>> pca.explained variance ratio .sum()

1.0

Since we wanted to explain variance slightly more than the two component examples, a third
was included.

Chapter 1

Using factor analysis for decomposition

Factor analysis is another technique we can use to reduce dimensionality. However, factor
analysis makes assumptions and PCA does not. The basic assumption is that there are
implicit features responsible for the features of the dataset.

This recipe will boil down to the explicit features from our samples in an attempt to
understand the independent variables as much as the dependent variables.

Getting ready

To compare PCA and factor analysis, let's use the iris dataset again, but we'll first need to
load the factor analysis class:

>>> from sklearn.decomposition import FactorAnalysis

How to do it...

From a programming perspective, factor analysis isn't much different from PCA:

>>> fa = FactorAnalysis(n components=2)

>>> iris two_dim = fa.fit transform(iris.data)

>>> iris_ two_dim[:5]

array([[-1.33125848, 0.55846779],
[-1.33914102, -0.00509715],
[-1.40258715, -0.307983 1,
[-1.29839497, -0.71854288],
[-1.33587575, 0.36533259]1)

Downloading the example code

purchased from your account at http://www.packtpub. com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you

é'Q You can download the example code files for all Packt books you have

Premodel Workflow

Compare the following plot to the plot in the last section:

5 Factor Analysis, 2 Components
L] -
2 . .
.. . = -
. . . . -.
. . .
1 * 9 * .,
LY . .
L] . L]
., LI .
"o & e o °
g,
% . . e . %t
0 .
l. . ¢ :' . g0 H o <
- 3 .. . L . O
-
0L o . !
. . -. .
-1 . ? * e s S
. . '] 5 .
L] L]
. L] - I-
* .
-2
.
-3
7—2.0 -15 -1.0 —0.5 0.0 0.5 1.0 15 2.0

Since factor analysis is a probabilistic transform, we can examine different aspects such
as the log likelihood of the observations under the model, and better still, compare the log
likelihoods across models.

Factor analysis is not without flaws. The reason is that you're not fitting a model to predict
an outcome, you're fitting a model as a preparation step. This isn't a bad thing per se, but
errors here compound when training the actual model.

Factor analysis is similar to PCA, which was covered previously. However, there is an important
distinction to be made. PCA is a linear transformation of the data to a different space where
the first component "explains" the variance of the data, and each subsequent component is
orthogonal to the first component.

For example, you can think of PCA as taking a dataset of N dimensions and going down to
some space of M dimensions, where M < N.

=

Chapter 1

Factor analysis, on the other hand, works under the assumption that there are only M
important features and a linear combination of these features (plus noise) creates the
dataset in N dimensions. To put it another way, you don't do regression on an outcome
variable, you do regression on the features to determine the latent factors of the dataset.

Kernel PCA for nonlinear dimensionality

reduction

Most of the techniques in statistics are linear by nature, so in order to capture nonlinearity,
we might need to apply some transformation. PCA is, of course, a linear transformation.

In this recipe, we'll look at applying nonlinear transformations, and then apply PCA for
dimensionality reduction.

Getting ready

Life would be so easy if data was always linearly separable, but unfortunately it's not.
Kernel PCA can help to circumvent this issue. Data is first run through the kernel function
that projects the data onto a different space; then PCA is performed.

To familiarize yourself with the kernel functions, it will be a good exercise to think of

how to generate data that is separable by the kernel functions available in the kernel PCA.
Here, we'll do that with the cosine kernel. This recipe will have a bit more theory than the
previous recipes.

How to do it...

The cosine kernel works by comparing the angle between two samples represented in the
feature space. It is useful when the magnitude of the vector perturbs the typical distance
measure used to compare samples.

As a reminder, the cosine between two vectors is given by the following:

A-B
“o*(0)=[4113]

This means that the cosine between A and B is the dot product of the two vectors normalized
by the product of the individual norms. The magnitude of vectors A and B have no influence on
this calculation.

s

Premodel Workflow

So, let's generate some data and see how useful it is. First, we'll imagine there are two
different underlying processes; we'll call them A and B:

>>>
>>>

import numpy as np

Al mean

[1I

1]

>>> Al cov =

Al =

[z, .991, I[1, 111
>>> np.random.multivariate normal (Al mean, Al cov, 50)
>>> A2 mean =
A2 cov =
A2 =

[5, 51
[z, .991, I[1, 111
np.random.multivariate normal (A2 mean, A2 cov, 50)

>>>
>>>
A =

>>> np.vstack((Al, A2))

>>> B mean =
B cov =
B =

[5, 0]
(r.s, -11, [-.9, .5]11
np.random.multivariate normal (B_mean, B cov, 100)

>>>
>>>

Once plotted, it will look like the following;:

A and B processes

Chapter 1

By visual inspection, it seems that the two classes are from different processes, but separating
them in one slice might be difficult. So, we'll use the kernel PCA with the cosine kernel
discussed earlier:

>>> kpca = decomposition.KernelPCA (kernel='cosine', n components=1)
>>> AB = np.vstack((A, B))
>>> AB transformed = kpca.fit_ transform(AB)

Visualized in one dimension after the kernel PCA, the dataset looks like the following:

bo10 Cosine KPCA 1 Dimension

0000 - sSmeem se e L -aee w ..

Contrast this with PCA without a kernel:

boLo PCA 1 Dimension

0000 - " sme W - -— s sEme L] -

Clearly, the kernel PCA does a much better job.

s

Premodel Workflow

There are several different kernels available as well as the cosine kernel. You can even write
your own kernel function. The available kernels are:

» poly (polynomial)

» rbf (radial basis function)
» sigmoid

» cosine

» precomputed

There are also options contingent of the kernel choice. For example, the degree argument will
specify the degree for the poly, rbf, and sigmoid kernels; also, gamma will affect the rbf
or poly kernels.

The recipe on SVM will cover the rbf kernel function in more detail.

A word of caution: kernel methods are great to create separability, but they can also cause
overfitting if used without care.

Using truncated SVD to reduce

dimensionality

Truncated Singular Value Decomposition (SVD) is a matrix factorization technique that
factors a matrix M into the three matrices U, 2, and V. This is very similar to PCA, excepting
that the factorization for SVD is done on the data matrix, whereas for PCA, the factorization
is done on the covariance matrix. Typically, SVD is used under the hood to find the principle
components of a matrix.

Getting ready

Truncated SVD is different from regular SVDs in that it produces a factorization where the
number of columns is equal to the specified truncation. For example, given an n x n matrix,
SVD will produce matrices with n columns, whereas truncated SVD will produce matrices
with the specified number of columns. This is how the dimensionality is reduced.

Here, we'll again use the iris dataset so that you can compare this outcome against the
PCA outcome:

>>> from sklearn.datasets import load iris
>>> iris = load iris()

>>> iris data = iris.data

>>> iris target = iris.target

NEQ

How to do it...

Chapter 1

This object follows the same form as the other objects we've used. First, we'll import the
required object, then we'll fit the model and examine the results:

>>>
>>>
>>>

>>>

array([[5.1, 3.
[4.9, 3.
[4.7, 3.
[4.6, 3.
[5. , 3.

from sklearn.decomposition import TruncatedSVD
svd = TruncatedSVD(2)

iris transformed

iris datal:5]

H R R RR

svd.fit transform(iris data)

4, 0.2],
4, 0.2],
3, 0.2],
5, 0.2],
4, 0.21]1)

>>> iris transformed[:5]

array ([[5.

91220352,
[5.57207573,

4464847

[5.
[5.43601924,
[5.87506555,

-2.
-1.
-2.
-1.
-2.

30344211],
97383104],
096532671,
87168085],
32934799]11)

The output will look like the following:

—2

Truncated SVD, 2 Components

F |
. J" 'f a
. .’.. llr‘.;s‘. A
. S HL)
= :-ct‘.
. ™
L]
.’.r.‘g‘
. .'-
g e
5 > 7 B g 10 11

Premodel Workflow

Now that we've walked through how TruncatedsvD is performed in scikit-learn, let's look at
how we can use only scipy, and learn a bit in the process.

First, we need to use 1inalg of scipy to perform SVD:

>>> from scipy.linalg import svd
>>> D = np.array([[1, 2], [1, 31, [1, 411]1)
>>> D
array([[1, 2],
[1, 31,
[1, 411)

>>> U, S, V = svd(D, full matrices=False)
>>> U.shape, S.shape, V.shape
(3, 2), (2,), (2, 2))

We can reconstruct the original matrix D to confirm U, S, and V as a decomposition:

>>> np.dot (U.dot(np.diag(sS)), V)
array ([[1, 2],

[1, 31,

[1, 411)

The matrix that is actually returned by TruncatedsSVvD is the dot product of the U and
S matrices.

If we want to simulate the truncation, we will drop the smallest singular values and
the corresponding column vectors of U. So, if we want a single component here,
we do the following:

>>> new S = S[0]

>>> new U = U[:, 0]

>>> new U.dot (new_ S)

array([-2.20719466, -3.16170819, -4.11622173])

In general, if we want to truncate to some dimensionality, for example, t, we drop N-t
singular values.

There's more...

TruncatedSVD has a few miscellaneous things that are worth noting with respect to
the method.

NED

Chapter 1

Sign flipping

There's a "gotcha" with truncated SVDs. Depending on the state of the random number
generator, successive fittings of Truncatedsvb can flip the signs of the output. In order to
avoid this, it's advisable to fit TruncatedSVvD once, and then use transforms from then on.
Another good reason for Pipelines!

To carry this out, do the following:

>>> tsvd = TruncatedSVD(2)
>>> tsvd.fit(iris data)
>>> tsvd.transform(iris data)

Sparse matrices

One advantage of TruncatedsVvD over PCA is that TruncatedSVD can operate on sparse
matrices while PCA cannot. This is due to the fact that the covariance matrix must be computed
for PCA, which requires operating on the entire matrix.

Decomposition to classify with

DictionaryLearning

In this recipe, we'll show how a decomposition method can actually be used for
classification. DictionaryLearning attempts to take a dataset and transform
it into a sparse representation.

Getting ready

With DictionaryLearning, the idea is that the features are a basis for the resulting
datasets. In an effort to keep this recipe short, I'll assume you have idis_data and
iris_ target ready to go.

How to do it...

First, import DictionaryLearning:
>>> from sklearn.decomposition import DictionaryLearning
Next, use three components to represent the three species of iris:

>>> dl = DictionaryLearning(3)

Premodel Workflow

Then transform every other data point so that we can test the classifier on the resulting data
points after the learner is trained:

>>> transformed = dl.fit transform(iris datal[::2])
>>> transformed[:5]

array ([[0. , 6.34476574, O. 1,
[0. , 5.83576461, O. 1,
[0. , 6.32038375, 0. 1,
[0. , 5.89318572, 0. 1,
[0. , 5.45222715, 0. 11)

We can visualize the output. Notice how each value is sited on the X, y, or z axis along with the
other values and O; this is called sparseness.

Training Set

If you look closely, you can see there was some training error. One of the classes was
misclassified. Only being wrong once isn't a big deal, though.

Next, let's fit (not £it _transform) the testing set:

>>> transformed = dl.transform(iris data[l::2])

Chapter 1

The following screenshot shows its performance:

Testing Set

Notice again that there was some error in the classification. If you remember some of the
other visualizations, the blue and green classes were the two classes that often appeared
close together.

DictionaryLearning has a background in signal processing and neurology. The idea is
that only few features can be active at any given time. Therefore, DictionaryLearning

attempts to find a suitable representation for the underlying data, given the constraint that
most of the features should be 0.

Putting it all together with Pipelines

Now that we've used Pipelines and data transformation techniques, we'll walk through a more
complicated example that combines several of the previous recipes into a pipeline.

Getting ready

In this section, we'll show off some more of Pipeline's power. When we used it earlier to
impute missing values, it was only a quick taste; we'll chain together multiple preprocessing
steps to show how Pipelines can remove extra work.

@l

Premodel Workflow

Let's briefly load the iris dataset and seed it with some missing values:

>>> from sklearn.datasets import load iris
>>> import numpy as np

>>> iris = load iris()
>>> iris data = iris.data

>>> mask = np.random.binomial(l, .25, iris data.shape) .astype(bool)
>>> iris data[mask] = np.nan
>>> iris datal[:5]

array([[5.1, 3.5, 1.4, mnan]l,
[nan, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
[4.6, 3.1, 1.5, 0.2],
[5. , 3.6, man, 0.2]1])

How to do it...

The goal of this chapter is to first impute the missing values of iris_data, and then perform
PCA on the corrected dataset. You can imagine (and we'll do it later) that this workflow might
need to be split between a training dataset and a holdout set; Pipelines will make this easier,
but first we need to take a baby step.

Let's load the required libraries:
>>> from sklearn import pipeline, preprocessing, decomposition
Next, create the imputer and PCA classes:

>>> pca = decomposition.PCA()
>>> imputer = preprocessing.Imputer ()

Now that we have the classes we need, we can load them into Pipeline:

>>> pipe = pipeline.Pipeline([('imputer', imputer), ('pca', pca)l)
>>> iris data transformed = pipe.fit_transform(iris_data)
>>> iris data_transformed[:5]
array([[-2.42e+00, -3.59e-01, -6.88e-01, -3.49e-01],
[-2.44e+00, -6.94e-01, 3.27e-01, 4.87e-011,
[-2.94e+00, 2.45e-01, -1.85e-03, 4.37e-02],
[-2.79e+00, 4.29e-01, -8.05e-03, 9.65e-02],
[-6.46e-01, 8.87e-01, 7.54e-01, -5.19e-0111)

This takes a lot more management if we use separate steps. Instead of each step requiring a
fit transform, this step is performed only once. Not to mention that we only have to keep track
of one object!

=

Chapter 1

Hopefully it was obvious, but each step in Pipeline is passed to a Pipeline object via a list of
tuples, with the first element getting the name and the second getting the actual object.

Under the hood, these steps are looped through when a method such as fit transform
is called on the Pipeline object.

This said, there are quick and dirty ways to create Pipeline, much in the same way there was
a quick way to perform scaling, though we can use StandardScaler if we want more power.
The pipeline function will automatically create the names for the Pipeline objects:

>>> pipe2 = pipeline.make pipeline(imputer, pca)

>>> pipe2.steps

[('imputer', Imputer (axis=0, copy=True, missing values='NaN',
strategy='mean', verbose=0)),

('pca', PCA(copy=True, n components=None, whiten=False))]

This is the same object that was created in the more verbose method:

>>> iris data transformed2 = pipe2.fit transform(iris data)
>>> iris data transformed2[:5]
array([[-2.42e+00, -3.59e-01, -6.88e-01, -3.49e-01],

[-2.44e+00, -6.94e-01, 3.27e-01, 4.87e-011,

[-2.94e+00, 2.45e-01, -1.85e-03, 4.37e-021,

[-2.79e+00, 4.29e-01, -8.05e-03, 9.65e-021,

[-6.46e-01, 8.87e-01, 7.54e-01, -5.19e-0111)

There's more...

We just walked through Pipelines at a very high level, but it's unlikely that we will want to
apply the base transformation. Therefore, the attributes of each object in Pipeline can be
accessed from a set_params method, where the parameter follows the <parameter's
name>_ <parameter's parameter> convention. For example, let's change the pca
object to use two components:

>>> pipe2.set params(pca n components=2)
Pipeline(steps=[('imputer', Imputer (axis=0, copy=True,
missing values='NaN', strategy='mean', verbose=0)),
('pca', PCA(copy=True, n components=2, whiten=False))])

Q The __ notation is pronounced as dunder in the Python community.

Premodel Workflow

Notice n_components=2 in the preceding output. Just as a test, we can output the same
transformation we already did twice, and the output will be an N x 2 matrix:

>>> iris_data transformed3 = pipe2.fit_ transform(iris_data)
>>> iris_data_transformed3[:5]
array([[-2.42, -0.36],

[-2.44, -0.691],

[-2.94, 0.24],

[-2.79, 0.43],

[-0.65, 0.89]1])

Using Gaussian processes for regression

In this recipe, we'll use the Gaussian process for regression. In the linear models section,
we saw how representing prior information on the coefficients was possible using Bayesian
Ridge Regression.

With a Gaussian process, it's about the variance and not the mean. However, with a Gaussian
process, we assume the mean is O, so it's the covariance function we'll need to specify.

The basic setup is similar to how a prior can be put on the coefficients in a typical regression
problem. With a GP, a prior can be put on the functional form of the data, and it's the covariance
between the data points that is used to model the data, and therefore, must be fit from the data.

Getting ready

So, let's use some regression data and walkthrough how Gaussian processes work in scikit-learn:

>>> from sklearn.datasets import load boston
>>> boston = load boston()

>>> boston X = boston.data
>>> boston_y = boston.target

>>> train set = np.random.choice([True, False], len(boston y),
p=[.75, .25])

Chapter 1

How to do it...

Now that we have the data, we'll create a scikit-learn GaussianProcess object. By default,
it uses a constant regression function and squared exponential correlation, which is one of
the more common choices:

>>> from sklearn.gaussian process import GaussianProcess

>>> gp

GaussianProcess()

>>> gp.fit(boston X[train set], boston yltrain set])
GaussianProcess (beta0=None, corr=<function squared exponential

at 0x110809488>, normalize=True,
nugget=array(2.220446049250313e-15),
optimizer='£fmin cobyla', random start=1l,

random state=<mtrand.RandomState object

at 0x10b9b58b8>, regr=<function constant

at 0x1108090c8>, storage mode='full',
thetalO=array([[0.1]]), thetaL=None, thetaU=None,
verbose=False)

That's a formidable object definition. The following are a couple of things to point out:

>

beta0: This is the regression weight. This defaults in a way such that MLE is used
for estimation.

corr: This is the correlation function. There are several built-in correlation functions.
We'll look at more of them in the following How it works... section.

regr: This is the constant regression function.

nugget: This is the regularization parameter. It defaults to a very small number.
You can either pass one value to be used for each data point or a single value
that needs to be applied uniformly.

normalize: This defaults to True, and it will center and scale the features.
This would be scale is R.

Okay, so now that we fit the object, let's look at it's performance against the test object:

>>> test preds

= gp.predict (boston X[~train set])

=]

Premodel Workflow

Let's plot the predicted values versus the actual values; then, because we're doing regression,
it's probably a good idea to look at plotted residuals and a histogram of the residuals:

>>> from matplotlib import pyplot as plt
>>> f, ax = plt.subplots(figsize=(10, 7), nrows=3)
>>> f.tight layout()

>>> ax[0] .plot(range(len(test preds)), test preds,
label='Predicted Values');

>>> ax[0] .plot(range(len(test preds)), boston yl[~train set],
label='Actual Values');

>>> ax[0].set_title("Predicted vs Actuals")

>>> ax[0] .legend(loc="'best"')

>>> ax[1l] .plot(range(len(test preds)),
test preds - boston yl[~train set]);
>>> ax[1l] .set title("Plotted Residuals")

>>> ax[2] .hist(test preds - boston yl[~train set]);
>>> ax[2] .set title("Histogram of Residuals")

The output is as follows:

Pradicted vs Actuals

— Predicted Values ||
— Actual Values

100 120 140

oA | | | ; "".. | f
. r,’ W“M \w/vvﬂ\ﬁuv\f\/w IVJ\f f \ﬂu\/\qw‘

o 20 40

0 20 0 &0 &
Plotted Residuals

=]

B0 80
Histogram of Residuals

Chapter 1

Now that we've worked through a very quick example, let's look a little more at what some of
the parameters do and how we can tune them based on the model we're trying to fit.

First, let's try to understand what's going on with the corr function. This function describes
the relationship between the different pairs of X. The following five different correlation
functions are offered by scikit-learn:

» absolute exponential

» squared exponential

» generalized exponential
» cubic

» linear

For example, the squared exponential has the following form:
K= \exp(—{\frac{|d|“ 2} {zp 2}})

Linear, on the other hand, is just the dot product of the two points in question:
K =x"Tx" {'}
Another parameter of interest is thetao0. This represents the starting point in the estimation

of the the parameters.

Once we have an estimation of K and the mean, the process is fully specified due to it being a
Gaussian process; emphasis is put on Gaussian, a reason it's so popular for general machine
learning work.

Let's use a different regr function, apply a different thetao, and look at how the
predictions differ:

>>> gp = GaussianProcess(regr='linear', theta0=5e-1)
>>> gp.fit(boston X[train set], boston yl[train set]);
>>> linear preds = gp.predict(boston X[~train set])
>>> f, ax = plt.subplots(figsize=(7, 5))

Let's have a look at the fit:

>>> f.tight layout ()

>>> ax.hist(test _preds - boston yl[~train set],

@1

Premodel Workflow

label='Residuals Original', color='b', alpha=.5);
>>> ax.hist(linear preds - boston yl[~train set],
label='Residuals Linear', color='r', alpha=.5);
>>> ax.set title("Residuals")
>>> ax.legend(loc='best')

The following is the output:

&0

Residuals

mm Residuals Original

mm Residuals Linear

Clearly, the second model's predictions are slightly better for the most part. If we want to sum
this up, we can look at the MSE of the predictions:

>>> np.power (test preds - boston y[~train set], 2).mean()
26.254844099612455

>>> np.power (linear preds - boston y[~train set], 2).mean()
21.938924337056068

There's more...

We might want to understand the uncertainty in our estimates. When we make the
predictions, if we pass the eval MSE argument as True, we'll get MSE and the predicted
values. From a mechanics standpoint, a tuple of predictions and MSE is returned:

>>> test preds, MSE = gp.predict(boston X[~train set], eval MSE=True)

>>> MSE[:5]

array ([11.95314572, 8.48397825, 6.0287539 , 29.20844347,
0.36427829])

=

Chapter 1

So, now that we have errors in the estimates (unfortunately), let's plot the first few to get an
indication of accuracy:

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> n = 20

>>> rng = range(n)

>>> ax.scatter(rng, test preds[:n])

>>> ax.errorbar (rng, test preds[:n], yerr=1.96*MSE[:n])

>>> ax.set_title("Predictions with Error Bars")

>>> ax.set xlim((-1, 21));

The following is the output:

fi F‘rel:hlctlor‘ss wllth Errcnrl Bars

100 |

50+ '

—100 L L L
—20 o 20 40 &0 BO 100 120 140

As you can see, there's quite a bit of variance in the estimates for a lot of these points. On the
other hand, our overall error wasn't too bad.

@]

Premodel Workflow

Defining the Gaussian process object

directly

We just touched the surface of Gaussian processes. In this recipe, we'll look at how we can
directly access the Gaussian process object with the correlation function we want.

Getting ready

Within the gaussian process module, there is direct access to many of the correlation
functions or regression functions. This means that instead of creating the GaussianProcess
object, we can just create this object through a function. If you're more familiar with object-
oriented code, this is basically a class method at the module level.

In this chapter, we'll march through most of the functions and show their results on example
data. Do not stop at these examples if you want to get more familiar with the behavior of the
various covariate functions. Hopefully, you're still using IPython (or the notebook).

Since this doesn't expose anything thing new mathematically, we'll just show how to do it.

How to do it...

First, we'll import some basic regression data:

>>> from sklearn.datasets import make regression
>>> X, y = make regression(1000, 1, 1)
>>> from sklearn.gaussian process import regression models

First up is the constant correlation function. This will comprise a constant and more
for completeness:

>>> regression models.constant (X) [:5]
array ([[1.1,
[1.1,
.1
.1

1
1
1
1.11)

[
[
[

SNED

Chapter 1

Another option is the squared exponential correlation function. This is also the default for the
GaussianProcess class:

>>> regression_models.linear(X) [:1]
array([[1., 0.38833572]1])

>>> regression models.quadratic(X) [:1]
array([[1., 0.38833572, 0.1508046311)

Now that we have the regression function, we can feed it directly into the GaussianProcess
object. The default is the constant regression function, but we can just as easily pass itin a
linear model or a quadratic model.

Using stochastic gradient descent for

regression

In this recipe, we'll get our first taste of stochastic gradient descent. We'll use it for regression
here, but for the next recipe, we'll use it for classification.

Getting ready

Stochastic Gradient Descent (SGD) is often an unsung hero in machine learning.
Underneath many algorithms, there is SGD doing the work. It's popular due to its simplicity
and speed—these are both very good things to have when dealing with a lot of data.

The other nice thing about SGD is that while it's at the core of many ML algorithms
computationally, it does so because it easily describes the process. At the end of the day,
we apply some transformation on the data, and then we fit our data to the model with
some loss function.

How to do it...

If SGD is good on large datasets, we should probably test it on a fairly large dataset:

>>> from sklearn import datasets

>>> X, y = datasets.make regression(int(le6))
Just in case the le6 throws you off.

>>> print "{:,}".format (int(le6))

1,000,000

i

Premodel Workflow

It's probably worth gaining some intuition about the composition and size of the object.
Thankfully, we're dealing with NumPy arrays, so we can just access nbytes. The built-in
Python way to access the object size doesn't work for NumPy arrays. This output be system
dependent, so you may not get the same results:

>>> print "{:,}".format (X.nbytes)
800,000,000

To get some human perspective, we can convert nbytes to megabytes. There are roughly
1 million bytes in an MB:

>>> X.nbytes / 1le6
800.0

So, the number of bytes per data point is:

>>> X.nbytes / (X.shapel[0]*X.shape([1l])
8

Well, isn't that tidy, and fairly tangential, for what we're trying to accomplish; however,
it's worth knowing how to get the size of the objects you're dealing with.

