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Learning scikit-learn: Machine
Learning in Python

Suppose you want to predict whether tomorrow will be a sunny or rainy day. You

can develop an algorithm that is based on the current weather and your meteorological
knowledge using a rather complicated set of rules to return the desired prediction.

Now suppose that you have a record of the day-by-day weather conditions for the last
five years, and you find that every time you had two sunny days in a row, the following
day also happened to be a sunny one. Your algorithm could generalize this and predict
that tomorrow will be a sunny day since the sun reigned today and yesterday.

This algorithm is a pretty simple example of learning from experience. This is what
Machine Learning is all about: algorithms that learn from the available data.

In this book, you will learn several methods for building Machine Learning applications
that solve different real-world tasks, from document classification to image recognition.

We will use Python, a simple, popular, and widely used programming language,
and scikit-learn an open source Machine Learning library.

In each chapter, we will present a different Machine Learning setting and a couple

of well-studied methods as well as show step-by-step examples that use Python and
scikit-learn to solve concrete tasks. We will also show you tips and tricks to improve
algorithm performance, both from the accuracy and computational cost point of views.

What This Book Covers

Chapter 1, Machine Learning — A Gentle Introduction, presents the main concepts behind
Machine Learning while solving a simple classification problem: discriminating flower
species based on its characteristics.

Chapter 2, Supervised Learning, introduces four classification methods: Support Vector
Machines, Naive Bayes, decision trees, and Random Forests. These methods are used
to recognize faces, classify texts, and explain the causes for surviving from the Titanic
accident. It also presents Linear Models and revisits Support Vector Machines and
Random Forests, using them to predict house prices in Boston.

Chapter 3, Unsupervised Learning, describes methods for dimensionality reduction with
Principal Component Analysis to visualize high dimensional data in just two dimensions.
It also introduces clustering techniques to group instances of handwritten digits according
to a similarity measure using the k-means algorithm.

Chapter 4, Advanced Features, shows how to preprocess the data and select the best
features for learning, a task called Feature Selection. It also introduces Model Selection:
selecting the best method parameters using the available data and parallel computation.
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Machine Learning —
A Gentle Introduction

"I was into data before it was big" — @ml_hipster

You have probably heard recently about big data. The Internet, the explosion of
electronic devices with tremendous computational power, and the fact that almost
every process in our world uses some kind of software, are giving us huge amounts
of data every minute.

Think about social networks, where we store information about people, their
interests, and their interactions. Think about process-control devices, ranging from
web servers to cars and pacemakers, which permanently leave logs of data about
their performance. Think about scientific research initiatives, such as the genome
project, which have to analyze huge amounts of data about our DNA.

There are many things you can do with this data: examine it, summarize it, and even
visualize it in several beautiful ways. However, this book deals with another use

for data: as a source of experience to improve our algorithms' performance. These
algorithms, which can learn from previous data, conform to the field of Machine
Learning, a subfield of Artificial Intelligence.
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Any machine learning problem can be represented with the following three concepts:

*  We will have to learn to solve a task T. For example, build a spam filter that
learns to classify e-mails as spam or ham.

*  We will need some experience E to learn to perform the task. Usually,
experience is represented through a dataset. For the spam filter, experience
comes as a set of e-mails, manually classified by a human as spam or ham.

*  We will need a measure of performance P to know how well we are solving
the task and also to know whether after doing some modifications, our
results are improving or getting worse. The percentage of e-mails that our
spam filtering is correctly classifying as spam or ham could be P for our
spam-filtering task.

Scikit-learn is an open source Python library of popular machine learning algorithms
that will allow us to build these types of systems. The project was started in 2007

as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu
Brucher started working on this project as part of his thesis. In 2010, Fabian Pedregosa,
Gael Varoquaux, Alexandre Gramfort, and Vincent Michel of INRIA took the project
leadership and produced the first public release. Nowadays, the project is being
developed very actively by an enthusiastic community of contributors. It is built
upon NumPy (http://www.numpy.org/) and SciPy (http://scipy.org/), the
standard Python libraries for scientific computation. Through this book, we will

use it to show you how the incorporation of previous data as a source of experience
could serve to solve several common programming tasks in an efficient and probably
more effective way.

