

Praise for AWS Cookbook
There’s something sorely missing from official AWS documentation: a
sense of reality. Most of us aren’t attempting to win points for collecting
as many AWS services as we can; we’re trying to complete a task
somewhere that isn’t a whiteboard. AWS Cookbook speaks to real users
with a collection of recipes and pragmatic examples we can all benefit
from.
Corey Quinn, Chief Cloud Economist, The Duckbill Group

Inside you’ll find a great deal of information on typical AWS use cases
plus a reference implementation that’s easy to follow. If you like to learn
AWS concepts in a practice-driven, example-based, hands-on manner, I
highly recommend this book.
Gaurav Raje, author of Security and Microservice Architecture on AWS

I’ve never read a book packed so densely with ninja level tips and tricks
for AWS; it’s the book I wish I had five years ago. If you use AWS day to
day, you need this in your toolkit, not only for the things it contains but
also for the inspiration it provides. In my view, it’s the best AWS book
there is.
Adrian Cantrill, AWS Trainer, learn.cantrill.io

Putting AWS into practice with hands-on experience is the difference
between cloud literacy and cloud fluency. AWS Cookbook serves up
practical scenarios for working in the cloud to help individuals level up
their career.
Drew Firment, AWS Community Hero and Head Enterprise Strategist,
Pluralsight

AWS Cookbook
Recipes for Success on AWS

John Culkin and Mike Zazon

AWS Cookbook
by John Culkin and Mike Zazon
Copyright © 2022 Culkins Coffee Shop LLC and Mike Zazon. All rights
reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Jennifer Pollock
Development Editor: Virginia Wilson
Production Editor: Christopher Faucher
Copyeditor: nSight, Inc.
Proofreader: Sharon Wilkey
Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea
December 2021: First Edition

Revision History for the First Edition
2021-12-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492092605 for release
details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. AWS
Cookbook, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781492092605

The views expressed in this work are those of the authors and do not
represent the publisher’s views. While the publisher and the authors have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the authors disclaim
all responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.
978-1-492-09260-5
[LSI]

Dedication
Dedicated to my father, who taught me that a spreadsheet could be used for
much more than totaling up columns.
—John

Dedicated to my aunt, Judy Dunn. Thank you for the Tandy 1000 PC that
sparked my fascination with computer programming and technology.
—Mike

Foreword
As part of the Amazon Web Services (AWS) team since the beginning, I
have been able to watch it grow in scale, richness, and complexity from a
unique vantage point. Even after writing thousands of blog posts and
millions of words, I learn something new and useful about AWS just about
every day.
With well over two hundred services in production and more launching
regularly, AWS could easily leave you feeling overwhelmed. In addition to
tens of thousands of pages of official AWS documentation, bloggers, AWS
Heroes, AWS Partners, and others have created innumerable pieces of
content—including blog posts, videos, webinars, overviews, and code
samples.
While there’s no substitute for having a full and complete understanding of
a particular AWS service, the reality is that you often simply need to solve a
“point” problem. Even after you understand a service, remembering how to
use it to solve that problem can be a challenge—at least it is for me.
And that is where this cookbook comes in. Because of its broad selection of
topics and carefully chosen recipes, I am confident that you will be able to
quickly find one that addresses your immediate need and to put it into
practice in short order. You can solve your problem, refresh your knowledge
of that aspect of AWS, and move forward to create value for your
customers!
My favorite aspect of this book is that it does not hand-wave past any of the
details. Each recipe assumes that you start fresh and then helps you to cook
up a perfectly seasoned solution. Nothing is left to chance, and you can use
the recipes as is in most cases. The recipes also cover the all-important
cleanup phase and ensure that you leave your AWS environment as you
found it.
Where appropriate, the recipes use the AWS Cloud Development Kit
(CDK) and include all of the necessary “moving parts.” The CDK provides
a double benefit; in addition to helping you to move forward more quickly,

these CDK elements can help you learn more about how to put
infrastructure as code (IaC) into practice.
Most cookbooks are designed to be browsed and savored, and this one is no
exception. Flip through it, read an entire chapter, or use just a recipe or two,
as you wish. I also recommend that you go through all of Chapter 1, just to
make sure that your environment is set up and ready to go. Then, when you
are presented with a problem to solve, find the appropriate recipe, put it into
practice, and reap the benefits.
Jeff Barr
VP and Chief Evangelist at AWS
Seattle, WA
November 2021

Preface

The vast majority of workloads will go to the cloud. We’re just at the
beginning—there’s so much more to happen.
Andy Jassy

Cloud usage has been gaining traction with enterprises and small businesses
over the last decade and continues to accelerate. Gartner said the worldwide
infrastructure as a service (IaaS) public cloud services market grew 40.7%
in 2020. The rapid growth of the cloud has led to a huge demand for cloud
skills by many organizations. Many IT professionals understand the basic
concepts of the cloud but want to become more comfortable working in the
cloud. This gap between the supply and demand of cloud skills presents a
significant opportunity for individuals to level up their career.
Through our combined 20+ years of cloud experience, we have had the
benefit of working on Amazon Web Services (AWS) projects in many
different roles. We have provided guidance to hundreds of developers on
how and when to use AWS services. This has allowed us to understand the
common challenges and easy wins of the cloud. We would like to share
these lessons with you and give you a leg up for your own advancement.
We wrote this book to share some of our knowledge and enable you to
quickly acquire useful skills for working in the cloud. We hope that you will
find yourself using this book as reference material for many years to come.

https://oreil.ly/7Ube0
https://oreil.ly/bJ5Sb
https://oreil.ly/kstre

Who This Book Is For
This book is for developers, engineers, and architects of all levels, from
beginner to expert. Beginners will learn cloud concepts and become
comfortable working with cloud services. Experts will be able to examine
code used to stand up recipe foundations, explore new services, and gain
additional perspectives. If the plethora of cloud services and combinations
seem overwhelming to you, then this book is for you. The recipes in this
book aim to provide “Hello, World” proofs of concept and components of
enterprise-grade applications. This will be accomplished using common use
cases with guided walk-throughs of scenarios that you can directly apply to
your current or future work. These curated and experience-building recipes
are meant to demystify services and will immediately deliver value,
regardless of your AWS experience level.

What You Will Learn
In addition to opening up new career opportunities, being able to harness
the power of AWS will give you the ability to create powerful systems and
applications that solve many interesting and demanding problems in our
world today. Would you like to handle 60,000 cyber threats per second
using AWS machine learning like Siemens does? Or reduce your
organization’s on-premises footprint and expand its use of microservices
like Capital One has? If so, the practical examples in this book will help
expedite your learning by providing tangible examples showing how you
can put the building blocks of AWS together to form practical solutions that
address common scenarios. The on-demand consumption model, vast
capacity, advanced capabilities, and global footprint of the cloud create new
possibilities that need to be explored.

The Recipes
We break the book into chapters that focus on general areas of technology
(e.g., security, networking, artificial intelligence, etc.). The recipes

https://oreil.ly/Qpyvy
https://oreil.ly/vI0ZY

contained within the chapters are bite-sized, self-contained, and easily
consumable. Recipes vary in length and complexity. Each recipe has a
problem statement, solution (with diagram), and discussion. Problem
statements are tightly defined to avoid confusion. Solutions contain
required preparation and steps to walk you through the work needed to
accomplish the goal. When appropriate, explicit validation checks will be
provided. We’ve also added extra challenges to the recipes to help you
advance your learning if you wish to do so. Finally, we end each recipe with
a short discussion to help you understand the solution and why it matters,
suggestions to extend the solution, and ways to utilize it for real impact.

NOTE
To keep your AWS bill low and keep your account tidy, each recipe has cleanup steps provided in
the repositories associated with the book.

Each chapter has its own repository at https://github.com/awscookbook. The
repository contains preparation steps for easy copying and pasting, required
files, and infrastructure as code. We have also created GitHub templates for
reporting bugs and suggesting new recipes. We encourage you to leverage
GitHub to submit issues, create requests for new recipes, and submit your
own pull requests. We will actively maintain the chapter repositories with
updates for recipe steps and code in the README files of each recipe. Be
sure to check these for any new or alternative approaches. We look forward
to interacting with you on GitHub with new fun challenges and hints to
assist you.
Some recipes are “built from scratch,” and others include preparation steps
to allow you to interact with common scenarios seen in the real world. We
have provided code to enable you to easily deploy the prerequisites. For
example, Recipe 6.5, assumes that you are a container developer creating an
application deployment that requires an existing network stack. When
prerequisites exist, they can be “pre-baked” with preparation steps using
code provided in the repositories. When substantial preparation for a recipe

https://github.com/awscookbook

is needed, you will use the AWS Cloud Development Kit (CDK), which is a
fantastic tool for intelligently defining and declaring infrastructure. The
majority of the recipes are CLI based; when appropriate, we use console
walk-throughs including screenshots or descriptive text.

NOTE
There are many ways to achieve similar outcomes on AWS; this book will not be an exhaustive
list. Many factors will dictate the best overall solution for your use case. We have selected recipe
topics to help you learn about AWS and make the best choices for your specific needs.

You’ll find recipes for things like the following:
Redacting personally identifiable information (PII) from text by using
Amazon Comprehend
Automating password rotation for Amazon Relational Database Service
(RDS) databases
Using VPC Reachability Analyzer to verify and troubleshoot network
paths

Along with the recipes, we also provide short lines of code in the Appendix
that will quickly accomplish valuable and routine tasks. We feel that these
are great tidbits to add to your cloud toolbox.

WARNING
AWS has a free tier, but implementing recipes in this book could incur costs. We provide cleanup
instructions, but you are responsible for any costs in your account. We recommend checking out
the Well-Architected Labs developed by AWS on expenditure awareness and leveraging AWS
Budgets actions to control costs.

What You Will Need
Here are the requirements to get started and some tips on where to find
assistance:

https://aws.amazon.com/free
https://www.wellarchitectedlabs.com/
https://oreil.ly/4OVCc

AWS account
— Setup instructions
— An IAM user with console and programmatic access
— Administrator privileges for your IAM user
Personal computer/laptop
Software
— Web browser (e.g., Microsoft Edge, Google Chrome, or Mozilla
Firefox)
— Terminal with bash or Z shell (Zsh)
— Git

Install instructions
— Homebrew (optional but recommended to install other requirements)

Install instructions
— Code editor (e.g., VSCodium or AWS Cloud9)

Recommended install: brew install --cask vscodium

— AWS CLI version 2 (2.1.26 or later)
Install guide
Recommended install: brew install awscli@2

— Python 3.7.9 (and pip) or later
Example install: brew install python@3.7

— AWS Cloud Development Kit version 2.0 or later
Getting started guide
Recommended install: brew install npm and npm i -g
aws-cdk@next

Recommended: Create a folder in your home directory called
AWSCookbook. This will allow you to clone each chapter’s repository in
one place:

https://oreil.ly/opuXX
https://github.com/git-guides/install-git
https://docs.brew.sh/Installation
https://oreil.ly/uYhyX
https://oreil.ly/OmDu1

AWSCookbook:$ tree -L 1
.
├── AccountManagement
├── ArtificialIntelligence
├── BigData
...

NOTE
At the time of publishing, the AWS CDK has two versions: version 1 and version 2 (developer
preview). The code we have provided is written for version 2. You can find out more information
about how to migrate to and install CDK version 2 in this AWS CDK v2 article.

Getting Started
This section provides examples of techniques and approaches we perform
throughout the book to make the recipe steps easier to follow. You can skip
over these topics if you feel comfortable with them. You can always come
back and reference this section.

Setups
In addition to the installation of the prerequisites listed previously, you will
need the following access.

AWS account setup
You will need a user with administrative permissions. Some of the recipes
require the ability to create AWS Identity and Access Management (IAM)
resources. You can follow the AWS guide for creating your first IAM admin
user and user group.

General workstation setup steps for CLI recipes
We have created a group of code repositories available at
https://github.com/awscookbook. Create a folder called AWSCookbook in
your home directory (or any place of your choosing) and cd there:

https://oreil.ly/jNyXH
https://oreil.ly/moVjA
https://github.com/awscookbook

mkdir ~/AWSCookbook && cd ~/AWSCookbook

This will give you a place to check out chapter repositories (e.g., Security):

git clone https://github.com/AWSCookbook/Security

Set and export your default Region in your terminal:

export AWS_REGION=us-east-1

TIP
AWS offers many Regions across the world for cloud deployments. We’ll be using the us-east-1
Region for simplicity. As long as the services are available, there is no reason these recipes won’t
work in other Regions. AWS has a list of Regions and services.

Set your AWS ACCOUNT_ID by parsing output from the aws sts get-
caller-identity operation:

AWS_ACCOUNT_ID=$(aws sts get-caller-identity \
 --query Account --output text)

NOTE
The aws sts get-caller-identity operation “returns details about the IAM user or role
whose credentials are used to call the operation.”

Validate AWS Command Line Interface (AWS CLI) setup and access:

aws ec2 describe-instances

If you don’t have any EC2 instances deployed, you should see output
similar to the following:

{
 "Reservations": []

https://oreil.ly/I3eVB
https://oreil.ly/XJMDp

}

NOTE
AWS CLI version 2 will by default send command output with multiple lines to less in your
terminal. You can type q to exit. If you want to override this behavior, you can modify your
~/.aws/config file to remove this default functionality.

TIP
AWS CloudShell is a browser-based terminal that you can use to quickly create a terminal
environment in your authenticated AWS Console session to run AWS CLI commands from. By
default, it uses the identity of your browser session to interact with the AWS APIs. Many of the
recipes can be run using CloudShell. You can use CloudShell to run recipe steps, clean up
commands, and other AWS CLI commands as your authenticated user, if you do not want to
create a session that you use in your own local terminal environment on your workstation.

Techniques and Approaches Used in This Book
The next few sections will explain and give examples of some ways of
using the CLI to help you with recipes.

Querying outputs, environment variables, and command
substitution
Sometimes when subsequent commands depend on outputs from the
command you are currently running. The AWS CLI provides the ability for
client-side filtering of output. At times, we will set environment variables
that contain these outputs by leveraging command substitution.
We’ll combine these three techniques to make things easier for you as you
proceed through steps in the book. Here is an example:
Use the AWS Security Token Service (AWS STS) to retrieve your IAM
user (or role) Amazon Resource Name (ARN) with the AWS CLI:

aws sts get-caller-identity

https://oreil.ly/SU9gk
https://aws.amazon.com/cloudshell
https://oreil.ly/oV3cx
https://oreil.ly/39qp6
https://oreil.ly/FG9yl

You should see output similar to the following:

{
 "UserId": "EXAMPLE",
 "Account": "111111111111",
 "Arn": "arn:aws:iam::111111111111:user/UserName"
}

An example of querying for the ARN value and outputting it to the terminal
follows:

aws sts get-caller-identity --query Arn --output text

You should see output similar to the following:

arn:aws:iam::111111111111:user/UserName

Query for the ARN value and set it as an environment variable using
command substitution:

PRINCIPAL_ARN=$(aws sts get-caller-identity --query Arn --output
text)

To check the value of an environment variable, for example, you can echo
it to the terminal:

echo $PRINCIPAL_ARN

You should see output similar to the following:

arn:aws:iam::111111111111:user/UserName

TIP
Using the --dry-run flag is always a good idea when performing an operation that makes
changes—for example, aws ec2 create-vpc --dry-run --cidr-block
10.10.0.0/16.

Replacing values in provided template files
Where possible, to simplify the learning experience for you, we have
provided template files in the chapter code repositories that you can use as a
starting point as input to some of the commands you will run in recipe
steps. For example, when you create an AWS CodeDeploy configuration in
Recipe 6.5, we provide codedeploy-template.json with
AWS_ACCOUNT_ID, PROD_LISTENER_ARN, and
TEST_LISTENER_ARN placeholders in the JSON file. We expect you to
replace these placeholder values and save the file as codedeploy.json.
To further simplify your experience, if you follow the steps exactly and
save these to environment variables, you can use the sed command to
replace the values. Where possible, we provide you a command to do this,
such as this example from Chapter 6:
Use the sed command to replace the values with the environment variables
you exported with the helper.py script:

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|PROD_LISTENER_ARN|${PROD_LISTENER_ARN}|g" \
 -e "s|TEST_LISTENER_ARN|${TEST_LISTENER_ARN}|g" \
 codedeploy-template.json > codedeploy.json

Passwords
During some of the steps in the recipes, you will create passwords and
temporarily save them as environment variables to use in subsequent steps.
Make sure you unset the environment variables by following the cleanup
steps when you complete the recipe. We use this approach for simplicity of
understanding. A more secure method (such as the method in Recipe 1.8)
should be used in production environments by leveraging AWS Secrets
Manager.

Generation
You can use AWS Secrets Manager via the AWS CLI to generate passwords
with specific requirements. An example from Chapter 4 looks like this:

https://oreil.ly/7TxP4

ADMIN_PASSWORD=$(aws secretsmanager get-random-password \
 --exclude-punctuation \
 --password-length 41 --require-each-included-type \
 --output text \
 --query RandomPassword)

Usage and storage
In production environments, you should use AWS Secrets Manager or AWS
Systems Manager Parameter Store (using secure strings) with IAM policies
to control who and what can access the secrets. For simplicity, some of the
policies of passwords and secrets used in the recipes might not be as locked
down from a policy perspective as you would want in a production
environment. Be sure to always write your own IAM policies to control this
behavior in practice.

Random suffixes
We generate a lot of random suffixes when we deal with global services like
Amazon S3. These are needed because S3 bucket names need to be globally
unique across the entire AWS customer base. Secrets Manager can be used
via the CLI to generate a string that satisfies the naming convention and
adds this random element to ensure all book readers can create resources
and follow along using the same commands:

RANDOM_STRING=$(aws secretsmanager get-random-password \
 --exclude-punctuation --exclude-uppercase \
 --password-length 6 --require-each-included-type \
 --output text \
 --query RandomPassword)

You can also use any other utilities to generate random strings. Some local
tools may be preferred.

AWS Cloud Development Kit and helper.py
A good place to start is the “Getting started with the AWS CDK” guide.
After you have CDK 2.0 installed, if this is the first time you are using the
AWS CDK, you’ll need to bootstrap with the Region you are working on
with the AWS CDK toolkit:

https://oreil.ly/PUyzf
https://oreil.ly/HDMgB
https://oreil.ly/OmDu1

cdk bootstrap aws://$AWS_ACCOUNT_ID/$AWS_REGION

We use the AWS CDK when needed throughout the book to give you the
ability to deploy a consistent scenario that aligns with the problem
statement you see in the recipe. You can also choose to execute the recipe
steps in your own existing environments, as long as you have the input
variables required for the recipe steps. If things don’t work in your
environment, you can stand up the provided environment and compare.
The CDK code we included in the repositories deploys resources using the
AWS CloudFormation service, and we wrote output variables that you use
in recipe steps. We created a Python script called helper.py which you can
run in your terminal to take the CloudFormation output and set local
variables to make the recipe steps easier to follow—in most cases, even
copy and paste.
An example set of commands for deploying CDK code for a recipe after
checking out the chapter repository for Chapter 4, looks like the following:

cd 401-Creating-an-Aurora-Serverless-DB/cdk-AWS-Cookbook-401/
test -d .venv || python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip setuptools wheel
pip install -r requirements.txt
cdk deploy

You can easily copy and paste the preceding code from the root of the
chapter repository (assuming you have Python, pip, and CDK installed as
prerequisites) to deploy the scenario that the solution will address in the
solution steps of the recipe.
The helper.py tool we created can then be run in your terminal after the cdk
deploy is complete:

python helper.py

You should see output that you can copy and paste into your terminal to set
environment variables from the CDK CloudFormation stack outputs:

$ python helper.py
Copy and paste the commands below into your terminal
ROLE_NAME='cdk-aws-cookbook-108-InstanceSS1PK7LB631QYEF'
INSTANCE_ID='random string here'

NOTE
Finally, a reminder that although we work for AWS, the opinions expressed in this book are our
own.

Put on your apron, and let’s get cooking with AWS!

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by
values determined by context.

TIP
This element signifies a tip or suggestion.

NOTE
This element signifies a general note.

WARNING
This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at https://github.com/awscookbook.
If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.
This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.
We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example: “AWS
Cookbook by John Culkin and Mike Zazon (O’Reilly). Copyright 2022
Culkins Coffee Shop LLC and Mike Zazon, 978-1-492-09260-5.”
If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact us at permissions@oreilly.com.

https://github.com/awscookbook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning

NOTE
For more than 40 years, O’Reilly Media has provided technology and business training,
knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform.
O’Reilly’s online learning platform gives you on-demand access to live
training courses, in-depth learning paths, interactive coding environments,
and a vast collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at https://oreil.ly/AWS-
cookbook.
Email bookquestions@oreilly.com to comment or ask technical questions
about this book.
For news and information about our books and courses, visit
http://oreilly.com.

http://oreilly.com/
http://oreilly.com/
https://oreil.ly/AWS-cookbook
mailto:bookquestions@oreilly.com
http://oreilly.com/

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia
Watch us on YouTube: http://youtube.com/oreillymedia

Acknowledgments
Thank you to Jeff Armstrong, author of Migrating to AWS, A Manager’s
Guide for introducing us to O’Reilly.
We want to recognize the tech reviewers who helped get this book to where
it is today. Their keen eyes, opinions, and technical prowess are greatly
appreciated. Jess Males, Gaurav Raje, Jeff Barr, Paul Bayer, Neil Stewart,
David Kheyman, Justin Domingus, Justin Garrison, Julian Pittas, Mark
Wilkins, and Virginia Chu—thank you.
Thanks to the knowledgeable community at r/aws for always providing
great insights and opinions.
Thank you to our production editor, Christopher Faucher, for getting the
book in tip-top shape for release. Thanks also to our editor, Virginia Wilson,
for taking the time to work with first-time authors during a pandemic. Your
patience, suggestions, and guidance allowed us to complete this book and
remain (somewhat) sane :-)

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://youtube.com/oreillymedia
https://www.reddit.com/r/aws

Chapter 1. Security

1.0 Introduction
The average cost of a data breach in 2021 reached a new high of USD 4.24
million as reported by the IBM/Ponemon Institute Report. When you
choose to run your applications in the cloud, you trust AWS to provide a
secure infrastructure that runs cloud services so that you can focus on your
own innovation and value-added activities.
But security in the cloud is a shared responsibility between you and AWS.
You are responsible for the configuration of things like AWS Identity and
Access Management (IAM) policies, Amazon EC2 security groups, and
host based firewalls. In other words, the security of the hardware and
software platform that make up the AWS cloud is an AWS responsibility.
The security of software and configurations that you implement in your
AWS account(s) are your responsibility.
As you deploy cloud resources in AWS and apply configuration, it is
critical to understand the security settings required to maintain a secure
environment. This chapter’s recipes include best practices and use cases
focused on security. As security is a part of everything, you will use these
recipes in conjunction with other recipes and chapters in this book. For
example, you will see usage of AWS Systems Manager Session Manager
used throughout the book when connecting to your EC2 instances. These
foundational security recipes will give you the tools you need to build
secure solutions on AWS.
In addition to the content in this chapter, so many great resources are
available for you to dive deeper into security topics on AWS. “The
Fundamentals of AWS Cloud Security”, presented at the 2019 AWS
security conference re:Inforce, gives a great overview. A more advanced
talk, “Encryption: It Was the Best of Controls, It Was the Worst of

https://oreil.ly/YayAP
https://oreil.ly/4Sv24
https://oreil.ly/7rDIX
https://oreil.ly/qnO16

Controls”, from AWS re:Invent, explores encryption scenarios explained in
detail.

TIP
AWS publishes a best practices guide for securing your account, and all AWS account holders
should be familiar with the best practices as they continue to evolve.

WARNING
We cover important security topics in this chapter. It is not possible to cover every topic as the list
of services and configurations (with respect to security on AWS) continues to grow and evolve.
AWS keeps its Best Practices for Security, Identity, and Compliance web page up-to-date.

Workstation Configuration
You will need a few things installed to be ready for the recipes in this
chapter.

General setup
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/AWSCookbook/Security

1.1 Creating and Assuming an IAM Role for
Developer Access

Problem
To ensure that you are not always using administrative permissions, you
need to create an IAM role for development use in your AWS account.

https://oreil.ly/qnO16
https://oreil.ly/BZQRt
https://oreil.ly/Us5oz

Solution
Create a role using an IAM policy that will allow the role to be assumed
later. Attach the AWS managed PowerUserAccess IAM policy to the
role (see Figure 1-1).

Figure 1-1. Create role, attach policy, and assume role

Steps
1. Create a file named assume-role-policy-template.json with the

following content. This will allow an IAM principal to assume the

role you will create next (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "PRINCIPAL_ARN"
 },
 "Action": "sts:AssumeRole"
 }
]
}

TIP
If you are using an IAM user, and you delete and re-create the IAM user, this policy will
not continue to work because of the way that the IAM service helps mitigate the risk of
privilege escalation. For more information, see the Note in the IAM documentation about
this.

2. Retrieve the ARN for your user and set it as a variable:

PRINCIPAL_ARN=$(aws sts get-caller-identity --query Arn --
output text)

3. Use the sed command to replace PRINCIPAL_ARN in the assume-
role-policy-template.json file and generate the assume-role-policy.json
file:

sed -e "s|PRINCIPAL_ARN|${PRINCIPAL_ARN}|g" \
 assume-role-policy-template.json > assume-role-
policy.json

4. Create a role and specify the assume role policy file:

https://oreil.ly/wR02t
https://oreil.ly/BDayp

ROLE_ARN=$(aws iam create-role --role-name
AWSCookbook101Role \
 --assume-role-policy-document file://assume-role-
policy.json \
 --output text --query Role.Arn)

5. Attach the AWS managed PowerUserAccess policy to the role:

aws iam attach-role-policy --role-name AWSCookbook101Role \
 --policy-arn arn:aws:iam::aws:policy/PowerUserAccess

NOTE
AWS provides access policies for common job functions for your convenience. These
policies may be a good starting point for you to delegate user access to your account for
specific job functions; however, it is best to define a least-privilege policy for your own
specific requirements for every access need.

Validation checks
Assume the role:

aws sts assume-role --role-arn $ROLE_ARN \
 --role-session-name AWSCookbook101

You should see output similar to the following:

{
 "Credentials": {
 "AccessKeyId": "<snip>",
 "SecretAccessKey": "<snip>",
 "SessionToken": "<snip>",
 "Expiration": "2021-09-12T23:34:56+00:00"
 },
 "AssumedRoleUser": {
 "AssumedRoleId": "EXAMPLE:AWSCookbook101",
 "Arn": "arn:aws:sts::11111111111:assumed-
role/AWSCookbook101Role/AWSCookbook101"

https://oreil.ly/iyKFx

 }
}

TIP
The AssumeRole API returns a set of temporary credentials for a role session from the AWS
Security Token Service (STS) to the caller as long as the permissions in the AssumeRole policy
for the role allow. All IAM roles have an AssumeRole policy associated with them. You can
use the output of this to configure the credentials for the AWS CLI; set the AccessKey,
SecretAccessKey, and SessionToken as environment variables; and also assume the role in the
AWS Console using the Switch Role feature. When your applications need to make AWS API
calls, the AWS SDK for your programming language of choice handles this for them.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Using administrative access for routine development tasks is not a security
best practice. Giving unneeded permissions can result in unauthorized
actions being performed. Using the PowerUserAccess AWS managed
policy for development purposes is a better alternative to start rather than
using AdministratorAccess. Later, you should define your own
customer managed policy granting only the specific actions for your needs.
For example, if you need to log in often to check the status of your EC2
instances, you can create a read-only policy for this purpose and attach it to
a role. Similarly, you can create a role for billing access and use it to access
the AWS Billing console only. The more you practice using the principle of
least privilege, the more security will become a natural part of what you do.
You used an IAM user in this recipe to perform the steps. If you are using
an AWS account that leverages federation for access (e.g., a sandbox or
development AWS account at your employer), you should use temporary
credentials from the AWS STS rather than an IAM user. This type of access
uses time-based tokens that expire after an amount of time, rather than
“long-lived” credentials like access keys or passwords. When you

https://oreil.ly/dX1je
https://oreil.ly/AdUrq
https://oreil.ly/F7ril
https://oreil.ly/UWNWd
https://oreil.ly/dSfuG
https://github.com/AWSCookbook/Security
https://oreil.ly/hfQ3p
https://oreil.ly/jMW6h
https://oreil.ly/hmUw3

performed the AssumeRole in the validation steps, you called the STS
service for temporary credentials. To help with frequent AssumeRole
operations, the AWS CLI supports named profiles that can automatically
assume and refresh your temporary credentials for your role when you
specify the role_arn parameter in the named profile.

TIP
You can require multi-factor authentication (MFA) as a condition within the AssumeRole
policies you create. This would allow the role to be assumed only by an identity that has been
authenticated with MFA. For more information about requiring MFA for AssumeRole, see the
support document.

See Recipe 9.4 to create an alert when a root login occurs.

TIP
You can grant cross-account access to your AWS resources. The resource you define in the policy
in this recipe would reference the AWS account and principal within that account that you would
like to delegate access to. You should always use an ExternalID when enabling cross-account
access. For more information, see the official tutorial for cross-account access.

Challenge
Create additional IAM roles for each of the AWS managed policies for job
functions (e.g., billing, database administrator, networking, etc.)

1.2 Generating a Least Privilege IAM Policy
Based on Access Patterns

Problem
You would like to implement least privilege access for your user and scope
down the permissions to allow access to only the services, resources, and

https://oreil.ly/fZSQ9
https://oreil.ly/djRQI
https://oreil.ly/wwlF4

actions you need to use in your AWS account.

Solution
Use the IAM Access Analyzer in the IAM console to generate an IAM
policy based on the CloudTrail activity in your AWS account, as shown in
Figure 1-2.

Figure 1-2. IAM Access Analyzer workflow

Prerequisite
CloudTrail logging enabled for your account to a configured S3 bucket
(see Recipe 9.3)

Steps
1. Navigate to the IAM console and select your IAM role or IAM user

that you would like to generate a policy for.
2. On the Permissions tab (the default active tab when viewing your

principal), scroll to the bottom, expand the “Generate policy based on
CloudTrail events” section, and click the “Generate policy” button.

TIP
For a quick view of the AWS services accessed from your principal, click the Access
Advisor tab and view the service list and access time. While the IAM Access Advisor is
not as powerful as the Access Analyzer, it can be helpful when auditing or troubleshooting
IAM principals in your AWS account.

3. Select the time period of CloudTrail events you would like to
evaluate, select your CloudTrail trail, choose your Region (or select
“All regions”), and choose “Create and use a new service role.” IAM
Access Analyzer will create a role for the service to use for read
access to your trail that you selected. Finally, click “Generate policy.”
See Figure 1-3 for an example.

https://console.aws.amazon.com/iam

Figure 1-3. Generating a policy in the IAM Access Analyzer configuration

NOTE
The role creation can take up to 30 seconds. Once the role is created, the policy generation
will take an amount of time depending on how much activity is in your CloudTrail trail.

4. Once the analyzer has completed, scroll to the bottom of the
permissions tab and click “View generated policy,” as shown in
Figure 1-4.

Figure 1-4. Viewing the generated policy

5. Click Next, and you will see a generated policy in JSON format that is
based on the activity that your IAM principal has made. You can edit
this policy in the interface if you wish to add additional permissions.
Click Next again, choose a name, and you can deploy this generated
policy as an IAM policy.
You should see a generated IAM policy in the IAM console similar to
this:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "access-analyzer:ListPolicyGenerations",
 "cloudtrail:DescribeTrails",
 "cloudtrail:LookupEvents",
 "iam:GetAccountPasswordPolicy",
 "iam:GetAccountSummary",
 "iam:GetServiceLastAccessedDetails",
 "iam:ListAccountAliases",
 "iam:ListGroups",
 "iam:ListMFADevices",
 "iam:ListUsers",
 "s3:ListAllMyBuckets",
 "sts:GetCallerIdentity"
],
 "Resource": "*"
 }, ...
}

Validation checks
Create a new IAM user or role and attach the newly created IAM policy to
it. Perform an action granted by the policy to verify that the policy allows
your IAM principal to perform the actions that you need it to.

Discussion
You should always seek to implement least privilege IAM policies when
you are scoping them for your users and applications. Oftentimes, you

might not know exactly what permissions you may need when you start.
With IAM Access Analyzer, you can start by granting your users and
applications a larger scope in a development environment, enable
CloudTrail logging (Recipe 9.3), and then run IAM Access Analyzer after
you have a window of time that provides a good representation of the usual
activity (choose this time period in the Access Analyzer configuration as
you did in step 3). The generated policy will contain all of the necessary
permissions to allow your application or users to work as they did during
that time period that you chose to analyze, helping you implement the
principle of least privilege.

NOTE
You should also be aware of the list of services that Access Analyzer supports.

Challenge
Use the IAM Policy Simulator (see Recipe 1.4) on the generated policy to
verify that the policy contains the access you need.

1.3 Enforcing IAM User Password Policies in
Your AWS Account

NOTE
Special thanks to Gaurav Raje for his contribution to this recipe.

Problem
Your security policy requires that you must enforce a password policy for
all the users within your AWS account. The password policy sets a 90-day
expiration, and passwords must be made up of a minimum of 32 characters
including lowercase and uppercase letters, numbers, and symbols.

https://oreil.ly/jMW6h
https://oreil.ly/KPEFh

Solution
Set a password policy for IAM users in your AWS account. Create an IAM
group, an IAM user, and add the user to the group to verify that the policy is
being enforced (see Figure 1-5).

Figure 1-5. Using password policies with IAM users

NOTE
If your organization has a central user directory, we recommend using identity federation to access
your AWS accounts using AWS Single Sign-On (SSO) rather than create individual IAM users
and groups. Federation allows you to use an identity provider (IdP) where you already maintain
users and groups. AWS publishes a guide that explains federated access configurations available.
You can follow Recipe 9.6 to enable AWS SSO for your account even if you do not have an IdP
available (AWS SSO provides a directory you can use by default).

https://aws.amazon.com/single-sign-on
https://aws.amazon.com/identity/federation

Steps
1. Set an IAM password policy using the AWS CLI to require lowercase

and uppercase letters, symbols, and numbers. The policy should
indicate a minimum length of 32 characters, a maximum password
age of 90 days, and password reuse prevented:

aws iam update-account-password-policy \
 --minimum-password-length 32 \
 --require-symbols \
 --require-numbers \
 --require-uppercase-characters \
 --require-lowercase-characters \
 --allow-users-to-change-password \
 --max-password-age 90 \
 --password-reuse-prevention true

2. Create an IAM group:

aws iam create-group --group-name AWSCookbook103Group

You should see output similar to the following:

{
 "Group": {
 "Path": "/",
 "GroupName": "AWSCookbook103Group",
 "GroupId": "<snip>",
 "Arn":
"arn:aws:iam::111111111111:group/AWSCookbook103Group",
 "CreateDate": "2021-11-06T19:26:01+00:00"
 }
}

3. Attach the ReadOnlyAccess policy to the group:

aws iam attach-group-policy --group-name AWSCookbook103Group
\
 --policy-arn
arn:aws:iam::aws:policy/AWSBillingReadOnlyAccess

TIP
It is best to attach policies to groups and not directly to users. As the number of users
grows, it is easier to use IAM groups to delegate permissions for manageability. This also
helps to meet compliance for standards like CIS Level 1.

4. Create an IAM user:

aws iam create-user --user-name awscookbook103user

You should see output similar to the following:

{
 "User": {
 "Path": "/",
 "UserName": "awscookbook103user",
 "UserId": "<snip>",
 "Arn":
"arn:aws:iam::111111111111:user/awscookbook103user",
 "CreateDate": "2021-11-06T21:01:47+00:00"
 }
}

5. Use Secrets Manager to generate a password that conforms to your
password policy:

RANDOM_STRING=$(aws secretsmanager get-random-password \
--password-length 32 --require-each-included-type \
--output text \
--query RandomPassword)

6. Create a login profile for the user that specifies a password:

aws iam create-login-profile --user-name awscookbook103user
\
 --password $RANDOM_STRING

https://oreil.ly/i211Q

You should see output similar to the following:

{
 "LoginProfile": {
 "UserName": "awscookbook103user",
 "CreateDate": "2021-11-06T21:11:43+00:00",
 "PasswordResetRequired": false
 }
}

7. Add the user to the group you created for billing view-only access:

aws iam add-user-to-group --group-name AWSCookbook103Group \
 --user-name awscookbook103user

Validation checks
Verify that the password policy you set is now active:

aws iam get-account-password-policy

You should see output similar to:

{
 "PasswordPolicy": {
 "MinimumPasswordLength": 32,
 "RequireSymbols": true,
 "RequireNumbers": true,
 "RequireUppercaseCharacters": true,
 "RequireLowercaseCharacters": true,
 "AllowUsersToChangePassword": true,
 "ExpirePasswords": true,
 "MaxPasswordAge": 90,
 "PasswordReusePrevention": 1
 }
}

Try to create a new user by using the AWS CLI with a password that
violates the password policy. AWS will not allow you to create such a user:

aws iam create-user --user-name awscookbook103user2

Use Secrets Manager to generate a password that does not adhere to your
password policy:

RANDOM_STRING2=$(aws secretsmanager get-random-password \
--password-length 16 --require-each-included-type \
--output text \
--query RandomPassword)

Create a login profile for the user that specifies the password:

aws iam create-login-profile --user-name awscookbook103user2 \
--password $RANDOM_STRING2

This command should fail and you should see output similar to:

An error occurred (PasswordPolicyViolation) when calling the
CreateLoginProfile
operation: Password should have a minimum length of 32

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
For users logging in with passwords, AWS allows administrators to enforce
password policies to their accounts that conform to the security
requirements of your organization. This way, administrators can ensure that
individual users don’t compromise the security of the organization by
choosing weak passwords or by not regularly changing their passwords.

https://github.com/AWSCookbook/Security

TIP
Multi-factor authentication is encouraged for IAM users. You can use a software-based virtual
MFA device or a hardware device for a second factor on IAM users. AWS keeps an updated list of
supported devices.

Multi-factor authentication is a great way to add another layer of security
on top of existing password-based security. It combines “what you know”
and “what you have”; so, in cases where your password might be exposed
to a malicious third-party actor, they would still need the additional factor to
authenticate.

Challenge
Download the credential report to analyze the IAM users and the password
ages in your account.

1.4 Testing IAM Policies with the IAM Policy
Simulator

Problem
You have an IAM policy that you would like to put into use but would like
to test its effectiveness first.

Solution
Attach an IAM policy to an IAM role and simulate actions with the IAM
Policy Simulator, as shown in Figure 1-6.

https://aws.amazon.com/iam/features/mfa
https://oreil.ly/GFTke

Figure 1-6. Simulating IAM policies attached to an IAM role

Steps
1. Create a file called assume-role-policy.json with the following content

(file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }

]
}

2. Create an IAM role using the assume-role-policy.json file:

aws iam create-role --assume-role-policy-document \
 file://assume-role-policy.json --role-name
AWSCookbook104IamRole

You should see output similar to the following:

{
 "Role": {
 "Path": "/",
 "RoleName": "AWSCookbook104IamRole",
 "RoleId": "<<UniqueID>>",
 "Arn":
"arn:aws:iam::111111111111:role/AWSCookbook104IamRole",
 "CreateDate": "2021-09-22T23:37:44+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 ...

3. Attach the IAM managed policy for
AmazonEC2ReadOnlyAccess to the IAM role:

aws iam attach-role-policy --role-name AWSCookbook104IamRole
\
 --policy-arn
arn:aws:iam::aws:policy/AmazonEC2ReadOnlyAccess

TIP
You can find a list of all the actions, resources, and condition keys for EC2 in this AWS article.
The IAM global condition context keys are also useful in authoring fine-grained policies.

Validation checks

https://oreil.ly/EjuR3
https://oreil.ly/IUVkw

Simulate the effect of the IAM policy you are using, testing several
different types of actions on the EC2 service.
Test the ec2:CreateInternetGateway action:

aws iam simulate-principal-policy \
 --policy-source-arn
arn:aws:iam::$AWS_ACCOUNT_ARN:role/AWSCookbook104IamRole \
 --action-names ec2:CreateInternetGateway

You should see output similar to the following (note the EvalDecision):

{
 "EvaluationResults": [
 {
 "EvalActionName": "ec2:CreateInternetGateway",
 "EvalResourceName": "*",
 "EvalDecision": "implicitDeny",
 "MatchedStatements": [],
 "MissingContextValues": []
 }
]
}

NOTE
Since you attached only the AWS managed AmazonEC2ReadOnlyAccess IAM policy to the
role in this recipe, you will see an implicit deny for the CreateInternetGateway action.
This is expected behavior. AmazonEC2ReadOnlyAccess does not grant any “create”
capabilities for the EC2 service.

Test the ec2:DescribeInstances action:

aws iam simulate-principal-policy \
 --policy-source-arn
arn:aws:iam::$AWS_ACCOUNT_ARN:role/AWSCookbook104IamRole \
 --action-names ec2:DescribeInstances

You should see output similar to the following:

{
 "EvaluationResults": [
 {
 "EvalActionName": "ec2:DescribeInstances",
 "EvalResourceName": "*",
 "EvalDecision": "allowed",
 "MatchedStatements": [
 {
 "SourcePolicyId": "AmazonEC2ReadOnlyAccess",
 "SourcePolicyType": "IAM Policy",
 "StartPosition": {
 "Line": 3,
 "Column": 17
 },
 "EndPosition": {
 "Line": 8,
 "Column": 6
 }
 }
],
 "MissingContextValues": []
 }
]
}

NOTE
The AmazonEC2ReadOnlyAccess policy allows read operations on the EC2 service, so the
DescribeInstances operation succeeds when you simulate this action.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
IAM policies let you define permissions for managing access in AWS.
Policies can be attached to principals that allow you to grant (or deny)
permissions to resources, users, groups and services. It is always best to
scope your policies to the minimal set of permissions required as a security

https://github.com/AWSCookbook/Security
https://oreil.ly/uy1uB

best practice. The IAM Policy Simulator can be extremely helpful when
designing and managing your own IAM policies for least-privileged access.
The IAM Policy Simulator also exposes a web interface you can use to test
and troubleshoot IAM policies and understand their net effect with the
policy you define. You can test all the policies or a subset of policies that
you have attached to users, groups, and roles.

TIP
The IAM Policy Simulator can help you simulate the effect of the following:

Identity-based policies

IAM permissions boundaries

AWS Organizations service control policies (SCPs)

Resource-based policies

After you review the Policy Simulator results, you can add additional
statements to your policies that either solve your issue (from a
troubleshooting standpoint) or attach newly created policies to users,
groups, and roles with the confidence that the net effect of the policy was
what you intended.

NOTE
To help you easily build IAM policies from scratch, AWS provides the AWS Policy Generator.

Challenge
Simulate the effect of a permissions boundary on an IAM principal (see
Recipe 1.5).

https://oreil.ly/9qscF
https://oreil.ly/Ny8HI

1.5 Delegating IAM Administrative
Capabilities Using Permissions Boundaries

Problem
You need to grant team members the ability to deploy Lambda functions
and create IAM roles for them. You need to limit the effective permissions
of the IAM roles created so that they allow only actions needed by the
function.

Solution
Create a permissions boundary policy, create an IAM role for Lambda
developers, create an IAM policy that specifies the boundary policy, and
attach the policy to the role you created. Figure 1-7 illustrates the effective
permissions of the identity-based policy with the permissions boundary.

https://oreil.ly/dtZ7X

Figure 1-7. Effective permissions of identity-based policy with permissions boundary

Prerequisite
An IAM user or federated identity for your AWS account with
administrative privileges (follow the AWS guide for creating your first
IAM admin user and user group).

Steps
1. Create a file named assume-role-policy-template.json with the

following content (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "PRINCIPAL_ARN"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Retrieve the ARN for your user and set it as a variable:

PRINCIPAL_ARN=$(aws sts get-caller-identity --query Arn --
output text)

3. Use the sed command to replace PRINCIPAL_ARN in the assume-
role-policy-template.json file that we provided in the repository and
generate the assume-role-policy.json file:

sed -e "s|PRINCIPAL_ARN|${PRINCIPAL_ARN}|g" \
assume-role-policy-template.json > assume-role-policy.json

https://oreil.ly/2MPmL

NOTE
For the purposes of this recipe, you set the allowed IAM principal to your own user (User
1). To test delegated access, you would set the IAM principal to something else.

4. Create a role and specify the assume role policy file:

ROLE_ARN=$(aws iam create-role --role-name
AWSCookbook105Role \
 --assume-role-policy-document file://assume-role-
policy.json \
 --output text --query Role.Arn)

5. Create a permissions boundary JSON file named boundary-
template.json with the following content. This allows specific
DynamoDB, S3, and CloudWatch Logs actions (file provided in the
repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateLogGroup",
 "Effect": "Allow",
 "Action": "logs:CreateLogGroup",
 "Resource": "arn:aws:logs:*:AWS_ACCOUNT_ID:*"
 },
 {
 "Sid": "CreateLogStreamandEvents",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "arn:aws:logs:*:AWS_ACCOUNT_ID:*"
 },
 {
 "Sid": "DynamoDBPermissions",
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",

 "dynamodb:DeleteItem"
],
 "Resource":
"arn:aws:dynamodb:*:AWS_ACCOUNT_ID:table/AWSCookbook*"
 },
 {
 "Sid": "S3Permissions",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::AWSCookbook*/*"
 }
]
}

6. Use the sed command to replace AWS_ACCOUNT_ID in the
boundary-policy-template.json file and generate the boundary-
policy.json file:

sed -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 boundary-policy-template.json > boundary-policy.json

7. Create the permissions boundary policy by using the AWS CLI:

aws iam create-policy --policy-name AWSCookbook105PB \
 --policy-document file://boundary-policy.json

You should see output similar to the following:

{
 "Policy": {
 "PolicyName": "AWSCookbook105PB",
 "PolicyId": "EXAMPLE",
 "Arn":
"arn:aws:iam::111111111111:policy/AWSCookbook105PB",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,

 "CreateDate": "2021-09-24T00:36:53+00:00",
 "UpdateDate": "2021-09-24T00:36:53+00:00"
 }
}

8. Create a policy file named policy-template.json for the role (file
provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyPBDelete",
 "Effect": "Deny",
 "Action": "iam:DeleteRolePermissionsBoundary",
 "Resource": "*"
 },
 {
 "Sid": "IAMRead",
 "Effect": "Allow",
 "Action": [
 "iam:Get*",
 "iam:List*"
],
 "Resource": "*"
 },
 {
 "Sid": "IAMPolicies",
 "Effect": "Allow",
 "Action": [
 "iam:CreatePolicy",
 "iam:DeletePolicy",
 "iam:CreatePolicyVersion",
 "iam:DeletePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource":
"arn:aws:iam::AWS_ACCOUNT_ID:policy/AWSCookbook*"
 },
 {
 "Sid": "IAMRolesWithBoundary",
 "Effect": "Allow",
 "Action": [
 "iam:CreateRole",
 "iam:DeleteRole",
 "iam:PutRolePolicy",
 "iam:DeleteRolePolicy",

 "iam:AttachRolePolicy",
 "iam:DetachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::AWS_ACCOUNT_ID:role/AWSCookbook*"
],
 "Condition": {
 "StringEquals": {
 "iam:PermissionsBoundary":
"arn:aws:iam::AWS_ACCOUNT_ID:policy/AWSCookbook105PB"
 }
 }
 },
 {
 "Sid": "ServerlessFullAccess",
 "Effect": "Allow",
 "Action": [
 "lambda:*",
 "logs:*",
 "dynamodb:*",
 "s3:*"
],
 "Resource": "*"
 },
 {
 "Sid": "PassRole",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource":
"arn:aws:iam::AWS_ACCOUNT_ID:role/AWSCookbook*",
 "Condition": {
 "StringLikeIfExists": {
 "iam:PassedToService": "lambda.amazonaws.com"
 }
 }
 },
 {
 "Sid": "ProtectPB",
 "Effect": "Deny",
 "Action": [
 "iam:CreatePolicyVersion",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": [

"arn:aws:iam::AWS_ACCOUNT_ID:policy/AWSCookbook105PB",

"arn:aws:iam::AWS_ACCOUNT_ID:policy/AWSCookbook105Policy"

]
 }
]
}

This custom IAM policy has several statements working together,
which define certain permissions for the solution to the problem
statement:

DenyPBDelete: Explicitly deny the ability to delete
permissions boundaries from roles.

IAMRead: Allow read-only IAM access to developers to ensure
that the IAM console works.

IAMPolicies: Allow the creation of IAM policies but force a
naming convention prefix AWSCookbook*.

IAMRolesWithBoundary: Allow the creation and deletion of
IAM roles only if they contain the permissions boundary
referenced.

ServerlessFullAccess: Allow developers to have full
access to the AWS Lambda, Amazon DynamoDB, Amazon
CloudWatch logs, and Amazon S3 services.

PassRole: Allow developers to pass IAM roles to Lambda
functions.

ProtectPB: Explicitly deny the ability to modify the
permissions boundary that bound the roles they create.

9. Use the sed command to replace AWS_ACCOUNT_ID in the policy-
template.json file and generate the policy.json file:

sed -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 policy-template.json > policy.json

10. Create the policy for developer access:

aws iam create-policy --policy-name AWSCookbook105Policy \
 --policy-document file://policy.json

You should see output similar to the following:

{
 "Policy": {
 "PolicyName": "AWSCookbook105Policy",
 "PolicyId": "EXAMPLE",
 "Arn":
"arn:aws:iam::11111111111:policy/AWSCookbook105Policy",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-09-24T00:37:13+00:00",
 "UpdateDate": "2021-09-24T00:37:13+00:00"
 }
}

11. Attach the policy to the role you created in step 2:

aws iam attach-role-policy --policy-arn \

arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook105Policy \
 --role-name AWSCookbook105Role

Validation checks
Assume the role you created and set the output to local variables for the
AWS CLI:

creds=$(aws --output text sts assume-role --role-arn $ROLE_ARN \
 --role-session-name "AWSCookbook105" | \
 grep CREDENTIALS | cut -d " " -f2,4,5)
export AWS_ACCESS_KEY_ID=$(echo $creds | cut -d " " -f2)
export AWS_SECRET_ACCESS_KEY=$(echo $creds | cut -d " " -f4)
export AWS_SESSION_TOKEN=$(echo $creds | cut -d " " -f5)

Try to create an IAM role for a Lambda function, create an assume role
policy for the Lambda service (lambda-assume-role-policy.json):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Create the role, specifying the permissions boundary, which conforms to the
role-naming standard specified in the policy:

TEST_ROLE_1=$(aws iam create-role --role-name AWSCookbook105test1
\
 --assume-role-policy-document \
 file://lambda-assume-role-policy.json \
 --permissions-boundary \
 arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook105PB \
 --output text --query Role.Arn)

Attach the managed AmazonDynamoDBFullAccess policy to the role:

aws iam attach-role-policy --role-name AWSCookbook105test1 \
--policy-arn arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess

Attach the managed CloudWatchFullAccess policy to the role:

aws iam attach-role-policy --role-name AWSCookbook105test1 \
--policy-arn arn:aws:iam::aws:policy/CloudWatchFullAccess

NOTE
Even though you attached AmazonDynamoDBFullAccess and CloudWatchFullAccess
to the role, the effective permissions of the role are limited by the statements in the permissions
boundary you created in step 3. Furthermore, even though you have s3:GetObject and
s3:PutObject defined in the boundary, you have not defined these in the role policy, so the
function will not be able to make these calls until you create a policy that allows these actions.
When you attach this role to a Lambda function, the Lambda function can perform only the
actions allowed in the intersection of the permissions boundary and the role policy (see Figure 1-
7).

You can now create a Lambda function specifying this role
(AWSCookbook105test1) as the execution role to validate the
DynamoDB and CloudWatch Logs permissions granted to the function. You
can also test the results with the IAM Policy Simulator.
You used an AssumeRole and set environment variables to override your
local terminal AWS profile to perform these validation checks. To ensure
that you revert back to your original authenticated session on the command
line, perform the perform the cleanup steps provided at the top of the
README file in the repository.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

NOTE
Be sure to delete your environment variables so that you can regain permissions needed for future
recipes:

unset AWS_ACCESS_KEY_ID
unset AWS_SECRET_ACCESS_KEY
unset AWS_SESSION_TOKEN

https://github.com/AWSCookbook/Security

Discussion
In your quest to implement a least privilege access model for users and
applications within AWS, you need to enable developers to create IAM
roles that their applications can assume when they need to interact with
other AWS services. For example, an AWS Lambda function that needs to
access an Amazon DynamoDB table would need a role created to be able to
perform operations against the table. As your team scales, instead of your
team members coming to you every time they need a role created for a
specific purpose, you can enable (but control) them with permissions
boundaries, without giving up too much IAM access. The
iam:PermissionsBoundary condition in the policy that grants the
iam:CreateRole ensures that the roles created must always include the
permissions boundary attached.
Permissions boundaries act as a guardrail and limit privilege escalation. In
other words, they limit the maximum effective permissions of an IAM
principal created by a delegated administrator by defining what the roles
created can do. As shown in Figure 1-7, they work in conjunction with the
permissions policy (IAM policy) that is attached to an IAM principal (IAM
user or role). This prevents the need to grant wide access to an
administrator role, prevents privilege escalation, and helps you achieve least
privilege access by allowing your team members to quickly iterate and
create their own least-privileged roles for their applications.
In this recipe, you may have noticed that we used a naming convention of
AWSCookbook* on the roles and policies referenced in the permissions
boundary policy, which ensures the delegated principals can create roles
and policies within this convention. This means that developers can create
resources, pass only these roles to services, and also keep a standard naming
convention. This is an ideal practice when implementing permissions
boundaries. You can develop a naming convention for different teams,
applications, and services so that these can all coexist within the same
account, yet have different boundaries applied to them based on their
requirements, if necessary.

At minimum, you need to keep these four things in mind when building
roles that implement permissions boundary guardrails to delegate IAM
permissions to nonadministrators:

1. Allow the creation of IAM customer managed policies: your users can
create any policy they wish; they do not have an effect until they are
attached to an IAM principal.

2. Allow IAM role creation with a condition that a permissions boundary
must be attached: force all roles created by your team members to
include the permission boundary in the role creation.

3. Allow attachment of policies, but only to roles that have a permissions
boundary: do not let users modify existing roles that they may have
access to.

4. Allow iam:PassRole to AWS services that your users create roles
for: your developers may need to create roles for Amazon EC2 and
AWS Lambda, so give them the ability to pass only the roles they
create to those services you define.

TIP
Permissions boundaries are a powerful, advanced IAM concept that can be challenging to
understand. We recommend checking out the talk by Brigid Johnson at AWS re:Inforce 2018 to
see some real-world examples of IAM policies, roles, and permissions boundaries explained in a
practical way.

Challenge
Extend the permissions boundary to allow roles created to publish to an
SQS queue and SNS topic and adjust the policy for the role as well.

1.6 Connecting to EC2 Instances Using AWS
SSM Session Manager

https://oreil.ly/0Smmq

Problem
You have an EC2 instance in a private subnet and need to connect to the
instance without using SSH over the internet.

Solution
Create an IAM role, attach the AmazonSSMManagedInstanceCore
policy, create an EC2 instance profile, attach the IAM role you created to
the instance profile, associate the EC2 instance profile to an EC2 instance,
and finally, run the aws ssm start-session command to connect to
the instance. A logical flow of these steps is shown in Figure 1-8.

Figure 1-8. Using Session Manager to connect to an EC2 instance

Prerequisites

Amazon Virtual Private Cloud (VPC) with isolated or private subnets
and associated route tables
Required VPC endpoints for AWS Systems Manager
AWS CLI v2 with the Session Manager plugin installed

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a file named assume-role-policy.json with the following

content (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "ec2.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role with the statement in the provided assume-role-
policy.json file using this command:

ROLE_ARN=$(aws iam create-role --role-name
AWSCookbook106SSMRole \
 --assume-role-policy-document file://assume-role-
policy.json \
 --output text --query Role.Arn)

3. Attach the AmazonSSMManagedInstanceCore managed policy
to the role so that the role allows access to AWS Systems Manager:

https://oreil.ly/qyNJR
https://oreil.ly/ejccM
https://github.com/AWSCookbook/Security

aws iam attach-role-policy --role-name AWSCookbook106SSMRole
\
 --policy-arn
arn:aws:iam::aws:policy/AmazonSSMManagedInstanceCore

4. Create an instance profile:

aws iam create-instance-profile \
 --instance-profile-name AWSCookbook106InstanceProfile

You should see output similar to the following:

{
 "InstanceProfile": {
 "Path": "/",
 "InstanceProfileName": "AWSCookbook106InstanceProfile",
 "InstanceProfileId": "(RandomString",
 "Arn": "arn:aws:iam::111111111111:instance-
profile/AWSCookbook106InstanceProfile",
 "CreateDate": "2021-11-28T20:26:23+00:00",
 "Roles": []
 }
}

5. Add the role that you created to the instance profile:

aws iam add-role-to-instance-profile \
 --role-name AWSCookbook106SSMRole \
 --instance-profile-name AWSCookbook106InstanceProfile

NOTE
The EC2 instance profile contains a role that you create. The instance profile association
with an instance allows it to define “who I am,” and the role defines “what I am permitted
to do.” Both are required by IAM to allow an EC2 instance to communicate with other
AWS services using the IAM service. You can get a list of instance profiles in your
account by running the aws iam list-instance-profiles AWS CLI command.