So, now that we have the data, we can simply fit a SGDRegressor model:

>>> from sklearn import linear model
>>> sgd = linear model.SGDRegressor ()
>>> train = np.random.choice([True, Falsel], size=len(y), p=[.75, .25])
>>> sgd.fit(X[train], yltrain])
SGDRegressor (alpha=0.0001, epsilon=0.1, eta0=0.01,
fit_intercept=True, 1l ratio=0.15,
learning rate='invscaling', loss='squared loss',
n _iter=5, penalty='12', power t=0.25, random state=None,
shuffle=False, verbose=0, warm start=False)

So, we have another "beefy" object. The main thing to know now is that our loss function is
squared_loss, which is the same thing that occurs during linear regression. Also worth
noting is that shuffle will generate a random shuffle of the data. This is useful if you want to
break a potentially spurious correlation. With £it _intercept, scikit-learn will automatically
include a column of ones. If you like to see more through the output of the fitting, set
verbose to 1.

=

Chapter 1

We can then predict, as we previously have, using scikit-learn's consistent API:

50000

BOOOO

70000

G0000

50000

40000

30000

20000

10000

o 5 i
=010 -008 -006 -004 002 000 0.02 0.0B

You can see we actually got a really good fit. There is barely any variation and the histogram
has a nice normal look.

Clearly, the fake dataset we used wasn't too bad, but you can imagine datasets with larger
magnitudes. For example, if you worked in Wall Street on any given day, there might be two
billion transactions on any given exchange in a market. Now, imagine that you have a week's
or year's data. Running in-core algorithms does not work with huge volumes of data.

The reason this is normally difficult is that to do standard gradient descent, we're required to
calculate the gradient at every step. The gradient has the standard definition from any third
calculus course.

The gist of the algorithm is that at each step we calculate a new set of coefficients and
update this by a learning rate and the outcome of the objective function.

In pseudo code, this might look like the following:

>>> while not converged:
w = w - learning rate*gradient (cost(w))

-

Premodel Workflow

The relevant variables are as follows:

>

>

w: This is the coefficient matrix.

learning rate: This shows how big a step to take at each iteration. This might
be important to tune if you aren't getting a good convergence.

gradient: This is the matrix of second derivatives.

cost: This is the squared error for regression. We'll see later that this cost function
can be adapted to work with classification tasks. This flexibility is one thing that
makes SGD so useful.

This will not be so bad, except for the fact that the gradient function is expensive. As the
vector of coefficients gets larger, calculating the gradient becomes very expensive. For each
update step, we need to calculate a new weight for every point in the data, and then update.

The stochastic gradient descent works slightly differently; instead of the previous definition
for batch gradient descent, we'll update the parameter with each new data point. This data
point is picked at random, and hence the name stochastic gradient descent.

=

Working with
Linear Models

In this chapter, we will cover the following topics:

» Fitting a line through data

» Evaluating the linear regression model

» Using ridge regression to overcome linear regression's shortfalls
» Optimizing the ridge regression parameter

» Using sparsity to regularize models

» Taking a more fundamental approach to regularization with LARS
» Using linear methods for classification - logistic regression

» Directly applying Bayesian ridge regression

» Using boosting to learn from errors

Introduction

Linear models are fundamental in statistics and machine learning. Many methods rely on

a linear combination of variables to describe the relationship in the data. Quite often, great
efforts are taken in an attempt to make the transformations necessary so that the data can
be described in a linear combination.

In this chapter, we build up from the simplest idea of fitting a straight line through data to
classification, and finally to Bayesian ridge regression.

Working with Linear Models

Fitting a line through data

Now, we get to do some modeling! It's best to start simple; therefore, we'll look at linear
regression first. Linear regression is the first, and therefore, probably the most fundamental
model—a straight line through data.

Getting ready

The boston dataset is perfect to play around with regression. The boston dataset has the
median home price of several areas in Boston. It also has other factors that might impact
housing prices, for example, crime rate.

First, import the datasets model, then we can load the dataset:

>>> from sklearn import datasets
>>> boston = datasets.load boston()

How to do it...

Actually, using linear regression in scikit-learn is quite simple. The API for linear regression is
basically the same API you're now familiar with from the previous chapter.

First, import the LinearRegression object and create an object:

>>> from sklearn.linear model import LinearRegression
>>> lr = LinearRegression/()

Now, it's as easy as passing the independent and dependent variables to the fit method of
LinearRegression:

>>> lr.fit (boston.data, boston.target)
LinearRegression(copy X=True, fit intercept=True, normalize=False)

Now, to get the predictions, do the following:

>>> predictions = lr.predict (boston.data)

Chapter 2

It's then probably a good idea to look at how close the predictions are to the actual data.
We can use a histogram to look at the differences. These are called the residuals, as shown:

Histogram of Residuals.

70

G0

30

20

10

20 an

=20

Let's take a look at the coefficients:

>>> lr.coef

array([-1.07170557e-01, 4.63952195e-02,
2.68856140e+00, -1.77957587e+01,
7.51061703e-04, -1.47575880e+00,
-1.23293463e-02, -9.53463555e-01,
-5.25466633e-01])

.08602395e-02,
.80475246e+00,
.05655038e-01,
.39251272e-03,

o w wN

1
‘\Q A common pattern to express the coefficients of the features and

their names is zip (boston. feature_names, lr.coef).

So, going back to the data, we can see which factors have a negative relationship with the
outcome, and also the factors that have a positive relationship. For example, and as expected,
an increase in the per capita crime rate by town has a negative relationship with the price of a
home in Boston. The per capita crime rate is the first coefficient in the regression.

Working with Linear Models

The basic idea of linear regression is to find the set of coefficients of £ that satisfy y = X 3,
where X is the data matrix. It's unlikely that for the given values of X, we will find a set of
coefficients that exactly satisfy the equation; an error term gets added if there is an inexact
specification or measurement error. Therefore, the equation becomes y = X +¢&, where €
is assumed to be normally distributed and independent of the X values. Geometrically, this
means that the error terms are perpendicular to X. It's beyond the scope of this book, but it
might be worth it to prove E(X¢)=0 to yourself.

In order to find the set of betas that map the X values to y, we minimize the error term.
This is done by minimizing the residual sum of squares.

This problem can be solved analytically, with the solution being ﬂ:(XTX)—lXT}.

There's more...

The LinearRegression object can automatically normalize (or scale) the inputs:

>>> lr2 = LinearRegression(normalize=True)

>>> 1lr2.fit (boston.data, boston.target)
LinearRegression(copy X=True, fit intercept=True, normalize=True)
>>> predictions2 = lr2.predict(boston.data)

Evaluating the linear regression model

In this recipe, we'll look at how well our regression fits the underlying data. We fit a regression
in the last recipe, but didn't pay much attention to how well we actually did it. The first question
after we fit the model was clearly "How well does the model fit?" In this recipe, we'll examine
this question.

Getting ready

Let's use the 1r object and boston dataset—reach back into your code from the Fitting a line
through data recipe. The 1r object will have a lot of useful methods now that the model has
been fit.

How to do it...

There are some very simple metrics and plots we'll want to look at as well. Let's take another
look at the residual plot from the last chapter:

>>> import matplotlib.pyplot as plt
>>> import numpy as np

NED

>>> £ = plt.figure(figsize=(7, 5))

>>> ax = f.add subplot(111l)

>>> ax.hist (boston.target - predictions, bins=50)
>>> ax.set title("Histogram of Residuals.")

Chapter 2

If you're using IPython Notebook, use the $matplotlib inline command to render the
plots inline. If you're using a regular interpreter, simply type f.savefig('myfig.png')

and the plot will be saved for you.

Al

The following is the histogram showing the output:

~ Plotting is done via matplotlib. This isn't the focus of this book,
but it's useful to plot your results, so we'll show some basic plotting.

70

60

an

20

Histogram of Residuals.

20

a0

Like | mentioned previously, the error terms should be normal, with a mean of O. The residuals
are the errors; therefore, this plot should be approximately normal. Visually, it's a good fit, though
a bit skewed. We can also look at the mean of the residuals, which should be very close to O:

>>> np.mean(boston.target - predictions)

4.3250427394093058e-15

Clearly, we are very close.

s

Working with Linear Models

Another plot worth looking at is a Q-Q plot. We'll use SciPy here because it has a built-in
probability plot:

>>> from scipy.stats import probplot

>>> £ = plt.figure(figsize=(7, 5))

>>> ax = f.add subplot(111)

>>> probplot (boston.target - predictions, plot=ax)

The following screenshot shows the probability plot:

Probability Plot

Ordered Values

B =0.0476

Cuantiles

Here, the skewed values we saw earlier are a bit clearer.

We can also look at some other metrics of the fit; mean squared error (MSE) and mean
absolute deviation (MAD) are two common metrics. Let's define each one in Python and
use them. Later in the book, we'll look at how scikit-learn has built-in metrics to evaluate
the regression models:

>>> def MSE (target, predictions):
squared deviation = np.power (target - predictions, 2)
return np.mean(squared deviation)

Chapter 2

>>> MSE (boston.target, predictions)
21.897779217687496

>>> def MAD(target, predictions):
absolute deviation = np.abs(target - predictions)
return np.mean(absolute deviation)

>>> MAD (boston.target, predictions)
3.2729446379969396

The formula for MSE is very simple:
A 2
E(5-»)

It takes each predicted value's deviance from the actual value, squares it, and then averages
all the squared terms. This is actually what we optimized to find the best set of coefficients for
linear regression. The Gauss-Markov theorem actually guarantees that the solution to linear
regression is the best in the sense that the coefficients have the smallest expected squared
error and are unbiased. In the Using ridge regression to overcome linear regression's shortfalls
recipe, we'll look at what happens when we're okay with our coefficients being biased.

MAD is the expected error for the absolute errors:
:E|yt_iyJ

MAD isn't used when fitting the linear regression, but it's worth taking a look at. Why?
Think about what each one is doing and which errors are more important in each case.
For example, with MSE, the larger errors get penalized more than the other terms because
of the square term.

One thing that's been glossed over a bit is the fact that the coefficients themselves are
random variables, and therefore, they have a distribution. Let's use bootstrapping to look
at the distribution of the coefficient for the crime rate. Bootstrapping is a very common
technique to get an understanding of the uncertainty of an estimate:

>>> n bootstraps = 1000
>>> len boston = len(boston.target)
>>> subsample size = np.int(0.5*len boston)

[ei-

Working with Linear Models

>>> subsample = lambda: np.random.choice(np.arange(0, len boston),
size=subsample size)

>>> coefs = np.ones(n bootstraps) #pre-allocate the space for the coefs

>>> for i in range(n bootstraps):
subsample idx = subsample()
subsample X = boston.data[subsample idx]
subsample y = boston.target [subsample idx]

>>> lr.fit (subsample X, subsample y)

>>> coefs[i] = lr.coef [0]
Now, we can look at the distribution of the coefficient:

>>> import matplotlib.pyplot as plt

>>> £ = plt.figure(figsize=(7, 5))

>>> ax = f.add subplot(11l)

>>> ax.hist(coefs, bins=50)

>>> ax.set title("Histogram of the lr.coef [0].")

The following is the histogram that gets generated:

Histogram of the Ir.coef [0].

120

100

a0

G0

20

o - -

—0.4 —0.3 —0.2 —0.1] ol 0z

&

Chapter 2

We might also want to look at the bootstrapped confidence interval:

>>> np.percentile(coefs, [2.5, 97.5])

array([-0.18566145, 0.03142513])

This is interesting; there's actually reason to believe that the crime rate might not have an
impact on the home prices. Notice how zero is within Cl, which means that it may not play
arole.

It's also worth pointing out that bootstrapping can lead to a potentially better estimation for
coefficients because the bootstrapped mean with converge to the true mean is faster than
the coefficient found using regular estimation when in the limit.

Using ridge regression to overcome linear

regression’s shortfalls

In this recipe, we'll learn about ridge regression. It is different from vanilla linear regression;
it introduces a regularization parameter to "shrink" the coefficients. This is useful when the
dataset has collinear factors.

Getting ready

Let's load a dataset that has a low effective rank and compare ridge regression with linear
regression by way of the coefficients. If you're not familiar with rank, it's the smaller of the
linearly independent columns and the linearly independent rows. One of the assumptions
of linear regression is that the data matrix is of "full rank".

How to do it...

First, use make regression to create a simple dataset with three predictors, but an
effective rank of 2. Effective rank means that while technically the matrix is of full rank,
many of the columns have a high degree of colinearity:

>>> from sklearn.datasets import make regression
>>> reg data, reg target = make regression(n_ samples=2000,
n_features=3, effective_rank=2, noise=10)

First, let's take a look at regular linear regression:

>>> import numpy as np

>>> n bootstraps = 1000

>>> len _data = len(reg data)

>>> subsample size = np.int(0.75*len_data)

>>> subsample = lambda: np.random.choice(np.arange (0, len data),
size=subsample size)

(&5}

Working with Linear Models

>>> coefs = np.ones((n _bootstraps, 3))

>>> for i in range(n bootstraps):
subsample idx = subsample()
subsample X = reg datal[subsample idx]
subsample y = reg target[subsample idx]

>>> lr.fit (subsample X, subsample y)

>>> coefs[i] [0] = lr.coef [0]
>>> coefs[i] [1] = lr.coef [1]
>>> coefs[i] [2] = lr.coef [2]

The following is the output that gets generated:

) Coef 0
300
250
200
150
100
50
)
) Coef 1
300
250
00
150
100
50
)
) Coef 2
300
250
200
150
100
50
1]
—Gl —41{ =20

Follow the same procedure with Ridge, and have a look at the output:

>>> r = Ridge()

>>> n bootstraps = 1000

>>> len_data = len(reg_data)

>>> subsample size = np.int(0.75*len_data)

>>> subsample = lambda: np.random.choice(np.arange(0, len data),
size=subsample size)

coefs r = np.ones((n_bootstraps, 3))
carry out the same procedure from above

=

Chapter 2

The following is the output that gets generated:

Coef 0

Coef 1

Coef 2

a0

Don't let the similar width of the plots fool you; the coefficients for ridge regression are much
closer to 0. Let's look at the average spread between the coefficients:

>>> np.mean(coefs - coefs r, axis=0)
#coefs r stores the ridge regression coefficients
array ([22.19529525, 49.54961002, 8.27708536])

So, on an average, the coefficients for linear regression are much higher than the ridge
regression coefficients. This difference is the bias in the coefficients (forgetting, for a second,
the potential bias of the linear regression coefficients). So then, what is the advantage of ridge
regression? Well, let's look at the variance of our coefficients:

>>> np.var (coefs, axis=0)
array ([184.50845658, 150.16268077, 263.39096391])

>>> np.var (coefs r, axis=0)
array ([21.35161646, 23.95273241, 17.34020101])

The variance has been dramatically reduced. This is the bias-variance trade-off that is
so often discussed in machine learning. The next recipe will introduce how to tune the
regularization parameter in ridge regression, which is at the heart of this trade-off.

]

Working with Linear Models

Speaking of the regularization parameter, let's go through how ridge regression differs from
linear regression. As was already shown, linear regression works, but it finds the vector of

betas that minimize |5 — X 4.
Ridge regression finds the vector of betas that minimize ||)%Xﬂ||2 + ||FX||2.

r is typically al, or it's some scalar times the identity matrix. We actually used the default
alpha when initializing ridge regression.

Now that we created the object, we can look at its attributes:

>>> r #notice the alpha parameter
Ridge (alpha=1.0, copy X=True, fit intercept=True, max iter=None,

normalize=False, solver='auto', tol=0.001)

This minimization has the following solution:
p=(X"X+TT) Xy

The previous solution is the same as linear regression, except for the r'r term. For a matrix A,
A4" is symmetric, and thus positive semidefinite. So, thinking about the translation of matrix
algebra from scalar algebra, we effectively divide by a larger number. Multiplication by an
inverse is analogous to division. So, this is what squeezes the coefficients towards O. This is
a bit of a crude explanation; for a deeper understanding, you should look at the connections
between SVD and ridge regression.

Optimizing the ridge regression parameter

Once you start using ridge regression to make predictions or learn about relationships in the
system you're modeling, you'll start thinking about the choice of alpha.

For example, using OLS regression might show some relationship between two variables;
however, when regularized by some alpha, the relationship is no longer significant. This can
be a matter of whether a decision needs to be taken.

Getting ready

This is the first recipe where we'll tune the parameters for a model. This is typically done by
cross-validation. There will be recipes laying out a more general way to do this in later recipes,
but here we'll walkthrough to be able to tune ridge regression.

(&)

Chapter 2

If you remember, in ridge regression, the gamma parameter is typically represented as alpha
in scikit-learn when calling RidgeRegression; so, the question that arises is what the best

alpha is. Create a regression dataset, and then let's get started:

>>> from sklearn.datasets import make regression
>>> reg data, reg target = make regression(n samples=100,

How to do it...

Inthe 1inear models module, there is an object called RidgeCV, which stands
for ridge cross-validation. This performs a cross-validation similar to leave-one-out
cross-validation (LOOCV).

n_features=2, effective rank=1l, noise=10)

Under the hood, it's going to train the model for all samples except one. It'll then
evaluate the error in predicting this one test case:

>>> from sklearn.linear model import RidgeCV

>>> rcv = RidgeCV(alphas=np.array([.1l, .2, .3, .4]1))

>>> rcv.fit (reg data, reg target)

RidgeCV (alphas=array ([0.1, 0.2, 0.3, 0.4]), cv=None,
fit intercept=True, gcv_mode=None, loss func=None,
normalize=False, score_func=None, scoring=None,
store cv_values=False)

After we fit the regression, the alpha attribute will be the best alpha choice:

>>> rcv.alpha
0.10000000000000001

In the previous example, it was the first choice. We might want to hone in on something
around . 1:

>>> rcv2 = RidgeCV(alphas=np.array([.08, .09, .1, .11, .12]))

>>> rcv2.fit(reg data, reg target)

RidgeCV (alphas=array([0.08, 0.09, 0.1 , 0.11, 0.12]), cv=None,
fit_intercept=True, gcv_mode=None,
loss_func=None, normalize=False,
score_func=None, scoring=None,
store cv values=False)

>>> rcv2.alpha
0.08

We can continue this hunt, but hopefully, the mechanics are clear.

&7}

Working with Linear Models

The mechanics might be clear, but we should talk a little more about the why and define what
was meant by "best". At each step in the cross-validation process, the model scores an error
against the test sample. By default, it's essentially a squared error. Check out the There's
more... section for more details.

We can force the RidgeCV object to store the cross-validation values; this will let us visualize
what it's doing;:

>>> alphas to test = np.linspace(0.01, 1)
>>> rcv3 = RidgeCV(alphas=alphas to test, store cv values=True)
>>> rcv3.fit(reg data, reg target)

As you can see, we test a bunch of points (50 in total) between 0.01 and 1. Since we passed
store cv_values as true, we can access these values:

>>> rcv3.cv_values .shape
(100, 50)

So, we had 100 values in the initial regression and tested 50 different alpha values. We now
have access to the errors of all 50 values. So, we can now find the smallest mean error and
choose it as alpha:

>>> smallest idx = rcv3.cv values .mean(axis=0).argmin()
>>> alphas to test[smallest idx]

The question that arises is "Does RidgeCV agree with our choice?" Use the following command
to find out:

>>> rcv3.alpha
0.01

Beautiful!

It's also worthwhile to visualize what's going on. In order to do that, we'll plot the mean for all
50 test alphas.

Various values of o

104

1m0z

Chosen o

If we want to use our own scoring function, we can do that as well. Since we looked up MAD
before, let's use it to score the differences. First, we need to define our loss function:

>>> def MAD(target, predictions):
absolute deviation = np.abs(target - predictions)
return absolute deviation.mean ()

After we define the loss function, we can employ the make scorer function in sklearn.
This will take care of standardizing our function so that scikit's objects know how to use it.
Also, because this is a loss function and not a score function, the lower the better, and thus
the need to let sklearn to flip the sign to turn this from a maximization problem into a
minimization problem:

>>> import sklearn

>>> MAD = sklearn.metrics.make scorer (MAD, greater is better=False)

>>> rcv4 = RidgeCV(alphas=alphas to test, store cv values=True,
scoring=MAD)

>>> rcvé4.fit (reg data, reg target)

[}

Chapter 2

Working with Linear Models

>>> smallest idx = rcv4.cv values .mean(axis=0).argmin()
>>> alphas to test[smallest idx]
0.2322

Using sparsity to regularize models

The least absolute shrinkage and selection operator (LASSO) method is very similar

to ridge regression and LARS. It's similar to Ridge Regression in the sense that we penalize
our regression by some amount, and it's similar to LARS in that it can be used as a parameter
selection, and it typically leads to a sparse vector of coefficients.

Getting ready

To be clear, lasso regression is not a panacea. There can be computation consequences to
using lasso regression. As we'll see in this recipe, we'll use a loss function that isn't differential,
and therefore, requires special, and more importantly, performance-impairing workarounds.

How to do it...

Let's go back to the trusty make regression function and create a dataset with the same
parameters:

>>> from sklearn.datasets import make regression
>>> reg data, reg target = make regression(n samples=200, n features=500,

n informative=5, noise=5)
Next, we need to import the Lasso object:

>>> from sklearn.linear model import Lasso
>>> lasso = Lasso()

Lasso contains many parameters, but the most interesting parameter is alpha. It scales
the penalization term of the Lasso method, which we'll look at in the How it works... section.
For now, leave it as 1. As an aside, and much like ridge regression, if this term is 0, lasso is
equivalent to linear regression:

>>> lasso.fit(reg data, reg target)

Again, let's see how many of the coefficients remain nonzero:

>>> np.sum(lasso.coef != 0)
9
>>> lasso 0 = Lasso(0)

>>> lasso 0.fit(reg data, reg target)

[

Chapter 2

>>> np.sum(lasso O.coef != 0)
500

None of our coefficients turn out to be 0, which is what we expect. Actually, if you run this, you
might get a warning from scikit-learn that advises you to choose LinearRegression.

For linear regression, we minimized the squared error. Here, we're still going to minimize the
squared error, but we'll add a penalization term that will induce the scarcity. The equation

looks like the following:
2.+ 48],

An alternate way of looking at this is to minimize the residual sum of squares:

RSS(8) such that | g < 8

This constraint is what leads to the scarcity. Lasso regression's constraint creates a hypercube
around the origin (the coefficients being the axis), which means that the most extreme points
are the corners, where many of the coefficients are 0. Ridge regression creates a hypersphere
due to the constraint of the 12 norm being less than some constant, but it's very likely that
coefficients will not be zero even if they are constrained.

Lasso cross-validation
Choosing the most appropriate lambda is a critical problem. We can specify the lambda
ourselves or use cross-validation to find the best choice given the data at hand:

>>> from sklearn.linear model import LassoCV
>>> lassocv = LassoCV()
>>> lassocv.fit (reg data, reg target)

lassocv will have, as an attribute, the most appropriate lambda. scikit-learn mostly uses
alpha in its notation, but the literature uses lambda:

>>> lassocv.alpha
0.80722126078646139

The number of coefficients can be accessed in the regular manner:

>>> lassocv.coef [:5]
array([0., 42.41, 0.,0., -0.1)

Working with Linear Models

Letting 1assocv choose the appropriate best fit leaves us with 11 nonzero coefficients:

>>> np.sum(lassocv.coef != 0)
11

Lasso for feature selection

Lasso can often be used for feature selection for other methods. For example, you might run
lasso regression to get the appropriate number of features, and then use these features in
another algorithm.

To get the features we want, create a masking array based on the columns that aren't zero,
and then filter to keep the features we want:

>>> mask = lassocv.coef != 0

>>> new_reg data = reg datal:, mask]
>>> new _reg data.shape

(200, 11)

Taking a more fundamental approach to

regularization with LARS

To borrow from Gilbert Strang's evaluation of the Gaussian elimination, LARS is an idea
you probably would've considered eventually had it not been discovered previously by
Efron, Hastie, Johnstone, and Tibshiriani in their works[1].

Getting ready

Least-angle regression (LARS) is a regression technique that is well suited for high-dimensional
problems, that is, p >> n, where p denotes the columns or features and n is the number
of samples.

How to do it...