In the following sections of this chapter, we will start viewing how to install scikit-
learn and prepare your working environment. After that, we will have a brief
introduction to machine learning in a practical way, trying to introduce key machine
learning concepts while solving a simple practical task.

Installing scikit-learn

Installation instructions for scikit-learn are available at http://scikit-learn.org/
stable/install.html. Several examples in this book include visualizations, so

you should also install the matplotlib package from http://matplotlib.org/.
We also recommend installing [Python Notebook, a very useful tool that includes a
web-based console to edit and run code snippets, and render the results. The source
code that comes with this book is provided through IPython notebooks.

[6]
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An easy way to install all packages is to download and install the Anaconda
distribution for scientific computing from https://store.continuum.io/, which
provides all the necessary packages for Linux, Mac, and Windows platforms. Or, if
you prefer, the following sections gives some suggestions on how to install every
package on each particular platform.

Linux

Probably the easiest way to install our environment is through the operating system
packages. In the case of Debian-based operating systems, such as Ubuntu, you can
install the packages by running the following commands:

Firstly, to install the package we enter the following command:

# sudo apt-get install build-essential python-dev python-numpy
python-setuptools python-scipy libatlas-dev

Then, to install matplotlib, run the following command:

# sudo apt-get install python-matplotlib

After that, we should be ready to install scikit-learn by issuing this command:

# sudo pip install scikit-learn

To install IPython Notebook, run the following command:

# sudo apt-get install ipython-notebook

If you want to install from source, let's say to install all the libraries within a
virtual environment, you should issue the following commands:

# pip install numpy
# pip install scipy

# pip install scikit-learn
To install Matplotlib, you should run the following commands:

# pip install libpng-dev libjpeg8-dev libfreetypeé6-dev
# pip install matplotlib

To install IPython Notebook, you should run the following commands:

# pip install ipython
# pip install tormnado
# pip install pyzmg

[71
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Mac

You can similarly use tools such as MacPorts and HomeBrew that contain
precompiled versions of these packages.

Windows

To install scikit-learn on Windows, you can download a Windows installer from the
downloads section of the project web page: http://sourceforge.net/projects/
scikit-learn/files/

Checking your installation

To check that everything is ready to run, just open your Python (or probably better,
[Python) console and type the following;:

>>> import sklearn as sk
>>> import numpy as np
>>> import matplotlib.pyplot as plt

We have decided to precede Python code with >>> to separate it from the sentence
results. Python will silently import the scikit-learn, NumPy, and matplotlib
packages, which we will use through the rest of this book's examples.

If you want to execute the code presented in this book, you should run
IPython Notebook:

# ipython notebook

This will allow you to open the corresponding notebooks right in your browser.

[8]
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Datasets

As we have said, machine learning methods rely on previous experience, usually
represented by a dataset. Every method implemented on scikit-learn assumes that
data comes in a dataset, a certain form of input data representation that makes it
easier for the programmer to try different methods on the same data. Scikit-learn
includes a few well-known datasets. In this chapter, we will use one of them, the
Iris flower dataset, introduced in 1936 by Sir Ronald Fisher to show how a statistical
method (discriminant analysis) worked (yes, they were into data before it was big).
You can find a description of this dataset on its own Wikipedia page, but, essentially,
it includes information about 150 elements (or, in machine learning terminology,
instances) from three different Iris flower species, including sepal and petal length
and width. The natural task to solve using this dataset is to learn to guess the Iris
species knowing the sepal and petal measures. It has been widely used on machine
learning tasks because it is a very easy dataset in a sense that we will see later. Let's
import the dataset and show the values for the first instance:

>>> from sklearn import datasets
>>> iris = datasets.load iris()
>>> X iris, y iris = iris.data, iris.target
>>> print X iris.shape, y iris.shape
(150, 4) (150,)
>>> print X iris[0], y iris[0]
[ 5.1 3.5 1.4 0.2] 0

B Downloading the example code 7
K You can download the example code files for all Packt books you
5 have purchased from your account at http: //www.packtpub.
Q com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

We can see that the iris dataset is an object (similar to a dictionary) that has two
main components:

* A data array, where, for each instance, we have the real values for sepal
length, sepal width, petal length, and petal width, in that order (note that for
efficiency reasons, scikit-learn methods work on NumPy ndarrays instead of
the more descriptive but much less efficient Python dictionaries or lists). The
shape of this array is (150, 4), meaning that we have 150 rows (one for each
instance) and four columns (one for each feature).

* A target array, with values in the range of 0 to 2, corresponding to each
instance of Iris species (0: setosa, 1: versicolor, and 2: virginica), as you can
verify by printing the iris.target.target_names value.

[o]
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While it's not necessary for every dataset we want to use with scikit-learn to have
this exact structure, we will see that every method will require this data array, where
each instance is represented as a list of features or attributes, and another target array
representing a certain value we want our learning method to learn to predict. In

our example, the petal and sepal measures are our real-valued attributes, while the
flower species is the one-of-a-list class we want to predict.

Our first machine learning method -
linear classification

To get a grip on the problem of machine learning in scikit-learn, we will start with a
very simple machine learning problem: we will try to predict the Iris flower species
using only two attributes: sepal width and sepal length. This is an instance of a
classification problem, where we want to assign a label (a value taken from a discrete
set) to an item according to its features.

Let's first build our training dataset—a subset of the original sample, represented by
the two attributes we selected and their respective target values. After importing the
dataset, we will randomly select about 75 percent of the instances, and reserve the
remaining ones (the evaluation dataset) for evaluation purposes (we will see later
why we should always do that):

>>> from sklearn.cross validation import train test split
>>> from sklearn import preprocessing
>>> # Get dataset with only the first two attributes
>>> X, y = X iris[:, :2], y iris
>>> # Split the dataset into a training and a testing set
>>> # Test set will be the 25% taken randomly
>>> X train, X test, y train, y test = train test split (X, vy,
test size=0.25, random state=33)
>>> print X train.shape, y_ train.shape
(112, 2) (112,)
>>> # Standardize the features

>>> scaler = preprocessing.StandardScaler () .fit (X train)
>>> X train = scaler.transform(X train)
>>> X _test = scaler.transform(X_test)

[10]
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The train test_split function automatically builds the training and evaluation
datasets, randomly selecting the samples. Why not just select the first 112 examples?
This is because it could happen that the instance ordering within the sample could
matter and that the first instances could be different to the last ones. In fact, if you
look at the Iris datasets, the instances are ordered by their target class, and this
implies that the proportion of 0 and 1 classes will be higher in the new training set,
compared with that of the original dataset. We always want our training data to be a
representative sample of the population they represent.

The last three lines of the previous code modify the training set in a process usually
called feature scaling. For each feature, calculate the average, subtract the mean
value from the feature value, and divide the result by their standard deviation. After
scaling, each feature will have a zero average, with a standard deviation of one. This
standardization of values (which does not change their distribution, as you could
verify by plotting the x values before and after scaling) is a common requirement of
machine learning methods, to avoid that features with large values may weight too
much on the final results.