6. Query SSM for the latest Amazon Linux 2 AMI ID available in your
Region and save it as an environment variable:

AMI_ID=$(aws ssm get-parameters --names \
 /aws/service/ami-amazon-linux-latest/amzn2-ami-hvm-
x86_64-gp2 \
 --query 'Parameters[0].[Value]' --output text)

7. Launch an instance in one of your subnets that references the instance
profile you created and also uses a Name tag that helps you identify
the instance in the console:

INSTANCE_ID=$(aws ec2 run-instances --image-id $AMI_ID \
 --count 1 \
 --instance-type t3.nano \
 --iam-instance-profile
Name=AWSCookbook106InstanceProfile \
 --subnet-id $SUBNET_1 \
 --security-group-ids $INSTANCE_SG \
 --metadata-options \
HttpTokens=required,HttpPutResponseHopLimit=64,HttpEndpoint=
enabled \
 --tag-specifications \
 'ResourceType=instance,Tags=
[{Key=Name,Value=AWSCookbook106}]' \
 'ResourceType=volume,Tags=
[{Key=Name,Value=AWSCookbook106}]' \
 --query Instances[0].InstanceId \
 --output text)

TIP
EC2 instance metadata is a feature you can use within your EC2 instance to access
information about your EC2 instance over an HTTP endpoint from the instance itself. This
is helpful for scripting and automation via user data. You should always use the latest
version of instance metadata. In step 7, you did this by specifying the --metadata-
options flag and providing the HttpTokens=required option that forces IMDSv2.

Validation checks

https://oreil.ly/DtodI
https://oreil.ly/IMqFC
https://oreil.ly/KGC4n

Ensure your EC2 instance has registered with SSM. Use the following
command to check the status. This command should return the instance ID:

aws ssm describe-instance-information \
 --filters Key=ResourceType,Values=EC2Instance \
 --query "InstanceInformationList[].InstanceId" --output text

Connect to the EC2 instance by using SSM Session Manager:

aws ssm start-session --target $INSTANCE_ID

You should now be connected to your instance and see a bash prompt. From
the bash prompt, run a command to validate you are connected to your EC2
instance by querying the metadata service for an IMDSv2 token and using
the token to query metadata for the instance profile associated with the
instance:

TOKEN=`curl -X PUT "http://169.254.169.254/latest/api/token" -H
"X-aws-ec2-metadata-token-ttl-seconds: 21600"`
curl -H "X-aws-ec2-metadata-token: $TOKEN"
http://169.254.169.254/latest/meta-data/iam/info

You should see output similar to the following:

{
 "Code" : "Success",
 "LastUpdated" : "2021-09-23T16:03:25Z",
 "InstanceProfileArn" : "arn:aws:iam::111111111111:instance-
profile/AWSCookbook106InstanceProfile",
 "InstanceProfileId" : "AIPAZVTINAMEXAMPLE"
}

Exit the Session Manager session:

exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you use AWS SSM Session Manager to connect to EC2 instances,
you eliminate your dependency on Secure Shell (SSH) over the internet for
command-line access to your instances. Once you configure Session
Manager for your instances, you can instantly connect to a bash shell
session on Linux or a PowerShell session for Windows systems.

WARNING
SSM can log all commands and their output during a session. You can set a preference to stop the
logging of sensitive data (e.g., passwords) with this command:

stty -echo; read passwd; stty echo;

There is more information in an AWS article about logging session activity.

Session Manager works by communicating with the AWS Systems
Manager (SSM) API endpoints within the AWS Region you are using over
HTTPS (TCP port 443). The agent on your instance registers with the SSM
service at boot time. No inbound security group rules are needed for
Session Manager functionality. We recommend configuring VPC Endpoints
for Session Manager to avoid the need for internet traffic and the cost of
Network Address Translation (NAT) gateways.
Here are some examples of the increased security posture Session Manager
provides:

No internet-facing TCP ports need to be allowed in security groups
associated with instances.
You can run instances in private (or isolated) subnets without exposing
them directly to the internet and still access them for management duties.

https://github.com/AWSCookbook/Security
https://oreil.ly/QJcHr
https://oreil.ly/vNEZQ

There is no need to create, associate, and manage SSH keys with
instances.
There is no need to manage user accounts and passwords on instances.
You can delegate access to manage EC2 instances using IAM roles.

NOTE
Any tool like SSM that provides such powerful capabilities must be carefully audited. AWS
provides information about locking down permissions for the SSM user, and more information
about auditing session activity.

Challenge
View the logs for a session and create an alert whenever the rm command is
executed.

1.7 Encrypting EBS Volumes Using KMS
Keys

Problem
You need an encryption key for encrypting EBS volumes attached to your
EC2 instances in a Region, and you need to rotate the key automatically
every 365 days.

Solution
Create a customer-managed KMS key (CMK), enable yearly rotation of the
key, enable EC2 default encryption for EBS volumes in a Region, and
specify the KMS key you created (shown in Figure 1-9).

https://oreil.ly/EQyPf
https://oreil.ly/aHzbf

Figure 1-9. Create a customer-managed key, enable rotation, and set default encryption for EC2
using a customer-managed key

Steps
1. Create a customer-managed KMS key and store the key ARN as a

local variable:

KMS_KEY_ID=$(aws kms create-key --description
"AWSCookbook107Key" \
 --output text --query KeyMetadata.KeyId)

2. Create a key alias to help you refer to the key in other steps:

aws kms create-alias --alias-name alias/AWSCookbook107Key \
 --target-key-id $KMS_KEY_ID

3. Enable automated rotation of the symmetric key material every 365
days:

aws kms enable-key-rotation --key-id $KMS_KEY_ID

4. Enable EBS encryption by default for the EC2 service within your
current Region:

aws ec2 enable-ebs-encryption-by-default

You should see output similar to the following:

{
 "EbsEncryptionByDefault": true
}

5. Update the default KMS key used for default EBS encryption to your
customer-managed key that you created in step 1:

aws ec2 modify-ebs-default-kms-key-id \
 --kms-key-id alias/AWSCookbook107Key

You should see output similar to the following:

{
 "KmsKeyId": "arn:aws:kms:us-east-
1:111111111111:key/1111111-aaaa-bbbb-222222222"
}

Validation checks
Use the AWS CLI to retrieve the default EBS encryption status for the EC2
service:

aws ec2 get-ebs-encryption-by-default

You should see output similar to the following:

{

 "EbsEncryptionByDefault": true
}

Retrieve the KMS key ID used for default encryption:

aws ec2 get-ebs-default-kms-key-id

You should see output similar to the following:

{
 "KmsKeyId": "arn:aws:kms:us-east-1:1111111111:key/1111111-aaaa-
3333-222222222c64b"
}

Check the automatic rotation status of the key you created:

aws kms get-key-rotation-status --key-id $KMS_KEY_ID

You should see output similar to the following:

{
 "KeyRotationEnabled": true
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you are faced with the challenge of ensuring that all of your newly
created EBS volumes are encrypted, the ebs-encryption-by-
default option comes to the rescue. With this setting enabled, every EC2
instance you launch will by default have its EBS volumes encrypted with
the specified KMS key. If you do not specify a KMS key, a default AWS-
managed aws/ebs KMS key is created and used. If you need to manage

https://github.com/AWSCookbook/Security

the lifecycle of the key or have a requirement specifying that you or your
organization must manage the key, customer-managed keys should be used.
Automatic key rotation on the KMS service simplifies your approach to key
rotation and key lifecycle management.
KMS is a flexible service you can use to implement a variety of data
encryption strategies. It supports key policies that you can use to control
who has access to the key. These key policies layer on top of your existing
IAM policy strategy for added security. You can use KMS keys to encrypt
many different types of data at rest within your AWS account, for example:

Amazon S3
Amazon EC2 EBS volumes
Amazon RDS databases and clusters
Amazon DynamoDB tables
Amazon EFS volumes
Amazon FSx file shares
And many more

Challenge 1
Change the key policy on the KMS key to allow access to only your IAM
principal and the EC2 service.

Challenge 2
Create an EBS volume and verify that it is encrypted by using the aws
ec2 describe-volumes command.

1.8 Storing, Encrypting, and Accessing
Passwords Using Secrets Manager

Problem

https://oreil.ly/ofr4y
https://oreil.ly/UyOQA

You need to give your EC2 instance the ability to securely store and retrieve
a database password for your application.

Solution
Create a password, store the password in Secrets Manager, create an IAM
Policy with access to the secret, and grant an EC2 instance profile access to
the secret, as shown in Figure 1-10.

Figure 1-10. Create a secret and retrieve it via the EC2 instance

Prerequisites
VPC with isolated subnets and associated route tables.
EC2 instance deployed. You will need the ability to connect to this for
testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a secret using the AWS CLI:

RANDOM_STRING=$(aws secretsmanager get-random-password \
 --password-length 32 --require-each-included-type \
 --output text \
 --query RandomPassword)

2. Store it as a new secret in Secrets Manager:

SECRET_ARN=$(aws secretsmanager \
 create-secret --name AWSCookbook108/Secret1 \
 --description "AWSCookbook108 Secret 1" \
 --secret-string $RANDOM_STRING \
 --output text \
 --query ARN)

3. Create a file called secret-access-policy-template.json that references
the secret you created. (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": [
 "SECRET_ARN"
]
 },
 {
 "Effect": "Allow",
 "Action": "secretsmanager:ListSecrets",
 "Resource": "*"
 }
]
}

4. Use the sed command to replace SECRET_ARN in the secret-access-
policy-template.json file and generate the secret-access-policy.json
file:

sed -e "s|SECRET_ARN|$SECRET_ARN|g" \
 secret-access-policy-template.json > secret-access-
policy.json

5. Create the IAM policy for secret access:

aws iam create-policy --policy-name
AWSCookbook108SecretAccess \
 --policy-document file://secret-access-policy.json

You should see output similar to the following:

{
 "Policy": {
 "PolicyName": "AWSCookbook108SecretAccess",
 "PolicyId": "(Random String)",
 "Arn":
"arn:aws:iam::1111111111:policy/AWSCookbook108SecretAccess",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-11-28T21:25:23+00:00",
 "UpdateDate": "2021-11-28T21:25:23+00:00"
 }
}

6. Grant an EC2 instance ability to access the secret by adding the IAM
policy you created to the EC2 instance profile’s currently attached
IAM role:

aws iam attach-role-policy --policy-arn \

arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook108SecretAcce

ss \
 --role-name $ROLE_NAME

Validation checks
Connect to the EC2 instance:

aws ssm start-session --target $INSTANCE_ID

Set and export your default region:

export AWS_DEFAULT_REGION=us-east-1

Retrieve the secret from Secrets Manager from the EC2:

aws secretsmanager get-secret-value --secret-id
AWSCookbook108/Secret1

You should see output similar to the following:

{
 "Name": "AWSCookbook108/Secret1",
 "VersionId": "<string>",
 "SecretString": "<secret value>",
 "VersionStages": [
 "AWSCURRENT"
],
 "CreatedDate": 1638221015.646,
 "ARN": "arn:aws:secretsmanager:us-east-
1:111111111111:secret:AWSCookbook108/Secret1-<suffix>"
}</suffix>

Exit the Session Manager session:

exit

Cleanup

Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Securely creating, storing, and managing the lifecycle of secrets, like API
keys and database passwords, is a fundamental component to a strong
security posture in the cloud. You can use Secrets Manager to implement a
secrets management strategy that supports your security strategy. You can
control who has access to what secrets using IAM policies to ensure the
secrets you manage are accessible by only the necessary security principals.
Since your EC2 instance uses an instance profile, you do not need to store
any hard-coded credentials on the instance in order for it to access the
secret. The access is granted via the IAM policy attached to the instance
profile. Each time you (or your application) access the secret from the EC2
instance, temporary session credentials are obtained from the STS service to
allow the get-secret-value API call to retrieve the secret. The AWS
CLI automates this process of token retrieval when an EC2 instance profile
is attached to your instance. You can also use the AWS SDK within your
applications to achieve this functionality.
Some additional benefits to using Secrets Manager include the following:

Encrypting secrets with KMS keys that you create and manage
Auditing access to secrets through CloudTrail
Automating secret rotation using Lambda
Granting access to other users, roles, and services like EC2 and Lambda
Replicating secrets to another Region for high availability and disaster
recovery purposes

Challenge
Configure a Lambda function to access the secret securely with an IAM
role.

https://github.com/AWSCookbook/Security

1.9 Blocking Public Access for an S3 Bucket

Problem
You have been alerted by your organization’s security team that an S3
bucket has been incorrectly configured and you need to block public access
to it.

Solution
Apply the Amazon S3 Block Public Access feature to your bucket, and then
check the status with the Access Analyzer (see Figure 1-11).

TIP
AWS provides information on what is considered “public” in an article on S3 storage.

https://oreil.ly/h6Ozf

Figure 1-11. Blocking public access to an S3 bucket

Prerequisite
S3 bucket with publicly available object(s)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create an Access Analyzer to use for validation of access:

ANALYZER_ARN=$(aws accessanalyzer create-analyzer \
 --analyzer-name awscookbook109\
 --type ACCOUNT \
 --output text --query arn)

2. Perform a scan of your S3 bucket with the Access Analyzer:

aws accessanalyzer start-resource-scan \
 --analyzer-arn $ANALYZER_ARN \
 --resource-arn
arn:aws:s3:::awscookbook109-$RANDOM_STRING

3. Get the results of the Access Analyzer scan (it may take about 30
seconds for the scan results to become available):

aws accessanalyzer get-analyzed-resource \
 --analyzer-arn $ANALYZER_ARN \
 --resource-arn
arn:aws:s3:::awscookbook109-$RANDOM_STRING

You should see output similar to the following (note the isPublic
value):

{
 "resource": {
 "actions": [
 "s3:GetObject",
 "s3:GetObjectVersion"
],
 "analyzedAt": "2021-06-26T17:42:00.861000+00:00",
 "createdAt": "2021-06-26T17:42:00.861000+00:00",
 "isPublic": true,

https://github.com/AWSCookbook/Security

 "resourceArn": "arn:aws:s3:::awscookbook109-<<string>>",
 "resourceOwnerAccount": "111111111111",
 "resourceType": "AWS::S3::Bucket",
 "sharedVia": [
 "POLICY"
],
 "status": "ACTIVE",
 "updatedAt": "2021-06-26T17:42:00.861000+00:00"
 }
}

4. Set the public access block for your bucket:

aws s3api put-public-access-block \
 --bucket awscookbook109-$RANDOM_STRING \
 --public-access-block-configuration \
"BlockPublicAcls=true,IgnorePublicAcls=true,BlockPublicPolic
y=true,RestrictPublicBuckets=true"

NOTE
See the AWS article on the available PublicAccessBlock configuration properties.

Validation checks
Perform a scan of your S3 bucket:

aws accessanalyzer start-resource-scan \
 --analyzer-arn $ANALYZER_ARN \
 --resource-arn arn:aws:s3:::awscookbook109-$RANDOM_STRING

Get the results of the Access Analyzer scan:

aws accessanalyzer get-analyzed-resource \
 --analyzer-arn $ANALYZER_ARN \
 --resource-arn arn:aws:s3:::awscookbook109-$RANDOM_STRING

You should see output similar to the following:

https://oreil.ly/3jRmO

{
 "resource": {
 "analyzedAt": "2021-06-26T17:46:24.906000+00:00",
 "isPublic": false,
 "resourceArn": "arn:aws:s3:::awscookbook109-<<string>>",
 "resourceOwnerAccount": "111111111111",
 "resourceType": "AWS::S3::Bucket"
 }
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
One of the best things you can do to ensure data security in your AWS
account is to always make certain that you apply the right security controls
to your data. If you mark an object as public in your S3 bucket, it is
accessible to anyone on the internet, since S3 serves objects using HTTP.
One of the most common security misconfigurations that users make in the
cloud is marking object(s) as public when that is not intended or required.
To protect against misconfiguration of S3 objects, enabling
BlockPublicAccess for your buckets is a great thing to do from a
security standpoint.

TIP
You can also set public block settings at your account level, which would include all S3 buckets in
your account:

aws s3control put-public-access-block \
 --public-access-block-configuration \

BlockPublicAcls=true,IgnorePublicAcls=true,BlockPublicPolicy=tr
ue,RestrictPublicBuckets=true \
 --account-id $AWS_ACCOUNT_ID

https://github.com/AWSCookbook/Security

You can serve S3 content to internet users via HTTP and HTTPS while
keeping your bucket private. Content delivery networking (CDN), like
Amazon CloudFront, provides more secure, efficient, and cost-effective
ways to achieve global static website hosting and still use S3 as your object
source. To see an example of a CloudFront configuration that serves static
content from an S3 bucket, see Recipe 1.10.

Challenge
Deploy a VPC endpoint for S3 within your VPC and create a bucket policy
to restrict access to your S3 bucket through this endpoint only.

1.10 Serving Web Content Securely from S3
with CloudFront

Problem
You have nonpublic web content in S3 and want to configure CloudFront to
serve the content.

Solution
Create a CloudFront distribution and set the origin to your S3 bucket. Then
configure an origin access identity (OAI) to require the bucket to be
accessible only from CloudFront (see Figure 1-12).

Figure 1-12. CloudFront and S3

Prerequisite
S3 bucket with static web content

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a CloudFront OAI to reference in an S3 bucket policy:

OAI=$(aws cloudfront create-cloud-front-origin-access-
identity \
 --cloud-front-origin-access-identity-config \
 CallerReference="awscookbook",Comment="AWSCookbook OAI"
\
 --query CloudFrontOriginAccessIdentity.Id --output
text)

2. Use the sed command to replace the values in the distribution-
config-template.json file with your CloudFront OAI and S3 bucket
name:

https://github.com/AWSCookbook/Security

sed -e "s/CLOUDFRONT_OAI/${OAI}/g" \
 -e "s|S3_BUCKET_NAME|awscookbook110-$RANDOM_STRING|g" \
 distribution-template.json > distribution.json

3. Create a CloudFront distribution that uses the distribution
configuration JSON file you just created:

DISTRIBUTION_ID=$(aws cloudfront create-distribution \
 --distribution-config file://distribution.json \
 --query Distribution.Id --output text)

4. The distribution will take a few minutes to create; use this command
to check the status. Wait until the status reaches “Deployed”:

aws cloudfront get-distribution --id $DISTRIBUTION_ID \
 --output text --query Distribution.Status

5. Configure the S3 bucket policy to allow only requests from
CloudFront by using a bucket policy like this (we have provided
bucket-policy-template.json in the repository):

{
 "Version": "2012-10-17",
 "Id": "PolicyForCloudFrontPrivateContent",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::cloudfront:user/CloudFront
Origin Access Identity CLOUDFRONT_OAI"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::S3_BUCKET_NAME/*"
 }
]
}

6. Use the sed command to replace the values in the bucket-policy-
template.json file with the CloudFront OAI and S3 bucket name:

sed -e "s/CLOUDFRONT_OAI/${OAI}/g" \
 -e "s|S3_BUCKET_NAME|awscookbook110-$RANDOM_STRING|g" \
 bucket-policy-template.json > bucket-policy.json

7. Apply the bucket policy to the S3 bucket with your static web content:

aws s3api put-bucket-policy --bucket
awscookbook110-$RANDOM_STRING \
 --policy file://bucket-policy.json

8. Get the DOMAIN_NAME of the distribution you created:

DOMAIN_NAME=$(aws cloudfront get-distribution --id
$DISTRIBUTION_ID \
 --query Distribution.DomainName --output text)

Validation checks
Try to access the S3 bucket directly using HTTPS to verify that the bucket
does not serve content directly:

curl
https://awscookbook110-$RANDOM_STRING.s3.$AWS_REGION.amazonaws.co
m/index.html

You should see output similar to the following:

$ curl
https://awscookbook110-$RANDOM_STRING.s3.$AWS_REGION.amazonaws.co
m/index.html
<?xml version="1.0" encoding="UTF-8"?>
<Error><Code>AccessDenied</Code><Message>Access
Denied</Message><RequestId>0AKQD0EFJC9ZHPCC</RequestId>
<HostId>gfld4qKp9A93G8ee7VPBFrXBZV1HE3jiOb3bNB54fP
EPTihit/OyFh7hF2Nu4+Muv6JEc0ebLL4=</HostId></Error>
110-Optimizing-S3-with-CloudFront:$

Use curl to observe that your index.html file is served from the private S3
bucket through CloudFront:

curl $DOMAIN_NAME

You should see output similar to the following:

$ curl $DOMAIN_NAME
AWSCookbook
$

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
This configuration allows you to keep the S3 bucket private and allows only
the CloudFront distribution to be able to access objects in the bucket. You
created an origin access identity and defined a bucket policy to allow only
CloudFront access to your S3 content. This gives you a solid foundation to
keep your S3 buckets secure with the additional protection of the
CloudFront global CDN.
The protection that a CDN gives from a distributed-denial-of-service
(DDoS) attack is worth noting, as the end user requests to your content are
directed to a point of presence on the CloudFront network with the lowest
latency. This also protects you from the costs of having a DDoS attack
against static content hosted in an S3 bucket, as it is generally less
expensive to serve requests out of CloudFront rather than S3 directly.
By default, CloudFront comes with an HTTPS certificate on the default
hostname for your distribution that you use to secure traffic. With
CloudFront, you can associate your own custom domain name, attach a
custom certificate from Amazon Certificate Manager (ACM), redirect to

https://github.com/AWSCookbook/Security
https://oreil.ly/aABzJ
https://oreil.ly/mtHSB

HTTPS from HTTP, force HTTPS, customize cache behavior, invoke
Lambda functions (Lambda @Edge), and more.

Challenge
Add a geo restriction to your CloudFront distribution.

https://oreil.ly/FMGj0

Chapter 2. Networking

2.0 Introduction
Many exciting topics, like computer vision, Internet of Things (IoT), and
AI-enabled chat bots, dominate headlines. This causes traditional core
technologies to be forgotten. While it’s great to have many new capabilities
at your fingertips, it is important to realize that these technologies would
not be possible without a strong foundation of reliable and secure
connectivity. Data processing is useful only if the results are reliably
delivered and accessible over a network. Containers are a fantastic
application deployment method, but they provide the best experience for
users when they are networked together.
Networking services and features within AWS are the backbone to almost
all of the big services we cover in this book. AWS has many great features
for you to connect what you want, where you want, and how you want.
Gaining a better understanding of networking will allow you to have a
better grasp of the cloud and therefore to be more comfortable using it.

TIP
Keeping up with new networking innovations at AWS requires continuous learning. Each year at
AWS re:Invent, many network services, features, and approaches are discussed.

Two suggested viewings of great networking talks from AWS re:Invent are Eric Brandwine’s
“Another Day, Another Billion Packets” from 2015 and the annual “From One to Many: Evolving
VPC Design” from 2019.

In this chapter, you will learn about essential cloud networking services and
features. We will focus only on recipes that are realistic for you to
accomplish in your personal account. Some advanced operations (e.g.,
AWS Direct Connect setup) are too dependent on external factors, so we
left them out in order to focus on more easily accessible recipes and

https://reinvent.awsevents.com/
https://oreil.ly/oB1BN
https://oreil.ly/leKi9

outcomes. While some recipes in this chapter may seem simple or short,
they allow us to discuss important topics and concepts that are crucial to get
right.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/AWSCookbook/Networking

2.1 Defining Your Private Virtual Network in
the Cloud by Creating an Amazon VPC

Problem
You need a network foundation to host cloud resources.

Solution
You will create an Amazon Virtual Private Cloud (VPC) and configure a
Classless Inter-Domain Routing (CIDR) block for it, as shown in Figure 2-
1.

https://oreil.ly/2GrP7

Figure 2-1. VPC deployed in a Region

Steps
1. Create a VPC with an IPv4 CIDR block. We will use 10.10.0.0/16 as

the address range, but you can modify it based on your needs:

VPC_ID=$(aws ec2 create-vpc --cidr-block 10.10.0.0/16 \
 --tag-specifications
'ResourceType=vpc,Tags=[{Key=Name,Value=AWSCookbook201}]' \
 --output text --query Vpc.VpcId)

NOTE
When you are creating a VPC, the documentation states that the largest block size for VPC
IPv4 CIDRs is a /16 netmask (65,536 IP addresses). The smallest is a /28 netmask (16 IP
addresses).

Validation checks
Use this command to verify that the VPC’s state is available:

aws ec2 describe-vpcs --vpc-ids $VPC_ID

You should see output similar to the following:

{
 "Vpcs": [
 {
 "CidrBlock": "10.10.0.0/16",
 "DhcpOptionsId": "dopt-<<snip>>",
 "State": "available",
 "VpcId": "vpc-<<snip>>",
 "OwnerId": "111111111111",
 "InstanceTenancy": "default",
 "CidrBlockAssociationSet": [
 {
 "AssociationId": "vpc-cidr-assoc-<<snip>>",
 "CidrBlock": "10.10.0.0/16",
 "CidrBlockState": {
 "State": "associated"
 }
 }
],
 "IsDefault": false,
<<snip>>
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

https://oreil.ly/uIfsH
https://oreil.ly/M0D9Y
https://github.com/AWSCookbook/Networking

WARNING
Here are two important reasons for carefully selecting CIDR block(s) for your VPC:

Once a CIDR block is associated with a VPC, it can’t be modified (although it can be
extended). If you wish to modify a CIDR block, it (and all resources within it) will need to be
deleted and re-created.

If a VPC is connected to other networks by peering (see Recipe 2.11) or gateways (e.g.,
Transit and VPN), having overlapping IP ranges will cause unwanted problems.

You can add IPv4 space to the VPC by using the aws ec2 associate-
vpc-cidr-block command to specify the additional IPv4 space. When
IP space becomes scarce from usage and under-provisioning, it’s good to
know that you don’t need to dedicate a large block to a VPC, especially if
you aren’t sure if all of it will be utilized.
Here is an example of associating an additional IPv4 CIDR block to your
VPC:

aws ec2 associate-vpc-cidr-block \
 --cidr-block 10.11.0.0/16 \
 --vpc-id $VPC_ID

NOTE
In addition to IPv4, VPC also supports IPv6. You can configure an Amazon-provided IPv6 CIDR
block by specifying the --amazon-provided-ipv6-cidr-block option. Here is an
example of creating a VPC with an IPv6 CIDR block:

aws ec2 create-vpc --cidr-block 10.10.0.0/16 \
 --amazon-provided-ipv6-cidr-block \
 --tag-specifications
'ResourceType=vpc,Tags=[{Key=Name,Value=AWSCookbook201-IPv6}]'

https://oreil.ly/xUB24
https://oreil.ly/sBL99

A VPC is a Regional construct in AWS. A Region is a geographical area,
and Availability Zones are physical data centers that reside within a Region.
Regions span all Availability Zones (AZs), which are groups of isolated
physical data centers. The number of AZs per Region varies, but all
Regions have at least three. For the most up-to-date information about AWS
Regions and AZs, see this article on “Regions and Availability Zones”.

NOTE
Per the VPC user guide, the initial quota of IPv4 CIDR blocks per VPC is 5. This can be raised to
50. The allowable number of IPv6 CIDR blocks per VPC is 1.

Challenge
Create another VPC with a different CIDR range.

2.2 Creating a Network Tier with Subnets and
a Route Table in a VPC

Problem
You have a VPC and need to create a network layout consisting of
individual IP spaces for segmentation and redundancy.

Solution
Create a route table within your VPC. Create two subnets in separate
Availability Zones in a VPC. Associate the route table with the subnets (see
Figure 2-2).

https://oreil.ly/tJuIg
https://oreil.ly/Z4MTP
https://oreil.ly/wcJPH

Figure 2-2. Isolated subnet tier and route table

Prerequisite
A VPC

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

https://github.com/AWSCookbook/Networking

Steps
1. Create a route table. This will allow you to create customized traffic

routes for subnets associated with it:

ROUTE_TABLE_ID=$(aws ec2 create-route-table --vpc-id $VPC_ID
\
 --tag-specifications \
'ResourceType=route-table,Tags=
[{Key=Name,Value=AWSCookbook202}]' \
 --output text --query RouteTable.RouteTableId)

2. Create two subnets, one in each AZ. This will define the address
spaces for you to create resources for your VPC:

SUBNET_ID_1=$(aws ec2 create-subnet --vpc-id $VPC_ID \
 --cidr-block 10.10.0.0/24 --availability-zone
${AWS_REGION}a \
 --tag-specifications \
 'ResourceType=subnet,Tags=
[{Key=Name,Value=AWSCookbook202a}]' \
 --output text --query Subnet.SubnetId)

SUBNET_ID_2=$(aws ec2 create-subnet --vpc-id $VPC_ID \
 --cidr-block 10.10.1.0/24 --availability-zone
${AWS_REGION}b \
 --tag-specifications \
 'ResourceType=subnet,Tags=
[{Key=Name,Value=AWSCookbook202b}]' \
 --output text --query Subnet.SubnetId)

NOTE
In the previous commands, the --availability-zone parameter uses an
environment variable for your Region appended with lowercase a or b characters to
indicate which logical AZ (e.g., us-east-1a) to provision each subnet. AWS states that these
names are randomized per account to balance resources across AZs.

If you are using multiple AWS accounts and want to find Availability Zone IDs for a
Region that are consistent, run this command:

aws ec2 describe-availability-zones --region $AWS_REGION

3. Associate the route table with the two subnets:

aws ec2 associate-route-table \
 --route-table-id $ROUTE_TABLE_ID --subnet-id
$SUBNET_ID_1

aws ec2 associate-route-table \
 --route-table-id $ROUTE_TABLE_ID --subnet-id
$SUBNET_ID_2

4. For each command in step 3, you should see output similar to the
following:

{
 "AssociationId": "rtbassoc-<<snip>>",
 "AssociationState": {
 "State": "associated"
 }
}

Validation checks
Retrieve the configuration of the subnets you created and verify that they
are in the same VPC but different AZs:

aws ec2 describe-subnets --subnet-ids $SUBNET_ID_1
aws ec2 describe-subnets --subnet-ids $SUBNET_ID_2

For each describe-subnets command, you should see output similar
to this:

{
 "Subnets": [
 {
 "AvailabilityZone": "us-east-1a",
 "AvailabilityZoneId": "use1-az6",
 "AvailableIpAddressCount": 251,
 "CidrBlock": "10.10.0.0/24",
 "DefaultForAz": false,
 "MapPublicIpOnLaunch": false,
 "MapCustomerOwnedIpOnLaunch": false,
 "State": "available",
 "SubnetId": "subnet-<<snip>>",
 "VpcId": "vpc-<<snip>>",
 "OwnerId": "111111111111",
 "AssignIpv6AddressOnCreation": false,
 "Ipv6CidrBlockAssociationSet": [],
<<snip>>
...

Validate that the route table you created is associated with the two subnets:

aws ec2 describe-route-tables --route-table-ids $ROUTE_TABLE_ID

You should see output similar to the following:

{
 "RouteTables": [
 {
 "Associations": [
 {
 "Main": false,
 "RouteTableAssociationId": "rtbassoc-<<snip>>",
 "RouteTableId": "rtb-<<snip>>",
 "SubnetId": "subnet-<<snip>>",
 "AssociationState": {
 "State": "associated"

 }
 },
 {
 "Main": false,
 "RouteTableAssociationId": "rtbassoc-<<snip>>",
 "RouteTableId": "rtb-<<snip>>",
 "SubnetId": "subnet-<<snip>>",
 "AssociationState": {
 "State": "associated"
 }
 }
<<snip>>
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When designing a subnet strategy, you should choose subnet sizes that fit
your current needs and account for your application’s future growth.
Subnets are used for elastic network interface (ENI) placement for AWS
resources. This means that a particular ENI lives within a single AZ.

TIP
You may run into a case where routes overlap. AWS provides information on how priority is
determined.

AWS reserves the first four and last IP addresses of every subnet’s CIDR
block for features and functionality when you create a subnet. These are not
available for your use. Per the documentation, these are the reserved
addresses in the case of your example:

.0 Network address.

.1 Reserved by AWS for the VPC router.

.2 Reserved by AWS for the IP address of the DNS server. This is always set to the VPC
network range plus two.

.3 Reserved by AWS for future use.

https://github.com/AWSCookbook/Networking
https://oreil.ly/KULJn
https://oreil.ly/j1RWe
https://oreil.ly/qbkcf

.25
5

Network broadcast address. Broadcast in a VPC is not supported.

A subnet has one route table associated with it. Route tables can be
associated with one or more subnets and direct traffic to a destination of
your choosing (more on this with the NAT gateway, internet gateway, and
transit gateway recipes later). Entries within route tables are called routes
and are defined as pairs of Destinations and Targets. When you created the
route table, a default local route that handles intra-VPC traffic was
automatically added for you. You have the ability to create custom routes
that fit your needs. For a complete list of targets available to use within
route tables, see this support document.

NOTE
ENIs receive an IP address from an AWS managed DHCP server within your VPC. The DHCP
options set is automatically configured with defaults for assigning addresses within the subnets
you define. For more information about DHCP option sets, and how to create your own DHCP
option sets see this support document.

When creating a VPC in a Region, it is a best practice to spread subnets
across AZs in that network tier. The number of AZs differs per Region, but
most have at least three. An example of this in practice would be that if you
had a public tier and an isolated tier spread over two AZs, you would have a
total of four subnets: 2 tiers × 2 subnets per tier (one per AZ); see Figure 2-
3.

https://oreil.ly/oKVq1
https://oreil.ly/OsebX

Figure 2-3. Isolated and public subnet tiers and route tables

Challenge
Create a second route table and associate it with $SUBNET_ID_2.
Configuring route tables for each AZ is a common pattern.

2.3 Connecting Your VPC to the Internet
Using an Internet Gateway

Problem
You have an existing EC2 instance in a subnet of a VPC. You need to
provide the ability for this instance to directly reach clients on the internet.

Solution
You will create an internet gateway and attach it to your VPC. Next you
will modify the route table associated with the subnet where the EC2
instance lives. You will add a route that sends traffic from the subnets to the
internet gateway. Finally, create an Elastic IP (EIP) and associate it with the
instance, as shown in Figure 2-4.

Figure 2-4. Public subnet tier, internet gateway, and route table

Prerequisites
VPC and subnets created in two AZs and associated route tables.
EC2 instance deployed. You will need the ability to connect to this for
testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create an internet gateway (IGW):

INET_GATEWAY_ID=$(aws ec2 create-internet-gateway \
 --tag-specifications \
'ResourceType=internet-gateway,Tags=
[{Key=Name,Value=AWSCookbook202}]' \
 --output text --query InternetGateway.InternetGatewayId)

2. Attach the internet gateway to the existing VPC:

aws ec2 attach-internet-gateway \
 --internet-gateway-id $INET_GATEWAY_ID --vpc-id $VPC_ID

3. In each route table of your VPC, create a route that sets the default
route destination to the internet gateway:

aws ec2 create-route --route-table-id $ROUTE_TABLE_ID_1 \
 --destination-cidr-block 0.0.0.0/0 --gateway-id
$INET_GATEWAY_ID

aws ec2 create-route --route-table-id $ROUTE_TABLE_ID_2 \
 --destination-cidr-block 0.0.0.0/0 --gateway-id
$INET_GATEWAY_ID

https://github.com/AWSCookbook/Networking

For each command in step 3, you should see output similar to the
following:

{
 "Return": true
}

4. Create an EIP:

ALLOCATION_ID=$(aws ec2 allocate-address --domain vpc \
 --output text --query AllocationId)

NOTE
AWS defines an Elastic IP address (EIP) as “a static IPv4 address designed for dynamic
cloud computing. An EIP address is allocated to your AWS account and is yours until you
release it.”

5. Associate the EIP with the existing EC2 instance:

aws ec2 associate-address \
 --instance-id $INSTANCE_ID --allocation-id
$ALLOCATION_ID

You should see output similar to the following:

{
 "AssociationId": "eipassoc-<<snip>>"
}

Validation checks
Connect to the EC2 instance using SSM Session Manager (see Recipe 1.6):

aws ssm start-session --target $INSTANCE_ID

https://oreil.ly/FCrvT

Ping a host on the internet to test internet connectivity:

ping -c 4 homestarrunner.com

You should see output similar to the following:

sh-4.2$ ping -c 4 homestarrunner.com
PING homestarrunner.com (72.10.33.178) 56(84) bytes of data.
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=1
ttl=49 time=2.12 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=2
ttl=49 time=2.04 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=3
ttl=49 time=2.05 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=4
ttl=49 time=2.08 ms
--- homestarrunner.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3002ms
rtt min/avg/max/mdev = 2.045/2.078/2.127/0.045 ms
sh-4.2$

TIP
The public IP is not part of the OS configuration. If you want to retrieve the public IP from the
instance’s metadata, you can use this command:

curl http://169.254.169.254/latest/meta-data/public-ipv4

Exit the Session Manager session:

exit

Clean up
Follow the steps in this recipe’s folder in the chapter code repository.

https://oreil.ly/lmZ1U
https://github.com/AWSCookbook/Networking

Discussion
The route that you created in your route table entry sends all nonlocal traffic
to the IGW that provides your VPC internet connectivity. Because you were
working with an existing running EC2 instance, you needed to create an
Elastic IP and associated it with the instance. These steps enabled internet
communication to the instance without having to interact with it. There is
an option to enable auto-assignment of public IPv4 addresses for newly
launched instances in a subnet. However, if you utilize auto-assignment, the
public IPs will change after each instance reboot. EIPs associated with an
instance will not change after reboots.

NOTE
Route tables give priority to the most specific route. AWS also allows you to create routes that are
more specific than the default local route. This allows you to create very controlled network
flows. More information about route priority can be found in an AWS discussion.

The security group associated with your instance does not allow inbound
access. If you would like to allow inbound internet access to an instance in
a public subnet, you will have to configure a security group ingress rule for
this.
A subnet that has a route of 0.0.0.0/0 associated with an IGW is considered
a public subnet. It is considered a security best practice to place instances
only in this type of tier that require inbound access from the public internet.
End-user-facing load balancers are commonly placed in public subnets. A
public subnet would not be an ideal choice for an application server or a
database. In these cases, you can create a private tier or an isolated tier to fit
your needs with the appropriate routing and use a NAT gateway to direct
that subnet traffic to the internet gateway only when outbound internet
access is required.

Challenge

https://oreil.ly/disUG
https://oreil.ly/DKpNO

Install a web server on the EC2 instance, modify the security group, and
connect to the instance from your workstation. See Recipe 2.7 for an
example of how to configure internet access for instances in private subnets
using a load balancer.

2.4 Using a NAT Gateway for Outbound
Internet Access from Private Subnets

Problem
You have public subnets in your VPC that have a route to an internet
gateway. You want to leverage this setup to provide outbound-only internet
access for an instance in private subnets.

Solution
Create a NAT gateway in one of the public subnets. Then create an Elastic
IP and associate it with the NAT gateway. In the route table associated with
the private subnets, add a route for internet-bound traffic that targets the
NAT gateway (see Figure 2-5).

Prerequisites
VPC with public subnets in two AZs and associated route tables.
Isolated subnets created in two AZs (we will turn these into the private
subnets) and associated route tables.
Two EC2 instances deployed in the isolated subnets. You will need the
ability to connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

https://github.com/AWSCookbook/Networking

Figure 2-5. Internet access for private subnets provided by NAT gateways

Steps
1. Create an Elastic IP to be used with the NAT gateway:

ALLOCATION_ID=$(aws ec2 allocate-address --domain vpc \
 --output text --query AllocationId)

2. Create a NAT gateway within the public subnet of AZ1:

NAT_GATEWAY_ID=$(aws ec2 create-nat-gateway \
 --subnet-id $VPC_PUBLIC_SUBNET_1 \
 --allocation-id $ALLOCATION_ID \
 --output text --query NatGateway.NatGatewayId)

3. This will take a few moments for the state to become available; check
the status:

aws ec2 describe-nat-gateways \
 --nat-gateway-ids $NAT_GATEWAY_ID \
 --output text --query NatGateways[0].State

4. Add a default route for 0.0.0.0/0 with a destination of the NAT
gateway to both of the private tier’s route tables. This default route
sends all traffic not matching a more specific route to the destination
specified:

aws ec2 create-route --route-table-id $PRIVATE_RT_ID_1 \
 --destination-cidr-block 0.0.0.0/0 \
 --nat-gateway-id $NAT_GATEWAY_ID

aws ec2 create-route --route-table-id $PRIVATE_RT_ID_2 \
 --destination-cidr-block 0.0.0.0/0 \
 --nat-gateway-id $NAT_GATEWAY_ID

For each command in step 4, you should see output similar to the
following:

{
 "Return": true
}

Validation checks
Connect to EC2 instance 1 by using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID_1

Test internet access with a ping:

ping -c 4 homestarrunner.com

You should see output similar to the following:

sh-4.2$ ping -c 4 homestarrunner.com

PING homestarrunner.com (72.10.33.178) 56(84) bytes of data.
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=1
ttl=47 time=2.95 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=2
ttl=47 time=2.16 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=3
ttl=47 time=2.13 ms
64 bytes from homestarrunner.com (72.10.33.178): icmp_seq=4
ttl=47 time=2.13 ms

--- homestarrunner.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 2.134/2.348/2.958/0.356 ms
sh-4.2$

Exit the Session Manager session:

exit

(Optional) Repeat the validation steps for EC2 instance 2.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
This architecture gives you a subnet tier that allows outbound access but
does not permit direct inbound internet access to resources within it. One
way to allow internet resources inbound access to services running on
resources in private subnets is to use a load balancer in the public subnets.
We’ll look more at that type of configuration in Recipe 2.7.
The EIP associated with your NAT gateway becomes the external IP
address for all communication that goes through it. For example, if a vendor
needed to add your IP to an allow list, the NAT gateway EIP would be the
“source” IP address provided to the vendor. Your EIP will remain the same
as long as you keep it provisioned within your account.

TIP
If you created a VPC with IPv6 capability, you can also create an egress-only internet gateway to
allow outbound internet access for private subnets, as discussed in an AWS article.

This NAT gateway was provisioned within one AZ in your VPC. While this
is a cost-effective way to achieve outbound internet access for your private
subnets, for production and mission-critical applications, you should
consider provisioning NAT gateways in each AZ to provide resiliency and
reduce the amount of cross-AZ traffic. This would also require creating
route tables for each of your private subnets so that you can direct the
0.0.0.0/0 traffic to the NAT gateway in that particular subnet’s AZ. See the
challenge for this recipe.

https://github.com/AWSCookbook/Networking
https://oreil.ly/RxlYN

NOTE
If you have custom requirements or would like more granular control of your outbound routing for
your NAT implementation, you can create a NAT instance. For a comparison of NAT gateways
and NAT instances, see this support document.

Challenge
Create a second NAT gateway in the public subnet in AZ2. Then modify the
default route in the route table associated with the private subnet in AZ2.
Change the destination to the newly created NAT gateway.

2.5 Granting Dynamic Access by
Referencing Security Groups

Problem
You have an application group that currently consists of two instances and
need to allow Secure Shell (SSH) between them. This needs to be
configured in a way to allow for future growth of the number of instances
securely and easily.

Solution

WARNING
A common misconception is that by merely associating the same security group to ENIs for
multiple EC2 instances, it will allow communication between them (see Figure 2-6).

https://oreil.ly/roLbq

Figure 2-6. Incorrect representation of two instances using the same security group

In this recipe, we will create a security group and an associate each to the
ENIs of two EC2 instances. Finally, we will create an ingress rule that
authorizes the security group to reach itself on TCP port 22 (see Figure 2-
7).

Figure 2-7. Correct visualization of the ENIs of two instances using the same security group

Prerequisites
VPC with a subnet and associated route table.
Two EC2 instances deployed in the subnet. You will need the ability to
connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a new security group for the EC2 instances:

SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook205Sg \
 --description "Instance Security Group" --vpc-id $VPC_ID
\
 --output text --query GroupId)

2. Attach the security group to instances 1 and 2:

aws ec2 modify-instance-attribute --instance-id
$INSTANCE_ID_1 \
 --groups $SG_ID

aws ec2 modify-instance-attribute --instance-id
$INSTANCE_ID_2 \
 --groups $SG_ID

https://github.com/AWSCookbook/Networking

NOTE
You used the modify-instance-attribute command to attach a new security group to the
ENIs of your EC2 instances. To list the security groups associated with the ENI of an EC2
instance, you can view them in the EC2 console under the Security tab of the instance
details or use this command (replacing $INSTANCE_ID_1 with your own instance ID):

aws ec2 describe-security-groups --group-ids \
 $(aws ec2 describe-instances --instance-id
$INSTANCE_ID_1 \
 --query
"Reservations[].Instances[].SecurityGroups[].GroupId[]" \
 --output text) --output text

3. Add an ingress rule to the security group that allows access on TCP
port 22 from itself:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 22 \
 --source-group $SG_ID \
 --group-id $SG_ID \

TIP
You can and should create descriptions for all your security group rules to indicate the
intended functionality of the authorization.

You should see output similar to the following:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<snip>>",
 "GroupId": "sg-<<snip>>",
 "GroupOwnerId": "111111111111",

https://oreil.ly/GT2KH

 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 22,
 "ToPort": 22,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<snip>>"
 }
 }
]
}

TIP
This type of security group rule is called a self-referencing rule. It allows access to the
specific port from traffic originating from ENIs (not a static range of IPs) that have this
same security group attached to them.

Validation checks
List the IP address for instance 2:

aws ec2 describe-instances --instance-ids $INSTANCE_ID_2 \
 --output text \
 --query Reservations[0].Instances[0].PrivateIpAddress

Connect to your instance 1 by using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID_1

Install the Ncat utility:

sudo yum -y install nc

Test SSH connectivity to instance 2 (use instance 2’s IP that you listed
previously):

nc -vz $INSTANCE_IP_2 22

You should see output similar to the following:

Ncat: Version 7.50 (https://nmap.org/ncat)
Ncat: Connected to 10.10.0.48:22.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.
sh-4.2$

Exit the Session Manager session:

exit

(Optional) Repeat the validation steps from instance 2 to instance 1.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
The on-demand nature of the cloud (e.g., autoscaling) presents an
opportunity for elasticity. Network security mechanisms, like security group
references, are suitable for that. Traditionally, network architects might
authorize CIDR ranges within firewall configurations. This type of
authorization is generally referred to as static references. This legacy
practice doesn’t scale dynamically, as you may add or remove instances
from your workloads.
A security group acts as a stateful virtual firewall for ENIs. The default
behavior for security groups is to implicitly block all ingress while allowing
all egress. You can associate multiple security groups with an ENI. There is
an initial quota of 5 security groups per ENI and 60 rules (inbound or
outbound) per security group.
You can also specify CIDR notation for authorizations. For example, for an
authorization intended to allow RDP access from your New York branch

https://github.com/AWSCookbook/Networking
https://oreil.ly/rYohM
https://oreil.ly/FR5J1

office, you would use the following:

aws ec2 authorize-security-group-ingress \
 --group-id sg-1234567890abcdef0 \
 --ip-permissions

IpProtocol=tcp,FromPort=3389,ToPort=3389,IpRanges='[{CidrIp=XXX.X
XX.XXX.XXX/24,Description="RDP access from NY office"}]'

WARNING
Remember that security groups cannot be deleted if the following conditions are present:

They are currently attached to an ENI.

They are referenced by other security groups (including themselves).

Challenge
Create a third EC2 instance; use the same security group. Test access to and
from it. (Hint: in the repository.)

2.6 Using VPC Reachability Analyzer to
Verify and Troubleshoot Network Paths

Problem
You have two EC2 instances deployed in isolated subnets. You need to
troubleshoot SSH connectivity between them.

Solution
You will create, analyze, and describe network insights by using the VPC
Reachability Analyzer. Based on the results, you will add a rule to the
security group of instance 2 that allows the SSH port (TCP port 22) from

instance 1’s security group. Finally, you will rerun the VPC Reachability
Analyzer and view the updated results (see Figure 2-8).

Figure 2-8. VPC Reachability Analyzer

Prerequisites
VPC with isolated subnets in two AZs and associated route tables.

Two EC2 instances deployed in the isolated subnets. You will need the
ability to connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a network insights path specifying both of the EC2 instances

you deployed and TCP port 22:

INSIGHTS_PATH_ID=$(aws ec2 create-network-insights-path \
 --source $INSTANCE_ID_1 --destination-port 22 \
 --destination $INSTANCE_ID_2 --protocol tcp \
 --output text --query
NetworkInsightsPath.NetworkInsightsPathId)

2. Start the network insights analysis between the two instances using
the INSIGHTS_PATH_ID created in the previous step:

ANALYSIS_ID_1=$(aws ec2 start-network-insights-analysis \
 --network-insights-path-id $INSIGHTS_PATH_ID --output
text \
 --query
NetworkInsightsAnalysis.NetworkInsightsAnalysisId)

3. Wait a few seconds until the analysis is done running and then view
the results:

aws ec2 describe-network-insights-analyses \
 --network-insights-analysis-ids $ANALYSIS_ID_1

You should see output similar to the following (note the
NetworkPathFound and ExplanationCode fields):

{
 "NetworkInsightsAnalyses": [

https://github.com/AWSCookbook/Networking

 {
 "NetworkInsightsAnalysisId": "nia-<<snip>",
 "NetworkInsightsAnalysisArn": "arn:aws:ec2:us-east-
1:111111111111:network-insights-analysis/nia-<<snip>",
 "NetworkInsightsPathId": "nip-<<snip>",
 "StartDate": "2020-12-22T02:12:36.836000+00:00",
 "Status": "succeeded",
 "NetworkPathFound": false,
 "Explanations": [
 {
 "Direction": "ingress",
 "ExplanationCode": "ENI_SG_RULES_MISMATCH",
 "NetworkInterface": {
 "Id": "eni-<<snip>",
 "Arn": "arn:aws:ec2:us-east-
1:11111111111:network-interface/eni-<<snip>"
 },

4. Update the security group attached to instance 2. Add a rule to allow
access from instance 1’s security group to TCP port 22 (SSH):

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 22 \
 --source-group $INSTANCE_SG_ID_1 \
 --group-id $INSTANCE_SG_ID_2

You should see output similar to the following:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<snip>>",
 "GroupId": "sg-<<snip>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 22,
 "ToPort": 22,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<snip>>"
 }
 }
]
}

5. Rerun the network insights analysis. Use the same
INSIGHTS_PATH_ID as you did previously:

ANALYSIS_ID_2=$(aws ec2 start-network-insights-analysis \
 --network-insights-path-id $INSIGHTS_PATH_ID --output
text \
 --query
NetworkInsightsAnalysis.NetworkInsightsAnalysisId)

6. Show the results of the new analysis:

aws ec2 describe-network-insights-analyses \
 --network-insights-analysis-ids $ANALYSIS_ID_2

You should see output similar to the following (note the
NetworkPathFound field):

{
 "NetworkInsightsAnalyses": [
 {
 "NetworkInsightsAnalysisId": "nia-<<snip>>",
 "NetworkInsightsAnalysisArn": "arn:aws:ec2:us-east-
1:111111111111:network-insights-analysis/nia-<<snip>>",
 "NetworkInsightsPathId": "nip-<<snip>>",
 "StartDate": "2021-02-21T23:52:15.565000+00:00",
 "Status": "succeeded",
 "NetworkPathFound": true,
 "ForwardPathComponents": [
 {
 "SequenceNumber": 1,
 "Component": {
 "Id": "i-<<snip>>",
...

Validation checks
List the IP address for instance 2:

aws ec2 describe-instances --instance-ids $INSTANCE_ID_2 \

 --output text \
 --query Reservations[0].Instances[0].PrivateIpAddress

Connect to your EC2 instance by using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID_1

Install the Ncat utility:

sudo yum -y install nc

Test SSH connectivity to instance 2 (use instance 2’s IP that you listed
previously):

nc -vz $INSTANCE_IP_2 22

You should see output similar to the following:

Ncat: Version 7.50 (https://nmap.org/ncat)
Ncat: Connected to 10.10.0.48:22.
Ncat: 0 bytes sent, 0 bytes received in 0.01 seconds.
sh-4.2$

Exit the Session Manager session:

exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

https://github.com/AWSCookbook/Networking

A network insights path is a definition of the connectivity you want to test.
Initially, there wasn’t SSH connectivity between the instances because the
security group on the destination (instance 2) did not allow access. After
you updated the security group associated with instance 2 and reran an
analysis, you were able to verify successful connectivity. Using the VPC
Reachability Analyzer is an efficient capability for network troubleshooting
and validating configuration in a “serverless” manner. It does not require
you to provision infrastructure to analyze, verify, and troubleshoot network
connectivity.

NOTE
VPC reachability has broad support of sources and destinations for resources within your VPCs.
For a complete list of supported sources and destinations, see this support document.

VPC Reachability Analyzer provides explanation codes that describe the
result of a network path analysis. In this recipe, you observed the code
ENI_SG_RULES_MISMATCH that indicates that the security groups are
not allowing traffic between the source and destination. The complete list of
explanation codes is available in this documentation.

Challenge
Add an internet gateway to your VPC and test access to that from an
instance.

2.7 Redirecting HTTP Traffic to HTTPS with
an Application Load Balancer

Problem
You have a containerized application running in a private subnet. Users on
the internet need to access this application. To help secure the application,
you would like to redirect all requests from HTTP to HTTPS.

https://oreil.ly/szPNC
https://oreil.ly/boPoh
https://oreil.ly/v6o18

Solution
Create an Application Load Balancer (ALB). Next, create listeners on the
ALB for ports 80 and 443, target groups for your containerized application,
and listener rules. Configure the listener rules to send traffic to your target
group, as shown in Figure 2-9. Finally, configure an action to redirect with
an HTTP 301 response code, port 80 (HTTP) to port 443 (HTTPS) while
preserving the URL in the request (see Figure 2-10).

Figure 2-9. VPC with ALB serving internet traffic to containers in private subnets

Figure 2-10. Redirecting HTTP to HTTPs with an ALB

Prerequisites
VPC with public subnets in two AZs and associated route tables.
Private subnets created in two AZs and associated route tables.
An ECS cluster and container definition exposing a web application on
port 80.
A Fargate service that runs tasks on the ECS cluster.
OpenSSL. (You can install this using brew install openssl or
yum install openssl.)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a new private key to be used for the certificate:

openssl genrsa 2048 > my-private-key.pem

You should see output similar to the following:

https://github.com/AWSCookbook/Networking

Generating RSA private key, 2048 bit long modulus
..
....+++
..
.............+++
e is 65537 (0x10001)

2. Generate a self-signed certificate using OpenSSL CLI:

openssl req -new -x509 -nodes -sha256 -days 365 \
 -key my-private-key.pem -outform PEM -out my-
certificate.pem

You should see output similar to the following:

You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a
Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) []:US
State or Province Name (full name) []:Pennsylvania
Locality Name (eg, city) []:Scranton
Organization Name (eg, company) []:AWS Cookbook Inc
Organizational Unit Name (eg, section) []:Cloud Team
Common Name (eg, fully qualified host name) []:mytest.com
Email Address []:you@youremail.com

NOTE
You are using a self-signed certificate for this recipe, which will throw a warning when
you access the Load Balancer DNS name in most browsers. You can generate a trusted
certificate for your own DNS record by using AWS Certificate Manager (ACM).

3. Upload the generated certificate into IAM:

https://oreil.ly/Sa88c

CERT_ARN=$(aws iam upload-server-certificate \
 --server-certificate-name AWSCookbook207 \
 --certificate-body file://my-certificate.pem \
 --private-key file://my-private-key.pem \
 --query ServerCertificateMetadata.Arn --output text)

4. Create a security group to use with the ALB that you will create later:

ALB_SG_ID=$(aws ec2 create-security-group --group-name
Cookbook207SG \
 --description "ALB Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

5. Add rules to the security group to allow HTTP and HTTPS traffic
from the world:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 443 \
 --cidr '0.0.0.0/0' \
 --group-id $ALB_SG_ID

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 80 \
 --cidr '0.0.0.0/0' \
 --group-id $ALB_SG_ID

For each command in step 5, you should see output similar to the
following:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<snip>>",
 "GroupId": "sg-<<snip>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 80,
 "ToPort": 80,
 "CidrIpv4": "0.0.0.0/0"

 }
]
}

6. Authorize the container’s security group to allow ingress traffic from
the ALB:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 80 \
 --source-group $ALB_SG_ID \
 --group-id $APP_SG_ID

7. Create an ALB across the public subnets and assign it the previously
created security group:

LOAD_BALANCER_ARN=$(aws elbv2 create-load-balancer \
 --name aws-cookbook207-alb \
 --subnets $VPC_PUBLIC_SUBNETS --security-groups
$ALB_SG_ID \
 --scheme internet-facing \
 --output text --query LoadBalancers[0].LoadBalancerArn)

8. Create a target group for the Load Balancer:

TARGET_GROUP=$(aws elbv2 create-target-group \
 --name aws-cookbook207-tg --vpc-id $VPC_ID \
 --protocol HTTP --port 80 --target-type ip \
 --query "TargetGroups[0].TargetGroupArn" \
 --output text)

9. Get the IP of the container that is running your application:

TASK_ARN=$(aws ecs list-tasks --cluster $ECS_CLUSTER_NAME \
 --output text --query taskArns)
CONTAINER_IP=$(aws ecs describe-tasks --cluster
$ECS_CLUSTER_NAME \
 --task $TASK_ARN --output text \
 --query tasks[0].attachments[0].details[4] | cut -f 2)

10. Register a container with the target group:

aws elbv2 register-targets --targets Id=$CONTAINER_IP \
 --target-group-arn $TARGET_GROUP

NOTE
For this recipe, you register an IP address of an ECS task within an ECS service with the
load balancer that you created. You can optionally associate an ECS service directly with
an Application Load Balancer on ECS service creation. For more information, see this
documentation.

