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Learning scikit-learn: Machine 
Learning in Python  
Suppose you want to predict whether tomorrow will be a sunny or rainy day. You  
can develop an algorithm that is based on the current weather and your meteorological 
knowledge using a rather complicated set of rules to return the desired prediction.  
Now suppose that you have a record of the day-by-day weather conditions for the last 
five years, and you find that every time you had two sunny days in a row, the following 
day also happened to be a sunny one. Your algorithm could generalize this and predict 
that tomorrow will be a sunny day since the sun reigned today and yesterday.  
This algorithm is a pretty simple example of learning from experience. This is what 
Machine Learning is all about: algorithms that learn from the available data. 

In this book, you will learn several methods for building Machine Learning applications 
that solve different real-world tasks, from document classification to image recognition. 

We will use Python, a simple, popular, and widely used programming language,  
and scikit-learn an open source Machine Learning library. 

In each chapter, we will present a different Machine Learning setting and a couple  
of well-studied methods as well as show step-by-step examples that use Python and 
scikit-learn to solve concrete tasks. We will also show you tips and tricks to improve 
algorithm performance, both from the accuracy and computational cost point of views. 

What This Book Covers 
Chapter 1, Machine Learning – A Gentle Introduction, presents the main concepts behind 
Machine Learning while solving a simple classification problem: discriminating flower 
species based on its characteristics. 

Chapter 2, Supervised Learning, introduces four classification methods: Support Vector 
Machines, Naive Bayes, decision trees, and Random Forests. These methods are used  
to recognize faces, classify texts, and explain the causes for surviving from the Titanic 
accident. It also presents Linear Models and revisits Support Vector Machines and 
Random Forests, using them to predict house prices in Boston. 

Chapter 3, Unsupervised Learning, describes methods for dimensionality reduction with 
Principal Component Analysis to visualize high dimensional data in just two dimensions. 
It also introduces clustering techniques to group instances of handwritten digits according 
to a similarity measure using the k-means algorithm. 

Chapter 4, Advanced Features, shows how to preprocess the data and select the best 
features for learning, a task called Feature Selection. It also introduces Model Selection: 
selecting the best method parameters using the available data and parallel computation. 
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Machine Learning – 
A Gentle Introduction

"I was into data before it was big"—@ml_hipster

You have probably heard recently about big data. The Internet, the explosion of 
electronic devices with tremendous computational power, and the fact that almost 
every process in our world uses some kind of software, are giving us huge amounts 
of data every minute.

Think about social networks, where we store information about people, their 
interests, and their interactions. Think about process-control devices, ranging from 
web servers to cars and pacemakers, which permanently leave logs of data about 
their performance. Think about scientifi c research initiatives, such as the genome 
project, which have to analyze huge amounts of data about our DNA.

There are many things you can do with this data: examine it, summarize it, and even 
visualize it in several beautiful ways. However, this book deals with another use 
for data: as a source of experience to improve our algorithms' performance. These 
algorithms, which can learn from previous data, conform to the fi eld of Machine 
Learning, a subfi eld of Artifi cial Intelligence.
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Any machine learning problem can be  represented with the following three concepts:

• We will have to learn to solve a task T. For example, build a spam fi lter that 
learns to classify e-mails as spam or ham.

• We will need some experience E to learn to perform the task. Usually, 
experience is represented through a dataset. For the spam fi lter, experience 
comes as a set of e-mails, manually classifi ed by a human as spam or ham.

• We will need a measure of performance P to know how well we are solving 
the task and also to know whether after doing some modifi cations, our 
results are improving or getting worse. The percentage of e-mails that our 
spam fi ltering is correctly classifying  as spam or ham could be P for our 
spam-fi ltering task.

Scikit-learn is an open source  Python library of popular machine learning algorithms 
that will allow us to build these types of systems. The project was started in 2007 
as a Google Summer of Code project by David Cournapeau. Later that year, Matthieu 
Brucher started working on this project as part of his thesis. In 2010, Fabian Pedregosa, 
Gael Varoquaux, Alexandre Gramfort, and Vincent Michel of INRIA took the project 
leadership and produced the fi rst public release. Nowadays, the project is being 
developed very actively by an enthusiastic community of contributors. It is built 
upon  NumPy (http://www.numpy.org/) and SciPy (http://scipy.org/), the 
 standard Python libraries for scientifi c computation. Through this book, we will 
use it to show you how the incorporation of previous data as a source of experience 
could serve to solve several common programming tasks in an effi cient and probably 
more effective way.