Now, let's take a look at how our training instances are distributed in the two-
dimensional space generated by the learning feature. pyplot, from the matplotlib
library, will help us with this:

>>> import matplotlib.pyplot as plt
>>> colors = ['red',K 'greenyellow', 'blue']
>>> for i in xrange(len(colors)):

>>> xs = X train[:, 0] [y train == i]
>>> ys = X train[:, 1] [y train == i]
>>> plt.scatter(xs, ys, c=colors([i])

>>> plt.legend(iris.target names)
>>> plt.xlabel ('Sepal length')
>>> plt.ylabel ('Sepal width')

[11]
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The scatter function simply plots the first feature value (sepal width) for each
instance versus its second feature value (sepal length) and uses the target class
values to assign a different color for each class. This way, we can have a pretty good
idea of how these attributes contribute to determine the target class. The following
screenshot shows the resulting plot:
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Looking at the preceding screenshot, we can see that the separation between the red
dots (corresponding to the Iris setosa) and green and blue dots (corresponding to the
two other Iris species) is quite clear, while separating green from blue dots seems a
very difficult task, given the two features available. This is a very common scenario:
one of the first questions we want to answer in a machine learning task is if the
feature set we are using is actually useful for the task we are solving, or if we need to
add new attributes or change our method.

Given the available data, let's, for a moment, redefine our learning task: suppose
we aim, given an Iris flower instance, to predict if it is a setosa or not. We have
converted our problem into a binary classification task (that is, we only have two
possible target classes).

[12]
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If we look at the picture, it seems that we could draw a straight line that correctly
separates both the sets (perhaps with the exception of one or two dots, which

could lie in the incorrect side of the line). This is exactly what our first classification
method, linear classification models, tries to do: build a line (or, more generally, a
hyperplane in the feature space) that best separates both the target classes, and use
it as a decision boundary (that is, the class membership depends on what side of the
hyperplane the instance is).

To implement linear classification, we will use the SGDClassifier from scikit-learn.
SGD stands for Stochastic Gradient Descent, a very popular numerical procedure
to find the local minimum of a function (in this case, the loss function, which
measures how far every instance is from our boundary). The algorithm will learn the
coefficients of the hyperplane by minimizing the loss function.

To use any method in scikit-learn, we must first create the corresponding classifier
object, initialize its parameters, and train the model that better fits the training data.
You will see while you advance in this book that this procedure will be pretty much
the same for what initially seemed very different tasks.

>>> from sklearn.linear modelsklearn. model import SGDClassifier
>>> clf = SGDClassifier ()
>>> clf.fit (X train, y train)

The sebclassifier initialization function allows several parameters. For the
moment, we will use the default values, but keep in mind that these parameters
could be very important, especially when you face more real-world tasks, where the
number of instances (or even the number of attributes) could be very large. The fit
function is probably the most important one in scikit-learn. It receives the training
data and the training classes, and builds the classifier. Every supervised learning
method in scikit-learn implements this function.

What does the classifier look like in our linear model method? As we have already
said, every future classification decision depends just on a hyperplane. That
hyperplane is, then, our model. The coef_ attribute of the c1f object (consider, for
the moment, only the first row of the matrices), now has the coefficients of the linear
boundary and the intercept_ attribute, the point of intersection of the line with the
y axis. Let's print them:

>>> print clf.coef
[[-28.53692691 15.05517618]
[ -8.93789454 -8.13185613]
[ 14.02830747 -12.80739966]]
>>> print clf.intercept
[-17.62477802 -2.35658325 -9.7570213 ]

[13]
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Indeed in the real plane, with these three values, we can draw a line, represented by
the following equation:

-17.62477802 - 28.53692691 * x1 + 15.05517618 * x2 =0

Now, given x1 and x2 (our real-valued features), we just have to compute the value
of the left-side of the equation: if its value is greater than zero, then the point is
above the decision boundary (the red side), otherwise it will be beneath the line (the
green or blue side). Our prediction algorithm will simply check this and predict the
corresponding class for any new iris flower.

But, why does our coefficient matrix have three rows? Because we did not tell the
method that we have changed our problem definition (how could we have done
this?), and it is facing a three-class problem, not a binary decision problem. What, in
this case, the classifier does is the same we did — it converts the problem into three
binary classification problems in a one-versus-all setting (it proposes three lines that
separate a class from the rest).