11. Create an HTTPS listener on the ALB that uses the certificate you
imported and forwards traffic to your target group:

HTTPS_LISTENER_ARN=$(aws elbv2 create-listener \
 --load-balancer-arn $LOAD_BALANCER_ARN \
 --protocol HTTPS --port 443 \
 --certificates CertificateArn=$CERT_ARN \
 --default-actions
Type=forward,TargetGroupArn=$TARGET_GROUP \
 --output text --query Listeners[0].ListenerArn)

12. Add a rule for the listener on port 443 to forward traffic to the target
group that you created:

aws elbv2 create-rule \
 --listener-arn $HTTPS_LISTENER_ARN \
 --priority 10 \
 --conditions '{"Field":"path-
pattern","PathPatternConfig":{"Values":["/*"]}}' \
 --actions Type=forward,TargetGroupArn=$TARGET_GROUP

You should see output similar to the following:

{
 "Rules": [

https://oreil.ly/wF1si

 {
 "RuleArn": "arn:aws:elasticloadbalancing:us-east-
1:111111111111:listener-rule/app/aws-cookbook207-
alb/<<snip>>",
 "Priority": "10",
 "Conditions": [
 {
 "Field": "path-pattern",
 "Values": [
 "/*"
],
 "PathPatternConfig": {
 "Values": [
 "/*"
]
 }
 }
],
 "Actions": [
 {
 "Type": "forward",
...

13. Create a redirect response for all HTTP traffic that sends a 301
response to the browser while preserving the full URL for the HTTPS
redirect:

aws elbv2 create-listener --load-balancer-arn
$LOAD_BALANCER_ARN \
 --protocol HTTP --port 80 \
 --default-actions \
"Type=redirect,RedirectConfig=
{Protocol=HTTPS,Port=443,Host='#{host}',Query='#
{query}',Path='/#{path}',
StatusCode=HTTP_301}"

You should see output similar to the following:

{
 "Listeners": [
 {
 "ListenerArn": "arn:aws:elasticloadbalancing:us-east-
1:111111111111:listener/app/aws-cookbook207-alb/<<snip>>",
 "LoadBalancerArn": "arn:aws:elasticloadbalancing:us-
east-1:111111111111:loadbalancer/app/aws-cookbook207-

alb/<<snip>>",
 "Port": 80,
 "Protocol": "HTTP",
 "DefaultActions": [
 {
 "Type": "redirect",
 "RedirectConfig": {
 "Protocol": "HTTPS",
 "Port": "443",
 "Host": "#{host}",
 "Path": "/#{path}",
 "Query": "#{query}",
 "StatusCode": "HTTP_301"
 }
 }
...

14. Verify the health of the targets:

aws elbv2 describe-target-health --target-group-arn
$TARGET_GROUP \
 --query TargetHealthDescriptions[*].TargetHealth.State

You should see output similar to this:

[
 "healthy"
]

Validation checks
Get the URL of the load balancer so that you can test it:

LOAD_BALANCER_DNS=$(aws elbv2 describe-load-balancers \
 --names aws-cookbook207-alb \
 --output text --query LoadBalancers[0].DNSName)

Display the URL and test it in your browser. You should notice that you end
up at an HTTPS URL. You will most likely receive a warning from your
browser because of the self-signed cert:

echo $LOAD_BALANCER_DNS

Or test it from the command line.
cURL the Load Balancer DNS over HTTP and observe the 301 code:

curl -v http://$LOAD_BALANCER_DNS

cURL the Load Balancer DNS and specify to follow the redirect to HTTPS:

curl -vkL http://$LOAD_BALANCER_DNS

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you added a 301 redirect rule for the port 80 listener, this allowed the
ALB to instruct clients to follow the redirect to port 443 so that users of
your application will be automatically redirected to HTTPS. The redirect
rule also preserves the URL path in the original request.
Application Load Balancers operate on Layer 7 of the OSI model. The ALB
documentation lists the available target types of EC2 instances, IP
addresses, and Lambda functions. You can create internet-facing ALBs
(when your VPC has an internet gateway attached) and internal ALBs for
usage within your internal network only. The ALB provisions elastic
network interfaces that have IP addresses within your chosen subnets to
communicate with your services. ALBs continuously run health checks for
members of your associated target groups that allow the ALB to detect
healthy components of your application to route traffic to. ALBs are also a
great layer to add in front of your applications for increased security since
you can allow the targets to be accessed by only the load balancer—not by
clients directly.

https://github.com/AWSCookbook/Networking
https://oreil.ly/bJZsg

AWS offers multiple types of load balancers for specific use cases. You
should choose the load balancer that best fits your needs. For example, for
high-performance Layer 4 load balancing with static IP address capability,
you might consider Network Load Balancers, and for network virtual
appliances (NVAs) like virtual firewalls and security appliances, you might
consider Gateway Load Balancers. For more information on and a
comparison of the types of load balancers available in AWS, see the support
document.

Challenge
Update the SSL certificate with a new one.

2.8 Simplifying Management of CIDRs in
Security Groups with Prefix Lists

Problem
You have two applications hosted in public subnets. The applications are
hosted on instances with specific access requirements for each application.
During normal operation, these applications need to be accessed from
virtual desktops in another Region. However, you need to reach them from
your home PC for a short period for testing.

Solution
Using the AWS-provided IP address ranges list, create a managed prefix list
that contains a list of CIDR ranges for WorkSpaces gateways in us-west-2
and associate it with each security group. Update the prefix list with your
home IP for testing and then optionally remove it (see Figure 2-11).

Prerequisites
VPC with public subnets in two AZs and associated route tables

https://oreil.ly/8G9xc

Two EC2 instances in each public subnet running a web server on port
80
Two security groups, one associated with each EC2 instance

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

https://github.com/AWSCookbook/Networking

Figure 2-11. Two applications in public subnets protected by security groups

Steps
1. Download the AWS IP address ranges JSON file:

curl -o ip-ranges.json https://ip-ranges.amazonaws.com/ip-
ranges.json

NOTE
You will need to install the jq utility if your workstation doesn’t already have it; for
example, brew install jq.

2. Generate a list of the CIDR ranges for Amazon WorkSpaces gateways
in us-west-2:

jq -r '.prefixes[] | select(.region=="us-west-2") |
select(.service=="WORKSPACES_GATEWAYS") | .ip_prefix' < ip-
ranges.json

TIP
You can find more information on AWS IP address ranges in their documentation.

3. Use the IP ranges for Amazon WorkSpaces from ip-ranges.json to
create a managed prefix list:

PREFIX_LIST_ID=$(aws ec2 create-managed-prefix-list \
 --address-family IPv4 \
 --max-entries 15 \
 --prefix-list-name allowed-us-east-1-cidrs \
 --output text --query "PrefixList.PrefixListId" \
 --entries

https://oreil.ly/iQrPY

 Cidr=44.234.54.0/23,Description=workspaces-us-west-2-
cidr1
Cidr=54.244.46.0/23,Description=workspaces-us-west-2-cidr2)

NOTE
At this point, your workstation should not be able to reach either of the instances. If you
try one of these commands, you will receive a “Connection timed out” error:

curl -m 2 $INSTANCE_IP_1
curl -m 2 $INSTANCE_IP_2

4. Get your workstation’s public IPv4 address:

MY_IP_4=$(curl myip4.com | tr -d ' ')

5. Update your managed prefix list and add your workstation’s public
IPv4 address (see Figure 2-12):

aws ec2 modify-managed-prefix-list \
 --prefix-list-id $PREFIX_LIST_ID \
 --current-version 1 \
 --add-entries Cidr=${MY_IP_4}/32,Description=my-
workstation-ip

Figure 2-12. Security group rules referencing a prefix list

TIP
There is an AWS-managed prefix list for S3.

You should see output similar to the following:

https://oreil.ly/wcdzB

{
 "PrefixList": {
 "PrefixListId": "pl-013217b85144872d2",
 "AddressFamily": "IPv4",
 "State": "modify-in-progress",
 "PrefixListArn": "arn:aws:ec2:us-east-
1:111111111111:prefix-list/pl-013217b85144872d2",
 "PrefixListName": "allowed-us-east-1-cidrs",
 "MaxEntries": 10,
 "Version": 1,
 "OwnerId": "111111111111"
 }
}

6. For each application’s security group, add an inbound rule that allows
TCP port 80 access from the prefix list:

aws ec2 authorize-security-group-ingress \
 --group-id $INSTANCE_SG_1 --ip-permissions \
IpProtocol=tcp,FromPort=80,ToPort=80,PrefixListIds="
[{Description=http-from-prefix-
list,PrefixListId=$PREFIX_LIST_ID}]"

aws ec2 authorize-security-group-ingress \
 --group-id $INSTANCE_SG_2 --ip-permissions \
IpProtocol=tcp,FromPort=80,ToPort=80,PrefixListIds="
[{Description=http-from-prefix-
list,PrefixListId=$PREFIX_LIST_ID}]"

TIP
Find out where your managed list is used. This command is helpful for auditing where
prefix lists are used throughout your AWS environments:

aws ec2 get-managed-prefix-list-associations \
 --prefix-list-id $PREFIX_LIST_ID

Validation checks
Test access to both instances from your workstation’s PC:

curl -m 2 $INSTANCE_IP_1

curl -m 2 $INSTANCE_IP_2

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
If you need to update the list of CIDR blocks allowing ingress
communication to your instances, you can simply update the prefix list
instead of the security group. This helps reduce the amount of maintenance
overhead if you need to use this type of authorization across many security
groups; you need to update the prefix list in only a single location rather
than modify every security group authorization that requires this network
security configuration. You can also use prefix lists for egress security
group authorizations.
Prefix lists can be associated with route tables; they are also useful for
blackholing traffic (prohibiting access to a specific list of IP addresses and
CIDR blocks) and can also simplify your route table configuration. For
example, you could maintain a prefix list of branch office CIDR ranges and
use them to implement your routing and security group authorizations,
simplifying your management for network flow and security configuration.
An example of associating a prefix list with a route looks like this:

aws ec2 create-route --route-table-id $Sub1RouteTableID \
 --destination-prefix-list-id $PREFIX_LIST_ID \
 --instance-id $INSTANCE_ID

Prefix lists also provide a powerful versioning mechanism, allowing you to
quickly roll back to previous known working states. If, for example, you
updated a prefix list and found that the change broke some existing
functionality, you can roll back to a previous version of a prefix list to
restore previous functionality while you investigate the root cause of the

https://github.com/AWSCookbook/Networking
https://oreil.ly/KgSne

error. If you decide to roll back to a previous version for some reason, first
describe the prefix list to get the current version number:

aws ec2 describe-prefix-lists --prefix-list-ids $PREFIX_LIST_ID

Challenge
Revert the active version of the prefix list so that your workstation IP is
removed and you can no longer access either application. (Hint: in the
repository.)

2.9 Controlling Network Access to S3 from
Your VPC Using VPC Endpoints

Problem
Resources within your VPC should be able to access only a specific S3
bucket. Also, this S3 traffic should not traverse the internet for security
reasons and to keep bandwidth costs low.

Solution
You will create a gateway VPC endpoint for S3, associate it with a route
table, and customize its policy document (see Figure 2-13).

Figure 2-13. Controlling S3 access with gateway endpoints

Prerequisites
VPC with isolated subnets in two AZs and associated route tables
One EC2 instance in a public subnet that you can access for testing
An existing S3 bucket that you want to limit access to

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a gateway endpoint in your VPC and associate the endpoint

with the isolated route tables:

END_POINT_ID=$(aws ec2 create-vpc-endpoint \
 --vpc-id $VPC_ID \
 --service-name com.amazonaws.$AWS_REGION.s3 \
 --route-table-ids $RT_ID_1 $RT_ID_2 \
 --query VpcEndpoint.VpcEndpointId --output text)

2. Create a template endpoint policy file called policy.json with the
following content (included in the repository). This is used to limit
access to only the S3 bucket that you created in the preparation steps:

{
 "Statement": [
 {
 "Sid": "RestrictToOneBucket",
 "Principal": "*",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::S3BucketName",
 "arn:aws:s3:::S3BucketName/*"]

https://github.com/AWSCookbook/Networking

 }
]
}

3. Insert your S3_BUCKET_NAME in the policy-template.json file:

sed -e "s/S3BucketName/${BUCKET_NAME}/g" \
 policy-template.json > policy.json

4. Modify the endpoint’s policy document. Endpoint policies limit or
restrict the resources that can be accessed through the VPC endpoint:

aws ec2 modify-vpc-endpoint \
 --policy-document file://policy.json \
 --vpc-endpoint-id $END_POINT_ID

Validation checks
Output the name of your S3 Bucket so that you can refer to it when you are
connected to your EC2 Instance:

echo $BUCKET_NAME

Connect to the EC2 instance by using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID

Set the Region by grabbing the value from the instance’s metadata:

export AWS_DEFAULT_REGION=$(curl \
--silent http://169.254.169.254/latest/dynamic/instance-
identity/document \
| awk -F'"' ' /region/ {print $4}')

Retrieve the allowed S3 bucket name:

BUCKET=$(aws ssm get-parameters \
 --names "Cookbook209S3Bucket" \
 --query "Parameters[*].Value" --output text)

Test access by trying to copy a file from your S3 bucket:

aws s3 cp s3://${BUCKET_NAME}/test_file /home/ssm-user/

You should see output similar to the following:

download: s3://cdk-aws-cookbook-209-awscookbookrecipe20979239201-
115xoj77fgxoh/test_file to ./test_file

NOTE
The following command is attempting to list a public S3 bucket. However, because of the
endpoint policy we have configured, it is expected that this will fail.

Try to list the contents of a public S3 bucket associated with the
OpenStreetMap Foundation Public Dataset Initiative:

aws s3 ls s3://osm-pds/

You should see output similar to the following:

An error occurred (AccessDenied) when calling the ListObjectsV2
operation: Access Denied

Exit the Session Manager session:

exit

Cleanup

Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Using an endpoint policy is a useful security implementation to restrict
access to S3 buckets. This applies not only to S3 buckets owned by your
account but also to all S3 buckets globally on AWS.

TIP
Recently, AWS announced support for S3 interface endpoints. However, it is worth noting that
while these are great for some use cases (e.g., when you want to control traffic with security
groups), they are not ideal for this problem because of the costs associated with interface
endpoints.

Per the VPC User Guide, Gateway VPC endpoints are free and used within
your VPC’s route tables to keep traffic bound for AWS services within the
AWS backbone network without traversing the network. This allows you to
create VPCs that do not need internet gateways for applications that do not
require them but need access to other AWS services like S3 and
DynamoDB. All traffic bound for these services will be directed by the
route table to the VPC endpoint rather than the public internet route, since
the VPC endpoint route table entry is more specific than the default
0.0.0.0/0 route.
S3 VPC endpoint policies leverage JSON policy documents that can be as
fine-grained as your needs require. You can use conditionals, source IP
addresses, VPC endpoint IDs, S3 bucket names, and more. For more
information on the policy elements available, see the support document.

Challenge
Modify the bucket policy for the S3 bucket to allow access only from the
VPC endpoint that you created. For some tips on this, check out the S3 User
Guide.

https://github.com/AWSCookbook/Networking
https://oreil.ly/mBBsN
https://oreil.ly/1WUGl
https://oreil.ly/LAWFo
https://oreil.ly/M8q8J
https://oreil.ly/tEajj

2.10 Enabling Transitive Cross-VPC
Connections Using Transit Gateway

Problem
You need to implement transitive routing across all of your VPCs and share
internet egress from a shared services VPC to your other VPCs to reduce
the number of NAT gateways you have to deploy.

Solution
Deploy an AWS transit gateway (TGW) and configure transit gateway VPC
attachments for all of your VPCs. Update your VPC route tables of each
VPC to send all nonlocal traffic to the transit gateway and enable sharing of
the NAT gateway in your shared services VPC for all of your spoke VPCs
(see Figure 2-14).

Figure 2-14. AWS transit gateway with three VPCs

WARNING
The default initial quota of VPCs per Region per account is five. This solution will deploy three
VPCs. If you already have more than two VPCs, you can decide among four choices: deploy to a
different Region, delete any existing VPCs that are no longer needed, use a test account, or request
a quota increase.

Prerequisites
Three VPCs in the same Region with private and isolated subnet tiers
Internet gateway attached to a VPC (VPC2 in our example)
— NAT gateway deployed in public subnets

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a transit gateway:

TGW_ID=$(aws ec2 create-transit-gateway \
 --description AWSCookbook210 \
 —-
options=AmazonSideAsn=65010,AutoAcceptSharedAttachments=enab
le,DefaultRouteTableAssociation=enable,\

DefaultRouteTablePropagation=enable,VpnEcmpSupport=enable,Dn
sSupport=enable \
 --output text --query TransitGateway.TransitGatewayId)

2. Wait until the transit gateway’s state has reached available. This may
take several minutes:

https://oreil.ly/T4WD8
https://oreil.ly/cFRs5
https://github.com/AWSCookbook/Networking

aws ec2 describe-transit-gateways \
 --transit-gateway-ids $TGW_ID \
 --output text --query TransitGateways[0].State

3. Create a transit gateway attachment for VPC1:

TGW_ATTACH_1=$(aws ec2 create-transit-gateway-vpc-attachment
\
 --transit-gateway-id $TGW_ID \
 --vpc-id $VPC_ID_1 \
 --subnet-ids $ATTACHMENT_SUBNETS_VPC_1 \
 --query
TransitGatewayVpcAttachment.TransitGatewayAttachmentId \
 --output text)

4. Create a transit gateway attachment for VPC2:

TGW_ATTACH_2=$(aws ec2 create-transit-gateway-vpc-attachment
\
 --transit-gateway-id $TGW_ID \
 --vpc-id $VPC_ID_2 \
 --subnet-ids $ATTACHMENT_SUBNETS_VPC_2 \
 --query
TransitGatewayVpcAttachment.TransitGatewayAttachmentId \
 --output text)

5. Create a transit gateway attachment for VPC3:

TGW_ATTACH_3=$(aws ec2 create-transit-gateway-vpc-attachment
\
 --transit-gateway-id $TGW_ID \
 --vpc-id $VPC_ID_3 \
 --subnet-ids $ATTACHMENT_SUBNETS_VPC_3 \
 --query
TransitGatewayVpcAttachment.TransitGatewayAttachmentId \
 --output text)

6. Add routes for all private subnets in VPCs 1 and 3 to target the TGW
for destinations of 0.0.0.0/0. This enables consolidated internet egress

through the NAT gateway in VPC2 and transitive routing to other
VPCs:

aws ec2 create-route --route-table-id $VPC_1_RT_ID_1 \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_1_RT_ID_2 \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_3_RT_ID_1 \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_3_RT_ID_2 \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-id $TGW_ID

7. Now add a route to your 10.10.0.0/24 supernet in the route tables
associated with the private subnets of VPC2, pointing its destination
to the transit gateway. This is more specific than the 0.0.0.0/0
destination that is already present and therefore takes higher priority
in routing decisions. This directs traffic bound for VPCs 1, 2, and 3 to
the TGW:

aws ec2 create-route --route-table-id $VPC_2_RT_ID_1 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_2_RT_ID_2 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

8. Query for the NAT gateways in use; we’ll need these to add routes to
them for internet traffic:

NAT_GW_ID_1=$(aws ec2 describe-nat-gateways \
 --filter "Name=subnet-
id,Values=$VPC_2_PUBLIC_SUBNET_ID_1" \

https://oreil.ly/AVrM7

 --output text --query NatGateways[*].NatGatewayId)

NAT_GW_ID_2=$(aws ec2 describe-nat-gateways \
 --filter "Name=subnet-
id,Values=$VPC_2_PUBLIC_SUBNET_ID_2" \
 --output text --query NatGateways[*].NatGatewayId)

9. Add a route for the attachment subnet in VPC2 to direct internet
traffic to the NAT gateway:

aws ec2 create-route --route-table-id $VPC_2_ATTACH_RT_ID_1
\
 --destination-cidr-block 0.0.0.0/0 \
 --nat-gateway-id $NAT_GW_ID_1

aws ec2 create-route --route-table-id $VPC_2_ATTACH_RT_ID_2
\
 --destination-cidr-block 0.0.0.0/0 \
 --nat-gateway-id $NAT_GW_ID_2

10. Add a static route to the route tables associated with the public subnet
in VPC2. This enables communication back to the TGW to allow
sharing the NAT gateway with all attached VPCs:

aws ec2 create-route --route-table-id $VPC_2_PUBLIC_RT_ID_1
\
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_2_PUBLIC_RT_ID_2
\
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

11. Add a static route for the private subnets in VPC2 to allow
communication back to the TGW attachments from VPC2 private
subnets:

aws ec2 create-route --route-table-id $VPC_2_RT_ID_1 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

aws ec2 create-route --route-table-id $VPC_2_RT_ID_2 \
 --destination-cidr-block 10.10.0.0/24 \
 --transit-gateway-id $TGW_ID

12. Get the transit route table ID:

TRAN_GW_RT=$(aws ec2 describe-transit-gateways \
 --transit-gateway-ids $TGW_ID --output text \
 --query
TransitGateways[0].Options.AssociationDefaultRouteTableId)

13. Add a static route in the transit gateway route table for VPC2 (with
the NAT gateways) to send all internet traffic over this path:

aws ec2 create-transit-gateway-route \
 --destination-cidr-block 0.0.0.0/0 \
 --transit-gateway-route-table-id $TRAN_GW_RT \
 --transit-gateway-attachment-id $TGW_ATTACH_2

Validation checks
Ensure your EC2 Instance 1 has registered with SSM. To check the status
use the following command, which should return the instance ID:

aws ssm describe-instance-information \
 --filters Key=ResourceType,Values=EC2Instance \
 --query "InstanceInformationList[].InstanceId" --output text

Connect to your EC2 instance by using SSM Session Manager:

aws ssm start-session --target $INSTANCE_ID_1

Test internet access:

ping -c 4 aws.amazon.com

You should see output similar to the following:

PING dr49lng3n1n2s.cloudfront.net (99.86.187.73) 56(84) bytes of
data.
64 bytes from server-99-86-187-73.iad79.r.cloudfront.net
(99.86.187.73): icmp_seq=1 ttl=238 time=3.44 ms
64 bytes from server-99-86-187-73.iad79.r.cloudfront.net
(99.86.187.73): icmp_seq=2 ttl=238 time=1.41 ms
64 bytes from server-99-86-187-73.iad79.r.cloudfront.net
(99.86.187.73): icmp_seq=3 ttl=238 time=1.43 ms
64 bytes from server-99-86-187-73.iad79.r.cloudfront.net
(99.86.187.73): icmp_seq=4 ttl=238 time=1.44 ms

--- dr49lng3n1n2s.cloudfront.net ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 1.411/1.934/3.449/0.875 ms
sh-4.2$

Exit the Session Manager session:

exit

Challenge 1
You can limit which VPCs can access the internet through the NAT gateway
in VPC2 by modifying the route tables. Try adding a more specific route of
10.10.0.0/24 instead of the 0.0.0.0/0 destination for VPC3 to see how you
can customize the internet egress sharing.

Challenge 2
You may not want to allow VPC1 and VPC3 to be able to communicate
with each other. Try adding a new transit gateway route table, updating the
attachments to accomplish this.

Challenge 3
In the solution, you deployed three VPCs each of /26 subnet size within the
10.10.0.0/24 supernet. There is room for an additional /26 subnet. Try
adding an additional VPC with a /26 CIDR with subnets and route tables;
then attach it to the transit gateway.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Transit gateways allow you to quickly implement a multi-VPC hub-and-
spoke network topology for your network in AWS. You may have had to
use many peering connections to achieve similar results or used third-party
software on instances in a transit VPC architecture. Transit gateway also
supports cross-region peering of transit gateways and cross-account sharing
via Resource Access Manager (RAM).
When you attached your VPCs to the transit gateway, you used subnets in
each AZ for resiliency. You also used dedicated “attachment” subnets for
the VPC attachments. You can attach the transit gateway to any subnet(s)
within your VPC. Using a dedicated subnet for these attachments gives you
flexibility to granularly define subnets you choose to route to the TGW.
That is, if you attached the private subnet, it would always have a route to
the TGW; this might not be intended based on your use case. In your case,
you configured routes for your private subnets to send all traffic to the
transit gateway which enabled sharing of the NAT gateway and internet
gateway; this results in cost savings over having to deploy multiple NAT
gateways (e.g., one for each VPC).
You can connect your on-premises network or any virtual network directly
to a transit gateway, as it acts as a hub for all of your AWS network traffic.
You can connect IPsec VPNs, Direct Connect (DX), and third-party
network appliances to the transit gateway to extend your AWS network to
non-AWS networks. This also allows you to consolidate VPN connections
and/or Direct Connect connections by connecting one directly to the transit
gateway to access all of your VPCs in a Region. Border Gateway Protocol
(BGP) is supported by TGW over these types of network extensions for
dynamic route updates in both directions.

Challenge

https://github.com/AWSCookbook/Networking
https://oreil.ly/VKW2V
https://oreil.ly/LUxIm
https://oreil.ly/kD1pI
https://oreil.ly/qovsS
https://oreil.ly/13s7R
https://oreil.ly/pbqwP

Create a fourth VPC and attach your TGW to subnets in it. Allow it to use
the existing NAT gateway to reach the internet.

2.11 Peering Two VPCs Together for Inter-
VPC Network Communication

Problem
You need to enable two instances in separate VPCs to communicate with
each other in a simple and cost-effective manner.

Solution
Request a peering connection between two VPCs, accept the peering
connection, update the route tables for each VPC subnet, and finally test the
connection from one instance to another (see Figure 2-15).

Figure 2-15. Communication between instances in peered VPCs

Prerequisites
Two VPCs, each with isolated subnets in two AZs and associated route
tables
In each VPC, one EC2 instance that you can access for testing

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a VPC peering connection to connect VPC1 to VPC2:

VPC_PEERING_CONNECTION_ID=$(aws ec2 create-vpc-peering-
connection \
 --vpc-id $VPC_ID_1 --peer-vpc-id $VPC_ID_2 --output text
\
 --query VpcPeeringConnection.VpcPeeringConnectionId)

2. Accept the peering connection:

aws ec2 accept-vpc-peering-connection \
 --vpc-peering-connection-id $VPC_PEERING_CONNECTION_ID

NOTE
VPC peering connections can be established from one AWS account to a different AWS
account. If you choose to peer VPCs across AWS accounts, you need to ensure you have
the correct IAM configuration to create and accept the peering connection within each
account.

3. In the route tables associated with each subnet, add a route to direct
traffic destined for the peered VPC’s CIDR range to the
VPC_PEERING_CONNECTION_ID:

aws ec2 create-route --route-table-id $VPC_SUBNET_RT_ID_1 \
 --destination-cidr-block $VPC_CIDR_2 \
 --vpc-peering-connection-id $VPC_PEERING_CONNECTION_ID

aws ec2 create-route --route-table-id $VPC_SUBNET_RT_ID_2 \
 --destination-cidr-block $VPC_CIDR_1 \
 --vpc-peering-connection-id $VPC_PEERING_CONNECTION_ID

https://github.com/AWSCookbook/Networking
https://oreil.ly/pWmDE

4. Add an ingress rule to instance 2’s security group that allows ICMPv4
access from instance 1’s security group:

aws ec2 authorize-security-group-ingress \
 --protocol icmp --port -1 \
 --source-group $INSTANCE_SG_1 \
 --group-id $INSTANCE_SG_2

Validation checks
Get instance 2’s IP:

aws ec2 describe-instances --instance-ids $INSTANCE_ID_2\
 --output text \
 --query Reservations[0].Instances[0].PrivateIpAddress

Ensure your EC2 instance 1 has registered with SSM. Use this command to
check the status:

aws ssm describe-instance-information \
 --filters Key=ResourceType,Values=EC2Instance \
 --query "InstanceInformationList[].InstanceId" --output text

Connect to your EC2 instance by using SSM Session Manager:

aws ssm start-session --target $INSTANCE_ID_1

Ping instance 2 from instance 1:

ping -c 4 <<INSTANCE_IP_2>>

Output:
PING 10.20.0.242 (10.20.0.242) 56(84) bytes of data.
64 bytes from 10.20.0.242: icmp_seq=1 ttl=255 time=0.232 ms
64 bytes from 10.20.0.242: icmp_seq=2 ttl=255 time=0.300 ms
64 bytes from 10.20.0.242: icmp_seq=3 ttl=255 time=0.186 ms
64 bytes from 10.20.0.242: icmp_seq=4 ttl=255 time=0.183 ms

--- 10.20.0.242 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3059ms
rtt min/avg/max/mdev = 0.183/0.225/0.300/0.048 ms

Exit the Session Manager session:

exit

TIP
You can search for a security group ID in the VPC console to show all security groups that
reference others. You can also run the aws ec2 describe-security-group-references CLI command
to accomplish this. This is helpful in gaining insight into which security groups reference others.
You can reference security groups in peered VPCs owned by other AWS accounts but not located
in other Regions.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
VPC peering connections are nontransitive. Each VPC needs to peer with
every other VPC that they need to communicate with. This type of
connection is ideal when you might have a VPC hosting shared services
that other VPCs need to access, while not having the “spoke” VPCs
communicate with one another.
In addition to the peering connections, you need to configure the route
tables associated with the VPC subnets to send traffic destined for the
peered VPC’s CIDR to the peering connection (PCX). In other words, to
enable VPC1 to be able to communicate with VPC2, the destination route
must be present in VPC1 and the return route also must be present in VPC2.
If you were to add a third VPC to this recipe, and you needed all VPCs to
be able to communicate with one another, you would need to peer that third
VPC with the previous two and update all of the VPC route tables
accordingly to allow for all of the VPCs to have communication with one

https://oreil.ly/BRCsd
https://oreil.ly/BxIDv
https://github.com/AWSCookbook/Networking
https://oreil.ly/0sJeK

another. As you continue to add more VPCs to a network architecture like
this, you may notice that the number of peering connections and route table
updates required begin to increase exponentially. Because of this, transit
gateway is a better choice for transitive VPC communication using transit
gateway route tables.
You can use VPC peering cross-account if needed, and you can also
reference security groups in peered VPCs in a similar way of referencing
security groups within a single VPC. This allows you to use the same type
of strategy with how you manage security groups across your AWS
environment when using VPC peering.

WARNING
Connecting VPCs together requires nonoverlapping CIDR ranges in order for routing to work
normally. The VPC route tables must include a specific route directing traffic destined for the
peered VPC to the peering connection.

Challenge
VPC peering connections can be established across AWS Regions. Connect
a VPC in another Region to the VPC you deployed in the Region used for
the recipe.

https://oreil.ly/53awx
https://oreil.ly/ce4M8
https://oreil.ly/3j1KN
https://oreil.ly/PAKmf

Chapter 3. Storage

3.0 Introduction
Many industries have put a heavy emphasis on cloud data storage
technologies to help facilitate increasing demands of data. Many options are
available for data storage to suit your needs, with seemingly infinite scale.
Even with many new storage options available in the cloud, Amazon S3
remains a powerful, fundamental building block for so many use cases. It is
amazing to think that it was released more than 15 years ago. Over time,
many features have been added and new storage services launched.
Multiple storage options are available to meet security requirements (e.g.,
key management service [KMS] encryption) while reducing costs (e.g., S3
Intelligent-Tiering). Ensuring that data is secured and available is a
challenge that all developers and architects face.
The storage services available on AWS allow for integration with other
AWS services to provide ways for developers and application architects
who integrate with many AWS services. These services can also be used to
replace legacy storage systems you run and operate with on-premises
environments. For example:

S3 can be used to automatically invoke Lambda functions on object
operations like upload.
EFS can be used with EC2 to replace existing shared file systems
provided by Network File System (NFS) servers.
FSx for Windows can be used to replace Windows-based file servers for
your EC2 workloads.
EBS replaces Fibre Channel and Internet Small Computer Systems
Interface (iSCSI) targets by providing block devices, and it offers many
throughput options to meet performance requirements.

https://oreil.ly/nfIGt
https://oreil.ly/qSEnc
https://aws.amazon.com/fsx/windows

In this chapter, you will use some of these services so that you can start
building intelligent, scalable, and secure systems that have the potential to
minimize costs and operational overhead.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/AWSCookbook/Storage

3.1 Using S3 Lifecycle Policies to Reduce
Storage Costs

Problem
You need to transition infrequently accessed objects to a more cost-effective
storage tier without impacting performance or adding operational overhead.

Solution
Create an S3 Lifecycle rule to transition objects to the S3 Infrequent Access
(IA) storage class after a predefined time period of 30 days. Then apply this
Lifecycle policy to your S3 bucket (see Figure 3-1).

Figure 3-1. S3 Lifecycle rule configuration

Prerequisite
An S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

https://github.com/AWSCookbook/Storage

Steps
1. Create a lifecycle-rule.json file (provided in the repository) to use as

the Lifecycle policy that you will apply to your S3 bucket:

{
 "Rules": [
 {
 "ID": "Move all objects to Infrequent Access",
 "Prefix": "",
 "Status": "Enabled",
 "Transitions": [
 {
 "Date": "2015-11-10T00:00:00.000Z",
 "Days": 30,
 "StorageClass": "INFREQUENTLY_ACCESSED"
 }
]
 }
]
}

2. Apply the Lifecycle rule configuration:

aws s3api put-bucket-lifecycle-configuration \
 --bucket awscookbook301-$RANDOM_STRING \
 --lifecycle-configuration file://lifecycle-rule.json

NOTE
A Lifecycle rule helps automate the transition to a different storage class for some or all
objects within a bucket (prefixes, tags, and object names can all be used as filters for
Lifecycle rules). For a complete list of Lifecycle rule capabilities, see the documentation.

Validation checks
Get the Lifecycle configuration for your bucket:

aws s3api get-bucket-lifecycle-configuration \
 --bucket awscookbook301-$RANDOM_STRING

https://oreil.ly/2sUzK

(Optional) Copy an object to the bucket:

aws s3 cp book_cover.png s3://awscookbook301-$RANDOM_STRING

Check the storage class for the object:

aws s3api list-objects-v2 --bucket awscookbook301-$RANDOM_STRING

You should see output similar to the following:

{
 "Contents": [
 {
 "Key": "book_cover.png",
 "LastModified": "2021-06-16T02:30:06+00:00",
 "ETag": "\"d...9\"",
 "Size": 255549,
 "StorageClass": "STANDARD"
 }
]
}

You will see after 30 days that the storage class for the object is
STANDARD_IA after running the same command.

TIP
“Days” in the Transition action must be greater than or equal to 30 for StorageClass
STANDARD_IA. Other storage tiers allow for shorter transition times to meet your requirements.
For a list of all of the storage classes available with transition times for Lifecycle rules, see the
support document.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

https://oreil.ly/6jPLh
https://github.com/AWSCookbook/Storage

When you upload objects to an S3 bucket, if you do not specify the storage
class, the default Standard storage class is used. Amazon S3 has multiple
storage classes available that can be more cost-effective for long-term
storage while also suiting your performance and resiliency requirements. If
you cannot change your application to specify storage tiers for object
uploads, Lifecycle rules can help automate the transition to your desired
storage class. Lifecycle rules can be applied to some or all objects within a
bucket with a filter.
As the name may imply, S3 Infrequent Access is a storage class that
provides reduced cost (compared to the S3 Standard storage class) for data
stored for objects that you rarely access. This provides the same level of
redundancy for your data within a Region for a reduced cost, but the cost
associated with accessing objects is slightly higher. If your data access
patterns are unpredictable, and you would still like to optimize your S3
storage for cost, performance, and resiliency, take a look at S3 Intelligent-
Tiering in the next recipe.

Challenge 1
Configure the Lifecycle rule to apply only to objects based on object-level
tags.

Challenge 2
Configure the Lifecycle rule to transition objects to a Deep Archive.

3.2 Using S3 Intelligent-Tiering Archive
Policies to Automatically Archive S3 Objects

Problem
You need to automatically transition infrequently accessed objects to a
different archive storage class without impacting performance or adding
operational overhead.

https://oreil.ly/ZDWtF

Solution
Create a policy to automate the archival of S3 objects to the S3 Glacier
archive based on access patterns for objects that are more than 90 days old.
Apply it to your S3 bucket, as shown in Figure 3-2.

Figure 3-2. S3 Intelligent-Tiering archive

Prerequisite
An S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a file named tiering.json for the configuration (file provided in

the repository):

{
 "Id": "awscookbook302",
 "Status": "Enabled",
 "Tierings": [
 {
 "Days": 90,
 "AccessTier": "ARCHIVE_ACCESS"
 }
]
}

2. Apply the Intelligent-Tiering configuration:

aws s3api put-bucket-intelligent-tiering-configuration \
 --bucket awscookbook302-$RANDOM_STRING \
 --id awscookbook302 \
 --intelligent-tiering-configuration "$(cat
tiering.json)"

WARNING
Ensure that your use case and applications can support the increased retrieval time
associated with the S3 Glacier archive storage tier. You can configure your application to
use an expedited retrieval mechanism supported by S3 Glacier archive to decrease the
retrieval time but increase cost. For a complete list of archive times and how to configure
expedited access, please refer to the support document.

Validation checks

https://github.com/AWSCookbook/Storage
https://oreil.ly/tru0v

Get the configuration of Intelligent-Tiering for your bucket:

aws s3api get-bucket-intelligent-tiering-configuration \
 --bucket awscookbook302-$RANDOM_STRING \
 --id awscookbook302

Copy an object to the bucket:

aws s3 cp ./book_cover.png s3://awscookbook302-$RANDOM_STRING

Check the storage class for the object:

aws s3api list-objects-v2 --bucket awscookbook302-$RANDOM_STRING

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
An S3 Intelligent-Tiering archive provides an automatic mechanism to
transition “cool” (less frequently accessed) objects to an S3 Glacier archive.
You can define the length of time required for an object to transition to the
archive (between 90 and 730 days). This feature helps with meeting long-
term retention requirements that you may have for compliance. The storage
tiers available within S3 Intelligent-Tiering map directly to S3 tiers:

Frequent Access
Optimized for frequent access (S3 Standard)

Infrequent Access
Optimized for infrequent access (S3 Standard-IA)

Archive Access
Archive purposes (S3 Glacier)

https://github.com/AWSCookbook/Networking
https://aws.amazon.com/s3/glacier

Deep Archive Access
Long-term retention purposes (S3 Glacier Deep Archive)

This archive configuration is separate from the main S3 Intelligent-Tiering
tier configuration that you place on objects, as this is a bucket-specific
configuration. In the previous recipe, you configured a Lifecycle rule to
configure all objects within a bucket to transition to the S3 Intelligent-
Tiering storage tier. This recipe adds additional configuration to transition
objects to S3 archive tiers based on your configuration. You can use either
of these methods separately or both concurrently to meet your own
requirements.

NOTE
S3 tiers are object-specific, which differs from the Intelligent-Tiering archive being bucket-
specific. You can filter an archive configuration to apply only to certain prefixes, object tags, and
object names if you wish to include or exclude objects in a configuration. For more information,
see the support document.

Challenge 1
Configure the Intelligent-Tiering archive to send objects that are older than
one year to the Glacier Deep Archive tier.

Challenge 2
Configure the Intelligent-Tiering archive to use object-level tags and
configure an object with a tag that matches your configuration.

3.3 Replicating S3 Buckets to Meet Recovery
Point Objectives

Problem

https://oreil.ly/WIpqW

Your company’s data security policy mandates that objects be replicated
within the same Region to meet a recovery point objective of 15 minutes.

Solution
First, create source and destination S3 buckets with versioning enabled.
Then create an IAM role and attach an IAM policy that allows S3 to copy
objects from the source to the destination bucket. Finally, create an S3
replication policy that references the IAM role, and apply that policy to the
source bucket, as shown in Figure 3-3.

Figure 3-3. S3 bucket replication

Prerequisite
An S3 bucket with versioning enabled that you will use as your source

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create the destination S3 bucket:

aws s3api create-bucket --bucket awscookbook303-
dst-$RANDOM_STRING

2. Enable versioning for the destination S3 bucket:

aws s3api put-bucket-versioning \
 --bucket awscookbook303-dst-$RANDOM_STRING \
 --versioning-configuration Status=Enabled

3. Create a file named s3-assume-role-policy.json with the following
content (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "s3.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

4. Create an IAM role using the statement in the provided assume-role-
policy.json file using this command:

https://github.com/AWSCookbook/Networking

ROLE_ARN=$(aws iam create-role --role-name
AWSCookbook303S3Role \
 --assume-role-policy-document file://s3-assume-role-
policy.json \
 --output text --query Role.Arn)

5. Create a file named s3-perms-policy-template.json with the following
content (file provided in the repository) to allow S3 replication access
to your source and destination buckets:

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Action":[
 "s3:GetObjectVersionForReplication",
 "s3:GetObjectVersionAcl",
 "s3:GetObjectVersionTagging"
],
 "Resource":[
 "arn:aws:s3:::SRCBUCKET/*"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ListBucket",
 "s3:GetReplicationConfiguration"
],
 "Resource":[
 "arn:aws:s3:::SRCBUCKET"
]
 },
 {
 "Effect":"Allow",
 "Action":[
 "s3:ReplicateObject",
 "s3:ReplicateDelete",
 "s3:ReplicateTags",
 "s3:GetObjectVersionTagging"
],
 "Resource":"arn:aws:s3:::DSTBUCKET/*"
 }
]
}

6. Replace the values for DSTBUCKET and SRCBUCKET in the file and
save it as s3-perms-policy.json:

sed -e "s/DSTBUCKET/awscookbook303-dst-${RANDOM_STRING}/g" \
 -e "s|SRCBUCKET|awscookbook303-src-${RANDOM_STRING}|g" \
 s3-perms-policy-template.json > s3-perms-policy.json

7. Attach the policy to the role you just created:

aws iam put-role-policy \
 --role-name AWSCookbook303S3Role \
 --policy-document file://s3-perms-policy.json \
 --policy-name S3ReplicationPolicy

8. Create a file named s3-replication-template.json with the following
content to configure a replication time of 15 minutes to your
destination bucket:

{
 "Rules": [
 {
 "Status": "Enabled",
 "Filter": {
 "Prefix": ""
 },
 "Destination": {
 "Bucket": "arn:aws:s3:::DSTBUCKET",
 "Metrics": {
 "Status": "Enabled",
 "EventThreshold": {
 "Minutes": 15
 }
 },
 "ReplicationTime": {
 "Status": "Enabled",
 "Time": {
 "Minutes": 15
 }
 }
 },
 "DeleteMarkerReplication": {
 "Status": "Disabled"

 },
 "Priority": 1
 }
],
 "Role": "ROLEARN"
}

9. Replace the values for DSTBUCKET and ROLEARN in the file and
save it as s3-replication.json:

sed -e "s|ROLEARN|${ROLE_ARN}|g" \
 -e "s|DSTBUCKET|awscookbook303-dst-${RANDOM_STRING}|g" \
 s3-replication-template.json > s3-replication.json

10. Configure the replication policy for the source S3 bucket:

aws s3api put-bucket-replication \
 --replication-configuration file://s3-replication.json \
 --bucket awscookbook303-src-${RANDOM_STRING}

Validation checks
View the replication configuration for the source bucket:

aws s3api get-bucket-replication \
 --bucket awscookbook303-src-${RANDOM_STRING}

Copy an object to the source bucket:

aws s3 cp ./book_cover.png s3://awscookbook303-src-$RANDOM_STRING

View the replication status for the file that you uploaded to the source
bucket:

aws s3api head-object --bucket awscookbook303-
src-${RANDOM_STRING} \
 --key book_cover.png

You should see output similar to the following:

{
 "AcceptRanges": "bytes",
 "LastModified": "2021-06-20T00:17:25+00:00",
 "ContentLength": 255549,
 "ETag": "\"d<<>>d\"",
 "VersionId": "I<>>X",
 "ContentType": "image/png",
 "Metadata": {},
 "ReplicationStatus": "PENDING"
}

View the replication status after 15 minutes and confirm that
ReplicationStatus is COMPLETED, similar to the following:

{
 "AcceptRanges":"bytes",
 "ContentType":"image/png",
 "LastModified":"2021-06-20T00:17:41+00:00",
 "ContentLength":255549,
 "ReplicationStatus":"COMPLETED",
 "VersionId":"I<>>X",
 "ETag":\"d<<>>d\"",
 "Metadata":{}
}

TIP
You can also view the replication metrics in the AWS Console.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
If you are an engineer, developer, or architect working on AWS, there is a
good chance you will end up using S3. You may have to implement some

https://oreil.ly/jlcu1
https://github.com/AWSCookbook/Storage

sort of replication on S3 for your applications; S3 offers two types of
replication to meet your specific needs: Same-Region Replication (SRR)
and Cross-Region Replication (CRR). The replication time is a configurable
parameter of S3 Replication Time Control (S3 RTC) and is documented to
meet a 15-minute recovery point objective (RPO) backed by a service level
agreement (SLA).
SRR uses an IAM role, a source and destination bucket, and a replication
configuration that references the role and buckets. You use SRR in this
recipe to configure a one-way replication; you can use SRR to facilitate
many types of use cases:

Log aggregation to a central bucket for indexing
Replication of data between production and test environments
Data redundancy while retaining object metadata
Designing redundancy around data-sovereignty and compliance
requirements
Backup and archival purposes

CRR uses a similar IAM role, a source and destination bucket, and a
replication configuration that references the role and buckets. You can use
CRR to extend the possibilities of what SRR enables:

Meet requirements for data storage and archival across Regions
Locate similar datasets closer to your regional compute and access needs
to reduce latency

NOTE
S3 buckets that have versioning add markers to objects that you have deleted. Both types of S3
replication are able to replicate delete markers to your target bucket if you choose. For more
information, see the support document.

Challenge 1

https://oreil.ly/oxTcA
https://aws.amazon.com/s3/sla-rtc
https://oreil.ly/2sIL5

Create an S3 bucket in another Region and replicate the source bucket to
that as well.

Challenge 2
You can replicate specific paths and prefixes using a filter. Apply a filter so
that only objects under a certain prefix (e.g., protected/) are replicated.

3.4 Observing S3 Storage and Access
Metrics Using Storage Lens

Problem
You need to gain observability into the usage patterns of your S3 buckets.

Solution
Configure S3 Storage Lens to provide observability and analytics about
your S3 usage, as shown in Figure 3-4.

Figure 3-4. Configuring S3 Storage Lens for S3 observability

Prerequisite
S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

NOTE
Per the documentation: You can’t use your account’s root user credentials to view Amazon S3
Storage Lens dashboards.

1. From the S3 console, select S3 Storage Lens from the navigation pane
on the left.

2. Click “Create dashboard.”

NOTE
All AWS accounts have a default dashboard associated with them that shows the free
metrics available through S3 Storage Lens. Enabling advanced metrics gives you deeper
insights into your S3 usage and also provides cost-savings recommendations you can take
action on to optimize for cost. You can use the default dashboard and/or create your own.
The rest of these steps will show you how to create your own.

3. Give your dashboard a name, as shown in Figure 3-5.

https://github.com/AWSCookbook/Storage
https://oreil.ly/Je1u0

Figure 3-5. S3 Storage Lens dashboard creation

4. Include all of your buckets and Regions (use the default values) for
the “Dashboard scope” (see Figure 3-6).

Figure 3-6. Dashboard scope

5. Enable “Advanced metrics and recommendations,” keeping the
default values, as shown in Figure 3-7.

Figure 3-7. Selecting advanced metrics

6. Choose the defaults for Export settings (no export).

TIP
You can enable an automated export to periodically export your metrics to CSV and
Apache Parquet formats and send them to an S3 bucket of your choice to run your own
reports and visualizations.

7. Click “Create dashboard,” and then view your dashboard from the
dashboard selection.

NOTE
It may take up to 48 hours for advanced metrics to begin accumulating for your usage and
access patterns. In the meantime, you can view the default dashboard for the free metrics
associated with your S3 usage for all of your buckets in your account.

Validation checks
Open the Storage Lens and view the dashboard that you configured. You
should see metrics that correspond to your S3 usage. A sample is shown in
Figure 3-8.

Figure 3-8. Sample S3 Storage Lens dashboard

TIP
You can drill down into “Cost efficiency” and “Data protection” metrics from the dashboard. After
some time, you will be able to view historical data that allows you to take action on moving your
objects to storage tiers that meet your needs for data access patterns and availability requirements.

Cleanup

Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
S3 was one of the first AWS services, and as a result, many customers have
been using S3 for a very long time. As customer storage usage grew
exponentially, the ability to analyze what is being stored became a clear,
desired capability. S3 Storage Lens gives you the ability to “see” into your
S3 usage for your AWS accounts. Analyzing bucket usage, observing
storage costs, and discovering anomalies (e.g., undeleted multipart upload
fragments) are just a few of the many use cases S3 Storage Lens provides.
With Storage Lens, you can discover where your objects are being stored
with a visual dashboard backed by a powerful analytics engine so that you
can make adjustments to optimize for cost without impacting performance.
You can also enable advanced metrics on your dashboard to gain deeper
insights and cost-savings recommendations for your S3 buckets.

NOTE
S3 Storage Lens uses metrics to help you visualize your usage and activity. There are free metrics
available and advanced metrics that also give you recommendations on your usage. For more
information about the different types of metrics and their associated costs, see the support
document.

Challenge 1
Use Storage Lens findings to observe metrics and set an alert to
continuously monitor your usage.

Challenge 2
Create a new storage lens configuration that looks at only specific buckets.

3.5 Configuring Application-Specific Access
to S3 Buckets with S3 Access Points

https://github.com/AWSCookbook/Storage
https://oreil.ly/6XLUt
https://oreil.ly/HQcLH

Problem
You have an S3 bucket and two applications. You need to grant read/write
access to one of your applications and read-only access to another
application. You do not want to use S3 bucket policies, as you expect to
have to add additional applications with fine-grained security requirements
in the future.

Solution
Create two S3 access points and apply a policy granting the
S3:PutObject and S3:GetObject actions to one of the access points
and S3:GetObject to the other access point. Then, configure your
application to use the respective access point DNS name (see Figure 3-9).

Figure 3-9. S3 access points for two applications using the same S3 bucket

Prerequisites

VPC with isolated subnets created in two AZs and associated route
tables.
Two EC2 instances deployed. You will need the ability to connect to test
access.
S3 bucket.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. In your VPC, create an access point for Application 1:

aws s3control create-access-point --name cookbook305-app-1 \
 --account-id $AWS_ACCOUNT_ID \
 --bucket $BUCKET_NAME --vpc-configuration VpcId=$VPC_ID

2. In your VPC, create an access point for Application 2:

aws s3control create-access-point --name cookbook305-app-2 \
 --account-id $AWS_ACCOUNT_ID \
 --bucket $BUCKET_NAME --vpc-configuration VpcId=$VPC_ID

3. Create a file named app-1-policy-template.json with the access point
policy for Application 1 to read/write with the following content (file
provided in the repository):

{
 "Version":"2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "EC2_INSTANCE_PROFILE"
 },
 "Action": [ACTIONS],
 "Resource":
"arn:aws:s3:AWS_REGION:AWS_ACCOUNT_ID:accesspoint/ACCESS_POI

https://github.com/AWSCookbook/Storage

NT_NAME/object/*"
 }]
}

4. Use the sed command to replace the values in app-policy-
template.json with your EC2_INSTANCE_PROFILE,
AWS_REGION, AWS_ACCOUNT_ID, ACCESS_POINT_NAME, and
ACTIONS values for Application 1:

sed -e "s/AWS_REGION/${AWS_REGION}/g" \
 -e "s|EC2_INSTANCE_PROFILE|${INSTANCE_ROLE_1}|g" \
 -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 -e "s|ACCESS_POINT_NAME|cookbook305-app-1|g" \
 -e "s|ACTIONS|\"s3:GetObject\",\"s3:PutObject\"|g" \
 app-policy-template.json > app-1-policy.json

5. Put the policy you created on the access point for Application 1:

aws s3control put-access-point-policy --account-id
$AWS_ACCOUNT_ID \
 --name cookbook305-app-1 --policy file://app-1-
policy.json

6. Use the sed command to replace the values in app-policy-
template.json with your EC2_INSTANCE_PROFILE,
AWS_REGION, AWS_ACCOUNT_ID, ACCESS_POINT_NAME, and
ACTIONS values for Application 2:

sed -e "s/AWS_REGION/${AWS_REGION}/g" \
 -e "s|EC2_INSTANCE_PROFILE|${INSTANCE_ROLE_2}|g" \
 -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 -e "s|ACCESS_POINT_NAME|cookbook305-app-2|g" \
 -e "s|ACTIONS|\"s3:GetObject\"|g" \
 app-policy-template.json > app-2-policy.json

7. Put the policy you created on the access point for Application 2:

aws s3control put-access-point-policy --account-id
$AWS_ACCOUNT_ID \
 --name cookbook305-app-2 --policy file://app-2-
policy.json

NOTE
You can use specific access points with AWS SDK and CLI in a similar way. For
example, the bucket name becomes the following for SDK usage:
https://[access_point_name]-[accountID].s3-accesspoint.[region].amazonaws.com for
URLs and arn:aws:s3:[region]:[accountID]:[access_point_name] as
“bucket name” for CLI usage.

Here is a CLI example:

aws s3api get-object --key object.zip \
 --bucket \
 arn:aws:s3:us-east-1:111111111111:access_point_name
object.zip

8. Follow this guide to modifying the bucket policy so that you delegate
control to the access points.

Validation checks
Connect to the EC2 instance 1 by using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID_1

Set your AWS account ID from the instance’s metadata:

export AWS_ACCOUNT_ID=$(curl --silent
http://169.254.169.254/latest/dynamic/instance-identity/document
\
| awk -F'"' ' /accountId/ {print $4}')

https://oreil.ly/kqXrN

Set the Region by grabbing the value from the instance’s metadata:

export AWS_DEFAULT_REGION=$(curl --silent
http://169.254.169.254/latest/dynamic/instance-identity/document
\
| awk -F'"' ' /region/ {print $4}')

Try to get an object from the S3 access point for Application 1:

aws s3api get-object --key Recipe305Test.txt \
 --bucket
arn:aws:s3:$AWS_DEFAULT_REGION:$AWS_ACCOUNT_ID:accesspoint/cookbo
ok305-app-1 \
 /tmp/Recipe305Test.txt

Write an object to the S3 access point for Application 1:

aws s3api put-object \
 --bucket
arn:aws:s3:$AWS_DEFAULT_REGION:$AWS_ACCOUNT_ID:accesspoint/cookbo
ok305-app-1 \
--key motd.txt --body /etc/motd

NOTE
These two commands work for Application 1 because you configured read/write access for this
access point.

Disconnect from EC2 instance 1:

exit

Connect to the EC2 instance 2 using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID_2

Set your AWS account ID from the instance’s metadata:

export AWS_ACCOUNT_ID=$(curl --silent
http://169.254.169.254/latest/dynamic/instance-identity/document
\
| awk -F'"' ' /accountId/ {print $4}')

Set the Region by grabbing the value from the instance’s metadata:

export AWS_DEFAULT_REGION=$(curl --silent
http://169.254.169.254/latest/dynamic/instance-identity/document
\
| awk -F'"' ' /region/ {print $4}')

Try to get an object from the S3 bucket:

aws s3api get-object --key Recipe305Test.txt \
 --bucket \
arn:aws:s3:$AWS_DEFAULT_REGION:$AWS_ACCOUNT_ID:accesspoint/cookbo
ok305-app-2 \
 /tmp/Recipe305Test.txt

Try to put an object to the S3 bucket:

aws s3api put-object \
 --bucket
arn:aws:s3:$AWS_DEFAULT_REGION:$AWS_ACCOUNT_ID:accesspoint/cookbo
ok305-app-2 \
--key motd2.txt --body /etc/motd

NOTE
The first command works, and the second command fails, for Application 2 because you
configured read-only access for this access point.

Disconnect from EC2 instance 2:

exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
S3 access points allow you to grant fine-grained access to specific
principals, and they can be easier to manage than S3 bucket policies. In this
recipe, you created two access points with different kinds of allowed actions
and associated the access points with specific roles using access point IAM
policies. You verified that only specific actions were granted to your EC2
instances when they were being used with the CLI and S3 access point.
To help you meet your security requirements, access points use IAM
policies in a similar way that you use for other AWS services. You can also
configure S3 Block Public Access on access points to ensure that no public
access is ever granted by mistake to your S3 buckets (see Recipe 1.9).
There is no additional cost for S3 access points.

Challenge
Configure a third access point and specify access to a specific object or
prefix only.

3.6 Using Amazon S3 Bucket Keys with KMS
to Encrypt Objects

Problem
You need to encrypt S3 objects at rest with a Key Management Service
(KMS) customer-managed key (CMK) and ensure that all objects within the
bucket are encrypted with the KMS key in a cost-effective manner.

https://github.com/AWSCookbook/Storage
https://oreil.ly/T6Wdq

Solution
Create a KMS customer-managed key, configure your S3 bucket to use S3
bucket keys referencing your AWS KMS CMK, and configure an S3 bucket
policy requiring KMS to be used for all S3:PutObject operations (see
Figure 3-10).