In the following sections of this chapter, we will start viewing how to install scikit-
learn and prepare your working environment. After that, we will have a brief 
introduction to machine learning in a practical way, trying to introduce key machine 
learning  concepts while solving a simple practical task.

Installing scikit-learn
Installation instructions for  scikit-learn are available at http://scikit-learn.org/
stable/install.html. Several examples in this book include visualizations, so 
you should also install the matplotlib package from http://matplotlib.org/. 
 We also recommend installing  IPython Notebook, a very useful tool that includes a 
web-based console to edit and run code snippets, and render the results. The source 
code that comes with this book is provided through IPython notebooks.
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An easy way to install all packages is to download and install the Anaconda 
distribution for scientifi c computing from https://store.continuum.io/, which 
provides all the necessary packages for Linux, Mac, and Windows platforms. Or, if 
you prefer, the following sections gives some suggestions on how to install every 
package on each particular platform.

Linux
Probably the easiest way to install  our environment is through the operating system 
packages. In the case of Debian-based operating systems, such as Ubuntu,  you can 
install the packages by running the following commands:

• Firstly, to install the package we enter the following command:
# sudo apt-get install build-essential python-dev python-numpy 
python-setuptools python-scipy libatlas-dev

• Then, to install matplotlib, run the following command:
# sudo apt-get install python-matplotlib

• After that, we should be ready to install scikit-learn by issuing this command:
# sudo pip install scikit-learn

• To install IPython Notebook, run the following command:
# sudo apt-get install ipython-notebook

• If you want to install from source, let's say to install all the libraries within a 
virtual environment, you should  issue the following commands:
# pip install numpy

# pip install scipy

# pip install scikit-learn

• To install Matplotlib, you should run the following commands:
# pip install libpng-dev libjpeg8-dev libfreetype6-dev

# pip install matplotlib

• To install IPython Notebook,  you should run the following commands:

# pip install ipython

# pip install tornado

# pip install pyzmq
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Mac
You can similarly use tools such as  MacPorts and HomeBrew that contain 
precompiled  versions of these packages.

Windows
To install scikit-learn on Windows,  you  can download a Windows installer from the 
downloads section of the project web page: http://sourceforge.net/projects/
scikit-learn/files/

Checking your installation
To check that everything is  ready to run, just open your Python (or probably better, 
IPython) console and type the following:

>>> import sklearn as sk
>>> import numpy as np
>>> import matplotlib.pyplot as plt

We have decided to precede Python code with >>> to separate it from the sentence 
results. Python will silently import the scikit-learn, NumPy, and matplotlib 
packages, which we will use through the rest of this book's examples.

If you want to execute the code presented in this book, you should run 
IPython Notebook:

# ipython notebook

This will allow you to open the  corresponding notebooks right in your browser.
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Datasets
As we have said, machine  learning methods rely on previous experience, usually 
represented by a dataset. Every method implemented on scikit-learn assumes that 
data comes in a dataset, a certain form of input data representation that makes it 
easier for the programmer to try different methods on the same data. Scikit-learn 
includes a few well-known datasets. In this chapter, we will use one of them, the 
Iris fl ower dataset, introduced in 1936 by Sir Ronald Fisher to show how a statistical 
method (discriminant analysis) worked (yes, they were into data before it was big). 
You can fi nd a description of this dataset on its own Wikipedia page, but, essentially, 
it includes information about 150 elements (or, in machine learning terminology, 
instances) from three different Iris fl ower species, including sepal and petal length 
and width. The natural task to solve using this dataset is to learn to guess the Iris 
species knowing the sepal and petal measures. It has been widely used on machine 
learning tasks because it is a very easy dataset in a sense that we will see later. Let's 
import the dataset and show the values for the fi rst instance:

>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> X_iris, y_iris = iris.data, iris.target
>>> print X_iris.shape, y_iris.shape
  (150, 4) (150,)
>>> print X_iris[0], y_iris[0]
  [ 5.1  3.5  1.4  0.2] 0

Downloading the example code
You can download the example code fi les for all Packt books you 
have purchased from your account at http://www.packtpub.
com. If you purchased this book elsewhere, you can visit 
http://www.packtpub.com/support and register to have 
the fi les e-mailed directly to you.