The following code draws the three decision boundaries and lets us know if they
worked as expected:

>>> x min, x max = X train[:, 0] .min() - .5, X train[:, 0] .max() +
.5

>>> y min, y max = X train[:, 1] .min() - .5, X train[:, 1] .max() +
.5

>>> Xs = np.arandge (x min, x max, 0.5)

>>> fig, axes = plt.subplots(1l, 3)
>>> fig.set_size_inches (10, 6)

>>> for 1 in [0, 1, 2]:

>>> axes[i] .set _aspect ('equal')

>>> axes[i] .set_title('Class '+ str(i) + ' versus the rest')

>>> axes[i] .set _xlabel ('Sepal length')

>>> axes[i] .set_ylabel ('Sepal width')

>>> axes[i] .set _xlim(x min, x max)

>>> axes[i] .set_ylim(y min, y max)

>>> sca (axes[i])

>>> plt.scatter (X train[:, 0], X train[:, 1], c=y train,
cmap=plt.cm.prism)

>>> ys = (-clf.intercept [i] -
Xs * clf.coef_ [i, 0]1) / clf.coef [i, 1]

>>> plt.plot(xs, ys, hold=True)

[14]
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Class 0 versus the rest Class 1 versus the rest Class 2 versus the rest

Sepal width
Sepal Width

—SEpal width

Sepal length Sepal length Sepal length

The first plot shows the model built for our original binary problem. It looks like
the line separates quite well the Iris setosa from the rest. For the other two tasks, as
we expected, there are several points that lie on the wrong side of the hyperplane.

Now, the end of the story: suppose that we have a new flower with a sepal width of
4.7 and a sepal length of 3.1, and we want to predict its class. We just have to apply
our brand new classifier to it (after normalizing!). The predict method takes

an array of instances (in this case, with just one element) and returns a list of
predicted classes:

>>>print clf.predict(scaler.transform([[4.7, 3.1]]))
[0]

If our classifier is right, this Iris flower is a setosa. Probably, you have noticed that

we are predicting a class from the possible three classes but that linear models are
essentially binary: something is missing. You are right. Our prediction procedure
combines the result of the three binary classifiers and selects the class in which it is
more confident. In this case, we will select the boundary line whose distance to the
instance is longer. We can check that using the classifier decision function method:

>>>print clf.decision function(scaler.transform([[4.7, 3.1]]1))
[[ 19.73905808 8.13288449 -28.63499119]1

[15]
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Evaluating our results

We want to be a little more formal when we talk about a good classifier. What does
that mean? The performance of a classifier is a measure of its effectiveness. The
simplest performance measure is accuracy: given a classifier and an evaluation
dataset, it measures the proportion of instances correctly classified by the classifier.
First, let's test the accuracy on the training set:

>>> from sklearn import metrics

>>> y train pred = clf.predict(X train)

>>> print metrics.accuracy_ score(y train, y train pred)
0.821428571429

This figure tells us that 82 percent of the training set instances are correctly classified
by our classifier.

Probably, the most important thing you should learn from this chapter is that
measuring accuracy on the training set is really a bad idea. You have built your
model using this data, and it is possible that your model adjusts well to them but
performs poorly in future (previously unseen data), which is its purpose. This
phenomenon is called overfitting, and you will see it now and again while you
read this book. If you measure based on your training data, you will never detect
overfitting. So, never measure based on your training data.

This is why we have reserved part of the original dataset (the testing partition) —we
want to evaluate performance on previously unseen data. Let's check the accuracy
again, now on the evaluation set (recall that it was already scaled):

>>> y pred = clf.predict (X test)
>>> print metrics.accuracy_ score(y test, y pred)
0.684210526316

We obtained an accuracy of 68 percent in our testing set. Usually, accuracy on the
testing set is lower than the accuracy on the training set, since the model is actually
modeling the training set, not the testing set. Our goal will always be to produce
models that avoid overfitting when trained over a training set, so they have enough
generalization power to also correctly model the unseen data.