Figure 3-10. Encrypting objects in S3

Prerequisite
An S3 bucket

Preparation

Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a KMS key to use for your S3 bucket and store the key ID in

an environment variable:

KEY_ID=$(aws kms create-key \
 --tags TagKey=Name,TagValue=AWSCookbook306Key \
 --description "AWSCookbook S3 CMK" \
 --query KeyMetadata.KeyId \
 --output text)

2. Create an alias to reference your key:

aws kms create-alias \
 --alias-name alias/awscookbook306 \
 --target-key-id $KEY_ID

3. Configure the S3 bucket to use an S3 bucket key specifying your
KMS key ID:

aws s3api put-bucket-encryption \
 --bucket awscookbook306-$RANDOM_STRING \
 --server-side-encryption-configuration '{
 "Rules": [
 {
 "ApplyServerSideEncryptionByDefault": {
 "SSEAlgorithm": "aws:kms",
 "KMSMasterKeyID": "${KEY_ID}"
 },
 "BucketKeyEnabled": true
 }
]
 }'

4. Create a bucket policy template for the bucket to force encryption of
all objects:

https://github.com/AWSCookbook/Storage

{
 "Version":"2012-10-17",
 "Id":"PutObjectPolicy",
 "Statement":[{
 "Sid":"DenyUnEncryptedObjectUploads",
 "Effect":"Deny",
 "Principal":"*",
 "Action":"s3:PutObject",
 "Resource":"arn:aws:s3:::BUCKET_NAME/*",
 "Condition":{
 "StringNotEquals":{
 "s3:x-amz-server-side-encryption":"aws:kms"
 }
 }
 }
]
}

5. Use the sed command to replace the value in bucket-policy-
template.json with your BUCKET_NAME:

sed -e "s|BUCKET_NAME|awscookbook306-${RANDOM_STRING}|g" \
 bucket-policy-template.json > bucket-policy.json

6. Apply the bucket policy to force encryption on all uploads:

aws s3api put-bucket-policy --bucket
awscookbook306-$RANDOM_STRING \
 --policy file://bucket-policy.json

Validation checks
Upload an object to the S3 bucket with encryption from the command line.
You will see a successful upload:

aws s3 cp ./book_cover.png s3://awscookbook306-$RANDOM_STRING \
 --sse aws:kms --sse-kms-key-id $KEY_ID

Now, upload an object to the S3 bucket without encryption. You will notice
that you receive a KMS.NotFoundException error on the command

line. This indicates that the bucket policy you configured is working
properly:

aws s3 cp ./book_cover.png s3://awscookbook306-$RANDOM_STRING

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When applying encryption to your S3 bucket, you could have chosen to use
an AWS-managed CMK that Amazon S3 creates in your AWS account and
manages for you. Like the customer-managed CMK, your AWS managed
CMK is unique to your AWS account and Region. Only Amazon S3 has
permission to use this CMK on your behalf. You can create, rotate, and
disable auditable customer-managed CMKs from the AWS KMS Console.
The S3 documentation provides a comprehensive explanation of the
differences between the types of encryption supported on S3.
When you encrypt your data, your data is protected, but you have to protect
your encryption key. Envelope encryption is the practice of encrypting
plaintext data with a data key, and then encrypting the data key under
another key, as shown in Figure 3-11.

https://github.com/AWSCookbook/Storage
https://oreil.ly/oGBG0
https://oreil.ly/gK0o0

Figure 3-11. S3 encryption process with KMS

Challenge
To validate that you can rotate your keys without impacting your data, put
an object into your bucket, trigger a rotation of the KMS CMK, and then
get the object back out of the S3 bucket and confirm it can decrypt properly
(see this AWS article for a hint).

3.7 Creating and Restoring EC2 Backups to
Another Region Using AWS Backup

Problem

https://oreil.ly/RVAFZ

You need to create a backup of an instance and restore it in another Region.

Solution
Create an on-demand backup with AWS Backup for your EC2 instance and
restore the backup from the vault by using the AWS Console, as shown in
Figure 3-12.

Figure 3-12. Creating and restoring EC2 backups

Prerequisites
VPC with isolated subnets created in two AZs and associated route
tables
EC2 instance deployed

https://oreil.ly/j3pWr

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Navigate to the AWS Backup console and select “Protected resources”

from the lefthand navigation pane.
2. Click the “Create an on-demand backup” and select your EC2

instance, choose defaults, and click “Create on-demand backup” (see
Figure 3-13).

https://github.com/AWSCookbook/Storage

Figure 3-13. Creating on-demand backup

NOTE
AWS Backup will create a role for its purposes that uses the AWS Backup Managed Policy
to perform the required actions for backups. You can also create your own custom role if
you require. For more information, see this AWS document.

The backup starts in the backup jobs view, as shown in Figure 3-14.

https://oreil.ly/WirFO

Figure 3-14. View of backup job running

3. Wait for the backup to complete in your account (this may take a few
moments to reach the Completed status shown in Figure 3-15).

Figure 3-15. View of backup job completed

4. Select the Default Backup vault for your current Region and view
your image backup that you just completed.

5. Click the backup recovery point that you just created and choose
Copy, as shown in Figure 3-16.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#copy_recovery_point-id000009

Figure 3-16. Copy recovery point

6. Select your destination Region, keep all defaults, and click Copy
(shown in Figure 3-17). You will see the copy job enter Running
status, as shown in Figure 3-18.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#copy_recovery_point_to_a_different_aws
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#copy_recovery_point_running

Figure 3-17. Copy recovery point to a different AWS Region

Figure 3-18. Copy recovery point running

7. After the copy job has completed in a few minutes, in the AWS
Console, select the destination Region from the drop-down Region

selector (top right of the AWS console).
8. Select your default Backup vault and choose the backup you wish to

restore, as shown in Figure 3-19.

Figure 3-19. Restore recovery point

9. Under “Network settings,” select your instance type and VPC for your
restore, and click “Restore backup.” An example of inputs is shown in
Figure 3-20.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#restore_recovery_point
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#copy_recovery_point-id0000035

Figure 3-20. Network settings for backup restoration

10. You can monitor the progress of the restore under the “Restore jobs”
tab of the Jobs section in the console, shown in Figure 3-21.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#recovery_point_restore_job_running

Figure 3-21. Recovery point restore job running

Validation checks

Browse to the EC2 console to view your running instance in your
destination Region. This EC2 instance is a copy of your original instance.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
AWS Backup lets you manage and monitor the backups across the AWS
services you use, from a single place. You can back up many AWS services
and set backup policies for cloud resources in the AWS services that you
use. You can also copy backups cross-Region within your account (or to
other AWS accounts), which is what you explored in this recipe. EBS
snapshots are an essential component of a backup strategy on AWS if you
use the EC2 service to run instances with persistent data on them that you
would like to protect. You can take snapshots of EBS volumes manually,
write your own automation, automate them with Data Lifecycle Manager,
or use AWS Backup.
When you use AWS Backup to back up an EC2 instance, the service stores
backups in a backup vault of your choice (a default backup vault is created
if you do not have one), handles the process of building an Amazon
Machine Image (AMI) which contains all of the configuration parameters,
backed-up attached EBS volumes, and metadata. The service stores the
entire bundle within the backup vault. This allows you to simply launch an
EC2 instance from the AMI that was generated by the AWS Backup service
to reduce the recovery time objective (RTO) associated with restoring an
instance from a backup within your primary Region or another Region of
your choice.

Challenge
Configure an Automated Backup of the EC2 instance on a weekly schedule
using backup plans, which copies the backed-up instances to a vault within
another Region.

https://github.com/AWSCookbook/Storage
https://aws.amazon.com/backup/faqs
https://oreil.ly/KHpPB
https://oreil.ly/BYWAl
https://oreil.ly/eXbT7
https://oreil.ly/OnzyN
https://oreil.ly/uguyM

3.8 Restoring a File from an EBS Snapshot

Problem
You need to restore a file from an EBS snapshot that you have taken from a
volume in your account.

Solution
Create a volume from a snapshot, mount the volume from an EC2 instance,
and copy the file to your instance volume (see Figure 3-22).

Figure 3-22. Process flow for file restore from a snapshot

Prerequisites
VPC with isolated subnets created in two AZs and associated route
tables.
EC2 instance deployed. You will need the ability to connect to mount the
EBS snapshot and restore a file.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Find the EBS volume attached to your EC2 instance:

ORIG_VOLUME_ID=$(aws ec2 describe-volumes \
 --filters Name=attachment.instance-
id,Values=$INSTANCE_ID \
 --output text \
 --query Volumes[0].Attachments[0].VolumeId)

2. Take a snapshot of the EBS volume (this will take a moment to
complete):

SNAPSHOT_ID=$(aws ec2 create-snapshot \
 --volume-id $ORIG_VOLUME_ID \
 --output text --query SnapshotId)

3. Create a volume from the snapshot and save the VOLUME_ID as an
environment variable:

SNAP_VOLUME_ID=$(aws ec2 create-volume \
 --snapshot-id $SNAPSHOT_ID \
 --size 8 \
 --volume-type gp2 \
 --availability-zone us-east-1a \
 --output text --query VolumeId)

Validation checks
Attach the volume to the EC2 instance as /dev/sdf:

aws ec2 attach-volume --volume-id $SNAP_VOLUME_ID \
 --instance-id $INSTANCE_ID --device /dev/sdf

Wait until the volume’s state has reached Attached:

https://github.com/AWSCookbook/Storage

aws ec2 describe-volumes \
 --volume-ids $SNAP_VOLUME_ID

Connect to the EC2 instance using SSM Session Manager (see Recipe 1.6):

aws ssm start-session --target $INSTANCE_ID

Run the lsblk command to see volumes, and note the volume name that
you attached (you will use this volume name in the subsequent step to
mount the volume):

lsblk

You should see output similar to this:

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
nvme0n1 259:0 0 8G 0 disk
├─nvme0n1p1 259:1 0 8G 0 part /
└─nvme0n1p128 259:2 0 1M 0 part
nvme1n1 259:3 0 8G 0 disk
├─nvme1n1p1 259:4 0 8G 0 part
└─nvme1n1p128 259:5 0 1M 0 part

Create a folder to mount the attached disk:

sudo mkdir /mnt/restore

Mount the volume you attached to the folder you created:

sudo mount -t xfs -o nouuid /dev/nvme1n1p1 /mnt/restore

NOTE
The XFS file uses universally unique identifiers (UUIDs) to identify filesystems. By default, a
safety mechanism is in place in the mount command to prevent you from mounting the same
filesystem twice. Since you created a block-level snapshot and created a volume from it, the
mount command you used requires overriding this check to allow mounting a volume with the
same UUID using the -o nouuid parameter. For more information, consult the man page for
mount.

Copy the file(s) you need from the mounted volume to the local filesystem:

sudo cp /mnt/restore/home/ec2-user/.bash_profile \
 /tmp/.bash_profile.restored

Unmount the volume:

sudo umount /dev/nvme1n1p1

Log out of the EC2 instance:

exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
EBS snapshots are an important part of a backup strategy within the EC2
service. If you run EC2 instances, snapshots enable you to restore an
instance to a point in time when the snapshot was created. You can also
create an EBS volume from a snapshot and attach it to a running instance,
which you accomplished in this recipe. This is useful for site reliability
engineering (SRE) teams, operations teams, and users who need to restore
single files to a point in time to meet their needs.

https://github.com/AWSCookbook/Storage
https://oreil.ly/0DwtK

TIP
EBS snapshots allow you to take snapshots of EBS volumes manually, write your own automation
(like a Lambda function on a schedule), automate with Data Lifecycle Manager, or use AWS
Backup (see Recipe 3.7) for a more comprehensive solution to backing up and restoring EC2
instances.

Challenge
Create an AMI from the snapshot you create and launch a new instance
from the newly created AMI.

3.9 Replicating Data Between EFS and S3
with DataSync

Problem
You need to replicate files from Amazon S3 to Amazon EFS.

Solution
Configure AWS DataSync with an S3 source and EFS target; then create a
DataSync task and start the replication task, as shown in Figure 3-23.

https://oreil.ly/8KFje

Figure 3-23. Replicating S3 Bucket and EFS file system with DataSync

Prerequisites
An S3 bucket and EFS file system.
VPC with isolated subnets created in two AZs and associated route
tables.
EC2 instance deployed with EFS file system attached. You will need the
ability to connect to it for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create an IAM role using the statement in the provided assume-role-

policy.json file with this command:

S3_ROLE_ARN=$(aws iam create-role --role-name
AWSCookbookS3LocationRole \
 --assume-role-policy-document file://assume-role-
policy.json \
 --output text --query Role.Arn)

https://github.com/AWSCookbook/Storage

2. Attach the AmazonS3ReadOnlyAccess IAM managed policy to
the IAM role:

aws iam attach-role-policy --role-name
AWSCookbookS3LocationRole \
 --policy-arn
arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

3. Create a DataSync S3 location:

S3_LOCATION_ARN=$(aws datasync create-location-s3 \
 --s3-bucket-arn $BUCKET_ARN \
 --s3-config BucketAccessRoleArn=$S3_ROLE_ARN \
 --output text --query LocationArn)

4. Create an IAM role using the statement in the provided assume-role-
policy.json file with this command:

EFS_ROLE_ARN=$(aws iam create-role --role-name
AWSCookbookEFSLocationRole \
 --assume-role-policy-document file://assume-role-
policy.json \
 --output text --query Role.Arn)

5. Attach the
AmazonElasticFileSystemClientReadWriteAccess
IAM managed policy to the IAM role:

aws iam attach-role-policy --role-name
AWSCookbookEFSLocationRole \
 --policy-arn
arn:aws:iam::aws:policy/AmazonElasticFileSystemClientFullAcc
ess

6. Get the ARN of the EFS file system:

EFS_FILE_SYSTEM_ARN=$(aws efs describe-file-systems \

 --file-system-id $EFS_ID \
 --output text --query FileSystems[0].FileSystemArn)

7. Get the ARN of the subnet:

SUBNET_ARN=$(aws ec2 describe-subnets \
 --subnet-ids $ISOLATED_SUBNET_1 \
 --output text --query Subnets[0].SubnetArn)

8. Get the ARN of the security group:

SG_ARN=arn:aws:ec2:$AWS_REGION:$AWS_ACCOUNT_ID:security-
group/$EFS_SG

9. Create a DataSync EFS location:

EFS_LOCATION_ARN=$(aws datasync create-location-efs \
 --efs-filesystem-arn $EFS_FILE_SYSTEM_ARN \
 --ec2-config SubnetArn=$SUBNET_ARN,SecurityGroupArns=
[$SG_ARN] \
 --output text)

10. Create a DataSync task:

TASK_ARN=$(aws datasync create-task \
 --source-location-arn $S3_LOCATION_ARN \
 --destination-location-arn $EFS_LOCATION_ARN \
 --output text --query TaskArn)

11. Execute the task:

aws datasync start-task-execution \
 --task-arn $TASK_ARN

12. Ensure the task has completed after a few seconds:

aws datasync list-task-executions \
 --task-arn $TASK_ARN

Validation checks
Ensure your EC2 instance 1 has registered with SSM. Use this command to
check the status. This command should return the instance ID:

aws ssm describe-instance-information \
 --filters Key=ResourceType,Values=EC2Instance \
 --query "InstanceInformationList[].InstanceId" --output text

Connect to your EC2 instance using SSM Session Manager:

aws ssm start-session --target $INSTANCE_ID

The EC2 instance has the EFS volume mounted at /mnt/efs. You can browse
to the directory and view that the S3-Test-Content.txt file has been
replicated from your S3 bucket to your EFS volume, as shown in the
sample output:

sh-4.2$ cd /mnt/efs

sh-4.2$ ls

sh-4.2$ ls -al

total 12
drwxr-xr-x 3 nfsnobody nfsnobody 6144 Jan 1 1970 .
drwxr-xr-x 3 root root 17 Sep 10 02:07 ..
drwx------ 2 root root 6144 Sep 10 03:27 .aws-datasync
-rwxr-xr-x 1 nfsnobody nfsnobody 30 Jan 1 1970 S3-Test-
Content.txt

Exit the Session Manager session:

exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You can use AWS DataSync for both on-demand and ongoing/automated
file synchronization tasks across a variety of AWS services. DataSync
preserves metadata for copied items and checks file integrity during the
synchronization task, supporting retries if needed. This is useful if you are a
developer or cloud engineer looking to move data among a variety of
sources and targets without provisioning any infrastructure or writing your
own scripts to accomplish the same task. In this recipe, you used it to
synchronize data between S3 and EFS hosted in your AWS account, but
you can also use it to synchronize data among your non-AWS servers if you
have a VPN connection, Direct Connect, or among other AWS accounts
using VPC peering or a transit gateway.

NOTE
At the time of this writing, the minimum automated sync schedule interval you can set is one hour.
You can find other details about DataSync in the user documentation.

Like many AWS services, DataSync uses IAM roles to perform actions
against S3 and EFS for you. You granted DataSync the ability to interact
with S3 and EFS. DataSync provisions network interfaces in your VPC to
connect to your EFS file shares and uses the AWS APIs to interact with S3.
It encrypts traffic in transit using TLS and also supports encryption at rest
using KMS should your security and compliance requirements mandate
encryption at rest.

Challenge 1
Set up a DataSync task that excludes filenames in a certain folder (e.g.,
private-folder).

https://github.com/AWSCookbook/Storage
https://aws.amazon.com/datasync
https://oreil.ly/dVnun

Challenge 2
Set up a scheduled DataSync task to replicate data from S3 to EFS on an
hourly schedule.

Chapter 4. Databases

4.0 Introduction
You have a myriad of choices for using databases with AWS. Installing and
running a database on EC2 provides you with the most choices of database
engines and custom configurations, but brings about challenges like
patching, backups, configuring high-availability, replication, and
performance tuning. As noted on its product page, AWS offers managed
database services that help address these challenges and cover a broad range
of database types (relational, key-value/NoSQL, in-memory, document,
wide column, graph, time series, ledger). When choosing a database type
and data model, you must keep speed, volume, and access patterns in mind.
The managed database services on AWS integrate with many services to
provide you additional functionality from security, operations, and
development perspectives. In this chapter, you will explore Amazon
Relational Database Service (RDS), NoSQL usage with Amazon
DynamoDB, and the ways to migrate, secure, and operate these database
types at scale. For example, you will learn how to integrate Secrets
Manager with an RDS database to automatically rotate database user
passwords. You will also learn how to leverage IAM authentication to
reduce the application dependency on database passwords entirely, granting
access to RDS through IAM permissions instead. You’ll explore autoscaling
with DynamoDB and learn about why this is important from a cost and
performance perspective.

NOTE
Some people think that Route 53 is a database but we disagree :-)

https://oreil.ly/wLQPC
https://oreil.ly/Da83G

NOTE
Some database engines in the past have used certain terminology for replica configurations,
default root user names, primary tables, etc. We took care to use inclusive terminology throughout
this chapter (and the whole book) wherever possible. We support the movement to use inclusive
terminology in these commercial and open source database engines.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/AWSCookbook/Databases

WARNING
During some of the steps in this chapter, you will create passwords and temporarily save them as
environment variables to use in subsequent steps. Make sure that you unset the environment
variables by following the cleanup steps when you complete the recipe. We use this approach for
simplicity of understanding. A more secure method (such as the method used in Recipe 1.8)
should be used in production environments.

4.1 Creating an Amazon Aurora Serverless
PostgreSQL Database

Problem
You have a web application that receives unpredictable requests that require
storage in a relational database. You need a database solution that can scale
with usage and be cost-effective. You would like to build a solution that has
low operational overhead and must be compatible with your existing
PostgreSQL-backed application.

Solution
Configure and create an Aurora Serverless database cluster with a complex
password. Then, apply a customized scaling configuration and enable
automatic pause after inactivity. The scaling activity in response to the
policy is shown in Figure 4-1.

Figure 4-1. Aurora Serverless cluster scaling compute

Prerequisites
VPC with isolated subnets created in two AZs and associated route
tables.

EC2 instance deployed. You will need the ability to connect to this for
testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Use AWS Secrets Manager to generate a complex password:

ADMIN_PASSWORD=$(aws secretsmanager get-random-password \
 --exclude-punctuation \
 --password-length 41 --require-each-included-type \
 --output text \
 --query RandomPassword)

NOTE
We are excluding punctuation characters from the password that we are creating because
PostgreSQL does not support them. See the “Naming constraints in Amazon RDS” table.

2. Create a database subnet group specifying the VPC subnets to use for
the cluster. Database subnet groups simplify the placement of RDS
elastic network interfaces (ENIs):

aws rds create-db-subnet-group \
 --db-subnet-group-name awscookbook401subnetgroup \
 --db-subnet-group-description "AWSCookbook401 subnet
group" \
 --subnet-ids $SUBNET_ID_1 $SUBNET_ID_2

You should see output similar to the following:

{
 "DBSubnetGroup": {
 "DBSubnetGroupName": "awscookbook402subnetgroup",
 "DBSubnetGroupDescription": "AWSCookbook401 subnet group",

https://github.com/AWSCookbook/Databases
https://oreil.ly/z0LvJ

 "VpcId": "vpc-<<VPCID>>",
 "SubnetGroupStatus": "Complete",
 "Subnets": [
 {
 "SubnetIdentifier": "subnet-<<SUBNETID>>",
 "SubnetAvailabilityZone": {
 "Name": "us-east-1b"
 },
 "SubnetOutpost": {},
 "SubnetStatus": "Active"
 },
...

3. Create a VPC security group for the database:

DB_SECURITY_GROUP_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook401sg \
 --description "Aurora Serverless Security Group" \
 --vpc-id $VPC_ID --output text --query GroupId)

4. Create a database cluster, specifying an engine-mode of
serverless:

aws rds create-db-cluster \
 --db-cluster-identifier awscookbook401dbcluster \
 --engine aurora-postgresql \
 --engine-mode serverless \
 --engine-version 10.14 \
 --master-username dbadmin \
 --master-user-password $ADMIN_PASSWORD \
 --db-subnet-group-name awscookbook401subnetgroup \
 --vpc-security-group-ids $DB_SECURITY_GROUP_ID

You should see output similar to the following:

{
 "DBCluster": {
 "AllocatedStorage": 1,
 "AvailabilityZones": [
 "us-east-1f",
 "us-east-1b",
 "us-east-1a"
],

 "BackupRetentionPeriod": 1,
 "DBClusterIdentifier": "awscookbook401dbcluster",
 "DBClusterParameterGroup": "default.aurora-postgresql10",
 "DBSubnetGroup": "awscookbook401subnetgroup",
 "Status": "creating",
...

5. Wait for the Status to read available; this will take a few moments:

aws rds describe-db-clusters \
 --db-cluster-identifier awscookbook401dbcluster \
 --output text --query DBClusters[0].Status

6. Modify the database to automatically scale with new autoscaling
capacity targets (8 min, 16 max) and enable AutoPause after five
minutes of inactivity:

aws rds modify-db-cluster \
 --db-cluster-identifier awscookbook401dbcluster --
scaling-configuration \

MinCapacity=8,MaxCapacity=16,SecondsUntilAutoPause=300,Timeo
utAction='ForceApplyCapacityChange',AutoPause=true

You should see output similar to what you saw for step 4.

NOTE
In practice, you may want to use a different AutoPause value. To determine what is
appropriate for your use, evaluate your performance needs and Aurora pricing.

Wait at least five minutes and observe that the database’s capacity has
scaled down to 0:

aws rds describe-db-clusters \
 --db-cluster-identifier awscookbook401dbcluster \
 --output text --query DBClusters[0].Capacity

https://oreil.ly/o6mAP

NOTE
The AutoPause feature automatically sets the capacity of the cluster to 0 after inactivity.
When your database activity resumes (e.g., with a query or connection), the capacity value
is automatically set to your configured minimum scaling capacity value.

7. Grant your EC2 instance’s security group access to the default
PostgreSQL port:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 5432 \
 --source-group $INSTANCE_SG \
 --group-id $DB_SECURITY_GROUP_ID

You should see output similar to the following:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<ID>>",
 "GroupId": "sg-<<ID>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 5432,
 "ToPort": 5432,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<ID>>"
 }
 }
]
}

Validation checks
List the endpoint for the RDS cluster:

aws rds describe-db-clusters \

 --db-cluster-identifier awscookbook401dbcluster \
 --output text --query DBClusters[0].Endpoint

You should see something similar to this:

awscookbook401dbcluster.cluster-<<unique>>.us-east-
1.rds.amazonaws.com

Retrieve the password for your RDS cluster:

echo $ADMIN_PASSWORD

Connect to the EC2 instance by using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID

Install the PostgreSQL package so you can use the psql command to
connect to the database:

sudo yum -y install postgresql

Connect to the database. This may take a moment as the database capacity
is scaling up from 0. You’ll need to copy and paste the password (outputted
previously):

psql -h $HOST_NAME -U dbadmin -W -d postgres

Here is an example of connecting to a database using the psql command:

sh-4.2$ psql -h awscookbook401dbcluster.cluster-<<unique>>.us-
east-1.rds.amazonaws.com -U dbadmin -W -d postgres
Password for user dbadmin:(paste in the password)

Quit psql:

\q

Exit the Session Manager session:

exit

Check the capacity of the cluster again to observe that the database has
scaled up to the minimum value that you configured:

aws rds describe-db-clusters \
 --db-cluster-identifier awscookbook401dbcluster \
 --output text --query DBClusters[0].Capacity

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

TIP
The default behavior of deleting an RDS cluster is to take a final snapshot as a safety mechanism.
We chose to skip this behavior by adding the --skip-final-snapshot option to ensure you
do not incur any costs for storing the snapshot in your AWS account. In a real-world scenario, you
would likely want to retain the snapshot for a period of time in case you needed to re-create the
existing database from the snapshot.

Discussion
The cluster will automatically scale capacity to meet the needs of your
usage. Setting MaxCapacity=16 limits the upper bound of your capacity
to prevent runaway usage and unexpected costs. The cluster will set its
capacity to 0 when no connection or activity is detected. This is triggered
when the SecondsUntilAutoPause value is reached.

https://github.com/AWSCookbook/Databases

When you enable AutoPause=true for your cluster, you pay for only
the underlying storage during idle times. The default (and minimum)
“inactivity period” is five minutes. Connecting to a paused cluster will
cause the capacity to scale up to MinCapacity.

WARNING
Not all database engines and versions are available with the serverless engine. At the time of
writing, the Aurora FAQ states that Aurora Serverless is currently available for Aurora with
MySQL 5.6 compatibility and for Aurora with PostgreSQL 10.7+ compatibility.

The user guide states that Aurora Serverless scaling is measured in capacity
units (CUs) that correspond to compute and memory reserved for your
cluster. This capability is a good fit for many workloads and use cases from
development to batch-based workloads, and production workloads where
traffic is unpredictable and costs associated with potential over-provisioning
are a concern. By not needing to calculate baseline usage patterns, you can
start developing quickly, and the cluster will automatically respond to the
demand that your application requires.
If you currently use a “provisioned” capacity type cluster on Amazon RDS
and would like to start using Aurora Serverless, you can snapshot your
current database and restore it from within the AWS Console or from the
command line to perform a migration. If your current database is not on
RDS, you can use your database engine’s dump and restore features or use
the AWS Database Migration Service (AWS DMS) to migrate to RDS.

NOTE
At the time of this writing, Amazon Aurora Serverless v2 is in preview.

The user guide mentions that Aurora Serverless further builds on the
existing Aurora platform, which replicates your database’s underlying
storage six ways across three Availability Zones. While this replication is a

https://oreil.ly/P5A2B
https://oreil.ly/MJpCb
https://oreil.ly/TVurx
https://oreil.ly/GMEVT

benefit for resiliency, you should still use automated backups for your
database to guard against operational errors. Aurora Serverless has
automated backups enabled by default, and the backup retention can be
increased up to 35 days if needed.

NOTE
Per the documentation, if your database cluster has been idle for more than seven days, the cluster
will be backed up with a snapshot. If this occurs, the database cluster is restored when there is a
request to connect to it.

Challenge
Change the max capacity to 64 and idle time to 10 minutes for the database
cluster.

See Also
Recipe 4.2
Recipe 4.7

4.2 Using IAM Authentication with an RDS
Database

Problem
You have a server that connects to a database with a password and would
like to instead use rotating temporary credentials.

Solution
First you will enable IAM authentication for your database. You will then
configure the IAM permissions for the EC2 instance to use. Finally, create a

https://oreil.ly/Wq91f

new user on the database, retrieve the IAM authentication token, and verify
connectivity (see Figure 4-2).

Figure 4-2. IAM authentication from an EC2 instance to an RDS database

Prerequisites
VPC with isolated subnets created in two AZs and associated route
tables.
An RDS MySQL instance.
EC2 instance deployed. You will need the ability to connect to this for
configuring MySQL and testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Enable IAM database authentication on the RDS database instance:

https://github.com/AWSCookbook/Databases

aws rds modify-db-instance \
 --db-instance-identifier $RDS_DATABASE_ID \
 --enable-iam-database-authentication \
 --apply-immediately

You should see output similar to the following:

{
 "DBInstance": {
 "DBInstanceIdentifier": "awscookbookrecipe402",
 "DBInstanceClass": "db.m5.large",
 "Engine": "mysql",
 "DBInstanceStatus": "available",
 "MasterUsername": "admin",
 "DBName": "AWSCookbookRecipe402",
 "Endpoint": {
 "Address": "awscookbookrecipe402.<<ID>>.us-east-
1.rds.amazonaws.com",
 "Port": 3306,
 "HostedZoneId": "<<ID>>"
 },
...

WARNING
IAM database authentication is available for only the database engines listed in this AWS
article.

2. Retrieve the RDS database instance resource ID:

DB_RESOURCE_ID=$(aws rds describe-db-instances \
 --query \
 'DBInstances[?
DBName==`AWSCookbookRecipe402`].DbiResourceId' \
 --output text)

3. Create a file called policy.json with the following content (a policy-
template.json file is provided in the repository):

https://oreil.ly/jUIQ0

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-
db:AWS_REGION:AWS_ACCOUNT_ID:dbuser:DBResourceId/db_user"
]
 }
]
}

NOTE
In the preceding example, db_user must match the name of the user in the database that
we would like to allow to connect.

4. Replace the values in the template file by using the sed command
with environment variables you have set:

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|AWS_REGION|${AWS_REGION}|g" \
 -e "s|DBResourceId|${DB_RESOURCE_ID}|g" \
 policy-template.json > policy.json

5. Create an IAM policy using the file you just created:

aws iam create-policy --policy-name
AWSCookbook402EC2RDSPolicy \
 --policy-document file://policy.json

You should see output similar to the following:

{

 "Policy": {
 "PolicyName": "AWSCookbook402EC2RDSPolicy",
 "PolicyId": "<<ID>>",
 "Arn":
"arn:aws:iam::111111111111:policy/AWSCookbook402EC2RDSPolicy
",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-09-21T21:18:54+00:00",
 "UpdateDate": "2021-09-21T21:18:54+00:00"
 }
}

6. Attach the IAM policy AWSCookbook402EC2RDSPolicy to the
IAM role that the EC2 is using:

aws iam attach-role-policy --role-name $INSTANCE_ROLE_NAME \
 --policy-arn
arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook402EC2RDSPoli
cy

7. Retrieve the RDS admin password from Secrets Manager:

RDS_ADMIN_PASSWORD=$(aws secretsmanager get-secret-value \
 --secret-id $RDS_SECRET_ARN \
 --query SecretString | jq -r | jq .password | tr -d '"')

8. Output text so that you can use it later when you connect to the EC2
instance.
List the endpoint for the RDS cluster:

echo $RDS_ENDPOINT

You should see output similar to the following:

awscookbookrecipe402.<<unique>>.us-east-1.rds.amazonaws.com

List the password for the RDS cluster:

echo $RDS_ADMIN_PASSWORD

9. Connect to the EC2 instance using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID

10. Install MySQL:

sudo yum -y install mysql

11. Connect to the database. You’ll need to copy and paste the password
and hostname (outputted in steps 7 and 8):

mysql -u admin -p$DB_ADMIN_PASSWORD -h $RDS_ENDPOINT

You should see output similar to the following:

Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 18
Server version: 8.0.23 Source distribution
Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and
others.
Type 'help;' or '\h' for help. Type '\c' to clear the
current input statement.
MySQL [(none)]>

NOTE
In the mysql command in step 11, there is no space between the -p flag and the first
character of the password.

12. Create a new database user to associate with the IAM authentication:

CREATE USER db_user@'%' IDENTIFIED WITH
AWSAuthenticationPlugin as 'RDS';
GRANT SELECT ON *.* TO 'db_user'@'%';

For both commands in step 12, you should see output similar to the
following:

Query OK, 0 rows affected (0.01 sec)

13. Now, exit the mysql prompt:

quit

Validation checks
While still on the EC2 instance, download the RDS Root CA (certificate
authority) file provided by Amazon from the rds-downloads S3 bucket:

sudo wget https://s3.amazonaws.com/rds-downloads/rds-ca-2019-
root.pem

Set the Region by grabbing the value from the instance’s metadata:

export AWS_DEFAULT_REGION=$(curl --silent
http://169.254.169.254/latest/dynamic/instance-identity/document
\
| awk -F'"' ' /region/ {print $4}')

Generate the RDS authentication token and save it as a variable. You’ll
need to copy and paste the hostname (outputted in step 8):

TOKEN="$(aws rds generate-db-auth-token --hostname $RDS_ENDPOINT
--port 3306 --username db_user)"

https://oreil.ly/2T2v5

Connect to the database using the RDS authentication token with the new
db_user. You’ll need to copy and paste the hostname (outputted in step
8):

mysql --host=$RDS_ENDPOINT --port=3306 \
 --ssl-ca=rds-ca-2019-root.pem \
--user=db_user --password=$TOKEN

Run a SELECT query at the mysql prompt to verify that this user has the
SELECT *.* grant that you applied:

SELECT user FROM mysql.user;

You should see output similar to the following:

MySQL [(none)]> SELECT user FROM mysql.user;
+------------------+
| user |
+------------------+
| admin |
| db_user |
| mysql.infoschema |
| mysql.session |
| mysql.sys |
| rdsadmin |
+------------------+
6 rows in set (0.00 sec)

Exit the mysql prompt:

quit

Exit the Session Manager session:

exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Instead of a password in your MySQL connection string, you retrieved and
used a token associated with the EC2 instance’s IAM role. The
documentation for IAM states that this token lasts for 15 minutes. If you
install an application on this EC2 instance, the code can regularly refresh
this token using the AWS SDK. There is no need to rotate passwords for
your database user because the old token will be invalidated after 15
minutes.
You can create multiple database users associated with specific grants to
allow your application to maintain different levels of access to your
database. The grants happen within the database, not within the IAM
permissions. IAM controls the db-connect action for the specific user.
This IAM action allows the authentication token to be retrieved. That
username is mapped from IAM to the GRANT(s) by using the same
username within the database as in the policy.json file:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-db:AWS_REGION::dbuser:DBResourceId/db_user"
]
 }
]
}

In this recipe, you also enabled encryption in transit by specifying the SSL
certificate bundle that you downloaded to the EC2 instance in your database
connection command. This encrypts the connection between your

https://github.com/AWSCookbook/Databases
https://oreil.ly/ahOrb

application and your database. This is a good security practice and is often
required for many compliance standards. The connection string you used to
connect with the IAM authentication token indicated an SSL certificate as
one of the connection parameters. The certificate authority bundle is
available to download from AWS and use within your application.

Challenge
Try connecting to the database from a Lambda function using IAM
authentication. We have provided a lambda_function.py file in the
repository to get you started.

4.3 Leveraging RDS Proxy for Database
Connections from Lambda

Problem
You have a serverless function that is accessing a relational database and
you need to implement connection pooling to minimize the number of
database connections and improve performance.

Solution
Create an RDS Proxy, associate it with your RDS MySQL database, and
configure your Lambda to connect to the proxy instead of accessing the
database directly (see Figure 4-3).

https://oreil.ly/TJBbg

Figure 4-3. Lambda connection path to database via RDS Proxy

Prerequisites
VPC with isolated subnets created in two AZs and associated route
tables
An RDS MySQL instance
A Lambda function that you would like to connect to your RDS database

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a file called assume-role-policy.json with the following content

(file provided in the repository):

https://github.com/AWSCookbook/Databases

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role for the RDS Proxy using the assume-role-
policy.json file:

aws iam create-role --assume-role-policy-document \
 file://assume-role-policy.json --role-name
AWSCookbook403RDSProxy

You should see output similar to the following:

{
 "Role": {
 "Path": "/",
 "RoleName": "AWSCookbook403RDSProxy",
 "RoleId": "<<ID>>",
 "Arn":
"arn:aws:iam::111111111111:role/AWSCookbook403RDSProxy",
 "CreateDate": "2021-09-21T22:33:57+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "rds.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
}

3. Create a security group to be used by the RDS Proxy:

RDS_PROXY_SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook403RDSProxySG \
 --description "Lambda Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

4. Create the RDS Proxy. This will take a few moments:

RDS_PROXY_ENDPOINT_ARN=$(aws rds create-db-proxy \
 --db-proxy-name $DB_NAME \
 --engine-family MYSQL \
 --auth '{
 "AuthScheme": "SECRETS",
 "SecretArn": "'"$RDS_SECRET_ARN"'",
 "IAMAuth": "REQUIRED"
 }' \
 --role-arn
arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook403RDSProxy \
 --vpc-subnet-ids $ISOLATED_SUBNETS \
 --vpc-security-group-ids $RDS_PROXY_SG_ID \
 --require-tls --output text \
 --query DBProxy.DBProxyArn)

Wait for the RDS Proxy to become available:

aws rds describe-db-proxies \
 --db-proxy-name $DB_NAME \
 --query DBProxies[0].Status \
 --output text

5. Retrieve the RDS_PROXY_ENDPOINT:

RDS_PROXY_ENDPOINT=$(aws rds describe-db-proxies \
 --db-proxy-name $DB_NAME \
 --query DBProxies[0].Endpoint \
 --output text)

6. Next you need an IAM policy that allows the Lambda function to
generate IAM authentication tokens. Create a file called template-

policy.json with the following content (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "rds-db:connect"
],
 "Resource": [
 "arn:aws:rds-
db:AWS_REGION:AWS_ACCOUNT_ID:dbuser:RDSProxyID/admin"
]
 }
]
}

7. Separate out the Proxy ID from the RDS Proxy endpoint ARN. The
Proxy ID is required for configuring IAM policies in the following
steps:

RDS_PROXY_ID=$(echo $RDS_PROXY_ENDPOINT_ARN | awk -F: '{
print $7} ')

8. Replace the values in the template file by using the sed command
with environment variables you have set:

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|AWS_REGION|${AWS_REGION}|g" \
 -e "s|RDSProxyID|${RDS_PROXY_ID}|g" \
policy-template.json > policy.json

9. Create an IAM policy using the file you just created:

aws iam create-policy --policy-name
AWSCookbook403RdsIamPolicy \
 --policy-document file://policy.json

You should see output similar to the following:

{
 "Policy": {
 "PolicyName": "AWSCookbook403RdsIamPolicy",
 "PolicyId": "<<Id>>",
 "Arn":
"arn:aws:iam::111111111111:policy/AWSCookbook403RdsIamPolicy
",
 "Path": "/",
 "DefaultVersionId": "v1",
 "AttachmentCount": 0,
 "PermissionsBoundaryUsageCount": 0,
 "IsAttachable": true,
 "CreateDate": "2021-09-21T22:50:24+00:00",
 "UpdateDate": "2021-09-21T22:50:24+00:00"
 }
}

10. Attach the policy to the DBAppFunction Lambda function’s role:

aws iam attach-role-policy --role-name
$DB_APP_FUNCTION_ROLE_NAME \
 --policy-arn
arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook403RdsIamPoli
cy

Use this command to check when the proxy enters the available status
and then proceed:

aws rds describe-db-proxies --db-proxy-name $DB_NAME \
 --query DBProxies[0].Status \
 --output text

11. Attach the SecretsManagerReadWrite policy to the RDS
Proxy’s role:

aws iam attach-role-policy --role-name
AWSCookbook403RDSProxy \

 --policy-arn
arn:aws:iam::aws:policy/SecretsManagerReadWrite

TIP
In a production scenario, you would want to scope this permission down to the minimal
secret resources that your application needs to access, rather than grant
SecretsManagerReadWrite, which allows read/write for all secrets.

12. Add an ingress rule to the RDS instance’s security group that allows
access on TCP port 3306 (the default MySQL engine TCP port) from
the RDS Proxy security group:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $RDS_PROXY_SG_ID \
 --group-id $RDS_SECURITY_GROUP

You should see output similar to the following:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<ID>>",
 "GroupId": "sg-<<ID>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 3306,
 "ToPort": 3306,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<ID>>"
 }
 }
]
}

NOTE
Security groups can reference other security groups. Because of dynamic IP addresses
within VPCs, this is considered the best way to grant access without opening up your
security group too wide. For more information, see Recipe 2.5.

13. Register targets with the RDS Proxy:

aws rds register-db-proxy-targets \
 --db-proxy-name $DB_NAME \
 --db-instance-identifiers $RDS_DATABASE_ID

You should see output similar to the following:

{
 "DBProxyTargets": [
 {
 "Endpoint": "awscookbook403db.<<ID>>.us-east-
1.rds.amazonaws.com",
 "RdsResourceId": "awscookbook403db",
 "Port": 3306,
 "Type": "RDS_INSTANCE",
 "TargetHealth": {
 "State": "REGISTERING"
 }
 }
]
}

Check the status of the target registration with this command. Wait
until the State reaches AVAILABLE:

aws rds describe-db-proxy-targets \
 --db-proxy-name awscookbookrecipe403 \
 --query Targets[0].TargetHealth.State \
 --output text

14. Add an ingress rule to the RDS Proxy security group that allows
access on TCP port 3306 from the Lambda App function’s security

group:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $DB_APP_FUNCTION_SG_ID \
 --group-id $RDS_PROXY_SG_ID

You should see output similar to the following:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<ID>>",
 "GroupId": "sg-<<ID>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 3306,
 "ToPort": 3306,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<ID>>"
 }
 }
]
}

15. Modify the Lambda function to now use the RDS Proxy endpoint as
the DB_HOST, instead of connecting directly to the database:

aws lambda update-function-configuration \
 --function-name $DB_APP_FUNCTION_NAME \
 --environment Variables={DB_HOST=$RDS_PROXY_ENDPOINT}

You should see output similar to the following:

{
 "FunctionName": "cdk-aws-cookbook-403-LambdaApp<<ID>>",
 "FunctionArn": "arn:aws:lambda:us-east-
1:111111111111:function:cdk-aws-cookbook-403-
LambdaApp<<ID>>",

 "Runtime": "python3.8",
 "Role": "arn:aws:iam::111111111111:role/cdk-aws-cookbook-
403-LambdaAppServiceRole<<ID>>",
 "Handler": "lambda_function.lambda_handler",
 "CodeSize": 665,
 "Description": "",
 "Timeout": 600,
 "MemorySize": 1024,
...

Validation checks
Run the Lambda function with this command to validate that the function
can connect to RDS using your RDS Proxy:

aws lambda invoke \
 --function-name $DB_APP_FUNCTION_NAME \
 response.json && cat response.json

You should see output similar to the following:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
"Successfully connected to RDS via RDS Proxy!"

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Connection pooling is important to consider when you use Lambda with
RDS. Since the function could be executed with a lot of concurrency and
frequency depending on your application, the number of raw connections to
your database can grow and impact performance. By using RDS Proxy to
manage the connections to the database, fewer connections are needed to
the actual database. This setup increases performance and efficiency.

https://github.com/AWSCookbook/Databases

Without RDS Proxy, a Lambda function might establish a new connection
to the database each time the function is invoked. This behavior depends on
the execution environment, runtimes (Python, NodeJS, Go, etc.), and the
way you instantiate connections to the database from the function code. In
cases with large amounts of function concurrency, this could result in large
amounts of TCP connections to your database, reducing database
performance and increasing latency. Per the documentation, RDS Proxy
helps manage the connections from Lambda by managing them as a “pool,”
so that as concurrency increases, RDS Proxy increases the actual
connections to the database only as needed, offloading the TCP overhead to
RDS Proxy.
SSL encryption in transit is supported by RDS Proxy when you include the
certificate bundle provided by AWS in your database connection string.
RDS Proxy supports MySQL and PostgreSQL RDS databases. For a
complete listing of all supported database engines and versions, see this
support document.

TIP
You can also architect to be efficient with short-lived database connections by leveraging the RDS
Data API within your application, which leverages a REST API exposed by Amazon RDS. For an
example on the RDS Data API, see Recipe 4.8.

Challenge
Enable enhanced logging for the RDS Proxy. This is useful for debugging.

4.4 Encrypting the Storage of an Existing
Amazon RDS for MySQL Database

Problem
You need to encrypt the storage of an existing database.

https://oreil.ly/tkrh5
https://oreil.ly/7zUhZ
https://oreil.ly/7zUhZ

Solution
Create a read replica of your existing database, take a snapshot of the read
replica, copy the snapshot to an encrypted snapshot, and restore the
encrypted snapshot to a new encrypted database, as shown in Figure 4-4.

Figure 4-4. Process of encrypting an RDS database using a snapshot

Prerequisites
VPC with isolated subnets created in two AZs and associated route
tables
An RDS MySQL instance with an RDS subnet group

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

https://github.com/AWSCookbook/Databases

1. Verify that the storage for the database is not encrypted:

aws rds describe-db-instances \
 --db-instance-identifier $RDS_DATABASE_ID \
 --query DBInstances[0].StorageEncrypted

You should see false outputted.

2. Create a KMS key to use to encrypt your database snapshot later.
Store the key ID in an environment variable:

KEY_ID=$(aws kms create-key \
 --tags TagKey=Name,TagValue=AWSCookbook404RDS \
 --description "AWSCookbook RDS Key" \
 --query KeyMetadata.KeyId \
 --output text)

3. Create an alias to easily reference the key that you created:

aws kms create-alias \
 --alias-name alias/awscookbook404 \
 --target-key-id $KEY_ID

4. Create a read replica of your existing unencrypted database:

aws rds create-db-instance-read-replica \
 --db-instance-identifier awscookbook404db-rep \
 --source-db-instance-identifier $RDS_DATABASE_ID \
 --max-allocated-storage 10

You should see output similar to the following:

{
 "DBInstance": {
 "DBInstanceIdentifier": "awscookbook404db-rep",
 "DBInstanceClass": "db.m5.large",
 "Engine": "mysql",
 "DBInstanceStatus": "creating",

 "MasterUsername": "admin",
 "DBName": "AWSCookbookRecipe404",
 "AllocatedStorage": 8,
 "PreferredBackupWindow": "05:51-06:21",
 "BackupRetentionPeriod": 0,
 "DBSecurityGroups": [],
...

NOTE
By creating a read replica, you allow the snapshot to be created from it and therefore not
affect the performance of the primary database.

Wait for the DBInstanceStatus to become “available”:

aws rds describe-db-instances \
 --db-instance-identifier awscookbook404db-rep \
 --output text --query DBInstances[0].DBInstanceStatus

5. Take an unencrypted snapshot of your read replica:

aws rds create-db-snapshot \
 --db-instance-identifier awscookbook404db-rep \
 --db-snapshot-identifier awscookbook404-snapshot

You should see output similar to the following:

{
 "DBSnapshot": {
 "DBSnapshotIdentifier": "awscookbook404-snapshot",
 "DBInstanceIdentifier": "awscookbook404db-rep",
 "Engine": "mysql",
 "AllocatedStorage": 8,
 "Status": "creating",
 "Port": 3306,
 "AvailabilityZone": "us-east-1b",
 "VpcId": "vpc-<<ID>>",
 "InstanceCreateTime": "2021-09-21T22:46:07.785000+00:00",

Wait for the Status of the snapshot to become available:

aws rds describe-db-snapshots \
 --db-snapshot-identifier awscookbook404-snapshot \
 --output text --query DBSnapshots[0].Status

6. Copy the unencrypted snapshot to a new snapshot while encrypting by
specifying your KMS key:

aws rds copy-db-snapshot \
--copy-tags \
--source-db-snapshot-identifier awscookbook404-snapshot \
--target-db-snapshot-identifier awscookbook404-snapshot-enc
\
--kms-key-id alias/awscookbook404

You should see output similar to the following:

{
 "DBSnapshot": {
 "DBSnapshotIdentifier": "awscookbook404-snapshot-enc",
 "DBInstanceIdentifier": "awscookbook404db-rep",
 "Engine": "mysql",
 "AllocatedStorage": 8,
 "Status": "creating",
 "Port": 3306,
 "AvailabilityZone": "us-east-1b",
 "VpcId": "vpc-<<ID>>",
 "InstanceCreateTime": "2021-09-21T22:46:07.785000+00:00",
 "MasterUsername": "admin",
...

TIP
Specifying a KMS key with the copy-snapshot command encrypts the copied
snapshot. Restoring an encrypted snapshot to a new database results in an encrypted
database.

Wait for the Status of the encrypted snapshot to become available:

aws rds describe-db-snapshots \
 --db-snapshot-identifier awscookbook404-snapshot-enc \
 --output text --query DBSnapshots[0].Status

7. Restore the encrypted snapshot to a new RDS instance:

aws rds restore-db-instance-from-db-snapshot \
 --db-subnet-group-name $RDS_SUBNET_GROUP \
 --db-instance-identifier awscookbook404db-enc \
 --db-snapshot-identifier awscookbook404-snapshot-enc

You should see output similar to the following:

{
 "DBInstance": {
 "DBInstanceIdentifier": "awscookbook404db-enc",
 "DBInstanceClass": "db.m5.large",
 "Engine": "mysql",
 "DBInstanceStatus": "creating",
 "MasterUsername": "admin",
 "DBName": "AWSCookbookRecipe404",
 "AllocatedStorage": 8,
...

Validation checks
Wait for DBInstanceStatus to become available:

aws rds describe-db-instances \
 --db-instance-identifier awscookbook404db-enc \
 --output text --query DBInstances[0].DBInstanceStatus

Verify that the storage is now encrypted:

aws rds describe-db-instances \
 --db-instance-identifier awscookbook404db-enc \
 --query DBInstances[0].StorageEncrypted

You should see true outputted.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you complete the steps, you need to reconfigure your application to
point to a new database endpoint hostname. To perform this with minimal
downtime, you can configure a Route 53 DNS record that points to your
database endpoint. Your application would be configured to use the DNS
record. Then you would shift your database traffic over to the new
encrypted database by updating the DNS record with the new database
endpoint DNS.
Encryption at rest is a security approach left up to end users in the AWS
shared responsibility model, and often it is required to achieve or maintain
compliance with regulatory standards. The encrypted snapshot you took
could also be automatically copied to another Region, as well as exported to
S3 for archival/backup purposes.

Challenge
Create an RDS database from scratch that initially has encrypted storage
and migrate your data from your existing database to the new database
using AWS DMS, as shown in Recipe 4.7.

4.5 Automating Password Rotation for RDS
Databases

Problem
You would like to implement automatic password rotation for a database
user.

Solution

https://github.com/AWSCookbook/Databases
https://oreil.ly/SFZuW
https://oreil.ly/n6Cz3

Create a password and place it in AWS Secrets Manager. Configure a
rotation interval for the secret containing the password. Finally, create a
Lambda function using AWS-provided code, and configure the function to
perform the password rotation. This configuration allows the password
rotation automation to perform as shown in Figure 4-5.

Figure 4-5. Secrets Manager Lambda function integration

Prerequisites
VPC with isolated subnets created in two AZs and associated route
tables.

MySQL RDS instance and EC2 instance deployed. You will need the
ability to connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Use AWS Secrets Manager to generate a password that meets RDS

requirements:

RDS_ADMIN_PASSWORD=$(aws secretsmanager get-random-password
\
 --exclude-punctuation \
 --password-length 41 --require-each-included-type \
 --output text --query RandomPassword)

TIP
You can call the Secrets Manager GetRandomPassword API method to generate random
strings of characters for various uses beyond password generation.

2. Change the admin password for your RDS database to the one you
just created:

aws rds modify-db-instance \
 --db-instance-identifier $RDS_DATABASE_ID \
 --master-user-password $RDS_ADMIN_PASSWORD \
 --apply-immediately

You should see output similar to the following:

{
 "DBInstance": {
 "DBInstanceIdentifier": "awscookbook405db",
 "DBInstanceClass": "db.m5.large",
 "Engine": "mysql",

https://github.com/AWSCookbook/Databases
https://oreil.ly/7DAG9

 "DBInstanceStatus": "available",
 "MasterUsername": "admin",
 "DBName": "AWSCookbookRecipe405",
...

3. Create a file with the following content called rdscreds-template.json
(file provided in the repository):

{
 "username": "admin",
 "password": "PASSWORD",
 "engine": "mysql",
 "host": "HOST",
 "port": 3306,
 "dbname": "DBNAME",
 "dbInstanceIdentifier": "DBIDENTIFIER"
}

4. Use sed to modify the values in rdscreds-template.json to create
rdscreds.json:

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|PASSWORD|${RDS_ADMIN_PASSWORD}|g" \
 -e "s|HOST|${RdsEndpoint}|g" \
 -e "s|DBNAME|${DbName}|g" \
 -e "s|DBIDENTIFIER|${RdsDatabaseId}|g" \
 rdscreds-template.json > rdscreds.json

5. Download code from the AWS Samples GitHub repository for the
Rotation Lambda function:

wget https://raw.githubusercontent.com/aws-samples/aws-
secrets-manager-rotation-
lambdas/master/SecretsManagerRDSMySQLRotationSingleUser/lamb
da_function.py

https://oreil.ly/H5kgh

NOTE
AWS provides information and templates for different database rotation scenarios in this
article.

6. Compress the file containing the code:

zip lambda_function.zip lambda_function.py

You should see output similar to the following:

 adding: lambda_function.py (deflated 76%)

7. Create a new security group for the Lambda function to use:

LAMBDA_SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook405LambdaSG \
 --description "Lambda Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

8. Add an ingress rule to the RDS instances security group that allows
access on TCP port 3306 from the Lambda’s security group:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $LAMBDA_SG_ID \
 --group-id $RDS_SECURITY_GROUP

You should see output similar to the following:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-<<ID>>",

https://oreil.ly/IdYkf

 "GroupId": "sg-<<ID>>",
 "GroupOwnerId": "111111111111",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 3306,
 "ToPort": 3306,
 "ReferencedGroupInfo": {
 "GroupId": "sg-<<ID>>"
 }
 }
]
}

9. Create a file named assume-role-policy.json with the following
content (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

10. Create an IAM role with the statement in the provided assume-role-
policy.json file using this command:

aws iam create-role --role-name AWSCookbook405Lambda \
 --assume-role-policy-document file://assume-role-
policy.json

You should see output similar to the following:

{
 "Role": {
 "Path": "/",
 "RoleName": "AWSCookbook405Lambda",

 "RoleId": "<<ID>>",
 "Arn":
"arn:aws:iam::111111111111:role/AWSCookbook405Lambda",
 "CreateDate": "2021-09-21T23:01:57+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
...

11. Attach the IAM managed policy for AWSLambdaVPCAccess to the
IAM role:

aws iam attach-role-policy --role-name AWSCookbook405Lambda
\
 --policy-arn arn:aws:iam::aws:policy/service-
role/AWSLambdaVPCAccessExecutionRole

12. Attach the IAM managed policy for
SecretsManagerReadWrite to the IAM role:

aws iam attach-role-policy --role-name AWSCookbook405Lambda
\
 --policy-arn
arn:aws:iam::aws:policy/SecretsManagerReadWrite

TIP
The IAM role that you associated with the Lambda function to rotate the password used
the SecretsManagerReadWrite managed policy. In a production scenario, you
would want to scope this down to limit which secrets the Lambda function can interact
with.

13. Create the Lambda function to perform the secret rotation using the
code:

LAMBDA_ROTATE_ARN=$(aws lambda create-function \
 --function-name AWSCookbook405Lambda \
 --runtime python3.8 \

 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --environment Variables=
{SECRETS_MANAGER_ENDPOINT=https://secretsmanager.$AWS_REGION
.amazonaws.com} \
 --layers $PyMysqlLambdaLayerArn \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook405Lambda \
 --output text --query FunctionArn \
 --vpc-config
SubnetIds=${ISOLATED_SUBNETS},SecurityGroupIds=$LAMBDA_SG_ID
)

Use this command to determine when the Lambda function has
entered the Active state:

aws lambda get-function --function-name $LAMBDA_ROTATE_ARN \
 --output text --query Configuration.State

14. Add a permission to the Lambda function so that Secrets Manager can
invoke it:

aws lambda add-permission --function-name $LAMBDA_ROTATE_ARN
\
 --action lambda:InvokeFunction --statement-id
secretsmanager \
 --principal secretsmanager.amazonaws.com

You should see output similar to the following:

{
 "Statement": "
{\"Sid\":\"secretsmanager\",\"Effect\":\"Allow\",\"Principal
\":
{\"Service\":\"secretsmanager.amazonaws.com\"},\"Action\":\"
lambda:InvokeFunction\",\"Resource\":\"arn:aws:lambda:us-
east-1:111111111111:function:AWSCookbook405Lambda\"}"
}

15. Set a unique suffix to use for the secret name to ensure you can reuse
this pattern for additional automatic password rotations if desired:

AWSCookbook405SecretName=AWSCookbook405Secret-$(aws
secretsmanager \
 get-random-password \
 --exclude-punctuation \
 --password-length 6 --require-each-included-type \
 --output text \
 --query RandomPassword)

16. Create a secret in Secrets Manager to store your admin password:

aws secretsmanager create-secret --name
$AWSCookbook405SecretName \
 --description "My database secret created with the CLI"
\
 --secret-string file://rdscreds.json

You should see output similar to the following:

{
 "ARN": "arn:aws:secretsmanager:us-east-
1:1111111111111:secret:AWSCookbook405Secret-T4tErs-AlJcLn",
 "Name": "AWSCookbook405Secret-<<Random>>",
 "VersionId": "<<ID>>"
}

17. Set up automatic rotation every 30 days and specify the Lambda
function to perform rotation for the secret you just created:

aws secretsmanager rotate-secret \
 --secret-id $AWSCookbook405SecretName \
 --rotation-rules AutomaticallyAfterDays=30 \
 --rotation-lambda-arn $LAMBDA_ROTATE_ARN

You should see output similar to the following:

{
 "ARN": "arn:aws:secretsmanager:us-east-
1:1111111111111:secret:AWSCookbook405Secret-<<unique>>",
 "Name": "AWSCookbook405Secret-<<unique>>",
 "VersionId": "<<ID>>"
}

NOTE
The rotate-secret command triggers an initial rotation of the password. You will
trigger an extra rotation of the password in the next step to demonstrate how to perform
rotations on demand.