We can see that the iris dataset is an object (similar to a dictionary) that has two 
main components:

• A data array,  where, for each instance, we have the real values for sepal 
length, sepal width, petal length, and petal width, in that order (note that for 
effi ciency reasons, scikit-learn methods work on NumPy ndarrays instead of 
the more descriptive but much less effi cient Python dictionaries or lists). The 
shape of this array is (150, 4), meaning that we have 150 rows (one for each 
instance) and four columns (one for each feature).

• A target array, with  values in the range of 0 to 2, corresponding to each 
instance of Iris species (0: setosa, 1: versicolor, and 2: virginica), as you can 
verify by printing the iris.target.target_names value.
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While it's not necessary for every dataset we want to use with scikit-learn to have 
this exact structure, we will see that every method will require this data array, where 
each instance is represented as a list of features or attributes, and another target array 
representing a certain value we want our learning method to learn to predict. In 
our example, the petal and sepal  measures are our real-valued attributes, while the 
fl ower species is the one-of-a-list class we want to predict.

Our fi rst machine learning method –
linear classifi cation
To get a grip on the problem of  machine learning in scikit-learn, we will start with a 
very simple machine learning problem: we will try to predict the Iris fl ower species 
using  only two attributes: sepal width and sepal length. This is an instance of a 
classifi cation problem, where we want to  assign a label (a value taken from a discrete 
set) to an item according to its features.

Let's fi rst build our training dataset—a subset of the original sample, represented by 
the two attributes we selected and their respective target values. After importing the 
dataset, we will randomly select about 75 percent of the instances, and reserve the 
remaining ones (the evaluation dataset) for evaluation purposes (we will see later 
why we should always do that):

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn import preprocessing
>>> # Get dataset with only the first two attributes
>>> X, y = X_iris[:, :2], y_iris
>>> # Split the dataset into a training and a testing set
>>> # Test set will be the 25% taken randomly
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, 
  test_size=0.25, random_state=33)
>>> print X_train.shape, y_train.shape
  (112, 2) (112,)
>>> # Standardize the features
>>> scaler = preprocessing.StandardScaler().fit(X_train)
>>> X_train = scaler.transform(X_train)
>>> X_test = scaler.transform(X_test)
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The train_test_split  function automatically builds the training and evaluation 
datasets, randomly selecting the samples. Why not just select the fi rst 112 examples? 
This is because it could happen that the instance ordering within the sample could 
matter and that the fi rst instances could be different to the last ones. In fact, if you 
look at the Iris datasets, the instances are ordered by their target class, and this 
implies that the proportion of 0 and 1 classes will be  higher in the new training set, 
compared with that of the original dataset. We always want our training data to be a 
representative sample of the population they represent.

The last three lines of the previous code modify the training set in a process usually 
called feature scaling. For each feature,  calculate the average, subtract the mean 
value from the feature value, and divide the result by their standard deviation. After 
scaling, each  feature will have a zero average, with a standard deviation of one. This 
standardization of values (which does not change their distribution, as you could 
verify by plotting the X values before and after scaling) is a common requirement of 
machine learning methods, to avoid that features with large values may weight too 
much on the fi nal results.