First, import the necessary objects. The data we use will have 200 data points and 500
features. We'll also choose a low noise and a small number of informative features:

>>> from sklearn.datasets import make regression
>>> reg data, reg target = make regression(n samples=200,
n features=500, n informative=10, noise=2)

Chapter 2

Since we used 10 informative features, let's also specify that we want 10 nonzero coefficients
in LARS. We will probably not know the exact number of informative features beforehand, but
it's useful for learning purposes:

>>> from sklearn.linear model import Lars
>>> lars = Lars(n_nonzero_coefs=10)
>>> lars.fit(reg data, reg target)

We can then verify that LARS returns the correct number of nonzero coefficients:

>>> np.sum(lars.coef != 0)

10

The question then is why it is more useful to use a smaller number of features. To illustrate
this, let's hold out half of the data and train two LARS models, one with 12 nonzero
coefficients and another with no predetermined amount. We use 12 here because we might
have an idea of the number of important features, but we might not be sure of the exact
number:

100
>>> lars_ 12 = Lars(n_nonzero_coefs=12)

>>> train n

>>> lars 12.fit(reg datal:train n], reg target([:train n])

>>> lars 500 = Lars() # it's 500 by default
>>> lars 500.fit(reg datal:train n], reg targetl[:train n]);

Now, to see how well each feature fit the unknown data, do the following:

>>> np.mean (np.power (reg target[train n:] - lars 1l2.predict(reg data
[train n:]), 2))

31.527714163321001

>>> np.mean(np.power (reg target[train n:] - lars 500.predict(reg data

[train n:]), 2))
9.6198147535136237e+30

Look again if you missed it; the error on the test set was clearly very high. Herein lies the
problem with high-dimensional datasets; given a large number of features, it's typically
not too difficult to get a model of good fit on the train sample, but overfitting becomes

a huge problem.

Working with Linear Models

LARS works by iteratively choosing features that are correlated with the residuals. Geometrically,
correlation is effectively the least angle between the feature and the residuals; this is how LARS
gets its name.

After choosing the first feature, LARS will continue to move in the least angle direction, until
a different feature has the same amount of correlation with the residuals. Then, LARS will
begin to move in the combined direction of both features. To visualize this, consider the
following graph:

No steps

L]

(PR

0.4

0.2

7

Chapter 2

So, we move along x1 until we get to the point where the pull on x4 by y is the same as the
pull on x2 by y. When this occurs, we move along the path that is equal to the angle between
x1 and x2 divided by 2.

There's more...

Much in the same way we used cross-validation to tune ridge regression, we can do the same
with LARS:

>>> from sklearn.linear model import LarsCV
>>> lcv = LarsCV()
>>> lev.fit(reg data, reg target)

Using cross-validation will help us determine the best number of nonzero coefficients to use.
Here, it turns out to be as shown:

>>> np.sum(lcv.coef != 0)
44

[1]: Efron, Bradley; Hastie, Trevor; Johnstone, lain and Tibshirani, Robert
(2004). "Least Angle Regression". Annals of Statistics 32(2): pp. 407-
499. doi:10.1214/009053604000000067. MR 2060166.

Using linear methods for classification -

logistic regression

Linear models can actually be used for classification tasks. This involves fitting a linear model
to the probability of a certain class, and then using a function to create a threshold at which
we specify the outcome of one of the classes.

Getting ready

The function used here is typically the logistic function (surprise!). It's a pretty simple function:

_ 1
l+e”

/(%)

Working with Linear Models

Visually, it looks like the following:

Logistic Function between [-5, 5]

e

Let's use the make classification method, create a dataset, and get to classifying:

>>> from sklearn.datasets import make classification
>>> X, y = make classification(n samples=1000, n features=4)

How to do it...

The LogisticRegression object works in the same way as the other linear models:

>>> from sklearn.linear model import LogisticRegression
>>> lr = LogisticRegression()

Since we're good data scientists, we will pull out the last 200 samples to test the trained
model on. Since this is a random dataset, it's fine to hold out the last 200; if you're dealing
with structured data, don't do this (for example, if you deal with time series data):

>>> X train = X[:-200]
>>> X test = X[-200:]
>>> y train = y[:-200]
>>> y test = y[-200:]

We'll discuss more on cross-validation later in the book. Now, we need to fit the model with
logistic regression. We'll keep around the predictions on the train set, just like the test set. It's
a good idea to see how often you are correct on both sets. Often, you'll be better on the train
set; it's a matter of how much worse you are on the test set:

>>> lr.fit (X train, y train)
>>> y train predictions = lr.predict (X train)
>>> y test predictions = lr.predict(X test)

7@

Chapter 2

Now that we have the predictions, let's take a look at how good our predictions were. Here,
we'll simply look at the number of times we were correct; later, we'll talk about evaluating
classification models in more detail.

The calculation is simple; it's the number of times we were correct over the total sample:

>>> (y_train predictions == y train).sum().astype(float) /
y train.shape[0]
0.8662499

And now the test sample:

>>> (y_test predictions == y test).sum() .astype(float) /
y test.shapel0]
0.900000

So, here we were correct about as often in the test set as we were in the train set. Sadly, in
practice, this isn't often the case.

The question then changes to how to move on from the logistic function to a method by which
we can classify groups.

First, recall the linear regression hopes offending the linear function that fits the expected
value of Y, given the values of X; this is E(Y|X) = XB. Here, the Y values are the probabilities
of the classes. Therefore, the problem we're trying to solve is E(p|X) = \ XB. Then, once the
threshold is applied, this becomes Logit(p) = XB. The idea expanded is how other forms of
regression work, for example, Poisson.

There's more...

You'll surely see this again. There will be a situation where one class is weighted differently
from the other classes; for example, one class may be 99 percent of cases. This situation will
pop up all over the place in the classification work. The canonical example is fraud detection,
where most transactions aren't fraud, but the cost associated with misclassification is
asymmetric between classes.

Let's create a classification problem with 95 percent imbalance and see how the basic stock
logistic regression handles this case:

>>> X, y = make classification(n samples=5000, n features=4,
weights=[.95])

>>> sum(y) / (len(y)*1l.) #to confirm the class imbalance
0.0555

(77}

Working with Linear Models

Create the train and test sets, and then fit logistic regression:

>>> X train = X[:-500]
>>> X test = X[-500:]
>>> y train = y[:-500]
>>> y test = y[-500:]

>>> lr.fit(X_train, y train)
>>> y train predictions = lr.predict(X train)
>>> y test predictions = lr.predict(X_ test)

Now, to see how well our model fits the data, do the following:

>>> (y_train predictions == y train).sum().astype(float) /
y _train.shape[0]
>>> 0.96977

>>> (y test predictions == y test).sum() .astype(float) / y test.shapel0]
>>> 0.97999

At first, it looks like we did well, but it turns out that when we always guessed that a transaction
was not fraud (or class O in general) we were right around 95 percent of the time. If we look at
how well we did in classifying the 1 class, it's not nearly as good:

>>> (y_testly test==1] == y test predictions[y test==1])
.sum() .astype(float) / y testl[y test==1].shapel0]
0.583333

Hypothetically, we might care more about identifying fraud cases than non-fraud cases;
this could be due to a business rule, so we might alter how we weigh the correct and
incorrect values.

By default, the classes are weighted (and thus resampled) in accordance with the inverse
of the class weights of the training set. However, because we care more about fraud cases,
let's oversample the fraud relative to nonfraud cases.

We know that our relative weighting right now is 95 percent nonfraud; let's change this to
overweight fraud cases:

>>> lr = LogisticRegression(class weight={0: .15, 1: .85})
>>> lr.fit(X_train, y train)

Let's predict the outputs again:

>>> y train predictions = lr.predict(X train)
>>> y test predictions = lr.predict(X_ test)

@

Chapter 2

We can see that we did a much better job on classifying the fraud cases:

>>> (y_testly test==1] == y test predictions[y test==1]).sum().
astype(float) / y testly test==1].shape[0]
0.875

But, at what expense do we do this? To find out, use the following command:

>>> (y test predictions == y test).sum() .astype(float) / y test.shapel0]
0.967999

Here, there's only about 1 percent less accuracy. Whether that's okay depends on your
problem. Put in the context of the problem, if the estimated cost associated with fraud
is sufficiently large, it can eclipse the cost associated with tracking fraud.

Directly applying Bayesian ridge regression

In the Using ridge regression to overcome linear regression's shortfalls recipe, we discussed
the connections between the constraints imposed by ridge regression from an optimization
standpoint. We also discussed the Bayesian interpretation of priors on the coefficients, which
attract the mass of the density towards the prior, which often has a mean of 0.

So, now we'll look at how we can directly apply this interpretation though scikit-learn.

Getting ready

Ridge and lasso regression can both be understood through a Bayesian lens as opposed to
an optimization lens. Only Bayesian ridge regression is implemented by scikit-learn, but in the
How it works... section, we'll look at both cases.

First, as usual, let's create some regression data:

>>> from sklearn.datasets import make regression
>>> X, y = make regression(1000, 10, n informative=2, noise=20)

How to do it...

We can just "throw" ridge regression at the problem with a few simple steps:

>>> from sklearn.linear model import BayesianRidge

>>> br = BayesianRidge ()

The two sets of coefficients of interest are alpha 1/alpha 2 and lambda 1/lambda 2.
The alphas are the hyperparameters for the prior over the alpha parameter, and the lambda
are the hyperparameters of the prior over the lambda parameter.

(7]

Working with Linear Models

First, let's fit a model without any modification to the hyperparameters:

>>> br.fit (X, y)
>>> br.coef
array([0.3000136 , -0.33023408, 68.166673, -0.63228159, 0.07350987,

-0.90736606, 0.38851709, -0.8085291 , 0.97259451, 68.73538646])
Now, if we modify the hyperparameters, notice the slight changes in the coefficients:

>>> br alphas = BayesianRidge(alpha 1=10, lambda 1=10)

>>> br alphas.fit(X, y)

>>> br alphas.coef_

array([0.30054387, -0.33130025, 68.10432626, -0.63056712,
0.07751436, -0.90919326, 0.39020878, -0.80822013,
0.97497567, 68.67409658])

For Bayesian ridge regression, we assume a prior over the errors and alpha. Both these priors
are gamma distributions.

The gamma distribution is a very flexible distribution. Here are some of the different shapes
the gamma distribution can take given the different parameterization techniques for location
and scale. 1e-06 is the default parameterization of BayesianRidge in scikit-learn:

Different Shapes of the Gamma Distribution

000005
— loc=1e-06, scale=1e-06
— loc=1e-06, scale=1
000004 — loc=]_E-Dﬁ, scale=2

0.00003

0Loo0o2

000001

000000

(&)

Chapter 2

As you can see, the coefficients are naturally shrunk towards 0, especially with a very small

location parameter.

There's more...

Like | mentioned earlier, there's also a Bayesian interpretation of lasso regression. Imagine
we set priors over the coefficients; remember that they are random numbers themselves.
For lasso regression, we will choose a prior that naturally produces Os, for example, the

double exponential.

Example of Double Exponential Distribution

Notice the peak around 0. This will naturally lead to the zero coefficients in lasso regression.
By tuning the hyperparameters, it's also possible to create O coefficients that more or less

depend on the setup of the problem.

Using boosting to learn from errors

Gradient boosting regression is a technique that learns from its mistakes. Essentially, it tries

to fit a bunch of weak learners. There are two things to note:
» Individually, each learner has poor accuracy, but together they can have very

good accuracy
They're applied sequentially, which means that each learner becomes an

expert in the mistakes of the prior learner

s

Working with Linear Models

Getting ready

Let's use some basic regression data and see how gradient boosting regression (henceforth,
GBR) works:

>>> from sklearn.datasets import make regression

>>> X, y = make regression (1000, 2, noise=10)

How to do it...

GBR is part of the ensemble module because it's an ensemble learner. This is the name for
the idea behind using many weak learners to simulate a strong learner:

>>> from sklearn.ensemble import GradientBoostingRegressor as GBR
>>> gbr = GBR()

>>> gbr.fit (X, y)

>>> gbr preds = gbr.predict (X)

Clearly, there's more to fitting a usable model, but this pattern should be pretty clear by now.
Now, let's fit a basic regression as well so that we can use it as the baseline:

>>> from sklearn.linear model import LinearRegression
>>> lr = LinearRegression()

>>> lr.fit (X, y)

>>> lr preds = lr.predict(X)

Now that we have a baseline, let's see how well GBR performed against linear regression.
I'll leave it as an exercise for you to plot the residuals, but to get started, do the following:

>>> gbr residuals = y - gbr preds
>>> 1lr residuals = y - lr preds

Chapter 2

The following will be the output:

GBER Residuals vs LR Residuals

[GBR Residuals
o LR Besiduals

120

100

20

o
—410 —30 —20 =10 o 10 20 a0 40

It looks like GBR has a better fit, but it's a bit hard to tell. Let's take the 95 percent Cl
and compare:

>>> np.percentile(gbr residuals, [2.5, 97.5])
array([-16.05443674, 17.53946294])

>>> np.percentile(lr residuals, [2.5, 97.5])
array([-20.05434912, 19.80272884])

So, GBR clearly fits a bit better; we can also make several modifications to the GBR algorithm,
which might improve performance. I'll show an example here, then we'll walkthrough the
different options in the How it works... section:

>>> n_estimators = np.arange (100, 1100, 350)
>>> gbrs = [GBR(n_estimators=n estimator) for n estimator in
n_estimators]
>>> residuals = {}
>>> for i, gbr in enumerate(gbrs):
gbr.fit (X, y)
residuals[gbr.n estimators] = y - gbr.predict (X)

Working with Linear Models

The following is the output:

- Residuals at Various Numbers of Estimators

n_estimators: 800
140 n_estimators: 430
n_estimators: 100
100

80

G0

40 I
o =" ||| Il

—30 —20 -10 1] 10 20 an 10

It's a bit muddled, but hopefully, it's clear that as the number of estimators increases, the
error goes down. Sadly, this isn't a panacea; first, we don't test against a holdout set, and
second, as the number of estimators goes up, the training time takes longer. This isn't a big
deal on the dataset we use here, but imagine one or two magnitudes higher.

The first parameter, and the one we already looked at, isn_estimators—the number of weak
learners that are used in GBR. In general, if you can get away with more (that is, have enough
computational power), it is probably better. There are more nuances to the other parameters.

You should tune the max_depth parameter before all others. Since the individual learners
are trees, max_depth controls how many nodes are produced for the trees. There's a subtle
line between using the appropriate number of nodes that can fit the data well and using too
many, which might cause overfitting.

The loss parameter controls the 1oss function, which determines the error. The 1s parameter
is the default, and stands for least squares. Least absolute deviation, Huber loss, and quantiles
are also available.

=

Building Models with
Distance Metrics

This chapter will cover the following topics:

» Using KMeans to cluster data

» Optimizing the number of centroids

» Assessing cluster correctness

» Using MiniBatch KMeans to handle more data

» Quantizing an image with KMeans clustering

» Finding the closest objects in the feature space

» Probabilistic clustering with Gaussian Mixture Models
» Using KMeans for outlier detection

» Using k-NN for regression

Introduction

In this chapter, we'll cover clustering. Clustering is often grouped together with unsupervised
techniques. These techniques assume that we do not know the outcome variable. This leads
to ambiguity in outcomes and objectives in practice, but nevertheless, clustering can be useful.
As we'll see, we can use clustering to "localize" our estimates in a supervised setting. This is
perhaps why clustering is so effective; it can handle a wide range of situations, and often,

the results are for the lack of a better term, "sane".

Building Models with Distance Metrics

We'll walk through a wide variety of applications in this chapter; from image processing to
regression and outlier detection. Through these applications, we'll see that clustering can
often be viewed through a probabilistic or optimization lens. Different interpretations lead
to various trade-offs. We'll walk through how to fit the models here so that you have the
tools to try out many models when faced with a clustering problem.

Using KMeans to cluster data

Clustering is a very useful technique. Often, we need to divide and conquer when taking
actions. Consider a list of potential customers for a business. A business might need to
group customers into cohorts, and then departmentalize responsibilities for these cohorts.
Clustering can help facilitate the clustering process.

KMeans is probably one of the most well-known clustering algorithms and, in a larger sense,
one of the most well-known unsupervised learning techniques.

Getting ready

First, let's walk through some simple clustering, then we'll talk about how KMeans works:

>>> from sklearn.datasets import make blobs
>>> blobs, classes = make blobs (500, centers=3)

Also, since we'll be doing some plotting, import matplotlib as shown:

>>> import matplotlib.pyplot as plt

How to do it...

We are going to walk through a simple example that clusters blobs of fake data. Then we'll talk
a little bit about how KMeans works to find the optimal number of blobs.

Looking at our blobs, we can see that there are three distinct clusters:

>>> f, ax = plt.subplots(figsize=(7.5, 7.5))

>>> ax.scatter (blobs[:, 0], blobs[:, 1], color=rgb[classes])
>>> rgb = np.array(['r', 'g', 'b']l)

>>> ax.set title("Blobs")

~[ee]

Chapter 3

The output is as follows:

” Blobs
12
10
.
3
.
.
. - 3
o 'h
2.
L @
4 *{g =
.0 é“
% S
* ..
= . Y e L'
e ' r.." .
»® :-
! |) -
o‘h.g
t - ‘.
2 * % s
-
—4
—10 =5] 5 10 15

Now we can use KMeans to find the centers of these clusters. In the first example, we'll pretend
we know that there are three centers:

>>> from sklearn.cluster import KMeans

>>> kmean = KMeans (n clusters=3)

>>> kmean.fit (blobs)

KMeans (copy x=True, init='k-means++', max iter=300, n clusters=3,
n init=10, n_jobs=1, precompute distances=True,
random state=None, tol=0.0001, verbose=0)

>>> kmean.cluster centers
array([[0.47819567, 1.80819197]1,

Building Models with Distance Metrics

[0.08627847, 8.24102715],
[5.2026125 , 7.8688176711)

>>> f, ax = plt.subplots(figsize=(7.5, 7.5))
>>> ax.scatter(blobs[:, 0], blobs[:, 1], color=rgbl[classes])
>>> ax.scatter (kmean.cluster centers [:, 0],
kmean.cluster centers [:, 1], marker='*', =250,
color='black', label='Centers!')

>>> ax.set title("Blobs")

>>> ax.legend(loc='best')

The following screenshot shows the output:

i Blobs
12
10
a8
N
.
f - g
- L]
. L]
o
.]
] ."’;. .‘
e é"
- "t
- . ? A 3
e o r":' .
: e L) ’:
|
»
. .'ﬂ','g o
—2 S ‘ w» * a
_JI
—10 -5 [5 ili]

(e

Chapter 3

Other attributes are useful too. For instance, the labels attribute will produce the expected
label for each point:

>>> kmean.labels [:5]
array([1, 1, 2, 2, 1], dtype=int32)

We can check whether kmean . labels s the same as classes, but because KMeans has no
knowledge of the classes going in, it cannot assign the sample index values to both classes:

>>> classes|[:5]
array ([0, 0, 2, 2, 0])

Feel free to swap 1 and 0 in classes to see if it matches up with 1abels .

The transform function is quite useful in the sense that it will output the distance between
each point and centroid:

>>> kmean.transform(blobs) [:5]

array([[6.47297373, 1.39043536, 6.4936008 1,
[6.78947843, 1.51914705, 3.67659072],
[7.24414567, 5.42840092, 0.769403671,
[8.56306214, 5.78156881, 0.89062961],
[7.32149254, 0.89737788, 5.1224679711)

KMeans is actually a very simple algorithm that works to minimize the within-cluster sum of
square distances from the mean. We'll be minimizing the sum of squares yet again!

It does this by first setting a pre-specified number of clusters, K, and then alternating
between the following:

» Assigning each observation to the nearest cluster

» Updating each centroid by calculating the mean of each observation assigned
to this cluster

This happens until some specified criterion is met.

Building Models with Distance Metrics

Optimizing the number of centroids

Centroids are difficult to interpret, and it can also be very difficult to determine whether
we have the correct number of centroids. It's important to understand whether your data
is unlabeled or not as this will directly influence the evaluation measures we can use.

Getting ready

Evaluating the model performance for unsupervised techniques is a challenge. Consequently,
sklearn has several methods to evaluate clustering when a ground truth is known, and very
few for when it isn't.

We'll start with a single cluster model and evaluate its similarity. This is more for the purpose
of mechanics as measuring the similarity of one cluster count is clearly not useful in finding
the ground truth number of clusters.

How to do it...

To get started we'll create several blobs that can be used to simulate clusters of data:

>>> from sklearn.datasets import make blobs
>>> import numpy as np
>>> blobs, classes = make blobs (500, centers=3)

>>> from sklearn.cluster import KMeans

>>> kmean = KMeans(n clusters=3)

>>> kmean.fit (blobs)

KMeans (copy x=True, init='k-means++', max iter=300, n clusters=3,
n_init=10, n_jobs=1l, precompute distances=True,
random state=None, tol=0.0001, verbose=0)

First, we'll look at silhouette distance. Silhouette distance is the ratio of the difference
between in-cluster dissimilarity, the closest out-of-cluster dissimilarity, and the maximum
of these two values. It can be thought of as a measure of how separate the clusters are.

Let's look at the distribution of distances from the points to the cluster centers; it's useful
to understand silhouette distances:

>>> from sklearn import metrics

>>> silhouette samples = metrics.silhouette samples(blobs,
kmean.labels)

>>> np.column stack((classes[:5], silhouette samples[:5]))

array([[1., 0.87617292],
[1., 0.89082363],

5]

[1., 0.88544994],
[1., 0.91478369],
[1., 0.91308287]1])

>>> £, ax = plt.subplots(figsize=(10, 5))

>>> ax.set title("Hist of Silhouette Samples")

>>> ax.hist(silhouette samples)

The following is the output:

Chapter 3

250

150

100

50

Hist of Silhouette Samples

0.75 0.80

0.90

0.95

Notice that generally the higher the number of coefficients are closer to 1 (which is good)

the better the score.

The average of the silhouette coefficients is often used to describe the entire model's fit:

>>> silhouette samples.mean ()

0.57130462953339578

It's very common; in fact, the metrics module exposes a function to arrive at the value we

just got:

>>> metrics.silhouette score(blobs, kmean.labels)

0.57130462953339578

Building Models with Distance Metrics
Now, let's fit the models of several cluster counts and see what the average silhouette score
looks like:

first new ground truth
>>> blobs, classes = make blobs (500, centers=10)

>>> sillhouette _avgs = [I]

this could take a while
>>> for k in range(2, 60):
kmean = KMeans (n_clusters=k) .fit (blobs)

sillhouette avgs.append(metrics.silhouette score(blobs,
kmean.labels))

>>> f, ax = plt.subplots(figsize=(7, 5))
>>> ax.plot(sillhouette_avgs)

The following is the output:

[

Chapter 3

This plot shows that the silhouette averages as the number of centroids increase. We can see
that the optimum number, according to the data generating process, is 3, but here it looks like
it's around 6 or 7. This is the reality of clustering; quite often, we won't get the correct number
of clusters, we can only really hope to estimate the number of clusters to some approximation.

Assessing cluster correctness

We talked a little bit about assessing clusters when the ground truth is not known. However,
we have not yet talked about assessing KMeans when the cluster is known. In a lot of cases,
this isn't knowable; however, if there is outside annotation, we will know the ground truth,

or at least the proxy, sometimes.

Getting ready

So, let's assume a world where we have some outside agent supplying us with the
ground truth.

We'll create a simple dataset, evaluate the measures of correctness against the
ground truth in several ways, and then discuss them:

>>> from sklearn import datasets
>>> from sklearn import cluster
>>> blobs, ground truth = datasets.make blobs (1000, centers=3,

cluster std=1.75)
How to do it...

Before we walk through the metrics, let's take a look at the dataset:
>>> f, ax = plt.subplots(figsize=(7, 5))
>>> colors = ['r', 'g', 'b']

>>> for i in range(3):
p = blobs[ground truth == i]
ax.scatter(p[:,0], pl:,1], c=colorsli],
label="Cluster {}".format (i))

>>> ax.set title("Cluster With Ground Truth")
>>> ax.legend ()

>>> f.savefig("94850S 03-16")

Building Models with Distance Metrics

The following is the output:

i Cluster With Ground Truth
eogs Cluster
& ese Clusterl
51 L eng Cluster 2 |-
bt e
L]
-5 |
=10 }
-15 1 1 1 i 1
10 -5 0 5 10 15 20

In order to fit a KMeans model we'll create a KMeans object from the cluster module:

>>> kmeans = cluster.KMeans(n clusters=3)

>>> kmeans.fit (blobs)

KMeans (copy x=True, init='k-means++', max iter=300, n clusters=3,
n init=10, n jobs=1, precompute distances=True,
random state=None, tol=0.0001, verbose=0)

>>> kmeans.cluster centers

array([[5.18993766, 0.35110059],

[0.18300097, -4.9480336 1,
[10.01421381, -2.26274328]])

Now that we've fit the model, let's have a look at the cluster centroids:

>>> £, ax = plt.subplots(figsize=(7, 5))
>>> colors = ['r', 'g', 'b']

>>> for i in range(3):

=

p = blobs[ground truth == i]
ax.scatter(p[:,0], pl[:,1], c=colorslil,
label="Cluster {}".format(i))

>>>

ax.scatter (kmeans.cluster centers [:, 0],

Chapter 3

kmeans.cluster centers [:, 1], s=100, color='black',

label="'Centers')
ax.set title("Cluster With Ground Truth")
ax.legend ()

>>>
>>>
>>> f.savefig("94850S 03-17")

The following is the output:

i Cluster With Ground Truth
eag Cluster 0
= eag Clusterl
5 % sog Cluster 2 |
-y ®
@8g Centers
] L] =
7 .
h []
" L]
-5 e .
L4
P S,
» L s T
-10 =
_]_5 L 1 1 1 1
=10 -5 0 5 10 15 20

Now that we can view the clustering performance as a classification exercise, the metrics that

are useful in its context are also useful here:

>>> for i in range(3):

print (kmeans.labels == ground truth) [ground truth == i]

.astype(int) .mean ()

0.0778443113772
0.990990990991
0.0570570570571

[55]-

Building Models with Distance Metrics

Clearly, we have some backward clusters. So, let's get this straightened out first, and then
we'll look at the accuracy:

>>> new _ground truth = ground truth.copy ()

>>> new_ground_truth[ground truth == 0] = 2
>>> new_ground_truth[ground truth == 2] = 0
>>> for i in range(3):
print (kmeans.labels == new ground truth) [ground truth == i]

.astype(int) .mean ()

0.919161676647
0.990990990991
0.90990990991

So, we're roughly correct 90 percent of the time. The second measure of similarity we'll look
at is the mutual information score:

>>> from sklearn import metrics
>>> metrics.normalized mutual info score(ground truth, kmeans.labels)

0.78533737204433651

As the score tends to be O, the label assignments are probably not generated through
similar processes; however, the score being closer to 1 means that there is a large
amount of agreement between the two labels.