18. Perform another rotation of the secret:

aws secretsmanager rotate-secret --secret-id
$AWSCookbook405SecretName

You should see output similar to the output from step 17. Notice that
the V e r s i o n I d will be different from the last command indicating
that the secret has been rotated.

Validation checks
Retrieve the RDS admin password from Secrets Manager:

RDS_ADMIN_PASSWORD=$(aws secretsmanager get-secret-value --
secret-id $AWSCookbook405SecretName --query SecretString | jq -r
| jq .password | tr -d '"')

List the endpoint for the RDS cluster:

echo $RDS_ENDPOINT

Retrieve the password for your RDS cluster:

echo $RDS_ADMIN_PASSWORD

Connect to the EC2 instance by using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID

Install the MySQL client:

sudo yum -y install mysql

Connect to the database to verify that the latest rotated password is
working. You’ll need to copy and paste the password (outputted
previously):

mysql -u admin -p$password -h $hostname

Run a SELECT statement on the mysql.user table to validate
administrator permissions:

SELECT user FROM mysql.user;

You should see output similar to the following:

+------------------+
| user |
+------------------+
| admin |
| mysql.infoschema |
| mysql.session |
| mysql.sys |
| rdsadmin |
+------------------+
5 rows in set (0.00 sec)

Exit from the mysql prompt:

quit

Exit the Session Manager session:

exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
The AWS-provided Lambda function stores the rotated password in Secrets
Manager. You can then configure your application to retrieve secrets from
Secrets Manager directly; or the Lambda function you configured to update
the Secrets Manager values could also store the password in a secure
location of your choosing. You would need to grant the Lambda additional
permissions to interact with the secure location you choose and add some
code to store the new value there. This method could also be applied to
rotate the passwords for nonadmin database user accounts by following the
same steps after you have created the user(s) in your database.
The Lambda function you deployed is Python-based and connects to a
MySQL engine-compatible database. The Lambda runtime environment
does not have this library included by default, so you specified a Lambda
layer with the aws lambda create-function command. This layer
is required so that the PyMySQL library was available to the function in the
Lambda runtime environment, and it was deployed for you as part of the
preparation step when you ran cdk deploy.

Challenge
Create another Lambda function and a separate IAM role. Grant this new
function access to the same secret.

https://github.com/AWSCookbook/Databases

See Also
Recipe 5.2

4.6 Autoscaling DynamoDB Table
Provisioned Capacity

Problem
You have a DynamoDB database table with a low provisioned throughput.
You realize that your application load is variable and you may need to scale
up or scale down your provisioned throughput based on the variability of
the incoming application load.

Solution
Configure read and write scaling by setting a scaling target and a scaling
policy for the read and write capacity of the DynamoDB table by using
AWS application autoscaling, as shown in Figure 4-6.

Figure 4-6. DynamoDB autoscaling configuration

Prerequisite
A DynamoDB table

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Navigate to this recipe’s directory in the chapter repository:

cd 406-Auto-Scaling-DynamoDB

https://github.com/AWSCookbook/Databases

2. Register a ReadCapacityUnits scaling target for the DynamoDB
table:

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406" \
 --scalable-dimension "dynamodb:table:ReadCapacityUnits"
\
 --min-capacity 5 \
 --max-capacity 10

3. Register a WriteCapacityUnits scaling target for the
DynamoDB table:

aws application-autoscaling register-scalable-target \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406" \
 --scalable-dimension "dynamodb:table:WriteCapacityUnits"
\
 --min-capacity 5 \
 --max-capacity 10

4. Create a scaling policy JSON file for read capacity scaling (read-
policy.json provided in the repository):

{
 "PredefinedMetricSpecification": {
 "PredefinedMetricType":
"DynamoDBReadCapacityUtilization"
 },
 "ScaleOutCooldown": 60,
 "ScaleInCooldown": 60,
 "TargetValue": 50.0
}

5. Create a scaling policy JSON file for write capacity scaling (write-
policy.json file provided in the repository):

{

 "PredefinedMetricSpecification": {
 "PredefinedMetricType":
"DynamoDBWriteCapacityUtilization"
 },
 "ScaleOutCooldown": 60,
 "ScaleInCooldown": 60,
 "TargetValue": 50.0
}

NOTE
DynamoDB-provisioned capacity uses capacity units to define the read and write capacity
of your tables. The target value that you set defines when to scale based on the current
usage. Scaling cooldown parameters define, in seconds, how long to wait to scale again
after a scaling operation has taken place. For more information, see the API reference for
autoscaling TargetTrackingScalingPolicyConfiguration.

6. Apply the read scaling policy to the table by using the read-
policy.json file:

aws application-autoscaling put-scaling-policy \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406" \
 --scalable-dimension "dynamodb:table:ReadCapacityUnits"
\
 --policy-name "AWSCookbookReadScaling" \
 --policy-type "TargetTrackingScaling" \
 --target-tracking-scaling-policy-configuration \
 file://read-policy.json

7. Apply the write scaling policy to the table using the write-policy.json
file:

aws application-autoscaling put-scaling-policy \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406" \
 --scalable-dimension "dynamodb:table:WriteCapacityUnits"
\
 --policy-name "AWSCookbookWriteScaling" \
 --policy-type "TargetTrackingScaling" \

https://oreil.ly/gWTDb
https://oreil.ly/cWtJI

 --target-tracking-scaling-policy-configuration \
 file://write-policy.json

Validation checks
You can observe the autoscaling configuration for your table by selecting it
in the DynamoDB console and looking under the “Additional settings” tab.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

TIP
These steps will autoscale read and write capacities independently for your DynamoDB table,
which helps you achieve the lowest operating cost model for your application’s specific
requirements.

DynamoDB allows for two capacity modes: provisioned and on-demand.
When using provisioned capacity mode, you are able to select the number
of data reads and writes per second. The pricing guide notes that you are
charged according to the capacity units you specify. Conversely, with on-
demand capacity mode, you pay per request for the data reads and writes
your application performs on your tables. In general, using on-demand
mode can result in higher costs over provisioned mode for especially
transactionally heavy applications.
You need to understand your application and usage patterns when selecting
a provisioned capacity for your tables. If you set the capacity too low, you
will experience slow database performance and your application could enter
error and wait states, since the DynamoDB API will return
ThrottlingException and
ProvisionedThroughputExceededException responses to your
application when these limits are met. If you set the capacity too high, you
are paying for unneeded capacity. Enabling autoscaling allows you to define

https://github.com/AWSCookbook/Databases
https://oreil.ly/QtLJP

minimum and maximum target values by setting a scaling target, while also
allowing you to define when the autoscaling trigger should go into effect for
scaling up, and when it should begin to scale down your capacity. This
allows you to optimize for both cost and performance while taking
advantage of the DynamoDB service. To see a list of the scalable targets
that you configured for your table, you can use the following command:

aws application-autoscaling describe-scalable-targets \
 --service-namespace dynamodb \
 --resource-id "table/AWSCookbook406"

For more information on DynamoDB capacities and how they are
measured, see this support document.

Challenge
Create a Lambda function that monitors the performance of your
DynamoDB table, and then modify the autoscaling target minimums and
maximums accordingly.

4.7 Migrating Databases to Amazon RDS
Using AWS DMS

Problem
You need to move data from a source database to a target database.

Solution
Configure the VPC security groups and IAM permissions to allow AWS
Database Migration Service (DMS) connectivity to the databases. Then,
configure the DMS endpoints for the source and target databases. Next,
configure a DMS replication task. Finally, start the replication task. An
architecture diagram of the solution is shown in Figure 4-7.

https://oreil.ly/uAFIs

Figure 4-7. DMS network diagram

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a security group for the replication instance:

DMS_SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook407DMSSG \
 --description "DMS Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

2. Grant the DMS security group access to the source and target
databases on TCP port 3306:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $DMS_SG_ID \
 --group-id $SOURCE_RDS_SECURITY_GROUP
aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 3306 \
 --source-group $DMS_SG_ID \
 --group-id $TARGET_RDS_SECURITY_GROUP

3. Create a role for DMS by using the assume-role-policy.json provided:

aws iam create-role --role-name dms-vpc-role \
 --assume-role-policy-document file://assume-role-
policy.json

https://github.com/AWSCookbook/Databases

WARNING
The DMS service requires an IAM role with a specific name and a specific policy. The
command you ran previously satisfies this requirement. You may also already have this
role in your account if you have used DMS previously. This command would result in an
error if that is the case, and you can proceed with the next steps without concern.

4. Attach the managed DMS policy to the role:

aws iam attach-role-policy --role-name dms-vpc-role --
policy-arn \
arn:aws:iam::aws:policy/service-
role/AmazonDMSVPCManagementRole

5. Create a replication subnet group for the replication instance:

REP_SUBNET_GROUP=$(aws dms create-replication-subnet-group \
 --replication-subnet-group-identifier awscookbook407 \
 --replication-subnet-group-description "AWSCookbook407"
\
 --subnet-ids $ISOLATED_SUBNETS \
 --query
ReplicationSubnetGroup.ReplicationSubnetGroupIdentifier \
 --output text)

6. Create a replication instance and save the ARN in a variable:

REP_INSTANCE_ARN=$(aws dms create-replication-instance \
 --replication-instance-identifier awscookbook407 \
 --no-publicly-accessible \
 --replication-instance-class dms.t2.medium \
 --vpc-security-group-ids $DMS_SG_ID \
 --replication-subnet-group-identifier $REP_SUBNET_GROUP
\
 --allocated-storage 8 \
 --query ReplicationInstance.ReplicationInstanceArn \
 --output text)

Wait until the ReplicationInstanceStatus reaches available;
check the status by using this command:

aws dms describe-replication-instances \
 --filter=Name=replication-instance-
id,Values=awscookbook407 \
 --query
ReplicationInstances[0].ReplicationInstanceStatus

WARNING
You used the dms.t2.medium replication instance size for this example. You should
choose an instance size appropriate to handle the amount of data you will be migrating.
DMS transfers tables in parallel, so you will need a larger instance size for larger amounts
of data. For more information, see this user guide document about best practices for DMS.

7. Retrieve the source and target DB admin passwords from Secrets
Manager and save to environment variables:

RDS_SOURCE_PASSWORD=$(aws secretsmanager get-secret-value --
secret-id $RDS_SOURCE_SECRET_NAME --query
SecretString --output text | jq .password | tr -d '"')

RDS_TARGET_PASSWORD=$(aws secretsmanager get-secret-value --
secret-id $RDS_TARGET_SECRET_NAME --query
SecretString --output text | jq .password | tr -d '"')

8. Create a source endpoint for DMS and save the ARN to a variable:

SOURCE_ENDPOINT_ARN=$(aws dms create-endpoint \
 --endpoint-identifier awscookbook407source \
 --endpoint-type source --engine-name mysql \
 --username admin --password $RDS_SOURCE_PASSWORD \
 --server-name $SOURCE_RDS_ENDPOINT --port 3306 \
 --query Endpoint.EndpointArn --output text)

9. Create a target endpoint for DMS and save the ARN to a variable:

https://oreil.ly/vzBOB

TARGET_ENDPOINT_ARN=$(aws dms create-endpoint \
 --endpoint-identifier awscookbook407target \
 --endpoint-type target --engine-name mysql \
 --username admin --password $RDS_TARGET_PASSWORD \
 --server-name $TARGET_RDS_ENDPOINT --port 3306 \
 --query Endpoint.EndpointArn --output text)

10. Create your replication task:

REPLICATION_TASK_ARN=$(aws dms create-replication-task \
 --replication-task-identifier awscookbook-task \
 --source-endpoint-arn $SOURCE_ENDPOINT_ARN \
 --target-endpoint-arn $TARGET_ENDPOINT_ARN \
 --replication-instance-arn $REP_INSTANCE_ARN \
 --migration-type full-load \
 --table-mappings file://table-mapping-all.json \
 --query ReplicationTask.ReplicationTaskArn --output
text)

Wait for the status to reach ready. To check the status of the
replication task, use the following:

aws dms describe-replication-tasks \
 --filters "Name=replication-task-
arn,Values=$REPLICATION_TASK_ARN" \
 --query "ReplicationTasks[0].Status"

11. Start the replication task:

aws dms start-replication-task \
 --replication-task-arn $REPLICATION_TASK_ARN \
 --start-replication-task-type start-replication

Validation checks
Monitor the progress of the replication task:

aws dms describe-replication-tasks

Use the AWS Console or the aws dms describe-replication-
tasks operation to validate that your tables have been migrated:

aws dms describe-replication-tasks \
 --query ReplicationTasks[0].ReplicationTaskStats

You can also view the status of the replication task in the DMS console.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

TIP
You could also run full-load-and-cdc to continuously replicate changes on the source to
the destination to minimize your application downtime when you cut over to the new database.

DMS comes with functionality to test source and destination endpoints
from the replication instance. This is a handy feature to use when working
with DMS to validate that you have the configuration correct before you
start to run replication tasks. Testing connectivity from the replication
instance to both of the endpoints you configured can be done through the
DMS console or the command line with the following commands:

aws dms test-connection \
 --replication-instance-arn $rep_instance_arn \
 --endpoint-arn $source_endpoint_arn

aws dms test-connection \
 --replication-instance-arn $rep_instance_arn \
 --endpoint-arn $target_endpoint_arn

The test-connection operation takes a few moments to complete.
You can check the status and the results of the operation by using this

https://github.com/AWSCookbook/Databases

command:

aws dms describe-connections --filter \
"Name=endpoint-
arn,Values=$source_endpoint_arn,$target_endpoint_arn"

The DMS service supports many types of source and target databases
within your VPC, another AWS account, or databases hosted in a non-AWS
environment. The service can also transform data for you if your source and
destination are different types of databases by using additional
configuration in the table-mappings.json file. For example, the data type of
a column in an Oracle database may have a different format than the
equivalent type in a PostgreSQL database. The AWS Schema Conversion
Tool (SCT) can assist with identifying these necessary transforms, and also
generate configuration files to use with DMS.

Challenge
Enable full load and ongoing replication to continuously replicate from one
database to another.

4.8 Enabling REST Access to Aurora
Serverless Using RDS Data API

Problem
You have a PostgreSQL database and would like to connect to it without
having your application manage persistent database connections.

Solution
First, enable the Data API for your database and configure the IAM
permissions for your EC2 instance. Then, test from both the CLI and RDS
console. This allows your application to connect to your Aurora Serverless
database, as shown in Figure 4-8.

https://oreil.ly/TowD5
https://oreil.ly/8vggA
https://oreil.ly/Tnt1a
https://oreil.ly/h8bPq

Figure 4-8. An application using the RDS Data API

Prerequisites
VPC with isolated subnets created in two AZs and associated route
tables.
PostgreSQL RDS instance and EC2 instance deployed. You will need
the ability to connect to these for testing.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Enable the Data API on your Aurora Serverless cluster:

aws rds modify-db-cluster \
 --db-cluster-identifier $CLUSTER_IDENTIFIER \
 --enable-http-endpoint \
 --apply-immediately

https://github.com/AWSCookbook/Databases

2. Ensure that HttpEndpointEnabled is set to true:

aws rds describe-db-clusters \
 --db-cluster-identifier $CLUSTER_IDENTIFIER \
 --query DBClusters[0].HttpEndpointEnabled

3. Test a command from your CLI:

aws rds-data execute-statement \
 --secret-arn "$SECRET_ARN" \
 --resource-arn "$CLUSTER_ARN" \
 --database "$DATABASE_NAME" \
 --sql "select * from pg_user" \
 --output json

(Optional) You can also test access via the AWS Console using the
Amazon RDS Query Editor. First run these two commands from your
terminal so you can copy and paste the values:

echo $SECRET_ARN
echo $DATABASE_NAME

4. Log in to the AWS Console with admin permissions and go to the
RDS console. On the lefthand sidebar menu, click Query Editor. Fill
out the values and select “Connect to database,” as shown in Figure 4-
9.

Figure 4-9. Connect to database settings

5. Run the same query and view the results below the Query Editor (see
Figure 4-10):

SELECT * from pg_user;

Figure 4-10. RDS Query Editor

6. Configure your EC2 instance to use the Data API with your database
cluster. Create a file called policy-template.json with the following
content (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "rds-data:BatchExecuteStatement",
 "rds-data:BeginTransaction",
 "rds-data:CommitTransaction",
 "rds-data:ExecuteStatement",
 "rds-data:RollbackTransaction"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Resource": "SecretArn",
 "Effect": "Allow"
 }
]
}

7. Replace the values in the template file by using the sed command
with environment variables you have set:

sed -e "s/SecretArn/${SECRET_ARN}/g" \
 policy-template.json > policy.json

8. Create an IAM policy by using the file you just created:

aws iam create-policy --policy-name
AWSCookbook408RDSDataPolicy \
 --policy-document file://policy.json

9. Attach the IAM policy for AWSCookbook408RDSDataPolicy to
your EC2 instance’s IAM role:

aws iam attach-role-policy --role-name $INSTANCE_ROLE_NAME \
 --policy-arn
arn:aws:iam::$AWS_ACCOUNT_ID:policy/AWSCookbook408RDSDataPol
icy

Validation checks
Create and populate some SSM parameters to store values so that you can
retrieve them from your EC2 instance:

aws ssm put-parameter \
 --name "Cookbook408DatabaseName" \
 --type "String" \
 --value $DATABASE_NAME

aws ssm put-parameter \
 --name "Cookbook408ClusterArn" \
 --type "String" \
 --value $CLUSTER_ARN

aws ssm put-parameter \
 --name "Cookbook408SecretArn" \
 --type "String" \
 --value $SECRET_ARN

Connect to the EC2 instance by using SSM Session Manager (see Recipe
1.6):

aws ssm start-session --target $INSTANCE_ID

Set the Region:

export AWS_DEFAULT_REGION=us-east-1

Retrieve the SSM parameter values and set them to environment values:

DatabaseName=$(aws ssm get-parameters \
 --names "Cookbook408DatabaseName" \
 --query "Parameters[*].Value" --output text)

SecretArn=$(aws ssm get-parameters \
 --names "Cookbook408SecretArn" \
 --query "Parameters[*].Value" --output text)

ClusterArn=$(aws ssm get-parameters \
 --names "Cookbook408ClusterArn" \
 --query "Parameters[*].Value" --output text)

Run a query against the database:

aws rds-data execute-statement \
 --secret-arn "$SecretArn" \
 --resource-arn "$ClusterArn" \
 --database "$DatabaseName" \
 --sql "select * from pg_user" \
 --output json

Exit the Session Manager session:

exit

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
The Data API exposes an HTTPS endpoint for usage with Aurora and uses
IAM authentication to allow your application to execute SQL statements on
your database over HTTPS instead of using classic TCP database
connectivity.

https://github.com/AWSCookbook/Databases

TIP
Per the Aurora user guide, all calls to the Data API are synchronous, and the default timeout for a
query is 45 seconds. If your queries take longer than 45 seconds, you can use the
continueAfterTimeout parameter to facilitate long-running queries.

As is the case with other AWS service APIs that use IAM authentication, all
activities performed with the Data API are captured in CloudTrail to ensure
an audit trail is present, which can help satisfy your security and audit
requirements. You can control and delegate access to the Data API endpoint
by using IAM policies associated with roles for your application. For
example, if you wanted to grant your application the ability to only read
from your database using the Data API, you could write a policy that omits
the rds-data:CommitTransaction and rds-
data:RollbackTransaction permissions.

The Query Editor within the RDS console provides a web-based means of
access for executing SQL queries against your database. This is a
convenient mechanism for developers and DBAs to quickly accomplish
bespoke tasks. The same privileges that you assigned your EC2 instance in
this recipe would need to be granted to your developer and DBA via IAM
roles.

Challenge
Create and deploy a Lambda function that has permissions to access the
RDS Data API that you provisioned.

https://oreil.ly/wvADq

Chapter 5. Serverless

5.0 Introduction
The technology industry term serverless can sometimes lead to confusion in
that servers are involved with the cloud services associated with this model
of execution. The advantage is that end users do not need to worry about
managing the underlying infrastructure and platform. The cloud provider
(in this case, AWS) is responsible for all of the management, operating
system updates, availability, capacity, and more.
In terms of “serverless” services available on AWS, many options are
available to take advantage of the benefits. Here are some examples:

AWS Lambda and Amazon Fargate for compute
Amazon EventBridge, Amazon SNS, Amazon SQS, and Amazon API
Gateway for application integration
Amazon S3, Amazon DynamoDB, and Amazon Aurora Serverless for
datastores

The main benefits of serverless on AWS are as follows:

Cost savings
You pay for only what you use.

Scalability
Scale up to what you need; scale down to save costs.

Less management
There are no servers to deploy or systems to manage.

Flexibility
Many programming languages are supported in AWS Lambda.

https://oreil.ly/5CIjp

The recipes in this chapter will enable you to explore several of the AWS
services that fall under the “serverless” umbrella. You will find
opportunities to extend the solutions with challenges and get experience
with some new services that are leading the serverless industry trend.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/AWSCookbook/Serverless

Chapter Prerequisites

IAM role for Lambda function execution
Create a file named assume-role-policy.json with the following content (file
provided in root of the chapter repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

NOTE
A similar role is created automatically when you create a Lambda function in the AWS
Management Console and select “Create a new role from AWS policy templates” for the
execution role.

Create an IAM role with the statement in the provided assume-role-
policy.json file using this command:

aws iam create-role --role-name AWSCookbookLambdaRole \
 --assume-role-policy-document file://assume-role-policy.json

Attach the AWSLambdaBasicExecutionRole IAM managed policy to
the IAM role:

aws iam attach-role-policy --role-name AWSCookbookLambdaRole \
 --policy-arn arn:aws:iam::aws:policy/service-
role/AWSLambdaBasicExecutionRole

5.1 Configuring an ALB to Invoke a Lambda
Function

Problem
You have a requirement that your entire web application must be exposed to
the internet with a load balancer. Your application architecture includes
serverless functions. You need a function to be able to respond to HTTP
requests for specific URL paths.

Solution
Grant the Elastic Load Balancing service permission to invoke Lambda
functions; then create a Lambda function. Create an ALB target group; then
register the Lambda function with the target group. Associate the target
group with the listener on your ALB. Finally, add a listener rule that directs
traffic for the /function path to the Lambda function (see Figure 5-1).

Figure 5-1. Lambda function invoked by ALB

Prerequisites
VPC with public subnets in two AZs and associated route tables
An Application Load Balancer that includes the following:
— An associated security group that allows port 80 from the world

— A listener on port 80
IAM role that allows the Lambda function to execute (provided in
chapter prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Compress the function code provided in this recipe’s directory in the

repository. This code will be used for the Lambda function. You can
modify this code if you wish, but we have provided code for you to
use. For example, zip the code with the following command:

zip lambda_function.zip lambda_function.py

2. Create a Lambda function that will respond to HTTP requests:

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook501Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole
\
 --output text --query FunctionArn)

3. Create an ALB target group with the target type set to lambda:

TARGET_GROUP_ARN=$(aws elbv2 create-target-group \
 --name awscookbook501tg \
 --target-type lambda --output text \
 --query TargetGroups[0].TargetGroupArn)

https://github.com/AWSCookbook/Serverless

4. Use the add-permission command to give the Elastic Load
Balancing service permission to invoke your Lambda function:

aws lambda add-permission \
 --function-name $LAMBDA_ARN \
 --statement-id load-balancer \
 --principal elasticloadbalancing.amazonaws.com \
 --action lambda:InvokeFunction \
 --source-arn $TARGET_GROUP_ARN

5. Use the register-targets command to register the Lambda
function as a target:

aws elbv2 register-targets \
 --target-group-arn $TARGET_GROUP_ARN \
 --targets Id=$LAMBDA_ARN

6. Modify the listener for your ALB on port 80; then create a rule that
forwards traffic destined for the /function path to your target group:

RULE_ARN=$(aws elbv2 create-rule \
 --listener-arn $LISTENER_ARN --priority 10 \
 --conditions Field=path-pattern,Values='/function' \
 --actions Type=forward,TargetGroupArn=$TARGET_GROUP_ARN
\
 --output text --query Rules[0].RuleArn)

Validation checks
Test the invocation to verify that the Lambda function is invoked when
requesting /function:

curl -v $LOAD_BALANCER_DNS/function

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

https://github.com/AWSCookbook/Serverless

Discussion
Developers and software architects can leverage Lambda functions to
provide a programmatic response to some kind of event within a larger
system. This type of compute is most often used when the functions are
responsible for a small unit of work. AWS added the ability for Application
Load Balancers to invoke Lambda functions in 2018.
When an end user requests a specific URL path (configured by the
developer) on an ALB, the ALB can pass the request to a Lambda function
to handle the response. The ALB then receives the output from the function
and hands the result back to the end user as an HTTP response. ALBs can
have multiple paths and targets configured for a single load balancer,
sending portions of traffic to specific targets (Lambda functions, containers,
EC2 instances, etc.) ALBs also support routing to Lambda functions using
header values. This simple architecture is extremely cost-effective and
highly scalable.
This flexibility allows for a single ALB to handle all the traffic for your
application and provides for a nice building block when architecting a
system that needs to be exposed via HTTP/HTTPS.

Challenge 1
Add a Fargate task that responds to another path on your ALB.

Challenge 2
Try using an Amazon API Gateway to play in front of your Lambda
function.

5.2 Packaging Libraries with Lambda Layers

Problem
You have Python code using external libraries that you need to include with
your serverless function deployments.

https://oreil.ly/R15DP
https://oreil.ly/ljYBe
https://aws.amazon.com/api-gateway

Solution
Create a folder and use pip to install a Python package to the folder. Then,
zip the folder and use the .zip file to create a Lambda layer that your
function will leverage (see Figure 5-2).

Figure 5-2. Lambda function layer creation and representation

Prerequisite
IAM role that allows Lambda functions to execute (provided in chapter
prerequisites)

Steps
1. In the root of this chapter’s repository, cd to the 502-Packaging-

Libraries-with-Lambda-Layers directory and follow the subsequent
steps:

cd 502-Packaging-Libraries-with-Lambda-Layers/

2. Zip up lambda_function.py provided in the repository:

zip lambda_function.zip lambda_function.py

You should see output similar to the following:

updating: lambda_function.py (deflated 49%)

3. Create a Lambda function that we will add a layer to:

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook502Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole
\
 --output text --query FunctionArn)

4. Create a directory for the layer contents:

mkdir python

5. Use pip to install the latest requests module to the directory:

pip install requests --target="./python"

You should see output similar to the following:

Collecting requests
 Using cached requests-2.26.0-py2.py3-none-any.whl (62 kB)
Collecting certifi>=2017.4.17
 Using cached certifi-2021.5.30-py2.py3-none-any.whl (145
kB)

Collecting idna<4,>=2.5
 Using cached idna-3.2-py3-none-any.whl (59 kB)
Collecting urllib3<1.27,>=1.21.1
 Using cached urllib3-1.26.7-py2.py3-none-any.whl (138 kB)
Collecting charset-normalizer~=2.0.0
 Using cached charset_normalizer-2.0.6-py3-none-any.whl (37
kB)
Installing collected packages: urllib3, idna, charset-
normalizer, certifi, requests
Successfully installed certifi-2021.5.30 charset-normalizer-
2.0.6 idna-3.2 requests-2.26.0 urllib3-1.26.7

6. Zip the contents of the directory:

zip -r requests-layer.zip ./python

You should see output similar to the following:

 adding: python/ (stored 0%)
 adding: python/bin/ (stored 0%)
 adding: python/bin/normalizer (deflated 28%)
 adding: python/requests-2.26.0.dist-info/ (stored 0%)
 adding: python/requests-2.26.0.dist-info/RECORD (deflated
55%)
 adding: python/requests-2.26.0.dist-info/LICENSE (deflated
65%)
 adding: python/requests-2.26.0.dist-info/WHEEL (deflated
14%)
 adding: python/requests-2.26.0.dist-info/top_level.txt
(stored 0%)
 adding: python/requests-2.26.0.dist-info/REQUESTED (stored
0%)
 adding: python/requests-2.26.0.dist-info/INSTALLER (stored
0%)
 adding: python/requests-2.26.0.dist-info/METADATA
(deflated 58%)

NOTE
Lambda layers require a specific folder structure. You create this folder structure when you
use pip to install the requests module to the Python folder within your directory:

$ tree -L 1 python/
python/
├── bin
├── certifi
├── certifi-2020.12.5.dist-info
├── chardet
├── chardet-4.0.0.dist-info
├── idna
├── idna-2.10.dist-info
├── requests
├── requests-2.25.1.dist-info
├── urllib3
└── urllib3-1.26.4.dist-info

11 directories, 0 files

7. Publish the layer and set an environment variable to use in the next
steps:

LAYER_VERSION_ARN=$(aws lambda publish-layer-version \
 --layer-name AWSCookbook502RequestsLayer \
 --description "Requests layer" \
 --license-info "MIT" \
 --zip-file fileb://requests-layer.zip \
 --compatible-runtimes python3.8 \
 --output text --query LayerVersionArn)

8. Update the Lambda to use the layer that you created:

aws lambda update-function-configuration \
 --function-name AWSCookbook502Lambda \
 --layers $LAYER_VERSION_ARN

You should see output similar to the following:

{
 "FunctionName": "AWSCookbook502Lambda",
 "FunctionArn": "arn:aws:lambda:us-east-
1:111111111111:function:AWSCookbook502Lambda",
 "Runtime": "python3.8",
 "Role":
"arn:aws:iam::111111111111:role/AWSCookbookLambdaRole",
 "Handler": "lambda_function.lambda_handler",
 "CodeSize": 691,
 "Description": "",
 "Timeout": 3,
 "MemorySize": 128,
...

Validation checks
Test the Lambda:

aws lambda invoke \
 --function-name AWSCookbook502Lambda \
 response.json && cat response.json

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Lambda layers can be used to extend the packages available within the
default Lambda runtimes and also to provide your own custom runtimes for
your functions. The default runtimes are associated with Amazon Linux.
Custom runtimes can be developed on top of Amazon Linux to support
your own programming language requirements. See this tutorial to publish a
custom runtime.
In this recipe, you packaged the Python requests module as a layer and
deployed a Python function that uses that module. Layers can be used by
multiple functions, shared with other AWS accounts, and they can also be
version-controlled so that you can deploy and test new versions of your

https://github.com/AWSCookbook/Serverless
https://oreil.ly/XTWHX

layers without impacting existing versions that are being used for your
functions.

Challenge
Create another Lambda function that uses the same layer.

5.3 Invoking Lambda Functions on a
Schedule

Problem
You need to run a serverless function once per minute.

Solution
Add a permission to your Lambda function to allow the EventBridge
service to invoke the function. Then configure an EventBridge rule using a
schedule expression for one minute that targets your function (see Figure 5-
3).

Figure 5-3. EventBridge triggering a time-based invocation of a Lambda function

Prerequisites

Lambda function that you want to trigger
IAM role that allows Lambda functions to execute (provided in chapter
prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create an events rule with a scheduled expression with a rate of one

minute:

RULE_ARN=$(aws events put-rule --name "EveryMinuteEvent" \
 --schedule-expression "rate(1 minute)")

NOTE
You can use rate expressions and Cron formats for schedule expressions when defining a
time-based event rule. The Cron expression syntax for the rule you created would look like
the following:

RULE_ARN=$(aws events put-rule --name "EveryMinuteEvent" \
--schedule-expression "cron(* * * * ? *)")

For more information about schedule expressions, see this support document.

2. Add a permission to the Lambda function so that the EventBridge
service can invoke it:

aws lambda add-permission --function-name $LAMBDA_ARN \
 --action lambda:InvokeFunction --statement-id events \
 --principal events.amazonaws.com

You should see output similar to the following:

https://github.com/AWSCookbook/Serverless
https://crontab.guru/
https://oreil.ly/K7e8Z

{
 "Statement": "
{\"Sid\":\"events\",\"Effect\":\"Allow\",\"Principal\":
{\"Service\":\"events.amazonaws.com\"},\"Action\":\"lambda:I
nvokeFunction\",\"Resource\":\"arn:aws:lambda:us-east-
1:111111111111:function:AWSCookbook503Lambda\"}"
}

3. Add your Lambda function as a target for the rule that you created:

aws events put-targets --rule EveryMinuteEvent \
 --targets "Id"="1","Arn"="$LAMBDA_ARN"

You should see output similar to the following:

{
 "FailedEntryCount": 0,
 "FailedEntries": []
}

NOTE
There are many available target options. For the latest list, check the documentation.

Validation checks
Tail the CloudWatch Logs log group to observe the function invoked every
60 seconds:

aws logs tail "/aws/lambda/AWSCookbook503Lambda" --follow --since
10s

https://oreil.ly/Rggow

NOTE
You may have to wait a few moments for the log group to be created. If the log group doesn’t
exist, you will get the following error:

An error occurred (ResourceNotFoundException) when calling the
FilterLogEvents operation: The specified log group does not
exist.

You should see output similar to the following:

$ $ aws logs tail "/aws/lambda/AWSCookbook503Lambda" --follow --
since 10s
2021-06-12T21:17:30.605000+00:00
2021/06/12/[$LATEST]4d1335bf8b0846938cb585871db38374 START
RequestId:
685481eb-9279-4007-854c-f99289bf9609 Version: $LATEST
2021-06-12T21:17:30.607000+00:00
2021/06/12/[$LATEST]4d1335bf8b0846938cb585871db38374 AWS Cookbook
Lambda
function run at 2021-06-12 21:17:30.607500
2021-06-12T21:17:30.608000+00:00
2021/06/12/[$LATEST]4d1335bf8b0846938cb585871db38374 END
RequestId:
685481eb-9279-4007-854c-f99289bf9609
2021-06-12T21:17:30.608000+00:00
2021/06/12/[$LATEST]4d1335bf8b0846938cb585871db38374 REPORT
RequestId:
685481eb-9279-4007-854c-f99289bf9609 Duration: 0.94 ms
Billed Duration: 1 ms Memory Size: 128 MB
Max Memory Used: 51 MB
...

You can exit the tail session by pressing Ctrl-C.

NOTE
Notice that subsequent runs occur at one-minute increments from the time that you added the
Lambda function as a target for your event rule.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
There are many reasons you would want to run functions on a schedule:

Checking stock prices
Checking the weather
Starting scheduled processes
Scheduling EC2 starting and stop

Being able to run serverless functions on a schedule without provisioning
resources allows costs and management to be kept at a minimum. There are
no servers to update, and you don’t need to pay for them when they are idle.

Challenge
Pause and then enable the event rule. Here is a hint:

aws events disable-rule --name "EveryMinuteEvent"
aws events enable-rule --name "EveryMinuteEvent"

NOTE
EventBridge was formerly known as Amazon CloudWatch Events. EventBridge is now the
preferred way to schedule events and uses the same API as CloudWatch Events.

When you need an AWS service to interact with another AWS service, you
need to explicitly grant the permissions. In this case, EventBridge needs to
be granted the permissions to invoke a Lambda function by using the aws
lambda add-permission command.

https://github.com/AWSCookbook/Serverless
https://oreil.ly/K4ElM

5.4 Configuring a Lambda Function to
Access an EFS File System

Problem
You have an existing network share that is accessible by servers, but you
want to be able to process files on it with serverless functions.

Solution
You will create a Lambda function and mount your EFS file system to it
(see Figure 5-4).

Figure 5-4. Lambda function accessing ENIs within the subnet of a VPC

Prerequisites
VPC with isolated subnets in two AZs and associated route tables
EFS file system with content that you want to access
IAM role that allows the Lambda function to execute (provided in
chapter prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a new security group for the Lambda function to use:

LAMBDA_SG_ID=$(aws ec2 create-security-group \
 --group-name AWSCookbook504LambdaSG \
 --description "Lambda Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

2. Add an ingress rule to the EFS file system’s security group that allows
access on TCP port 2049 from the Lambda function’s security group:

aws ec2 authorize-security-group-ingress \
 --protocol tcp --port 2049 \
 --source-group $LAMBDA_SG_ID \
 --group-id $EFS_SECURITY_GROUP

You should see output similar to the following:

{
 "Return": true,
 "SecurityGroupRules": [
 {
 "SecurityGroupRuleId": "sgr-0f837d0b090ba38de",
 "GroupId": "sg-0867c2c4ca6f4ab83",
 "GroupOwnerId": "611652777867",
 "IsEgress": false,
 "IpProtocol": "tcp",
 "FromPort": 2049,
 "ToPort": 2049,
 "ReferencedGroupInfo": {
 "GroupId": "sg-0c71fc94eb6cd1ae3"
 }
 }
]
}

https://github.com/AWSCookbook/Serverless

3. Create an IAM role using the statement in the provided assume-role-
policy.json file using this command:

aws iam create-role --role-name AWSCookbook504Role \
 --assume-role-policy-document file://assume-role-
policy.json

4. You need to give your Lambda function the ability to execute within a
VPC, so attach the IAM managed policy for
AWSLambdaVPCAccessExecutionRole to the IAM role:

aws iam attach-role-policy --role-name AWSCookbook504Role \
 --policy-arn arn:aws:iam::aws:policy/service-
role/AWSLambdaVPCAccessExecutionRole

5. Zip up the lambda_function.py provided in the repository:

zip lambda_function.zip lambda_function.py

6. Create a Lambda function specifying the ACCESS_POINT_ARN of
the EFS file system:

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook504Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook504Role \
 --file-system-configs
Arn="$ACCESS_POINT_ARN",LocalMountPath="/mnt/efs" \
 --output text --query FunctionArn \
 --vpc-config
SubnetIds=${ISOLATED_SUBNETS},SecurityGroupIds=${LAMBDA_SG_I
D})

7. Use this command to determine when the Lambda function has
entered the active state (this may take a few moments):

aws lambda get-function --function-name $LAMBDA_ARN \
 --output text --query Configuration.State

Validation checks
Execute the Lambda function to display the file’s contents:

aws lambda invoke \
 --function-name $LAMBDA_ARN \
 response.json && cat response.json

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
As a developer or software architect, you start to see the benefits of
serverless technologies when you connect serverless compute to serverless
persistent storage (filesystems and databases both). The compute and
storage operational overhead is drastically reduced when using these types
of services within applications. You can provision and scale your storage on
demand while relying on AWS to manage the underlying infrastructure for
you. While many applications will use an object-style storage service such
as Amazon S3, others are best suited to a somewhat more traditional file-
style storage service. Combining Lambda and EFS, as shown in this recipe,
solves this problem with ease.
By integrating Amazon EFS with AWS Lambda, you can build solutions
like the following:

Persistent storage for applications
Maintenance activities
Event-driven notifications

https://github.com/AWSCookbook/Serverless

Event-driven file processing
The fully managed nature and the pay-per-use aspects of these services
allow for the design, building, deployment, and operation of cost-effective
and modern application architectures.

Challenge 1
Create another Lambda function that has access to the same EFS file
system.

Challenge 2
Create a Lambda function that runs on a scheduled interval to detect if any
files have been changed in the last 30 days.

See Also
Recipe 5.9

5.5 Running Trusted Code in Lambda Using
AWS Signer

Problem
You need to ensure that a serverless function deployed in your environment
is running code from trusted sources. You need to verify the integrity of the
code and have confidence that the code has not been modified after it has
been signed.

Solution
Create a signing profile and then start a signing job for your code by using
AWS Signer. Finally, deploy a Lambda function that references your
signing configuration and uses the signed code (see Figure 5-5).

Figure 5-5. Signing process for Lambda function code

Prerequisites
S3 bucket with versioning enabled and source code copied to it
S3 bucket for AWS Signer to use a destination
IAM role that allows the Lambda function to execute (provided in
chapter prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Get the version of the object in S3 that you will use. This is a zip of

the code to be used in your Lambda function. You’ll need this when
you start the signing job:

OBJ_VER_ID=$(aws s3api list-object-versions \
 --bucket awscookbook505-src-$RANDOM_STRING \
 --prefix lambda_function.zip \
 --output text --query Versions[0].VersionId)

2. Create a signing profile:

https://github.com/AWSCookbook/Serverless

SIGNING_PROFILE_ARN=$(aws signer put-signing-profile \
 --profile-name AWSCookbook505_$RANDOM_STRING \
 --platform AWSLambda-SHA384-ECDSA \
 --output text --query arn)

NOTE
You can find a list of the available signing platforms by running this command:

aws signer list-signing-platforms

3. Create a code-signing configuration for Lambda that refers to the
signing profile:

CODE_SIGNING_CONFIG_ARN=$(aws lambda create-code-signing-
config \
 --allowed-publishers
SigningProfileVersionArns=$SIGNING_PROFILE_ARN \
 --output text --query
CodeSigningConfig.CodeSigningConfigArn)

4. Start the signing job:

SIGNING_JOB_ID=$(aws signer start-signing-job \
 --source 's3={bucketName=awscookbook505-src-
'"${RANDOM_STRING}"',key=lambda_function.zip,version='"$OBJ_
VER_ID"'}' \
 --destination 's3={bucketName=awscookbook505-dst-
'"${RANDOM_STRING}"',prefix=signed-}' \
 --profile-name AWSCookbook505_$RANDOM_STRING \
 --output text --query jobId)

Wait a few moments and then verify that the signing job was
successful:

aws signer list-signing-jobs --status Succeeded

You should see output similar to the following:

{
 "jobs": [
 {
 "jobId": "efd392ae-2503-4c78-963f-8f40a58d770f",
 "source": {
 "s3": {
 "bucketName": "awscookbook505-src-<<unique>>",
 "key": "lambda_function.zip",
 "version": "o.MffnpzjBmaBR1yzvoti0AnluovMtMf"
 }
 },
 "signedObject": {
 "s3": {
 "bucketName": "awscookbook505-dst-<<unique>>",
 "key": "signed-efd392ae-2503-4c78-963f-
8f40a58d770f.zip"
 }
 },
 "signingMaterial": {},
 "createdAt": "2021-06-13T11:52:51-04:00",
 "status": "Succeeded",
...

5. Retrieve the S3 object key of the resulting signed code:

OBJECT_KEY=$(aws s3api list-objects-v2 \
 --bucket awscookbook505-dst-$RANDOM_STRING \
 --prefix 'signed-' \
 --output text --query Contents[0].Key)

6. Create a Lambda function that uses the signed code:

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook505Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --code S3Bucket=awscookbook505-
dst-$RANDOM_STRING,S3Key=$OBJECT_KEY \

 --code-signing-config-arn $CODE_SIGNING_CONFIG_ARN \
 --handler lambda_function.lambda_handler --publish \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole
\
 --output text --query FunctionArn)

7. Use this command to determine when the Lambda function has
entered the active state:

aws lambda get-function --function-name $LAMBDA_ARN \
 --output text --query Configuration.State

Validation checks
View your Lambda function in that console. Notice that you can’t edit the
code. You will see the message, “Your function has signed code and can’t
be edited inline.”

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Security-focused administrators and application developers can use this
approach to implement a DevSecOps strategy by enforcing rules that allow
only trusted code to be deployed in a given environment. By using AWS
Signer, you can ensure that you are running only trusted code in your
environments. This helps meet compliance requirements and increases the
security posture of your application.
By using a digital signature generated by AWS Signer, your code is
validated against a cryptographic fingerprint, and enforcement policies can
be applied to restrict the deployment and execution of code. This capability
paves the way to a strategic shift from “reactive” to “preventive” controls in
your security and compliance governance.

Challenge 1

https://github.com/AWSCookbook/Serverless
https://oreil.ly/sPLFP

Make a modification to the source code, sign it, and update the Lambda
function.

Challenge 2
You can change your CodeSigningPolicies from Warn to Enforce
—this will block deployments if validation checks of the signature aren’t
successful. Deploy a function that leverages this capability to ensure you
are running only signed code in your environment:

"CodeSigningPolicies": {
 "UntrustedArtifactOnDeployment": "Warn"
 },

5.6 Packaging Lambda Code in a Container
Image

Problem
You want to use your existing container-based development processes and
tooling to package your serverless code.

Solution
Create a Docker image and push it to an Amazon Elastic Container Registry
(ECR) repository. Create a Lambda function with the package-type of
Image and code that references an image URL in ECR (see Figure 5-6).

Figure 5-6. Deploying Lambda code packaged in a Docker image

Prerequisites
ECR repository
IAM role that allows the Lambda function to execute (provided in
chapter prerequisites)
Docker installed

Preparation

Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Get ECR login information and pass to Docker:

aws ecr get-login-password | docker login --username AWS \
 --password-stdin
$AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com

You should see output similar to the following:

Login Succeeded

2. Create a file called app.py with the following code that you would like
to execute in Lambda (file provided in the repository):

import sys
def handler(event, context):
 return 'Hello from the AWS Cookbook ' + sys.version +
'!'

3. Create a file called Dockerfile with the following content that builds
on an AWS-provided base image and references your Python code
(file provided in the repository):

FROM public.ecr.aws/lambda/python:3.8

COPY app.py ./
CMD ["app.handler"]

4. In the folder where the Dockerfile and app.py files exist, build the
container image. The process will take a few minutes to complete:

docker build -t aws-cookbook506-image .

https://github.com/AWSCookbook/Serverless

You should see output similar to the following:

[+] Building 19.1s (4/6)
 => [internal] load build definition from Dockerfile
 0.0s
 => => transferring dockerfile: 36B
 0.0s
 => [internal] load .dockerignore
 0.0s
 => => transferring context: 2B
 0.0s
 => [internal] load metadata for
public.ecr.aws/lambda/python:3.8
 2.2s
 => [internal] load build context
 0.0s
...

5. Add an additional tag to the image to allow it to be pushed to ECR:

docker tag \
 aws-cookbook506-image:latest \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-506repo:latest

6. Push the image to the ECR repository. The process should take a few
minutes to complete:

docker push \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-506repo:latest

You should see output similar to the following:

The push refers to repository [111111111111.dkr.ecr.us-east-
1.amazonaws.com/aws-cookbook-506repo]
5efc5a3f50dd: Pushed
a1f8e0568112: Pushing [=====>
] 10.3MB/98.4MB
bcf453d1de13: Pushing [>
] 3.244MB/201.2MB

f6ae2f36d5d7: Pushing [==============================>
] 4.998MB/8.204MB
5959c8f9752b: Pushed
3e5452c20c48: Pushed
9c4b6b04eac3: Pushing [>

7. Create a Lambda function with the Docker image by specifying a --
code value that is the ImageUri of the Docker image :

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook506Lambda \
 --package-type "Image" \
 --code
ImageUri=$AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/a
ws-cookbook-506repo:latest \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole
\
 --output text --query FunctionArn)

NOTE
The --runtime and --handler parameters are not necessary or supported when
creating a function that uses a container image.

Use this command to determine when the Lambda function has
entered the active state:

aws lambda get-function --function-name $LAMBDA_ARN \
 --output text --query Configuration.State

Validation checks
In the AWS Console, navigate to the Lambda→Functions menu. Notice that
the “Package type” for your function is Image.

Invoke the function and view the response:

aws lambda invoke \

 --function-name $LAMBDA_ARN response.json && cat
response.json

You should see output similar to the following:

{
 "StatusCode": 200,
 "ExecutedVersion": "$LATEST"
}
"Hello from the AWS Cookbook 3.8.8 (default, Mar 8 2021,
20:13:42) \n[GCC 7.3.1 20180712 (Red Hat 7.3.1-12)]!"

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
If your application code is packaged in container images, AWS Lambda
provides this ability to package your function code inside container images.
This allows for alignment with existing build, test, package, and deploy
pipelines that you may already be using. You can package application code
up to 10 GB in size for your functions. You can use the base images that
AWS provides or create your own images, as long as you include a runtime
interface client that is required by the Lambda runtime environment.
You can store your container images on Amazon ECR, and your function
must be in the same account as the ECR repository where you have stored
your container image.

Challenge
Update the application code, create a new image, push it to ECR, and
update the Lambda function.

5.7 Automating CSV Import into DynamoDB
from S3 with Lambda

https://github.com/AWSCookbook/Serverless
https://oreil.ly/N4wd7

Problem
You need to load data from S3 into DynamoDB when files are uploaded to
S3.

Solution
Use a Lambda function to load the S3 data into DynamoDB and configure
an S3 notification specifying the Lambda function to trigger on
S3:PutObject events (see Figure 5-7).

Figure 5-7. Using a Lambda function to load data into a DynamoDB table

Steps
1. Navigate to this recipe’s directory in the chapter repository:

cd 507-Importing-CSV-to-DynamoDB-from-S3

2. Create a DynamoDB table:

aws dynamodb create-table \
 --table-name 'AWSCookbook507' \
 --attribute-definitions
'AttributeName=UserID,AttributeType=S' \
 --key-schema 'AttributeName=UserID,KeyType=HASH' \

 --sse-specification 'Enabled=true,SSEType=KMS' \
 --provisioned-throughput \
 'ReadCapacityUnits=5,WriteCapacityUnits=5'

3. Set a unique suffix to use for the S3 bucket name:

RANDOM_STRING=$(aws secretsmanager get-random-password \
 --exclude-punctuation --exclude-uppercase \
 --password-length 6 --require-each-included-type \
 --output text \
 --query RandomPassword)

4. Create an S3 bucket:

aws s3api create-bucket --bucket
awscookbook507-$RANDOM_STRING

5. Create a role for a Lambda function allowing S3 and DynamoDB
usage (file provided in the repository):

aws iam create-role --role-name AWSCookbook507Lambda \
 --assume-role-policy-document file://assume-role-
policy.json

6. Attach the IAM managed policy for AmazonS3ReadOnlyAccess
to the IAM role:

aws iam attach-role-policy --role-name AWSCookbook507Lambda
\
 --policy-arn
arn:aws:iam::aws:policy/AmazonS3ReadOnlyAccess

7. Attach the IAM managed policy for
AmazonDynamoDBFullAccess to the IAM role:

aws iam attach-role-policy --role-name AWSCookbook507Lambda
\

 --policy-arn
arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess

NOTE
It is best to scope the Lambda function permission to the specific DynamoDB table
resource rather than AmazonDynamoDBFullAccess (we used it for simplicity here).
See Recipe 1.2 for details on how to create a more narrowly scoped permission.

8. Attach the AWSLambdaBasicExecutionRole IAM managed
policy to the IAM role:

aws iam attach-role-policy --role-name AWSCookbook507Lambda
\
 --policy-arn arn:aws:iam::aws:policy/service-
role/AWSLambdaBasicExecutionRole

9. Zip the function code:

zip lambda_function.zip lambda_function.py

10. Create a Lambda function by using the provided code and specifying
the code:

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook507Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --environment Variables=
{bucket=awscookbook507-$RANDOM_STRING} \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook507Lambda \
 --output text --query FunctionArn)

11. Grant the S3 service invoke permissions for the Lambda function:

aws lambda add-permission --function-name $LAMBDA_ARN \
 --action lambda:InvokeFunction --statement-id s3invoke \
 --principal s3.amazonaws.com

12. Create a notification-template.json file to use as the event definition
for automatically triggering the Lambda function when your file
(sample_data.csv) is uploaded. A file you can use is provided in the
repository:

{
 "LambdaFunctionConfigurations": [
 {
 "Id": "awscookbook507event",
 "LambdaFunctionArn": "LAMBDA_ARN",
 "Events": [
 "s3:ObjectCreated:*"
],
 "Filter": {
 "Key": {
 "FilterRules": [
 {
 "Name": "prefix",
 "Value": "sample_data.csv"
 }
]
 }
 }
 }
]
}

13. You can use the sed command to replace the values in the provided
notification-template.json file with the environment variables you
have created:

sed -e "s/LAMBDA_ARN/${LAMBDA_ARN}/g" \
 notification-template.json > notification.json

14. Configure the S3 bucket notification settings to trigger the Lambda
function (one-liner config).

NotificationConfiguration→LambdaConfigurations→Lambda ARN:

aws s3api put-bucket-notification-configuration \
 --bucket awscookbook507-$RANDOM_STRING \
 --notification-configuration file://notification.json

15. Upload a file to S3 to trigger the import:

aws s3 cp ./sample_data.csv
s3://awscookbook507-$RANDOM_STRING

Validation checks
View the results from your DynamoDB console, or use this CLI command
to scan the table:

aws dynamodb scan --table-name AWSCookbook507

NOTE
One of the great features of DynamoDB is that it provides AWS API endpoints for easy CRUD
operations by your application via the AWS SDK.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You can use AWS Lambda and Amazon DynamoDB together to build
applications with massively scalable database persistence while minimizing
the operational overhead required. Software architects and developers who
are looking to build applications without worrying about server
infrastructure may find it useful to use these two services together.

https://github.com/AWSCookbook/Serverless

WARNING
At the time of this writing, Lambda functions time out after 900 seconds. This could cause an
issue with large CSV files or if the DynamoDB table does not have sufficient write capacity.

Event-driven applications are also an important concept in building modern
cloud-native applications on AWS. When you created the notification.json
file, you specified your Lambda function and the S3 bucket, as well as a
key pattern to watch for uploads to trigger the Lambda function when an
object is put into the bucket. Using event-driven architecture helps
minimize the cost and complexity associated with running your applications
because the function logic is run only when needed.

Challenge 1
Add some new data to the sample_data.csv file, delete the file from your
bucket, and re-upload the file to trigger the new import. Note that the
existing data will remain, and the new data will be added.

Challenge 2
Change the S3 notification and the Lambda function to allow for other
filenames to be used with the solution.

Challenge 3
Create a fine-grained IAM policy for your Lambda function that scopes
down the function’s granted access to the DynamoDB table.

5.8 Reducing Lambda Startup Times with
Provisioned Concurrency

Problem
You need to ensure that a predetermined number (five) of invocations to
your serverless function are as fast as possible. You need to eliminate any

https://oreil.ly/MnJNV

latency associated with cold starts.

Solution
Create a Lambda function and set the function concurrency to 5 (see
Figure 5-8).

Figure 5-8. Provisioned concurrency for a Lambda function

Prerequisite
IAM role that allows the Lambda function to execute (provided in
chapter prerequisites)

Steps
1. Create a file called lambda_function.py with the following content

(file provided in the repository):

from datetime import datetime
import time

def lambda_handler(event, context):
 time.sleep(5)
 print('AWS Cookbook Function run at
{}'.format(str(datetime.now())))

2. Zip the function code:

zip lambda_function.zip lambda_function.py

3. Create a Lambda function:

aws lambda create-function \
 --function-name AWSCookbook508Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --timeout 20 \
 --role \
 arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole

4. Use this command to determine when the Lambda function has
entered the active state:

aws lambda get-function --function-name AWSCookbook509Lambda

\
 --output text --query Configuration.State

NOTE
Lambda function aliases allow you to reference a specific version of a function. Each
Lambda function can have one or more aliases. The initial alias is named LATEST.

5. Configure the provisioned concurrency for the Lambda function:

aws lambda put-provisioned-concurrency-config \
 --function-name AWSCookbook508Lambda \
 --qualifier LATEST \
 --provisioned-concurrent-executions 5

Validation checks
Invoke the function six times in a row to see the limit hit:

aws lambda invoke --function-name AWSCookbook508Lambda
response.json &
aws lambda invoke --function-name AWSCookbook508Lambda
response.json

NOTE
The Lambda function you deployed needs to be run in parallel to demonstrate the capability of the
provisioned concurrency feature. You may want to write a simple script which runs this command
multiple times in parallel to prove that the provisioned concurrency enabled.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

https://oreil.ly/8vXHA
https://github.com/AWSCookbook/Serverless

Your code’s execution environment provisioning is handled for you by the
Lambda service. This is a benefit of it being a fully managed service on
AWS. Since the execution environment is provisioned on demand, a small
amount of time is required to provision this environment for you. This is
referred to as a cold start. Lambda keeps your execution environment
provisioned (or “warm”) for a period of time so that if your function is
invoked again, it will launch quickly. When you need your functions to
respond quickly and achieve more concurrency, you can avoid the cold start
and use provisioned concurrency to keep multiple copies of the execution
environments “warm.”
Some developers and software architects need to build solutions with time-
sensitive requirements measured in milliseconds in microservice-based
applications. When you use Lambda-provisioned concurrency, you
minimize the amount of time your function needs to start up when it is
invoked.

Challenge 1
Configure an API Gateway in front of your Lambda function and use a tool
like bees with machine guns or ApacheBench to simulate user load.

Challenge 2
Configure application autoscaling to modify the provisioned concurrency
for your Lambda function based on time and/or a performance metric (e.g.,
response time).