Now, let's take a look at how our training instances are distributed in the two-
dimensional space generated by the learning feature. pyplot, from the matplotlib 
library, will help us with this:

>>> import matplotlib.pyplot as plt
>>> colors = ['red', 'greenyellow', 'blue']
>>> for i in xrange(len(colors)):
>>>     xs = X_train[:, 0][y_train == i]
>>>     ys = X_train[:, 1][y_train == i]
>>>     plt.scatter(xs, ys, c=colors[i])
>>> plt.legend(iris.target_names)
>>> plt.xlabel('Sepal length')
>>> plt.ylabel('Sepal width')

 

 

For More Information:  
www.packtpub.com/learning-scikit-learn-machine-in-python/book 

 

http://www.packtpub.com/learning-scikit-learn-machine-in-python/book


Machine Learning – A Gentle Introduction

[ 12 ]

The scatter function simply plots the fi rst feature value (sepal width) for each 
instance versus its second feature value (sepal length) and uses the target class 
values to assign a different color for each class. This way, we can have a pretty good 
idea of how these attributes contribute to determine the target class. The following 
screenshot shows the resulting plot:

Looking at the preceding screenshot, we can see that the separation between the red 
dots (corresponding to the Iris setosa) and green and blue dots (corresponding to the 
two other Iris species) is quite clear, while separating green from blue dots seems a 
very diffi cult task, given the two features available. This is a very common scenario: 
one of the fi rst questions we want to answer in a machine learning task is if the 
feature set we are using is actually useful for the task we are solving, or if we need to 
add new attributes or change our method.

Given the available data, let's, for a  moment,  redefi ne our learning task: suppose 
we aim, given an Iris fl ower instance, to predict if it is a setosa or not. We have 
converted our problem into  a binary classifi cation task (that is, we only have two 
possible target classes).
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If we look at the picture, it seems that we could draw a straight line that correctly 
separates both the sets (perhaps with the exception of one or two dots, which 
could lie in the incorrect side of the line). This is exactly what our fi rst classifi cation 
method, linear classifi cation models, tries to do: build a line (or, more generally, a 
hyperplane in the feature space) that best separates both the target classes, and use 
it as a decision boundary (that is, the class membership depends on what side of the 
hyperplane the instance is).

To implement linear classifi cation, we will use the SGDClassifi er from scikit-learn. 
SGD stands for Stochastic Gradient Descent, a very popular numerical procedure 
to fi nd the local minimum of a function (in this case, the loss function, which 
 measures how far every instance is from our boundary). The algorithm will learn the 
coeffi cients of the hyperplane by minimizing the loss function.

To use any method in scikit-learn,  we must fi rst create the corresponding classifi er 
object, initialize its parameters, and train the model that better fi ts the training data. 
You will see while you advance in this book that this procedure will be pretty much 
the same for what initially seemed very different tasks.

>>> from sklearn.linear_modelsklearn._model import SGDClassifier
>>> clf = SGDClassifier()
>>> clf.fit(X_train, y_train) 

The SGDClassifier initialization  function  allows several parameters. For the 
moment, we will use the default values, but keep in mind that these parameters 
could be very important, especially when you face more real-world tasks, where the 
number of instances (or even the number of attributes) could be very large. The fit 
function is probably the most important one in scikit-learn. It receives the training 
data and the training classes, and builds the classifi er. Every supervised  learning 
method in scikit-learn implements this function.

What does the classifi er look like in our linear model method? As we have already 
said, every future classifi cation decision depends just on a hyperplane. That 
hyperplane is, then, our model. The coef_  attribute of the clf object (consider, for 
the moment, only the fi rst row of the matrices), now has the coeffi cients of the linear 
boundary and the intercept_ attribute,  the point of intersection of the line with the 
y axis. Let's print them:

>>> print clf.coef_
[[-28.53692691  15.05517618]
  [ -8.93789454  -8.13185613]
  [ 14.02830747 -12.80739966]]
>>> print clf.intercept_
[-17.62477802  -2.35658325  -9.7570213 ] 
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Indeed in the real plane, with these three values, we can draw a line, represented by 
the following equation:

-17.62477802 - 28.53692691 * x1 + 15.05517618 * x2 = 0

Now, given x1 and x2 (our real-valued features), we just have to compute the value 
of the left-side of the equation: if its value is greater than zero, then the point is 
above the decision boundary (the red side), otherwise it will be beneath the line (the 
green or blue side). Our prediction algorithm will simply check this and predict the 
corresponding class for any new iris fl ower.

But, why does our coeffi cient matrix have three rows? Because we did not tell the 
method that we have changed our problem defi nition (how could we have done 
this?), and it is facing a three-class problem, not a binary decision problem. What, in 
this case, the classifi er does is the same we did—it converts the problem into three 
binary classifi cation problems in a one-versus-all  setting (it proposes three lines that 
separate a class from the rest).