Accuracy on the test set is a good performance measure when the number of instances
of each class is similar, that is, we have a uniform distribution of classes. But if you
have a skewed distribution (say, 99 percent of the instances belong to one class), a
classifier that always predicts the majority class could have an excellent performance in
terms of accuracy despite the fact that it is an extremely naive method.

[16]
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Within scikit-learn, there are several evaluation functions; we will show three
popular ones: precision, recall, and F1-score (or f-measure). They assume a binary
classification problem and two classes —a positive one and a negative one. In our
example, the positive class could be Iris setosa, while the other two will be combined
into one negative class.

Precision: This computes the proportion of instances predicted as positives
that were correctly evaluated (it measures how right our classifier is when it
says that an instance is positive).

Recall: This counts the proportion of positive instances that were correctly
evaluated (measuring how right our classifier is when faced with a positive
instance).

F1-score: This is the harmonic mean of precision and recall, and tries to
combine both in a single number.

The harmonic mean is used instead of the arithmetic mean because
the latter compensates low values for precision and with high
values for recall (and vice versa). On the other hand, with harmonic
% mean we will always have low values if either precision or recall
"~ islow. For an interesting description of this issue refer to the
paper http://www.cs.odu.edu/~mukka/cs795suml2dm/
Lecturenotes/Day3/F-measure-YS-260ct07.pdf

We can define these measures in terms of True and False, and Positives
and Negatives:

Prediction: Positive Prediction: Negative
Target cass: Positive True Positive (TP) False Negative (FN)
Target cass: Negative False Positive (FP) True Negative (TN)

With m being the sample size (that is, TP + TN + FP + FN), we have the
following formulae:

Accuracy = (TP +TN) / m
Precision = TP / (TP + FP)
Recall = TP / (TP + EN)

F1-score = 2 * Precision * Recall / (Precision + Recall)

[17]
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Let's see it in practice:

>>> print metrics.classification report(y test, y pred,
target names=iris.target names)

precision recall fl-score support
setosa 1.00 1.00 1.00 8
versicolor 0.43 0.27 0.33 11
virginica 0.65 0.79 0.71 19
avg / total 0.66 0.68 0.66 38

We have computed precision, recall, and f1-score for each class and their average
values. What we can see in this table is:

* The classifier obtained 1.0 precision and recall in the setosa class. This
means that for precision, 100 percent of the instances that are classified as
setosa are really setosa instances, and for recall, that 100 percent of the setosa
instances were classified as setosa.

*  On the other hand, in the versicolor class, the results are not as good:
we have a precision of 0.43, that is, only 43 percent of the instances that are
classified as versicolor are really versicolor instances. Also, for versicolor, we
have a recall of 0.27, that is, only 27 percent of the versicolor instances are
correctly classified.

Now, we can see that our method (as we expected) is very good at predicting
setosa, while it suffers when it has to separate the versicolor or virginica
classes. The support value shows how many instances of each class we had in the
testing set.

Another useful metric (especially for multi-class problems) is the confusion matrix:
inits (i, j) cell, it shows the number of class instances i that were predicted to
be in class j. A good classifier will accumulate the values on the confusion matrix
diagonal, where correctly classified instances belong.

>>> print metrics.confusion matrix(y test, y pred)

[[ 8 0 0]
[ 0 3 8]
[ 0 4 15]]

Our classifier is never wrong in our evaluation set when it classifies class 0 (setosa)
flowers. But, when it faces classes 1 and 2 flowers (versicolor and virginica), it
confuses them. The confusion matrix gives us useful information to know what types
of errors the classifier is making.