5.9 Accessing VPC Resources with Lambda

Problem
You need a serverless function to be able to access an ElastiCache cluster
that has an endpoint in a VPC.

Solution

https://oreil.ly/EmxSn
https://oreil.ly/3i7WV

Create a Lambda function that has a Redis client connection and package
and specifies VPC subnets and security groups. Then create ElastiCache
subnet groups and an ElastiCache cluster. Invoke the Lambda and pass the
cluster endpoint to the function to test (see Figure 5-9).

Figure 5-9. Lambda accessing an ElastiCache cluster in a VPC

Prerequisite

IAM role that allows the Lambda function to execute (provided in
chapter prerequisites)

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. You need to give your Lambda function the ability to execute within a

VPC, so attach the IAM managed policy for
AWSLambdaVPCAccess to the IAM role (created in the chapter
prerequisites):

aws iam attach-role-policy --role-name AWSCookbookLambdaRole
\
 --policy-arn arn:aws:iam::aws:policy/service-
role/AWSLambdaVPCAccessExecutionRole

2. Install the Redis Python package to the current directory from the
Python Package Index (PyPI):

pip install redis -t .

3. Zip the function code:

zip -r lambda_function.zip lambda_function.py redis*

4. Create a security group for the Lambda:

LAMBDA_SG_ID=$(aws ec2 create-security-group \
 --group-name Cookbook509LambdaSG \
 --description "Lambda Security Group" --vpc-id $VPC_ID \
 --output text --query GroupId)

5. Create a Lambda function that will respond to HTTP requests:

https://github.com/AWSCookbook/Serverless

LAMBDA_ARN=$(aws lambda create-function \
 --function-name AWSCookbook509Lambda \
 --runtime python3.8 \
 --package-type "Zip" \
 --zip-file fileb://lambda_function.zip \
 --handler lambda_function.lambda_handler --publish \
 --role
arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbookLambdaRole \
 --output text --query FunctionArn \
 --vpc-config
SubnetIds=${TRIMMED_ISOLATED_SUBNETS},SecurityGroupIds=${LAM
BDA_SG_ID})

6. Create an ElastiCache subnet group:

aws elasticache create-cache-subnet-group \
 --cache-subnet-group-name "AWSCookbook509CacheSG" \
 --cache-subnet-group-description "AWSCookbook509CacheSG"
\
 --subnet-ids $ISOLATED_SUBNETS

7. Create an ElastiCache Redis cluster with one node:

aws elasticache create-cache-cluster \
 --cache-cluster-id "AWSCookbook509CacheCluster" \
 --cache-subnet-group-name AWSCookbook509CacheSG \
 --engine redis \
 --cache-node-type cache.t3.micro \
 --num-cache-nodes 1

Wait for the cache cluster to be available.
8. Invoke the function and view the response replacing HOSTNAME with

the host name of your cluster:

aws lambda invoke \
 --cli-binary-format raw-in-base64-out \
 --function-name $LAMBDA_ARN \
 --payload '{ "hostname": "HOSTNAME" }' \
 response.json && cat response.json

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
By default, Lambda functions do not have access to any VPC that you may
have provisioned in your AWS environment. However, Lambda does
support VPC connectivity by provisioning network interfaces in your VPC.
ElastiCache requires compute nodes that have network interfaces in your
VPC, so you need to configure Lambda within your VPC to allow it to
access the ElastiCache nodes that you provision.
The compute memory that your function uses is not persistent if the
function is invoked when the execution environment is spun down and
restarted. If your application requires access to memory persistence (for
example, in HTTP sessions), you can use the Amazon ElastiCache service
to implement redis or memcached for session storage and key/value
storage. These common solutions implement in-memory cache for fast
read/write and allow you to scale horizontally with your application while
maintaining memory persistence that your application requires.

Challenge 1
Configure your Lambda function to read and write additional values to
Amazon ElastiCache for Redis.

https://github.com/AWSCookbook/Serverless

Chapter 6. Containers

6.0 Introduction
A container, put simply, packages application code, binaries, configuration
files, and libraries together into a single package, called a container image.
By packaging everything together in this way, you can develop, test, and
run applications with control and consistency. You can quickly start
packaging up and testing containers that you build locally, while ensuring
that the exact same runtime environment is present regardless of where it is
running. This generally reduces the time it takes to build something and
offer it to a wide audience, and ensures consistency whenever you deploy.
Containers are wholly “contained” environments that leverage the
underlying compute and memory capabilities on the host where they are
running (your laptop, a server in a closet, or the cloud). Multiple containers
can be run on the same host at once without conflicts. You can also have
multiple containers running with the intention of them communicating with
one another. Imagine that you have a frontend web application running as a
container that accesses a container running a backend for your website, and
you might want to run multiple instances of them at once to handle more
traffic. Running multiple containers at once and ensuring they are always
available can present some challenges, which is why you enlist the help of a
container orchestrator. Popular orchestrators come in many flavors, but
some of the common ones you may have heard of are Kubernetes and
Docker Swarm.
You have options for running containers on AWS, such as Amazon Elastic
Container Service (Amazon ECS) and Amazon Elastic Kubernetes Service
(Amazon EKS) as container orchestrators, and Amazon Elastic Cloud
Compute (Amazon EC2) for deployments with custom requirements. Both
of the AWS container orchestrator services mentioned (Amazon ECS and
Amazon EKS) can run workloads on Amazon EC2 or on the fully managed

AWS Fargate compute engine. In other words, you can choose to control
the underlying EC2 instance (or instances) responsible for running your
containers on Amazon ECS and Amazon EKS, allowing some level of
customization to your host, or you can use Fargate, which is fully managed
by AWS—you don’t have to worry about instance management. You can
even use ECS and EKS within your own datacenter using ECS Anywhere
and EKS Anywhere. AWS provides a comprehensive listing of all up-to-
date container services on its website.
Some AWS services (AWS CodeDeploy, AWS CodePipeline, and Amazon
Elastic Container Registry) can help streamline the development lifecycle
and provide automation to your workflow. These integrate well with
Amazon ECS and Amazon EKS. Some examples of AWS services that
provide network capabilities are Amazon Virtual Private Cloud, AWS
Elastic Load Balancing, AWS Cloud Map, and Amazon Route 53.You can
address your logging and monitoring concerns with Amazon CloudWatch
and the Amazon Managed Service for Prometheus. Fine-grained security
capabilities can be provided by AWS Identity and Access Management
(IAM) and AWS Key Management System (KMS). By following the
recipes in this chapter, you will see how some of these services combine to
meet your needs.

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/AWSCookbook/Containers

https://aws.amazon.com/containers
https://aws.amazon.com/prometheus

Chapter Prerequisites

Docker installation and validation
Docker Desktop is recommended for Windows and Mac users; Docker
Linux Engine is recommended for Linux users. In the following recipes,
you’ll use Docker to create a consistent working environment on your
particular platform. Be sure to install the latest stable version of Docker for
your OS.

MacOS
1. Follow instructions from Docker Desktop:

https://docs.docker.com/docker-for-mac/install.
2. Run the Docker Desktop application after installation.

Windows
1. Follow instructions from Docker Desktop:

https://docs.docker.com/desktop/windows/install.
2. Run the Docker Desktop application after installation.

Linux
1. Follow instructions from Docker Desktop:

https://docs.docker.com/engine/install.
2. Start the Docker daemon on your distribution:

Validation the installation of Docker on your workstation with the following
command:

docker --version

You should see output similar to the following:

Docker version 19.03.13, build 4484c46d9d

https://oreil.ly/Wfv89
https://oreil.ly/taxpH
https://docs.docker.com/docker-for-mac/install
https://docs.docker.com/desktop/windows/install
https://docs.docker.com/engine/install

Run the docker images command to list images on your local machine:

REPOSITORY TAG IMAGE ID CREATED
SIZE

6.1 Building, Tagging, and Pushing a
Container Image to Amazon ECR

Problem
You need a repository to store built and tagged container images.

Solution
First, you will create a repository in Amazon ECR. Next, you will create a
Dockerfile and use it to build a Docker image. Finally, you will apply two
tags to the container image and push them both to the newly created ECR
repository. This process is illustrated in Figure 6-1.

Figure 6-1. Solution workflow of build, tag, and push for container images

Steps
1. Log into the AWS Management Console and search for Elastic

Container Registry. Click the “Create repository” button.
Give your repository a name, keep all defaults (as shown in Figure 6-
2), scroll to the bottom, and click “Create repository” again to finish.

Figure 6-2. ECR repository creation

You now have a repository created on Amazon ECR that you can use
to store container images. An example of the ECR console is shown in
Figure 6-3.

Figure 6-3. Screenshot of created ECR repository

Alternatively, you can also create an ECR repository from the
command line:

REPO=aws-cookbook-repo && \
 aws ecr create-repository --repository-name $REPO

You should see output similar to the following:

{
 "repository": {
 "repositoryArn": "arn:aws:ecr:us-east-
1:111111111111:repository/aws-cookbook-repo",
 "registryId": "1111111111111",
 "repositoryName": "aws-cookbook-repo",
 "repositoryUri": "611652777867.dkr.ecr.us-east-
1.amazonaws.com/aws-cookbook-repo",
 "createdAt": "2021-10-02T19:57:56-04:00",
 "imageTagMutability": "MUTABLE",
 "imageScanningConfiguration": {
 "scanOnPush": false
 },
 "encryptionConfiguration": {
 "encryptionType": "AES256"
 }
 }
}

2. Create a simple Dockerfile:

echo FROM nginx:latest > Dockerfile

NOTE
This command creates a Dockerfile that contains a single line instructing the Docker
Engine to use the nginx:latest image as the base image. Since you use only the base
image with no other lines in the Dockerfile, the resulting image is identical to the
nginx:latest image. You could include some HTML files within this image by using
the COPY and ADD Dockerfile directives.

3. Build and tag the image. This step may take a few moments as it
downloads and combines the image layers:

https://oreil.ly/VCCb7

docker build . -t \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-repo:latest

4. Add an additional tag:

docker tag \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-repo:latest \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-repo:1.0

5. Get Docker login information:

aws ecr get-login-password | docker login --username AWS \
 --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-
1.amazonaws.com

Here is the output:

Login Succeeded

NOTE
An authorization token needs to be provided each time an operation is executed against a
private repository. Tokens last for 12 hours, so the command you ran would need to be
manually refreshed at that interval on your command line. To help you with automating the
task of obtaining authorization tokens, you can use the ECR Docker Credential Helper,
available from the awslabs GitHub repository.

6. Push each image tag to Amazon ECR:

docker push \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-repo:latest

https://oreil.ly/xI0xD

docker push \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-repo:1.0

NOTE
You will see “Layer already exists” for the image layer uploads on the second push. This is
because the image already exists in the ECR repository due to the first push, but this step is
still required to add the additional tag.

Validation checks
Now you can view both of the tagged images in Amazon ECR from the
console, as shown in Figure 6-4.

Figure 6-4. Screenshot of the image with two tags

Alternatively, you can use the AWS CLI to list the images:

aws ecr list-images --repository-name aws-cookbook-repo

You should see output similar to the following:

{

 "imageIds": [
 {
 "imageDigest":
"sha256:99d0a53e3718cef59443558607d1e100b325d6a2b678cd2a48b05e5e2
2ffeb49",
 "imageTag": "1.0"
 },
 {
 "imageDigest":
"sha256:99d0a53e3718cef59443558607d1e100b325d6a2b678cd2a48b05e5e2
2ffeb49",
 "imageTag": "latest"
 }
]
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Having a repository for your container images is an important foundational
component of the application development process. A private repository for
your container images that you control is a best practice to increase the
security of your application development process. You can grant access to
other AWS accounts, IAM entities, and AWS services with permissions for
Amazon ECR. Now that you know how to create an ECR repository, you
will be able to store your container images and use them with AWS
services.

NOTE
Amazon ECR supports the popular Docker Image Manifest V2, Schema 2 and most recently Open
Container Initiative (OCI) images. It can translate between these formats on pull. Legacy support
is available for Manifest V2, Schema 1, and Amazon ECR can translate on the fly when
interacting with legacy Docker client versions. The experience should be seamless for most
Docker client versions in use today.

https://github.com/AWSCookbook/Containers
https://oreil.ly/FeYVY
https://oreil.ly/tzgdd

Container tagging allows you to version and keep track of your container
images. You can apply multiple tags to an image, which can help you
implement your versioning strategy and deployment process. For example,
you may always refer to a “latest” tagged image in your dev environment,
but your production environment can be locked to a specific version tag.
The Docker CLI pushes tagged images to the repository and the tags can be
used with pulls.

Challenge
Modify the Dockerfile, build a new image, tag it with a new version
number, and put it to ECR.

6.2 Scanning Images for Security
Vulnerabilities on Push to Amazon ECR

Problem
You want to automatically scan your container images for security
vulnerabilities each time you push to a repository.

Solution
Enable automatic image scanning on a repository in Amazon ECR, push an
image, and observe the scan results, as shown in Figure 6-5.

Prerequisite
ECR repository

Figure 6-5. Container image scanning solution workflow

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Rather than building a new container image from a Dockerfile (as you

did in Recipe 6.1), this time you are going to pull an old NGINX
container image:

docker pull nginx:1.14.1

https://github.com/AWSCookbook/Containers

2. On the command line, apply the scanning configuration to the
repository you created:

REPO=aws-cookbook-repo && \
 aws ecr put-image-scanning-configuration \
 --repository-name $REPO \
 --image-scanning-configuration scanOnPush=true

3. Get Docker login information:

aws ecr get-login-password | docker login --username AWS \
 --password-stdin
$AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com

4. Apply a tag to the image so that you can push it to the ECR
repository:

docker tag nginx:1.14.1 \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-repo:old

5. Push the image:

docker push \
 $AWS_ACCOUNT_ID.dkr.ecr.$AWS_REGION.amazonaws.com/aws-
cookbook-repo:old

Validation checks
Shortly after the push is complete, you can examine the results of the
security scan of the image in JSON format:

aws ecr describe-image-scan-findings \
 --repository-name aws-cookbook-repo --image-id imageTag=old

You should see output similar to the following:

{
 "imageScanFindings": {
 "findings": [
 {
 "name": "CVE-2019-3462",
 "description": "Incorrect sanitation of the 302 redirect
field in HTTP transport method of apt versions 1.4.8 and earlier
can lead to content injection by a MITM attacker, potentially
leading to remote code execution on the target machine.",
 "uri": "https://security-tracker.debian.org/tracker/CVE-
2019-3462",
 "severity": "CRITICAL",
 "attributes": [
 {
 "key": "package_version",
 "value": "1.4.8"
 },

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

TIP
Amazon ECR has a safety mechanism built in that does not let you delete a repository containing
images. If the repository is not empty and the delete-repository command is failing, you
can bypass this check by adding --force to the delete-repository command.

Discussion
The Common Vulnerabilities and Exposures (CVEs) database from the
open source Clair project is used by Amazon ECR for vulnerability
scanning. You are provided a Common Vulnerability Scoring System
(CVSS) score to indicate the severity of any detected vulnerabilities. This
helps you detect and remediate vulnerabilities in your container image. You
can configure alerts for newly discovered vulnerabilities in images by using
Amazon EventBridge and Amazon Simple Notification Service (Amazon
SNS).

https://github.com/AWSCookbook/Containers
https://cve.mitre.org/
https://github.com/quay/clair
https://oreil.ly/ZSiob

WARNING
The scanning feature does not continuously scan your images, so it is important to push your
image versions routinely (or trigger a manual scan).

You can retrieve the results of the last scan for an image at any time with
the command used in the last step of this recipe. Furthermore, you can use
these commands as part of an automated CI/CD process that may validate
whether or not an image has a certain CVSS score before deploying.

Challenge 1
Remediate the vulnerability by updating the image with the latest NGINX
container image.

Challenge 2
Configure an SNS topic to send you an email when vulnerabilities are
detected in your repository.

6.3 Deploying a Container Using Amazon
Lightsail

Problem
You need to quickly deploy a container-based application and access it
securely over the internet.

Solution
Deploy a plain NGINX container that listens on port 80 to Lightsail.
Lightsail provides a way to quickly deploy applications to AWS. The
workflow is shown in Figure 6-6.

https://oreil.ly/SaZCa

Figure 6-6. Amazon Lightsail serving a container image

Prerequisite
In addition to Docker Desktop and the AWS CLI (version 2), you need
to install the Lightsail Control plugin (lightsailctl) for the AWS CLI.

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

https://oreil.ly/Tn2B9
https://github.com/AWSCookbook/Containers

NOTE
Several power levels are available for Lightsail, each of which is priced according to the amount
of compute power your container needs. We selected nano in this example. A list of power levels
and associated costs is available in the Lightsail pricing guide.

1. Once you have lightsailctl installed, create a new container service
and give it a name, power parameter, and scale parameter:

aws lightsail create-container-service \
 --service-name awscookbook --power nano --scale 1

You should see output similar to the following:

{
 "containerService": {
 "containerServiceName": "awscookbook",
 "arn": "arn:aws:lightsail:us-east-
1:111111111111:ContainerService/124633d7-b625-48b2-b066-
5826012904d5",
 "createdAt": "2020-11-15T10:10:55-05:00",
 "location": {
 "availabilityZone": "all",
 "regionName": "us-east-1"
 },
 "resourceType": "ContainerService",
 "tags": [],
 "power": "nano",
 "powerId": "nano-1",
 "state": "PENDING",
 "scale": 1,
 "isDisabled": false,
 "principalArn": "",
 "privateDomainName": "awscookbook.service.local",
 "url": "https://awscookbook.<<unique-id>>.us-east-
1.cs.amazonlightsail.com/"
 }
}

2. Pull a plain NGINX container image to use that listens on port
80/TCP.

https://oreil.ly/DSPNv

docker pull nginx

Use the following command to ensure that the state of your container
service has entered the READY state (this may take a few minutes):

aws lightsail get-container-services --service-name
awscookbook

3. When the container service is ready, push the container image to
Lightsail:

aws lightsail push-container-image --service-name
awscookbook \
 --label awscookbook --image nginx

You should see output similar to the following:

7b5417cae114: Pushed
Image "nginx" registered.
Refer to this image as ":awscookbook.awscookbook.1" in
deployments.

NOTE
You can specify public image repositories or push your own image to your container
service within Amazon Lightsail. Rather than using a private Amazon ECR location, your
Lightsail images are kept within the Lightsail service. For more information, refer to the
Lightsail documentation for image locations.

4. Now you will associate the image you pushed with the container
service you created for deployment. Create a file with the following
contents and save it as lightsail.json (file provided in the code
repository):

https://oreil.ly/Hi4Ny
https://github.com/AWSCookbook/Containers

{
 "serviceName": "awscookbook",
 "containers": {
 "awscookbook": {
 "image": ":awscookbook.awscookbook.1",
 "ports": {
 "80": "HTTP"
 }
 }
 },
 "publicEndpoint": {
 "containerName": "awscookbook",
 "containerPort": 80
 }
}

5. Create the deployment:

aws lightsail create-container-service-deployment \
 --service-name awscookbook --cli-input-json
file://lightsail.json

View your container service again and wait for the ACTIVE state.
This may take a few minutes:

aws lightsail get-container-services --service-name
awscookbook

Note the endpoint URL at the end of the output.

Validation checks
Now, visit the endpoint URL in your browser, or use the curl on the
command line (e.g., url:
https://awscookbook.un94eb3cd7hgk.us-east-
1.cs.amazonlightsail.com):

curl <<URL endpoint>>

You should see output similar to the following:

...
<h1>Welcome to nginx!</h1>
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Lightsail manages the TLS certificate, load balancer, compute, and storage.
It can also manage MySQL and PostgreSQL databases as part of your
deployment if your application requires it. Lightsail performs routine health
checks on your application and will automatically replace a container you
deploy that may have become unresponsive for some reason. Changing the
power and scale parameters in the lightsail create-container-
service command will allow you to create services for demanding
workloads.
Using this recipe, you could deploy any common container-based
application (e.g., Wordpress) and have it served on the internet in a short
period of time. You could even point a custom domain alias at your
Lightsail deployment for an SEO-friendly URL.

Challenge
Scale your service so that it will be able to handle more traffic.

6.4 Deploying Containers Using AWS Copilot

Problem
You need a way to use your existing Dockerfile to quickly deploy and
manage a load balanced web service using best practices in a private
network.

https://github.com/AWSCookbook/Containers
https://oreil.ly/rB5Xf

Solution
Starting with a Dockerfile, you can use AWS Copilot to quickly deploy an
application using an architecture shown in Figure 6-7.

https://oreil.ly/zH8YD

Figure 6-7. AWS Copilot load balanced web service infrastructure

Prerequisite
AWS Copilot CLI

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Copilot requires an ECS service-linked role to allow Amazon ECS to

perform actions on your behalf. This may already exist in your AWS
account. To see if you have this role already, issue the following
command:

aws iam list-roles --path-prefix /aws-service-
role/ecs.amazonaws.com/

(If the role is displayed, you can skip the following role-creation step.)
Create the ECS service-linked role if it does not exist:

aws iam create-service-linked-role --aws-service-name
ecs.amazonaws.com

NOTE
IAM service-linked roles allow AWS services to securely interact with other AWS services
on your behalf. See the AWS article on using these roles.

2. cd to this recipe’s directory in this chapter’s code repository:

cd 604-Deploy-Container-With-Copilot-CLI

https://oreil.ly/PvZlD
https://github.com/AWSCookbook/Containers
https://oreil.ly/CwzCZ
https://github.com/AWSCookbook/Containers

NOTE
You could provide your own Dockerfile and content for this recipe. If you choose to use
your own container with this recipe, ensure that the container listens on port 80/TCP. Or
configure the alternate port with the copilot init command.

3. Now use AWS Copilot to deploy the sample NGINX Dockerfile to
Amazon ECS:

copilot init --app web --name nginx --type 'Load Balanced
Web Service' \
 --dockerfile './Dockerfile' --port 80 --deploy

NOTE
If you don’t specify any arguments to the copilot init command, it will walk you
through a menu of options for your deployment.

The deployment will take a few moments. You can watch the progress
of the deployment in your terminal.

Validation checks
After the deployment is complete, get information on the deployed service
with this command:

copilot svc show

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

https://github.com/AWSCookbook/Containers

TIP
Copilot exposes a command-line interface that simplifies deployments to Amazon ECS, AWS
Fargate, and AWS App Runner. It helps streamline your development workflow and deployment
lifecycle.

The copilot init command created a directory called copilot in your
current working directory. You can view and customize the configuration by
using the manifest.yml that is associated with your application.

NOTE
The test environment is the default environment created. You can add additional environments to
suit your needs and keep your environments isolated from each other by using the copilot
env init command.

Copilot configures all of the required resources for hosting containers on
Amazon ECS according to many best practices. Some examples are
deploying to multiple Availability Zones), using subnet tiers to segment
traffic, and using AWS KMS to encrypt.
The AWS Copilot commands can also be embedded in your CI/CD pipeline
to perform automated deployments. In fact, Copilot can orchestrate the
creation and management of a CI/CD pipeline for you with the copilot
pipeline command. For all of the current supported features and
examples, visit the AWS Copilot home page.

Challenge
Reconfigure your Load Balanced Web Service to deploy to AWS App
Runner instead of Amazon ECS.

6.5 Updating Containers with Blue/Green
Deployments

https://aws.github.io/copilot-cli
https://oreil.ly/BvUTg

Problem
You want to use a deployment strategy with your container-based
application so you can update your application to the latest version without
introducing downtime to customers, while also being able to easily roll
back if the deployment was not successful.

Solution
Use AWS CodeDeploy to orchestrate your application deployments to
Amazon ECS with the Blue/Green strategy, as shown in Figure 6-8.

Figure 6-8. Blue/Green target group association

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. With the CDK stack deployed, open a web browser and visit the
LOAD_BALANCER_DNS address on TCP port 8080 that the CDK
output displayed. You will see the “Blue” application running:

E.g.:
firefox $LOAD_BALANCER_DNS:8080
or
open http://$LOAD_BALANCER_DNS:8080

2. Create an IAM role with the statement in the provided assume-role-
policy.json file using this command:

aws iam create-role --role-name ecsCodeDeployRole \
 --assume-role-policy-document file://assume-role-
policy.json

3. Attach the IAM managed policy for CodeDeployRoleForECS to
the IAM role:

aws iam attach-role-policy --role-name ecsCodeDeployRole \
 --policy-arn
arn:aws:iam::aws:policy/AWSCodeDeployRoleForECS

4. Create a new ALB target group to use as the “Green” target group
with CodeDeploy:

aws elbv2 create-target-group --name "GreenTG" --port 80 \

https://github.com/AWSCookbook/Containers

 --protocol HTTP --vpc-id $VPC_ID --target-type ip

5. Create the CodeDeploy application:

aws deploy create-application --application-name
awscookbook-605 \
 --compute-platform ECS

NOTE
CodeDeploy requires some configuration. We provided a template file for you
(codedeploy-template.json) in this recipe’s directory of the code repository.

6. Use the sed command to replace the values with the environment
variables you exported with the helper.py script:

sed -e "s/AWS_ACCOUNT_ID/${AWS_ACCOUNT_ID}/g" \
 -e "s|PROD_LISTENER_ARN|${PROD_LISTENER_ARN}|g" \
 -e "s|TEST_LISTENER_ARN|${TEST_LISTENER_ARN}|g" \
 codedeploy-template.json > codedeploy.json

TIP
sed (short for stream editor) is a great tool to use for text find-and-replace operations as
well as other types of text manipulation in your terminal sessions and scripts. In this case,
sed is used to replace values in a template file with values output from cdk deploy set
as environment variables.

7. Now, create a deployment group:

aws deploy create-deployment-group --cli-input-json
file://codedeploy.json

AppSpec-template.yaml contains information about the application
you are going to update. The CDK preprovisioned a task definition

https://github.com/AWSCookbook/Containers

you can use.
8. Use the sed command to replace the value with the environment

variable you exported with the helper.py script:

sed -e "s|FargateTaskGreenArn|${FARGATE_TASK_GREEN_ARN}|g" \
 appspec-template.yaml > appspec.yaml

9. Now copy the AppSpec file to the S3 bucket created by the CDK
deployment so that CodeDeploy can use it to update the application:

aws s3 cp ./appspec.yaml s3://$BUCKET_NAME

10. One final configuration file needs to be created; this contains the
instructions about the deployment. Use sed to modify the S3 bucket
used in the deployment-template.json file:

sed -e "s|S3BucketName|${BUCKET_NAME}|g" \
 deployment-template.json > deployment.json

11. Now create a deployment with the deployment configuration:

aws deploy create-deployment --cli-input-json
file://deployment.json

To get the status of the deployment, observe the status in the AWS
Console (Developer Tools→CodeDeploy→Deployments, and click
the deployment ID). You should see CodeDeploy in progress with the
deployment, as shown in Figure 6-9.

Figure 6-9. Initial deployment status

Validation checks
Once the replacement task is serving 100% of the traffic, you can visit the
same URL where you previously observed the Blue application running,
replaced with the Green version of the application.

TIP
You may need to refresh your browser or clear your cache to see the updated Green application.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
CodeDeploy offers several deployment strategies—Canary, AllAtOnce,
Blue/Green, etc.—and you can also create your own custom deployment
strategies. You might customize the strategy to define a longer wait period
for the cutover window or to define other conditions to be met before traffic
switchover occurs. In the default Blue/Green strategy, CodeDeploy keeps
your previous version of the application running for five minutes while all
traffic is routed to the new version. If you notice that the new version is not
behaving properly, you can quickly route traffic back to the original version
since it is still running in a separate AWS Application Load Balancer target
group.
CodeDeploy uses ALB target groups to manage which application is
considered “production.” When you deployed the initial stack with the
AWS CDK, the V1 Blue containers were registered with a target group
associated with port 8080 on the ALB. After you initiate the deployment of
the new version, CodeDeploy starts a brand new version of the ECS
service, associates it with the Green target group you created, and then

https://github.com/AWSCookbook/Containers
https://oreil.ly/18B4u

gracefully shifts all traffic to the Green target group. The final result is the
Green V2 containers now being served on port 8080 of the ALB. The
previous target group is now ready to execute the next Blue/Green
deployment.
This is a common pattern to utilize with CI/CD. Your previous version can
quickly be reactivated with a seamless rollback. If no rollback is needed,
the initial version (V1) is terminated, and you can repeat the processes the
next time you deploy, putting V3 in the Blue target group, shifting traffic to
it when you are ready. Using this strategy helps you minimize the impact to
users of new application versions while allowing more frequent
deployments.

TIP
Deployment conditions allow you to define deployment success criteria. You can use a
combination of a custom deployment strategy and a deployment condition to build automation
tests into your CodeDeploy process. This would allow you to ensure that all of your tests run and
pass before traffic is sent to your new deployment.

Challenge
Trigger a rollback to the original V1 container deployment and observe the
results.

6.6 Autoscaling Container Workloads on
Amazon ECS

Problem
You need to deploy a containerized service that scales out during times of
heavy traffic to meet demand.

Solution

Configure a CloudWatch alarm and scaling policy for an ECS service so
that your service adds more containers when the CPU load increases, as
shown in Figure 6-10.

Figure 6-10. ECS service with a CloudWatch alarm and scaling policy

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Access the ECS service URL over the internet with the curl

command (or your web browser) to verify the successful deployment:

curl -v -m 3 $LOAD_BALANCER_DNS

2. Use verbose (-v) and three-second timeout (-m 3) to ensure you see
the entire connection and have a timeout set. The following is an
example command and output:

https://github.com/AWSCookbook/Containers

curl -v -m 3 http://AWSCookbook.us-east-
1.elb.amazonaws.com:80/
* Trying 1.2.3.4...
* TCP_NODELAY set
* Connected to AWSCookbook.us-east-1.elb.amazonaws.com
(1.2.3.4) port 80<
> GET / HTTP/1.1
> Host: AWSCookbook.us-east-1.elb.amazonaws.com:80
> User-Agent: curl/7.64.1
> Accept: */*
>
< HTTP/1.1 200
< Content-Type: application/json
< Content-Length: 318
< Connection: keep-alive
<
{

"URL":"http://awscookbookloadtestloadbalancer-36821611.us-
east-1.elb.amazonaws.com:80/",
 "ContainerLocalAddress":"10.192.2.179:8080",
 "ProcessingTimeTotalMilliseconds":"0",
 "LoadBalancerPrivateIP":"10.192.2.241",
 "ContainerHostname":"ip-10-192-2-179.ec2.internal",
 "CurrentTime":"1605724705176"
}
Closing connection 0

TIP
Run this same curl command several times in a row, and you will notice the
ContainerHostname and ContainerLocalAddress alternating between two
addresses. This indicates that Amazon ECS is load balancing between the two containers
you should expect to be running at all times, as defined by the ECS service.

3. You will need to create a role for the autoscaling trigger to execute;
this file is provided in this solution’s directory in the code repository:

aws iam create-role --role-name AWSCookbook606ECS \
 --assume-role-policy-document file://task-execution-
assume-role.json

https://github.com/AWSCookbook/Containers

4. Attach the managed policy for autoscaling:

aws iam attach-role-policy --role-name AWSCookbook606ECS --
policy-arn arn:aws:iam::aws:policy/service-
role/AmazonEC2ContainerServiceAutoscaleRole

5. Register an autoscaling target:

aws application-autoscaling register-scalable-target \
 --service-namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/$ECS_CLUSTER_NAME/AWSCookbook606 \
 --min-capacity 2 \
 --max-capacity 4

6. Set up an autoscaling policy for the autoscaling target using the
sample configuration file specifying a 50% average CPU target:

aws application-autoscaling put-scaling-policy --service-
namespace ecs \
 --scalable-dimension ecs:service:DesiredCount \
 --resource-id service/$ECS_CLUSTER_NAME/AWSCookbook606 \
 --policy-name cpu50-awscookbook-606 --policy-type
TargetTrackingScaling \
 --target-tracking-scaling-policy-configuration
file://scaling-policy.json

7. Now, to trigger a process within the container that simulates high CPU
load, run the same curl command, appending cpu to the end of the
service URL:

curl -v -m 3 $LOAD_BALANCER_DNS/cpu

This command will time out after three seconds, indicating that the
container is running a CPU-intensive process as a result of visiting
that URL (the ECS service you deployed with the CDK runs a CPU

load generator that we provided to simulate high CPU usage). The
following is an example command and output:

curl -v -m 3 http://AWSCookbookLoadtestLoadBalancer-
36821611.us-east-1.elb.amazonaws.com:80/cpu
* Trying 52.4.148.24...
* TCP_NODELAY set
* Connected to AWSCookbookLoadtestLoadBalancer-36821611.us-
east-1.elb.amazonaws.com (52.4.148.245) port 80 (#0)
> GET /cpu HTTP/1.1
> Host: AWSCookbookLoadtestLoadBalancer-36821611.us-east-
1.elb.amazonaws.com:80
> User-Agent: curl/7.64.1
> Accept: */*
>
* Operation timed out after 3002 milliseconds with 0 bytes
received
* Closing connection 0
curl: (28) Operation timed out after 3002 milliseconds with
0 bytes received

Validation checks
Wait approximately five minutes. Then log into the AWS Console, locate
Elastic Container Service, go to the Clusters page, select the cluster
deployed, and select the ECS service. Verify that the Desired Count has
increased to 4, the maximum scaling value that you configured. You can
click the Tasks tab to view four container tasks now running for your
service.
Click the Metrics tab to view the CPU usage for the service. You set the
scaling target at 50% to trigger the autoscaling actions, adding two
additional containers to the service as a result of high CPU usage. An
example metrics graph is shown in Figure 6-11.

Figure 6-11. ECS service metrics on the AWS Console

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion

https://github.com/AWSCookbook/Containers

Autosccaling is an important mechanism to implement to save costs
associated with running your applications on AWS services. It allows your
applications to provision their own resources as needed during times when
load may increase, and it removes their own resources during times when
the application may be idle. Note that whenever you have an AWS service
doing something like this on your behalf, you have to specifically grant
permission for services to execute these functions via IAM.
The underlying data that provides the metrics for such operations is
contained in the CloudWatch metrics service. There are many data points
and metrics that you can use for configuring autoscaling; some of the most
common ones are listed here:

Network I/O
CPU usage
Memory used
Number of transactions

In this recipe, you monitor the CPU usage metric on the ECS service. You
set the metric at 50% and trigger the CPU load with a cURL call to the
HTTP endpoint of the ECS service. Scaling metrics are dependent upon the
type of applications you are running and the technologies you use to build
them. As a best practice, you should observe your application metrics over
a period of time to set a baseline before choosing metrics to implement
autoscaling.

Challenge
Replace the provided sample CPU load application with your own
containerized application and configure the target scaling policy to meet
your needs.

6.7 Launching a Fargate Container Task in
Response to an Event

Problem
You need to launch a container task to process incoming files.

Solution
Use Amazon EventBridge to trigger the launch of ECS container tasks on
Fargate after a file is uploaded to S3, as shown in Figure 6-12.

Figure 6-12. Flow of container EventBridge pattern

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Configure CloudTrail to log events on the S3 bucket:

aws cloudtrail put-event-selectors --trail-name
$CLOUD_TRAIL_ARN --event-selectors "[{ \"ReadWriteType\":
\"WriteOnly\", \"IncludeManagementEvents\":false,
\"DataResources\": [{ \"Type\": \"AWS::S3::Object\",
\"Values\": [\"arn:aws:s3:::$BUCKET_NAME/input/\"] }],
\"ExcludeManagementEventSources\": [] }]"

Now create an assume-role policy JSON statement called policy1.json
to use in the next step (this file is provided in the repository):

https://github.com/AWSCookbook/Containers

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create the role and specify the policy1.json file:

aws iam create-role --role-name AWSCookbook607RuleRole \
 --assume-role-policy-document file://policy1.json

3. You will also need a policy document with the following content
called policy2.json (this file is provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask"
],
 "Resource": [
 "arn:aws:ecs:*:*:task-definition/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "*"
],
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "ecs-tasks.amazonaws.com"
 }
 }

 }
]
}

4. Now attach the IAM policy JSON you just created to the IAM role:

aws iam put-role-policy --role-name AWSCookbook607RuleRole \
 --policy-name ECSRunTaskPermissionsForEvents \
 --policy-document file://policy2.json

5. Create an EventBridge rule that monitors the S3 bucket for file
uploads:

aws events put-rule --name "AWSCookbookRule" --role-arn
"arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook607RuleRole" -
-event-pattern "{\"source\":[\"aws.s3\"],\"detail-type\":
[\"AWS API Call via CloudTrail\"],\"detail\":
{\"eventSource\":[\"s3.amazonaws.com\"],\"eventName\":
[\"CopyObject\",\"PutObject\",\"CompleteMultipartUpload\"],\
"requestParameters\":{\"bucketName\":[\"$BUCKET_NAME\"]}}}"

6. Modify the value in targets-template.json and create a targets.json for
use:

sed -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 -e "s|AWS_REGION|${AWS_REGION}|g" \
 -e "s|ECSClusterARN|${ECS_CLUSTER_ARN}|g" \
 -e "s|TaskDefinitionARN|${TASK_DEFINITION_ARN}|g" \
 -e "s|VPCPrivateSubnets|${VPC_PRIVATE_SUBNETS}|g" \
 -e
"s|VPCDefaultSecurityGroup|${VPC_DEFAULT_SECURITY_GROUP}|g"
\
 targets-template.json > targets.json

7. Create a rule target that specifies the ECS cluster, ECS task definition,
IAM role, and networking parameters. This specifies what the rule
will trigger; in this case, launch a container on Fargate:

aws events put-targets --rule AWSCookbookRule \

 --targets file://targets.json

You should see output similar to the following:

{
 "FailedEntryCount": 0,
 "FailedEntries": []
}

8. Check the S3 bucket to verify that it’s empty before we populate it:

aws s3 ls s3://$BUCKET_NAME/

9. Copy the provided maze.jpg file to the S3 bucket. This will trigger the
ECS task that launches a container with a Python library to process
the file:

aws s3 cp maze.jpg s3://$BUCKET_NAME/input/maze.jpg

This will trigger an ECS task to process the image file. Quickly, check
the task with the ecs list-tasks command. The task will run for
about two to three minutes:

aws ecs list-tasks --cluster $ECS_CLUSTER_ARN

You should see output similar to the following:

{
 "taskArns": [
 "arn:aws:ecs:us-east-1:111111111111:task/cdk-aws-
cookbook-607-AWSCookbookEcsCluster46494E6E-
MX7kvtp1sYWZ/d86f16af55da56b5ca4874d6029"
]
}

Validation checks

https://pypi.org/project/mazesolver

After a few minutes, observe the output directory created in the S3 bucket:

aws s3 ls s3://$BUCKET_NAME/output/

Download and view the output file:

aws s3 cp s3://$BUCKET_NAME/output/output.jpg ./output.jpg

Open output.jpg with a file viewer of your choice to view the file that was
processed.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Event-driven architecture is an important approach to application and
process design in the cloud. This type of design allows for removing long-
running application workloads in favor of serverless architectures, which
can be more resilient and easily scale to peaks of higher usage when
needed. When there are no events to handle in your application, you
generally do not pay much for compute resources (if at all), so potential
cost savings is also a point to consider when choosing an application
architecture.

NOTE
It is common to use Lambda functions with S3 for event-driven architectures, but for longer-
running data-processing jobs and computational jobs like this one, Fargate is a better choice
because the runtime is essentially infinite, while the maximum runtime for Lambda functions is
limited.

Amazon ECS can run tasks and services. Services are made up of tasks, and
generally, are long-running in that a service keeps a specific set of tasks

https://github.com/AWSCookbook/Containers

running. Tasks can be short-lived; a container may start, process some data,
and then gracefully exit after the task is complete. This is what you have
achieved in this solution: a task was launched in response to an S3 event
signaling a new object, and the container read the object, processed the file,
and exited.

Challenge
While EventBridge is a powerful solution that can be used to orchestrate
many types of event-driven solutions, you can achieve similar functionality
with S3’s triggers. Try to deploy and configure a Lambda function to be
invoked directly from S3 events. Here is a hint.

6.8 Capturing Logs from Containers Running
on Amazon ECS

Problem
You have an application running in a container and want to inspect the
application logs.

Solution
Send the logs from the container to Amazon CloudWatch. By specifying the
awslogs driver within an ECS task definition and providing an IAM role
that allows the container to write to CloudWatch logs, you are able to
stream container logs to a location within Amazon CloudWatch. A high-
level view of this configuration and process is shown in Figure 6-13.

https://oreil.ly/rfTno

Figure 6-13. Streaming container logs to CloudWatch

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a file called task-execution-assume-role.json with the

following content. The file is provided in the root of this recipe’s
directory in the code repository.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {
 "Service": "ecs-tasks.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create an IAM role using the statement in the preceding file:

https://github.com/AWSCookbook/Containers

aws iam create-role --role-name AWSCookbook608ECS \
 --assume-role-policy-document file://task-execution-
assume-role.json

3. Attach the AWS managed IAM policy for ECS task execution to the
IAM role that you just created:

aws iam attach-role-policy --role-name AWSCookbook608ECS --
policy-arn arn:aws:iam::aws:policy/service-
role/AmazonECSTaskExecutionRolePolicy

4. Create a log group in CloudWatch:

aws logs create-log-group --log-group-name AWSCookbook608ECS

5. Create a file called taskdef.json with the following content (a file is
provided in this recipe’s directory in the code repository):

{
 "networkMode": "awsvpc",
 "containerDefinitions": [
 {
 "portMappings": [
 {
 "hostPort": 80,
 "containerPort": 80,
 "protocol": "tcp"
 }
],
 "essential": true,
 "entryPoint": [
 "sh",
 "-c"
],
 "logConfiguration": {
 "logDriver": "awslogs",
 "options": {
 "awslogs-group": "AWSCookbook608ECS",
 "awslogs-region": "us-east-1",
 "awslogs-stream-prefix": "LogStream"
 }

 },
 "name": "awscookbook608",
 "image": "httpd:2.4",
 "command": [
 "/bin/sh -c \"echo 'Hello AWS Cookbook Reader, this
container is running on ECS!' >
/usr/local/apache2/htdocs/index.html && httpd-foreground\""
]
 }
],
 "family": "awscookbook608",
 "requiresCompatibilities": [
 "FARGATE"
],
 "cpu": "256",
 "memory": "512"
}

6. Now that you have an IAM role and an ECS task definition
configuration, you need to create the ECS task using the configuration
and associate the IAM role:

aws ecs register-task-definition --execution-role-arn \
 "arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook608ECS" \
 --cli-input-json file://taskdef.json

7. Run the ECS task on the ECS cluster that you created earlier in this
recipe with the AWS CDK:

aws ecs run-task --cluster $ECS_CLUSTER_NAME \
 --launch-type FARGATE --network-configuration
"awsvpcConfiguration={subnets=
[$VPC_PUBLIC_SUBNETS],securityGroups=
[$VPC_DEFAULT_SECURITY_GROUP],assign
PublicIp=ENABLED}" --task-definition awscookbook608

Validation checks
Check the status of the task to make sure the task is running. First, find the
Task’s Amazon Resource Name (ARN):

TASK_ARNS=$(aws ecs list-tasks --cluster $ECS_CLUSTER_NAME \
 --output text --query taskArns)

Then use the task ARNs to check for the RUNNING state with the
describe-tasks command output:

aws ecs describe-tasks --cluster $ECS_CLUSTER_NAME --tasks
$TASK_ARNS

After the task has reached the RUNNING state (approximately 15 seconds),
use the following commands to view logs:

aws logs describe-log-streams --log-group-name AWSCookbook608ECS

You should see output similar to the following:

{
 "logStreams": [
 {
 "logStreamName":
"LogStream/webserver/97635dab942e48d1bab11dbe88c8e5c3",
 "creationTime": 1605584764184,
 "firstEventTimestamp": 1605584765067,
 "lastEventTimestamp": 1605584765067,
 "lastIngestionTime": 1605584894363,
 "uploadSequenceToken":
"49612420096740389364147985468451499506623702081936625922",
 "arn": "arn:aws:logs:us-east-1:111111111111:log-
group:AWSCookbook608ECS:log-
stream:LogStream/webserver/97635dab942e48d1bab11dbe88c8e5c3",
 "storedBytes": 0
 }
]
}

Note the logStreamName from the output and then run the get-log-
events command:

aws logs get-log-events --log-group-name AWSCookbook608ECS \
 --log-stream-name <<logStreamName>>

You should see output similar to the following:

{
 "events": [
 {
 "timestamp": 1605590555566,
 "message": "[Tue Nov 17 05:22:35.566054 2020]
[mpm_event:notice] [pid 7:tid 140297116308608] AH00489:
Apache/2.4.46 (Unix) configured -- resuming normal operations",
 "ingestionTime": 1605590559713
 },
 {
 "timestamp": 1605590555566,
 "message": "[Tue Nov 17 05:22:35.566213 2020] [core:notice]
[pid 7:tid 140297116308608] AH00094: Command line: 'httpd -D
FOREGROUND'",
 "ingestionTime": 1605590559713
 }
],
 "nextForwardToken":
"f/35805865872844590178623550035180924397996026459535048705",
 "nextBackwardToken":
"b/35805865872844590178623550035180924397996026459535048704"
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You made use of the awslogs driver and an IAM role, which allows the
running task to write to a CloudWatch log group. This is a common pattern
when working with containers on AWS, as you most likely need log output
for troubleshooting and debugging your application. This configuration is
handled by tools like Copilot since it is a common pattern, but when
working with Amazon ECS directly, like defining and running a task, the
configuration is critical for developers to know about.

https://github.com/AWSCookbook/Containers

The PID 1 process output to /dev/stdout and /dev/stderr is captured by the
awslogs driver. In other words, the first process in the container is the only
process logging to these streams. Be sure your application that you would
like to see logs from is running with PID 1 inside of your container.
In order for most AWS services to communicate with one another, you must
assign a role to them that allows the required level of permissions for the
communication. This holds true when configuring logging to CloudWatch
from a container ECS task; the container must have a role associated with it
that allows the CloudWatchLogs operations via the awslogs
logConfiguration driver:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:*:*:*"
]
 }
]
}

CloudWatch logs allow for a central logging solution for many AWS
services. When running multiple containers, it is important to be able to
quickly locate logs for debugging purposes.

Challenge
You can tail the logs of a log stream to give you a more real-time view of
the logs that your application is generating. This can help in your
development and troubleshooting activities. Try using the aws logs

https://oreil.ly/XY2UF
https://oreil.ly/OrzrZ
https://oreil.ly/kFrGf

tail command with your log stream while generating some output for you
to observe.

Chapter 7. Big Data

7.0 Introduction
Data is sometimes referred to as “the new gold.” Many companies are
leveraging data in new and exciting ways every day as available data
science tools continue to improve. You can now mine troves of historical
data quickly for insights and patterns by using modern analytics tools. You
might not yet know the queries and analysis you need to run against the
data, but tomorrow you might be faced with a challenge that could be
supported by historical data analysis using new and emerging techniques.
With the advent of cheaper data storage, many organizations and
individuals opt to keep data rather than discard it so that they can run
historical analysis to gain business insights, discover trends, train AI/ML
models, and be ready to implement future technologies that can use the
data.
In addition to the amount of data you might collect over time, you are also
collecting a wider variety of data types and structures at an increasingly
faster velocity. Imagine that you might deploy IoT devices to collect sensor
data, and as you continue to deploy these over time, you need a way to
capture and store the data in a scalable way. This can be structured,
semistructured, and unstructured data with schemas that might be difficult
to predict as new data sources are ingested. You need tools to be able to
transform and analyze your diverse data.
An informative and succinct AWS re:Invent 2020 presentation by Francis
Jayakumar, “An Introduction to Data Lakes and Analytics on AWS,”
provides a high-level introduction to what is available on AWS for big data
and analytics. We could have included so much in this chapter—enough to
fill another book—but we will focus on foundational recipes for sending
data to S3, discovering data on S3, and transforming data to give you
examples of working with data on AWS.

https://oreil.ly/6EDB0
https://oreil.ly/WcmSj

Workstation Configuration
You will need a few things installed to be ready for the recipes in this
chapter.

General setup
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/awscookbook/BigData

7.1 Using a Kinesis Stream for Ingestion of
Streaming Data

Problem
You need a way to ingest streaming data for your applications.

Solution
Create a Kinesis stream and verify that it is working by using the AWS CLI
to put a record on the stream, as shown in Figure 7-1.

Figure 7-1. Using a Kinesis stream for ingestion of streaming data

Steps
1. Create a Kinesis stream:

aws kinesis create-stream --stream-name AWSCookbook701 --
shard-count 1

NOTE
Shards are an important concept to understand with Kinesis streams as you scale your
stream to handle larger velocities of incoming streaming data. Each shard can support up
to five transactions per second for reads, up to a maximum total data read rate of 2 MB per
second. For writes, each shard can support up to 1,000 records per second, up to a
maximum total data write rate of 1 MB per second (including partition keys). You can re-
shard your stream at any time if you need to handle more data.

2. Confirm that your stream is in ACTIVE state:

aws kinesis describe-stream-summary --stream-name
AWSCookbook701

You should see output similar to the following:

https://oreil.ly/XKI0q

{
 "StreamDescriptionSummary": {
 "StreamName": "AWSCookbook701",
 "StreamARN": "arn:aws:kinesis:us-east-
1:111111111:stream/AWSCookbook701",
 "StreamStatus": "ACTIVE",
 "RetentionPeriodHours": 24,
 "StreamCreationTimestamp": "2021-10-12T17:12:06-04:00",
 "EnhancedMonitoring": [
 {
 "ShardLevelMetrics": []
 }
],
 "EncryptionType": "NONE",
 "OpenShardCount": 1,
 "ConsumerCount": 0
 }
}

Validation checks
Put a record on the Kinesis stream:

aws kinesis put-record --stream-name AWSCookbook701 \
 --partition-key 111 \
 --cli-binary-format raw-in-base64-out \
 --data={\"Data\":\"1\"}

You should see output similar to the following:

{
 "ShardId": "shardId-000000000000",
 "SequenceNumber":
"49622914081337086513355510347442886426455090590105206786"
}

Get the record from the Kinesis stream. Get the shard iterator and run the
get-records command:

SHARD_ITERATOR=$(aws kinesis get-shard-iterator \
 --shard-id shardId-000000000000 \
 --shard-iterator-type TRIM_HORIZON \

https://oreil.ly/dFx8m

 --stream-name AWSCookbook701 \
 --query 'ShardIterator' \
 --output text)
aws kinesis get-records --shard-iterator $SHARD_ITERATOR \
 --query Records[0].Data --output text | base64 --decode

You should see output similar to the following:

{"Data":"1"}

NOTE
The data is base64 encoded that you published to the stream. You queried the command output for
the data element within the JSON object and piped the output to base64 --decode to validate
that the record is what you published.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Streaming data can come from a variety of sources. The sources putting
records on streams are known as producers. Entities getting records from
streams are known as consumers. In the case of streaming data, you are
dealing with real-time information, and you may need to act on it
immediately or store it for usage later (see Recipe 7.2). Some common
producer examples to think about are as follows:

Real-time financial market data
IoT and sensor data
End-user clickstream activity from web and mobile applications

You can use the Kinesis Producer Library (KPL) and Kinesis Client Library
(KCL) within your application for your specific needs. When consuming
data from Kinesis streams, you can configure your application to read
records from the stream and respond, invoke Lambda functions directly

https://github.com/AWSCookbook/BigData
https://oreil.ly/ze6Wd
https://oreil.ly/dzRG2

from the stream, or even use a Kinesis Data Analytics application (powered
by Apache Flink) directly within the Kinesis service.

NOTE
The Kinesis service will scale automatically to meet your needs, but you need to be aware of the
quotas and limits to ensure that you do not exceed capacity with your shard configuration.

Challenge
Automatically trigger a Lambda function to process incoming Kinesis data.

7.2 Streaming Data to Amazon S3 Using
Amazon Kinesis Data Firehose

Problem
You need to deliver incoming streaming data to object storage.

Solution
Create an S3 bucket, create a Kinesis stream, and configure Kinesis Data
Firehose to deliver the stream data to the S3 bucket. The flow is shown in
Figure 7-2.

https://oreil.ly/lyR4E
https://oreil.ly/f7kq3

Figure 7-2. Streaming data to Amazon S3 using Amazon Kinesis Data Firehose

Prerequisites
Kinesis stream
S3 Bucket with a CSV file

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Open the Kinesis Data Firehose console and click the “Create delivery

stream” button; choose Amazon Kinesis Data Streams for the source
and Amazon S3 for the destination, as shown in Figure 7-3.

https://github.com/AWSCookbook/BigData
https://oreil.ly/GG8yA

Figure 7-3. Choosing the source and destination in the Kinesis Data Firehose dialog

2. For Source settings, choose the Kinesis stream that you created in the
preparation steps, as shown in Figure 7-4.

Figure 7-4. Choosing a Kinesis data stream

3. Keep the defaults (Disabled) for “Transform and convert records”
options. For Destination settings, browse for and choose the S3 bucket
that you created in the preparation steps as shown in Figure 7-5, and
keep the defaults for the other options (disabled partitioning and no
prefixes).

Figure 7-5. Kinesis Data Firehose destination configuration

4. Under the Advanced settings section, confirm that the “Create or
update IAM role” is selected. This will create an IAM role that
Kinesis can use to access the stream and S3 bucket, as shown in
Figure 7-6.

Figure 7-6. Creating an IAM role for the Kinesis Data Firehose service

Validation checks
You can test delivery to the stream from within the Kinesis console. Click
the Delivery streams link in the left navigation menu, choose the stream you
created, expand the “Test with demo data” section, and click the “Start
sending demo data” button. This will initiate sending sample data to your
stream so you can verify that it is making it to your S3 bucket. A sample is
shown in Figure 7-7.

Figure 7-7. Sending test data through a Kinesis Data Firehose

After a few minutes, you will see a folder structure and a file appear in your
S3 bucket, similar to Figure 7-8.

Figure 7-8. S3 destination with Kinesis stream data delivered

If you download and inspect the file, you will see output similar to the
following:

{"CHANGE":3.95,"PRICE":79.75,"TICKER_SYMBOL":"SLW","SECTOR":"ENER
GY"}
{"CHANGE":7.27,"PRICE":96.37,"TICKER_SYMBOL":"ALY","SECTOR":"ENER
GY"}
{"CHANGE":-5,"PRICE":81.74,"TICKER_SYMBOL":"QXZ","SECTOR":"HEALTH
CARE"}
{"CHANGE":-0.6,"PRICE":98.4,"TICKER_SYMBOL":"NFLX","SECTOR":"TECH
NOLOGY"}
{"CHANGE":-0.46,"PRICE":18.92,"TICKER_SYMBOL":"PLM","SECTOR":"FIN
ANCIAL"}
{"CHANGE":4.09,"PRICE":100.46,"TICKER_SYMBOL":"ALY","SECTOR":"ENE
RGY"}
{"CHANGE":2.06,"PRICE":32.34,"TICKER_SYMBOL":"PPL","SECTOR":"HEAL
THCARE"}
{"CHANGE":-2.99,"PRICE":38.98,"TICKER_SYMBOL":"KFU","SECTOR":"ENE
RGY"}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
As you begin to ingest data from various sources, your application may be
consuming or reacting to streaming data in real time. In some cases, you
may want to store the data from the stream to query or process it later. You
can use Kinesis Data Firehose to deliver data to object storage (S3),
Amazon Redshift, OpenSearch, and many third-party endpoints. You can
also connect multiple delivery streams to a single producer stream to deliver
data if you have to support multiple delivery locations from your streams.

https://github.com/AWSCookbook/BigData

NOTE
Kinesis Data Firehose scales automatically to handle the volume of data you need to deliver,
meaning that you do not have to configure or provision additional resources if your data stream
starts to receive large volumes of data. For more information on Kinesis Data Firehose features
and capabilities, see the AWS documentation for Kinesis Data Firehose.

If you need to transform data before it ends up in the destination via
Firehose, you can configure transformations. A transformation will
automatically invoke a Lambda function as your streaming data queues up
(see this Firehose article for buffer size information). This is useful when
you have to adjust the schema of a record before delivery, sanitize data for
long-term storage on the fly (e.g., remove personally identifiable
information), or join the data with other sources before delivery. The
transformation Lambda function you invoke must follow the convention
specified by the Kinesis Data Firehose API. To see some examples of
Lambda functions, go to the AWS Serverless Application Repository and
search for “firehose.”

Challenge
Configure a Firehose delivery with transformations to remove a field from
the streaming data before delivery.

7.3 Automatically Discovering Metadata with
AWS Glue Crawlers

Problem
You have CSV data files on object storage, and you would like to discover
the schema and metadata about the files to use in further analysis and query
operations.

Solution

https://oreil.ly/9h2Bc
https://oreil.ly/PW0LN
https://oreil.ly/q7noh

Create an AWS Glue database, follow the crawler configuration wizard to
configure a crawler to scan your S3 bucket data, run the crawler, and
inspect the resulting table, as shown in Figure 7-9.

Figure 7-9. Automatically discover metadata with AWS Glue crawlers

Prerequisite
An S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#automatically_discover_me-id0000027
https://github.com/AWSCookbook/BigData

1. Log in to the AWS Console and navigate to the AWS Glue console,
choose Databases from the left navigation menu and select “Add
database,” as shown in Figure 7-10.

Figure 7-10. Creating a database in the Glue data catalog

2. Give your database a name (e.g., awscookbook703) and click
Create. A sample dialog box is shown in Figure 7-11.

Figure 7-11. Database name dialog box

3. Select Tables from the left navigation menu and choose “Add tables”
→ “Add tables using a crawler,” as shown in Figure 7-12.