The following code draws the three  decision boundaries and lets us know if they 
worked as expected:

>>> x_min, x_max = X_train[:, 0].min() - .5, X_train[:, 0].max() +  
    .5
>>> y_min, y_max = X_train[:, 1].min() - .5, X_train[:, 1].max() + 
    .5
>>> xs = np.arange(x_min, x_max, 0.5)
>>> fig, axes = plt.subplots(1, 3)
>>> fig.set_size_inches(10, 6)
>>> for i in [0, 1, 2]:
>>>     axes[i].set_aspect('equal')
>>>     axes[i].set_title('Class '+ str(i) + ' versus the rest')
>>>     axes[i].set_xlabel('Sepal length')
>>>     axes[i].set_ylabel('Sepal width')
>>>     axes[i].set_xlim(x_min, x_max)
>>>     axes[i].set_ylim(y_min, y_max)
>>>     sca(axes[i])
>>>     plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train,
        cmap=plt.cm.prism)
>>>     ys = (-clf.intercept_[i] –
        Xs * clf.coef_[i, 0]) / clf.coef_[i, 1]
>>>     plt.plot(xs, ys, hold=True)    
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The fi rst plot shows the model built for our original binary problem. It looks like 
the line separates quite well the Iris setosa from the rest. For the other two tasks, as 
we expected, there are several points that lie on the wrong side of the hyperplane.

Now, the end of the story: suppose that  we have a new fl ower with a sepal width of 
4.7 and a sepal length of 3.1, and we want to predict its class. We just have to apply 
our brand new classifi er to it (after normalizing!). The predict method takes 
an array of instances (in this case, with just one  element) and returns a list of 
predicted classes:

>>>print clf.predict(scaler.transform([[4.7, 3.1]]))
[0]

If our classifi er is right, this Iris fl ower is a setosa. Probably, you have noticed that 
we are predicting a class from the possible three classes but that linear models are 
essentially binary: something is missing. You are right. Our prediction procedure 
combines the result of the three binary classifi ers and selects the class in which it is 
more confi dent. In this case, we will select the boundary line whose distance to the 
instance is longer. We can check that using the classifi er decision_function method:

>>>print clf.decision_function(scaler.transform([[4.7, 3.1]]))
[[ 19.73905808   8.13288449 -28.63499119]]
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Evaluating our results
We want to be a little more  formal when we talk about a good classifi er. What does 
that mean? The performance of a classifi er is a measure of its effectiveness. The 
simplest performance measure is accuracy: given a classifi er and an evaluation 
dataset, it measures the proportion of instances correctly classifi ed by the classifi er. 
First, let's test the accuracy on the training set:

>>> from sklearn import metrics
>>> y_train_pred = clf.predict(X_train)
>>> print metrics.accuracy_score(y_train, y_train_pred)
0.821428571429 

This fi gure tells us that 82 percent of the training set instances are correctly classifi ed 
by our classifi er.

Probably, the most important thing you should learn from this chapter is that 
measuring accuracy on the training set is really a bad idea. You have built your 
model using this data, and it is possible that your model adjusts well to them but 
performs poorly in future (previously unseen data), which is its purpose. This 
phenomenon is called  overfi tting, and you will see it now and again while you 
read this book. If you measure based on your training data, you will never detect 
overfi tting. So, never measure based on your training data.

This is why we have reserved part of the  original dataset (the testing partition)—we 
want to evaluate performance on previously unseen data. Let's check the accuracy 
again, now on the evaluation set (recall that it was already scaled):

>>> y_pred = clf.predict(X_test)
>>> print metrics.accuracy_score(y_test, y_pred)
0.684210526316 

We obtained an accuracy of 68 percent in our testing set. Usually, accuracy on the 
testing set is lower than the accuracy on the training set, since the model is actually 
modeling the training set, not the testing set. Our goal will always be to produce 
models that avoid overfi tting when trained over a training set, so they have enough 
generalization power to also correctly model the unseen data.