For example, let's look at what happens when the mutual information score itself:

>>> metrics.normalized mutual info score(ground truth, ground truth)

1.0
Given the name, we can tell that there is probably an unnormalized mutual info score:

>>> metrics.mutual info score(ground truth, kmeans.labels)

0.78945287371677486

These are very close; however, normalized mutual information is the mutual information
divided by the root of the product of the entropy of each set truth and assigned label.

5]

Chapter 3

There's more...

One cluster metric we haven't talked about yet and one that is not reliant on the ground truth
is inertia. It is not very well documented as a metric at the moment. However, it is the metric
that KMeans minimizes.

Inertia is the sum of the squared difference between each point and its assigned cluster.
We can use a little NumPy to determine this:

>>> kmeans.inertia

Using MiniBatch KMeans to handle more

data

KMeans is a nice method to use; however, it is not ideal for a lot of data. This is due to
the complexity of KMeans. This said, we can get approximate solutions with much better
algorithmic complexity using KMeans.

Getting ready

MiniBatch KMeans is a faster implementation of KMeans. KMeans is computationally very
expensive; the problem is NP-hard.

However, using MiniBatch KMeans, we can speed up KMeans by orders of magnitude. This
is achieved by taking many subsamples that are called MiniBatches. Given the convergence
properties of subsampling, a close approximation to regular KMeans is achieved, given good
initial conditions.

How to do it...

Let's do some very high-level profiling of MiniBatch clustering. First, we'll ook at the overall
speed difference, and then we'll look at the errors in the estimates:

>>> from sklearn.datasets import make blobs
>>> blobs, labels = make blobs(int(le6), 3)

>>> from sklearn.cluster import KMeans, MiniBatchKMeans

>>> kmeans = KMeans(n clusters=3)
>>> minibatch = MiniBatchKMeans(n clusters=3)

o7}

Building Models with Distance Metrics

Understand that these metrics are meant to expose the issue.
M Therefore, great care is taken to ensure the highest accuracy of the
Q benchmarks. There is a lot of information available on this topic;
if you really want to get to the heart of why MiniBatch KMeans is
better at scaling, it will be a good idea to review what's available.

Now that the setup is complete, we can measure the time difference:

>>> %time kmeans.fit(blobs) #IPython Magic
CPU times: user 8.17 s, sys: 881l ms, total: 9.05 s Wall time: 9.97 s

>>> %time minibatch.fit (blobs)
CPU times: user 4.04 s, sys: 90.1 ms, total: 4.13 s Wall time: 4.69 s

There's a large difference in CPU times. The difference in clustering performance is shown
as follows:

>>> kmeans.cluster centers [0]
array([1.10522173, -5.59610761, -8.35565134])

>>> minibatch.cluster centers [0]
array([1.12071187, -5.61215116, -8.32015587])

The next question we might ask is how far apart the centers are:

>>> from sklearn.metrics import pairwise
>>> pairwise.pairwise distances (kmeans.cluster centers [0],
minibatch.cluster centers [0])

array([[0.03305309]1)
This seems to be very close. The diagonals will contain the cluster center differences:

>>> np.diag(pairwise.pairwise distances(kmeans.cluster centers ,
minibatch.cluster centers))
array ([0.04191979, 0.03133651, 0.04342707])

The batches here are key. Batches are iterated through to find the batch mean; for the next
iteration, the prior batch mean is updated in relation to the current iteration. There are several
options that dictate the general KMeans' behavior and parameters that determine how
MiniBatch KMeans gets updated.

5]

Chapter 3

The batch_size parameter determines how large the batches should be. Just for fun, let's
run MiniBatch; however, this time we set the batch size the same as the dataset size:

>>> minibatch = MiniBatchKMeans (batch size=len(blobs))
>>> %time minibatch.fit (blobs)
CPU times: user 34.6 s, sys: 3.17 s, total: 37.8 s Wall time: 44.6 s

Clearly, this is against the spirit of the problem, but it does illustrate an important point.
Choosing poor initial conditions can affect how well models, particularly clustering models,
converge. With MiniBatch KMeans, there is no guarantee that the global optimum will

be achieved.

Quantizing an image with KMeans clustering

Image processing is an important topic in which clustering has some application.
It's worth pointing out that there are several very good image-processing libraries in
Python. scikit-image is a "sister" project of scikit-learn. It's worth taking a look at if
you want to do anything complicated.

Getting ready

We will have some fun in this recipe. The goal is to use cluster to blur an image.

First, we'll make use of SciPy to read the image. The image is translated in a 3-dimensional
array; the x and y coordinates describe the height and width, and the third dimension
represents the RGB values for each image:

in your terminal
$ wget http://blog.trenthauck.com/assets/headshot.jpg

Now, let's read the image in Python:

>>> from scipy import ndimage
>>> img = ndimage.imread ("headshot.jpg")
>>> plt.imshow (img)

s

Building Models with Distance Metrics

The following image is seen:

Hey, that's (a younger) me!
Now that we have the image, let's check its dimensions:

>>> img.shape
(420, 420, 3)

To actually quantize the image, we need to convert it into a two-dimensional array, with the
length being 420 x 420 and the width being the RGB values. A better way to think about this
is to have a bunch of data points in three-dimensional space and cluster the points to reduce
the number of distant colors in the image—a simple way to put quantization.

First, let's reshape our array; it is a NumPy array, and thus trivial to work with:

>>> X, y, z = img.shape

>>> long img = img.reshape (x*y, z)
>>> long img.shape

(176400, 3)

Now we can start the clustering process. First, let's import the cluster module and create
a KMeans object. We'll pass n_clusters=5 so that we have five clusters, or really, five
distinct colors.

This will be a good recipe to practice using silhouette distance that we reviewed in the
Optimizing the number of centroids recipe:

>>> from sklearn import cluster
>>> k means = cluster.KMeans(n_clusters=5)
>>> k means.fit(long img)

100

Chapter 3

Now that we have our fit KMeans objects, let's take a look at our colors:

>>> centers = k means.cluster centers

>>> centers

array([[142.58775848, 206.12712986, 226.04416873],
[86.29356543, 68.86312505, 54.04770507],
[194.36182899, 172.19845258, 149.65603813],
[24.67768412, 20.45778933, 16.19698314],
[149.27801776, 132.19850659, 115.32729167]11])

Now that we have the centers, the next thing we need is the labels. This will tell us which
points should be associated with which clusters:

>>> labels = k means.labels
>>> labels[:5]
array([1, 1, 1, 1, 1], dtype=int32)

At this point, we require the simplest of NumPy array manipulation followed by a bit of
reshaping, and we'll have the new image:

>>> plt.imshow(centers[labels] .reshape(x, y, z))

The following is the resultant image:

100

400

) 100 200 3040 400

Building Models with Distance Metrics

Finding the closest objects in the feature

space

Sometimes, the easiest thing to do is to just find the distance between two objects. We just need
to find some distance metric, compute the pairwise distances, and compare the outcomes to
what's expected.

Getting ready

A lower-level utility in scikit-learn is sklearn.metrics.pairwise. This contains server
functions to compute the distances between the vectors in a matrix X or the distances
between the vectors in X and Y easily.

This can be useful for information retrieval. For example, given a set of customers with
attributes of X, we might want to take a reference customer and find the closest customers to
this customer. In fact, we might want to rank customers by the notion of similarity measured
by a distance function. The quality of the similarity depends upon the feature space selection
as well as any transformation we might do on the space.

We'll walk through several different scenarios of measuring distance.

How to do it...

We will use the pairwise distances function to determine the "closeness" of objects.
Remember that the closeness is really just similarity that we use our distance function
to grade.

First, let's import the pairwise distance function from the metrics module and create a
dataset to play with:

>>> from sklearn.metrics import pairwise
>>> from sklearn.datasets import make blobs
>>> points, labels = make blobs()

This simplest way to check the distances is pairwise distances:
>>> distances = pairwise.pairwise distances(points)

distances is an N x N matrix with Os along the diagonals. In the simplest case, let's see the
distances between each point and the first point:

>>> np.diag(distances) [:5]
array([0., ©0., 0., O0., 0.1)

102

Chapter 3

Now we can look for points that are closest to the first point in points:

>>> distances[0] [:5]
array([0.,

11.82643041,1.23751545,

1.17612135,

14.619278741])

Ranking the points by closeness is very easy with np.argsort:

>>> ranks =
>>> ranks[:5]
array([0, 27,

98, 23,

np.argsort (distances[0])

671)

The great thing about argsort is that now we can sort our points matrix to get the

actual points:

>>> points[ranks] [:5]

array([[8.96147382, -1.

[8.75417014, -1.
[8.78902665, -2.
[8.59694131, -2.
[8.70949958, -2.

90405304],
76289919],
27859923],
100576671,
30040991]11)

It's useful to see what the closest points look like. Other than some assurances, this works

as intended:
n Visualizing the Closest Points
%, e+sg All Points
9 esg Closest
n
.: ‘. -t -
.
ik - .. -
b
.ot -
E '.0 .0
e & * -
L]
- : .
5 - . g
% * . :' o
L]
LA =i LA
e .
L] -
* . sl
3 L™ - L L
- L]
2 . .
1
—10 ~=B 5 10 5

Building Models with Distance Metrics

Given some distance function, each point is measured in a pairwise function. The default is
the Euclidian distance, which is as follows:

d(x,y): Z(xl. _yi)2

i

Verbally, this takes the difference between each component of the two vectors, squares the
difference, sums them, and then takes the square root. This looks very familiar as we used
something very similar to this when looking at the mean-squared error. If we take the square
root, we have the same thing. In fact, a metric used often is root-mean-square deviation
(RMSE), which is just the applied distance function.

In Python, this looks like the following:

>>> def euclid distances(x, y):

return np.power (np.power (x - y, 2).sum(), .5)
>>> euclid distances(points[0], points[1])
11.826430406213145

There are several other functions available in scikit-learn, but scikit-learn will also use
distance functions of SciPy. At the time of writing this book, the scikit-learn distance
functions support sparse matrixes. Check out the SciPy documentation for more
information on the distance functions:

» cityblock

» cosine

» euclidean

» 11

» 12

» manhattan

We can now solve problems. For example, if we were standing on a grid at the origin, and the
lines were the streets, how far will we have to travel to get to point (5, 5)?.

>>> pairwise.pairwise distances([[0, 0], [5, 5]]1, metric='cityblock"') [0]
array([0., 10.1)

104

Chapter 3

There's more...

Using pairwise distances, we can find the similarity between bit vectors. It's a matter of finding
the hamming distance, which is defined as follows:

Z [xi #Y
1

Use the following command:

>>> X = np.random.binomial(l, .5, size=(2, 4)) .astype(np.bool)
>>> X
array([[False, True, False, False]l,

[False, False, False, Truell, dtype=bool)

>>> pairwise.pairwise distances (X, metric='hamming')
array ([[0. , 0.25],
[0.25, 0. 11)

Probabilistic clustering with Gaussian

Mixture Models

In KMeans, we assume that the variance of the clusters is equal. This leads to a subdivision
of space that determines how the clusters are assigned; but, what about a situation where the
variances are not equal and each cluster point has some probabilistic association with it?

Getting ready

There's a more probabilistic way of looking at KMeans clustering. Hard KMeans clustering
is the same as applying a Gaussian Mixture Model with a covariance matrix, S, which can
be factored to the error times of the identity matrix. This is the same covariance structure
for each cluster. It leads to spherical clusters.

However, if we allow S to vary, a GMM can be estimated and used for prediction. We'll look
at how this works in a univariate sense, and then expand to more dimensions.

Building Models with Distance Metrics

How to do it...

First, we need to create some data. For example, let's simulate heights of both women and
men. We'll use this example throughout this recipe. It's a simple example, but hopefully, will
illustrate what we're trying to accomplish in an N dimensional space, which is a little easier
to visualize:

>>> import numpy as np
>>> N = 1000

72
66

>>> in m
>>> in w

>>> s m = 2

>>> S W = s m

>>> m = np.random.normal (in m, s m, N)
>>> w = np.random.normal (in w, s w, N)
>>> from matplotlib import pyplot as plt
>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.set title("Histogram of Heights")
>>> ax.hist(m, alpha=.5, label="Men");
>>> ax.hist(w, alpha=.5, label="Women");
>>> ax.legend ()

The following is the output:

300 . Hlstlogram of HEIIghtE

EE Men
0 Women

106

Chapter 3

Next, we might be interested in subsampling the group, fitting the distribution, and then
predicting the remaining groups:

>>> random sample = np.random.choice([True, False], size=m.size)
>>> m_test = m[random sample]
>>> m_train = m[~random sample]

>>> w_test = w[random sample]
>>> w_train = w[~random sample]

Now we need to get the empirical distribution of the heights of both men and women based
on the training set:

>>> from scipy import stats
>>> m pdf = stats.norm(m train.mean(), m train.std())
>>> w_pdf = stats.norm(w_train.mean(), w_train.std())

For the test set, we will calculate based on the likelihood that the data point was generated
from either distribution, and the most likely distribution will get the appropriate label assigned.
We will, of course, look at how accurate we were:

>>> m pdf.pdf (m[0])
0.043532673457165431

>>> w_pdf.pdf (m[0])
9.2341848872766183e-07

Notice the difference in likelihoods.

Assume that we guess situations when the men's probability is higher, but we overwrite them
if the women's probability is higher:

>>> guesses m = np.ones_like(m test)
>>> guesses m[m pdf.pdf(m test) < w pdf.pdf(m test)] = 0

Obviously, the question is how accurate we are. Since guesses_m will be 1 if we are correct,
and O if we aren't, we take the mean of the vector and get the accuracy:

>>> guesses _m.mean ()
0.93775100401606426

Not too bad! Now, to see how well we did with for the women's group, use the
following commands:

>>> guesses w = np.ones_like(w_test)

>>> guesses w[m pdf.pdf(w test) > w pdf.pdf(w test)] = 0
>>> guesses_w.mean ()

0.93172690763052213

Building Models with Distance Metrics

Let's allow the variance to differ between groups. First, create some new data:

1
4

>>> s m

>>> s W

>>> m = np.random.normal (in m, s m, N)
>>> w = np.random.normal (in w, s w, N)

Then, create a training set:

>>> m_test = m[random sample]
>>> m_train = m[~random sample]

>>> w_test = w[random sample]
>>> w_train = w[~random sample]

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.set title("Histogram of Heights")

>>> ax.hist(m train, alpha=.5, label="Men");
>>> ax.hist(w_train, alpha=.5, label="Women");
>>> ax.legend ()

Let's take a look at the difference in variances between the men and women:

Histogram of Heights

Men
120 Women

108

Now we can create the same PDFs:

>>> m_pdf

>>> w_pdf

stats.norm(m train.mean(), m train.std())

stats.norm(w_train.mean(), w_train.std())

The following is the output:

Chapter 3

LERAEE
5

PDF of Heights

1 55 60 65 0

Men
Women

a0

You can imagine this in a multidimensional space:

>>> class A = np.random.normal(0, 1, size=(100, 2))

>>> class B = np.random.normal(4, 1.5, size=(100, 2))

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.scatter(class A[:,0], class A[:,1], label='A', c='r')

>>> ax.scatter(class B[:,0], class B[:,1], label='B')

Building Models with Distance Metrics

The following is the output:

Random 2D Normal Draws

3 .
- PR
.
i - ‘." :“‘: L
. » .
s o.o:'\.*r »
2 : o .
. S
e« v " 1% o
* . *2 .
5 L] . & * b
i - **

L] L] -
* % Eﬁ’ ™
-
. T S
— »
* L)
)
— = 0 2 " i 8

Okay, so now that we've looked at how we can classify points based on distribution, let's look
at how we can do this in scikit-learn:

>>> from sklearn.mixture import GMM

>>> gmm = GMM(n components=2)

>>> X = np.row_stack((class A, class B))

>>> y = np.hstack((np.ones(100), np.zeros(100)))

Since we're good little data scientists, we'll create a training set:

>>> train = np.random.choice([True, False], 200)

>>> gmm.fit (X[train])

GMM (covariance type='diag', init params='wmc', min covar=0.001,
n_components=2, n_init=1, n iter=100, params='wmc',
random state=None, thresh=0.01)

Chapter 3

Fitting and predicting is done in the same way as fitting is done for many of the other objects
in scikit-learn:

>>> gmm.fit (X[train])
>>> gmm.predict (X[train]) [:5]
array ([0, 0, 0, 0, 0])

There are other methods worth looking at now that the model has been fit.

For example, using score_samples, we can actually get the per-sample likelihood for
each label.

Using KMeans for outlier detection

In this chapter, we'll look at both the debate and mechanics of KMeans for outlier detection.
It can be useful to isolate some types of errors, but care should be taken when using it.

Getting ready

In this recipe, we'll use KMeans to do outlier detections on a cluster of points. It's important
to note that there are many "camps" when it comes to outliers and outlier detection. On one
hand, we're potentially removing points that were generated by the data-generating process
by removing outliers. On the other hand, outliers can be due to a measurement error or some
other outside factor.

This is the most credence we'll give to the debate; the rest of this recipe is about finding outliers;
we'll work under the assumption that our choice to remove outliers is justified.

The act of outlier detection is a matter of finding the centroids of the clusters, and then
identifying points that are potential outliers by their distances from the centroid.

How to do it...

First, we'll generate a single blob of 100 points, and then we'll identify the 5 points that are
furthest from the centroid. These are the potential outliers:

>>> from sklearn.datasets import make blobs
>>> X, labels = make blobs (100, centers=1)
>>> import numpy as np

It's important that the KMeans cluster has a single center. This idea is similar to a one-class
SVM that is used for outlier detection:

>>> from sklearn.cluster import KMeans
>>> kmeans = KMeans(n_clusters=1)
>>> kmeans.fit (X)

Building Models with Distance Metrics

Now, let's look at the plot. For those playing along at home, try to guess which points will be
identified as one of the five outliers:

>>> £, ax = plt.subplots(figsize=(7, 5))

>>> ax.set title("Blob")

>>> ax.scatter(X[:, 0], X[:, 1], label='Points')

>>> ax.scatter (kmeans.cluster centers [:, 0],
kmeans.cluster centers [:, 1], label='Centroid’,
color='r")

>>> ax.legend ()

The following is the output:

i Blob
- sey Points
; sy Centroid
» .
.
10 * - . * L]
R . .
.ot b . -
- > *
r . ;“ L] % “‘ .
. . " o’ “3‘ . * 'o
»
L * * .« * ., L
a .. e Lt . .
. ™ .
. - . ¢]
Lot r
& . " .
. .
. .
* L
l:
-7 — -5 -4 -3 -2 -1

Now, let's identify the five closest points:

>>> distances = kmeans.transform(X)

argsort returns an array of indexes which will sort the array in
ascending order

so we reverse it via [::-1] and take the top five with [:5]
>>> sorted idx = np.argsort(distances.ravel()) [::-1][:5]

Chapter 3

Now, let's see which plots are the farthest away:

>>> £, ax = plt.subplots(figsize=(7, 5))

>>> ax.set title("Single Cluster")

>>> ax.scatter(X[:, 0], X[:, 1], label='Points')

>>> ax.scatter (kmeans.cluster centers [:, 0],
kmeans.cluster centers [:, 1],
label='Centroid', color='r')

>>> ax.scatter(X[sorted idx] [:, 0], X[sorted idx][:, 1],
label='Extreme Value', edgecolors='g',
facecolors="'none', s=100)

>>> ax.legend(loc='best')

The following is the output:

i Single Cluster
e®y Points
12 ess Cenftroid
* (1 Extreme Value
11
* .
10 e * 4 0* -
S . .
. ® - - . .
] L L] .#“ - L™ - *
P . * .%o s 0 L]
. L - .o . ﬂ, < .
LR L -
a - “. 4 -
. - . ® o
L
B e
™ L] -
- ™
L] . ™
o
—7 : -5 —4 - - —1

It's easy to remove these points if we like:

>>> new X = np.delete(X, sorted idx, axis=0)

Building Models with Distance Metrics
Also, the centroid clearly changes with the removal of these points:

>>> new_kmeans = KMeans(n_clusters=1)
>>> new_kmeans.fit (new_X)

Let's visualize the difference between the old and new centroids:

>>> £, ax = plt.subplots(figsize=(7, 5))

>>> ax.set_title("Extreme Values Removed")

>>> ax.scatter(new X[:, 0], new X[:, 1], label='Pruned Points')

>>> ax.scatter (kmeans.cluster centers [:, 0],
kmeans.cluster centers [:, 1], label='0ld Centroid',
color='r', s=80, alpha=.5)

>>> ax.scatter (new kmeans.cluster centers [:, 0],
new kmeans.cluster centers [:, 1], label='New Centroid’'
color='m', s=80, alpha=.5)

>>> ax.legend(loc='best')

The following is the output:

5 Extreme Values Removed
e*s Pruned Points
. o8g 0Old Centroid
10 PR @iy New Centroid
L . - .
4 . *® " AL . @ 2 "
L]
] . ‘*oo‘ ., " L
.] . ¢ _Lat 0 . .
s S -
" - L - A
g . e ., . ® .
L .
-
* . - o L]
L] -
-
5 . .
™ L
L y *
-
(i
—G.5 -G -5.5 = —d.5 = ¥ —3.5 —3.0 .5 =

Clearly, the centroid hasn't moved much, which is to be expected when only removing the
five most extreme values. This process can be repeated until we're satisfied that the data
is representative of the process.

Chapter 3

As we've already seen, there is a fundamental connection between the Gaussian distribution
and the KMeans clustering. Let's create an empirical Gaussian based off the centroid and
sample covariance matrix and look at the probability of each point—theoretically, the five
points we removed. This just shows that we have in fact removed the values with the least
likelihood. This idea between distances and likelihoods is very important, and will come
around quite often in your machine learning training.

Use the following command to create an empirical Gaussian:

>>> from scipy import stats

>>> emp dist = stats.multivariate normal (
kmeans.cluster centers .ravel())

>>> lowest prob idx = np.argsort(emp dist.pdf (X)) [:5]

>>> np.all(X[sorted idx] == X[lowest prob idx])

Using k-NN for regression

Regression is covered elsewhere in the book, but we might also want to run a regression
on "pockets" of the feature space. We can think that our dataset is subject to several data
processes. If this is true, only training on similar data points is a good idea.

Getting ready

Our old friend, regression, can be used in the context of clustering. Regression is obviously a
supervised technique, so we'll use k-Nearest Neighbors (k-NN) clustering rather than KMeans.

For the k-NN regression, we'll use the K closest points in the feature space to build the
regression rather than using the entire space as in regular regression.

How to do it...

For this recipe, we'll use the iris dataset. If we want to predict something such as the petal
width for each flower, clustering by iris species can potentially give us better results. The k-NN
regression won't cluster by the species, but we'll work under the assumption that the Xs will
be close for the same species, or in this case, the petal length.

Building Models with Distance Metrics
We'll use the iris dataset for this recipe:

>>> from sklearn import datasets

>>> iris = datasets.load iris()

>>> iris.feature names

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)',
'petal width (cm) ']

We'll try to predict the petal length based on the sepal length and width. We'll also fit a regular
linear regression to see how well the k-NN regression does in comparison:

>>> from sklearn.linear model import LinearRegression

>>> 1lr = LinearRegression()

>>> 1lr.fit(X, y)

>>> print "The MSE is: {:.2}".format (np.power(y - lr.predict(X),
2) .mean())

The MSE is: 0.15

Now, for the k-NN regression, use the following code:

>>> from sklearn.neighbors import KNeighborsRegressor

>>> knnr = KNeighborsRegressor (n neighbors=10)

>>> knnr.fit (X, y)

>>> print "The MSE is: {:.2}".format (np.power(y - knnr.predict(X),
2) .mean())

The MSE is: 0.069

Chapter 3

Let's look at what the k-NN regression does when we tell it to use the closest 10 points
for regression:

>>> f, ax = plt.subplots(nrows=2, figsize=(7, 10))

>>> ax[0] .set title("Predictions")

>>> ax[0] .scatter(X[:, 0], X[:, 1], s=lr.predict(X)*80, label='LR
Predictions', color='c', edgecolors='black!')