Figure 7-12. Adding a table to the Glue Data catalog

4. Follow the “Add crawler” wizard. For the crawler source type, choose
“Data stores,” crawl all folders, S3 as “Data store” (do not define a
Connection), choose your S3 bucket and “data” folder in “Include
path,” and do not choose a sample size. Choose to create an IAM role,
and suffix it with AWSCookbook703. For a frequency, choose “Run
on demand,” and select the database you created in step 2. Confirm
the configuration on the “Review all steps” page and click Finish. An
example review page is shown in Figure 7-13.

Figure 7-13. Review settings for Glue crawler

5. From the left navigation menu, select Crawlers. Choose the crawler
that you created in step 4 and click “Run crawler,” as shown in
Figure 7-14.

NOTE
The Glue crawler will take a few moments to run. Once it is complete, you can view the
table properties of the discovered schema and metadata.

Figure 7-14. Glue crawler configuration summary

Validation checks
Verify the crawler configuration you created; you can use the AWS CLI or
the Glue console. Note the LastCrawl status of SUCCEEDED:

aws glue get-crawler --name awscookbook703

You should see output similar to this:

{
 "Crawler": {
 "Name": "awscookbook703",
 "Role": "service-role/AWSGlueServiceRole-AWSCookbook703",
 "Targets": {
 "S3Targets": [
 {
 "Path": "s3://awscookbook704-<RANDOM_STRING>/data",
 "Exclusions": []
 }
],
 "JdbcTargets": [],
 "MongoDBTargets": [],
 "DynamoDBTargets": [],
 "CatalogTargets": []
 },
 "DatabaseName": "awscookbook703",
 "Classifiers": [],
 "RecrawlPolicy": {
 "RecrawlBehavior": "CRAWL_EVERYTHING"
 },
 "SchemaChangePolicy": {
 "UpdateBehavior": "UPDATE_IN_DATABASE",
 "DeleteBehavior": "DEPRECATE_IN_DATABASE"
 },
 "LineageConfiguration": {
 "CrawlerLineageSettings": "DISABLE"
 },
 "State": "READY",
 "CrawlElapsedTime": 0,
 "CreationTime": "2021-10-12T12:45:18-04:00",
 "LastUpdated": "2021-10-12T12:45:18-04:00",

 "LastCrawl": {
 "Status": "SUCCEEDED",
 "LogGroup": "/aws-glue/crawlers",
 "LogStream": "awscookbook703",
 "MessagePrefix": "16e867b7-e972-4ceb-b318-8e78370949d8",
 "StartTime": "2021-10-12T12:54:19-04:00"
 },
 "Version": 1
 }
}

TIP
AWS Glue crawlers log information about their runs to Amazon CloudWatch logs. If you need to
debug your crawlers’ activity, you can inspect the logs in the /aws-glue/crawlers log group.

In the Glue console, select the table that was created and click “View
properties.” You can also run an AWS CLI command to output the JSON:

aws glue get-table --database-name awscookbook703 --name data

The JSON properties should look similar to this:

{
 "StorageDescriptor": {
 "cols": {
 "FieldSchema": [
 {
 "name": "title",
 "type": "string",
 "comment": ""
 },
 {
 "name": "other titles",
 "type": "string",
 "comment": ""
 },
 {
 "name": "bl record id",
 "type": "bigint",
 "comment": ""
 }...<SNIP>...

]
 },
 "location": "s3://awscookbook703-<RANDOM_STRING>/data/",
 "inputFormat": "org.apache.hadoop.mapred.TextInputFormat",
 "outputFormat":
"org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat",
 "compressed": "false",
 "numBuckets": "-1",
 "SerDeInfo": {
 "name": "",
 "serializationLib":
"org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe",
 "parameters": {
 "field.delim": ","
 }
 },
 "bucketCols": [],
 "sortCols": [],
 "parameters": {
 "skip.header.line.count": "1",
 "sizeKey": "43017100",
 "objectCount": "1",
 "UPDATED_BY_CRAWLER": "awscookbook703",
 "CrawlerSchemaSerializerVersion": "1.0",
 "recordCount": "79367",
 "averageRecordSize": "542",
 "CrawlerSchemaDeserializerVersion": "1.0",
 "compressionType": "none",
 "classification": "csv",
 "columnsOrdered": "true",
 "areColumnsQuoted": "false",
 "delimiter": ",",
 "typeOfData": "file"
 },
 "SkewedInfo": {},
 "storedAsSubDirectories": "false"
 },
 "parameters": {
 "skip.header.line.count": "1",
 "sizeKey": "43017100",
 "objectCount": "1",
 "UPDATED_BY_CRAWLER": "awscookbook703",
 "CrawlerSchemaSerializerVersion": "1.0",
 "recordCount": "79367",
 "averageRecordSize": "542",
 "CrawlerSchemaDeserializerVersion": "1.0",
 "compressionType": "none",
 "classification": "csv",
 "columnsOrdered": "true",
 "areColumnsQuoted": "false",

 "delimiter": ",",
 "typeOfData": "file"
 }
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When you start to ingest and store large amounts of data from various
sources to object storage like S3, you may want to temporarily query the
data in place without loading into an intermediate database. Since you may
not always know the schema or metadata of the data, you need to know
some basics about it, such as where the data resides, what the files and
partitioning look like, whether it’s structured versus unstructured data, the
size of data, and most importantly, the schema of the data. One specific
feature of the AWS Glue service, Glue crawlers, allow you to discover
metadata about the variety of data you have in storage. Crawlers connect to
your data source (in this case, S3 bucket), scan the objects in the source,
and populate a Glue Data Catalog database with tables associated with your
data’s schema.

NOTE
In addition to S3 bucket sources, you can use crawlers to scan Java Database Connectivity (JDBC)
data stores and DynamoDB tables. In the case of a JDBC table, you will need to define a
connection to allow Glue to use a network connection to your JDBC source.

Challenge
Configure your crawler to run on an interval so that your tables and
metadata are automatically updated.

https://github.com/AWSCookbook/BigData
https://oreil.ly/49nom
https://oreil.ly/Gasxy

7.4 Querying Files on S3 Using Amazon
Athena

Problem
You need to run a SQL query on CSV files stored on object storage without
indexing them.

Solution
Configure an Amazon Athena results S3 bucket location, create a Data
Catalog database and table in the Athena Editor, and run a SQL query on
the data in the S3 bucket, as shown in Figure 7-15.

Figure 7-15. Query files on S3 using Amazon Athena

Prerequisite
S3 bucket with a CSV file containing data

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

https://github.com/AWSCookbook/BigData

1. Log into the AWS Console and go to the Athena console; you should
see something similar to Figure 7-16.

Figure 7-16. Athena console

2. In the Query Editor, click the Settings tab and configure a Query
result location using the S3 bucket that you created and a prefix:
s3://bucket/folder/object/. Click Manage, select the
bucket, and click Choose. As an option, you can encrypt the results.
See Figure 7-17 for an example.

Figure 7-17. Athena results destination configuration

3. Back in the Editor tab, run the following SQL statement to create a
Data Catalog database:

CREATE DATABASE `awscookbook704db`

You should see output similar to Figure 7-18.

Figure 7-18. Database creation SQL statement

4. Run a new statement in the Query Editor to create a table within the
database that references the S3 bucket location of the data and the
schema of the data. Be sure to replace BUCKET_NAME with the name
of the bucket that you created:

CREATE EXTERNAL TABLE IF NOT EXISTS
default.`awscookbook704table`(
 `title` string,
 `other titles` string,
 `bl record id` bigint,
 `type of resource` string,
 `content type` string,
 `material type` string,
 `bnb number` string,
 `isbn` string,

 `name` string,
 `dates associated with name` string,
 `type of name` string,
 `role` string,
 `all names` string,
 `series title` string,
 `number within series` string,
 `country of publication` string,
 `place of publication` string,
 `publisher` string,
 `date of publication` string,
 `edition` string,
 `physical description` string,
 `dewey classification` string,
 `bl shelfmark` string,
 `topics` string,
 `genre` string,
 `languages` string,
 `notes` string)
ROW FORMAT SERDE
'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES (
 'serialization.format' = ',',
 'field.delim' = ','
) LOCATION 's3://BUCKET_NAME/data/'
TBLPROPERTIES ('has_encrypted_data'='false');

TIP
You can use an AWS Glue crawler to crawl your data on S3 and keep databases, tables,
and metadata up-to-date automatically. See Recipe 7.3 for an example of configuring a
Glue crawler with this example dataset.

Validation checks
Open the Query Editor and run a query to list the rows where the title is
“Marvel universe”:

SELECT * FROM awscookbook704table WHERE title='"Marvel universe"'
LIMIT 100

You should see output similar to Figure 7-19.

file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#automatically_discover-id000001

Figure 7-19. Query results in the Athena console

Run a SQL query selecting the top 100 rows for the sample dataset:

SELECT * FROM awscookbook704table LIMIT 100;

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

https://github.com/AWSCookbook/BigData

Discussion
You may have had to use an extract, transform, load (ETL) process in the
past to facilitate querying large amounts of data on demand. This process
could have taken hours, if not days, if the volume of data was substantial. In
the world of big data, the volume will only increase as time moves on, and
you may not know what you need to query for when you initially start to
ingest the data. This makes table schema design challenging. Chances are,
as you ingest and collect data from various sources, you will be storing it in
object storage. This is the data lake concept realized. Being able to query
text-based data in place within your data lake is a powerful concept that you
can use Amazon Athena for. You can use standard SQL to run queries
against data directly on object storage (Amazon S3).
Athena requires knowing some basics about your data before you can run
queries. This includes metadata, schema, and data locations. The concepts
of tables, databases, and the Data Catalog are important to understand so
that you can configure the Athena service to meet your needs. As you saw
in Recipe 7.3, the Glue service can crawl your data to discover this
information and keep it up-to-date so that you can always be ready to run
queries against your data while it is stored in your data lake. You can use a
Glue Data Catalog in the Athena service rather than defining your own
schema to save you time.

TIP
As you start to increase your usage of S3 as your central data repository (or in other words, a data
lake), you may need to use several services together and also start to apply certain levels of
permission to allow other team members to interact with and manage the data. AWS Lake
Formation is a managed service that brings services like S3, Glue, and Athena together with a
robust permissions engine that can meet your needs.

https://oreil.ly/wLxfa
file:///C:/Users/Barhoma/AppData/Local/Temp/2/calibre_6kmvqbo8/h3lrz468_pdf_out/OEBPS/Images/#automatically_discover-id000001
https://oreil.ly/wStEx

NOTE
The Athena service will automatically scale for you, running queries in parallel for your large
datasets, so you do not have to worry about provisioning any resources. For more information, see
the Athena documentation.

Challenge
Configure Athena to use the Glue Data Catalog with a Glue crawler for a
source dataset on S3 that you do not have a predefined schema for.

7.5 Transforming Data with AWS Glue
DataBrew

Problem
You have data stored in a CSV and need to convert all characters in a
column to uppercase before further processing can occur.

Solution
Start with a sample project in Glue DataBrew using a sample CSV dataset.
Wait for the session to initiate and apply an uppercase format operation on
the name column of the sample set. Inspect the results (see Figure 7-20).

https://oreil.ly/hWrqZ

Figure 7-20. Transforming data with AWS Glue DataBrew

Steps
1. In the AWS Console, search for and navigate to the AWS Glue

DataBrew console.
2. Click “Create sample project,” select “Popular names for babies in

2020,” create a new IAM role, enter a role suffix of your choosing,
and then click “Create project,” as shown in Figure 7-21. Your session

will take a few moments to be prepared, and the status indicator
should look similar to Figure 7-22.

Figure 7-21. Creating a sample project in Glue DataBrew

Figure 7-22. Preparing a session in Glue DataBrew

3. When your session has been prepared, click FORMAT in the menu.
Then from the drop-down menu, select “Change to uppercase,” as
shown in Figure 7-23.

Figure 7-23. Beginning to format a string to uppercase

4. In the righthand menu, set the “Source column” to “name” and then
click Apply, as shown in Figure 7-24.

Figure 7-24. Formatting column to uppercase interface

Validation checks
View the updated name column, as shown in Figure 7-25.

Figure 7-25. Results of the uppercase recipe step

From the ACTIONS menu in the top-right corner, select Download CSV, as
shown in Figure 7-26.

Figure 7-26. Downloading CSV action

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
When dealing with large amounts of heterogeneous data from various
sources, you will find that you need to manipulate data in various ways to
meet your use case. In the past, you would have to programmatically
accomplish this using scripts, complicated ETL jobs, or third-party tools.
You can use AWS DataBrew to streamline the tasks of formatting, cleaning,

https://github.com/AWSCookbook/BigData

and extracting information from your data. You can perform complex joins
and splits, and run custom functions within the DataBrew service using a
visual interface.
DataBrew is an example of a low-code development platform (LCDP) that
enables you to quickly achieve outcomes that otherwise would require
knowledge of more complicated development platforms. You use Glue
DataBrew in your web browser to visually design recipe jobs to process
your data, preview results, and automate your data-processing workflow.
Once you have a recipe job saved, you can bring automation into your
workflow by setting up an S3 trigger for your incoming data to have
DataBrew process it and deliver it back to S3, the Glue Data Catalog, or a
JDBC data source.

Challenge
Upload your own dataset. Create a job from the DataBrew console,
configure it to deliver the results to S3 so you can use the job on demand or
automatically with a trigger.

https://oreil.ly/GKEer
https://oreil.ly/fNFFY

Chapter 8. AI/ML

8.0 Introduction
Machine learning (ML) and artificial intelligence (AI) are two of the hottest
topics today. Scale provided by cloud computing and improved algorithms
have enabled rapid advances in the abilities of computers to think like
humans (aka “provide inferences”). Many mundane and boring tasks that
required human intervention can now be automated because of AI.
AI and ML can get complex very quickly. Volumes of text have been
written about each. Recipes in this chapter will allow you to explore some
of the easy-to-implement AI services provided by AWS and get started
building your own models. While you are working through the recipes, try
to think about other problematic areas in society that could be well served
by these technologies. From supply chain predictive maintenance to song
suggestions, the opportunities are endless.
We could have written 100 pages on this topic, but these recipes are great to
get started, and you can iterate from there. If you are looking to dive deeper,
we suggest you check out Data Science on AWS by Chris Fregly and Antje
Barth (O’Reilly, 2021).

Workstation Configuration
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/AWSCookbook/ArtificialIntelligence

8.1 Transcribing a Podcast

https://learning.oreilly.com/library/view/data-science-on/9781492079385

Problem
You need to create a text transcription of an MP3-based audio, such as a
podcast.

Solution
Use Amazon Transcribe to generate an English language transcription and
save the results to an S3 bucket (see Figure 8-1).

Figure 8-1. Using Amazon Transcribe with an MP3 file

Prerequisites
S3 bucket

jq CLI JSON processor

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Download a podcast in MP3 format to upload to the S3 bucket:

curl
https://d1le29qyzha1u4.cloudfront.net/AWS_Podcast_Episode_45
3.mp3 \
 -o podcast.mp3

You should see output similar to the following:

 % Total % Received % Xferd Average Speed Time Time
Time Current
 Dload Upload Total Spent
Left Speed
100 29.8M 100 29.8M 0 0 4613k 0 0:00:06 0:00:06
--:--:-- 5003k

NOTE
You can find a list of the file formats supported by Amazon Transcribe in the
documentation.

2. Copy the downloaded podcast to your S3 bucket:

aws s3 cp ./podcast.mp3 s3://awscookbook801-$RANDOM_STRING

You should see output similar to the following:

upload: ./podcast.mp3 to s3://awscookbook801-
<<unique>>/podcast.mp3

https://github.com/AWSCookbook/ArtificialIntelligence
https://oreil.ly/eo3LQ

3. Start a Transcribe transcription job using the AWS CLI:

aws transcribe start-transcription-job \
 --language-code 'en-US' \
 --media-format 'mp3' \
 --transcription-job-name 'awscookbook-801' \
 --media
MediaFileUri=s3://awscookbook801-${RANDOM_STRING}/podcast.mp
3 \
 --output-bucket-name "awscookbook801-${RANDOM_STRING}"

You should see output similar to the following:

{
 "TranscriptionJob": {
 "TranscriptionJobName": "awscookbook-801",
 "TranscriptionJobStatus": "IN_PROGRESS",
 "LanguageCode": "en-US",
 "MediaFormat": "mp3",
 "Media": {
 "MediaFileUri": "s3://awscookbook801-
<<unique>>/podcast.mp3"
 },
 "StartTime": "2021-09-21T22:02:13.312000-04:00",
 "CreationTime": "2021-09-21T22:02:13.273000-04:00"
 }
}

Check the status of the transcription job using the AWS CLI. Wait
until the Transcription Job Status is COMPLETED. This should take a
few minutes:

aws transcribe get-transcription-job \
 --transcription-job-name awscookbook-801 \
 --output text \
 --query TranscriptionJob.TranscriptionJobStatus

Validation checks
Display the results of the Transcribe transcription job in your terminal:

aws s3 cp s3://awscookbook801-$RANDOM_STRING/awscookbook-801.json
- \
 | jq '.results.transcripts[0].transcript' --raw-output

You should see output similar to the following:

This is episode 453 of the US podcast released on June 11, 2021
podcast confirmed. Welcome to the official AWS podcast. Yeah.
Mhm. Hello everyone and welcome back to another episode of a W.
S. Launch.
I'm Nicky, I'm your host. And today I am joined by Nathan Peck
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Transcribing audio is a great way to allow voice recordings to be processed
and analyzed in different ways at scale. Having the ability to easily
transcribe audio files without gathering a large dataset and training your
own AI model will save you time and open up many possibilities.
Converting audio to text also allows you to easily perform natural language
processing (NLP) to gain additional insights from the piece of media.
Here are some things to keep in mind when you are using Transcribe:

Is the language supported?
Do you need to identify speakers in a recording?
Do you need to support streaming audio?

Challenge
Automate the process to trigger when new objects are uploaded to your S3
bucket by using EventBridge.

8.2 Converting Text to Speech

https://github.com/AWSCookbook/ArtificialIntelligence
https://oreil.ly/8NYOB
https://oreil.ly/E38Ch
https://oreil.ly/uhrAr

Problem
You need to generate audio files from text descriptions of products. This
audio will be incorporated in advertisements so must be as human-like and
high quality as possible.

Solution
You will use the neural engine of Amazon Polly to generate MP3s from the
provided text (see Figure 8-2).

Figure 8-2. Text to speech with Amazon Polly

Steps
1. Create an initial sound file of text that you specify:

aws polly synthesize-speech \
 --output-format mp3 \
 --voice-id Joanna \
 --text 'Acme products are of the very highest quality
and lowest price.' \
 products.mp3

You should see output similar to the following:

{
 "ContentType": "audio/mpeg",

 "RequestCharacters": "63"
}

2. Listen to the MP3. Here is an example on macOS CLI:

afplay products.mp3

3. Change to the neural engine:

aws polly synthesize-speech \
 --output-format mp3 \
 --voice-id Joanna \
 --engine neural \
 --text 'Acme products are of the very highest quality
and lowest price.' \
 products-neural.mp3

You will see similar output as you did in step 2.
4. Listen to the MP3. Here is an example on macOS CLI:

afplay products-neural.mp3

5. Add some SSML tags to modify the speech speed:

aws polly synthesize-speech \
 --output-format mp3 \
 --voice-id Joanna \
 --engine neural \
 --text-type ssml \
 --text '<speak>Acme products are of the very highest
quality and <prosody rate="slow">lowest price</prosody>
</speak>' \
 products-neural-ssml.mp3

You will see similar output as you did in steps 2 and 3.
6. Listen to the MP3. Here is an example on macOS CLI:

https://oreil.ly/sdAQe

afplay products-neural-ssml.mp3

NOTE
A list of SSML tags supported by Polly is shown in this article.

Discussion
Having the ability to easily generate lifelike audio from text allows for
many creative uses. You no longer need voice actors to sit and rehearse
recordings. You can now easily incorporate audio into your application.
This can improve your customers’ experience in many ways.
When creating audio with Polly, you should experiment with different
voices and SSML tags (you might even want to create your own voice).
Many of Polly’s voices are available to create Amazon Alexa skills.

Challenge
Create a pronunciation lexicon for Polly to use.

8.3 Computer Vision Analysis of Form Data

Problem
You have a document and need to extract responses from it so that you can
digitally process them.

Solution
You will install and use the Textractor tool provided by AWS to utilize the
forms feature of Amazon Textract. This will pull the values from the form
and associate them with their keys (e.g., Name). See Figure 8-3.

https://oreil.ly/q148r
https://oreil.ly/vsIzj
https://oreil.ly/A0xXZ
https://oreil.ly/TQrQS
https://oreil.ly/zPgXy

Figure 8-3. Analyzing a document with Amazon Textract and the textractor tool

Prerequisite
S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps

https://github.com/AWSCookbook/ArtificialIntelligence

1. In the root of the Chapter 8 repository, cd to the 803-Computer-
Vision-Analysis-of-Handwritten-Form-Data/ directory and follow the
subsequent steps:

cd 803-Computer-Vision-Analysis-of-Handwritten-Form-Data/

2. Copy the provided registration_form.png file (or your own) to the S3
bucket you created:

aws s3 cp ./registration_form.png
s3://awscookbook803-$RANDOM_STRING

You should see output similar to the following:

upload: ./registration_form.png to s3://awscookbook803-
<<unique>>/registration_form.png

3. Analyze the document with Textract and redirect the output to a file:

aws textract analyze-document \
 --document '{"S3Object":
{"Bucket":"'"awscookbook803-${RANDOM_STRING}"'",
"Name":"registration_form.png"}}' \
 --feature-types '["FORMS"]' > output.json

4. Get the Textractor tool from the aws-samples repository on GitHub:

wget https://github.com/aws-samples/amazon-textract-
textractor/blob/master/zip/textractor.zip?raw=true -O
textractor.zip

TIP
Many great AWS samples and tools are available on GitHub. It is a great place to check
often for new ideas and approaches.

5. Unzip the archive:

unzip textractor.zip

6. Create a Python virtual environment (if you don’t already have one
created):

test -d .venv || python3 -m venv .venv

7. Activate the newly created Python virtual environment:

source .venv/bin/activate

8. Install the required Python modules for Textractor:

pip install -r requirements.txt

You should see output similar to the following:

Collecting tabulate
 Downloading tabulate-0.8.9-py3-none-any.whl (25 kB)
Installing collected packages: tabulate
Successfully installed tabulate-0.8.9

9. Install the boto3 module:

pip install boto3

https://github.com/aws-samples

10. Use the tool to analyze the registration form and parse the output:

python textractor.py \
 --documents
s3://awscookbook803-${RANDOM_STRING}/registration_form.png \
 --text --forms

You should see output similar to the following:

**
Total input documents: 1
**

Textracting Document # 1: registration_form.png
===
Calling Textract...
Received Textract response...
Generating output...
Total Pages in Document: 1
registration_form.png textracted successfully.

**
Successfully textracted documents: 1
**

Validation checks
Check out the form data extracted and confidence values:

cat registration_form-png-page-1-forms.csv | column -t -s,

You should see output similar to the following:

Key KeyConfidence Value
ValueConfidence
Average Score 97.0 285
97.0
Name: 96.5 Elwood Blues
96.5

Date 94.5 2/9/2021
94.5
Team Name: 92.0 The Blues Brothers
92.0
Years of Experience 91.5 10
91.5
E-mail Address: 91.0
thebluesbrothers@theawscookbook.com 91.0
Signature 90.5 Elwood Blues
90.5
Date 89.0 2/9/2021
89.0
Number of Team Members 81.0 2
81.0

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Automated document processing opens up many new avenues for
innovation and efficiency for organizations. Instead of having to manually
interpret fields and tables in a document, tools like Textract can be used to
digitize and speed up the process. Now that you are able to associate data
values and fields with each other, additional processing is able to happen
effectively.

Challenge
Print out the blank form provided in the repo. Fill in responses by hand.
Take a photo/scan of the document and analyze it with Textract.

8.4 Redacting PII from Text Using
Comprehend

Problem
You have a document with potential personally identifiable information
(PII) in it. You would like to remove the PII before more processing of the

https://github.com/AWSCookbook/ArtificialIntelligence

document occurs.

Solution
Create sample data and store it in an S3 bucket. Launch an Amazon
Comprehend job to detect and redact PII entities. Finally, view the results
(see Figure 8-4).

Figure 8-4. Redacting PII data from a document with Amazon Comprehend

Prerequisite
S3 bucket with file for analysis and path for output

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a file named assume-role-policy.json with the following

content (file provided in the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {

https://github.com/AWSCookbook/ArtificialIntelligence

 "Effect": "Allow",
 "Principal": {
 "Service": "comprehend.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

2. Create a role for the Comprehend job to use to read and write data
from S3:

aws iam create-role --role-name AWSCookbook804Comprehend \
 --assume-role-policy-document file://assume-role-
policy.json

You should see output similar to the following:

{
 "Role": {
 "Path": "/",
 "RoleName": "AWSCookbook804Comprehend",
 "RoleId": "<<RoldID>>",
 "Arn":
"arn:aws:iam::111111111111:role/AWSCookbook804Comprehend",
 "CreateDate": "2021-09-22T13:12:22+00:00",
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
...

3. Attach the IAM managed policy for AmazonS3FullAccess to the
IAM role:

aws iam attach-role-policy --role-name
AWSCookbook804Comprehend \
 --policy-arn arn:aws:iam::aws:policy/AmazonS3FullAccess

4. Create some sample PII data using Faker (or by hand):

https://faker.readthedocs.io/

pip install faker
faker -r=10 profile > sample_data.txt

5. Copy your sample data to the bucket (file provided in the repository)

aws s3 cp ./sample_data.txt
s3://awscookbook804-$RANDOM_STRING

You should see output similar to the following:

upload: ./sample_data.txt to s3://awscookbook804-
<<unique>>/sample_data.txt

6. Create a start-pii-entities-detection-job with
Comprehend:

JOB_ID=$(aws comprehend start-pii-entities-detection-job \
 --input-data-config
S3Uri="s3://awscookbook804-$RANDOM_STRING/sample_data.txt" \
 --output-data-config
S3Uri="s3://awscookbook804-$RANDOM_STRING/redacted_output/"
\
 --mode "ONLY_REDACTION" \
 --redaction-config
PiiEntityTypes="BANK_ACCOUNT_NUMBER","BANK_ROUTING","CREDIT_
DEBIT_NUMBER", "CREDIT_DEBIT_CVV",
"CREDIT_DEBIT_EXPIRY","PIN","EMAIL","ADDRESS","NAME","PHONE"
,"SSN",MaskMode="REPLACE_WITH_PII_ENTITY_TYPE" \
 --data-access-role-arn
"arn:aws:iam::${AWS_ACCOUNT_ID}:role/AWSCookbook804Comprehen
d" \
 --job-name "aws cookbook 804" \
 --language-code "en" \
 --output text --query JobId)

TIP
You can alternatively use the detect-pii-entities command if you are interested in the
location of PII data in a document. This is helpful if you need to process the PII in a
certain way.

7. Monitor the job until it is COMPLETED; this will take a few minutes:

aws comprehend describe-pii-entities-detection-job \
 --job-id $JOB_ID

You should see output similar to the following:

{
 "PiiEntitiesDetectionJobProperties": {
 "JobId": "<<hash>>",
 "JobName": "aws cookbook 804",
 "JobStatus": "COMPLETED",
 "SubmitTime": "2021-06-29T18:35:14.701000-04:00",
 "EndTime": "2021-06-29T18:43:21.200000-04:00",
 "InputDataConfig": {
 "S3Uri": "s3://awscookbook804-
<<string>>/sample_data.txt",
 "InputFormat": "ONE_DOC_PER_LINE"
 },
 "OutputDataConfig": {
 "S3Uri": "s3://awscookbook804-
<<string>>/redacted_output/<<Account Id>>-PII-
<<hash>>/output/"
 },

Validation checks
When the job is complete, get the location of the outputted data in S3:

S3_LOCATION=$(aws comprehend describe-pii-entities-detection-job
\
 --job-id $JOB_ID --output text \
 --query
PiiEntitiesDetectionJobProperties.OutputDataConfig.S3Uri)

https://oreil.ly/pdrQC

Get the output file from S3:

aws s3 cp ${S3_LOCATION}sample_data.txt.out .

You should see output similar to the following:

download: s3://awscookbook804-
<<unique>>/redacted_output/111111111111-PII-
cb5991dd58105db185a4cc1906e38411/output/sample_data.txt.out to
./sample_data.txt.out

View the output:

cat sample_data.txt.out

You should see output similar to the following. Notice the PII has been
redacted:

{'job': 'Arts development officer', 'company': 'Vance Group',
'ssn': '[SSN]', 'residence':
'[ADDRESS]\[ADDRESS]', 'current_location':
(Decimal('77.6093685'), Decimal('-90.497660')), 'blood_group':
'O-', 'website': ['http://cook.com/', 'http://washington.biz/',
'http://owens.net/',
'http://www.benson.com/'], 'username': 'rrobinson', 'name':
'[NAME]', 'sex': 'M', 'address':
'[ADDRESS]\[ADDRESS]', 'mail': '[EMAIL]', 'birthdate':
datetime.date(1989, 10, 27)}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
PII is closely associated with many security and compliance standards that
you may come across in your career responsibilities. Generally, if you are
responsible for handling PII for your customers, you need to implement

https://github.com/AWSCookbook/ArtificialIntelligence

security mechanisms to ensure the safety of that data. Furthermore, you
may need to detect and analyze the kind of PII you store. While Amazon
Macie can do this at scale within your S3 buckets or data lake, you may
want to detect PII within your application to implement your own checks
and workflows. For example, you may have a user fill out a form and
submit it, and then detect if they have accidentally disclosed specific types
of PII that you are not allowed to store, and reject the upload.
You can leverage Amazon Comprehend to detect this type of information
for you. When you use Comprehend, the predefined feature detection is
backed by detection models that are trained using large datasets to ensure
quality results.

Challenge
Use Comprehend to label the type of PII rather than just redacting it. (This
article provides a hint.)

8.5 Detecting Text in a Video

Problem
You have a video and would like to extract any text from scenes in it for
analysis.

Solution
Upload the video file to S3 and start a text detection job in Amazon
Rekognition Video (see Figure 8-5).

https://aws.amazon.com/macie
https://oreil.ly/u3kJq

Figure 8-5. Using Rekognition Video to detect text in an MP4

Prerequisite
S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Copy the provided sample_movie.mp4 file to the S3 bucket you

created:

aws s3 cp ./sample_movie.mp4
s3://awscookbook805-$RANDOM_STRING

You should see output similar to the following:

upload: ./sample_movie.mp4 to s3://awscookbook805-
utonl0/sample_movie.mp4

https://github.com/AWSCookbook/ArtificialIntelligence

NOTE
Regarding supported video formats, the Amazon Rekognition FAQs states, “Amazon
Rekognition Video supports H.264 files in MPEG-4 (.mp4) or MOV format. If your video
files use a different codec, you can transcode them into H.264 using AWS Elemental
MediaConvert.”

2. Begin the text detection job:

JOB_ID=$(aws rekognition start-text-detection \
 --video '{"S3Object":
{"Bucket":"'"awscookbook805-$RANDOM_STRING"'","Name":"sample
_movie.mp4"}}' \
 --output text --query JobId)

Wait until JobStatus changes from IN_PROGRESS to
SUCCEEDED, and then the results will be displayed:

aws rekognition get-text-detection \
 --job-id $JOB_ID

You should see text similar to the following:

{
 "JobStatus": "SUCCEEDED",
 "VideoMetadata": {
 "Codec": "h264",
 "DurationMillis": 10051,
 "Format": "QuickTime / MOV",
 "FrameRate": 30.046607971191406,
 "FrameHeight": 240,
 "FrameWidth": 320,
 "ColorRange": "LIMITED"
 },
...

Validation checks
Run the command again with this query to get the DetectedText values:

https://aws.amazon.com/rekognition/faqs
https://aws.amazon.com/mediaconvert

aws rekognition get-text-detection \
 --job-id $JOB_ID \
 --query 'TextDetections[*].TextDetection.DetectedText'

You should see text similar to the following:

[
 "COPYRIGHT, 1901",
 "THOMAB A. EDISON.",
 "PATENTED AuOUST 31ST. 1897",
 "COPYRIGHT,",
 "1901",
 "THOMAB",
 "A.",
 "EDISON.",
 "PATENTED",
 "AuOUST",
 "31ST.",
 "1897",

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You used Rekognition to detect text within a video file and saved the output
to a report accessible within the Rekognition service. The output of the text
detection job contains time markers for the text detected, the detected text
itself, and other features. You can also detect text within images, have batch
processing jobs run on large sets of files, and detect other features within
videos and images. This fully managed service allows you to use reliable
detection models without having to train your own.

https://github.com/AWSCookbook/ArtificialIntelligence
https://oreil.ly/Y3pzt

TIP
Rekognition supports Custom Labels, a feature of the service that allows you to train specific
models to recognize particular features in video and images specific to your needs. You can
accomplish this all within the Rekognition service itself for an end-to-end implementation. For
more information, see the support document.

You can integrate Rekognition directly into your application or hardware by
using the AWS SDK for a reliable feature and text detection mechanism.

Challenge
Configure a text detection job to automatically start when a file is uploaded
to a specific S3 bucket by using EventBridge.

8.6 Physician Dictation Analysis Using
Amazon Transcribe Medical and
Comprehend Medical

Problem
You need to build a solution that recognizes medical professional dictation
audio files. The solution needs to be able to categorize things like protected
health information (PHI) for further analysis.

Solution
Use Amazon Transcribe Medical to analyze your audio file. Then, use
Amazon Comprehend Medical to generate the analysis of the physician’s
speech in a medical context (see Figure 8-6).

https://oreil.ly/TDARq

Figure 8-6. Using Transcribe Medical and Comprehend Medical with physician dictations

Prerequisite
An audio file with speech (human or computer-generated) in it that
contains medical jargon

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a JSON file named awscookbook806-template.json with the

parameters specifying your physician’s specialty, language, S3 bucket,
and dictation audio file (file provided in the repository):

{
 "MedicalTranscriptionJobName": "aws-cookbook-806",
 "LanguageCode": "en-US",
 "Specialty": "PRIMARYCARE",
 "Type": "DICTATION",
 "OutputBucketName":"awscookbook806-RANDOM_STRING",
 "Media": {
 "MediaFileUri": "s3://awscookbook806-
RANDOM_STRING/dictation.mp3"
 }
}

https://github.com/AWSCookbook/ArtificialIntelligence

2. Use the sed command to replace the values in the awscookbook806-
template.json file with the RANDOM_STRING value for your S3
bucket:

sed -e "s/RANDOM_STRING/${RANDOM_STRING}/g" \
 awscookbook806-template.json > awscookbook806.json

3. Start a medical transcription job using the JSON file that you created:

aws transcribe start-medical-transcription-job \
 --cli-input-json file://awscookbook806.json

You should see output similar to the following:

{
 "MedicalTranscriptionJob": {
 "MedicalTranscriptionJobName": "aws-cookbook-806",
 "TranscriptionJobStatus": "IN_PROGRESS",
 "LanguageCode": "en-US",
 "Media": {
 "MediaFileUri": "s3://awscookbook806-
<<unique>>/dictation.mp3"
 },
 "StartTime": "2021-07-14T20:24:58.012000-04:00",
 "CreationTime": "2021-07-14T20:24:57.979000-04:00",
 "Specialty": "PRIMARYCARE",
 "Type": "DICTATION"
 }
}

Check the status of the Transcribe Medical job. Wait until it is
COMPLETED:

aws transcribe get-medical-transcription-job \
 --medical-transcription-job-name aws-cookbook-806 \
 --output text \
 --query MedicalTranscriptionJob.TranscriptionJobStatus

4. Get the output from your previous job by downloading the file from
S3:

aws s3 cp s3://awscookbook806-${RANDOM_STRING}/medical/aws-
cookbook-806.json \
 ./aws-cookbook-806.json

You should see output similar to the following:

download: s3://awscookbook806-<<unique>>/medical/aws-
cookbook-806.json to ./aws-cookbook-806.json

5. Display the transcribed speech from the downloaded file:

cat aws-cookbook-806.json | jq .results.transcripts

You should see output similar to the following:

[
 {
 "transcript": "patient jane doe experiencing symptoms of
headache, administered 200 mg ibuprofen
twice daily."
 }
]

NOTE
The resulting JSON file that you downloaded contains time markers for each word that
was transcribed. You can use this information within your application to provide additional
context and functionality.

Validation checks
Start an entities detection job using the Comprehend Medical detect entities
API. This will show the location of things like medical conditions and PHI:

aws comprehendmedical detect-entities-v2 \
 --text "$(cat aws-cookbook-806.json | jq
.results.transcripts[0].transcript | tr -d '"')"

You should see output similar to the following:

{
 "Entities": [
 {
 "Id": 4,
 "BeginOffset": 8,
 "EndOffset": 12,
 "Score": 0.8507962226867676,
 "Text": "jane",
 "Category": "PROTECTED_HEALTH_INFORMATION",
 "Type": "NAME",
 "Traits": []
 },
...

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You were able to use Amazon Transcribe Medical and Amazon
Comprehend Medical to take a physician’s dictation audio file, turn it into
text, and then detect the medical-context entities within the audio file. The
final result provided patient data, symptoms, and medication and dosage
information, which can be extremely useful in building medical
applications for patients and medical professionals. Comprehend Medical
also provides batch analysis and feature detection for multiple types of PHI
and can determine dictation versus patient/physician conversation. With the
advent of telemedicine, these powerful features can be used to provide
immediate transcriptions to patients using app-based medical services to
receive healthcare from medical professionals.

https://github.com/AWSCookbook/ArtificialIntelligence

NOTE
Both of these services you used for the solution are HIPAA compliant. You can confidently build
solutions with these services for medical use cases that need to conform with HIPAA compliance.
For more information on AWS services that conform to compliance standards, see the Services in
Scope web page.

Challenge
Use EventBridge to automate the processing of new objects uploaded to
your S3 bucket.

8.7 Determining Location of Text in an Image

Problem
You need to determine in which quadrant of an image the text “AWS”
appears.

Solution
We’ll use Textract to analyze the image from an S3 bucket and then parse
the output to calculate the location of the text (see Figure 8-7).

Figure 8-7. Using Textractor to analyze output from Amazon Textract

https://oreil.ly/DJi29

Prerequisite
S3 bucket

Preparation
Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Copy the provided book_cover.png file to the S3 bucket you created:

aws s3 cp ./book_cover.png
s3://awscookbook807-$RANDOM_STRING

You should see output similar to the following:

upload: ./book_cover.png to s3://awscookbook807-
<<unique>>/book_cover.png

2. Analyze the file with Textract and output the results to a file called
output.json:

aws textract analyze-document \
 --document '{"S3Object":
{"Bucket":"'"awscookbook807-$RANDOM_STRING"'","Name":"book_c
over.png"}}' \
 --feature-types '["TABLES","FORMS"]' > output.json

Validation checks
Examine the BoundingBox values for the Practical text to find the
location:

jq '.Blocks[] | select(.Text == "Practical") | select(.BlockType
== "WORD") | .Geometry.BoundingBox' output.json

https://github.com/AWSCookbook/ArtificialIntelligence

If the left and top values are both less than 0.5, the word Practical is located
in the top left of the page (see Figure 8-8).
You should see output similar to the following:

{
 "Width": 0.15338942408561707,
 "Height": 0.03961481899023056,
 "Left": 0.06334125995635986,
 "Top": 0.39024031162261963
}

Figure 8-8. Reference BoundingBox coordinate diagram

NOTE
Per the Textract Developer Guide, each BoundingBox property has a value between 0 and 1.
The value is a ratio of the overall image width (applies to left and width) or height (applies to
height and top). For example, if the input image is 700 × 200 pixels, and the top-left coordinate of
the bounding box is (350,50) pixels, the API returns a left value of 0.5 (350/700) and a top value
of 0.25 (50/200).

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You may have used traditional optical character recognition (OCR) software
in the past when you have scanned physical documents and used the OCR
output to get text-based output of the content. Amazon Textract takes this a
step further using ML models for even more accurate text recognition with
additional feature and context information you can use in your applications.
You were able to determine the location of a string of text within an image
by using this recipe. You could use similar functionality in Textract to
forward certain portions of text from images (or scanned forms) to different
teams for human review or automating sending certain parts of forms to
different microservices in your application for processing or persisting.
Application developers do not need to train a model before using Textract;
Textract comes pretrained with many datasets to provide highly accurate
character recognition.

Challenge
Determine the location of two different words in an image and calculate the
distance between them.

https://oreil.ly/Xh9Bk
https://github.com/AWSCookbook/ArtificialIntelligence
https://aws.amazon.com/textract
https://oreil.ly/X07aq

Chapter 9. Account
Management

9.0 Introduction
While the previous chapters have focused on deploying and configuring
resources inside your AWS account, we want to provide some recipes that
show examples of what you can do at the whole account level.
As you continue to scale your AWS usage, you will find it useful to have
tools and services available to ease the burden of management, especially if
you start to add additional AWS accounts to your environment. We are
seeing more and more people choose to use AWS accounts as “containers”
for their specific applications. Some companies provide individual accounts
for production and nonproduction workloads to business units within a
company; some even set up “shared services” accounts to provide internal
services to business units within a company to share common resources
across the many accounts they may be managing. Your AWS account spans
Regions to give you global capabilities, as shown in Figure 9-1.

https://oreil.ly/INVpe

Figure 9-1. AWS account perspective

We like to think of the tools and services that AWS provides as building
blocks that you can use to customize your cloud environment to meet your
specific needs. Some of these can be used at an account level to give you
more management capabilities over your environments as you scale (i.e.,
adding additional team members or adding additional AWS accounts). You
can organize and consolidate billing for many accounts by using AWS
Organizations and provide centralized access management through AWS
Single Sign-On, both of which you will explore in the recipes in this
chapter, in addition to some recipes to help you configure and maintain a
secure environment at the account level.

TIP
You should always keep an eye on the AWS Prescriptive Guidance website for the most up-to-date
guidance on account-level capabilities and recommendations.

https://aws.amazon.com/organizations
https://aws.amazon.com/single-sign-on
https://aws.amazon.com/prescriptive-guidance

Workstation Configuration
You will need a few things installed to be ready for the recipes in this
chapter.

General setup
Follow the “General workstation setup steps for CLI recipes” to validate
your configuration and set up the required environment variables. Then,
clone the chapter code repository:

git clone https://github.com/AWSCookbook/AccountManagement

9.1 Using EC2 Global View for Account
Resource Analysis

Problem
You have been presented with an AWS account for a client. You need to
export a CSV file containing all provisioned compute instances, disk
volumes, and network resources across all Regions within an AWS account.

Solution
Navigate to EC2 Global View in the AWS Console. Export a CSV of
resources in your account (see Figure 9-2).

Figure 9-2. Generating a CSV of resources with EC2 Global View

Prerequisite
AWS account with resources deployed

Steps
1. In the AWS Console, search for and then click EC2 Global View, as

shown in Figure 9-3.

Figure 9-3. Searching for Global View

2. Navigate to the “Global search” menu and click Download CSV (see
Figure 9-4).

Figure 9-4. Downloading a CSV from Global View

Validation checks
Open the downloaded CSV file in your favorite editor on your workstation.
From there, you should be able to scroll through resources in your AWS
account.

Discussion
You may find yourself often working in new AWS accounts as part of your
job. If you are in a lab environment or a hackathon, using Global View is a
great way for you to get an idea of what an AWS account contains. Before
you begin to make changes in an account, it is important to take stock of
what is already deployed across all Regions. Having this knowledge will
allow you to ensure that you don’t mistakenly cause any outages.
While you should use tools like AWS Config and the AWS Billing console
for inspecting the configuration of resources inside your AWS account and
keeping an eye on your bill, respectively, it is good to know that you can
easily generate a list of EC2 and VPC resources. Routine CSV exports at
different times can be used to provide a point-in-time snapshot.

Challenge

https://aws.amazon.com/config

Use the Global search functionality to list all default VPC security groups.
You can then double-check inbound rules for extraneous permissions.

9.2 Modifying Tags for Many Resources at
One Time with Tag Editor

Problem
You need to add a tag to multiple resources in your AWS account where it
doesn’t already exist.

Solution
Launch the Tag Editor in the AWS Console. Find all resources that have an
Environment key with nonexisting value. Add the tag (see Figure 9-5).

Figure 9-5. Adding a tag to multiple resources

Prerequisite
AWS account with resources deployed and tagged

Steps

1. In the AWS Console, search for Tag Editor and then click Resource
Groups & Tag Editor, as shown in Figure 9-6.

Figure 9-6. Searching for Tag Editor in the AWS Console

2. From the lefthand menu, click Tag Editor under the Tagging heading
(see Figure 9-7).

Figure 9-7. Launching Tag Editor

3. Set “Resource types” to “All supported resource types,” enter a Tag
key named Environment, use the drop-down menu to select “(not

tagged)” for the value, and then click “Search resources” (see
Figure 9-8).

Figure 9-8. Launching Tag Editor

4. Wait a few moments for the search to complete. Then view the results,
select the resources that you wish to tag, and click “Manage tags of
selected resources” (see Figure 9-9).

Figure 9-9. Viewing search results in Tag Editor

5. Enter a “Tag key” named Environment, enter a “Tag value” Dev,
and click “Review and apply tag changes” (see Figure 9-10).

Figure 9-10. Tagging multiple resources with Tag Editor

6. In the pop-up window, confirm your selection by clicking “Apply
changes to all selected” (see Figure 9-11).

Figure 9-11. Confirming changes to apply to resources in Tag Editor

Validation checks
Use the CLI to confirm that all EC2 instances have an Environment tag:

aws ec2 describe-instances \
 --output text \
 --query 'Reservations[].Instances[?!not_null(Tags[?Key ==
`Environment`].Value)] | [].[InstanceId]'

You should see no output. You can also repeat step 3 to confirm that all
resources now have an Environment tag.

Discussion
A tag consists of a key and a value and can be applied to many resources at
the time of creation and almost all resources after creation. You should
implement your own tagging strategy as early as possible in your cloud
journey. This ensures that you can identify the growing number of resources
you deploy over the lifespan of your AWS account. Tags are useful for
auditing, billing, scheduling updates, delegating access to resources with
specific tags, and so on.
Cost allocation tags can help you make sense of your AWS bill, to see
exactly which resources are contributing to certain portions of your bill. In
addition to the cost allocation report, you can filter by tags interactively via
Cost Explorer in the AWS Billing console to analyze and visualize your
costs.
The Tag Editor can help you search and perform batch updates for tags
across your AWS resources. Say you might have deployed many resources
but forgot to tag them all, or you have historically not used tags and would
like to start. You can batch select many resources within the Tag Editor
(across all Regions or within a selected set of Regions) and perform these
updates to ease the burden of implementing a tagging strategy.
While not an exhaustive list, here are some good tags to include as part of a
tagging baseline:

CreatedBy

The User or Identity that created the resource

Application

The service or application of which the resource is a component

CostCenter

Useful for billing identification and to help implement a chargeback
model for shared AWS account usage

CreationDate

https://oreil.ly/YvgIT

The date the resource was created

Contact

An email address for the team or individual in case of any issues with
the resource (also helpful for configuring automated alerts)

MaintenanceWindow

Useful for defining a window of time that the resource is allowed to not
be available in case of patching, updates, or maintenance

DeletionDate

Useful for development or sandbox environments so that you know
when it may be safe to delete a resource

Challenge
Apply a baseline set of tags to your AWS resources and begin to enforce the
tags with a tag policy by enabling AWS Organizations.

9.3 Enabling CloudTrail Logging for Your
AWS Account

Problem
You just set up your AWS account and want to retain an audit log of all
activity for all Regions in your account.

Solution
Configure an S3 bucket with a bucket policy allowing CloudTrail to write
events. Enable CloudTrail for all Regions in your account and configure
CloudTrail to log all audit events to the S3 bucket, as shown in Figure 9-12.

https://oreil.ly/7UePx
https://oreil.ly/Dg3I6

Figure 9-12. Turning on logging for CloudTrail

Prerequisite
S3 bucket for logging

Preparation

Follow the steps in this recipe’s folder in the chapter code repository.

Steps
1. Create a file called cloudtrail-s3policy-template.json (file provided in

the repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "S3CloudTrail",
 "Effect": "Allow",
 "Principal": {"Service": "cloudtrail.amazonaws.com"},
 "Action": "s3:GetBucketAcl",
 "Resource": "arn:aws:s3:::BUCKET_NAME"
 },
 {
 "Sid": "S3CloudTrail",
 "Effect": "Allow",
 "Principal": {"Service": "cloudtrail.amazonaws.com"},
 "Action": "s3:PutObject",
 "Resource":
"arn:aws:s3:::BUCKET_NAME/AWSLogs/AWS_ACCOUNT_ID/*",
 "Condition": {"StringEquals": {"s3:x-amz-acl":
"bucket-owner-full-control"}}
 }
]
}

2. Replace the values in the cloudtrail-s3policy-template.json file with
values from your deployment. Here is a way to do it quickly with
sed:

sed -e "s/BUCKET_NAME/awscookbook903-$RANDOM_STRING/g" \
 -e "s|AWS_ACCOUNT_ID|${AWS_ACCOUNT_ID}|g" \
 cloudtrail-s3policy-template.json > cloudtrail-
s3policy.json

3. Add the S3 bucket policy to your S3 bucket:

aws s3api put-bucket-policy \

https://github.com/AWSCookbook/BigData

 --bucket awscookbook903-$RANDOM_STRING \
 --policy file://cloudtrail-s3policy.json

4. Enable CloudTrail for all AWS Regions and configure the S3 bucket
to send logs to the following:

aws cloudtrail create-trail --name AWSCookbook903Trail \
 --s3-bucket-name awscookbook903-$RANDOM_STRING \
 --is-multi-region-trail

5. Start the logging of your CloudTrail trail:

aws cloudtrail start-logging --name AWSCookbook903Trail

NOTE
More information can be found on AWS for the required S3 bucket policy for CloudTrail
logging.

Validation checks
Describe the trail:

aws cloudtrail describe-trails --trail-name-list
AWSCookbook903Trail

You should see output similar to the following:

{
 "trailList": [
 {
 "Name": "AWSCookbook903Trail",
 "S3BucketName": "awscookbook903-<<string>>",
 "IncludeGlobalServiceEvents": true,
 "IsMultiRegionTrail": true,
 "HomeRegion": "us-east-1",
 "TrailARN": "arn:aws:cloudtrail:us-east-1:<<Account

https://oreil.ly/jhcXQ

Id>>:trail/AWSCookbook903Trail",
 "LogFileValidationEnabled": false,
 "HasCustomEventSelectors": false,
 "HasInsightSelectors": false,
 "IsOrganizationTrail": false
 }
]
}

Get the trail status:

aws cloudtrail get-trail-status --name AWSCookbook903Trail

You should see output similar to the following:

{
 "IsLogging": true,
 "StartLoggingTime": "2021-06-28T21:22:56.308000-04:00",
 "LatestDeliveryAttemptTime": "",
 "LatestNotificationAttemptTime": "",
 "LatestNotificationAttemptSucceeded": "",
 "LatestDeliveryAttemptSucceeded": "",
 "TimeLoggingStarted": "2021-06-29T01:22:56Z",
 "TimeLoggingStopped": ""
}

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
You can use CloudTrail to log and continuously monitor all events in your
AWS account. Specifically, events refer to all API activity against the AWS
APIs. These include actions that you (and all authenticated entities) take in
the console, via the command line, API activity from your applications, and
other AWS services performing actions (automatic actions like autoscaling,
EventBridge triggers, replication, etc.).

https://github.com/AWSCookbook/Security

TIP
You can query your logs in place on S3 using Amazon Athena if you are looking for specific
events, and you can index your logs with Amazon OpenSearch to perform complex queries
against your historical data.

You should use CloudTrail from a security standpoint, but you can also use
it from an application debugging standpoint. Say you have an event-driven
application that triggers a Lambda function when you upload files to an S3
bucket (see Recipe 5.7). If your IAM policy is incorrect for the Lambda
function invocation, you will be able to see the Deny in the CloudTrail
logs. This is helpful for application developers and architects who are
building and designing event-driven applications powered by Amazon
EventBridge.

Challenge
Configure an organizational trail if you have an AWS Organization with
multiple accounts. (See Recipe 9.6 to set up an AWS Organization.)

9.4 Setting Up Email Alerts for Root Login

Problem
You want to be notified by email when the root user logs into an AWS
account.

Solution
Create an SNS topic and subscribe to it. Then create an Amazon
EventBridge rule with a pattern that searches for root logins and triggers the
SNS topic, as shown in Figure 9-13.

https://oreil.ly/gdkRW
https://oreil.ly/4qAbK

Figure 9-13. Logging and alerting for root logins

Prerequisite
AWS account with CloudTrail enabled (see Recipe 9.3)

Steps
1. Create an SNS topic:

TOPIC_ARN=$(aws sns create-topic \
 --name root-login-notify-topic \
 --output text --query TopicArn)

2. Subscribe to the SNS topic. This will send a confirmation email to the
address you specify:

aws sns subscribe \
 --topic-arn $TOPIC_ARN \
 --protocol email \
 --notification-endpoint your-email@example.com

3. Locate the confirmation email in your inbox that AWS sent and click
“Confirm subscription.”

mailto:your-email@example.com

In the root of this chapter’s repository, cd to the 904-Setting-Up-Email-
Alerts-for-Root-Login directory and follow the subsequent steps.

4. Now create an assume-role policy JSON statement called assume-
role-policy.json to use in the next step (this file is provided in the
repository):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "events.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

5. Create the role and specify the assume-role-policy.json file:

aws iam create-role --role-name AWSCookbook904RuleRole \
 --assume-role-policy-document \
 file://assume-role-policy.json

6. Now attach the managed AmazonSNSFullAccess IAM policy to
the IAM role:

aws iam attach-role-policy \
 --policy-arn
arn:aws:iam::aws:policy/AmazonSNSFullAccess \
 --role-name AWSCookbook904RuleRole

7. Create a file called event-pattern.json for AWS Console sign-in events
(file provided in the repository):

{
 "detail-type": [

 "AWS API Call via CloudTrail",
 "AWS Console Sign In via CloudTrail"
],
 "detail": {
 "userIdentity": {
 "type": [
 "Root"
]
 }
 }
}

8. Create an EventBridge rule that monitors the trail for root login
activity:

aws events put-rule --name "AWSCookbook904Rule" \
 --role-arn
"arn:aws:iam::$AWS_ACCOUNT_ID:role/AWSCookbook904RuleRole" -
-event-pattern file://event-
pattern.json

9. Set the target for your EventBridge rule to your SNS topic:

aws events put-targets --rule AWSCookbook904Rule \
 --targets "Id"="1","Arn"="$TOPIC_ARN"

Validation checks
Log in to your AWS account using your root account, wait a few minutes,
and check your email for a message from SNS.

Cleanup
Follow the steps in this recipe’s folder in the chapter code repository.

Discussion
Setting up an alert to notify you on root user sign-ins is a detective
mechanism you can layer into your security strategy to keep aware of
unwelcome activity within your account. This method is a cost-effective
solution to monitor your AWS account for unintended access via the root

https://github.com/AWSCookbook/Security

user. Since the root user is the most powerful and privileged identity (and
should be used only for specific infrequent tasks), it is important to know
when it is accessed.

NOTE
In some cases, the root user is needed to perform specific privileged actions and tasks within an
AWS account. For a list of these actions requiring the root user, refer to the AWS support
document.

Challenge
Add another EventBridge rule that notifies the same SNS topic when the
root password is changed (here is a hint).

9.5 Setting Up Multi-Factor Authentication for
a Root User

Problem
You need to enable multi-factor authentication for the root user of your
AWS account.

Solution
Log in to your AWS account with your root user credentials. Navigate to
the IAM console and enable multi-factor authentication using a U2F-
compatible hardware device or a Time-Based One-Time Password (TOTP)–
compliant virtual device (see Figure 9-14).

https://oreil.ly/NvidX
https://oreil.ly/vzvwz
https://oreil.ly/TtQtd

Figure 9-14. Enabling MFA for the root user in your AWS account

Steps
1. Log in to the AWS Console by using the email address associated

with your root user. You can reset the password for the root user by
using the “Forgot password” link displayed after you enter the root
user email address; click Next. The login dialog you should see is
shown in Figure 9-15.

https://console.aws.amazon.com/

Figure 9-15. Selecting the root user login option

TIP
Since you will log in with the root user infrequently, you do not need to store the password
for the user once you enable MFA. You can reset the password each time you need to
access the account; take care to secure access to the mailbox associated with your root
user.

2. Once you are logged in to the AWS Console, select My Security
Credentials from the top right of the user interface, as shown in
Figure 9-16.

https://oreil.ly/ar0H9
https://oreil.ly/z5xsh

Figure 9-16. Navigating to the My Security Credentials menu

3. Expand the “Multi-factor authentication” pane on the Your Security
Credentials page within the IAM console and click the Activate MFA
button. Choose the type of device you will use and click Continue (see
Figure 9-17).