Accuracy on the test set is a good performance measure when the number of instances 
of each class is similar, that is, we have a uniform distribution of classes. But if you 
have a skewed distribution (say, 99 percent of the instances belong to one class), a 
classifi er that always predicts the majority class could have an excellent performance in 
terms of accuracy despite the fact that it is an extremely naive method.
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Within scikit-learn, there are several evaluation functions; we will show three 
popular ones: precision, recall, and F1-score (or f-measure). They assume a binary 
classifi cation problem and two classes—a positive one and a negative one. In our 
example, the positive class could be Iris setosa, while the other two will be combined 
into one negative class.

• Precision: This  computes the proportion of instances predicted as positives 
that were correctly evaluated (it measures how right our classifi er is when it 
says that an instance is positive).

• Recall: This counts  the proportion of positive instances that were correctly 
evaluated (measuring how right our classifi er is when faced with a positive 
instance).

• F1-score: This is the  harmonic mean of precision and recall, and tries to 
combine both in a single number.

The harmonic mean is used  instead of the arithmetic mean because 
the latter compensates low values for precision and with high 
values for recall (and vice versa). On the other hand, with harmonic 
mean we will always have low values if either precision or recall 
is low. For an interesting description of this issue refer to the 
paper http://www.cs.odu.edu/~mukka/cs795sum12dm/
Lecturenotes/Day3/F-measure-YS-26Oct07.pdf

We can defi ne these measures in terms of True and False, and Positives 
and Negatives:

Prediction: Positive Prediction: Negative
Target cass: Positive True Positive (TP) False Negative (FN)
Target cass: Negative False Positive (FP) True Negative (TN)

With m being the sample size  (that is, TP + TN + FP + FN), we have the 
following formulae:

• Accuracy = (TP + TN) / m
• Precision = TP / (TP + FP)
• Recall = TP / (TP + FN)
• F1-score = 2 * Precision * Recall / (Precision + Recall)
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Let's see it in practice:

>>> print metrics.classification_report(y_test, y_pred,
  target_names=iris.target_names)
               precision    recall  f1-score   support

setosa          1.00          1.00      1.00         8
versicolor      0.43          0.27      0.33        11
virginica       0.65          0.79      0.71        19

avg / total     0.66          0.68      0.66        38

We have computed precision, recall, and f1-score for each class and their average 
values. What we can see in this table is:

• The classifi er obtained 1.0 precision and recall in the setosa class. This 
means that for precision, 100 percent of the instances that are classifi ed as 
setosa are really setosa instances, and for recall, that 100 percent of the setosa 
instances were classifi ed as setosa.

• On the other hand, in the versicolor class, the results are not as good: 
we have a precision of 0.43, that is, only 43 percent of the instances that are 
classifi ed as versicolor are really versicolor instances. Also, for versicolor, we 
have a recall of 0.27, that is, only 27 percent of the versicolor instances are 
correctly classifi ed.

Now, we can see that our method (as we expected) is very good at predicting 
setosa, while it suffers when it has to separate the versicolor or virginica 
classes. The support value shows how many instances of each class we had in the 
testing set.

Another useful metric (especially for multi-class problems) is the confusion matrix: 
in its (i, j) cell, it shows the number of class instances i that were predicted to 
be in class j. A good classifi er will accumulate the values on the confusion matrix 
diagonal, where correctly classifi ed instances belong.

>>> print metrics.confusion_matrix(y_test, y_pred)
[[ 8  0  0]
[ 0  3  8]
[ 0  4 15]] 

Our classifi er is never wrong in our evaluation  set when it classifi es class 0 (setosa) 
fl owers. But, when it faces classes 1 and 2 fl owers (versicolor and virginica), it 
confuses them. The confusion matrix gives us useful information to know what types 
of errors the classifi er is making.
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To fi nish our evaluation process, we will introduce a very useful method known 
as cross-validation. As we explained before, we have to partition our dataset into 
a training set and a testing set. However, partitioning the data, results such that 
there are fewer instances to train on, and also, depending on the particular partition 
we make (usually made randomly), we can get either better or worse results. 
Cross-validation allows us to avoid this particular case, reducing result variance and 
producing a more realistic score for our models. The usual steps for k-fold 
cross-validation are the following:

1. Partition the dataset into k different subsets.
2. Create k different models by training on k-1 subsets and testing on the 

remaining subset.
3. Measure the performance on each of the k models and take the average 

measure.