>>> ax[1l] .scatter(X[:, 0], X[:, 1], s=knnr.predict(X)*80, label='k-NN

Predictions', color='m', edgecolors='black!')

>>> ax[0] .legend()
>>> ax[1l] .legend()

The following is the output:

. Predictions
@ LR Predictions
a
| . °
’ £y &0
- '= L 1] "
3.5 A §§= .'l @
- s o []
TI %, o \
e O
g0 ® @
e ® od®
20 @

.EU 15 50 55 6.0 6.5 70 75 8.0 8.5

@@ kNN Predictions

40 45 5.0 5.5 6.0 6.5 7.0 7.3 8.0 85

Building Models with Distance Metrics

It might be completely clear that the predictions are close for the most part, but let's look at
the predictions for the Setosa species as compared to the actuals:

>>> setosa_ idx = np.where(iris.target names=='setosa')
>>> setosa mask = iris.target == setosa_idx[0]

>>> yl[setosa mask] [:5]

array([0.2, 0.2, 0.2, 0.2, 0.2])

>>> knnr.predict (X) [setosa mask] [:5]
array([0.28, 0.17, 0.21, 0.2 , 0.31])

>>> lr.predict(X) [setosa _mask] [:5]
array ([0.44636645, 0.53893889, 0.29846368, 0.27338255, 0.32612885])

Looking at the plots again, the Setosa species (upper-left cluster) is largely overestimated by
linear regression, and k-NN is fairly close to the actual values.

The k-NN regression is very simply calculated taking the average of the k closest point to the
point being tested.

Let's manually predict a single point:
>>> example point = X[0]
Now, we need to get the 10 closest points to our example point:

>>> from sklearn.metrics import pairwise

>>> distances to_example = pairwise.pairwise distances (X) [0]

>>> ten closest points = X[np.argsort(distances to example)] [:10]
>>> ten closest_y = ylnp.argsort(distances to example)] [:10]

>>> ten closest_y.mean()
0.28000

We can see that this is very close to what was expected.

Classifying Data
with scikit-learn

This chapter will cover the following topics:

» Doing basic classifications with Decision Trees

» Tuning a Decision Tree model

» Using many Decisions Trees - random forests

» Tuning a random forest model

» Classifying data with support vector machines

» Generalizing with multiclass classification

» Using LDA for classification

» Working with QDA - a nonlinear LDA

» Using Stochastic Gradient Descent for classification
» Classifying documents with Naive Bayes

» Label propagation with semi-supervised learning

Introduction

Classification can be very important in a lot of contexts. For example, if we want to automate
some decision-making process, we can utilize classification. In cases where we need to
investigate a fraud, there are so many transactions that it is impractical for a person to
check all of them. Therefore, we can automate such decisions with classification.

Classifying Data with scikit-learn

Doing basic classifications with Decision

Trees

In this recipe, we will perform basic classifications using Decision Trees. These are very nice
models because they are easily understandable, and once trained in, scoring is very simple.
Often, SQL statements can be used, which means that the outcome can be used by a lot

of people.

Getting ready

In this recipe, we'll look at Decision Trees. | like to think of Decision Trees as the base class
from which a large number of other classification methods are derived. It's a pretty simple
idea that works well in a bunch of situations.

First, let's get some classification data that we can practice on:

>>> from sklearn import datasets
>>> X, y = datasets.make classification(n samples=1000, n features=3,
n_redundant=0)

How to do it...

Working with Decision Trees is easy. We first need to import the object, and then fit the model:

>>> from sklearn.tree import DecisionTreeClassifier

>>> dt = DecisionTreeClassifier()

>>> dt.fit (X, y)

DecisionTreeClassifier (compute importances=None, criterion='gini',
max depth=None, max features=None,
max leaf nodes=None, min density=None,
min samples leaf=1, min samples split=2,
random state=None, splitter='best')

>>> preds = dt.predict (X)
>>> (y == preds) .mean()
1.0

As you can see, we guessed it right. Clearly, this was just a dry run, now let's investigate some
of our options.

120

Chapter 4

First, if you look at the dt object, it has several keyword arguments that determine how the
object will behave. How we choose the object is important, so we'll look at the object's effects
in detail.

The first detail we'll look at is max_depth. This is an important parameter. It determines how
many branches are allowed. This is important because a Decision Tree can have a hard time
generalizing out-of-sampled data with some sort of regularization. Later, we'll see how we

can use several shallow Decision Trees to make a better learner. Let's create a more complex
dataset and see what happens when we allow different max_depth. We'll use this dataset for
the rest of the recipe:

>>> n_features=200
>>> X, y = datasets.make classification(750, n_ features,
n_informative=5)
>>> import numpy as np
>>> training = np.random.choice([True, Falsel, p=[.75, .25],
size=len(y))

>>> accuracies = []

>>> for x in np.arange(l, n features+l):
>>> dt = DecisionTreeClassifier (max depth=x)

>>> dt.fit(X[training], yl[training])

>>> preds = dt.predict(X[~training])

>>> accuracies.append((preds == y[~training]) .mean())

>>> import matplotlib.pyplot as plt

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.plot(range(l, n features+l), accuracies, color='k')
>>> ax.set title("Decision Tree Accuracy")

>>> ax.set_ylabel ("% Correct™")
>>> ax.set_xlabel ("Max Depth")

Classifying Data with scikit-learn

The following is the output:

Decision Tree Accuracy

% Correct
=
b |
[=+]

50 100 150 200
Max Depth

We can see that we actually get pretty accurate at a low max depth. Let's take a closer look at
the accuracy at low levels, say the first 15:

>>> N = 15
>>> import matplotlib.pyplot as plt
>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.plot(range(l, n features+l) [:N], accuracies[:N], color='k'")
>>> ax.set title("Decision Tree Accuracy")

>>> ax.set_ylabel ("% Correct")
>>> ax.set xlabel ("Max Depth")

122

Chapter 4

The following is the output:

084 . . Deglsmn Trt?e Accurlacy . .

082} 1

0.80 1

078 1

% Correct

076 | 1

074 | 1

0.72 " " " . . " "
0

Max Depth

There's the spike we saw earlier; it's quite amazing to see the quick drop though. It's more
likely that Max Depth of 1 through 3 is fairly equivalent. Decision Trees are quite good at
separating rules, but they need to be reigned in.

We'll look at the compute importances parameter here. It actually has a bit of a broader
meaning for random forests, but we'll get acquainted with it. It's also worth noting that if
you're using Version 0.16 or earlier, you will get this for free:

>>> dt _ci = DecisionTreeClassifier (compute importances=True)
>>> dt.fit (X, y)

#plot the importances
>>> nel0 = dt.feature importances != 0

>>> y comp = dt.feature importances [ne0]
>>> x_comp = np.arange (len(dt.feature importances)) [ne0]

>>> import matplotlib.pyplot as plt

>>> £, ax = plt.subplots(figsize=(7, 5))
>>> ax.bar(x _comp, y comp)

Classifying Data with scikit-learn

The following is the output:

0.40

035}

030}

025

020

015}

0.05 |

| R PR dlus 1 I.I-u || |I
0

Please note that you may get an error letting you know you'll
s no longer need to explicitly set compute importances.

As we can see, one of the features is by far the most important; several other features will
follow up.

In the simplest sense, we construct Decision Trees all the time. When thinking through
situations and assigning probabilities to outcomes, we construct Decision Trees. Our rules
are much more complex and involve a lot of context, but with Decision Trees, all we care
about is the difference between outcomes, given that some information is already known
about a feature.

Now, let's discuss the differences between entropy and Gini impurity.

Entropy is more than just the entropy value at any given variable; it states what the change in
entropy is if we know an element's value. This is called Information Gain (IG); mathematically
it looks like the following:

IG (Data, Known Features) = H (Data) — H (Data[Known Features)

For Gini impurity, we care about how likely one of the data points will be mislabeled given the
new information.

124

Chapter 4

Both entropy and Gini impurity have pros and cons; this said, if you see major differences
in the working of entropy and Gini impurity, it will probably be a good idea to re-examine
your assumptions.

Tuning a Decision Tree model

If we use just the basic implementation of a Decision Tree, it will probably not fit very well.
Therefore, we need to tweak the parameters in order to get a good fit. This is very easy and
won't require much effort.

Getting ready

In this recipe, we will take an in-depth look at what it takes to tune a Decision Tree classifier.
There are several options, and in the previous recipe, we only looked at one of these options.

We'll fit a basic model and actually look at what the Decision Tree looks like. Then,
we'll re-examine after each decision and point out how various changes have influenced
the structure.

If you want to follow along in this recipe, you'll need to install pydot.

How to do it...

Decision Trees have a lot more "knobs" when compared to most other algorithms, because of
which it's easier to see what happens when we turn the knobs:

>>> from sklearn import datasets
>>> X, y = datasets.make classification(1000, 20, n_informative=3)

>>> from sklearn.tree import DecisionTreeClassifier
>>> dt = DecisionTreeClassifier ()
>>> dt.fit (X, y)

Ok, so now that we have a basic classifier fit, we can view it quite simply:

>>> from StringIO import StringIO
>>> from sklearn import tree
>>> import pydot

>>> str_buffer = StringIO()

>>> tree.export graphviz(dt, out file=str buffer)

>>> graph = pydot.graph from dot data(str buffer.getvalue())
>>> graph.write("myfile.jpg")

Classifying Data with scikit-learn

The graph is almost certainly illegible, but hopefully this illustrates the complex trees that can
be generated as a result of using an unoptimized decision tree:

126

Chapter 4

Wow! This is a very complex tree. It will most likely overfit the data. First, let's reduce the max
depth value:

>>> dt = DecisionTreeClassifier (max depth=5)
>>> dt.fit (X, y);

As an aside, if you're wondering why the semicolon, the repr by default, is seen, it is actually
the model for a Decision Tree. For example, the £it function actually returns the Decision
Tree object that allows chaining:

>>> dt = DecisionTreeClassifier (max depth=5).fit (X, y)
Now, let's get back to the regularly scheduled program.
As we will plot this a few times, let's create a function:

>>> def plot_ dt(model, filename):
str buffer = StringIO()
>>> tree.export graphviz(model, out file=str buffer)

>>> graph = pydot.graph from dot data(str buffer.getvalue())
>>> graph.write jpg(filename)

>>> plot dt(dt, "myfile.png")

Classifying Data with scikit-learn

The following is the graph that will be generated

e 11=anpea| [Tz pz]=anpea
= sojdures o = sopdues

0SLE0= s 0zP1'0=1ud

['88¢ '8] =anea
96 = sojdures 2 = sordues
9650°0 = i3 00050 = i3

[1r 1 1=anes 1 1]1=onp
21 = sojdues ¢ = sadures

Ster0= s 00000 = tur3

0 ¢ 1= onea

['S 11]=2anpEA ['0€ '8]=2onpea
91 = sojdures 8¢ = sodures

L6TF 0= s $TEE0 = Wid

0 Tizl=onpea
212 = sojdurs

ST po1 | =anp
6t = sojdues 6.1 = sojduies 01 = sajdures
TeSp0 = 3 98C 10 = 3 0081°0 = I3 0000°0 = W3

[L1 "ze = anpea [T '61=onpa

N/ ~_ | ~

\ 7

<1 = sojdures [0 s 1=onpea [0 '11=onpea $6¢ = sopdures 0 = sapdures

b = sopdums

THTTTT6E 0 = < = sapdws 1 = sapdwes £90Z6TPE0TPO'0 = tut SLLLLLLLLLLTO=1ut 10PZSTHO195t°0 = tuid
9p91°0-=> [STIX 000070 = w13 00000 = w15 9126'T-=> [TIX €680°1 => [91]X €819°0=>[SIX
0 = sordures 66¢€ = sajdures [0 "zz]=onpa ['T "0]=onpeA 8 = sajdues
S6t°0 = 1w €L9LOE06988P0'0 = WIF Tz = sopdwes 1 = sajdures TSIE17998861"0 = WIs
98950 => (111X TseT=> (11X 00000 = I3 00000 = I3 10p€°0-=> [91X
611 = sajdues ¢z = sojdue: g6 = sojdues ['+Z "0 1=oneA

9TOPEOSSLIER(0 = IS

LLIPE6S6LE980°0 = uIs
9£Tr T => [P11X

9865°1 => [¥11X

TE690TTE09ET 0 = I3
09LT0-=> (11X

7 = sojdwes
00000 = w5

!

I~

Trb = sodures
PEIOSHITERYT0 = 1uIS
P9F91-=> [811X

¢ = sopdurs
LIT6Y6TETLRT 0= il
9LS0T-=> [p1]X

0001 = sajdures
T66667 0=

wig

S9LO'0-=> [€1]X

NS [_~

322 = sojduies 22z = sodues
8T6910S0E14T 0 = W3 SELSSLTPRIOI00'0 =
L6T1'1-=> [€11X L1951 =>[611X

g

0St = sajdues
TITHTTT6SE1°0 = id
09€0'T =>[$11X

128

Chapter 4

This is a much simpler tree. Let's look at what happens when we use entropy as the
splitting criteria:

>>> dt = DecisionTreeClassifier (criterion='entropy',

max depth=5) .fit (X, y)
>>> plot(dt, "entropy.png")

The following is the graph that can be generated:

Classifying Data with scikit-learn

It's good to see that the first two splits are the same features, and the first few after this are
interspersed with similar amounts. This is a good sanity check.

Also, note how entropy for the first split is 0.999, but for the first split when using the Gini
impurity is 0.5. This has to do with how different the two measures of the split of a Decision
Tree are. See the following How it works... section for more information. However, if we want
to create a Decision Tree with entropy, we must use the following command:

>>> dt = DecisionTreeClassifier (min samples leaf=10,
criterion='entropy',
max depth=5) .fit (X, y)

Decision Trees, in general, suffer from overfitting. Quite often, left to it's own devices, a
Decision Tree model will overfit, and therefore, we need to think about how best to avoid
overfitting; this is done to avoid complexity. A simple model will more often work better in
practice than not.

We're about to see this very idea in practice. random forests will build on this idea of
simple models.

Using many Decision Trees - random forests

In this recipe, we'll use random forests for classification tasks. random forests are used because
they're very robust to overfitting and perform well in a variety of situations.

Getting ready

We'll explore this more in the How it works... section of this recipe, but random forests

work by constructing a lot of very shallow trees, and then taking a vote of the class that
each tree "voted" for. This idea is very powerful in machine learning. If we recognize that

a simple trained classifier might only be 60 percent accurate, we can train lots of classifiers
that are generally right and can then use the learners together.

How to do it...

The mechanics of training a random forest classifier is very easy with scikit-learn. In this section,
we'll do the following;:

1. Create a sample dataset to practice with.
2. Train a basic random forest object.
3. Take a look at some of the attributes of a trained object.

130

Chapter 4

In the next recipe, we'll look at how to tune the random forest classifier. Let's start by
importing datasets:

>>> from sklearn import datasets

Then, create the dataset with 1,000 samples:

>>> X, y = datasets.make classification(1000)

Now that we have the data, we can create a classifier object and train it:

>>> from sklearn.ensemble import RandomForestClassifier
>>> rf = RandomForestClassifier ()

>>> rf.fit (X, y)

The first thing we want to do is see how well we fit the training data. We can use the predict
method for these projections:

>>> print "Accuracy:\t", (y == rf.predict(X)) .mean()
Accuracy: 0.993

>>> print "Total Correct:\t", (y == rf.predict (X)) .sum()
Total Correct: 993

Now, let's look at some attributes and methods.

First, we'll ook at some of the useful attributes; in this case, since we used defaults, they'll be
the object defaults:

» rf.criterion: Thisis the criterion for how the splits are determined. The default
is gini.

» rf.bootstrap: A Boolean that indicates whether we used bootstrap samples when
training random forest.

» rf.n jobs: The number of jobs to train and predict. If you want to use all the
processors, set this to -1. Keep in mind that if your dataset isn't very big, it often
leads to more overhead in using multiple jobs due to the data having to be serialized
and moved in between processes.

» rf.max features: This denotes the number of features to consider when making
the best split. This will come in handy during the tuning process.

» rf.compute importances: This helps us decide whether to compute the
importance of the features. See the There's more... section of this recipe for
information on how to use this.

» rf.max_ depth: This denotes how deep each tree can go.

Classifying Data with scikit-learn

There are more attributes to note; check out the official documentation for more details.

The predict method isn't the only useful one. We can also get the probabilities of each
class from individual samples. This can be a useful feature to understand the uncertainty
in each prediction. For instance, we can predict the probabilities of each sample for the
various classes:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

probs = rf.predict proba (X)
import pandas as pd

probs df = pd.DataFrame (probs, columns=['0', '1'])
probs_df['was_correct'] = rf.predict(X) ==y

import matplotlib.pyplot as plt

f, ax = plt.subplots(figsize=(7, 5))

probs df.groupby('0') .was_correct.mean() .plot (kind='bar', ax=ax)
ax.set title("Accuracy at 0 class probability")

ax.set_ylabel ("% Correct")
ax.set_xlabel ("% trees for 0")

The following is the output:

132

10 Accuracy at 0 class probability

08

06

% Correct

o4

0z

0.0

[Tyl
(=1

% trees for 0

=t L ==
=1 (=1 (=]

08
09
10

(=] L] ™~ an]
=] = = =

Chapter 4

Random forest works by using a predetermined number of weak Decision Trees and by training
each one of these trees on a subset of data. This is critical in avoiding overfitting. This is also the
reason for the boot strap parameter. We have each tree trained with the following:

» The class with the most votes
» The output, if we use regression trees

There are, of course, performance considerations, which we'll cover in the next recipe, but for
the purposes of understanding how random forests work, we train a bunch of average trees
and get a fairly good classifier as a result.

There's more...

Feature importance is a good by-product of random forests. This often helps to answer the
question: If we have 10 features, which features are most important in determining the true
class of the data point? The real-world applications are hopefully easy to see. For example,
if a transaction is fraudulent, we probably want to know if there are certain signals that can
be used to figure out a transaction's class more quickly.

If we want to calculate the feature importance, we need to state it when we create the object.
If you use scikit-learn 0.15, you might get a warning that it is not required; in Version 0.16,
the warning will be removed:
>>> rf = RandomForestClassifier (compute importances=True)
>>> rf.fit (X, y)
>>> f, ax = plt.subplots(figsize=(7, 5))
>>> ax.bar(range(len(rf.feature importances)),
rf.feature importances)

>>> ax.set title("Feature Importances")

Classifying Data with scikit-learn

The following is the output:

06 Feature Importances

0.3

0.4

03

0.2

0l

0.0
0

As we can see, certain features are much more important than others when determining if the
outcome was of class O or class 1.

Tuning a random forest model

In the previous recipe, we reviewed how to use the random forest classifier. In this recipe,
we'll walk through how to tune its performance by tuning its parameters.

Getting ready

In order to tune a random forest model, we'll need to first create a dataset that's a little
more difficult to predict. Then, we'll alter the parameters and do some preprocessing to
fit the dataset better.

So, let's create the dataset first:

>>> from sklearn import datasets

>>> X, y = datasets.make classification(n samples=10000,
n features=20,
n_informative=15,
flip y=.5, weights=[.2, .8])

Chapter 4

How to do it...

In this recipe, we will do the following:

1. Create a training and test set. We won't just sail through this recipe like we did in
the previous recipe. It's an empty deed to tune a model without comparing it to a
training set.

2. Fita baseline random forest to evaluate how well we do with a naive algorithm.
3. Alter some parameters in a systematic way, and then observe what happens to the fit.

Ok, start an interpreter and import NumPy:

>>> import numpy as np
>>> training = np.random.choice([True, False]l, p=[.8, .2],
size=y.shape)

>>> from sklearn.ensemble import RandomForestClassifier

>>> rf = RandomForestClassifier ()
>>> rf.fit(X[training], yltraining])

>>> preds = rf.predict(X[~training])

>>> print "Accuracy:\t", (preds == yl[~training]) .mean ()
Accuracy: 0.652239557121

I'm going to cheat a little bit and introduce one of the model evaluation metrics we will talk
about later in the book. Accuracy is a good first metric, but using a confusion matrix will help
us understand what's going on.

Let's iterate through the recommended choices for max_features and see what it does to
the fit. We'll also iterate through a couple of floats, which are the fraction of the features that
will be used. Use the following commands to do so:

>>> from sklearn.metrics import confusion matrix

>>> max feature params = ['auto',6 'sqgrt', 'log2', .01, .5, .99]

{}

>>> confusion matrixes

>>> for max feature in max feature params:

rf = RandomForestClassifier (max features=max feature)

Classifying Data with scikit-learn

>>>

>>>

rf.fit (X[training], yltraining])
confusion matrixes[max feature] = confusion matrix(y[~trainingl)

rf.predict (X[~training])) .ravel()

Since | used the ravel method, our 2D confusion matrices are now 1D.

Now, import pandas and look at the confusion matrix we just created:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

136

import pandas as pd

confusion df = pd.DataFrame(confusion matrixes)
import itertools

from matplotlib import pyplot as plt

£, ax = plt.subplots(figsize=(7, 5))

confusion df.plot(kind='bar', ax=ax)

ax.legend(loc='best')

ax.set title("Guessed vs Correct (i, j) where i is the guess and j is

the actual.")

ax.grid()

ax.set xticklabels([str((i, j)) for i, j in
list (itertools.product(range(2), range(2)))]):;
ax.set xlabel ("Guessed vs Correct")

ax.set ylabel ("Correct")

Chapter 4

The following is the output:

1000 Guessed vs Correct (i, J) where i is the guess and | is the actual.
I 0.01
I 05
00 || M 0.99]
N auto
I log?
600 H @ sgrt 1
4
400 | .
200 |]
0
=) = =) =
=3 =3 = =
Guessed vs Correct

While we didn't see any real difference in performance, this is a fairly simple process to go
through for your own projects. Let's try it on the choice of n_estimator instances, but use
raw accuracy. With more than a few options, our graph is going to become very cloudy and
difficult to use.

Since we're using the confusion matrix, we can get the accuracy from the trace of the
confusion matrix divided by the overall sum:

>>> n_estimator params = range(1l, 20)

{}

>>> confusion matrixes

>>> for n estimator in n estimator params:
rf = RandomForestClassifier(n estimators=n estimator)

rf.fit (X[training], yltraining])

confusion matrixes[n estimator] = confusion matrix(y[~trainingl,
rf.predict (X[~training]))

Classifying Data with scikit-learn

here's where we'll update the confusion matrix with the
operation we talked about

>>> accuracy = lambda x: np.trace(x) / np.sum(x, dtype=float)
>>> confusion matrixes[n estimator] =
accuracy (confusion matrixes[n estimator])

>>> accuracy series = pd.Series(confusion matrixes)

>>> import itertools
>>> from matplotlib import pyplot as plt

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> accuracy series.plot(kind='bar', ax=ax, color='k', alpha=.75)
>>> ax.grid()

>>> ax.set title("Accuracy by Number of Estimators")
>>> ax.set ylim(0, 1) # we want the full scope

>>> ax.set ylabel ("Accuracy")

>>> ax.set xlabel ("Number of Estimators")

The following is the output:

1o Accuracy by Number of Estimators
08| .
0 1
by
m
5
¥
04| .
02 H 1
0.0
L e B L B R L O T B ot N s TR S ¥ S = N L« « S 1
e e B B N e e B B
Mumber of Estimators

138

Chapter 4

Notice how accuracy is going up for the most part. There certainly is some randomness
associated with the accuracy, but the graph is up and to the right. In the following How it
works... section, we'll talk about the association between random forest and bootstrap,
and what is generally better.

Bootstrapping is a nice technique to augment the other parts of modeling. The case often used
to introduce bootstrapping is adding standard errors to a median. Here, we just estimate the
outcome over and over and aggregate the estimates up to probabilities.

So, by simply increasing the number estimators, we increase the subsamples that lead to an
overall faster convergence.

We might want to speed up the training process. | alluded to this process earlier, but we can
setn_jobs to the number of trees we want to train at the same time. This should roughly be
the number of cores on the machine:

>>> rf = RandomForestClassifier(n jobs=4, verbose=True)

>>> rf.fit (X, y)

[Parallel(n jobs=4)]: Done 1 out of 4 | elapsed: 0.3s remaining: 0.9s
[Parallel (n jobs=4)]: Done 4 out of 4 | elapsed: 0.3s finished

This will also predict in parallel (verbosely):

>>> rf.predict (X)

[Parallel(n jobs=4)]: Done 1 out of 4 | elapsed: 0.0s remaining:
0.0s

[Parallel (n_jobs=4)]: Done 4 out of 4 | elapsed: 0.0s finished

array([1, 1, 0, ..., 1, 1, 11)

Classifying Data with scikit-learn

Classifying data with support vector

machines

Support vector machines (SVM) is one of the techniques we will use that doesn't have
an easy probabilistic interpretation. The idea behind SVMs is that we find the plane that
separates the group of the dataset the "best". Here, separation means that the choice

of the plane maximizes the margin between the closest points on the plane. These points
are called support vectors.

Getting ready

SVM is one of my favorite machine learning algorithms. It was one of the first machine learning
algorithms I learned in school. So, let's get some data and get started:

>>> from sklearn import datasets
>>> X, y = datasets.make classification()

How to do it...