[18]
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To finish our evaluation process, we will introduce a very useful method known

as cross-validation. As we explained before, we have to partition our dataset into

a training set and a testing set. However, partitioning the data, results such that
there are fewer instances to train on, and also, depending on the particular partition
we make (usually made randomly), we can get either better or worse results.
Cross-validation allows us to avoid this particular case, reducing result variance and
producing a more realistic score for our models. The usual steps for k-fold
cross-validation are the following;:

1. Partition the dataset into k different subsets.

2. Create k different models by training on k-1 subsets and testing on the
remaining subset.

3. Measure the performance on each of the k models and take the average
measure.

Let's do that with our linear classifier. First, we will have to create a composite
estimator made by a pipeline of the standardization and linear models. With this
technique, we make sure that each iteration will standardize the data and then
train/test on the transformed data. The Pipeline class is also useful to simplify

the construction of more complex models that chain-multiply the transformations.
We will chose to have k = 5 folds, so each time we will train on 80 percent of the

data and test on the remaining 20 percent. Cross-validation, by default, uses accuracy
as its performance measure, but we could select the measurement by passing any
scorer function as an argument.

>>> from sklearn.cross validation import cross val score, KFold
>>> from sklearn.pipeline import Pipeline
>>> # create a composite estimator made by a pipeline of the
standarization and the linear model
>>> clf = Pipeline([
('scaler', StandardScaler()),
('linear model', SGDClassifier())
>>> # create a k-fold cross validation iterator of k=5 folds
>>> cv = KFold(X.shape[0], 5, shuffle=True, random state=33)
>>> # by default the score used is the one returned by score
method of the estimator (accuracy)
>>> scores = cross_val score(clf, X, y, cv=cv)
>>> print scores
[ 0.66666667 0.93333333 0.66666667 0.7 0.6 1

[19]
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We obtained an array with the k scores. We can calculate the mean and the standard
error to obtain a final figure:

>>> from scipy.stats import sem
>>> def mean_score (scores) :
return ("Mean score: {0:.3f} (+/-
{1:.3£})") .format (np.mean (scores), sem(scores))
>>> print mean score (scores)
Mean score: 0.713 (+/-0.057)

Our model has an average accuracy of 0.71.

Machine learning categories

Classification is only one of the possible machine learning problems that can be
addressed with scikit-learn. We can organize them in the following categories:

* In the previous example, we had a set of instances (that is, a set of data
collected from a population) represented by certain features and with a
particular target attribute. Supervised learning algorithms try to build a
model from this data, which lets us predict the target attribute for new
instances, knowing only these instance features. When the target class
belongs to a discrete set (such as a list of flower species), we are facing a
classification problem.

* Sometimes the class we want to predict, instead of belonging to a discrete
set, ranges on a continuous set, such as the real number line. In this case, we
are trying to solve a regression problem (the term was coined by Francis
Galton, who observed that the heights of tall ancestors tend to regress down
towards a normal value, the average human height). For example, we could
try to predict the petal width based on the other three features. We will see
that the methods used for regression are quite different from those used for
classification.

* Another different type of machine learning problem is that of unsupervised
learning. In this case, we do not have a target class to predict but instead
want to group instances according to some similarity measure based on the
available set of features. For example, suppose you have a dataset composed
of e-mails and want to group them by their main topic (the task of grouping
instances is called clustering). We can use it as features, for example, the
different words used in each of them.

[20]
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Important concepts related to
machine learning

The linear classifier we presented in the previous section could look too simple.
What if we use a higher degree polynomial? What if we also take as features not
only the sepal length and width, but also the petal length and the petal width?
This is perfectly possible, and depending on the sample distribution, it could lead
to a better fit to the training data, resulting in higher accuracy. The problem with
this approach is that now we must estimate not only the three original parameters
(the coefficients for x1, x2, and the interception point), but also the parameters for
the new features x3 and x4 (petal length and width) and also the product
combinations of the four features.

Intuitively, we would need more training data to adequately estimate these
parameters. The number of parameters (and consequently, the amount of training
data needed to adequately estimate them) would rapidly grow if we add more
features or higher order terms. This phenomenon, present in every machine learning
method, is called the idem curse of dimensionality: when the number of parameters
of a model grows, the data needed to learn them grows exponentially.