Let's do that with our linear classifi er. First, we will have to create a composite 
estimator made by a pipeline of the standardization and linear models. With this 
technique, we make sure that each iteration will standardize the data and then 
train/test on the transformed data. The Pipeline  class is also useful to simplify 
the construction of more complex models that chain-multiply the transformations. 
We will chose to have k = 5 folds, so each time we will train on 80 percent of the 
data and test on the remaining 20 percent. Cross-validation, by default, uses accuracy 
as its performance measure, but we could select the measurement by passing any 
scorer function as an argument.

>>> from sklearn.cross_validation import cross_val_score, KFold
>>> from sklearn.pipeline import Pipeline
>>> # create a composite estimator made by a pipeline of the 
    standarization and the linear model
>>> clf = Pipeline([
        ('scaler', StandardScaler()),
        ('linear_model', SGDClassifier())
])
>>> # create a k-fold cross validation iterator of k=5 folds
>>> cv = KFold(X.shape[0], 5, shuffle=True, random_state=33)
>>> # by default the score used is the one returned by score 
    method of the estimator (accuracy)
>>> scores = cross_val_score(clf, X, y, cv=cv)
>>> print scores
[ 0.66666667  0.93333333  0.66666667  0.7         0.6       ]
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We obtained an array with the k scores.  We can calculate the mean and the standard 
error to obtain a fi nal fi gure:

>>> from scipy.stats import sem
>>> def mean_score(scores):
    return ("Mean score: {0:.3f} (+/-
    {1:.3f})").format(np.mean(scores), sem(scores))
>>> print mean_score(scores)
Mean score: 0.713 (+/-0.057)

Our model has an average accuracy of 0.71.

Machine learning categories
Classifi cation is only one of the  possible machine learning problems that can be 
addressed with scikit-learn. We can organize them in the following categories:

• In the previous example, we had a set of instances (that is, a set of data 
collected from a population) represented by certain features and with a 
particular target attribute. Supervised learning algorithms try to build a 
model from this data, which lets us predict the target attribute for new 
instances, knowing only these instance features. When the target class 
belongs to a discrete set (such as a list of fl ower species), we are facing a 
classifi cation problem.

• Sometimes the class we want to predict, instead of belonging to a discrete 
set, ranges on a continuous set, such as the real number line. In this case, we 
are trying to solve a regression problem (the term was coined by Francis 
Galton, who observed that the heights of tall ancestors tend to regress down 
towards a normal value, the average human height). For example, we could 
try to predict the petal width based on the other three features. We will see 
that the methods used for regression are quite different from those used for 
classifi cation.

• Another different type of machine learning problem is that of unsupervised 
learning. In this case, we do not have a target class to predict but instead 
want to group instances according to some similarity measure based on the 
available set of features. For example, suppose you have a dataset composed 
of e-mails and want to group them by their main topic (the task of grouping 
instances is called  clustering). We can use it as features, for example, the 
different words used in each of them.
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Important concepts related to 
machine learning
The linear classifi er we presented in  the previous section could look too simple. 
What if we use a higher degree polynomial? What if we also take as features not 
only the sepal length and width, but also the petal length and the petal width? 
This is perfectly possible, and depending on the sample distribution, it could lead 
to a better fi t to the training data, resulting in higher accuracy. The problem with 
this approach is that now we must estimate not only the three original parameters 
(the coeffi cients for x1, x2, and the interception point), but also the parameters for 
the new features x3 and x4 (petal length and width) and also the product 
combinations of the four features.

Intuitively, we would need more training data to adequately estimate these 
parameters. The number of parameters (and consequently, the amount of training 
data needed to adequately estimate them) would rapidly grow if we add more 
features or higher order terms. This phenomenon, present in every machine learning 
method, is called the idem curse of dimensionality: when the number of parameters 
of a model grows, the data needed to learn them grows exponentially.