The mechanics of creating a support vector classifier is very simple; there are a few options
available. Therefore, we'll do the following:

1. Create an SVC object and fit it to some fake data.
2. Fitthe SVC object to some example data.
3. Talk a little about the SVC options.

Import support vector classifier (SVC) from the support vector machine module:

>>> from sklearn.svm import SVC
>>> base_svm = SVC()

>>> base_svm.fit (X, y)
Let's look at some of the attributes:

» C:In cases where we don't have a well-separated set, C will scale the error on the
margin. As C gets higher, the penalization for the error becomes larger and the SVM
will try to find a narrow margin even if it misclassifies more points.

» class weight: This denotes how much weight to give to each class in the problem.
This is given as a dictionary where classes are the keys and values are the weights
associated with these classes.

140

Chapter 4

» gamma: This is the gamma parameter for kernels and is supported by rgb, sigmoid,
and ploy.

» kernel: This is the kernel to use; we'll use linear in the following How it works...
section, but rgb is the popular and default choice.

Like we talked about in the Getting ready section, SVM will try to find the plane that best
bifurcates the two classes. Let's look at a simple example with two features and a well-
separated outcome.

First, let's fit the dataset, and then we'll plot what's going on:

>>> X, y = datasets.make blobs(n features=2, centers=2)
>>> from sklearn.svm import LinearSVC

>>> svm = LinearsSvc()

>>> svm.fit (X, y)

Now that we've fit the support vector machine, we'll plot its outcome at each point in the
graph. This will show us the approximate decision boundary:

>>> from itertools import product
>>> from collections import namedtuple

>>> Point = namedtuple('Point', ['x', 'y', 'outcome'])
>>> decision boundary = []

>>> xmin, xmax = np.percentile(X[:, 0], [0, 100])

>>> ymin, ymax np.percentile(X[:, 11, [0, 100])

>>> for xpt, ypt in product (np.linspace(xmin-2.5, xmax+2.5, 20),
np.linspace(ymin-2.5, ymax+2.5, 20)):
p = Point (xpt, ypt, svm.predict ([xpt, yptl))
decision boundary.append (p)

>>> import matplotlib.pyplot as plt

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> import numpy as np

>>> colors = np.array(['r', 'b'])

>>> for xpt, ypt, pt in decision boundary:
ax.scatter (xpt, ypt, color=colors[pt[0]], alpha=.15)
ax.scatter(X[:, 0], X[:, 1], color=colorsl[yl, s=30)
ax.set _ylim(ymin, ymax)
ax.set xlim(xmin, xmax)
ax.set title("A well separated dataset")

Classifying Data with scikit-learn

The following is the output:

A well seperated dataset
[0 i
2 L] 4
L] L]
v n.'--'. ". A %
.
. f: e B
'= L] -
L]
[]
® o ®
L LA]
- L]
L 1 L] L]
. ¢« o%% 20 o a
. .-":'qr 5w
. -~ 1
i I i L I ® . =@ i
-7 -6 -5 -4 -3 -2 -1 0

Let's look at another example, but this time the decision boundary will not be so clear:

>>> X, y =

datasets.make classification(n features=2,

n classes=2,
n _informative=2,
n _redundant=0)

As we can see, this is not a problem that will easily be solved by a linear classification rule.

While we will not use this in practice, let's have a look at the decision boundary. First, let's
retrain the classifier with the new datapoints:

>>> svm. fit (X,
xmin,

ymin, ymax

>>> Xxmax
>>>

>>>

>>> test preds

142

test points

y)
= np.percentile(X[:, 0], [0, 100])
11, [0, 100])

for xx, yy in

= np.percentile(XI[:,
= np.array([[xx, yyl
product (np.linspace (xmin, =xmax),
np.linspace (ymin, ymax))])
= svm.predict(test points)

>>>
>>>
>>>
>>>
>>>

>>>
>>>

import matplotlib.pyplot as plt

f, ax = plt.subplots(figsize=(7, 5))

import numpy as np

colors = np.array(['r', 'b'l)

ax.scatter(test points[:, 0], test points[:, 11,
color=colors[test preds], alpha=.25)

ax.scatter(X[:, 0], XI[:, 1], color=colorsl[yl)

ax.set title("A well separated dataset")

The following is the output:

A well seperated dataset

Chapter 4

As we saw, the decision line isn't perfect, but at the end of the day, this is the best Linear SVM
we will get.

There's more...

While we might not be able to get a better Linear SVM by default, the SVC classifier in scikit-
learn will use the radial basis function. We've seen this function before, but let's take a look

and see what it does to the decision boundaries of the dataset we just fit:

>>>
>>>
>>>
>>>

radial svm = SVC(kernel='rbf')

radial svm.fit (X, y)

xmin, xmax = np.percentile(X[:, 0], [0, 100])
ymin, ymax = np.percentile(X[:, 11, [0, 100])

Classifying Data with scikit-learn

>>> test points = np.array([[xx, yyl for xx, yy in
product (np.linspace (xmin, xmax),
np.linspace (ymin, ymax))])

>>> test preds = radial svm.predict(test points)

>>> import matplotlib.pyplot as plt

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> import numpy as np

>>> colors = np.array(['r', 'b'l)

>>> ax.scatter(test points[:, 0], test points[:, 1],
color=colors[test preds], alpha=.25)

>>> ax.scatter(X[:, 0], X[:, 1], color=colorslyl)

>>> ax.set title("SVM with a radial basis function")

The following is the output:

8 SWM with a radial basis function

20}

=10}

—30 . L
=30 —20 =10 o 10 20 30

As we can see, the decision boundary has been altered. We can even pass in our own radial
basis function, if needed:

>>> def test kernel (X, y):
wnn Tegt kernel that returns the exponentiation of the dot of the
X and y matrices.

Chapter 4

This looks an awful lot like the log hazards if you're familiar with
survival analysis.
nun
return np.exp(np.dot(X, y.T))
>>> test svc = SVC(kernel=test kernel)
>>> test svec.fit(X, y)
SVC(C=1.0, cache size=200, class weight=None, coef0=0.0, degree=3,
gamma=0.0, kernel=<function test kernel at 0x121£fdfb90>,
max iter=-1, probability=False, random state=None,
shrinking=True, tol=0.001, verbose=False)

Generalizing with multiclass classification

In this recipe, we'll look at multiclass classification. Depending on your choice of algorithm,
you either get multiclass classification for free, or you have to define a scheme for comparison.

Getting ready

When working with linear models such as logistic regression, we need to use
OneVsRestClassifier. This scheme will create a classifier for each class.

How to do it...

First, we'll walk through a cursory example of a Decision Tree fitting a multiclass dataset.
Like we discussed earlier, we get multiclass for free with some classifiers, so we'll just fit
the example to prove that it works, and move on.

Second, we'll actually incorporate OneVsRestClassifier into our model:

>>> from sklearn import datasets
>>> X, y = datasets.make classification(n samples=10000, n classes=3,
n_informative=3)

>>> from sklearn.tree import DecisionTreeClassifier
>>> dt = DecisionTreeClassifier()

>>> dt.fit (X, y)

>>> dt.predict (X)

array([1, 1, 0, .., 2, 1, 11)

As you can see, we were able to fit a classifier with minimum effort.

Classifying Data with scikit-learn

Now, let's move on to the case of the multiclass classifier. This will require us to import
OneVsRestClassifier. We'll also import LogisticRegression while we're at it:

>>> from sklearn.multiclass import OneVsRestClassifier
>>> from sklearn.linear model import LogisticRegression

Now, we'll override the LogisticRegression classifier. Also, notice that we can parallelize
this. If we think about how OneVsRestClassifier works, it's just training separate models
and then comparing them. So, we can train the data separately at the same time:

>>> mlr = OneVsRestClassifier (LogisticRegression(), n_jobs=2)
>>> mlr.£fit (X, y)

>>> mlr.predict (X)

array([1, 1, O, ..., 2, 1, 11)

If we want to quickly create our own OneVsRestClassifier, how might we do it?

First, we need to construct a way to iterate through the classes and train a classifier for each
classifier. Then, we need to predict each class first:

>>> import numpy as np

>>> def train one vs rest(y, class label):
y train = (y == class_label) .astype(int)
return y train

>>> classifiers = []
>>> for class i in sorted(np.unique(y)):
1 = LogisticRegression()
y train = train one vs rest(y, class_ i)
1.fit (X, y train)
classifiers.append (1)

Ok, so now that we have a one versus rest scheme set up, all we need to do is evaluate the
data point's likelihood for each classifier. We will then assign the classifier to the data point
with the largest likelihood.

For example, let's predict X [0] :

for classifier in classifiers
>>> print classifier.predict proba(X[0])

[[0.90443776 0.09556224]]
[[0.03701073 0.96298927]1
[[0.98492829 0.01507171]1

146

Chapter 4

As you can see, the second classifier (the one in index 1) has the highest likelihood of being
"positive", therefore we'll assign 1 to this point.

Using LDA for classification

Linear Discriminant Analysis (LDA) attempts to fit a linear combination of features to predict
the outcome variable. LDA is often used as a preprocessing step. We'll walk through both
methods in this recipe.

Getting ready

In this recipe, we will do the following:

1. Grab stock data from Yahoo.

2. Rearrange it in a shape we're comfortable with.

3. Create an LDA object to fit and predict the class labels.

4. Give an example of how to use LDA for dimensionality reduction.

How to do it...

In this example, we will perform an analysis similar to Altman's Z-score. In this paper, Altman
looked at a company's likelihood of defaulting within two years based on several financial
metrics. The following is taken from the Wiki page of Altman's Z-score:

T, = Working Capital / Total Assets. Measures liquid assets in relation to the size
of the company.

T, = Retained Earnings / Total Assets. Measures profitability that reflects the
company's age and earning power.

T, = Earnings Before Interest and Taxes / Total Assets. Measures operating
efficiency apart from tax and leveraging factors. It recognizes operating
earnings as being important to long-term viability.

T, = Market Value of Equity / Book Value of Total Liabilities. Adds market dimension
that can show up security price fluctuation as a possible red flag.

T, = Sales/ Total Assets. Standard measure for total asset turnover (varies greatly
from industry to industry).

Classifying Data with scikit-learn
From Wikipedia:

[1]: Altman, Edward I. (September 1968). ""Financial Ratios, Discriminant Analysis and the
Prediction of Corporate Bankruptcy". Journal of Finance: 189-209.

In this analysis, we'll look at some financial data from Yahoo via pandas. We'll try to predict

if a stock will be higher in exactly 6 months from today, based on the current attribute of the
stock. It's obviously nowhere near as refined as Altman's Z-score. Let's use a basket of auto
stocks:

>>> tickers = ["F", "TM", "GM", "TSLA"]
>>> from pandas.io import data as external data
>>> stock panel = external data.DataReader (tickers, "yahoo")

This data structure is panel from pandas. It's similar to an OLAP cube or a 3D DataFrame.
Let's take a look at the data to get some familiarity with closes since that's what we care
about while comparing:

>>> stock df = stock panel.Close.dropna ()
>>> stock df.plot(figsize=(7, 5))

The following is the output:

s s e S S e S
— F ‘ ‘ : : : ‘ : :
—m | g

0 | i | I I | | i I i |
'LQ\'\- ,105} lg-\;\ Q{L 0«:}, 10*,'1 ’LQ"C’ ’Lgib 10-\,’5 'LQ'XD(,10,_&
?Q-:O \\)f\ 0(." Qe‘o \\)'(\ 0c,"~ QQ:O \\)0 0(:" ?3\0 \\)f\

Date

148

Chapter 4

Ok, so now we need to compare each stock price with its price in 6 months. If it's higher,
we'll code it with 1, and if not, we'll code that with O.

To do this, we'll just shift the dataframe back 180 days and compare:

#this dataframe indicates if the stock was higher in 180 days
>>> classes = (stock df.shift(-180) > stock_df).astype(int)

The next thing we need to do is flatten out the dataset:

>>> X = stock panel.to frame()

>>> classes = classes.unstack()

>>> classes = classes.swaplevel(0, 1).sort index()

>>> classes = classes.to frame()

>>> classes.index.names = ['Date', 'minor']

>>> data = X.join(classes) .dropna ()

>>> data.rename(columns={0: 'is higher'}, inplace=True)
>>> data.head()

The following is the output:

Open|High |[Low |Close|Volume Adj Close |is_higher

Date minor

F 16.77)16.87|16.05|16.12 | 256937900 | 15.07

GM |35.00(35.99|33.89|34.19 |457044300 | 33.61
2010-11-18

™ 77.36|77.51|76.83|77.29 (989100 77.29

TSLA | 30.67|30.74|28.92 |29.89 | 956100 29.89

oO|jlo|lo|lo| o

2010-11-19 |F 16.02|16.38|15.83 (16.28 | 130323600 |15.22

Ok, so now we need to create matrices to SciPy. To do this, we'll use the patsy library. This is
a great library that can be used to create a design matrix in a fashion similar to R:

>>> import patsy

>>> X = patsy.dmatrix("Open + High + Low + Close + Volume +
is higher - 1", data.reset index(),
return type='dataframe')

>>> X.head()

Classifying Data with scikit-learn

The following is the output:

Open |High |Low |Close|Volume is_higher

0]16.77 |16.87 | 16.05|16.12 | 256937900 (0

1(35.00|35.99|33.89 (34.19 | 457044300

77.36|77.51|76.83|77.29 | 989100

0
2 0
3130.67 |30.74|28.92 [29.89 | 956100 0
4116.02 | 16.38|15.83 (16.28 | 130323600 |0

patsy is a very strong package, for example, suppose we want to apply some of the
preprocessing from Chapter 1, Premodel Workflow. In patsy, it's possible, like in R,
to modify the formula in a way that corresponds to modifications in the design matrix.
It won't be done here, but if we want to scale the value to mean O and standard
deviation 1, the function will be "scale (open) + scale (high)".

Awesome! So, now that we have our dataset, let's fit the LDA object:

>>> import pandas as pd

>>> from sklearn.lda import LDA

>>> lda = LDA()

>>> lda.fit(X.ix[:, :-11, X.ix[:, -11);

We can see that it's not too bad when predicting against the dataset. Certainly, we will
want to improve this with other parameters and test the model:

>>> from sklearn.metrics import classification report
>>> print classification report(X.ix[:, -1].values,
lda.predict(X.ix[:, :-11))

precision recall fl-score support
0.0 0.63 0.59 0.61 1895
1.0 0.60 0.64 0.62 1833
avg / total 0.61 0.61 0.61 3728

These metrics describe how the model fits the data in various ways.

The precision and recall parameters are fairly similar. In some ways, as shown in the
following list, they can be thought of as conditional proportions:

» Forprecision, given the model predicts a positive value, what proportion of this
is correct?

» Forrecall, given the state of one class is true, what proportion did we "select"? | say,
select because recall is a common metric in search problems. For example, there can
be a set of underlying web pages that, in fact, relate to a search term—the proportion
that is returned.

150

Chapter 4

The £1-score parameter attempts to summarize the relationship between recall and
precision.

LDA is actually fairly similar to clustering that we did previously. We fit a basic model from the
data. Then, once we have the model, we try to predict and compare the likelihoods of the data
given in each class. We choose the option that's more likely.

LDA is actually a simplification of QDA, which we'll talk about in the next chapter. Here, we
assume that the covariance of each class is the same, but in QDA, the assumption is relaxed.
Think about the connections between KNN and GMM and the relationship there and here.

Working with QDA - a nonlinear LDA

QDA is the generalization of a common technique such as quadratic regression. It is simply
a generalization of the model to allow for more complex models to fit, though, like all things,
when allowing complexity to creep in, we make our life more difficult.

Getting ready

We will expand on the last recipe and look at Quadratic Discernment Analysis (QDA)
via the QDA object.

We said we made an assumption about the covariance of the model. Here, we will relax
the assumption.

How to do it...

QDA is aptly a member of the gda module. Use the following commands to use QDA:

>>> from sklearn.gda import QDA
>>> gda = QDA()

>>> gda.fit(X.ix[:, :-11, X.ix[:, -11)

>>> predictions = gda.predict(X.ix[:, :-1])
>>> predictions.sum()

2812.0

>>> from sklearn.metrics import classification report
>>> print classification report(X.ix[:, -1].values, predictions)

Classifying Data with scikit-learn

precision recall fl-score support
0.0 0.75 0.36 0.49 1895
1.0 0.57 0.88 0.69 1833
avg / total 0.66 0.62 0.59 3728

As you can see, it's about equal on the whole. If we look back at the LDA recipe, we can see
large changes as opposed to the QDA object for class O and minor differences for class 1.

Like we talked about in the last recipe, we essentially compare likelihoods here. So, how do
we compare likelihoods? Let's just use the price at hand to attempt to classify is_higher.

We'll assume that the closing price is log-normally distributed. In order to compute the likelihood
for each class, we need to create the subsets of closes as well as a training and test set for each
class. As a sneak peak to the next chapter, we'll use the built-in cross validation methods:

>>> from sklearn import cross validation as cv
>>> import scipy.stats as sp

>>> for test, train in cv.ShuffleSplit(len(X.Close), n iter=1l):

train set = X.iloc[train]

train close = train set.Close
train 0 = train close[~train set.is higher.astype(bool)]
train 1 = train close[train set.is higher.astype(bool)]

test set = X.iloc[test]

test close = test set.Close.values

11 0
11 1

sp.norm.pdf (test close, train 0.mean())

sp.norm.pdf (test close, train l.mean())
Now that we have likelihoods for both classes, we can compare and assign classes:

>>> (11 0 > 11 1) .mean()
0.15588673621460505

152

Chapter 4

Using Stochastic Gradient Descent for

classification

As was discussed in Chapter 2, Working with Linear Models, Stochastic Gradient Descent is a
fundamental technique to fit a model for regression. There are natural connections between
the two techniques, as the name so obviously implies.

Getting ready

In regression, we minimized a cost function that penalized for bad choices on a continuous
scale, but for classification, we'll minimize a cost function that penalizes for two (or more) cases.

How to do it...

First, let's create some very basic data:

>>> from sklearn import datasets
>>> X, y = datasets.make classification()

Next, we'll create a SGDClassifier instance:

>>> from sklearn import linear model
>>> sgd _clf = linear model.SGDClassifier ()

As usual, we'll fit the model:

>>> sgd clf.fit(X, y)

SGDClassifier (alpha=0.0001, class weight=None, epsilon=0.1, eta0=0.0,
fit intercept=True, 11 ratio=0.15,
learning rate='optimal', loss='hinge', n iter=5,
n_jobs=1, penalty='l2', power t=0.5, random state=None,

shuffle=False, verbose=0, warm start=False)

We can set the class_weight parameter to account for the varying amounts of unbalance
in a dataset.

The Hinge loss function is defined as follows:

max (0,1 — ty)

Classifying Data with scikit-learn

Here, t is the true classification denoted as +1 for one case and -1 for the other. The vector of
coefficients is denoted by y as fit from the model, and x is the value of interest. There is also
an intercept for good measure. To put it another way:

te—1,1
y=Bx+b

Classifying documents with Naive Bayes

Naive Bayes is a really interesting model. It's somewhat similar to k-NN in the sense that it
makes some assumptions that might oversimplify reality, but still perform well in many cases.

Getting ready

In this recipe, we'll use Naive Bayes to do document classification with sklearn. An example
| have personal experience of is using the words that make up an account descriptor in
accounting, such as Accounts Payable, and determining if it belongs to Income Statement,
Cash Flow Statement, or Balance Sheet.

The basic idea is to use the word frequency from a labeled test corpus to learn the
classifications of the documents. Then, we can turn this on a training set and attempt to
predict the label.

We'll use the newgroups dataset within sklearn to play with the Naive Bayes model. It's a
nontrivial amount of data, so we'll fetch it instead of loading it. We'll also limit the categories
10 rec.autos and rec.motorcycles:

>>> from sklearn.datasets import fetch 20newsgroups

>>> categories = ["rec.autos", "rec.motorcycles"]
>>> newgroups = fetch 20newsgroups(categories=categories)

#take a look

>>> print "\n".join(newgroups.datal:1])

From: gregl@zimmer.CSUFresno.EDU (Greg Lewis)
Subject: Re: WARNING..... (please read)...
Keywords: BRICK, TRUCK, DANGER
Nntp-Posting-Host: zimmer.csufresno.edu
Organization: CSU Fresno

Lines: 33

Chapter 4

[..]

>>> newgroups.target names[newgroups.target[:1]]
'rec.autos'

Now that we have newgroups, we'll need to represent each document as a bag of words. This
representation is what gives Naive Bayes its name. The model is "naive" because documents
are classified without regard for any intradocument word covariance. This might be considered
a flaw, but Naive Bayes has been shown to work reasonably well.

We need to preprocess the data into a bag-of-words matrix. This is a sparse matrix that
has entries when the word is present in the document. This matrix can become quite large,
as illustrated:

>>> from sklearn.feature extraction.text import CountVectorizer

>>> count vec = CountVectorizer ()
>>> bow = count vec.fit transform(newgroups.data)

This matrix is a sparse matrix, which is the length of the number of documents by each word.
The document and word value of the matrix are the frequency of the particular term:

>>> bow
<1192x19177 sparse matrix of type '<type 'numpy.int64'>'
with 164296 stored elements in Compressed Sparse Row format>

We'll actually need the matrix as a dense array for the Naive Bayes object. So, let's convert
it back:

>>> bow = np.array(bow.todense())

Clearly, most of the entries are 0, but we might want to reconstruct the document counts as
a sanity check:

>>> words = np.array(count vec.get feature names())
>>> words [bow[0] > 0] [:5]
array([u'lOpm', u'lgh336innfl5', u'33', u'93740', u'
1
] I

dtype='<U79"')

Now, are these the examples in the first document? Let's check that using the
following command:

>>> 'l0pm' in newgroups.data[0].lower ()

True

>>> 'lgh336innfl5' in newgroups.datal[0] .lower ()
True

Classifying Data with scikit-learn

How to do it...

Ok, so it took a bit longer than normal to get the data ready, but we're dealing with text data
that isn't as quickly represented as a matrix as the data we're used to.

However, now that we're ready, we'll fire up the classifier and fit our model:

>>> from sklearn import naive bayes
>>> clf = naive bayes.GaussianNB()

Before we fit the model, let's split the dataset into a training and test set:

>>> mask = np.random.choice([True, False], len (bow))
>>> clf.fit (bow[mask], newgroups.target [mask])
>>> predictions = clf.predict (bow[~mask])

Now that we fit a model on a test set, and then predicted the training set in an attempt to
determine which categories go with which articles, let's get a sense of the approximate
accuracy:

>>> np.mean(predictions == newgroups.target[~mask])

0.92446043165467628

The fundamental idea of how Naive Bayes works is that we can estimate the probability of
some data point being a class, given the feature vector.

This can be rearranged via the Bayes formula to give the MAP estimate for the feature vector.
This MAP estimate chooses the class for which the feature vector's probability is maximized.

There's more...

We can also extend Naive Bayes to do multiclass work. Instead of assuming a Gaussian
likelihood, we'll use a multinomial likelihood.

First, let's get a third category of data:

>>> from sklearn.datasets import fetch 20newsgroups

>>> mn categories = ["rec.autos", "rec.motorcycles",
"talk.politics.guns"]

>>> mn newgroups = fetch 20newsgroups(categories=mn categories)

156

Chapter 4

We'll need to vectorize this just like the class case:

>>> mn_bow = count_vec.fit_ transform(mn_ newgroups.data)
>>> mn _bow = np.array(mn bow.todense())

Let's create a mask array to train and test:

>>> mn mask = np.random.choice([True, False], len(mn newgroups.data))
>>> multinom = naive bayes.MultinomialNB ()
>>> multinom.fit (mn bow[mn mask], mn newgroups.target[mn mask])

>>> mn_predict = multinom.predict (mn_bow[~mn_mask])
>>> np.mean(mn_predict == mn newgroups.target[~mn mask])
0.96594778660612934

It's not completely surprising that we did well. We did fairly well in the dual class case, and
since one will guess that the talk.politics.guns category is fairly orthogonal to the
other two, we should probably do pretty well.

Label propagation with semi-supervised

learning

Label propagation is a semi-supervised technique that makes use of the labeled and
unlabeled data to learn about the unlabeled data. Quite often, data that will benefit from
a classification algorithm is difficult to label. For example, labeling data might be very
expensive, so only a subset is cost-effective to manually label. This said, there does
seem to be slow, but growing, support for companies to hire taxonomists.

Getting ready

Another problem area is censored data. You can imagine a case where the frontier of time
will affect your ability to gather labeled data. Say, for instance, you took measurements of
patients and gave them an experimental drug. In some cases, you are able to measure the
outcome of the drug, if it happens fast enough, but you might want to predict the outcome
of the drugs that have a slower reaction time. The drug might cause a fatal reaction for
some patients, and life-saving measures might need to be taken.

Classifying Data with scikit-learn

How to do it...