This notion is closely related to the problem of overfitting mentioned earlier. As our
training data is not enough, we risk producing a model that could be very good at
predicting the target class on the training dataset but fail miserably when faced with
new data, that is, our model does not have the generalization power. That is why it is
so important to evaluate our methods on previously unseen data.

The general rule is that, in order to avoid overfitting, we should prefer simple (that

is, with less parameters) methods, something that could be seen as an instantiation

of the philosophical principle of Occam's razor, which states that among competing
hypotheses, the hypothesis with the fewest assumptions should be selected.

However, we should also take into account Einstein's words:
" Everything should be made as simple as possible, but not simpler."

The idem curse of dimensionality may suggest that we keep our models simple,

but on the other hand, if our model is too simple we run the risk of suffering

from underfitting. Underfitting problems arise when our model has such a low
representation power that it cannot model the data even if we had all the training
data we want. We clearly have underfitting when our algorithm cannot achieve good
performance measures even when measuring on the training set.

[21]
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As a result, we will have to achieve a balance between overfitting and underfitting.
This is one of the most important problems that we will have to address when
designing our machine learning models.

Other key concepts to take into account are the idem bias and variance of a machine
learning method. Consider an extreme method that, in a binary classification setting,
always predicts the positive class for any new instance. Its predictions are, trivially,
always the same, or in statistical terms, it has null variance; but it will fail to predict
negative examples: it is very biased towards positive results. On the other hand,
consider a method that predicts, for a new instance, the class of the nearest instance
in the training set (in fact, this method exists, and it is called the 1-nearest neighbor).
The generalization assumptions that this method uses are very small: it has a very
low bias; but, if we change the training data, results could dramatically change,

that is, its variance is very high. These are extreme examples of the bias-variance
tradeoff. It can be shown that, no matter which method we are using, if we reduce
bias, variance will increase, and vice versa.

Linear classifiers have generally low-variance: no matter what subset we select for
training, results will be similar. However, if the data distribution (as in the case of the
versicolor and virginica species) makes target classes not separable by a hyperplane,
these results will be consistently wrong, that is, the method is highly biased.

On the other hand, kNN (a memory-based method we will not address in this book)
has very low bias but high variance: the results are generally very good at describing
training data but tend to vary greatly when trained on different training instances.

There are other important concepts related to real-world applications where our

data will not come naturally as a list of real-valued features. In these cases, we will
need to have methods to transform non real-valued features to real-valued ones.
Besides, there are other steps related to feature standardization and normalization,
which as we saw in our Iris example, are needed to avoid undesired effects regarding
the different value ranges. These transformations on the feature space are known as
data preprocessing.

After having a defined feature set, we will see that not all of the features that

come in our original dataset could be useful for resolving our task. So we must also
have methods to do feature selection, that is, methods to select the most

promising features.

In this book, we will present several problems and in each of them we will show
different ways to transform and find the most relevant features to use for learning
a task, called feature engineering, which is based on our knowledge of the domain
of the problem and/or data analysis methods. These methods, often not valued
enough, are a fundamental step toward obtaining good results.
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Summary

In this chapter, we introduced the main general concepts in machine learning and
presented scikit-learn, the Python library we will use in the rest of this book. We
included a very simple example of classification, trying to show the main steps
for learning, and including the most important evaluation measures we will use.
In the rest of this book, we plan to show you different machine learning methods
and techniques using different real-world examples for each one. In almost every
computational task, the presence of historical data could allow us to improve
performance in the sense introduced at the beginning of this chapter.

The next chapter introduces supervised learning methods: we have annotated data
(that is, instances where the target class/value is known) and we want to predict
the same class/value for future data from the same population. In the case of
classification tasks, that is, a discrete-valued target class, several different models
exist, ranging from statistical methods, such as the simple Naive Bayes to advanced
linear classifiers, such as Support Vector Machines (SVM). Some methods, such as
decision trees, will allow us to visualize how important a feature is to discriminate
between different target classes and have a human interpretation of the decision
process. We will also address another type of supervised learning task: regression,
that is, methods that try to predict real-valued data.
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