WARNING
If you use a software-based password manager utility to store your virtual MFA device
information, do not store your root user password in that same password manager. If your
password manager utility or vault is compromised, your second factor and password
together give the ability to access your AWS account. Similarly, the password information
for your email account should not be stored in the same place as your virtual MFA device,
since the root user password-reset procedure can be performed successfully with access to
the mailbox associated with your root user.

https://oreil.ly/VVL9g

Figure 9-17. Selecting a virtual MFA device

4. Follow the prompts to either display a QR code that you can scan with
your virtual device or plug in your hardware token and follow the
prompts. Once you enter the code, you will see a window indicating
that you have completed the MFA setup (see Figure 9-18).

Figure 9-18. Confirmation of MFA device setup

TIP
You can print out a copy of the QR code displayed and keep this in a physically secure
location as a backup in case you lose access to your virtual MFA device.

Validation checks

Sign out of your AWS account and sign back in with the root user. Enter the
code generated by your virtual device (or plug in your hardware token) and
complete the login process.

Cleanup
You should always keep MFA enabled for your root user. If you would like
to disable the MFA device associated with your root user, follow the steps
for deactivating the device.

Discussion
The root user is the most powerful and privileged identity of an AWS
account. The username is an email address that you configure when you
first establish your AWS account, and password-reset requests can be made
from the AWS Console or by contacting AWS support. If your email
account is compromised, a malicious actor could request a reset of your root
account password and gain access to your account. The root user should
always be protected with a second factor of authentication to prevent
unauthorized access to your account. Since the root user is needed on only
rare occasions, you should never use it for routine tasks.

TIP
You need to enable IAM user and role access to the Billing console. You can follow the AWS
steps to perform that action and further reduce your dependency on using the root user for tasks.

It is extremely important to configure an IAM user (or set up federated
access using ADFS with IAM, SAML with IAM, or AWS Single Sign-On)
rather than use the root user to log in to your AWS account for your routine
usage. AWS recommends immediately creating an administrative IAM user
as one of the first things you do when you open an AWS account, shortly
after you enable MFA for the root user. For a scalable approach, you can
follow Recipe 9.6 to enable and use AWS Single Sign-On for your own
(and delegated) access requirements.

https://oreil.ly/pvpVw
https://oreil.ly/qNtiE
https://oreil.ly/Em4TW
https://oreil.ly/DVPbZ
https://oreil.ly/MuSdE

Challenge
Configure MFA protection for other IAM roles (using trust policies) in your
account (here is a hint).

9.6 Setting Up AWS Organizations and AWS
Single Sign-On

Problem
You need a scalable way to centrally manage usernames and passwords to
access your AWS accounts.

Solution
Enable AWS Organizations, configure AWS Single Sign-On, create a
group, create a permission set, and create a user in the AWS SSO directory
for you to use, as shown in Figure 9-19.

https://oreil.ly/e8YMQ

Figure 9-19. AWS SSO view of permissions and users

Steps

1. Navigate to AWS Organizations in the AWS Console and click
“Create an organization.”

TIP
AWS Organizations provides many features that enable you to work with multiple AWS
accounts at scale. For more information, see the AWS Organizations documentation.

2. The organization creation will trigger an email to be sent to the email
address associated with the root user of your account. Confirm the
creation of the organization by clicking the “Verify your email
address” button.

3. Navigate to the AWS SSO console in your Region and click the
Enable SSO button.

NOTE
The initial configuration of AWS SSO uses a local directory for your users. You can
federate to an existing user directory you may have, like Active Directory or a SAML
provider. For information on configuring federation, the user guide for AWS SSO provides
details.

4. Go to the Groups portion of the SSO console and click “Create
group.” Enter the required Group name and click Create, as shown in
Figure 9-20.

https://console.aws.amazon.com/organizations
https://oreil.ly/Wdaa4
https://console.aws.amazon.com/singlesignon
https://oreil.ly/PeusI

Figure 9-20. Creating a group in AWS SSO

5. Go to the Users portion of the SSO console and select “Add user.”
Enter the information required in the fields, add the user to the group
you created, and select Create. You can have the AWS SSO console
generate the initial password for you or send an email to the address
provided in the required “Email address” field. Assign the user to the
group that you created in step 4 on the second page of the “Add user”
wizard (see Figure 9-21).

Figure 9-21. Creating a user in AWS SSO

6. Go to the AWS Accounts portion of the SSO console (in the left
navigation menu of the console), choose the “Permission sets” tab,
and select “Create permission set.” Choose the “Use an existing job
function policy” option and select PowerUserAccess (see
Figure 9-22).

Figure 9-22. Creating a permission set in AWS SSO

7. To assign the permission set to the group you created for your AWS
account, click the AWS accounts link in the left navigation menu,
choose the “AWS organization” tab, select your AWS account from
the list of accounts, and click “Assign users.” Click the Groups tab

and choose the group that you added your user to in step 4, as shown
in Figure 9-23. Click “Next: Permission sets.”

Figure 9-23. Adding a group to an assignment

8. Select the permission set you created in step 6 and click Finish (see
Figure 9-24).

Figure 9-24. Assigning a permission set in AWS SSO

NOTE
When you click Finish, members of this group can access the AWS account you specified
using with permissions of the PowerUserAccess IAM policy. AWS SSO provisions a
role that can be assumed in your AWS account for this purpose. Do not modify this role
via IAM in your AWS account, or the permission set will not be able to be used through
AWS SSO.

Validation checks

Go to the URL provided on the AWS SSO console dashboard page and log
in with the username and password of the user that you created in step 5.
Choose either “Management console” or “Command line or programmatic
access” to gain PowerUserAccess to your AWS account.

TIP
The default URL is generated when you first enable AWS SSO. You can create a customized URL
for your own purposes by clicking the Customize link next to the default URL in the SSO console.

Cleanup
Go to the AWS SSO console and select Settings from the left navigation
menu. Scroll down to the bottom of the settings page and select “Delete
AWS SSO Configuration.” Confirm the deletion by selecting the
checkboxes and clicking “Delete AWS SSO.”
Go to AWS Organizations, select your organization, open the settings for
your organization, and select “Delete organization.” You will need to verify
the organization ID and confirm the deletion of the organization from the
email address associated with the root user of your AWS account.

Discussion
When you enable AWS Organizations, the account where you initially
create your organization is known as the management account. While you
enabled AWS Organizations so that you could use AWS Single Sign-On in
this recipe, it primarily exists for governing, organizing, and managing
AWS accounts at scale. Some account management capabilities that you
might be interested in include, but are not limited to, these:

Consolidating billing for multiple AWS accounts
Managing group accounts using organizational units (OUs)
Applying service control policies (SCPs) to individual accounts or OUs

https://oreil.ly/UTrvA
https://oreil.ly/ZLn6v
https://oreil.ly/DeR3h

Centralizing policies for tagging and backups for all accounts within
your organization
Sharing resources across accounts using Resource Access Manager
(RAM)

AWS Organizations and AWS SSO are free to enable and provide a scalable
way for you to begin to manage AWS accounts and user access to your
entire AWS environment. As a best practice, using the management account
for management functions only (and not running workloads) is a pattern
you should adopt. Creating specific AWS accounts for your production and
nonproduction workloads that are members of your AWS Organization
helps you isolate your workloads and reduce blast radius, delegate access,
manage your billing, and so on.

TIP
These concepts begin to define the concept of a landing zone. Rather than build your own, you
can use AWS Control Tower to configure a fully managed landing zone. There are advantages of
using Control Tower when you plan to scale your AWS usage beyond just a few accounts.

AWS Single Sign-On provides a secure and scalable way to manage user
access to your AWS accounts. You can integrate with an external identity
provider (IdP) or use the built-in directory within AWS SSO, depending on
how many users you need to manage and if you already have an external
user directory.
When you successfully authenticate with AWS SSO, you are presented with
a choice of access levels defined by permission sets. Permission sets use an
IAM policy definition that SSO uses to manage a role, which you can
assume upon successful login. AWS provides permission sets within SSO
that align with common job functions, but you can also create your own
custom permission sets by writing IAM policy statements and saving them
as a permission set. A temporary session is created once you choose your
access level into an account. You can use the session within the AWS
Console, or via the command line with the temporary access key ID, secret

https://oreil.ly/4s2Nx
https://oreil.ly/eiNlp
https://oreil.ly/rZ02g
https://oreil.ly/X9vg1
https://oreil.ly/DzWXI
https://oreil.ly/t3wOC
https://oreil.ly/Uz8BT

access key, and session token variables, or by using the AWS CLI v2 to
authenticate with SSO from the command line. You can adjust the length of
the session duration within the AWS SSO console.
Security around the access to your AWS environments should be your top
priority, and as you scale the number of users and accounts, and level of
access delegated, this becomes a challenge. AWS SSO gives you a
mechanism to implement security at scale for your AWS environments.
Since the session you initiate with your account via AWS SSO is temporary,
you do not need to create long-lived IAM access keys to use in your
command-line environment, which is one less secret to have to rotate and
manage. You can also use multi-factor authentication with AWS SSO and
require MFA for login.

Challenge 1
Connect AWS SSO to an external identity provider for an existing IdP-like
Active Directory or Okta.

Challenge 2
Apply a service control policy (SCP) to limit the Regions you can use
within your AWS account.

https://oreil.ly/Uz8BT
https://oreil.ly/qLcUl
https://oreil.ly/nXfAi
https://oreil.ly/bk0L7
https://oreil.ly/Ra2r6
https://oreil.ly/6KWR4

Appendix. Fast Fixes

These useful small bits of code will help you save time and get the most out
of AWS.
Set your AWS_ACCOUNT_ID to a bash variable:

export AWS_ACCOUNT_ID=$(aws sts get-caller-identity \
--query Account --output text)

Get the most recently created CloudWatch log group name:

aws logs describe-log-groups --output=yaml \
--query 'reverse(sort_by(logGroups,&creationTime))[:1].
{Name:logGroupName}'

Tail the logs for the CloudWatch group:

aws logs tail <<LOGGROUPNAME>> --follow --since 10s

Delete all log groups that match a text pattern and prompt yes/no for
confirmation:

aws logs describe-log-groups | \
jq ".logGroups[].logGroupName" | grep -i <<pattern>> | \
xargs -p -I % aws logs delete-log-group --log-group-name %

Stop all running instances for your current working Region (H/T: Curtis
Rissi):

aws ec2 stop-instances \
--instance-ids $(aws ec2 describe-instances \
--filters "Name=instance-state-name,Values=running" --query

"Reservations[].Instances[].[InstanceId]"
--output text | tr '\n' ' ')

Determine the user making CLI calls:

aws sts get-caller-identity --query UserId --output text

Generate YAML input for your CLI command and use it:

aws ec2 create-vpc --generate-cli-skeleton yaml-input >
input.yaml
#Edit input.yaml - at a minimum modify CidrBlock, DryRun,
ResourceType, and Tags
aws ec2 create-vpc --cli-input-yaml file://input.yaml

List the AWS Region names and endpoints in a table format:

aws ec2 describe-regions --output table

Find interface VPC endpoints for the Region you are currently using:

aws ec2 describe-vpc-endpoint-services \
--query ServiceDetails[*].ServiceName

Populate data into a DynamoDB table:

aws ddb put table_name '[{key1: value1}, {key2: value2}]'

Determine the current supported versions for a particular database engine
(e.g., aurora-postgresql):

aws rds describe-db-engine-versions --engine aurora-postgresql \
--query "DBEngineVersions[].EngineVersion"

Delete network interfaces associated with a security group and prompt for
each delete (answer yes/no to delete or skip):

aws ec2 describe-network-interfaces \
--filters Name=group-id,Values=$SecurityGroup \
--query NetworkInterfaces[*].NetworkInterfaceId \
--output text | tr '\t' '\n' | xargs -p -I % \
aws ec2 delete-network-interface --network-interface-id %

Find your default VPC (if you have one) for a Region:

aws ec2 describe-vpcs --vpc-ids \
--query 'Vpcs[?IsDefault==`true`]'

Enable encryption by default for new EBS volumes in a Region:

aws ec2 enable-ebs-encryption-by-default

List all AWS Regions:

aws ssm get-parameters-by-path \
--path /aws/service/global-infrastructure/regions \
--output text --query Parameters[*].Name | tr "\t" "\n"

List all AWS services:

aws ssm get-parameters-by-path \
--path /aws/service/global-infrastructure/services \
--output text --query Parameters[*].Name \
| tr "\t" "\n" | awk -F "/" '{ print $6 }'

List all services available in a region (e.g., us-east-1):

aws ssm get-parameters-by-path \
--path /aws/service/global-infrastructure/regions/us-east-
1/services \

--output text --query Parameters[*].Name | tr "\t" "\n" \
| awk -F "/" '{ print $8 }'

List all Regions that have a particular service available (e.g., SNS):

aws ssm get-parameters-by-path \
--path /aws/service/global-infrastructure/services/sns/regions \
--output text --query Parameters[*].Value | tr "\t" "\n"

Create a presigned URL for an object in S3 that expires in a week:

aws s3 presign s3://<<BucketName>>/<<FileName>> \
--expires-in 604800

Find Availability Zone IDs for a Region that are consistent across accounts:

aws ec2 describe-availability-zones --region $AWS_REGION

Set the Region by grabbing the value from an EC2 instance’s metadata:

export AWS_DEFAULT_REGION=$(curl --silent
http://169.254.169.254/latest/dynamic/instance-
identity/document \
| awk -F'"' ' /region/ {print $4}')

Index

A

Access Analyzer
list of services supported, Discussion
using to generate IAM policy based on CloudTrail activity, Solution

access points (S3), configuring application-specific access to buckets with,
Problem-Challenge
access policies for common job functions, Steps

creating policy for secret access, Steps

account management, Introduction-Challenge 2
enabling CloudTrail logging for AWS account, Problem-Challenge
modifying tags for many resources at one time with Tag Editor, Problem-
Challenge
setting AWS ACCOUNT ID to bash variable, Fast Fixes
setting up AWS Organization and AWS Single Sign-On, Problem-
Challenge 2
setting up email alerts for root login, Problem-Challenge
setting up multi-factor authentication for root user in, Problem-Challenge
using EC2 Global View for account resource analysis, Problem-
Challenge

administrative access for routine development tasks, not recommended,
Discussion
administrative capabilities, delegating for IAM using permissions
boundaries, Problem-Challenge
administrative IAM user, Discussion
AI/ML, Introduction-Challenge

computer vision analysis of form data, Problem-Challenge
converting text to speech, Problem-Challenge
detecting text in a video, Problem-Challenge
determining location of text in an image, Problem-Challenge
physician dictation analysis, Problem-Discussion
redacting PII from text using Comprehend, Problem-Challenge
transcribing a podcast, Problem-Challenge

ALBs (see Application Load Balancers)
alerts (email) for root login, setting up, Problem-Challenge
Amazon Certificate Manager (ACM), Discussion
Amazon Cloud Watch (see Cloud Watch)
Amazon Comprehend, using to redact PII from text, Problem
Amazon ECS (see ECS)
Amazon Elastic Cloud Compute (see EC2)
Amazon Elastic Kubernetes Service (Amazon EKS), Introduction

(see also EKS)

Amazon Lightsail (see Lightsail, deploying containers with)
Amazon Machine Image (AMI), AWS Backup handling process of
building, Discussion
Amazon Managed Service for Prometheus, Introduction
Amazon OpenSearch, Discussion
Amazon Polly, converting text to speech, Problem-Challenge
Amazon Rekognition Video, using to detect text in a video, Problem-
Challenge
Amazon Textract and textractor tool

determining location of text in an image, Problem-Challenge
using for computer vision analysis of form data, Solution-Challenge

Amazon Transcribe Medical and Amazon Comprehend Medical, using to
analyze physician dictation, Problem-Discussion
Amazon Transcribe, using with MP3 file, Solution-Challenge
AmazonDynamoDBFullAccess policy, Validation checks, Steps
AmazonEC2ReadOnlyAccess policy, Steps
AmazonS3ReadOnlyAccess policy, Steps
AmazonSSMManagedInstanceCore policy, Solution, Steps
Application Load Balancers (ALBs)

configuring ALB to invoke Lambda function, Problem-Challenge 2
creating new ALB target group to use as Green target with CodeDeploy,
Steps
redirecting HTTP traffic to HTTPS with, Problem-Challenge

Archive Access storage tier, Discussion
ARN (Amazon Resource Names)

finding for ECS task, Validation checks
retrieving ARN for user, Steps

artificial intelligence (see AI/ML)
AssumeRole API, Validation checks
AssumeRole policy, Validation checks
assuming a role, Validation checks
Athena service

querying files on S3 with, Problem-Challenge
querying logs in place on S3 with, Discussion

audio, transcribing to text, Problem-Challenge
auditing session activity, Discussion
Aurora Serverless

creating PostgreSQL database, Problem-Challenge
enabling REST access to, using RDS Data API, Problem-Challenge

authentication
IAM, using with RDS database, Problem-Challenge
multi-factor, Discussion

requiring in AssumeRole policies, Discussion
setting up for root user, Problem-Challenge

authorization tokens, Steps
AutoPause, Steps
Availability Zones (AZs), Discussion

ENI in, Discussion
finding AZ IDs for Region that is consistent across accounts, Fast Fixes
NAT gateways in, Discussion
subnets in a VPC, spreading across AZs, Discussion

available state for VPC, verifying, Validation checks
AWS ACCOUNT ID, setting to bash variable, Fast Fixes
AWS account management (see account management)
AWS Backup, Discussion

creating and restoring EC2 backups to another Region using, Problem-
Challenge

AWS Backup Managed Policy, Steps
AWS CLI

automating process of token retrieval, Discussion
configuring credentials for, Validation checks
determining user making calls, Fast Fixes
generating Yaml input for command, Fast Fixes
installing Lightsail Control plugin for, Prerequisite
starting Transcribe transcription job, Steps

AWS Cloud Map, Introduction

AWS CodeDeploy, using to orchestrate application deployments to ECS,
Problem-Challenge
AWS Config, Discussion
AWS Control Tower, Discussion
AWS Copilot, deploying containers with, Problem-Challenge
AWS Database Migration Service (AWS DMS), Discussion
AWS Glue crawlers, automatically discovering metadata with, Problem-
Challenge
AWS KMS CMK, configuring S3 buckets to use keys referencing, Solution
AWS Lake Formation, Discussion
AWS Organizations, Introduction
AWS Organizations and Single Sign-On, setting up, Problem-Challenge 2
AWS Policy Generator, Discussion
AWS Schema Conversion Tool, Discussion
AWS SDK, Discussion

using specific access points with, Steps

AWS Security Token Service (see Security Token Service)
AWS security topics, resources for, Introduction
AWS services, listing all, Fast Fixes
AWS Signer, using to run trusted code in Lambda function, Problem-
Problem
AWS Single Sign-On, Solution, Introduction, Discussion

setting up AWS Organizations and, Problem-Challenge 2

AWS SSM Session Manager
connecting to EC2 instance in subnet of VPC via, Validation checks
connecting to EC2 instances with, Problem-Challenge

AWS Systems Manager (SSM) API, Discussion
AWS-managed (aws/ebs) KMS keys, Discussion

AWSLambdaBasicExecutionRole policy, IAM role for Lambda function
execution, Steps
AWSLambdaVPCAccess IAM policy, Steps

B

backups
automated in Aurora Serverless, Discussion
creating and restoring EC2 backups to another Region using AWS
Backup, Problem-Challenge

big data, Introduction-Challenge
automatically discovering metadata with AWS Glue crawlers, Problem-
Challenge
querying files on S3 using Amazon Athena, Problem-Challenge
streaming data to S3 using Kinesis Data Firehose, Problem-Challenge
transforming data with AWS Glue DataBrew, Problem-Challenge
using Kinesis Stream for ingestion of streaming data, Problem-Challenge
workstation configuration, Workstation Configuration

Block Public Access feature (S3), Solution
blue/green deployments, updating containers with, Problem-Challenge
Border Gateway Protocol (BGP), Discussion
bucket policy template to enforce encryption on all objects, Steps

C

capacity for databases, Steps
Aurora Serverless scaling measured in capacity units, Discussion
automatically scaling capacity targets, Steps
autoscaling DynamoDB table provisioned capacity, Problem-Challenge
checking for RDS cluster, Validation checks
DynamoDB provisioned capacity , use of capacity units, Steps

scaled down to 0, Steps
setting at upper limit, Discussion
when database activity resumes, Steps

CDNs (content delivery networks), Discussion
certificate authority (CA), RDS Root CA, Validation checks
certificates

CloudFront HTTPS certificate on default hostname , Discussion
creating for HTTPS, Steps
SSL, Discussion

CI/CD pipelines
AWS Copilot commands embedded in, Discussion
blue/green deployments pattern, Discussion

CIDR (classless inter-domain routing) blocks, Solution
choosing carefully for your VPC, Discussion
creating VPC with IPv6 CIDR block, Discussion
nonoverlapping ranges when connecting VPCs, Discussion
quotas for IPv4 and IPv6, Discussion
simplifying management of CIDRs in security groups with prefix lists,
Problem-Challenge
specifying CIDR notation for authorizations, Discussion

CLI (see AWS CLI)
Cloud Map, Introduction
CloudFront, Discussion

serving web content securely from S3 with, Problem-Challenge

CloudTrail logging, Prerequisite
configuring to log events on S3 bucket, Steps
enabling, Steps
enabling for your AWS account, Problem-Challenge

CloudWatch, Steps
configuring alarm and scaling policy for ECS service, Solution
getting most recently created log group name, Fast Fixes
Glue crawlers logging information to, Validation checks
metrics service, Discussion
streaming container logs to, Solution-Challenge
tailing log group to observe Lambda function invoked, Validation checks
tailing logs for CloudWatch group, Fast Fixes

CloudWatch Events (see EventBridge)
CloudWatchFullAccess policy, Validation checks
clusters

creating database cluster with engine mode of serverless, Steps
database, checking capacity of, Validation checks
deleting RDS cluster, Cleanup

CMK (see customer-managed KMS key)
code signing configuration, Steps
CodeDeploy, using to orchestrate application deployments to ECS,
Solution-Challenge
CodeDeployRoleForECS policy, Steps
CodeSigningPolicies, changing, Challenge 2
Common Vulnerabilities Scoring System (CVSS), Discussion
Comprehend, using to redact PII from text, Problem-Challenge
computer vision analysis of form data, Problem-Challenge
concurrency (provisioned), reducing Lambda startup times with, Problem-
Challenge 2
connection pooling, leveraging RDS Proxy for database connections from
Lambda, Problem-Challenge
consumers and producers (streaming data), Discussion

containers, Introduction-Challenge
autoscaling container workloads on ECS, Problem-Challenge
building, tagging and pushing container image to Amazon ECR,
Problem-Challenge
capturing logs from containers running on ECS, Problem-Challenge
deploying using Amazon Lightsail, Problem-Challenge
deploying using AWS Copilot, Problem-Challenge
launching Fargate container task in response to an event, Problem-
Challenge
networked together, Introduction
orchestrators, Introduction
packaging Lambda code in container image, Problem
prerequisite, installing Docker, Docker installation and validation
scanning images for security vulnerabilities on push to ECR, Problem-
Challenge 2
updating with blue/green deployments, Problem-Challenge

Control Tower, Discussion
Copilot, deploying containers with, Problem-Challenge
cost allocation tags, Discussion
CreateInternetGateway action (EC2), testing, Validation checks
credentials

temporary, for a role, returned by AssumeRole API, Validation checks
temporary, from AWS STS instead of IAM user, Discussion

cross-account access to AWS resources, Discussion
Cross-Region Replication (CRR), Discussion
CSV files

generating and exporting CSV of resources with EC2 Global View,
Problem-Challenge

transforming data in, using Glue DataBrew, Problem-Challenge

customer-managed KMS key, Solution, Problem, Discussion
CVSS (Common Vulnerability Scoring System), Discussion

D

dashboard, creating for S3 Storage Lens, Steps-Discussion
data, Introduction

(see also big data)

Data Catalog
creating in Athena, Steps
using Glue Data Catalog in Athena service, Discussion

data lakes, Discussion
Data Lifecycle Manager, Discussion

automating EBS snapshots with, Discussion

database engines, determining current supported versions for, Fast Fixes
Database Migration Service (see DMS)
databases, Introduction-Challenge, Discussion

automating password rotation for RDS databases, Problem-Challenge
autoscaling DynamoDB table provisioned capacity, Problem-Challenge
AWS managed database services, Introduction
creating Amazon Aurora serverless PostgreSQL database, Problem-
Challenge
enabling REST access to Aurora Serverless using RDS Data API,
Problem-Challenge
encrypting storage of existing RDS for MySQL database, Problem-
Challenge
leveraging RDS Proxy for database connections from Lambda, Problem-
Challenge
migrating to Amazon RDS using DMS, Problem-Challenge

using IAM authentication with RDS database, Problem-Challenge

DataSync, replicating data between EFS and S3 with, Problem-Challenge 2
Days in Transition action, Validation checks
db-connect action, Discussion
DBAppFunction Lambda function’s role, Steps
DBInstanceStatus, Steps
DBProxyTargets, Steps
Deep Archive Access storage tier, Discussion
deploying containers

updating containers with blue/green deployments, Problem-Challenge
using Amazon Lightsail, Problem-Challenge
using AWS Copilot, Problem-Challenge

DescribeInstances action (EC2), testing, Validation checks
Destination S3 bucket, Steps
DHCP server (AWS-managed), options set, Discussion
DMS (Database Migration Service), Discussion

migrating databases to Amazon RDS using DMS, Problem-Challenge

dms.t2.medium replication instance size, Steps
Docker

creating a Dockerfile, Steps
installation and validation, Docker installation and validation

Docker container image, pushing to ECR repository, Problem-Challenge
Docker Desktop, Docker installation and validation
Docker Linux Engine, Docker installation and validation
Docker Swarm, Introduction
DynamoDB

automating CSV import from S3 with Lambda, Problem-Challenge 3
autoscaling DynamoDB table provisioned capacity, Problem-Challenge

populating data into a table, Fast Fixes
using Glue crawlers to scan tables, Discussion

E

EBS snapshots, Discussion
restoring a file from, Problem-Challenge

EBS volumes
enabling encryption by default for new volumes in Region, Fast Fixes
encrypting using KMS keys, Problem-Challenge 2

ebs-encryption-by-default option, Discussion
EC2, Introduction

connecting to instances using AWS SSM Session Manager, Problem-
Challenge
creating and restoring EC2 backups to another Region using AWS
Backup, Problem-Challenge
granting instance the ability to access a secret, Steps
instance in subnet of a VPC, connecting to the internet, Problem
retrieving secret from Secrets Manager, Validation checks
storing, encrypting, and accessing passwords with Secrets Manager,
Problem-Challenge
using EC2 Global View for account resource analysis, Problem-
Challenge

ECR (Elastic Container Registry), Introduction
container images supported, Discussion
deleting repositories containing images, Cleanup
Docker Credential Helper, Steps
pushing container image to, Solution-Challenge, Problem-Challenge
scanning container images for vulnerabilities on push to ECR, Problem-
Challenge 2

storage of container images on, Discussion

ECS (Elastic Container Service), Introduction
autoscaling container workloads on, Problem-Challenge
capturing logs from containers running on, Problem-Challenge
Copilot requirement for ECS service-linked role, Steps
using EventBridge to trigger launch of container tasks on Fargate,
Solution-Challenge

ECSRunTaskPermissionsForEvents policy, Steps
EFS

configuring Lambda function to access, Problem-See Also
replicating data between EFS and S3 with DataSync, Problem-Challenge
2

EIP (Elastic IP address), Steps
associated with NAT gatway, Discussion
creating and associating to EC2 instance, Solution
creating for use with NAT gateway, Steps

Elastic Cloud Compute (see EC2)
Elastic Container Registry (see ECR)
Elastic Container Service (Amazon ECS) (see ECS)
Elastic Load Balancing (ELB) service, Introduction

giving permission to invoke Lambda functions, Solution

elastic network interfaces (see ENIs)
ElastiCache, accessing cluster having endpoint on a VPC, Problem-
Challenge 1
email alerts for root login, setting up, Problem-Challenge
encryption

enabling by default for new EBS volumes in a Region, Fast Fixes
encrypting EBS volumes using KMS keys, Problem-Challenge 2

encrypting storage of existing RDS for MySQL database, Problem-
Challenge
SSL encryption in transit, support by RDS Proxy, Discussion
traffic in transit and at rest using TLS with DataSync, Discussion
using S3 bucket keys with KMS to encrypt objects, Problem-Challenge

endpoint policies (S3 VPC), Steps
engine-mode of serverless, Steps
ENIs (elastic network interfaces)

database subnet groups simplifying palcement of RDS ENIs, Steps
of two EC2 instances, security group associated with, Problem
security group acting as stateful virtual firewall for, Discussion
subnets used for placement of, Discussion

EvalDecision, Validation checks
event-driven applications, Discussion, Discussion
EventBridge

invoking a Lambda function on a schedule, Solution-Challenge
rule searching for root logins and triggering SNS topic, Solution-
Challenge
using to trigger launch of ECS container tasks on Fargate, Solution-
Challenge

events in your AWS account, monitoring with CloudTrail, Discussion

F

Fargate, Prerequisites, Introduction
launching Fargate container task in response to an event, Problem-
Challenge

fast fixes, Fast Fixes-Fast Fixes
federation

AWS accounts leveraging, Discussion

identity, Solution

form data, computer vision analysis of, Problem-Challenge
Frequent Access storage tier, Discussion
full-load-and-cdc, Discussion

G

gateway endpoint in your VPC, creating and associating with route tables,
Steps
Gateway Load Balancers, Discussion
Gateway VPC endpoints, Discussion
get-secret-value API call, Discussion
Glacier archive (S3), automating archival of S3 objects to, Solution
global condition context keys (IAM), Steps
Glue service

automatically discovering metadata with Glue crawlers, Problem-
Challenge

crawler configuration summary, Steps
creating Glue Data Catalog database, Steps

transforming data with Glue DataBrew, Problem-Challenge

groups (IAM), Steps

H

HIPAA compliance for PHI, Discussion
HTTP

HTTP 301 response, Steps
security group rules allowing HTTP traffic, Steps

HTTPS
redirecting HTTP traffic to with application load balancer, Problem-
Challenge

Session Manager, communicating with AWS Systems Manager (SSM)
via, Discussion

I

IAM (Identity and Access Management)
access keys, AWS SSO and, Discussion
access point policies, Steps, Discussion
creating and assuming role for developer access, Problem-Challenge
creating policy for secret access, Steps, Steps
creating role for Kinesis Data Firehose, Steps
creating role for RDS Proxy, Steps
delegating administrative capabilities using permissions boundaries,
Problem-Challenge
enabling IAM user and role access to Billing console, Discussion
generating least privilege IAM policy based on access patterns, Problem-
Challenge
role allowing S3 to copy objects from source to destination bucket, Steps
role for Lambda function execution, IAM role for Lambda function
execution
service-linked roles, Steps
setting up multi-factor authentication for root user in AWS account, Steps
testing policies with IAM Policy Simulator, Problem-Challenge
user password policies, enforcing in AWS account, Enforcing IAM User
Password Policies in Your AWS Account-Challenge
using IAM authentication with RDS database, Problem-Challenge

IAM Access Analyzer (see Access Analyzer)
identity federation, using to access AWS accounts, Solution
IGW (see internet gateway)
Infrequent Access storage class, Solution, Discussion, Discussion

instance metadata (EC2), Steps
instance profiles (EC2), Steps

creating and associating profile allowing access to secret, Solution

Intelligent-Tiering archive policies, using to automatically archive S3
objects, Problem-Challenge 2
internet gateway

egress-only, for private subnets on VPC with IPv6 capability, Discussion
using to connect VPC to the internet, Problem-Challenge

internet, using NAT gateway for outbound access from private subnets,
Problem-Challenge
IP addresses

AWS-provided ranges list, Solution
Elastic IP address in IPv4, Steps
for ENIs, Discussion
option to auto-assign on newly launched EC2 instances in a subnet,
Discussion
retrieving public IP from EC2 instance's metadata, Validation checks

IPv4 CIDR blocks, Steps
additional, associating with your VPC, Discussion
quota for, Discussion

IPv6 CIDR blocks
configuring for Amazon VPC , Discussion
quota, Discussion

J

Java Database Connectivity (JDBC) data stores, using Glue crawlers to
scan, Discussion
jq utility, Steps, Prerequisites

K

Key Management Service (KMS), Introduction
creating KMS key to encrypt database snapshot, Steps
encrypting EBS volumes using KMS keys, Problem-Challenge 2
specifying key for encyrypting RDS database snapshot, Steps
using with S3 bucket keys to encrypt objects, Problem-Challenge

key rotation, automatic, on KMS service, Discussion
Kinesis Client Library (KCL), Discussion
Kinesis Data Analytics, Discussion
Kinesis Data Firehose, streaming data to S3 with, Problem-Challenge
Kinesis Producer Library (KPL), Discussion
Kinesis Stream, using for ingestion of streaming data, Problem-Challenge
KMS (see Key Management Service)
KMS.NotFoundException error, Validation checks
Kubernetes, Introduction

L

Lambda functions
accessing VPC resources with, Problem-Challenge 1
configuring application load balancer to invoke, Problem-Challenge 2
configuring to access EFS file system, Problem-See Also
connection to RDS database, leveraging RDS Proxy for, Problem-
Challenge
IAM role for execution, IAM role for Lambda function execution
integrating function with Secrets Manager to rotate RDS database
passwords, Problem-Challenge
invoking on a schedule, Problem-Challenge
packaging Lambda code in container image, Problem-Challenge

packaging libraries with Lambda Layers, Problem-Challenge
reducing startup times with provisioned concurrency, Problem
running trusted code in, using AWS Signer, Problem-Problem
time out after 900 seconds, Discussion
transforming data with, Discussion
using EventBridge instead of for long-running jobs, Discussion

landing zone, Discussion
least privilege access

implementing based on access patterns, Problem-Challenge
principle of least privilege, Discussion

libraries, packaging with Lambda Layers, Problem-Challenge
lifecycle policies (S3), using to reduce storage costs, Problem-Challenge 2
Lightsail, deploying containers with, Problem-Challenge
Linux, installing Docker on, Linux
load balancers

redirecting HTTP traffic to HTTPS with application load balancer,
Problem-Challenge
types other than ALB offered by AWS, Discussion

logging
capturing logs from containers running on ECS, Problem-Challenge
CloudTrail, enabling for your account, Prerequisite
deleting all log groups matching text pattern, Fast Fixes
enabling CloudTrail logging for AWS account, Problem-Challenge
Glue crawlers automatically logging information to CloudWatch Logs,
Validation checks

login profile, creating for a user, Steps
low-code development platforms (LCDPs), Discussion

M

machine learning (ML) (see AI/ML)
MacOS, installing Docke Desktop on, MacOS
management account, Discussion
metadata, Discussion

automatically discovering with AWS Glue crawlers, Problem-Challenge
EC2 instance, retrieving public IP from, Validation checks
EC2 instances, Steps

metrics
autoscaling metrics on CloudWatch, Discussion
ECS service, on AWS Console, Validation checks
observing for S3 storage using Storage Lens, Discussion

migration of databases
migrating databases to Amazon RDS using DMS, Problem-Challenge
provisioned capacity type on RDS to Aurora Serverless, Discussion

mounting and unmounting EBS volumes, Validation checks
MP3-based audio, transcribing to text, Problem-Challenge
multi-factor authentication (MFA), Discussion, Discussion

setting up for root user in your AWS account, Problem-Challenge

MySQL
RDS instance, encrypting storage of, Solution-Challenge
RDS instance, leveraging RDS Proxy for database connections from
Lambda, Problem
RDS instance, using IAM authentication with, Problem-Challenge

N

NAT gateway
sharing of, enabled by Transit Gateway, Steps

using for outbound internet access from private subnets, Problem-
Challenge

Ncat utility, Validation checks
network insights path, creating for EC2 instances, Steps
Network Load Balancers, Discussion
networking, Introduction-Challenge

AWS services providing, Introduction
connecting VPC to the internet using internet gateway, Problem-
Challenge
controlling network access to S3 from VPC using VPC endpoints,
Problem-Challenge
creating network tier with subnets and route table in a VPC, Problem-
Challenge
defining private virtual network in the cloud with Amazon VPC,
Problem-Challenge
deleting network interfaces associated with a security group, Fast Fixes
enabling transitive cross-VPC connections using Transit Gateway,
Problem-Challenge
granting dynamic access by referencing security groups, Problem-
Challenge
innovations at AWS, resources on, Introduction
peering VPCs together for inter-VPC network communication, Problem-
Challenge
redirecting HTTP traffic to HTTPS with application load balancer,
Problem-Challenge
simplifying management of CIDRs in security groups with prefix lists,
Problem-Challenge
using NAT gateway for outbound internet access from private subnets,
Problem-Challenge

using VPC Reachability Analyzer to verify and troubleshoot network
paths, Problem-Challenge

NGINX containers
deploying using Amazon Lightsail, Solution-Challenge
nginx:latest image, Steps

notifications (S3), Steps

O

OpenSearch, Discussion
OpenSSL CLI, generating self-signed certificate with, Steps
orchestrators (container), Introduction
Organizations (AWS), setting up, Introduction, Problem-Challenge 2
origin access identity (OAI)

configuring to require S3bucket to be accessible only from CloudFront,
Solution
creating for CloudFront to reference S3 bucket polity, Steps

OS X CLI, listening to MP3 file on, Steps

P

passwords
automating rotation for RDS databases, Problem-Challenge
complex, generating with Secrets Manager, Steps
enforcing IAM user password policies in AWS account, Enforcing IAM
User Password Policies in Your AWS Account-Challenge
storing, encrypting, and accessing with Secrets Manager, Problem-
Challenge

peering VPCs for inter-VPC network communication, Problem-Challenge
permissions

locking down for SSM users, Discussion

permission sets, Discussion

permissions boundaries, using to delegate IAM administrative capabilities,
Problem-Challenge
PHI (protected health information), categorizing for further analysis,
Problem-Discussion
physician dictation analysis using Transcribe Medical and Comprehend
Medical, Problem-Discussion
PII (personally identifiable information), redacting from text using
Comprehend, Problem-Challenge
Policy Simulator (IAM), testing IAM policies with, Problem-Challenge
Polly service, converting text to speech, Problem-Challenge
PostgreSQL

Aurora Serverless database, allowing REST access using RDS Data API,
Problem-Challenge
creating Amazon Aurora serverless PostgreSQL database, Problem-
Challenge

PostgreSQL package, installing, Validation checks
PowerUserAccess IAM policy, Solution, Discussion

attaching to role, Steps

prefix lists in security groups, managing CIDRs with, Problem-Challenge
principle of least privilege, Discussion, Discussion

(see also least privilege access)

privilege escalation, IAM service mitigating risk of, Steps
producers and consumers (streaming data), Discussion
Prometheus, Amazon Managed Service for, Introduction
protected health information (PHI), categorizing for further analysis,
Problem-Discussion
provisioned capacity for DynamoDB table, autoscaling, Problem-Challenge

provisioned concurrency, reducing Lambda startup times with, Problem-
Challenge 2
Proxy ID, Steps
public access, blocking for S3 bucket, Problem-Challenge

Q

Query Editor in RDS Console, Steps, Discussion
quotas and limits (Kinesis service), Discussion

R

RDS Data API
short-lived database connections, Discussion
using to enable REST access to Aurora Serverless, Problem-Challenge

rds-data:CommitTransaction permission, Discussion
rds-data:RollbackTransaction permission, Discussion
Reachability Analyzer (VPC), using to verify and troubleshoot network
paths, Problem-Challenge
ReadCapacityUnits scaling target, Steps
recovery point (backup), Steps
recovery point objectives, replicating S3 buckets to meet, Problem-
Challenge 2
recovery time objective (RTO), decreasing for EC2 instance using AWS
Backups, Discussion
redirect response for all HTTP traffic to HTTPS, Steps
Redis Python package, installing, Steps
Redis, Lambda function with Redis client, accessing VPC resources,
Solution-Challenge 1
Regions

creating and restoring EC2 backups to another Region using AWS
Backup, Problem-Challenge
creating VPC in, spreading subnets across Availability Zones, Discussion
listing all, Fast Fixes
listing all that have a particular service, Fast Fixes
listing Region names and endpoints in table, Fast Fixes
setting by grabbing value from EC2 instance metadata, Fast Fixes
stopping all running instances for current working Region, Fast Fixes
for VPCs, Discussion

Rekognition Video, using to detect text in a video, Problem
Relational Database Service (RDS), Introduction

automating password rotation for RDS databases, Problem-Challenge
deleting RDS cluster, Cleanup
leveraging RDS Proxy for database connections from Lambda, Problem-
Challenge
migrating databases to, using DMS, Problem-Challenge
naming constraints, Steps
using IAM authentication with RDS database, Problem-Challenge

replication
Aurora Serverless databases, Discussion
DMS replication tasks, Solution-Challenge
replicating data between EFS and S3 with DataSync, Problem-Challenge
2
replicating S3 buckets to meet recovery point objectives, Problem-
Challenge 2

ReplicationStatus, Validation checks
Resource Access Manager, Discussion
REST

enabling REST access to Aurora Serverless using RDS Data API,
Problem-Challenge
REST API exposed by RDS, Discussion

restores
restoring a file from an EBS snapshot, Problem
restoring EC2 backups to another Region using AWS Backup, Steps

roles
creating, Steps
retrieving for a user, Steps

root user
email alerts for root login, setting up, Problem-Challenge
setting up multi-factor authentication for, Problem-Challenge

rotate-secret command (Secrets Manager), Steps
Route 53 DNS records, Discussion
route tables

associated with each subnet, route to direct traffic for peered VPCs to
peering connection, Steps
associating gateway endpoint in VPC with, Steps
creating network tier with subnets and route table in a VPC, Problem-
Challenge
prefix lists associated wtih, Discussion
priority given to most specific route, Discussion

routing, Solution
(see also CIDR blocks)
for Transit Gateway, Steps

runtime interface client, Discussion

S

S3
automatically archiving S3 objects using Intelligent-Tiering, Problem-
Challenge 1
AWS support for S3 interface endpoints, Discussion
blocking public access for a bucket, Problem-Challenge
configuring application-specific access to buckets with S3 access points,
Problem-Challenge
controlling network access to S3 from VPC using VPC endpoints,
Problem-Challenge
creating presigned URL for object that expires in a week, Fast Fixes
CSV import into DynamoDB from S3 with Lambda, Problem-Challenge
3
lifecycle policies, using to reduce storage costs, Problem-Challenge 2
observing storage and access metrics using Storage Lens, Problem-
Challenge 2
querying files using Amazon Athena, Problem-Challenge
replicating buckets to meet recovery point objectives, Problem-Challenge
2
replicating files from S3 to EFS using DataSync, Problem-Challenge 2
serving web content securely from using CloudFront, Problem-Challenge
streaming data to, using Kinesis Data Firehose, Problem-Challenge
using bucket keys with KMS to encrypt objects, Problem-Challenge

S3:GetObject action, Solution
S3:PutObject action, Solution
Same-Region Replication (SRR), Discussion
scaling

autoscaling by Kinesis Data Firehose, Discussion
autoscaling capacity for database, Steps
autoscaling container workloads on ECS, Problem-Challenge

autoscaling DynamoDB table provisioned capacity, Problem-Challenge

Schema Conversion Tool (SCT), Discussion
schemas, Discussion
secrets

creating using AWS CLI, Steps
SECRET_ARN role, replacing, Steps
storing, encrypting, and accessing passwords with Secrets Manager,
Problem-Challenge

Secrets Manager
creating and storing passwork in, Solution
generating passwords with, Steps
using to generate complex password, Steps
using with Lambda function to automatically rotate RDS database
passwords, Solution-Challenge

SecretsManagerReadWrite policy, Steps, Steps
security, Introduction-Challenge

administrative access, Discussion
blocking public access for S3 bucket, Problem-Challenge
encryption at rest, Discussion
endpoint policy to restrict access to S3 buckets, Discussion
fine-grained security capabilities on AWS, Introduction
IAM role, creating and assuming for developer access, Problem-
Challenge
scanning container images for vulnerabilities on push to ECR, Problem-
Challenge 2
security topics on AWS, Introduction
serving web content securely from S3 with CloudFront, Problem-
Challenge
trusted code, running in Lambda, Discussion

workstation configuration, Workstation Configuration

security groups
CIDR management using prefix lists, Problem-Challenge
creating VPC security group for database, Steps
deleting network interfaces associated with, Fast Fixes
EC2 instances's security group allowing ingress traffic from ALB, Steps
granting dynamic access to EC2 instances by referencing, Problem-
Challenge
for RDS Proxy, Steps

rule allowing access on TCP port 3306 for Lambda APP function
security group, Steps

RDS MySQL database instance, ingress rule allowing access on TCP
port 3306, Steps
referencing in peered VPCs, Discussion
referencing other security groups, Steps
rules to allow HTTP and HTTPS traffic, Steps
updating rule to allow access SSH access between instances, Steps

Security Token Service (STS), Validation checks, Discussion
self-referencing rule (security group), Steps
serverless, Introduction-Challenge 1

accessing VPC resources with Lambda, Problem-Challenge 1
automating CSV import into DynamoDB from S3 with Lambda,
Problem-Challenge 3
benefits of, on AWS, Introduction
configuring ALB to invoke Lambda function, Problem-Challenge 2
configuring Lambda function to access EFS, Problem-See Also
packaging Lambda code in container image, Problem-Challenge
packaging libraries with Lambda Layers, Problem-Challenge

prerequisite, IAM role for Lambda function execution, IAM role for
Lambda function execution
reducing Lambda startup times with provisioned concurrency, Problem-
Challenge 2
running trusted code in Lambda using AWS Signer, Problem-Problem
services available on AWS, Introduction

Session Manager (see SSM Session Manager)
shards, Steps
signing process for Lambda function code, Solution
Single Sign-On (SSO), Solution, Introduction, Discussion

setting up AWS Organizations and SSO, Problem-Challenge 2

snapshots
encrypting storage of RDS database using, Solution-Challenge
skipping final snapshot when deleting RDS cluster, Cleanup

SNS topic, creating and subscribing to it, Solution-Challenge
Source S3 bucket, configuring replication policy for, Steps
SQL query, running on files stored in S3, Problem-Challenge
SSH, allowing between EC2 instances, Problem-Challenge
SSL

certificate, creating, Steps
OpenSSL, Prerequisites

SSM Session Manager
connecting to EC2 instance in subnet of VPC via, Validation checks
connecting to EC2 instances with, Problem-Challenge

SSML (Speech Synthesis Markup Language) tags, Steps
SSO (see Single Sign-On)
Standard storage class, Discussion
storage, Introduction-Challenge 2

creating and restoring EC2 backups to another Region using AWS
Backup, Problem-Challenge
ElastiCache service implementing redis or memcached for, Discussion
encrypting storage of existing RDS for MySQL database, Problem-
Challenge
restoring a file from an EBS snapshot, Problem-Challenge
using Intelligent-Tiering archive policies to automatically archive S3
objects, Problem-Challenge 2
using S3 lifecycle policies to reduce storage costs, Problem-Challenge 2

Storage Lens, observing S3 storage and access metrics with, Problem-
Challenge 2
streaming data

to S3 using Kinesis Data Firehose, Problem-Challenge
using Kinesis Stream for ingestion of, Problem-Challenge

subnets
creating database subnet group, Steps
creating network tier with subnets and route table in a VPC, Problem-
Challenge
outbound-only internet access for an EC2 instance in private subnets,
Problem-Challenge

Switch Role feature, Validation checks

T

tables, Discussion
Tag Editor, using to modify tags for many resources at one time, Problem-
Challenge
tagging containers, Steps, Discussion
tags for AWS resources, Discussion
target groups for Load Balancer, Steps

text in an image, determining location of, Problem-Challenge
text to speech conversion, Problem-Challenge
text, detecting in a video, Problem
Textractor tool

analyzing output from Amazon Textract to determine location of text in
an image, Problem-Challenge
using for computer vision analysis of form data, Problem-Challenge

tokens (authentication), Discussion
IAM policy allowing Lambda function to generate, Steps

tokens (authorization), Steps
Transcribe Medical and Comprehend Medical, using for physician dictation
analysis, Problem-Discussion
transcribing a podcast, Problem-Challenge
transformations

Lambda functions for, Discussion
transforming data with AWS Glue DataBrew, Problem-Challenge

Transit Gateway, enabling transitive cross-VPC connections, Problem-
Challenge

U

universally unique identifiers (UUIDs), Validation checks
user password policies, enforcing in AWS account, Enforcing IAM User
Password Policies in Your AWS Account-Challenge

V

video, detecting text in, Problem-Challenge
VPC (Virtual Private Cloud), Introduction

accessing VPC resources with Lambda, Problem-Challenge 1
connecting to internet using internet gateway, Problem-Challenge

controlling network access to S3 from VPC using VPC endpoints,
Problem-Challenge
creating, Problem-Challenge
creating network tier with subnets and route table in a VPC, Problem
default, finding for a Region, Fast Fixes
enabling transitive cross-VPC connections using Transit Gateway,
Problem-Challenge
finding interface VPC endpoints for current Region, Fast Fixes
peering two VPCs together for inter-VPC network communication,
Problem-Challenge
Reachability Analyzer, using to verify and troubleshoot network paths,
Problem-Challenge
using NAT gateway for outbound internet access from private subnets,
Problem-Challenge

VPN Endpoints for Session Manager, Discussion

W

Windows, installing Docker Desktop on, Windows
WorkSpaces gateways, list of CIDR ranges for, Solution

Y

Yaml input for CLI command, Fast Fixes

About the Authors
John Culkin is a senior solutions architect at AWS. He holds all current
AWS certifications. Previously, he was a principal cloud architect lead at
Cloudreach, where he led the delivery of cloud solutions aligned with
organizational needs. A lifelong student of technology, he now focuses on
creating transformative business solutions that utilize cloud services.
Mike Zazon is a senior cloud architect at AWS, focused on helping
enterprise customers modernize their businesses. He previously held roles
as a cloud software developer, software engineer, software architect, IT
manager, and data center architect. His passion for technology education
blossomed while serving in some of these roles within an engineering
research university setting.

Colophon
The animal on the cover of AWS Cookbook is the northern goshawk
(Accipiter gentilis). A powerful predator, the northern goshawk belongs to
the Accipitridae family (part of the “true hawk” subfamily) and can be
found in the temperate parts of the Northern Hemisphere. The northern
goshawk is the only species in the genus Accipiter living in coniferous and
mixed forests in both Eurasia and North America, generally restricting itself
to relatively open wooded areas or along the edges of a forest. It’s a
migratory bird that ventures south during the winter.
The northern goshawk has relatively short, broad wings and a long tail to
enable maneuverability within its forest habitat. For its species, it has a
comparatively sizable beak, robust and fairly short legs, and thick talons. It
has a blue-gray back and a brownish-gray or white underside with dark
barring. These birds tend to show clinal variation in color, which means that
goshawks further north are paler than those in warmer areas.
The northern goshawk is amazingly fast, and catches its prey by putting on
short bursts of flight, often twisting among branches and crashing through
thickets in its intensity. It’s a quiet predator that hunts by perching at mid-
level heights and attacking quickly when it spots prey. The diet often
consists of medium-sized birds, small mammals including squirrels and
rabbits, small rodents, snakes, and insects.
This hawk lays around 2–4 bluish white eggs and is very territorial and
protective of its nest, diving at intruders (including humans) and sometimes
drawing blood. Young goshawks are usually looked after by the female,
who remains with them most of the time while the male’s primary
responsibility is to bring food to the nest. Goshawks typically mate for life
and hence they function as a partnership with most things.
Goshawks have a long and noble history. In the Middle Ages, only the
nobility were permitted to fly goshawks for falconry. Ancient European
falconry literature refers to goshawks as a yeoman’s bird or the cook’s bird
because of their utility as a hunting partner catching edible prey. Currently,
the northern goshawk’s conservation status is that of least concern as the
population remains stable. However, it may falter with increased

deforestation, which is a loss of habitat for these mighty birds. Many of the
animals on O’Reilly covers are endangered; all of them are important to the
world.
The cover illustration is by Karen Montgomery, based on a black and white
engraving from British Birds. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu
Mono.

	Foreword
	Preface
	Who This Book Is For
	What You Will Learn
	The Recipes
	What You Will Need
	Getting Started
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	1. Security
	1.0. Introduction
	1.1. Creating and Assuming an IAM Role for Developer Access
	1.2. Generating a Least Privilege IAM Policy Based on Access Patterns
	1.3. Enforcing IAM User Password Policies in Your AWS Account
	1.4. Testing IAM Policies with the IAM Policy Simulator
	1.5. Delegating IAM Administrative Capabilities Using Permissions Boundaries
	1.6. Connecting to EC2 Instances Using AWS SSM Session Manager
	1.7. Encrypting EBS Volumes Using KMS Keys
	1.8. Storing, Encrypting, and Accessing Passwords Using Secrets Manager
	1.9. Blocking Public Access for an S3 Bucket
	1.10. Serving Web Content Securely from S3 with CloudFront

	2. Networking
	2.0. Introduction
	2.1. Defining Your Private Virtual Network in the Cloud by Creating an Amazon VPC
	2.2. Creating a Network Tier with Subnets and a Route Table in a VPC
	2.3. Connecting Your VPC to the Internet Using an Internet Gateway
	2.4. Using a NAT Gateway for Outbound Internet Access from Private Subnets
	2.5. Granting Dynamic Access by Referencing Security Groups
	2.6. Using VPC Reachability Analyzer to Verify and Troubleshoot Network Paths
	2.7. Redirecting HTTP Traffic to HTTPS with an Application Load Balancer
	2.8. Simplifying Management of CIDRs in Security Groups with Prefix Lists
	2.9. Controlling Network Access to S3 from Your VPC Using VPC Endpoints
	2.10. Enabling Transitive Cross-VPC Connections Using Transit Gateway
	2.11. Peering Two VPCs Together for Inter-VPC Network Communication

	3. Storage
	3.0. Introduction
	3.1. Using S3 Lifecycle Policies to Reduce Storage Costs
	3.2. Using S3 Intelligent-Tiering Archive Policies to Automatically Archive S3 Objects
	3.3. Replicating S3 Buckets to Meet Recovery Point Objectives
	3.4. Observing S3 Storage and Access Metrics Using Storage Lens
	3.5. Configuring Application-Specific Access to S3 Buckets with S3 Access Points
	3.6. Using Amazon S3 Bucket Keys with KMS to Encrypt Objects
	3.7. Creating and Restoring EC2 Backups to Another Region Using AWS Backup
	3.8. Restoring a File from an EBS Snapshot
	3.9. Replicating Data Between EFS and S3 with DataSync

	4. Databases
	4.0. Introduction
	4.1. Creating an Amazon Aurora Serverless PostgreSQL Database
	4.2. Using IAM Authentication with an RDS Database
	4.3. Leveraging RDS Proxy for Database Connections from Lambda
	4.4. Encrypting the Storage of an Existing Amazon RDS for MySQL Database
	4.5. Automating Password Rotation for RDS Databases
	4.6. Autoscaling DynamoDB Table Provisioned Capacity
	4.7. Migrating Databases to Amazon RDS Using AWS DMS
	4.8. Enabling REST Access to Aurora Serverless Using RDS Data API

	5. Serverless
	5.0. Introduction
	5.1. Configuring an ALB to Invoke a Lambda Function
	5.2. Packaging Libraries with Lambda Layers
	5.3. Invoking Lambda Functions on a Schedule
	5.4. Configuring a Lambda Function to Access an EFS File System
	5.5. Running Trusted Code in Lambda Using AWS Signer
	5.6. Packaging Lambda Code in a Container Image
	5.7. Automating CSV Import into DynamoDB from S3 with Lambda
	5.8. Reducing Lambda Startup Times with Provisioned Concurrency
	5.9. Accessing VPC Resources with Lambda

	6. Containers
	6.0. Introduction
	6.1. Building, Tagging, and Pushing a Container Image to Amazon ECR
	6.2. Scanning Images for Security Vulnerabilities on Push to Amazon ECR
	6.3. Deploying a Container Using Amazon Lightsail
	6.4. Deploying Containers Using AWS Copilot
	6.5. Updating Containers with Blue/Green Deployments
	6.6. Autoscaling Container Workloads on Amazon ECS
	6.7. Launching a Fargate Container Task in Response to an Event
	6.8. Capturing Logs from Containers Running on Amazon ECS

	7. Big Data
	7.0. Introduction
	7.1. Using a Kinesis Stream for Ingestion of Streaming Data
	7.2. Streaming Data to Amazon S3 Using Amazon Kinesis Data Firehose
	7.3. Automatically Discovering Metadata with AWS Glue Crawlers
	7.4. Querying Files on S3 Using Amazon Athena
	7.5. Transforming Data with AWS Glue DataBrew

	8. AI/ML
	8.0. Introduction
	8.1. Transcribing a Podcast
	8.2. Converting Text to Speech
	8.3. Computer Vision Analysis of Form Data
	8.4. Redacting PII from Text Using Comprehend
	8.5. Detecting Text in a Video
	8.6. Physician Dictation Analysis Using Amazon Transcribe Medical and Comprehend Medical
	8.7. Determining Location of Text in an Image

	9. Account Management
	9.0. Introduction
	9.1. Using EC2 Global View for Account Resource Analysis
	9.2. Modifying Tags for Many Resources at One Time with Tag Editor
	9.3. Enabling CloudTrail Logging for Your AWS Account
	9.4. Setting Up Email Alerts for Root Login
	9.5. Setting Up Multi-Factor Authentication for a Root User
	9.6. Setting Up AWS Organizations and AWS Single Sign-On

	Fast Fixes
	Index
	About the Authors