In order to represent the semi-supervised or censored data, we'll need to do a little data
preprocessing. First, we'll walk through a simple example, and then we'll move on to some
more difficult cases:

>>> from sklearn import datasets
>>> d = datasets.load iris()

Due to the fact that we'll be messing with the data, let's make copies and add an unlabeled
member to the target name's copy. It'll make it easier to identify data later:

>>> X = d.data.copy()
>>> y = d.target.copy ()
>>> names = d.target names.copy ()

>>> names np.append (names, ['unlabeled'])
>>> names
array(['setosa', 'versicolor', 'virginica', 'unlabeled'],

dtype="'|s10"')

Now, let's update y with -1. This is the marker for the unlabeled case. This is also why we
added unlabeled to the end of names:

>>> y[np.random.choice([True, False], len(y))] = -1
Our data now has a bunch of negative ones (-1) interspersed with the actual data:

>>> y[:10]
array([-1, -1, -1, -1, o, O, -1, -1, O, -11)

>>> names[y[:10]]

array(['unlabeled', 'unlabeled', 'unlabeled', 'unlabeled', 'setosa',
'setosa', 'unlabeled', 'unlabeled', 'setosa', 'unlabeled'],
dtype='|S10"')

We clearly have a lot of unlabeled data, and the goal now is to use LabelPropagation to
predict the labels:

>>> from sklearn import semi supervised
>>> lp = semi supervised.LabelPropagation ()

>>> 1lp.fit (X, y)
LabelPropagation(alpha=1, gamma=20, kernel='rbf', max iter=30,

n neighbors=7, tol=0.001)

158

Chapter 4

>>> preds = lp.predict(X)
>>> (preds == d.target) .mean()
0.98666666666666669

Not too bad, though we did use all the data, so it's kind of cheating. Also, the iris dataset is
a fairly separated dataset.

While we're at it, let's look at LabelSpreading, the "sister" class of LabelPropagation.
We'll make the technical distinction between LabelPropagation and LabelSpreading in
the How it works... section of this recipe, but it's easy to say that they are extremely similar:

>>> 1ls = semi supervised.LabelSpreading()
LabelSpreading is more robust and noisy as observed from the way it works:

>>> ls.fit (X, y)
LabelSpreading(alpha=0.2, gamma=20, kernel='rbf', max iter=30,
n neighbors=7, tol=0.001)

>>> (ls.predict(X) == d.target) .mean()
0.96666666666666667

Don't consider the fact that the label-spreading algorithm missed one more as an indication
and that it performs worse in general. The whole point is that we might give some ability to
predict well on the training set and to work on a wider range of situations.

Label propagation works by creating a graph of the data points, with weights placed on the
edge equal to the following:
di;
_ %y
wij (0) = 55

The algorithm then works by labeled data points propagating their labels to the unlabeled data.

This propagation is in part determined by edge weight.

The edge weights can be placed in a matrix of transition probabilities. We can iteratively
determine a good estimate of the actual labels.

Postmodel Workflow

This chapter will cover the following recipes:

» K-fold cross validation

» Automatic cross validation

» Cross validation with ShuffleSplit

» Stratified k-fold

» Poor man's grid search

» Brute force grid search

» Using dummy estimators to compare results
» Regression model evaluation

» Feature selection

» Feature selection on L1 norms

» Persisting models with joblib

Introduction

Even though by design the chapters are unordered, you could argue by virtue of the art of
data science, we've saved the best for last.

For the most part, each recipe within this chapter is applicable to the various models we've
worked with. In some ways, you can think about this chapter as tuning the parameters and
features. Ultimately, we need to choose some criteria to determine the "best" model. We'll use
various measures to define best. This is covered in the Regression model evaluation recipe.
Then in the Cross validation with ShuffleSplit recipe, we will randomize the evaluation across
subsets of the data to help avoid overfitting.

Postmodel Workflow

K-fold cross validation

In this recipe, we'll create, quite possibly, the most important post-model validation
exercise—cross validation. We'll talk about k-fold cross validation in this recipe. There are
several varieties of cross validation, each with slightly different randomization schemes.
K-fold is perhaps one of the most well-known randomization schemes.

Getting ready

We'll create some data and then fit a classifier on the different folds. It's probably worth
mentioning that if you can keep a holdout set, then that would be best. For example, we
have a dataset where N = 1000. If we hold out 200 data points, then use cross validation
between the other 800 points to determine the best parameters.

How to do it...

First, we'll create some fake data, then we'll examine the parameters, and finally, we'll look
at the size of the resulting dataset:

>>> N = 1000
>>> holdout = 200

>>> from sklearn.datasets import make regression
>>> X, y = make regression(1000, shuffle=True)

Now that we have the data, let's hold out 200 points, and then go through the fold scheme
like we normally would:

>>> X h, y h
>>> X t, y t

X[:holdout], yl[:holdout]
X[holdout:], yl[holdout:]

>>> from sklearn.cross_validation import KFold

K-fold gives us the option of choosing how many folds we want, if we want the values to be
indices or Booleans, if want to shuffle the dataset, and finally, the random state (this is mainly
for reproducibility). Indices will actually be removed in later versions. It's assumed to be True.

Let's create the cross validation object:
>>> kfold = KFold(len(y t), n folds=4)
Now, we can iterate through the k-fold object:

>>> output string = "Fold: {}, N train: {}, N test: {}"

>>> for i, (train, test) in enumerate(kfold):

162

Chapter 5

print output string.format(i, len(y tl[train]), len(y tltest]))

Fold: 0, N train: 600, N test: 200
Fold: 1, N train: 600, N test: 200
Fold: 2, N train: 600, N test: 200
Fold: 3, N train: 600, N test: 200

Each iteration should return the same split size.

It's probably clear, but k-fold works by iterating through the folds and holds out 1/n_folds *
N, where N for us was len (y_t).

From a Python perspective, the cross validation objects have an iterator that can be accessed
by using the in operator. Often times, it's useful to write a wrapper around a cross validation
object that will iterate a subset of the data. For example, we may have a dataset that has
repeated measures for data points or we may have a dataset with patients and each patient
having measures.

We're going to mix it up and use pandas for this part:

>>> import numpy as np
>>> import pandas as pd

>>> patients = np.repeat(np.arange(0, 100, dtype=np.int8), 8)

>>> measurements = pd.DataFrame ({'patient id': patients,
'ys': np.random.normal (0, 1, 800)})

Now that we have the data, we only want to hold out certain customers instead of data points:

>>> custids = np.unique(measurements.patient id)

>>> customer kfold = KFold(custids.size, n_ folds=4)
>>> output string = "Fold: {}, N train: {}, N test: {}"

>>> for i, (train, test) in enumerate(customer kfold):
train cust ids = custids[train]
training = measurements[measurements.patient id.isin(
train cust ids)]
testing = measurements[~measurements.patient id.isin(

train cust ids)]

Postmodel Workflow

print output string.format(i, len(training), len(testing))

Fold: 0, N train: 600, N test: 200
Fold: 1, N train: 600, N test: 200
Fold: 2, N train: 600, N test: 200
Fold: 3, N train: 600, N test: 200

Automatic cross validation

We've looked at the using cross validation iterators that scikit-learn comes with, but we can
also use a helper function to perform cross validation for use automatically. This is similar
to how other objects in scikit-learn are wrapped by helper functions, pipeline for instance.

Getting ready

First, we'll need to create a sample classifier; this can really be anything, a decision tree,
a random forest, whatever. For us, it'll be a random forest. We'll then create a dataset
and use the cross validation functions.

How to do it...

First import the ensemble module and we'll get started:

>>> from sklearn import ensemble
>>> rf = ensemble.RandomForestRegressor (max features='auto')

Okay, so now, let's create some regression data:

>>> from sklearn import datasets
>>> X, y = datasets.make regression(10000, 10)

Now that we have the data, we can import the cross_validation module and get access
to the functions we'll use:

>>> from sklearn import cross validation
>>> scores = cross validation.cross val score(rf, X, y)

>>> print scores

[0.86823874 0.86763225 0.86986129]

164

Chapter 5

For the most part, this will delegate to the cross validation objects. One nice thing is that, the
function will handle performing the cross validation in parallel.

We can activate verbose mode play by play:

>>> scores = cross validation.cross val score(rf, X, y, verbose=3,
cv=4)

[CV] no parameters to be set

[CV] no parameters to be set, score=0.872866 - 0.7s

[CV] no parameters to be set

[CV] no parameters to be set, score=0.873679 - 0.6s

[CV] no parameters to be set

[CV] no parameters to be set, score=0.878018 - 0.7s

[CV] no parameters to be set

[CV] no parameters to be set, score=0.871598 - 0.6s
[Parallel (n jobs=1)]1: Done 1 jobs | elapsed: 0.7s
[Parallel (n jobs=1)]1: Done 4 out of 4 | elapsed: 2.6s finished

As we can see, during each iteration, we scored the function. We also get an idea of how long
the model runs.

It's also worth knowing that we can score our function predicated on which kind of model we're
trying to fit. In other recipes, we've discussed how to create your own scoring function.

Cross validation with ShuffleSplit

ShuffleSplit is one of the simplest cross validation techniques. This cross validation technique
will simply take a sample of the data for the number of iterations specified.

Getting ready

ShuffleSplit is another cross validation technique that is very simple. We'll specify the total
elements in the dataset, and it will take care of the rest. We'll walk through an example of
estimating the mean of a univariate dataset. This is somewhat similar to resampling, but it'll
illustrate one reason why we want to use cross validation while showing cross validation.

Postmodel Workflow

How to do it...

First, we need to create the dataset. We'll use NumPy to create a dataset, where we know the
underlying mean. We'll sample half of the dataset to estimate the mean and see how close it
is to the underlying mean:

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>
>>>

>>>

import numpy as np
true loc = 1000
true scale = 10

N = 1000

dataset = np.random.normal (true loc, true scale, N)

import matplotlib.pyplot as plt
f, ax = plt.subplots(figsize=(7, 5))

ax.hist (dataset, color='k', alpha=.65, histtype='stepfilled'):;
ax.set title("Histogram of dataset");

f.savefig("978-1-78398-948-5 06 06.png")

NumPy will give the following output:

166

150 . . Hlfstugraml of dataﬁet

300

250

200

150

100

960 970 980 990 1000 1010 1020 1030 1040

Now, let's take the first half of the data and guess the mean:

>>>

>>>
>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

>>>

from sklearn import cross validation

holdout_set = dataset[:500]
fitting set = dataset[500:]

estimate = fitting set[:N/2].mean()

import matplotlib.pyplot as plt

f, ax = plt.subplots(figsize=(7, 5))

ax.set title("True Mean vs Regular Estimate")

ax.vlines(true loc, 0, 1, color='r', linestyles='-', lw=5,
alpha=.65, label='true mean')

ax.vlines (estimate, 0, 1, color='g', linestyles='-', 1lw=5,
alpha=.65, label='regular estimate')

ax.set x1im(999, 1001)

ax.legend ()

f.savefig("978-1-78398-948-5_06_07.png")

We'll get the following output:

10 True Mean vs Regular Estimate
: e
=== true mean
=== regular estimate
08 .
06 .
0.4t .
0zt .
0.0 L L
0.0 05 10 15 20
+9.99e2

Chapter 5

Postmodel Workflow
Now, we can use ShuffleSplit to fit the estimator on several smaller datasets:

>>> from sklearn.cross validation import ShuffleSplit

>>> shuffle split = ShuffleSplit(len(fitting set))

>>> mean p = []

>>> for train, _ in shuffle split:
mean p.append(fitting set[train] .mean())

shuf estimate = np.mean(mean p)

>>> import matplotlib.pyplot as plt

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.vlines(true loc, 0, 1, color='r', linestyles='-', lw=5,
alpha=.65, label='true mean')

>>> ax.vlines(estimate, 0, 1, color='g', linestyles='-', lw=5,
alpha=.65, label='regular estimate')

>>> ax.vlines(shuf estimate, 0, 1, color='b', linestyles='-', 1lw=5,
alpha=.65, label='shufflesplit estimate')

>>> ax.set_title("All Estimates™")
>>> ax.set x1im(999, 1001)

>>> ax.legend(loc=3)

168

Chapter 5

The output will be as follows:

All Estimates
10

0.8}

06|

04|

D2}

0.0 i i
0.0 05 10 15 20

+9.99e2

As we can see, we got an estimate that was similar to what we expected, but we were able to
take many samples to get that estimate.

Stratified k-fold

In this recipe, we'll quickly look at stratified k-fold valuation. We've walked through different
recipes where the class representation was unbalanced in some manner. Stratified k-fold is
nice because its scheme is specifically designed to maintain the class proportions.

Getting ready

We're going to create a small dataset. In this dataset, we will then use stratified k-fold validation.
We want it small so that we can see the variation. For larger samples. it probably won't be as big
of a deal.

We'll then plot the class proportions at each step to illustrate how the class proportions
are maintained:

>>> from sklearn import datasets

>>> X, y = datasets.make classification(n_samples=int(le3),
weights=[1./11])

Postmodel Workflow

Let's check the overall class weight distribution:

>>> y.mean ()

0.90300000000000002

Roughly, 90.5 percent of the samples are 1, with the balance O.

How to do it...

Let's create a stratified k-fold object and iterate it through each fold. We'll measure the
proportion of verse that are 1. After that we'll plot the proportion of classes by the split
number to see how and if it changes. This code will hopefully illustrate how this is beneficial.
We'll also plot this code against a basic ShuffleSplit:

>>> from sklearn import cross validation
>>> n_folds = 50

>>> strat_kfold = cross_validation.StratifiedKFold(y,
n_folds=n_folds)

>>> shuff split = cross_validation.ShuffleSplit(n=len(y),
n_iter=n_folds)

[1
[1

>>> kfold y props

>>> shuff y props

>>> for (k_train, k test), (s_train, s test) in zip(strat kfold,
>>> shuff split):

kfold y props.append(yl[k train] .mean())
shuff y props.append(y[s_train] .mean())

Now, let's plot the proportions over each fold:

>>> import matplotlib.pyplot as plt

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.plot(range(n folds), shuff y props, label="ShuffleSplit",
color="k"')

>>> ax.plot(range(n folds), kfold y props, label="Stratified",
color='k', 1ls='--")

>>> ax.set title("Comparing class proportions.")

>>> ax.legend(loc='best')

170

Chapter 5

The output will be as follows:

0910 Comparllng class meartlons.

— ShuffleSplit

0.908 - - Stratified

0906

0904 4

0902 H

0900

08938

0.895 L L L L
o

We can see that the proportion of each fold for stratified k-fold is stable across folds.

Stratified k-fold works by taking the y value. First, getting the overall proportion of the classes,
then intelligently splitting the training and test set into the proportions. This will generalize to
multiple labels:

>>> import numpy as np

>>> three classes = np.random.choice([1,2,3], p=[.1, .4, .51,
size=1000)

>>> import itertools as it

>>> for train, test in cross validation.StratifiedKFold(three classes, 5):
print np.bincount (three classes[train])

[0 90 314 395]
[0 90 314 395]

Postmodel Workflow

[0O 90 314 395]
[0 91 315 395]
[0 91 315 396]

As we can see, we got roughly the sample sizes of each class for our training and
testing proportions.

Poor man’s grid search

In this recipe, we're going to introduce grid search with basic Python, though we will use
sklearn for the models and matplotlib for the visualization.

Getting ready

In this recipe, we will perform the following tasks:

» Design a basic search grid in the parameter space

» Iterate through the grid and check the loss/score function at each point
in the parameter space for the dataset

» Choose the point in the parameter space that minimizes/maximizes the
evaluation function

Also, the model we'll fit is a basic decision tree classifier. Our parameter space will be 2
dimensional to help us with the visualization:

criteria = {gini, entropy}
max_features = {auto,log2, None}

The parameter space will then be the Cartesian product of the those two sets:

parameter space = criteria ¥ max_features

We'll see in a bit how we can iterate through this space with itertools.
Let's create the dataset and then get started:

>>> from sklearn import datasets

>>> X, y = datasets.make classification(n samples=2000, n features=10)

172

Chapter 5

How to do it...

Earlier we said that we'd use grid search to tune two parameters—criteria and
max_features. We need to represent those as Python sets, and then use itertools
product to iterate through them:

>>> criteria = {'gini', 'entropy'}
>>> max_features = {'auto', 'log2', None}
>>> import itertools as it

>>> parameter space = it.product(criteria, max features)

Great! So now that we have the parameter space, let's iterate through it and check the accuracy
of each model as specified by the parameters. Then, we'll store that accuracy so that we can
compare different parameter spaces. We'll also use a test and train split of 50, 50:

import numpy as np
train set = np.random.choice([True, False], size=len(y))
from sklearn.tree import DecisionTreeClassifier
accuracies = {}
for criterion, max feature in parameter space:

dt = DecisionTreeClassifier (criterion=criterion,

max features=max feature)
dt.fit (X[train set], yltrain set])
accuracies[(criterion, max feature)] = (dt.predict(X[~train set])
== yl[~train set]) .mean()

>>> accuracies

{(*entropy', None): 0.974609375, ('entropy', ‘'auto'): 0.9736328125,
('entropy', 'log2'): 0.962890625, ('gini', None): 0.9677734375, ('gini',
'auto'): 0.9638671875, ('gini', 'log2'): 0.96875}

So we now have the accuracies and its performance. Let's visualize the performance:

>>> from matplotlib import pyplot as plt

>>> from matplotlib import cm

>>> cmap = cm.RdBu r

>>> f, ax = plt.subplots(figsize=(7, 4))

>>> ax.set xticklabels(['']l + list(criteria))

>>> ax.set yticklabels(['']l + list(max features))
>>> plot_array = [I

>>> for max feature in max features:

Postmodel Workflow

m = []
>>> for criterion in criteria:
m.append (accuracies[(criterion, max feature)l])
plot array.append (m)
>>> colors = ax.matshow(plot array, vmin=np.min(accuracies.values()) -
0.001, vmax=np.max(accuracies.values()) + 0.001, cmap=cmap)

>>> f.colorbar (colors)

The following is the output:

gini entropy

08750
log2 09735
08720
40,9705

None 10,9690

09675

- 09660

Sk 09645

09630

It's fairly easy to see which one performed best here. Hopefully, you can see how this process
can be taken to the further stage with a brute force method.

This works fairly simply, we just have to perform the following steps:

1. Choose a set of parameters.
2. Iterate through them and find the accuracy of each step.

3. Find the best performer by visual inspection.

Chapter 5

Brute force grid search

In this recipe, we'll do an exhaustive grid search through scikit-learn. This is basically the same
thing we did in the previous recipe, but we'll utilize built-in methods.

We'll also walk through an example of performing randomized optimization. This is an alternative
to brute force search. Essentially, we're trading computer cycles to make sure that we search

the entire space. We were fairly calm in the last recipe. However, you could imagine a model
that has several steps, first imputation for fix missing data, then PCA reduce the dimensionality
to classification. Your parameter space could get very large, very fast; therefore, it can be
advantageous to only search a part of that space.

Getting ready

To get started, we'll need to perform the following steps:

1. Create some classification data.
2. We'll then create a LogisticRegression object that will be the model we're fitting.
3. After that, we'll create the search objects, GridSearch and RandomizedSearchCV.

How to do it...

Run the following code to create some classification data:

>>> from sklearn.datasets import make classification
>>> X, y = make_classification(1000, n features=5)

Now, we'll create our logistic regression object:

>>> from sklearn.linear model import LogisticRegression
>>> lr = LogisticRegression(class weight='auto')

We need to specify the parameters we want to search. For GridSearch, we can just specify
the ranges that we care about, but for RandomizedSearchCV, we'll need to actually specify
the distribution over the same space from which to sample:

>>> 1lr.fit (X, y)
LogisticRegression(C=1.0, class weight={0: 0.25, 1: 0.75}, dual=False,

fit intercept=True, intercept scaling=1,
penalty='12"', random state=None, tol=0.0001)

Postmodel Workflow

>>> grid search params = {'penalty': ['l1',6 '1l2'],
'er: o [1, 2, 3, 41}

The only change we'll need to make is to describe the C parameter as a probability distribution.
We'll keep it simple right now, though we will use scipy to describe the distribution:

>>> import scipy.stats as st
>>> import numpy as np

>>> random search params = {'penalty': ['l1l', '12'],

'C': st.randint (1, 4)}

Now, we'll fit the classifier. This works by passing 1r to the parameter search objects:

>>> from sklearn.grid search import GridSearchCV, RandomizedSearchCV

>>> gs = GridSearchCV(lr, grid search params)
GridSearchCV implements the same API as the other models:

>>> gs.fit (X, y)

GridSearchCV (cv=None, estimator=LogisticRegression(C=1.0,
class weight='auto', dual=False, fit intercept=True,
intercept scaling=1, penalty='1l2', random state=None,
tol=0.0001), fit params={}, iid=True, loss_func=None,
n_jobs=1, param grid={'penalty': ['l1l', 'l2'],
'c': [1, 2, 3, 4]}, pre dispatch='2*n jobs', refit=True,
score func=None, scoring=None, verbose=0)

As we can see with the param_grid parameter, our penalty and C are both arrays.

176

Chapter 5

To access the scores, we can use the grid_scores_ attribute of the grid search. We also
want to find the optimal set of parameters. We can also look at the marginal performance
of the grid search:

>>> gs.grid scores

[mean: 0.90300, std: 0.01192, params: {'penalty': 'll', 'C': 1},
mean: 0.90100, std: 0.01258, params: {'penalty': '12', 'C': 1},
mean: 0.90200, std: 0.01117, params: {'penalty': '11l', 'C': 2},
mean: 0.90100, std: 0.01258, params: {'penalty': '12', 'C': 2},
mean: 0.90200, std: 0.01117, params: {'penalty': '11', 'C': 3},
mean: 0.90100, std: 0.01258, params: {'penalty': '12', 'C': 3},
mean: 0.90100, std: 0.01258, params: {'penalty': '11l', 'C': 4},
mean: 0.90100, std: 0.01258, params: {'penalty': 'l2', 'C': 4}]

We might want to get the max score:

>>> gs.grid scores_ [1] [1]
0.90100000000000002
>>> max(gs.grid scores , key=lambda x: x[1])

mean: 0.90300, std: 0.01192, params: {'penalty': 11+, 'C': 1}

The parameters obtained are the best choices for our logistic regression.

Using dummy estimators to compare results

This recipe is about creating fake estimators; this isn't the pretty or exciting stuff, but it is
worthwhile to have a reference point for the model you'll eventually build.

Getting ready

In this recipe, we'll perform the following tasks:

1. Create some data random data.
2. Fit the various dummy estimators.

We'll perform these two steps for regression data and classification data.

Postmodel Workflow

How to do it...

First, we'll create the random data:

>>> from sklearn.datasets import make regression, make classification
classification if for later

>>> X, y = make regression()

>>> from sklearn import dummy

>>> dumdum = dummy.DummyRegressor ()
>>> dumdum. fit (X, y)

DummyRegressor (constant=None, strategy='mean')

By default, the estimator will predict by just taking the mean of the values and predicting the
mean values:

>>> dumdum.predict(X) [:5]

array ([2.23297907, 2.23297907, 2.23297907, 2.23297907,
2.232979071)

There are other two other strategies we can try. We can predict a supplied constant (refer to
constant=None from the preceding command). We can also predict the median value.

Supplying a constant will only be considered if strategy is "constant".
Let's have a look:

>>> predictors = [("mean", None),
("median", None),
("constant", 10)]

>>> for strategy, constant in predictors:
dumdum = dummy.DummyRegressor (strategy=strategy,
constant=constant)
>>> dumdum.fit (X, y)

>>> print "strategy: {}".format(strategy), ",".join(map(str,
dumdum.predict (X) [:5]))

strategy: mean 2.23297906733,2.23297906733,2.23297906733,2.23297906733,2
.23297906733

178

Chapter 5

strategy: median 20.38535248,20.38535248,20.38535248,20.38535248,20.38535
248
strategy: constant 10.0,10.0,10.0,10.0,10.0

We actually have four options for classifiers. These strategies are similar to the continuous case,
it's just slanted toward classification problems:

>>> predictors = [("constant", 0),
("stratified", None),
("uniform", None),
("most frequent", None)]

We'll also need to create some classification data:

>>> X, y = make classification()

>>> for strategy, constant in predictors:
dumdum = dummy.DummyClassifier (strategy=strategy,
constant=constant)
dumdum. fit (X, y)
print "strategy: {}".format(strategy), ",".join(map(str,
dumdum.predict (X) [:5]1))

strategy: constant 0,0,0,0,0
strategy: stratified 1,0,0,1,0
strategy: uniform 0,0,0,1,1
strategy: most frequent 1,1,1,1,1

It's always good to test your models against the simplest models and that's exactly what

the dummy estimators give you. For example, imagine a fraud model. In this model, only

5 percent of the data set is fraud. Therefore, we can probably fit a pretty good model just
by never guessing any fraud.

We can create this model by using the stratified strategy, using the following command.
We can also get a good example of why class imbalance causes problems:

>>> X, y = make classification(20000, weights=[.95, .05])
>>> dumdum = dummy.DummyClassifier (strategy='most frequent')

>>> dumdum. fit (X, y)

Postmodel Workflow

DummyClassifier (constant=None, random state=None, strategy='most
frequent!')