This notion is closely related to the problem of overfi tting mentioned earlier. As our 
training data is not enough, we risk producing a model that could be very good at 
predicting the target class on the training dataset but fail miserably when faced with 
new data, that is, our model does not have the generalization power. That is why it is 
so important to evaluate our methods on previously unseen data.

The general rule is that, in order to avoid overfi tting, we should prefer simple (that 
is, with less parameters) methods, something that could be seen as an instantiation 
of the philosophical principle of Occam's razor, which states that among competing 
hypotheses, the hypothesis with the fewest assumptions should be selected.

However, we should also take into account Einstein's words:

"Everything should be made as simple as possible, but not simpler."

The idem curse of dimensionality may suggest that we keep our models simple, 
but on the other hand, if our model is too simple we run the risk of suffering 
from underfi tting. Underfi tting problems arise when our model has such a low 
representation power that it cannot model the data even if we had all the training 
data we want. We clearly have underfi tting when our algorithm cannot achieve good 
performance measures even when measuring on the training set.
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As a result, we will have to achieve a balance between overfi tting and underfi tting. 
This is one of the most important problems that we will have to address when 
designing our machine learning models.

Other key concepts to take into account are the idem bias and variance of a machine 
learning method. Consider an extreme method that, in a binary classifi cation setting, 
always predicts the positive class for any new instance. Its predictions are, trivially, 
always the same, or in statistical terms, it has null variance; but it will fail to predict 
negative examples: it is very biased towards positive results. On the other hand, 
consider a method that predicts, for a new instance, the class of the nearest instance 
in the training set (in fact, this method exists, and it is called the 1-nearest neighbor). 
The generalization assumptions that this method uses are very small: it has a very 
low bias; but, if we change the training data, results could dramatically change, 
that is, its variance is very high. These are extreme examples of the  bias-variance 
tradeoff. It can be shown that, no matter which method we are using,  if we reduce 
bias, variance will increase, and vice versa.

Linear classifi ers have generally low-variance: no matter what subset we select for 
training, results will be similar. However, if the data distribution (as in the case of the 
versicolor and virginica species) makes target classes not separable by a hyperplane, 
these results will be consistently wrong, that is, the method is highly biased.

On the other hand, kNN (a memory-based method we will not address in this book)  
has very low bias but high variance: the results are generally very good at describing 
training data but tend to vary greatly when trained on different training instances.

There are other important concepts related to real-world applications where our 
data will not come naturally as a list of real-valued features. In these cases, we will 
need to have methods to transform non real-valued features to real-valued ones. 
Besides, there are other steps related to feature standardization and normalization, 
which as we saw in our Iris example, are needed to avoid undesired effects regarding 
the different value ranges. These transformations on the feature  space are known as 
data preprocessing.

After having a defi ned feature set, we will see that not all of the features that 
come in our original dataset could be useful for resolving our task. So we must also 
have methods to do feature selection, that is, methods to select the most 
promising features.

In this book, we will present several problems and in each of them we will show 
different ways to transform and fi nd the most relevant features to use for learning 
a task, called feature engineering, which is  based on our knowledge of the domain 
of the problem and/or data analysis methods. These methods, often not valued 
enough, are a fundamental step toward obtaining good results.
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Summary
In this chapter, we introduced the main general concepts in machine learning and 
presented scikit-learn, the Python library we will use in the rest of this book. We 
included a very simple example of classifi cation, trying to show the main steps 
for learning, and including the most important evaluation measures we will use. 
In the rest of this book, we plan to show you different machine learning methods 
and techniques using different real-world examples for each one. In almost every 
computational task, the presence of historical data could allo w us to improve 
performance in the sense introduced at the beginning of this chapter.

The next chapter introduces supervised learning methods: we have annotated data 
(that is, instances where the target class/value is known) and we want to predict 
the same class/value for future data from the same population. In the case of 
classifi cation tasks, that is, a discrete-valued target class, several  different models 
exist, ranging from statistical methods, such as the simple Naïve Bayes to advanced 
linear classifi ers, such as Support Vector Machines (SVM). Some methods, such as 
decision trees, will allow us to visualize how important a feature is to discriminate 
between different target classes and have a human interpretation of the decision 
process. We will also address another type of supervised learning task: regression, 
that is, methods that try to predict real-valued data.
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