>>> from sklearn.metrics import accuracy score
>>> print accuracy score(y, dumdum.predict (X))

0.94575

We were actually correct very often, but that's not the point. The point is that this is our
baseline. If we cannot create a model for fraud that is more accurate than this, then it
isn't worth our time.

Regression model evaluation

We learned about quantifying the error in classification, now we'll discuss quantifying the error
for continuous problems. For example, we're trying to predict an age, not a gender.

Getting ready

Like the classification, we'll fake some data, then plot the change. We'll start simple, then
build up the complexity. The data will be a simulated linear model:

m = 2
b =1

y = lambda x: m*x+b
Also, let's get our modules loaded:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from sklearn import metrics

How to do it...

We will be performing the following actions:

1. Use 'y' togenerate 'y actual'.

2. Use 'y actual' plussome err to generate 'y prediction'.
3. Plot the differences.

4. Walk through various metrics and plot some of them.

180

Chapter 5

Let's take care of steps 1 and 2 at the same time and just have a function do the work for us.
This will be almost the same thing we just saw, but we'll add the ability to specify an error
(or bias if a constant):

>>> def data(x, m=2, b=1, e=None, s=10):
wnn
Args:
x: The x value
m: Slope
b: Intercept

e: Error, optional, True will give random error

if e is None:

ei =20
elif e is True:

e i = np.random.normal(0, s, len(xs))
else:

e i

n
(0]

return x * m + b + e_i

Now that we have the function, let's define y _hat andy_actual. We'lldoitina
convenient way:

>>> from functools import partial

>>> N = 100

>>> xS = np.sort(np.random.rand(N)*100)

>>> y pred gen

partial (data, x=xs, e=True)

>>> y true gen = partial (data, x=xs)

>>> y pred = y pred gen()

>>> y true = y true gen()

>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.set title("Plotting the fit vs the underlying process.")
>>> ax.scatter(xs, y pred, label=r'\hat{y}')

Postmodel Workflow

>>> ax.plot(xs, y true, label=r'y')

>>> ax.legend(loc='best')

The output for this code is as follows:

i Plotting the fit vs the underlying process.

1]
p L g

150

100 |

—50 i i I L L L
=20 0 20 40 60 BO 100 120

Just to confirm the output, we'd be working with the classical residuals:

>>> e hat = y pred - y true

>>> £, ax

plt.subplots (figsize=(7, 5))

>>> ax.set title("Residuals")
>>> ax.hist (e hat, color='r', alpha=.5, histtype='stepfilled')

182

Chapter 5

The output for the residuals is as follows:

Residuals

o
=30 =20 -10 o 10 20 30

So that looks good now.

Now let's move to the metrics.

First, a metric is the mean squared error:

MSE (¥ s> Yyrea) = E ((ym “Ts))

You can use the following code to find the value of the mean squared error:
>>> metrics.mean squared error(y true, y pred)
93.342352628475368

You'll notice that this code will penalize large errors more than small errors. It's important to
remember that all we're doing here is applying what probably was the cost function for the
model on the test data.

Postmodel Workflow

Another option is the mean absolute deviation. We need to take the absolute value of the
difference, if we don't, our value will probably be fairly close to zero, the mean of the distribution:

WD(ytrus’ypred) = E(| YVirus — YV pred ‘)

The final option is R?, this is 1 minus the ratio of squared errors for the overall mean and the
fit model. As the ratio tends to O, the R? tends to 1:

>>> metrics.r2 score(y true, y pred)

0.9729312117010761

R2 is deceptive; it cannot give the clearest sense of the accuracy of the model.

Feature selection

This recipe along with the two following it will be centered around automatic feature selection.
| like to think of this as the feature analogue of parameter tuning. In the same way that we
cross-validate to find an appropriately general parameter, we can find an appropriately general
subset of features. This will involve several different methods.

The simplest idea is univariate selection. The other methods involve working with a combination
of features.

An added benefit to feature selection is that it can ease the burden on the data collection.
Imagine that you have built a model on a very small subset of the data. If all goes well, you
might want to scale up to predict the model on the entire subset of data. If this is the case,
you can ease the engineering effort of data collection at that scale.

Getting ready

With univariate feature selection, scoring functions will come to the forefront again. This time,
they will define the comparable measure by which we can eliminate features.

In this recipe, we'll fit a regression model with a few 10,000 features, but only 1,000 points.
We'll walk through the various univariate feature selection methods:

>>> from sklearn import datasets
>>> X, y = datasets.make regression (1000, 10000)

184

Chapter 5

Now that we have the data, we will compare the features that are included with the various
methods. This is actually a very common situation when you're dealing in text analysis or
some areas of bioinformatics.

How to do it...

First, we need to import the feature selection module:

>>> from sklearn import feature selection
>>> f, p = feature selection.f regression(X, y)

Here, £ is the f score associated with each linear model fit with just one of the features.
We can then compare these features and based on this comparison, we can cull features.
p is also the p value associated with that f value.

In statistics, the p value is the probability of a value more extreme than the current value of
the test statistic. Here, the £ value is the test statistic:

>>> f[:5]

array([1.06271357e-03, 2.91136869e+00, 1.01886922e+00,
2.22483130e+00, 4.67624756e-011])

>>> p[:5]

array ([0.97400066, 0.08826831, 0.31303204, 0.1361235, 0.49424067])

As we can see, many of the p values are quite large. We would rather want that the p values
be quite small. So, we can grab NumPy out of our tool box and choose all the p values less
than . 05. These will be the features we'll use for the analysis:

>>> import numpy as np

>>> idx = np.arange (0, X.shapell])
>>> features to keep = idx[p < .05]
>>> len(features to keep)

501

As you can see, we're actually keeping a relatively large amount of features. Depending on the
context of the model, we can tighten this p value. This will lessen the number of features kept.

Another option is using the varianceThreshold object. We've learned a bit about it,

but it's important to understand that our ability to fit models is largely based on the variance
created by features. If there is no variance, then our features cannot describe the variation
in the dependent variable. A nice feature of this, as per the documentation, is that because
it does not use the outcome variable, it can be used for unsupervised cases.

Postmodel Workflow

We will need to set the threshold for which we eliminate features. In order to do that, we just
take the median of the feature variances and supply that:

>>> var_threshold = feature selection.VarianceThreshold(np.median (np.
var (X, axis=1l)))

>>> var_threshold.fit_ transform(X) .shape

(1000, 4835)

As we can see, we eliminated roughly half the features, more or less what we would expect.

In general, all these methods work by fitting a basic model with a single feature. Depending on
whether we have a classification problem or a regression problem, we can use the appropriate
scoring function.

Let's look at a smaller problem and visualize how feature selection will eliminate certain
features. We'll use the same scoring function from the first example, but just 20 features:

>>> X, y = datasets.make regression(10000, 20)

>>> f, p = feature selection.f regression(X, y)

Now let's plot the p values of the features, we can see which feature will be eliminated and
which will be kept:

>>> from matplotlib import pyplot as plt
>>> f, ax = plt.subplots(figsize=(7, 5))

>>> ax.bar (np.arange(20), p, color='k')

>>> ax.set title("Feature p values")

186

Chapter 5

The output will be as follows:

Feature p values

10

As we can see, many of the features won't be kept, but several will be.

Feature selection on L1 norms

We're going to work with some ideas similar to those we saw in the recipe on Lasso Regression.
In that recipe, we looked at the number of features that had zero coefficients.

Now we're going to take this a step further and use the spareness associated with L1 norms
to preprocess the features.

Getting ready

We'll use the diabetes dataset to fit a regression. First, we'll fit a basic LinearRegression
model with a ShuffleSplit cross validation. After we do that, we'll use LassoRegression
to find the coefficients that are 0 when using an L1 penalty. This hopefully will help us to avoid
overfitting, which means that the model is too specific to the data it was trained on. To put this
another way, the model, if overfit, does not generalize well to outside data.

We're going to perform the following steps:

1. Load the dataset.

2. Fit a basic linear regression model.

Postmodel Workflow

3. Use feature selection to remove uninformative features.

4. Refit the linear regression and check to see how well it fits compared with the fully
featured model.

How to do it...

First, let's get the dataset:

>>> import sklearn.datasets as ds
>>> diabetes = ds.load diabetes()

Let's create the LinearRegression object:

>>> from sklearn import linear model
>>> 1lr = linear_model.LinearRegression()

Let's also import the metrics module for the mean squared_error function and the
cross_validation module for the ShuffleSplit cross validation scheme:

>>> from sklearn import metrics
>>> from sklearn import cross validation

>>> shuff = cross validation.ShuffleSplit(diabetes.target.size)

Now, let's fit the model, and we'll keep track of the mean squared error for each iteration
of ShuffleSplit:

>>> mses = []

>>> for train, test in shuff:
train X = diabetes.dataltrain]
train y = diabetes.target[train]

test X = diabetes.datal~train]
test y = diabetes.target[~train]

lr.fit(train X, train y)

mses.append (metrics.mean squared error(test y,
lr.predict(test X)))

>>> np.mean (mses)

2856.366626198198

188

Chapter 5

So now that we have the regular fit, let's check it after we eliminate any features with a zero
for the coefficient. Let's fit the Lasso Regression:

>>> from sklearn import feature selection
>>> from sklearn import cross validation

>>> cv = linear model.LassoCV()
>>> cv.fit(diabetes.data, diabetes.target)
>>> cv.coef

array([-0. , -226.2375274 , 526.85738059, 314.44026013,
-196.92164002, 1.48742026, -151.78054083, 106.52846989,
530.58541123, 64.50588257])

We'll remove the first feature, I'll use a NumPy array to represent the columns that are to be
included in the model:

>>> import numpy as np

>>> columns = np.arange(diabetes.data.shape[l]) [cv.coef != 0]
>>> columns

array([1, 2, 3 4, 5, 6, 7, 8, 9])

Okay, so now we'll fit the model with the specific features (see the columns in the following
code block):

>>> llmses = []

>>> for train, test in shuff:
train X = diabetes.dataltrain] [:, columns]
train y = diabetes.target[train]

diabetes.datal[~train] [:, columns]
diabetes.target[~train]

test X
test_ vy

lr.fit(train X, train y)

llmses.append (metrics.mean squared error (test vy,
lr.predict(test X)))

>>> np.mean (llmses)
2861.0763924492171
>>> np.mean(llmses) - np.mean (mses)
4.7097662510191185

As we can see, even though we get an uninformative feature, the model still fits worse. This
isn't always the case. In the next section, we'll compare a fit between models where there are
many uninformative features.

Postmodel Workflow

First, we're going to create a regression dataset with many uninformative features:
>>> X, y = ds.make regression(noise=5)
Let's fit a normal regression:
>>> mses = []
>>> shuff = cross validation.ShuffleSplit(y.size)
>>> for train, test in shuff:
train X = X[train]

train y = yltrain]

X[~train]

test X

test y y[~train]

lr.fit(train X, train y)

mses.append (metrics.mean squared error(test y,
lr.predict(test X)))
>>> np.mean (mses)

879.75447864034209

Now, we can walk through the same process for Lasso regression:

>>> cev.fit (X, vy)

LassoCV(alphas=None, copy X=True, cv=None, eps=0.001,
fit intercept=True, max iter=1000, n alphas=100,
n _jobs=1l, normalize=False, positive=False, precompute='auto',
tol=0.0001, verbose=False)

We'll create the columns again. This is a nice pattern that will allow us to specify the features
we want to include:

>>> import numpy as np

>>> columns = np.arange(X.shape[l]) [cv.coef = 0]
>>> columns|[:5]

array([11, 15, 17, 20, 21,])

>>> mses = []

190

>>> shuff = cross validation.ShuffleSplit(y.size)

>>> for train, test in shuff:

train X = X[train] [:, columns]
train y = yltrain]

test X = X[~train] [:, columns]
test y = yl~train]

lr.fit(train X, train y)

mses.append (metrics.mean squared error (test y,
lr.predict(test X)))

>>> np.mean (mses)

15.755403220117708

Chapter 5

As we can see, we get an extreme improvement in the fit of the model. This just exemplifies
that we need to be cognizant that not all the models need to be or should be thrown into
the model.

Persisting models with joblib

In this recipe, we're going to show how you can keep your model around for a later usage.
For example, you might want to actually use a model to predict the outcome and automatically
make a decision.

Getting ready

In this recipe, we will perform the following tasks:

1.
2.

Fit the model that we will persist.

Import joblib and save the model.

How to do it...

To persist models with joblib, the following code can be used:

>>> from sklearn import datasets, tree

>>> X,

y = datasets.make classification()

Postmodel Workflow

>>> dt = tree.DecisionTreeClassifier()
>>> dt.fit (X, y)

DecisionTreeClassifier (compute importances=None, criterion='gini',
max depth=None, max features=None,
max leaf nodes=None, min density=None,
min samples leaf=1, min samples split=2,
random state=None, splitter='best!')

>>> from sklearn.externals import joblib

>>> joblib.dump (dt, "dtree.clf")

['dtree.clf’',
'dtree.clf 0l.npy',
'dtree.clf 02.npy',
'dtree.clf 03.npy',
'dtree.clf 04.npy'l]

The preceding code works by saving the state of the object that can be reloaded into a
scikit-learn object. It's important to note that the state of model will have varying levels
of complexity, given the model type.

For simplicity sake, consider that all we'd need to save is the way to predict the outcome
for the given inputs. Well, for regression that would be easy, a little matrix algebra and
we're done. However, for models like random forest, where we could have many trees,
and those trees could be of various complexity levels, regression is difficult.

There's more...

We can check the size of decision tree versus random forest:

>>> from sklearn import ensemble

>>> rf = ensemble.RandomForestClassifier()
>>> rf.fit (X, y)

RandomForestClassifier (bootstrap=True, compute importances=None,
criterion='gini', max depth=None,
max features='auto', max leaf nodes=None,
min density=None, min samples leaf=1,
min samples split=2, n estimators=10,
n _jobs=1l, oob score=False, random state=None,
verbose=0)

192

Chapter 5

I'm going to omit the output, but in total, there we were 52 files outputted on my machine:

>>> joblib.dump (rf,
['rf.
'rf.
'rf.
'rf.
'rf.
'rf.
'rf.

clf!',

clf 01.
clf 02.
clf 03.
clf 04.
clf 05.
clf 06.

npy',
npy',
npy',
npy',
npy',
npy',..]

"rf.clf")

Symbols

%matplotlib inline command 8

A

Altman's Z-score 147

attributes, random forest
rf.bootstrap 131
rf.compute_importances 131
rf.criterion 131
rf.max_depth 131
rf.max_features 131
rf.n_jobs 131

attributes, support vector classifier (SVC)
C 140
class_weight 140
gamma 141
kernel 141

automatic cross validation 164, 165

Bayesian Ridge Regression

about 44

applying, directly 79-81
binary features

creating, through thresholding 16, 17
bootstrapping 61, 139
boston dataset 56-58
Brute force grid search

about 175

performing 175-177
Bunch object 9

Index

C

categorical variables

about 17

working with 18, 19
centroids

about 90

optimizing 90-93
classification

about 119

LDA, using for 147-151

linear methods, using for 75-79

performing, with Decision Trees 120-124

Stochastic Gradient Descent,

using for 153, 154

closest object

finding, in feature space 102-104
cluster

correctness, assessing 93-96
clustering 85, 86
compute_importances parameter 123
correlation functions, scikit-learn 47
cosine kernel 33
cross validation, with ShuffleSplit 165-169

D

data
classifying, with support vector machines
(SVM) 140-143
clustering, KMeans used 86-89
handling, MiniBatch KMeans used 97-99
line, fitting through 56-58
scaling, to standard normal 13-15

data imputation 22
datasets module 9
decision boundary 142
Decision Tree model

tuning 125-130
Decision Trees

used, for performing classifications 120-124
decomposition

factor analysis, using for 31, 32
DictionaryLearning

about 39

decomposition, performing

for classification 39-41

DictVectorizer option 19
dimensionality

reducing, truncated SVD used 36-38

reducing, with PCA 28-30
distance functions 104
documents

classifying, with Naive Bayes 154-156
dummy estimators

used, for comparing results 177-180
dunder 43

E

effective rank 63
entropy

versus Gini impurity 124
external sources

sample data, obtaining from 8-10

F

factor analysis

about 31

using, for decomposition 31, 32
feature importance 133
feature selection

about 184-186

on L1 norms 187-191
feature space

closest objects, finding in 102-104
fit method 17

196

G

Gaussian Mixture Models

probabilistic clustering,

performing with 105-111

Gaussian process

about 44

using, for regression 44-48
gaussian_process module 50
Gaussian process object

defining 50
GaussianProcess object

betaO 45

corr 45

normalize 45

nugget 45

regr 45
Gauss-Markov theorem 61
Gini impurity

about 124

versus entropy 124
gradient boosting regression

about 82

working 82-84
grid search

performing 172-174

idempotent scalar objects
creating 15
image
quantizing, with KMeans clustering 99, 100
imputation, scikit-learn
idempotent scalar objects. creating 15
sparse imputations, handling 15
inertia 97
Information Gain (IG) 124

J

joblib
models, persisting with 191, 192

K

kernel PCA, nonlinear dimensionality
reduction 33-36

k-fold cross validation 162, 163
KMeans

about 86, 97

used, for clustering data 86-89

using, for outlier detection 111-115
KMeans clustering

image, quantizing with 99, 100
k-Nearest Neighbors (k-NN)

using, for regression 115-118

L

LabelBinarizer() method 20
label features
binarizing 20, 21
label propagation, semi-supervised
learning 157-159
Lasso cross-validation 71
Lasso, feature selection 72
LDA
using, for classification 147-151
least absolute shrinkage and selection
operator (LASSO) 70
least-angle regression (LARS) 72
leave-one-out cross-validation (LOOCV) 67
line
fitting, through data 56-58
Linear Discriminant Analysis. See LDA
linear methods
using, for classification 75-79
linear models 55
linear regression 56
linear regression model
evaluating 58-63
LinearRegression object 58
logistic regression 75
LogisticRegression object 76
loss function 84
Ir object 58
Is parameter 84

machine learning (ML) 8
max_depth parameter 84,121
mean absolute deviation (MAD) 60, 61
mean squared error (MSE) 60, 61
MiniBatch KMeans

used, for handling data 97-99
missing values

imputing, through various strategies 22-24
models

persisting, with joblib 191, 192

regularizing, sparsity used 70, 71
multiclass classification

generalizing with 145, 146
multiple preprocessing steps

Pipelines, using for 25-27

Naive Bayes
about 154
documents, classifying with 154-156
extending 156, 157

normalization 14

NP-hard 97

0

OneVsRestClassifier 145
outlier detection
KMeans, using for 111-115

P Proudly sourced and uploaded by [StormRG]
Kickass Torrents | TPB | ExtraTorrent | h33t
pairwise_distances function 102, 105
patsy option 19
PCA
about 28
dimensionality, reducing with 28-30
PCA object 30
Pipelines
about 25
using, for multiple preprocessing steps 25-27
working 41-44

197

precision parameter 150
preprocessing module 13
principal component analysis. See PCA
probabilistic clustering
performing, with Gaussian
Mixture Models 105-111
pydot 125

Q

Quadratic Discernment Analysis (QDA)
about 151
working with 151, 152

radial basis function
using 143, 144
random forest model
tuning 134-139
random forests
using 130-133
recall parameter 150
regression
about 115
Gaussian process, using for 44-48
k-NN, using for 115-118
Stochastic Gradient Descent (SGD),
using for 51-53
regression model
evaluating 180-184
regularization, LARS 72-75
residuals 57
results

comparing, dummy estimators used 177-180

ridge cross-validation 67
RidgeCV object 67
ridge regression
parameter, optimizing 66-69
used, for overcoming linear regression's
shortfalls 63-66

root-mean-square deviation (RMSE) 104

198

S

sample data
creating, for toy analysis 10-12
obtaining, from external sources 8-10
scikit-image 99
scikit-learn
URL 10
semi-supervised technique 157
ShuffleSplit
about 165
used, for performing cross
validation 165-169
silhouette distance 90
sklearn.metrics.pairwise 102
sparse imputations
handling 15
sparse matrices 17
sparsity
used, for regularizing models 70, 71
spherical clusters 105
standard normal
about 13
data, scaling to 13-15
Stochastic Gradient Descent (SGD)
using, for classification 153, 154
using, for regression 51-53
strategies
missing values, imputing through 22-24
stratified k-fold valuation
viewing 169-172
support vector classifier (SVC) 140
support vector machines (SVM)
about 140
data, classifying with 140-143
support vectors 140

T

thresholding

binary features, creating through 16, 17
toy analysis

sample data, creating for 10-12

TruncatedSVD
about 38
sign flipping 39
sparse matrices 39
truncated Singular Value Decomposition
(truncated SVD)
used, for reducing dimensionality 36-38

U

UCI Machine Learning Repository 10
univariate selection 184

\'}

VarianceThreshold object 185

y 4

z-scores 13

199

open source

community experience distilled

PUBLISHING

Thank you for buying
scikit-learn Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home

to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

Learning Python
Data Visualization

Learning Python Data
Visualization
ISBN: 978-1-78355-333-4 Paperback: 212 pages

Master how to build dynamic HTML5-ready SVG charts
using Python and the pygal library

1. A practical guide that helps you break into the
world of data visualization with Python.

2. Understand the fundamentals of building
charts in Python.

3. Packed with easy-to-understand tutorials for
developers who are new to Python or charting
in Python.

Learning scikit-learn:
Machine Learning in Python

Learning scikit-learn:

Machine Learning in Python
ISBN: 978-1-78328-193-0 Paperback: 118 pages

Experience the benefits of machine learning techniques
by applying them to real-world problems using Python
and the open source scikit-learn library

1. Use Python and scikit-learn to create
intelligent applications.

2. Apply regression techniques to predict
future behavior and learn to cluster
items in groups by their similarities.

3. Make use of classification techniques
to perform image recognition and
document classification.

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

IPython Interactive Computing
and Visualization Cookbook

IPython Interactive
Computing and

Visualization Cookbook
ISBN: 978-1-78328-481-8 Paperback: 512 pages

Over 100 hands-on recipes to sharpen your skills
in high-performance numerical computing and
data science with Python

1. Leverage the new features of the IPython
Notebook for interactive web-based Big
Data analysis and visualization.

2. Become an expert in high-performance
computing and visualization for data analysis
and scientific modeling.

3. A comprehensive coverage of scientific computing
through many hands-on, example-driven recipes
with detailed, step-by-step explanations.

Building Machine Learning
Systems with Python

Building Machine Learning
Systems with Python

ISBN: 978-1-78216-140-0 Paperback: 290 pages

Master the art of machine learning with Python and
build effective machine learning systems with this
intensive hands-on guide

1. Helps you master machine learning using a
broad set of Python libraries and start building
your own Python-based ML systems.

2. Covers classification, regression, feature
engineering, and much more guided by
practical examples.

3. A scenario-based tutorial to get into the right
mind-set of a machine learner (data exploration)
and successfully implement this in your new or
existing projects.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Premodel Workflow
	Introduction
	Getting sample data from external sources
	Creating sample data for toy analysis
	Scaling data to the standard normal
	Creating binary features through thresholding
	Working with categorical variables
	Binarizing label features
	Imputing missing values through various strategies
	Using Pipelines for multiple preprocessing steps
	Reducing dimensionality with PCA
	Using factor analysis for decomposition
	Kernel PCA for nonlinear dimensionality reduction
	Using truncated SVD to reduce dimensionality
	Decomposition to classify with DictionaryLearning
	Putting it all together with Pipelines
	Using Gaussian processes for regression
	Defining the Gaussian process object directly
	Using stochastic gradient descent for regression

	Chapter 2: Working with
Linear Models
	Introduction
	Fitting a line through data
	Evaluating the linear regression model
	Using ridge regression to overcome linear regression's shortfalls
	Optimizing the ridge regression parameter
	Using sparsity to regularize models
	Taking a more fundamental approach to regularization with LARS
	Using linear methods for classification – logistic regression
	Directly applying Bayesian ridge regression
	Using boosting to learn from errors

	Chapter 3: Building Models with Distance Metrics
	Introduction
	Using KMeans to cluster data
	Optimizing the number of centroids
	Assessing cluster correctness
	Using MiniBatch KMeans to handle more data
	Quantizing an image with KMeans clustering
	Finding the closest objects in the feature space
	Probabilistic clustering with Gaussian Mixture Models
	Using KMeans for outlier detection
	Using k-NN for regression

	Chapter 4: Classifying Data
with scikit-learn
	Introduction
	Doing basic classifications with Decision Trees
	Tuning a Decision Tree model
	Using many Decision Trees – random forests
	Tuning a random forest model
	Classifying data with Support Vector Machines
	Generalizing with multiclass classification
	Using LDA for classification
	Working with QDA – a nonlinear LDA
	Using Stochastic Gradient Descent for classification
	Classifying documents with Naïve Bayes
	Label propagation with semi-supervised learning

	Chapter 5: Post-model Workflow
	Introduction
	K-fold cross validation
	Automatic cross validation
	Cross validation with ShuffleSplit
	Stratified k-fold
	Poor man's grid search
	Brute force grid search
	Using dummy estimators to compare results
	Regression model evaluation
	Feature selection
	Feature selection on L1 norms
	Persisting models with joblib

	Index

